
5

Lecture : Introduction

. What ’s About
Course is actually three courses in one:
· crash course in object-oriented programming
· software design in the medium
· studio course on team construction of software

Emphasis is on design. Programming is included because it’s a prerequisite; the project
is included because you only really learn an idea when you try and use it.

You will learn:
· how to design software: powerful abstraction mechanisms; patterns that have been

found to work well in practice; how to represent designs so you can communicate
them and critique them

· how to implement in Java
· how to get it right: dependable, flexible software.

Not hacking
· how to be an architect, not just a low-level coder
· how to avoid spending time debugging

. Admin & Policies
Course staff intros:
· Lecturers: Daniel Jackson and Rob Miller
· TAs: you’ll meet in review session next week
· LAs: you’ll meet in clusters
· Hours: see website. Lecturers don’t have fixed office hours but happy to talk to stu-

dents: just send email or drop by.

Materials:
· course text by Liskov; read according to schedule in general info handout
· lecture notes: usually published the day of the lecture
· ‘Gang of Four’ design patterns book: recommended
· ‘Effective Java’ by Bloch: recommended
· Java tutorial: see general information handout for details

Recommended texts are really superb; will be good references, and will help you be-
come a good programmer faster. Special deal if you buy as package.

Course organization:

6

· First half of term: lectures, weekly exercises, reviews, quiz
· Second half of term: team project. More to say on this later.

A change from previous terms: no need to worry now about who will be in your team.
Expect to switch TA’s at half term.

Reviews:
· Weekly sessions with TAs will be used for review of student work
· Initially, TAs will pick fragments of your work to focus on
· Whole section will discuss in a constructive and collaborative way
· Absolutely essential part of course: opportunity to see how ideas from lecture get ap-

plied in practice

Learning Java:
· It’s up to you, but we try and help
· Use Sun’s Java tutorial and do exercises
· Great team of lab assistants on hand in clusters to help you

Collaboration and IP policy:
· see general info
· in short: you can discuss, but written work must be your own; includes spec, design,

code, tests, explanations
· you can use public domain code
· in team project, can collaborate on everything

Quizzes:
· two in-class quizzes, focusing on lecture material

Grading:
· 70% individual work = 25% quizzes + 45% problem sets
· 30% final project, all in team get same grade
· 10% participation extra credit
· no late work will be accepted

. Why Software Engineering Matters
Software’s contribution to US economy (1996 figures):
· greatest trade surplus of exports
· $24B software exported, $4B imported, $20B surplus
· compare: agriculture 26-14-12, aerospace 11-3-8, chemicals 26-19-7, vehicles 21-43-

(22), manufactured goods 200-265-(64)

(from Software Conspiracy, Mark Minasi, McGraw Hill, 2000).

Role in infrastructure:

7

· not just the Internet
· transportation, energy, medicine, finance

Software is becoming pervasive in embedded devices. New cars, for example, have
between 10 and 100 processors for managing all kinds of functions from music to brak-
ing.

Cost of software:
· Ratio of hardware to software procurement cost approaches zero
· Total cost of ownership: 5 times cost of hardware. Gartner group estimates cost of

keeping a PC for 5 years is now $7-14k

How good is our software?
· failed developments
· accidents
· poor quality software

.. Development failures

IBM survey, 1994
· 55% of systems cost more than expected
· 68% overran schedules
· 88% had to be substantially redesigned

Advanced Automation System (FAA, 1982-1994)
· industry average was $100/line, expected to pay $500/line
· ended up paying $700-900/line
· $6B worth of work discarded

Bureau of Labor Statistics (1997)
· for every 6 new systems put into operation, 2 cancelled
· probability of cancellation is about 50% for biggest systems
· average project overshoots schedule by 50%
· 3/4 systems are regarded as ‘operating failures’

.. Accidents

“e most likely way for the world to be destroyed, most experts agree, is by accident.
at’s where we come in. We’re computer professionals. We cause accidents.”

Nathaniel Borenstein, inventor of MIME, in: Programming as if People Mattered:
Friendly Programs, Software Engineering and Other Noble Delusions, Princeton Uni-
versity Press, Princeton, NJ, 1991.

erac-25 (1985-87)

8

· radiotherapy machine with software controller
· hardware interlock removed, but software had no interlock
· software failed to maintain essential invariants: either electron beam mode or stron-

ger beam and plate intervening, to generate X-rays
· several deaths due to burning
· programmer had no experience with concurrent programming
· see: http://sunnyday.mit.edu/therac-25.html

You might think that we’d learn from this and such a disaster would never happen again.
But…
· International Atomic Energy Agency declared ‘radiological emergency’ in Panama

on 22 May, 2001
· 28 patients overexposed; 8 died, of which 3 as result; 3/4 of surviving 20 expected to

develop ‘serious complications which in some cases may ultimately prove fatal’
· Experts found radiotherapy equipment ‘working properly’; cause of emergency lay

with data entry
· If data entered for several shielding blocks in one batch, incorrect dose computed
· FDA, at least, concluded that ‘interpretation of beam block data by software’ was a

factor
· see http://www.fda.gov/cdrh/ocd/panamaradexp.html

Ariane-5 (June 1996)
· European Space Agency
· complete loss of unmanned rocket shortly after takeoff
· due to exception thrown in Ada code
· faulty code was not even needed after takeoff
· due to change in physical environment: undocumented assumptions violated
· see: http://www.esa.int/htdocs/tidc/Press/Press96/ariane5rep.html

e Ariane accident is more typical of most software disasters than the radiotherapy
machine accidents. It’s quite rare for bugs in the code to be the cause; usually, the prob-
lem goes back to the requirements analysis, in this case a failure to articulate and evalu-
ate important environmental assumptions.

London Ambulance Service (1992)
· loss of calls, double dispatches from duplicate calls
· poor choice of developer: inadequate experience
· see: http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las.html

e London Ambulance disaster was really a managerial one. e managers who pro-
duced the software were naive, and accepted a bid from an unknown company that was
many times lower than bids from reputable companies. And they made the terrible mis-
take of trying to go online abruptly, without running the new and old systems together
for a while.

9

In the short term, these problems will become worse because of the pervasive use of
software in our civic infrastructure. PITAC report recognized this, and has successfully
argued for increase in funding for software research:

“e demand for software has grown far faster than our ability to produce it. Further-
more, the Nation needs software that is far more usable, reliable, and powerful than
what is being produced today. We have become dangerously dependent on large soft-
ware systems whose behavior is not well understood and which often fail in unpredicted
ways.”

Information Technology Research: Investing in Our Future
President’s Information Technology Advisory Committee (PITAC)
Report to the President, February 24, 1999
Available at http://www.ccic.gov/ac/report/

RISKS Forum
· collates reports from press of computer-related incidents
· http://catless.ncl.ac.uk

.. Software Quality

One measure: bugs/kloc
· measured after delivery
· industry average is about 10
· high quality: 1 or less

Praxis CDIS system (1993)
· UK air-traffic control system for terminal area
· used precise spec language, very similar to the object models we’ll learn
· no increase in net cost
· much lower bug rate: about 0.75 defects/kloc
· even offered warranty to client!

Of course, quality isn’t just about bugs. You can test software and eliminate most of the
bugs that cause it crash, but end up with a program that’s impossible to use and fails
much of the time to do what you expect, because it has so many special cases. To ad-
dress this problem, you need to build quality in from the start.

. Why Design Matters
“You know what’s needed before we get good software? Cars in this country got better
when Japan showed us that cars could be built better. Someone will have to show the
industry that software can be built better.”

10

John Murray, FDA’s software quality guru
quoted in Software Conspiracy, Mark Minasi, McGraw Hill, 2000

at’s you!

Our aim in 6170 is to show you that ‘hacking code’ isn’t all there is to building software.
In fact, it’s only a small part of it. Don’t think of code as part of the solution; often it’s
part of the problem. We need better ways to talk about software than code, that are less
cumbersome, more direct, and less tied to technology that will rapidly become obso-
lete.

Role of design and designers
· thinking in advance always helps (and it’s cheap!)
· can’t add quality at the end: contrast with reliance on testing; more effective, much

cheaper
· makes delegation and teamwork possible
· design flaws affect user: incoherent, inflexible and hard to use software
· design flaws affect developer: poor interfaces, bugs multiply, hard to add new fea-

tures

It’s a funny thing that computer science students are often resistant to the idea of soft-
ware development as an engineering enterprise. Perhaps they think that engineering
techniques will take away the mystique, or not fit with their inherent hacker talents. On
the contrary, the techniques you learn in 6170 will allow you to leverage the talent you
have much more effectively.

Even professional programmers delude themselves. In an experiment, 32 NASA pro-
grammers applied 3 different testing techniques to a few small programs. ey were
asked to assess what proportion of bugs they thought were found by each method. eir
intuitions turned out to be wrong. ey thought black-box testing based on specs was
the most effective, but in fact code reading was more effective (even though the code
was uncommented). By reading code, they found errors 50% faster!

Victor R. Basili and Richard W. Selby.
Comparing the Effectiveness of Software Testing Strategies.
IEEE Transactions on Software Engineering. Vol. SE-13, No. 12, December 1987, pp.
1278–1296.

For infrastructural software (such as air-traffic control), design is very important. Even
then, many industrial managers don’t realize how big an impact the kinds of ideas we
teach in 6170 can have. See the article that John Chapin (a former 6170 lecturer) and I
wrote that explains how we redesigned a component of CTAS, a new air-traffic control
system, using ideas from 6170:

11

Daniel Jackson and John Chapin. Redesigning Air-Traffic Control: An Exercise in Soft-
ware Design. IEEE Software, May/June 2000. Available at http:
sdg.lcs.mit.edu/~dnj/publications.

.. e Netscape Story

For PC software, there’s a myth that design is unimportant because time-to-market is
all that matters. Netscape’s demise is a story worth pondering in this respect.

e original NCSA Mosaic team at the University of Illinois built the first widely used
browser, but they did a quick and dirty job. ey founded Netscape, and between April
and December 1994 built Navigator 1.0. It ran on 3 platforms, and soon became the
dominant browser on Windows, Unix and Mac. Microsoft began developing Internet
Explorer 1.0 in October 1994, and shipped it with Windows 95 in August 1995.

In Netscape’s rapid growth period, from 1995 to 1997, the developers worked hard to
ship new products with new features, and gave little time to design. Most companies
in the shrink-wrap software business (still) believe that design can be postponed: that
once you have market share and a compelling feature set, you can ‘refactor’ the code and
obtain the benefits of clean design. Netscape was no exception, and its engineers were
probably more talented than many.

Meanwhile, Microsoft had realized the need to build on solid designs. It built NT from
scratch, and restructured the Office suite to use shared components. It did hurry to
market with IE to catch up with Netscape, but then it took time to restructure IE 3.0.
is restructuring of IE is now seen within Microsoft as the key decision that helped
them close the gap with Netscape.

Netscape’s development just grew and grew. By Communicator 4.0, there were 120 de-
velopers (from 10 initially) and 3 million lines of code (up a factor of 30). Michael Toy,
release manager, said:

‘We’re in a really bad situation … We should have stopped shipping this code a year ago.
It’s dead… is is like the rude awakening… We’re paying the price for going fast.’

Interestingly, the argument for modular design within Netscape in 1997 came from a
desire to go back to developing in small teams. Without clean and simple interfaces, it’s
impossible to divide up the work into parts that are independent of one another.

Netscape set aside 2 months to re-architect the browser, but it wasn’t long enough. So
they decided to start again from scratch, with Communicator 6.0. But 6.0 was never
completed, and its developers were reassigned to 4.0. e 5.0 version, Mozilla, was
made available as open source, but that didn’t help: nobody wanted to work on spa-
ghetti code.

12

In the end, Microsoft won the browser war, and AOL acquired Netscape. Of course
this is not the entire story of how Microsoft’s browser came to dominate Netscape’s.
Microsoft’s business practices didn’t help Netscape. And platform independence was a
big issue right from the start; Navigator ran on Windows, Mac and Unix from version
1.0, and Netscape worked hard to maintain as much platform independence in their
code as possible. ey even planned to go to a pure Java version (‘Javagator’), and built a
lot of their own Java tools (because Sun’s tools weren’t ready). But in 1998 they gave up.
Still, Communicator 4.0 contains about 1.2 million lines of Java.

I’ve excerpted this section from an excellent book about Netscape and its business and
technical strategies. You can read the whole story there:

Michael A. Cusumano and David B. Yoffie. Competing on Internet Time: Lessons from
Netscape and its Battle with Microsoft, Free Press, 1998. See especially Chapter 4,
Design Strategy.

Note, by the way, that it took Netscape more than 2 years to discover the importance of
design. Don’t be surprised if you’re not entirely convinced after one term; some things
come only with experience.

. Advice
Course strategy
· don’t get behind: pace is fast!
· attend lectures: material is not all in textbook
· think in advance: don’t rush to code
· de-sign, not de-bug

Can’t emphasize enough importance of starting early and thinking in advance. Of course
I don’t expect you to finish your problem sets the day they’re handed out. But you’ll save
yourself a lot of time in the long run, and you’ll get much better results, if you make some
start on your work early. First, you’ll have the benefit of elapsed time: you’ll be mulling
problems over subconsciously. Second, you’ll know what additional resources you need,
and you’ll be able to get hold of them while it’s easy and in good time. In particular, take
advantage of the course staff – we’re here to help! We’ve scheduled LA cluster hours and
TA office hours with the handin times in mind, but you can expect more help if it isn’t
the night before the problem set is due when everyone else wants it…

Be simple:

‘I gave desperate warnings against the obscurity, the complexity, and over-ambition of
the new design, but my warnings went unheeded. I conclude that there are two ways of
constructing a software design: One way is to make it so simple there are obviously no

13

deficiencies and the other way is to make it so complicated that there are no obvious
deficiencies.’

Tony Hoare, Turing Award Lecture, 1980
talking about the design of Ada, but very relevant to the design of programs

How to ‘Keep it simple, stupid’ (KISS)
· avoid skating where ice is thin: avoid clever hacks, complex algorithms & data struc-

tures
· don’t use most obscure programming language features
· be skeptical of complexity
· don’t be overambitious: spot ‘creeping featurism’ and the ‘second system effect’.
· Remember that it’s easy to make something complicated, but hard to make some-

thing truly simple.

Optimization rule
· Don’t do it
· For experts only: Don’t do it yet

(from Michael Jackson, Principles of Program Design, Academic Press, 1975).

. Parting Shots
Reminders:
· Tomorrow is a lecture not a review session
· Complete online registration form by midnight tonight
· Get started on learning Java now!
· Exercise 1 is due next Tuesday

Check this out:
· http://www.170systems.com/about/our_name.html

Lecture 2: Decoupling I

A central issue in designing software is how to decompose a program into parts. In this
lecture, we’ll introduce some fundamental notions for talking about parts and how
they relate to one another. Our focus will be on identifying the problem of coupling
between parts, and showing how coupling can be reduced. In the next lecture, we’ll see
how Java explicitly supports techniques for decoupling.

A key idea that we’ll introduce today is that of a specification. Don’t think that specifi-
cations are just boring documentation. On the contrary, they are essential to decou-
pling and thus to high-quality design. And we’ll see that in more advanced designs,
specifications become design elements in their own right.

Our course text treats the terms uses and depends as synonyms. In this lecture, we’ll
distinguish the two, and explain how the notion of depends is a more useful one than
the older notion of uses. You’ll need to understand how to construct and analyze
dependency diagrams; uses diagrams are explained just as a stepping stone along the
way.

2.1 Decomposition
A program is built from a collection of parts. What parts should there be, and how
should they be related? This is the problem of decomposition.

2.1.1 Why Decompose?
Dijkstra pointed out that if a program has N parts, and each has a probability of cor-
rectness of c – that is, there’s a chance of 1-c that the developer gets it wrong – then
the probability that the whole assemblage will work is cN. If N is large, then unless c is
very close to one, cN will be near zero. Dijkstra made this argument to show how much
getting it right matters – and the bigger the program gets, the more it matters. If you
can’t make each part almost perfect, you have no hope of getting the program to work.

(You can find the argument in the classic text Structured Programming by Dahl,
Dijkstra and Hoare, Academic Press, 1972. It’s a seductive and elegant argument, but
perhaps a bit misleading. In practice, the probability of getting the whole program
completely correct is zero anyway. And what matters is ensuring that certain limited,

15

but crucial, properties hold, and these may not involve every part. We’ll return to this
later.)

But doesn’t this suggest that we shouldn’t break a program into parts? The smaller N
is, the higher the probability that the program will work. Of course, I’m joking – it’s
easier to get a small part right than a big one (so the parameter c is not independent of
N). But it’s worth asking what benefits come from dividing a program into smaller
parts. Here are some:
· Division of labour. A program doesn’t just appear out of thin air: it has to be built

gradually. If you divide it into parts, you can get it built more quickly by having dif-
ferent people work on different parts.

· Reuse. Sometimes it’s possible to factor out parts that different programs have in
common, so they can be produced once and used many times.

· Modular Analysis. Even if a program is built by only one person, there’s an advan-
tage to buidling it in small parts. Each time a part is complete, it can be analyzed for
correctness (by reading the code, by testing it, or by more sophisticated methods
that we’ll talk about later). If it works, it can be used by another part without revis-
iting it. Aside from giving a satisfying sense of progress, this has a more subtle
advantage. Analyzing a part that is twice is big is much more than twice as hard, so
analyzing about a program in small parts dramatically reduces the overall cost of the
analysis.

· Localized Change. Any useful program will need adaptation and extension over its
lifetime. If a change can be localized to a few parts, a much smaller portion of the
program as a whole needs to be considered when making and validating the change.

Herb Simon made an intriguing argument for why structures – whether man-made or
natural – tend to be build in a hierarchy of parts. He imagines two watchmakers, one
of whom builds watches in one go, in a single large assembly, and one of who builds
composite subassemblies that he then puts together. Whenever the phone rings, a
watchmaker must stop and put down what he as currently working on, spoiling that
assembly. The watchmaker who builds in one go keeps spoiling whole watch assem-
blies, and must start again from scratch. But the watchmaker who builds hierarchical-
ly doesn’t lose the work he did on the completed subassemblies that he was using. So
he tends to lose less work each time, and produces watches more efficiently. How do
you think this argument applies to software?

(You can find this argument in Simon’s paper The Architecture of Complexity.)

2.1.2 What Are The Parts?
What are the parts that a program is divided into? We’ll use the term ‘part’ rather than

16

‘module’ for now so we can keep away from programming-language specific notions.
(In the next lecture, we’ll look at how Java in particular supports decomposition into
parts). For now, all we need to note is that the parts in a program are descriptions: in
fact, software development is really all about producing, analyzing and executing
descriptions. We’ll soon see that the parts of a program aren’t all executable code – it’s
useful to think of specifications as parts too.

2.1.3 Top Down Design
Suppose we need some part A and we want to decompose into parts. How do we make
the right decomposition? This topic is a large part of what we’ll be studying in this
course. Suppose we decompose A into B and C. Then, at the very least, it should be
possible to build B and C, and putting B and C together should give us A.

In the 1970’s, there was a popular approach to software development called Top-down
Design. The idea is simply to apply the following step recursively:
· If the part you need to build is already available (for example, as a machine instruc-

tion), then you’re done;
· Otherwise, split it into subparts, develop them, and combine them together.

The splitting into subparts was done using ‘functional decomposition’. You think about
what function the part should have, and break that function into smaller steps. For
example, a browser takes user commands, gets web pages, and displays them. So we
might split Browser into ReadCommand, GetPage, DisplayPage.

The idea was appealing, and there are still people who talk about it with approval. But
it fails miserably, and here’s why. The very first decomposition is the most vital one,
and yet you don’t discover whether it was good until you reach the leaves of the decom-
position tree. You can’t do much evaluation along the way; you can’t test a decomposi-
tion into two parts that haven’t themselves been implemented. Once you get to the bot-
tom, it’s too late to do anything about the decompositions you made at the top. So from
the point of view of risk – making decisions when you have the information you need,
and minimizing the chance and cost of mistakes – it’s a very bad strategy.

In practice, what usually happens is that the decomposition is a vague one, with the
hope that the parts become more clearly defined as you go down. So you’re actually fig-
uring out what problem you’re trying to solve as you’re structuring the solution. As a
result, when you get near the bottom, you find yourself adding all kinds of hacks to
make the parts fit together and achieve the desired function. The parts become exten-
sively coupled to one another, so that the slightest alteration to one isn’t possible with-
out changing all the others. If you’re unlucky, the parts don’t fit together at all. And,

17

finally, there’s nothing in top-down design that encourages reuse.

(For a discussion of the perils of top-down design, see the article with that title in:
Software Requirements and Specifications: A Lexicon of Software Principles, Practices
and Prejudices, Michael Jackson, Addison Wesley, 1995.)

This isn’t to say, of course, that viewing a system hierarchically is a bad idea. It’s just not
possible to develop it that way.

2.1.4 A Better Strategy

A much better strategy is to develop a system structure considering of multiple parts
at a roughly equal level of abstraction. You refine the description of every part at once,
and analyze whether the parts will fit together and achieve the desired function before
starting to implement any of them. It also turns out that it is much better to organize
a system around data than around functions.

Perhaps the most important consideration in evaluating the decomposition into parts
is how the parts are coupled to one another. We want to minimize coupling – to decou-
ple the parts – so that we can work on each part independently of the others. This is
the topic of our lecture today; later in the course, we’ll see how we can express prop-
erties of the parts and the details of how they interact with one another.

2.2 Dependence Relationships

2.2.1 Uses Diagram

The most basic notion relationship between parts is the uses relationship. We say that
a part A uses a part B if A refers to B in such a way that the meaning of A depends on
the meaning of B. When A and B are executable code, the meaning of A is its behav-
iour when executed, so A uses B when the behaviour of A depends on the behaviour of
B.

Suppose, for example, we’re designing a web browser. The diagram shows a putative
decomposition into parts:

The Main part uses the Protocol part to engage in the HTTP protocol, the Parse part
to parse the HTML page received, and the Display part to display it on the screen.
These parts in turn use other parts. Protocol uses Network to make the network con-
nection and to handle the low-level communication, and Page to store the HTML page

18

received. Parser uses the part AST to create an abstract syntax tree from the HTML
page – a data structure that represents the page as a logical structure rather than as a
sequence of characters. Parser also uses Page since it must be able to access the raw
HTML character sequence. Display uses a part Render to render the abstract syntax
tree on the screen.

Let’s consider what kind of shape a uses graph may take.
· Trees. First, note that when viewed as a graph, the uses-diagram is not generally a

tree. Reuse causes a part to have multiple users. And whenever a part is decom-
posed into two parts, it is likely that those parts will share a common part that
enables them to communicate. AST, for example, allows Parser to communicate its
results to Display.

· Layers. Layered organizations are common. A more detailed uses-diagram of our
browser may have several parts in place of each of the parts we showed above. The
Network part, for example, might be replaced by Stream, Socket, etc. It is sometimes
useful to think of a system as a sequence of layers, each providing a coherent view
of some underlying infrastructure, at varying levels of abstraction. The Network
layer provides a low-level view of the network; the Protocol layer is built on top of
it, and provides a view of the network as an infrastructure for processing HTTP
queries, and the top layer provides the application user’s view of the system, which
turns URLs into visible web pages. Technically, we can make any uses-diagram lay-
ered by assigning each part to a layer so that no uses arrow points from a part in

19

Main

Display Parser Protocol

AST Page Network

some layer to a part in a higher layer. But this doesn’t really make the program lay-
ered, since the layers have no conceptual coherence.

· Cycles. It’s quite common to have cycles in the uses-diagram. This doesn’t have to
mean that there is recursion in the program. Here’s how it might arise in our brows-
er design. We haven’t considered how Display will work. Suppose we have a GUI
part that provides functions for writing to a display, and handles input by making
calls (when buttons are pressed, etc) to functions in other parts. Then Display may
uses GUI for output, and GUI may use Main for input. In object-oriented designs,
as we’ll see, cycles often arises when objects of different classses interact strongly.

What can we do with the uses-diagram?
· Reasoning. Suppose we want to determine whether a part P is correct. Aside from P

itself, which parts do we need to examine? The answer is: the parts P uses, the parts
they use, and so on – in other words all parts reachable from P. In our browser
example, to check that Display works we’ll need to lok at Render and AST also.
Conversely, if we make a change to P, which parts might be affected? The answer is
all parts that use P, the parts that use them, and so on. If we change AST for exam-
ple, Display, Parser and Main may all have to change. This is called impact analysis
and it’s important during maintenance of a large program when you want to make
sure that the consequences of a change are completely known, and you want to
avoid retesting every part.

20

Application

Protocol

Network

Main Parser AST

URL Get Post

Stream Socket

· Reuse. To identify a subsystem – a collection of parts – that can be reused, we have
to check that none of its parts use any other parts not in the subsystem. The same
determination tells us which how to find a minimal subsystem for initial imple-
mentation. For example, the parts Display, Render and AST form a collection with-
out dependences on other parts, and could be reused as a unit.

· Construction Order. The uses diagram helps determine what order to build the
parts in. We might assign two sets of parts to two different groups and let them
work in parallel. By ensuring that no part in one set uses a part in another set, we
can be sure that neither group will be stalled waiting for the other. And we can con-
struct a system incrementally by starting at the bottom of the uses diagram, with
those parts that don’t use any other parts, and then move upwards, assembling and
testing whenever we have a consistent subsystem. For example, the Display and
Protocol parts could be developed independently along with the parts they use, but
not Display and Parser.

Thinking about these considerations can shed light on the quality of a design. The cycle
we mentioned above, (Main–Display–GUI–Main), for example, makes it impossible to
reuse the Display part without also reusing Main.

There’s a problem with the uses diagram though. Most of the analyses we’ve just dis-
cussed involve finding all parts reachable or reaching a part. In a large system, this may
be a high proportion of the parts in a system. And worse, as the system grows, the
problem gets worse, even for existing parts which refer directly to no more parts than
they did before. To put it differently, the fundamental relationship that underlies uses

21

Main

Display

GUI

is transitive: if A is affected by B and B is affected by C, then A is affected by C. It would
be much better if reasoning about a part, for example, required looking at only at the
parts it refers to.

The idea of the uses relation, and its role in thinking about software structure, was first
described by David Parnas in Designing Software for Ease of Extension and Contraction,
IEEE Transactions on Software Engineering, Vol. SE-5, No 2, 1979.

2.2.2 Dependences & Specifications

The solution to this problem is to have instead a notion of dependence that stops after
one step. To reason about some part A, we will need to consider only the parts it
depends on. To make this possible, it will be necessary for every part that A depends
on to be complete, in the sense that its description completely characterizes its behav-
iour. It cannot itself depend on other parts. Such a description is called a specification.

A specification cannot be executed, so we’ll need for each specification part at least
one implementation part that behaves according to the specification. Our diagram, the
dependency diagram, therefore has two kinds of arcs. An implementation part may
depend on a specification part, and it may fulfill or meet a specification part.

In comparison to what we had before, we have broken the uses relationship between
two parts A and B into two separate relationships. By introducing a specification part
S, we can say that A depends on S and B meets S. The diagram on the left illustrates
this; note the use of two double lines to distinguish specification parts from imple-
mentation parts.

Each arc incurs an obligation. The writer of A must check that it will work if it is assem-
bled with a part that satisifies the specification S. And ‘works’ is now defined by explic-
itly by meeting specifications: B will be usable in A if it works according to the specifi-
cation S, and A will be deemed to work if it meets whatever specification is given for
its intended uses – T say. The diagram on the right shows this. It’s the same depends-
meet chain centered on an implementation part rather than a specification part.

This is a much more useful and powerful framework than uses. The introduction of
specifications brings many advantages:
· Weakened Assumptions. When A uses B, it is unlikely to rely on every aspect of B.

Specifications allow us to say explicitly which aspects matter. By making specifica-
tions much smaller and simpler than implementations, we can make it much easier
to reason about correctness of parts. And a weak specification gives more opportu-

22

nities for performance improvements.
· Evaluating Changes. The specification S helps limit the scope of a change. Suppose

we want to change B. Must A change as well? Now this question doesn’t require
looking at A. We start by looking at S, the specification A requires of the part it uses.
If the new B will still meet S, then no change to A will be needed at all.

· Communication. If A and B are to be built by different people, they only need to
agree upon S in advance. A can ignore the details of the services B provides, and B
can ignore the details of the needs of A.

· Multiple Implementations. There can be many different implementation parts that
meet a given specification part. This makes a market in interchangeable parts pos-
sible. Parts are marketed in a catalog by the specifications they meet, and a cus-
tomer can pick any part that meets the required specification. A single system can
provide multiple implementations of a part. The selection can be made when the
system is configured, or as we shall see later in the course, during execution of the
system.

Specifications are so useful that we’ll assume that there is a specification part corre-
sponding to every implementation part in our system, and we’ll conflate them, draw-
ing dependences directly from implementations to implementations. In other words, a
dependence arc from A to B means that A depends on the specification of B.

So whenever we draw a diagram like the one of our browser above, we’ll interpret it as
a dependence diagram and not as a uses diagram. For example, it will be possible to
have teams build Parser and Protocol in parallel as soon as the specification of Page is

23

A

S

B

meets

depends

A

S

depends

T

meets

complete; its implementation can wait.

Sometimes, though, specifications are design elements in their own right and we’ll
want to make explicit their presence. Java provides some useful mechanisms for
expressing decoupling with specifications, and we’ll want to show these. Design pat-
terns, which will be studying later in the term, make extensive use of specifications in
this way.

2.2.3 Weak Dependences
Sometimes a part is just a conduit. It refers to another part by name, but doesn’t make
use of any service it provides. The specification it depends on requires only that the
part exist. In this case, the dependence is called a weak dependence, as is drawn as a
dotted arc.

In our browser, for example, the abstract syntax tree in AST may be accessible as a
global name (using the Singleton pattern, which we’ll see later). But for various reasons
– we might for example later decide that we need two syntax trees – it’s not wise to use
global names in this way. An alternative is for the Main part to pass the AST part from
the Parse part to the Display part. This would induce a weak dependence of Main on
AST. The same reasoning would give a weak dependence of Main on Page.

In a weak dependence of A on B, A usually depends on the name of B. That is, it not
only requires that there be some part satisfying the specification of B, but it also
requires that it be called B. Sometimes a weak dependence doesn’t constrain the name.

24

Main

Display Parser

AST

In this case, A depends only the existence of some part satisfying the specification of
B, and A will refer to such a part using the name of the specification of B. We will see
how Java allows this kind of dependence. In this case, it’s useful to show the specifica-
tion of B as a separate part with its own name.

For example, the Display part of our browser may use a part UI for its output, but need
not know whether the UI is graphical or text-based. This part can be a specification
part, met by an implementation part GUI which Main depends on (since it creates the
actual GUI object). In this case, Main, because it passes an object whose type is
described as UI to Display, must also have a weak dependence on the specification part
UI.

2.3 Techniques for Decoupling
So far, we’ve discussed how to represent dependences between program parts. We’ve
also talked about some of the effects of dependences on various development activi-
ties. In every case, a dependence is a liability: it expands the scope of what needs to be
considered. So a major part of design is trying to minimize dependences: to decouple
parts from one another.

Decoupling means minimizing both the quantity and quality of dependences. The
quality of a dependence from A to B is measured by how much information is in the
specification of B (which, recall from above, is what A actually depends on). The less
information, the weaker the dependence. In the extreme case, there is no information
in the dependence at all, and we have a weak dependence in which A depends only on
the existence of B.

The most effective way to reduce coupling is to design the parts so that they are sim-
ple and well defined, and bring together aspects of the system that belong together and
separate aspects that don’t. There are also some tactics that can be applied when you
already have a candidate decomposition: they involve introducing new parts and alter-
ing specifications. We’ll see many of these throughout the term. For now, we’ll just
mention some briefly to give you an idea of what’s possible.

2.3.1 Facade
The facade pattern involves interposing a new implementation part between two sets
of parts. The new part is a kind of gatekeeper: every use by a part in the set S of a part
in the set B which was previously direct now goes through it. This often makes sense
in a layered system, and helps to decouple one layer from another.

25

In our browser, for example, there may be many dependences between parts in a pro-
tocol layer and parts in a networking layer. Unless all the networking parts are plat-
form-independent, porting the browser to a new platform may require replacing the
networking layer. Every part in the protocol layer that depends on a networking part
may have to be examined and altered.

To avoid this problem, we might introduce a facade part that sits between the layers,
collects together all the networking that the protocol layer needs (and no more), and
presents them to the protocol layer with a higher-level interface. This interface is, of
course, a new specification, weaker than the specifications on which the protocol parts
used to rely. If done right, it may now be possible to change the parts of the network-
ing layer while leaving the facade’s specification unchanged, so that no protocol parts
will be affected.

2.3.2 Hiding representation
A specification can avoid mentioning how data is represented. Then the parts that
depend on it cannot manipulate the data directly; the only way to manipulate the data
is to use operations that are included in the specification of the used part. This kind of
specification weakening is known as ‘data abstraction’, and we’ll have a lot to say about
it in the next few weeks. By eliminating the dependence of the using part A on the rep-
resentation of data in the used part B, it makes it easier to understand the role that B
plays in A. It makes it possible to change the representation of data in B without any
change to A at all.

In our browser, for example, the specification part associated with Page might say that
a web page is a sequence of characters, hiding details of its representation using arrays.

2.3.3 Polymorphism

A program part C that provides container objects has a dependence on the program
part E that provides the elements of the container. For some containers, this is a weak
dependence, but it need not be: C may use E to compare elements (eg, to check for
equality, or to order them). Sometimes C may even use functions of E that mutate the
elements.

To reduce the coupling between C and E, we can make C polymorphic. The word
‘polymorphic’ means ‘many shaped’, and refers to the fact that C is written without any
mention of special properties of E, so that containers of many shapes can be produced
according to which E the part C uses. In practice, pure polymorphism is rare, and C

26

will at least rely on equality checks provided by E. Again, what’s going on is a weaken-
ing of the specification that connects C to E. In the monomorphic case, C depends on
the specification of E; in the polymorphic case, C depends on a specification S that says
only that the part must provide objects with an equality test. In Java, this specification
S is the specification of the Object class.

In our browser, for example, the data structure used for the abstract syntax tree might
use a generic Node specification part, which is implemented by an HTMLNode part,
for much of its code. A change in the structure of the markup language would then
affect less code.

2.3.4 Callbacks

We mentioned above how, in our browser, a GUI part might depend on the Main part
because it calls a procedure in Main when, for example, a button is pressed. This cou-
pling is bad, because it makes intertwines the structure of the user interface with the
structure of the rest of the application. If we ever want to change the user interface, it
will be hard to disentangle it.

Instead, the Main part might pass the GUI part at runtime a reference to one of its pro-
cedures. When this procedure is called by the GUI part, it has the same effect it would
have had if the procedure had been named in the text of the GUI part. But since the
association is only made at runtime, there is no dependence of GUI on Main. There
will be a dependence of GUI on a specification (Listener, say) that the passed procedure

27

Main

Display

Listener

GUI

must satisfy, but this is usually minimal: it might say, for example, just that the proce-
dure returns without looping forever, or that it does not cause procedures within GUI
itself to be called. This arrangement is a callback, since GUI ‘calls back’ to Main against
the usual direction of procedure call. In Java, procedures can’t be passed, but the same
effect can be obtained by passing a whole object.

2.4 Coupling Due to Shared Constraints

There’s a different kind of coupling which isn’t shown in a module dependency dia-
gram. Two parts may have no explicit dependence between them, but they may never-
theless be coupled because they are required to satisfy a constraint together.

For example, suppose we have two parts, Read, which reads files, and Write, which
writes files. If the files read by Read are the same files written by Write, there will be a
constraint that the two parts agree on the file format. If the file format is changed, both
parts will need to change.

To avoid this kind of coupling, you have to try to localize functionality associated with
any constraint in a single part. This is what Matthias Felleisen calls ‘single point of con-
trol’ in his novel introduction to programming in Scheme (How to Design Programs, An
Introduction to Programming and Computing, Matthias Felleisen, Robert Bruce
Findler, Matthew Flatt, and Shriram Krishnamurthi, MIT Press, 2001).

David Parnas suggested that this idea should form the basic of the selection of parts.
You start by listing the key design decisions (such as choice of file format), and then
assign each to a part that keeps that decision ‘secret’. This is explained in detail with a
nice example in his seminal paper On the Criteria To Be Used in Decomposing Systems
into Modules, Communications of the ACM, Vol. 15, No. 12, December 1972 pp.
1053–1058.

2.5 Back to Dijkstra: Conclusion

Dijsktra’s warning that the chance of getting a program right will drop to zero as the
number of parts increases is worrying. But if we can decouple the parts so that each of
the properties we care about is localized within only a few parts, then we can establish
their correctness locally, and be immune to the addition of new parts.

28

Lecture 3: Decoupling II

In the last lecture, we talked about the importance of dependences in the design of a
program. A good programming language allows you to express the dependences
between parts, and control them – preventing unintended dependences from arising.
In this lecture, we’ll how the features of Java can be used to express and tame depen-
dences. We’ll also study a variety of solutions to a simple coding problem, illustrating
in particular the role of interfaces.

3.1 Review: Module Dependency Diagrams
Let’s start with a brief review of the module dependency diagram (MDD) from the last
lecture. An MDD shows two kinds of program parts: implementation parts (classes in
Java) shown as boxes with a single extra stripe at the top, and specification parts shown
as boxes with a stripe at the top and bottom. Organizations of parts into groupings
(such as packages in Java) can be shown as contours enclosing parts in Venn-diagram-
style.

A plain arrow with an open head connects an implementation part A to a specification
part S, and says that the meaning of A depends on the meaning of S. Since the specifi-
cation S cannot itself have a meaning dependent on other parts, this ensures that a
part’s meaning can be determined from the part itself and the specifications it depends
on, and nothing else. A dotted arrow from A to S is a weak dependence; it says that A
depends only the existence of a part satisfying the specification S, but actually has no
dependence on any details of S. An arrow from an implementation part A to a specifi-
cation part S with a closed head says that A meets S: its meaning conforms to that of S.

Because specifications are so essential, we will always assume they are present. Most of
the time, we will not draw specification parts explicitly, and so a dependence arrow
between two implementation parts A and B should be interpreted as short for a
dependence from A to the specification of B, and a meets arrow from B to its specifi-
cation. We will show Java interfaces as specification parts explicitly.

3.2 Java Namespace
Like any large written work, a program benefits from being organized into a hierar-
chical structure. When trying to understand a large structure, it’s often helpful to view

29

it top-down, starting with the grossest levels of structure and proceeding to finer and
finer details. Java’s naming system supports this hierarchical structure. It also brings
another important benefit. Different components can use the same names for their
subcomponents, with different local meanings. In the context of the system as a whole,
the subcomponents will have names that are qualified by the components they belong
to, so there will be no confusion. This is vital, because it allows developers to work
independently without worrying about name clashes.

Here’s how the Java naming system works. The key named components are classes and
interfaces, and they have named methods and named fields. Local variables (within
methods) and method arguments are also named. Each name in a Java program has a
scope: a portion of the program text over which the name is valid and bound to the
component. Method arguments, for example, have the scope of the method; fields have
the scope of the class, and sometimes beyond. The same name can be used to refer to
different things when there is no ambiguity. For example, it’s possible to use the same
name for a field, a method and a class; see the Java language spec for examples.

A Java program is organized into packages. Each class or interface has its own file
(ignoring inner classes, which we won’t discuss). Packages are mirrored in the directo-
ry structure. Just like directories, packages can be nested arbitrarily deeply. To organ-
ize your code into packages, you do two things: you indicate at the top of each file
which package its class or interface belongs to, and you organize the files physically
into a directory structure to match the package structure. For example, the class
dnj.browser.Protocol would be in a file called Protocol.java in the directory dnj/brows-
er.

We can show this structure in our dependence diagram. The classes and interfaces
form the parts between which dependences are shown. Packages are shown as con-
tours enclosing them. It’s convenient sometimes to hide the exact dependences
between parts in different packages and just show a dependence arc at the package
level. A dependence from a package means that some class or interface (or maybe sev-
eral) in that package has a dependence; a dependence on a package means a depend-
ence on some class or interface (or maybe several) in that package.

3.3 Access Control

Java’s access control mechanisms allow you to control dependences. In the text of a
class, you can indicate which other classes can have dependences on it, and to some
extent you can control the nature of the dependences.

30

A class declared as public can be referred to by any other class; otherwise, it can be
referred to only by classes in the same package. So by dropping this modifier, we can
prevent dependences on the class from any class outside the package.

Members of a class – that is, its fields and methods – may be marked public, private or
protected. A public member can be accessed from anywhere. A private member can be
accessed only from within the class in which the field or method is declared. A pro-
tected member can be accessed within the package, or from outside the package by a
subclass of the class in which the member is declared – thus creating the very odd
effect that marking a member as protected makes it more, not less, accessible.

Recall that a dependence of A on B really means a dependence of A on the specifica-
tion of B. Modifiers on members of B allow us to control the nature of the dependence
by changing which members belong to B‘s specification. Controlling access to the fields
of B helps give representation independence, but it does not always ensure it (as we’ll
see later in the course).

3.4 Safe Languages
A key property of a program is that one part should only depend on another if it names
it. This seems obvious, but in fact it’s a property that only holds for programs written
in so-called ‘safe languages’. In an unsafe language, the text in one part can affect the
behaviour of another without any names being shared. This leads to insidious bugs that
are very hard to track down, and which can have disastrous and unpredictable effects.

Here’s how it happens. Consider a program written in C in which one module (in C,

31

AST Main Protocol

List Socket InetAddress InputStream

dnj.browser

java.util java.net java.io

just a file) updates an array. An attempt to set the value of an array element beyond the
bounds of the array will sometimes fail, because it causes a memory fault, going
beyond the memory area assigned to the process. But, unfortunately, more often it will
succeed, and the result will be to overwrite an arbitrary piece of memory – arbitrary
because the programmer does not know how the compiler laid out the program’s
memory, and cannot predict what other data structure has been affected. As a result,
an update of the array a can affect the value of a data structure with the name d that is
declared in a different module and doesn’t even have a type in common with a.

Safe languages rule this out by combining several techniques. Dynamic checking of
array bounds prevents the kind of updating we just mentioned from occurring; in Java,
an exception would be thrown. Automatic memory management ensures that memo-
ry is not reclaimed and then mistakenly reused. Both of these rely on the fundamental
idea of strong typing, which ensures that an access that is declared to be to a value of
type t in the program text will always be an access to a value of type t at runtime. There
is no risk that code designed for an array will be mistakenly applied to a string or an
integer.

Safe languages have been around since 1960. Famous safe languages include Algol-60,
Pascal, Modula, LISP, CLU, Ada, ML, and now Java. It’s interesting that for many years
industry claimed that the costs of safety were too high, and that it was infeasible to
switch from unsafe languages (like C++) to safe languages (like Java). Java benefited
from a lot of early hype about applets, and now that it’s widely used, and lots of libraries
are available, and there are lots of programmers who know Java, many companies have
taken the plunge and are recognizing the benefits of a safe language.

Some safe languages guarantee type correctness at compile time – by ‘static typing’.
Others, such as Scheme and LISP, do their type checking at runtime, and their type sys-
tems only distinguish primitive types from one another. We’ll see shortly how a more
expressive type system can also help control dependences.

If reliability matters, it’s wise to use a safe language. In lecture, I told a story here about
use of unsafe language features in a medical accelerator.

3.5 Interfaces

In languages with static typing, one can control dependences by choice of types.
Roughly speaking, a class that mentions only objects of type T cannot have a depend-
ence on a class that provides objects of a different type T’. In other words, one can tell
from the types mentioned in a class which other classes it depends on.

32

However, in languages with subtyping, something interesting is possible. Suppose class
A mentions only the class B. This does not mean that it can only call methods on
objects created by class B. In Java, the objects created by a subclass C of B are regard-
ed as also having the type B, so even though A can’t create objects of class C directly, it
can be passed them by another class. The type C is said to be a subtype of the type B,
since a C object can be used when a B object is expected. This is called ‘substitutabili-
ty’.

Subclassing actually conflates two distinct issues. One is subtyping: that objects of class
C are to be regarded as having types compatible with B, for example. The other is
inheritance: that the code of class C can reuse code from B. Later in the course we’ll
discuss some of the unfortunate consequences of conflating these two issues, and we’ll
see how substitutability doesn’t always work as you might expect.

For now, we’ll focus on the subtyping mechanism alone, since it’s what’s relevant to our
discussion. Java provides a notion of interfaces which give more flexibility in subtyping
than subclasses. A Java interface is, in our terminology, a pure specification part. It
contains no executable code, and is used only to aid decoupling.

Here’s how it works. Instead of having a class A depend on a class B, we introduce an
interface I. A now mentions I instead of B, and B is required to meet the specification
of I. Of course the Java compiler doesn’t deal with behavioural specifications: it just
checks that the types of the methods of B are compatible with the types declared in I.
At runtime, whenever A expects an object of type I, an object of type B is acceptable.

For example, in the Java library, there is a class java.util.LinkedList that implements
linked lists. If you’re writing some code that only requires that an object be a list, and
not necessarily that it be a linked list, you should use the type java.util.List in your
code, which is an interface implemented by java.util.LinkedList. There are other class-
es, such as ArrayList and Vector that implement this interface. So long as your code
refers only to the interface, it will work with any of these implementation classes.

Several classes may implement the same interface, and a class may implement several
interfaces. In contrast, a class may only subclass at most one other class. Because of
this, some people use the term ‘multiple specification inheritance’ to describe the
interface feature of Java, in contrast to true multiple inheritance in which can reuse
code from multiple superclasses.

Interfaces bring primarily two benefits. First, they let you express pure specification
parts in code, so you can ensure that the use of a class B by a class A involves only a
dependence of A on a specification S, and not on other details of B. Second, interfaces
let you provide several implementation parts that meet a single specification, with the

33

selection being made at compile time or at runtime.

3.6 Example: Instrumenting a Program

For the remainder of the lecture, we’ll study some decoupling mechanisms in the con-
text of an example that’s tiny but representative of an important class of problems.

Suppose we want to report incremental steps of a program as it executes by displaying
progress line by line. For example, in a compiler with several phases, we might want to
display a message when each phase starts and ends. In an email client, we might dis-
play each step involved in downloading email from a server. This kind of reporting
facility is useful when the individual steps might take a long time or are prone to fail-
ure (so that the user might choose to cancel the command that brought them about).
Progress bars are often used in this context, but they introduce further complications
(marking the start and end of an activity, and calculating proportional progress) which
we won’t worry about.

As a concrete example, consider an email client that has a package core that contains
a class Session that has code for setting up a communication session with a server and
downloading messages, a class Folder for the objects that models folders and their con-
tents, and a class Compactor that contains the code for compacting the representation
of folders on disk. Assume there are calls from Session to Folder and from Folder to
Compactor, but that the resource intensive activities that we want to instrument occur
only in Session and Compactor, and not in Folder.

The module dependency diagram shows that Session depends on Folder, which has a
mutual dependence on Compactor.

We’ll look at a variety of ways to implement our instrumentation facility, and we’ll
study the advantages and disadvantages of each. Starting with the simplest, most naive
design possible, we might intersperse statements such as

System.out.println (“Starting download”);

throughout the program.

3.6.1 Abstraction by Parameterization
The problem with this scheme is obvious. When we run the program in batch mode,
we might redirect standard out to a file. Then we realize it would be helpful to time-
stamp all the messages so we can see later, when reading the file, how long the various
steps took. We’d like our statement to be

34

System.out.println (“Starting download at: ” + new Date ());

instead. This should be easy, but it’s not. We have to find all these statements in our
code (and distinguish from other calls to System.out.println that are for different pur-
poses), and alter each separately.

Of course, what we should have done is to define a procedure to encapsulate this func-
tionality. In Java, this would be a static method:

public class StandardOutReporter {
public static void report (String msg) {

System.out.println (msg);
}

}

Now the change can be made at a single point in the code. We just modify the proce-
dure:

public class StandardOutReporter {
public static void report (String msg) {

System.out.println (msg + “ at: “ + new Date ());
}

}

Matthias Felleisen calls this the ‘single point of control’ principle. The mechanism in
this case is one you’re familiar with: what 6001 called abstraction by parameterization,
because each call to the procedure, such as

StandardOutReporter.report (“Starting download”);

is an instantiation of the generic description, with the parameter msg bound to a par-
ticular value. We can illustrate the single point of control in a module dependence dia-
gram. We’ve introduced a single class on which the classes that use the instrumenta-

35

Session Folder

Core

Compactor

tion facility depend: StandardOutReporter. Note that there is no dependence from
Folder to StandardOutReporter, since the code of Folder makes no calls to it.

3.6.2 Decoupling with Interfaces
This scheme is far from perfect though. Factoring out the functionality into a single
class was a good idea, but the code still has a dependence on the notion of writing to
standard out. If we wanted to create a new version of our system with a graphical user
interface, we’d need to replace this class with one containing the appropriate GUI code.
That would mean changing all the references in the core package to refer to a different
class, or changing the code of the class itself, and now having to handle two incompat-
ible versions of the class with the same name. Neither of these is an attractive option.

In fact, the problem’s even worse than that. In a program that uses a GUI, one writes
to the GUI by calling a method on an object that represents part of the GUI: a text
pane, or a message field. In Swing, Java’s user interface toolkit, the subclasses of
JTextComponent have a setText method. Given some component named by the vari-
able outputArea, for example, the display statement might be:

outputArea.setText (msg)

How are we going to pass the reference to the component down to the call site? And

36

StandardOut
Reporter

Session Folder

core

Compactor

ui

how are we going to do it without now introducing Swing-specific code into the
reporter class?

Java interfaces provide a solution. We create an interface with a single method report
that will be called to display results.

public interface Reporter {
void report (String msg);
}

Now we add to each method in our system an argument of this type. The Session class,
for example, may have a method download:

void download (Reporter r, …) {
r.report (“Starting downloading”);
…
}

Now we define a class that will actually implement the reporting behaviour. Let’s use
standard out as our example as it’s simpler:

public class StandardOutReporter implements Reporter {
public void report (String msg) {

System.out.println (msg + “ at: “ + new Date ());
}

}

This class is not the same as the previous one with this name. The method is no longer
static, so we can create an object of the class and call the method on it. Also, we’ve indi-
cated that this class is an implementation of the Reporter interface. Of course, for stan-
dard out this looks pretty lame and the creation of the object seems to be gratuitious.
But for the GUI case, we’ll do something more elaborate and create an object that’s
bound to the particular widget:

public class JTextComponentReporter implements Reporter {
JTextComponent comp;
public JTextComponentReporter (JTextComponent c) {comp = c;}
public void report (String msg) {

comp.setText (msg + “ at: “ + new Date ());
}

}

At the top of the program, we’ll create an object and pass it in:

37

s.download (new StandardOutReporter (), …);

Now we’ve achieved something interesting. The call to report now executes, at run-
time, code that involves System.out. But methods like download only depend on the
interface Reporter, which makes no mention of any specific output mechanism. We’ve
successfully decoupled the output mechanism from the program, breaking the depend-
ence of the core of the program on its I/O.

Look at the module dependency diagram. Recall that an arrow with a closed head from
A to B is read ‘A meets B’. B might be a class or an interface; the relationship in Java may
be implements or extends. Here, the class StandardOutReporter meets the interface
Reporter.

The key property of this scheme is that there is no longer a dependence of any class of
the core package on a class in the gui package. All the dependences point downwards
(at least logically!) from gui to core. To change the output from standard output to a
GUI widget, we would simply replace the class StandardOutReporter by the class
JTextComponentReporter, and modify the code in the main class of the gui package to
call its constructor on the classes that actually contain concrete I/O code. This idiom
is perhaps the most popular use of interfaces, and is well worth mastering.

38

Session Folder

core

Compactor

Reporter

StandardOut
ReporterMain

ui

Recall that the dotted arrows are weak dependences. A weak dependence from A to B
means that A references the name of B, but not the name of any of its members. In
other words, A knows that the class or interface B exists, and refers to variables of that
type, but calls no methods of B, and accesses no fields of B.

The weak dependence of Main on Reporter simply indicates that the Main class may
include code that handles a generic reporter; it’s not a problem. The weak dependence
of Folder on Reporter is a problem though. It’s there because the Reporter object has
to be passed via methods of Folder to methods of Compactor. Every method in the call
chain that reaches a method that is instrumented must take a Reporter as an argument.
This is a nuisance, and makes retrofitting this scheme painful.

3.6.3 Interfaces vs. Abstract Classes
You may wonder whether we might have used a class instead of an interface. An
abstract class is one that is not completely implemented; it cannot be instantiated, but
must be extended by a subclass that completes it. Abstract classes are useful when you
want to factor out some common code from several classes. Suppose we wanted to dis-
play a message saying how long each step had taken. We might implement a Reporter
class whose objects retain in their state the time of the last call to report, and then take
the difference between this and the current time for the output. By making this class
an abstract class, we could reuse the code in each of the concrete subclasses
StandardOutReporter, JTextComponentReporter, etc.

Why not pass make the argument of download have this abstract class as its type,
instead of an interface? There are two related reasons. The first is that we want the
dependence on the reporter code to be as weak as possible. The interface has no code
at all; it expresses the minimal specification of what’s needed. The second is that there
in no multiple inheritance in Java: a class can only extend at most one other class. So
when you’re designing the core program, you don’t want to use the opportunity to sub-
class prematurely. A class can implement any number of interfaces, so by choosing an
interface, you leave it open to the designer of the reporter classes how they will be
implemented.

3.6.4 Static Fields

The clear disadvantage of the scheme just discussed is that the reporter object has to
be threaded through the entire core program. If all the output is displayed in a single
text component, it seems annoying to have to pass a reference to it around. In depend-
ency terms, every method has at least a weak dependence on the interface Reporter.

39

Global variables, or in Java static fields, provide a solution to this problem. To elimi-
nate many of these dependences, we can hold the reporter object as a static field of a
class:

public class StaticReporter {
static Reporter r;
static void setReporter (Reporter r) {

this.r = r;
{

static void report (String msg) {
r.report (msg);
}

}

Now all we have to do is set up the static reporter at the start:

StaticReporter.setReporter (new StandardOutReporter ());

and we can issue calls to it without needing a reference to an object:

void download (…) {
StaticReporter.report (“Starting downloading”);
…
}

In the module dependency diagram, the effect of this change is that now only the class-
es that actually use the reporter are dependent on it:

Notice how the weak dependence of Folder has gone. We’ve seen this global notion
before, of course, in our second scheme whose StandardOutReporter had a static
method. This scheme combines that static aspect with the decoupling provided by
interfaces.

Global references are handy, because they allow you to change the behaviour of meth-
ods low down in the call hierarchy without making any changes to their callers. But
global variables are dangerous. They can make the code fiendishly difficult to under-
stand. To determine the effect of a call to StaticReporter.report, for example, you need
to know what the static field r is set to. There might be a call to setReporter anywhere
in the code, and to see what effect it has, you’d have to trace executions to figure out
when it’s executed relative to the code of interest.

Another problem with global variables is that they only work well when there is really
one object that has some persistent significance. Standard out is like this. But text com-

40

ponents in a GUI are not. We might well want different parts of the program to report
their progress to different panes in our GUI. With the scheme in which reporter
objects are passed around, we can create different objects and pass them to different
parts of the code. In the static version, we’ll need to create different methods, and it
starts to get ugly very quickly.

Concurrency also casts doubt on the idea of having a single object. Suppose we
upgrade our email client to download messages from several servers concurrently. We
wouldn’t want the progress messages from all the downloading sessions to be inter-
leaved in a single output.

A good rule of thumb is to be wary of global variables. Ask yourself if you really can
make do with a single object. Usually you’ll find ample reason to have more than one
object around. This scheme goes by the term Singleton in the design patterns literature,
because the class contains only a single object.

41

Session Folder

core

Compactor

StandardOut
Reporter

Main

ui

StaticReporter

Reporter

 42

Lecture 4: Procedure Specifications

4.1. Introduction
In this lecture, we’ll look at the role played by specifications of methods. Specifications
are the linchpin of team work. It’s impossible to delegate responsibility for implementing
a method without a specification. The specification acts as a contract: the implementor is
responsible for meeting the contract, and a client that uses the method can rely on the
contract. In fact, we’ll see that like real legal contracts, specifications place demands on
both parties: when the specification has a precondition, the client has responsibilities
too.

Many of the nastiest bugs in programs arise because of misunderstandings about
behavior at interfaces. Although every programmer has specifications in mind, not all
programmers write them down. As a result, different programmers on a team have
different specifications in mind. When the program fails, it’s hard to determine where the
error is. Precise specifications in the code let you apportion blame (to code fragments,
not people!), and can spare you the agony of puzzling over where a fix should go.

Specifications are good for the client of a method because they spare her the task of
reading code. If you’re not convinced that reading a spec is easier than reading code,
take a look at some of the standard Java specs and compare them to the source code
that implements them. Vector, for example, in the package java.util, has a very simple
spec but its code is not at all simple.

Specifications are good for the implementor of a method because they give her freedom
to change the implementation without telling clients. Specifications can make code faster
too. Sometimes a weak specification makes it possible to do a much more efficient
implementation. In particular, a precondition may rule out certain states in which a
method might have been invoked that would have incurred an expensive check that is
no longer necessary.

This lecture is related to our discussion of decoupling and dependences in the last two
lectures. There, we were concerned only with whether a dependence existed. Here, we
are investigating the question of what form the dependence should take. By exposing
only the specification of a procedure, its clients are less dependent on it, and therefore
less likely to need changing when the procedure changes.

4.2. Behavioral Equivalence
Consider these two methods. Are they the same or different?

static int findA (int [] a, int val) {
 for (int i = 0; i < a.length; i++) {
 if (a[i] == val) return i;
 }
 return a.length;
 }
static int findB (int [] a, int val) {
 for (int i = a.length -1 ; i > 0; i--) {

 43

 if (a[i] == val) return i;
 }
 return -1;
 }

Of course the code is different, so in that sense they are different. Our question though
is whether one could substitute one implementation for the other. Not only do these
methods have different code; they actually have different behavior:
· when val is missing, findA returns the length and findB returns -1;
· when val appears twice, findA returns the lower index and findB returns the higher.

But when val occurs at exactly one index of the array, the two methods behave the
same. It may be that clients never rely on the behavior in the other cases. So the notion
of equivalence is in the eye of the beholder, that is, the client. In order to make it
possible to substitute one implementation for another, and to know when this is
acceptable, we need a specification that states exactly what the client depends on.

In this case, our specification might be
requires: val occurs in a
effects: returns result such that a[result] = val

4.3. Specification Structure
A specification of a method consists of several clauses:

· a precondition, indicated by the keyword requires;
· a postcondition, indicated by the keyword effects;
· a frame condition, indicated by the keyword modifies.

We’ll explain each of these in turn. For each, we’ll explain what the clause means, and
what a missing clause implies. Later, we’ll look at some convenient shorthands that
allow particular common idioms to be specified as special kinds of clause.

The precondition is an obligation on the client (ie, the caller of the method). It’s a
condition over the state in which the method is invoked. If the precondition does not
hold, the implementation of the method is free to do anything (including not terminating,
throwing an exception, returning arbitrary results, making arbitrary modifications, etc).

The postcondition is an obligation on the implementor of the method. If the precondition
holds for the invoking state, the method is obliged to obey the postcondition, by returning
appropriate values, throwing specified exceptions, modifying or not modifying objects,
and so on.

The frame condition is related to the postcondition. It allows more succinct
specifications. Without a frame condition, it would be necessary to describe how all the
reachable objects may or may not change. But usually only some small part of the state
is modifed. The frame condition identifies which objects may be modified. If we say
modifies x, this means that the object x, which is presumed to be mutable, may be
modified, but no other object may be. So in fact, the frame condition or modifies clause
as it is sometimes called is really an assertion about the objects that are not mentioned.
For the ones that are mentioned, a mutation is possible but not necessary; for the ones
that are not mentioned, a mutation may not occur.

Omitted clauses have particular interpretations. If you omit the precondition, it is given

 44

the default value true. That means that every invoking state satisfies it, so there is no
obligation on the caller. In this case, the method is said to be total. If the precondition is
not true, the method is said to be partial, since it only works on some states.

If you omit the frame condition, the default is modifies nothing. In other words, the
method makes no changes to any object.

Omitting the postcondition makes no sense and is never done.

4.4. Declarative Specification
Roughly speaking, there are two kinds of specifications. Operational specifications give
a series of steps that the method performs; pseudocode descriptions are operational.
Declarative specifications don’t give details of intermediate steps. Instead, they just give
properties of the final outcome, and how it’s related to the initial state.

Almost always, declarative specifications are preferable. They’re usually shorter, easier
to understand, and most importantly, they don’t expose implementation details
inadvertently that a client may rely on (and then find no longer hold when the
implementation is changed). For example, if we want to allow either implementation of
find, we would not want to say in the spec that the method ‘goes down the array until it
finds val’, since aside from being rather vague, this spec suggests that the search
proceeds from lower to higher indices and that the lowest will be returned, which
perhaps the specifier did not intend.

Here are some example of declarative specification. The class StringBuffer provides
objects that are like String objects but mutable. The methods of StringBuffer modify the
object rather than creating new ones: they are mutators, whereas String’s methods are
producers. The reverse method reverses a string. Here’s how it’s specified in the Java
API:

public StringBuffer reverse()
// modifies: this
// effects: Let n be the length of the old character sequence, the one contained in the
string buffer
// just prior to execution of the reverse method. Then the character at index k in
the new
// character sequence is equal to the character at index n-k-1 in the old character
sequence.

Note that the postcondition gives no hint of how the reversing is done; it simply gives a
property that relates the character sequence before and after. (We’ve omitted part of the
specification, by the way: the return value is simply the string buffer object itself.) A bit
more formally, we might write

effects:
 length (this.seq) = length (this.seq’)
 all k: 0..length(this.seq)-1 | this.seq’[k] = this.seq[length(this.seq)-k-1]

Here I’ve used the notation this.seq’ to mean the value of the character sequence in this
object after execution. The course text uses the keyword post as a subscript for the
same purpose. There’s no precondition, so the method must work when the string buffer
is empty too; in this case, it will actually leave the buffer unchanged.

Another example, this time from String. The startsWith method tests whether a string
starts with a particular substring.

 45

public boolean startsWith(String prefix)
// Tests if this string starts with the specified prefix.
// effects:
// if (prefix = null) throws NullPointerException
// else returns true iff exists a sequence s such that (prefix.seq ^ s = this.seq)

I’ve assumed that String objects, like StringBuffer objects, have a specification field that
models the sequence of characters. The caret is the concatenation operator, so the
postcondition says that the method returns true if there is some suffix which when
concatenated to the argument gives the character sequence of the string. The absence
of a modifies clause indicates that no object is mutated. Since String is an immutable
type, none of its methods will have modifies clauses.

Another example from String:
public String substring(int i)
// effects:
// if i < 0 or i > length (this.seq) throws IndexOutOfBoundsException
// else returns r such that
// some sequence s | length(s) = i && s ^ r.seq = this.seq

This specification shows how a rather mathematical postcondition can sometimes be
easier to understand than an informal description. Rather than talking about whether i is
the starting index, whether it comes just before the substring returned, etc, we simply
decompose the string into a prefix of length i and the returned string.

Our final example shows how a declarative specification can express what is often called
non- determinism, but is better called ‘under-determinedness’. By not giving enough
details to allow the client to infer the behavior in all cases, the specification makes
implementation easier. The term non-determinism suggests that the implementation
should exhibit all possible behaviors that satisfy the specification, which is not the case.

There is a class BigInteger in the package java.math whose objects are integers of
unlimited size. The class has a method similar to this:

public boolean maybePrime ()
// effects: if this BigInteger is composite, returns false

If this method returns false, the client knows the integer is not prime. But if it returns true,
the integer may be prime or composite. So long as the method returns false a
reasonable proportion of the time, it’s useful. In fact, as the Java API states: the method
takes an argument that is a measure of the uncertainty that the caller is willing to
tolerate. The execution time of this method is proportional to the value of this parameter.’
We won’t worry about probabilistic issues in this course; we mention this spec simply to
note that it does not determine the outcome, and is still useful to clients.

Here is an example of a truly underdetermined specification. In the Observer pattern, a
set of obejects known as ‘observers’ are informed of changes to an object known as a
‘subject’. The subject will belong to a class that subclasses java.util.Observable. In the
specification of Observable, there is a specification field observers that holds the set of
observer objects. This class provides methods to add an observer

public void addObserver(Observer o)
// modifies: this
// effects: this.observers’ = this.observers + {o}

(using + to mean set union), and to notify the observers of a change in state:

 46

public void notifyObservers()
// modifies the objects in this.observers
// effects: calls o.notify on each observer o in this.observers

The specification of notify does not indicate in what order the observers are notified.
What order is chosen may have an effect on overall program behavior, but having
chosen to model the observers as a set, there is no way to specify an order anyway.

4.5. Exceptions and Preconditions
An obvious design issue is whether to use a precondition, and if so, whether it should be
checked. It is crucial to understand that a precondition does not require that checking be
performed. On the contrary, the most common use of preconditions is to demand a
property precisely because it would be hard or expensive to check.

As mentioned above, a non-trivial precondition renders the method partial. This
inconveniences clients, because they have to ensure that they don’t call the method in a
bad state (that violates the precondition); if they do, there is no predictable way to
recover from the error. So users of methods don’t like preconditions, and for this reason
the methods of a library will usually be total. That’s why the Java API classes, for
example, invariably throw exceptions when arguments are inappropriate. It makes the
programs in which they are used more robust.

Sometimes though, a precondition allows you to write more efficient code and saves
trouble. For example, in an implementation of a binary tree, you might have a private
method that balances the tree. Should it handle the case in which the ordering invariant
of the tree does not hold? Obviously not, since that would be expensive to check. Inside
the class that implements the tree, it’s reasonable to assume that the invariant holds.
We’ll generalize this notion when we talk about representation invariants in a
forthcoming lecture.

The decision of whether to use a precondition is an engineering judgment. The key
factors are the cost of the check (in writing and executing code), and the scope of the
method. If it’s only called locally in a class, the precondition can be discharged by
carefully checking all the sites that call the method. But if the method is public, and used
by other developers, it woul d be less wise to use a precondition.

Sometimes, it’s not feasible to check a condition without making a method unacceptably
slow, and a precondition is often necessary in this case. In the Java standard library, for
example, the binary search methods of the Arrays class require that the array given be
sorted. To check that the array is sorted would defeat the entire purpose of the binary
search: to obtain a result in logarithmic and not linear time.

Even if you decide to use a precondition, it may be possible to insert useful checks that
will detect, at least sometimes, that the precondition was violated. These are the runtime
assertions that we discussed in our lecture on exceptions. Often you won’t check the
precondition explicitly at the start, but you’ll discover the error during computation. For
example, in balancing the binary tree, you might check when you visit a node that its
children are appropriately ordered.

If a precondition is found to be violated, you should throw an unchecked exception, since
the client will not be expected to handle it. The throwing of the exception will not be
mentioned in the specification, although it can appear in implementation notes below it.

 47

4.6. Shorthands
There are some convenient shorthands that make it easier to write specifications. When
a method does not modify anything, we specify the return value in a returns clause. If an
exception is thrown, the condition and the exception are given in a throws clause. For
example, instead of

public boolean startsWith(String prefix)
// effects:
// if (prefix = null) throws NullPointerException
// else returns true iff exists a sequence s such that (prefix.seq ^ s = this.seq)

we can write
public boolean startsWith(String prefix)
// throws: NullPointerException if (prefix = null)
// returns: true iff exists a sequence s such that (prefix.seq ^ s = this.seq)

The use of these shorthands implies that no modifications occur. There is an implicit
ordering in which conditions are evaluated: any throws clauses are considered in the
order in which they appear, and then returns clauses. This allows us to omit the else part
of the if-then-else statement.

Our 6170 JavaDoc html generator produces specifications formatted in the Java API
style. It allows the clauses that we have discussed here, and which have been standard
in the specification community for several decades, in addition to the shorthand clauses.
We won’t use the JavaDoc parameters clause: it is subsumed by the postcondition, and
is often cumbersome to write.

4.7. Specification Ordering
Suppose you want to substitute one method for another. How do you compare the
specifications?

A specification A is at least as strong as a specification B if
· A’s precondition is no stronger than B’s
· A’s postcondition is no weaker than B’s, for the states that satisfy B’s precondition.

These two rules embody several ideas. They tell you that you can always weaken the
precondition; placing fewer demands on a client will never upset him. You can always
strengthen the postcondition, which means making more promises. For example, our
method maybePrime can be replaced in any context by a method isPrime that returns
true if and only if the integer is prime. And where the precondition is false, you can do
whatever you like. If the postcondition happens to specify the outcome for a state that
violates the precondition, you can ignore it, since that outcome is not guaranteed
anyway.

These relationships between specifications will be important when we look at the
conditions under which subclassing works correctly (in our lecture on subtyping and
subclassing).

 48

4.8. Judging Specifications
What makes a good method? Designing a method means primarily writing a
specification. There are no infallible rules, but there are some useful guidelines:
· The specification should be coherent: it shouldn’t have lots of different cases. Deeply

nested if- statements are a sign of trouble, as are boolean flags presented as
arguments.

· The results of a call should be informative. Java’s HashMap class has a put method
that takes a key and a value and returns a previous value if that key was already
mapped, or null otherwise. HashMaps allow null references to be stored, so a null
result is hard to interpret.

· The specification should be strong enough. There’s no point throwing a checked
exception for a bad argument but allowing arbitrary mutations, because a client won’t
be able to determine what mutations have actually been made.

· The specification should be weak enough. A method that takes a URL and returns a
network connection clearly cannot promise always to succeed.

4.9. Summary
A specification acts as a crucial firewall between the implementor of a procedure and its
client. It makes separate development possible: the client is free to write code that uses
the procedure without seeing its source code, and the implementor is free to write the
code that implements the procedure without knowing how it will be used. Declarative
specifications are the most useful in practice. Preconditions make life hard for the client,
but, applied judiciously, are a vital tool in the software designer’s repertoire.

 50

Lecture 5: Abstract Types

5.1. Introduction

In this lecture, we look at a particular kind of dependence, that of a client of an abstract
type on the type’s representation, and see how it can be avoided. We also discuss
briefly the notion of specification fields for specifying abstract types, the classification of
operations, and the tradeoff of representations.

5.2. User-Defined Types
In the early days of computing, a programming language came with built-in types (such
as integers, booleans, strings, etc.) and built-in procedures, eg. for input and output.
Users could define their own procedures: that’s how large programs were built.

A major advance in software development was the idea of abstract types: that one could
design a programming language to allow user-defined types too. This idea came out of
the work of many researchers, notably Dahl (the inventor of the Simula language), Hoare
(who developed many of the techniques we now use to reason about abstract types),
Parnas (who coined the term ‘information hiding’ and first articulated the idea of
organizing program modules around the secrets they encapsulated), and here at MIT,
Barbara Liskov and John Guttag, who did seminal work in the specification of abstract
types, and in programming language support for them (and developed 6170!).

The key idea of data abstraction is that a type is characterized by the operations you can
perform on it. A number is something you can add and multiply; a string is something
you can concatenate and take substrings of; a boolean is something you can negate,
and so on. In a sense, users could already define their own types in early programming
languages: you could create a record type date, for example, with integer fields for day,
month and year. But what made abstract types new and different was the focus on
operations: the user of the type would not need to worry about how its values were
actually stored, in the same way that a programmer can ignore how the compiler actually
stores integers. All that matters is the operations.

In Java, as in many modern programming languages, the separation between built-in
types and user-defined types is a bit blurry. The classes in java.lang, such as Integer
and Boolean are built-in; whether you regard all the collections of java.util as built-in is
less clear (and not very important anyway). Java complicates the issue by having
primitive types that are not objects. The set of these types, such as int and boolean,
cannot be extended by the user.

5.3. Classifying Types and Operations
Types, whether built-in or user-defined, can be classified as mutable or immutable. The
objects of a mutable type can be changed: that is, they provide operations which when
executed cause the results of other operations on the same object to give different
results. So Vector is mutable, because you can call addElement and observe the change
with the size operation. But String is immutable, because its operations create new string

 51

objects rather than changing existing ones. Sometimes a type will be provided in two
forms, a mutable and an immutable form. StringBuffer, for example, is a mutable version
of String (although the two are certainly not the same Java type, and are not
interchangeable).

Immutable types are generally easier to reason about. Aliasing is not an issue, since
sharing cannot be observed. And sometimes using immutable types is more efficient,
because more sharing is possible. But many problems are more naturally expressed
using mutable types, and when local changes are needed to large structures, they tend
to be more efficient.

The operations of an abstract type are classified as follows:

· Constructors create new objects of the type. A constructor may take an object as an

argument, but not an object of the type being constructed.
· Producers create new objects from old objects; the terms are synonymous. The

concat method of String, for example, is a producer: it takes two strings and produces
a new one representing their concatenation.

· Mutators change objects. The addElement method of Vector, for example, mutates a
vector by adding an element to its high end.

· Observers take objects of the abstract type and return objects of a different type. The
size method of Vector, for example, returns an integer.

We can summarize these distinctions schematically like this:
constructor: t -> T
producer: T, t -> T
mutator: T, t -> void
observer: T, t -> t

These show informally the shape of the signatures of operations in the various classes.
Each T is the abstract type itself; each t is some other type. In general, when a type is
shown on the left, it can occur more than once. For example, a producer may take two
values of the abstract type; string concat takes two strings. The occurrences of t on the
left may also be omitted; some observers take no non-abstract arguments (eg, size), and
some take several.

This classification gives some useful terminology, but it’s not perfect. In complex data
types, there may be operations that are producers and mutators, for example. Some
people use the term ‘producer’ to imply that no mutation occurs.

Another term you should know is iterator. An iterator usually means a special kind of
method (not available in Java) that returns a collection of objects one at a time -- the
elements of a set, for example. In Java, an iterator is a class that provides methods that
can then be used to obtain a collection of objects one at a time. Most collection classes
provide a method with the name iterator that returns an iterator.

 52

5.4. Example: List
Let’s look at an example of an abstract type: the list. A list, in Java, is like an array. It
provides methods to extract the element at a particular index, and to replace the element
at a particular index. But unlike an array, it also has methods to insert or remove an
element at a particular index. In Java, List is an interface with many methods, but for
now, let’s imagine it’s a simple class with the following methods:

public class List {
 public List ();
 public void add (int i, Object e);
 public void set (int i, Object e);
 public void remove (int i);
 public int size ();
 public Object get (int i);
 }

The add, set and remove methods are mutators; the size and get methods are
observers. It’s common for a mutable type to have no producers (and an immutable type
certainly cannot have mutators).

To specify these methods, we’ll need some way to talk about what a list looks like. We
do this with the notion of specification fields. You can think of an object of the type as if it
had these fields, but remember that they don’t actually need to be fields in the
implementation, and there is no requirement that a specification field’s value be
obtainable by some method. In this case, we’ll describe lists with a single specification
field,

seq [Object] elems;
where for a list l, the expression l.elems will denote the sequence of objects stored in the
list, indexed from zero. Now we can specify some methods:

public void get (int i);
// throws
// IndexOutOfBoundsException if i < 0 or i > length (this.elems)
// returns
// this.elems [i]
public void add (int i, Object e);
// modifies this
// effects
// throws IndexOutOfBoundsException if i < 0 or i > length (this.elems)
// else this.elems’ = this.elems [0..i-1] ^ <e> ^ this.elems [i..]
public void set (int i, Object e);
// modifies this
// effects
// throws IndexOutOfBoundsException if i < 0 or i >= length (this.elems)
// else this.elems’ [i] = e and this.elems unchanged elsewhere

In the postcondition of add, I’ve used s[i..j] to mean the subsequence of s from indices
i to j, and s[i..] to mean the suffix from i onwards. The caret means sequence
concatenation. So the postcondition says that, when the index is in bounds or one
above, the new element is ‘spliced in’ at the given index.

 53

5.5. Designing an Abstract Type
Designing an abstract type involves choosing good operations and determining how they
should behave. A few rules of thumb:
· It’s better to have a few, simple operations that can be combined in powerful ways

than lots of complex operations.
· Each operation should have a well-defined purpose, and should have a coherent

behavior rather than a panoply of special cases.
· The set of operations should be adequate; there must be enough to do the kinds of

computations clients are likely to want to do. A good test is to check that every
property of an object of the type can be extracted. For example, if there were no
get operation, we would not be able to find out what the elements of the list are. Basic
information should not be inordinately difficult to obtain. The size method is not strictly
necessary, because we could apply get on increasing indices, but this is inefficient
and inconvenient.

· The type may be generic: a list or a set, or a graph, for example. Or it may be domain-
specific: a street map, an employee database, a phone book, etc. But it should not
mix generic and domain-specific features.

5.6. Choice of Representations
So far, we have focused on the characterization of abstract types by their operations. In
the code, a class that implements an abstract type provides a representation: the actual
data structure that supports the operations. The representation will be a collection of
fields each of which has some other Java type; in a recursive implementation, a field
may have the abstract type but this is rarely done in Java.

Linked lists are a common representation of lists, for example. The following object

model shows a linked list implementation similar (but not identical to) the LinkedList
class in the standard Java library:

The list object has a field header that references an Entry object. An Entry object is a
record with three fields: next and prev which may hold references to other Entry objects
(or be null), and element, which holds a reference to an element object. The next and
prev fields are links that point forwards and backwards along the list. In the middle of the
list, following next and then prev will bring you back to the object you started with. Let’s
assume that the linked list does not store null references as elements. There is always a

List

Entry

Object

header

element

prevnext

 54

dummy Entry at the beginning of the list whose element field is null, but this is not
interpreted as an element.

The following object diagram shows a list containing two elements:

Another, different representation of lists uses an array. The following object model

shows how lists are represented in the class ArrayList in the standard Java library:

Here’s a list with two elements in its representation.

next

 (List)

header

element
prev

next
 (Entry) (Entry)

 (Object)

element
prev

 (Entry)

 (Object)

List

Object[]

Object

elementData

 elts[]

 55

elts[0]

Element
Data

 (List) (Object[])

 (Object)

elts[1] (Object)

These representations have different merits. The linked list representation will be more
efficient when there are many insertions at the front of the list, since it can splice an
element in and just change a couple of pointers. The array representation has to bubble
all the elements above the inserted element to the top, and if the array is too small, it
may need to allocate a fresh, larger array and copy all the references over. If there are
many get and set operations, however, the array list representation is better, since it
provides random access, in constant time, while the linked list has to perform a
sequential search.

We may not know when we write code that uses lists which operations are going to
predominate. The crucial question, then, is how we can ensure that it’s easy to change
representations later.

5.7. Representation Independence
Representation independence means ensuring that the use of an abstract type is
independent of its representation, so that changes in representation have no effect on
code outside the abstract type itself. Let’s examine what goes wrong if there is no
independence, and then look at some language mechanisms for helping ensure it.

Suppose we know that our list is implemented as an array of elements. We’re trying to
make use of some code that creates a sequence of objects, but unfortunately, it creates
a Vector and not a List. Our List type doesn’t offer a constructor that does the
conversion. We discover that Vector has a method copyInto that copies the elements of
the vector into an array. Here’s what we now write:

List l = new List ();
v.copyInto (l.elementData);

What a clever hack! Like many hacks it works for a little while. Suppose the implementor
of the List class now changes the representation from the array version to the linked list
version. Now the list l won’t have a field elementData at all, and the compiler will reject
the program. This is a failure of representation independence: we’ll have to change all
the places in the code where we did this.

Having the compilation fail is not such a disaster. It’s much worse if it succeeds and the
change has still broken the program. Here’s how this might happen.

In general, the size of the array will have to be greater than the number of elements in
the list, since otherwise it would be necessary to create a fresh array every time an
element is added or removed. So there must be some way of marking the end of the
segment of the array containing the elements. Suppose the implementor of the list has
designed it with the convention that the segment runs to the first null reference, or to the
end of the array, whichever is first. Luckily (or actually unluckily), our hack works under

 56

these circumstances.

Now our implementor realizes that this was a bad decision, since determining the size of
the list requires a linear search to find the first null reference. So he adds a size field and
updates it when any operation is performed that changes the list. This is much better,
because finding the size now takes constant time. It also naturally handles null
references as list elements (and that’s why it’s what the Java LinkedList implementation
does).

Now our clever hack is likely to produce some buggy behaviors whose cause is hard to
track down. The list we created has a bad size field: it will hold zero however many
elements there are in the list (since we updated the array alone). Get and set operations
will appear to work, but the first call to size will fail mysteriously.

Here’s another example. Suppose we have the linked list implementation, and we
include an operation that returns the Entry object corresponding to a particular index.

public Entry getEntry (int i)
Our rationale is that if there are many calls to set on the same index, this will save the
linear search of repeatedly obtaining the element. Instead of

l.set (i, x); ... ; l.set (i, y)
we can now write

Entry e = l.getEntry (i);
e.element = x;
...
e.element = y;

This also violates representation independence, because when we switch to the array
representation, there will no longer be Entry objects. We can illustrate the problem with a
module dependency diagram:

 List

Entry

Object

 Client

 BAD

 57

There should only be a dependence of the client type Client on the List class (and on the
class of the element type, in this case Object, of course). The dependence of Client on
Entry is the cause of our problems. Returning to our object model for this representation,
we want to view the Entry class and its associations as internal to List. We can indicate
this informally by colouring the parts that should be inaccessible to a client red (if you’re
reading a black and white printout, that’s Entry and all its incoming and outgoing arcs),
and by adding a specification field elems that hides the representation:

In the Entry example we have exposed the representation. A more plausible exposure,
which is quite common, arises from implementing a method that returns a collection.
When the representation already contains a collection object of the appropriate type, it is
tempting to return it directly. For example, suppose that List has a method toArray that
returns an array of elements corresponding to the elements of the list. If we had
implemented the list itself as an array, we might just return the array itself. If the size
field was based on the index at which a null reference first appears) a modification to this
array may break the computation of size.

a =l.toArray (); // exposes the rep
a[i] = null; //ouch!!
…
l.get (i); // now behaves unpredictably

Once size is computed wrongly, all hell breaks loose: subsequent operations may
behave in arbitrary ways.

5.8. Language Mechanisms
To prevent access to the representation, we can make the fields private. This eliminates
the array hack; the statement

v.copyInto (l.elementData);
would be rejected by the compiler because the expression l.elementData would illegally
reference a private field from outside its class.

The Entry problem is not so easily solved. There is no direct access to the
representation. Instead, the List class returns an Entry object that belongs to the
representation. This is called representation exposure, and it cannot be prevented by
language mechanisms alone. We need to check that references to mutable components

 List

Entry

Object

header

element

prevnextelems[]

 58

of the representation are not passed out to clients, and that the representation is not built
from mutable objects that are passed in. In the array representation for example, we
can’t allow a constructor that takes an array and assigns it to the internal field.

Interfaces provide another method for achieving representation independence. In the
Java standard library, the two representations of lists that we discussed are actually
distinct classes, ArrayList and LinkedList. Both are declared to extend the List interface.
The interface breaks the dependence between the client and another class, in this case

the representation class:

This approach is nice because an interface cannot have (non-static) fields, so the issue
of accessing the representation never arises. But because interfaces in Java cannot
have constructors, it can be awkward to use in practice, since information about the
signatures of the constructors that are shared across implementation classes cannot be
expressed in the interface. Moreover, since the client code must at some point construct
objects, there will be depedendences on the concrete classes (which we will obviously
try to localize). The Factory pattern, which we will discuss later in the course, addresses
this particular problem.

5.9. Summary
Abstract types are characterized by their operations. Representation independence
makes it possible to change the representation of a type without its clients being
changed. In Java, access control mechanisms and interfaces can help ensure
independence. Representation exposure is trickier though, and needs to be handled by
careful programmer discipline.

List

ArrayList LinkedList

 59

Lecture 6: Representation Invariants and Abstraction Functions

6.1 Introduction

In this lecture, we describe two tools for understanding abstract data types: the
representation invariant and the abstraction function. The representation
invariant describes whether an instance of a type is well formed; the abstraction
function tells us how to interpret it. Representation invariants can amplify the
power of testing. It’s impossible to code an abstract type or modify it without
understanding the abstraction function at least informally. Writing it down is
useful, especially for maintainers, and crucial in tricky cases.

6.2 What is a Rep Invariant?

A representation invariant, or rep invariant for short, is a constraint that
characterizes whether an instance of an abstract data type is well formed, from
a representation point of view. Mathematically, it is a formula over the
representation of an instance; you can view it as a function that takes objects of
the abstract type and returns true or false depending on whether they are well
formed:

RI : Object -> Boolean

Consider the linked list implementation that we discussed last time. Here was its
object model:

The LinkedList class has a field, header, that holds a reference to an object of the
class Entry. This object has three fields: element, which holds a reference to an
element of the list; prev, which points to the previous entry in the list; and next,
which points to the next element.

This object model shows the representation of the data type. As we have

!
?

?

?

?

?

List

Entry

Object

header

element

prev next

?

 60

mentioned before, object models can be drawn at various levels of abstraction.
From the point of view of the user of the list, one might elide the box Entry, and
just show a specification field from List to Object. This diagram shows that object
model in black, with the representation in gold (Entry and its incoming and
outgoing arcs) hidden:

The representation invariant is a constraint that holds for every instance of the
type. Our object model already gives us some of its properties:
· It shows, for example, that the header field holds a reference to an object of

class Entry. This property is important but not very interesting, since the field is
declared to have that type; this kind of property is more interesting for the
contents of polymorphic containers such as vectors, whose element type
cannot be expressed in the source code.

· The multiplicity marking ! on the target end of the header arrow says that the
header field cannot be null. (The ! symbol denotes exactly one.)

· The multiplicities ? on the target end of the next and prev arrows say that
each of the next and prev arrows point to at most one entry. (The ? symbol
denotes zero or one.)

· The multiplicities ? on the source end of the next and prev arrows say that
each entry is pointed to by at most one other entry’s next field, and by at most
one other entry’s prev field. (The ? symbol denotes zero or one.)

· The multiplicity ? on the target end of the element field says that each Entry
points to at most one Object.

Some properties of the object model are not part of the representation invariant.
For example, the fact that entries are not shared between lists (which is
indicated by the multiplicity on the source end of the header arrow) is not a
property of any single list.

There are properties of the representation invariant which are not shown in the
graphical object model:
· When there are two e1 and e2 entries in the list, if e1.next = e2, then e2.prev =

e1.

elems[]
?

?

?

?

?

List

Entry

Object

element

prev next

?

!

header

 61

· The dummy entry at the front of the list has a null element field.

There are also properties that do not appear because the object model only
shows objects and not primitive values. The representation of LinkedList has a
field size that holds the size of the list. A property of the rep invariant is that size is
equal to the number of entries in the list representation, minus one (since the first
entry is a dummy).

In fact, in the Java implementation java.util.LinkedList, the object model has an
additional constraint, reflected in the rep invariant. Every entry has a non-null
next and prev:

Note the stronger multiplicities on the next and prev arrows. Here is a sample list
of two elements (and therefore three entries, including the dummy):

prev

next

 (List)

header

element
prev

next
 (Entry) (Entry)

 (Object)

element

prev

 (Entry)

 (Object)

next

!

?

!

!

?

List

Entry

Object

element

prev next

!

!

header

 62

When examining a representation invariant, it is important to notice not only
what constraints are present, but also which are missing. In this case, there is no
requirement that the element field be non-null, nor that elements not be shared.
This is what we’d expect: it allows a list to contain null references, and to contain
the same object in multiple positions.

Let’s summarize our rep invariant informally:

for every instance of the class LinkedList
 the header field is non-null
 the header field has a null element field
 there are (size + 1) entries
 the entries form a cycle starting and ending with the header entry
 for any entry, taking prev and then next returns you to the entry

We can also write this a bit more formally:

all p: LinkedList |
 p.header != null
 && p.header.element = null
 && p.size + 1 = | p.header.*next |

 && p.header = p.header.next
p.size + 1

 && all e in p.header.*next | e.prev.next = e

To understand this formula, you need to know that
· for any expression e denoting some set of objects, and any field f, e.f denotes

the set of objects you get if you follow f from each of the objects in e;
· e.*f means that you collect the set of objects obtained by following f any

number of times from each of the objects in e;
· | e | is the number of objects in the set denoted by e.

So p.header.*next for example denotes the set of all entries in the list, because
you get it by taking the list p, following the header field, and then following the
next field any number of times.

One thing that this formula makes very clear is that the representation invariant is
about a single linked list p. Another fine way to write the invariant is this:

 R(p) =
 p.header != null
 && p.header.element = null
 && p.size + 1 = | p.header.*next|

 && p.header = p.header.next
p.size + 1

 && all e in p.header.*next | e.prev.next = e

in which we view the invariant as a boolean function. This is the point of view
we’ll take when we convert the invariant to code as a runtime assertion.

The choice of invariant can have a major effect both on how easy it is to code
the implementation of the abstract type, and how well it performs. Suppose we
strengthen our invariant by requiring that the element field of all entries other
than the header is non-null. This would allow us to detect the header entry by
comparing its element to null; with the current invariant, operations that require

 63

traversal of the list must count entries instead or compare to the header field.
Suppose, conversely, that we weaken the invariant on the next and prev
pointers and allow prev at the start and next at the end to have any values. This
will result in a need for special treatment for the entries at the start and end,
resulting in less uniform code. Requiring prev at the start and next at the end
both to be null doesn’t help much.

6.3 Inductive Reasoning

The rep invariant makes modular reasoning possible. To check whether an
operation is implemented correctly, we don’t need to look at any other
methods. Instead, we appeal to the principle of induction. We ensure that every
constructor creates an object that satisfies the invariant, and that every mutator
and producer preserves the invariant: that is, if given an object that satisfies it, it
produces one that also satisfies it. Now we can argue that every object of the
type satisfies the rep invariant, since it must have been produced by a
constructor and some sequence of mutator or producer applications.

To see how this works, let’s look at some sample operations of our LinkedList class.
The representation is declared in Java like this:

public class LinkedList {
 Entry header;
 int size;
 class Entry {
 Object element;
 Entry prev;
 Entry next;
 Entry (Object e, Entry p, Entry n) {element = e; prev = p; next = n;}
 }
 ...

Here’s our constructor:

public LinkedList () {
 size = 0;
 header = new Entry (null, null, null);
 header.prev = header.next = header;
 }

Notice that it establishes the invariant: it creates the dummy element, forms the
cycle, and sets the size appropriately.

The mutator add takes an element and adds it to the end of the list:

public void add (Object o) {
 Entry e = new Entry (o, header.prev, header);
 e.prev.next = e;
 e.next.prev = e;
 size++;
 }

To check this method, we can assume that the invariant holds on entry. Our task

 64

is to show that it also holds on exit. The effect of the code is to splice in a new
entry just before the header entry, i.e., this new entry becomes the last entry in
the next chain, so we can see that the constraint that the entries form a cycle is
preserved. Note that one consequence of being able to assume the invariant on
entry is that we don’t need to do null reference checks: we can assume that
e.prev and e.next are non-null, for example, because they are entries that
existed in the list on entry to the method, and the rep invariant tells us that all
entries have non-null prev and next fields.

Finally, let’s look at an observer. The operation getLast returns the last element of
the list or throws an exception if the list is empty:

public Object getLast () {
 if (size == 0) throw new NoSuchElementException ();
 return header.prev.element;
 }

Again, we assume the invariant on entry. This allows us to dereference
header.prev, which the rep invariant tells us cannot be null. Checking that the
invariant is preserved is trivial in this case, since there are no modifications.

6.4 Interpreting the Representation

Consider the mutator add again, which takes an element and adds it to the end
of the list:

public void add (Object o) {
 Entry e = new Entry (o, header.prev, header);
 e.prev.next = e;
 e.next.prev = e;
 size++;
 }

We checked that this operation preserved the rep invariant, by correctly splicing
a new entry into the list. What we didn’t check, however, was that it was spliced
into the right position. Is the new element inserted into the start or the end of the
list? It looks as if it’s at the end, but that assumes that the order of entries
corresponds to the order of elements. It would be quite possible (although
perhaps a bit perverse) for a list p with elements o1, o2, o3 to have

p.header.next.element = o3;
p.header.next.next.element = o2;
p.header.next.next.element = o1;

To resolve this problem, we need to know how the representation is interpreted:
that is, how to view an instance of LinkedList as an abstract sequence of
elements. This is what the abstraction function provides. The abstraction function
for our implementation is:

A(p) =
 if p.size = 0 then
 <> (the empty list)
 else

 65

 <p.header.next.element, p.header.next.next.element, ...>
 (the sequence of elements with indices 0.. p.size-1 whose ith element is
p.nexti+1.element)

6.5 Abstract and Concrete Objects

In thinking about an abstract type, it helps to imagine objects in two distinct
realms. In the concrete realm, we have the actual objects of the
implementation. In the abstract realm, we have mathematical objects that
correspond to the way the specification of the abstract type describes its values.

Suppose we’re building a program for handling registration of courses at a
university. For a given course, we need to indicate which of the four terms Fall,
Winter, Spring and Summer the course is offered in. In good MIT style, we’ll call
these F, W, S and U. What we need is a type SeasonSet whose values are sets of
seasons; we’ll assume we already have a type Season. This will allow us to write
code like this:

if (course.seasons.contains (Season.S)) ...

There are many ways to represent our type. We could be lazy and use
java.util.ArrayList; this will allow us to write most of our methods as simple
wrappers. The abstract and concrete realms might look like this:

The oval below labelled [F,W,S] denotes a concrete object containing the array
list whose first element is F, second is W, and third is S. The oval above labelled
{F,W,S} denotes an abstract set containing three elements F, W and S. Note that
there may be multiple representations of the same abstract set: {F, W, S}, for
example, can also be represented by [W,F, S], the order being immaterial, or by
[W,W,F, S] if the rep invariant allows duplicates. (Of course there are many
abstract sets and concrete objects that we have not shown; the diagram just
gives a sample.)

Abstract realm

Concrete realm

[F, W, S] [W, F, S] [W, W, F, S] [W, F]

{ F, W, S } { F, W }

A A A A

 66

The relationship between the two realms is a function, since each concrete
object is interpreted as at most one abstract value. The function may be partial,
since some concrete objects -- namely those that violate the rep invariant --
have no interpretation. This function is the abstraction function, and is denoted
by the arrows marked A in the diagram.

Suppose our SeasonSet class has a field eltlist holding the ArrayList. Then we can
write the abstraction function like this:

A(s) = {s.eltlist.elts [i] | 0 <= i <= size(s.eltlist)}

That is, the set consists of all the elements of the list.

Different representations have different abstraction functions. Another way to
represent our SeasonSet is using an array of 4 booleans. Here the abstraction
function may, for example, map

[true, false, true, false]

to {F,S}, assuming the order F, W, S, U for the elements of the array. This order is
the information conveyed by the abstraction function, which might be written,
assuming the array is stored in a field boolarr as

A(s) =

 (if s.boolarr[0] then {F} else {}) U
 (if s.boolarr[1] then {W} else {}) U
 (if s.boolarr[2] then {S} else {}) U
 (if s.boolarr[3] then {U} else {})

We could equally well have chosen a different abstraction function, that orders
the seasons differently:

A(s) =

 (if s.boolarr[0] then {S} else {}) U
 (if s.boolarr[1] then {U} else {}) U
 (if s.boolarr[2] then {F} else {}) U
 (if s.boolarr[3] then {W} else {})

An important lesson from this last example is that ‘choosing a representation’
means more than naming some fields and selecting their types. The very same
array of booleans can be interpreted in different ways; the abstraction function
tells us which. Likewise, in our linked list example, the abstraction function tells us
how the order of entries corresponds to the order of elements. It is a common
error of novices to imagine that the abstraction function is obvious, since you
can always guess what it is from the declarations in the code. Unfortunately, this
is often not true: it takes careful reading of the linked list code to discover that
the first entry is a dummy entry, for example.

6.6 Example: Boolean Formulas in CNF

Let’s look at an example of a simple representation with a tricky abstraction
function. A boolean formula is a mathematical formula constructed from
propositions (symbols that can be assigned the values true and false) and logical

 67

operators. For example, the formula

CourseSix => sixOneSeventy

uses two propositions, courseSix and sixOneSeventy, and the logical implication
operator. It says that if courseSix is true, sixOneSeventy is true also. A boolean
formula is satisfiable if there is some assignment of boolean values to the
propositions that makes the formula true. This formula is satisfiable, since we can
set courseSix to false, or we can set both propositions to true.

An algorithm that determines whether a formula is satisfiable, and if so returns
satisfying values for the propositions is called a SAT solver. SAT solvers have many
applications, and their technology has advanced dramatically in the last
decade. They are used in design tools for checking design constraints, in
planners for finding plans, in testing tools for finding tests that expose particular
classes of error, and so on. A SAT solver can also be used to check a proof.
Suppose we assert that it follows from

CourseSix => sixOneSeventy

and

sixOneSeventy =>lateNights

that!

courseSix => lateNights

This is elementary reasoning using modus ponens, of course, but let’s see how to
check it with a SAT solver. We simply conjoin the premises to the negation of the
conclusion:

(courseSix => sixOneSeventy) (sixOneSeventy => lateNights) (! (courseSix
 => lateNights))

and present this formula to the solver. The solver will find it not satisfiable, and will
have demonstrated that it is impossible to have the premises be true and not the
conclusion: in other words, the proof is valid.

Most SAT solvers use a representation of boolean formulas known as conjunctive
normal form, or CNF for short. A formula in CNF is a set of clauses; each clause is
a set of literals; a literal is a proposition or its negation. The formula is interpreted
as a conjunction of its clauses and each clauses is interpreted as a disjunction of
its literals. A more helpful name for CNF is product of sums, which makes it clear
that the outermost operator is product (ie., conjunction).

For example, the CNF formula

{{a}{ !b,c}}

is equivalent to the conventional formula

a Λ (!b V c)

Our formula above would be represented in CNF as

{ {! courseSix,sixOneSeventy}, {! sixOneSeventy, lateNights}, {courseSix}, {!
lateNights} }

Let’s consider now how we might build an abstract data type that holds
formulas in CNF. Suppose we already have a class Literal for representing literals.

 68

Here is one reasonable representation that uses the Java library ArrayList class:

public class Formula {
 private ArrayList clauses;
 ...
 }

The clauses field is an ArrayList whose elements are themselves ArrayLists of
literals.

Our representation invariant might then be

R(f) =
 f.clauses != null &&
 all c: f.clauses.elts |
 c instanceof ArrayList && c != null &&
 all l: c.elts | c instanceof Literal && c != null

I’ve used the specification field elts here to denote the elements of an ArrayList.
The rep invariant says that the elements of the ArrayList clauses are non-null
ArrayLists, each containing elements that are non-null Literals.

Here, finally, is the abstraction function:

A(f) = true Λ C (f.clauses.elts[0]) Λ ... Λ C(f.clauses.elts[(size(f.clauses) -1])
 where C(c) = false V c.elts[0] V ... V c.elts[0]

Note how I’ve introduced an auxiliary function C that abstracts clauses into
formulas. Looking at this definition, we can resolve the meaning of the boundary
cases. Suppose f.clauses is an empty ArrayList. Then A(f) will be just true, since the
conjuncts on the right-hand side of the first line disappear. Suppose f.clauses
contains a single clause c, which itself is an empty ArrayList. Then C(c) will be
false, and A(f) will be false too. These are our two basic boolean values: true is
represented by the empty set of clauses, and false by the set containing the
empty clause.

6.7 Benevolent Side Effects

What is an observer operation? In our introductory lecture on representation
independence and data abstraction, we defined it as an operation that does
not mutate the object. We can now give a more liberal definition.

An operation may mutate an object of the type so that the fields of the
representation change, will maintaining the abstract value it denotes. We can
illustrate this phenomenon in general with a diagram:

 69

The execution of the operation op mutates the representation of an object from
r1 to r2. But r1 and r2 are mapped by the abstraction function A to the same
abstract value a, so the client of the datatype cannot observe that any change
has occurred.

For example, the get method of LinkedList may cache the last element
extracted, so that repeated calls to get for the same index will be speeded up.
This writing to the cache (in this case just the two fields) certainly changes the
rep, but it has no effect on the value of the object as it may be observed by call-
ing operations of the type. The client cannot tell whether a lookup has been
cached (except by noticing the improvement in performance).

In general, then, we can allow observers to mutate the rep, so long as the
abstract value is preserved. We will need to ensure that the rep invariant is not
broken, and if we have coded the invariant as a method checkRep, we should
insert it at the start and end of observers.

6.8 Summary

Why use rep invariants? Recording the invariant can actually save work:
· It makes modular reasoning possible. Without the rep invariant documented,

you might have to read all the methods to understand what’s going on before
you can confidently add a new method.

· It helps catch errors. By implementing the invariant as a runtime assertion, you
can find bugs that are hard to track down by other means.

The abstraction function specifies how the representation of an abstract data
type is interpreted as an abstract value. Together with the representation
invariant, it allows us to reason in a modular fashion about the correctness of an
operation of the type.

In practice, abstraction functions are harder to write than representation
invariants. Writing down a rep invariant is always worthwhile, and you should
always do it. Writing down an abstraction function is often useful, even if only
done informally. But sometimes the abstract domain is hard to characterize, and
the extra work of writing an elaborate abstraction function is not rewarded. You
need to use your judgment.

a

r1 r2

A A

op

 70

Lecture 7: Iteration Abstraction and Iterators

7.1 Introduction

In this lecture, we describe iteration abstraction and iterators. Iterators are a
generalization of the iteration mechanism available in most programming
languages. They permit users to iterate over arbitrary types of data in a
convenient and efficient way.

For example, an obvious use of a set is to perform some action for each of its
elements:
 for all elements of the set
 do action

In this lecture we discuss how we can specify and implement iteration
abstraction. We also describe representation exposure as related to iterators.

7.2 Reading

Read Chapter 6 of Liskov and Guttag before moving on. The first half of the
material of this lecture is based on Chapter 6 of the book, and will not be
duplicated here.

7.3 Representation Exposure in Iterators

Consider the implementation of an iterator for IntSet. The general structure of
the class IntSet would look like this:

public class IntSet {
 private Vector els; // the rep
 private int size; // the rep

 // constructors, etc go here, see p. 88 of Liskov
 …
 public Iterator elems() {
 return new IntGen(this); }

 // static inner class
 private static class IntGen implements Iterator {

 public boolean hasNext() { … }
 public Object next() throws NoSuchElementException { … }
 public void remove(Object o) { … }

 } // end of IntGen
}

 71

Notice the additional method remove() in the IntGen class. This method is not
required to be implemented, it is optional. The method allows one to remove an
element from IntSet while iterating over the elements of the set. It has to be
implemented very carefully!

Note that in Liskov, modifications to the object being iterated over (i.e., IntSet in
our example) are not allowed. However, the Java iterator interface includes the
optional remove() method.

Now we wish to implement IntGen. We notice that IntSet is represented by the
Vector els, and the Vector class has a method that returns an iterator, so we
could conceivably implement our method elems() like this:

public class IntSet {

 …
 public Iterator elems() {
 return els.iterator(); }
}

The returned generator els.iterator() provides the next(), hasNext() and remove()
methods. This saves us a lot of work, but unfortunately causes a subtle form of rep
exposure!

We have already discussed a simple form of rep exposure relating to the
remove() methods in IntSet and Vector. IntSet implements a remove() method
which may affect the size() method. The Vector remove() method does not
know about the size of IntSet. So if a client calls the Vector remove() directly,
then bad things can happen, e.g., size will be computed incorrectly.

Similarly, in the iterator class, if the client directly uses g.remove(), where g =
els.iterator(), since there is shared state between the els.iterator() and the Vector
els, bad things can happen. We summarize this pictorially below.

 72

What should we do? We could obviously turn off IntGen remove() or not ever
call it, but that is a cop-out. We need IntGen to implement the remove() method
so it does the things that IntSet remove() does, and this is the only method that
the client can call. IntGen remove() can call g.remove(), where g =
els.iterator(), which manipulates the underlying representation while the iterator is
being used. This is summarized pictorially below.

els

Class

IntSet
 size()
 remove()
 elems()

Vector
 remove()

Client

BAD
dependence

elems()

els.iterator()
 remove()
 next()
 hasNext()

shared
state

xxxxxxxx

els

Class

IntSet
 size()
 remove()
 …

Vector
 remove()

Iterator Inner Class

IntGen
 remove()

els.iterator()
 remove()
 next()
 hasNext() shared

state

els

 73

Note that implementing IntGen remove() by calling Vector els.remove() is also
not a good idea, it might break the iterator with respect to the next() or
hasNext() methods.

Lecture 8: Object Models & Invariants

This lecture consolidates many of the fundamental ideas of the previous lectures on
objects, representations and abstraction. We will explain the graphical object model-
ling notation in detail and revisit representation invariants, abstraction functions and
rep exposure. After reading this lecture, you may want to return to the previous lec-
tures and look them over again, as they contain more details about the examples dis-
cussed here.

8.1 Object Models
An object model is a description of a collection of configurations. In today’s lecture,
we’ll look at object models of code, in which the configurations are states of a program.
But we’ll see later in the course that the same notation can be used more generally to
describe any kind of configuration – such as the shape of a file system, a security hier-
archy, a network topology, etc.

The basic notions that underlie object models are incredibly simple: sets of objects and
relations between them. What students find harder is learning how to construct a use-
ful model: how to capture the interesting and tricky parts of a program, and not to get
carried away modelling irrelevant parts, and end up with a huge and unwieldy model,
or to say so little that you end up with an object model that is worthless.

Object models and module dependency diagrams both contain boxes and arrows. The
similarity ends there. Well, OK, I’ll admit there are some subtle connections between
the OM and MDD of a program. But at a first cut it’s best to think of them as com-
pletely different. The MDD is about syntactic structure – what textual descriptions
there are, and how they are related to one another. The OM is about semantic struc-
ture – what configurations are created at runtime and what properties they have.

8.1.1 Classification
An object model expresses two kinds of properties: classification of objects, and rela-
tionships between objects. To express classification, we draw a box for each class of
objects. In an object model of code, these boxes will correspond to Java classes and
interfaces; in a more general setting, they just represent arbitrary classifications.

47

An arrow with a fat, closed head from class
A to class B indicates that A denotes a subset of B: that is, every A is also a B. To show
that two boxes represent disjoint subsets, we have them share the same arrow head. In
the diagram shown, LinkedList and ArrayList are disjoint subsets of List.

In Java, every implements and extends declaration results in a subset relationship in an
object model. This is a property of the type system: if an object o is created with a con-
structor from class C, and C extends D say, then o is regarded as also having type D.

The diagram above shows the object model on the left. The diagram on the right is a
module dependency diagram. Its boxes represent textual descriptions – the code of the
classes. Its arrows, you will recall, denote the ‘meets’ relation. So the arrow from
ArrayList to List says that the ArrayList code meets the specification List. In other
words, objects of the class ArrayList behave like abstract lists. This is a subtle proper-
ty and is true only because of the details of the code. As we will see later in the lecture
on subtyping, it’s easy to get this wrong, and have a class extend or implement anoth-
er without there being a ‘meets’ relation between them. (The sharing of the arrowhead
has no significance in the MDD.)

8.1.2 Fields

An arrow with an open head from A to B indicates a relationship between objects of A
and objects of B. Because there may be many relationships between two classes, we
name these relationships and label the arrows with the names. A field f in a class A
whose type is B results in an arrow from A to B labelled f.

For example, the following code produces structures that can be illustrated by the dia-

48

List

ArrayList LinkedList

List

ArrayList LinkedList

gram shown overleaf (ignoring, for the moment, the markings on the ends of the
arrows):

class LinkedList implements List {
Entry header;
…
}

class Entry {
Entry next;
Entry prev;
Object elt;
…
}

8.1.3 Multiplicity

So far, we have seen classification of objects into classes, and relations that show that
objects in one class may be related to objects in another class. A fundamental question
about a relation between classes is multiplicity: how many objects in one class can be
related to a given object in another class.

49

List

Entry

Object

header

element

nextprev

?

!

?

!!

!!

The multiplicity symbols are:
· * (zero or more)
· + (one or more)
· ? (zero or one)
· ! (exactly one).

When a symbol is omitted, * is the default (which says nothing). The interpretation of
these markings is that when there is a marking n at the B end of a field f from class A
to class B, there are n members of class B associated by f with each A. It works the other
way round too; if there is a marking m at the A end of a field f from A to B, each B is
mapped to by m members of class A.

At the target end of the arrow – the end with the arrowhead – the multiplicity tells you
how many objects an instance variable holds. For now, we have no use for * and +, but
we’ll see how they are used later for abstract fields. The choice of ? or ! depends on
whether a field can be null or not.

At the source end of the arrow, the multiplicity tells you how many objects can point
to a given object. In other words, it tells you about sharing. Let’s look at some of the
arrows and see what their multiplicities mean:
· For the field header, the ! on the target of the arrow says that every object in the class

List is related to exactly one object in the class Entry by the field header. The ? on
the source says that each Entry object is the header object of at most one List.

· For the field element, the ? on the target says that the element field of an Entry object
points to zero or one objects in the class Object. In other words, it may be null: a List
may store null references. The lack of a symbol on the source, says that an object
may be pointed to by the element field of any number of Entry objects. In other
words, a List may store duplicates.

· For the field next, the ! on the target and the source says that the next field of every
Entry object points to one Entry object, and every Entry object is pointed to by the
next field of one Entry object.

8.1.4 Mutability
So far, all the features of the object model that we have described constrain individual
states. Mutability constraints describe how states may change. To show that a multi-
plicity constraint is violated, we only need to show a single state, but to show that a
mutability constraint is violated, we need to show two states, representing the state
before and after a global state change.

Mutability constraints can be applied to both sets and relations, but for now we’ll con-

50

sider only a limited form in which an optional bar may be marked crossing the target
end of a field arrow. When present, this mark says for a given object, the object it is
related to by the field must always be the same. In this case, we say the field is
immutable, static, or more precisely target static (since later we’ll give a meaning to a
bar on the source end of the arrow).

In our diagram, for instance, the bar on the target end of the header relation says that
a List object, once created, always points via its header field to the same Entry object.

An object is immutable if all its fields are immutable. A class is said to be immutable if
its objects are immutable.

8.1.5 Instance Diagrams

The meaning of an object model is a collection of configurations – all those that satis-
fy the constraints of the model. These configurations can be represented in instance
diagrams or snapshots, which are simply graphs consisting of objects and references
connecting them. Each object is labelled with the (most specific) class it belongs to.
Each reference is labelled with the field it represents.

The relationship between a snapshot and an object model is just like the relationship
between an object instance and a class, or the relationship between a sentence and a
grammar.

The figure below shows one legal snapshot (belonging to the collection denoted by the
object model) and one illegal snapshot (not belonging). There are, of course, an infinite
number of legal snapshots, since you can make a list of any length.

A useful exercise to check that you understand the meaning of the object model is to
examine the illegal snapshot and determine which constraints it violates. The con-
straints are the multiplicity constraints and the constraints implicit in the placement of
the arrows. For example, since the header field arrow goes from List to Entry, a snap-
shot containing a reference arrow labelled field from an Entry to an Entry must be
wrong. Note that the mutability constraints are not relevant here; they tell you which
transitions are permitted.

8.2 Whole Program Models

An object model can be used to show any portion of the state of a program. In the List
example above, our object model showed only the objects involved in the representa-
tion of the List abstract type. But in fact, object models are most useful when they

51

include the objects of many types, since they capture the web of relationships between
objects which is often the essence of an object-oriented design.

Suppose, for example, we’re building a program for tracking stock prices. We might
design a Portfolio datatype that represents a stock portfolio. A Portfolio contains a list
of Position objects, each holding a Ticker symbol for a stock, a count of the number of

52

(List)

(Entry)

header

(Entry)
next

prev

(Object)

element

(Entry)
next

prev

(Object)

element

next

prev

(List)

(Entry)

header

(Entry)
next

prev

(Object)

element

(Entry)
next

prev

(Object)

header

element

shares held in that stock, and a current value for the stock. The Portfolio object also
holds the total value of all the Positions.

The object model below shows this. Note how the Entry objects are now shown point-
ing to Position objects: they belong to a List of Positions, not an arbitrary list. We must
allow several boxes in the same diagram with the label List that correspond to differ-
ent kinds of List. And consequently, we have to be a bit careful about how we interpret
the constraints implicit in a field arrow. The arrow marked element from Entry to
Position in our diagram, for example, does not mean that every Entry object in the pro-
gram points to a Position object, but rather that every Entry object contained in a List

53

List

Entry

Position

header

element

nextprev

?

!

?

!!

!!

Portfolio

Tickerint

positionList

tickercount,
value

! !

?

totalval

!

that is contained in a Portfolio points to a Position.

8.3 Abstract and Concrete Viewpoints
Suppose we want to implement a set abstract data type. In some circumstances – for
example when we have a lot of very small sets – representing a set as a list is a reason-
able choice. The figure overleaf shows three object models. The first two are two ver-
sions of a type Set, one represented with a LinkedList and one with an ArrayList.
(Question for the astute reader: why is the header field in LinkedList immutable, but
the elementData field in ArrayList is not?).

If our concern is how the Set is represented, we might want to show these object mod-
els. But if our concern is the role that Set plays in a larger program, and we don’t want
to be concerned about the choice of representation, we would prefer an object model
that hides the difference between these two versions. The third object model, on the
right hand side, is such a model. It replaces all the detail of the representation of Set

54

ArrayList

Object []

Object

elementData

elts[]

!

LinkedList

Entry

Object

header

element

nextprev

?

!

?

!!

!!

Set

eltList

Set

eltList

Object

Set

elements

! !

? ?

?

with a single field elements that connects Set objects directly to their elements. This
field doesn’t correspond to a field that is declared in Java in the Set class; it’s an abstract
or specification field.

There are therefore many object models that can be drawn for the same program. You
can choose how much of the state to model, and for that part of the state, how abstract-
ly to represent it. There is a particular level of abstraction that can claim to be norma-
tive, though. This is the level of abstraction that is presented by the methods in the
code. For example, if some method of the class Set returns an object of type LinkedList,
it would make little sense to abstract away the LinkedList class. But if, from the point
of view of a client of Set, it is impossible to tell whether a LinkedList or ArrayList is
being used, it would make sense to show the abstract field element instead.

An abstract type can be represented by many different representation types. Likewise,
a type can be used to represent many different abstract types. A linked list can be used
to implement a stack, for example: unlike the generic List interface, LinkedList offers
addLast and removeLast. And, by design, LinkedList directly implements the List inter-
face, which represents an abstract sequence of elements. We can therefore view the
LinkedList class itself more abstractly with a field elems[] bypassing the internal entry
structure, in which the [] indicate that the field denotes an indexed sequence.

The figure below shows these relationships: an arrow means “can be used to represent”.
The relationship is not symmetrical of course. The concrete type generally has more
information content: a list can represent a set, but a set cannot represent a list, since it

55

List

Entry

Object

header

element

nextprev

? ?

? ?

?

!

?

elems[]

does not retain ordering information or allow duplicates. Note also that no type is
inherently ‘abstract’ or ‘concrete’. These notions are relative. A list is abstract with
respect to a linked list used to represent it, but concrete with respect to a set it repre-
sents.

8.3.1 Abstraction Functions
For a particular choice of abstract and concrete type, we can show how the values of
the concrete type are interpreted as abstract values using an abstraction function, as
explained in an earlier lecture. Remember that the same concrete value can be inter-
preted in different ways, so the abstraction function is not determined by the choice of
the abstract and concrete types. It’s a record of a design decision, and determines how
the code is written for the methods of the abstract data type.

In a language without mutable objects, in which we don’t have to worry about sharing,
we can think of the abstract and concrete ‘values’ as being just that – values. The
abstraction function is then a straightforward mathematical function. Think, for exam-
ple, of the various ways in which integers are represented as bitstrings. Each can be
described as an abstraction function from bitstring to integer. An encoding that places
the least significant bit first, for example, may have a function with mappings such as:

A (0000) = 0
…
A (0001) = 8
A (1001) = 9

56

ArrayList LinkedList

List Stack

Set

implements

…

But in an object-oriented program in which we have to worry about how mutations to
an object via one path can affect a view of the object via another path, the ‘values’ are
actually little subgraphs. The most straightforward way to define the abstraction func-
tion in these circumstances is to give a rule for each abstract field, explaining how it is
obtained from concrete fields. For example, for the LinkedList representation of Set, we
can write

s.elements = s.list.header.*next.element

to say that for each object s in the class, the objects pointed to by the abstract field ele-
ments are those obtained by following list (to the List object), header (to the first Entry
object), then zero or more traversals of the next field (to the remaining Entry objects)
and, for each of these, following the element field once (to the object pointed to by the
Entry). Note that this rule is itself a kind of object model invariant: it tells you where
it’s legal to place arrows marked elements in a snapshot.

In general, an abstract type may have any number of abstract fields, and the abstrac-
tion function is specified by giving a rule for each one.

In practice, except for very subtle container types, abstraction functions are generally
more trouble than they are worth. Understanding the idea of an abstraction function
is valuable, however, because it helps you crystallize your understanding of data

57

LinkedList

Entry

Object

header

element

nextprev

?

!

?

!!

!!

abstraction. And you should be ready to write an abstraction function if the need aris-
es. The Boolean Formula in CNF example of Lecture 6 is a good example of an abstract
type that really needs an abstraction function. In that case, without a firm grasp of the
abstraction function, it’s hard to get the code right.

8.3.2 Representation Invariants

An object model is a kind of invariant: a constraint that always holds during the life-
time of a program. A representation invariant, or ‘rep invariant’, as discussed in Lecture
6, is a particular kind of invariant that describes whether the representation of an
abstract object is well-formed. Some aspects of a rep invariant can be expressed in an
object model. But there are other aspects that cannot be expressed graphically. And
not all constraints of an object model are rep invariants.

A rep invariant is a constraint that can be applied to a single object of an abstract type,
and tells you whether its representation is well formed. So it always involves exactly
one object of the abstract type in question, and any objects in the representation reach-
able from it.

We can draw a contour around the part of the object model that a particular represen-
tation invariant can talk about. This contour groups the objects of a representation
together with their abstract object. For example, for the rep invariant of the LinkedList
viewed as a List (that is, an abstract sequence of elements), this contour includes the
Entry elements. Not surprisingly, the classes within the contour are exactly those
skipped over by the abstract field elems[]. And similarly, the rep invariant for the
ArrayList covers the contained Array.

The details of the rep invariants were discussed in Lecture 6: for LinkedList, for exam-
ple, they include such constraints as the entries forming a cycle, the header entry being
always present and having a null element field, etc.

Let us recall why the rep invariant is useful – why it’s not just a theoretical notion, but
a practical tool:
· The rep invariant captures in one place the rules about how a legal value of the rep

is formed. If you are modifying the code of an ADT, or writing a new method, you
need to know what invariants have to be reestablished and which you can rely on.
The rep invariant tells you everything you need to know; this is what is meant by
modular reasoning. If there’s no explicit rep invariant recorded, you have to read the
code of every method!

· The rep invariant captures the essence of the design of the rep. The presence of the
header entry and the cyclic form of the Java LinkedList, for example, are clever

58

design decisions that make the methods easy to code in a uniform way.
· As we shall see in a subsequent lecture, the rep invariant can be used to detect bugs

at runtime in a form of ‘defensive programming’.

8.3.3 Representation Exposure

The rep invariant provides modular reasoning so long as the rep is modified only with-
in the abstract data type’s class. If modifications by code outside the class are possible,
one needs to examine the entire program to ensure that the rep invariant is main-
tained.

This unpleasant situation is called rep exposure. We’ve seen in earlier lectures some
straightforward and more subtle examples. A simple example occurs when an abstract
data type provides direct access to one of the objects within the rep invariant contour.
For example, every implementation of the List interface (in fact the more general
Collection interface) must provide a method

public Object [] toArray ()

which returns the list as an array of elements. The specification of this method says

The returned array will be “safe” in that no references to it are maintained by this
collection. (In other words, this method must allocate a new array even if this col-
lection is backed by an array). The caller is thus free to modify the returned array.

In the ArrayList implementation, the method is implemented thus:

private Object elementData[];
…
public Object[] toArray() {

Object[] result = new Object[size];
System.arraycopy(elementData, 0, result, 0, size);
return result;
}

Note how the internal array is copied to produce the result. If instead, the array were
returned immediately, like this

public Object[] toArray() {
return elementData;
}

we would have a rep exposure. Subsequent modifications to the array from outside the

59

abstract type would affect the representation inside. (In fact, in this case, there’s such
a weak rep invariant that a change to the array cannot break it, and this would produce
only the rather odd effect of seeing the value of the abstract list change as the array is
modified. But one could imagine a version of ArrayList that does not store null refer-
ences; in this case, an assignment of null to an element of the array would break the
invariant.)

Here’s a much more subtle example. Suppose we implement an abstract data type for
lists without duplicates, and we define the notion of duplication by the equals method
of the elements. Now our rep invariant will say, for a linked list rep, for example, that
no two distinct entries have elements that test true for equality. If the elements are
mutable, and the equals method examines internal fields, it is possible that a mutation
of an element will cause it to become equal to another one. So access to the elements
themselves will constitute a rep exposure.

This is actually no different from the simple case, in the sense that the problem is
access to an object within the contour. The invariant in this case, since it depends on
the internal state of the elements, has a contour that includes the element objects.
Equality creates particularly tricky issues; we’ll pursue these further in tomorrow’s lec-
ture.

60

Lecture 9: Equality, Copying and Views

9.1 The Object Contract

Every class extends Object, and therefore inherits all of its methods. Two of these are
particularly important and consequential in all programs, the method for testing
equality:

public boolean equals (Object o)

and the method for generating a hash code:

public int hashCode ()

Like any other methods of a superclass, these methods can be overridden. We’ll see in
a later lecture on subtyping that a subclass should be a subtype. This means that it
should behave according to the specification of the superclass, so that an object of the
subclass can be placed in a context in which a superclass object is expected, and still
behave appropriately.

The specification of the Object class is rather abstract and may seem abstruse. But fail-
ing to obey it has dire consequences, and tends to result in horrible obscure bugs.
Worse, if you don’t understand this specification and its ramifications, you are likely to
introduce flaws in your code that have a pervasive effect and are hard to eliminate
without major reworking. The specification of the Object class is so important that it
is often referred to as ‘The Object Contract’.

The contract can be found in the method specifications for equals and hashCode in the
Java API documentation. It states that:
· equals must define an equivalence relation – that is, a relation that is reflexive, sym-

metric, and transitive;
· equals must be consistent: repeated calls to the method must yield the same result

unless the arguments are modified in between;
· for a non-null reference x, x.equals (null) should return false;
· hashCode must produce the same result for two objects that are deemed equal by

the equals method;

61

9.2 Equality Properties
Let’s look first at the properties of the equals method. Reflexivity means that an object
always equals itself; symmetry means that when a equals b, b equals -a; transitivity
means that when a equals b and b equals c, a also equals c.

These may seems like obvious properties, and indeed they are. If they did not hold, it’s
hard to imagine how the equals method would be used: you’d have to worry about
whether to write a.equals(b) or b.equals(a), for example, if it weren’t symmetric.

What much less obvious, however, is how easy it is to break these properties inadver-
tently. The following example (taken from Joshua Bloch’s excellent Effective Java:
Programming Language Guide, one of the course recommended texts) shows how sym-
metry and transitivity can be broken in the presence of inheritance.

Consider a simple class that implements a two-dimensional point:

public class Point {
private final int x;
private final int y;
public Point (int x, int y) {

this.x = x; this.y = y;
}

public boolean equals (Object o) {
if (!(o instanceof Point))

return false;
Point p = (Point) o;
return p.x == x && p.y == y;
}

… }

Now suppose we add the notion of a colour:

public class ColourPoint extends Point {
private Colour colour;
public ColourPoint (int x, int y, Colour colour) {

super (x, y);
this.colour = colour;
}

…
}

What should the equals method of ColourPoint look like? We could just inherit equals

62

from Point, but then two ColourPoints will be deemed equal even if they have different
colours. We could override it like this:

public boolean equals (Object o) {
if (!(o instanceof ColourPoint))

return false;
ColourPoint cp = (ColourPoint) o;
return super.equals (o) && cp.colour.equals(colour);
}

This seemingly inoffensive method actually violates the requirement of symmetry. To
see why, consider a point and a colour point:

Point p = new Point (1, 2);
ColourPoint cp = new ColourPoint (1, 2, Colour.RED);

Now p.equals(cp) will return true, but cp.equals(p) will return false! The problem is that
these two expressions use different equals methods: the first uses the method from
Point, which ignores colour, and the second uses the method from ColourPoint.

We could try and fix this by having the equals method of ColourPoint ignore colour
when comparing to a non-colour point:

public boolean equals (Object o) {
if (!(o instanceof Point))

return false;
// if o is a normal Point, do colour-blind comparison
if (!(o instanceof ColourPoint))

return o.equals (this);
ColourPoint cp = (ColourPoint) o;
return super.equals (o) && cp.colour.equals (colour);
}

This solves the symmetry problem, but now equality isn’t transitive! To see why, con-
sider constructing these points:

ColourPoint p1 = new ColourPoint (1, 2, Colour.RED);
Point p2 = new Point (1, 2);
ColourPoint p2 = new ColourPoint (1, 2, Colour.BLUE);

The calls p1.equals(p2) and p2.equals(p3) will both return true, but p1.equals(p3) will
return false.

63

It turns out that there is no solution to this problem: it’s a fundamental problem of
inheritance. You can’t write a good equals method for ColourPoint if it inherits from
Point. However, if you implement ColourPoint using Point in its representation, so that
a ColourPoint is no longer treated as a Point, the problem goes away. See Bloch’s book
for details.

Bloch’s book also gives some hints on how to write a good equals method, and he
points out some common pitfalls. For example, what happens if you write something
like this

public boolean equals (Point p)

substituting another type for Object in the declaration of equals?

9.3 Hashing
To understand the part of the contract relating to the hashCode method, you’ll need to
have some idea of how hash tables work.

Hashtables are a fantastic invention – one of the best ideas of computer science. A
hashtable is a representation for a mapping: an abstract data type that maps keys to val-
ues. Hashtables offer constant time lookup, so they tend to perform better than trees
or lists. Keys don’t have to be ordered, or have any particular property, except for offer-
ing equals and hashCode.

Here’s how a hashtable works. It contains an array that is initialized to a size corre-
sponding the number of elements that we expect to be inserted. When a key and a
value are presented for insertion, we compute the hashcode of the key, and convert it
into an index in the array’s range (eg, by a modulo division). The value is then inserted
at that index.

The rep invariant of a hash table includes the fundamental constraint that keys are in
the slots determined by their hash codes. We’ll see later why this is important.

Hashcodes are designed so that the keys will be spread evenly over the indices. But
occasionally a conflict occurs, and two keys are placed at the same index. So rather than
holding a single value at an index, a hashtable actually holds a list of key/value pairs
(usually called ‘hash buckets’), implemented in Java as objects from class with two
fields. On insertion, you add a pair to the list in the array slot determined by the hash
code. For lookup, you hash the key, find the right slot, and then examine each of the
pairs until one is found whose key matches the given key.

Now it should be clear why the Object contract requires equal objects to have the same

64

hash key. If two equal objects had distinct hash keys, they might be placed in different
slots. So if you attempt to lookup a value using a key equal to the one with which it was
inserted, the lookup may fail.

A simple and drastic way to ensure that the contract is met is for hashCode to always
return some constant value, so every object’s hash code is the same. This satisfies the
Object contract, but it would have a disastrous performance effect, since every key will
be stored in the same slot, and every lookup will degenerate to a linear search along a
long list.

The standard way to construct a more reasonable hash code that still satisfies the con-
tract is to compute a hash code for each component of the object that is used in the
determination of equality (usually by calling the hashCode method of each compo-
nent), and then combining these, throwing in a few arithmetic operations. Look at
Bloch’s book for details.

Most crucially, note that if you don’t override hashCode at all, you’ll get the one from
Object, which is based on the address of the object. If you have overridden equals, this
will mean that you will have almost certainly violated the contract. So as a general rule:

Always override hashCode when you override equals.

(This is one of Bloch’s aphorisms. The whole book is a collection of aphorisms like it,
each nicely explained and illustrated.)

Last year, a student spent hours tracking down a bug in a project that amounted to
nothing more than mispelling hashCode as hashcode. This created a method that did-
n’t override the hashCode method of Object at all, and strange things happened.
Another reason to avoid inheritance…

9.4 Copying

The need to make a copy of an object often arises. For example, you may want to do a
computation that requires modifying the object but without affecting objects that
already hold references to it. Or you may have a ‘prototype’ object that you want to
make a collection of objects from that differ in small ways, and it’s convenient to make
copies and then modify them.

People sometimes talk about ‘shallow’ and ‘deep’ copies. A shallow copy of an object is
made by creating a new object whose fields point to the same objects as the old object.
A deep copy is made by creating a new object also for the objects pointed to by the
fields, and perhaps for the objects they point to, and so on.

65

How should copying be done? If you’ve diligently studied the Java API, you may assume
that you should use the clone method of Object, along with the Cloneable interface.
This is tempting, because Cloneable is a special kind of ‘marker interface’ that adds
functionality magically to a class. Unfortunately, though, the design of this part of Java
isn’t quite right, and it’s very difficult to use it well. So I recommend that you don’t use
it at all, unless you have to (eg, because code you’re using requires your class to imple-
ment Cloneable, or because your manager hasn’t taken 6170). See Bloch’s book for an
insightful discussion of the problems.

You might think it would be fine to declare a method like this:

class Point {
Point copy () {
…

}
…
}

Note the return type: copying a point should result in a point. Now in a subclass, you’d
like the copy method to return a subclass object:

class ColourPoint extends Point {
ColourPoint copy () {
…

}
…
}

Unfortunately, this is not legal in Java. You can’t change the return type of a method
when you override it in a subclass. And overloading of method names uses only the
types of the arguments. So you’d be forced to declare both methods like this:

Object copy ()

and this is a nuisance, because you’ll have to downcast the result. But it’s workable and
sometimes the right thing to do.

There are two other ways to do copying. One is to use a static method called a ‘facto-
ry’ method because it creates new objects:

public static Point newPoint (Point p)

The other is to provide additional constructors, usually called ‘copy constructors’:

66

public Point (Point p)

Both of these work nicely, although they’re not perfect. You can’t put static methods or
constructors in an interface, so they’re not when you’re trying to provide generic func-
tionality. The copy constructor approach is widely used in the Java API. A nice feature
of this approach is that it allows the client to choose the class of the object to be creat-
ed. The argument to the copy constructor is often declared to have the type of an inter-
face so that you can pass the constructor any type of object that implements the inter-
face. All of Java’s collection classes, for example, provide a copy constructor that takes
an argument of type Collection or Map. If you want to create an array list from a linked
list l, for example, you would just call

new ArrayList (l)

9.5 Element and Container Equality
When are two containers equal? If they are immutable, they should be equal if they
contain the same elements. For example, two strings should be equal if they contain the
same characters (in the same order). Otherwise, if we just kept the default Object
equality method, a string entered at the keyboard, for example, would never match a
string in a list or table, because it would be a new string object and therefore not the
same object as any other. And indeed, this is exactly how equals is implemented in the
Java String class, and if you want to see if two strings s1 and s2 contain the same char-
acter sequence, you should write

s1.equals (s2)

and not

s1 == s2

which will return false when s1 and s2 denote different string objects that contain the
same character sequences.

9.5.1 The Problem
So much for strings – sequences of characters. Let’s consider lists now, which are
sequences of arbitrary objects. Should they be treated the same way, so that two lists
are equal if they contain the same elements in the same order?

Suppose I’m planning a party at which my friends will sit at several different tables, and

67

I’ve written a program to help me create a seating plan. I represent each table as a list
of friends, and the party as a whole as a set of these lists. The program starts by creat-
ing empty lists for the tables and inserting them into the set:

List t1 = new LinkedList ();
List t2 = new LinkedList ();
…
Set s = new HashSet ();
s.add (t1);
s.add (t2);
…

At some later point, the program will add friends to the various lists; it may also create
new lists and replace existing lists in the set with them. Finally, it iterates over the con-
tents of the set, printing out each list.

This program will fail, because the initial insertions will not have the expected effect.
Even though the empty lists represent conceptually distinct table plans, they will be
equal according to the equals method of LinkedList. Since Set uses the equals method
on its elements to reject duplicates, all insertions but the first will have no effect, since
all of the empty lists will be deemed duplicates.

How can we solve this problem? You might think that Set should have used == to check
for duplicates instead, so that an object is regarded as a duplicate only if that very
object is already in the set. But that wouldn’t work for strings; it would mean that after

Set set = new HashSet ();
String lower = “hello”;
String upper = “HELLO”;
set.add (lower.toUpperCase());
…

the test set.contains (upper) would evaluate to false, since the toUpperCase method
creates a new string.

9.5.2 The Liskov Solution
In our course text, Professor Liskov presents a systematic solution to this problem. You
provide two distinct methods: equals, which returns true when two objects in a class
are behaviourally equivalently, and similar, which returns true when two objects are
observationally equivalent.

68

Here’s the difference. Two objects are behaviourally equivalent if there is no sequence
of operations that can distinguish them. On these grounds, the empty lists t1 and t2
from above are not equivalent, since if you insert an element into one, you can see that
the other doesn’t change. But two distinct strings that contain the same sequence of
characters are equivalent, since you can’t modify them and thus discover that they are
different objects. (We’re assuming you’re not allowed to use == in this experiment.)

Two objects are observationally equivalent if you can’t tell the difference between them
using observer operations (and no mutations). On these grounds, the empty lists t1 and
t2 from above are equivalent, since they have the same size, contain the same elements,
etc. And two distinct strings that contain the same sequence of characters are also
equivalent.

Here’s how you code equals and similar. For a mutable type, you simply inherit the
equals method from Object, but you write a similar method that performs a field-by-
field comparison. For an immutable type, you override equals with a method that per-
forms a field-by-field comparison, and have similar call equals so that they are the
same.

This solution, when applied uniformly, is easy to understand and works well. But it’s
not always ideal. Suppose you want to write some code that interns objects. This means
mutating a data structure so that references to objects that are structurally identical
become references to the very same object. This is often done in compilers; the objects
might be program variables, for example, and you want to have all references to a par-
ticular variable in the abstract syntax tree point to the same object, so that any infor-
mation you store about the variable (by mutating the object) is effectively propagated
to all sites in which it appears.

To do the interning, you might try to use a hash table. Every time you encounter a new
object in the data structure, you look that object up in the table to see if it has a canon-
ical representative. If it does, you replace it by the representative; otherwise you insert
it as both key and value into the table.

Under the Liskov approach, this strategy would fail, because the equality test on the
keys of the table would never find a match for distinct objects that are structurally
equivalent, since the equals method of a mutable object only returns true on the very
same object.

9.5.3 The Java Approach

For reasons such as this, the designer of the Java collections API did not follow this
approach. There is no similar method, and equals is observational equivalence.

69

This has some convenient consequences. The interning table will work, for example.
But it also has some unfortunate consequences. The seating plan program will break,
because two distinct empty lists will be deemed equal.

In the Java List specification, two lists are equal not only if they contain the same ele-
ments in the same order, but also if they contain equal elements in the same order. In
other words, the equals method is called recursively. To maintain the Object contract,
the hashCode method is also called recursively on the elements. This results in a very
nasty surprise. The following code, in which a list is inserted into itself, will actually fail
to terminate!

List l = new LinkedList ();
l.add (l);
int h = l.hashCode ();

This is why you’ll find warnings in the Java API documentation about inserting con-
tainers into themselves, such as this comment in the specification of List:

Note: While it is permissible for lists to contain themselves as elements, extreme
caution is advised: the equals and hashCode methods are no longer well defined on
such a list.

There are some other, even more subtle, consequences of the Java approach to do with
rep exposure which are explained below.

This leaves you with two choices, both of which are acceptable in 6170:
· You can follow the Java approach, in which case you’ll get the benefits of its con-

venience, but you’ll have to deal with the complications that can arise.
· Alternatively, you can follow the Liskov approach, but in that case you’ll need to fig-

ure out how to incorporate into your code the Java collection classes (such as
LinkedList and HashSet).

In general, when you have to incorporate a class whose equals method follows a dif-
ferent approach from the program as a whole, you can write a wrapper around the class
that replaces the equals method with a more suitable one. The course text gives an
example of how to do this.

9.6 Rep Exposure
Let’s revisit the example of rep exposure that we closed yesterday’s lecture with. We
imagined a variant of LinkedList for representing sequences without duplicates. The
add operation has a new specification saying that the element is added only if it isn’t a
duplicate, and its code performs this check:

70

void add (Object o) {
if (contains (o))

return;
else

// add the element
…

}

We record the rep invariant at the top of the file saying that the list contains no dupli-
cates:

The list contains no duplicates. That is, there are no distinct entries e1 and e2 such
that e1.element.equals (e2.element).

We check that it’s preserved, by ensuring that every method that adds an element first
performs the containment check.

Unfortunately, this isn’t good enough. Watch what happens if we make a list of lists and
then mutate an element list:

List x = new LinkedList ();
List y = new LinkedList ();
Object o = new Object ();
x.add (o);
List p = new LinkedList ();
p.add (x);
p.add (y);
x.remove (o);

After this code sequence, the rep invariant of p is broken. The problem is that the
mutation to x makes it equal to y, since they are then both empty lists.

What’s going on here? The contour that we drew around the representation actually
includes the element class, since the rep invariant depends on a property of the ele-
ment (see figure). Note that this problem would not have arisen if equality had been
determined by the Liskov approach, since two mutable elements would be equal only
if they were the very same object: the contour extends only to the reference to the ele-
ment, and not to the element itself.

71

9.6.1 Mutating Hash Keys

A more common and insidious example of this phenomenon occurs with hash keys. If
you mutate an object after it has been inserted as a key in a hash table, its hash code
may change. As a result, the crucial rep invariant of the hash table – that keys are in
the slots determined by their hash codes – is broken.

Here’s an example. A hash set is a set implemented with a hash table: think of it as a
hash table with keys and no values. If we insert an empty list into a hash set, and then
add an element to the list like this:

Set s = new HashSet ();
List x = new LinkedList ();
s.add (x);
x.add (new Object ());

a subsequent call s.contains(x) is likely to return false. If you think that’s acceptable,
consider the fact that there may now be no value of x for which s.contains(x) returns
true, even though s.size() will return 1!

Again, the problem is rep exposure: the contour around the hash table includes the
keys.

The lesson from this is: either follow the Liskov approach, and wrap the Java list to

72

LinkedList

Entry

Object

header

element

nextprev

?

!

?

!!

!!

LinkedList

Entry

Object

header

element

nextprev

?

!

?

!!

!!

override its equals method, or make sure that you never mutate hash keys, or allow any
mutation of an element of a container that might break the container’s rep invariant.
This is why you’ll see comments such as this in the Java API specification:

Note: Great care must be exercised if mutable objects are used as set elements. The
behavior of a set is not specified if the value of an object is changed in a manner
that affects equals comparisons while the object is an element in the set. A special
case of this prohibition is that it is not permissible for a set to contain itself as an
element.

9.7 Views

An increasingly common idiom in object-oriented program is to have distinct objects
that offer different kinds of access to the same underlying data structure. Such objects
are called views. Usually one object is thought of as primary, and another as secondary.
The primary one is called the ‘underlying’ or ‘backing’ object, and the secondary one
is called the ‘view’.

We are used to aliasing, when two object references point to the same object, so that a
change under one name appears as a change under the other:

List x = new LinkedList ();
List y = x;
y.add (o); // changes y also

Views are tricky because they involve a subtle form of aliasing, in which the two objects
have distinct types. We have seen an example of this with iterators, whose remove
method of an iterator removes the last yielded element from the underlying collection:

List x = new LinkedList ();
…
Iterator i = x.iterator ();
while (i.hasNext ()) {

Object o = i.next ();
…
i.remove (); // mutates x also
}

An iterator is this a view on the underlying collection. Here are two other examples of
views in the Java collections API.

73

· Implementations of the Map interface are required to have a method keySet which
returns the set of keys in the map. This set is a view; as the underlying map changes,
the set will change accordingly. Unlike an iterator, this view and the underlying map
can be both be modified; a deletion of a key from the set will cause the key and its
value to be deleted from the map. The set does not support an add operation, since
it would not make sense to add a key without a value. (This, by the way, is why add
and remove are optional methods in the Set interface.)

· List has a method subList which returns a view of part of a list. It can be used to
access the list with an offset, eliminating the need for explicit range operations. Any
operation that expects a list can be used as a range operation by passing a subList
view instead of a whole list. For example, the following idiom removes a range of
elements from a list:

list.subList(from, to).clear();

Ideally, a view and its backing object should both be modifiable, with effects propagat-
ed as expected between the two. Unfortunately, this is not always possible, and many
views place constraints on what kinds of modification are possible. An iterator, for
example, becomes invalid if the underlying collection is modified during iteration. And
a sublist is invalidated by certain structural modifications to the underlying list.

Things get even trickier when there are several views on the same object. For example,
if you have two iterators simultaneously on the same underlying collection, a modifi-
cation through one iterator (by a call to remove) will invalidate the other iterator (but
not the collection).

9.8 Summary

Issues of copying, views and equality show the power of object-oriented programming
but also its pitfalls. You must have a systematic and uniform treatment of equality,
hashing and copying in any program you write. Views are a very useful mechanism, but
they must be handled carefully. Constructing an object model of your program is use-
ful because it will remind you of where sharings occur and cause you to examine each
case carefully.

74

Lecture 10: Dynamic Analysis, Part 1

The best way to ensure the quality of the software you build is to design it carefully
from the start. The parts will fit together more cleanly, and the functionality of each
part will be simpler, so you’ll make fewer errors implementing it. But it’s hard not to
introduce some errors during coding, and an effective way to find these is to use
dynamic techniques: that is, those that involve executing the program and observing
its behaviour. In contrast, static techniques are ones that you use to ensure quality
before you execute: by evaluating the design and by analyzing the code (either by man-
ual review, or by using tools such as a type checker).

Some people mistakenly rely on dynamic techniques, rushing through specification
and design on the assumption that they can fix things up later. There are two problems
with this approach. The first is that problems in the design get enmeshed, by imple-
mentation time, with implementation problems, so they are harder to find. The second
is that the cost of fixing an error in a software artifact is known to increase dramati-
cally the later in development it is discovered. In some early studies at IBM and TRW,
Barry Boehm discovered that a specification error can cost 1000 times more to fix if
not discovered until implementation!

Other people mistakenly imagine that only static techniques are necessary. Although
great strides have been made in technology for static analysis, we are still far from
being able to catch all errors statically. Even if you have constructed a mathematical
proof that your program is correct, you would be foolish not to test it.

The fundamental problem with testing is expressed in a famous aphorism of Dijkstra’s:

Testing can reveal the presence of errors but never their absence.

Testing, by its very nature, is incomplete. You should be very wary of making any
assumptions about the reliability of a program just because it has passed a large battery
of tests. In fact, the problem of determining when a piece of software is sufficiently reli-
able to release is one that plagues managers, and for which very little guidance exists.
It is therefore best to think of testing not as a way to establish confidence that the pro-
gram is right, but rather as a way to find errors. There’s a subtle but vitally important
difference between these viewpoints.

75

10.1 Defensive Programming
Defensive programming is an approach to increasing the reliability of a program by
inserting redundant checks. Here’s how it works. When you’re writing some code, you
figure out conditions that you expect to hold at certain points in the code – invariants,
in other words. Then, rather than just assuming that these invariants hold, you test
them explicitly. These tests are called runtime assertions. If an assertion fails – that is,
the invariant evaluates to false – you report the error and abort the computation.

10.1.1 Guidelines
How should you use runtime assertions? First, runtime assertions shouldn’t be used as
a crutch for bad coding. You want to make your code bug-free in the most effective
way. Defensive programming doesn’t mean writing lousy code and peppering it with
assertions. If you don’t already know it, you’ll find that in the long run it’s much less
work to write good code from the start; bad code is often such a mess it can’t even be
fixed without starting over again.

When should you write runtime assertions? As you write the code, not later. When
you’re writing the code you have invariants in mind anyway, and writing them down is
a useful form of documentation. If you postpone it, you’re less likely to do it.

Runtime assertions are not free. They can clutter the code, so they must be used judi-
ciously. Obviously you want to write the assertions that are most likely to catch bugs.
Good programmers will typically use assertions in these ways:
· At the start of a procedure, to check that the state in which the procedure is invoked

is as expected – that is, to check the precondition. This makes sense because a high
proportion of errors are related to misunderstandings about interfaces between
procedures.

· At the end of a complicated procedure, to check that the result is plausible – that is,
to check the postcondition. In a procedure that computes square roots for example,
you might write an assertion that squares the result to check that it’s (roughly) equal
to the argument. This kind of assertion is sometimes called a self check.

· When an operation is about to be performed that has some external effect. For
example, in a radiotherapy machine, it would make sense to check before turning
on the beam that the intensity is within reasonable bounds.

Runtime assertions can also slow execution down. Novices are usually much more con-
cerned about this than they should be. The practice of writing runtime assertions for
testing the code but turning them off in the official release is like removing seat belts
from a car after the safety tests have been performed. A good rule of thumb is that if

76

you think a runtime assertion is necessary, you should worry about the performance
cost only when you have evidence (eg, from a profiler) that the cost is really significant.

Nevertheless, it makes no sense to write absurdly expensive assertions. Suppose, for
example, you are given an array and an index at which an element has been placed. It
would be reasonable to check that the element is there. But it would not be reasonable
to check that the element is nowhere else, by searching the array from end to end: that
would turn an operation that executes in constant time into one that takes linear time
(in the length of the array).

10.1.2 Catching Common Exceptions
Because Java is a safe language, its runtime environment – the Java Virtual Machine
(JVM) – already includes runtime assertions for several important classes of error:
· Calling a method on a null object reference;
· Accessing an array out of bounds;
· Performing an invalid downcast.

These errors cause unchecked exceptions to be thrown. Moreover, the classes of the
Java API themselves throw exceptions for erroneous conditions.

It is good practice to catch all these exceptions. A simple way to do this is to write a
handler at the top of the program, in the main method, that terminates the program
appropriately (eg, with an error message to the user, and perhaps attempting to close
open files).

Note that there are some exceptions that are thrown by the JVM that you should no try
to handle. Stack overflows and out-of-memory errors, for example, indicate that the
program has run out of resources. In these circumstances, there’s no point making
things worse by trying to do more computation.

10.1.3 Checking the Rep Invariant

A very useful strategy for finding errors in an abstract type with a complex represen-
tation is to encode the rep invariant as a runtime assertion. The best way to do this is
to write a method

public void checkRep ()

that throws an unchecked exception if the invariant does not hold at the point of call.
This method can be inserted in the code of the data type, or called in a testbed from
the outside.

77

Checking the rep invariant is much more powerful than checking most other kinds of
invariants, because a broken rep often only results in a problem long after it was bro-
ken. With checkRep, you are likely to find catch the error much closer to its source. You
should probably call checkRep at the start and end of every method, in case there is a
rep exposure that causes the rep to be broken between calls. You should also remem-
ber to instrument observers, since they may mutate the rep (as a benevolent side
effect).

There is an extensive literature on runtime assertions, but interestingly, there seems to
be very little knowledge in industry of how to use repCheck.

Usually, checking the rep invariant will be too computationally intensive for the kind
of runtime assertion that you would leave in production code. So you should use
checkRep primarily in testing. For production checks, you should consider at which
points the code may fail because of a broken representation invariant, and insert
appropriate checks there.

10.1.4 Assert Framework

Runtime assertions can clutter up the code. It’s especially bad if a reader can’t easily tell
which parts of the code are assertions and which are doing the actual computation. For
this reason, and to make the writing of assertions more systematic and less burden-
some, it’s a good idea to implement a small framework for assertions.

Some programming languages, such as Eiffel, come with assertion mechanisms built-
in. And requests for such a mechanism have topped all other requests for changes to
Java. There are also many 3rd party tools and frameworks for adding assertions to code
and for controlling them.

In practice, though, it’s easy to build a small framework yourself. One approach is to
implement a class, Assert say, with a method

public static void assert (boolean b, String location)

that throws an unchecked exception when the argument is false, containing a string
indicating the location of the failed assertion. This class can encapsulate logging and
error reporting. To use it, one simply writes assertions like this:

Assert.assert (x != null, “MyClass.MyMethod”);

It’s also possible to use Java’s reflection mechanism to mitigate the need to provide
location information.

78

10.1.5 Assertions in Subclasses
When we study subtyping, we’ll see how the pre- and post-conditions of a subclass
should be related to the pre- and post-conditions of its superclass in certain ways. This
suggests opportunities for additional runtime checking, and also for subclasses to
reuse assertion code from superclasses.

Surprisingly, most approaches to checking assertions in subclasses have been concep-
tually flawed. These recent papers explains why this is, and shows how to develop an
assertion framework for subclasses:
· Robby Findler, Mario Latendresse, and Matthias Felleisen. Behavioral Contracts and

Behavioral Subtyping. Foundations of Software Engineering, 2001.
· Robby Findler and Matthias Felleisen. Contract Soundness for Object-Oriented

Languages. Object-Oriented Programming, Systems, Languages, and Applications,
2001.

see http:
www.cs.rice.edu/~robby/publications/.

10.1.6 Responding to Failure
Now we come to the question of what to do when an assertion fails. You might feel
tempted to try and fix the problem on the fly. This is almost always the wrong thing to
do. It makes the code more complicated, and usually introduces even more bugs.
You’re unlikely to be able to guess the cause of the failure; if you can, you could proba-
bly have avoided the bug in the first place.

On the other hand, it often makes sense to execute some special actions irrespective of
the exact cause of failure. You might log the failure to a file, and/or notify the user on
the screen, for example. In a safety critical system, deciding what actions are to be per-
formed on failure is tricky and very important; in a nuclear reactor controller, for
example, you probably want to remove the fuel rods if you detect that something is not
quite right.

Sometimes, it’s best not to abort execution at all. When our compiler fails, it makes
sense to abort completely. But consider a failure in a word processor. If the user issues
a command that fails, it would be much better to signal the failure and abort the com-
mand but not close the program; then the user can mitigate the effects of the failure
(eg, by saving the buffer under a different name, and only then closing the program).

79

Lecture 11: Dynamic Analysis, Part 2

In this lecture, we continue our discussion of dynamic analysis, focusing on testing. We
take a brief look at some of the basic notions underlying the theory of testing, and sur-
vey the techniques most widely used in practice. At the end, we collect together some
practical guidance to help you in your own testing work.

11.1 Testing
Testing is much more effective, and much less painful, if you approach it systematical-
ly. Before you start, think about:
· what properties you want to test for;
· what modules you want to test, and what order you’ll test them in;
· how you’ll generate test cases;
· how you’ll check the results;
· when you’ll know that you’re done.

Deciding what properties to test for will require knowledge of the problem domain, to
understand what kinds of failures will be most serious, and knowledge of the program,
to understand how hard different kinds of errors will be to catch.

Choosing modules is more straightforward. You should test especially those modules
that are critical, complex, or written by your team’s sloppiest programmer (or the one
who likes clever tricks most). Or perhaps the module that wasn’t written latest at night,
or just before the release…

The module dependency diagram helps determine the order. If your module depends
on a module that isn’t yet implemented, you’ll need to write a stub that stands in for the
module during testing. The stub provides enough behaviour for the tests at hand. It
might, for example, look up answers in a table rather doing a computation.

Checking results can be hard. Some programs – such as the Foliotracker you’ll be
building in exercises 5 and 6 – don’t even have repeatable behaviour. For others, the
results are only the tip of the iceberg, and to check that things are really working, you’ll
need to check internal structures.

Later on we’ll discuss the questions of how to generate test cases and how to know
when you’re done.

81

11.2 Regression Tests
It’s very important to be able to rerun your tests when you modify your code. For this
reason, it’s a bad idea to do ad hoc testing that can’t be repeated. It may seem like a lot
of work, but in the long run, it’s much less work to construct a suite of tests that can be
reexecuted from a file. Such tests are called regression tests.

An approach to testing that goes by the name of test first programming, and which is
part of the new development doctrine called extreme programming, encourages con-
struction of regression tests even before any application code is written. JUnit, the test-
ing framework that you’ve been using, was designed for this.

Regression testing of a large system is a major enterprise. It can take a week of elapsed
time just to run the test scripts. So an area of current research interest is trying to
determine which regression test cases can be omitted. If you know which cases test
which parts of the code, you may be able to determine that a local change in one part
of the code does not require that all the cases be rerun.

11.3 Criteria
To understand how tests are generated and evaluated, it helps to take a step back and
think abstractly about the purpose and nature of testing.

Suppose we have a program P that is supposed to meet a specification S. We’ll assume
for simplicity that P is a function from inputs to outputs, and S is a function that takes
an input and an output and returns a boolean. Our aim in testing is to find a test case
t such that

S (t, P(t))

is false: that is, P produces a result for the input t that is not permitted by S. We will
call t a failing test case, although of course it’s really a successful one, since our aim is
to find errors!

A test suite T is a set of test cases. When is a suite ‘good enough’? Rather than attempt-
ing to evaluate each suite in a situation-dependent way, we can apply general criteria.
You can think of a criterion as a function

C: Suite, Program, Spec → Boolean

that takes a test suite, a program, and a specification and returns true or false accord-
ing to whether, in some systematic sense, the suite is good enough for the given pro-
gram and specification.

82

Most criteria don’t involve both the program and the specification. A criterion that
involves only the program is called a progam-based criterion. People also use terms like
‘whitebox’, ‘clearbox’, ‘glassbox’, or ‘structural’ testing to describe testing that uses pro-
gram-based criteria.

A criterion that involves only the specification is called a specification-based criterion.
The terms ‘blackbox’ testing is used in association with it, to suggest that the tests are
judged without being able to see inside the program. You might also hear the term
‘functional’ testing.

11.4 Subdomains
Practical criteria tend to have a particular structure and properties. They don’t, for
example, accept a test suite T but reject a test suite T’ that is just like T but has some
extra test cases in it. They also tend to be insensitive to what combinations of test cases
are chosen. These aren’t necessarily good properties; they just arise from the simple
way in which most criteria are defined.

The input space is divided into regions usually called subdomains, each containing a
set of inputs. The subdomains together exhaust the input space – that is, every input
is in at least one subdomain. A division of the input space into subdomains defines
implicitly a criterion. The criterion is that there be at least one test case from each sub-
domain. Subdomains are not usually disjoint, so a single test case may be in several
subdomains.

The intuition behind subdomains is two-fold. First, it’s an easy way (at least conceptu-
ally) to determine if a test suite is good enough. Second, we hope that by requiring a
case from each subdomain, we will drive testing into regions of the input space most
likely to find bugs. Intuitively, each subdomain represents a set of similar test cases; we
want to maximize the benefit of our testing by picking dissimilar test cases – that is,
test cases from different subdomains.

In the best case, a subdomain is revealing. This means that every test case in it either
causes the program to fail or to succeed. The subdomain thus groups together truly
equivalent cases. If all subdomains are revealing, a test suite that satisfies the criterion
will be complete, since we are guaranteed that it will find any bug. In practice, it’s very
hard to get revealing subdomains though, but by careful choice of subdomains it’s pos-
sible to have at least some subdomains whose error rate – the proportion of inputs that
lead to bad outputs – is much higher than the average error rate for the input space as
a whole.

83

11.5 Subdomain Criteria
The standard and most widely used criterion for program-based testing is statement
coverage: that every statement in the program must be executed at least once. You can
see why this is a subdomain criterion: define for each program statement the set of
inputs that causes it to be executed, and pick at least one test case for each subdomain.
Of course the subdomain is never explicitly constructed; it’s a conceptual notion.
Instead, one typically runs an instrumented version of the program that logs which
statements are executed. You keep adding test cases until all statements are logged as
executed.

There are more burdensome criteria than statement coverage. Decision coverage
requires that every edge in the control flow graph of the program be executed – rough-
ly that every branch in the program be executed both ways. It’s not immediately obvi-
ous why this is more stringent that statement coverage. Consider applying these crite-
ria to a procedure that returns the minimum of two numbers:

static int minimum (int a, int b) {
if (a ≤ b)

return a;
else

return b;

For this code, statement coverage will require inputs with a less than b and vice versa.
However, for the code

static int minimum (int a, int b) {
int result = b; if (b ≤ a)

result = b;
return result;

a single test case with b less than a will produce statement coverage, and the bug will
be missed. Decision coverage would require a case in which the if-branch is not exe-
cuted, thus exposing the bug.

There are many forms of condition coverage that require, in various ways, that the
boolean expressions tested in a conditional evaluate both to true and false. One par-
ticular form of condition coverage, known as MCDC, is required by a DoD standard
for safety critical software, such as avionics. This standard, DO-178B, classifies failures
into three levels, and demands a different level of coverage for each:

Level C: failure reduces the safety margin
Example: radio data link

84

Requires: statement coverage

Level B: failure reduces the capability of the aircraft or crew
Example: GPS
Requires: decision coverage

Level A: failure causes loss of aircraft
Example: flight management system
Requires: MCDC coverage

Another common form of program-based subdomain criterion is used in boundary
testing. This requires that the boundary cases for every conditional be evaluated. For
example, if your program tests x < n, you would require test cases that produce x = n,
x=n-1, and x=n+1.

Specification-based criteria are also usually cast in terms of subdomains. Because
specifications are usually informal – that is, not written in any precise notation – the
criteria tend to be much vaguer. The most common approach is to define subdomains
according to the structure of the specification and the values of the underlying data
types. For example, the subdomains for a method that inserts an element into a set
might include:
· the set is empty
· the set is non-empty and the element is not in the set
· the set is non-empty and the element is in the set

You can also use any conditional structure in the specification to guide the division into
subdomains. Moreover, in practice, testers make use of their knowledge of the kinds of
errors that often arise in code. For example, if you’re testing a procedure that finds an
element in an array, you would likely put the element at the start, in the middle and at
the end, simply because these are likely to be handled differently in the code.

11.6 Feasibility
Full coverage is rarely possible. In fact, even achieving 100% statement coverage is usu-
ally impossible, at the very least because of defensive code which should never be exe-
cuted. Operations of an abstract data type that have no clients will not be exercised by
any system-level test case, although they can be exercised by unit tests.

A criterion is said to be feasible if it is possible to satisfy it. In practice, criteria are not
usually feasible. In subdomain terms, they contain empty subdomains. The practical

85

question is to determine whether a particular subdomain is empty or not; if empty,
there is no point trying to find a test case to satisfy it.

Generally speaking, the more elaborate the criterion, the harder this determination
becomes. For example, path coverage requires that every path in the program be exe-
cuted. Suppose the program looks like this:

if C1 then S1;
if C2 then S2;

Then to determine whether the path S1;S2 is feasible, we need to figure out whether
the conditions C1 and C2 can both evaluate to true. For a complex program, this is a
non-trivial task, and, in the worst case, is no easier than determining the correctness
of the program by reasoning!

Despite these problems, the idea of coverage is a very important one in practice. If
there are significant parts of your program that have never been executed, you should-
n’t have much confidence in their correctness!

11.7 Practical Guidance

It should be clear why neither program-based nor specification-based criteria are alone
good enough. If you only look at the program, you’ll miss errors of omission. If you only
look at the specification, you’ll miss errors that arise from implementation concerns,
such as when a resource boundary is hit and some special compensating behaviour is
needed. In the implementation of the Java ArrayList, for example, the array in the rep-
resentation is replaced when it’s full. To test this behaviour, you’ll need to insert enough
elements into the ArrayList to fill the array.

Experience suggests that the best way to develop a good test suite is to use specifica-
tion-based criteria to guide the development of the suite, and program-based criteria
to evaluate it. So you examine the specification, and define input subdomains. Based
on these, you write test cases. You execute the test cases, and measure the code cover-
age. If the coverage is inadequate, you add new test cases.

In an industrial setting, you would use a special coverage tool to measure code cover-
age. In 6170, we don’t expect you to learn to use another tool. Instead, you should just
consider your test cases carefully enough that you make an argument that you have
achieved reasonable coverage.

Runtime assertions, especially representation invariant checks, will dramatically
amplify the power of your testing. You’ll find more bugs with fewer cases, and you’ll

86

track them down more easily.

87

���������
	������������	��

�����������������! #"!��$��&%&'(��)

* ���!+-,(�&".%�/�0�/(1�2(34�&��/(%-�-���

57698
:#;<8
:#=

>@?BA�C�DFE(G4H(I�JKJKA�L�G(C M
N�OFNQP�R�S&TVU-WFX�YZO.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O\[
N�O [^]7_�XK`�ab`�c�dKefd�cVg�YhX�i-X�YbjFk�`lU�S&d�d�XKm�`�YnO.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O\o
N�O o^]7_-pqYh_�c�g-W�iqp�c�glrKS&m�X&snO9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O\o

M^t�L�A-I�J�DFu(G#I�v
H(I�JKJKA�L�G(C w
[�OFNQx�S�r!d�c�mhjFX�YyO9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O{z

[�OFN�OFN|x�S�r!d�c�m�pVTVXKd�_�c�ilO9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O\}
[�OFN�O [~x�S�r!d�c�m�pVc����hX�r!d�O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O\�
[�OFN�O o~�fm�c�d�c�dhp-U�X7O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O\�

[�O [���_�S&mhjF`�kQO9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.OnN��
[�O [�OFN��&jF`�k&WFXKd�c�`�O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.OnN��
[�O [�O [��b`-d�XKm�`-jF`�k�O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.OnN�N
[�O [�O o~x(WFp-�<X!jFk�_-d�O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.OnN�o

�^�.A��#I-��DFu#L�I�v<H(I�JKJKA�L�G(C >-�
o�OFNQ�lg-WFdhjF���
S�pqr!c�TVT�g�`-j�rKS&dhjFc�`nO.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.OnN��

o�OFN�OFN��
��YhXKm���XKm^O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.OnN��
o�OFN�O [~�fW�S�r��-��c-S&m!i�O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.OnN��
o�OFN�O o~�lX�i�j�S&d�c�m�O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.OnN��

o�O [��(m!S���XKm!YbjF`�kVr!c�TVU�c-YbjFd�X�Y�O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.OnN��
o�O [�OFN��b`-d�XKm�U�m�XKd�XKm�O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O�[��
o�O [�O [~�fm�c�r!X�i-g�m!S�W�O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O�[�N
o�O [�O o��
j�YbjFd�c�mBO9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O�[�[

o�O o���d!S&d�XqO.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O�[&z
w� #J�L�¡(¢&J&¡(L�I�v
H(I�JKJKA�L�G(C M�£
z�OFN@]¤m!S&U�U�XKm!YZO.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O�[�}

z�OFN�OFN�¥9i�S&U�d�XKm4O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O�[�}
z�OFN�O [~¦yX�r!c�m!S&d�c�m7O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O�[-§
z�OFN�O o~�fm�c�R�p�O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O�[��
z�OFN�O z\��g��#r�W�S�Y�YbjF`�kq��YKO�i-X!WFXKk-S&dhjFc�`nO9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O�[�¨

z�O [�©�c�TVU�c-YbjFd�XBO.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O9O.O9O.O9O9O.O9O9O.O9O9O.O�o��
ª X�S�i�jF`�k�«
©�_�S&U�d�XKm.N�}�c&¬�<®h¯!°�®h±�²´³9µ�¶�µ�·¸¯!¹#²�µ�º�»�¼�ºl½�±�¶�±.�-pq�<S&m���S&m!S�¾�j�Yh��c&�

N

� � ;�=����98��	�<:�:#;�
(8.=

¥�i-X�YbjFk�`lU�S&d�d�XKm�`Bj�YK«

� SVYhd!S&`�i�S&m!iBYhc&WFg�dhjFc�`ld�cBSVr!c�TVTVc�`qU�m�c�k�m!S&TVT�jF`�k�U�m�c��-WFXKT
� S�d�X�r�_�`-j��g�X9¬�c�m
TBS&��jF`�kBr!c�i-X.TVc�m�X���X!R-jF�-WFX��-pBTBS&��jF`�k�jFdyTVXKXKdyr!XKm�d!S�jF`�r!mhjFd�XKmhj�S
� SVi-X�YbjFk�`lc�m�jFTVU-WFXKTVXK`-d!S&dhjFc�`¤Yhd�m�g�r!d�g�m�X9d�_�S&d
S�r�_-jFXK��X�YyS�U�S&m�dhj�r!g-W�S&myU�g�m�U�c-YhX
� S�_-jFk�_���WFXK��X!WfU�m�c�k�m!S&TVT�jF`�k�j�i�jFc�T
� Yh_�c�m�d�_�S&`�iV¬�c�m
i-X�Y�r!mhjF�-jF`�klr!XKm�d!S�jF`�S�YhU�X�r!d!Y<c&¬fU�m�c�k�m!S&T´c�m�k-S&`-j���S&dhjFc�`
� r!c�`�`�X�r!dhjFc�`�YyS&TVc�`�k�U�m�c�k�m!S&T�r!c�TVU�c�`�XK`-d!Y
� d�_�X.Yh_�S&U�X.c&¬fS&`lc����hX�r!d
i�j�S&k�m!S&T�c�m
c����hX�r!d<TVc�i-X!W

����� �������������!
" XKm�X�S&m�X.Yhc�TVX9X!R�S&TVU-WFX�Yyc&¬�i-X�YbjFk�`lU�S&d�d�XKm�`�Y<�
-j�r��p�c�gq_�S���X.S�WFm�X�S�i-plYhXKXK`(O
x�c�m
X�S�r�_li-X�YbjFk�`�U�S&d�d�XKm�`�#
d�_-j�Y
W¸j�Yhd9`�c�d�X�Y
d�_�X.U�m�c��-WFXKT jFdyj�Yyd�m�p�jF`�kBd�cqYhc&WF��X$#�d�_�X�Yhc&WFg�dhjFc�`�d�_�S&dyd�_�X�i-X�YbjFk�`¤U�S&d�d�XKm�`�Yhg�U�U-W¸jFX�Y%#�S&`�i
S&`-p4i�j�Y�S�i-�&S&`-d!S&k�X�YqS�Y�Yhc�r�j�S&d�X�i4�<jFd�_7d�_�X�i-X�YbjFk�` U�S&d�d�XKm�`(O ¥�Yhc&¬�dh�
S&m�Xqi-X�YbjFk�`�XKmlT�g�YhdBd�m!S�i-Xlc'&�d�_�X
S�i-�&S&`-d!S&k�X�Y.S&k-S�jF`�Yhd.d�_�Xqi�j�Y�S�i-�&S&`-d!S&k�X�Y.�
_�XK` i-X�r�j�i�jF`�k �
�XKd��XKm�d�clg�YhXqSli-X�YbjFk�` U�S&d�d�XKm�`(Ol�(m!S�i-XKc'&�Y
��XKdh�<XKXK`(��X!R-jF�-j¸W¸jFdhp4S&`�i¤U�XKmh¬�c�m�TBS&`�r!XqS&m�Xqr!c�TVTVc�`�#fS�Y9p�c�g¤�<j¸W¸Wyc&¬�d�XK` i�j�Y�r!c&��XKm.jF`4r!c�TVU�g�d�XKm�Y�r�jFXK`�r!X
ahS&`�iBc�d�_�XKm*)�X!W�i�Y!e!O

+ G(¢&I�H�C&¡(vFI�J�DFu(G-,/.(I�JKI4�(D�.�D�G#E�0
1 L�u�2�vFA!354 P�R�U�c-YhX�i6)�X!W�i�Y�rKS&`¤��Xqi�jFm�X�r!dhWFp¤TBS&`-jFU�g-W�S&d�X�i�¬�m�c�Tnc�g�d!Ybj�i-X$#(WFX�S�i�jF`�k�d�cq��jFc&W�S&dhjFc�`�Y
c&¬yd�_�Xqm�XKU�m�X�YhXK`-d!S&dhjFc�` jF`-�&S&mhj�S&`-dVc�m�g�`�i-X�YbjFm!S&�-WFX¤i-XKU�XK`�i-XK`�r!X�YBd�_�S&d�U�m�XK��XK`-dBr�_�S&`�k&jF`�k¤d�_�X
jFTVU-WFXKTVXK`-d!S&dhjFc�`(O

 #u#v�¡#J�DFu(G74 " j�i-X�Yhc�TVX.r!c�TVU�c�`�XK`-d!Y%#�U�XKm�T�jFd�dhjF`�kBc�`-WFplYhdhp�W¸j��KX�ilS�rKr!X�Y�Y
d�c�d�_�X9c����hX�r!d�O
?qD�CKI!.(��I#G�JKI�E�A�C$4 �<_�X
jF`-d�XKmh¬bS�r!XyTBS�p�`�c�d
abX/8qr�jFXK`-dhWFp�e�U�m�c&��j�i-X9S�W¸W�i-X�YbjFm�X�iBc�U�XKm!S&dhjFc�`�YKO��b`�i�jFm�X�r!�
dhjFc�`qTBS�pBm�X�i-g�r!X.U�XKmh¬�c�m�TBS&`�r!X�O

 �¡�2f¢�vFI�C�C�D�G#E9,!D�G��#A�L&DFJKI#G(¢&A!0
1 L�u�2�vFA!354 �&jFT�j¸W�S&m<S&��Yhd�m!S�r!dhjFc�`�Y#_�S���X
YbjFT�j¸W�S&mfTVXKT���XKm!Y�a:)�X!W�i�YfS&`�i.TVXKd�_�c�i�Y!e!O ª XKU�X�S&dhjF`�k.d�_�X�YhX
j�Y<d�X�i�jFc�g�Y%#�XKm�m�c�m���U�m�c�`�X$#�S&`�ilS�TBS�jF`-d�XK`�S&`�r!X9_�X�S�i�S�r�_�X�O

 #u#v�¡#J�DFu(G74 �b`�_�XKmhjFdyi-X!¬bS&g-WFd<TVXKT���XKm!Yf¬�m�c�T´S.Yhg�U�XKm!r�W�S�Y�Y%;�YhX!WFX�r!d
d�_�Xyr!c�m�m�X�r!d�jFTVU-WFXKTVXK`-d!S&dhjFc�`q��j�S
m�g�`���dhjFTVX�i�j�YhU�S&d!r�_-jF`�k�O

?qD�CKI!.(��I#G�JKI�E�A�C$4 ©�c�i-Xl¬�c�mqS r�W�S�Y�Y�j�YqYhU�m�X�S�i4c�g�d<#<U�c�d�XK`-dhj�S�W¸WFp7m�X�i-g�r�jF`�k g�`�i-XKm!Yhd!S&`�i�S&�-j¸W¸jFdhp�O
ª g�`���dhjFTVX�i�j�YhU�S&d!r�_-jF`�kBjF`-d�m�c�i-g�r!X�Y
c&��XKm�_�X�S�i#O

= JKA�L�I�J�DFu(G
1 L�u�2�vFA!354 ©fW¸jFXK`-d!Yfd�_�S&d��<j�Yh_Vd�c.S�rKr!X�Y�YfS�W¸W�TVXKT���XKm!Y�c&¬(S9r!c&W¸WFX�r!dhjFc�`BT�g�Yhd�U�XKmh¬�c�m�T S9YhU�X�r�j�S�W¸j��KX�i
d�m!S���XKm!Y�S�W-¬�c�mfX�S�r�_qi�S&d!S9Yhd�m�g�r!d�g�m�X�Of�<_-j�YfjF`-d�m�c�i-g�r!X�Y�g�`�i-X�YbjFm!S&�-WFX�i-XKU�XK`�i-XK`�r!X�Y
S&`�iBi-c-X�Yf`�c�d
X!R�d�XK`�iBd�cVc�d�_�XKmyr!c&W¸WFX�r!dhjFc�`�YKO

 #u#v�¡#J�DFu(G74 �bTVU-WFXKTVXK`-d!S&dhjFc�`�Y%#-�
_-j�r�_V_�S���X<�-`�c&�<WFX�i-k�X<c&¬#d�_�X
m�XKU�m�X�YhXK`-d!S&dhjFc�`�#&U�XKmh¬�c�m�T�d�m!S���XKm!Y�S�W�Y
S&`�iqi-cV��c-c��-��XKXKU-jF`�k�O<�<_�X.m�X�Yhg-WFd!Y
S&m�X.r!c�TVT�g�`-j�rKS&d�X�iqd�cVr�W¸jFXK`-d!Yy��j�SVSVYhd!S&`�i�S&m!iVjF`-d�XKmh¬bS�r!X�O

?qD�CKI!.(��I#G�JKI�E�A�C$4 �bd�XKm!S&dhjFc�`lc�m!i-XKm
j�Y>)�R�X�iq�-pqd�_�X.jFTVU-WFXKTVXK`-d!S&dhjFc�`¤S&`�iq`�c�dyg�`�i-XKm9d�_�X�r!c�`-d�m�c&W
c&¬�d�_�X�r�W¸jFXK`-d�O

+>? ¢&A�H(J�DFu(G(C

[

1 L�u�2�vFA!354 Pfm�m�c�m!Y(c�rKr!g�m�mhjF`�k9jF`�c�`�X
U�S&m�d�c&¬�d�_�X
r!c�i-XyYh_�c�g-W�i�c&¬�d�XK`���X<_�S&`�i�WFX�iVX!W�YhXK�
_�XKm�X�O<©�c�i-X
Yh_�c�g-W�iq`�c�d<��X�r�WFg�d�d�XKm�X�iq�<jFd�_qXKm�m�c�m���_�S&`�i�W¸jF`�klr!c�i-X$#�`�c�m
m�XKd�g�m�`q�&S�WFg�X�Y
U�m�XKXKTVU�d�X�iq�-pBXKm�m�c�m
r!c�i-X�YKO

 #u#v�¡#J�DFu(G74 �b`-d�m�c�i-g�r!X9W�S&`�k�g�S&k�X.Yhd�m�g�r!d�g�m�X�Y�¬�c�m
d�_�m�c&�<jF`�kVS&`�ilrKS&d!r�_-jF`�kVX!R�r!XKU�dhjFc�`�YKO
?qD�CKI!.(��I#G�JKI�E�A�C$4 ©�c�i-X�TBS�plYhdhj¸W¸W���XVr�WFg�d�d�XKm�X�i#Oy�bd.rKS&`l��XV_�S&m!iqd�cB�-`�c&���
_�XKm�X�S&`�X!R�r!XKU�dhjFc�`
�<j¸W¸Wy��Xq_�S&`�i�WFX�i#O4�fm�c�k�m!S&TVTVXKm!Y9TBS�p���Xld�XKTVU�d�X�i¤d�c�g�YhXqX!R�r!XKU�dhjFc�`�Y�¬�c�m�`�c�m�TBS�W
r!c�`-d�m�c&W
��c&��#-�
_-j�r�_qj�Yyr!c�`-¬�g�YbjF`�kqS&`�iBg�Yhg�S�W¸WFpqjF`�X/8qr�jFXK`-d�O

�<_�X�YhXlU�S&m�dhj�r!g-W�S&mqi-X�YbjFk�`7U�S&d�d�XKm�`�YVS&m�X�Yhc�jFTVU�c�m�d!S&`-dVd�_�S&dVd�_�XKp4S&m�Xl��g-j¸WFdBjF`-d�c � S��&S�O �
d�_�XKmqi-X�YbjFk�`
U�S&d�d�XKm�`�YVS&m�XqYhc�jFTVU�c�m�d!S&`-dVd�_�S&d�d�_�XKp4S&m�XB��g-j¸WFdBjF`-d�c¤c�d�_�XKm�W�S&`�k�g�S&k�X�YKO7��c�TVXli-X�YbjFk�`4U�S&d�d�XKm�`�Y�TBS�p
`�XK��XKm
��X.��g-j¸WFdyjF`-d�c�W�S&`�k�g�S&k�X�Y%#���g�dyS&m�X.Yhdhj¸W¸Wfg�YhX!¬�g-W(jF`ld�_�X!jFmyU-W�S�r!X�O

����� �������	�
������������ '�����! ������-�����$������
�<_�X)�m!Yhd9m�g-WFXBc&¬
i-X�YbjFk�`¤U�S&d�d�XKm�`�Yyj�Y9d�_�XVY�S&TVXBS�Yyd�_�X)�m!Yhd9m�g-WFXVc&¬
c�U�dhjFT�j���S&dhjFc�`(«.i-X!W�S�p�O � g�Yhd�S�Yyp�c�g
Yh_�c�g-W�i-`�� dBc�U�dhjFT�j��KXlU�m�XKTBS&d�g�m�X!WFp$#<i-c�`�� d�g�YhX�i-X�YbjFk�`4U�S&d�d�XKm�`�Y.U�m�XKTBS&d�g�m�X!WFp�O �bdVTBS�p¤��Xl��X�YhdVd�c6)�m!Yhd
jFTVU-WFXKTVXK`-dyYhc�TVXKd�_-jF`�k�S&`�i�XK`�Yhg�m�Xyd�_�S&dfjFd��<c�m���Y%#&d�_�XK`Bg�YhX
d�_�X9i-X�YbjFk�`BU�S&d�d�XKm�`Vd�cyjFTVU�m�c&��X
�<X�S&�-`�X�Y�YhX�Y%;
d�_-j�Y<j�Y<X�YhU�X�r�j�S�W¸WFp�d�m�g�Xyj¸¬fp�c�gli-cV`�c�d
p�XKd
k�m!S�YhUqS�W¸W�d�_�X.i-XKd!S�j¸W�Y
c&¬fd�_�X.i-X�YbjFk�`(O
ab��¬fp�c�gB¬�g-W¸WFpqg�`�i-XKm!Yhd!S&`�i
d�_�X9i-c�TBS�jF`lS&`�iVU�m�c��-WFXKT6#�jFd
TBS�p�TBS&��X9YhXK`�YhXyd�c�g�YhX9i-X�YbjFk�`qU�S&d�d�XKm�`�Yf¬�m�c�T d�_�X9Yhd!S&m�d<#K�hg�Yhd
S�Y�jFd
TBS&��X�Y
YhXK`�YhX9d�cVg�YhX.S.TVc�m�X9X/8qr�jFXK`-d
m!S&d�_�XKm
d�_�S&`qS.WFX�Y�Y<X/8qr�jFXK`-d9S�WFk�c�mhjFd�_�T´¬�m�c�T´d�_�X9��XKm�pB��XKk&jF`�`-jF`�kBjF`lYhc�TVX
S&U�U-W¸j�rKS&dhjFc�`�YKO¸e
¦yX�YbjFk�`qU�S&d�d�XKm�`�Y�TBS�p�jF`�r!m�X�S�YhX.c�myi-X�r!m�X�S�YhX9d�_�X9g�`�i-XKm!Yhd!S&`�i�S&�-j¸W¸jFdhplc&¬fSVi-X�YbjFk�`lc�m�jFTVU-WFXKTVXK`-d!S&dhjFc�`(O

�<_�XKpBrKS&`Bi-X�r!m�X�S�YhXyg�`�i-XKm!Yhd!S&`�i�S&�-j¸W¸jFdhpB�-pBS�i�i�jF`�k.jF`�i�jFm�X�r!dhjFc�`qc�mfjF`�r!m�X�S�YbjF`�kVd�_�XyS&TVc�g�`-d�c&¬�r!c�i-X�O��<_�XKp
rKS&` jF`�r!m�X�S�YhXqg�`�i-XKm!Yhd!S&`�i�S&�-j¸W¸jFdhp4�-p¤jFTVU�m�c&��jF`�k¤TVc�i-g-W�S&mhjFdhp$#���XKd�d�XKmBYhXKU�S&m!S&dhjF`�k r!c�`�r!XKm�`�Y%#<S&`�i X�S�YbjF`�k
i-X�Y�r!mhjFU�dhjFc�`(Ol�
`�r!XBp�c�g�WFX�S&m�`¤d�_�XV��c�rKS&��g-W�S&m�p�c&¬yi-X�YbjFk�` U�S&d�d�XKm�`�Y%##p�c�g¤�<j¸W¸W<��XqS&�-WFXVd�c�r!c�TVT�g�`-j�rKS&d�X
TVc�m�X�U�m�X�r�j�YhX!WFp S&`�i�m!S&U-j�i�WFp¤�<jFd�_�c�d�_�XKm9U�XKc�U-WFXB�
�cq�-`�c&��d��XV��c�rKS&��g-W�S&m�p�O��bd�� YyT�g�r�_¤��XKd�d�XKm9d�clY�S�p$#
� �<_-j�Y�j�Y
S&`BjF`�Yhd!S&`�r!X.c&¬�d�_�X9��j�YbjFd�c�m
U�S&d�d�XKm�`� .d�_�S&` � �<_-j�Y�j�YyYhc�TVX9r!c�i-X9d�_�S&d<d�m!S���XKm!YhX�Y<S�Yhd�m�g�r!d�g�m�X.S&`�i
TBS&��X�Y<rKS�W¸WF��S�r���Y%##S&`�iqYhc�TVX9r!XKm�d!S�jF`qTVXKd�_�c�i�Y<T�g�Yhd
��X9U�m�X�YhXK`-d<#�S&`�iBd�_�XKpqS&m�X9rKS�W¸WFX�iBjF`ld�_-j�Y<U�S&m�dhj�r!g-W�S&m
�
S�pBS&`�iBjF`ld�_-j�Y<U�S&m�dhj�r!g-W�S&myc�m!i-XKm�O
�lc-Yhd(U�XKc�U-WFXyg�YhX
i-X�YbjFk�`VU�S&d�d�XKm�`�Y(�
�XK`Vd��XKp.`�c�dhj�r!X
SyU�m�c��-WFXKT��<jFd�_Vd�_�X!jFm�i-X�YbjFk�`"!nYhc�TVXKd�_-jF`�k9d�_�S&d

c�g�k�_-d.d�cq��XBX�S�Yhplj�Yh`�� d#! c�m.d�_�X!jFm.jFTVU-WFXKTVXK`-d!S&dhjFc�`$!nYhg�r�_ S�Y9U�XKmh¬�c�m�TBS&`�r!X�OqP�R�S&T�jF`�XBd�_�XVc'&(XK`�i�jF`�k
i-X�YbjFk�`qc�m<r!c�i-X�Of]7_�S&d<S&m�X
jFd!Y�U�m�c��-WFXKTBY%#�S&`�iV�
_�S&d
r!c�TVU�m�c�T�j�YhX�Y<i-c-X�YfjFd<TBS&��X&sB]7_�S&d��<c�g-W�iVp�c�gVW¸jF��X
d�cqi-cqd�_�S&d
j�YyU�m�X�YhXK`-dhWFp�d�c-cB_�S&m!i�s �<_�XK`�#(r�_�X�r��¤SBi-X�YbjFk�`¤U�S&d�d�XKm�`lm�X!¬�XKm�XK`�r!X�O.¾#c-c��q¬�c�myU�S&d�d�XKm�`�Yyd�_�S&d
S�i�i-m�X�Y�Y<d�_�X9j�Y�Yhg�X�Y
p�c�gqS&m�X.r!c�`�r!XKm�`�X�il�<jFd�_(O
�<_�X�rKS&`�c�`-j�rKS�W�i-X�YbjFk�`�U�S&d�d�XKm�`qm�X!¬�XKm�XK`�r!X.j�Yyd�_�X � k-S&`�kVc&¬�¬�c�g�m
 ���c-c���#(³9µ&%K¼¸°�º�<±�»�»�µ�®!º#%�'"(<·¸µ�²�µ�º�»)%

¯+*-,<µ�.�%K±�/K·¸µ102/)3Kµ
4�»)5
0
®!¼�µ�º�»�µ
6�7#¯+*K»�8f±�®hµ9�-plPfmhj�r�_�99S&TVTBS # ª j�r�_�S&m!i " X!WFT6# ª S�WFU�_ � c�_�`�Yhc�`�#(S&`�i � c�_�`
�
W¸j�Y�Ybj�i-X�Y%#.¥9i�i�j�Yhc�`���]¤X�YbWFXKp$#BN�¨�¨�}�O ¦yX�YbjFk�` U�S&d�d�XKm�`�YqS&m�X�U�c�U�g-W�S&ml`�c&��#9Yhc `�XK�n��c-c���Ylr!c�`-dhjF`-g�X¤d�c
S&U�U�X�S&m�O

���): ����;- ����������<;=���?> ���$��@
��¬<p�c�g�S&m�X�SBd!S�WFXK`-d�X�i�i-X�YbjFk�`�XKm.S&`�ilU�m�c�k�m!S&TVTVXKm<#�c�myp�c�g�_�S���X�S�WFc�d9c&¬�dhjFTVX�d�cBk-S�jF`�X!R�U�XKmhjFXK`�r!X$#(p�c�g
TBS�p9XK`�r!c�g�`-d�XKm�c�m�jF`-��XK`-dfTBS&`-p�i-X�YbjFk�`VU�S&d�d�XKm�`�Y(p�c�g�m!YhX!W¸¬�O " c&�<XK��XKm<#&d�_-j�Y(j�Yf`�c�d�S&`�X/&(X�r!dhjF��X<g�YhX
c&¬�p�c�g�m
dhjFTVX�Oy¥ i-X�YbjFk�`¤U�S&d�d�XKm�`lm�XKU�m�X�YhXK`-d!Y
�<c�m��B�-p�Yhc�TVXKc�`�X.X!W�YhX��
�cqS�W�YhcqXK`�r!c�g�`-d�XKm�X�ild��X.U�m�c��-WFXKT6##d�mhjFX�i
TBS&`-pVU�c-Y�YbjF�-WFX�Yhc&WFg�dhjFc�`�Y%#�S&`�iqYhX!WFX�r!d�X�iqS&`�iqi-X�Y�r!mhjF��X�ilc�`�Xyc&¬�d�_�X9��X�Yhd�OBAfc�gqYh_�c�g-W�iqd!S&��XyS�i-�&S&`-d!S&k�Xyc&¬
d�_�S&d�O
¦yX�YbjFk�`�U�S&d�d�XKm�`�Y
TBS�plYhXKXKTZS&��Yhd�m!S�r!dyS&d>)�m!Yhd<##c�myp�c�glTBS�pq`�c�dy��XBr!c�`-��jF`�r!X�i�d�_�S&dyd�_�XKp�S�i�i-m�X�Y�YyS

YbjFk�`-j)#rKS&`-d9U�m�c��-WFXKTlO2Afc�g��<j¸W¸W<r!c�TVX.d�cqS&U�U�m�X�r�j�S&d�X�d�_�XKTnS�Y
p�c�gl��g-j¸W�i¤S&`�iqTVc�i�j¸¬�pqW�S&m�k�XKm9Yhp�Yhd�XKTBY�!
U�XKm�_�S&U�Yyi-g�mhjF`�kBp�c�g�m
�<c�m��Vc�`qd�_�X-9
j��KTVc���S�W¸W)�`�S�W�U�m�c��hX�r!d�O

o

� 59
#;��<:���698����6�	�<:�:#;�
(8.=

� ��� �7��>���������!
��g�U�U�c-YhX
p�c�gVS&m�X<�
mhjFdhjF`�k.S9r�W�S�Y�Yfd�cym�XKU�m�X�YhXK`-d�Sy�-j�r!p�r�WFXym!S�r!X�O�¥4m!S�r!X
r!c�`�Ybj�Yhd!Yfc&¬�TBS&`-p.�-j�r!p�r�WFX�Y
ahS&TVc�`�k
c�d�_�XKm
c����hX�r!d!Y%#-U�XKm�_�S&U�Y!e!O

�����
	
	���
�
���

��
�
������
�������
�
�������
� ��������
���������� !��" � �����������#
$�% �
�����
��&� �� $�% �
���!���� !��" $�% �
���'����#
$�% �
������
��� $�% �
���!���� !��" $�% �
���'����#
(!) ��*������+)�, ����� !��" (!) ��*�������-�
�������!./�
��&� �� $�% �
���!�!./��
��� $�% �
���!����#
� ��������
�������01�� !��" � �����������#
$�% �
�����
��&� �� $�% �
���
01�� !��" $�% �
���'����#
$�% �
������
��� $�% �
���
01�� !��" $�% �
���'����#
(!) ��*������+)�, ��01�� !��" (!) ��*�������-�
�������02./�
��&� �� $�% �
���
02./��
��� $�% �
���
0��#
3
3
34

4

Afc�glrKS&`lYhU�X�r�j�S�W¸j��KX ��
�
� ¬�c�m
c�d�_�XKm<�-j�r!p�r�WFXVm!S�r!X�YK«

5
5 � ��� !� % ��
�
�
�����
	
	�6�&�7��
8� � ��� !�
����9
��� :�	���
�
���

��
�
������
�������
�
�������
� ��������
���������� !��"1��
�) �; � �����������#
$�% �
�����
��&� �� $�% �
���!���� !��" $�% �
���
<
=
=�������#
$�% �
������
��� $�% �
���!���� !��" $�% �
���
<
=
=�������#
(!) ��*������+)�, ����� !��" (!) ��*�������-�
�������!./�
��&� �� $�% �
���!�!./��
��� $�% �
���!����#
� ��������
�������01�� !��"1��
�) �; � �����������#
$�% �
�����
��&� �� $�% �
���
01�� !��" $�% �
���
<
=
=�������#
$�% �
������
��� $�% �
���
01�� !��" $�% �
���
<
=
=�������#
(!) ��*������+)�, ��01�� !��" (!) ��*�������-�
�������02./�
��&� �� $�% �
���
02./��
��� $�% �
���
0��#
3
3
34

3
3
34

5
5 ���
��>�����
��) 1+) ��*��������
�
�
�����
	
	�?�*���
&�����&�	
	���9
��� :�	���
�
�1�

��
�
������
�������
�
�������
� ��������
���������� !��"1@�&�7
 ���) � �����������#
$�% �
�����
��&� �� $�% �
���!���� !��" $�% �
���
0
<) A����#

z

$�% �
������
��� $�% �
���!���� !��" $�% �
���
0
<) A����#
(!) ��*������+)�, ����� !��" (!) ��*�������-�
�������!./�
��&� �� $�% �
���!�!./��
��� $�% �
���!����#
� ��������
�������01�� !��"1@�&�7
 ���) � �����������#
$�% �
�����
��&� �� $�% �
���
01�� !��" $�% �
���
0
<) A����#
$�% �
������
��� $�% �
���
01�� !��" $�% �
���
0
<) A����#
(!) ��*������+)�, ��01�� !��" (!) ��*�������-�
�������02./�
��&� �� $�% �
���
02./��
��� $�% �
���
0��#
3
3
34

3
3
34

�b`�d�_�X�Yhg��#r�W�S�Y�YhX�Y%# ����
�������
�
� m�XKd�g�m�`�YyS ��
�
� ��X�rKS&g�YhX�d�_�X � S��&SBr!c�TVU-j¸WFXKm.XK`-¬�c�m!r!X�Y
d�_�S&d
c&��XKm�mhj�i�i-XK`
TVXKd�_�c�i�Y<_�S���Xyj�i-XK`-dhj�rKS�Wfm�XKd�g�m�`qdhp-U�X�YKO
x�c�m���m�XK��jFdhp$#-d�_�X9r!c�i-X
¬�m!S&k�TVXK`-d!Y�S&��c&��X
c�T�jFd<TBS&`-pVc�d�_�XKm�TVXKd�_�c�i�Y�m�X!W�S&dhjF`�kVd�c.�-j�r!p�r�WFX.m!S�r!X�Y%#-Yhc�TVX

c&¬f�
-j�r��S&U�U�X�S&m<jF`lX�S�r�_�r�W�S�Y�Y
S&`�iBc�d�_�XKm!Y<c&¬f�
-j�r��S&U�U�X�S&m
c�`-WFpBjF`�r!XKm�d!S�jF`�r�W�S�Y�YhX�YKO
�<_�Xfm�XKU�X�S&d�X�i.r!c�i-X�j�Y(d�X�i�jFc�g�Y%#&S&`�iyjF`.U�S&m�dhj�r!g-W�S&m<#��<Xf�<XKm�XK`�� d(S&�-WFX�d�c
m�XKg�YhXfTVXKd�_�c�i ��
�
� 3 ����
�������
�
�S&d9S�W¸WbOVah�<_�XKm�X.j�Y9SqYhXKU�S&m!S&d�X9j�Y�Yhg�XVc&¬
S&��Yhd�m!S�r!dhjF`�kBc�g�dyd�_�XVr!m�X�S&dhjFc�`�c&¬
SqYbjF`�k&WFXV�-j�r!p�r�WFXBd�cqS�¬�g�`�r!dhjFc�`�;

�<X9�<j¸W¸W�g�YhX.d�_�S&d<�<jFd�_�c�g�d<¬�g�m�d�_�XKmyi�j�Y�r!g�Y�YbjFc�`�##S�Y�jFd<j�Y<c��-��jFc�g�Y%#�S&d<WFX�S�YhdyS�¬�d�XKm
��O ����N�O¸e9�<_�XKm�X9T�g�Yhd
��X.S
��XKd�d�XKm
�
S�p�Of�<_�X�x�S�r!d�c�m�pBi-X�YbjFk�`lU�S&d�d�XKm�`�Y<U�m�c&��j�i-X.S&`�S&`�Yh�<XKm�O

M
�
>
�
> �(I�¢&JKu#L��93�A-J&�#u�.

¥ ¬bS�r!d�c�m�pVTVXKd�_�c�iBj�YyS.TVXKd�_�c�iqd�_�S&d<TBS&`-g-¬bS�r!d�g�m�X�Y<c����hX�r!d!Y<c&¬fS�U�S&m�dhj�r!g-W�S&mydhp-U�X�O
]¤X.rKS&`lS�i�iB¬bS�r!d�c�m�pVTVXKd�_�c�i�Y<d�c ��
�
� «

�����
	
	���
�
���

� �����������
���� � ������������������7��� 1 !��" � �����������# 4
$�% �
��� ����
���� $�% �
���'�����������7��� 1 !��" $�% �
���'����# 4
(!) ��*�����1����
���� (!) ��*������� � ��������
������'. $�% �
�����
��&� ��A. $�% �
������
���!���
�����7��� 1 !��" (!) ��*�������-�
������'./�
��&� ��A. ��
���!��#

4
5
5 �����7��� ����&���������� +) ��*������") � % &�7��� !�
��:) �; �� �* ���
;�7����� ��	
(!) ��*�����1��&���������� (!) ��*�����������
� ��������
�������� ����
���� � �����������#
$�% �
�����
��&� �� $�% �
���1������
���� $�% �
���'����#
$�% �
������
��� $�% �
���1� ����
���� $�% �
���'����#
�����7��� ����
���� (!) ��*�������-�
������'. �
��&� �� $�% �
���2. ��
��� $�% �
�����#

4

��
�
������
�������
�
�������
(!) ��*������+)�, ���� ��&���������� (!) ��*����������#
(!) ��*������+)�, ��01� ��&���������� (!) ��*����������#
3
3
34

4

}

� c&� Yhg��#r�W�S�Y�YhX�YyrKS&`lm�XKg�YhX ����
�������
�
� S&`�iqXK��XK` ��&���������� (!) ��*����� �<jFd�_�c�g�dyr�_�S&`�k�X�«

5
5 � ��� !� % ��
�
�
�����
	
	�6�&�7��
8� � ��� !�
����9
��� :�	���
�
���

� �����������
���� � ������������������7��� 1 !��"���
�) �; � �����������# 4
$�% �
��� ����
���� $�% �
���'�����������7��� 1 !��" $�% �
���
<
=
=�������# 4
(!) ��*�����1����
���� (!) ��*������� � ��������
������'. $�% �
�����
��&� ��A. $�% �
������
���!���
�����7��� 1 !��"���
�) �; (!) ��*�������-�
������'. �
��&� ��A. ��
���!��#

4

4

�����
	
	�?�*���
&�����&�	
	���9
��� :�	���
�
�1�

� �����������
���� � ������������������7��� 1 !��"�@�&�7
 ���) � �����������# 4
$�% �
��� ����
���� $�% �
���'�����������7��� 1 !��" $�% �
���
0��) !� % ����# 4
(!) ��*�����1����
���� (!) ��*������� � ��������
������'. $�% �
�����
��&� ��A. $�% �
������
���!���
�����7��� 1 !��"���
�) �; (!) ��*�������-�
������'. �
��&� ��A. ��
���!��#

4

4

�<_�X ����
���� 3
3
3 TVXKd�_�c�i�Y
S&m�X.rKS�W¸WFX�i�*K±�4�»�¯�®��B²�µ�»��-¯�6�%KO

M
�
>
�
M �(I�¢&JKu#L�� u�2��KA�¢&J

��¬<d�_�XKm�XVS&m�X�TBS&`-pqc����hX�r!d!Y
d�clr!c�`�Yhd�m�g�r!d<#�jF`�r�WFg�i�jF`�k¤d�_�X.¬bS�r!d�c�m�pqTVXKd�_�c�i�Y
jF`¤X�S�r�_¤r�W�S�Y�Y9rKS&`��-WFc-S&d9d�_�X
r!c�i-X.S&`�iBTBS&��XyjFd
�S&m!iBd�cVr��S&`�k�X�O<�&jF�-W¸jF`�klYhg��#r�W�S�Y�YhX�YyrKS&`�`�c�d<X�S�Ybj¸WFplYh_�S&m�X9d�_�X.Y�S&TVX
¬bS�r!d�c�m�pVTVXKd�_�c�i#O
¥ *K±�4�»�¯�®��B¯�/)3Kµ
4�»�j�Y
S&`qc����hX�r!d
d�_�S&d
XK`�rKS&U�Yhg-W�S&d�X�Y<¬bS�r!d�c�m�pVTVXKd�_�c�i�YKO

�����
	
	 (!) ��*����� � �
����&��
*1�
� �����������
���� � ������������������7��� 1 !��" � �����������# 4
$�% �
��� ����
���� $�% �
���'�����������7��� 1 !��" $�% �
���'����# 4
(!) ��*�����1����
���� (!) ��*������� � ��������
������'. $�% �
�����
��&� ��A. $�% �
������
���!���
�����7��� 1 !��" (!) ��*�������-�
������'./�
��&� ��A. ��
���!��#

4

5
5 �����7��� ����&���������� +) ��*������") � % &�7��� !�
��:) �; �� �* ���
;�7����� ��	
(!) ��*�����1��&���������� (!) ��*�����������
� ��������
�������� ����
���� � �����������#
$�% �
�����
��&� �� $�% �
���1������
���� $�% �
���'����#
$�% �
������
��� $�% �
���1� ����
���� $�% �
���'����#
�����7��� ����
���� (!) ��*�������-�
������'. �
��&� �� $�% �
���2. ��
��� $�% �
�����#

4
4

�����
	
	���
�) �; (!) ��*����� � �
����&��
*��
� �����������
���� � ������������������7��� 1 !��"���
�) �; � �����������# 4

�

$�% �
��� ����
���� $�% �
���'�����������7��� 1 !��" $�% �
���
<
=
=�������# 4
(!) ��*�����1����
���� (!) ��*������� � ��������
������'. $�% �
�����
��&� ��A. $�% �
������
���!���
�����7��� 1 !��"���
�) �; (!) ��*�������-�
������'. �
��&� ��A. ��
���!��#

4
4

�����
	
	�@�&�7
 ���) (!) ��*����� � �
����&��
*��
� �����������
���� � ������������������7��� 1 !��"�@�&�7
 ���) � �����������# 4
$�% �
��� ����
���� $�% �
���'�����������7��� 1 !��" $�% �
���
0��) !� % ����# 4
(!) ��*�����1����
���� (!) ��*������� � ��������
������'. $�% �
�����
��&� ��A. $�% �
������
���!���
�����7��� 1 !��"���
�) �; (!) ��*�������-�
������'. �
��&� ��A. ��
���!��#

4
4

�<_�X ��
�
� TVXKd�_�c�i�Y<g�YhX9d�_�X9¬bS�r!d�c�m�pVc����hX�r!d!YKO

�����
	
	���
�
���

(!) ��*����� � �
����&��
*�+���
����&��
*A#

5
5 ��&� !	��
��7!����&��
��
�
�������
+���
����&��
��� !��" (!) ������� � �
����&��
*2����#

4

��
�
������
�������
�
�������
(!) ��*������+)�, �����+���
����&��
* 3 ��&���������� (!) ��*����������#
(!) ��*������+)�, ��01��+���
����&��
* 3 ��&���������� (!) ��*����������#
3
3
34

4

�����
	
	�6�&�7��
8� � ��� !�
����9
��� :�	���
�
���
5
5 ��&� !	��
��7!����&��
6�&�7��
8� � ��� !�
�������
+���
����&��
*��� !��"1��
�) �; (!) ��*����� � �
����&��
*2����#

4
4

�����
	
	�?�*���
&�����&�	
	���9
��� :�	���
�
�1�
5
5 ��&� !	��
��7!����&��
?�*���
&�����&�	
	������
+���
����&��
*��� !��"1@�&�7
 ���) (!) ��*����� � �
����&��
*2����#

4
4

�b`Vd�_-j�Y���XKm!YbjFc�`Vc&¬#d�_�Xyr!c�i-X$#�d�_�X<dhp-U�X
c&¬#�-j�r!p�r�WFX
j�Y�Yhdhj¸W¸W#_�S&m!i-�br!c�i-X�i.jF`-d�c.X�S�r�_��&S&mhjFXKdhp�c&¬#m!S�r!X�Of�<_�XKm�X
j�YyS�TVc�m�X>��X!R-jF�-WFXVTVXKd�_�c�iB�
_-j�r�_lm�X<�g-jFm�X�YySVr�_�S&`�k�X9d�cVd�_�X9�
S�pVd�_�S&dyr�W¸jFXK`-d!YyrKS�W¸W�d�_�X�r!c�`�Yhd�m�g�r!d�c�m�O

§

�����
	
	���
�
���

(!) ��*����� � �
����&��
*�+���
����&��
*A#

5
5 ��&� !	��
��7!����&��
��
�
��� (!) ��*����� � �
����&��
*�+���
����&��
*!���
� %�) 	 3 +���
����&��
*1��+���
����&��
*A#

4

��
�
������
�������
�
�������
(!) ��*������+)�, �����+���
����&��
* 3 ��&���������� (!) ��*����������#
(!) ��*������+)�, ��01��+���
����&��
* 3 ��&���������� (!) ��*����������#
3
3
34

4

�����
	
	�6�&�7��
8� � ��� !�
����9
��� :�	���
�
���
5
5 ��&� !	��
��7!����&��
6�&�7��
8� � ��� !�
��� (!) ��*����� � �
����&��
*�+���
����&��
*!���
� %�) 	 3 +���
����&��
*1��+���
����&��
*A#

4
4

�����
	
	�?�*���
&�����&�	
	���9
��� :�	���
�
�1�
5
5 ��&� !	��
��7!����&��
?�*���
&�����&�	
	�� (!) ��*����� � �
����&��
*�+���
����&��
*!���
� %�) 	 3 +���
����&��
*1��+���
����&��
*A#

4
4

�<_-j�Yyj�Y9d�_�XVTVc-Yhd���X!R-jF�-WFXqTVX�r�_�S&`-j�YhT�c&¬
S�W¸WbO � c&� Sqr�W¸jFXK`-dVrKS&` r!c�`-d�m�c&W���c�d�_¤d�_�XV�&S&mhjFXKdhp�c&¬<m!S�r!X
S&`�iBd�_�X.�&S&mhjFXKdhpBc&¬f�-j�r!p�r�WFX�g�YhX�iBjF`ld�_�X9m!S�r!X$#-¬�c�m�jF`�Yhd!S&`�r!X.��j�SBSVrKS�W¸W(W¸jF��X

 !��"16�&�7��
8� � ��� !�
��� !��"�6
�) ��*����� � �
����&��
*2���
�

�
`�X�m�X�S�Yhc�`ld�_�S&d
¬bS�r!d�c�m�pBTVXKd�_�c�i�Y9S&m�X.m�X<�g-jFm�X�iqj�Y�»��-µ � ® %K»$8fµ!±��&º�µ&%
%.¯+*.½�±�¶�± 4!¯�º#%K»�®
.�4�»�¯�® %K« � S��&S
r!c�`�Yhd�m�g�r!d�c�m!YyS�WF�
S�p�Yym�XKd�g�m�`¤S&`�c����hX�r!d9c&¬<d�_�XVYhU�X�r�j)�X�i¤dhp-U�X�O��<_�XKp¤rKS&`�`�XK��XKm9m�XKd�g�m�` S&`�c����hX�r!dyc&¬
S
Yhg���dhp-U�X$#-XK��XK`qd�_�c�g�k�_Bd�_�S&d��<c�g-W�iV��X9dhp-U�XK�br!c�m�m�X�r!dyab��c�d�_qS�rKr!c�m!i�jF`�k�d�c � S��&S�Yhg���dhp-U-jF`�kVS&`�iBS�rKr!c�m!i�jF`�k
d�cVd�m�g�X9��XK_�S���jFc�myYhg���dhp-U-jF`�kqS�Y<�<j¸W¸Wf��X�i-X�Y�r!mhjF��X�iqjF`�¾#X�r!d�g�m�XBN�}-e!O
�b`B¬bS�r!d<# ����
�������
�
� j�Y<jFd!YhX!W¸¬<S.¬bS�r!d�c�m�pVTVXKd�_�c�i#O

M
�
>
�
� 1 L�u�JKu�J ��H�A

�<_�X.U�m�c�d�c�dhp-U�X9U�S&d�d�XKm�`lU�m�c&��j�i-X�YyS&`�c�d�_�XKmy�
S�pVd�cqr!c�`�Yhd�m�g�r!d
c����hX�r!d!Y<c&¬<S&m��-jFd�m!S&m�pBdhp-U�X�YKO ª S&d�_�XKmyd�_�S&`
U�S�Y�YbjF`�kBjF`¤S (!) ��*����� � �
����&��
* c����hX�r!d<##S (!) ��*����� c����hX�r!d
j�Y
U�S�Y�YhX�iqjF`(Oy�bd!Y ���
&� !� TVXKd�_�c�iqj�Y
jF`-��c���X�i
d�cBr!m�X�S&d�X9`�XK� �-j�r!p�r�WFX�Y%;#�<X.S&m�X9TBS&��jF`�kBr!c�U-jFX�Y
c&¬fd�_�X9k&jF��XK`lc����hX�r!d�O

�����
	
	 (!) ��*�������

�

� +����
��� ���
&� !������� 3
3
3 44

�����
	
	 � ��������
� +����
��� ���
&� !������� 3
3
3 44

�����
	
	 $�% �
���1�
� +����
��� ���
&� !������� 3
3
3 44

�����
	
	���
�) �; (!) ��*�������
� +����
��� ���
&� !������� 3
3
3 44

�����
	
	���
�) �; � ��������
� +����
��� ���
&� !������� 3
3
3 44

�����
	
	 $�% �
���
<
=
=����
� +����
��� ���
&� !������� 3
3
3 44

�����
	
	�@�&�7
 ���) (!) ��*�������
� +����
��� ���
&� !������� 3
3
3 44

�����
	
	�@�&�7
 ���) � ��������
� +����
��� ���
&� !������� 3
3
3 44

�����
	
	 $�% �
���
0��) !� % �
� +����
��� ���
&� !������� 3
3
3 44

�����
	
	���
�
���

(!) ��*������+ ����&���&2#

5
5 ��&� !	��
��7!����&��
��
�
��� (!) ��*������+ ����&���&���
� %�) 	 3 + ����&���&���+ ����&���&2#4

��
�
������
�������
�
�������
(!) ��*������+)�, ���� � (!) ��*������� + ����&���& 3 ���
&� !������#
(!) ��*������+)�, ��01� � (!) ��*������� + ����&���& 3 ���
&� !������#
3
3
3

¨

4

4

�����
	
	�6�&�7��
8� � ��� !�
����9
��� :�	���
�
���
5
5 ��&� !	��
��7!����&��
6�&�7��
8� � ��� !�
��� (!) ��*����� + ����&���&���
� %�) 	 3 + ����&���&���+ ����&���&2#4

4

�����
	
	�?�*���
&�����&�	
	���9
��� :�	���
�
�1�
5
5 ��&� !	��
��7!����&��
?�*���
&�����&�	
	�� (!) ��*����� + ����&���&���
� %�) 	 3 + ����&���&���+ ����&���&2#4

4

P &(X�r!dhjF��X!WFp$#&X�S�r�_.c����hX�r!d#j�Y(jFd!YhX!W¸¬(S�¬bS�r!d�c�m�p9YhU�X�r�j�S�W¸j��KX�iVd�cyTBS&��jF`�kyc����hX�r!d!Y-�hg�Yhd(W¸jF��X�jFd!YhX!W¸¬�Of�fm�c�d�c�dhp-U�X�Y
S&m�Xl¬�m�X<�g�XK`-dhWFp7g�YhX�i7jF`�i-p-`�S&T�j�rKS�W¸WFp�dhp-U�X�i W�S&`�k�g�S&k�X�YlYhg�r�_�S�Yl��TBS�W¸WFd!S�WF��#9WFX�Y�YB¬�m�X<�g�XK`-dhWFp7g�YhX�i4jF`
Yhd!S&dhj�rKS�W¸WFpqdhp-U�X�iVW�S&`�k�g�S&k�X�YyYhg�r�_lS�Yy© ��� S&`�i � S��&S�O
�<_�XKm�XBj�Y�`�c�¬�m�XKXBWFg�`�r�_(«ld�_�Xlr!c�i-Xld�c¤r!m�X�S&d�Xqc����hX�r!d!Y.c&¬yU�S&m�dhj�r!g-W�S&mqr�W�S�Y�YhX�YVT�g�Yhd�k�c¤Yhc�TVXK�
_�XKm�X�O

x�S�r!d�c�m�p�TVXKd�_�c�i�Y�U�g�d<d�_�X.r!c�i-X
jF`qTVXKd�_�c�i�YfjF`qd�_�X9r�W¸jFXK`-d<;�¬bS�r!d�c�m�p�c����hX�r!d!YfU�g�d<d�_�X9r!c�i-XyjF`qTVXKd�_�c�i�YfjF`
S.¬bS�r!d�c�m�pVc����hX�r!d<;�S&`�iqU�m�c�d�c�dhp-U�X�Y�U�g�d
d�_�X�r!c�i-XyjF` ���
&� !� TVXKd�_�c�i�YKO

� ��� �B�����������
��XK��XKm!S�W�c�d�_�XKm�i-X�YbjFk�`¤U�S&d�d�XKm�`�Y9S&m�XVm�X!W�S&d�X�i�d�cqc����hX�r!d.r!m�X�S&dhjFc�`�jF`¤d�_�S&d9d�_�XKp¤S<&(X�r!d.r!c�`�Yhd�m�g�r!d�c�m!Y.ahS&`�i
m�X<�g-jFm�XBd�_�XVg�YhXVc&¬�¬bS�r!d�c�mhjFX�Y!e9S&`�i¤S&m�X�m�X!W�S&d�X�i¤d�clYhd�m�g�r!d�g�m�X�jF`¤d�_�S&d.d�_�XKp¤YhU�X�r�j¸¬�p¤U�S&d�d�XKm�`�Yyc&¬yYh_�S&mhjF`�k
S&TVc�`�k��&S&mhjFc�g�Y
c����hX�r!d!YKO

M
�
M
�
> (D�G#E#vFA-JKu(G

�<_�X�YbjF`�k&WFXKd�c�`lU�S&d�d�XKm�`qk�g�S&m!S&`-d�XKX�Y<d�_�S&d<c�`-WFpqc�`�X.c����hX�r!d
c&¬�S�U�S&m�dhj�r!g-W�S&m9r�W�S�Y�Y<XK��XKmyX!R-j�Yhd!YKOBAfc�glT�jFk�_-d
�
S&`-d�d�cyg�YhX<d�_-j�Y(¬�c�m�� *�� jF`Vp�c�g�m�9yp-T���S&`�S&k�XKm(¬�m�c�T�m�X�r�jFd!S&dhjFc�`�#&��X�rKS&g�YhX<jFd!Y�TVXKd�_�c�i�Y�ahYhg�r�_�S�Y��
S�jFdhjF`�k
W¸j�Yhd!Yf¬�c�mfU�S&m�dhj�r!g-W�S&m<TBS�r�_-jF`�X�Y!efS&m�X
��X�Yhd<Yhg-jFd�X�iVd�c9TBS&`�S&k�XKTVXK`-dfc&¬(S.YbjF`�k&WFX
WFc�rKS&dhjFc�`�#-`�c�d�c&��XKm!YbjFk�_-d�¬�m�c�T
d�_�X�`�S&dhjFc�`�S�Wfc'8qr!X.c&¬<SBr�_�S�jF`(O9¥�U�m�c�k�m!S&T�d�_�S&d
jF`�Yhd!S&`-dhj�S&d�X�YyT�g-WFdhjFU-WFXBr!c�U-jFX�YyU�m�c���S&�-WFpl_�S�Y9S&`lXKm�m�c�m<#
��g�d
g�YhX.c&¬fd�_�X.YbjF`�k&WFXKd�c�`lU�S&d�d�XKm�`qm�XK`�i-XKm!Y
Yhg�r�_�S&`qXKm�m�c�m
_�S&m�T�WFX�Y�YKO

�����
	
	 � *�� �
���)�� ����1	�����) � � *�� � % � � *���#
5
5 ��&� !	��
��7!����&��
���)�� ���� � *�� ����� 3
3
3 45
5 ��
����&��
*������ % &
:
�
7
+�) �1	�����) ��;��� � *�� �����
) � �-� % � � *�� �
��
7�
����
� % � � *�� �� !��" � *�� ����#

4
�����7��� �� % � � *���#

N��

4

3
3
34

�<_�XqYbjF`�k&WFXKd�c�` U�S&d�d�XKm�`¤j�YVS�W�Yhc¤g�YhX!¬�g-W<¬�c�m.W�S&m�k�X$#fX!R�U�XK`�YbjF��Xlc����hX�r!d!Y9d�_�S&dVYh_�c�g-W�i `�c�d���XqT�g-WFdhjFU-WFp
jF`�Yhd!S&`-dhj�S&d�X�i#O
�<_�X�m�X�S�Yhc�` d�_�S&dlS¤¬bS�r!d�c�m�p4TVXKd�_�c�i�#ym!S&d�_�XKmqd�_�S&` S4r!c�`�Yhd�m�g�r!d�c�m<#
T�g�Yhdq��X¤g�YhX�i7j�Y¤»��-µ %Kµ
4!¯�º�6

8fµ!±��&º�µ&%
%9¯+*.½�±�¶�±14!¯�º#%K»�®
.�4�»�¯�® %K« � S��&SVr!c�`�Yhd�m�g�r!d�c�m!Y
S�WF�
S�p�Y<m�XKd�g�m�`lS�`�XK��c����hX�r!d<#-`�XK��XKm9S�U�m�XK��X!R-j�YhdhjF`�k
c����hX�r!d�O

M
�
M
�
M = G�JKA�L�G(D�G#E

�<_�XqjF`-d�XKm�`-jF`�k i-X�YbjFk�`7U�S&d�d�XKm�` m�XKg�YhX�Y�X!R-j�YhdhjF`�k c����hX�r!d!Y�m!S&d�_�XKm�d�_�S&`7r!m�X�S&dhjF`�k¤`�XK� c�`�X�YKO4��¬�S¤r�W¸jFXK`-d
m�X<�g�X�Yhd!YyS&`lc����hX�r!dy�
_-j�r�_lj�Y
X<�g�S�Wfd�cVc�`�X�d�_�S&dyS�WFm�X�S�i-pqX!R-j�Yhd!Y%##d�_�XK`ld�_�X.U�m�XK��X!R-j�YhdhjF`�klc�`�X9j�Yym�XKd�g�m�`�X�i
jF`�Yhd�X�S�i#O��<_-j�Y<j�Yyr!c�m�m�X�r!d
c�`-WFpB¬�c�m�jFTVT�g�d!S&�-WFX.c����hX�r!d!YKO
¥9Y
S&`qX!R�S&TVU-WFX$##��S&U � g-j�r��qTBS�pBm�XKU�m�X�YhXK`-dyS�U�S&m�dhj�r!g-W�S&m9Yhd�m�XKXKd
�-pBTBS&`-p�� �
��
��� � ��;����� �� YKO��<_�c-YhX

� �
��
��� � ��;����� �� c����hX�r!d!Yy�<j¸W¸W<_�S���X�d�_�XBY�S&TVXVYhd�m�XKXKd9`�S&TVXBS&`�i �!jFU#r!c�i-X�O " XKm�X.j�Y9c�`�XVU�c-Y�YbjF�-WFXqc����hX�r!d
i�j�S&k�m!S&TnahYh`�S&U�Yh_�c�dKe�¬�c�myS�U�S&m�d<c&¬fd�_�X.Yhd�m�XKXKd�O

(Street-
Segment)

"Mass Ave"
(String)

"O2139"
(String)

101-200
(Street-

NumberSet)

(Street-
Segment)

"Mass Ave"
(String)

"O2139"
(String)

1-100
(Street-

NumberSet)

(Street-
Segment)

"Mass Ave"
(String)

"O2139"
(String)

401-500
(Street-

NumberSet)

(Street-
Segment)

"Mass Ave"
(String)

"O2139"
(String)

301-400
(Street-

NumberSet)

(Street-
Segment)

"Mass Ave"
(String)

"O2139"
(String)

301-400
(Street-

NumberSet)

(Street-
Segment)

"Mass Ave"
(String)

"O2139"
(String)

201-300
(Street-

NumberSet)

�<_-j�Yfm�XKU�m�X�YhXK`-d!S&dhjFc�`�j�Y�r!c�m�m�X�r!d<a�¬�c�m�jF`�Yhd!S&`�r!X$#�S�W¸W�U�S�jFm!Yfc&¬�Yhd�m�XKXKdf`�S&TVX�Y�m�XKd�g�m�`Vd�m�g�X
�
_�XK`Br!c�TVU�S&m�X�i
�<jFd�_ ����7!����	 e/#K��g�d(jFd(j�Y(g�`�`�X�r!X�Y�Y�S&mhj¸WFp��
S�Yhd�X!¬�g-W�c&¬�YhU�S�r!X�Of�<_-j�Y(�<c�g-W�i9��X
S<��XKd�d�XKm�m�g�`-dhjFTVX<r!c�`)�k�g�m!S&dhjFc�`
c&¬fd�_�X.Yhp�Yhd�XKTl«

N�N

(Street-
Segment)

101-200
(Street-

NumberSet)

(Street-
Segment)

1-100
(Street-

NumberSet)

(Street-
Segment)

"Mass Ave"
(String)

"O2139"
(String)

401-500
(Street-

NumberSet)

(Street-
Segment)

301-400
(Street-

NumberSet)

(Street-
Segment)

301-400
(Street-

NumberSet)

(Street-
Segment)

201-300
(Street-

NumberSet)

�<_�Xyi�j &(XKm�XK`�r!XyjF`qYhU�S�r!X
j�Y<Yhg���Yhd!S&`-dhj�S�W&! XK`�c�g�k�_Bd�_�S&d�jFd�j�Y���XKm�p�g�`-W¸jF��X!WFpqd�_�S&d�p�c�gBr!c�g-W�iVm�X�S�iVXK��XK`
SBTVc�i-X�Yhd.i�S&d!S&��S�YhX9jF`-d�cl��S&U � g-j�r��ljF`¤d�_�XVS&��YhXK`�r!XVc&¬<d�_-j�Y9Yh_�S&mhjF`�k�O��<_�XKm�X!¬�c�m�X$##d�_�X�jFTVU-WFXKTVXK`-d!S&dhjFc�`
c&¬ � �
��
��� � ��;
��
��:���� �
_-j�r�_lp�c�gq�<XKm�X9U�m�c&��j�i-X�iqU�XKmh¬�c�m�TBY<d�_-j�Y<c�U�XKm!S&dhjFc�`(O
�b`-d�XKm�`-jF`�k4S&m�m!S&`�k�X�Y.¬�c�mVc����hX�r!d!YVd�_�S&dBS&m�XqjFTVT�g�d!S&�-WFX�d�c¤��X�m�XKg�YhX�i�! m!S&d�_�XKmBd�_�S&`7r!m�X�S&d�X�S¤`�XK�

c����hX�r!d<#�SVrKS&`�c�`-j�rKS�W�m�XKU�m�X�YhXK`-d!S&dhjFc�`qj�Y
m�XKg�YhX�i#O��b`-d�XKm�`-jF`�kBm�X<�g-jFm�X�YyS�d!S&�-WFX.c&¬�S�W¸W�d�_�X.c����hX�r!d!Y<d�_�S&d<_�S���X
XK��XKm���XKXK`Br!m�X�S&d�X�i�;�j¸¬�jFdfr!c�`-d!S�jF`�YfS&`-p9c����hX�r!d!Y(d�_�S&d(�<c�g-W�i.��X<X<�g�S�W�d�cyd�_�X<i-X�YbjFm�X�i�c����hX�r!d<#�d�_�S&d���XKm!YbjFc�`9j�Y
m�XKd�g�m�`�X�i.jF`�Yhd�X�S�i#Ofx�c�mfU�XKmh¬�c�m�TBS&`�r!X
m�X�S�Yhc�`�Y%#�Sy_�S�Yh_-d!S&�-WFX<¬�m�c�T�r!c�`-d�XK`-d!Y�d�c9c����hX�r!d!Y(j�Yfg�Yhg�S�W¸WFpVm�XKd�g�m�`�X�i
ahYbjF`�r!X.X<�g�S�W¸jFdhpli-XKU�XK`�i�Yyc�`-WFpqc�`qd�_�X.r!c�`-d�XK`-d!Y!e!O

" XKm�Xyj�YySVr!c�i-Xy¬�m!S&k�TVXK`-d<d�_�S&dyrKS&`�c�`-j�rKS�W¸j��KX�Y.a�jF`-d�XKm�`�Y!e<Yhd�mhjF`�k-Y<d�_�S&d
`�S&TVX.YhXKk�TVXK`-d!YKO

� �
	 % @��� 	
��;� !�����
	��� !��" � �
	 % @���A����#

�
�� &�) �
������������ � �
�) �;� ����
) � ��	
��;� !�����
	 3 ��&� ���) !	����*2� ���� �
�����7��� 	
��;� !�����
	 3 ;���2� ���#4 ����	
���
	
��;� !�����
	 3 �
7��2� . ���#
�����7��� 1 #

4
4

��d�mhjF`�k-YBS&m�X�S YhU�X�r�j�S�W�rKS�YhX$#
YbjF`�r!X�d�_�Xl��X�Yhdqm�XKU�m�X�YhXK`-d!S&dhjFc�` ¬�c�mBd�_�X�YhX<�g�XK`�r!X�c&¬�r�_�S&m!S�r!d�XKm!YBabd�_�X
r!c�`-d�XK`-dKe(j�YfjFd!YhX!W¸¬fS�Yhd�mhjF`�k!;��<XyXK`�iVg�UB�<jFd�_qS9d!S&�-WFXy¬�m�c�T Yhd�mhjF`�k-Y�d�c�Yhd�mhjF`�k-YKOf�<_-j�Y<Yhd�m!S&d�XKk�p.j�Y<r!c�m�m�X�r!dfjF`
k�XK`�XKm!S�Wb«(d�_�X<r!c�i-X<r!c�`�Yhd�m�g�r!d!Y(S<`�c�`��brKS&`�c�`-j�rKS�W�m�XKU�m�X�YhXK`-d!S&dhjFc�`�#�TBS&U�Y�jFd�d�c
d�_�X<rKS&`�c�`-j�rKS�W-m�XKU�m�X�YhXK`-d!S&dhjFc�`�#
S&`�iqm�XKd�g�m�`�Y
d�_�X�rKS&`�c�`-j�rKS�W�c�`�X�O " c&�<XK��XKm<#�i-XKU�XK`�i�jF`�k�c�`l_�c&� T�g�r�_l�<c�m��Bd�_�XVr!c�`�Yhd�m�g�r!d�c�m<j�Y%#�jFd9TBS�p
��X�TVc�m�X9X/8qr�jFXK`-d9`�c�d
d�cBr!c�`�Yhd�m�g�r!dyd�_�X.`�c�`��brKS&`�c�`-j�rKS�W�m�XKU�m�X�YhXK`-d!S&dhjFc�`Bj¸¬<`�c�d
`�X�r!X�Y�Y�S&m�p$#�jF`��
-j�r�¤rKS�YhX

N�[

d�_�X9d!S&�-WFX9T�jFk�_-d
TBS&UB¬�m�c�T�r!c�`-d�XK`-d!Y�d�cBrKS&`�c�`-j�rKS�W�m�XKU�m�X�YhXK`-d!S&dhjFc�`�YKOf�b`qd�_�S&d
rKS�YhX$#-j¸¬��<Xy�<XKm�XyjF`-d�XKm�`-jF`�k
� ��& � &) �� Y%#-�<X9�<c�g-W�iVjF`�i-X!R�d�_�X9d!S&�-WFX.�-pBd�_�XyW�S&dhjFd�g�i-X�S&`�iVWFc�`�k&jFd�g�i-X�O
�<_-j�Y.r!c�i-X�g�YhX�Y.SBTBS&Ul¬�m�c�TZYhd�mhjF`�k-Yyd�cqd�_�XKTBYhX!WF��X�Y%#(��g�dyjFd�rKS&`�`�c�d9g�YhXBS�� ��� m!S&d�_�XKm9d�_�S&`¤S @��� O

�<_�X�m�X�S�Yhc�`qj�Yyd�_�S&d � ��� Y9i-cB`�c�d9_�S���X�S ;��� c�U�XKm!S&dhjFc�`�##c�`-WFp¤S ��&� ���) !	 c�U�XKm!S&dhjFc�`(O9�<_�X ��&� ���) !	
c�U�XKm!S&dhjFc�`Bg�YhX�Y ����7!����	 ¬�c�mfjFd!Y<r!c�TVU�S&mhj�Yhc�`(O��<_-g�Y%#�XK��XK`Vj¸¬ �*	
��� 3 ��&� ���) !	�� �*	��
�) �;� #�d�_�S&d<i-c-X�Yh`�� dTVX�S&`¤d�_�S&d �*	��
�) �; j�Yyj�i-XK`-dhj�rKS�W¸WFp SqTVXKT���XKm.c&¬ �*	
��� #(S&`�i�d�_�XKm�X�j�Y.`�clr!c�`-��XK`-jFXK`-d��
S�pld�clS�rKr!X�Y�Y
d�_�X9X!WFXKTVXK`-dyc&¬ �*	
��� d�_�S&d ����7!����	 �*	��
�) �; O
�<_�Xy`�c�dhjFc�`Bc&¬�_�S���jF`�k�c�`-WFpBc�`�Xy��XKm!YbjFc�`Bc&¬fS.k&jF��XK`qYhd�mhjF`�k.j�Y
Yhg�r�_qS&`VjFTVU�c�m�d!S&`-d<c�`�Xyd�_�S&d�jFd�j�Y<��g-j¸WFd

jF`-d�c � S��&S ; � �
�) �; 3) ������ m�XKd�g�m�`�Y<d�_�X�rKS&`�c�`-j�rKS�W���XKm!YbjFc�`lc&¬fSVYhd�mhjF`�k�O�<_�X9¾�j�Yh��c&��d�X!R�d
i�j�Y�r!g�Y�YhX�Y�jF`-d�XKm�`-jF`�k.jF`lYhX�r!dhjFc�`�N�}�O [�OFN$#&��g�d
rKS�W¸W�Y<d�_�X
U�S&d�d�XKm�` � ��p-�<X!jFk�_-d<# 9�
_-j�r�_Vj�Y
i�j &(XKm�XK`-d
d�_�S&`qd�_�X�Yhd!S&`�i�S&m!iBd�XKm�T�jF`�c&WFc�k�pVjF`ld�_�X�)�X!W�i#O

M
�
M
�
� �
v ����A�DFE(��J

x(WFp-�<X!jFk�_-d�j�Y
S9k�XK`�XKm!S�W¸j���S&dhjFc�`lc&¬(jF`-d�XKm�`-jF`�k�O<ah¾�j�Yh��c&�Vd�X!R�d
YhX�r!dhjFc�`�N�}�O [�OFN$#&dhjFdhWFX�i � x(WFp-�<X!jFk�_-d<# �i�j�Y�r!g�Y�YhX�Y
jF`-d�XKm�`-jF`�k!#
�
_-j�r�_4j�YBS YhU�X�r�j�S�W�rKS�YhXlc&¬���p-�<X!jFk�_-d�O¸e��b`-d�XKm�`-jF`�k j�YBS&U�U-W¸j�rKS&�-WFX¤c�`-WFp4�
_�XK`7S&`4c����hX�r!d�j�Y
r!c�TVU-WFXKd�X!WFp7jFTVT�g�d!S&�-WFX�O��<_�X¤TVc�m�X�k�XK`�XKm!S�W9¬�c�m�T�c&¬���p-�<X!jFk�_-d�rKS&`7��X g�YhX�i7�
_�XK`7TVc-Yhd�ab��g�dq`�c�d
`�X�r!X�Y�Y�S&mhj¸WFp�S�W¸W�e�c&¬�S&`qc����hX�r!d<j�Y<jFTVT�g�d!S&�-WFX�O
©�c�`�Ybj�i-XKm
d�_�X�rKS�YhX9c&¬f�-j�r!p�r�WFXVYhU�c���X�YKO

�����
	
	 $�% �
���1�
3
3
3
� 7�
� � �& , ������	��& , �
	'#
3
3
34

5
5 $ ���-�
�� !�����1���
�) �
����:�>�:
&�"� � ���) &�
	 � �& , ��	!. 	�& �
���
��� %�) 	�	 � 7�
� � �& , ��	
�����
	
	 � 7�
� � �& , ���
) �� ���� �;
� % #
) �� :) ����������A#
+&
&
���
�� �����!�����:2#
@���������������) ���2#
���
&����1"�) ; % �A#
���
&����1� % ��
��:) �;A#
+&
&
���
�� ���) ���!��:2#
) �� �
&��
���) &� # 5
5 " %�) � % �) � �� : % 7
+ % &
���
	�� %�))) !	�����
����:)

4

�<_�XKm�X¤S&m�Xldhp-U-j�rKS�W¸WFp�o�[¤c�mqo�� YhU�c���X�YVU�XKml�
_�XKX!WVabg�U7d�c z-�¤U�XKml�
_�XKX!W9¬�c�mqS 6�� :���� (!) ��*����� e!O
" c&�<XK��XKm<#�d�_�XKm�XyS&m�X<g�Yhg�S�W¸WFp�c�`-WFp�d�_�m�XKX
i�j &(XKm�XK`-d��&S&mhjFXKdhjFX�Yfc&¬(YhU�c���X<U�XKm��-j�r!p�r�WFX�«fc�`�X<¬�c�m�d�_�X<¬�m�c�`-d��
_�XKX!W
S&`�i�dh�<cV¬�c�m9d�_�XVm�X�S&m9�
�XKX!Wyab��X�rKS&g�YhXBd��X�m�X�S&m._-g���j�Y9c'&(�br!XK`-d�XKm<#�Yhcli�j &(XKm�XK`-d9WFXK`�k�d�_�Y.S&m�XVm�X<�g-jFm�X�i�e!O
]¤X9�<c�g-W�iqU�m�X!¬�XKm
d�cVS�W¸WFc�rKS&d�X
�hg�Yhd
d�_�m�XKX.i�j &(XKm�XK`-d � �& , � abc�m � 7�
� � �& , � e�c����hX�r!d!Y<m!S&d�_�XKm<d�_�S&`qc�`�X9U�XKm
YhU�c���XBc&¬
d�_�XB�-j�r!p�r�WFX�O¤�bd�� Y9`�c�dVS�rKr!XKU�d!S&�-WFXqd�cl_�S���XBS�YbjF`�k&WFX � �& , � c����hX�r!d9jF` $�% �
��� m!S&d�_�XKm.d�_�S&` S&`
S&m�m!S�p.`�c�d(�hg�Yhd<��X�rKS&g�YhXyc&¬(d�_�X9S�Yhp-TVTVXKd�m�p�c&¬(d�_�X
m�X�S&m��
_�XKX!W(��g�d
S�W�Yhc.��X�rKS&g�YhX9�fT�jFk�_-d�m�XKU-W�S�r!X.S.YhU�c���X
ahY�S�p$##S�¬�d�XKmyc�`�XV��m�X�S&��Y!e<�<jFd�_¤S&`�c�d�_�XKm9d�_�S&dy_�S�Yyd�_�XVY�S&TVX.WFXK`�k�d�_���g�d.i�j &(XKm!YyjF`�c�d�_�XKm.r�_�S&m!S�r!d�XKmhj�Yhdhj�rKYKO
�b`-d�XKm�`-jF`�k�j�Y�`�c�d
S&`Vc�U�dhjFc�`B��X�rKS&g�YhX9d�_�Xyc����hX�r!d!Y�S&m�Xy`�c�dfj�i-XK`-dhj�rKS�Wb«�d�_�XKpBi�j &(XKm�jF`qd�_�X!jFm �
&��
���) &�)�X!W�i#O
�b`�S��-j�r!p�r�WFX�m!S�W¸WFpqc&¬
N�� # �����9�-j�r!p�r�WFX�Y%##d�_�XKm�X9T�jFk�_-d
c�`-WFpq��X�S.¬�XK� _-g�`�i-m�X�ili�j &(XKm�XK`-dy�&S&mhjFXKdhjFX�Y
c&¬�YhU�c���X
��g�d
S9T�j¸W¸W¸jFc�`ljF`�Yhd!S&`�r!X�Y�c&¬(d�_�XKT6;�jFd<�<c�g-W�iB��X9i�j�Y�S�Yhd�m�c�g�Y�d�c�S�W¸WFc�rKS&d�XyT�j¸W¸W¸jFc�`�Y
c&¬ � �& , � c����hX�r!d!YKO���U�c���X

N�o

c����hX�r!d!Yyr!c�g-W�il��X�Yh_�S&m�X�il��XKdh�<XKXK`�i�j &(XKm�XK`-d9�-j�r!p�r�WFX�Y�abdh�<c.¬�mhjFXK`�i�Yy�<jFd�_lj�i-XK`-dhj�rKS�W��-j�r!p�r�WFX�Y.r!c�g-W�i�Yh_�S&m�X
d�_�X9Y�S&TVX9YhU�c���X � [�[9c�`qd�_�X
¬�m�c�`-d��
_�XKX!W�e/#���g�d
d�_�S&d<Yhdhj¸W¸W(WFX�S���X�Y<S9¬bS�r!d�c�m<c&¬�o�[.c�m
o��.d�c-c9W¸jFd�dhWFX�Yh_�S&mhjF`�k!#
S&`�iqjF`¤S&`-pqXK��XK`-d
jFdyj�Y
TVc�m�X9W¸jF��X!WFp¤d�_�S&d
d�_�XKm�X��<c�g-W�iq��XVYbjFT�j¸W�S&m�YhU�c���X�Y
�<jFd�_-jF` SV�-j�r!p�r�WFXVd�_�S&`¤S�r!m�c-Y�Y
�-j�r!p�r�WFX�YKO
�<_�X*)�m!Yhd<Yhd�XKU�¬�c�mfg�YbjF`�k�d�_�X*��p-�<X!jFk�_-d<U�S&d�d�XKm�`.j�Y�d�c.YhXKU�S&m!S&d�X
d�_�X.¼�º�»�®!¼�º#%K¼)4�Yhd!S&d�X�¬�m�c�T d�_�X.µ��&»�®!¼�º#%K¼)4

Yhd!S&d�X�OV�<_�XVjF`-d�mhjF`�Ybj�rBYhd!S&d�X.j�Y.��XKU�d9jF` d�_�XVc����hX�r!d<;(d�_�XVX!R�d�mhjF`�Ybj�rBYhd!S&d�X�j�Y9��XKU�d.c�g�d!Ybj�i-XBd�_�XVc����hX�r!d�O��b`
c�m!i-XKm<d�c�U�XKm�T�jFd
jF`-d�XKm�`-jF`�k!#�d�_�XyjF`-d�mhjF`�Ybj�r.Yhd!S&d�X9Yh_�c�g-W�iB��X9��c�d�_BjFTVT�g�d!S&�-WFX�S&`�iBYbjFT�j¸W�S&m9S�r!m�c-Y�Y�c����hX�r!d!YKO
©�m�X�S&d�X9S �
&��
���) &� ��WFX�Y�Y � �& , � r�W�S�Y�Y<¬�c�m
d�_�XyjF`-d�mhjF`�Ybj�r�Yhd!S&d�X�«

�����
	
	 � �& , ���
) �� ���� �;
� % #
) �� :) ����������A#
+&
&
���
�� �����!�����:2#
@���������������) ���2#
���
&����1"�) ; % �A#
���
&����1� % ��
��:) �;A#
+&
&
���
�� ���) ���!��:2#

4

�(cVS�i�iqd�_�X9X!R�d�mhjF`�Ybj�r�Yhd!S&d�X$#�jFdyi-c-X�Y
`�c�d<�<c�m��Bd�cVi-c

�����
	
	��� !	�����
����: � �& , � � 7�
����9
��� :�	 � �& , ���
) �� �
&��
���) &� #

4

��X�rKS&g�YhXld�_�S&d�j�Y9�hg�YhdBYh_�c�m�d�_�S&`�i¤¬�c�m � 7�
� � �& , � ; �� !	�����
����: � �& , � � 7�
� d!S&��X�Y.d�_�X�Y�S&TVXlS&TVc�g�`-d�c&¬
TVXKTVc�m�pqS�Y � 7�
� � �& , � ��X�rKS&g�YhX.jFd
�S�Y<d��X.Y�S&TVX�)�X!W�i�YKO
¥y`�c�d�_�XKm
U�c-Y�YbjF�-j¸W¸jFdhpqj�Y

�����
	
	��� !	�����
����: � �& , � $ ���� �!�����
� �& , �1	'#
) �� �
&��
���) &� #

4

�<_-j�Y�j�YfS&`VX!R�S&TVU-WFX
c&¬#Sy�
m!S&U�U�XKm
ab�
-j�r���<X<�<j¸W¸W�WFX�S&m�`VTVc�m�X
S&��c�g�df��XKm�p.Yhc-c�`#e/#�S&`�i.jFd�Y�S���X�Y7�g-jFd�XyS
�-jFd
c&¬�YhU�S�r!X$#���X�rKS&g�YhX � �& , � c����hX�r!d!Y
rKS&`q��X�Yh_�S&m�X�iqS&TVc�`�k �� !	�����
����: � �& , � $ ���� �!��� c����hX�r!d!YKO " c&�<XK��XKm<#
d�_�XKm�Xyj�YySVYhc&WFg�dhjFc�`l�
_-j�r�_lg�YhX�Y<XK��XK`qWFX�Y�YyYhU�S�r!X�O

� c�dhj�r!X�d�_�S&dyd�_�X.WFc�rKS&dhjFc�`lj�Y9S&U�U�S&m�XK`-d
¬�m�c�T d�_�X.jF`�i-X!R¤c&¬�d�_�X � �& , � c����hX�r!d
jF`¤d�_�X $�% �
��� 3 	��& , �
	S&m�m!S�p#«

�����
	
	 $�% �
���1�
3
3
3
� �& , ����� 	��& , �
	'#
3
3
34

�<_�XKm�Xyj�Y<`�cV`�XKX�iqd�cBYhd�c�m�Xyd�_�S&dyabX!R�d�mhjF`�Ybj�r�e�jF`-¬�c�m�TBS&dhjFc�`lS&d
S�W¸WbO
��c�TVX.r�W¸jFXK`-d9r!c�i-XVa�jF` $�% �
��� efT�g�Yhd
r�_�S&`�k�X$##��X�rKS&g�YhX � 7�
� � �& , � TVXKd�_�c�i�Yy�
-j�r�¤g�YhX�ild�_�X �
&��
���) &�)�X!W�i�T�g�Yhdy��X�k&jF��XK` S�rKr!X�Y�Yyd�cBd�_�S&d
jF`-¬�c�m�TBS&dhjFc�`(O

9
jF��XK`qd�_-j�Y
��XKm!YbjFc�`qg�YbjF`�k � 7�
� � �& , � «

NKz

�����
	
	 � 7�
� � �& , ���
5
5 ��� !) &� �� % �1	��& , ��+�*���7���) �;1� % ��) � ������ % ��	��!�
�) �) ��:�
7���+!����&��1��7��� !	
� &) :1�) ; % ��� A�) �����7��� !	����
3
3
3 �
&��
���) &� 3
3
34

4

�����
	
	 $�% �
���1�
� 7�
� � �& , ����� 	��& , �
	'#

5
5 6 % � ����� % &
:�	 % &�7�
:�+!�� !������: 	��
��7!��	!./+
7���� % ���) :��� ��) �) ���� !�����) 	1� �&
&�� � % &) �
�
� &) : ���) ;� A�����
" %�) ��� �-" % �
���) 	��) 	
���) ;� !��:���
3
3
3 	��& , �
	��) � 3 �) ; % ��� A�
7����7��� !	�� 3
3
34

4
4

�<_�X.r!c�m�m�X�YhU�c�`�i�jF`�kB`�XK����XKm!YbjFc�`qg�YbjF`�kqS���p-�<X!jFk�_-dyYhU�c���Xyj�YK«

�����
	
	 � �& , ���
� &) :1�) ; % ��� A�) �����7��� !	'.) �� �
&��
���) &� ����
3
3
3 �
&��
���) &� 3
3
34

4

�����
	
	 $�% �
���1�
� 7�
� � �& , ����� 	��& , �
	'#

� &) : ���) ;� A�����
" %�) ��� �-" % �
���) 	��) 	
���) ;� !��:���
3
3
3 	��& , �
	��) � 3 �) ; % ��� A�
7����7��� !	'.) � 3
3
34

4
4

�<_�X.m�X!¬�XKm�XK`�r!X.d�cqS&`qjF`-d�XKm�`�X�i � �& , � j�YyYhcVW¸jFk�_-dh�<X!jFk�_-dy�-plr!c�TVU�S&mhj�Yhc�`l�<jFd�_�SVm�X!¬�XKm�XK`�r!X�d�cBSV`�c�`��
jF`-d�XKm�`�X�i � 7�
� � �& , � d�_�S&d#d�_�Xf¬�c�m�TVXKm�j�Y�rKS�W¸WFX�i.S���p-�<X!jFk�_-d<;&d�_�S&d(r!c�g-W�i9X<�g�S�W¸WFp�S&U�U-WFp9d�c �� !	�����
����: � �& , � $ ���� �!��� #
d�_�c�g�k�_BjFd!Y
YhU�S�r!X.c&��XKm�_�X�S�iVj�Y
S�T�jF`-jFT�g�Tnc&¬�d�_�m�XKX.dhjFTVX�Y
S�Y<k�m�X�S&dyahS&`�iBU�c-Y�YbjF�-WFplTVc�m�X&e!O
�<_�X9Y�S&TVX
d�mhj�r��V�<c�m���Y�j¸¬ � 7�
� � �& , � r!c�`-d!S�jF`�Y<S " % �
���)�X!W�iB�
_-j�r�_qm�X!¬�XKm!Yfd�c�d�_�Xy�
_�XKX!W(c�`B�
_-j�r�_BjFd

j�Y<jF`�Yhd!S�W¸WFX�i�; $�% �
��� TVXKd�_�c�i�Y
rKS&`�YbjFTVU-WFpqU�S�Y�Y � %�) 	 d�c�d�_�X � �& , � TVXKd�_�c�i#O
��¬ � 7�
� � �& , � S�W�Yhc r!c�`-d!S�jF`�YVS���c-c&WFX�S&`)�X!W�i +���& , �� #�_�c&� rKS&` d�_�S&d���Xlm�XKU�m�X�YhXK`-d�X�i�s �bd�j�YVS�W�Yhc

X!R�d�mhjF`�Ybj�r.jF`-¬�c�m�TBS&dhjFc�`�##��g�d
jFd.i-c-X�Yy`�c�d9S&U�U�X�S&myjF`¤d�_�X.U�m�c�k�m!S&T�jFTVU-W¸j�r�jFdhWFp S�Y
d�_�X.WFc�rKS&dhjFc�`¤S&`�il�
_�XKX!W
i-c�Ol�bd�T�g�Yhd���XlYhd�c�m�X�i�X!R�U-W¸j�r�jFdhWFp jF` $�% �
��� #�U�m�c���S&�-WFp S�Y�S +&
&
���
�� ��� �
-j�r� U�S&m!S�W¸WFX!W�YVd�_�X 	��& , �
	
S&m�m!S�p�O7�<_-j�Y�j�YqYbW¸jFk�_-dhWFp4g�`-¬�c�m�d�g�`�S&d�X�! d�_�X�r!c�i-Xlj�YBYhd!S&m�dhjF`�k¤d�c k�XKdVg�k&WFp�! ��g�dqS�rKr!XKU�d!S&�-WFXlj¸¬VYhU�S�r!X
Y�S���jF`�k-Y
S&m�X.r!mhjFdhj�rKS�WbO���¬�d�_�XKm�X.S&m�X9TBS&`-pqYhg�r�_)�X!W�i�Y%#�_�c&�<XK��XKm<#-d�_�X.i-X�YbjFk�`¤Yh_�c�g-W�iq��X.m�X�r!c�`�Ybj�i-XKm�X�i#O
ª XKTVXKT���XKm9d�_�S&d>��p-�<X!jFk�_-d.Yh_�c�g-W�i�c�`-WFpl��X�g�YhX�i�S&d.S�W¸W�S�¬�d�XKmyU�m�c')�W¸jF`�kl_�S�Y9i-XKd�XKm�T�jF`�X�i�d�_�S&d9YhU�S�r!X

g�Y�S&k�XVj�YVS�r!mhjFdhj�rKS�Wy��c�d�dhWFXK`�X�r��#O¤�b`-d�m�c�i-g�r�jF`�k Yhg�r�_ r!c�`�Yhd�m�g�r!d!Y9jF`-d�c¤U�m�c�k�m!S&TBY.r!c�TVU-W¸j�rKS&d�X�Y�d�_�XKT�S&`�i
U�m�X�YhXK`-d!Y�TBS&`-p�c�U�U�c�m�d�g�`-jFdhjFX�Y�¬�c�m<XKm�m�c�m�O(�bd
Yh_�c�g-W�iB��X9g�`�i-XKm�d!S&��XK`Bc�`-WFp�jF`q��XKm�p�W¸jFT�jFd�X�iqr�jFm!r!g�TBYhd!S&`�r!X�YKO

N�}

� �������	��
����������������������

�	��� �! �"$#&%$')(+*-,/.10�2324 �5�%�.1*�#&%�0�5
6�7�8:9�;=<&9?>@;BA1C&D1E&F@G$C&HI<J9�8KA1EMLK;+N�LO8K;BA-7I7�C+D�9?;�<+9�8KA1EMLK;J<MP�9?7�H)<&N)7?8KC&A�Q�R�ST;�F�<=U&;�9?;B;BAWV�<M7�7�;BH�A�9�G$C&H�;=<&9�8KA1E
7�F1;�7)<&9?X@CMG�N�F�<MA1EM8KA1E@7�F1;�<MP�9?7�H)<&N)7?8KC&AWP�;)8KA1E@D�9?;=Y�Z�[�F-8:N�FW8:9�<+N)C&\J\JC&AW7)<&9?X�QO]J^�CM[�;BU&;BH=Z1C1NBNB<&9�8KC&A�<=LOLK>
<TN�LO8K;BA-7+\+<=>TA1;B;=Y_7�C�D�9?;@\�D-LK7?8KV-LK;T<MP�9?7�H)<&N)7?8KC&A�9B`	G$D1H�7�F1;BH�\JC&H�;&Z	7�F1;WN�LO8K;BA-7+\+<=>aA1C&7�X-A1CM[!<MF1;=<&YaCMG
7?8K\J;�F1CM[3\+<MA->@C&H�;BU&;BAW[�F-8:N�FT<MP�9?7�H)<&N)7?8KC&A�9�[�8OLOL�P�;�D�9?;=Y�Q�b�F1;�C&P�9?;BH�U&;BH=Z�P-L:<&N�X-P�C-<MH)Y�Z�<MA�Y@\J;=Y&8:<M7�C&H
V�<M7�7�;BH�A�9�V�;BH�\�8K7I9?D�N�FWN)C&\J\�D1A-8:NB<M7?8KC&A�Q

c�d$e�d$e fJgihBj1k=l�j1k
m D1V1V�C-9?;@7�F�<M7�7�F1;BH�;+8:9J<�Y1<M7)<MP�<&9?;+CMGI<=LOL�nW6?bo9?7�D�Y-;BA-7JE&H)<&Y-;=9BZ	<MA�Ya7�F1;@p1QKqMrMsW9?7)<=t4[�8:9?F1;=9J7�CWU&8K;B[
7�F1;�E&H)<&Y-;=9�CMG	p1QKqMrMsI9?7�D�Y-;BA-7)9BQ	b�F1;B>@N)C&D-L:Y+[�H?8K7�;I<�uMv1w�x-y&z1{=|�x-xM}-~��&xM��N�L:<&9�9�7�F�<M7�Y&8:9?V-L:<=>19�8KA-G$C&H�\+<M7?8KC&A
G$H�C&\!7�F1;�Y1<M7)<MP�<&9?;&Q�R�ST;I[�8OLOL�<&9�9?D1\J;�7�F�<M7�7�F1;�U&8K;B[�;BHINB<&N�F1;=9�8KA-G$C&H�\+<M7?8KC&AW<MP�C&D17Ip1QKqMrMs�9?7�D�Y-;BA-7)9-�!8K7
A1;B;=Y19	7�F-8:9i8KA-G$C&H�\+<M7?8KC&A�8KAJC&H)Y-;BH	7�CIH�;=Y-H)<=[�Z=G$C&H	;)��<M\JV-LK;���P1D17�[�F1;B7�F1;BHi8K7�Y-C-;=9�9?C�8:9	A1C&7�<MA�8K\JV�C&H�7)<MA-7
V�<MH�7�CMGi7�F-8:9�Y&8:9�N)D�9�9�8KC&A�QO]Jb�F1;�Y&8:9?V-L:<=>@\�8KE&F-7�LKC-C&XW9?C&\J;B7�F-8KA1E�LO8KX&;�7�F-8:9B�

� m q � m-� � m-�
��Q��	8K7)Y&8:Y1Y&LK; �-� �&� �&s
� Q�^�<&N�X&;BH �&� �&s �&�
� Q�b�D1H?8KA1E �&s q=s&s �&�

m D1V1V�C-9?;+7�F1;+N)C1Y-;+7�C�N)C&\J\�D1A-8:NB<M7�;JP�;B7?[�;B;BAa7�F1;JE&H)<&Y-;+Y1<M7)<MP�<&9?;+<MA�Y�7�F1;+U&8K;B[�CMG�7�F1;@Y1<M7)<MP�<&9?;
D�9?;=9�7�F1;IG$CMLOLKCM[�8KA1EJ8KA-7�;BH?G�<&N);&�

�B�1}�xMw-��y-�-x_�&w�y&z1xM�-�-~��&xM��xMw��
�1� �Mz4�-v�z1yM}�x��)u&}-w��B�1�3� � �1w�{-xi�Wu&}-w��B�1�4��yB��xi�Wu&}-w��B�1�/y-{-{1�=�&�&��x=�1}����B�1}3�-w�y&z1x1���

�

S�F1;BAWA1;B[E&H)<&Y-;I8KA-G$C&H�\+<M7?8KC&AW8:9I<=UM<=8OL:<MP-LK;@R?9�<=>&Z�<JA1;B[�<&9�9�8KE&A1\J;BA-7�8:9�E&H)<&Y-;=Y�<MA�Y@;BA-7�;BH�;=Y�Z�C&HI<MA
<&9�9�8KE&A1\J;BA-7�8:9IH�;BE&H)<&Y-;=Y�<MA�YW7�F1;�CML:Y�E&H)<&Y-;�N)C&H�H�;=N)7�;=Y�])Z�7�F1;�E&H)<&Y-;JY1<M7)<MP�<&9?;�\�D�9?7IN)C&\J\�D1A-8:NB<M7�;J7�F�<M7
8KA-G$C&H�\+<M7?8KC&A+7�C�7�F1;�U&8K;B[�Q�¡�;B7=¢ 9�9?D1V1V�C-9?;�7�F�<M7���;BAW�	8K7)Y&8:Y1Y&LK;�F�<&9�Y-;B\+<MA�Y-;=Y@<IH�;BE&H)<&Y-;�C&A+V1H�C&P-LK;B\!9?;B7
q&Z1<MA�YJ7�F�<M7�H�;BE&H)<&Y-;IY&8:Y@H�;BU&;=<=L�E&H)<&Y&8KA1E�;BH�H�C&H)9B�	��;BA�¢ 9�9�N)C&H�;I9?F1C&D-L:Y+F�<=U&;�P�;B;BA � s1Q	b�F1;�Y1<M7)<MP�<&9?;�N)C1Y-;
\�D�9?7�9?C&\J;B[�F1;BH�;�\+<MX&;INB<=LOL:9�7�C�uMv1w�x-y&z1{=|�x-xM}-~��&xM��£$�-v�z1yM}�x1Q m D1V1V�C-9?;I7�F�<M7	8K7�Y-C-;=9�9?CI8KA@7�F1;�G$CMLOLKCM[�8KA1E
[�<=>��

uMv1w�x-y&z1{=|�x-xM}-~��&xM��{-{ �/¤ ��xM�3uMv1w�x-y&z1{=|�x-xM}-~��&xM�	�=���
£-£-£
{-{ � £$�-v�z1yM}�x��M¥=¦�£B§=¨-©�¥���¥B��£+���=}1z��Mz-z-ª1x�¥��a¥B«1u�§-¥��W¬-©����

R?1C&H�P1H�;BU&8K7?>&Z�7�F-8:9�N)C1Y-;�9?F1CM[�9�LO8K7�;BH)<=LiUM<=LKD1;=9�H)<M7�F1;BH�7�F�<MA@UM<MH?8:<MP-LK;=9�G$C&H�7�F1;��-v�z1yM}�xJ<MH�E&D1\J;BA-7)9BQO]
b�F1;BA@7�F1;�9?V1H�;=<&Y19?F1;B;B7�U&8K;B[/[�C&D-L:Y+H�;=Y&8:9?V-L:<=>@8K7)9?;)LOG	8KAW7�F1;�G$CMLOLKCM[�8KA1E+[�<=>��

� m q � m-� � m-�
��Q��	8K7)Y&8:Y1Y&LK; � s �&� �&s
� Q�^�<&N�X&;BH �&� �&s �&�
� Q�b�D1H?8KA1E �&s q=s&s �&�

b�F1;�9?7)<=t@\�8KE&F-7	L:<M7�;BH�Y-;=N�8:Y-;�7�F�<M7�7�F1;B>�[�C&D-L:Y�LO8KX&;�7�C�<=L:9?C�U&8K;B[4E&H)<&Y-;�<=U&;BH)<ME&;=9	<&9	<IP�<MH�E&H)<MV1F�Z-<MA�Y
8K\JV-LK;B\J;BA-7I9?D�N�F�<�U&8K;B[�;BH=�

q=p

��Q ��Q � Q ^�Q � Q bIQ

rMs

�&s �&�

n�<=8KA-7)<=8KA-8KA1E�9?D�N�FT<+U&8K;B[8KAa<&Y1Y&8K7?8KC&AT7�C+7�F1;+9?V1H�;=<&Y19?F1;B;B7IU&8K;B[�H�; � D-8KH�;=9I\JC1Y&8OG$>&8KA1EW7�F1;+Y1<M7)<MP�<&9?;
N)C1Y-;&�

uMv1w�x-y&z1{=|�x-xM}-~��&xM��{-{ �/¤ ��xM�3uMv1w�x-y&z1{=|�x-xM}-~��&xM�	�=���
��yMw-�-w�y=v-|1~��&xM���1� �3¤ ��xM����yMw-�-w�y=v-|1~��&xM�	�=���
£-£-£
{-{ � £$�-v�z1yM}�x��M¥=¦�£B§=¨-©�¥���¥B��£+���=}1z��Mz-z-ª1x�¥��a¥B«1u�§-¥��W¬-©����
�1� � £$�-v�z1yM}�x��M¥=¦�£B§=¨-©�¥���¥B��£+���=}1z��Mz-z-ª1x�¥��a¥B«1u�§-¥��W¬-©����

¡�8KX&;B[�8:9?;&Z1<&Y1Y&8KA1E�<IV-8K;�N�F�<MH�7	U&8K;B[�Z-C&H	H�;B\JCMU&8KA1E�9?C&\J;�U&8K;B[�Z&[�C&D-L:Y�H�; � D-8KH�;�>&;B7�\JC&H�;�\JC1Y&8���NB<M7?8KC&A�9
7�CJ7�F1;�Y1<M7)<MP�<&9?;�N)C1Y-;&Q���P��?;=N)7
	$C&H?8K;BA-7�;=Y@V1H�C&E&H)<M\J\�8KA1E@R�A1C&7�7�CJ\J;BA-7?8KC&AWE&C-C1Y+V1H�C&E&H)<M\J\�8KA1EJV1H)<&N)7?8:N);M]
8:9�9?D1V1V�C-9?;=Y@7�C�V1H�CMU&8:Y-;IH�;)LO8K;)G	G$H�C&\!9?D�N�F@F�<MH)Y�	�N)C1Y-;=Y+\JC1Y&8���NB<M7?8KC&A�9B��N)C1Y-;�9?F1C&D-L:Y@P�;IH�;BD�9�<MP-LK;�[�8K7�F1C&D17
;=Y&8K7?8KA1EW<MA�Y+H�;=N)C&\JV-8OLO8KA1E@;)8K7�F1;BH�7�F1;�N�LO8K;BA-7IC&H�7�F1;I8K\JV-LK;B\J;BA-7)<M7?8KC&A�Q

b�F1;WC&P�9?;BH�U&;BH+V�<M7�7�;BH�A�<&N�F-8K;BU&;=9+7�F1;WE&C-<=L�8KA�7�F-8:9@NB<&9?;&Q��<M7�F1;BH@7�F�<MA4F�<MH)Y�	�N)C1Y&8KA1E_[�F-8:N�F�U&8K;B[�9
7�C@D1V�Y1<M7�;&Zi7�F1;+Y1<M7)<MP�<&9?;+NB<MAT\+<=8KA-7)<=8KAa<+LO8:9?7�CMG�C&P�9?;BH�U&;BH)9I[�F-8:N�F_9?F1C&D-L:YTP�;JA1C&7?8���;=YT[�F1;BAT8K7)9�9?7)<M7�;
N�F�<MA1E&;=9BQ

~�x-�M} � w � ��{-xMw � xMw�{ ¤ ��xM��~�x-�M} � w	�=���
£-£-£
� � w!�=�B�1} � ¤ ©	�a��� � ��{-xMw � xMw�{	£�{1����x��=���W�������_�
�&w�y&z1xM�-�-~��&xM��xMw �/¤ �)�&w�y&z1xM�-�-~��&xM��xMw�� � ��{-xMw � xMw�{��)�����
� £$�-v�z1yM}�x��M¥=¦�£B§=¨-©�¥��T¥B��£+���=}1z��Mz-z-ª1x�¥��a¥B«1u�§-¥��W¬-©����

�

6�A@C&H)Y-;BH�7�C�8KA-8K7?8:<=LO8��B;�7�F1;IU&;=N)7�C&H�CMGiC&P�9?;BH�U&;BH)9BZ&7�F1;�Y1<M7)<MP�<&9?;�[�8OLOLiV1H�CMU&8:Y-;I7?[�C�<&Y1Y&8K7?8KC&A�<=Li\J;B7�F1C1Y19BZ
w�xM���&{M}�xMwJ7�C+<&Y1Y@<MA@C&P�9?;BH�U&;BH�<MA�Y+w�xB� �&� x�7�C�H�;B\JCMU&;�<MA@C&P�9?;BH�U&;BH=Q

�1� �Mz4w�xM���&{M}�xMw	�)�&w�y&z1xM�-�-~��&xM��xMw � ��{-xMw � xMw��a�
� ��{-xMw � xMw�{	£�y&z-zi� � ��{-xMw � xMw����

�

� �-� ª1x-y=�3w�xB� �&� x��)�&w�y&z1xM�-�-~��&xM��xMw � ��{-xMw � xMw��a�
w�xM}&�1w&� � ��{-xMw � xMw�{	£�w�xB� �&� x�� � ��{-xMw � xMw����

�

b�F1;@C&P�9?;BH�U&;BHJV�<M7�7�;BH�A_V�;BH�\�8K7)9+N�LO8K;BA-7WN)C1Y-;�R�[�F-8:N�F4\+<MA�<ME&;=9�7�F1;�Y1<M7)<MP�<&9?;@<MA�Y_7�F1;@U&8K;B[�;BH)9)]�7�C
9?;)LK;=N)7�[�F-8:N�FWC&P�9?;BH�U&;BH)9�<MH�;�<&N)7?8KU&;&Z�<MA�Y+C&P�9?;BH�U&;BH)9�NB<MA@;BU&;BAWP�;�<&Y1Y-;=YW<MA�Y@H�;B\JCMU&;=Y+<M7�H�D1A�	$7?8K\J;&Q

qMr

b�F-8:9@Y&8:9�N)D�9�9�8KC&A/F�<&9+EMLKC-9�9?;=Y�CMU&;BH@<aA-D1\�P�;BHWCMGJY-;B7)<=8OL:9BQ!1C&HJ8KA�9?7)<MA�N);&ZI7�F1;TN�LO8K;BA-7�\�8KE&F-7W9?7�C&H�;
<=LOL�7�F1;J8KA-G$C&H�\+<M7?8KC&A_CMG�8KA-7�;BH�;=9?7�7�CW8K7+R�[�F-8:N�F_\�8KE&F-7�P�;W<=LOL�7�F1;@p1QKqMrMs@E&H)<&Y-;=9BZiC&H �?D�9?7�7�F1;+E&H)<&Y-;=9IG$C&H
9?C&\J;+9?7�D�Y-;BA-7)9BZiC&H��?D�9?7�7�F1;+A-D1\�P�;BH�CMG�D1V�Y1<M7�;=9�7�CW7�F1;@Y1<M7)<MP�<&9?;�G$C&H�<W��yM}�y���y-{-x � �M}�� � �=}��-~��&xM��xMw�]�Z
Y-D1V-LO8:NB<M7?8KA1E�V�<MH�7)9�CMG�7�F1;JY1<M7)<MP�<&9?;&Z�C&H�7�F1;+N�LO8K;BA-7�\�8KE&F-7IH�;=<&YW7�F1;+Y1<M7)<MP�<&9?;�[�F1;BATA1;B;=Y-;=Y�Q � H�;)L:<M7�;=Y
Y-;=9�8KE&A+Y-;=N�8:9�8KC&AJ8:9	[�F1;B7�F1;BH�7�F1;�Y1<M7)<MP�<&9?;�9?;BA�Y19�<=LOL�V�C&7�;BA-7?8:<=LOLK>�H�;)LK;BUM<MA-7	8KA-G$C&H�\+<M7?8KC&AJ7�C�7�F1;�N�LO8K;BA-7�[�F1;BA
<MAJD1V�Y1<M7�;�C1NBN)D1H)9�R�7�F-8:9i8:9	7�F1;������
	I9?7�H�D�N)7�D1H�;M])Z&C&H	7�F1;�Y1<M7)<MP�<&9?;�9�8K\JV-LK>J8KA-G$C&H�\+9	7�F1;�N�LO8K;BA-7=Z��B<MA�D1V�Y1<M7�;
F�<&9�C1NBN)D1H�H�;=Y��R�7�F-8:9�8:9i7�F1;��������M9?7�H�D�N)7�D1H�;M])Qib�F1;�V1D-LOL�9?7�H�D�N)7�D1H�;�G$C&H)N);=9�7�F1;�N�LO8K;BA-7�7�C�H�; � D1;=9?7�8KA-G$C&H�\+<M7?8KC&A�Z
[�F-8:N�FW\+<=>+H�;=9?D-LK7�8KAW\JC&H�;I\J;=9�9�<ME&;=9BZ-P1D17�CMU&;BH)<=LOLi<J9?\+<=LOLK;BHI<M\JC&D1A-7�CMG�Y1<M7)<�7�H)<MA�9�G$;BH�H�;=Y�Q

c�d$e�d�� ����������g�����k��
b�F1;JP-L:<&N�X-P�C-<MH)YTV�<M7�7�;BH�ATE&;BA1;BH)<=LO8��B;=9�7�F1;+C&P�9?;BH�U&;BHIV�<M7�7�;BH�AT7�CWV�;BH�\�8K7�\�D-LK7?8KV-LK;WY1<M7)<@9?C&D1H)N);=9�<&9I[�;)LOL
<&9I\�D-LK7?8KV-LK;WU&8K;B[�;BH)9BQW6�7J<=L:9?C�F�<&9I7�F1;+;)t�;=N)7�CMG�N)C&\JV-LK;B7�;)LK>_Y-;=N)C&D1V-LO8KA1EaV1H�C1Y-D�N);BH)9�<MA�YaN)C&A�9?D1\J;BH)9�CMG
8KA-G$C&H�\+<M7?8KC&A�Q

� P-L:<&N�X-P�C-<MH)Y�8:9	<�H�;BV�C-9�8K7�C&H�>�CMG�\J;=9�9�<ME&;=9i[�F-8:N�F�8:9	H�;=<&Y1<MP-LK;�<MA�Y�[�H?8K7)<MP-LK;�P->�<=LOL�V1H�C1N);=9�9?;=9BQiS�F1;BA�	
;BU&;BH�<MA�;BU&;BA-7iC1NBN)D1H)9	7�F�<M7i\�8KE&F-7	P�;�CMG�8KA-7�;BH�;=9?7	7�CI<MA1C&7�F1;BHiV�<MH�7?>&ZM7�F1;�V1H�C1N);=9�9iH�;=9?V�C&A�9�8KP-LK;�G$C&HiC&H	X-A1CM[�L�	
;=Y-E&;=<MP-LK;J<MP�C&D17I7�F1;�;BU&;BA-7I<&Y1Y19�7�CJ7�F1;�P-L:<&N�X-P�C-<MH)Y�<MA�<MA1A1C&D1A�N);B\J;BA-7ICMG�7�F1;�;BU&;BA-7=Q ��7�F1;BHIV1H�C1N);=9�9?;=9
NB<MA�H�;=<&Y�7�F1;�P-L:<&N�X-P�C-<MH)Y�Q�6�AT7�F1;�7?>-V-8:NB<=L�NB<&9?;&Z�7�F1;B>W[�8OLOL�8KE&A1C&H�;�\JC-9?7ICMG�8K7)9IN)C&A-7�;BA-7)9BZ�[�F-8:N�FaY-C@A1C&7
N)C&A�N);BH�A@7�F1;B\WZ1P1D17�7�F1;B>+\+<=>J7)<MX&;I<&N)7?8KC&A@C&A@C&7�F1;BH�;BU&;BA-7)9BQ � V1H�C1N);=9�9�[�F-8:N�F@V�C-9?7)9�<MA@<MA1A1C&D1A�N);B\J;BA-7
7�CJ7�F1;�P-L:<&N�X-P�C-<MH)Y@F�<&9�A1CJ8:Y-;=<J[�F1;B7�F1;BH �B;BH�C�Z�C&A1;&Z1C&H�\+<MA->+C&7�F1;BH�V1H�C1N);=9�9?;=9�<MH�;IV�<=>&8KA1E@<M7�7�;BA-7?8KC&AW7�C
8K7)9�<MA1A1C&D1A�N);B\J;BA-7)9BQ

�	L:<&N�X-P�C-<MH)Y19JE&;BA1;BH)<=LOLK>3Y-CaA1C&7+;BA-G$C&H)N);T<TV�<MH�7?8:N)D-L:<MHW9?7�H�D�N)7�D1H�;WC&A47�F1;)8KHW<MA1A1C&D1A�N);B\J;BA-7)9BZ�P1D17@<
[�;)LOL�	$D1A�Y-;BH)9?7�C-C1Y�\J;=9�9�<ME&;�G$C&H�\+<M7�8:9�H�; � D-8KH�;=Y�9?CJ7�F�<M7�V1H�C1N);=9�9?;=9INB<MA@8KA-7�;BH�C&V�;BH)<M7�;&Q m C&\J;�P-L:<&N�X-P�C-<MH)Y19
V1H�CMU&8:Y-; �1LK7�;BH?8KA1Ea9?;BH�U&8:N);=9�9?C�7�F�<M7�N�LO8K;BA-7)9JY-C�A1C&7�9?;B;@<=LOL�<MA1A1C&D1A�N);B\J;BA-7)9BZ �?D�9?7�7�F1C-9?;+CMG�<@V�<MH�7?8:N)D-L:<MH
7?>-V�;&`&C&7�F1;BH	P-L:<&N�X-P�C-<MH)Y19	<MD17�C&\+<M7?8:NB<=LOLK>J9?;BA�YJ<MA1A1C&D1A�N);B\J;BA-7)9i7�C�N�LO8K;BA-7)9	[�F-8:N�F+F�<=U&;�H�;BEM8:9?7�;BH�;=Y�8KA-7�;BH�;=9?7
R�7�F-8:9�8:9�<�V1D-LOL�9?7�H�D�N)7�D1H�;M])Q

� A�C&H)Y&8KA�<MH�>4P1D-LOLK;B7?8KA P�C-<MH)Y3R�;)8K7�F1;BHW7�F1;�V1F->19�8:NB<=L�C&H@7�F1;�;)LK;=N)7�H�C&A-8:NTX&8KA�Y�]J8:9@<MA�;)��<M\JV-LK;TCMGJ<
P-L:<&N�X-P�C-<MH)YW9?>19?7�;B\WQ � A1C&7�F1;BH�;)��<M\JV-LK;�CMG�<�P-L:<&N�X-P�C-<MH)YW<M7�nW6?b48:9�7�F1; �B;BV1F->-H�\J;=9�9�<MEM8KA1E+9?;BH�U&8:N);&Q

b�F1;�¡�8:9?X&CMU@7�;)�17INB<=LOL:9�7�F-8:9�V�<M7�7�;BH�A��)[�F-8K7�;�P�C-<MH)Y�JH)<M7�F1;BH�7�F�<MA��)P-L:<&N�X-P�C-<MH)Y�Q _b�F1;�G$C&H�\J;BH�A�<M\J;
\+<=>_P�;T\JC&H�;�\JC1Y-;BH�A�	�9?;B;B\�8KA1E�ZIP1D17@7�F1;WL:<M7�7�;BH+8:9@9?7)<MA�Y1<MH)Y�N)C&\JV1D17�;BHW9�N�8K;BA�N);a7�;BH�\�8KA1CMLKC&E&>4[�F-8:N�F
F�<&9�P�;B;BAa8KA_D�9?;JG$C&H�Y-;=NB<&Y-;=9J<MA�YT[�8OLOL�P�;@\JC&H�; � D-8:N�X&LK>_H�;=N)C&E&A-8��B;=YaC&D17)9�8:Y-;@p1QKqMrMs1QWb�F1; ��H)9?7�\+<��?C&H
P-L:<&N�X-P�C-<MH)Y�9?>19?7�;B\![�<&9�7�F1;�^�;=<MH)9�<=>�	$6?6�9?V�;B;=N�F�H�;=N)C&E&A-8K7?8KC&AT9?>19?7�;B\WZ-8K\JV-LK;B\J;BA-7�;=Y�P�;B7?[�;B;BA_q=�-r-q�<MA�Y
q=�-rMp1Q

c�d$e�dKc /j���!���"#��k
b�F1;�\J;=Y&8:<M7�C&H�V�<M7�7�;BH�A@8:9�8KA-7�;BH�\J;=Y&8:<M7�;�P�;B7?[�;B;BAWC&P�9?;BH�U&;BHI<MA�Y@P-L:<&N�X-P�C-<MH)Y�Q�6�7IY-;=N)C&D1V-LK;=9�8KA-G$C&H�\+<M7?8KC&A
V1H�C1Y-D�N);BH)9�<MA�YaN)C&A�9?D1\J;BH)9IP1D17JY-C-;=9IA1C&7�Y-;=N)C&D1V-LK;WN)C&A-7�H�CML�Q+S�F1;BH�;=<&9IP-L:<&N�X-P�C-<MH)YaN)C&\J\�D1A-8:NB<M7?8KC&AT8:9
<&9?>-A�N�F1H�C&A1C&D�9BZ=\J;=Y&8:<M7�C&H)9i<MH�;�9?>-A�N�F1H�C&A1C&D�9B��7�F1;B>�Y-C�A1C&7iH�;B7�D1H�A�N)C&A-7�H�CML-7�C�7�F1;�V1H�C1Y-D�N);BH	P�;)G$C&H�;�V�<&9�9�8KA1E
7�F1;�8KA-G$C&H�\+<M7?8KC&AW7�CJ<=LOL	N)C&A�9?D1\J;BH)9BQ

�	�%$ &('&*�)�*�'�+M%�5-,�.10�2/.�0�+M%$#�*�+
��;)G$;BH�7�C m ;=N)7?8KC&AW��Q � G$C&H�N)C&\JV�C-9�8K7�;�V�<M7�7�;BH�A�9BQ

b�F-8:9@9?;=N)7?8KC&A/Y&8:9�N)D�9�9?;=9@7�H)<=U&;BH)9�8KA1E4N)C&\JV�C-9�8K7�;=9@<MA�Y�0=C&H@V�;BH?G$C&H�\�8KA1E4C&7�F1;BH+C&V�;BH)<M7?8KC&A�9@C&A3<=LOL�7�F1;
9?D1P1V�<MH�7)9JCMG�<aN)C&\JV�C-9�8K7�;&Q ��D1H+E&C-<=L�8:9J7�C_9?D1V1V�C&H�7+\+<MA->_Y&8Ot�;BH�;BA-7+C&V�;BH)<M7?8KC&A�9BZ�<MA�Y_7�CTP�;T<MP-LK;�7�C
V�;BH?G$C&H�\ 7�F1;B\�C&A�\+<MA->�Y&8Ot�;BH�;BA-7�9?D1P1V�<MH�7)9	CMG�<IN)C&\JV�C-9�8K7�;&Q m 8KA�N);�P�C&7�FJ7�F1;�C&V�;BH)<M7?8KC&AJ7�C�P�;�V�;BH?G$C&H�\J;=Y
<MA�Y@7�F1;I7?>-V�;�CMG�N)C&\JV�C-9�8K7�;�C&P��?;=N)7�7�CJP�;�C&V�;BH)<M7�;=Y@D1V�C&A�<=t�;=N)7�7�F1;�8K\JV-LK;B\J;BA-7)<M7?8KC&A�Z�Y-;=N�8:Y&8KA1EWF1CM[37�C
P1H�;=<MX@Y-CM[�A@7�F1;IV1H�C&P-LK;B\ NB<MAWP�;�Y&821@N)D-LK7=Q

q=�

� C&A�9�8:Y-;BH	7�F1;�;)��<M\JV-LK;�CMG�<MA����
�����	��
�����������������	���=Z=C&H ��m bIZ=[�F-8:N�F�8:9�<�H�;BV1H�;=9?;BA-7)<M7?8KC&A�CMG�R�7�F1;�9?>-A-7)<=�
CMG=]I<WN)C&\JV1D17�;BH�V1H�C&E&H)<M\WQ�1C&HI8KA�9?7)<MA�N);&Z	7�F1;+P-8KA�<MH�>_<&Y1Y&8K7?8KC&A_C&V�;BH)<M7�C&H ��\�8KE&F-7�P�;@H�;BV1H�;=9?;BA-7�;=YTP->
«1ªM��{��=v+C&P��?;=N)7)9B�

�&ª1y-{-{_«1ªM��{��=v x��-}�x=��z1{����&v1w�x-{-{1� � �3�
���&v1w�x-{-{1� � �/ª1xM�-}����&v��
���&v1w�x-{-{1� � �3w��=�&|1}����&v��
£-£-£

�
��<MH?8:<MP-LK;�H�;)G$;BH�;BA�N);=9BZ-<&9�9�8KE&A1\J;BA-7�C&V�;BH)<M7?8KC&A�9�R�y ¤ ��])Z&<MA�Y+N)C&A�Y&8K7?8KC&A�<=L�;)�1V1H�;=9�9�8KC&A�9�R�y��������-]i<MH�;�C&7�F1;BH

7?>-V�;=9�CMG	;)�1V1H�;=9�9�8KC&A��
�&ª1y-{-{_~�yMw���xM�/x��-}�x=��z1{����&v1w�x-{-{1� � �3�
u&}-w��B�1� � yMw&��yB��xi�
£-£-£

�

�&ª1y-{-{ � {-{1�=�&���=v x��-}�x=��z1{����&v1w�x-{-{1� � �/�
~�yMw���xM�3ª � y&ªM��xi� � �ª1xM�-}�!=|�y=��z�{1�Mz1xi�_¥My�¥4�B�!¥My ¤ �i¥
���&v1w�x-{-{1� � �3w � y&ªM��xi� � 4w��=�&|1}�!=|�y=��z�{1�Mz1xi�_¥ �i¥4�B�!¥My ¤ �i¥
£-£-£

�

�&ª1y-{-{#" � ��z����&v1w/x��-}�x=��z1{����&v1w�x-{-{1� � �/�
���&v1w�x-{-{1� � � � � ��z��=}�� � ���
���&v1w�x-{-{1� � �3}&|�x=�$���&v1w��
���&v1w�x-{-{1� � � x&ª1{-x����&v1w��
£-£-£

�
� N)C&\JV-LK;B7�;�H�;BV1H�;=9?;BA-7)<M7?8KC&AW[�C&D-L:YWF�<=U&;�\+<MA->+C&7�F1;BH ��m b3A1C1Y-;�7?>-V�;=9�<&9�[�;)LOL�Z�9?D�N�FT<&9 � {-{1�=�&���=v+G$C&H
<&9�9�8KE&A1\J;BA-7)9BZ-G$C&H�;)�1V1H�;=9�9�8KC&A�9BZ�<MA�Y@9?C�G$C&H�7�F�Q

� V�<MH�7?8:N)D-L:<MH�D�9?;ICMG ��Z�9?D�N�FW<&9�y ����Z1[�C&D-L:Y@P�;IH�;BV1H�;=9?;BA-7�;=YW<M7�H�D1A-7?8K\J;IP->

(PlusOp)

a
(VarRef)

b
(VarRef)

� N)C&\JV-8OLK;BHWC&H+C&7�F1;BH+V1H�C&E&H)<M\ <MA�<=LK>19�8:9+7�C-CML�N)H�;=<M7�;=9+<MA ��m b�P->4V�<MH)9�8KA1Ea7�F1;�7)<MH�E&;B7JV1H�C&E&H)<M\W`
<=G$7�;BHIV�<MH)9�8KA1E�Zi7�F1;J7�C-CML�V�;BH?G$C&H�\+9IC&V�;BH)<M7?8KC&A�9BZi9?D�N�F_<&9�7?>-V�;=N�F1;=N�X&8KA1E�Z	V1H�;B7�7?>�	$V1H?8KA-7?8KA1E�ZiC&V17?8K\�8��)8KA1E�ZiC&H
E&;BA1;BH)<M7?8KA1EWN)C1Y-;&Z�C&A�7�F1; ��m bIQ&%�<&N�F�C&V�;BH)<M7?8KC&AW8:9�Y&8Ot�;BH�;BA-7I7�F�<MA�7�F1;�C&7�F1;BH)9BZ�P1D17I;=<&N�F ��m b A1C1Y-;�8:9
<=L:9?CJD1A-LO8KX&;�7�F1;IC&7�F1;BH)9BQ

%�<&N�F@P�C=�@CMGi7�F-8:9�7)<MP-LK;�[�8OLOL	P�; �1LOLK;=YW8KAW[�8K7�FW<JY&8Ot�;BH�;BA-7�V-8K;=N);�CMG�N)C1Y-;&�
��P��?;=N)7)9

" � ��z����&v1w � {-{1�=�&���=v
��V�;BH
	 7?>-V�;=N�F1;=N�X
<M7?8KC&A�9 V1H�;B7�7?>�	$V1H?8KA-7

q=�

b�F1; � D1;=9?7?8KC&Aa8:9�[�F1;B7�F1;BHJ7�CWC&H�E-<MA-8��B;+7�F1;@N)C1Y-;W9?C�<&9�7�CWE&H�C&D1V_<=LOL�7�F1;+7?>-V�;=N�F1;=N�X&8KA1EaN)C1Y-;@7�C&E&;B7�F1;BH
R?<MA�Y�A1;=N);=9�9�<MH?8OLK>_9?V1H�;=<&YTN)C1Y-;@Y-;=<=LO8KA1ET[�8K7�F�" � ��z����&v1w19I<&N)H�C-9�9I7�F1;�8K\JV-LK;B\J;BA-7)<M7?8KC&A�]IC&H�7�CWE&H�C&D1Va<=LOL
7�F1;JN)C1Y-;JY-;=<=LO8KA1EW[�8K7�FT<+V�<MH�7?8:N)D-L:<MHI7?>-V�;�CMG�;)�1V1H�;=9�9�8KC&A�Z�P1D17�9?V-LO8K7�D1VTN)C1Y-;+Y-;=<=LO8KA1EW[�8K7�FT<JV�<MH�7?8:N)D-L:<MH
C&V�;BH)<M7?8KC&A�Q

R � H�;)L:<M7�;=YW8:9�9?D1;J8:9IF1CM[7�CW9?;)LK;=N)7J<MA�Y�;)�1;=N)D17�;J7�F1;JV1H�C&V�;BH�P-LKC1N�XTCMG�N)C1Y-;&ZiH�;BE-<MH)Y&LK;=9�9�CMG�[�F1;BH�;�8K7
\+<=>�P�;�LKC1NB<M7�;=Y�Q��&<=UM<1¢ 9�\J;B7�F1C1Y+Y&8:9?V�<M7)N�F+\J;=N�F�<MA-8:9?\!9?;)LK;=N)7)9�[�F-8:N�F+U&;BH)9�8KC&A+CMGi<MA+CMU&;BH?LKC-<&Y-;=YJ\J;B7�F1C1Y
7�C�NB<=LOL�P�<&9?;=YaC&Aa7�F1;+H�D1A�	$7?8K\J;+7?>-V�;+CMG�7�F1;+H�;=N);)8KU&;BH=QTb�F-8:9�\+<MX&;=9�8K7�V�C-9�9�8KP-LK;W7�C�Y&8:9?V�<M7)N�F_P�<&9?;=YTC&A
;)8K7�F1;BH�C&V�;BH)<M7?8KC&A�9�C&H�C&P��?;=N)7)9BZ-P1D17�A1C&7�P�C&7�F�<M7�7�F1;�9�<M\J;I7?8K\J;&QO]

b�F1;�8KA-7�;BH�V1H�;B7�;BHJ<MA�YTV1H�C1N);=Y-D1H)<=L�V�<M7�7�;BH�A�9�R?<MA�Y�U&8:9�8K7�C&H=Z�<@H�; ��A1;B\J;BA-7�CMG�V1H�C1N);=Y-D1H)<=L$]IV�;BH�\�8K7J;)��	
V1H�;=9�9�8KC&ATCMG�C&V�;BH)<M7?8KC&A�9ICMU&;BHIN)C&\JV�C-9�8K7�;JC&P��?;=N)7)9I9?D�N�Fa<&9 ��m b�9BQ�6�A-7�;BH�V1H�;B7�;BH�N)CMLOLK;=N)7)9I7�C&E&;B7�F1;BH�9�8K\�8OL:<MH
C&P��?;=N)7)9I<MA�Ya9?V1H�;=<&Y19�<MV�<MH�7�9�8K\�8OL:<MH�C&V�;BH)<M7?8KC&A�9BQ+�	H�C1N);=Y-D1H)<=L�N)CMLOLK;=N)7)9�9�8K\�8OL:<MHJC&V�;BH)<M7?8KC&A�9�<MA�YT9?V1H�;=<&Y19
<MV�<MH�7�9�8K\�8OL:<MHIC&P��?;=N)7)9BQ	b�F�<M7�\J;=<MA�9�7�F�<M7

6�A-7�;BH�V1H�;B7�;BH�\+<MX&;=9	8K7�;=<&9?>+7�CJ<&Y1Y@C&P��?;=N)7)9BZ-F�<MH)Y+7�C+<&Y1Y+C&V�;BH)<M7?8KC&A�9BQ
�	H�C1N);=Y-D1H)<=Li\+<MX&;=9	8K7�;=<&9?>+7�CJ<&Y1Y@C&V�;BH)<M7?8KC&A�9BZ1F�<MH)Y+7�CJ<&Y1Y@C&P��?;=N)7)9BQ

��%�<&9?>��<MA�Y �)F�<MH)Y��H�;)G$;BH�7�C�F1CM[3\+<MA->@Y&8Ot�;BH�;BA-7IN�L:<&9�9?;=9�A1;B;=Y@7�CJP�;�\JC1Y&8���;=Y�Q�S�F1;BA@7�F1;I8KA-7�;BH�V1H�;B7�;BH
N�L:<&9�9�8:9�D�9?;=Y�Z�<&Y1Y&8KA1E@<JA1;B[3C&P��?;=N)7�H�; � D-8KH�;=9�[�H?8K7?8KA1E@<J9�8KA1EMLK;�A1;B[N�L:<&9�9BZ�P1D17�<&Y1Y&8KA1EW<�A1;B[/C&V�;BH)<M7?8KC&A
H�; � D-8KH�;=9�\JC1Y&8OG$>&8KA1Ea;BU&;BH�>T;)�-8:9?7?8KA1EaN�L:<&9�9BQab�F1;+H�;BU&;BH)9?;J8:9�7�H�D1;JG$C&H�V1H�C1N);=Y-D1H)<=L�Qa��C&7�F_V�<M7�7�;BH�A�9IF�<=U&;
N�L:<&9�9?;=9	G$C&H�<=LOL�C&P��?;=N)7)9	7�F�<M7�NB<MV17�D1H�;�7�F1C-9?;�C&P��?;=N)7)9B¢M8:Y&8KC-9?>-A�N)H)<&9�8K;=9BZ�<&9	8OLOLKD�9?7�H)<M7�;=YJ8KA+7�F1;IN)C1Y-;�;)��<M\JV-LK;=9
G$C&H " � ��z����&v1w�<MA�Y � {-{1�=�&���=v�<MP�CMU&;&`M7�F1; � D1;=9?7?8KC&A�8:9i[�F1;BH�;�7�C�V-L:<&N);�7�F1;�8K\JV-LK;B\J;BA-7)<M7?8KC&A�9	CMG�C&V�;BH)<M7?8KC&A�9
7�F�<M7�;)�-8:9?7�G$C&H�<=LOLiC&P��?;=N)7)9BQ	b�F1;I;)��<M\JV-LK;=9�P�;)LKCM[9?F1C&D-L:YWN�L:<MH?8OG$>@7�F-8:9�A1C&7?8KC&A�Q

S�F-8:N�F4<MV1V1H�C-<&N�F_9?F1C&D-L:Ya>&C&Da7)<MX&;+[�F1;BA4Y-;=9�8KE&A-8KA1E_<�9?CMG$7?[�<MH�;+9?>19?7�;B\ Y-;BV�;BA�Y19JC&Aa7?[�C@G�<&N)7�C&H)9BQ
�8KH)9?7=Z1Y-C�>&C&D@U&8K;B[37�F1;�9?>19?7�;B\!<&9�C&V�;BH)<M7?8KC&A�	�N);BA-7�H?8:NIC&H�C&V�;BH)<MA�Y�	�N);BA-7�H?8:N�� � H�;I7�F1;�<=LKE&C&H?8K7�F1\+9�N);BA-7�H)<=L�Z
C&H�<MH�;I7�F1;�C&P��?;=N)7)9��TR�6�AW<MAWC&P��?;=N)7
	$C&H?8K;BA-7�;=YW9?>19?7�;B\WZ1CMG$7�;BA@7�F1;�C&P��?;=N)7)9�<MH�;&QO] m ;=N)C&A�Y�Z�[�F�<M7�<&9?V�;=N)7)9�CMG
7�F1;+9?>19?7�;B\ <MH�;J\JC-9?7�LO8KX&;)LK>T7�CWN�F�<MA1E&;�� R � V1H�C&E&H)<M\J\�8KA1E+L:<MA1E&D�<ME&;&¢ 9�9?>-A-7)<=��H)<MH�;)LK>TN�F�<MA1E&;=9I7�CW<&Y1Y
A1;B[o7?>-V�;=9ICMG�;)�1V1H�;=9�9�8KC&A�Z	P1D17�<WV1H�C&E&H)<M\ <MA�<=LK>��B;BHJ9?D�N�F_<&9�<WN)C&\JV-8OLK;BH�8:9�CMG$7�;BAa;)�17�;BA�Y-;=YT[�8K7�FaA1;B[
G$D1A�N)7?8KC&A�<=LO8K7?>&QO]Jb�F1C-9?;�N�F�<MA1E&;=9�9?F1C&D-L:Y@P�;�;=<&9?;=Y@P->+>&C&D1H�N�F1CM8:N);�CMG	Y-;=9�8KE&A�V�<M7�7�;BH�A�Q

c�d���d$e ����"Bj1k��ik=j�"Bj1k
b�F1;�8KA-7�;BH�V1H�;B7�;BH�V�<M7�7�;BH�AJE&H�C&D1V�9	7�C&E&;B7�F1;BH�<=LOL�7�F1;�C&V�;BH)<M7?8KC&A�9iG$C&H�<IV�<MH�7?8:N)D-L:<MH�UM<MH?8K;B7?>JCMG�C&P��?;=N)7=Q�6�7�D�9?;=9
7�F1;�V1H�; 	$;)�-8:9?7?8KA1EWN�L:<&9�9?;=9�G$C&H�C&P��?;=N)7)9�<MA�YW<&Y1Y19�7�CJ;=<&N�F�N�L:<&9�9�<�\J;B7�F1C1Y+G$C&H�;=<&N�F�9?D1V1V�C&H�7�;=Y@C&V�;BH)<M7?8KC&A�Q
1C&H�;)��<M\JV-LK;&Z

�&ª1y-{-{����&v1w�x-{-{1� � �3�
£-£-£
	 �&v�x4}��&v�x-�=|�x-��
	�=���
u&}-w��B�1�4v1w�xM}-}��-«-w��B�1}	�=���

�

£-£-£

�&ª1y-{-{ � {-{1�=�&���=v x��-}�x=��z1{����&v1w�x-{-{1� � �/�
£-£-£
	 �&v�x4}��&v�x-�=|�x-��
	�=�a� £-£-£ �
u&}-w��B�1�4v1w�xM}-}��-«-w��B�1}	�=�a� £-£-£ �

�

� s

�&ª1y-{-{#" � ��z����&v1w/x��-}�x=��z1{����&v1w�x-{-{1� � �/�
£-£-£
	 �&v�x4}��&v�x-�=|�x-��
	�=�a� £-£-£ �
u&}-w��B�1�4v1w�xM}-}��-«-w��B�1}	�=�a� £-£-£ �

�

c�d���d�� � k ���Mj�����k ���
b�F1;+V1H�C1N);=Y-D1H)<=L�V�<M7�7�;BH�ATE&H�C&D1V�9I7�C&E&;B7�F1;BH�<=LOL�7�F1;@N)C1Y-;+7�F�<M7I8K\JV-LK;B\J;BA-7)9J<WV�<MH�7?8:N)D-L:<MH�C&V�;BH)<M7?8KC&A�QW6�7
N)H�;=<M7�;=9�<@N�L:<&9�9�G$C&H�;=<&N�F�C&V�;BH)<M7?8KC&A�`�7�F1;JN�L:<&9�9�F�<&9�<@9?;BV�<MH)<M7�;�\J;B7�F1C1Y@G$C&H�;=<&N�F�7?>-V�;�CMG�C&V�;BH)<MA�Y�Q�1C&H
;)��<M\JV-LK;&Z�7?>-V�;=N�F1;=N�X&8KA1E@N)C1Y-;�\�8KE&F-7�LKC-C&XJLO8KX&;�7�F-8:9B�

�&ª1y-{-{ 	 �&v�x-�=|�x-��
��
£-£-£
 � 4}��&v�x-�=|�x-��
�¥My���������¥
	 �&v�x4}���" � ��z����&v1w	��" � ��z����&v1w�x1�4�

	 �&v�x�� � z1x 	 �&v�x ¤ }������&v1w�x-{-{1� � ���Bx	£�� � ��z��=}�� � ����� � 4}��&v�x � �o¥My�¥
	 �&v�x_}&|�x=� 	 �&v�x ¤ }������&v1w�x-{-{1� � ���Bx	£�}&|�x=�$���&v1w���� � 4}��&v�x � �o¥ �i¥
	 �&v�x�x&ª1{-x 	 �&v�x ¤ }������&v1w�x-{-{1� � ���Bx	£�x&ª1{-x����&v1w���� � 4}��&v�x � �o¥M��¥
 � 4� �-� ª 	 �&v�x��&{�z1xM���B��x&z3x&ª1{-xM�&|�xMw�x
�=���-�B� � ��z 	 �&v�x ¤-¤ � �-� ª 	 �&v�x1��������}&|�x=� 	 �&v�x ¤-¤ x&ª1{-x 	 �&v�x1�-�_�
 � 	 |��&{3x��&v1w�x-{-{1� � � �&{4��x&ª-ª$!M}��&v�x&z	� ��x-�-y=��{-x_}&|�x3� � ��z��=}�� � � �&{ � � � �-� ª1x-y=�
 � _}��&v�x3y=��z4}&|�x4}&|�x=� y=��z3x&ª1{-x��1w�y=���=|�x-{T|�y � x4}&|�x�{-yB��x4}��&v�x	£
 � 	 |�x4}��&v�x � �3}&|�x_�&| � ª1x�x��&v1w�x-{-{1� � ���&{_}&|�x4}��&v�x � �3}&|�x �1w�y=���=|�x-{	£
w�xM}&�1w&�3}&|�x=� 	 �&v�xi�

� x&ª1{-x4�
w�xM}&�1w&� �-w-w � w 	 �&v�xi� � #�-w-w � w 	 �&v�x��&{�z1xM���B��x&z3x&ª1{-xM�&|�xMw�x

�
�

 � 4}��&v�x-�=|�x-��
�¥My ¤ �i¥
	 �&v�x4}�� � {-{1�=�&���=v�� � {-{1�=�&���=v3x1�4�
£-£-£

�

�

b�F1;�V1H�C1N);=Y-D1H)<=L�V�<M7�7�;BH�A4[�C&H�X19J[�;)LOL�;BA1C&D1E&F�Z�P1D17@7�F1;BH�;W8:9@C&A1;�D1EMLK>3<&9?V�;=N)7=�T7�F1;aY-; ��A-8K7?8KC&A3CMG
}������&v1w�x-{-{1� � ��Q�6�7IA1;B;=Y19I7�CWNB<=LOL�}���" � ��z����&v1w@C&HI}�� � {-{1�=�&���=v@C&HI}��M~�yMw���xM�@C&H�9?C&\J;�C&7�F1;BH�G$D1A�N)7?8KC&A�Z
Y-;BV�;BA�Y&8KA1E@C&AW7�F1;IH�D1A�	$7?8K\J;�7?>-V�;ICMG	7�F1;�9?D1P�N)C&\JV�C&A1;BA-7)9�CMG�<MA@;)�1V1H�;=9�9�8KC&A�Q

�&ª1y-{-{ 	 �&v�x-�=|�x-��
��
£-£-£
	 �&v�x4}������&v1w�x-{-{1� � ��� ���&v1w�x-{-{1� � ��x1�4�
�=���Bx3�B��{M}�y=���-x � ��«1ªM��{��=v��_�
w�xM}&�1w&�3}��M«1ªM��{��=v��-��«1ªM��{��=v��&x1���

� x&ª1{-x3�=���Bx3�B��{M}�y=���-x � ��~�yMw���xM���_�
w�xM}&�1w&�3}��M~�yMw���xM�	�-��~�yMw���xM���&x1���

� x&ª1{-x3�=���Bx3�B��{M}�y=���-x � � � {-{1�=�&���=v��a�

� q

w�xM}&�1w&�3}�� � {-{1�=�&���=v��-� � {-{1�=�&���=v��&x1���
� x&ª1{-x3�=���Bx3�B��{M}�y=���-x � � " � ��z����&v1w��a�
w�xM}&�1w&�3}���" � ��z����&v1w	�-��" � ��z����&v1w��&x1���

� x&ª1{-x!£-£-£
£-£-£

�

�

n�<=8KA-7)<=8KA-8KA1EW7�F-8:9IN)C1Y-;�8:9�7�;=Y&8KC&D�9�<MA�YW;BH�H�C&H
	$V1H�C&A1;&Z�<MA�Y�7�F1;�LKC&A1EWNB<&9�NB<&Y-;=Y_�=�@7�;=9?7)9I<MH�;�LO8KX&;)LK>T7�C
H�D1A@9�LKCM[�LK>&Q�1D1H�7�F1;BH�\JC&H�;&Z&;BU&;BA+7�F1C&D1E&FJ7�F-8:9�N)C1Y-;�[�C&D-L:YJP�;�D1A�Y-;=9�8KH)<MP-LK;�;BU&;BAJ8OG�8K7�C1NBN)D1H�H�;=YJC&A-LK>JC&A�N);&Z
8KAaG�<&N)7I8K7�C1NBN)D1H)9�<ME-<=8KAT8KAa7�F1;+«-w�xM}-}��-«-w��B�1}�N�L:<&9�9�<MA�Y�8KA_;BU&;BH�>TC&7�F1;BH�C&V�;BH)<M7?8KC&A_N�L:<&9�9BQ m >19?7�;B\+<M7?8:N
H�;BV�;B7?8K7?8KC&A@8KA�N)C1Y-;I8:9�D�9?D�<=LOLK>�<�9�8KE&A@G$C&H�<�A1;B;=Y@7�C�H�;=Y-;=9�8KE&A�Z�V�C-9�9�8KP-LK>WD�9�8KA1E@<JY-;=9�8KE&AWV�<M7�7�;BH�A�Q

ST;�<=LKH�;=<&Y->WX-A1CM[/CMG�< �&<=UM<+N)C&A�9?7�H�D�N)7�7�F�<M7I<MD17�C&\+<M7?8:NB<=LOLK>WN�F1C-C-9?;=9�[�F-8:N�FTN)C1Y-;�7�C+;)�1;=N)D17�;�P�<&9?;=Y
C&A4<W7?>-V�;@7�;=9?7=�J\J;B7�F1C1Y_Y&8:9?V�<M7)N�F-8KA1E�Q_6�7JY-C-;=9�7�F1;W9�<M\J;@X&8KA�YaCMG�N)C&\JV�<MH?8:9?C&A4<MA�Ya9?;)LK;=N)7?8KC&A3<&9�7�F1;
NB<&9�NB<&Y-;=YW�=��7�;=9?7)9BZ&P1D17�Y-C-;=9�A1C&7�N�LKD17�7�;BH�7�F1;�N)C1Y-;I<MA�Y�8:9	LO8KX&;)LK>+7�C�P�;IN)C&A�9�8:Y-;BH)<MP-LK>+\JC&H�;�;
1@N�8K;BA-7=Q�b�F1;
U&8:9�8K7�C&H�V�<M7�7�;BH�A+7)<MX&;=9�<&Y-UM<MA-7)<ME&;�CMG	7�F-8:9BQ

c�d���dKc � !:h !�"#��k
b�F1;�U&8:9�8K7�C&H�V�<M7�7�;BH�A@;BA�N)C1Y-;=9�<+Y-;BV17�F�	 ��H)9?7�7�H)<=U&;BH)9�<=LiR�C&H�<=LK7�;BH�A�<M7�;)LK>&Z�9?C&\J;IC&7�F1;BH�UM<MH?8K;B7?>@CMG	7�H)<=U&;BH)9�<=L$]
CMU&;BH	<�F-8K;BH)<MH)N�F-8:NB<=L�Y1<M7)<�9?7�H�D�N)7�D1H�;�9?D�N�FJ<&9iC&A1;�H�;=9?D-LK7?8KA1EIG$H�C&\/7�F1;�N)C&\JV�C-9�8K7�;�V�<M7�7�;BH�A�Qib�F1;�U&8:9�8K7�C&H	V�<M7
	
7�;BH�AWY-;BV�;BA�Y19�C&A@7?[�C�C&V�;BH)<M7?8KC&A�9B�iA1C1Y-;=9IR�C&P��?;=N)7)9)]	<&NBN);BV17�U&8:9�8K7�C&H)9BZ�<MA�Y+U&8:9�8K7�C&H)9�U&8:9�8K7�A1C1Y-;=9IR�C&P��?;=N)7)9)])Q
� C&A�N);BV17�D�<=LOLK>&Z�7�F1;�N)C1Y-;�9?7�H�D�N)7�D1H�;�8:9�<&9�G$CMLOLKCM[�9B�

�&ª1y-{-{�� � z1x4�
£-£-£
�1� �Mz/y-�-�-x=v1}	��~��&{1�=} � w � �_�
� � w x-y-�=| �=|��Mª-z � �3}&|��&{a� � z1x4�
�=|��Mª-z�£�y-�-�-x=v1}	� � ���

�
� £ � �&{1�=}	��}&|��&{1���

�
�

�&ª1y-{-{_~��&{1�=} � w3�
£-£-£
�1� �Mz � �&{1�=}	��� � z1xT���4�
v�xMw-� � wM�/� � w
 � �3�

�
�

b�F1;�y-�-�-x=v1}_<MA�Y � �&{1�=}T\J;B7�F1C1Y19J[�C&H�Xa7�C&E&;B7�F1;BHJ9?CT7�F�<M7���£�y-�-�-x=v1}	� � �@V�;BH?G$C&H�\+9J<aY-;BV17�F�	 ��H)9?7
7�H)<=U&;BH)9�<=L�CMG�7�F1;�9?7�H�D�N)7�D1H�;WH�C-C&7�;=Y4<M7J��Z�[�8K7�F�7�F1;WC&V�;BH)<M7?8KC&A4H�;BV1H�;=9?;BA-7�;=Y4P-> � V�;BH?G$C&H�\J;=Y4C&A4;=<&N�F
N)C&\JV�C&A1;BA-7�CMG	7�F1;�9?7�H�D�N)7�D1H�;�8KAW7�D1H�A�Q

� C&A�9�8:Y-;BH�<JN)C&\JV�C-9�8K7�;�[�8K7�F@7�F1;IG$CMLOLKCM[�8KA1E@9?7�H�D�N)7�D1H�;&�

�&�

a

ed

cb

f

b�F1;�9?; � D1;BA�N);�CMG�NB<=LOL:9�H�;=9?D-LK7?8KA1E+G$H�C&\�y	£�y-�-�-x=v1}	� � ��G$C&H�9?C&\J;IU&8:9�8K7�C&H � 8:9B�
y	£�y-�-�-x=v1}	� � �
��£�y-�-�-x=v1}	� � �
z�£�y-�-�-x=v1}	� � �
� £ � �&{1�=}	�)z��

x	£�y-�-�-x=v1}	� � �
� £ � �&{1�=}	�Bx1�

� £ � �&{1�=}	� ���
�	£�y-�-�-x=v1}	� � �
��£�y-�-�-x=v1}	� � �
� £ � �&{1�=}	�����

� £ � �&{1�=}	�B�1�
� £ � �&{1�=}	�By1�

b�F1;�9?; � D1;BA�N);�CMG	NB<=LOL:9�7�C � �&{1�=}�Z-[�F-8:N�FWV�;BH?G$C&H�\+9�7�F1;�<&N)7�D�<=L�[�C&H�X�Z&8:9�z�Z�x1Z���Z1��Z��1Z�y1`-7�F-8:9�8:9�<JY-;BV17�F�	
��H)9?7�9?;=<MH)N�F�Q@b�F1; � �&{1�=}�\J;B7�F1C1Y�\�8KE&F-7�N)C&D1A-7�7�F1;JA-D1\�P�;BH�CMG�A1C1Y-;=9BZiC&H�V�;BH?G$C&H�\ 7?>-V�; 	�N�F1;=N�X&8KA1E�ZiC&H
9?C&\J;IC&7�F1;BH�C&V�;BH)<M7?8KC&A�Q

b�F1;�U&8:9�8K7�C&H�V�<M7�7�;BH�ATH�; � D-8KH�;=9I7�F1;+<&Y1Y&8K7?8KC&ATCMG � �&{1�=}�<MA�Yay-�-�-x=v1}W\J;B7�F1C1Y19B`i9?;B;J7�F1;+¡�8:9?X&CMU�P�C-C&X
G$C&H�<MA@;)��<M\JV-LK;&Q � 9�[�8K7�FW7�F1;�V1H�C1N);=Y-D1H)<=LiV�<M7�7�;BH�A�Z1U&8:9�8K7�C&H�\+<MX&;=9�8K7�;=<&9?>+7�C+<&Y1Y@C&V�;BH)<M7?8KC&A�9�R�U&8:9�8K7�C&H)9)]
P1D17�F�<MH)Y@7�CJ<&Y1Y+A1C1Y-;=9IR�[�F-8:N�FWH�; � D-8KH�;=9�\JC1Y&8OG$>&8KA1E+;=<&N�FW;)�-8:9?7?8KA1E+U&8:9�8K7�C&HB])Q

� U&8:9�8K7�C&H�8:9�U&;BH�>�\�D�N�FJLO8KX&;�<MA�8K7�;BH)<M7�C&H=�i;=9�9?;BA-7?8:<=LOLK>&Z1;=<&N�FJ;)LK;B\J;BA-7�CMGi<�Y1<M7)<�9?7�H�D�N)7�D1H�;�8:9�V1H�;=9?;BA-7�;=Y
8KA@7�D1H�A+7�C�7�F1; � �&{1�=}�\J;B7�F1C1Y�Q	6�7�EM8KU&;=9�7�F1;�C&V1V�C&H�7�D1A-8K7?>�G$C&H�\JC&H�;&Z&F1CM[�;BU&;BH=�	<IU&8:9�8K7�C&H�NB<MAW<&NBN)D1\�D-L:<M7�;
9?7)<M7�;@7�F�<M7�[�C&D-L:Y_P�;@8K\JV�C-9�9�8KP-LK;T7�CaY-;B7�;BH�\�8KA1;@G$H�C&\ 7�F1;W9?; � D1;BA�N);�CMGIA1C1Y-;=9+<=LKC&A1;&Q���A-G$C&H�7�D1A�<M7�;)LK>&Z
7�F1;�8K\JV-LK;B\J;BA-7)<M7?8KC&A_9?7�H�D�N)7�D1H�;JY-;=9�N)H?8KP�;=Y_<MP�CMU&;JY-C-;=9IA1C&7IV1H�CMU&8:Y-;+<MA->W[�<=>@G$C&HIC&A1;+NB<=LOL�CMG � �&{1�=}W7�C
N)C&\J\�D1A-8:NB<M7�;�[�8K7�FW<MA1C&7�F1;BH=Q

^�;BH�;@<MH�;J7?[�CWV�C-9�9�8KP-LK;W9?CMLKD17?8KC&A�9�7�CW7�F-8:9�V1H�C&P-LK;B\WQ�b�F1;+P�C-C&XTV1H�C&V�C-9?;=9�9�<=U&8KA1EW8KA-G$C&H�\+<M7?8KC&AT8KA_<
9?;BV�<MH)<M7�;WY1<M7)<T9?7�H�D�N)7�D1H�;�RGC&HJ;)��<M\JV-LK;&Z�<T9?7)<&N�X�]�[�F-8:N�F�NB<MA4P�;WH�;=<&Y_<MA�Y_[�H?8K7�7�;BA�Q�b�F-8:9JX&;B;BV�9J7�F1;
U&8:9�8K7�C&H)9�<MA�YW<&NBN);BV17�C&H)9�N�LK;=<MA�Z�P1D17�8K7�NB<MAWP�;IF�<MH)Y@7�CJ9?;B;�F1CM[3Y1<M7)<���CM[�9�P�;B7?[�;B;BAWNB<=LOL:9BQ

� AW<=LK7�;BH�A�<M7�;�9?CMLKD17?8KC&A@8:9�7�C�\JCMU&;�9?C&\J;ICMGi7�F1;�[�C&H�X�8KA-7�CJ7�F1;IU&8:9�8K7�C&H�8K7)9?;)LOG��
�&ª1y-{-{�� � z1x4�
£-£-£
�1� �Mz/y-�-�-x=v1}	��~��&{1�=} � w � �_�
� £ � �&{1�=}	��}&|��&{1���

�
�

�&ª1y-{-{_~��&{1�=} � w3�
£-£-£
�1� �Mz � �&{1�=}	��� � z1xT���4�
� � w x-y-�=| �=|��Mª-z � �3}&|��&{a� � z1x4�
�=|��Mª-z�£�y-�-�-x=v1}	� � ���

�&�

�
v�xMw-� � wM�/� � w
 � �3�

�
�

b�F-8:9�9?CMLKD17?8KC&A+F�<&9	9?;BU&;BH)<=L�V1H�C&P-LK;B\+9BQ�1C&H	C&A1;�7�F-8KA1E�Z-7�F1;BH�;�<MH�;�\+<MA->�U&8:9�8K7�C&H)9BZ-9?C�7�F1;�7�H)<=U&;BH)9�<=L1N)C1Y-;
8:9�H�;BV�;=<M7�;=YJ\+<MA->J7?8K\J;=9�H)<M7�F1;BH�7�F�<MA �?D�9?7�<MV1V�;=<MH?8KA1EJC&A�N);�R?9�8KA�N);I7�F1;BH�;�8:9�C&A-LK>JC&A1;�<&NBN);BV17�C&HB])Q m ;=N)C&A�Y�Z
7�F1;+<&NBN);BV17�C&H�8:9IA1C&7IH�;=<=LOLK>aY-CM8KA1E�<MA->-7�F-8KA1E�<MA->W\JC&H�;&QJb�F1;JU&8:9�8K7�C&HI8:9I;=9�9?;BA-7?8:<=LOLK>aY-CM8KA1E�<WY-;BV17�F�	 ��H)9?7
9?;=<MH)N�F@CMG�8K7)9�CM[�A�Q	b�F-8:9�9?CMLKD17?8KC&A�Y-C-;=9�F�<=U&;�7�F1;I\J;BH?8K7�CMG	\+<MX&8KA1EJ7�F1;�8KA-G$C&H�\+<M7?8KC&A ��CM[3N�LK;=<MH�;BH=Z-8KAW7�F1;
N)C&\J\JC&AWNB<&9?;I7�F�<M7�<�U&8:9�8K7�C&H�G$C&H�<�A1C1Y-;�Y-;BV�;BA�Y19�C&A@7�F1;IH�;=9?D-LK7)9�CMGiG$H�C&\oU&8:9�8K7?8KA1EWN�F-8OL:Y-H�;BA�Q

�	�:� � #&*�#�*
ST;�[�8OLOLiA1C&7�Y&8:9�N)D�9�9�7�F1;I9?7)<M7�;�V�<M7�7�;BH�A�8KAWY-;B7)<=8OL�Z1P1D17�>&C&DJ\�8KE&F-7�[�<MA-7�7�C�N)C&A�9�8:Y-;BH�8K7�G$C&H	8K\JV-LK;B\J;BA-7?8KA1E
u&}-w�x-xM} �&�&����xMw1u1xM}�Q

� �

� �������	�
���	������������������	�

����� ��� ��!�!"�� #
$�%'&)(*(�+,%'-
.0/*1 24365	798*+�:�+,8�&<; 2=/ %�/)3�&)>*/ 798*+,%�?9@A& -9-,B 798*+,5�&)%9+�C�-DC�&<@4@=50&798E2=>0; +,>*+,+,%�/); +,%
798*+�+,>�?,&)(�-DCE@A&)79+<1
?9@A& -9-,F�G8E2A?98H1E/E+<-I798*+�%9+<&<@�G�/ %9J�K�L�8*+�G%'&)(*(�+,%	.M&<5N.0/*1 24365O798*+	2=>E79+,%D3�& ?'+ F�+'P*79+,>�1O798*+�:�+,8�&<; 2=/ %<F�/ %
%9+<-D79%D2A?'7	& ?,?'+<-9-,K�L�8*+�G%'&)(*(�+,%I2=>E79+,%9.0+<1 2A&)79+<-I:�+,7DG�+,+,>O7DG�/02=>�?'/ .0(�&)7D2=:E@=+02=>E79+,%D3�& ?'+<-,F�79%'&)>�-�@A&)7D2=>*QN?,&<@4@A-
:�+,7DG�+,+,>M798*+�2=>E79+,%D3�& ?'+<-,K�L�8E2A-�(�+,%9.�2=7'-�7DG�/I(E2=+<?'+<-�/)3
?'/*1E+�798�&)7�G�+,%9+>*/ 7�1E+<-�2=Q >*+<1M/ %�G%D2=7979+,>079/ Q +,798*+,%<F
&)>�1M798EC�-&)%9+	-�@42=Q 8E7D@=5R2=>�?'/ .0(�&)7D2=:E@=+ F�79/0:�+	C�-D+<1R79/ Q +,798*+,%&)>E5EG&<5 K

L�8*%9+,+I;)&)%D2=+,7D2=+<-/)3�G%'&)(*(�+,%'-&)%9+	& 1*&)(*79+,%'-,F�1E+<?'/ %'&)79/ %'-,FE&)>�1R(*%9/<PE2=+<-,S

T�&)7979+,%9> U*C*>�?'7D2=/ >�&<@42=7D5 V�>E79+,%D3�& ?'+
W 1*&)(*79+,% -9&).0+ 1 24X�+,%9+,>E7
Y�+<?'/ %'&)79/ % 1 24X�+,%9+,>E7 -9&).0+
T�%9/<P*5 -9&).0+ -9&).0+

L�8*+36C*>�?'7D2=/ >�&<@42=7D5N&)>�1�2=>E79+,%D3�& ?'+<-?'/ .0(�&)%9+<1M&)%9+�798*/E-D+�&)7�798*+2=>�-�2A1E+�&)>�1M/ C*7'-�2A1E+�/)3
798*+�G%'&)(*(�+,%<B*798�&)7
2A-,F�&0?9@42=+,>E7<Z -; 2=+,G[/)3�798*+IG%'&)(*(�+<1R/ :*\D+<?'7�2A-�?'/ .0(�&)%9+<1M79/M&0?9@42=+,>E7<Z -; 2=+,G[/)3
798*+	G%'&)(*(�+,%<K

L�8*+�%9+,.M&<2=>�1E+,%I/)3�798E2A-I-D+<?'7D2=/ >H1 2A-9?'C�-9-D+<-I798*+�798*%9+,+	;)&)%D2=+,7D2=+<-I/)3�G%'&)(*(�+,%<F�798*+,>O+'P�&).�2=>*+�79%'& 1E+,/)X
-
:�+,7DG�+,+,>N7DG�/I2=.0(E@=+,.0+,>E7'&)7D2=/ >�-D79%'&)79+,Q)2=+<-,F*-DC*:�?9@A& -9-�2=>*QN&)>�1R1E+'@=+,QE&)7D2=/ >�K

]
^6_�^6_ `Ra�b�c�d,e*f
W 1*&)(*79+,%'-�?98�&)>*Q +798*+�2=>E79+,%D3�& ?'+/)3�&	?9@A& -9-�G�2=798*/ C*7�?98�&)>*Q)2=>*QI2=7'-�:�& -�2A?�36C*>�?'7D2=/ >�&<@42=7D5 K�U*/ %
2=>�-D7'&)>�?'+ FE798*+,5
.�2=Q 8E7I(�+,%9.�2=7I2=>E79+,%9/ (�+,%'&):E24@42=7D5�:�+,7DG�+,+,>�&MQ +,/ .0+,79%95R(�& ?9J)&)Q +0798�&)7�%9+<g CE2=%9+<-	&)>*Q)@=+<-�79/R:�+M-D(�+<?924h�+<1O2=>
%'& 1 2A&)>�-&)>�1N&0?9@42=+,>E7�798�&)7+'P*(�+<?'7'-79/�(�& -9-&)>*Q)@=+<-�2=>O1E+,Q %9+,+<-,K�i+,%9+	&)%9+I7DG�/�/ 798*+,%+'P�&).0(E@=+<-,S

jk b�l�c
m=e�npo0e*q)d,b�r�s�m=eut C*(*(�/E-D+R798�&)7�5 / CH8�&<; +0G%D2=7979+,>p?'/*1E+R798�&)7	G�/ %9J*-I/ >wv�xEy)z�{<|*}*~*xR/ :*\D+<?'7'-
&)>�1R?,&<@4@A-�798*+'2=%I�EyE{ ~*x�.0+,798*/*1�K

� |*z�x)�E��{EyExHv�xEy)z�{<|*}*~*xp�
�E� }E�*� ��� ���<�*� � |*��z � � �H�*��z ��xw} �<� x<|���{Ey)z*� �
� � �)� �EyE{ ~*x��9�*~E�*{)zp��{Ey)z*� �����

�E� � z ��x)���)��x)��{)z � �)|��
�*~E�*{)z�{)��xE{��<���
�*~E�*{)z�y � ��y<� ����x)��x<|�yEx��<���
�E�E��

y ~*{E�E�����*�E~*{E�E�p�

� � �)� ���E��x)z ��� � �9v�xEy)z�{<|*}*~*x����p�
�E�E�� � �EyE{ ~*x��'�����
�E�E��

�

� �

t C*(*(�/E-D+�798*+,%9+�2A-�&)>*/ 798*+,%�?9@A& -9- � �)|��*yE{ ~*xE{<��~*x)v�xEy)z�{<|*}*~*x�G8E2A?98�@A& ?9J*-
798*+��EyE{ ~*x.0+,798*/*1	:*C*7�1E/E+<-
8�&<; +I798*+I/ 798*+,%.0+,798*/*1*-�/)3�v�xEy)z�{<|*}*~*x*F*& -�G�+'@4@�& -�& 1*1 2=7D2=/ >�&<@��Ex)z�� �)� z �R&)>�1N�Ex)z���x � } �*z0.0+,798*/*1*-,K

y ~*{E�E� � �)|��*yE{ ~*xE{<��~*x)v�xEy)z�{<|*}*~*xH�
� � �)� �Ex)z�� �)� z ���9�*~E�*{)zp� �)� z ���w� �E�E� �
� � �)� �Ex)z���x � } �*z��9�*~E�*{)zH��x � } �*z��w� �E�E� �
�E�E��

��/ CM.M&<5�G�2A-D8M79/�-DG�2=7'?98M79/���/ %�&)7�@=+<& -D7�(�+,%9.�2=7�C�-D+I/)3
	�798E2A-�;)&)%D2=+,7D50/)3
%9+<?'7'&)>*Q)@=+ FE(�+,%98�&)(�-�:�+<?,&)C�-D+
2=7�8�& -1E+<-�2=%'&):E@=+	36+<&)79C*%9+<-,F�-DC�?98N& -�:�+,7979+,%�(�+,%D36/ %9.M&)>�?'+ F*/ %(�+,%98�&)(�-:�+<?,&)C�-D+I2=72A-C�-D+<1R+'@A-D+,G8*+,%9+ F*2=>O&
-D5*-D79+,. G�2=798RG8E2A?98N5 / CR>*+,+<1R79/�2=>E79+,%9/ (�+,%'&)79+ K
��/ CN?,&)>*>*/ 7C�-D+ � �)|��*yE{ ~*xE{<��~*x)v�xEy)z�{<|*}*~*x	1 2=%9+<?'7D@=5R:�+<?,&)C�-D+�/)3�798*+�2=>�?'/ .0(�&)7D2=:E@=+�2=>E79+,%D3�& ?'+ K�i/)G��

+,; +,%<F�5 / CO?,&)>NG%D2=79+�&)>�& 1*&)(*79+,%G8E2A?98O(�+,%9.�2=7'-2=7'-�C�-D+ K�L�8*+,%9+�&)%9+	7DG�/0G&<5*-�79/R1E/M798E2A-,S-DC*:�?9@A& -9-�2=>*Q
&)>�1R1E+'@=+,QE&)7D2=/ >�K�L�8*+�-DC*:�?9@A& -9-�2=>*QN-D/)@=C*7D2=/ >NG�24@4@
:�+I3�&).�24@42A&)%<S

y ~*{E�E��*yE{ ~*xE{<��~*x)v�xEy)z�{<|*}*~*x���x��Ez�x<| � � � �)|��*yE{ ~*xE{<��~*x)v�xEy)z�{<|*}*~*x � �*��~*x,��x<|*z��Hv�xEy)z�{<|*}*~*xp�
� � �)� �EyE{ ~*x��9�*~E�*{)zp��{Ey)z*� ���w�

�Ex)z�� �)� z ���9��{Ey)z*� ���p}�x)z�� �)� z ���<�E���
�Ex)z���x � } �*z��9��{Ey)z*� ���w}�x)z���x � } �*z��<�E���

�
�

Y�+'@=+,QE&)7D2=/ >�2A-�&I79+<?98*>E2Ag C*+�36/ %��'(�& -9-�2=>*Q	798*+�:*C�?9J��*F)36/ %9G&)%'1 2=>*Q�&I%9+<g C*+<-D7�-D/	798�&)7�&	1 24X�+,%9+,>E7�/ :*\D+<?'7
1E/E+<-798*+I%9+<g C*+<-D79+<1MG�/ %9J�K

y ~*{E�E��*yE{ ~*xE{<��~*x)v�xEy)z�{<|*}*~*x � � �*��~*x,��x<|*z��wv�xEy)z�{<|*}*~*xw�
� �)|��*yE{ ~*xE{<��~*x)v�xEy)z�{<|*}*~*x����
�*yE{ ~*xE{<��~*x)v�xEy)z�{<|*}*~*x �
� � �)|��*yE{ ~*xE{,��~*x)v�xEy)z*{<|*}*~*x����w�

z � � � � �������
�

� � �)� �EyE{ ~*x��9�*~E�*{)zp��{Ey)z*� ���w�
�Ex)z�� �)� z ���9��{Ey)z*� ���p}�x)z�� �)� z ���<�E���
�Ex)z���x � } �*z��9��{Ey)z*� ���w}�x)z���x � } �*z��<�E���

�

�*~E�*{)z�{)��xE{��<�w�p��x)z �*� |�� � {)��xE{��<��� �
�*~E�*{)z�y � ��y<� ����x)��x<|�yEx��<������x)z �*� |�� � y � ��y<� ����x)��x<|�yEx��<��� �
�E�E��

jk b�l�c
m=e�n���b�m=eEd,d,e t C*(*(�/E-D+0798�&)7	T�%9/)36+<-9-D/ %�� & ?9J*-D/ >�?,&<@4@A-	T�%9/)36+<-9-D/ %���%9>�-D7�@A&)79+0&)7I>E2=Q 8E7I:�+<?,&)C�-D+
-D/ .0+,/ >*+	8�& -�1 2A-9?'/); +,%9+<1O&0(*%9/ :E@=+,.�G�2=798O798*+	(*%9/ :E@=+,. -D+,7<S�2=7I>*+,+<1*-�79/M-DC*(*(�/ %97�:E2A?'5*?9@=+<-	798�&)7�?,&)>N:�+
%9+,(�&<2=>E79+<1���79/N?98�&)>*Q +�798*+'2=%�?'/)@=/ %�	'K0L�8*+0(*%9/)36+<-9-D/ %'-�-D(E@42=7�C*(�798*+�G�/ %9J�SIT�%9/)36+<-9-D/ %�� & ?9J*-D/ >�G�24@4@�G%D2=79+
&M�E�E~E� ����{ ~*x)zEz�x0?9@A& -9-G�2=798�&0.0+,798*/*1R798�&)7<F�Q)2=; +,>�&0>�&).0+I@42=J +��'%9+<1��0/ %��':E@=C*+
�M/ %��'7'&)C*(�+
�*F�%9+,79C*%9>�-
&)>w&)%9%'&<5�/)3�798*%9+,+ ��!�" ;)&<@=C*+<-,F�&)>�1wT�%9/)36+<-9-D/ %�Y�+,;)& 1*& -	G�24@4@IG%D2=79+R?'/*1E+R798�&)7�C�-D+<-�798E2A-0?9@A& -9-,KHL�8*+
(*%9/)36+<-9-D/ %'-�1E/0-D/�F*79+<-D7�798*+'2=%G�/ %9J�FE&)>�1MQ /0&<G&<5�36/ %�798*+�G�+,+,J +,>�1�FE@=+<&<; 2=>*QM798*+�798*+ � y ~*{E�E�Ih*@=+<-�36/ %�798*+
L W -�79/�2=>E79+,Q %'&)79+ K�L�8*+,5Mh�>�1R798�&)7T�%9/)36+<-9-D/ %Y�+,;)& 1*& -�8�& -�G%D2=7979+,>O?'/*1E+I798�&)7�1E+,(�+,>�1*-�/ >

�$#

� |*z�x)�E��{EyExw�E�E~E� ����{ ~*x)zEz�xw�
�E� ��x)z �*� |��wv ��� � { ~)��xE�
� |*z�����}�x)z*�E�E~E� ��� � zE� � |*}H|�{,��x*���

�

:*C*7�T�%9/)36+<-9-D/ %�� & ?9J*-D/ >R8�& -�2=.0(E@=+,.0+,>E79+<1O&0?9@A& -9-798�&)7& 1E8*+,%9+<-79/

� |*z�x)�E��{EyExw�E�E~E�)�*����{ ~*x)zEz�xw�
�E� ��x)z �*� |��wv ��� � { ~)��xE�
� |*z�����}�x)z*�E�E~E�)�*��� � zE� � |*}H|�{,��x*���

�

$�8�&)7�&)%9+I798*+IL W -�79/01E/��RL�8*+,5R1E/�>*/ 7�8�&<; +I& ?,?'+<-9-�79/�798*+I-D/ C*%'?'+ F�&)>�1M798*+,5M1E/0>*/ 7�8�&<; +�7D2=.0+I79/
%9+'2=.0(E@=+,.0+,>E7	&)>�1R%9+,79+<-D7<KL�8*+'2=%	-D/)@=C*7D2=/ >N2A-79/MG%D2=79+�&0& 1*&)(*79+,%36/ %��E�E~E�)�*����{ ~*x)zEz�x�798�&)7�?98�&)>*Q +<-798*+
/ (�+,%'&)7D2=/ >R>�&).0+ K�L�8*+,5N?,&)>M2=.0(E@=+,.0+,>E7I798*+	& 1*&)(*79+,%+'2=798*+,%�:E5R-DC*:�?9@A& -9-�2=>*QR/ %�:E5R1E+'@=+,QE&)7D2=/ >�K

]
^6_�^
	 �Me*q��f<b*d���f
$�8*+,%9+<& -	&)>w& 1*&)(*79+,%�?98�&)>*Q +<-	&)>�2=>E79+,%D3�& ?'+MG�2=798*/ C*7�& 1*1 2=>*Q�>*+,G�36C*>�?'7D2=/ >�&<@42=7D5 F�&N1E+<?'/ %'&)79/ %I+'P*79+,>�1*-
36C*>�?'7D2=/ >�&<@42=7D5MG8E24@=+I.M&<2=>E7'&<2=>E2=>*Q0798*+I-9&).0+�2=>E79+,%D3�& ?'+ K�L�5E(E2A?,&<@4@=5 F�&	1E+<?'/ %'&)79/ %�1E/E+<-�>*/ 7�?98�&)>*Q +�+'PE2A-D7D2=>*Q
36C*>�?'7D2=/ >�&<@42=7D5 F�/ >E@=5N& 1*1*-79/�2=7<F�-D/0798�&)7�/ :*\D+<?'7'-�/)3�798*+I%9+<-DCE@=7D2=>*QN?9@A& -9-:�+,8�&<; +I+'P�& ?'7D@=5M@42=J +	798*+	/ %D2=Q)2=>�&<@
/ >*+<-,F*:*C*7�&<@A-D/M1E/R-D/ .0+,798E2=>*Q0+'P*79%'&*K

L�8E2A-I-D/ C*>�1*-�@42=J +M-DC*:�?9@A& -9-�2=>*Q�F
:*C*7	>*/ 7�+,; +,%95R2=>�-D7'&)>�?'+M/)3�-DC*:�?9@A& -9-�2=>*QN2A-	&R1E+<?'/ %'&)7D2=/ >�K�U�2=%'-D7<F�798*+
2=.0(E@=+,.0+,>E7'&)7D2=/ >O/)3�&)>N/ (�+,%'&)7D2=/ >O.M&<5M:�+0?'/ .0(E@=+,79+'@=5�1 24X�+,%9+,>E7�/ %�%9+'2=.0(E@=+,.0+,>E79+<1R2=>�&M-DC*:�?9@A& -9-,B�798�&)7
2A-I>*/ 7�C�-DC�&<@4@=5�798*+0?,& -D+	36/ %I&R1E+<?'/ %'&)79/ %<F�G8E2A?98H?'/ >E7'&<2=>�-�%9+'@A&)7D2=; +'@=5N@=+<-9-�36C*>�?'7D2=/ >�&<@42=7D5�&)>�1O%9+,C�-D+<-�798*+
-DC*(�+,%'?9@A& -9-?'/*1E+ K t +<?'/ >�1�F*-DC*:�?9@A& -9-D+<-?,&)>�2=>E79%9/*1EC�?'+I>*+,G�/ (�+,%'&)7D2=/ >�-,BEG%'&)(*(�+,%'- �62=>�?9@=C�1 2=>*QR1E+<?'/ %'&)79/ %'- 	
Q +,>*+,%'&<@4@=5N1E/0>*/ 7<K

W >0+'P�&).0(E@=+�/)3
1E+<?'/ %'&)7D2=/ >02A-�&�� � | � � �	2=>E79+,%D3�& ?'+��636/ %�&IG�2=>�1E/)Gp.M&)>�&)Q +,%�	
&)>�1M& � � � � x)��x � � � | � � �
2=>E79+,%D3�& ?'+ K�L�8*+ � � � � x)��x � � � | � � �I:�+,8�&<; +<-�+'P�& ?'7D@=5	@42=J +�798*+�� � | � � ��F)+'P�?'+,(*7�798�&)7
2=7�&<@A-D/�1E%'&<G�-�&I:�/ %'1E+,%
&)%9/ C*>�1M798*+I/ C*7'-�2A1E+ K

t C*(*(�/E-D+	798�&)7 � � | � � �02A-�2=.0(E@=+,.0+,>E79+<1R@42=J +�798E2A-,S

� |*z�x)�E��{EyEx�� � | � � ���
�E� ��xEy)z�{<|*}*~*xH���)�E| ��� |*}pz ��xp� � | � � �
v�xEy)z�{<|*}*~*xH���)�E| � ���<���
�E� � ��{)��z � � ���)|�z ��x��<��xEy � � � x � �Ey)��xEx<|
� � �)��� ��{)��� �*y)��xEx<|[�*���
�E�E��

y ~*{E�E� � � | � � ���,�*��~ � �*��~*x,��x<|*z�� � � | � � ���
�E�E��

L�8*+	-DC*:�?9@A& -9-�2=>*QM2=.0(E@=+,.0+,>E7'&)7D2=/ >NG�/ CE@A1M@=/E/ J0@42=J +�798E2A-,S

y ~*{E�E� � � � � x)��x � � � | � � � �Hx��Ez�x<| � � � � | � � ���,�*��~p�
� � �)��� ��{)��� �*y)��xEx<|[�*�p�

�<�E��x)� � � ��{)���,�*������)�E| � ���<� � � ��{)���,�*���

���

�
�

L�8*+	1E+'@=+,QE&)7D2=/ >R2=.0(E@=+,.0+,>E7'&)7D2=/ >OG�/ CE@A10@=/E/ JM@42=J +	798E2A-,S

y ~*{E�E� � � � � x)��x � � � | � � �*� � �*��~*x,��x<|*z���� � | � � ���
� � | � � � � |E|�x)��� � | � � ���

� � � � x)��x � � � | � � �*�
� � � | � � � � |E|�x)��� � | � � ���H�
z � � � � � |E|�x)��� � | � � � � � |E|�x)��� � | � � ���

�

� � �)��� ��{)��� �*y)��xEx<|[�*�p�
� |E|�x)��� � | � � � � � ��{)���,�*���� |E|�x)��� � | � � � � ���)�E| � ���<� � � ��{)���,�E����

�

]
^6_�^�� �	f � k��
W (*%9/<P*5�2A-&�G%'&)(*(�+,%798�&)7�8�& -�798*+I-9&).0+�2=>E79+,%D3�& ?'+	&)>�1M798*+	-9&).0+36C*>�?'7D2=/ >�&<@42=7D5N& -�798*+	?9@A& -9-�2=7G%'&)(�-,K
L�8E2A-�1E/E+<-�>*/ 7�-D/ C*>�1R; +,%95MC�-D+'36CE@
/ >N798*+�3�& ?'+I/)3
2=7<K�i/)G�+,; +,%<F (*%9/<PE2=+<-�-D+,%9; +	&)>M2=.0(�/ %97'&)>E7(*C*%9(�/E-D+I2=>
?'/ >E79%9/)@4@42=>*QN& ?,?'+<-9-79/0/ 798*+,%�/ :*\D+<?'7'-,KL�8E2A-�2A-�(�&)%97D2A?'CE@A&)%D@=5N;)&<@=C�&):E@=+�243�798*/E-D+	/ :*\D+<?'7'-�.�C�-D7�:�+�& ?,?'+<-9-D+<1
2=>O&0-D7D5 @42��,+<1R/ %�?'/ .0(E@42A?,&)79+<1NG&<5 K

U*/ %0+'P�&).0(E@=+ F�243�&)>p/ :*\D+<?'7�2A-0/ >�&O%9+,.0/ 79+R.M& ?98E2=>*+ F798*+,>�& ?,?'+<-9-�2=>*Q�2=7M%9+<g CE2=%9+<-0C�-D+N/)3I;)&)%D2=/ C�-
>*+,7DG�/ %9JM3�& ?924@42=7D2=+<-,K�V�7�2A-�+<& -�2=+,%I79/N?'%9+<&)79+�&0@=/*?,&<@�(*%9/<P*5R798�&)7�C*>�1E+,%'-D7'&)>�1*-�798*+�>*+,7DG�/ %9JN&)>�1N(�+,%D36/ %9.M-
798*+	>*+<?'+<-9-9&)%95N/ (�+,%'&)7D2=/ >�-,F�798*+,>N%9+,79C*%9>�-798*+	%9+<-DCE@=7<K�L�8E2A-I-�2=.0(E@424h�+<-	798*+�?9@42=+,>E7I:E5M@=/*?,&<@42��'2=>*QO>*+,7DG�/ %9J��
-D(�+<?924h�?�?'/*1E+I2=>O&)>*/ 798*+,%�@=/*?,&)7D2=/ >�K

W -�&)>*/ 798*+,%�+'P�&).0(E@=+ FE&)>0/ :*\D+<?'7
.M&<5	%9+<g CE2=%9+�@=/*?9J 2=>*Q	243�2=7�?,&)>0:�+�& ?,?'+<-9-D+<1�:E5	.�CE@=7D2=(E@=+	?9@42=+,>E7'-,K�L�8*+
@=/*?9JO%9+,(*%9+<-D+,>E7'-798*+0%D2=Q 8E7�79/R%9+<& 1O&)>�1��</ %�C*(�1*&)79+0798*+�/ :*\D+<?'7<B�G�2=798*/ C*7I798*+	@=/*?9J�F�?'/ >�?'C*%9%9+,>E7IC*(�1*&)79+<-
?'/ CE@A1	@=+<&<; +798*+�/ :*\D+<?'7
2=>M&)>�2=>�?'/ >�-�2A-D79+,>E7�-D7'&)79+ F)/ %�%9+<& 1*-�2=>0798*+�.�2A1*1 @=+I/)3�&I-D+<g C*+,>�?'+/)3�C*(�1*&)79+<-�?'/ CE@A1
/ :�-D+,%9; +	&)>M2=>�?'/ >�-�2A-D79+,>E7	-D7'&)79+ K W (*%9/<P*5M?'/ CE@A1N7'&)J +I?,&)%9+	/)3
@=/*?9J 2=>*QR&)>R/ :*\D+<?'7:�+'36/ %9+�&)>R/ (�+,%'&)7D2=/ >R/ %
-D+<g C*+,>�?'+�/)3
/ (�+,%'&)7D2=/ >�-,F�798*+,>RC*>E@=/*?9J 2=>*QM2=7I&<3679+,%9G&)%'1�K�L�8E2A-�2A-�@=+<-9-+,%9%9/ % �6(*%9/ >*+I798�&)>R%9+<g CE2=%D2=>*QN?9@42=+,>E7'-
79/M?'/ %9%9+<?'7D@=502=.0(E@=+,.0+,>E7�798*+I@=/*?9J 2=>*QM(*%9/ 79/*?'/)@�K

W >*/ 798*+,%	;)&)%D2=+,7D5�/)3(*%9/<P*5N2A-�&N-D+<?'C*%D2=7D5�(*%9/<P*5 KRV�7�.�2=Q 8E7	/ (�+,%'&)79+M?'/ %9%9+<?'7D@=5O243�798*+R?,&<@4@=+,%�8�& -	798*+
?'/ %9%9+<?'7�?'%9+<1E+,>E7D2A&<@A-��D-DC�?98M& -�&�;)&<@42A1���+,%9:�+,%9/E-�?'+,%97D24h�?,&)79+�	'F :*C*7�798*%9/)Gp&)>0+,%9%9/ %
243
&)>0C*>�&)C*798*/ %D2��,+<10C�-D+,%
&)7979+,.0(*7'-�79/0(�+,%D36/ %9. / (�+,%'&)7D2=/ >�-,K

W h�>�&<@�+'P�&).0(E@=+�2A-�&�(*%9/<P*5�36/ %�&)>	/ :*\D+<?'7
798�&)7
.M&<5I>*/ 7�5 +,7
+'PE2A-D7<K
V63�?'%9+<&)7D2=>*Q	&)>	/ :*\D+<?'7�2A-
+'P*(�+,>�-�2=; +
��:�+<?,&)C�-D+I/)3�?'/ .0(*C*7'&)7D2=/ >M/ %�>*+,7DG�/ %9J�@A&)79+,>�?'5�	'F*798*+,>M2=7�?,&)>R:�+I%9+,(*%9+<-D+,>E79+<1M:E5R&	(*%9/<P*5�2=>�-D79+<& 1�K�L�8�&)7
(*%9/<P*5�?'/ CE@A1�2=.0.0+<1 2A&)79+'@=5M-D7'&)%97
79/	?'%9+<&)79+798*+�/ :*\D+<?'7�2=>M&�:�& ?9JEQ %9/ C*>�1�7'& -DJI2=>0798*+8*/ (�+798�&)7
2=7�2A-�%9+<& 1E5
:E5R798*+	7D2=.0+�798*+Ih�%'-D7�/ (�+,%'&)7D2=/ >R2A-2=>E; / J +<1�F�/ %�2=7	?'/ CE@A1O1E+'@A&<5N?'%9+<&)7D2=>*QR798*+	/ :*\D+<?'7C*>E7D24@�&)>N/ (�+,%'&)7D2=/ >
2A-�2=>E; / J +<1�K0V�>�798*+�36/ %9.0+,%	?,& -D+ F�798*+0%9+<-D7I/)3798*+M-D5*-D79+,. ?,&)>�(*%9/*?'+,+<1OG�2=798*/ C*7	G&<2=7D2=>*Q�B�2=>�798*+�@A&)7979+,%
?,& -D+ F�798*+�G�/ %9JN/)3?'%9+<&)7D2=>*QN798*+0/ :*\D+<?'7I>*+,+<1O>*+,; +,%	:�+0(�+,%D36/ %9.0+<1N243�2=7I2A-I>*+,; +,%IC�-D+<1�K0V�>�+'2=798*+,%�?,& -D+ F
/ (�+,%'&)7D2=/ >�-&)%9+	1E+'@A&<5 +<1RC*>E7D24@
798*+	/ :*\D+<?'7�2A-%9+<& 1E5 K

W >�+'P�&).0(E@=+/)3�&�(*%9/<P*5I36/ %�&�>*/ >��6+'PE2A-D79+,>E7�/ :*\D+<?'7
2A- ��.M& ?,-,Z -
&)C*79/)@=/E& 1I36C*>�?'7D2=/ >�&<@42=7D5 K�U*/ %
2=>�-D7'&)>�?'+ F
V�8�&<; +	&	h*@=+I�*z � ~
	,� � x � x ~	G8E2A?98O1E+'h�>*+<-/)3�&	>EC*.�:�+,%�/)3
C�-D+'36CE@
36C*>�?'7D2=/ >�-,K�i/)G�+,; +,%<FEV�1E/ >�Z 7G&)>E7�79/
-�@=/)G 1E/)G>���.M& ?,-�:E5R@=/E& 1 2=>*QN2=7I+,; +,%95O7D2=.0+0VI-D7'&)%97���.M& ?,-,K	V�>�-D79+<& 1�F�.�5 � x,��{EyE��h*@=+R?'/ >E7'&<2=>�-I?'/*1E+
@42=J +	798E2A-,S

���

�,{<�*z*�E~E�*{ � � ~E�E� � � |*}�	<��{Ey)��	E{)z��'�*z � ~
	,� � x�� �
�,{<�*z*�E~E�*{ � � � | 	<�E�*�E��x)���'�*z � ~
	,� � x�� �
�,{<�*z*�E~E�*{ � � � |)� � | � � ���'�*z � ~
	,� � x�� �

L�8*+036/ %9. �,{<�*z*�E~E�*{ � � � �E|�y)z � �)|��,� � ~*x�� ��2A-	+<-9-D+,>E7D2A&<@4@=5H+<g CE2=;)&<@=+,>E7079/ �62=> t ?98*+,.0+R-D5E>E7'&<P�B ��.M& ?,-
��2A-D(NC�-D+<- � x)� �E| 	

� � x)� � |�xw� �E|�y)z � �)| �<�
�'~E�*{ � �,� � ~*x�� � �E�N��x � x)� � |�xw� �E|�y)z � �)|
�9� �E|�y)z � �)|�� �E��yE{ ~E~pz ��xw|�x)� � x)��� � �)|

�

��.M& ?,-�&)C*79/)@=/E& 1*-�.0/E-D7�/)3�2=7'-�/)G>036C*>�?'7D2=/ >�&<@42=7D5 FE36%9/ . 798*+�.M&<24@
&)>�1M>*+,G�-�%9+<& 1E+,%'-�79/�798*+�� &<;)&�+<1 2=7D2=>*Q
.0/*1E+ K	T
+,/ (E@=+0G8*/R?'/ .0(E@A&<2=>H798�&)7���.M& ?,-�-D7'&)%97'-C*(O79/E/N-�@=/)G�@=5N/)3679+,>N8�&<; +�(*C*7�2=>�1 2A-9?'%D2=.�2=>�&)79+N~E�*{ �
36/ %9.M-�2=>�798*+'2=% � x,��{EyE��h*@=+<-,B�798�&)7<Z -�@42=J +0C�-�2=>*QO&)>N2=>*+��R?92=+,>E7I2=.0(E@=+,.0+,>E7'&)7D2=/ >�F�798*+,>�?'/ .0(E@A&<2=>E2=>*QO798�&)7
798*+	?'/ .0(E24@=+,%�2A-�(�/E/ %�:�+<?,&)C�-D+	798*+I%9+<-DCE@=7D2=>*QM(*%9/ Q %'&). %9C*>�-�-�@=/)G�@=5 K

T�%9/<P*50?,&)(�&):E24@42=7D2=+<-�&)%9+(�&)%97D2A?'CE@A&)%D@=5MC�-D+'36CE@�G8*+,>N?9@42=+,>E7'-�8�&<; +>*/�JE>*/)G�@=+<1EQ +�/)3
G8*+,798*+,%�798*+�/ :*\D+<?'7
798*+,50&)%9+.M&)>E2=(*CE@A&)7D2=>*Q08�& -�-D(�+<?92A&<@�(*%9/ (�+,%97D2=+<-��D-DC�?98M& -�:�+'2=>*Q�@=/*?,&)79+<10/ >M&I%9+,.0/ 79+.M& ?98E2=>*+ FE%9+<g CE2=%D2=>*Q
@=/*?9J 2=>*QN/ %	-D+<?'C*%D2=7D5 F�/ %�>*/ 7I:�+'2=>*QR@=/E& 1E+<1�	'K	V�7�2A-I:�+<-D7I79/M2=>�-DCE@A&)79+0798*+0?9@42=+,>E7I36%9/ . -DC�?98�?'/ >�?'+,%9>�-	&)>�1
@=/*?,&<@42��,+�798*+,. 2=>O&	(*%9/<P*5MG%'&)(*(�+,%<K

]
^6_�^4] 	�
��q m=b������6r�s���� ^
a�e*m=eEs�b*d�� ��r
t C*:�?9@A& -9-�2=>*QR&)>�1R1E+'@=+,QE&)7D2=/ >N&)%9+�7DG�/�2=.0(E@=+,.0+,>E7'&)7D2=/ >O-D79%'&)79+,Q)2=+<-�36/ %�2=.0(E@=+,.0+,>E7D2=>*QMG%'&)(*(�+,%'-,K ��/ CR&)%9+
&<@=%9+<& 1E5O3�&).�24@42A&)%�G�2=798H-DC*:�?9@A& -9-�2=>*Q�B�1E+'@=+,QE&)7D2=/ >p-D79/ %9+<-I&)>�/ :*\D+<?'7I2=>w&Mh�+'@A1�F�798*+,>H(�& -9-D+<-I.0+<-9-9&)Q +<-I79/
798*+I/ :*\D+<?'7<K

t C*:�?9@A& -9-�2=>*QN&)C*79/ .M&)7D2A?,&<@4@=5NQ)2=; +<-�?9@42=+,>E7'-I& ?,?'+<-9-79/M&<@4@�798*+I.0+,798*/*1*-/)3�798*+�-DC*(�+,%'?9@A& -9-,K�Y�+'@=+,QE&)7D2=/ >
36/ %'?'+<-�798*+	?'%9+<&)7D2=/ >N/)3
.M&)>E5R-D.M&<@4@
.0+,798*/*1*-�@42=J +

� � �)� {)��xE{��<�w�p��x)z �*� |�� � {)��xE{��<��� �

� >N798*+I/ 798*+,%�8�&)>�1�F*2=>N/ %'1E+,%�79/0(*%9+,; +,>E7�& ?,?'+<-9-�79/0?'+,%97'&<2=>N.0+,798*/*1*-�/)3�798*+I(�&)%9+,>E7<FE798*+	-DC*:�?9@A& -9-�.�C�-D7
/); +,%9%D2A1E+R798*+,. 79/�798*%9/)G &)>w+,%9%9/ %<B�2=7MG�/ CE@A1w:�+O?9@=+<&)>*+,%M>*/ 7079/�8�&<; +R798*+,. 2=>p798*+M2=>E79+,%D3�& ?'+ F�G8E2A?98
1E+'@=+,QE&)7D2=/ >N+<& -�24@=5R(�+,%9.�2=7'-,K

W >*/ 798*+,%�(�/ 79+,>E7D2A&<@
& 1E;)&)>E7'&)Q +/)3
-DC*:�?9@A& -9-�2=>*Q02A-�798�&)7�2=7�2A-�:*CE24@=72=>E79/	798*+@A&)>*Q C�&)Q + B 2=7�2A-�@42=J +'@=5M79/	:�+
3�&<2=%D@=5R+<& -D5M79/�C*>�1E+,%'-D7'&)>�1N&)>�1R798*+�2=.0(E@=+,.0+,>E7'&)7D2=/ >N/)3�-DC*:�?9@A& -9-�2=>*QM2A-�@42=J +'@=5N79/�:�+I3�&<2=%D@=5R+��R?92=+,>E7<K

Y�+'@=+,QE&)7D2=/ >p2A-MC�-DC�&<@4@=5p798*+O(*%9+'36+,%9%9+<1p79+<?98*>E2Ag C*+O36/ %MG%'&)(*(�+,%'- �D&)>�1w36/ %M.M&)>E5p1E+<-�2=Q >�(�&)7979+,%9>�- 	'K
$�%'&)(*(�+,%'-�?,&)>N:�+0& 1*1E+<1N&)>�1N%9+,.0/); +<1R1E5E>�&).�2A?,&<@4@=5 KIU*/ %2=>�-D7'&)>�?'+ F�&0G�2=>�1E/)G�?,&)>N:�+�:�/ %'1E+,%9+<1RG8*+,>
& ?'7D2=; +0&)>�1NC*>E:�/ %'1E+,%9+<1O/ 798*+,%9G�2A-D+ K W >*/ 798*+,%	& 1E;)&)>E7'&)Q +I2A-�798�&)7I/ :*\D+<?'7'-/)3�&)%9:E2=79%'&)%95N?'/ >�?'%9+,79+0?9@A& -9-D+<-
?,&)>H:�+RG%'&)(*(�+<1�K���%9+<&)7D2=>*Q�&O-DC*:�?9@A& -9-0-D(�+<?924h�+<-0798*+M+'P�& ?'7�7D5E(�+M/)3�798*+M/ :*\D+<?'7	:�+'2=>*QHG%'&)(*(�+<1�K "�5
?'/ >E79%'& -D7<F�798*+MG%'&)(*(�+,%0?,&)>HG%'&)(w&)>H/ :*\D+<?'7	/)3I&)>E5�-DC*:�?9@A& -9-�/)3�798*+R1E+<?9@A&)%9+<1H7D5E(�+M/)3798*+R?'/ >E7'&<2=>*+<1
/ :*\D+<?'7<K W >*/ 798*+,%I-D79%9+,>*Q 798N/)3�1E+'@=+,QE&)7D2=/ >���%9+'@A&)79+<1N79/M798*+	(*%9+,; 2=/ C�-�/ >*+�	�2A-�798*+�&):E24@42=7D5O79/0C�-D+�.�CE@=7D2=(E@=+
& 1*&)(*79+,%'-,K �DU*/ %�2=>�-D7'&)>�?'+ F�?'/ >�-�2A1E+,%�8*/)G�5 / CRG�/ CE@A1N?'%9+<&)79+	&�1E/ C*:E@=5��6:�/ %'1E+,%9+<1OG�2=>�1E/)G	K 	

Client Implementation

Different
interfaces

���

Client

Implementation

Adaptor

Client ImplementationAdaptor

Client

Implementation

Adaptor
Implementation

Subclass

V�.0(E@=+,.0+,>E7'&)7D2=/ >�-R/)3�798*+O798*%9+,+O;)&)%D2=+,7D2=+<-N/)3	G%'&)(*(�+,%'-R8�&<; +N798*+H-9&).0+OQ %9/E-9-M-D79%9C�?'79C*%9+ BIG�2=798*/ C*7
@=/E/ J 2=>*QR&)7�798*+I.0+,798*/*1M:�/*1 2=+<-�79/0-D+,+IG8�&)7�G�/ %9J�2A-:�+'2=>*QR1E/ >*+ FE2=7�2A->*/ 7�/ :E; 2=/ C�-�G8*+,798*+,%�&�G%'&)(*(�+,%
2A-0&O1E+<?'/ %'&)79/ %	/ %0&N(*%9/<P*5 K�� W >w& 1*&)(*79+,%�8�& -�&O1 24X�+,%9+,>E7	2=>E79+,%D3�& ?'+R798�&)>H798*+N?9@A& -9-I2=7�2=>E79+,%D3�& ?'+<-	79/�K 	
t / .0+�G%'&)(*(�+,%'-�?,&)>O+,; +,>O8�&<; +0& -D(�+<?'7'-�/)3�.0/ %9+	798�&)>O/ >*+	;)&)%D2=+,7D5 F�798*/ C*Q 8R2=>�798�&)7I?,& -D+I2=7�2A-	?9@=+<&)%9+<-D7
36/ %798*+	1E/*?'C*.0+,>E7'&)7D2=/ >R79/M-9&<5��636/ %�2=>�-D7'&)>�?'+�	'F �,L�8E2A-�2A-�:�/ 798O&)>N& 1*&)(*79+,%�&)>�1R&01E+<?'/ %'&)79/ %<K �

����� ������!���#	��
 "
L�8*+�?'/ .0(�/E-�2=79+�1E+<-�2=Q >N(�&)7979+,%9>R(�+,%9.�2=7'-I&0?9@42=+,>E7I79/0.M&)>E2=(*CE@A&)79+	+'2=798*+,%	&)>N&)79/ .�2A?�C*>E2=7I/ %�&0?'/)@4@=+<?'7D2=/ >
/)3�C*>E2=7'-�2=>M+'P�& ?'7D@=50798*+�-9&).0+G&<5 K
L�8*+I?9@42=+,>E7>*+,+<10>*/ 7�?'%9+<&)79+�-D(�+<?92A&<@
?'/*1E+36/ %�798*+I?,& -D+/)3�:�+'2=>*Q�Q)2=; +,>
&�8E2=Q 8*+,% �A@=+,; +'@�/ :*\D+<?'7G�2=798O-D79%9C�?'79C*%9+	& -�/ (*(�/E-D+<1R79/0:�+'2=>*QRQ)2=; +,>O&�:�& -�2A?I/ :*\D+<?'7<B*798*+�-9&).0+I/ (�+,%'&)7D2=/ >�-
G�/ %9J0/ >R:�/ 798�K

��/ .0(�/E-�2=79+I2A-�Q /E/*1R36/ %�/ :*\D+<?'7�G�2=798O(�&)%97 �6G8*/)@=+�%9+'@A&)7D2=/ >�-D8E2=(�-,F
&)>�1N798*+0?9@42=+,>E7	-D8*/ CE@A1O>*/ 7�8�&<; +�79/
G�/ %9%95M&):�/ C*7G8*+,798*+,%�2=7'-�&)%9Q C*.0+,>E7�2A-�&)79/ .�2A?�/ %�?'/ .0(�/E-D+<1M/)3�(�&)%97'-,K

U*/ %�+'P�&).0(E@=+ F�&�:E2A?'5*?9@=+0?,&)>R:�+�1E+<?'/ .0(�/E-D+<1M2=>N798*+�36/)@4@=/)G�2=>*QMG&<5�S
"�2A?'5*?9@=+
$�8*+,+'@
-DJ +,G�+,%
8EC*:
-D(�/ J +<-
>E2=(*(E@=+<-
%D2=.
79C*:�+
7D2=%9+

U*%'&).0+
Y�%D2=; +,79%'&<2=>
K=K=K

!2=; +,>N&�:E2A?'5*?9@=+0?'/ .0(�/ >*+,>E7<FEV�.�2=Q 8E7�G&)>E7�79/M1E+,79+,%9.�2=>*+I2=7'-�G�+'2=Q 8E7�/ %�?'/E-D7�%9+,QE&)%'1 @=+<-9-�/)3�G8*+,798*+,%
2=7�2A-�2=7'-D+'@43�?'/ .0(�/E-D+<10/)3
-DC*:�?'/ .0(�/ >*+,>E7'-,K W ?9@42=+,>E7G8E2A?9802A-�Q)2=; +,>R&I:E2A?'5*?9@=+�?'/ .0(�/ >*+,>E7�-D8*/ CE@A1E>�Z 7�8�&<; +
79/079%9+<&)7�2=7�1 24X�+,%9+,>E7D@=5M243�2=7�2A-�&�G8*+,+'@�& -�/ (*(�/E-D+<1R79/0&�%9+���+<?'79/ %/ %�&0-9& 1*1 @=+ K

��

L�8*+	-D/)@=C*7D2=/ >N79/0798E2A-�(*%9/ :E@=+,. 2A-�36/ %&<@4@
:E2A?'5*?9@=+M?'/ .0(�/ >*+,>E7'-�79/M-9&)7D2A-�365M&0?'/ .0.0/ >M2=>E79+,%D3�& ?'+ S

y ~*{E�E� � � y)��y ~*x �E�<�*���)|�x<|*zp�
� |*z���x � } �*z��<���
�*~E�*{)z�y �*�)z��<���

�

L�8*+�2=.0(E@=+,.0+,>E7'&)7D2=/ >R/)3 � ��xEx ~ � ��x � } �*z	.�2=Q 8E7�2=7'-D+'@43�?,&<@4@���x � } �*z�/ >02=7'-�-DC*:*(�&)%97'-,F :*C*7�798�&)7�2A-�/)3�>*/
2=.0(�/ %9779/0798*+	?9@42=+,>E7 �D&)>�1M798*+	?9@42=+,>E7	-D8*/ CE@A1E>�Z 78�&<; +I79/0G�/ %9%95M&):�/ C*7798�&)7�	'K

W >O&<@=79+,%9>�&)7D2=; +	79/MC�-�2=>*QN&0?'/ .0.0/ >R2=>E79+,%D3�& ?'+	2A-79/M8�&<; +	&M?'/ .0.0/ >O-DC*(�+,%'?9@A& -9-,B�2=>O+'2=798*+,%IG&<5 F�&<@4@
:E2A?'5*?9@=+0?'/ .0(�/ >*+,>E7'-�&)7&<@4@�@=+,; +'@A-�(*%9/); 2A1E+I798*+�-9&).0+I.0+,798*/*1*-&)>�1R?,&)>N:�+IC�-D+<1M2=>E79+,%'?98�&)>*Q +<&):E@=5 K

W -&)>*/ 798*+,%+'P�&).0(E@=+ F�&	@=+,>�1 2=>*QM@42=:*%'&)%95�Z -8*/)@A1 2=>*QE-.�2=Q 8E7/ %9QE&)>E2��,+<1M2=>E79/�@=+,; +'@A-I& -�36/)@4@=/)G�-,S

��2=:*%'&)%95
t +<?'7D2=/ > �636/ %&�Q)2=; +,>NQ +,>*%9+�	
t 8*+'@43
��/)@=C*.0+
T�&)Q +
��/)@=C*.0>
$�/ %'1
��+,7979+,%

V63�&<@4@
/)3�798*+<-D+	-9&)7D2A-�365M798*+I2=>E79+,%D3�& ?'+

� |*z�x)�E��{EyEx���x��Ez[�
� zE� � |*}�}�x)z���x��Ez��<���

�

798*+,>�&0?9@42=+,>E7�?,&)> �D-9&<5�	�?'/ C*>E7�798*+	>EC*.�:�+,%I/)3�G�/ %'1*-,F*/ %�(�+,%D36/ %9.�/ 798*+,%/ (�+,%'&)7D2=/ >�-,F�/ >O& -�@A&)%9Q +�/ %�& -
-D.M&<@4@�&�(�&)%97�/)3�798*+�@42=:*%'&)%95�Z -8*/)@A1 2=>*QE-I& -�1E+<-�2=%9+<1�K

L�8*+I:�/E/ JRQ)2=; +<-�&)>*/ 798*+,%+'P�&).0(E@=+ F�798*+�-D5E>E7'&<PM/)3�?'/ .0(*C*79+,%�(*%9/ Q %'&).M-,K��/ 7D2A?'+	798�&)7�798*+,%9+�&)%9+I7DG�/
?'/ .0(E@=+,79+'@=5wC*>*%9+'@A&)79+<1H79%9+,+R-D79%9C�?'79C*%9+<-,F�24@4@=C�-D79%'&)79+<1H2=>Hh�Q C*%9+<-�� � K�� � &)>�1	� � K�� / >H(�&)Q + �� � K � >*+M2A-
798*+�&):�-D79%'& ?'7�-D5E>E7'&<PR79%9+,+ F*G8E2A?98O:*%9+<&)J*-1E/)G>N798*+�-D5E>E7'&<PR/)3�&0(�&)%97D2A?'CE@A&)%�C*7979+,%'&)>�?'+I2=>N798*+I@A&)>*Q C�&)Q + F
-DC�?98p& -�&O(�&)%97D2A?'CE@A&)%0:E@=/*?9Jw/)3I?'/*1E+ KwL�8*+R/ 798*+,%	2A-0798*+R?9@A& -9-08E2=+,%'&)%'?98E5 F�G8E2A?98w+'P*(*%9+<-9-D+<-0-DC*:*7D5E(E2=>*Q
&)>�1M2=>*8*+,%D2=7'&)>�?'+ K ��V�> � &<;)&*F*G8*+,>*+,; +,%�798*+,%9+I2A-�2=>*8*+,%D2=7'&)>�?'+ F�798*+,%9+I2A-�&<@=G&<5*--DC*:*7D5E(E2=>*Q�F�:�+<?,&)C�-D+	+,; +,%95
-DC*:�?9@A& -9-�2A-	&R-DC*:*7D5E(�+ K 	�L�8*+�@A&)7979+,%I/ %9QE&)>E2��<&)7D2=/ >O(�+,%9.�2=7'- � � � x079/R8�&<; +�.0+,798*/*1*-@42=J +MzE� ��x �)��xEy)�M/ %
�*��x)zEzE���E� � |*zIG8E2A?98M?,&)>0:�+�?,&<@4@=+<10%9+,QE&)%'1 @=+<-9-�/)3�G8E2A?98M?'/ >�?'%9+,79+ � � � x2A-�:�+'2=>*Q�/ (�+,%'&)79+<1	/ >�K�
N+,798*/*1*-,F
?9@A& -9-D+<-,F�&)>�1R(�& ?9J)&)Q +<-�.�2=Q 8E7�&<@A-D/0:�+ � � � x -�2=>N798E2A-%9+,(*%9+<-D+,>E7'&)7D2=/ >�K

 �

����������	�
������������������������
�

�������� "!#�$&%�')(�#"�+*

, $&%�-/.�#+(��+*�01/ / ��

243�576)8�576)9

:<;=�>�?�@ABDC E)F
F<G7H�I)JKALMB)N�O�P�Q+@Q�LMBDC E�E
ERG7H�I)JKALMB)N�;�S=)I�T&B"I)U�V4T&BDQ+?WI)U)X)LMB E�Y
Z[;=�>CW?&PM?+=)?&PM\�U�AT+P]U�Q�P�ALMB E)^
_a`)I/bDIcC+=�>dQ�LMI�C&CWBDC�I)U�V4C+=�>�?�@ABDC E�e
Y<`)I/bDIcP]U�?WBDT&fgI�Q+BDC Z)h
i�j&k�l�mMnDo�p7qsr�k+tDuvjWw�x�y+z�{�|~}���|~�������&�&�&��}��)���&���s���"�D���&���/����k+wv��k+w�k���m��~��y+�

�v� jWj���y��Dw���k&�+k���y/y���z]y�w���k&�+k�l/jWu�k&m������~���vr�k���k+���~uvw�k���u7u~�/t�j&� � nDy�u7k&�����jWuvrDyDlD��k+wvj�mM��t/�MjW��jWn/uvj&l)�
k+n�l�nDy�y��D�~j&��u����Wk+n4��j"mMn��~u�k+n/u~m�k+uvj&l� �l/jWu�k&m�����y+z�mMn/uvjWw~zgk���j&�W�7k+n�l4k��W��j&�v����yDl�m�¡�jWw�� � tD�D�/��m��+��tDw~mM�+k+uvj��
tDwvy�uvj&��uvj&l)��l/j�zgk+�/�MuW �¢s£�rDjW��¤�y�n�¥ u���j���y+��jWwvj&l�mMn"uvr/m����Mj&��uv�Dwvj�¢

¦ §�¨�© 6/ª�«�8s9

¬Kj��vk&��uvr�k+u�uvr�k+u7��M®���¯cm�zdjW��jWwv��°±y��D�~j&��usm���k&���~y�k��²y��D�~j&��u&¢d³Dy�wsmMn��~u�k+n���j��DjW��jWwv��k+�Duvy���y��/m��Mj�m��7k
��jWr/m��v�Mj���k+n�l�jW��jWwv���/m����D�v�Mj�m���k���jWr/m��v�Mj���k+n�l�jW��jWwv��t�y�o�y��~u~m��v��m���k���jWr/m��v�Mj�´)jW��jWwv����jWr/m��v�Mj�m���k���yDl/j�y+z
uvw�k+n��~t�y�wvu&��k���m���jW��jWwv��t�k��v�"k+n/mM��k&�g¢�¬Kj�k+nDnDy�u�k+uvj�uvr/m����~�D���~jWu�wvj���k+u~mMy�n��~r/mMt�mMnKk���yDl/�/�Mj�l/jWt�jWn�l/jWn���j
l�m�k+o�w�k+�"p

B

A

£�r/m��7�~�D���~jWu7wvj���k+u~mMy�n��~r/mMt"m��7k�nDj&��j&�v�vk+wv���D�Du7nDy�u7�~�/µ��vmMjWn/u���y�n�l�mMu~mMy�n�z]y�w�k�®W¶D·W�]¸v�)���/��wvj���k+u~mMy�n��~r/mMt�¢
£s�/t�j�°4m��7k��~�D�Du~�/t�j�y+zu~�/t�j���¤7rDjWn�°�¥ ���~t�j&�vm�¡)�Wk+u~mMy�n�mM��t/��mMj&����¥ ���~t�j&�vm�¡)�Wk+u~mMy�n�¢�£�r�k+udm��W��k+n/��y��D�~j&��u
� y�w��v��k��v�� suvr�k+u��vk+u~m��g¡�j&�7°�¥ �7�~t�j&�vm�¡)�Wk+u~mMy�nKk&���~y��vk+u~m��g¡�j&����¥ �7�~t�j&�vm�¡)�Wk+u~mMy�n��)��j&�Wk+���~j���¥ �7�~t�j&�vm�¡)�Wk+u~mMy�n"m��
¤�j&k+��jWw&¢

°�nDy�uvrDjWw7¤7k&��uvy�tD�Du�uvr/m��sm��7uvr�k+u7k+n/�/¤7rDjWwvj�mMn"uvrDj���yDl/j��/m�zs��y���j�¹Dt�j&��u�k��²y��D�~j&��u&��k+n�°±y��D�~j&��usm��
k��W��jWtDu�k+�/�Mj�¢�qsyDl/j�¤7w~mMuvuvjWn�uvy�¤�y�wv��¤�mMuvr��cy��D�~j&��u�� � k+n�l�uvy�l/jWt�jWn�l�y�n�uvrDj�mMw�tDwvy�t�jWwvu~mMj&�� m��do���k+w�k+n/uvjWj&l
uvy���y�n/u~mMn/�Dj7uvy�¤�y�wv��m�z)mMudm��d�~�DtDt/��mMj&l�°4y��D�~j&��u��)mMn��~uvj&k�l)´�z]�DwvuvrDjWwv��y�wvj��+uvrDj7��jWr�k&��mMy�ws¤�m����)��j7uvrDj7�vk+��j��&m�z
¤�j�y�n/�M����y�n��gm�l/jWwsuvrDj7k��~t�j&��u��dy+z�°�¥ ���jWr�k&��mMy�wduvr�k+um��dk&���~y�mMn��v�M��l/j&l�mMn���¥ ���jWr�k&��mMy�w&¢ � °²��k&��mMn/uvwvyDl/����j
nDjW¤���jWr�k&��mMy�w��7uvr�k+u7�4l/y/j&�7nDy�u�r�k&��j��D�D�Du�mMu7��k&��y�n/�M���vr�k+nDo�j�j�¹/m��~u~mMnDo��4��jWr�k&��mMy�w��smMn���jWwvu�k&mMn�¤7k&�D�W´
�~jWj���j��My+¤�¢�

º�»

� ������� «	�v8�
�����ª����v8s9

� �DtDt�y/�~j�¤�j�r�k&��j�k��v��k��v�sz]y�w7wvjWtDwvj&�~jWn/u~mMnDo��/m����D�v�Mj&�W¢��7jWwvj�m���k�t�k+wvu~m�k&�)mM��t/�MjW��jWn/u�k+u~mMy�n�p

��������������� �!����"$#
%�&��('!�)!"��+*�)�,�&!�+-."����(/!"10
%�&��('!�)!"��+*�)2�(3����+*�&��+*�4�5�"�� &!�10
%�&��('!�)!"��+*�)�,�&!"�" 6�3�"�"���5�"�� &!�10
7�7�7
8�8 &!")�9�&�*���)�3�":*�9�-�;�" &�<�,�4!"�� &!�$< *=)�3.���:;.��� �!����"
%�9�;!�!�����+*�)�4!"�� &!�.>(?�#$&!")�9�&�*@�(3����+*�&��+*�4�5�"�� &!��A$,�&!"�" 6�3�"�"���5�"�� &!�10CB
8�8 &!")�9�&�*���)�3�"���<��)=<�,�)�3.����;.��� �!����"
%�9�;!�!����,���<��)2��<��)�>(?�# 7�7�7 B
8�8 &!")�9�&�*���)�3�"�������"���)!� D=<�6!"�E�< *=)�3.���:;.��� �!����"
%�9�;!�!����,���<��)2������"�� F!� D�>(?:#�&!")�9�&�*2��<��)�>(?$A 7HG�I�J�K 0LB
8�8 " ,�,!"��)!��MN)�&!�(*��(%!<�&�)!�:)�3�"$&�� E�" &�,�&�<(-=6�<�&�O�)�<$3!<(-."
%�9�;!�!����'�<!� E�4�<�P�<(-.".>(?:# 7�7�7 B
7�7�7

B

°4nDjW¤��v��k��v�swvjWtDwvj&�~jWn/u~mMnDo��/m����D�v�Mj&��¤�mMuvr�rDj&k�l���k+��t��7�Wk+n�k��W��y�����yDlDk+uvj���k+uvj�n/mMo�r/u�� � y�wdj&k+w~�M����y�wvn�Q
mMnDo/�� �¢

����������R��(4�3�)!"�E������ �!����"�#
%�&��('!�)!"��+*�)�,�&!�+-."����(/!"10
%�&��('!�)!"��+*�)2�(3����+*�&��+*�4�5�"�� &!�10
%�&��('!�)!"��+*�)�,�&!"�" 6�3�"�"���5�"�� &!�10
%�&��('!�)!"��!�)�)!" &���F���%�":;��)�)!" &��S0
7�7�7
8�8 &!")�9�&�*���)�3�":*�9�-�;�" &�<�,�4!"�� &!�$< *=)�3.���:;.��� �!����"
%�9�;!�!�����+*�)�4!"�� &!�.>(?�#$&!")�9�&�*@�(3����+*�&��+*�4�5�"�� &!��A$,�&!"�" 6�3�"�"���5�"�� &!�10CB
8�8 &!")�9�&�*���)�3�"���<��)=<�,�)�3.����;.��� �!����"
,���<��)2��<��)�>(?�# 7�7�7 B
8�8 &!")�9�&�*���)�3�"�������"���)!� D=<�6!"�E�< *=)�3.���:;.��� �!����"
%�9�;!�!����,���<��)2������"�� F!� D�>(?:#�&!")�9�&�*2��<��)�>(?$A 7HG�I�J�K 0LB
8�8 " ,�,!"��)!��MN)�&!�(*��(%!<�&�)!�:)�3�"$&�� E�" &�,�&�<(-=6�<�&�O�)�<$3!<(-."
%�9�;!�!����'�<!� E�4�<�P�<(-.".>(?:# 7�7�7 B
8�8 " ,�,!"��)!��MN&!"(%!������"��:)�3�"�" D����)��+*�4$;��)�)!" &���6��()�3�)�3�"�� &�4�9�-."(*�)$;
%�9�;!�!����'�<!� E=�(3��(*�4!" �!�)�)!" &���>��!�)�)!" &���F���%!"T;.?.0
7�7�7

B

qsy�t/��mMnDo�k&���uvrDj���yDl/j�m���u~mMwvj&�~y���j�k+n�l�jWwvwvy�w�Q]tDwvy�nDj�¢ � £�rDj�jWwvwvy�w���mMo�r/u���j�zgk&m��M�Dwvj�uvy���y�t/����y�wvwvj&��u~�M�
y�w7zgk&m��M�Dwvj�uvy���k+��j�k�wvj(U��/mMwvj&lK�vr�k+nDo�j�¢� �°�lDl�mMu~mMy�n�k&���M����m�z7k��D�Do�m��7z]y��Dn�l�mMnKy�nDj���jWw��gmMy�n���mMu�m���j&k��~�"uvy
z]y�wvo�jWu�uvy�tDwvy�t�k+o/k+uvj�uvrDj�¡D¹�uvy�k&���s��jWw��gmMy�n���y+zsuvrDj���yDl/j�¢�³�mMn�k&���M����mMu�m�����jWwv��r�k+w�l"uvy���y���tDwvjWrDjWn�l�uvrDj
l�m��~u~mMn���u~mMy�n�uvrDj�u~¤�y��v��k��v�~j&�7�/���My/y���mMnDo�z]y�w�l�mWV�jWwvjWn���j&�7uvrDjW���~j��M��j&��mMn�k���k��v�sy+zs�gmM��m���k+w~mMu~mMj&�W¢

º�º

��k&�+k�k+n�l�y�uvrDjWwstDwvy�o�w�k+����mMnDo���k+nDo���k+o�j&�d���~j��~�D�)�v��k��v�gmMnDo�uvy�y+��jWw���y���j�uvrDj&�~j�l�m�µ����/�Mu~mMj&�W¢ � �D�)�v��k��v�HQ
mMnDo�t�jWwv��mMu��7wvjW���~j�y+zmM��t/�MjW��jWn/u�k+u~mMy�n���k+n�l�y+��jWwvw~m�l�mMnDo�y+zd��jWuvrDyDlD�W¢

°±��jWuvuvjWw�mM��t/�MjW��jWn/u�k+u~mMy�n�y+z R��(4�3�)!"�E������ �!����" m��
����������R��(4�3�)!"�E������ �!����"$" D�)!"(*!E�������� �!����"$#
%�&��('!�)!"��!�)�)!" &���F���%�":;��)�)!" &��S0
7�7�7
8�8 &!")�9�&�*���)�3�"���<��)=<�,�)�3.����;.��� �!����"
,���<��)2��<��)�>(?�#$&!")�9�&�*2�(9�%�" & 7 ��<��)�>(? � ;��)�)!" &�� 7 ��<��)�>(?.0CB
8�8 " ,�,!"��)!��MN)�&!�(*��(%!<�&�)!�:)�3�"$&�� E�" &�,�&�<(-=6�<�&�O�)�<$3!<(-."
%�9�;!�!����'�<!� E�4�<�P�<(-.".>(?:# 7�7�7 B
8�8 " ,�,!"��)!��MN&!"(%!������"��:)�3�"�" D����)��+*�4$;��)�)!" &���6��()�3�)�3�"�� &�4�9�-."(*�)$;
%�9�;!�!����'�<!� E=�(3��(*�4!" �!�)�)!" &���>��!�)�)!" &���F���%!"T;.?.0
7�7�7

B
R��(4�3�)!"�E������ �!����" nDjWj&l�nDy�udmM��t/�MjW��jWn/u���jWuvrDyDlD�sk+n�l�¡�j���lD�suvr�k+usk+tDt�j&k+wsmMn�mMu��s�~�Dt�jWw��v��k��v� ����� �!����" ´

uvrDj ����� �!����" ��jWw��gmMy�n���k+wvj�k+�Duvy���k+u~m��Wk&���M�����~j&l��/����k&�+k�¤7rDjWn�uvrDjW��k+wvj7nDy�u�y+��jWwvw~m�lDl/jWn�mMn�uvrDj��~�D�)�v��k��v�W¢
qsy�n��gm�l/jWwsuvrDj�z]y+���My+¤�mMnDo�mM��t/�MjW��jWn/u�k+u~mMy�n���y+z)uvrDj 4�<�P�<(-." ��jWuvrDyDl � k&�My�nDo�¤�mMuvr���y�wvj���y���t/�MjWuvj��~t�j&� Q

m�¡)�Wk+u~mMy�n��� �¢��]z�uvrDj&�~j"k+wvj�uvrDj�y�n/�M���vr�k+nDo�j&�W�sk+wvj R��(4�3�)!"�E������ �!����" k+n�l�� �����+*�4������ �!����" �~�D�Du~�/t�j&��y+z
����� �!����"�� � ³Dy�wsuvrDj�u~mM��j���j�mMnDo�¤�j�¤�m�����u�k&�M��k+��y��Du7�~�D�Du~�/t/mMnDo�´/¤�j�¥ ����wvjWuv�Dwvn�uvy�uvrDj�l�mWV�jWwvjWn���j&����jWu~¤�jWjWn
��k&�+k��~�D�)�v��k��v�gmMnDo�����k&�+k��~�D�Du~�/t/mMnDo���k+n�l�uvwv�Dj��~�D�Du~�/t/mMnDo���k+uvjWw&¢�

��������������� �!����"$#
7�7�78�8 &!"�� 9.�(&!"���MN6��+*!E��(%�"�"�E	� J�G -�%�3�
�
=E�� ���!�(4�3�)
8�8 " ,�,!"��)!��MN)�&!�(*��(%!<�&�)!�:)�3�"$&�� E�" &�,�&�<(-=6�<�&�O�)�<$3!<(-."
'�<!� E�4�<�P�<(-.".>(?.0

B

����������R��(4�3�)!"�E������ �!����"�#
7�7�78�8 &!"�� 9.�(&!"���MN6��+*!E��(%�"�"�E	� J�G -�%�38�8 " ,�,!"��)!��MN)�&!�(*��(%!<�&�)!�:)�3�"$&�� E�" &�,�&�<(-=6�<�&�O�)�<$3!<(-."
'�<!� E�4�<�P�<(-.".>(?.0

B

��������� � �����+*�4������ �!����"�#
7�7�78�8 &!"�� 9.�(&!"���MN6��+*!E��(%�"�"�E	� J�G -�%�3�
�
=E�� ���!�(4�3�)
8�8 " ,�,!"��)!��MN)�&!�(*��(%!<�&�)!�:)�3�"$&�� E�" &�,�&�<(-=6�<�&�O�)�<$3!<(-."
8�8 �+*2�(*@"����(%���"�E$)�� -."$<�,��� G -1�+*�9�)!"��
8�8
�
�4!")!�$)�3�"�&�� E�" &=� 6!"��)��
'�<!� E�4�<�P�<(-.".>(?.0

B
£�y�k+n��~¤�jWw�uvr�k+u	U��Dj&�~u~mMy�n��dwvj&�Wk&���7uvrDj�l/j�¡�n/mMu~mMy�n�y+z��~�D�Du~�/t/mMnDo�p��Wk+n�k+ncy��D�~j&��u�y+z7uvrDj��~�D�Du~�/t�j���j

�~�D���~u~mMuv�Duvj&l�k+n/�/¤7rDjWwvjduvr�k+u��yDl/j�j�¹Dt�j&��u��k+n�y��D�~j&��u�y+z�uvrDj��~�Dt�jWwvu~�/t�j � �]z)�~y��&uvrDj��~�D�Du~�/t/mMnDo�wvj���k+u~mMy�n��~r/mMt
m��7�+k&��m�l)¢

º��

�gn�uvr/m����Wk��~j��)��y�uvr R��(4�3�)!"�E������ �!����" k+n�l � �����+*�4������ �!����" k+wvj��~�D�Du~�/t�j&��y+z ����� �!����" ¢ �gn�uvrDj�¡�w��~u
�Wk��~j��/uvrDj�wvj(U��/mMwvjW��jWn/u�m���wvj���k&¹Dj&l)´/mMn"uvrDj��~j&��y�n�l��Wk��~j��DuvrDj�j V�j&��u���k+wvj��~uvwvjWnDo�uvrDjWnDj&l�mMn"k�¤7k&��uvr�k+u7�~u~m����
�vk+u~m��g¡�j&��uvrDj��~�Dt�jWw��v��k��v�W¥ �7j V�j&��u��W¢

£�rDj ��<��) ��jWuvrDyDl"y+z R��(4�3�)!"�E������ �!����" �~rDy+¤���k+nDy�uvrDjWw��Wk+t�k+�/m���mMu~��y+z��~�D�)�v��k��v�gmMnDo�mMnK��k&�+kD¢��"jWuvr�Q
yDlD���Wk+nc��j"y+��jWwvw~m�lDl/jWn�uvy�tDwvy+��m�l/j"k"nDjW¤�mM��t/�MjW��jWn/u�k+u~mMy�n�mMn²k��~�D�)�v��k��v�W¢�£�r/m���jWn�k+�/�Mj&����y�wvj���yDl/j
wvjW���~j�´)mMnKt�k+wvu~m����/��k+w&� R��(4�3�)!"�E������ �!����" �Wk+n�wvjW���~j ����� �!����" ¥ � ������"�� F!� D ��jWuvrDyDl)¢�¬4rDjWn ������"�� F!� D m��
mMn/��y���j&l�y�n�k R��(4�3�)!"�E������ �!����" �/uvrDj ����� �!����" ��jWw��gmMy�n�m������~j&l�mMn��~uvj&k�l)¢7£�rDjWn���uvrDj��Wk&���duvy ��<��) mMn��gm�l/j
������"�� F!� D mMn/��y���j&��uvrDj���jWw��gmMy�nK��k��~j&l"y�nKuvrDj�wv�Dn/u~mM��j�u~�/t�j�y+zsuvrDj�y��D�~j&��u � R��(4�3�)!"�E������ �!����" ����~y�uvrDj
R��(4�3�)!"�E������ �!����" ��jWw��gmMy�n�m��7���~j&l)¢�i�jWo/k+w�l��Mj&�v��y+zduvrDj�l/j&�v��k+wvj&l"u~�/t�j�y+zsk+n"y��D�~j&��u&�Dk+n�mM��t/�MjW��jWn/u�k+u~mMy�n
y+zk���jWuvrDyDl�¤�mMuvr����/�Mu~mMt/�Mj�mM��t/�MjW��jWn/u�k+u~mMy�n�� � y+zuvrDj��vk+��j��gmMo�n�k+uv�Dwvj+ m���k&�M¤7k&�D���~j��Mj&��uvj&l���k��~j&l�y�n�uvrDj
wv�Dn�Q]u~mM��j�u~�/t�j�¢
�gn�zgk���u&�/uvrDjWwvj7m��snDy�¤7k&��z]y�w�k+n�j�¹DuvjWwvn�k&��v��mMjWn/u7uvy�mMn/��y���j�uvrDj���jWw��gmMy�n�y+zdk���jWuvrDyDl��~t�j&�vm�¡�j&l��/��uvrDj

l/j&�v��k+wvj&l�u~�/t�j7y�w�k+n/��y�uvrDjWwsu~�/t�j7uvr�k+udm��snDy�usuvrDj�wv�Dn�Q]u~mM��j�u~�/t�j�¢d£�r/m��sm���k+n�mM��t�y�wvu�k+n/u�k+n�l���jWwv��l/j&�gmMw�Q
k+�/�Mj�tDwvy�t�jWwvu~��y+zs��k&�+k � k+n�l�y�uvrDjWw7y��D�~j&��u�Q]y�w~mMjWn/uvj&l���k+nDo���k+o�j&�� �¢ � �DtDt�y/�~j�uvr�k+u7uvrDj��~�D�)�v��k��v����k&mMn/u�k&mMn��
�~y���j�j�¹Duvw�k�¡�j���lD��¤7r/m��vrKk+wvj���jWtDu7mMn��~�/n���¤�mMuvr�¡�j���lD��y+zduvrDj��~�Dt�jWw��v��k��v�W¢ �]z��~�Dt�jWw��v��k��v����jWuvrDyDlD����y��/��l
��j7mMn/��y���j&l�l�mMwvj&��u~�M���Dt�y/�v�gmM�/�M����yDl�m�z]��mMnDo��~�Dt�jWw��v��k��v�s¡�j���lD��¤�mMuvrDy��Du7k&���~y��Dt)lDk+u~mMnDo��~�D�)�v��k��v�s¡�j���lD�W�DuvrDjWn
uvrDj�wvjWtDwvj&�~jWn/u�k+u~mMy�n�mMn/�+k+w~m�k+n/u7y+zduvrDj��~�D�)�v��k��v��¤�y��/��l���j��Dwvy���jWn�¢

° �~�D�)�v��k��v����k&��mMn/��y���j���jWuvrDyDlD��y+z�mMu���t�k+wvjWn/u���m�k����~j�y+z �(9�%�" & �drDy+¤�jW��jWw&¢ � y���jWu~mM��j&��uvr/m���m��
���~j�z]�/�)¤7rDjWn�uvrDj��~�D�)�v��k��v�d��jWuvrDyDl�nDjWj&lD�suvy�l/y��~���~u�k7��mMuvu~�Mj��/mMus��y�wvj�¤�y�wv�)´+wvj&�Wk&���)uvrDj R��(4�3�)!"�E������ �!����"
mM��t/�MjW��jWn/u�k+u~mMy�n"y+z ��<��) p

����������R��(4�3�)!"�E������ �!����"$" D�)!"(*!E�������� �!����"$#
8�8 &!")�9�&�*���)�3�"���<��)=<�,�)�3.����;.��� �!����"
,���<��)2��<��)�>(?�#$&!")�9�&�*2�(9�%�" & 7 ��<��)�>(? � ;��)�)!" &�� 7 ��<��)�>(?.0CB

B
� �DtDt�y/�~j�uvrDj � � E�" & �v��k��v����yDl/j�����t�jWy�t/�Mj�¤7rDy"w~m�l/j��/m����D�v�Mj&�W¢ �gncuvrDj�k+���~jWn���j�y+z��~�D�)�v��k��v�gmMnDock+n�l

�~�D�Du~�/t�j&�W�DuvrDj���yDl/�/�Mj�l/jWt�jWn�l/jWn���j�l�m�k+o�w�k+��¤�y��/��l��My/y��"�~y���jWuvr/mMnDo���mM��j�uvr/m��Wp

Rider

Bicycle LightedBicycle RacingBicycle PennyFarthing...
£�rDj���yDl/j�z]y�w � � E�" & ¤�y��/��lck&���~y�nDjWj&lcuvy�uvj&�~u�¤7r/m��vr�u~�/t�j�y+z7y��D�~j&��u�mMu�r�k�lc��jWjWn�t�k��v�~j&l)�d¤7r/m��vr

¤�y��/��l���j��Do+�M������jWwv��y/�~j���k+n�l�jWwvwvy�w�Q]tDwvy�nDj�¢
¬²mMuvr"�~�D�Du~�/t/mMnDo��DuvrDj������±l/jWt�jWn�l/jWn���j&���My/y�����mM��j�uvr/m��Wp

RiderBicycle

LightedBicycle RacingBicycle PennyFarthing...
º��

£�rDj���k+n/��l/jWt�jWn�l/jWn���j&��r�k&��j���jWjWn"wvj&l/����j&l"uvy�k��gmMnDo+�Mj�y�nDj�¢
¬4rDjWn"�~�D�Du~�/t�j�k+wvwvy+¤���k+wvj�k�lDl/j&l)��uvrDj�l�m�k+o�w�k+��m��7y�n/�M�"k��/mMu���y�wvj���y���t/��m��Wk+uvj&l)p

RiderBicycle

LightedBicycle RacingBicycle PennyFarthing...
�d��jWn�uvrDy��Do�r�uvrDjWwvj�k+wvjd�~���~u�k��d��k+n/��k+wvwvy+¤��W�+uvr/m���l�m�k+o�w�k+� m��d�����vr��gmM��t/�MjWw�uvr�k+n�uvrDj�y�w~mMo+mMn�k&�)y�nDj�p

l/jWt�jWn�l/jWn���j�j&l/o�j&�7��y���t/��m��Wk+uvj�l/j&�gmMo�n���k+n�l�mM��t/�MjW��jWn/u�k+u~mMy�n��7��y�wvj�uvr�k+n�y�uvrDjWw7u~�/t�j&��y+zdj&l/o�j�¢

� ������� «	�v8�
 §���¨���� 8 � 5�� � 8S�6 � 5����v8

¬Kj��/nDy+¤ z]wvy�� j��MjW��jWn/u�k+wv�c�v�vrDy/y+��uvr�k+u�jW��jWwv�K��U���k+wvj�m���k�wvj&��u�k+nDo+�Mj�¢ � �DtDt�y/�~j�¤�j�¤7k+n/uvj&l�uvy"��k+��j
	 � 9�� &!" k��~�D�Du~�/t�j�y+z � "��)!�(*�4���" ��¤7r/m��vr�mMn��v�M��l/j&lKk ��") 	 �(/!" ��jWuvrDyDl)p

��������� � "��)!�(*�4���"�#
7�7�7
8�8 " ,�,!"��)!��ML��")!��6�� E�)�32�(*!E$3�"��(4�3�)�)�<$)�3�"��(%�"����(,���"�E�'!��� 9�"��
8�8 >�)�3��)2����
C)�3.��� 7 6�� E�)�3���$6�
�
�)�3.��� 7 3�"��(4�3�)����$3.?
'�<!� E=��") 	 �(/!".>(�+*�)$6�
:�+*�)$3.?.0

B

��������� 	 � 9�� &!"�" D�)!"(*!E�� � "��)!�(*�4���"�#
7�7�7

B

¬4r/m��vr"y+zuvrDj�z]y+���My+¤�mMnDo���jWuvrDyDlD��m��7w~mMo�r/usz]y�w 	 � 9�� &!"��
8�8 &!"�� 9.�(&!"���MN6��$3
'�<!� E=��") 	 �(/!".>(�+*�)$6�
:�+*�)$3.?.0

'�<!� E=��") 	 �(/!".>(�+*�)�"�E�4!" R!"(*�4�)�3.?.0

8�8)�3�&�<�6!���!��E 	 �(/!"���D!��"(%�)�� < *2�(,�6����$3
'�<!� E=��") 	 �(/!".>(�+*�)$6�
:�+*�)$3.?�)�3�&�<�6!���!��E 	 �(/!"���D!��"(%�)�� < * 0

£�rDjs¡�w��~usy�nDjsm��~n�¥ usw~mMo�r/ud��j&�Wk+���~j�uvrDj7�~�D�)�v��k��v�s��jWuvrDyDl�wvj(U��/mMwvj&�d��y�wvj�uvr�k+n�uvrDj7�~�Dt�jWw��v��k��v�s��jWuvrDyDl)¢
£�r/���W���~�D�)�v��k��v�y��D�~j&��u���Wk+n�¥ u��j7�~�D���~u~mMuv�Duvj&l�z]y�w�~�Dt�jWw��v��k��v�dy��D�~j&��u��W�+k���uvrDjWwvjs��mMo�r/ud��j7��yDl/j�uvr�k+u�Wk&���Mj&l
��") 	 �(/!" ¤�mMuvr"nDy�n�Q]j(U���k&�dk+wvo��D��jWn/u��W¢
£�rDj��~j&��y�n�l"y�nDj�m��~n�¥ u�w~mMo�r/u � k&����/��mMu��~j���z& ���j&�Wk+���~j�uvrDj��~�D�)�v��k��v���~u~m����s�����~u��~t�j&�vm�z]�Kk���jWr�k&��mMy�w�z]y�w

��") 	 �(/!".>(�+*�)�
T�+*�)�? ´)uvr�k+u�l/j�¡�n/mMu~mMy�n�m���y+z�k�l�mWV�jWwvjWn/u���jWuvrDyDl � ¤7rDy/�~j�n�k+��j�m���uvrDj��vk+��j��D�Du�¤7rDy/�~j
�gmMo�n�k+uv�Dwvj�l�mWV�jWw��� �¢

º��

£�rDj�uvr/mMw�l�y�nDj�m��~n�¥ u�w~mMo�r/u���j&�Wk+���~j�mMu�uvrDwvy+¤���k+n�j�¹���jWtDu~mMy�nKuvr�k+u�uvrDj��~�Dt�jWw��v��k��v��l/y/j&�~n�¥ u���jWn/u~mMy�n�¢
£�r/���W�smMu�k+o/k&mMn²r�k���l�mWV�jWwvjWn/u���jWr�k&��mMy�w�k+n�l²�~y 	 � 9�� &!" ���Wk+n�¥ u���jK�~�D���~u~mMuv�Duvj&lcz]y�w � "��)!�(*�4���" �W¢ � �]z
�!��E 	 �(/!"���D!��"(%�)�� < * m���k+n��Dn��vrDj&�v��j&l�j�¹���jWtDu~mMy�n��DuvrDjWn"��k&�+k�¤�m����t�jWwv��mMu7uvrDj�uvr/mMw�l���jWuvrDyDl�uvy���y���t/m��Mj�´
�D�Du7uvrDjWn�k+o/k&mMn��/mMu�¤�m����sk&���~y�t�jWwv��mMu�uvrDj�¡�w��~u7��jWuvrDyDl�uvy���y���t/m��Mj�¢7��k&�+kD¥ ��nDy�u~mMy�n�y+zs�~�D�Du~�/t�j�m��7¤�j&k+��jWw
uvr�k+n�uvrDj � ¢ � x���nDy�u~mMy�n�y+z)�~�D�Du~�/t�j�¢¬²mMuvr�nDy�r/�D�Dw~m��d¤7r�k+u��~y/jW��jWw&�&¤�js¤�m����)�Wk&����uvrDjd��k+uvuvjWw���uvwv�Dj��~�D�Du~�/t�j&���
uvy�l�m��~u~mMnDo��/m��~r�uvrDjW��z]wvy�� ��k&�+k��~�D�Du~�/t�j&�W¢�

£�rDjWwvj�m��~n�¥ u�k�¤7k&��y��Du7y+zduvr/m���U���k+n�lDk+wv��¤�mMuvrDy��Du7��yDl�m�z]��mMnDo�uvrDj��~�Dt�jWwvu~�/t�j�¢ � y���jWu~mM��j&���~�D�Du~�/t�j&�
l/y�nDy�u�k��W��y�w�l�¤�mMuvr"y��DwsmMn/uv�/mMu~mMy�n���	7w&�Dy��Dw�mMn/uv�/mMu~mMy�n�k+��y��Du7¤7r�k+u�m���k�o�y/yDl��~�Dt�jWwvu~�/t�j�m���¤7wvy�nDo�¢

	7nDj�t/��k+���gmM�/�Mj"�~y+�M�Du~mMy�nc¤�y��/��lK��j�uvy"�vr�k+nDo�j � "��)!�(*�4���" 7 ��") 	 �(/!" uvy"�~t�j&�vm�z]�cuvr�k+u�mMu�uvrDwvy+¤���uvrDjj�¹���jWtDu~mMy�n�´�y+zs��y��Dw��~j��/mMn"tDw�k���u~m���j�y�n/�M� 	 � 9�� &!" 7 ��") 	 �(/!" ¤�y��/��l�l/y��~y�¢°�nDy�uvrDjWw��~y+�M�Du~mMy�n"¤�y��/��l���j�uvyj���mM��mMn�k+uvj ��") 	 �(/!" k+n�l�mMn��~uvj&k�l�r�k&��j�k

'�<!� E=��������".> E�< 9�;!��"$��������"�
����)�<�&�?.0
��jWuvrDyDl�uvr�k+u��~rDw~mMnD�D�7y�w7o�wvy+¤��sk��~r�k+t�j�¢�	7uvrDjWw��~y+�M�Du~mMy�n���k+wvj�k&���~y�t�y/�v�gmM�/�Mj�¢

 §�¨�© 9�6�~6 ¨ 6�v3�5 « � �5���v«	��8

£�rDj7®W¶D·�®W�]���]¶/�]��}����)|������&� �)���)m��uvrDjsuvrDjWy�wvjWu~m��Wk&�/�Dn�l/jWwvt/mMnDn/mMnDo�y+z��~�D�Du~�/t�j&�W´&mMutDwvy+��m�l/j&�dk�tDwvj&�vm��~j7l/j�¡�n/mMu~mMy�n
y+z�¤7rDjWn²u~¤�yKu~�/t�j&��k+wvj��~�D�Du~�/t�j&�W¢��gn/z]y�wv��k&���M����mMu��~u�k+uvj&��uvr�k+u��~�D�Du~�/t�j&�������~u���jK�~�D���~u~mMuv�Du�k+�/�Mj�z]y�w
�~�Dt�jWwvu~�/t�j&�W¢�£�r/m���o���k+w�k+n/uvjWj&��uvr�k+u�m�z���yDl/j�l/jWt�jWn�lD��y�n � k+n/��k��~t�j&��u�y+z& �k��~�Dt�jWwvu~�/t�j���D�Du�k+nKy��D�~j&��u
y+zdk��~�D�Du~�/t�j�m��7�~�D���~u~mMuv�Duvj&l)���~�D�~uvjW� ��jWr�k&��mMy�w7¤�m����dnDy�u���j�k(V�j&��uvj&l)¢ � £�rDj���k&�+k���y���t/m��MjWw�k&���~y�wvj(U��/mMwvj&�
uvr�k+usuvrDj " D�)!"(*!E�� y�w � -�%!��"+-."(*�)!� �v��k+���~j�n�k+��j&�suvrDj�t�k+wvjWn/usmMn�y�w�l/jWwsz]y�w��~�D�Du~�/t�j&��uvy���j����~j&l�mMn�t/��k���j
y+zs�~�Dt�jWwvu~�/t�j&�W¢�

£�rDj7��jWuvrDyDlD�dy+zk��~�D�Du~�/t�j������~udrDy+��l���jWwvu�k&mMn�wvj���k+u~mMy�n��~r/mMt��suvy�uvrDj7��jWuvrDyDlD�dy+z�uvrDj��~�Dt�jWwvu~�/t�j��Dk+n�l
uvrDj��~�D�Du~�/t�j������~uso���k+w�k+n/uvjWj�uvr�k+u�k+n/��tDwvy�t�jWwvu~mMj&�sy+z�uvrDj��~�Dt�jWwvu~�/t�j � �~���vr�k��dwvjWtDwvj&�~jWn/u�k+u~mMy�n�mMn/�+k+w~m�k+n/u��
y�w��~t�j&�vm�¡)�Wk+u~mMy�nK��y�n��~uvw�k&mMn/u��� sk+wvj�nDy�u7��mMy+��k+uvj&l��/��uvrDj��~�D�Du~�/t�j�¢

J�B/?��)\�VC £�rDjWwvj�k+wvj�u~¤�y�nDj&��j&�v�vk+wv��tDwvy�t�jWwvu~mMj&�Wp
� ¢7³Dy�w�j&k��vr4��jWuvrDyDlcmMn4uvrDj��~�Dt�jWwvu~�/t�j��7uvrDjK�~�D�Du~�/t�j������~u�r�k&��j�kc��y�wvwvj&�~t�y�n�l�mMnDo���jWuvrDyDl)¢
� £�rDj��~�D�Du~�/t�j7m���k&���My+¤�j&l�uvy�mMn/uvwvyDl/����j�k�lDl�mMu~mMy�n�k&�g�DnDjW¤4��jWuvrDyDlD�suvr�k+usl/y�nDy�u�k+tDt�j&k+wsmMn�uvrDj
�~�Dt�jWwvu~�/t�j�¢�

» ¢��sk��vr���jWuvrDyDl�mMn��~�D�Du~�/t�j�uvr�k+u7��y�wvwvj&�~t�y�n�lD�7uvy�y�nDj�mMn"uvrDj��~�Dt�jWwvu~�/t�j�p
� wvj(U��/mMwvj&���Mj&�v� � r�k��7k�¤�j&k+��jWw�tDwvj&��y�n�l�mMu~mMy�n)

� uvrDjWwvj�k+wvj�z]jW¤�jWw���wvj(U��/mMwvj&�����v��k+���~j&�W�Dk+n�l�j&k��vr�y�nDj7m��d�Mj&�v���~uvw~m���u�uvr�k+n�uvrDj�y�nDj�mMn�uvrDj�~�Dt�jWwvu~�/t�j���jWuvrDyDl)¢
� uvrDj�k+wvo��D��jWn/u�u~�/t�j&����k&����j"�~�Dt�jWwvu~�/t�j&��y+z�uvrDj�y�nDj&��mMn�uvrDj��~�Dt�jWwvu~�/t�j�¢c£�r/m���m���Wk&���Mj&lK��y�n/uvw�k&�+k+w~m�k+n���j���k+n�l�mMu�z]jWj������~y���jW¤7r�k+u���k��v�/¤7k+w�l)����j&�Wk+���~j�uvrDj�k+wvo��D��jWn/u��
uvy7uvrDjs�~�D�Du~�/t�js��jWuvrDyDl�k+wvjs�~�Dt�jWwvu~�/t�j&��y+zDuvrDjsk+wvo��D��jWn/u��)uvy�uvrDj��~�Dt�jWwvu~�/t�js��jWuvrDyDl)¢
�7y+¤�jW��jWw&��mMu��k+��j&���~jWn��~j��+��j&�Wk+���~j7k+n/��k+wvo��D��jWn/u��)t�k��v�~j&l�uvy7uvrDj��~�Dt�jWwvu~�/t�j���jWuvrDyDl
k+wvj��~�Dwvj�uvy���j��MjWo/k&�dk+wvo��D��jWn/u��suvy�uvrDj��~�D�Du~�/t�j���jWuvrDyDl)¢

� o���k+w�k+n/uvjWj&�s��y�wvj � r�k��7k��~uvwvy�nDo�jWw7t�y/�~u���y�n�l�mMu~mMy�n)
� uvrDjWwvj�k+wvj�nDy���y�wvj�j�¹���jWtDu~mMy�n��
� uvrDjWwvj�k+wvj�z]jW¤�jWw7��yDl�m�¡�j&l"�+k+w~m�k+�/�Mj&�
� mMn"uvrDj�l/j&�v��w~mMtDu~mMy�nKy+zduvrDj�wvj&�~�/�Mu�k+n�l��&y�w7wvj&�~�/�Mu��~u�k+uvj��DuvrDjWwvj�k+wvj���y�wvj��v��k+���~j&�W��k+n�luvrDjW��l/j&�v��w~mM��j��~uvwvy�nDo�jWw�tDwvy�t�jWwvu~mMj&�

º x

� uvrDj�wvj&�~�/�Mu�u~�/t�j���k&����j�k��~�D�Du~�/t�j�y+zuvr�k+usy+z�uvrDj��~�Dt�jWwvu~�/t�j�¢s£�r/m��sm����Wk&���Mj&l"��y+�+k+w~m Qk+n���j�psuvrDj�wvjWuv�Dwvn"u~�/t�j�y+zduvrDj��~�D�Du~�/t�j���jWuvrDyDl�m���k��~�D�Du~�/t�j�y+zduvrDj�wvjWuv�Dwvn"u~�/t�j�y+z
uvrDj��~�Dt�jWwvu~�/t�j���jWuvrDyDl)¢

� £�rDj�k+��y+��j�l/j&�v��w~mMtDu~mMy�n����~rDy��/��lKk&���st�jWwv��mMu�j(U���k&��mMu~�)´)z]y�w�mMn��~u�k+n���j�� ��wvj(U��/mMwvj&�7�Mj&�v�����~rDy��/��l
��j ��wvj(U��/mMwvj&�7nDy���y�wvj �D�Dk+n�l �v�Mj&�v���~uvw~m���u ���~rDy��/��l���j ��nDy���y�wvj��~uvw~m���u �D¢d£�rDjW�"k+wvj��~u�k+uvj&l�mMn
uvr/m��sz]y�wv��z]y�w�j&k��~j�y+zwvj&k�l�mMnDo�¢�
£�rDj"�~�D�Du~�/t�j"��jWuvrDyDl��~rDy��/��l�nDy�u�tDwvy���m��~j"uvy�r�k&��j���y�wvj�y�w�l�mWV�jWwvjWn/u�wvj&�~�/�Mu��W´�mMu���jWwvj��M�
tDwvy���m��~j&��uvy�l/y�¤7r�k+u�uvrDj��~�Dt�jWwvu~�/t�j���jWuvrDyDl�l�m�l)�D�D�Du7t�y/�v�gmM�/�M�"uvy�jWn��~�Dwvj�k�lDl�mMu~mMy�n�k&�tDwvy�t�Q
jWwvu~mMj&��k���¤�j����g¢²³Dy�w�mMn��~u�k+n���j��dm�z�kK�~�Dt�jWwvu~�/t�j"��jWuvrDyDlcwvjWuv�Dwvn���k�n/�D����jWw���k+wvo�jWw�uvr�k+ncmMu��
k+wvo��D��jWn/u&�Dk��~�D�Du~�/t�j���jWuvrDyDl"��y��/��l�wvjWuv�Dwvn"k�tDw~mM��j�n/�D����jWw���k+wvo�jWw7uvr�k+n�mMu���k+wvo��D��jWn/u&¢
°���k+n"j�¹�k+��t/�Mj�y+zsuvrDj�u~�/t�j���y�n��~uvw�k&mMn/u��W�Dm�z � m���k��~�D�Du~�/t�j�y+z � ��uvrDjWn�uvrDj�z]y+���My+¤�mMnDo"¤�y��/��l
��j�k��MjWo/k&�y+��jWwvw~m�l�mMnDo�p

����� �!����"�� 7 ,�>������ �!����"$� &�4�?.0
� �����+*�4������ �!����" � 7 ,�>��!"(3.������"$� &�4�?.0

�"jWuvrDyDl � 7 , u�k+��j&��k ����� �!����" k��smMu���k+wvo��D��jWn/u&�D�D�Du � 7 , �Wk+n�k��W��jWtDu�k+n/� �!"(3.������" � ¤7r/m��vrmMn��v�M��l/j&��k&��� ����� �!����" �� �¢ �"jWuvrDyDl � 7 , wvjWuv�Dwvn���k ����� �!����" k���mMu���wvj&�~�/�Mu&�)�D�Du � 7 , wvjWuv�Dwvn���k
� �����+*�4������ �!����" � ¤7r/m��vr�m��smMu��~j���z7k ����� �!����" �¢

AT&\)ABDT&?&PMBDC °�n/�KtDwvy�t�jWwvu~mMj&��o���k+w�k+n/uvjWj&l��/�ck"�~�Dt�jWwvu~�/t�j��s�~���vr�k�����y�n��~uvw�k&mMn/u���y+��jWw�uvrDj��+k&�M�Dj&��uvr�k+u
��k&��k+tDt�j&k+w�mMn"�~t�j&�vm�¡)�Wk+u~mMy�n"¡�j���lD�W�D�����~u7��j�o���k+w�k+n/uvjWj&l��/��uvrDj��~�D�Du~�/t�j�k��s¤�j����g¢ � £�rDj��~�D�Du~�/t�j
m���t�jWwv��mMuvuvj&l�uvy��~uvwvjWnDo�uvrDjWn�uvrDj&�~j���y�n��~uvw�k&mMn/u��W¢�
°��7k��gmM��t/�Mj�j�¹�k+��t/�Mj�z]wvy�� uvrDj���y/y��)����y�n��gm�l/jWw
��) 	 ") �/¤7r/m��vr�m���k&�M¤7k&�D�snDy�nDjW��tDu~��¢

���������
��) 	 ")�#
8�8 	 %�"����(,������)�� < *=��< *��)�&!���+*�)!��M)�3.��������6!� �!����< *�)!���+*����)=��"����)�< *�"�"���"+-."(*�)

7�7�7
8�8 " ,�,!"��)!��ML�(,�)�3.������< *�)!���+*���D2�(*!E$)�3.��� 7 ���(/!"���
C&!"+-�<�'!"���D�,�&�<(-=)�3.���
'�<!� E$&!"+-�<�'!".>(�+*�)�D�?.0

B
£s�/t�j 	 9�%�" &
��) 	 ") ¤�mMuvr"k�lDl�mMu~mMy�n�k&�d��jWuvrDyDl

8�8 " ,�,!"��)!��M &!"+-�<�'!"���D�,�&�<(-=)�3.���
'�<!� E$&!"�������� � "+-�<�'!".>(�+*�)$D�?

m���nDy�u�k��~�D�Du~�/t�j�y+z
��) 	 ") ¢ �d��jWn�uvrDy��Do�r�uvrDjWwvj�m��7nDy�tDwvy��/�MjW� ¤�mMuvr�k+n/����jWuvrDyDl�y+z
��) 	 ")��
&!"�������� � "+-�<�'!" m��k�nDjW¤c��jWuvrDyDl)���~y7uvrDjswv�/�Mj&�dk+��y��Du��y�wvwvj&�~t�y�n�l�mMnDo���jWuvrDyDlD�l/y�nDy�uk+tDt/�M� � uvr/m��
��jWuvrDyDl���mMy+��k+uvj&�7uvrDj���y�n��~uvw�k&mMn/u&¢
�]zsuvrDj��~�D�Du~�/t�j�y��D�~j&��u7m�����y�n��gm�l/jWwvj&l"tD�Dwvj��M��k��7k��~�Dt�jWwvu~�/t�j�y��D�~j&��u � uvr�k+usm��W��y�n/�M��uvrDj��~�Dt�jWwvu~�/t�j
��jWuvrDyDlD��k+n�l�¡�j���lD��k+wvjNU��DjWw~mMj&l� ��duvrDjWncuvrDj�wvj&�~�/�Mu��~rDy��/��lc��j�uvrDj��vk+��j�k���m�z�k+nKy��D�~j&��u�y+z7uvrDj
�~�Dt�jWwvu~�/t�j�r�k�l���jWjWn"��k+n/mMtD�/��k+uvj&l�k&���dk&�My�nDo�mMn��~uvj&k�l)¢

�gn � j&��u~mMy�nKx/¢ �D�/uvrDj���y/y���l/j&�v��w~mM��j&��uvrDj��~�D���~u~mMuv�Du~mMy�n"tDw~mMn��vmMt/�Mj�k��st/��k��vmMnDo"��y�n��~uvw�k&mMn/u���y�n

� �gmMo�n�k+uv�Dwvj&�Wp�uvr/m���m���j&�v�~jWn/u~m�k&���M��uvrDj���y�n/uvw�k&�+k+w~m�k+n/u�k+n�l���y+�+k+w~m�k+n/u�wv�/�Mj&��k+��y+��j�¢ � ° tDwvyD��j&l/�Dwvj�¥ �
�gmMo�n�k+uv�Dwvj�m���mMu���n�k+��j���k+wvo��D��jWn/u�u~�/t�j&�W�DwvjWuv�Dwvn�u~�/t�j&�W��k+n�l�j�¹���jWtDu~mMy�n��W¢�

º	�

� ��jWuvrDyDlD�Wpsuvr/m���m�����y�n��~uvw�k&mMn/u��7y�n�uvrDj���jWr�k&��mMy�w&��y�w�k&���dk��~t�j&��u��7y+z�k��~t�j&�vm�¡)�Wk+u~mMy�nKuvr�k+u��Wk+nDnDy�u7��j
j�¹DtDwvj&�v�~j&l�mMn�k��gmMo�n�k+uv�Dwvj

� tDwvy�t�jWwvu~mMj&�Wpsk��7k+��y+��j

� � ��� � 9 ¨�© ��� � 9)9)8s9 � 5�� 9 ¨�© 6/ª�«�8s9

��k&�+k�u~�/t�j&��k+wvj��v��k��v�~j&�W��mMn/uvjWw~zgk���j&�W�/y�w�tDw~mM��mMu~mM��j&�W¢s��k&�+k�r�k��dmMu��sy+¤7n�nDy�u~mMy�n�y+zd�~�D�Du~�/t�j � ¤7r/m��vr�mMn/��y+�M��j&�
y�n/�M���v��k��v�~j&��k+n�l�mMn/uvjWw~zgk���j&�� �¢d£�r/m��sm���k�¤�j&k+��jWwsnDy�u~mMy�n�uvr�k+n�uvrDj�uvwv�Dj��~�D�Du~�/t/mMnDo�l/j&�v��w~mM��j&l"k+��y+��j�´/��k&�+k
�~�D�Du~�/t�j&��l/y"nDy�u�nDj&��j&�v�vk+w~m��M���vk+u~m��gz]��uvrDj��~�D���~u~mMuv�Du~mMy�nctDw~mMn��vmMt/�Mj�¢�³D�DwvuvrDjWw&�k"�~�D�Du~�/t�j�l/j�¡�n/mMu~mMy�n�uvr�k+u
�vk+u~m��g¡�j&��uvrDj��~�D���~u~mMuv�Du~mMy�n"tDw~mMn��vmMt/�Mj���k&��nDy�u7��j�k&���My+¤�j&l�mMn���k&�+kD�Dk+n�l�¤�m����dnDy�u7��y���t/m��Mj�¢
�gn�y�w�l/jWwdz]y�w�k�u~�/t�j�uvy���j�k���k&�+k��~�D�Du~�/t�j�y+zk+nDy�uvrDjWw�u~�/t�j���uvrDj�wvj���k+u~mMy�n��~r/mMt"�����~us��j�l/j&�v��k+wvj&l � ��m�k

��k&�+kD¥ � " D�)!"(*!E�� y�w � -�%!��"+-."(*�)!� �~�/n/u�k&¹) ���k+n�lKuvrDj���jWuvrDyDlD�������~u��vk+u~m��gz]��u~¤�y�tDwvy�t�jWwvu~mMj&���gmM��m���k+w�uvy��
�D�Du7¤�j&k+��jWw7uvr�k+n��/uvrDy/�~j�z]y�w7uvwv�Dj��~�D�Du~�/t/mMnDo�p

� ¢sz]y�w�j&k��vr���jWuvrDyDlKmMn�uvrDj"�~�Dt�jWwvu~�/t�j��suvrDj"�~�D�Du~�/t�j������~u�r�k&��j�kK��y�wvwvj&�~t�y�n�l�mMnDoK��jWuvrDyDl)¢ � £�rDj
�~�D�Du~�/t�jsm��k&���My+¤�j&l�uvy7mMn/uvwvyDl/����j7k�lDl�mMu~mMy�n�k&�g�/nDjW¤c��jWuvrDyDlD�uvr�k+ul/y�nDy�udk+tDt�j&k+w�mMn�uvrDj7�~�Dt�jWwvu~�/t�j�¢�

» ¢�j&k��vr���jWuvrDyDl�mMn��~�D�Du~�/t�j�uvr�k+u���y�wvwvj&�~t�y�n�lD��uvy�y�nDj�mMn"uvrDj��~�Dt�jWwvu~�/t�j
� uvrDj�k+wvo��D��jWn/u��s�����~u7r�k&��j�uvrDj��vk+��j�u~�/t�j&�
� uvrDj�wvj&�~�/�Mu������~u�r�k&��j�uvrDj��vk+��j�u~�/t�j
� uvrDjWwvj�k+wvj�nDy���y�wvj�l/j&�v��k+wvj&l�j�¹���jWtDu~mMy�n��

��k&�+k�r�k���nDy"nDy�u~mMy�nKy+z7k���jWr�k&��mMy�w�k&�7�~t�j&�vm�¡)�Wk+u~mMy�n��d�~y�mMu�t�jWw~z]y�wv����nDy"�~���vrc�vrDj&�v�D��k+n�lK�Wk+nK��k+��j�nDy
o���k+w�k+n/uvjWj&�7k+��y��Du7��jWr�k&��mMy�w&¢�£�rDj�wvj(U��/mMwvjW��jWn/u�y+zdu~�/t�j�j(U���k&��mMu~��z]y�w�k+wvo��D��jWn/u��7k+n�l�wvj&�~�/�Mu7m����~uvwvy�nDo�jWw
uvr�k+n"�~uvw~m���u~�M��nDj&��j&�v�vk+wv��uvy�o���k+w�k+n/uvjWj�u~�/t�j+Qg�vk&z]jWu~��¢d£�r/m��7tDwvy�r/mM�/mMu����~y���j���yDl/j�¤�j���mMo�r/u���mM��j�uvy�¤7w~mMuvj�¢M¢
�7y+¤�jW��jWw&��mMu��gmM��t/��m�¡�j&��uvrDj���k&�+k���k+nDo���k+o�j��~�/n/u�k&¹�k+n�l��~jW��k+n/u~m��W�W¢

� �D�)�v��k��v�gmMnDo�r�k��7k�n/�D����jWw7y+zsk�l/�+k+n/u�k+o�j&�W�Dk&���y+zd¤7r/m��vr��~uvjW��z]wvy���wvjW���~j�p

� �g��t/�MjW��jWn/u�k+u~mMy�n��7y+zs�~�D�)�v��k��v�~j&��nDjWj&l�nDy�u7wvjWt�j&k+u7�Dn��vr�k+nDo�j&l�¡�j���lD��k+n�l���jWuvrDyDlD�W���D�Du��Wk+n"wvjW���~j
uvrDy/�~j�y+zuvrDj��~�Dt�jWw��v��k��v�

� qd��mMjWn/u�� � �Wk&���MjWw��� �nDjWj&l4nDy�u��vr�k+nDo�jc��yDl/j�¤7rDjWn�nDjW¤ �~�D�Du~�/t�j&��k+wvjKk�lDl/j&l)���D�Du"�Wk+n4wvjW���~jKuvrDj
j�¹/m��~u~mMnDo���yDl/j � ¤7r/m��vr"l/y/j&�~n�¥ u7��jWn/u~mMy�n"uvrDj��~�D�Du~�/t�j&��k+u7k&���g���~���~u7uvrDj��~�Dt�jWwvu~�/t�j

� £�rDj�wvj&�~�/�Mu~mMnDoKl/j&�gmMo�ncr�k�����jWuvuvjWw���yDl/�/��k+w~mMu~�Kk+n�l�wvj&l/����j&lK��y���t/�Mj�¹/mMu~�����j&�Wk+���~j�l/j&�gmMo�nDjWw��W�)mM� Q
t/�MjW��jWn/uvjWw��W��k+n�l²���~jWw���y�n/�M�²r�k&��j"uvyc�Dn�l/jWw��~u�k+n�l²uvrDjK�~�Dt�jWwvu~�/t�j���nDy�u�jW��jWwv�²�~�D�Du~�/t�j�´�uvr/m���m��
�~t�j&�vm�¡)�Wk+u~mMy�n�wvjW���~j�¢

° ��jW�c��j&�vr�k+n/m��~� uvr�k+u�jWn�k+�/�Mj&��uvrDj&�~j"��jWnDj�¡�u���m���y+��jWwvw~m�l�mMnDo���¤7r/m��vr4�~t�j&�vm�k&��m��Wj&����jWr�k&��mMy�w�z]y�w��~y���j
��jWuvrDyDlD�W¢ �gn�uvrDj�k+���~jWn���j�y+zy+��jWwvw~m�l�mMnDo��Dk+n/���vr�k+nDo�j�uvy���jWr�k&��mMy�w � jW��jWn�k���y���t�k+u~mM�/�Mj�y�nDj+ s��y��/��l�z]y�w���j
k���y���t/�MjWuvj�wvj�mM��t/�MjW��jWn/u�k+u~mMy�n�¢ 	7��jWwvw~m�l�mMnDo�t�jWwv��mMu��dt�k+wvuy+z)k+n�mM��t/�MjW��jWn/u�k+u~mMy�n�uvy���j��vr�k+nDo�j&l�¤�mMuvrDy��Du
�vr�k+nDo+mMnDo�y�uvrDjWw�t�k+wvu��7uvr�k+u�l/jWt�jWn�lKy�n�mMu&¢�£�r/m���t�jWwv��mMu�����y�wvj���yDl/j�k+n�l"�~t�j&�vm�¡)�Wk+u~mMy�ncwvjW���~j�����y�uvr��/�
uvrDj�mM��t/�MjW��jWn/u�k+u~mMy�nKk+n�l�uvrDj��v��mMjWn/u&¢

°�t�y�uvjWn/u~m�k&�l�m��vk�l/�+k+n/u�k+o�j�y+zd�~�D�)�v��k��v�gmMnDo�m��suvrDj�y�tDt�y�wvuv�Dn/mMu~mMj&�smMu�tDwvj&�~jWn/u��dz]y�wsmMn�k+tDtDwvy�tDw~m�k+uvj�wvjW���~j�¢
� �D�)�v��k��v�~j&��k+n�l"�~�Dt�jWw��v��k��v�~j&����k&��l/jWt�jWn�l"y�n"y�nDj�k+nDy�uvrDjWw � j�¹Dt/��m��vmMu~�M���/��u~�/t�j�n�k+��j�y�w�mM��t/��m��vmMu~�M�K�/�
�/nDy+¤��Mj&l/o�j�y+zduvrDj�mM��t/�MjW��jWn/u�k+u~mMy�n) ��Dt�k+wvu~m����/��k+w~�M���gmMn���j��~�D�)�v��k��v�~j&�7r�k&��j�k��W��j&�v��uvy�uvrDj�tDwvy�uvj&��uvj&l�t�k+wvu��
y+zduvrDj��~�Dt�jWw��v��k��v��mM��t/�MjW��jWn/u�k+u~mMy�n�¢�£�rDj&�~j�j�¹Duvw�k�l/jWt�jWn�l/jWn���j&����y���t/��m��Wk+uvj�uvrDj��������/uvrDj�l/j&�gmMo�n��)k+n�l
uvrDj�mM��t/�MjW��jWn/u�k+u~mMy�n�����k+��mMnDo�mMu7r�k+w�l/jWw7uvy���yDl/j��D�Dn�l/jWw��~u�k+n�l)�)k+n�l���yDl�m�z]��¢

º �

� � ��� � �576)8 ���(� �d8s9

� y���jWu~mM��j&����y��²¤7k+n/u�o���k+w�k+n/uvjWj&��k+��y��Du���jWr�k&��mMy�w�¤�mMuvrDy��Du"�~r�k+w~mMnDo²��yDl/j�¢ ³Dy�w�mMn��~u�k+n���j��7��y��4��k&�
¤7k+n/u�uvy�wvj(U��/mMwvj�uvr�k+u�j��MjW��jWn/u��7y+zsk��~t�j&�vm�¡)����y�n/u�k&mMnDjWw���j�y�w�l/jWwvj&l�y�w��~�DtDt�y�wvu�k�t�k+wvu~m����/��k+w�y�t�jWw�k+u~mMy�n��
¤�mMuvrDy��Du�tDwvy+��m�l�mMnDo�k�l/j�zgk+�/�Mu�mM��t/�MjW��jWn/u�k+u~mMy�n � ��j&�Wk+���~j�jW��jWwv�Ky�w�l/jWw~mMnDoKwvj���k+u~mMy�n��~r/mMt²r�k���k�l�mWV�jWwvjWn/u
mM��t/�MjW��jWn/u�k+u~mMy�n) �¢²��k&�+k"tDwvy+��m�l/j&��mMn/uvjWw~zgk���j&��uvy"¡D����uvr/m���nDjWj&l)¢ �gn/uvjWw~zgk���j&��o���k+w�k+n/uvjWj�nDyc��yDl/j�wvjW���~j�¢
°�nDy�uvrDjWw�k�l/�+k+n/u�k+o�j�y+z�mMn/uvjWw~zgk���j&�dm��7uvr�k+u�k��v��k��v����k&��mM��t/�MjW��jWn/u����/�Mu~mMt/�Mj�mMn/uvjWw~zgk���j&��k+n�l�k+n�mMn/uvjWw~zgk���j
��k&��j�¹DuvjWn�l����/�Mu~mMt/�Mj�mMn/uvjWw~zgk���j&�W´D�/����y�n/uvw�k��~u&�/k��v��k��v�7�Wk+n�y�n/�M��j�¹DuvjWn�l�y�nDj��v��k��v�W¢ �gu7uv�Dwvn��sy��Du�uvr�k+usmMn
tDw�k���u~m���j���mM��t/�MjW��jWn/u~mMnDo����/�Mu~mMt/�Mj�mMn/uvjWw~zgk���j&��k+n�l"j�¹DuvjWn�l�mMnDo�k��gmMnDo+�Mj��~�Dt�jWw��v��k��v��tDwvy+��m�l/j&����y/�~u7y+z�uvrDj
��jWnDj�¡�u���y+z�k+wv�/mMuvw�k+wv�"mMnDrDjWw~mMu�k+n���j��d�D�Du�¤�mMuvrck"�gmM��t/�MjWw�mM��t/�MjW��jWn/u�k+u~mMy�n²k+n�l"��k+nDo���k+o�j��~jW��k+n/u~m��W�W¢�°
l�m��vk�l/�+k+n/u�k+o�j�y+zsmMn/uvjWw~zgk���j&�7m���uvr�k+u�uvrDjW�"tDwvy+��m�l/j�nDy�¤7k&��uvy"�~t�j&�vm�z]��uvrDj��gmMo�n�k+uv�Dwvj � y�w���jWr�k&��mMy�wW �y+z�k
��y�n��~uvwv����uvy�w&¢

� �

Lecture 16: Case Study: The Java
Collections API

You can’t be a competent Java programmer without understanding the crucial parts of
the Java library. The basic types are all in java.lang, and are part of the language prop-
er. The package java.util provides collections – sets, lists and maps – and you should
know it well. The package java.io is also important, but you can get away with only a
rough familiarity with what’s in it, delving in as needed.

In this lecture, we’ll look at the design of java.util, often called the Java ‘collections API’.
It’s worth understanding not only because the collection classes are extremely useful,
but also because the API is a nice example of well-engineered code. It’s fairly easy to
understand, and is very well documented. It was designed and written by Joshua Bloch,
who wrote the Effective Java book that we recommended at the start of term.

At the same time, though, almost all the complexities of object-oriented programming
appear somewhere in it, so if you study the API carefully, you’ll get a broad under-
standing of programming issues that you probably haven’t yet considered in your own
code. In fact, it wouldn’t be an exaggeration to say that if you figure out how just one
of the classes (eg, ArrayList) works in its entirety, then you will have mastered all the
concepts of Java. We won’t have time to look at all the issues today, but we’ll touch on
many of them. Some of them, such as serialization and synchronization, are beyond the
scope of the course.

16.1 Type Hierarchy
Roughly, the API offers three kinds of collection: sets, lists and maps. A set is a collec-
tion of elements that does not maintain their order or their count – each element is
either in the set or not. A list is a sequence of elements, and thus maintains both order
and count. A map is an association between keys and values: it holds a set of keys, and
maps each key to a single value.

The API organizes its classes with a hierarchy of interfaces – the specifications of the
various types – and a separate hierarchy of implemention classes. The diagram shows
some select classes and interfaces to illustrate this. The interface Collection captures
the common properties of lists and sets, but not maps, but we’ll use the informal term

93

‘collections’ to refer to maps anyway. SortedMap and SortedSet are used for maps and
sets which provide additional operations to retrieve the elements in some order.

The concrete implementation classes, such as LinkedList, are built on top of skeletal
implementations, such as AbstractList, from which they inherit. This parallel structure
of interfaces and classes is an important idiom that is worth studying. Many novice

94

extends

AbstractCollecti
onCollection

Set

List

SortedSet

extends

AbstractSet

AbstractList

implements

implements

implements

implements

HashSet

TreeSet

extends

Abstract
SequentialList

LinkedList

interfaces

ArrayList

extends

extends

extends

programmers are tempted to use abstract classes when they should be using interfaces.
But in general, you should prefer interfaces to abstract classes. You can’t easily retrofit
an existing class to extend an abstract class (because a class can have at most one
superclass), but it’s usually easy to make it implement a new interface.

Bloch shows (in Item 16 of his book: ‘Prefer interfaces to abstract classes’) how to com-
bine the advantages of both, using skeletal implementation classes, as he does here in
the Collections API. You get the advantage of interfaces for specification-based decou-
pling, and the advantage of abstract classes to factor out shared code amongst related
implementations.

Each Java interface comes with an informal specification in the Java API documenta-
tion. This is important because it tells a user of a class that implements an interface
what to expect. If you implement a class and claim that it meets the specification List,
for example, you have to ensure that it meets the informal specification too, otherwise
it will fail to behave according to programmers’ expectations.

These specifications are intentionally incomplete (as many specifications often are).
The concrete classes also have specifications, and these fill in some of the details of the
interface specifications. The List interface, for example, doesn’t say whether null ele-
ments can be stored, but ArrayList and LinkedList say explicitly that nulls are allowed.
HashMap allows both null keys and null values, unlike Hashtable, which allows nei-
ther.

When you write code that uses collection classes, you should refer to an object by the
most general interface or class possible. For example,

List p = new LinkedList ();

is better style than

LinkedList p = new LinkedList ();

If your code compiles with the former, then you can easily change to a different list
implementation later:

List p = new ArrayList ();

since all the following code relied only on p being a List. With the latter, however, you
may find that you can’t make the change, because some other part of your program
performs an operation on x that only LinkedList provides – an operation that in fact
might not be needed. This is explained in more detail in Item 34 of Bloch’s book (‘Refer
to objects by their interfaces’).

95

We’ll see a more sophisticated example of this in the Tagger case study next week,
where part of the code requires access to the keys of a HashMap. Rather than passing
the whole map, we pass a view of the map of type Set:

Set keys = map.keySet ();

Now the code that uses keys does not even know that this set is the set of keys of a map.

16.2 Optional Methods
The collections API allows a class to claim to implement a collections interface with-
out implementing all of its methods. For example, all the mutators of List are specified
as optional. This means you can implement a class that satisfies the List specification,
but which throws an UnsupportedOperationException whenever you call a mutator,
such as add.

This intentional weakening of the List specification is problematic, because it means
that if you’re writing some code that receives a list, you don’t know, in the absence of
additional information about the list, whether it will support add.

But without this notion of optional operations, you’d have to declare a separate inter-
face ImmutableList. These interfaces would proliferate. Sometimes, we want to require
some mutators but not others. For example, the keySet method of HashMap returns a
Set containing the keys of the map. This set is a view: deleting a key from the set caus-
es a key and its associated value to be deleted from the map. So remove is supported.
But add is unsupported, since you can’t add a key to a map without an associated value.

So the use of optional operations is a reasonable engineering judgment. It means less
compile-time checking, but it reduces the number of interfaces.

16.3 Polymorphism

All these containers – sets, lists and maps – take elements of type Object. They are said
to be polymorphic, meaning ‘many shaped’, because they allow you to make different
kinds of containers: lists of Integers, lists of URLs, lists of lists, and so on.

This kind of polymorphism is called subtype polymorphism, because it relies on the
type hierarchy. A different form of polymorphism, called parametric polymorphism,
allows you to define containers with type parameters, so that a client can indicate what
type of element a particular containers will contain:

List[URL] bookmarks; // not legal Java

96

Java doesn’t have this kind of polymorphism, although there have been many propos-
als to add it. Parametric polymorphism has the big advantage that the programmer can
tell the compiler what type the elements have. The compiler can then catch errors in
which an element of the wrong type is inserted, or an element that is extracted is treat-
ed as having a different type.

With subtype polymorphism, you have to explicitly cast the elements on extraction.
Consider this code:

List bookmarks = new LinkedList ();
URL u = …;
bookmarks.add (u);
…
URL x = bookmarks.get (0); // compiler will reject this

The statement that adds u is fine, since the add method expects an Object, and URL is
a subclass of Object. The statement that gets x, however, is broken, since the type of the
expression on the RHS is Object, and you can’t assign an Object to a variable of type
URL, since then you couldn’t rely on that variable holding a URL. So a downcast is
needed, and we have to write instead:

URL x = (URL) bookmarks.get (0);

The effect of the downcast is to perform a runtime check. If it succeeds, and the result
of the method call is of type URL, execution continues normally. If it fails, because the
result is not of the correct type, a ClassCastException is thrown, and the assignment is
not performed. Make sure you understand this, and don’t get confused into thinking
(as students often do) that the cast somehow mutates the object returned by the
method invocation. Objects carry their type at runtime, and if an object was created
with a constructor from the class URL, it will have that type, and there is no need to
somehow ‘change it’ to give it that type.

These downcasts can be a nuisance and occasionally it’s worth writing a wrapper class
just to factor them out. In a browser, you’d probably want a special abstract data type
for a list of bookmarks anyway (to support other functionality). If you did this, you
would perform the cast within the abstract type, and clients would see methods such
as

URL getURL (int i);

which would not require the cast in their calling contexts, thus limiting the scope in
which cast errors can occur.

97

Subtype polymorphism does give some flexibility that parametric polymorphism does
not. You can form heterogeneous containers that contain different kinds of elements.
And you can put containers inside themselves – try and figure out how to express this
as a polymorphic type – although this is not usually a wise thing to do. In fact, as we
mentioned in our earlier lecture on equality, the Java API classes will break if you do
this.

Writing down what type of an element a container has is often the most important part
of an abstract type’s rep invariant. You should get into the habit of writing a comment
whenever you declare a container, either using a pseudo-parametric type declaration:

List bookmarks; // List [URL]

or as part of the rep invariant proper:

RI: bookmarks.elems in URL

16.4 Skeletal Implementations
The concrete implementations of the collections build on skeletal implementations.
These use the Template Method design pattern (see Gamma et al, pages 325–330). An
abstract class has no instance variables of its own, but defines ‘template methods’ that
call other ‘hook methods’ that are declared to be abstract and have no code. In the
inheriting subclass, the hook methods are overridden, and the template methods are
inherited unchanged.

AbstractList, for example, makes iterator a template method that returns an iterator
implemented using the get method as a hook. The equals method is implemented as
another template in terms of iterator. A subclass, such as ArrayList, then provides a
representation (such as an array of elements) and an implemenation for get (such as
getting the ith element of the array), and can inherit iterator and equals.

Some concrete classes replace the abstract implementations. LinkedList, for example,
replaces the iterator functionality, since, with using the representation of list entries
directly, it’s possible to write a much more efficient traversal than using the hook
method get, which does a sequential search for each call!

16.5 Capacity, Allocation & GC
An implementation that uses an array for its representation – such as ArrayList or
HashMap – must select a size for the array when it is allocated. Choosing a good size
can be important for performance. If it’s too small, the array will have to be replaced

98

by a new array, incurring the cost of allocating the new one and garbage collecting the
old one. If it’s too large, space will be wasted, which will be a problem especially when
there are many instances of the collection type.

Such implementations therefore provide constructors in which the client can set an
initial capacity, from which the allocation size can be determined. ArrayList, for exam-
ple, has the constructor

public ArrayList(int initialCapacity)
Constructs an empty list with the specified initial capacity.

Parameters:
initialCapacity - the initial capacity of the list.

Throws:
IllegalArgumentException - if the specified initial capacity is negative

There are also methods that adjust the allocation: trimToSize, which sets the capacity
so that the container is just large enough for the elements currently stored, and
ensureCapacity, which increases capacity to some given amount.

Using the capacity features is tricky. If you don’t have precise knowledge of how big
your collections are for the particular application, you can run a profiler to find out.

Note that this notion of capacity translates a behavioural problem into a performance
problem – a very desirable tradeoff. In many old programs, there are fixed resource
limits, and when they are reached, the program just fails. With the capacity approach,
the program just slows down. It’s a good idea to design a program so that it works effi-
ciently almost all the time, even if there’s a performance hit occasionally.

If you study the implementation of the remove method in ArrayList, you’ll see this
code:

public Object remove(int index) {
…
elementData[—size] = null; // Let gc do its work
…

What’s going on? Isn’t garbage collection automatic? Herein lies a common mistake of
many novice programmers. If you have an array in your representation, with a distinct
instance variable holding an index to indicate which elements of the array are to be
considered part of the abstract collection, it’s tempting to think that to remove ele-
ments all you need to do is decrement this index. An analysis in terms of the abstrac-
tion function will support this confusion: elements that fall above the index are, after

99

all, not considered part of the abstract collection, and their values are irrelevant.

There’s a snag, however. If you fail to assign null to the unused slots, the elements
whose references sit in those slots will not be garbage collected, even if there are no
other references to those elements elsewhere in the program. The garbage collector
can’t read the abstraction function, so it doesn’t know that those elements are not real-
ly reachable from the collection, even though they are reachable in the representation.
If you forget to null out these slots, the performance of your program may suffer badly.

16.6 Copies, Conversions, Wrappers, etc

All the concrete collection classes provide constructors that take collections as argu-
ments. These allow you to copy collections, and to convert one collection type to
another. For example, LinkedList has

public LinkedList(Collection c)
Constructs a list containing the elements of the specified collection, in the order

they are returned by the collection’s iterator.
Parameters:

c – the collection whose elements are to be placed into this list.

which can be used for copying:

List p = new LinkedList ()
…
List pCopy = new LinkedList (p)

of for creating a linked list from some other collection type:

Set s = new HashSet ()
…
List p = new LinkedList (s)

Since constructors cannot be declared in interfaces, the specification List doesn’t say
that all of its implementations should have such constructors, although they do.

There is a special class java.util.Collections that contains a bunch of static methods
that operate on, or return collections. Some of these are generic algorithms (eg, for
sorting), and some are wrappers. For example, the method unmodifiableList takes a list
and returns a list with the same elements, but which is immutable:

public static List unmodifiableList(List list)
Returns an unmodifiable view of the specified list. This method allows modules

100

to provide users with “read-only” access to internal lists. Query operations on the
returned list “read through” to the specified list, and attempts to modify the
returned list, whether direct or via its iterator, result in an
UnsupportedOperationException.

The returned list will be serializable if the specified list is serializable.
Parameters:

list - the list for which an unmodifiable view is to be returned.
Returns:

an unmodifiable view of the specified list.

The list returned isn’t exactly immutable, since it’s value can change because of modi-
fications to the underlying list (see Section 16.8below), but it can’t be modified direct-
ly. There are similar methods that take collections and return wrapped versions that
are synchronized.

16.7 Sorted Collections
A sorted collection must have some way to compare elements to determine their order.
The Collections API offers two approaches to this. You can use the ‘natural ordering’,
which is determined by using the compareTo method on the element type from the
interface java.lang.Comparable:

public int compareTo(Object o)

which returns a negative integer, zero, or a positive integer as this object is less than,
equal to, or greater than the given object o. When you add an element to a sorted col-
lection that is using the natural ordering, the element must have been constructed in a
class that implements the Comparable interface. The add method downcasts the ele-
ment to Comparable in order to compare it with the existing elements in the collec-
tion, so if this was not the case, it will throw a class cast exception.

Alternatively, you can use an ordering given independently of the elements, as an
object that implements the interface java.util.Comparator, which has the method

public int compare(Object o1, Object o2)

which is just like compareTo, but takes both elements to be compared as arguments.
This is an instance of the Strategy pattern, in which an algorithm is decoupled from the
code that uses it (see Gamma, pp. 315–323).

Which approach is used depends on which constructor you use to create the collection

101

object. If you use the constructor that takes a Comparator as an argument, that will be
used to determine the ordering; if you use the no-argument constructor, the natural
ordering will be used.

Comparison suffers from the same problems as equality, which we discussed in detail
in Lecture 9. A sorted collection has a rep invariant that the elements of the represen-
tation are sorted. If the ordering of two elements can be changed by mutating one of
them through a public method call, a rep exposure occurs.

16.8 Views
We introduced the notion of views in Lecture 9. Views are a sophisticated mechanism,
very useful now and then, but dangerous. They break many of our basic conceptions
about what kinds of behaviour can occur in a well-formed object-oriented program.

Three kinds of views can be identified, according to their purpose:
· Functionality extension. Some views are provided to extend the functionality of an

object without adding new methods to its class. Iterators fall in this category. One
could instead put the methods next and hasNext in the collection class itself. But
this would complicate the API of the class itself. It would also be hard to support
multiple iterations over the same collection. We could add a reset method to the
class which is called to restart an iteration, but this would only allow one iteration
at a time. Such a method would also lead to errors in which the programmer forgets
to reset.

· Decoupling. Some views provide a subset of the functionality of the underlying col-
lection. The keySet method on Map, for example, returns a set that consists of the
keys of the map. It therefore allows part of the code that is only concerned with the
keys, and not with the values, to be decoupled from the rest of the specification of
Map.

· Coordinate Transformation. The view provided by the subList method of List gives
a kind of coordinate transformation. Mutations on the view produce mutations on
the underlying list, but allow access to the list by an indexing that is offset by the
parameter passed to the subList method.

Views are dangerous for two reasons. First, things change underneath you: call remove
on an iterator and its underlying collection changes; call remove on a map and its key
set view changes (and vice versa). This is a form of abstract aliasing in which a muta-
tion to one object causes another object, of a different type to change. The two objects
need not even within the same lexical scope. Note that the meaning of our modifies
clause in specifications must be refined: if you say modifies c and c has a view v, does
that mean that v can change also?

102

Second, the specification of a method that returns a view often limits the kinds of
mutation that are allowed. To make sure that your code works, you’ll need to under-
stand this specification. And not surprisingly, these specifications are often obscure.
The post-requires clause of the Liskov text is one way to extend our specification
notion to handle some of the complications.

Some views allow only the underlying collection to be mutated. Others allow only the
view to be mutated – iterators, for example. Some allow mutations to both the view
and the underlying collection, but place complex stipulations on the mutations. The
Collections API, for example, says that when a sublist view has been taken on a list, this
underlying list must not suffer any ‘structural modifications’; it explains this term
rather obliquely as follows:

Structural modifications are those that change the size of this list, or otherwise per-
turb it in such a fashion that iterations in progress may yield incorrect results.

It’s not clear exactly what this means. My inclination would be to avoid any modifica-
tions of the underling list.

The situation is complicated further by the possibility of multiple views on the same
underlying collection. You can have multiple iterators on the same list, for example. In
this case, you have to also consider interactions between views. If you modify the list
through one of its iterators, the other iterators will be invalidated, and must not be
used subsequently.

There are some useful strategies that mitigate the complexity of views. If you are using
a view, you should think carefully about whether these will help:
· You can limit the scope in which the view is accessible. For example, by using a for-

loop rather than a while-loop for an iterator, you can limit the scope of the iterator’s
declaration to the loop itself. This makes it much easier to ensure that there aren’t
any unintended interactions during iteration. This isn’t always possible; the Tagger
program that we’ll discuss next week mutates an iterator several method calls away,
and in a different class, from its creation site!

· You can prevent mutation of a view or underlying object by wrapping it using a
method of the Collections class. For example, if you take a keySet view on a map, and
don’t intend to modify it, you could make the set immutable:

Set s = map.keySey ();
Set safe_s = Collections.unmodifiableSet (s);

103

Lecture 17: Case Study: JUnit

The JUnit testing framework which you’ve been using to test your own code in 6.170 is
worth studying in its own right. It was developed by Kent Beck and Erich Gamma.
Beck is an exponent of patterns and Extreme Programming (XP); Gamma is one of the
authors of the celebrated design patterns book. JUnit is open source, so you can study
the source code yourself. There’s also a nice explanatory article in the JUnit distribu-
tion, entitled ‘A Cook’s Tour’, which explains the design of JUnit in terms of design pat-
terns, and from which much of the material in this lecture is drawn.

JUnit has been a great success. Martin Fowler, an insightful and pragmatic proponent
of patterns and XP (and also author of a wonderful book on object models called
Analysis Patterns), says about JUnit:

Never in the field of software development was so much owed by so many to so few
lines of code.

JUnit’s ease of use is no doubt in large part responsible for its popularity. You might
think that. since it doesn’t do very much – it just runs a bunch of tests and reports their
results – JUnit should be very simple. In fact, the code is rather complicated. The main
reason for this is that it has been designed as a framework, to be extended in many
unanticipated ways, and so it’s full of rather complex patterns and indirections
designed to allow an implementer to override some parts of the framework while pre-
serving other parts.

Another complicating influence is a desire to make tests easy to write. There’s a clever
hack involving reflection that turns methods of a class into individual instances of the
type Test. Here’s another example of a hack that seems unconscionable at first. The
abstract class TestCase inherits from the class Assert, which contains a bunch of static
assertion methods, simply to allow a call to the static assert method to be written as
just assert (…), rather than Assert.assert (…). In no sense is TestCase a subtype of Assert,
of course, so this really makes no sense. But it does allow code within TestCase to be
written more succinctly. And since all the test cases the user writes are methods of the
TestCase class, this is actually pretty significant.

The use of patterns is skillful and well motivated. The key patterns we’ll look at are:
Template Method, the key pattern of framework programming; Command, Composite,
and Observer. All these patterns are explained at length in Gamma et al, and, with the

105

exception of Command, have been covered already in this course.

My personal opinion is that JUnit, the jewel in the crown of XP, itself belies the funda-
mental message of the movement – that code alone is enough. It’s a perfect example of
a program that is almost incomprehensible without some abstract, global representa-
tions of the design explaining how the parts fit together. It doesn’t help that the code is
pretty lean on comments – and where are there comments they tend to dwell on which
Swiss mountain the developer was sitting on when the code was written. Perhaps high
altitude and thin air explains the coding style.The ‘Cook’s Tour’ is essential; without it,
it would take hours to grasp the subtleties of what’s going on. And it would be helpful
to have even more design representations. The ‘Cook’s Tour’ presents a simplified view,
and I had to construct for myself an object model explaining, for example, how the lis-
teners work.

If you’re one of those students who’s skeptical about design representations, and who
still thinks that code is all that matters, you should stop reading here, and curl up in a
chair to spend an evening with JUnit’s source code. Who knows, it may change your
mind…

You can download the source code and documentation for JUnit from

http://www.junit.org/.

There’s an open source repository at

http://sourceforge.net/projects/junit/

where can view (and contribute) bug reports.

17.1 Overview
JUnit has several packages: framework for the basic framework, runner for some
abstract classes for running tests, textui and swingui for user interfaces, and extensions
for some useful additions to the framework. We’ll focus on the framework package.

The diagrams show the object model and module dependences. You may want to fol-
low along with these diagrams as you read our discussion. Both of these include only
the framework modules, although I’ve included TestRunner in the object model to
show how the listeners are connected; it’s relations, suite and result are local variables
of its doRun method.

Note that the module dependency diagram is almost fully connected. This is not sur-
prising for a framework; the modules are not intended to be used independently.

106

107

TestCase

Test

TestSuite

TestResult

TestFailureTestListener

Assertion
FailedError

TestRunner TestResult

TestCase TestSuite

Test
fTests

TestFailure

fFailures, fErrors

fThrownException

Assertion
FailedError

Throwable

result

suite
String fName

fFailedTest

fListenersTestListener

!

!

!

!

17.2 Command
The command pattern encapsulates a function as an object. It’s how you implement a
closure – remember that from 6.001? – in an object-oriented language. The command
class typically has a single method with a name like do, run or perform. An instance of
a subclass is created that overrides this method, and usually also encapsulates some
state (in 6.001 lingo, the environment of the closure). The command can then be
passed around as an object, and ‘executed’ by calling the method.

In JUnit, test cases are represented as command objects that implement the interface
Test:

public interface Test {
public void run();
}

Actual test cases are instances of a subclass of a concrete class TestCase:

public abstract class TestCase implements Test {
private String fName;
public TestCase(String name) {

fName= name;
}

public void run() {
…
}

}

In fact, the actual code isn’t quite like this, but starting from this simplified version will
allow us to explain the basic patterns more easily. Note that the constructor associates
a name with the test case, which will be useful when reporting results. In fact, all the
classes that implement Test have this property, so it might have been good to add a
method

public String getName ()

to the Test interface. Note also that the authors of JUnit use the convention that iden-
tifiers that begin with a lowercase f are fields of a class (that is, instance variables).

We’ll see a more elaborate example of the command pattern when we study the Tagger
program next week.

108

17.3 Template Method
One might make run an abstract method, thus requiring all subclasses to override it.
But most test cases have three phases: setting up the context, performing the test, then
tearing down the context. We can factor out this common structure by making run a
template method:

public void run() {
setUp();
runTest();
tearDown();

}

The default implementations of the hook methods do nothing:

protected void runTest() { }
protected void setUp() { }
protected void tearDown() { }

They are declared as protected so that they are accessible from subclasses (and can
thus be overridden) but not accessible from outside the package. It would be nice to be
able to prevent access except from subclasses, but Java doesn’t offer such a mode. A
subclass can selectively override these methods; if it overrides only runTest, for exam-
ple, there will be no special setUp or tearDown behaviour.

We saw this same pattern in the last lecture in the skeletal implementations of the Java
collections API. It is sometimes referred to in a rather corny way as the Hollywood
Principle. A traditional API provides methods that get called by the client; a frame-
work, in contrast, makes calls to the methods of its client: ‘don’t call us, we’ll call you’.
Pervasive use of templates is the essence of framework programming. It’s very power-
ful, but also easy to write programs that are completely incomprehensible, since
method implementations make calls at multiple levels in the inheritance hierarchy.

It can be difficult to know what’s expected of a subclass in a framework. An analog of
pre- and post-conditions hasn’t been developed, and the state of the art is rather crude.
You usually have to read the source code of the framework to use it effectively. The Java
collections API does better than most frameworks, by including in the specifications
of template methods some careful descriptions of how they are implemented. This is
of course anathema to the idea of abstract specification, but it’s unavoidable in the con-
text of a framework.

109

17.4 Composite
As we discussed in Lecture 11, test cases are grouped into test suites. But what you do
with a test suite is essentially the same as what you do with a test: you run it, and you
report the result. This suggests using the Composite pattern, in which a composite
object shares an interface with its elementary components.

Here, the interface is Test, the composite is TestSuite, and the elementary components
are members of TestCase. TestSuite is a concrete class that implements Test, but whose
run method, unlike the run method of TestCase, calls the run method of each test case
that the suite contains. Instances of TestCase are added to a TestSuite instance with the
method addTest; there’s also a constructor that creates a TestSuite with a whole bunch
of test cases, as we’ll see later.

The example of Composite in the Gamma book has the interface include all the opera-
tions of the composite. Following this approach, Test should include methods like
addTest, which apply only to TestSuite objects. The implementation section of the pat-
tern description explains that there is a tradeoff between transparency – making the
composite and leaf objects look the same – and safety – preventing inappropriate oper-
ations from being called. In terms of our discussion in the subtyping lecture, the ques-
tion is whether the interface should be a true supertype. In my opinion it should be,
since the benefits of safety outweigh those of transparency, and, moreover, the inclu-
sion of composite operations in the interface is confusing. JUnit follows this approach,
and does not include addTest in the interface Test.

17.5 Collecting Parameter
The run method of Test actually has this signature:

public void run(TestResult result);

It takes a single argument that is mutated to record the result of running the test. Beck
calls this a ‘collecting parameter’ and views it as a design pattern in its own right.

There are two ways in which a test can fail. Either it produces the wrong result (which
may include not throwing an expected exception), or it throws an unexpected excep-
tion (such as IndexOutOfBoundsException). JUnit calls the former ‘failures’ and the lat-
ter ‘errors’. An instance of TestResult contains a sequence of failures and a sequence of
errors, each failure or error being represented as an instance of the class TestFailure,
which contains a reference to a Test and a reference to the exception object generated
by the failure or error. (Failures always produce exceptions, since even when an unex-
pected result is produced without an exception, the assert method used in the test con-

110

verts the mismatch into an exception).

The run method in TestSuite is essentially unchanged; it just passes the TestResult
when invoking the run method of each of its tets. The run method in TestCase looks
something like this:

public void run (TestResult result) {
setUp ();
try {

runTest ();
}

catch
(AssertionFailedError e) {

result.addFailure (test, e);
}

(Throwable e) {
result.addError (test, e);
}

tearDown ();
}

In fact, the control flow of the template method run is more complicated than we have
suggested. Here are some pseudocode fragments showing what happens. It ignores the
setUp and tearDown activities, and considers a use of TestSuite within a textual user
interface:

junit.textui.TestRunner.doRun (TestSuite suite) {
result = new TestResult ();
result.addListener (this);
suite.run (result);
print (result);
}

junit.framework.TestSuite.run (TestResult result) {
forall test: suite.tests

test.run (result);
}

junit.framework.TestCase.run (TestResult result) {
result.run (this);
}

111

junit.framework.TestResult.run (Test test) {
try {

test.runBare ();
}

catch (AssertionFailedError e) {
addFailure (test, e);
}

catch (Throwable e) {
addError (test, e);
}

}

junit.framework.TestCase.runBare (TestResult result) {
setUp();
try {

runTest();
}

finally {
tearDown();
}

}

TestRunner is a user interface class that calls the framework and displays the results.
There’s a GUI version junit.swingui and a simple console version junit.textui, which
we’ve shown an excerpt from here. We’ll come to the listener later; ignore it for now.

Here’s how it works. The TestRunner object creates a new TestResult to hold the results
of the test; it runs the suite, and prints the results. The run method of TestSuite calls
the run method of each of its constituent tests; these may themselves be TestSuite
objects, so the method may be called recursively. This is a nice illustration of the sim-
plicity that Composite brings. Eventually, since there is an invariant that a TestSuite
cannot contain itself – not actually specified, and not enforced by the code of TestSuite
either – the method will bottom out by calling the run methods of objects of type
TestCase.

The run method of TestCase now has the receiver TestCase object swap places with the
TestResult object, and calls the run method of TestResult with the TestCase as an argu-
ment. (Why?). The run method of TestResult then calls the runBare method of
TestCase, which is the actual template method that executes the test. If the test fails, it

112

throws an exception, which is caught by the run method in TestResult, which then
packages the test and exception as a failure or error of the TestResult.

17.6 Observer

For an interactive user interface, we’d like to show the results of the test as it happens
incrementally. To achieve this, JUnit uses the Observer pattern.

The TestRunner class implements an interface TestListener which has methods
addFailure and addError of its own. It plays the role of Observer. The class TestResult
plays the role of Subject; it provides a method

public void addListener(TestListener listener)

which adds an observer. When the addFailure method of TestResult is called, in addi-
tion to updating its list of failures, it calls the addFailure method on each of its
observers:

public synchronized void addFailure(Test test, AssertionFailedError e) {
fFailures.addElement(new TestFailure(test, e));

for (Enumeration e= cloneListeners().elements(); e.hasMoreElements();) {
((TestListener)e.nextElement()).addFailure(test, e);
}

}

In the textual user interface, the addFailure method of TestRunner simply prints a
character F to the screen. In the graphical user interface, it adds the failure to a list dis-
play and changes the colour of the progress bar to red.

17.7 Reflection Hacks
Recall that a test case is an instance of the class TestCase. To create a test suite in plain
old Java, a user would have to create a fresh subclass of TestCase for each test case, and
instantiate it. An elegant way to do this is to use anonymous inner classes, creating the
test case as an instance of a subclass that has no name. But it’s still tedious, so JUnit
provides a clever hack.

The user provides a class for each test suite – called MySuite say – that is a subclass of
TestCase, and which contains many test methods, each having a name beginning with
the string ‘test’. These are taken to be individual test cases.

public class MySuite extends TestCase {

113

void testFoo () {
int x = MyClass.add (1, 2);
assertEquals (x, 3);
}

void testBar () {
…
}

}

The class object MySuite itself is passed to the TestSuite constructor. Using reflection,
the code in TestSuite instantiates MySuite for each of its methods beginning with ‘test’,
passing the name of the method as an argument to the constructor. As a result, for
each test method, a fresh TestCase object is created, with its name bound to the name
of the test method. The runTest method of TestCase calls, again using reflection, the
method whose name matches the name of the TestCase object itself, roughly like this:

void runTest () {
Method m = getMethod (fName);
m.invoke ();
}

This scheme is obscure, and dangerous, and not the kind of thing you should emulate
in your code. Here it’s justifiable, because it’s limited to a small part of the JUnit code,
and it brings a huge advantage to the user of JUnit.

17.8 Questions for Self-Study
These questions arose when I constructed the object model for JUnit. They don’t all
have clear answers.
· Why are listeners attached to TestResult? Isn’t TestResult already a kind of listener

itself?
· Can a TestSuite contain no tests? Can it contain itself?
· Are Test names unique?
· Does the fFailedTest field of TestFailure always point to a TestCase?

114

Lecture 18: Case Study: Tagger

18.1 Overview

In this lecture, I’ll explain the design of Tagger, a small program that I wrote last sum-
mer. I’ve used Tagger for all my writing and publishing for the last few months. It was
used for this document (6170 lecture notes), and for all papers I’ve written since June
2001 (see http://sdg.lcs.mit.edu/~dnj/publications).

I’ve chosen Tagger as our third case study for several reasons. First, it’s a program I
wrote myself, so I understand it better than others. Second, it provides demonstrations
of several of the patterns and idioms that you have been studying; it has a nice use of
views from the Java Collections API (our first case study). Third, unlike the previous
two case studies, it’s a less polished piece of work, and therefore more like what you
should expect to produce in your final project. I spent a few days designing it, then a
week building it.

A slide presentation is available that summarizes these notes.

18.2 Purpose
Tagger is a tiny text-processing application to aid in the production of technical papers
and books. It is used as a front-end for WYSIWYG layout programs, such as
QuarkXpress and Adobe Indesign, combining their benefits with some of the benefits
of compilation-based tools such as TeX.

Tools like TeX are good because they allow you to edit the document in a powerful text
editor, and exchange documents easily by email. Because formatting is indicated by
textual tags, you can alter the formatting of a document using the same mechanisms –
such as search and replace – that you use to alter the text itself. Mathematical symbols
can be referred to symbolically (\alpha to get an α, for example), which generally
speeds up typing, there being no need to select special characters form a palette, and
decouples the document from the choice of mathematical font. Cross referencing is
easily expressed by explicitly assigning symbolic names to paragraphs, and then using
those symbolic names in citations.

On the other hand, tools like TeX have serious problems. They don’t accommodate the

115

wide range of postscript fonts now available without considerable customization by the
user. Adjusting the layout is rarely easy; a simple alteration, such as changing a margin
or changing the spacing of headings, usually requires considerable expertise. And the
typographic quality of the documents they produce is inferior to that of modern layout
tools. Quark and Indesign, for example, both allow you to set a ‘baseline grid’ that lines
snap to, so that the lines of text in facing columns on a page are lined up. Their hyphen-
ation algorithms seem to perform better. Indesign gives access to all the features of
OpenType fonts, and offers optical alignment.

Tagger’s approach is very simple. The user writes a document in a simple markup lan-
guage. The markup language offers almost no direct control over formatting, beyond
commands to put text in bold, italic, etc. Instead, paragraphs are labelled with the
names of paragraph styles. Tagger converts the document into a file in the import for-
mat of a layout program such as Quark. Within Quark, the user sets up a stylesheet that
assigns the typographic features to each paragraph style. As the paragraphs are import-
ed, they are typeset according to the appropriate style in the stylesheet.

Of course, one could simply write the import file for the layout program instead. But
each layout program has a different import format. Although Tagger currently only
generates input to Quark, it would be easy to add support for Indesign and other sim-
ilar programs. Also, the import formats tend to be low-level, and they are much more
cumbersome to write than our markup language. Strangely, the import format for
Indesign cannot even be prepared in a text editor, since it relies on distinguishing line-
feeds from carriage returns. Tagger also translates symbolic names for mathematical
characters into font and index information; in the import format, instead of writing
something like \alpha to display α, you’d need to give the name of the mathematical
font and the index at which the character occurs.

18.3 Features

Tagger offers the following features:
· Tagging of paragraphs with style names. A separate stylesheet may specify for each

style a default style that follows it, so that in many cases a paragraph need not be
explicitly tagged.

· Automatic numbering of paragraphs. The stylesheet specifies which styles should
be numbered, what the numbering hierarchy should be (eg, section above subsec-
tion), what style numbers should be generated in (alphabetic, arabic, roman, etc),
and how numbering strings should be composed with appropriate leaders, trailers
and separators.

116

· Symbolic naming of special characters. Mapping files translate symbolic names to
font name/index pairs. Tagger comes with some standard mapping files, and it is
straightforward to write new files to make characters from other fonts accessible.

· Math mode. Text written between dollar signs is treated as mathematical text.
Alphabetic characters are italicized, but numbers, punctuation and special symbols
are unchanged.

· Cross references. A paragraph can be marked with a label; a citation elsewhere
using this label then generates a string referring to the labelled paragraph. By
default, the string generated is the numbering string created by the automatic num-
bering facility, but the user may specify a string explicitly instead. This feature, in
combination with automatic numbering, makes it easy to handle bibliographic ref-
erences.

· Basic character formatting. Text can be put in italics, made a subscript, etc.
· Whitespace. Whitespace is mostly preserved, so it’s easy to indent text with tabs or

spaces.
· Shorthands. Several common shorthands are provided: three dots is automatically

converted to an ellipsis, for example, two hyphens to an en-dash, and so on. Text
between underscores is italicized. Inverted commas are resolved into the appropri-
ate quote marks according to context: “It’s good to be a ‘software engineer’ in ’01”.

18.4 Design Overview
The basic organization is very simple. The main class, Tagger, uses the SourceParser
class to parse the input text into a stream of Token objects. Each Token object has a
TokenType. The Token is passed to an Engine object, which maps the TokenType to a list
of Action objects. Each of these Action objects is then executed. A typical effect of an
Action is to generate textual output; this is done via an interface Generator that hides
from the Action the actual choice of import formatting language. Currently, there is
only one class that implements Generator, QuarkGenerator, which produces text for
import into QuarkXpress.

Some Action objects cause files to be read; for example, the source text
\loadstyles{foo.txt} causes the file foo.txt to be parsed as a style file. Style files and char-
acter maps have the same syntax: a sequence of lines, each consisting of a list of prop-
erties, each property being a pair consisting of a property name and a value. The con-
tents of both kinds of file are represented as PropertyMap objects. Each such object
contains a mapping from property names to property lists, being lists of Property
objects, each consisting of a property name and a value. The class PropertyParser is a
parser for property files.

117

118

The Numbering class creates numbering strings. An instance of the class is generated
for each style file, since the style file contains numbering directives.

The module dependency diagram shows the modules of the Tagger program and their
dependences on one another. The dotted contour groups together modules that share
dependences: this allows us to avoid drawing a dependence arrow from the Tagger class
to almost every other class. The numbers labelling dependence edges refer to com-
ments in the list of unexpected dependences which explain why a dependence that one
would not have expect to be present is in fact present. For example, the note on the
dependence from StandardEngine to Property reminds you that the StandardEngine
code (actually its anonymous inner classes that subtype Action) generates an index file
of cross-reference information. For this, it needs access to Property. All other uses of
Property, in the reading and processing of style files and character maps, are handled
by inferior classes such as PropertyMap.

18.5 Design Features
Here are some notable features of the design. Some are illustrated with object models,
sometimes of the code, and sometimes of the underlying conceptual structures.

18.5.1 Generator Interface
Actions interact with the backend generator through the Generator interface. This
ensures that they are not dependent on the features of any particular backend genera-
tor. So long as the shared properties of different backends can be captured in the inter-
face, it should be easy to adapt the application to generate output for a variety of dif-
ferent layout tools (such as InDesign and PageMaker in addition to Quark). A plaintext
generator that produces simple ASCII text suitable for an email message would be eas-
ily written.

The object model shows the relationship amongst actions, concrete generators and the
Generator interface.

18.5.2 Numbering

Each style is either numbered or not. If numbered, it belongs to a series. The series has
a root style, and there is a chain of styles from the root; we’ll say that if the chain goes
from style s to style t, then s is the parent of t and t is the child of s. If there is only one
style in a series, it is the root, and it has no children. This structure is specified in the
style file simply by indicating what each style’s parent is, if any, and giving it a counter

119

property if it is to be numbered. The numbering algorithm works as follows. A count-
er is associated with each numbered style, as is initialized with a value one less than the
first value to be generated. When a paragraph of a given numbered style is encoun-
tered, its counter is incremented, and the counters of all its descendants are reset. A
numbering string is constructed by concatenating its leader, the current counter values
of each of its ancestors from the root to it, separated by separators, and its trailer. The
leader, separator and trailer of each style are given in the style file.

The object model shows the relationships maintained by the Numbering object. The
following invariants apply:
· If s is the parent of t, then t is the child of s, and vice versa.
· Every style points to a root style, which is either itself, it it has no parent, or the first

ancestor without a parent.
· Series are disjoint: no style can belong to two series. So no two distinct styles can

share a parent or child.
· No style is its own parent or child.

120

Numbered
Style Countercounter

!

root

parent (~child)

?
?

!

StandardEngine

List Action

ActionSub
(anonymous)

elems

generator

Engine

QuarkGenerator

Generator

generator

actionLists[]

!

!

· If a style is numbered, its ancestors must be also.

18.5.3 Index Files

The problem of handling forward references is dealt with as in LaTeX. An index file
that associates citation tags with the citation strings to be inserted in their place is gen-
erated during a run. Forward references are not resolved, but are picked up by running
the tool again. New associations generated during the run are not checked against old
ones from the index file, so it is possible for a run to produce bad cross-references after
extensive editing. However, running the tool twice in a row will always produce correct
results after the second run.

This scheme should be easily extendable to references across multiple source files.

The problem object model shows the conceptual relationships involved in cross refer-
ence generation. Each paragraph may have a label and may have a numbering string;
one of these is used for displaying citations to the paragraph, with the label overriding
the numbering string. A paragraph may have a tag for citation by other paragraphs, and
may cite the tags of other paragraphs. A paragraph p references another paragraph q if
p cites t and t is the tag of q. Note that tags cannot be shared by more than one para-
graph; they are unique identifiers.

18.5.4 Property Maps
Style sheets and character maps have the same syntax, and are represented internally
by the same abstract data type, PropertyMap. This allows the same parser to be used
for both. The index files generated by the cross-referencing mechanism also use the
same syntax and representation. The Numbering class actually augments the internal
representation of the style sheet by adding new, redundant properties to make it easi-
er to generate numbering strings. This is a bit of a hack.

18.6 Style Set View
The SourceParser must be able to distinguish paragraph style names from other com-
mands, since the syntax does not require that they be specially marked in any way. It is
therefore constructed with a reference to a Set of style names. At the start, however, the
style names are not known. When a style sheet is loaded, the Action that reads the file
produces the PropertyMap. So here’s what happens: at the start the Engine is passed an
empty PropertyMap, and the Set passed to the SourceParser is a view on this map.
When the style sheet is loaded, the PropertyMap is mutated by the addition of new

121

styles, and the view changes in concert with it. This mechanism is a bit tricky, but it
does allow us to decouple SourceParser from PropertyMap.

The object model shows how the view connects the SourceParser and the
StandardEngine in the code.

18.6.1 Multiple Engines

One might expect the Engine class to be a singleton, but it isn’t. There is one Engine
object for handling the source text, and a second Engine, with fewer actions, for pro-
cessing numbering strings. In giving numbering directives in the style file, you can use
the markup language. For example, the centered dot at the start of the bulleted para-
graphs above are generated because the paragraphs were labelled with style point, and
the numbering directive in the style file says that even though point isn’t numbered, the

122

Tagger

SourceParser StandardEngine

List

Action

ActionSub
(anonymous)

PropertyMap

Set

paraStyles

styleMap

views
keys

actionLists[]

elems

styleMap

engineparser

!

!

!

! !

!

numbering string should still include a leading centered dot and a tab. The centered
dot is referred to by the symbolic name \periodcentered. The Numbering object gen-
erates a string containing this symbolic name as a substring, which must be parsed and
acted upon just like the tokens in the source text itself.

The object model shows that some actions have a reference to a Numbering object. The
resulting string, not shown, is passed to a different NumberingEngine with its own
actions. The dotted arrow depicts, informally, the relationship between an engine and
its registered actions.

18.6.2 Comodification

The implementation of Engine uses an iterator to traverse the list of Action objects
associated with the TokenType at hand. The perform method of each of these Action
objects is executed. This perform method, as mentioned above, can itself register and
deregister Action objects. If it were to do this for the TokenType at hand, the list being
iterated over would be modified, thus violating Java’s ban on concurrently modifying a
collection while its iterator is active. The only case in which it seems to be necessary to
do this is for ‘one shot’ actions which deregister themselves as soon as they occur. To
handle these, Engine passes the iterator as an argument to the perform method of
Action, which then invokes the remove method of the iterator to remove the Action
object from the underlying list. This is an unusual and rather obscure use of the remove
method, since the site of the call to remove is far from the site of the loop.

123

Numbering
Engine

Engine

StandardEngine

NumberingActionSub
(anonymous)

ActionSub
(anonymous) numbering

numbering

!

!

The object model shows how an action belonging to an action list of an engine has
access to that list indirectly via an iterator.

18.6.3 Dynamic Registration

An Action may cause the registration or deregistration of other Action objects. For
example, when a dollar is encountered for the first time, an Action is executed that reg-
isters an italicization action against the TokenType for alphabetic character sequences.
When the next dollar sign is processed, this action is deregistered. As a result, alpha-
betic characters are italicized when placed between dollar signs.

18.6.4 Anonymous Inner Classes
Most of the Action objects are implemented using anonymous inner classes. To under-
stand these, it’s important to notice that the methods of the inner classes have access
to the variables in the enclosing scope. Assignments to these variables are not permit-
ted by Java, since the enclosing environment isn’t a proper closure. This is why the vari-
ables that represent state in the processing of a paragraph are encapsulated in an object
of class ParaSettings. Note that there are very few such variables: this is one of the key
benefits of the action-based organization.

18.6.5 Type-Safe Enumerations
Various enumerations, such as Format and TokenType are implemented in a type-safe
manner according to the idiom described in Item 21 of Bloch’s Effective Java. Unlike
the common practice of representing enumerations with static variables bound to inte-
gers, this ensures type safety. Unlike the algebraic datatypes of languages such as ML,

124

Standard
Engine

List Action

ActionSub
(anonymous)

elemsEngine actionLists[]

Iterator

views

iter
!

!

!

however, it does not allow the compiler to check that a case statement handles every
value of the enumeration.

18.7 Design Alternatives
Here are some different designs that I might have used but chose not to:
· Use a line-based scripting language like Perl, sed or awk. These are not well suited

to applications like Tagger in which lines have no significance, and context (such as
whether italic mode is on) must carried across line breaks. I also didn’t have the
patience to debug a complex Perl script, and preferred to use a typesafe language.

· A classic object-oriented design in which each token type is represented as its own
subclass of a class Token, and the actions are methods of these subclasses, relying on
dynamic dispatch to select actions for tokens. This approach is simple, but it creates
a huge number of classes. Worse, it splits functionality across many classes; math
mode, for example, would not be coded in one place, but in all the tokens involved.
This problem is what motivated the Visitor pattern. This approach would not allow
behaviours to be changed dynamically the way my design does.

· A design in which the choice of behaviour according to token type is determined by
a big case statement, or by methods of a Visitor pattern. This would have created a
mass of global variables, so that functions such as math mode would pollute the
entire case statement. In the action-based design, in contrast, these functions are
mostly encapsulated.

· A standard compiler organization using an intermediate abstract syntax tree rather
than a token stream. This would be far more flexible, and allows much better error
reporting, but it’s much more work to implement.

18.8 Design Defects
Here are some of the known defects of Tagger:
· Because Tagger doesn’t see the final layout onto pages, it can’t handle page-based

issues, such as footnotes and running headers. With a more expressive import lan-
guage (like some of the third-party formats marketed for Quark), it may be possible
to handle these. Insertion of graphics suffers from the same problem: currently, they
must be inserted by hand in the layout program.

· Tagger does not provide facilities for laying out tables.
· Tagger doesn’t offer the features of TeX for mathematical formulas: it can’t do mul-

tiline formulas that involve summations and integrals, for example.
· I had originally hoped to include backends for LaTeX and HTML, but too much of

the functionality is incorporated in the actions themselves for these to implement-

125

ed as simply as backends for other layout programs, such as InDesign and
Pagemaker.

· Style files are currently not properly checked. Errors in the numbering relations (for
example, indicating that a style is a parent of itself) can cause Tagger to malfunction
or crash without appropriate warnings.

· Error reporting is not always helpful. Errors found while parsing property files, for
example, do not report line numbers.

· Property file syntax is represented in two different places in the code: in the dump
method of PropertyMap, and in the parsing methods of PropertyParser. This is an
undesirable coupling.

· Character maps and style sheets can override each other. No warning is given when
this happens. If two character maps define the same symbolic character name, the
last definition is used. A style name can shadow a character name. For example, the
style name “section” shadows a character of that name, and prevents the display of
the section symbol.

· Progress reporting is an ugly hack. As numbering strings are generated, they are
passed to a special engine for display purposes that strips out characters that would
not appear on a console. This mechanism assumes that the displaying of paragraph
numbers is a reasonable way to show progress. Often it is, but it may not be when
numbering is used for small items (eg, bibliographic references and lines of code).

· Although many of the actions can be understood independently, there are subtle
interactins amongst some them. The behaviour associated with starting a new para-
graph, for example, involves several actions, dynamic registrations and deregistra-
tions, and state that persists across actions, encapsulated in the ParaSettings object.
This reflects the context-sensitive nature of the problem: in this case that the begin-
ning of a paragraph should cause a style directive to be generated by default, unless
there is an explicit paragraph style command.

· Some characters (such as <) may not be used in the source text because they are
interpreted as control characters by Quark. Tagger does not recognize these and
wrap them appropriately, so the user must refer to them by symbolic names (such
as \less).

· Character styles are not currently supported, but will be added soon.
· Quote mark disambiguation does not handle all cases correctly.

18.9 Development Process

Tagger was first written as a Perl script, to experiment with the idea of generating input
for Adobe Indesign. I had been attempting to write text in Indesign’s input format, but
found it burdensome, especially since it distinguishes between linefeeds and carriage

126

returns, and therefore cannot be prepared in a text editor. This experiment was suc-
cessful, and led me to become more ambitious, and add features such as automatic
numbering. The Perl script was brittle and hard to maintain, so I decided to write a Java
version instead.

I spent a few days designing the source language. This language was refined as I devel-
oped the implementation, and discovered what was easy to parse, and what was easy
to write. I started by implementing the source parser, since I hate writing parsers, and
wanted to get it done. The initial design was represented as a series of object models
and module dependency diagrams.

I did not perform any unit testing, because most of the complexity was in classes (such
as StandardEngine) that cannot be easily tested in isolation. I probably should have
written unit tests for small data types such as Counter. Testing of the program as a
whole was done manually, by eyeballing the output, and seeing how Quark processed
it.

The program was improved incrementally over a few months as I used it in during my
writing. So far, I have found 4 bugs in the code (3kloc, including comments) so far. I
suspect there are many more bugs that do not show up even in extended usage of the
tool, because pathological cases arise so rarely. Given that this program is for person-
al use, I’m content to let my daily use be its testing; of course, were this to be distrib-
uted, proper testing would be necessary. I have made about 20 fixes to the code in
response to improvements in the source language.

In preparing the program for wider distribution, I added specifications for public
methods. Since I was the only programmer, I had relied previously on writing specs
only for tricky procedures. I also refactored the code in places, for example, introduc-
ing the typesafe enum pattern. To reduce the risk of introducing bugs, I wrote a crude
regression test framework (as the runTest method the main Tagger class), which com-
pares the generated file to a file previously generated.

18.10 User Guide
A very rough and unfinished user guide follows.

18.10.1 Command-line Arguments
The Tagger application is invoked with one argument, the name of the file to be
processed, and an optional second argument, giving a pathname from which files
referred to in the source file should be interpreted. The name of the source file is given

127

without an extension; the extension is assumed to be .txt. The generated file is given
the suffix .tag.txt. By default, Tagger tries to open files mentioned in the source file at
their specified location, and only if that fails does it prepend the optional pathname.

18.10.2 Overall Structure
Before a character symbol is used, a file defining the symbol must be loaded with the
\loadchars command. Before a style name is used, a style sheet defining it must be
loaded with the \loadstyles command. It is convenient to load character maps and style
sheets in a preamble at the top of the file.

18.10.3 Lexical
The source text is parsed into paragraphs. The first printing text of the file starts a
paragraph. Paragraphs are separated by a blank line (that is, either empty or contain-
ing whitespace – tabs or spaces) or by the special symbol \p, used for short paragraphs
(such as lines of code to be numbered) that the user does not want to separate with
blank lines.

Commands are prefixed with a backslash. Two forward slashes indicate a manual line-
break.

Commands are classified into printing commands, such as \alpha, which causes α to
be generated, and non-printing commands, such as a paragraph style command like
\section, which cause formatting changes but do not generate output that appears as
text in the final document.

Whitespace is generally preserved, except the whitespace that follows non-printing
commands. This allows the user to mark a paragraph with a style name on a previous
line, with the linebreak being consumed. Tabs produce whatever indentation is speci-
fied in the style sheet of the layout program.

Since a command cannot be followed immediately by text, but requires whitespace fol-
lowing it, there is a special command \eat that consumes its following whitespace.

Hyphens and dots are translated to dashes and ellipses respectively. For example, a sin-
gle hyphen is treated as a hyphen, two as an en-dash, and three as an em-dash. Quote
marks are disambiguated according to context.

To insert a character that has special meaning as a simpel character, precede it with a
backslash. for example, the string \eat is generated by typing \\eat.

128

18.10.4 Commands
· Paragraph style. If style is the name of a style defined in a style sheet previously

loaded, the command \style following a paragraph break or at the start of the file
indicates that the paragraph it begins is to be set in the style style. Appending an
asterisk at the end (\style*) causes numbering to be suppressed: no numbering
string is generated, and counters are not incremented. The default paragraph style
body is used for paragraphs that are not marked with an explicit style, and which do
not acquire a style by virtue of following a style with a next style defined in the style
sheet.

· Character symbol. If char is the name of a character defined in a character map pre-
viously loaded, the command \char causes that character to be inserted.

· Italic mode. Text between underscores is italicized.
· Math mode. text between dollar symbols is put in math mode: all alphabetic and

numeric strings are italicized, but other characters (such as punctuation and math-
ematical symbols) are unaltered.

· New command. The commands \new{column} and \new{line} start a new column
and line respectively. \new{line} is equivalent to //.

· Format commands. The string \format<text> puts the text in text in the format
specified by the format command format. Allowable format commands are sub and
super for sub- and super-scripts, bold, roman and italic.

· Cross references. The command \tag{t} tags a paragraph with the name t that can
be used to refer to the paragraph. The command \label{l} associates the label string
l with the paragraph. The command \cite{t} generates a cross-reference to the para-
graph with the tag t. If the paragraph was labelled explicitly by a \label command,
the label is used as the cross-reference, otherwise the numbering string generated
for the paragraph is used.

18.10.5 Style Sheet Format
A style sheet consists of a sequence of lines, each specifying the properties of a style.
The first property names the style itself. Subsequent properties may include any of the
following:
· next. Indicates which style follows this paragraph style by default.
· counter. If present, indicates that paragraphs of the style are to be autonumbered.

The property value indicates both the initial value of the counter, and the style of
counting: 0, 1, 2, etc for arabic counting; a, b, or A, B, etc for alphabetic counting.
For example <counter:B> says that the counter should b upper-case letters, start-
ing B, C, …

129

· trailer. Source text to be inserted after the numbering string and before the para-
graph text. May include commands such as special characters, new column, etc.

· leader. Source text to be inserted before the numbering string and before the para-
graph text. May include commands such as special characters, new column, etc.

· separator. Source text to be inserted following the counter of this style, in number-
ing strings of paragraphs of the child style. This is used to insert dots between coun-
ters, for example.

· parent. For autonumbering, styles must be organized into a hierarchy. Styles are
grouped into numbering series; each series has a root style, and a chain of child
styles. The numbering series is indicated solely by giving a parent for each num-
bered style, except for a root, which has no parent. For example, to number chap-
ters, sections and subsections in the standard way, one would make chapter the par-
ent of section (by giving it this parent property in its property list), and section the
parent of subsection.

Here is an example of a complete style file for that numbers sections 1, 2, etc; numbers
subsections 1.1, 1.2, etc; separates numbers from their paragraphs by a tab; and places
a centered dot before each paragraph of style point:

<style:section><next:noindent><counter:1><separator:.><trailer: >
<style:subsection><next:noindent><parent:section><counter:1><separa-
tor:.><trailer: >
<style:point><next:body><leader:\periodcentered >

18.10.6 Character Map Format

Each line of a character map file has the form

<char:myname><font:myfont><index:myindex>

where the character symbol myname appears in myfont at index myindex. The font
property may be omitted if the character appears in the standard font.

130

Lecture 19: Conceptual Models

The same object model notation that we’ve used to describe the structure of the heap
in an executing program – what objects there are and how they are related by fields –
can be used more abstractly, to describe the state space of a system or of the environ-
ment in which a system operates. I call these ‘conceptual models’; in the course text,
they’re called ‘data models’. You’ve already actually built some of these in Exercise 4, in
the warmup examples, and when you used the object modelling notation to describe
the structure of the Boston subway system.

The notation itself is very simple indeed, and models are easy to interpret once you
loosen yourself from an implementation-oriented view, replacing Java objects by enti-
ties in the real world, fields by relations, and so on. After this lecture, you should have
no trouble reading conceptual models.

Writing them, on the other hand, takes more practice. It involves making appropriate
abstractions – just as you have to do when you design the interface of an abstract data
type. Doing this well is hard, but the obstacle is nothing to do with object models in
particular. It always difficult to get to the essence of a problem and articulate it suc-
cinctly.

Once you’ve overcome this obstacle, and constructed a conceptual model, you’re half
way to a solution of your problem. It’s often been said that if you can say exactly what
your problem is, then you’ve made progress towards solving it. In software develop-
ment, you’re more than half way there.

So don’t expect to be able to build conceptual models without some practice. It’s a lot
of fun, though, and as you hone your modelling skills, you’ll find that you become a
better designer. As your conceptual structures gain clarity, the structures in your code
will become simpler and cleaner too, and coding will be more productive.

In the lecture itself, I’ll try and give some sense of how models are constructed incre-
mentally. In these notes, the models are shown in their final form.

19.1 Atoms, Sets and Relations

The structures of our models will be built from sets, relations and atoms. An atom is a
primitive entity that is

131

· indivisible: it can’t be broken down into smaller parts;
· immutable: its properties don’t change over time; and
· uninterpreted: it doesn’t have any built-in properties, the way numbers do, for

example.

Elementary particles aside, very few things in the real world are atomic. But that won’t
stop us from modelling them as atomic. In fact, our modelling approach has no built-
in notion of composites at all. To model a part x that consists of parts y and z, we’ll treat
x, along with y and z, as atomic, and represent the containment by an explicit relation
between them.

A set is just a collection of atoms, with no notion of repetition count or order. A rela-
tion is a structure that relates atoms. Mathematically, it’s a set of pairs, each pair con-
sisting of two atoms, in a specified order. You can think of a relation as a table with two
columns, in which each entry is an atom. The order in which the columns appear is
important, but the order of the rows is irrelevant. Each row must have an entry in every
column.

It’ll be convenient to define some operators on sets and relations. We’ll use these in
explaining our graphical models, but they can also be used to write more expressive
constraints.

Given two sets, s and t, you can take their union s+t, their intersection s&t, or their dif-
ference s-t. We’ll write no s so say that an expression s denotes an empty set, and some
s to say that it denotes a non-empty set. To say that every member of s is also a mem-
ber of t, we’ll write s in t. We’ll write s = t when every element of s is an element of t
and vice versa.

Given a set s and a relation r, we’ll write s.r for the image of s under the relation r – the
set of elements that r maps the elements of s to. We can define it formally like this:

s.r = {y | some x: s | (x,y) in r}

Given a relation r, we’ll write ~r for the transpose of r – the mirror image relation,
defined like this:

~r = {(y,x) | (x,y) in r}

Finally, we’ll write +r for the transitive closure of r: it’s the relation that associates x to
y, if there’s some finite sequence of atoms z1, z2, …, zn such that

(x,z1) in r
(z1,z2) in r
(z2,z3) in r

132

…
(zn,y) in r

and *r for the reflexive transitive closure of r: it’s just like the transitive closure, but in
addition it relates each atom to itself. You can think of the transitive closure as taking
the image under one, two, or three, etc applications of the relation; the reflexive tran-
sitive closure includes zero applications.

Let’s look at some examples. Suppose we have a set Person of people who exist or exist-
ed at some time; sets Man and Woman of male and female persons; a relation parents
that associates a person with his or her parents; and a relation spouse that associates a
person with his or her spouse.

Can you interpret each of these statements? Which is true for the real world?

no (Man & Woman)
Man + Woman = Person
all p: Person | some p.spouse => p.spouse.spouse = p
all p: Person | some p.spouse
all p: Person | some p.parents
no p: Person | p.spouse = p
all p: Person | p.sisters = {q: Woman | p.parents = q.parents}
all p: Person | p.siblings = p.parents.~parents

So far, these reflect basic observations about the world and definitions of terms. Here
are some that get us into more controversial territory:

no p: Person | some (p.parents & p.spouse.parents)
Man.spouse in Woman
some adam: Person | all p: Person | adam in p.*parents
all p: Man | no q, r: p.spouse | q != r

I’m assuming you understand basic logical notation. I also slipped in a set comprehen-
sion in the definition of sister.

How would you write these statements in our notation?

Every person has a mother
Nobody has two mothers
A cousin is someone who shares a grandparent

The first statement illustrates something interesting and important. It’s very easy to
assume that the meaning of a term is obvious. In software development, it’s very dan-

133

gerous! Ambiguity and vagueness in the meaning of terms causes endless problems.
Developers understand requirements differently, and end up implementing modules
that don’t fit together, or don’t solve the client’s problem.

So we need to say carefully what each set and relation means. In this case, we have to
say what mother means. Is it biological mother, or legal mother? Or maybe something
else? When you construct a conceptual model that uses any terms that are not already
define in the context in which you are working, you must provide a glossary. So here,
we might write in our glossary:

mother: (p,q) in mother means that person q is the biological mother of person p.

19.2 Graphical Notation

There’s no need to go through all the details of the graphical notation again; you’ve
seen it before in the lecture on object models. All we need to do here is reinterpret the
notation more abstractly.

Take a look at the object model for the family tree. Each box denotes a set of atoms –
not a set of objects in a Java program, or a class! Each (open headed) arrow denotes a
relation from one set to another. It denotes an abstract association, not a field or an
instance variable.

The direction of the arrow has semantic consequence of course: it makes a big differ-
ence whether p is the parent of q or vice versa. But for any relation, we could equal well
use a different relation that is the transpose; children instead of parents for example.
There’s no notion of navigability, or a relation belonging to a set in the way an instance
variable belongs to a class.

134

Person

Man Woman

parentspouse

name Name
!

+
?

?

The fat, closed-headed arrow denotes subset. Two sets that share an arrow are disjoint.
We can fill in the arrow head to say that the subsets are also exhaustive: that every
member of the superset is a member of at least one of the subsets. In this example,
we’ve said that every Person is a Man or a Woman.

The sets that have no supersets are called domains. They’re assumed to be disjoint. No
atom is both a person and a name, for example.

We won’t review the multiplicity and mutability markings here; they’re explained nice-
ly in the course text.

19.3 Ternary Relations

Sometimes we want to describe relationships that involve three, not two, sets. For
example, we might want to record the fact that a person earns a salary working for a
company. If persons can work for several companies, and earn a different salary at
each, we can’t just associate the salary with the person.

Often, the easiest way out of this is to create a new domain. Here, we could introduce
Job, and draw an object model showing a relation jobs from Person to Job, a relation
salary from Job to Salary, and a relation company from Job to Company.

This approach works well when the domain you introduce already corresponds to
some natural set of atoms – it’s a notion already understood in the problem domain.

Alternatively, you can introduce an indexed relation. If you mark the arrow from A to
B with the label r[Index], this means that for each atom i in the set Index, there is a rela-
tion r[i] from A to B. For example, to model naming in a file system, we might have an

135

Person

Job

Company

Salary

jobs
company

salary

!

!

!

indexed relation obj[Dir] from Name to FileSystemObject, since there is conceptually a
separate naming relation for each directory of the file system.

Finally, you can draw the object model and say that it’s a projection: that it shows the
relationships for a particular atom in some domain. For example, in designing a word
processor, there might be a ternary relationship format that associates a StyleName
with a Format in a given Stylesheet. We may want to draw a model that considers only
a single stylesheet, so that the relation becomes binary.

19.4 Three Examples

Let’s look at three examples of conceptual models. They are all very simple, but they
are not trivial. They demonstrate, I hope, that constructing even very small models is
useful. As you work on your final project, and in any subsequent developments you do,
you should construct conceptual models as you need them. Don’t feel a need to have a
single, all inclusive model; sketch a variety of smaller ones, and then consider which of
them may need to be integrated. Until you have some experience with conceptual
modelling, you’ll probably thin something conceptual notion is obvious, and won’t dis-
cover that it isn’t until your deep into the code. So try and play around with more mod-
els that yo think you need at first. And if you strike complexity while you’re coding,
back off, and sketch some models.

19.4.1 Java Types
Our first model shows the relationships between objects and variables and their types
in Java. Understanding this model is crucial to understanding dynamic dispatch and
type casts.

There are three domains:
· Object: the set of instance objects that exist in the heap at runtime.
· Var: the set of variables that hold objects as their value. These include instance vari-

ables, method arguments, static variables and local variables.
· Type: the set of object types defined by classes and interfaces.

136

Name FSOobj[Dir]
?

We’ll ignore null references and primitive types such as int.

The domain Type is classified into classes, abstract classes, and interfaces. The set
ObjectClass is a singleton – it’s only member is the class called Object.

There are four relations:
· holds: maps a variable to the object it holds a reference to;
· otype: maps an object to its type – the type it acquired by virtue of being con-

structed by the constructor of some class;
· vtype: maps a variable to its declared type;
· subs: maps a type to its immediate subtypes. The subtypes of a class are the classes

that extend it; the subtypes of an interface are the interfaces that extend it and the
classes that implement it.

Here are some constraints that can’t be expressed graphically:
· First, the essential type safety property – that the type of an object held in a variable

is in the set of direct or indirect subtypes of the variable’s type:

all v: Var | v.holds.otype in v.vtype.*sub

· Some properties of the type hierarchy in Java: that every type is a direct or indirect
subtype of the class Object; that a class can be the subtype of at most one other class;
and that no type can directly or indirectly subtype itself;

Type in ObjectClass.*sub

137

Object

Var

Type

AbstractClass

Interface

ObjectClass!

Class

otype

vtype
holds

subs

?

!

!

all c: Class | no c1, c2: Class | c1 != c2 && c in c1.sub && c in c2.sub
no t: Type | t in t.+sub

· That interfaces and abstract classes can’t be instantiated:

no o: Object | o.otype in (AbstractClass + Interface)

19.4.2 Meta Model

Our next model is a meta model of the graphical object modelling notation itself. It
should be self-explanatory. A constraint:
· A set box cannot have a subset arrow to itself:

no a: SubsetArrow | a.parent in a.children

There are very few constraints aside from those that require the subset hierarchy to be
a tree; this is what makes the notation flexible. Often constraints are useful to define
new sets and relations. For example, suppose we want to classify those relation arcs
that represent homogeneous relations: relations that relate objects in a single domain.
Can you define this notion as a new set? (Hint: it’s probably easiest to start by defining
a relation super from SetBox to SetBox; then a set DomainBox; and then defining the
set HomoArrow in terms of these.)

138

SetBox

SubsetArrow

ArrowEnd

RelationArrow

Marking

FilledHeadArrow

parent children from, to

mutability,
multiplicityon

!

?

!

!

19.4.3 Numbering

Our third model describes part of the Tagger application that was the subject of yes-
terday’s lecture. It shows what information is stored in the stylesheet for numbering
paragraphs, but does not show how the assignment of numbering strings to paragraphs
themselves. That can be added too, but it’s a bit trickier.

The domains are:
· Style: the set of paragraph style names;
· CounterType: the set of types of counters (eg, arabic, alphabetic, roman)
· CounterValue: the set of values a counter can take on (such as 1, 2, 3, or a, b, c)

The relations are:
· type: associates a style name with its declared counter type;
· initial: associates a style name with its declared initial counter value;
· values: associates a style name with its declared initial counter value;
· follows: associates a counter value with the value that follows it;
· parent: associates a style name with its parent style – section, for example, might be

the parent of subsection.

Note that a style cannot have more than one parent. We do allow two styles to share a
parent; this allows independent numbering, of, for example, figures and subsections
within a section.

Here are some constraints:
· The initial value of a style’s counter must be in the set given by its countertype. In

tagger, this is enforced by the syntax: the declaration (eg, <counter:a> determines

139

Style CounterType

CounterValue

type

initial

values

follows

parent

root

!

!

!
?

?

children

!

?

?

+

both at once).

all s: Style | s.initial in s.type.values

· A style cannot be its own parent.

no s: Style | s = s.parent

And here are some definitions:
· A style’s children are those styles for which it is a parent:

all s: Style | s.children = s.~parent

· The root of a style is the ancestor that has no parent.

all s: Style | s.root = {r: s.*parent | no r.parent}

19.5 Conclusion
The graphical notation is described in more detail in the course text. You may also find
helpful last year’s 6170 lecture notes; there’s a PDF file with a contents list as book-
marks on the web at:

http://sdg.lcs.mit.edu/~dnj/publications.html#fall00-lectures

You’ll find a lecture there on conceptual modelling which includes a more substantial
case study than the small ones given here.

The textual notation is called Alloy and was designed in the Software Design Group
here at MIT. We’ve built an automatic analyzer for Alloy that can do simulations and
checking. If you’d like to know more about it, look on the same publications page, and
you’ll find papers that describe the language and illustrate it with case studies.

140

122

Lecture 20: Design Strategy

This lecture puts together some of the ideas we have discussed in previous lectures: object models
of problems and code, module dependency diagrams, and design patterns. Its aim is to give you
some general advice on how to go about the process of software design. I’ll explain some criteria
for evaluating designs, and give a handful of heuristics that help in finding a design to solve a given
problem.

20.1Process Overview & Testing

The development process has the following major steps:
· Problem analysis: results in an object model and a list of operations.
· Design: results in a code object model, module dependency diagram and module specs.
· Implementation: results in executable code.

Testing should ideally be performed throughout the development, so that errors are found as soon
as possible. In a famous study of projects at TRW and IBM, Barry Boehm found that the cost of
fixing an error can rise by a factor as great as 1000 when it is found later rather than earlier. We’ve
only used the term ‘testing’ to describe evaluation of code, but similar techniques can be applied to
problem descriptions and designs if they are recorded in a notation that has a semantics. (In my
research group, we’ve developed an analysis technique for object models). In your work in 6170,
you’ll have to rely on careful reviewing and manual exercise of scenarios to evaluate your problem
descriptions and designs.

As far as testing implementations goes, your goal should be to test as early as possible. Extreme
programming (XP), an approach that is currently very popular, advocates that you write tests
before you’ve even written the code to be tested. This is a very good idea, because it means that
test selection is less likely to suffer from the same conceptual errors that tests are intended to find
in the first place. It also encourages you to think about specs up front. But it is ambitious, and not
always feasible.

Instead of testing your code in an ad hoc way, you should build a systematic test bed that requires
no user interaction to execute and validate. This will pay dividends. When you make changes to
code, you’ll be able to quickly discover fresh bugs that you’ve introduced by rerunning these
‘regression tests’. Make liberal use of runtime assertions, and check representation invariants.

20.2Problem Analysis

The main result of problem analysis is an object model that describes the fundamental entities of
the problem and their relationships to one another. (In the course text, the term ‘data model’ is used
for this.) You should write short descriptions for each of the sets and relations in the object model,
explaining what they mean. Even if it’s clear to you at the time, it’s easy to forget later what a term
meant. Moreover, when you write a description down, you often find it’s not as straightforward as
you thought. My research group is working on the design of a new air-traffic control component;
we’ve discovered that in our object model the term Flight is a rather tricky one, and getting it right

123

clearly matters.

It’s helpful also to write a list of the primary operations that the system will provide. This will give
you a grip on the overall functionality, and allow you to check that the object model is sufficient to
support the operations. For example, a program for tracking the value of stocks may have opera-
tions to create and delete portfolios, add stocks to portfolios, update the price of a stock, etc.

20.3Design Properties

The main result of the design step is a code object model showing how the system state is imple-
mented, and a module dependency diagram that shows how the system is divided into modules
and how they relate to one another. For tricky modules, you will also want to have drafted module
specifications before you start to code.

What makes a good design? There is of course no simple and objective way to determine whether
one design is better than another. But there are some key properties that can be used to measure the
quality of the design. Ideally, we’d like a design to do well on all measures; in practice, it’s often
necessary to trade one for another.

The properties are:
· Extensibility. The design must be able to support new functions. A system that is perfect in all

other respects, but not amenable to the slightest change or enhancement, is useless. Even if
there is no demand for additional features, there are still likely to be changes in the problem
domain that will require changes to the program.

· Reliability. The delivered system must behave reliably. That doesn’t only mean not crashing or
eating data; it must perform its functions correctly, and as anticipated by the user. (This means
by the way that it’s not good enough for the system to meet an obscure specification: it must
meet one that is readily understood by the user, so she can predict how it will behave.) For a dis-
tributed system, availability is important. For real-time systems, timing is important: usually
this means not that the system is fast, but that it completes its tasks in predictable times. How
reliability is judged varies greatly from system to system. A browser’s failure to render an
image precisely is less serious than the same failure in a desktop publishing program. Tele-
phone switches are required to meet extraordinarily high standards of availability, but may mis-
route calls occasionally. Small timing delays may not matter much for an email client, but they
won’t do in a nuclear reactor controller.

· Efficiency. The system’s consumption of resources must be reasonable. Again, this depends of
course on the context. An application that runs on a cell phone can’t assume the same availabil-
ity of memory as one that runs on a desktop machine. The most concrete resources are the time
and space consumed by the running program. But remember that the time taken by the develop-
ment can be just as important (as Microsoft has demonstrated), as well as another resource not
to be ignored -- money. A design that can be implemented more economically may be prefera-
ble to one that does better on other metrics but would be more expensive.

124

20.4Overview of Strategy

How are these desirable properties obtained?

20.4.1Extensibility

· Object model sufficiency. The problem object model has to capture enough of the problem. A
common obstacle to extending a system is that there is no place for the new function to be
added, because its notions aren’t expressed anywhere in the code. An example of this can be
seen in Microsoft Word. Word was designed on the assumption that paragraphs were the key
document structuring notion. There was no notion of text flows (physical spaces in the docu-
ment through which text is threaded), nor of any kind of hierarchical structure. As a result,
Word doesn’t smoothly support division into sections, and it can’t place figures. Its important to
be very careful not to optimize the problem object model and eliminate substructure that
appears to be unnecessary. Don’t introduce an abstraction as a replacement for more concrete
notions unless you’re really sure that it’s well founded. As the motto goes, generalizations are
generally wrong.

· Locality and decoupling. Even if the code does end up embodying enough notions onwhich to
hang new functionality, it may be hard to make the change you need to make without altering
code all over the system. To avoid this, the design must exhibit locality: separate concerns
should, to the greatest extent possible, be separated into distinct regions of the code. And mod-
ules must be decoupled from one another as much as possible so that a change doesn’t cascade.
We saw examples of decoupling in the lecture on name spaces, and more recently in the lec-
tures on design patterns (in Observer, for example). These properties can be judged most easily
in the module dependency diagram: this is why we construct it. Module specifications are also
important for achieving locality: a specification should be coherent, with a clearly bounded
collection of behaviours (without special ad hoc features), and a clear division of responsibility
amongst methods, so that the methods are largely orthogonal to one another.

20.4.2Reliability

· Careful modelling. Reliability cannot be easily worked into an existing system. The key to
making reliable software is to develop it carefully, with careful modelling along the way. Most
serious problems in critical systems arise not from bugs in code but from errors in problem
analysis: the implementor simply never considered some property of the environment in which
the system is placed. Example: Airbus failure at Warsaw airport.

· Review,analysis, and testing. However careful you are, you will make errors. So in any develop-
ment, you have to decide in advance how you will mitigate the errors that you will inevitably
make. In practice, peer review is one of the most cost-effective methods for finding errors in
any software artifact,whether model, specification or code. So far, you’ve only been able to
exploit this with your TA and the LA’s; in your final project, you should take full advantage of
working in a team to review each other’s work. It’ll save you a lot of time in the long run.

More focused analyses and testing can find more subtle errors missed by peer review. Some
useful and easy analyses you can apply are simply to check that your models are consistent:

125

does your code object model support all the states of the problem object model? do the multi-
plicities and mutabilities match appropriately? does the module dependency diagram account
for all the edges in the object model? You can also check you code against the models. The
Womble tool, available at http://sdg.lcs.mit.edu, automatically constructs object models from
bytecode. We have found many bugs in our code by examining extracted models and comparing
them to the intended models. You should check the crucial properties of your object model in
the code by asking youself how you know that the properties are maintained. For example, sup-
pose your model asserts that a vector is never shared by two bank account objects. You should
be able to make an argument for why the code ensures this. Whenever you have a constraint in
your object model that wasn’t expressible graphically, it’s especially worth checking, as it is
likely to involve relationships that cross object boundaries.

20.4.3Efficiency

· Object Model. Your choice of code object model is crucial, because it’s hard to change. So you
should consider critical performance targets early on in the design. We’ll look later in the lec-
ture at some sample transformations that you can apply to the object model to improve effi-
ciency.

· Avoid bias. When you develop your problem object model, you should exclude any implemen-
tation concerns. A problem model that contains implementation details is said to be biased,
since it favours one implementation over another. The result is that you have premuaturely cut
down the space of possible implementations, perhaps ruling out the most efficient one.

· Optimization. Optimization is misnamed; it invariably means that performance gets better but
other qualities (such as clarity of structure) get worse. And if you don’t go about optimization
carefully, you’re likely to end up with a system that is worse in every respect. Before you make
a change to improve performance, make sure that you have enough evidence that the change is
likely to have a dramatic effect. In general, you should resist the temptation to optimize, and put
your efforts into making your design clean and simple. Such designs are often the most efficient
anyway; if they’re not, they are the easiest to modify.

· Choice of reps. Don’t waste time on gaining small improvements in performance,but focus
instead on the kinds of dramatic improvement that can be gained by choosing a different rep for
an abstract type, for example, which may change an operation from linear to constant time.
Many of you have seen this in your MapQuick project: if you chose a representation for graphs
that required time proportional to the size of the entire graph to obtain a node’s neighbours,
search is completely infeasible. Remember also that sharing can have a dramatic effect, so con-
sider using immutable types and having objects share substructure. In MapQuick, Route is an
immutable type; if you implement it with sharing, each extension of the route by one node dur-
ing search requires allocation of only a single node, rather than an entire copy of the route.

Above all, remember to aim for simplicity. Don’t underestimate how easy it is to become buried
under a mass of complexity, unable to achieve any of these properties. It makes a lot of sense to
design and build the simplest, minimal system first, and only then to start adding features.

126

20.5Object Model Transformations

In problem and code object models, we’ve seen two very different uses of the same notation. How
can an object model describe a problem and also describe an implementation? To answer this ques-
tion, it’s helpful to think of interpreting an object model in two steps. In the first step, we interpret
the model in terms of abstract sets and relations. In the second step, we map these sets and rela-
tions either to the entities and relationships of the problem, or to the objects and fields of the
implementation.

For example, suppose we have an object model with a relation employs from Company to
Employee.

Mathematically, we view it as declaring two sets and a relation between them. The multiplicity
constraint says that each employee is mapped to under the employs relation by at most one com-
pany. To interpret this as a problem object model, we view the set Company as a set of companies
in the real world, and Employee as a set of persons who are employed. The relation employs relates
c and e if the actual company c employs the person e.

To interpret this as a code object model,we view the set Company as a set of heap-allocated
objects of the class Company, and Employee as a set of heap-allocated objects of the class
Employee. The relation employs becomes a specification field, associating c and e if the object c
holds a reference to a collection (hidden in the representation of Company) that contains the refer-
ence e.

Our strategy is to start with a problem object model, and transform it into a code object model.
These will generally differ considerably, because what makes a clear description of the problem is
not generally what makes a good implementation.

How is this transformation accomplished? One way is to brainstorm and play with different code
model fragments until they coalesce. This can be a reasonable way to work. You need to check that
the code object model is faithful to the problem object model. It must be capable of representing at

Company Employeeemploys
?

problem
OM

code
OM

sets &
relations

sets &
relations

Java
heap

real
world

127

least all the information in the states of the problem model, so you can add a relation for example,
but you can’t remove one.

Another way to go about the transformation is by systematically applying a series of small trans-
formations. Each transformation is chosen from a repertoire of transformations that preserve the
information content of the model, so that since each step keeps the model sound, the entire series
must also. Nobody has yet figured out a full repertoire of such transformations -- this is a research
problem -- but there are a handful we can identify that are the most useful. First let’s introduce an
example.

20.6Folio Tracker Example

Consider designing a program for tracking a portfolio of stocks. The object model describes the
elements of the problem. Folio is the set of portfolios, each with a Name, containing a set of posi-
tions Pos. Each position is for a particular Stock, of which some number are held. A stock may
have a value (if a quote has been recently obtained), and has a ticker symbol that does not change.
Ticker symbols uniquely identify stocks. A Watch can be placed on a portfolio; this causes infor-
mation about the portfolio to be displayed when certain changes to the portfolio occur.

20.7Catalog of Transformations

20.7.1Introducing a Generalization

If A and B are sets with relations p and q, of the same multiplicity and mutability, to set C, we can
introduce a generalization AB and replace p and q by a single relation pq from AB to C. The rela-

Folio

Name

Pos

Stock

Num

Dollar

Ticker

Watch

wfolio

name

posns

stock

num

val

sym
!

!

!

!

!

!

?

!

!

128

tion pq may not have the same source multiplicity as p and q.

20.7.2Inserting a Collection

If a relation r from A to B has a target multiplicity that allows more than one element, we can inter-
pose a collection, such as a vector or set between A and B, and replace r by a relation to two rela-
tions, one from A to the collection, and one from the collection to B.

In our Folio Tracker example, we might replace interpose a vector in the relation posns between
Folio and Pos. Note the mutability markings; the collection is usually constructed and garbage col-
lected with its container.

A

C

p

B
q

AB Cpq

A B

A Bp

A Vectorpv Belts
!

Folio Vectorpv Poselts
!? !

129

20.7.3Reversing a relation

Since the direction of a relation doesn’t imply the ability to navigate it in that direction, it is always
permissible to reverse it. Eventually, of course, we will interpret relations as fields, so it is common
to reverse relations so that they are oriented in the direction of expected navigation. In our exam-
ple, we might reverse the name relation, since we are likely to want to navigate from names to
folios, obtaining a relation folio, say.

20.7.4Moving a Relation

Sometimes the target or source of a relation can be moved without loss of information. For exam-
ple, a relation from A to C can be replaced by a relation from B to C if A and B are in one-to-one
correspondence.

In our example, we can replace the val relation between Stock and Dollar by a relation between
Ticker and Dollar. It’s convenient to use the same name for the new relation, although technically it
will be a different relation.

20.7.5Relation to Table

A relation from A to B with a target multiplicity of exactly one or zero or one can be replaced by a
table. Since only one table is needed, the singleton pattern can be used so that the table can be ref-
erenced by a global name. If the relation’s target multiplicity is zero or one, the table must be able

A

B

C

p

q

!

!

A

B

C

p r
!

!

Stock

Dollar

Ticker

val

sym

?

!

!

Stock

Dollar

Ticker

val

sym

?

!

!

130

to support mappings to null values.

In FolioTracker, for example, we might convert the relation folio to a table to allow folios to be
found by a constant-time lookup operation. This gives:

It would make sense to turn the relation val from Ticker to Dollar into a table too, since this will
allow the lookup of values for ticker symbols to be encapsulated in an object distinct from the port-
folio. In this case, because of the zero-or-one multiplicity, we’ll need a table that can store null val-
ues.

20.7.6Adding Redundant State

It is often useful to add redundant state components to an object model. Two common cases are

A Bp
!

pTable

theTable!

Bval[A]
!

FolioFolioTable

theFT

folio[Name]
!

TickerTable

theTT

val[Ticker] Dollar
?

131

adding the transpose of a relation, and adding the composition of two relations. If p maps A to B,
we can add the transpose q from B to A. If p maps A to B, and q maps B to C, we can add the com-
position pq from A to C.

20.7.7Factoring out Mutable Relations

Suppose a set A has outgoing relations p, q and r, of which p and q are right-static. If implemented
directly, the presence of r would cause A to be mutable. It might therefore be desirable to factor out
the relation r, eg by using the Relation to Table transform, and then implementing A as an immuta-
ble datatype.

In our example, the factoring out of the val relation fits this pattern, since it renders Stock immuta-
ble. The same idea underlies the Flyweight design pattern, by the way.

20.7.8Interpolating an interface

 This transformation replaces the target of a relation R between a set A and a set B with a superset
X of B. Typically, A and B will become classes and X will become an abstract class or interface.
This will allow the relation R to be extended to map elements of A to elements of a new set C, by
implementing C as a subclass of X. Since X factors out the the shared properties of its subclasses, it
will have a simpler specification than B; A’s dependence on X is therefore less of a liability than its
prior dependence on B. To make up for the loss of communication between A and B, an additional
relation may be added (in a further transformation) from B back to A.

The Observer design pattern is an example of the result of this transformation. In our example, we

A Bp

A Xp

B

132

might make the Watch objects observers of the Folio objects:

20.7.9Eliminating Dynamic Sets

A subset that is not static cannot be implemented as a subclass (since objects cannot migrate
between classes at runtime). It must therefore be transformed. A classification into subsets can be
transformed to a relation from the superset to a set of classifier values

Where there is only one or two dynamic subsets, the classifier values can be primitive boolean val-
lues.

The classification can also be transformed to several singleton sets, one for each subset.

20.8Final OM

For our Folio Tracker example, the result of the sequence of transformations that we have dis-
cussed is shown below. At this point, we should check that our model supports the operations the
system must perform, and use the scenarios of these operations to construct a module dependency
diagram to check that the design is feasible. We will need to add modules for the user interface and
whatever mechanism is used to obtain stock quotes. We would also want to add a mechanism for
storing folios persistently on disk. For some of this work, we may want to go back and construct a
problem object model, but for other parts it will be reasonable to work at the implementation level.

Folio

Observer

Watch

obs

wfolio

? !

C

A B

C V

AV! BV!

v

133

For example, if we allow users to name files to store folios in, we will almost certainly need a
problem object model. But to resolve issues of how to parse a web page to obtain stock quotes,
constructing a problem object model is unlikely to be productive.

20.9UML and Methods

There are many methods that prescribe a detailed approach to object-oriented development. They
tell you what models to produce, and in what order. In an industrial setting, standardizing on a
method can help coordinate work across teams. Although you won’t learn about any particular
method in 6170, the notions you learn in 6170 are the foundation of most methods, so you should
be able to pick up any particular method easily. Almost all methods use object models; some also
use module dependency diagrams. If you’d like to learn more about methods, I’d recommend
Catalysis, Fusion and Syntropy; a google search on these names will direct you to online materials
and books.

In the last few years, there’s been an attempt to standardize notations. The Object Management
Group has adopted the Unified Modeling Language (UML) as a standard notation. It’s actually a
large collection of notations. It includes an object modelling notation that is similar to ours (but
much more complicated).

Folio Vector Pos

Stock

Ticker

FolioTable

theFT

folio[Name] pv elts

stock

sym

TickerTable

theTT

val[Ticker] Dollar

Observer

Watch

obs

wfolio

!

? !

!?

!

!

!

!

?

	lecture01
	lecture02
	lecture03
	lecture04
	lecture05
	lecture06
	lecture07
	lecture08
	lecture09
	lecture10
	lecture11
	lecture12
	lecture13
	lecture14
	lecture15
	lecture16
	lecture17
	lecture18taggernotes
	lecture19
	lecture20

