
c© A. Kshemkalyani and M. Singhal, 2005
Limited circulation within a classroom, after seeking permission from authors.

1

DISTRIBUTED COMPUTING:
PRINCIPLES, ALGORITHMS, and SYSTEMS

Ajay D. Kshemkalyani
Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607

Mukesh Singhal
Department of Computer Science

University of Kentucky
Lexington, KY 40506

January 29, 2007

“To my father Shri Digambar and my mother Shrimati Vimala.”
-Ajay D. Kshemkalyani

“To my mother Chandra Prabha Singhal, my father Brij Mohan Singhal,
and my daughters Meenakshi, Malvika, and Priyanka.“

-Mukesh Singhal

i

Preface

Background

The field of Distributed Computing covers “all aspects of computing and information access across
multiple processing elements connected by any form of communication networks, whether local or
wide-area in the coverage”. Since the advent of the Internet in the 1970s, there has been a steady
growth of new applications requiring distributed processing. This was enabled by advances in
networking and hardware technology, falling cost of hardware, and greater end-user awareness.
These factors contributed to making distributed computinga cost-effective, high-performance, and
fault-tolerant reality. Around the turn of the millenium, there has been an explosive growth in the
expansion and efficiency of the Internet, and a matching outreach of access to networked resources
through the World Wide Web, all across the world. Coupled with an equally dramatic growth in the
wireless and mobile networking areas, and plummeting prices of bandwidth and storage devices,
we are witnessing a rapid spurt in distributed applicationsand an accompanying interest in the field
of distributed computing in universities, governments organizations, and private institutions.

Advances in hardware technology have suddenly made sensor networking a reality, and em-
bedded and sensor networks are rapidly becoming an integralpart of each person’s life – from the
home network with the interconnected gadgets to the automobile communicating by GPS (Global
Positioning System), to the fully networked office with RFIDmonitoring. In the emerging global
village, distributed computing will be the centerpiece of all computing and information access
sub-disciplines within computer science. Clearly, this isa very important field. Moreover, this
evolving field is characterized by a diverse range of challenges for which the solutions need to
have foundations on solid principles.

The field of distributed computing is very important, and there is a huge demand for a good
comprehensive book. The book comprehensively covers all important topics in a great depth. This
book provides both the depth and the breadth of coverage of topics in conjunction with the clarity
of explanation and ease of understanding. The book will be particularly valuable to the academic
community and the computer industry at large. Writing such acomprehensive book is an herculean
task and is a huge undertaking. There is a deep sense of satisfaction in knowing that we were able
complete this major task and perform this service to the community.

Description, Approach, and Features

The book will focus on fundamental principles and models underlying all aspects of distributed
computing. The book will address the principles underlyingthe theory, algorithms, and systems
aspects of distributed computing. The manner of presentation of the algorithms is very lucid, ex-
plaining the main ideas and the intuition with figures and simple explanations rather than getting
entangled in intimidating notations and lengthy and hard-to-follow rigorous proofs of the algo-
rithms. The selection of chapter themes is broad and comprehensive, and the book covers all im-
portant topics in depth. The selection of algorithms withineach chapter has been done carefully to
elucidate new and important techniques of algorithm design. Although the book focuses on foun-
dational aspects and algorithms for distributed computing, it thoroughly addresses all practical
systems-like problems (e.g., mutual exclusion, deadlock detection, termination detection, failure

ii

recovery, authentication, global state and time, etc.) by presenting the theory behind and algo-
rithms for such problems. The book is written keeping in mindthe impact of emerging topics
such aspeer-to-peer computingandnetwork securityon the foundational aspects of distributed
computing.

Chapters of the book include figures, examples, exercise problems, a summary, and bibliogra-
phy/references. An Index includes the index terms.

Readership

This book is aimed as a textbook for

• Graduate students and Senior level undergraduate studentsin Computer Science and Com-
puter Engineering.

• Graduate students in Electrical Engineering and Mathematics. As wireless networks, peer-
to-peer networks, and mobile computing continue to grow in importance, an increasing num-
ber of students from Electrical Engineering Departments will also find this book necessary.

• Practitioners, systems designers/programmers, and consultants in industry and research labs
will find the book a very useful reference because it will contain the state of the art algorithms
and principles to address various design issues in distributed systems, as well as the latest
references.

The breadth and depth of coverage, accompanied by clarity ofexplanation and ease of under-
standing that the book offers will make it a very widely adopted textbook.

Hard and soft prerequisites for the use of this book include

• An undergraduate course in algorithms is required.

• Undergraduate courses in operating systems and computer networks would be useful.

• A reasonable familiarity with programming.

We have aimed for a very comprehensive book that will be the single source that covers dis-
tributed computing models and algorithms. The book will have both depth and breadth of coverage
of topics, and will be characterized by clear and easy explanations. None of the existing textbooks
on distributed computing provides all of these features.

Acknowledgements

This book grew from the notes used in the graduate courses on Distributed Computing at the Ohio
State University, the University of Illinois at Chicago andat University of Kentucky. We would
like to thank the graduate students at both these schools fortheir contributions to the book in many
ways.

The book is based on the published research results of numerous researchers in the field. We
have made all efforts to present the material in our languageand have given credit to original source
of the information. We would like to thank all researchers whose work has been reported in this
book. Finally, we would like to thank the staff of the Cambridge University Press for providing us
with an excellent support for publication of the book.

iii

Access to Resources

The following web sites will be maintained for the book. Any errors and comments should be sent
to ajayk@cs.uic.edu or singhal@cs.uky.edu. Further information about the book can be obtained
from authors’ web pages.

• http://www.cs.uic.edu/∼ajayk/DCS-Book

• http://www.cs.uky.edu/∼singhal/DCS-Book

Ajay D. Kshemkalyani
Mukesh Singhal

iv

Contents

1 Introduction 1
1.1 Definition .1
1.2 Relation to Computer System Components 2
1.3 Motivation .. 3
1.4 Relation to Parallel Multiprocessor/Multicomputer Systems 5

1.4.1 Characteristics of Parallel Systems 5
1.4.2 Flynn’s Taxonomy . 10
1.4.3 Coupling, Parallelism, Concurrency, and Granularity 10

1.5 Message Passing Systems versus Shared Memory Systems 13
1.5.1 Emulating message-passing on shared memory system (MP → SM). . . . 13
1.5.2 Emulating shared memory on a message-passing system (SM →MP). . . 13

1.6 Primitives for Distributed Communication 14
1.6.1 Blocking/Nonblocking, Synchronous/Asynchronous Primitives 14
1.6.2 Processor Synchrony .. 17
1.6.3 Libraries and Standards 17

1.7 Synchronous versus Asynchronous Executions 18
1.7.1 Emulating an asynchronous system by a synchronous system (A→ S). . . 19
1.7.2 Emulating a synchronous system by an asynchronous system (S → A). . . 19
1.7.3 Emulations. 20

1.8 Design Issues and Challenges 21
1.8.1 Distributed Systems Challenges from a System Perspective 21
1.8.2 Algorithmic Challenges in Distributed Computing 22
1.8.3 Applications of Distributed Computing and Newer Challenges 28

1.9 Selection and Coverage of Topics 30
1.10 Chapter Summary .. . 31
1.11 Bibliographic Notes 31
1.12 Exercise Problems 32

2 A Model of Distributed Computations 37
2.1 A Distributed Program 37
2.2 A Model of Distributed Executions 38
2.3 Models of Communication Network 40
2.4 Global State of a Distributed System 40

2.4.1 Global State . 41
2.5 Cuts of a Distributed Computation 42

v

2.6 Past and Future Cones of an Event 43
2.7 Models of Process Communications 44

3 Logical Time 47
3.1 Introduction .. . 47
3.2 A Framework for a System of Logical Clocks 48

3.2.1 Definition . 48
3.2.2 Implementing Logical Clocks 49

3.3 Scalar Time .49
3.3.1 Definition . 49
3.3.2 Basic Properties .50

3.4 Vector Time .51
3.4.1 Definition . 51
3.4.2 Basic Properties .53
3.4.3 On the Size of Vector Clocks .. . 54

3.5 Efficient Implementations of Vector Clocks 56
3.5.1 Singhal-Kshemkalyani’s Differential Technique 56
3.5.2 Fowler-Zwaenepoel’s Direct-Dependency Technique 58

3.6 Jard-Jourdan’s Adaptive Technique 60
3.7 Matrix Time .63

3.7.1 Definition . 63
3.7.2 Basic Properties .64

3.8 Virtual Time .. 64
3.8.1 Virtual Time Definition .. . 65
3.8.2 Comparison with Lamport’s Logical Clocks 66
3.8.3 Time Warp Mechanism . 67
3.8.4 The Local Control Mechanism .. . 67
3.8.5 Global Control Mechanism .. . 69
3.8.6 An Example: Distributed Discrete Event Simulations 71

3.9 Physical Clock Synchronization: NTP 72
3.9.1 Motivation . 72
3.9.2 Definitions and Terminology 73
3.9.3 Clock Inaccuracies .. 73

3.10 Chapter Summary .. . 75
3.11 Bibliographic Notes 77
3.12 Exercise Problems 77

4 Global State and Snapshot Recording Algorithms 82
4.1 Introduction .. . 82
4.2 System Model and Definitions 84

4.2.1 System Model . 84
4.2.2 A Consistent Global State .. . 85
4.2.3 Interpretation in Terms of Cuts 86
4.2.4 Issues in Recording a Global State 86

4.3 Snapshot Algorithms for FIFO Channels 87

vi

4.3.1 Chandy-Lamport Algorithm .. . 87
4.3.2 Properties of the Recorded Global State 89

4.4 Variations of the Chandy-Lamport Algorithm 91
4.4.1 Spezialetti-Kearns Algorithm 91
4.4.2 Venkatesan’s Incremental Snapshot Algorithm 92
4.4.3 Helary’s Wave Synchronization Method 93

4.5 Snapshot Algorithms for Non-FIFO Channels 94
4.5.1 Lai-Yang Algorithm .95
4.5.2 Li et al.’s Algorithm .. 96
4.5.3 Mattern’s Algorithm .. 97

4.6 Snapshots in a Causal Delivery System 98
4.6.1 Process State Recording .. . 99
4.6.2 Channel State Recording in Acharya-Badrinath Algorithm 99
4.6.3 Channel State Recording in Alagar-Venkatesan Algorithm 100

4.7 Monitoring Global State 100
4.8 Necessary and Sufficient Conditions for Consistent Global Snapshots 102

4.8.1 Zigzag Paths and Consistent Global Snapshots 103
4.9 Finding Consistent Global Snapshots in a Distributed Computation 106

4.9.1 Finding Consistent Global Snapshots 106
4.9.2 Manivannan-Netzer-Singhal Algorithm for Enumerating Consistent Snap-

shots . 109
4.9.3 Finding Z-paths in a Distributed Computation 110

4.10 Chapter Summary .. . 111
4.11 Bibliographic Notes 112
4.12 Exercise Problems 113

5 Terminology and Basic Algorithms 118
5.1 Topology Abstraction and Overlays 118
5.2 Classifications and Basic Concepts 120

5.2.1 Application Executions and Control Algorithm Executions 120
5.2.2 Centralized and Distributed Algorithms 120
5.2.3 Symmetric and Asymmetric Algorithms 121
5.2.4 Anonymous Algorithms .121
5.2.5 Uniform Algorithms .122
5.2.6 Adaptive Algorithms .. 122
5.2.7 Deterministic Versus Nondeterministic Executions 122
5.2.8 Execution Inhibition .. . 123
5.2.9 Synchronous and Asynchronous Systems 124
5.2.10 Online versus Offline Algorithms 124
5.2.11 Failure Models .125
5.2.12 Wait-free algorithms 126
5.2.13 Communication Channels .. . 126

5.3 Complexity Measures and Metrics 127
5.4 Program Structure 128
5.5 Elementary Graph Algorithms 129

vii

5.5.1 Synchronous Single-Initiator Spanning Tree Algorithm Using Flooding:
Algorithm 0 . 130

5.5.2 Asynchronous Single-Initiator Spanning Tree Algorithm Using Flooding:
Algorithm I . 131

5.5.3 Asynchronous Concurrent-Initiator Spanning Tree Algorithm Using Flood-
ing: Algorithm II . 134

5.5.4 Asynchronous Concurrent-Initiator Depth First Search Spanning Tree Al-
gorithm: Algorithm III . 137

5.5.5 Broadcast and Convergecast on a Tree 137
5.5.6 Single Source Shortest Path Algorithm: Synchronous Bellman-Ford 140
5.5.7 Distance Vector Routing .. . 141
5.5.8 Single Source Shortest Path Algorithm: AsynchronousBellman-Ford . . . 141
5.5.9 All Sources Shortest Paths: Asynchronous Distributed Floyd-Warshall . . . 142
5.5.10 Asynchronous and Synchronous Constrained Flooding(w/o a Spanning

Tree) . 145
5.5.11 Minimum Weight Spanning Tree (MST) Algorithm in a Synchronous System146
5.5.12 Minimum Weight Spanning Tree (MST) in an Asynchronous System . . . 152

5.6 Synchronizers .. . 153
5.7 Maximal Independent Set (MIS) 158
5.8 Connected Dominating Set 160
5.9 Compact Routing Tables 161
5.10 Leader Election 163
5.11 Challenges in Designing Distributed Graph Algorithms. 164
5.12 Object Replication Problems 165

5.12.1 Problem Definition .. 165
5.12.2 Algorithm Outline .. 166
5.12.3 Reads and Writes .166
5.12.4 Converging to an Replication Scheme 167

5.13 Chapter Summary .. . 169
5.14 Bibliographic Notes 170
5.15 Exercise Problems 175

6 Message Ordering and Group Communication 179
6.1 Message Ordering Paradigms 180

6.1.1 Asynchronous Executions .. . 180
6.1.2 FIFO Executions . 180
6.1.3 Causally Ordered (CO) Executions 181
6.1.4 Synchronous Execution (SYNC) 184

6.2 Asynchronous Execution with Synchronous Communication 184
6.2.1 Executions Realizable with Synchronous Communication (RSC) 185
6.2.2 Hierarchy of Ordering Paradigms 188
6.2.3 Simulations . 189

6.3 Synchronous Program Order on an Asynchronous System 190
6.3.1 Rendezvous . 191
6.3.2 Algorithm for Binary Rendezvous 192

viii

6.4 Group Communication .. . 195
6.5 Causal Order (CO) .. 196

6.5.1 The Raynal-Schiper-Toueg Algorithm 197
6.5.2 The Kshemkalyani-Singhal Optimal Algorithm 198

6.6 Total Order .205
6.6.1 Centralized Algorithm for Total Order 205
6.6.2 Three-Phase Distributed Algorithm 206

6.7 A Nomenclature For Multicast 209
6.8 Propagation Trees For Multicast 210
6.9 Classification of Application-Level Multicast Algorithms 214
6.10 Semantics of Fault-Tolerant Group Communication 216
6.11 Distributed Multicast Algorithms At The Network Layer. 218

6.11.1 Reverse Path Forwarding (RPF) For Constrained Flooding 219
6.11.2 Steiner Trees .220
6.11.3 Multicast Cost Functions 221
6.11.4 Delay-Bounded Steiner Trees 221
6.11.5 Core-Based Trees .. 222

6.12 Chapter Summary .. . 223
6.13 Bibliographic Notes 223
6.14 Exercise Problems 224

7 Termination Detection 230
7.1 Introduction .. . 230
7.2 System Model of a Distributed Computation 231
7.3 Termination Detection Using Distributed Snapshots 232

7.3.1 Informal Description .. . 232
7.3.2 Formal Description .. 232
7.3.3 Discussion . 233

7.4 Termination Detection by Weight Throwing 234
7.4.1 Formal Description .. 234
7.4.2 Correctness of the Algorithm 235

7.5 A Spanning-Tree-Based Termination Detection Algorithm 236
7.5.1 Definitions . 236
7.5.2 A Simple Algorithm . 236
7.5.3 The Correct Algorithm .. 237
7.5.4 An Example . 239
7.5.5 Performance . 242

7.6 Message-Optimal Termination Detection 242
7.6.1 The Main Idea . 242
7.6.2 Formal Description of the Algorithm 243
7.6.3 Performance . 245

7.7 Termination Detection in a Very General Distributed Computing Model 245
7.7.1 Model Definition and Assumptions 246
7.7.2 Notations . 246
7.7.3 Termination Definitions .. . 247

ix

7.7.4 A Static Termination Detection Algorithm 247
7.7.5 A Dynamic Termination Detection Algorithm 249

7.8 Termination Detection in the Atomic Computation Model 251
7.8.1 The Atomic Model of Execution .. . 252
7.8.2 A Naive Counting Method .252
7.8.3 The Four Counter Method .253
7.8.4 The Sceptic Algorithm .. 254
7.8.5 The Time Algorithm . 255
7.8.6 Vector Counters Method .. 256
7.8.7 A Channel Counting Method .. 258

7.9 Termination Detection in a Faulty Distributed System 260
7.9.1 Flow Detecting Scheme .261
7.9.2 Taking Snapshots .262
7.9.3 Description of the Algorithm 263
7.9.4 Performance Analysis .. 266

7.10 Bibliographic Notes 267
7.11 Exercise Problems 267

8 Reasoning with Knowledge 271
8.1 The Muddy Children Puzzle 271
8.2 Logic of Knowledge .. 272

8.2.1 Knowledge Operators .272
8.2.2 The Muddy Children Puzzle Again 273
8.2.3 Kripke Structures .. 274
8.2.4 Muddy Children Puzzle using Kripke Structures 275
8.2.5 Properties of Knowledge .. . 277

8.3 Knowledge in Synchronous Systems 277
8.4 Knowledge in Asynchronous Systems 278

8.4.1 Logic and Definitions .. 278
8.4.2 Agreement in Asynchronous Systems 279
8.4.3 Variants of Common Knowledge .. . 280
8.4.4 Concurrent Common Knowledge .. 281

8.5 Knowledge Transfer 283
8.6 Knowledge and Clocks .. . 287
8.7 Chapter Summary .. 288
8.8 Bibliographic Notes 289
8.9 Exercise Problems .. . 289

9 Distributed Mutual Exclusion Algorithms 293
9.1 Introduction .. . 293
9.2 Preliminaries .. . 294

9.2.1 System Model . 294
9.2.2 Requirements of Mutual Exclusion Algorithms 294
9.2.3 Performance Metrics .. 295

9.3 Lamport’s Algorithm 297

x

9.4 Ricart-Agrawala Algorithm 300
9.4.1 Description of the Algorithm 300

9.5 Singhal’s Dynamic Information-Structure Algorithm 303
9.5.1 The Algorithm . 305
9.5.2 Correctness . 307
9.5.3 Performance Analysis .. 308
9.5.4 Adaptivity in Heterogeneous Traffic Patterns 309

9.6 Lodha and Kshemkalyani’s Fair Mutual Exclusion Algorithm 309
9.6.1 System Model . 309
9.6.2 The Algorithm . 310
9.6.3 Safety, Fairness and Liveness 313
9.6.4 An Example . 313
9.6.5 Message Complexity .313

9.7 Quorum-Based Mutual Exclusion Algorithms 316
9.8 Maekawa’s Algorithm 317

9.8.1 The Algorithm . 317
9.8.2 Problem of Deadlocks .318

9.9 Agarwal-El Abbadi Quorum-Based Algorithm 320
9.9.1 Constructing a tree-structured quorum 320
9.9.2 Analysis of the algorithm for constructing tree-structured quorums 321
9.9.3 Validation . 321
9.9.4 Examples of Tree-Structured Quorums 322
9.9.5 The Algorithm for Distributed Mutual Exclusion 323
9.9.6 Correctness proof .. 324
9.9.7 An Example . 324

9.10 Token-Based Algorithms 324
9.11 Suzuki-Kasami’s Broadcast Algorithm 325
9.12 Raymond’s Tree-Based Algorithm 327

9.12.1 The HOLDER Variables .328
9.12.2 The Operation of the Algorithm 329
9.12.3 Correctness .333
9.12.4 Cost and Performance Analysis 335
9.12.5 Algorithm Initialization 335
9.12.6 Node Failures and Recovery 336

9.13 Bibliographic Notes 336
9.14 Exercise Problems 337

10 Deadlock Detection in Distributed Systems 342
10.1 Introduction 342
10.2 System Model .. 342

10.2.1 Wait-For-Graph (WFG) .. 343
10.3 Preliminaries 343

10.3.1 Deadlock Handling Strategies 343
10.3.2 Issues in Deadlock Detection 344

10.4 Models of Deadlocks 345

xi

10.4.1 The Single Resource Model .. . 345
10.4.2 The AND Model . 346
10.4.3 The OR Model . 346
10.4.4 The AND-OR Model . 347
10.4.5 The

(

p
q

)

Model . 347
10.4.6 Unrestricted Model .. . 347

10.5 Knapp’s Classification of Distributed Deadlock Detection Algorithms 348
10.5.1 Path-Pushing Algorithms 348
10.5.2 Edge-Chasing Algorithms 348
10.5.3 Diffusing Computations Based Algorithms 348
10.5.4 Global State Detection Based Algorithms 349

10.6 Mitchell and Merritt’s Algorithm for the Single-Resource Model 349
10.7 Chandy-Misra-Haas Algorithm for the AND Model 352
10.8 Chandy-Misra-Haas Algorithm for the OR Model 353
10.9 Kshemkalyani-Singhal Algorithm for P-out-of-Q Model. 355

10.9.1 Informal Description of the Algorithm 357
10.9.2 The Algorithm . 358
10.9.3 An Example . 361

10.10Summary .364
10.11Bibliographic Notes 365
10.12Exercise Problems 365

11 Global Predicate Detection 370
11.1 Stable and Unstable Predicates 370

11.1.1 Stable Predicates .. . 371
11.1.2 Unstable Predicates 372

11.2 Modalities on Predicates 373
11.2.1 Complexity of Predicate Detection 374

11.3 Centralized Algorithm for Relational Predicates 374
11.4 Conjunctive Predicates 378

11.4.1 Interval-based Centralized Algorithm for Conjunctive Predicates 379
11.4.2 Global State based Centralized Algorithm forPossibly(φ), whereφ is

conjunctive . 381
11.5 Distributed Algorithms for Conjunctive Predicates 384

11.5.1 Distributed State-based Token Algorithm forPossibly(φ), whereφ is Con-
junctive . 384

11.5.2 Distributed Interval-based Token Algorithm forDefinitely(φ), whereφ
is Conjunctive . 386

11.5.3 Distributed Interval-based Piggybacking Algorithm forPossibly(φ), where
φ is Conjunctive . 390

11.6 Further Classification of Predicates 393
11.7 Chapter Summary .. . 394
11.8 Bibliographic Notes 394
11.9 Exercise Problems 395

xii

12 Distributed Shared Memory 399
12.1 Abstraction and Advantages 399
12.2 Memory Consistency Models 402

12.2.1 Strict consistency/Atomic consistency/Linearizability 403
12.2.2 Sequential Consistency 406
12.2.3 Causal Consistency .. . 409
12.2.4 PRAM (Pipelined RAM) or Processor Consistency 411
12.2.5 Slow Memory . 412
12.2.6 Hierarchy of Consistency Models 413
12.2.7 Other Models based on Synchronization Instructions. 414

12.3 Shared Memory Mutual Exclusion 416
12.3.1 Lamport’s Bakery Algorithm 416
12.3.2 Lamport’s WRWR Mechanism and Fast Mutual Exclusion 418
12.3.3 Hardware support for mutual exclusion 421

12.4 Wait-freedom .. . 422
12.5 Register Hierarchy and Wait-free Simulations 423

12.5.1 Construction 1: SRSW Safe to MRSW Safe 426
12.5.2 Construction 2: SRSW Regular to MRSW Regular 427
12.5.3 Construction 3: Boolean MRSW Safe to integer-valuedMRSW Safe 427
12.5.4 Construction 4: Boolean MRSW Safe to boolean MRSW Regular 427
12.5.5 Construction 5: Boolean MRSW Regular to integer-valued MRSW Regular 428
12.5.6 Construction 6: Boolean MRSW Regular to integer-valued MRSW Atomic 429
12.5.7 Construction 7: Integer MRSW Atomic to integer MRMW Atomic 432
12.5.8 Construction 8: Integer SRSW Atomic to integer MRSW Atomic 433

12.6 Wait-free Atomic Snapshots of Shared Objects 435
12.7 Chapter Summary .. . 438
12.8 Bibliographic Notes 440
12.9 Exercise Problems 440

13 Checkpointing and Rollback Recovery 445
13.1 Introduction 445
13.2 Background and Definitions 446

13.2.1 System Model . 446
13.2.2 A Local Checkpoint .447
13.2.3 Consistent System States 447
13.2.4 Interactions with the Outside World 448
13.2.5 Different Types of Messages 449

13.3 Issues in Failure Recovery 450
13.4 Checkpoint Based Recovery 452

13.4.1 Uncoordinated Checkpointing 452
13.4.2 Coordinated Checkpointing 454
13.4.3 Impossibility of Min Process Non-blocking Checkpointing 456
13.4.4 Communication-Induced Checkpointing 456

13.5 Log-based Rollback Recovery 458
13.5.1 Deterministic and Nondeterministic Events 458

xiii

13.5.2 Pessimistic Logging .. . 459
13.5.3 Optimistic Logging .. . 461
13.5.4 Causal Logging .462

13.6 Koo-Toueg Coordinated Checkpointing Algorithm 463
13.6.1 The Checkpointing Algorithm 463
13.6.2 The Rollback Recovery Algorithm 465

13.7 Juang and Venkatesan Algorithm for Asynchronous Checkpointing and Recovery . 466
13.7.1 System Model and Assumptions 466
13.7.2 Asynchronous Checkpointing 467
13.7.3 The Recovery Algorithm .. . 467
13.7.4 An Example . 469

13.8 Manivannan-Singhal Quasi-Synchronous Checkpointing Algorithm 470
13.8.1 Checkpointing Algorithm 471
13.8.2 Recovery Algorithm .. 473
13.8.3 Comprehensive Message Handling 476

13.9 Peterson-Kearns Algorithm Based on Vector Time 479
13.9.1 System Model . 479
13.9.2 Informal Description of the Algorithm 480
13.9.3 Formal Description of the RollBack Protocol 482
13.9.4 An Example . 483
13.9.5 Correctness Proof .. . 484

13.10Helary-Mostefaoui-Netzer-Raynal Communication-induced Protocol 486
13.10.1 Design Principles 487
13.10.2 The Checkpointing Protocol 491

13.11Bibliographic Notes 494
13.12Exercise Problems 495

14 Consensus and Agreement Algorithms 500
14.1 Problem Definition 500

14.1.1 The Byzantine Agreement and Other Problems 502
14.1.2 Equivalence of the Problems and Notations 503

14.2 Overview of Results 504
14.3 Agreement in a Failure-Free System (Synchronous or Asynchronous) 505
14.4 Agreement in (Message-Passing) Synchronous Systems with Failures 506

14.4.1 Consensus Algorithm for Crash Failures (Synchronous System) 506
14.4.2 Consensus Algorithms for Byzantine Failures (Synchronous System) . . . 507
14.4.3 Upper Bound on Byzantine Processes 507
14.4.4 Byzantine Agreement Tree Algorithm: Exponential (Synchronous System) 509

14.5 Agreement in Asynchronous Message-Passing Systems with Failures 518
14.5.1 Impossibility Result for the Consensus Problem 518
14.5.2 Terminating Reliable Broadcast 520
14.5.3 Distributed Transaction Commit 521
14.5.4 k-set consensus . 521
14.5.5 Approximate Agreement .. . 522
14.5.6 Renaming Problem .527

xiv

14.5.7 Reliable Broadcast .. . 532
14.6 Wait-free Shared Memory Consensus in Asynchronous Systems 533

14.6.1 Impossibility Result 533
14.6.2 Consensus Numbers and Consensus Hierarchy 536
14.6.3 Universality of Consensus Objects 540
14.6.4 Shared Memoryk-set Consensus . 545
14.6.5 Shared Memory Renaming .. 545
14.6.6 Shared Memory Renaming using Splitters 547

14.7 Chapter Summary .. . 549
14.8 Exercise Problems 550
14.9 Bibliographic Notes 552

15 Failure Detectors 555
15.1 Introduction 555
15.2 Unreliable Failure Detectors 556

15.2.1 The System Model . 556
15.2.2 Failure Detectors .. . 557
15.2.3 Completeness and Accuracy Properties 557
15.2.4 Types of Failure Detectors 560
15.2.5 Reducibility of Failure Detectors 560
15.2.6 Reducing Weak Failure Detector W to a Strong Failure Detector S 561
15.2.7 Reducing an Eventually Weak Failure Detector♦W to an Eventually Strong

Failure Detector♦S . 563
15.3 The Consensus Problem 565

15.3.1 Solutions to the Consensus Problem 566
15.3.2 A Solution Using Strong Failure Detector S 566
15.3.3 A Solution Using Eventually Strong Failure Detector♦S 568

15.4 Atomic Broadcast 570
15.5 A Solution to Atomic Broadcast 571
15.6 The Weakest Failure Detectors to Solve Fundamental Agreement Problems 573

15.6.1 Realistic Failure Detectors 574
15.6.2 The weakest failure detector for consensus 575
15.6.3 The Weakest Failure Detector for Terminating Reliable Broadcast 576

15.7 An Implementation of a Failure Detector 576
15.8 An Adaptive Failure Detection Protocol 578

15.8.1 Lazy Failure Detection Protocol (FDL) 579
15.9 Bibliographic Notes 582
15.10Exercise Problems 582

16 Authentication in Distributed System 586
16.1 Introduction 586
16.2 Background and Definitions 586

16.2.1 Basis of Authentication 587
16.2.2 Types of Principals .. . 587
16.2.3 A Simple Classification of Authentication Protocols. 588

xv

16.2.4 Notations . 588
16.2.5 Design Principles for Cryptographic Protocols 589

16.3 Protocols Based on Symmetric Cryptosystems 590
16.3.1 Basic Protocol .590
16.3.2 Modified Protocol with Nonce 591
16.3.3 Wide-Mouth Frog Protocol 592
16.3.4 A Protocol Based On an Authentication Server 593
16.3.5 One-Time Password Scheme .. . 594
16.3.6 Otway-Rees Protocol .. . 596
16.3.7 Kerberos Authentication Service 597

16.4 Protocols Based on Asymmetric Cryptosystems 602
16.4.1 The Basic Protocol .. 602
16.4.2 A Modified Protocol with a Certification Authority 602
16.4.3 Needham and Schroeder Protocol 603
16.4.4 SSL Protocol . 605

16.5 Password-based Authentication 609
16.5.1 Encrypted Key Exchange (EKE) Protocol 609
16.5.2 Secure Remote Password (SRP) Protocol 610

16.6 Authentication Protocol Failures 611
16.7 Bibliographic Notes 613
16.8 Exercise Problems 613

17 Self-Stabilization 619
17.1 Introduction 619
17.2 System Model .. 620
17.3 Definition of Self-Stabilization 622
17.4 Issues in the design of self-stabilization algorithms. 624

17.4.1 The Number of States in Each of the Individual Units 625
17.4.2 Uniform Vs. Non-uniform Networks 631
17.4.3 Central and Distributed Demons 632
17.4.4 Reducing the number of states in a token ring 633
17.4.5 Shared memory Models .633
17.4.6 Mutual Exclusion .. 634
17.4.7 Costs of self-stabilization 634

17.5 Methodologies for designing self-stabilizing systems 635
17.6 Communication Protocols 637
17.7 Self-Stabilizing Distributed Spanning Trees 638
17.8 Self-Stabilizing Algorithms for Spanning-tree Construction 640

17.8.1 Dolev, Israeli, and Moran Algorithm 640
17.8.2 Afek, Kutten, and Yung Algorithm for Spanning-tree Construction 642
17.8.3 Arora and Gouda Algorithm for Spanning-tree Construction 643
17.8.4 Huang et al. Algorithms for Spanning-tree Construction 643
17.8.5 Afek and Bremler Algorithm for Spanning-tree Construction 644

17.9 An anonymous self-stabilizing algorithm for 1-maximal independent set in trees . . 645
17.10A Probabilistic Self-Stabilizing Leader Election Algorithm 646

xvi

17.11The role of compilers in self-stabilization 649
17.11.1 Compilers for sequential programs 649
17.11.2 Compilers for asynchronous message passing systems 650
17.11.3 Compilers for asynchronous shared memory systems 651

17.12Self stabilization as a Solution to Fault Tolerance 652
17.13Factors Preventing Self-Stabilization 654
17.14Limitations of Self-Stabilization 655
17.15Chapter Summary 657
17.16Bibliographic Notes 657
17.17Exercise Problems 658

18 Peer-to-Peer Computing and Overlay Graphs 666
18.1 Introduction 666

18.1.1 Napster . 667
18.1.2 Application Layer Overlays 667

18.2 Data Indexing and Overlays 668
18.2.1 Distributed Indexing 669

18.3 Unstructured Overlays 670
18.3.1 Unstructured Overlays: Properties 670
18.3.2 Gnutella . 670
18.3.3 Search in Gnutella and Unstructured Overlays 671
18.3.4 Replication Strategies 673
18.3.5 Implementing Replication Strategies. 675

18.4 Chord Distributed Hash Table 676
18.4.1 Overview . 676
18.4.2 Simple lookup . 677
18.4.3 Scalable Lookup .678
18.4.4 Managing Churn . 678
18.4.5 Complexity . 682

18.5 Content Addressible Networks: CAN 683
18.5.1 Overview . 683
18.5.2 CAN Initialization .. . 684
18.5.3 CAN Routing . 685
18.5.4 CAN Maintainence .686
18.5.5 CAN Optimizations .688
18.5.6 CAN Complexity . 689

18.6 Tapestry .. 689
18.6.1 Overview . 689
18.6.2 Overlay and Routing .. 689
18.6.3 Object Publication and Object Search 692
18.6.4 Node Insertion .693
18.6.5 Node Deletion . 694

18.7 Some Other Challenges in P2P System Design 695
18.7.1 Fairness: A Game Theory Application 695
18.7.2 Trust or Reputation Management 696

xvii

18.8 Tradeoffs between Table Storage and Route Lengths 696
18.8.1 Unifying DHT Protocols .. . 696
18.8.2 Bounds on DHT Storage and Routing Distance 697

18.9 Graph Structures of Complex Networks 699
18.10Internet graphs 701

18.10.1 Basic Laws and their Definitions 701
18.10.2 Properties of the Internet 702
18.10.3 Error and Attack Tolerance of Complex Networks 704

18.11Random Graphs .. . 707
18.11.1 Graph Model . 707
18.11.2 Graph Degree Distribution 708
18.11.3 Graph Diameter .. 708
18.11.4 Graph Clustering Coefficient 708
18.11.5 Generalized Random Graph Networks 709

18.12Small-world Networks 709
18.13Scale-free Networks 710

18.13.1 Master-equation approach 710
18.13.2 Rate-equation approach 711

18.14Evolving Networks 712
18.14.1 Extended Barabasi-Albert Model 713

18.15Chapter Summary 714
18.16Exercise Problems 716
18.17Bibliographic Notes 716

xviii

Chapter 1

Introduction

1.1 Definition

A distributed system is a collection of independent entities that cooperate to solve a problem that
cannot be individually solved. Distributed systems have been in existence since the start of the
universe. From a school of fish to a flock of birds and entire ecosystems of microorganisms, there
is communication among mobile intelligent agents in nature. With the widespread proliferation
of the internet and the emerging global village, the notion of distributed computing systems as a
useful and widely deployed tool is becoming a reality. For computing systems, a distributed system
has been characterized in one of several ways.

• You know you are using one when the crash of a computer you havenever heard of prevents
you from doing work. (Lamport)

• A collection of computers that do not share common memory or acommon physical clock,
and that communicate by message passing over a communication network; and each com-
puter has its own memory and runs its own operating system. Typically the computers are
semi-autonomous and are loosely coupled while they cooperate to address a problem collec-
tively. (Singhal-Shivaratri [10])

• A collection of independent computers that appears to the users of the system as a single
coherent computer. (Tanenbaum [11])

• A term that describes a wide range of computers, from weakly coupled systems such as
wide-area networks to strongly coupled systems such as local area networks to very strongly-
coupled systems such as multiprocessor systems. (Goscinski [6])

A distributed system can be characterized as a collection ofmostly autonomous processors
communicating over a communication network and having the following features.

• No common physical clock.This is an important assumption because it introduces the ele-
ment of “distribution” in the system and gives rise to the inherent asynchrony amongst the
processors.

1

P

P P P

P

PP

M M M

MM

M M

Communication network
(WAN/ LAN)

P processor(s)
M memory bank(s)

Figure 1.1: A distributed system that connects processors by a communication network.

• No shared memory.This is a key feature that requires message-passing required for commu-
nication. This feature implies the absence of the common physical clock.

It may be noted that a distributed system may still provide the abstraction of a common ad-
dress space via the distributed shared memory abstraction.Several aspects of shared memory
multiprocessor systems have also been studied in the distributed computing literature.

• Geographical separation.The geographically wider apart that the processors are, themore
representative is the system of a distributed system. However, it is not necessary for the pro-
cessors to be on a wide-area network (WAN). Recently, the Network/Cluster of Workstations
(NOW/COW) configuration connecting processors on a LAN is also being increasingly re-
garded as a small distributed system. This NOW configurationis becoming popular because
of the low-cost high-speed off-the-shelf processors now available. The Google search engine
is based on the NOW architecture.

• Autonomy and heterogeneity.The processors are “loosely coupled” in that they have different
speeds and each can be running a different operating system.They are usually not part of a
dedicated system, but cooperate with one another by offering services or solving a problem
jointly.

1.2 Relation to Computer System Components

A typical distributed system is shown in Figure 1.1. Each computer has a memory-processing unit
and the computers are connected by a communication network.Figure 1.2 shows the relation-
ships of the software components that run on each of the computers and use the local operating
system and network protocol stack for its functioning. The distributed software is also termed as
middleware. A distributed executionis the execution of processes across the distributed systemto
collaboratively achieve a common goal. An execution is alsosometimes termed acomputationor
a run.

The distributed system uses a layered architecture to breakdown the complexity of system
design. The middleware is the distributed software that drives the distributed system, while pro-

2

protocols

distributed

Extent ofDistributed application

Network layer

(middleware libraries)

Application layer

Data link layer

Transport layer

N
et

w
or

k
pr

ot
oc

ol
 s

ta
ck

Distributed software

system

Operating

Figure 1.2: Interaction of the software components at each processor.

viding transparency of heterogeneity at the platform level. Figure 1.2 schematically shows the
interaction of this software with these system components at each processor. Here we assume that
the middleware layer does not contain the traditional application layer functions of the network
protocol stack, such ashttp, mail, ftp, andtelnet. Various primitives and calls to functions defined
in various libraries of the middleware layer are embedded inthe user program code. There exist
several libraries to choose from to invoke primitives for the more common functions – such as reli-
able and ordered multicasting, of the middleware layer. There are several standards such as Object
Management Group’s (OMG) Common Object Request Broker Architecture (CORBA), and the
Remote Procedure Call (RPC) mechanism. The RPC mechanism conceptually works like a local
procedure call, with the difference that the procedure codemay reside on a remote machine, and
the RPC software sends a message across the network to invokethe remote procedure. It then
awaits a reply, after which the procedure call completes from the perspective of the program that
invoked it. Currently deployed commercial versions of middleware often use CORBA, DCOM
(Distributed Component Object Model), Java, and RMI (Remote Method Invocation) technolo-
gies. The Message-Passing Interface (MPI) developed in theresearch community is an example of
an interface for various communication functions.

1.3 Motivation

The motivation for using a distributed system is some or all of the following requirements.

1. Inherently distributed computations.In many applications such as money transfer in bank-
ing, or reaching consensus among parties that are geographically distant, the computation is
inherently distributed.

2. Resource sharing.Resources such as peripherals, complete data sets in databases, special
libraries, as well as data (variable/files) cannot be fully replicated at all the sites because
it is often neither practical nor cost-effective. Further,they cannot be placed at a single
site because access to that site might prove to be a bottleneck. Therefore, such resources

3

are typically distributed across the system. For example, distributed databases such as DB2
partition the data sets across several servers, in additionto replicating them at a few sites for
rapid access as well as reliability.

3. Access to geographically remote data and resources.In many scenarios, the data cannot be
replicated at every site participating in the distributed execution because it may be too large
or too sensitive to be replicated. For example, payroll datawithin a multinational corporation
is both too large and too sensitive to be replicated at every branch office/site. It is therefore
stored at a central server which can be queried by branch offices. Similarly, special resources
such as supercomputers exist only in certain locations, andto access such supercomputers,
users need to log in remotely.

Advances in the design of resource-constrained mobile devices as well as in wireless tech-
nology using which these devices communicate have given further impetus to the importance
of distributed protocols and middleware.

4. Enhanced reliability.A distributed system has the inherent potential to provide increased
reliability because of the possibility of replicating resources and executions, as well as the
reality that geographically distributed resources are notlikely to crash/malfunction at the
same time under normal circumstances. Reliability entailsseveral aspects.

• Availability, i.e., the resource should be accessible at all times.

• Integrity, i.e., the value/state of the resource should be correct, in the face of concurrent
access from multiple processors, as per the semantics expected by the application.

• Fault-tolerance, i.e., the ability to recover from system failures, where such failures
may be defined to occur in one of many failure models, which we will study in Chap-
ter 14.

5. Increased Performance/Cost ratio.By resource sharing and accessing geographically remote
data and resources, the Performance/Cost ratio is increased. Although higher throughput
has not necessarily been the main objective behind using a distributed system, nevertheless,
a task can be partitioned across the various computers in thedistributed system. Such a
configuration provides a better Performance/Cost ratio than using special parallel machines.
This is particularly true of the NOW configuration.

In addition to meeting the above requirements, a distributed system also offers the following ad-
vantages.

6. Scalability. As the processors are usually connected by a wide-area network, adding more
processors does not pose a direct bottleneck for the communication network.

7. Modularity and incremental expandability.Heterogeneous processors may be easily added
into the system without affecting the performance, as long as those processors are running
the same middleware algorithms. Similarly, existing processors may be easily replaced by
other processors.

4

M

MP P P

PPPM M

M memory P processor

(b)(a)

Interconnection networkInterconnection network

PPP P

MMMM

M M

Figure 1.3: Two standard architectures for parallel systems. (a) Uniform memory access (UMA)
multiprocessor system. (b) Non-uniform memory access (NUMA) multiprocessor. In both archi-
tectures, the processors may locally cache data from memory.

1.4 Relation to Parallel Multiprocessor/Multicomputer Systems

The characteristics of a distributed system were identifiedabove. A typical distributed system
would look as shown in Figure 1.1. However, how does one classify a system that meets some but
not all of the characteristics? Is the system still a distributed system, or does it become a parallel
multiprocessor system? To better answer these questions, we first examine the architecture of par-
allel systems, and then examine some well-known taxonomiesfor multiprocessor/multicomputer
systems.

1.4.1 Characteristics of Parallel Systems

A parallel system may be broadly classified as belonging to one of three types.

1. A multiprocessor systemis a parallel system in which the multiple processors havedirect
access to shared memorywhich forms a common address space. The architecture is shown
in Figure 1.3(a). Such processors usually do not have a common clock.

A multiprocessor systemusuallycorresponds to a uniform memory access (UMA) architec-
ture in which the access latency, i.e., waiting time, to complete an access to any memory
location from any processor is the same. The processors are in very close physical proximity
and are usually very tightly coupled (homogenous hardware and software), are connected
by an interconnection network. Interprocess communication across processors is tradition-
ally through read and write operations on the shared memory,although the use of message-
passing primitives such as those provided by the MPI, is alsopossible (using emulation on
the shared memory). All the processors usually run the same operating system, and both the
hardware and software are very tightly coupled.

The processors are usually of the same type, and are housed within the same box/container
with a shared memory among them. The interconnection network to access the memory may

5

be a bus, although for greater efficiency, it is usually amultistage switchwith a symmetric
and regular design.

Figure 1.4 shows two popular interconnection networks – theOmega network and the But-
terfly network, each of which is a multi-stage network formedof 2x2 switching elements.
Each 2x2 switch allows data on either of the two input wires tobe switched to the upper or
the lower output wire. However, in a single step, only one data unit can be sent on an output
wire. So if the data from both the input wires is to be routed toan output wire in a single step,
there is a collsion. Various techniques such as buffering ormore elaborate interconnection
designs can address collisions.

Each 2x2 switch is represented as a rectangle in the figure. Furthermore, an-input andn-
output network useslog n stages andlog n bits for addressing. Routing in the 2x2 switch at
stagek uses only thekth bit, and hence can be done at clock speed in hardware. The multi-
stage networks can be constructed recursively, and the interconnection pattern between any
two stages can be expressed using an iterative or a recursivegenerating function. Besides
the Omega and Butterfly (banyan) networks, other examples ofmultistage interconnection
networks are the Benes and the shuffle-exchange networks. Each of these has very inter-
esting mathematical properties that allow rich connectivity between the processor bank and
memory bank.

Omega interconnection function. The Omega network which connectsn processors to
n memory units hasn

2
· log2 n switching elements of size 2x2 arranged inlog2 n stages.

Between each pair of adjacent stages of the Omega network, a link exists between outputi
of a stage and the inputj to the next stage according to the followingperfect shufflepattern
which is a left-rotation operation on the binary representation of i to get j. The iterative
generation function is as follows.

j =

{

2i for 0 ≤ i ≤ n/2− 1
2i+ 1− n for n/2 ≤ i ≤ n− 1

(1.1)

Consider any stage of switches. Informally, the upper (lower) input lines for each switch
come in sequential order from the upper (lower) half of the switches in the earlier stage.

With respect to the Omega network in Figure 1.4(a),n = 8. Hence, for any stage, for the
outputsi, where0 ≤ i ≤ 3, the outputi is connected to input2i of the next stage. For
4 ≤ i ≤ 7, the outputi of any stage is connected to input2i+ 1− n of the next stage.

Omega routing function. The routing function from input linei to output linej considers
only j and the stage numbers, wheres ∈ [0, log2n − 1]. In a stages switch, if thes + 1th
MSB of j is 0, the data is routed to the upper output wire, otherwise itis routed to the lower
output wire.

Butterfly interconnection function. Unlike the Omega network, the generation of the in-
terconnection pattern between a pair of adjacent stages depends not only onn but also on
the stage numbers. The recursive expression is as follows. Let there beM = n/2 switches
per stage, and let a switch be denoted by the tuple〈x, s〉, wherex ∈ [0,M − 1] and stage
s ∈ [0, log2n− 1].

6

The two outgoing edges from any switch〈x, s〉 are as follows. There is an edge from switch
〈x, s〉 to switch〈y, s + 1〉 if (i) x = y or (ii) x XOR y has exactly one 1 bit, which is in the
(s+ 1)th MSB. For stages, apply the rule above forM/2s switches.

Whether the two incoming connections go to the upper or the lower input port is not impor-
tant because of the routing function, given below.

Example. Consider the Butterfly network in Figure 1.4(b),n = 8 andM = 4. There are
three stages,s = 0, 1, 2, and the interconnection pattern is defined betweens = 0 ands = 1
and betweens = 1 ands = 2. The switch numberx varies from 0 to 3 in each stage, i.e.,
x is a 2-bit string. (Note that unlike the Omega network formulation using input and output
lines given above, this formulation uses switch numbers. Exercise 5 asks you to prove a
formulation of the Omega interconnection pattern using switch numbers instead of input and
output port numbers.)

Consider the first stage interconnection (s = 0) of a butterfly of sizeM , and hence having
log2 2M stages. For stages = 0, as per rule (i), the first output line from switch 00 goes
to input line of switch 00 of stages = 1. As per rule (ii), the second output line of switch
00 goes to input line of switch 10 of stages = 1. Similarly, 〈x, s〉 = (01) has one output
line go to an input line of switch (11) in stages = 1. The other connections in this stage
can be determined similarly. For stages = 1 connecting to stages = 2, we apply the rules
considering onlyM/21 = M/2 switches, i.e., builds 2 butterflies of sizeM/2 - the ”upper
half" and the ”lower half" switches. The recursion terminates forM/2s = 1, when there is a
single switch.

Butterfly routing function. In a stages switch, if thes + 1th MSB of j is 0, the data is
routed to the upper output wire, otherwise it is routed to thelower output wire.

Observe that for the Butterfly and the Omega networks, the paths from the different inputs
to any one output form a spanning tree. This implies that collisions will occur when data is
destined to the same output line. However, the advantage is that data can be combined at the
switches if the application semantics (e.g., summation of numbers) are known.

2. A multicomputer parallel systemis a parallel system in which the multiple processorsdo not
have direct access to shared memory.The memory of the multiple processors may or may
not form a common address space. Such computers usually do not have a common clock.
The architecture is shown in Figure 1.3(b).

The processors are in close physical proximity and are usually very tightly coupled (homoge-
nous hardware and software), and connected by an interconnection network. The processors
communicate either via a common address space or via message-passing. A multicomputer
system that has a common address spaceusuallycorresponds to a non-uniform memory ac-
cess (NUMA) architecture in which the latency to access various shared memory locations
from the different processors varies.

Examples of parallel multicomputers are: the NYU Ultracomputer and the Sequent shared
memory machines, the CM* Connection machine and processorsconfigured in regular and
symmetrical topologies such as an array or mesh, ring, torus, cube, and hypercube (message-
passing machines). The regular and symmetrical topologieshave interesting mathematical

7

P0
P1

P2
P3

P4

P6
P7

101P5

000

001

M0
M1

010
011

100
101

110
111

001

101

110
111

100

111
110

100

011
010

000

M2010

000
001

100
101

P0
P1

P2
P3

P4
P5

P6
P7

(a) 3−stage Omega network(n=8, M=4) (b) (n=8, M=4)3−stage Butterfly network

011 M3

M4
M5

M6
M7

000
001

010
011

M0
M1

M2
M3

M4
M5

M6
M7

110
111

Figure 1.4: Interconnection networks for shared memory multiprocessor systems. (a) Omega net-
work for n = 8 processorsP0 − P7 and memory banksM0 −M7. (b) Butterfly network for
n = 8 processorsP0− P7 and memory banksM0−M7.

properties that enable very easy routing and provide many rich features such as alternate
routing.

Figure 1.5(a) shows a wrap-around 4x4 mesh. For ak × k mesh which will containk2

processors, the maximum path length between any two processors is2(k/2 − 1). Routing
can be done along the Manhattan grid. Figure 1.5(b) shows a 4-dimensional hypercube. A
k-dimensional hypercube has2k processor-and-memory units. Each such unit is a node in
the hypercube, and has a uniquek-bit label. Each of thek dimensions is associated with a
bit position in the label. The labels of any two adjacent nodes are identical except for the bit
position corresponding to the dimension in which the two nodes differ. Thus, the processors
are labelled such that the shortest path between any two processors is theHamming distance
(defined as the number of bit positions in which the two equal sized bit strings differ) between
the processor labels. This is clearly bounded byk.

Example. Nodes 0101 and 1100 have a Hamming distance of 2. THe shortestpath between
them has length 2.

Routing in the hypercube is done hop-by-hop. At any hop, the message can be sent along any
dimension corresponding to the bit position in which the current node’s address and the des-
tination address differ. The 4-D hypercube shown in the figure is formed by connecting the
corresponding edges of two 3-D hypercubes (corresponding to the left and the right “cubes”
in the figure) along the fourth dimension; the labels of the 4-D hypercube are formed by
prepending a ‘0’ to the labels of the left 3-D hypercube and prepending a ‘1’ to the labels
of the right 3-D hypercube. This can be extended to constructhypercubes of higher dimen-
sions. Observe that there are multiple routes between any pair of nodes, which provides
fault-tolerance as well as a congestion control mechanism.The hypercube and its variant
topologies have very interesting mathematical propertieswith implications for routing and
fault-tolerance.

3. Array processorsbelong to a class of parallel computers that are physically co-located, are

8

0010

0111

0011

0101

(b)(a)
processor + memory

1100

1000

1110

1010

1111

10111001

1101
0001

01100100

0000

Figure 1.5: Some popular topologies for multicomputer shared-memory machines. (a) Wrap-
around 2D-mesh, also known as torus. (b) Hypercube of dimension 4.

very tightly coupled, and have a common system clock (but maynot share memory and
communicate by passing data using messages). Array processors and systolic arrays that
perform tightly synchronized processing and data exchangein lock-step for applications such
as DSP and image processing belong to this category. These applications usually involve a
large number of iterations on the data. This class of parallel systems has a very niche market.

The distinction between UMA multiprocessors on the one hand, and NUMA and message-
passing multicomputers on the other hand, is important because the algorithm design and data and
task partitioning among the processors must account for thevariable and unpredictable latencies in
accessing memory/communication. As compared to UMA systems and array processors, NUMA
and message-passing multicomputer systems are less suitable when the degree of granularity of
accessing shared data and communication is very fine.

The primary and most efficacious use of parallel systems is for obtaining a higher throughput
by dividing the computational workload among the processors. The tasks that are most amenable
to higher speedups on parallel systems are those that can be partitioned into subtasks very nicely,
involving much number-crunching and relatively little communication for synchronization. Once
the task has been decomposed, the processors perform large vector, array and matrix computations
that are common in scientific applications. Searching through large state spaces can be performed
with significant speedup on parallel machines. While such parallel machines were an object of
much theoretical and systems research in the 1980s and early1990s, they have not proved to be
economically viable for two related reasons. First, the overall market for the applications that
can potentially attain high speedups is relatively small. Second, due to economy of scale and the
high processing power offered by relatively inexpensive off-the-shelf networked PCs, specialized
parallel machines are not cost-effective to manufacture. They additionally require special compiler
and other system support for maximum throughput.

9

1.4.2 Flynn’s Taxonomy

Flynn identified four processing modes, based on whether theprocessors execute the same or
different instruction streams at the same time, and whetheror not the processors processed the
same (identical) data at the same time. It is instructive to examine this classification to understand
the range of options used for configuring systems.

Single Instruction stream, Single Data stream (SISD).This mode corresponds to the conven-
tional processing in the von Neumann paradigm with a single CPU, and a single memory
unit connected by a system bus.

Single Instruction stream, Multiple Data stream (SIMD). This mode corresponds to the pro-
cessing by multiple homogenous processors which execute inlock-step on different data
items. Applications that involve operations on large arrays and matrices, such as scientific
applications, can best exploit systems that provide the SIMD mode of operation because the
data sets can be partitioned easily.

Several of the earliest parallel computers, such as Illiac-IV, MPP, CM2, and MasPar MP-1
were SIMD machines. Vector processors, array processors and systolic arrays also belong to
the SIMD class of processing. Recent SIMD architectures include co-processing units such
as the MMX units in Intel processors (e.g., Pentium with the Streaming SIMD Extensions
(SSE) options) and DSP chips such as the Sharc.

Multiple Instruction stream, Single Data stream (MISD). This mode corresponds to the exe-
cution of different operations in parallel on the same data.This is a specialized mode of
operation with limited but niche applications, e.g., visualization.

Multiple Instruction stream, Multiple Data stream (MIMD). In this mode, the various proces-
sors execute different code on different data. This is the mode of operation in distributed
systems as well as in the vast majority of parallel systems. There is no common clock
among the system processors. Sun Ultra servers, multicomputer PCs, and IBM SP machines
are example machines that execute in MIMD mode.

SIMD, MISD, MIMD architectures are illustrated in Figure 1.6. MIMD architectures are most
general and allow much flexibility in partitioning code and data to be processed, among the proces-
sors. MIMD architectures also include the classically understood mode of execution in distributed
systems.

1.4.3 Coupling, Parallelism, Concurrency, and Granularity

1.4.3.1 Coupling.

The degree of coupling among a set of modules, whether hardware or software, is measured in
terms of the interdependency and binding and/or homogeneity among the modules. When the
degree of coupling is high (low), the modules are said to be tightly (loosely) coupled. SIMD
and MISD architectures generally tend to be tightly coupledbecause of the common clocking of
the shared instruction stream or the shared data stream. Here we briefly examine various MIMD
architectures in terms of coupling.

10

PP

CCCC

I I

II II

III

D

P

(c) MISD(b) MIMD(a) SIMD

data stream

Processing Unit

Control Unit

P

D

instruction streamI

CC

P

DD

PP

DD

Figure 1.6: Flynn’s taxonomy of SIMD, MIMD, and MISD architectures for multiproces-
sor/multicomputer systems.

1. Tightly-coupled multiprocessors (with UMA shared memory). These may be either switch-
based (e.g., NYU Ultracomputer, and RP3) or bus-based (e.g., Sequent, Encore).

2. Tightly-coupled multiprocessors (with NUMA shared memory or that communicate by mes-
sage passing). Examples are the SGI Origin 2000 and the Sun Ultra HPC servers (that com-
municate via NUMA shared memory), and the hypercube and the torus (that communicate
by message passing).

3. Loosely-coupled multicomputers (without shared memory) physically co-located. These
may be bus-based (e.g., NOW connected by a LAN or Myrinet card) or using a more gen-
eral communication network, and the processors may be heterogenous. In such systems,
processors neither share memory nor have a common clock, andhence may be classified as
distributed systems – however, the processors are very close to one another, which is char-
acteristic of a parallel system. As the communication latency may be significantly lower
than in wide-area distributed systems, the solution approaches to various problems may be
different for such systems than for wide-area distributed systems.

4. Loosely-coupled multicomputers (without shared memoryand without common clock) that
are physically remote. These correspond to the conventional notion of distributed systems.

1.4.3.2 Parallelism or speedup of a program on a specific system.

This is a measure of the relative speedup of a specific program, on a given machine. The speedup
depends on the number of processors and the mapping of the code to the processors. It is expressed
as the ratio of the timeT (n) with n processors, to the timeT (1) with a single processor.

1.4.3.3 Parallelism within a parallel/distributed program.

This is an aggregate measure of the percentage of time that all the processors are executing CPU
instructions productively, as opposed to waiting for communication (either via shared memory or
message-passing) operations to complete. The term is traditionally used to characterize parallel

11

programs. If the aggregate measure is a function of only the code, then the parallelism is indepen-
dent of the architecture. Otherwise, this definition degenerates to the definition of parallelism in
Section 1.4.3.2.

1.4.3.4 Concurrency of a program.

This is a broader term that means roughly the same as parallelism of a program, but is used in the
context of distributed programs. Theparallelism/concurrencyin a parallel/distributed program can
be measured by the ratio of the number of local (non-communication and non-shared memory ac-
cess) operations to the total number of operations, including the communication or shared memory
access operations.

1.4.3.5 Granularity of a program.

The relative measure of the amount of computation to the amount of communication within the
parallel/distributed program is termed asgranularity. If the degree of parallelism is coarse-grained
(fine-grained), there are relatively many more (fewer) productive CPU instruction executions, com-
pared to the number of times the processors communicate (either via shared memory or message-
passing) and wait to get synchronized with the other processors. Programs with fine-grained par-
allelism are best suited for tightly coupled systems. Thesetypically include SIMD and MISD
architectures, tightly coupled MIMD multiprocessors (that have shared memory), and loosely-
coupled multicomputers (without shared memory) that are physically colocated. If programs with
fine-grained parallelism were run over loosely-coupled multiprocessors that are physically remote,
the latency delays for the frequent communication over the WAN would significantly degrade the
overall throughput. As a corollary, it follows that on such loosely-coupled multicomputers, pro-
grams with a coarse-grained communication/message-passing granularity will incur substantially
less overhead.

Figure 1.2 showed the relationships between the local operating system, the middleware imple-
menting the distributed software, and the network protocolstack. Before moving on, we identify
various classes of multiprocessor/multicomputer operating systems.

• The operating system running on loosely coupled processors(i.e., heterogenous and/or geo-
graphically distant processors), which are themselves running loosely coupled software (i.e.,
software that is heterogenous) is classified as aNetwork Operating System. In this case,
the application cannot run any significant distributed function that is not provided by the
Application Layer of the network protocol stacks on the various processors.

• The operating system running on loosely coupled processors, which are running tightly cou-
pled software (i.e., the middleware software on the processors is homogenous) is classified
as aDistributed Operating System.

• The operating system running on tightly coupled processors, which are themselves running
tightly coupled software is classified as aMultiprocessor Operating System. Such a parallel
system can run sophisticated algorithms contained in the tightly coupled software.

12

1.5 Message Passing Systems versus Shared Memory Systems

Shared memory systems are those in which there is a (common) shared address space throughout
the system. Communication among processors takes place viashared data variables, and control
variables for synchronization among the processors. Semaphores and monitors that were origi-
nally designed for shared memory uniprocessors and multiprocessors are examples of how syn-
chronization can be achieved in shared memory systems. All multicomputer (NUMA as well as
message-passing) systems that do not have a shared address space provided by the underlying
architecture and hardware necessarily communicate by message passing. Conceptually, program-
mers find it easier to program using shared memory than by message passing. For this and several
other reasons that we examine later, the abstraction calledshared memoryis sometimes provided
to simulate a shared address space. For a distributed system, this abstraction is calleddistributed
shared memory. Implementing this abstraction has a certain cost but it simplifies the task of the
application programmer. There also existsa well-known folklore resultthat communication via
message-passing can be simulated by communication via shared memory and vice-versa. There-
fore, the two paradigms are equivalent.

1.5.1 Emulating message-passing on shared memory system (MP → SM).

The shared address space can be partitioned into disjoint parts, one part being assigned to each
processor. “Send” and “Receive” operations can be implemented by writing to and reading from
the destination/sender processor’s address space, respectively. Specifically, a separate location can
be reserved as the mailbox for each ordered pair of processes. A Pi–Pj message-passing can be
emulated by a Write byPi to the mailbox and then a Read byPj from the mailbox. In the simplest
case, these mailboxes can be assumed to have unbounded size.The write and read operations need
to be controlled using synchronization primitives to inform the receiver/sender after the data has
been sent/received.

1.5.2 Emulating shared memory on a message-passing system (SM →MP).

This involves the use of “Send” and “Receive” operations for“Write” and “Read” operations. Each
shared location can be modeled as a separate process; “Write” to a shared location is emulated by
sending an update message to the corresponding owner process; a “Read” to a shared location
is emulated by sending a query message to the owner process. As accessing another processor’s
memory requires Send and Receive operations, this emulation is expensive. Although emulating
shared memory might seem to be more attractive from a programmer’s perspective, it must be
remembered that in a distributed system, it is only an abstraction. Thus, the latencies involved in
read and write operations may be high even when using shared memory emulation because the read
and write operations are implemented by using network-widecommunication under the covers.

An application can of course use a combination of shared memory and message-passing. In a
MIMD message-passing multicomputer system, each “processor” may be a tightly-coupled mul-
tiprocessor system with shared memory. Within the multiprocessor system, the processors com-
municate via shared memory. Between two computers, the communication is by message passing.
As message-passing systems are more common and more suited for wide-area distributed systems,

13

we will consider message-passing systems more extensivelythan we consider shared memory sys-
tems.

1.6 Primitives for Distributed Communication

1.6.1 Blocking/Nonblocking, Synchronous/Asynchronous Primitives

Message send and message receive communication primitivesare denotedSend()andReceive(),
respectively. ASendprimitive has at least two parameters - the destination, andthe buffer in the
user space, containing the data to be sent. Similarly, aReceiveprimitive has at least two parameters
- the source from which the data is to be received (this could be a wildcard), and the user buffer
into which the data is to be received.

There are two ways of sending data when theSendprimitive is invoked - the buffered option and
the unbuffered option. Thebuffered optionwhich is the standard option copies the data from the
user buffer to the kernel buffer. The data later gets copied from the kernel buffer onto the network.
In theunbuffered option, the data gets copied directly from the user buffer onto the network. For
the Receiveprimitive, the buffered option is usually required becausethe data may already have
arrived when the primitive is invoked, and needs a storage place in the kernel.

The following are some definitions of blocking/nonblockingand synchronous/asynchronous
primitives.

Synchronous primitives. A Sendor a Receiveprimitive is synchronousif both theSend()and
Receive()handshake with each other. The processing for theSendprimitive completes only
after the invoking processor learns that the other correspondingReceiveprimitive has also
been invoked and that the receive operation has been completed. The processing for the
Receiveprimitive completes when the data to be received is copied into the receiver’s user
buffer.

Asynchronous primitives. A Sendprimitive is said to beasynchronousif control returns back to
the invoking process after the data item to be sent has been copied out of the user-specified
buffer.

It does not make sense to define asynchronousReceiveprimitives.

Blocking primitives. A primitive is blocking if control returns to the invoking process after the
processing for the primitive (whether in synchronous or asynchronous mode) completes.

Nonblocking primitives. A primitive is nonblockingif control returns back to the invoking pro-
cess immediately after invocation, even though the operation has not completed. For a non-
blockingSend, control returns to the process even before the data is copied out of the user
buffer. For a nonblockingReceive, control returns to the process even before the data may
have arrived from the sender.

For nonblocking primitives, a return parameter on the primitive call returns a system-generated
handlewhich can be later used to check the status of completion of the call. The process can
check for the completion of the call in two ways. First, it cankeep checking (in a loop or
periodically) if the handle has been flagged orposted. Second, it can issue aWaitwith a list

14

Send(X, destination,handlek) //handlek is a return parameter
...
...
Wait(handle1, handle2, . . . , handlek, . . . , handlem) //Waitalways blocks

Figure 1.7: A nonblockingsendprimitive. When theWaitcall returns, at least one of its parameters
is posted.

of handles as parameters. TheWait call usually blocks until one of the parameter handles is
posted. Presumably after issuing the primitive in nonblocking mode, the process has done
whatever actions it could and now needs to know the status of completion of the call, there-
fore using a blockingWait()call is usual programming practice. The code for a nonblocking
Sendwould look as shown in Figure 1.7.

If at the time thatWait() is issued, the processing for the primitive (whether synchronous
or asynchronous) has completed, theWait returns immediately. The completion of the pro-
cessing of the primitive is detectable by checking the valueof handlek. If the processing
of the primitive has not completed, theWait blocks and waits for a signal to wake it up.
When the processing for the primitive completes, the communication subsystem software
sets the value ofhandlek and wakes up (signals) any process with aWaitcall blocked on this
handlek. This is calledpostingthe completion of the operation.

There are therefore four versions of theSendprimitive – synchronous blocking, synchronous
nonblocking, asynchronous blocking, and asynchronous nonblocking. For theReceiveprimitive,
there are the blocking synchronous and nonblocking synchronous versions. These versions of
the primitives are illustrated in Figure 1.8 using a timing diagram. Here, three time lines are
shown for each process: (1) for the process execution, (2) for the user buffer from/to which data is
sent/received, and (3) for the kernel/communication subsystem.

Blocking synchronousSend(Figure 1.8(a)): The data gets copied from the user buffer to the
kernel buffer and is then sent over the network. After the data is copied to the receiver’s
system buffer, an acknowledgement back to the sender causescontrol to return to the process
that invoked theSendoperation and completes theSend.

Nonblocking synchronousSend(Figure 1.8(b)):Control returns back to the invoking process as
soon as the copy of data from the user buffer to the kernel buffer is initiated. A parameter in
the nonblocking call also gets set with the handle of a location that the user process can later
check for the completion of the synchronous send operation.The location gets posted after
an acknowledgement returns from the receiver, as per the semantics described for (a). The
user process can keep checking for the completion of the nonblocking synchronousSend
by testing the returned handle, or it can invoke the blockingWait operation on the returned
handle.

Blocking asynchronousSend(Figure 1.8(c)):The user process that invokes theSendis blocked
until the data is copied from the user’s buffer to the kernel buffer. (For the unbuffered option,
the user process that invokes theSendis blocked until the data is copied from the user’s buffer
to the network.)

15

S_C
R_CR

P

S_C
P,

 (a) blocking sync. Send, blocking Receive (b) nonblocking sync. Send, nonblocking Receive

P, R_C

S_CP,

R_C

W

Send

The completion of the previously initiated nonblocking operation

duration in which the process issuing send or receive primitive is blocked
 primitive issued

 primitive issuedReceive
Send

(c) blocking async. Send (d) nonblocking async. Send

S
processing for completes

S W WS_CS

kernel_i

buffer_i

process i

R R WW

WW

Receive

Process may issue to check completion of nonblocking operationWait

duration to copy data from or to user buffer

processing for completes

S S_Cprocess i

buffer_i

kernel_i

process j

buffer_j

kernel_j

S

Figure 1.8: Blocking/nonblocking and synchronous/asynchronous primitives. ProcessPi is send-
ing and processPj is receiving. (a) Blocking synchronousSend and blocking (synchronous)
Receive. (b) Nonblocking synchronousSend and nonblocking (synchronous)Receive. (c) Block-
ing asynchronousSend. (d) Nonblocking asynchronousSend.

Nonblocking asynchronousSend (Figure 1.8(d)): The user process that invokes theSendis
blocked until the transfer of the data from the user’s bufferto the kernel buffer is initiated.
(For the unbuffered option, the user process that invokes the Sendis blocked until the trans-
fer of the data from the user’s buffer to the network is initiated.) Control returns to the user
process as soon as this transfer is initiated, and a parameter in the nonblocking call also gets
set with the handle of a location that the user process can check later using theWaitoperation
for the completion of the asynchronousSendoperation. The asynchronousSendcompletes
when the data has been copied out of the user’s buffer. The checking for the completion may
be necessary if the user wants to reuse the buffer from which the data was sent.

BlockingReceive(Figure 1.8(a)):TheReceivecall blocks until the data expected arrives and is
written in the specified user buffer. Then control is returned to the user process.

16

NonblockingReceive(Figure 1.8(b)): TheReceivecall will cause the kernel to register the call
and return the handle of a location that the user process can later check for the completion of
the nonblockingReceiveoperation. This location gets posted by the kernel after theexpected
data arrives and is copied to the user-specified buffer. The user process can keep checking for
the completion of the nonblockingReceiveby invoking theWait operation on the returned
handle. (If the data has already arrived when the call is made, it would be pending in some
kernel buffer, and still needs to be copied to the user buffer.)

A synchronousSendis easier to use from a programmer’s perspective because thehandshake
between theSendand theReceivemakes the communication appear instantaneous, thereby sim-
plifying the program logic. The “instantaneity” is, of course, only an illusion, as can be seen from
Figure 1.8(a) and (b). In fact, theReceivemay not get issued until much after the data arrives at
Pj, in which case the data arrived would have to be buffered in the system buffer atPj and not in
the user buffer. All this while, the sender would remain blocked. Thus, a synchronousSendlowers
the efficiency within processPi.

The nonblocking asynchronousSend(see Figure 1.8(d)) is useful when a large data item is be-
ing sent because it allows the process to perform other instructions in parallel with the completion
of the Send. The nonblocking synchronousSend(see Figure 1.8(b)) also avoids the potentially
large delays for handshaking, particularly when the receiver has not yet issued theReceivecall.
The nonblockingReceive(see Figure 1.8(b)) is useful when a large data item is being received
and/or when the sender has not yet issued theSendcall, because it allows the process to perform
other instructions in parallel with the completion of theReceive. Note that if the data has already
arrived, it is stored in the kernel buffer, and it may take a while to copy it to the user buffer speci-
fied in theReceivecall. For nonblocking calls, however, the burden on the programmer increases
because he has to keep track of the completion of such operations in order to meaningfully reuse
(write to or read from) the user buffers again. Thus, conceptually, blocking primitives are easier to
use.

1.6.2 Processor Synchrony

As opposed to the classification of synchronous and asynchronous communication primitives, there
is also the classification of synchronous versus asynchronous processors.Processor synchronyin-
dicates that all the processors execute in lock-step with their clocks synchronized. As this syn-
chrony is not attainable in a distributed system, what is more generally indicated is that for a large
granularity of code, usually termed as astep, the processors are synchronized. This abstraction is
implemented using some form of barrier synchronization to ensure that no processor begins exe-
cuting the next step of code until all the processors have completed executing the previous steps of
code assigned to each of the processors.

1.6.3 Libraries and Standards

The previous subsections identified the main principles underlying all communication primitives.
In this subsection, we briefly mention some publicly available interfaces that embody some of the
above concepts.

17

There exists a wide range of primitives for message-passing. Many commercial software prod-
ucts (banking, payroll, etc. applications) use proprietary primitive libraries supplied with the soft-
ware marketed by the vendors (e.g., the IBM CICS software which has a very widely installed
customer base worldwide uses its own primitives). The Message-Passing Interface (MPI) library
and the PVM (Parallel Virtual Machine) library are used largely by the scientific community, but
other alternative libraries exist. Commercial software isoften written using the Remote Proce-
dure Calls (RPC) mechanism in which procedures that potentially reside across the network are
invoked transparently to the user, in the same manner that a local procedure is invoked. Under
the covers, socket primitives or socket-like transport layer primitives are invoked to call the proce-
dure remotely. There exist many implementations of RPC - forexample, Sun RPC, and Distributed
Computing Environment (DCE) RPC. “Messaging” and “streaming” are two other mechanisms for
communication. With the growth of object based software, libraries for Remote Method Invocation
(RMI) and Remote Object Invocation (ROI) with their own set of primitives are being proposed
and standardized by different agencies. CORBA (Common Object Request Broker Architecture)
and DCOM (Distributed Component Object Model) are two otherstandardized architectures with
their own set of primitives. Additionally, several projects in the research stage are designing their
own flavour of communication primitives.

1.7 Synchronous versus Asynchronous Executions

internal event send event receive event

P

P

P

P

0

1

2

3

m1 m7

m4
m2 m6

m5m3

Figure 1.9: An example of an asynchronous execution in a message-passing system. A timing
diagram is used to illustrate the execution.

In addition to the two classifications of processor synchrony/ asynchrony and of synchronous/
asynchronous communication primitives, there is another classification, namely that ofsynchronous/
asynchronous executions.

• An asynchronous executionis an execution in which (1) there is no processor synchrony
and there is no bound on the drift rate of processor clocks, (2) message delays (transmission
+ propagation times) are finite but unbounded, and (3) there is no upper bound on the time
taken by a process to execute a step. An example asynchronousexecution with four processes
P0 to P3 is shown in Figure 1.9. The arrows denote the messages; the head and tail of an
arrow mark thesendand receiveevent for that message, denoted by a circle and vertical

18

line, respectively. Non-communication events, also termed asinternalevents, are shown by
shaded circles.

• A synchronous executionis an execution in which (1) processors are synchronized andthe
clock drift rates between any two processors is bounded, (2)message delivery (transmission
+ delivery) times are such that they occur in one logical stepor round, and (3) there is a
known upper bound on the time taken by a process to execute a step. An example of a
synchronous execution with four processesP0 to P3 is shown in Figure 1.10. The arrows
denote the messages.

It is easier to design and verify algorithms assuming synchronous executions because of the
coordinated nature of the executions at all the processes. However, there is a hurdle to having
a truly synchronous execution. It is practically difficult to build a completely synchronous sys-
tem, and have the messages delivered within a bounded time. Therefore, this synchrony has to be
simulated under the covers, and will inevitably involve delaying or blocking some processes for
some time durations. Thus, synchronous execution is an abstraction that needs to be provided to
the programs. When implementing this abstraction, observethat the fewer the steps or “synchro-
nizations” of the processors, the lower the delays and costs. If processors are allowed to have an
asynchronous execution for a period of time and then they synchronize, then the granularity of
the synchrony is coarse. This is really avirtually synchronous execution, and the abstraction is
sometimes termed asvirtual synchrony. Ideally, many programs want the processes to execute a
series of instructions in rounds (also termed as steps or phases) asynchronously, with the require-
ment that after each round/step/phase, all the processes should be synchronized and all messages
sent should be delivered. This is the commonly understood notion of a synchronous execution.
Within each round/phase/step, there may be a finite and bounded number of sequential sub-rounds
(or sub-phases or sub-steps) that processes execute. Each sub-round is assumed to send at most
one message per process; hence the message(s) sent will reach in a single message hop.

The timing diagram of an example synchronous execution is shown in Figure 1.10. In this
system, there are four nodesP0 to P3. In each round, processPi sends a message toP(i+1) mod 4

andP(i−1) mod 4 and calculates some application-specific function on the received values. The
messages are sent as per the code given in functionSync_Execution. There arek rounds in the
execution.

1.7.1 Emulating an asynchronous system by a synchronous system (A→ S).

An asynchronous program (written for an asynchronous system) can be emulated on a synchronous
system fairly trivially as the synchronous system is a special case of an asynchronous system – all
communication finishes within the same round in which it is initiated.

1.7.2 Emulating a synchronous system by an asynchronous system (S → A).

A synchronous program (written for a synchronous system) can be emulated on an asynchronous
system using a tool calledsynchronizer, to be studied in Chapter 2.

19

phase 1 phase 2 phase 3
P

P

P

P

3

2

0

1

(1) Sync_Execution(int k, n)
//There arek rounds.
(2) for r = 1 to k do
(3) processi sends a message to(i + 1) mod n and(i− 1) mod n;
(4) each processi receives a message from(i + 1) mod n and(i− 1) mod n;
(5) compute some application-specific function on the received values.

Figure 1.10: An example of a synchronous execution in a message-passing system. All the mes-
sages sent in a round are received within that same round.

1.7.3 Emulations.

Section 1.5 showed how a shared memory system could be emulated by a message-passing system,
and vice-versa. We now have 4 broad classes of programs, as shown in Figure 1.11. Using the
emulations shown, any class can be emulated by any other. If system A can be emulated by system
B, denotedA

B
, and if a problem is not solvable inB, then it is also not solvable inA. Likewise, if a

problem is solvable inA, it is also solvable inB. Hence, in a sense, all four classes are equivalent
in terms of “computability” – what can and cannot be computed– in failure-free systems.

However, in fault-prone systems, this is not the case as we will see in Chapter 14; a synchronous
system offers more computability than an asynchronous system.

Synchronous

shared memory (ASM)
Asynchronous Synchronous

shared memory (SSM)

message−passing (SMP)

SM−>MPMP−>SMSM−>MPMP−>SM

A−>S

S−>A

A−>S

S−>A
 (AMP)

Asynchronous
message−passing

Figure 1.11: Emulations among the principal system classesin a failure-free system.

20

1.8 Design Issues and Challenges

Distributed computing systems have been in widespread existence since the 1970s when the inter-
net and ARPANET came into being. At the time, the primary issues in the design of the distributed
systems included providing access to remote data in the faceof failures, file system design and
directory structure design. While these continue to be important issues, many newer issues have
surfaced as the widespread proliferation of the high-speedhigh-bandwidth internet and distributed
applications continues rapidly.

Below we describe the important design issues and challenges after categorizing them as (i)
having a greater component related to systems design and operating systems design, or (ii) having
a greater component related to algorithm design, or (iii) emerging from recent technology advances
and/or driven by new applications. There is some overlap between these categories. However, it is
useful to identify these categories because of the chasm among the (i) the systems community, (ii)
the theoretical algorithms community within distributed computing, and (iii) the forces driving the
emerging applications and technology. For example, the current practice of distributed computing
follows the client-server architecture to a large degree, whereas that receives scant attention in the
theoretical distributed algorithms community. Two reasons for this chasm are as follows. First,
an overwhelming number of applications outside the scientific computing community of users of
distributed systems are business applications for which simple models are adequate. For example,
the client server model has been firmly entrenched with the legacy applications first developed by
the Blue Chip companies (e.g., HP, IBM, Wang, DEC which is nowCompaq, Microsoft) since the
1970s and 1980s. This model is largely adequate for traditional business applications. Second, the
state of the practice is largely controlled by industry standards, which do not necessarily choose
the “technically best” solution.

1.8.1 Distributed Systems Challenges from a System Perspective

The following functions must be addressed when designing and building a distributed system.

• Communication. This task involves designing appropriate mechanisms for communication
among the processes in the network. Some example mechanismsare: Remote Procedure Call
(RPC), Remote Object Invocation (ROI), message-oriented communication versus stream-
oriented communication.

• Processes. Some of the issues involved are: management of processes and threads at clients/servers;
code migration; and the design of software and mobile agents.

• Naming. Devising easy to use and robust schemes for names, identifiers, and addresses is
essential for locating resources and processes in a transparent and scalable manner. Naming
in mobile systems provides additional challenges because naming cannot easily be tied to
any static geographical topology.

• Synchronization. Mechanisms for synchronization or coordination among the processes are
essential. Mutual exclusion is the classical example of synchronization, but many other
forms of synchronization, such as leader election are also needed. In addition, synchronizing
physical clocks, and devising logical clocks that capture the essence of the passage of time,
as well as global state recording algorithms all require different forms of synchronization.

21

• Data storage and access. Schemes for data storage, and implicitly for accessing the data in a
fast and scalable manner across the network are important for efficiency. Traditional issues
such as file system design have to be reconsidered in the setting of a distributed system.

• Consistency and replication. To avoid bottlenecks, to provide fast access to data, and to
provide scalability, replication of data objects is highlydesirable. This leads to issues of
managing the replicas, and dealing with consistency among the replicas/caches in a dis-
tributed setting. A simple exxample issue is deciding the level of granularity (i.e., size) of
data access.

• Fault tolerance. Fault tolerance requires maintaining correct and efficient operation in spite
of any failures of links, nodes, and processes. Process resilience, reliable communication,
distributed commit, checkpointing and recovery, agreement and consensus, failure detection,
and self-stabilization are some of the mechanisms to provide fault-tolerance.

• Security. Distributed systems security involves various aspects of cryptography, secure chan-
nels, access control, key management – generation and distribution, authorization, and secure
group management.

• Applications Programming Interface (API) and transparency. The API for communication
and other specialized services is important for the ease of use and wider adoption of the
distributed systems services by non-technical users. Transparency deals with hiding the im-
plementation policies from the user, and can be classified asfollows. Access transparency
hides differences in data representation on different systems and providing uniform opera-
tions to access system resources.Location transparencymakes the locations of resources
transparent to the users.Migration transparencyallows relocating resources without the
users noticing it. The ability to relocate the resources as they are being accessed isrelocation
transparency. Replication transparencydoes not let the user become aware of any replica-
tion. Concurrency transparencydeals with masking the concurrent use of shared resources
for the user.Failure transparencyrefers to the system being reliable and fault-tolerant.

• Scalability and modularity. The algorithms, data (objects), and services must be as dis-
tributed as possible. Various techniques such as replication, caching and cache management,
and asynchronous processing help to achieve scalability.

Some of the recent experiments in designing large-scale distributed systems include the Globe
project at Vrije University [32], and the Globus project [33]. The Grid infrastructure for large-
scale distributed computing is a very ambitious project that has gained significant attention to date
[35, 34]. All these projects attempt to provide the above listed functions as efficiently as possible.

1.8.2 Algorithmic Challenges in Distributed Computing

The previous section addresses the challenges in designingdistributed systems from a system
building perspective. In this section, we briefly summarizethe key algorithmic challenges in dis-
tributed computing.

22

Designing useful execution models and frameworks.The interleavingmodel andpartial order
model are two widely adopted models of distributed system executions. They have proved to
be particularly useful for operational reasoning and the design of distributed algorithms. The
Input/Output automatamodel and theTLA (Temporal Logic of Actions)are two other exam-
ples of models that provide different degrees of infrastructure for reasoning more formally
with and proving the correctness of distributed programs.

Dynamic distributed graph algorithms and distributed rout ing algorithms. The distributed sys-
tem is modeled as a distributed graph, and the graph algorithms form the building blocks for a
large number of higher level communication, data dissemination, object location, and object
search functions. The algorithms need to deal with dynamically changing graph character-
istics, such as to model varying link loads in a routing algorithm. The efficiency of these
algorithms impacts not only the user-perceived latency butalso the traffic and hence the load
or congestion in the network. Hence, the design of efficient distributed graph algorithms is
of paramount importance.

Time and global state in a distributed system.The processes in the system are spread across
three-dimensional physical space. Another dimension, time, has to be superimposed uni-
formly across space. The challenges pertain to providing accuratephysical time, and to
providing a variant of time, calledlogical time. Logical time is relative time, and elimi-
nates the overheads of providing physical time for applications where physical time is not
required. More importantly, logical time can (i) capture the logic and inter-process depen-
dencies within the distributed program, and also (ii) trackthe relative progress at each pro-
cess.

Observing theglobal stateof the system (across space) also involves the time dimension for
consistent observation. Due to the inherent distributed nature of the system, it is not possible
for any one process to directly observe a meaningful global state across all the processes,
without using extra state-gathering effort which needs to be done in a coordinated manner.

Deriving appropriate measures of concurrency also involves the time dimension, as judging
the independence of different threads of execution dependsnot only on the program logic
but also on execution speeds within the logical threads, andcommunication speeds among
threads.

Synchronization/ coordination mechanisms.The processes must be allowed to execute concur-
rently, except when they need to synchronize to exchange information, i.e., communicate
about shared data. Synchronization is essential for the distributed processes to overcome
the limited observation of the system state from the viewpoint of any one process. Over-
coming this limited observation is necessary for taking anyactions that would impact other
processes. The synchronization mechanisms can also be viewed as resource management
and concurrency management mechanisms to streamline the behavior of the processes that
would otherwise act independently. Here are some examples of problems requiring synchro-
nization.

• Physical clock synchronization. Physical clocks ususallydiverge in their values due
to hardware limitations. Keeping them synchronized is a fundamental challenge to
maintain common time.

23

• Leader election. All the processes need to agree on which process will play the role of
a distinguished process – called a leader process. A leader is necessary even for many
distributed algorithms because there is often some asymmetry – as in initiating some
action like a broadcast or collecting the state of the system, or in “regenerating” a token
that gets “lost” in the system.

• Mutual exclusion. This is clearly a synchronization problem because access to the
critical resource(s) has to be coordinated.

• Deadlock detection and resolution. Deadlock detection should be coordinated to avoid
duplicate work, and deadlock resolution should be coordinated to avoid unnecessary
aborts of processes.

• Termination detection. This requires cooperation among the processes to detect the
specific global state of quiescence.

• Garbage collection. Garbage refers to objects that are no longer in use and that are not
pointed to by any other process. Detecting garbage requirescoordination among the
processes.

Group communication, multicast, and ordered message delivery. A group is a collection of pro-
cesses that share a common context and collaborate on a common task within an application
domain. Specific algorithms need to be designed to enable efficient group communication
and group management wherein processes can join and leave groups dynamically, or even
fail. When multiple processes send messages concurrently,different recipients may receive
the messages in different orders, possibly violating the semantics of the distributed program.
Hence, formal specifications of the semantics of ordered delivery need to be formulated, and
then implemented.

Monitoring distributed events and predicates. Predicates defined on program variables that are
local to different processes are useful for specifying conditions on the global system state,
and are useful for applications such as debugging, sensing the environment, and in industrial
process control. On-line algorithms for monitoring such predicates are hence important. An
important paradigm for monitoring distributed events is that of event streaming, wherein
streams of relevant events reported from different processes are examined collectively to
detect predicates. Typically, the specification of such predicates uses physical or logical
time relationships.

Distributed program design and verification tools. Methodically designed and verifiably cor-
rect programs can greatly reduce the overhead of software design, debugging, and engineer-
ing. Designing mechanisms to achieve these design and verification goals is a challenge.

Debugging distributed programs. Debugging sequential programs is hard; debugging distributed
programs is that much harder because of the concurrency in actions and the ensuing uncer-
tainty due to the large number of possible executions definedby the interleaved concurrent
actions. Adequate debugging mechanisms and tools need to bedesigned to meet this chal-
lenge.

Data replication, consistency models, and caching.Fast access to data and other resources re-
quires them to be replicated in the distributed system. Managing such replicas in the face

24

of updates introduces the problems of ensuring consistencyamong the replicas and cached
copies. Additionally, placement of the replicas in the systems is also a challenge because
resources usually cannot be freely replicated.

World Wide Web design – caching, searching, scheduling.The Web is an example of a widespread
distributed system with a direct interface to the end user, wherein the operations are predomi-
nantly read-intensive on most objects. The issues of objectreplication and caching discussed
above have to be tailored to the web. Further, prefetching ofobjects when access patterns
and other characteristics of the objects are known, can alsobe performed. An example of
where prefetching can be used is the case of subscribing to Content Distribution Servers.
Minimizing response time to minimize user-perceived latencies is an important challenge.
Object search and navigation on the web are important functions in the operation of the web,
and are very resource-intensive. Designing mechanisms to do this efficiently and accurately
are great challenges.

Distributed shared memory abstraction. A shared memory abstraction simplifies the task of the
programmer because he has to deal only with Read and Write operations, and no message
communication primitives. However, under the covers in themiddleware layer, the abstrac-
tion of a shared address space has to be implemented by using message-passing. Hence, in
terms of overheads, the shared memory abstraction is not less expensive.

• Wait-free algorithms. Wait-freedom, which can be informally defined as the ability
of a process to complete its execution irrespective of the actions of other processes,
gained prominence in the design of algorithms to control acccess to shared resources in
the shared memory abstraction. It corresponds ton − 1-fault resilience in an process
system and is an important principle in fault-tolerant system design. While wait-free
algorithms are highly desirable, they are also expensive, and designing low overhead
wait-free algorithms is a challenge.

• Mutual exclusion. A first course in Operating Systems coversthe basic algorithms
(such as the Bakery algorithm and using semaphores) for mutual exclusion in a mul-
tiprocessing (uniprocessor or multiprocessor) shared memory setting. More sophisti-
cated algorithms – such as those based on hardware primitives, fast mutual exclusion,
and wait-free algorithms – will be covered in this book.

• Register constructions. In light of promising and emergingtechnologies of tomorrow –
such as biocomputing and quantum computing – that can alter the present foundations
of computer “hardware” design, we need to revisit the assumptions of memory access
of current systems that are exclusively based on the semiconductor technology and the
von Neumann architecture. Specifically, the assumption of single/multiport memory
with serial access via the bus in tight synchronization withthe system hardware clock
may not be a valid assumption in the possibility of “unrestricted” and “overlapping”
concurrent access to the same memory location. The study of register constructions
deals with the design of registers from scratch, with very weak assumptions on the
accesses allowed to a register. This field forms a foundationfor future architectures that
allow concurrent access even to primitive units of memory (independent of technology)
without any restrictions on the concurrency permitted.

25

• Consistency models. For multiple copies of a variable/object, varying degrees of con-
sistency among the replicas can be allowed. These representa trade-off of coherence
versus cost of implementation. Clearly, a strict definitionof consistency (such as in a
uniprocessor system) would be expensive to implement in terms of high latency, high
message overhead, and low concurrency. Hence, relaxed but still meaningful models
of consistency are desirable.

Reliable and fault-tolerant distributed systems. A reliable and fault-tolerant environment has
multiple requirements and aspects, and these can be addressed using various strategies.

• Consensus algorithms. All algorithms ultimately rely on message-passing, and the
recipients take actions based on the contents of the received messages. Consensus
algorithms allow correctly functioning processes to reachagreement among themselves
in spite of the existence of some malicious (adversarial) processes whose identities are
not known to the correctly functioning processes. The goal of the malicious processes is
to prevent the correctly functioning processes from reaching agreement. The malicious
processes operate by sending messages with misleading information, to confuse the
correctly functioning processes.

• Replication and replica management. Replication (as in having backup servers) is a
classical method of providing fault-tolerance. The TripleModular Redundancy (TMR)
technique has long been used in software as well as hardware installations. More so-
phisticated and efficient mechanisms for replication are the subject of study here.

• Voting and quorum systems. Providing redundancy in the active (e.g., processes) or
passive (e.g., hardware resources) components in the system and then performing vot-
ing based on some quorum criterion is a classical way of dealing with fault-tolerance.
Designing efficient algorithms for this purpose is the challenge.

• Distributed databases and distributed commit. For distributed databases, the traditional
properties of the transaction (A.C.I.D. – Atomicity, Consistency, Isolation, Durability)
need to be preserved in the distributed setting. The field of traditional “transaction
commit” protocols is a fairly matura area. Transactional properties can also be viewed
as having a counterpart for guarantees on message delivery in group communication in
the presence of failures. Results developed in one field can be adapted to the other.

• Self-stabilizing systems. All system executions have associated good (or legal) states
and bad (or illegal) states; during correct functioning, the system makes transitions
among the good states. Faults, internal or external to the program and system, may
cause a bad state to arise in the execution. Aself-stabilizingalgorithm is any algorithm
that is guaranteed to eventually take the system to a good state even if a bad state were
to arise due to some error. Self-stabilizing algorithms require some in-built redundancy
to track additional variables of the state or by doing extra work. Designing efficient
self-stabilizing algorithms is a challenge.

• Checkpointing and recovery algorithms. Checkpointing involves periodically record-
ing state on secondary storage so that in case of a failure, the entire computation is not
lost but can be recovered from one of the recently taken checkpoints. Checkpointing

26

in a distributed environment is difficult because if the checkpoints at the different pro-
cesses are not coordinated, the local checkpoints may become useless because they are
inconsistent with the checkpoints at other processes.

• Failure detectors. A fundamental limitation of asynchronous distributed systems is
that there is no theoretical bound on the message transmission times. Hence, it is
impossible to distinguish a sent-but-not-yet-arrived message from a message that was
never sent. This implies that it is impossible using messagetransmission to determine
whether some other process across the network is alive or hasfailed. Failure detectors
represent a class of algorithms that probabilistically suspect another process as having
failed (such as after timing out after non-receipt of a message for some time), and then
converge on a determination of the up/down status of the suspected process.

Load balancing. The goal of load balancing is to gain higher throughput, and reduce the user-
perceived latency. Load balancing may be necessary becauseof a variety of factors such as:
high network traffic or high request rate causing the networkconnection to be a bottleneck,
or high computational load. A common situation where load balancing is used is in server
farms, where the objective is to service incoming client requests with the least turnaround
time. Several results from traditional operating systems can be used here, although they need
to be adapted to the specifics of the distributed environment. The following are some forms
of load balancing.

• Data migration. The ability to move data (which may be replicated) around in the
system, based on the access pattern of the users.

• Computation migration. The ability to relocate processes in order to perform a redis-
tribution of the workload.

• Distributed scheduling. This achieves a better turnaroundtime for the users by using
idle processing power in the system more efficiently.

Real-time scheduling.Real-time scheduling is important for mission-critical applications, to ac-
complish the task execution on schedule. The problem becomes more challenging in a
distributed system where a global view of the system state isabsent. On-line or dynamic
changes to the schedule are also harder to make without a global view of the state.

Furthermore, message propagation delays which are network-dependent are hard to con-
trol or predict, which makes meeting real-time guarantees that are inherently dependent on
communication among the processes harder. Although networks offering Quality-of-Service
guarantees can be used, they alleviate the uncertainty in propagation delays only to a limited
extent. Further, such networks may not always be available.

Performance. Although high throughput is not the primary goal of using a distributed system,
achieving good performance is important. In large distributed systems, network latency
(propagation and transmission times) and access to shared resources can lead to large delays
which must be minimized. The user-perceived turn-around time is very important.

The following are some example issues arise in determining the performance.

27

• Metrics. Appropriate metrics must be defined or identified for measuring the perfor-
mance of theoretical distributed algorithms, as well as forimplementations of such
algorithms. The former would involve various complexity measures on the metrics,
whereas the latter would involve various system and statistical metrics.

• Measurement methods/tools. As a real distributed system isa complex entity and has
to deal with all the difficulties that arise in measuring performance over a WAN/the
Internet, appropriate methodologies and tools must be developed for measuring the
performance metrics.

1.8.3 Applications of Distributed Computing and Newer Challenges

Mobile systems.Mobile systems typically use wireless communication whichis based on electro-
magnetic waves and utilizes a shared broadcast medium. Hence, the characteristics of com-
munication are different; many issues such as range of transmission and power of transmis-
sion come into play, besides various engineering issues such as battery power conservation,
interfacing with the wired internet, signal processing andinterference. From a computer
science perspective, there is a rich set of problems such as routing, location management,
channel allocation, localization and position estimation, and the overall management of mo-
bility.

There are two popular architectures for a mobile network. The first is thebase-stationap-
proach, also known as thecellular approach, wherein acell which is the geographical region
within range of a static but powerful base transmission station is associated with that base
station. All mobile processes in that cell communicate withthe rest of the system via the
base station. The second approach is thead-hoc networkapproach where there is no base
station (which essentially acted as a centralized node for its cell). All responsibility for
communication is distributed among the mobile nodes, wherein mobile nodes have to partic-
ipate in routing by forwarding packets of other pairs of communicating nodes. Clearly, this
is a complex model. It poses many graph-theoretical challenges from a computer science
perspective, in addition to various engineering challenges.

Sensor networks.A sensor is a processor with an electro-mechanical interface that is capable of
sensing physical parameters, such as temperature, velocity, pressure, humidity, and chemi-
cals. Recent developments in cost-effective hardware technology have made it possible to
deploy very large (of the order of106 or higher) low-cost sensors. An important paradigm
for monitoring distributed events is that ofevent streaming, defined earlier. The streaming
data reported from a sensor network differs from the streaming data reported by “computer
processes” in that the events reported by a sensor network are in the environment, external to
the computer network and processes. This limits the nature of information about the reported
event in a sensor network.

Sensor networks have a wide range of applications. Sensors may be mobile or static; sensors
may communicate wirelessly, although they may also communicate across a wire when they
are statically installed. Sensors may have to self-configure to form an ad-hoc network, which
introduces a whole new set of challenges, such as position estimation and time estimation.

28

Ubiquitous or pervasive computing. Ubiquitous systems represent a class of computing where
the processors embedded in and seamlessly pervading through the environment perform ap-
plication functions in the background, much like in the sci-fi movies. The intelligent home,
and the smart workplace are some example of ubiquitous environments currently under in-
tense research and development. Ubiquitous systems are essentially distributed systems;
recent advances in technology allow them to leverage wireless communication and sensor
and actuator mechanisms. They can be self-organizing and network-centric, while also being
resource constrained. Such systems are typically characterized as having many small proces-
sors operating collectively in a dynamic ambient network. The processors may be connected
to more powerful networks and processing resources in the background for processing and
collating data.

Peer-to-peer computing.Peer-to-peer (P2P) computing represents computing over anapplication
layer network wherein all interactions among the processors are at a “peer” level, without
any hierarchy among the processors. Thus, all processors are equal and play a symmetric
role in the computation. P2P computing arose as a paradigm shift from client-server com-
puting where the roles among the processors are essentiallyasymmetrical. P2P networks are
typically self-organizing, and may or may not have a regularstructure to the network. No
central directories (such as those used in Domain Name Servers) for name resolution and
object lookup are allowed. Some of the key challenges include: object storage mechanisms,
efficient object lookup and retreival in a scalable manner; dynamic reconfiguration with
nodes as well as objects joining and leaving the network randomly; replication strategies
to expedite object search; tradeoffs between object size latency and table sizes; anonymity,
privacy, and security.

Publish-subscribe, content distribution, and multimedia. With the explosion in the amount of
information, there is a greater need to receive and access only information of interest. Such
information can be specified using filters. In a dynamic environment where the information
constantly fluctuates (varying stock prices is a typical example), there needs to be: (i) an
efficient mechanism for distributing this information (publish), (ii) an efficient mechanism
to allow end users to indicate interest in receiving specifickinds of information (subscribe),
and (iii) an efficient mechanism for aggregating large volumes of published information and
filtering it as per the user’s subscription filter.

Content distribution refers to a class of mechanisms, primarily in the web and P2P comput-
ing context, whereby specific information which can be broadly characterized by a set of
parameters is to be distributed to interested processes. Clearly, there is overlap between con-
tent distribution mechanisms and publish-subscribe mechanisms. When the content involves
multimedia data, special requirement such as the followingarise: multimedia data is usu-
ally very large and information-intensive, requires compression, and often requires special
synchronization during storage and playback.

Distributed agents. Agents are software processes or robots that can move aroundthe system to
do specific tasks for which they are specially programmed. The name “agent” derives from
the fact that the agents do work on behalf of some broader objective. Agents collect and
process information, and can exchange such information with other agents. Often, the agents

29

cooperate as in an ant colony, but they can also have friendlycompetition, as in a free market
economy. Challenges in distributed agent systems include coordination mechanisms among
the agents, controlling the mobility of the agents, and their software design and interfaces.
Research in agents is inter-disciplinary: spanning artificial intelligence, mobile computing,
economic market models, software engineering, and distributed computing.

Distributed data mining. Data mining algorithms examine large amounts of data to detect pat-
terns and trends in the data, tomineor extract useful information. A traditional example is:
examining the purchasing patterns of customers in order to profile the customers and enhance
the efficacy of directed marketing schemes. The mining can bedone by applying database
and artificial intelligence techniques to a data repository. In many situations, the data is nec-
essarily distributed and cannot be collected in a single repository, as in banking applications
where the data is private and sensitive, or in atmospheric weather prediction where the data
sets are far too massive to collect and process at a single repository in real-time. In such
cases, efficient distributed data mining algorithms are required.

Grid computing. Analogous to the electrical power distribution grid, it is envisaged that the in-
formation and computing grid will become a reality some day.Very simply stated, idle CPU
cycles of machines connected to the network will be available to others. Many challenges in
making grid computing a reality include: scheduling jobs insuch a distributed environment,
a framework for implementing Quality of Service and real-time guarantees, and of course,
security of individual machines as well as of jobs being executed in this setting.

Security in distributed systems. The traditional challenges of security in a distributed setting in-
clude: confidentiality (ensuring that only authorized processes can access certain informa-
tion), authentication (ensuring the source of received information and the identity of the
sending process), and availability (maintaining allowed access to services despite malicious
actions). The goal is to meet these challenges with efficientand scalable solutions. These
basic challenges have been addressed in traditional distributed settings. For the newer dis-
tributed architectures, such as wireless, peer-to-peer, grid, and pervasive computing dis-
cussed in this subsection), these challenges become more interesting due to factors such as
a resource-constrained environment, a broadcast medium, the lack of structure, and the lack
of trust in the network.

1.9 Selection and Coverage of Topics

This is a long list of topics and difficult to cover in a single textbook. This book covers a broad
selection of topics from the above list, in order to present the fundamental principles underlying
the various topics. The goal has been to select topics that will give a good understanding of the
field, and of the techniques used to design solutions.

Some topics that have been omitted are interdisciplinary, across fields within computer science.
An example is load balancing, which is traditionally covered in detail in a course on Parallel
Processing. As the focus of distributed systems has shiftedaway from gaining higher efficiency
to providing better services and fault-tolerance, the importance of load balancing in distributed
computing has diminished. Another example is mobile systems. A mobile system is a distributed

30

system having certain unique characteristics, and there are courses devoted specifically to mobile
systems.

1.10 Chapter Summary

This chapter first characterized distributed systems by looking at various informal definitions based
on functional aspects. It then looked at various architectures of multiple processor systems, and the
requirements that have traditionally driven distributed systems. The relationship of a distributed
system to “middleware”, the operating system, and the network protocol stack provided a different
perspective on a distributed system.

The relationship between parallel systems and distributedsystems, covering aspects such de-
grees of software and hardware coupling, and the relative placement of the processors, memory
units, and interconnection networks, was examined in detail. There is some overlap between the
fields of parallel computing and distributed computing, andhence it is important to understand
their relationhip clearly. For example, various interconnection networks such as the Omega net-
work, the Butterfly network, and the hypercube network, weredesigned for parallel computing but
they are recently finding surprising applications in the design of application-level overlay networks
for distributed computing. The traditional taxonomy of multiple processor systems by Flynn was
also studied. Important concepts such as the degree of parallelism and of concurrency, and the
degree of coupling were also introduced informally.

The chapter then introduced three fundamental concepts in distributed computing. The first
concept is the paradigm of shared memory communication versus message-passing communica-
tion. The second concept is the paradigm of synchronous executions and asynchronous executions.
For both these concepts, emulation of one paradigm by another was studied for error-free systems.
The third concept was that of synchronous and asynchronous send communication primitives, of
synchronous receive communicaiton primitives, and of blocking and nonblocking send and receive
communication primitives.

The chapter then presented design issues and challenges in the field of distributed computing.
The challenges were classified as (i) being important from a systems design perspective, or (ii)
being important from an algorithmic perspective, or (iii) those that are driven by new applications
and emerging technologies. This classification is not orthogonal and is somewhat subjective. The
various topics that will be covered in the rest of the book areportrayed on a miniature canvas in
the section on the design issues and challenges.

1.11 Bibliographic Notes

The selection of topics and material for this book has been shaped by the authors’ perception of
the importance of various subjects, as well as the coverage by the existing textbooks.

There are many books on distributed computing and distributed systems. Attiya and Welch [1]
and Lynch [7] provide a formal theoretical treatment of the field. The books by Barbosa [2] and
Tel [12] focus on algorithms. The books by Chow and Johnson [3], Coulouris, Dollimore, and
Kindberg [4], Garg [5], Goscinski [6], Mullender [8], Raynal [22], Singhal and Shivaratri [10],
and Tanenbaum and van Steen [11] provide a blend of theoretical and systems issues.

31

Much of the material in this introductory chapter is based onwell understood concepts and
paradigms in the distributed systems community, and is difficult to attribute to any particular
source.

A recent overview of the challenges in middleware design from systems’ perspective is given
in the special issue by Lea, Vinoski, and Vogels [30]. An overview of the Common Object Request
Broker Model (CORBA) of the Object Management Group (OMG) isgiven by Vinoski [22]. The
Distributed Component Object Model (DCOM) from Microsoft,Sun’s Java Remote Method Invo-
cation (RMI), and CORBA are analyzed in perspective by Campbell, Coulson, and Kounavis [26].
A detailed treatment of CORBA, RMI, and RPC is given by Coulouris, Dollimore, and Kindberg
[4]. The Open Foundations’s Distributed Computing Environment (DCE) is described in [31];
DCE is not likely to be enjoy a continuing support base. Descriptions of the Message Passing In-
terface can be found in Snir et al. [23] and Gropp et al. [24]. The Parallel Virtual Machine (PVM)
framework for parallel distributed programming is described by Sunderam [29].

The discussion of parallel processing, and of the UMA and NUMA parallel architectures, is
based on Kumar, Grama, Gupta, and Karypis [18]. The properties of the hypercube architecture
are surveyed by Feng [27] and Harary, Hayes, and Wu [28]. The multi-stage interconnection archi-
tectures – the Omega (Benes) [14], the Butterfly [16], and Clos [15] were proposed in the papers
indicated. A good overview of multistage interconnection networks is given by Wu and Feng [25].
Flynn’s taxomomy of multiprocessors is based on [21]. The discussion on blocking/nonblocking
primitives as well as synchronous and asynchropnous primitives is extended from Cypher and Leu
[20]. The section on design issues and challenges is based onthe vast research literature in the
area.

The Globe architecture is described by van Steen, Homburg, and Tanenbaum [32]. The Globus
architecture is described by Foster and Kesselman [33]. Thegrid infrastructure and the distributed
computng vision for the 21st century is described by Foster and Kesselman [35] and by Foster [34].
The World-Wide Web is an excellent example of a distributed system that has largely evolved of
its own; Tim Berners-Lee is credited with seeding the WWW project; its early description is given
by Berners-Lee, Cailliau, Luotonen, Nielsen, and Secret [36].

1.12 Exercise Problems

1. What are the main differences between a parallel system and a distributed system?

2. Identify some distributed applications in the scientificand commercial application areas.
For each application, determine which of the motivating factors listed in Section 1.3 are
important for building the application over a distributed system.

3. Draw the Omega and Butterfly networks forn = 16 inputs and outputs.

4. For the Omega and Butterfly networks shown in Figure 1.4, trace the paths fromP5 toM2,
and fromP6 toM1.

5. Formulate the interconnection function for the Omega network havingn inputs and outputs,
only in terms of theM = n/2 switch numbers in each stage. (Hint: Follow an approach
similar to the Butterfly network formulation.)

32

6. In Figure 1.4, observe that the paths from input 000 to output 111 and from input 101 to
output 110 have a common edge. Therefore, simultaneous transmission over these paths
is not possible; one pathblocksanother. Hence, the Omega and Butterfly networks are
classified asblocking interconnection networks.

Let Π(n) be any permutation on{0 . . . n−1}, mapping the input domain to the output range.
A nonblocking interconnection networkallows simultaneous transmission from the inputs to
the outputs for any permutation.

Consider the network built as follows. Take the image of a butterfly in a vertical mirror, and
append this mirror image to the output of a butterfly. Hence, for n inputs and outputs, there
will be 2log2n stages. Prove that this network is nonblocking.

7. The Baseline Clos network has a interconnection generation function as follows. Let there
beM = n/2 switches per stage, and let a switch be denoted by the tuple〈x, s〉, where
x ∈ [0,M − 1] and stages ∈ [0, log2n− 1].

There is an edge from switch〈x, s〉 to switch〈y, s+ 1〉 if (i) y is the cyclic right-shift of the
(log2n − s) least significant bits ofx, (ii) y is the cyclic right-shift of the(log2n − s) least
significant bits ofx′, wherex′ is obtained by complementing the LSB ofx.

Draw the interconnection diagram for the Clos network having n = 16 inputs and outputs,
i.e., having 8 switches in each of the 4 stages.

8. Two interconnection networks are isomorphic if there is a1:1 mappingf between the switches
such that for any switchesx andy that are connected to each other in adjacent stages in one
network,f(x) andf(y) are also connected in the other network.

Show that the Omega, Butterfly, and Clos (Baseline) networksare isomorphic to each other.

9. Explain why aReceivecall cannot be asynchronous.

10. What are the three aspects of reliability? Is it possibleto order them in different ways in
terms of importance, based on different applications’ requirements? Justify your answer by
giving examples of different applications.

11. Figure 1.11 shows the emulations among the principal system classes in a failure-free sys-
tem.

(a) Which of these emulations are possible in a failure-prone system? Explain.

(b) Which of these emulations are not possible in a failure-prone system? Explain.

12. Examine the impact of unreliable links and node failureson each of the challenges listed in
Section 1.8.2.

33

Bibliography

[1] H. Attiya, J. Welch, Distributed Computing Fundamentals, Simulations, and Advanced Topics,
Wiley Inter-Science, 2nd edition, 2004.

[2] V. Barbosa, An Introduction to Distributed Algorithms,MIT Press, 1996.

[3] R. Chow and D. Johnson, Distributed Operating Systems and Algorithms, Addison-Wesley,
1997.

[4] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems Concepts and Design,
Addison-Wesley, 3rd edition, 2001.

[5] V. Garg, Elements of Distributed Computing, John Wiley,2003.

[6] A. Goscinski, Distributed Operating Systems: The Logical Design, Addison-Wesley, 1991.

[7] N. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.

[8] S. Mullender, Distributed Systems, Addison-Wesley, 2nd edition, 1993.

[9] M. Raynal, Distributed Algorithms and Protocols, John Wiley, 1988.

[10] M. Singhal and N. Shivaratri, Advanced Concepts in Operating Systems, McGraw Hill, 1994.

[11] A. Tanenbaum, M. Van Steen, Distributed Systems: Principles and Paradigms, Prentice-Hall,
2003.

[12] G. Tel, Introduction to Distributed Algorithms, Cambridge University Press, 1994.

[13] A. Ananda, B. Tay, E, Koh, A survey of asynchronous remore procedure calls, ACM SIGOPS
Operating Systems Review, 26(2): 92-109, 1992.

[14] V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic
Press, New York, 1965.

[15] C. Clos, A study of non-blocking switching networks, Bell Systems Technical Journal, 32:
406-424, 1953.

[16] J. M. Cooley, J. W. Tukey, An algorithm for the machine calculation of comple Fourier series,
Mathematical Comp., 19, 297-301, 1965.

34

[17] A. Birrell, B. Nelson, Implementing remote procedure calls, ACM Transactions on Computer
Systems, 2(1): 39-59, 1984.

[18] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing, Benjamin-
Cummins, 2nd edition, 2003.

[19] A. Tanenbaum, Computer Networks, 3rd edition, Prentice-Hall PTR, NJ, 1996. 1994

[20] R. Cypher, E. Leu, The semantics of blocking and nonblocking send and receive primitives,
8th International Symposium on Parallel Processing, 729-735, 1994.

[21] M. Flynn, Some computer organizations and their effectiveness, IEEE Trans. Comput., Vol.
C-21, pp. 94, 1972.

[22] S. Vinoski, CORBA: Integrating diverse applications within heterogeneous distributed envi-
ronments, IEEE Communications Magazine, 35(2): 1997.

[23] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete Reference,
MIT Press, 1996.

[24] W. Gropp, E. Lusk, A. Skjellum, Using MPI: portable parallel programming with the
message-passing interface, MIT Press, 1994.

[25] C.L. Wu, T.-Y. Feng, On a class of multistage interconnection networks, IEEE Transactions
on Computers. Vol. C-29, pp. 694-702. Aug. 1980

[26] A. Campbell, G. Coulson, M. Counavis, Managing complexity: Middleware explained, IT
Professional Magazine, October 1999.

[27] T. Y. Feng, A survey of interconnection networks, IEEE Comput., 14, pp. 12-27, Dec. 1981.

[28] F. Harary, J.P. Hayes, H. Wu, A survey of the theory of hypercube graphs, Computational
Mathematical Applications 15(4): 277-289, 1988.

[29] V. Sunderam, PVM: A framework for parallel distributedcomputing, Concurrency - Practice
and Experience, 2(4): 315-339, 1990.

[30] D. Lea, S. Vinoski, W. Vogels, Guest editors’ introduction: Asynchronous middleware and
services, IEEE Internet Computing, 10(1): 14-17, 2006.

[31] J. Shirley, W. Hu, D. Magid, Guide to Writing DCE Applications, O’Reilly and Associates,
Inc., ISBN 1-56592-045-7, USA.

[32] M. van Steen, P. Homburg, A. Tanenbaum, Globe: A wide-area distributed system, IEEE
Concurrency, 70-78, 1999.

[33] I. Foster, C. Kesselman, Globus: A metacomputing infrastructure toolkit, International Jour-
nal of Supercomputer Applications, 11(2): 115-128, 1997.

[34] I. Foster, The Grid: A new infrastructure for 21st century science, Physics Today, 55(2):42-
47, 2002.

35

[35] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 1998.

[36] T. Berners-Lee, R. Cailliau, A. Luotonen, H. Nielsen, A. Secret, The World-Wide Web, Com-
munications of the ACM, 37(8): 76-82, 1994.

36

Chapter 2

A Model of Distributed Computations

A distributed system consists of a set of processors that areconnected by a communication net-
work. The communication network provides the facility of information exchange among proces-
sors. The communication delay is finite but unpredictable. The processors do not share a common
global memory and communicate solely by passing messages over the communication network.
There is no physical global clock in the system to which processes have instantaneous access. The
communication medium may deliver messages out of order, messages may be lost, garbled, or
duplicated due to timeout and retransmission, processors may fail, and communication links may
go down. The system can be modeled as a directed graph in whichvertices represent the processes
and edges represent unidirectional communication channels.

A distributed application runs as a collection of processeson a distributed system. This chapter
presents a model of a distributed computation and introduces several terms, concepts, and notations
that will be used in the subsequent chapters.

2.1 A Distributed Program

A distributed program is composed of a set ofn asynchronous processesp1, p2, ...,pi, ...,pn that
communicate by message passing over the communication network. Without loss of generality, we
assume that each process is running on a different processor. The processes do not share a global
memory and communicate solely by passing messages. LetCij denote the channel from processpi

to processpj and letmij denote a message sent bypi to pj. The communication delay is finite and
unpredictable. Also, these processes do not share a global clock that is instantaneously accessible
to these processes. Process execution and message transferare asynchronous – a process may
execute an action spontaneously and a process sending a message does not wait for the delivery of
the message to be complete.

The global state of a distributed computation is composed ofthe states of the processes and the
communication channels [2]. The state of a process is characterized by the state of its local memory
and depends upon the context. The state of a channel is characterized by the set of messages in
transit in the channel.

37

2.2 A Model of Distributed Executions

The execution of a process consists of a sequential execution of its actions. The actions are atomic
and the actions of a process are modeled as three types of events, namely, internal events, message
send events, and message receive events. Letex

i denote thexth event at processpi. Subscripts
and/or superscripts will be dropped when they are irrelevant or are clear from the context. For a
messagem, let send(m) andrec(m) denote its send and receive events, respectively.

The occurrence of events changes the states of respective processes and channels, thus causing
transitions in the global system state. An internal event changes the state of the process at which it
occurs. A send event (or a receive event) changes the state ofthe process that sends (or receives)
the message and the state of the channel on which the message is sent (or received). An internal
event only affects the process at which it occurs.

The events at a process are linearly ordered by their order ofoccurrence. The execution of
processpi produces a sequence of eventse1i , e

2
i , ...,ex

i , ex+1
i , ... and is denoted byHi where

Hi = (hi,→i)

hi is the set of events produced bypi and binary relation→i defines a linear order on these events.
Relation→i expresses causal dependencies among the events ofpi.

The send and the receive events signify the flow of information between processes and establish
causal dependency from the sender process to the receiver process. A relation→msg that captures
the causal dependency due to message exchange, is defined as follows. For every messagem that
is exchanged between two processes, we have

send(m)→msg rec(m).

Relation→msg defines causal dependencies between the pairs of corresponding send and receive
events.

p

p

p

1

2

3

e

e

e
3

2

1
e1 e1 e1 e1

e2 e2 e2 e2

e2

e
3

e
3

e
3

1 2 3 4

1 2 3 4

5

2

3

4

5

6

1

time

Figure 2.1: The space-time diagram of a distributed execution.

The evolution of a distributed execution is depicted by a space-time diagram. Figure 2.1 shows
the time-space diagram of a distributed execution involving three processes. A horizontal line
represents the progress of the process; a dot indicates an event; a slant arrow indicates a message
transfer. Generally, the execution of an event takes a finiteamount of time; however, since we

38

assume that an event execution is atomic (hence, indivisible and instantaneous), it is justified to
denote it as a dot on a process line. In this figure, for processp1, the second event is a message
send event, the third event is an internal event, and the fourth event is a message receive event.

Causal Precedence Relation

The execution of a distributed application results in a set of distributed events produced by the
processes. LetH=∪ihi denote the set of events executed in a distributed computation. Next, we
define a binary relation on the setH, denoted as→, that expresses causal dependencies between
events in the distributed execution.

∀ex
i , ∀ey

j ∈ H, ex
i → ey

j ⇔

ex
i →i e

y
j i.e., (i = j) ∧ (x ≤ y)

or
ex

i →msg e
y
j

or
∃ez

k ∈ H : ex
i → ez

k ∧ ez
k → ey

j

The causal precedence relation induces an irreflexive partial order on the events of a distributed
computation [6] that is denoted asH=(H,→).

Note that the relation→ is Lamport’s “happens before" relation1 [4]. For any two eventsei and
ej , if ei → ej , then eventej is directly or transitively dependent on eventei; graphically, it means
that there exists a path consisting of message arrows and process-line segments (along increasing
time) in the space-time diagram that starts atei and ends atej . For example, in Figure 2.1,e11 → e33
ande33 → e62. Note that relation→ denotes flow of information in a distributed computation and
ei → ej dictates that all the information available atei is potentially accessible atej. For example,
in Figure 2.1, evente62 has the knowledge of all other events shown in the figure.

For any two eventsei and ej , ei 6→ ej denotes the fact that eventej does not directly or
transitively dependent on eventei. That is, eventei does not causally affect eventej . Eventej is
not aware of the execution ofei or any event executed afterei on the same process. For example,
in Figure 2.1,e31 6→ e33 ande42 6→ e13. Note the following two rules:

• For any two eventsei andej , ei 6→ ej 6 : ej 6→ ei.

• For any two eventsei andej , ei → ej : ej 6→ ei.

For any two eventsei andej , if ei 6→ ej andej 6→ ei, then eventsei andej are said to be
concurrent and the relation is denoted asei ‖ ej . In the execution of Figure 2.1,e31 ‖ e33 and
e42 ‖ e13. Note that relation‖ is not transitive; that is, (ei ‖ ej) ∧ (ej ‖ ek) 6 : ei ‖ ek. For example,
in Figure 2.1,e33 ‖ e42 ande42 ‖ e51, however,e33 6‖ e51.

Note that for any two eventsei andej in a distributed execution,ei → ej or ej → ei, or ei ‖ ej .

1In Lamport’s “happens before” relation, an evente1 happens beforean evente2, denoted byei → ej , if (a) e1

occurs beforee2 on the same process, or (b)e1 is the send event of a message ande2 is the receive event of that
message, or (c)∃e′| e1 happens beforee′ ande′ happens beforee2.

39

Logical vs. Physical Concurrency

In a distributed computation, two events are logically concurrent if and only if they do not causally
affect each other. Physical concurrency, on the other hand,has a connotation that the events occur
at the same instant in physical time. Note that two or more events may be logically concurrent even
though they do not occur at the same instant in physical time.For example, in Figure 2.1, events in
the set {e31, e

4
2, e

3
3} are logically concurrent, but they occurred at different instants in physical time.

However, note that if processor speed and message delays would have been different, the execu-
tion of these events could have very well coincided in physical time. Whether a set of logically
concurrent events coincide in the physical time or in what order in the physical time they occur
does not change the outcome of the computation.

Therefore, even though a set of logically concurrent eventsmay not have occurred at the same
instant in physical time, for all practical and theoreticalpurposes, we can assume that these events
occured at the same instant in physical time.

2.3 Models of Communication Network

There are several models of the service provided by communication networks, namely, FIFO,
Non-FIFO, and causal ordering. In the FIFO model, each channel acts as a first-in first-out message
queue and thus, message ordering is preserved by a channel. In the non-FIFO model, a channel acts
like a set in which the sender process adds messages and the receiver process removes messages
from it in a random order. The “causal ordering” model [1] is based on Lamport’s “happens before”
relation. A system that supports the causal ordering model satisfies the following property:

CO: For any two messagesmij andmkj, if send(mij)−→ send(mkj), thenrec(mij)−→ rec(mkj).

That is, this property ensures that causally related messages destined to the same destination
are delivered in an order that is consistent with their causality relation. Causally ordered delivery
of messages implies FIFO message delivery. Furthermore, note that CO⊂ FIFO⊂ Non-FIFO.

Causal ordering model is useful in developing distributed algorithms. Generally, it consider-
ably simplifies the design of distributed algorithms because it provides a built-in synchronization.
For example, in replicated database systems, it is important that every process responsible for up-
dating a replica receives the updates in the same order to maintain database consistency. Without
causal ordering, each update must be checked to ensure that database consistency is not being
violated. Causal ordering eliminates the need for such checks.

2.4 Global State of a Distributed System

The global state of a distributed system is a collection of the local states of its components, namely,
the processes and the communication channels [2], [3]. The state of a process at any time is defined
by the contents of processor registers, stacks, local memory, etc. and depends on the local context
of the distributed application. The state of channel is given by the set of messages in transit in the
channel.

The occurrence of events changes the states of respective processes and channels, thus causing
transitions in global system state. For example, an internal event changes the state of the process

40

at which it occurs. A send event (or a receive event) changes the state of the process that sends (or
receives) the message and the state of the channel on which the message is sent (or received).

Let LSx
i denote the state of processpi after the occurrence of eventex

i and before the event
ex+1

i . LS0
i denotes the initial state of processpi. LSx

i is a result of the execution of all the events
executed by processpi till ex

i . Let send(m)≤LSx
i denote the fact that∃y:1≤y≤x :: ey

i =send(m).
Likewise, letrec(m)6≤LSx

i denote the fact that∀y:1≤y≤x :: ey
i 6=rec(m).

The state of a channel is difficult to state formally because achannel is a distributed entity
and its state depends upon the states of the processes it connects. LetSCx,y

ij denote the state of a
channelCij defined as follows:

SCx,y
ij ={mij | send(mij) ≤ ex

i

∧

rec(mij) 6≤ ey
j }

Thus, channel stateSCx,y
ij denotes all messages thatpi sent upto eventex

i and which processpj

had not received until eventey
j .

2.4.1 Global State

The global state of a distributed system is a collection of the local states of the processes and the
channels. Notationally, global stateGS is defined as,

GS = {
⋃

iLS
xi

i ,
⋃

j,kSC
yj ,zk

jk }

For a global snapshot to be meaningful, the states of all the components of the distributed
system must be recorded at the same instant. This will be possible if the local clocks at processes
were perfectly synchronized or if there were a global systemclock that can be instantaneously read
by the processes. However, both are impossible.

However, it turns out that even if the state of all the components in a distributed system has
not been recorded at the same instant, such a state will be meaningful provided every message that
is recorded as received is also recorded as sent. Basic idea is that an effect should not be present
without its cause. A message cannot be received if it was not sent; that is, the state should not
violate causality. Such states are calledconsistent global statesand are meaningful global states.
Inconsistent global states are not meaningful in the sense that a distributed system can never be in
an inconsistent state.

A global stateGS = {
⋃

iLS
xi

i ,
⋃

j,kSC
yj ,zk

jk } is a consistent global stateiff it satisfies the
following condition:

∀LSxi

i ∀SCyi,zk

ik :: yi = xi

That is, channel stateSCyi,zk

ik and process stateLSzk

k must not include any message that pro-
cesspi sent after executing eventexi

i and must include all messages that processpi sent upto the
execution of eventexi

i .
In the distributed execution of Figure 2.2, a global stateGS1 consisting of local states {LS1

1 ,
LS3

2 , LS3
3 , LS2

4 } is inconsistent because the state ofp2 has recorded the receipt of messagem12,
however, the state ofp1 has not recorded its send. On the contrary, a global stateGS2 consisting
of local states {LS2

1 , LS4
2 , LS4

3 , LS2
4} is consistent; all the channels are empty exceptC21 that

contains messagem21.

41

3

4

1

2

time

e e e

e

e e e e

e e

e

12

e

e e

p

p

p

p

1 1 1 1

2 2 2 2

3 3 3

4 4

1 2 3 4

42 3e1

3

1
3
2 3 4 5

1 2

m21m

Figure 2.2: The space-time diagram of a distributed execution.

A global stateGS = is transitlessiff

∀i, ∀j : 1 ≤ i, j ≤ n :: SC
yi,zj

ij = φ.

Thus, all channels are recorded as empty in a transitless global state. Note that a transitless
global state is always a consistent global state. A global state isstrongly consistentiff it is transit-
less as well as consistent. Note that in Figure 2.2, the global state consisting of local states {LS2

1 ,
LS3

2 , LS4
3 , LS2

4} is strongly consistent.
Recording the global state of a distributed system is an important paradigm when one is inter-

ested in analyzing, monitoring, testing, or verifying properties of distributed applications, systems,
and algorithms. Design of efficient methods for recording the global state of a distributed system
is an important problem.

2.5 Cuts of a Distributed Computation

In the space-time diagram of a distributed computation, a zigzag line joining one arbitrary point
on each process line is termed acut in the computation. Such a line slices the space-time diagram,
and thus the set of events in the distributed computation, into a PAST and a FUTURE. The PAST
contains all the events to the left of the cut and the FUTURE contains all the events to the right
of the cut. For a cutC, let PAST(C) and FUTURE(C) denote the set of events in the PAST and
FUTURE ofC, respectively. Every cut corresponds to a global state and every global state can be
graphically represented as a cut in the computation’s space-time diagram [6].

Definition: If eMax_PASTi(C)
i denotes the latest event at processpi that is in the PAST of a cutC,

then the global state represented by the cut is {
⋃

iLS
Max_PASTi(C)
i ,

⋃

j,kSC
yj ,zk

jk } whereSCyj ,zk

jk ={m
| send(m)∈PAST(C)∧ rec(m)∈FUTURE(C)}.

A consistent global state corresponds to a cut in which everymessage received in the PAST of
the cut was sent in the PAST of that cut. Such a cut is known as aconsistent cut. All messages
that cross the cut from the PAST to the FUTURE are in transit inthe corresponding consistent

42

3

4

1

2

time

e e e

e

e e e e

e e

1
e

e

e e

C C

p

p

p

p

1 1 1 1

2 2 2 2

3 3 3

4 4

1 2 3 4

42 3e1

3

1
3
2 3 4 5

1 2

2

Figure 2.3: Illustration of cuts in a distributed execution.

global state. A cut isinconsistentif a message crosses the cut from the FUTURE to the PAST. For
example, the space-time diagram of Figure 2.3 shows two cuts, C1 andC2. C1 is an inconsistent
cut, whereasC2 is a consistent cut. Note that these two cuts respectively correspond to the two
global statesGS1 andGS2, identified in the previous subsection.

Cuts in a space-time diagram provide a powerful graphical aid in representing and reasoning
about global states of a computation.

2.6 Past and Future Cones of an Event

In a distributed computation, an eventej could have been affected only by all eventsei such that
ei → ej and all the information available atei could be made accessible atej. All such eventsei

belong to the past ofej [6]. Let Past(ej) denote all events in the past ofej in a computation (H,
→). Then,

Past(ej) = {ei|∀ei ∈ H, ei → ej }.

Figure 2.4 shows the past of an eventej . LetPasti(ej) be the set of all those events ofPast(ej)
that are on processpi. Clearly,Pasti(ej) is a totally ordered set, ordered by the relation→i, whose
maximal element is denoted bymax(Pasti(ej)). Obviously,max(Pasti(ej)) is the latest event at
processpi that affected eventej (see Figure??). Note thatmax(Pasti(ej)) is always a message
send event.

Let Max_Past(ej) =
⋃

(∀i){max(Pasti(ej))}. Max_Past(ej) consists of the latest event at
every process that affected eventej and is referred to as thesurface of the past coneof ej [6]. Note
thatMax_Past(ej) is a consistent cut [7].Past(ej) represents all events on the past light cone
that affectej.

Similar to the past is defined the future of an event. The future of an eventej , denoted by
Future(ej), contains all eventsei that are causally affected byej (see Figure 2.4). In a computation
(H,→), Future(ej) is defined as:

Future(ej) = {ei|∀ei ∈ H, ej → ei}.

43

ej)

j

FUTURE(ej

e

)PAST(

p
i

max(Past (
i

ej)) min(Future
i (ej))

Figure 2.4: Illustration of past and future cones in a distributed computation.

Likewise, we can defineFuturei(ej) as the set of those events ofFuture(ej) that are on
processpi andmin(Futurei(ej)) as the first event on processpi that is affected byej . Note
thatmin(Futurei(ej)) is always a message receive event. Likewise,Min_Past(ej), defined as
⋃

(∀i){min(Futurei(ej))}, consists of the first event at every process that is causallyaffected by
eventej and is referred to as thesurface of the future coneof ej [6]. It denotes a consistent cut in
the computation [7].Future(ej) represents all events on the future light cone that are affected by
ej .

It is obvious that all events at a processpi that occurred aftermax(Pasti(ej)) but before
min(Futurei(ej)) are concurrent withej . Therefore, all and only those events of computation
H that belong to the set “H − Past(ej)− Future(ej)” are concurrent with eventej .

2.7 Models of Process Communications

There are two basic models of process communications [8] – synchronous and asynchronous.
Thesynchronouscommunication model is a blocking type where on a message send, the sender
process blocks until the message has been received by the receiver process. The sender process
resumes execution only after it learns that the receiver process has accepted the message. Thus,
the sender and the receiver processes must synchronize to exchange a message. On the other hand,
asynchronouscommunication model is a non-blocking type where the senderand the receiver do
not synchronize to exchange a message. After having sent a message, the sender process does
not wait for the message to be delivered to the receiver process. The message is bufferred by the
system and is delivered to the receiver process when it is ready to accept the message. A buffer
overflow may occur if a process sends a large number of messages in a burst to another process.

Neither of the communication models is superior to the other. Asynchronous communication
provides higher parallelism because the sender process canexecute while the message is in transit

44

to the receiver. However, an implementation of asynchronous communication requires more com-
plex buffer management. In addition, due to higher degree ofparallelism and non-determinism,
it is much more difficult to design, verify, and implement distributed algorithms for asynchronous
communications. The state space of such algorithms are likely to be much larger. Synchronous
communication is simpler to handle and implement. However,due to frequent blocking, it is likely
to have poor performance and is likely to be more prone to deadlocks.

45

Bibliography

[1] K. Birman, T. Joseph,Reliable Communication in Presence of Failures,ACM Transactions
on Computer Systems, 47-76, 3, 1987.

[2] K.M. Chandy, L. Lamport,Distributed Snapshots: Determining Global States of Distributed
Systems,ACM Transactions on Computer Systems, 63-75, 3(1), 1985.

[3] A. Kshemkalyani, M. Raynal, and M. Singhal, “Global Snapshots of a Distributed System”,
Distributed Systems Engineering Journal, Vol 2, No 4, December 1995, pp. 224-233.

[4] L. Lamport, Time, clocks and the ordering of events in a distributed system.Comm. ACM,
vol.21, (July 1978), pp. 558-564.

[5] A. Lynch, Distributed Processing Solves Main-frame Problems.Data Communications, pp.
17-22, December 1976.

[6] F. Mattern, Virtual time and global states of distributed systems.Proc. "Parallel and dis-
tributed algorithms" Conf., (Cosnard, Quinton, Raynal, Robert Eds), North-Holland, (1988),
pp. 215-226.

[7] P. Panengaden and K. Taylor,Concurrent Common Knowledge: A New Definition of Agree-
ment for Asynchronous Events.Proc. of the 5th Symp. on Principles of Distributed Comput-
ing, pp. 197-209, 1988.

[8] Sol M. Shatz,Communication Mechanisms for Programming Distributed Systems, IEEE
Computer, June 1984, pp. 21-28.

46

Chapter 3

Logical Time

3.1 Introduction

The concept of causality between events is fundamental to the design and analysis of parallel and
distributed computing and operating systems. Usually causality is tracked using physical time.
However, in distributed systems, it is not possible to have global physical time; it is possible to
realize only an approximation of it. As asynchronous distributed computations make progress
in spurts, it turns out that the logical time, which advancesin jumps, is sufficient to capture the
fundamental monotonicity property associated with causality in distributed systems. This chapter
discusses three ways to implement logical time (e.g., scalar time, vector time, and matrix time) that
have been proposed to capture causality between events of a distributed computation.

Causality (or the causal precedence relation) among eventsin a distributed system is a powerful
concept in reasoning, analyzing, and drawing inferences about a computation. The knowledge of
the causal precedence relation among the events of processes helps solve a variety of problems in
distributed systems. Examples of some of these problems is as follows:

• Distributed algorithms design: The knowledge of the causalprecedence relation among
events helps ensure liveness and fairness in mutual exclusion algorithms, helps maintain
consistency in replicated databases, and helps design correct deadlock detection algorithms
to avoid phantom and undetected deadlocks.

• Tracking of dependent events: In distributed debugging, the knowledge of the causal depen-
dency among events helps construct a consistent state for resuming reexecution; in failure
recovery, it helps build a checkpoint; in replicated databases, it aids in the detection of file
inconsistencies in case of a network partitioning.

• Knowledge about the progress: The knowledge of the causal dependency among events helps
measure the progress of processes in the distributed computation. This is useful in discarding
obsolete information, garbage collection, and termination detection.

• Concurrency measure: The knowledge of how many events are causally dependent is useful
in measuring the amount of concurrency in a computation. Allevents that are not causally
related can be executed concurrently. Thus, an analysis of the causality in a computation
gives an idea of the concurrency in the program.

47

The concept of causality is widely used by human beings, often unconsciously, in planning,
scheduling, and execution of a chore or an enterprise, in determining infeasibility of a plan or the
innocence of an accused. In day-to-day life, the global timeto deduce causality relation is ob-
tained from loosely synchronized clocks (i.e., wrist watches, wall clocks). However, in distributed
computing systems, the rate of occurrence of events is several magnitudes higher and the event ex-
ecution time is several magnitudes smaller. Consequently,if the physical clocks are not precisely
synchronized, the causality relation between events may not be accurately captured. Network Time
Protocols [18], which can maintain time accurate to a few tens of milliseconds on the Internet, are
not adequate to capture the causality relation in distributed systems. However, in a distributed
computation, generally the progress is made in spurts and the interaction between processes oc-
curs in spurts. Consequently, it turns out that in a distributed computation, the causality relation
between events produced by a program execution and its fundamental monotonicity property can
be accurately captured by logical clocks.

In a system of logical clocks, every process has a logical clock that is advanced using a set
of rules. Every event is assigned a timestamp and the causality relation between events can be
generally inferred from their timestamps. The timestamps assigned to events obey the fundamental
monotonicity property; that is, if an eventa causally affects an eventb, then the timestamp ofa is
smaller than the timestamp ofb.

This chapter first presents a general framework of a system oflogical clocks in distributed
systems and then discusses three ways to implement logical time in a distributed system. In the
first method, Lamport’s scalar clocks, the time is represented by non-negative integers; in the
second method, the time is represented by a vector of non-negative integers; in the third method,
the time is represented as a matrix of non-negative integers. We also discuss methods for efficient
implementation of the systems of vector clocks.

The chapter ends with a discussion of virtual time, its implementation using the time-warp
mechanism and a brief discussion of physical clock synchronization and the Network Time Proto-
col.

3.2 A Framework for a System of Logical Clocks

3.2.1 Definition

A system of logical clocks consists of a time domainT and a logical clockC [23]. Elements ofT
form a partially ordered set over a relation<. This relation is usually called thehappened before
or causal precedence. Intuitively, this relation is analogous to theearlier thanrelation provided by
the physical time. The logical clockC is a function that maps an evente in a distributed system to
an element in the time domainT , denoted as C(e) and called the timestamp ofe, and is defined as
follows:

C : H 7→ T

such that the following property is satisfied:

for two eventsei andej , ei → ej =: C(ei) < C(ej).

This monotonicity property is called theclock consistency condition. WhenT andC satisfy the
following condition,

48

for two eventsei andej, ei → ej ⇔ C(ei) < C(ej)

the system of clocks is said to bestrongly consistent.

3.2.2 Implementing Logical Clocks

Implementation of logical clocks requires addressing two issues [23]: data structures local to every
process to represent logical time and a protocol (set of rules) to update the data structures to ensure
the consistency condition.

Each processpi maintains data structures that allow it the following two capabilities:

• A local logical clock, denoted bylci, that helps processpi measure its own progress.

• A logical global clock, denoted bygci, that is a representation of processpi’s local view of
the logical global time. It allows this process to assign consistent timestamps to its local
events. Typically,lci is a part ofgci.

The protocol ensures that a process’s logical clock, and thus its view of the global time, is
managed consistently. The protocol consists of the following two rules:

• R1: This rule governs how the local logical clock is updated by aprocess when it executes
an event (send, receive, or internal).

• R2: This rule governs how a process updates its global logical clock to update its view of
the global time and global progress. It dictates what information about the logical time
is piggybacked in a message and how this information is used by the receiving process to
update its view of the global time.

Systems of logical clocks differ in their representation oflogical time and also in the protocol
to update the logical clocks. However, all logical clock systems implement rulesR1andR2and
consequently ensure the fundamental monotonicity property associated with causality. Moreover,
each particular logical clock system provides its users with some additional properties.

3.3 Scalar Time

3.3.1 Definition

The scalar time representation was proposed by Lamport in 1978 [11] as an attempt to totally
order events in a distributed system. Time domain in this representation is the set of non-negative
integers. The logical local clock of a processpi and its local view of the global time are squashed
into one integer variableCi.

RulesR1andR2to update the clocks are as follows:

• R1: Before executing an event (send, receive, or internal), processpi executes the following:

Ci := Ci + d (d > 0)

49

In general, every timeR1 is executed,d can have a different value, and this value may be
application-dependent. However, typicallyd is kept at 1 because this is able to identify the
time of each event uniquely at a process, while keeping the rate of increase ofd to its lowest
level.

• R2: Each message piggybacks the clock value of its sender at sending time. When a process
pi receives a message with timestampCmsg, it executes the following actions:

– Ci := max(Ci, Cmsg)

– ExecuteR1.

– Deliver the message.

Figure 3.1 shows the evolution of scalar time withd=1.

p
1

p
2

p
3

1 2 3

3 10

11

5 6 7

2
7

9

4

b

1

8 9

4 5

1

Figure 3.1: Evolution of scalar time.

3.3.2 Basic Properties

Consistency Property

Clearly, scalar clocks satisfy the monotonicity and hence the consistency property:

for two eventsei andej , ei → ej =: C(ei) < C(ej).

Total Ordering

Scalar clocks can be used to totally order events in a distributed system [11]. The main problem
in totally ordering events is that two or more events at different processes may have identical
timestamp. (Note that for two eventse1 and e2, C(e1) = C(e2) = : e1 ‖ e2.) For example in
Figure 3.1, the third event of processP1 and the second event of processP2 have identical scalar
timestamp. Thus, a tie-breaking mechanism is needed to order such events. Typically, a tie is
broken as follows: process identifiers are linearly orderedand a tie among events with identical
scalar timestamp is broken on the basis of their process identifiers. The lower the process identifier
in the ranking, the higher the priority. The timestamp of an event is denoted by a tuple (t, i) where

50

t is its time of occurrence andi is the identity of the process where it occurred. The total order
relation≺ on two eventsx andy with timestamps(h,i) and(k,j), respectively, is defined as follows:

x ≺ y ⇔ (h < k or (h = k and i < j))

Since events that occur at the same logical scalar time are independent (i.e., they are not
causally related), they can be ordered using any arbitrary criterion without violating the causal-
ity relation→. Therefore, a total order is consistent with the causality relation “→". Note that
x ≺ y = :x → y ∨ x ‖ y. A total order is generally used to ensure liveness properties in dis-
tributed algorithms. Requests are timestamped and served according to the total order based on
these timestamps [11].

Event Counting

If the increment valued is always 1, the scalar time has the following interesting property: if event
ehas a timestamph, thenh-1 represents the minimum logical duration, counted in units of events,
required before producing the evente [6]; we call it the height of the evente. In other words,h-1
events have been produced sequentially before the eventeregardless of the processes that produced
these events. For example, in Figure 3.1, five events precedeeventb on the longest causal path
ending atb.

No Strong Consistency

The system of scalar clocks is not strongly consistent; thatis, for two eventsei and ej , C(ei)
< C(ej) 6= : ei → ej. For example, in Figure 3.1, the third event of processP1 has smaller scalar
timestamp than the third event of processP2. However, the former did not happen before the latter.
The reason that scalar clocks are not strongly consistent isthat the logical local clock and logical
global clock of a process are squashed into one, resulting inthe loss causal dependency informa-
tion among events at different processes. For example, in Figure 3.1, when processP2 receives the
first message from processP1, it updates its clock to 3, forgetting that the timestamp of the latest
event atP1 on which it depends is 2.

3.4 Vector Time

3.4.1 Definition

The system of vector clocks was developed independently by Fidge [6], Mattern [14] and Schmuck
[27]. In the system of vector clocks, the time domain is represented by a set ofn-dimensional non-
negative integer vectors. Each processpi maintains a vectorvti[1..n], wherevti[i] is the local
logical clock ofpi and describes the logical time progress at processpi. vti[j] represents process
pi’s latest knowledge of processpj local time. If vti[j]=x, then processpi knows that local time
at processpj has progressed tillx. The entire vectorvti constitutespi’s view of the global logical
time and is used to timestamp events.

Processpi uses the following two rulesR1andR2to update its clock:

51

• R1: Before executing an event, processpi updates its local logical time as follows:

vti[i] := vti[i] + d (d > 0)

• R2: Each messagem is piggybacked with the vector clockvt of the sender process at sending
time. On the receipt of such a message(m,vt), processpi executes the following sequence of
actions:

– Update its global logical time as follows:

1 ≤ k ≤ n : vti[k] := max(vti[k], vt[k])

– ExecuteR1.

– Deliver the messagem.

The timestamp associated with an event is the value of the vector clock of its process when the
event is executed. Figure 3.2 shows an example of vector clocks progress with the increment value
d=1. Initially, a vector clock is[0, 0, 0,, 0].

The following relations are defined to compare two vector timestamps,vh andvk:

vh = vk ⇔ ∀x : vh[x] = vk[x]

vh ≤ vk ⇔ ∀x : vh[x] ≤ vk[x]

vh < vk ⇔ vh ≤ vk and∃x : vh[x] < vk[x]

vh ‖ vk ⇔ ¬(vh < vk) ∧ ¬(vk < vh)

3
p

p
1

2
0
0

3
0
0

4	
3
4

0
1
0

2
0
0 2

3
0

2
4
0

2
3
4

5
3
4

5
6
4

0
0
1

2
3
3

2
3
4

2
p

2
3
0

2
2
0

2
3
2

1
0
0

5
3
4

5
5
4

Figure 3.2: Evolution of vector time.

52

3.4.2 Basic Properties

Isomorphism

Recall that relation “→" induces a partial order on the set of events that are produced by a dis-
tributed execution. If events in a distributed system are timestamped using a system of vector
clocks, we have the following property.

If two eventsx andy have timestampsvh andvk, respectively, then

x→ y ⇔ vh < vk

x ‖ y ⇔ vh ‖ vk.

Thus, there is an isomorphism between the set of partially ordered events produced by a dis-
tributed computation and their vector timestamps. This is avery powerful, useful, and interesting
property of vector clocks.

If the process at which an event occurred is known, the test tocompare two timestamps can
be simplified as follows: If eventsx andy respectively occurred at processespi andpj and are
assigned timestampsvh andvk, respectively, then

x→ y ⇔ vh[i] ≤ vk[i]

x ‖ y ⇔ vh[i] > vk[i] ∧ vh[j] < vk[j]

Strong Consistency

The system of vector clocks is strongly consistent; thus, byexamining the vector timestamp of
two events, we can determine if the events are causally related. However, Charron-Bost showed
that the dimension of vector clocks cannot be less thann, the total number of processes in the
distributed computation, for this property to hold [4].

Event Counting

If d is always 1 in the ruleR1, then theith component of vector clock at processpi, vti[i], denotes
the number of events that have occurred atpi until that instant. So, if an evente has timestamp
vh, vh[j] denotes the number of events executed by processpj that causally precedee. Clearly,
∑

vh[j] − 1 represents the total number of events that causally precedee in the distributed com-
putation.

Applications

Since vector time tracks causal dependencies exactly, it finds a wide variety of applications. For
example, they are used in distributed debugging, implementations of causal ordering communica-
tion and causal distributed shared memory, establishment of global breakpoints, and in determining
the consistency of checkpoints in optimistic recovery.

53

A Brief Historical Perspective of Vector Clocks

Although the theory associated with vector clocks was first developed in 1988 independently by
Fidge and Mattern, vector clocks were informally introduced and used by several researchers ear-
lier. Parkeret al. [20] used a rudimentary vector clocks system to detect inconsistencies of repli-
cated files due to network partitioning. Liskov and Ladin [13] proposed a vector clock system
to define highly available distributed services. Similar system of clocks was used by Strom and
Yemini [30] to keep track of the causal dependencies betweenevents in their optimistic recovery
algorithm and by Raynal to prevent drift between logical clocks [21]. Singhal [28] used vector
clocks coupled with a boolean vector to determine the currency of a critical section execution
request by detecting the cusality relation between a critical section request and its execution.

3.4.3 On the Size of Vector Clocks

An important question to ask is whether vector clocks of sizen are necessary in a computation
consisting ofn processes. To answer this, we examine the usage of vector clocks.

• A vector clock provides the latest known local time at each other process. If this information
in the clock is to be used to explicitly track the progress at every other process, then a vector
clock of sizen is necessary.

• A popular use of vector clocks is to determine the causality between a pair of events. Given
any eventse andf , the test fore ≺ f if and only if T (e) < T (f), which requires a compari-
son of the vector clocks ofe andf . Although it appears that the clock of sizen is necessary,
that is not quite accurate. It can be shown that a size equal tothe dimension of the partial
order(E,≺) is necessary, where the upper bound on this dimension isn. This is explained
below.

To understand this result on the size of clocks for determining causality between a pair of
events, we first introduce some definitions. Alinear extensionof a partial order(E,≺) is a linear
ordering ofE that is consistent with the partial order, i.e., if two events are ordered in the partial
order, they are also ordered in the linear order. A linear extension can be viewed as projecting
all the events from the different processes on a single time axis. However, the linear order will
necessarily introduce ordering between each pair of events, and some of these orderings are not in
the partial order. Also observe that different linear extensions are possible in general. LetP denote
the set of tuples in the partial order defined by the causalityrelation; so there is a tuple(e, f) in P
for each pair of eventse andf such thate ≺ f . LetL1, L2 . . . denote the sets of tuples in different
linear extensions of this partial order. The setP is contained in the set obtained by taking the
intersection of any such collection of linear extensionsL1, L2 This is because eachLi must
contain all the tuples, i.e., causality dependencies, thatare inP. Thedimensionof a partial order
is the minimum number of linear extensions whose intersection gives exactly the partial order.

Consider a client-server interaction between a pair of processes. Queries to the server and
responses to the client occur in strict alternating sequences. Althoughn = 2, all the events are
strictly ordered, and there is only one linear order of all the events that is consistent with the
“partial” order. Hence the dimension of this "partial order" is 1. A scalar clock such as one
implemented by Lamport’s scalar clock rules is adequate to determinee ≺ f for any eventse and
f in this execution.

54

Now consider an execution on processesP1 andP2 such that each sends a message to the other
before receiving the other’s message. The two send events are concurrent, as are the two receive
events. To determine the causality between the send events or between the receive events, it is
not sufficient to use a single integer; a vector clock of sizen = 2 is necessary. This execution
exhibits the graphical property called acrown, wherein there are some messagesm0, . . .mn−1

such thatSend(mi) ≺ Receive(mi+1 mod (n−1)) for all i from 0 ton − 1. A crown ofn messages
has dimensionn. We introduced the notion of crown and studied its properties in Chapter 3.

f

a b d h i

j

j

e

f

c

a h i g
(i)

e

d

 (ii) two linear extensions

 < c, e, f, a, b, d, g, h, i , j >

 < a,b,c,d,g,h,i,e,j,f>

 range of events "c", "e", "f"

b

c

g

Figure 3.3: Example illustrating dimension of a execution(E,≺). For n = 4 processes, the
dimension is 2.

For a complex execution, it is not straightforward to determine the dimension of the partial or-
der. Figure 3.3 shows an execution involving four processes. However, the dimension of this partial
order is two. To see this informally, consider the longest chain 〈a, b, d, g, h, i, j〉. There are events
outside this chain that can yield multiple linear extensions. Hence, the dimension is more than 1.
The right side of Figure 3.3 shows the earliest possible and the latest possible occurrences of the
events not in this chain, with respect to the events in this chain. LetL1 be〈c, e, f, a, b, d, g, h, i, j〉,
which contains the following tuples that are not inP:

(c, a), (c, b), (c, d), (c, g), (c, h), (c, i), (c, j),
(e, a), (e, b), (e, d), (e, g), (e, h), (e, i), (e, j),
(f, a), (f, b), (f, d), (f, g), (f, h), (f, i), (f, j).

LetL2 be〈a, b, c, d, g, h, i, e, j, f〉, which contains the following tuples not inP:

(a, c), (b, c), (c, d), (c, g), (c, h), (c, i), (c, j),
(a, e), (b, e), (d, e), (g, e), (h, e), (i, e), (e, j),
(a, f), (b, f), (d, f), (g, f), (h, f), (i, f), (j, f).

Further, observe that(L1 \ P)
⋂L2 = ∅ and(L2 \ P)

⋂L1 = ∅. Hence,L1

⋂L2 = P and the
dimension of the execution is 2 as these two linear extensions are enough to generateP.

Unfortunately, it is not computationally easy to determinethe dimension of a partial order. To
exacerbate the problem, the above form of analysis has to be completed a posteriori (i.e., off-line),
once the entire partial order has been determined after the completion of the execution.

55

3.5 Efficient Implementations of Vector Clocks

If the number of processes in a distributed computation is large, then vector clocks will require
piggybacking of huge amount of information in messages for the purpose of disseminating time
progress and updating clocks. The message overhead grows linearly with the number of processors
in the system and when there are thousands of processors in the system, the message size becomes
huge even if there are only a few events occurring in few processors. In this section, we discuss
efficient ways to maintain vector clocks; similar techniques can be used to efficiently implement
matrix clocks.

Charron-Bost showed [4] that if vector clocks have to satisfy the strong consistency property,
then in general vector timestamps must be at least of sizen, the total number of processes. There-
fore, in general the size of a vector timestamp is the number of processes involved in a distributed
computation; however, several optimizations are possibleand next, we discuss techniques to im-
plement vector clocks efficiently [23].

3.5.1 Singhal-Kshemkalyani’s Differential Technique

Singhal-Kshemkalyani’s differential technique[29] is based on the observation that between suc-
cessive message sends to the same process, only a few entriesof the vector clock at the sender
process are likely to change. This is more likely when the number of processes is large because
only a few of them will interact frequently by passing messages. In this technique, when a process
pi sends a message to a processpj, it piggybacks only those entries of its vector clock that differ
since the last message sent topj.

The technique works as follows: If entriesi1, i2, . . . , in1
of the vector clock atpi have changed

to v1, v2, . . . , vn1
, respectively, since the last message sent topj, then processpi piggybacks a

compressed timestamp of the form

{(i1, v1), (i2, v2), . . . , (in1
, vn1

)}

to the next message topj. Whenpj receives this message, it updates its vector clock as follows:

vti[k] = max(vti[k], vk) for k = 1, 2, . . . , n1.

Thus this technique cuts down the message size, communication bandwidth and buffer (to store
messages) requirements. In the worst of case, every elementof the vector clock has been updated
atpi since the last message to processpj , and the next message frompi to pj will need to carry the
entire vector timestamp of sizen. However, on the average the size of the timestamp on a message
will be less thann. Note that implementation of this technique requires each process to remember
the vector timestamp in the message last sent to every other process. Direct implementation of
this will result inO(n2) storage overhead at each process. This technique also requires that the
communication channels follow FIFO discipline for messagedelivery.

Singhal and Kshemkalyani developed a clever technique thatcuts down this storage overhead
at each process toO(n). The technique works in the following manner: Processpi maintains the
following two additional vectors:

56

• LSi[1..n] (‘Last Sent’):
LSi[j] indicates the value ofvti[i] when processpi last sent a message to processpj.

• LUi[1..n] (‘Last Update’):
LUi[j] indicates the value ofvti[i] when processpi last updated the entryvti[j].

Clearly,LUi[i] = vti[j] at all times andLUi[j] needs to be updated only when the receipt of
a message causespi to update entryvti[j]. Also,LSi[j] needs to be updated only whenpi sends
a message topj . Since the last communication frompi to pj , only those elements of vector clock
vti[k] have changed for whichLSi[j] < LUi[k] holds. Hence, only these elements need to be sent
in a message frompi to pj . Whenpi sends a message topj , it sends only a set of tuples

{(x, vti[x])|LSi[j] < LUi[x]}
as the vector timestamp topj , instead of sending a vector ofn entries in a message.

Thus the entire vector of sizen is not sent along with a message. Instead, only the elements
in the vector clock that have changed since the last message send to that process are sent in the
format{(p1, latest_value), (p2, latest_value), . . .}, wherepi indicates that thepith component of
the vector clock has changed.

 p
1

 p
2

 p
3

 p
4

1
0
0
0

1
1
0
0

1
3
2
0

1
2
1
0

0
0
2
0

0
0
3
1

0
0
4
1

0
0
0
1

1
4
4
1

0
0
1
0

{(1,1)}

{(3,1)} {(3,2)} {(3,4),(4,1)}

{(4,1)}

Figure 3.4: Vector clocks progress in Singhal-Kshemkalyani technique

This method is illustrated in Figure 3.4. For instance, the second message fromp3 to p2 (which
contains a timestamp{(3, 2)}) informsp2 that the third component of the vector clock has been
modified and the new value is2. This is because the processp3 (indicated by the third component
of the vector) has advanced its clock value from1 to 2 since the last message sent top2.

The cost of maintaining vector clocks in large systems can besubstantially reduced by this tech-
nique, especially if the process interactions exhibit temporal or spatial localities. This technique
would turn advantageous in a variety of applications including causal distributed shared memories,
distributed deadlock detection, enforcement of mutual exclusion and localized communications
typically observed in distributed systems.

57

3.5.2 Fowler-Zwaenepoel’s Direct-Dependency Technique

Fowler-Zwaenepoel direct dependency technique [8] reduces the size of messages by transmitting
only a scalar value in the messages. No vector clocks are maintained on-the-fly. Instead, a process
only maintains information regarding direct dependencieson other processes. A vector time for
an event, that represents transitive dependencies on otherprocesses, is constructed off-line from a
recursive search of the direct dependency information at processes.

Each processpi maintains a dependency-vectorDi. Initially,

Di[j] = 0 for j = 1, . . . , n.

Di is updated as follows:

Step 1:Whenever an event occurs atpi, Di[i] := Di[i] + 1. That is, the vector component
corresponding to its own local time is incremented by one.

Step 2:When a processpi sends a message to processpj , it piggybacks the updated value of
Di[i] in the message.

Step 3:Whenpi receives a message frompj with piggybacked valued, pi updates its depen-
dency vector as follows:Di[j]:= max{Di[j], d}.

Thus the dependency vectorDi reflects only direct dependencies. At any instant,Di[j] denotes
the sequence number of the latest event on processpj thatdirectly affects the current state. Note
that this event may precede the latest event atpj thatcausallyaffects the current state.

 p
1

 p
2

 p
3

 p
4

1
0
0
0

1
1
0
0

1
3
2
0

1
2
1
0

0
0
1
0

0
0
2
0

0
0
3
1

0
0
4
1

0
0
0
1

1
4
4
0

{1}

{1}

{2} {4}

{1}

Figure 3.5: Vector clock progress in Fowler-Zwaenepoel technique

Figure 3.5 illustrates the Fowler-Zwaenepoel technique. For instance, when processp4 sends
a message to processp3, it piggybacks a scalar that indicates the direct dependency of p3 on p4

because of this message. Subsequently, processp3 sends a message to processp2 piggybacking a

58

scalar to indicate the direct dependency ofp2 on p3 because of this message. Now, processp2 is
in fact indirectly dependent on processp4 since processp3 is dependent on processp4. However,
processp2 is never informed about its indirect dependency onp4.

Thus although the direct dependencies are duly informed to the receiving processes, the transi-
tive (indirect) dependencies are not maintained by this method. They can be obtained only by re-
cursively tracing the direct-dependency vectors of the events off-line. This involves computational
overhead and latencies. Thus this method is ideal only for those applications that do not require
computation of transitive dependencies on the fly. The computational overheads characteristic
of this method makes it best suitable for applications like causal-breakpoints and asynchronous
checkpoint recovery where computation of causal dependencies is performed offline.

This technique results in considerable saving in the cost; only one scalar is piggybacked on
every message. However, the dependency vector does not represent transitive dependencies (i.e., a
vector timestamps). The transitive dependency (or the vector timestamp) of an event is obtained by
recursively tracing the direct-dependency vectors of processes. Clearly, this will have overhead and
will involve latencies. Therefore, this technique is not suitable for applications that require on-the-
fly computation of vector timestamps. Nonetheless, this technique is ideal for applications where
computation of causal dependencies is performed off-line (e.g., causal breakpoint, asynchronous
checkpointing recovery).

The transitive dependencies could be determined by combining an event’s direct dependency
with that of its directly dependent event. In Figure 3.5, thefourth event of processp3 is dependent
on the first event of processp4 and fourth event of processp2 is dependent on fourth event of
processp3. By combining these two direct dependencies, it is possibleto deduce that fourth event
of processp2 depends on first event of processp4. It is important to note that if eventej at process
pj occurs before eventei at processpi, then all the events frome0 to ej−1 in processpj also happen
beforeei. Hence, it is sufficient to record forei the latest event of processpj that happened before
ei. This way, each event would record its dependencies on the latest event on every other process it
depends on and those events maintain their own dependencies. Combining all these dependencies,
the entire set of events that a particular event depends on could be determined off-line.

The off-line computation of transitive dependencies can beperformed using a recursive algo-
rithm proposed in [8] and is illustrated in a modified form in Algorithm 1.DTV is the dependency-
tracking vector of sizen (wheren is the number of process) which is supposed to track all the
causal dependencies of a particular eventei in processpi. The algorithm then needs to be invoked
asDependencyTrack(i, De

i [i]). The algorithm initializesDTV to the least possible timestamp value
which is0 for all entries excepti for which the value is set toDe

i [i]:

For allk = 1, . . . , n andk 6= i, DTV[k]=0 andDTV[i]=De
i [i]

The algorithm then calls theVisitEventalgorithm on processpi and eventei. VisitEventchecks all
the entries (1, . . . , n) of DTV andDe

i and if the value inDe
i is greater than the value inDTV for

that entry, thenDTV assumes the value ofDe
i for that entry. This ensures that the latest event in

processj thatei depends on is recorded inDTV. VisitEventis recursively called on all entries that
are newly included inDTV so that the latest dependency information can be accuratelytracked.

Let us illustrate the Recursive Dependency Trace Algorithmby by tracking the dependencies
of fourth event at processp2. The algorithm is invoked asDependencyTrack(2, 4). DTV is initially
set to< 0 4 0 0 > by DependenyTrack. It then callsVisitEvent(2, 4). The values held byD4

2 are
< 1 4 4 0 >. So,DTV is now updated to< 1 4 0 0 > andVisitEvent(1, 1) is called. The values

59

DependencyTrack(i : process, σ:event index)
\∗ Casual distributed breakpoint forσi ∗\
\∗ DTV holds the result∗\
for all k 6= i do

DTV[k]=0
end for
DTV[i]=σ
endDependencyTrack

VisitEvent(j : process, e : event index)
\∗ Place dependencies ofτ into DTV ∗\
for all k 6= j do
α = De

j [k]
if α >DTV[k] then

DTV[k]=α
VisitEvent(k, α)

end if
end for
endVisitEvent

Algorithm 1 : Recursive Dependency Trace Algorithm

held byD1
1 are< 1 0 0 0 >. Since none of the entries are greater than those inDTV, the algorithm

returns. Again the values held byD4
2 are checked and this time entry3 is found to be greater in

D4
2 thanDTV. So,DTV is updated as< 1 4 4 0 > andVisiEvent(3, 4) is called. The values held

byD4
3 are< 0 0 4 1 >. Since entry4 of D4

3 is greater than that ofDTV, it is updated as< 1 4 4
1 > andVisitEvent(4, 1) is called. Since none of the entries inD1

4: < 1 0 0 0 > are greater than
those ofDTV, the algorithm returns toVisitEvent(2, 4). Since all the entries have been checked,
VisitEvent(2, 4) is exited and so isDependencyTrack. At this point,DTV holds< 1 4 4 1 >,
meaning event4 of processp2 is dependent upon event1 of processp1, event4 of processp3 and
event1 in processp4. Also, it is dependent on events that precede event4 of processp3 and these
dependencies could be obtained by invoking theDependencyTrackalgorithm on fourth event of
processp3. Thus, all the causal dependencies could be tracked off-line.

This technique can result in a considerable saving of cost since only one scalar is piggybacked
on every message. One of the important requirements is that aprocess updates and records its
dependency vectors after receiving a message and before sending out any message. Also, if events
occur frequently, this technique will require recording the history of a large number of events.

3.6 Jard-Jourdan’s Adaptive Technique

The Fowler-Zwaenepoel’s direct-dependency technique does not allow the transitive dependencies
to be captured in real time during the execution of processes. In addition, a process must ob-
serve an event (i.e., update and record its dependency vector) after receiving a message but before
sending out any message. Otherwise, during the reconstruction of a vector timestamp from the

60

direct-dependency vectors, all the causal dependencies will not be captured. If events occur very
frequently, this technique will require recording the history of a large number of events.

In the Jard-Jourdan’s technique [10], events can be adaptively observed while maintaining the
capability of retrieving all the causal dependencies of an observed event. (Observing an event
means recording of the information about its dependencies.) This method uses the idea that when
an observed evente records its dependencies, then events that follow can determine their transitive
dependencies, that is, the set of events that they indirectly depend on, by making use of the infor-
mation recorded aboute. The reason is that when an evente is observed, the information about the
send and receive of messages maintained by a process is recorded in that event and the information
maintained by the process is then reset and updated. So, whenthe process propagates information
aftere, it propagates only history of activities that took place aftere. The next observed event either
in the same process or in a different one, would then have to look at the information recorded fore
to know about the activities that happened beforee. This method still does not allow determining
all the causal dependencies in real time, but avoids the problem of recording a large amount of
history which is realized when using the direct dependency technique.

To implement the technique of recording the information in an observed event and resetting the
information managed by a process, Jard-Jourdan defined apseudo-directrelation≪ on the events
of a distributed computation as follows:

If eventsei andej happen at processpi andpj , respectively, thenej≪ei iff there exists a path of
message transfers that starts afterej on the processpj and ends beforeei on the processei such that
there is no observed event on the path. The relation is termedpseudo-direct because eventei may
depend upon many unobserved events on the path, sayue1, ue2,. . . , uen, etc., which are in turn
dependent on each other. Ifei happens afteruen, thenei is still considered directly dependent upon
ue1, ue2,. . . ,uen, since these events are unobserved, which is a falsely assumed direct dependency.
If another eventek happens afterei, then the transitive dependencies ofek onue1, ue2,. . . ,uen can
be determined by using the information recorded atei andei can do the same withej .

The technique is implemented using the following mechanism: The partial vector clockp_vti
at processpi is a list of tuples of the form (j, v) indicating that the current state ofpi is pseudo-
dependent on the event on processpj whose sequence number isv. Initially, at a processpi:
p_vti={(i, 0)}.

Let p_vti = {(i1, v1), . . . , (i, v), . . . (in, vn} denote the current partial vector clock at process
pi. Let e_vti be a variable that holds the timestamp of the observed event

(i) Whenever an event is observed at processpi, the contents of the partial vector clockp_vti
are transferred toe_vti andp_vti is reset and updated as follows:

e_vti = {(i1, v1), . . . , (i, v), . . . , (in, vn)}
p_vti = {(i, v + 1)}

(ii) When processpj sends a message topi, it piggybacks the current value ofp_vtj in the
message.

(iii) When pi receives a message piggybacked with timestampp_vt, pi updatesp_vti such that it
is the union of the following: (Letp_vt={(im1, vm1),...,(imk, vmk)} andp_vti={(i1, v1)„...,(il, vl)}.)

– all (imx, vmx) such that (imx, .) does not appear inv_pti,

61

– all (ix, vx) such that (ix, .) does not appear inv_pt, and

– all (ix,max(vx, vmx)) for all (vx, .) that appear inv_pt andv_pti.

={(1,0)} 1 ={(1,1)}

{(1,0)}

2 ={(2,0)}

v_pt v_pt

v_pt
v_pt

{(1,0),(2,0)}

=

{(1,0),(2,0)}

v_pt 3 ={(3,0)} (2,0),(3,1)}

{(4,0),(5,1)} {(4,1)}

{(5,1)}
{(4,1)}

v_pt 5 ={(5,2)}={(5,0)}

v_pt 5 ={(5,1)}

{(5,0)}

v_pt =

{(4,1),(5,1)} {(4,1),(5,1)}

v_pt 4 ={(4,0)}

4
p

5
p

3
p

2
p

1
p 1

5v_pt

5e2_pt =5
e1_pt =5

 4
{(4,0),(5,1)}

(2,0),(3,1)}
{(4,1)}

3
{(3,2),(4,1)}

v−pt v−pt
{(3,3)}{(3,2),(4,1)}{(3,2)}

3v_pt =3 =v_pt {(1,0),

{(3,1)}

v_pt

2

3 e3_pt =

e1_pt =

e2_pt =3
e1_pt = {(3,0)} {(1,0)

3 =
3 =

v_pt 4 = v_pt 4 =

=3

Figure 3.6: Vector clocks progress in Jard-Jourdan technique

In Figure 3.6,eX_ptn denotes the timestamp of theX th observed event at processpn. For
instance, the event1 observed atp4 is timestampede1_pt4 = {(4, 0), (5, 1)}; this timestamp means
that the pseudo-direct predecessors of this event are located at processp4 andp5, and are respec-
tively the event0 observed atp4 and event1 observed atp5. v_ptn denotes a list of timestamps
collected by a processpn for the unobserved events and is reset and updated after an event is ob-
served atpn. For instance, let us considerv_pt3. Processp3 first collects the timestamp of event
zero(3, 0) into v_pt3 and when the observed event1 occurs, it transfers its content toe1_pt3, re-
sets its list and updates its value to(3, 1) which is the timestamp of the observed event. When it
receives a message from processp2, it includes those elements that are not already present in its
list, namely,(1, 0) and(2, 0) to v_pt3. Again, when event2 is observed, it resets its list to{(3, 2)}
and transfers its content toe2_pt3 which holds{(1, 0), (2, 0), (3, 1)}. It can be seen that event2
at processp3 is directly dependent upon event0 on processp2 and event1 on processp3. But, it

62

is pseudo-directly dependent upon event0 at processp1. It also depends on event0 at processp3

but this dependency information is obtained by examininge1_pt3 recorded by the observed event.
Thus, transitive dependencies of event2 at processp3 can be computed by examining the observed
events ine2_pt3. If this is done recursively, then all the causal dependencies of an observed event
can be retrieved. It is also pertinent to observe here that these transitive dependencies cannot be
determined online but from a log of the events.

This method can help ensure that the list piggybacked on a message is of optimal size. It is also
possible to limit the size of the list by introducing a dummy observed event. If the size of the list
is to be limited tok, then when timestamps ofk events have been collected in the list, a dummy
observed event can be introduced to receive the contents of the list. This allows a lot of flexibility
in managing the size of messages.

3.7 Matrix Time

3.7.1 Definition

In a system of matrix clocks, the time is represented by a set of n × n matrices of non-negative
integers. A processpi maintains a matrixmti[1..n, 1..n] where,

• mti[i, i] denotes the local logical clock ofpi and tracks the progress of the computation at
processpi.

• mti[i, j] denotes the latest knowledge that processpi has about the local logical clock,
mtj [j, j], of processpj . Note that rowmti[i, .] is nothing but the vector clockvti[.] and
exhibits all the properties of vector clocks.

• mti[j, k] represents the knowledge that processpi has about the latest knowledge thatpj has
about the local logical clock,mtk[k, k], of pk.

The entire matrixmti denotespi’s local view of the global logical time. The matrix timestamp
of an event is the value of the matrix clock of the process whenthe event is executed.

Processpi uses the following rulesR1andR2 to update its clock:

• R1: Before executing an event, processpi updates its local logical time as follows:

mti[i, i] := mti[i, i] + d (d > 0)

• R2: Each messagem is piggybacked with matrix timemt. Whenpi receives such a message
(m,mt)from a processpj, pi executes the following sequence of actions:

– Update its global logical time as follows:

(a) 1 ≤ k ≤ n : mti[i, k] := max(mti[i, k], mt[j, k])

(That is, update its rowmti[i, ∗] with thepj ’s row in the received timestamp,mt.)

(b) 1 ≤ k, l ≤ n : mti[k, l] := max(mti[k, l], mt[k, l])

63

– ExecuteR1.

– Deliver messagem.

e1
j ej

2

ke2e1
k

mt k,j mt j,j

]

p

p

p

k

j

i

e

m
m

m

m
2

3

4

e e

e e

1

mte

[[

[

mt i,kmt i,k

[]

]

]

Figure 3.7: Evolution of matrix time.

Figure 3.7 gives an example to illustrate how matrix clocks progress in a distributed computa-
tion. We assumed=1. Let us consider the following events:ewhich is thexi-th event at processpi,
e1k ande2k which are thex1

k-th andx2
k-th event at processpk, ande1j ande2j which are thex1

j -th and
x2

j -th events atpj . Letmte denote the matrix timestamp associated with evente. Due to message
m4, e2k is the last event ofpk that causally precedese, therefore, we havemte[i, k]=mte[k, k]=x2

k.
Likewise,mte[i, j]=mte[j, j]=x2

j . The last event ofpk known bypj, to the knowledge ofpi when
it executed evente, is e1k; therefore,mte[j, k]=x1

k. Likewise, we havemte[k, j]=x1
j .

A system of matrix clocks was first informally proposed by Michael and Fischer [7] and has
been used by Wuu and Bernstein [32] and by Lynch and Sarin [26]to discard obsolete information
in replicated databases.

3.7.2 Basic Properties

Clearly, vectormti[i, .] contains all the properties of vector clocks. In addition, matrix clocks have
the following property:

min
k

(mti[k, l]) ≥ t: processpi knows that every other processpk knows

thatpl’s local time has progressed tillt

If this is true, it is clear that processpi knows that all other processes know thatpl will never
send information with a local time≤ t. In many applications, this implies that processes will no
longer require frompl certain information and can use this fact to discard obsolete information.

If d is always 1 in the ruleR1, thenmti[k, l] denotes the number of events occurred atpl and
known bypk as far aspi’s knowledge is concerned.

3.8 Virtual Time

Virtual time system is a paradigm for organizing and synchronizing distributed systems using vir-
tual time [9]. This section a provides description of virtual time and its implementation using

64

the Time Warp mechanism (a lookahead-rollback synchronization mechanism using rollback via
antimessages).

The implementation of virtual time using Time Warp mechanism works on the basis of an
optimistic assumption. Time Warp relies on the general lookahead-rollback mechanism where
each process executes without regard to other processes having synchronization conflicts. If a
conflict is discovered, the offending processes are rolled back to the time just before the conflict
and executed forward along the revised path. Detection of conflicts and rollbacks are transparent
to users. The implementation of Virtual Time using Time Warpmechanism makes the following
optimistic assumption: synchronization conflicts and thusrollbacks generally occurs rarely.

In the following sections, we discuss in detail Virtual Timeand how Time Warp mechanism is
used to implement it.

3.8.1 Virtual Time Definition

Virtual time is a global, one dimensional, temporal coordinate system on a distributed computation
to measure the computational progress and to define synchronization. A virtual time system is a
distributed system executing in coordination with an imaginary virtual clock that uses virtual time
[9]. Virtual times are real values that are totally ordered by the less than relation, “<”. Virtual
time is implemented a collection of several loosely synchronized local virtual clocks. As a rule,
these local virtual clocks move forward to higher virtual times; however, occasionaly they move
backwards.

In a distributed system, processes run concurrently and communicate with each other by ex-
changing messages. Every message is characterized by four values:

a) Name of the sender
b) Virtual send time
c) Name of the receiver
d) Virtual receive time
Virtual send time is the virtual time at the sender when the message is sent, whereas virtual

receive time specifies the virtual time when the message mustbe received (and processed) by the
receiver. Clearly, a big problem arises when a message arrives at process late, that is, the virtual
receive time of the message is less than the local virtual time at the receiver process when the
message arrives.

Virtual time systems are subject to two semantic rules similar to Lamport’s clock conditions:

Rule 1: Virtual send time of each message < virtual receive time of that message.

Rule 2: Virtual time of each event in a process < Virtual time of next event in that process.

The above two rules imply that a process sends all messages inincreasing order of virtual
send time and a process receives (and processes) all messages in the increasing order of virtual
receive time. Causality of events is an important concept indistributed systems and is also a major
constraint in the implementation of virtual time. It is important to know which event caused another
one and the one that causes another should be completely executed bedore the caused event can be
processed.

65

The constraint in the implementation of virtual time can be stated as follows:“If an event A
causes event B, then the execution of A and B must be scheduledin real time so that A is completed
before B starts”.

If event A has an earlier virtual time than event B, we need execute A before B provided there
is no causal chain from A to B. Better performance can be achieved by scheduling A concurrently
with B or scheduling A after B. If A and B have exactly the same virtual time coordinate, then
there is no restriction on the order of their scheduling. If Aand B are distinct events, they will
have different virtual space coordinates (since they occurat different processes) and neither will
be a cause for the other. Hence to sum it up, events with virtual time < ‘t’ complete before the
starting of events at time ‘t’ and events with virtual time > ‘t’ will start only after events at time ‘t’
are complete.

Characteristics of Virtual Time

1. Virtual time systems are not all isomorphic; it may be either discrete or continuous.

2. Virtual time may be only partially ordered (In this implementation, total order is assumed.)

3. Virtual time may be related to real time or may be independent of it.

4. Virtual time systems may be visible to programmers and manipulated explicitly as values, or
hidden and manipulated implicitly according to some system-defined discipline

5. Virtual times associated with events may be explicitly calculated by user programs or they
may be assigned by fixed rules.

3.8.2 Comparison with Lamport’s Logical Clocks

Lamport showed that real-time temporal relationships “happens before”and “happens after”, op-
erationally definable within a distributed system, form only a partial order, not a total order, and
concurrent events are incomparable under that partial order. He also showed that it is always pos-
sible to extend partial order to total order by defining artificial clocks. An artificial clock is created
one for each process with unique labels from a totally ordered set in a manner consistent with
partial order. He also provided an algorithm on how to accomplish this task of yielding an assign-
ment of totally ordered clock values. In virtual time, the reverse of the above is done by assuming
that every event is labeled with a clock value from a totally ordered virtual time scale satisfying
Lamport’s clock conditions. Thus the Time Warp mechanism isan inverse of Lamport’s scheme.

In Lamport’s scheme, all clocks are conservatively maintained so that they never violate causal-
ity. A process advances its clock as soon as it learns of new causal dependency. In the virtual time,
clocks are optimisticaly advanced and corrective actions are taken whenever a violation is detected.

Lamport’s initial idea brought about the concept of virtualtime but the model failed to preserve
causal independence. It was possible to make an analysis in the real world using timestamps but
the same principle could not be implemented completely in the case of asynchronous distributed
systems for the lack of a common time base.

The implementation of virtual time concept using Time Warp mechanism is easier to under-
stand and reason about than real time.

66

3.8.3 Time Warp Mechanism

In the implementation of virtual time using Time Warp mechanism, virtual receive time of message
is considered as its timestamp. The necessary and sufficientconditions for the correct implemen-
tation of virtual time are that each process must handle incoming messages intimestamporder.
This is highly undesirable and restrictive because processspeeds and message delays are likely to
highly variable. So it natural for some processes to get ahead in virtual time of other processes.

Since we assume virtual times are real numbers, it is impossible for a process on the basis of
local information alone to block and wait for the message with the next timestamp. It is always
possible that a message with earlier timestamp arrives later. So, when a process executes a message,
it is very difficult for it determine whether a message with anearlier timestamp will arrive later.
This is the central problem in virtual time that is solved by the Time Warp mechanism.

The advantage of Time warp mechanism is that it doesn’t depend on the underlying computer
architecture and so portability to different systems is easily achieved. However, message commu-
nication is assumed to be reliable, but messages may not be delivered in FIFO order.

Time Warp mechanism consists of two major parts: local control mechanism and global con-
trol mechanism. The local control mechanism insures that events are executed and messages are
processed in the correct order. The global control mechanism takes care of global issues such as
global progress, termination detection, I/O error handling, flow control, etc.

3.8.4 The Local Control Mechanism

There is no global virtual clock variable in this implementation; each process has alocal virtual
clockvariable. The local virtual clock of a process doesn’t change during an event at that process
but it changes only between events. On the processing of nextmessage from the input queue,
the process increases its local clock to the timestamp of themessage. At any instant, the value
of virtual time may differ for each process but the value is transparent to other processes in the
system.

When a message is sent, the virtual send time is copied from the sender’s virtual clock while
the name of the receiver and virtual receive time are assigned based on application specific context.

All arriving messages at a process are stored in an input queue in the increasing order of times-
tamps (receive times). Ideally, no messages from the past (called late messages) should arrive at a
process. However, processes will receive late messages dueto factors such as different computa-
tion rates of processes and network delays. The semantics ofvirtual time demands that incoming
messages be received by each process strictly in the timestamp order. The only way to accomplish
this is as follows: on the reception of a late message, the receiver rolls back to an earlier virtual
time, cancelling all intermediate side effects and then executes forward again by executing the late
message in the proper sequence. If all the messages in the input queue of a process are processed,
the state of the process is said toterminateand its clock is set to + inf. However, the process is
not destroyed as a late message may arrive resulting it to rollback and execute again. The situation
can be described by saying that each process is doing a constant “lookahead”, processing future
messages from its input queue.

Over a length computation, each process may roll back several times while generally progress-
ing forward with rollback completely transparent to other processes in the system. Programmers
can write correct software without paying much attention tolate-arriving messages.

67

Rollback in a distributed system is complicated by the fact that the process that wants to roll-
back might have sent many messages to other processes, whichin turn might have sent many
messages to other processes, and so on, leading to deep side effects. For rollback, messages must
be effectively “unsent” and their side effects should be undone. This is achieved efficiently by
using antimessages.

Antimessages and the Rollback Mechanism

Runtime representation of a process is composed of the following:

1. Process name: Virtual spaces coordinate which is unique in the system.

2. Local virtual clock: V irtual time coordinate

3. State: Data space of the process including execution stack, program counter and its own
variables

4. State queue: Contains saved copies of process’s recent states as roll back with Time warp
mechanism requires the state of the process being saved. Butit is not necessary to retain
states from all the way beginning of the virtual time the reason for which will be explained
in Global Control mechanism.

5. Input queue: Contains all recently arrived messages in order of virtualreceive time. Pro-
cessed messages from the input queue are not deleted as they are saved in the output queue
with a negative sign (antimessage) to facilitate future roll backs.

6. Output queue: Contains negative copies of messages the process has recently sent in virtual
send time order. They are needed in case of a rollback.

For every message, there exists an antimessage that is the same in content but opposite in sign.
Whenever a process sends a message, a copy of the message is transmitted to receiver’s input
queue and a negative copy (antimessage) is retained in the sender’s output queue for use in sender
rollback.

Whenever a message and its antimessage appear in the same queue no matter in which order
they arrived, they immediately annihilate each other resulting in shortening of the queue by one
message.

Generally when a message arrives at the input queue of a process with timestamp greater than
virtual clock time of its destination process, it is simply enqueued by the interrupt routine and the
running process continues. But when the destination process’ virtual time is greater than the virtual
time of message received, the process must do a rollback.

The first step in the rollback mechanism is to search the "State queue" for the last saved state
with timestamp that is less than the timestamp of the messagereceived and restore it. We make the
timestamp of the received message as the value of the local virtual clock and discard from the state
queue all states saved after this time. Then the execution resumes forward from this point. Now
all the messages that are sent between the current state and earlier state must be “unsent”. This is
taken care of by executing a simple rule:

68

“To unsend a message, simply transmit its antimessage.”

This results in antimessages following the positive ones tothe destination. A negative message
causes a rollback at its destination if it’s virtual receivetime is less than the receiver’s virtual time
(just as a positive message does).

Depending on the timing, there are several possibilities atthe receiver’s end:

1. If the original (positive) message has arrived but not yetbeen processed, its virtual receive
time must be greater than the value in the receiver’s virtualclock. The negative message,
having the same virtual receives time, will be enqueued and will not cause a rollback. It will,
however cause annihilation with the positive message leaving the receiver with no record of
that message.

2. Second possibility is that the original positive messagehas a virtual receive time that is now
in the present or past with respect to the receiver’s virtualclock and it may have already been
partially or completely processed, causing side effects onreceiver’s state. In this case, the
negative message will also arrive in the receiver’s past andcause the receiver to roll back to
a virtual time when the positive message was received. It will also annihilate the positive
message leaving the receiver with no record that the messageexisted. When the receiver
executes again, the execution will assume that these message never existed. Note that as
aresult of the rollback, the process may send antimessages to other processes.

3. A negative message can also arrive at the destination before the positive one. In this case, it is
enqueued and will be annihilated when positive message arrives. If it is negative message’s
turn to be executed at a processs’ input queqe, the receiver may take any action like a no-op.
Any action taken will eventually be rolled back when the corresponding positive message
arrives. An optimization would be to skip the antimessage from the input queue and treat
it as a no-op, and when the corresponding positive message arrives, it will annihilate the
negative message, and inhibit any rollback.

The antimessage protocol has several advantages: It is extremely robust and works under all
possible circumstances. It is free from deadlocks as there is no blocking. It is also free from
domino effects. In the worst case, all processes in system roll back to same virtual time as original
one did and then proceed forward again.

3.8.5 Global Control Mechanism

Global control mechanism resolves the following issues:

1. System global progress amidst rollback activity?

2. Detection of global termination?

3. Errors, I/O handling on rollbacks?

4. Running out of memory while saving copies of messages?

How these issues are resolved by global control mechanism will be discussed later; first we
discuss the important concept of global virtual time.

69

Global Virtual Time (GVT)

The concept of global virtual time is central to Global Control mechanism. Global virtual time
[14] is a property of an instantaneous global snapshot of system at real time ’r’ and is defined as
follows:

Global virtual time GVT at real time r is the minimum of

1. All virtual times in all virtual clocks at time r, and

2. Virtual send times of all messages that have been sent but have not yet been processed at
time ’r’.

GVT is defined in terms ofvirtual send timeof unprocessed messages, instead of the virtual
receive time because of the flow control which will be discussed later. If every event completes
normally, if messages are delivered reliably, if the scheduler does not indefinitely postpone exe-
cution of the farthest behind process and if there is sufficient memory, then GVT will eventually
increase.

It is easily shown by induction that the message (sends, arrivals, and receipts) never decreases
GVT even though local virtual time clocks roll back frequently. These properties make it appro-
priate to consider GVT as virtual clock for the system as a whole and to use it as the measure
of system progress. GVT can thus be viewed as a moving commitment horizon: any event with
virtual time less than GVT cannot be rolled back and may be committed safely.

It is generally impossible for Time warp mechanism to know atany real time ’r’, exactly what
GVT is. But GVT can be characterized more operationally by its two properties discussed above.
This characterization leads to a fast distributed GVT estimation algorithm that takes O(d) time
where ’d’ is the delay required for one broadcast to all processors in the system. The algorithm
runs concurrently with main computation and returns value that is between true GVT at the moment
when the algorithm starts and the true GVT at moment of completion. Thus it gives a slightly out-
of-date value for GVT which is the best one can get.

During execution of a virtual time system, Time warp must estimate GVT every so often.
Higher frequency of GVT estimation produces faster response time and better space utilization at
the expense of processor time and network bandwidth.

Applications of GVT

GVT finds several applications in a virtual time system usingthe time warp mechanism.

Memory Management and Flow Control
An attractive feature in Time Warp mechanism is that it is possible to give simple algorithms for

managing memory. Time Warp mechanism uses the concept of fossil detection where information
older than GVT is destroyed to avoid memory overheads due to old states in state queues, messages
stored in output queues, "past" messages in input queue thathave already been processed and
"future" messages in input queue that have not yet been received.

There is another kind of memory overhead due to future messages in the input queues that
have not yet been received. So, if a receiver’s memory is fullof input messages, the Time Warp
mechanism may be able to recover space by returning an unreceived message to the process that

70

sent it and then rollback to cancel out the sending event.

Normal Termination Detection
The Time Warp mechanism handles the termination detection problem through GVT. A pro-

cess terminates whenever it runs out of messages and its local virtual clock is set to +inf. Whenever
GVT reaches +inf, all local virtual clock variables must read +inf and no message can be in transit.
No process can ever again unterminate by rolling back to a finite virtual time. The Time Warp
mechanism signals termination whenever GVT calculation returns “+inf” value in the system.

Error Handling
All errors don’t cause termination. Most of the errors can beavoided by rolling back the local

virtual clock to some finite value. The error is only “committed” if it is impossible for the process
to roll back to a virtual time on or before the error. The committed error is reported to some policy
software or to the user.

Input and output
When a process sends a command to an output device, it is important that the physical output

activity not be committed immediately because the sending process may roll back and cancel the
output request. An output activity can only be performed when GVT exceeds the virtual receive
time of the message containing the command.

Snapshots and Crash Recovery
An entire snapshot of the system at virtual time ‘t’ can be constructed by a procedure in which

each process“snapshots” itself as it passes virtual time t in the forward direction and “unsnap-
shots” itself whenever it rolls back over virtual time ‘t’. Whenever GVT exceeds ‘t’, the snapshot
is complete and valid.

3.8.6 An Example: Distributed Discrete Event Simulations

Distributed discrete event simulation [16, 2, 25] is the most studid example of virtual time systems,
every process represents an object in the simulation and virtual time is identified with simulation
time. The fundamental operation in discrete event simulation is for one process to schedule an
event for execution by another process at a later simulationtime. This is emulated by having the
first process send a message to the second process with virtual receive time of the message equal
to event’s scheduled time in the simulation. When an event message is received by a process, there
are three possibilities: its timestamp is either before, after or equal to the local value of simulation
time.

If its timestamp is after the local time, an input event combination is formed and the appropriate
action is taken. However if the timestamp of the received event message is less than or equal to the
local clock value, the process has already processed an event combination with time greater than or
equal to the incoming event. The process must then rollback to the time of the incoming message
which is done by an elaborate checkpointing mechanism that allows earlier states to be restored.
Essentially an earlier state is restored, input event combinations are rescheduled and output events
are cancelled by sending antimessages. The process has buffers that save past inputs, past states
and antimessages.

71

Distributed discrete event simulation is one of the most general applications of the virtual time
paradigm because the virtual times of events are completelyunder the control of the user and
because it makes use of almost all the degrees of freedom allowed in the definition of a virtual time
system.

3.9 Physical Clock Synchronization: NTP

3.9.1 Motivation

In centralized systems, there is no need for clocks synchronization because generally, there is only
single clock. A process gets the time by simply issuing a system call to the kernel. When another
process after that tries to get the time, it will get a higher time value. Thus, in such systems, there
is a clear ordering of events and there is no ambiguity about the times at which these events occur.

In distributed systems, there is no global clock or common memory. Each processor has its
own internal clock and its own notion of time. In practice, these clocks can easily drift seconds
per day, accumulating significant errors over time. Also, because different clocks tick at different
rates, they may not remain always synchronized although they might be synchronized when they
start. This clearly poses serious problems to applicationsthat depend on a synchronized notion of
time. For most applications and algorithms that run in a distributed system, we need to know time
in one or more of the following contexts:

• The time of the day at which an event happened on a specific machine in the network.

• The time interval between two events that happened on different machines in the network.

• The relative ordering of events that happened on different machines in the network.

Unless the clocks in each machine have a common notion of time, time-based queries cannot
be answered. Some practical examples that stress the need for synchronization are listed below.

• In database systems, the order in which processes perform updates on a database is important
to ensure a consistent, correct view of the database. To ensure the right ordering of events, a
common notion of time between co-operating processes becomes imperative.

• Liskov [12] states that clock synchronization improves theperformance of distributed algo-
rithms by replacing communication with local computation.When a nodep needs to query
nodeq regarding a property, it can deduce the property with some previous information it
has about nodep and its knowledge of the local time in nodeq.

• It is quite common that distributed applications and network protocols use timeouts, and their
performance depends on how well physically dispersed processors are time-synchronized.
Design of such applications is simplified when clocks are synchronized.

Clock synchronization is the process of ensuring that physically distributed processors have a
common notion of time. It has a significant effect on many problems like secure systems, fault
diagnosis and recovery, scheduled operations, database systems, and real-world clock values. It

72

is quite common that distributed applications and network protocols use timeouts, and their per-
formance depends on how well physically dispersed processors are time-synchronized. Design of
such applications is simplified when clocks are synchronized.

Clock synchronization is the process of ensuring that physically distributed processors have
a common notion of time. It has a significant effect on many areas like security systems, fault
diagnosis and recovery, scheduled operations, database systems, and real-world clock values.

Due to different clocks rates, the clocks at various sites may diverge with time and periodically
a clock synchrinization must be performed to correct this clock skew in distributed systems. Clocks
are synchronized to an accurate real-time standard like UTC(Universal Coordinated Time). Clocks
that must not only be synchronized with each other but also have to adhere to physical time are
termedphysical clocks.

3.9.2 Definitions and Terminology

We provide the following definitions [16, 17].Ca andCb are any two clocks.

Time: The time of a clock in a machinep is given by the functionCp(t), whereCp(t) = t for a
perfect clock.

Frequency : Frequency is the rate at which a clock progresses. The frequency at timet of clock
Ca isC

′

a(t).

Offset: Clock offset is the difference between the time reported by aclock and thereal time. The
offset of the clockCa is given byCa(t) − t. The offset of clockCa relative toCb at time
t ≥ 0 is given byCa(t)− Cb(t).

Skew: The skew of a clock is the difference in the frequencies of theclock and the perfect clock.
The skew of a clockCa relative to clockCb at timet is (C ′a(t)− C ′b(t)).
If the skew is bounded byρ, then as per Equation 3.1, clock values are allowed to diverge at
a rate in the range of1− ρ to 1 + ρ.

Drift (rate): The drift of clockCa is the second derivative of the clock value with respect to time,
namely,C ′′a (t). The drift of clockCa relative to clockCb at timet isC ′′a (t)− C ′′b (t).

3.9.3 Clock Inaccuracies

Physical clocks are synchronized to an accurate real-time standard like UTC (Universal Coordi-
nated Time).

However, due to the clock inaccuracy discussed above, a timer (clock) is said to be working
within its specification if

1− ρ ≤ dC

dt
≤ 1 + ρ (3.1)

where constantρ is the maximum skew rate specified by the manufacturer. Figure 3.8 illustrates
the behavior of fast, slow, and perfect clocks with respect to UTC.

73

C
lo

ck
 ti

m
e,

 C

UTC, t

Fast Clock
dC/dt > 1

Perfect Clock
dC/dt = 1

Slow Clock
dC/dt < 1

Figure 3.8: The behavior of fast, slow, and perfect clocks with respect to UTC.

Offset delay estimation method

The Network Time Protocol (NTP)[18] which is widely used for clock synchronization on the
Internet uses the TheOffset Delay Estimationmethod. The design of NTP involves a hierarchical
tree of time servers. The primary server at the root synchronizes with the UTC. The next level
contains secondary servers, which act as a backup to the primary server. At the lowest level is the
synchronization subnet which has the clients.

T3

T1

A

B
T2

T4

Figure 3.9: Offset and delay estimation [18].

Clock offset and delay estimation: In practice, a source node cannot accurately estimate the
local time on the target node due to varying message or network delays between the nodes. This
protocol employs a very common practice of performing several trials and chooses the trial with
the minimum delay. Recall that Cristian’s remote clock reading method [5] also relied on the same
strategy to estimate message delay.

Figure 3.9 shows how NTP timestamps are numbered and exchanged between peersA andB.
Let T1, T2, T3, T4 be the values of the four most recent timestamps as shown. Assume that clocks

74

A andB are stable and running at the same speed. Leta = T1−T3 andb = T2−T4. If the network
delay difference fromA toB and fromB toA, calleddifferential delay, is small, the clock offset
θ and roundtrip delayδ of B relative toA at timeT4 are approximately given by the following.

θ =
a + b

2
, δ = a− b (3.2)

T i-3

T i-2Server A

Server B

T i-1

T i

Figure 3.10: Timing diagram for the two servers [18].

Each NTP message includes the latest three timestampsT1, T2 andT3, while T4 is determined
upon arrival. Thus, both peersA andB can independently calculate delay and offset using a single
bidirectional message stream as shown in Figure 3.10. The NTP protocol is shown in Figure 3.11.

3.10 Chapter Summary

The concept of causality between events is fundamental to the design and analysis of distributed
programs. The notion of time is basic to capture causality between events; however, there is no
built-in physical time in distributed systems and it is possible only to realize an approximation of
it. Typically, a distributed computation makes progress inspurts and consequently logical time,
which advances in jumps, is sufficient to capture the monotonicity property induced by causality
in distributed systems. Causality among events in a distributed system is a powerful concept in
reasoning, analyzing, and drawing inferences about a computation.

We presented a general framework of logical clocks in distributed systems and discussed three
systems of logical clocks, namely, scalar, vector, and matrix clocks, that have been proposed to
capture causality between events of a distributed computation. These systems of clocks have been
used to solve a variety of problems in distributed systems such as distributed algorithms design,
debugging distributed programs, checkpointing and failure recovery, data consistency in replicated
databases, discarding obsolete information, garbage collection, and termination detection.

In scalar clocks, the clock at a process is represented by an integer. The message and the
compuatation overheads are small, but the power of scalar clocks is limited – they are not strongly
consistent. In vector clocks, the clock at a process is represented by a vector of integers. Thus,
the message and the compuatation overheads are likely to be high; however, vector clocks possess
a powerful property – there is an isomorphism between the setof partially ordered events in a
distributed computation and their vector timestamps. Thisis a very useful and interesting property

75

• A pair of servers in symmetric mode exchange pairs of timing messages.

• A store of data is then built up about the relationship between the two servers (pairs of offset
and delay).

Specifically, assume that each peer maintains pairs (Oi,Di), where

Oi - measure of offset (θ)
Di - transmission delay of two messages (δ).

• The offset corresponding to the minimum delay is chosen.

Specifically, the delay and offset are calculated as follows. Assume that messagem takes
time t to transfer andm′ takest′ to transfer.

– The offset between A’s clock and B’s clock isO. If A’s local clock time isA(t) and
B’s local clock time isB(t), we have

A(t) = B(t) + O (3.3)

Then,
Ti−2 = Ti−3 + t + O (3.4)

Ti = Ti−1 −O + t′ (3.5)

Assumingt = t′, the offsetOi can be estimated as:

Oi = (Ti−2 − Ti−3 + Ti−1 − Ti)/2 (3.6)

The round-trip delay is estimated as:

Di = (Ti − Ti−3)− (Ti−1 − Ti−2) (3.7)

– The eight most recent pairs of (Oi, Di) are retained.

– The value ofOi that corresponds to minimumDi is chosen to estimateO.

Figure 3.11: The Network Time Protocol synchronization protocol [18].

of vector clocks that finds applications in several problem domains. In matrix clocks, the clock at a
process is represented by a matrix of integers. Thus, the message and the compuatation overheads
are high; however, matrix clocks are very powerful – besidescontaining information about the
direct dependencies, a matrix clock contains information about the latest direct dependencies of
those dependencies. This information can be very useful in aplications such as distributed garbage
collection. Thus, the power of systems of clocks increases in the order of scalar, vector, and matrix,
but so do the complexity and the overheads.

We discussed three efficient implementations of vector clocks; similar techniques can be used
to efficiently implement matrix clocks. Singhal-Kshemkalyani’s differential technique exploits the
fact that between successive events at a process, only few entries of its vector clock are likely to

76

change. Thus, when a processpi sends a message to a processpj, it piggybacks only those entries
of its vector clock that have changed since the last message send topj, reducing the communica-
tion and buffer (to store messages) overheads. Fowler-Zwaenepoel’s direct-dependency technique
does not maintain vector clocks on-the-fly. Instead, a process only maintains information regarding
direct dependencies on other processes. A vector timestampfor an event, that represents transi-
tive dependencies on other processes, is constructed off-line from a recursive search of the direct
dependency information at processes. Thus, the technique has low run-time overhead. In the
Fowler-Zwaenepoel’s technique, however, a process must update and record its dependency vector
after receiving a message but before sending out any message. If events occur very frequently,
this technique will require recording the history of a largenumber of events. In the Jard-Jourdan’s
technique, events can be adaptively observed while maintaining the capability of retrieving all the
causal dependencies of an observed event.

Virtual time system is a paradigm for organizing and synchronizing distributed systems using
virtual time. We discussed virtual time and its implementation using the Time Warp mechanism.

3.11 Bibliographic Notes

The idea of logical time was proposed by Lamport in 1978 [11] in an attempt to order events in
distributed systems. He also suggested an implementation of logical time as a scalar time. Vector
clocks were developed independently by Fidge [6], Mattern [14] and Schmuck [27]. Charron-Bost
formally showed [4] that if vector clocks have to satisfy thestrong consistency property, then the
length of vector timestamps must be at leastn. Efficient implementations of vector clocks can be
found in [10, 29]. Matrix clocks was informally proposed by Michael and Fischer [7] and used by
Wuu and Bernstein [32] and by Lynch and Sarin [26] to discard obsolete information. Raynal and
Singhal present a survey of scalar, vector, and matrix clocks in [23]. More details on virtual time
can be found in a classical paper by Jefferson [9]. A survey ofphysical clock synchronization in
wireless sensor networks can be found in [31].

3.12 Exercise Problems

1. Why is it difficult to keep a synchronized system of physical clocks in distributed systems?

2. If events corresponding to vector timestampsV t1, V t2,, V tn are mutually concurrent,
then prove that

(V t1[1], V t2[2],V tn[n])= max(V t1, V t2,,V tn).

3. If eventsei and ej respectively occurred at processespi and pj and are assigned vector
timestampsV Tei

andV Tej
, respectively, then show that

ei → ej ⇔ V Tei
[i] < V Tej

[i].

77

4. The size of matrix clocks is quadratic with respect to the system size. Hence the message
overhead is likely to be substantial. Propose a technique for matrix clocks similar to that of
Singhal-Kshemkalyani to decrease the volume of information transmitted in messages and
stored at processes.

78

Bibliography

[1] Awerbuch, B.Complexity of network synchronization.Journal of the ACM, vol.32,4, (1985),
pp. 804-823.

[2] Bruno R. Preiss, University of Waterloo, “The Yaddes Distributed Discrete Event Simulation
Specification Language and Execution Environments”

[3] Chandy, K.M., Misra, J.The drinking philosophers problem.ACM Toplas, vol.6,4, (1984),
pp. 632-646.

[4] Charron-Bost, B.Concerning the size of logical clocks in distributed systems. Inf. Proc. Let-
ters, vol.39, (1991), pp. 11-16.

[5] F. Cristian. Probabilistic Clock Synchronization.Distributed Computing,3:146–158,
Springer-Verlag, 1989.

[6] Fidge, C.Logical time in distributed computing systems.IEEE Computer, (August 1991), pp.
28-33.

[7] Fischer, M.J., Michael, A.Sacrifying serializability to attain hight availability of data in an
unreliable network.Proc. of ACM Symposium on Principles of Database Systems, (1982),
pp. 70-75.

[8] Fowler J., Zwaenepoel W.Causal distributed breakpoints.Proc. of 10th Int’l. Conf. on Dis-
tributed Computing Systems, (1990), pp. 134-141.

[9] Jefferson, D.Virtual time.ACM Toplas, vol.7,3, (1985), pp. 404-425.

[10] Jard C., Jourdan G-C.Dependency tracking and filtering in distributed computations.in Brief
announcements of the ACM symposium on PODC, (1994). (A full presentation appeared as
IRISA Tech. Report No. 851, 1994).

[11] Lamport, L.Time, clocks and the ordering of events in a distributed system.Comm. ACM,
vol.21, (July 1978), pp. 558-564.

[12] B. Liskov, Practical Uses of Synchronized Clocks in Distributed Systems,Proc. Tenth Annual
ACM Symposium on Principles of Distributed Computing,pp. 1–9, Aug. 1991.

[13] Liskov, B., Ladin, R.Highly available distributed services and fault-tolerantdistributed
garbage collection.Proc. 5th ACM Symposium on PODC, (1986), pp. 29-39.

79

[14] Mattern, F.Virtual time and global states of distributed systems.Proc. "Parallel and dis-
tributed algorithms" Conf., (Cosnard, Quinton, Raynal, Robert Eds), North-Holland, (1988),
pp. 215-226.

[15] Mills, David L. On the Accuracy and Stability of Clocks Synchronized by Network Time Pro-
tocol in the Internet System.ACM Computer Communication Review 20, 1 (January 1990),
pp. 65-75.

[16] D.L. Mills. Network Time Protocol (version 3): Specification, Implementation, and Anal-
ysis. Technical Report, Network Information Center, SRI International, Menlo Park, CA,
Mar. 1992.

[17] D.L. Mills. Modelling and Analysis of Computer NetworkClocks.Technical Report, 92-5-2,
Electrical Engineering Department, Univ ersity of Delaware,May 1992.

[18] D.L. Mills. Internet Time Synchronization: the Network Time Protocol.IEEE Trans. Com-
munications,Vol 39, no 10, pp. 1482–1493, Oct. 1991.

[19] Misra, J.Distributed discrete event simulation.ACM Computing Surveys, vol.18,1, (1986),
pp. 39-65.

[20] Parker, D.S.et al. Detection of mutual inconsistency in distributed systems.IEEE Trans. on
Soft. Eng., vol.SE 9,3, (May 1983), pp. 240-246.

[21] Raynal, M.A distributed algorithm to prevent mutual drift between n logical clocks.Inf.
Processing Letters, vol.24, (1987), pp. 199-202.

[22] Raynal, M., Helary, J.M.Synchronization and control of distributed systems and programs.
Wiley & sons, (1990), 124 p.

[23] M. Raynal and M. Singhal,Logical Time: Capturing Causality in Distributed Systems, IEEE
Computer, February 1996, Vol 30, No 2, pp. 49-56.

[24] Ricart, G., Agrawala, A.K.An optimal algorithm for mutual exclusion in computer networks.
Comm. ACM, vol.24,1, (Jan. 1981), pp. 9-17.

[25] Righter, R., Walrand, J.C.Distributed simulation of discrete event systems.Proc. of the IEEE,
(Jan. 1988), pp. 99-113.

[26] Sarin, S.K., Lynch, L.Discarding obsolete information in a replicated data base system.
IEEE Trans. on Soft. Eng., vol.SE 13,1, (Jan. 1987), pp. 39-46.

[27] Schmuck, F.The use of efficient broadcast in asynchronous distributed systems.Ph. D. Thesis,
Cornell University, TR88-928, (1988), 124 pages.

[28] M. Singhal, A Heuristically-Aided Mutual Exclusion Algorithm for Distributed Systems.
IEEE Trans. on Computers, Vol 38, No 5, (May 1989), pp. 651-662.

[29] Singhal, M., Kshemkalyani, A.An Efficient Implementation of Vector Clocks.Information
Processing Letters, 43, August 1992, pp. 47-52.

80

[30] Strom, R.E., Yemini, S.Optimistic recovery in distributed systems.ACM TOCS, vol.3,3,
(August 1985), pp. 204-226.

[31] B. Sundararaman, U. Buy, A.D. Kshemkalyani, Clock Synchronization in Wireless Sensor
Networks: A Survey, Ad-Hoc Networks, 3(3): 281-323, May 2005.

[32] Wuu, G.T.J., Bernstein, A.J.Efficient solutions to the replicated log and dictionary problems.
Proc. 3rd ACM Symposium on PODC, (1984), pp. 233-242

81

Chapter 4

Global State and Snapshot Recording
Algorithms

Recording on-the-fly the global state of a distributed system is an important paradigm when one
is interested in analyzing, testing, or verifying properties associated with distributed executions.
Unfortunately, the lack of both a globally shared memory anda global clock in a distributed system,
added to the fact that message transfer delays in these systems are finite but unpredictable, makes
this problem non-trivial.

This chapter first defines consistent global states (also called consistent snapshots) and dis-
cusses issues which have to be addressed to compute consistent distributed snapshots. Then sev-
eral algorithms to determine on-the-fly such snapshots are presented for several types of networks
(according to the properties of their communication channels, namely, FIFO, non-FIFO, and causal
delivery).

4.1 Introduction

A distributed computing system consists of spatially separated processes that do not share a com-
mon memory and communicate asynchronously with each other by message passing over com-
munication channels. Each component of a distributed system has a local state. The state of a
process is characterized by the state of its local memory anda history of its activity. The state of a
channel is characterized by the set of messages sent along the channel less the messages received
along the channel. The global state of a distributed system is a collection of the local states of its
components.

Recording the global state of a distributed system is an important paradigm and it finds ap-
plications in several aspects of distributed system design. For examples, in detection of stable
properties such as deadlocks [17] and termination [22], global state of the system is examined for
certain properties; for failure recovery, a global state ofthe distributed system (called a checkpoint)
is periodically saved and recovery from a processor failureis done by restoring the system to the
last saved global state [15]; for debugging distributed software, the system is restored to a consis-
tent global state [8, 9] and the execution resumes from therein a controlled manner. A snapshot
recording method has been used in the distributed debuggingfacility of Estelle [13, 11], a dis-
tributed programming environment. Other applications include monitoring distributed events [30]

82

such as in industrial process control, setting distributedbreakpoints [24], protocol specification
and verification [4, 10, 14], and discarding obsolete information [12].

Therefore, it is important that we have efficient ways of recording the global state of a dis-
tributed system [6, 16]. Unfortunately, there is no shared memory and no global clock in a dis-
tributed system and the distributed nature of the local clocks and local memory makes it difficult
to record the global state of the system efficiently.

If shared memory were available, an up-to-date state of the entire system would be available
to the processes sharing the memory. The absence of shared memory necessitates ways of getting
a coherent and complete view of the system based on the local states of individual processes. A
meaningful global snapshot can be obtained if the components of the distributed system record
their local states at the same time. This would be possible ifthe local clocks at processes were
perfectly synchronized or if there were a global system clock that could be instantaneously read
by the processes. However, it is technologically infeasible to have perfectly synchronized clocks
at various sites – clocks are bound to drift. If processes read time from a single common clock
(maintained at one process), various indeterminate transmission delays during the read operation
will cause the processes to identify various physical instants as the same time. In both cases, the
collection of local state observations will be made at different times and may not be meaningful,
as illustrated by the following example.

$0C12

C21 $0 $0

$50 $50

$0

$50 $0

$0

$600 $550 $550

$120 $120 $170

$80

$80

$50

$630 $630

4

S2:B

S1:A

$200 $200
t t1 t20 t 3 t

Figure 4.1: A Banking example to illustrate recording of consistent states.

An Example

Let S1 and S2 be two distinct sites of a distributed system which maintain bank accounts A and
B, respectively. A site refers to a process in this example. Let the communication channels from
site S1 to site S2 and from site S2 to site S1 be denoted byC12 andC21, respectively. Consider the
following sequence of actions, which are also illustrated in the timing diagram of Figure 4.1.

time t0: Initially, Account A = $600, Account B = $200,C12 = $0,C21 = $0.

83

time t1: Site S1 initiates a transfer of $50 from Account A to Account B. Account A is decre-
mented by $50 to $550 and a request for $50 credit to Account B is sent on ChannelC12 to
site S2. Account A = $550, Account B = $200,C12 = $50,C21 = $0.

time t2: Site S2 initiates a transfer of $80 from Account B to Account A. Account B is decre-
mented by $80 to $120 and a request for $80 credit to Account A is sent on ChannelC21 to
site S1. Account A = $550, Account B = $120,C12 = $50,C21 = $80.

time t3: Site S1 receives the message for a $80 credit to Account A and updates Account A.
Account A = $630, Account B = $120,C12 = $50,C21 = $0.

time t4: Site S2 receives the message for a $50 credit to Account B and updates Account B.
Account A = $630, Account B = $170,C12 = $0,C21 = $0.

Suppose the local state of Account A is recorded at timet0 to show $600 and the local state
of Account B and channelsC12 andC21 are recorded at timet2 to show $120, $50, and $80,
respectively. Then the recorded global state shows $850 in the system. An extra $50 appears in
the system. The reason for the inconsistency is that AccountA’s state was recorded before the $50
transfer to Account B using channelC12 was initiated, whereas channelC12’s state was recorded
after the $50 transfer was initiated.

This simple example shows that recording a consistent global state of a distributed system is
not a trivial task. Recording activities of individual components must be coordinated appropriately.
This chapter addresses the fundamental issue of recording aconsistent global state in distributed
computing systems.

Next section presents the system model and a formal definition of the notion of consistent
global state. The subsequent sections present algorithms to record such global states under various
communication models such as FIFO communication channels,non-FIFO communication chan-
nels, and causal delivery of messages. These algorithms arecalled snapshot recording algorithms.

to show we present

4.2 System Model and Definitions

4.2.1 System Model

The system consists of a collection ofn processes,p1, p2, ..., pn, that are connected by chan-
nels. There is no globally shared memory and processes communicate solely by passing messages.
There is no physical global clock in the system. Message sendand receive is asynchronous. Mes-
sages are delivered reliably with finite but arbitrary time delay. The system can be described as a
directed graph in which vertices represent the processes and edges represent unidirectional com-
munication channels. LetCij denote the channel from processpi to processpj.

Processes and channels have states associated with them. The state of a process at any time
is defined by the contents of processor registers, stacks, local memory, etc. and may be highly
dependent on the local context of the distributed application. The state of channelCij, denoted by
SCij, is given by the set of messages in transit in the channel.

84

The actions performed by a process are modeled as three typesof events, namely, internal
events, message send events, and message receive events. For a messagemij that is sent by pro-
cesspi to processpj, let send(mij) andrec(mij) denote its send and receive events, respectively.
Occurrence of events changes the states of respective processes and channels, thus causing transi-
tions in the global system state. For example, an internal event changes the state of the process at
which it occurs. A send event (or a receive event) changes thestate of the process that sends (or
receives) the message and the state of the channel on which the message is sent (or received). The
events at a process are linearly ordered by their order of occurrence.

At any instant, the state of processpi, denoted byLSi, is a result of the sequence of all the
events executed bypi till that instant. For an evente and a process stateLSi, e∈LSi iff e belongs
to the sequence of events that have taken processpi to stateLSi. For an evente and a process state
LSi, e6∈LSi iff e does not belong to the sequence of events that have taken processpi to stateLSi.

A channel is a distributed entity and its state depends on thelocal states of the processes on
which it is incident. For a channelCij , the following set of messages can be defined based on the
local states of the processespi andpj [12].

Transit: transit(LSi, LSj) = {mij |send(mij) ∈ LSi

∧

rec(mij) 6∈ LSj }

Thus, if a snapshot recording algorithm records the state ofprocessespi andpj asLSi andLSj ,
respectively, then it must record the state of channelCij astransit(LSi, LSj).

There are several models of communication among processes and different snapshot algorithms
have assumed different models of communication. In FIFO model, each channel acts as a first-
in first-out message queue and thus, message ordering is preserved by a channel. In non-FIFO
model, a channel acts like a set in which the sender process adds messages and the receiver process
removes messages from it in a random order. A system that supports causal delivery of messages
satisfies the following property: “For any two messagesmij andmkj, if send(mij)−→ send(mkj),
thenrec(mij) −→ rec(mkj)".

Causally ordered delivery of messages implies FIFO messagedelivery. Causal ordering model
is useful in developing distributed algorithms and may simplify the design of algorithms.

4.2.2 A Consistent Global State

The global state of a distributed system is a collection of the local states of the processes and the
channels. Notationally, global stateGS is defined as,

GS = {
⋃

iLSi,
⋃

i,jSCij }

A global stateGS is aconsistent global stateiff it satisfies the following two conditions [16]:

C1: send(mij)∈LSi : mij∈SCij ⊕ rec(mij)∈LSj . (⊕ is Ex-OR operator.)

C2: send(mij)6∈LSi : mij 6∈SCij ∧ rec(mij)6∈LSj .

Condition C1 states the law of conservation of messages. Every messagemij that is recorded
as sent in the local state of a processpi must be captured in the state of the channelCij or in the
collected local state of the receiver processpj. Condition C2 states that in the collected global
state, for every effect, its cause must be present. If a messagemij is not recorded as sent in the

85

local state of processpi, then it must neither be present in the state of the channelCij nor in the
collected local state of the receiver processpj.

In a consistent global state, every message that is recordedas received is also recorded as sent.
Such a global state captures the notion of causality that a message cannot be received if it was not
sent. Consistent global states are meaningful global states and inconsistent global states are not
meaningful in the sense that a distributed system can never be in an inconsistent state.

4.2.3 Interpretation in Terms of Cuts

Cuts in a space-time diagram provide a powerful graphical aid in representing and reasoning about
global states of a computation. A cut is a line joining an arbitrary point on each process line that
slices the space-time diagram into a PAST and a FUTURE. Recall that every cut corresponds to
a global state and every global state can be graphically represented by a cut in the computation’s
space-time diagram [3].

A consistent global state corresponds to a cut in which everymessage received in the PAST
of the cut has been sent in the PAST of that cut. Such a cut is known as aconsistent cut. All
the messages that cross the cut from the PAST to the FUTURE arecaptured in the corresponding
channel state. For example, consider the space-time diagram for the computation illustrated in
Figure 4.2. Cut C1 is inconsistent because message m1 is flowing from the FUTURE to the PAST.
Cut C2 is consistent and message m4 must be captured in the state of channelC21.

Note that in a consistent snapshot, all the recorded local states of processes are concurrent; that
is, recorded local state of no process casually affects the recorded local state of any other process.
(Note that the notion of causality can be extended from the set of events to the set of recorded local
states.)

m

m m

3

4 5

m 1

m2

3

4

1

2

time

e e e

e

e e e e

e e

e

e

e e

C C

p

p

p

p

1 1 1 1

2 2 2 2

3 3 3

4 4

1 2 3 4

42 3e1

3

1
3
2 3 4 5

1 2

21

Figure 4.2: An Interpretation in Terms of a Cut.

4.2.4 Issues in Recording a Global State

If a global physical clock were available, the following simple procedure could be used to record a
consistent global snapshot of a distributed system: The initiator of the snapshot collection decides
a future time at which the snapshot is to be taken and broadcasts this time to every process. All

86

processes take their local snapshots at that instant in the global time. The snapshot of channelCij

includes all the messages that processpj receives after taking the snapshot and whose timestamp
is smaller than the time of the snapshot. (All messages are timestamped with the sender’s clock.)
Clearly, if channels are not FIFO, a termination detection scheme will be needed to determine
when to stop waiting for messages on channels.

However, a global physical clock is not available in a distributed system and the following two
issues need to be addressed in recording of a consistent global snapshot of a distributed system
[16]:

I1: How to distinguish between the messages to be recorded in thesnapshot (either in a channel
state or a process state) from those not to be recorded. The answer to this comes from
conditionsC1 andC2 as follows:

Any message that is sent by a process before recording its snapshot, must be recorded in the
global snapshot (fromC1).

Any message that is sent by a process after recording its snapshot, must not be recorded in
the global snapshot (fromC2).

I2: How to determine the instant when a process takes its snapshot. The answer to this comes
from conditionC2 is as follows:

A processpj must record its snapshot before processing a messagemij that was sent by
processpi after recording its snapshot.

We next discuss a set of representative snapshot algorithmsfor distributed systems. These al-
gorithms assume different interprocess communication capabilities about the underlying system
and illustrate how interprocess communication affects thedesign complexity of these algorithms.
There are two types of messages: computation messages and control messages. The former are
exchanged by the underlying application and the latter are exchanged by the snapshot algorithm.
Execution of a snapshot algorithm is transparent to the underlying application, except for occa-
sional delaying of some actions of the application.

4.3 Snapshot Algorithms for FIFO Channels

This section presents Chandy and Lamport algorithm [6], which was the first algorithm to record
the global snapshot. We also present three variations of theChandy and Lamport algorithm.

4.3.1 Chandy-Lamport Algorithm

The Chandy-Lamport algorithm uses a control message, called amarker. After a site has recorded
its snapshot, it sends amarker, along all of its outgoing channels before sending out any more
messages. Since channels are FIFO, a marker separates the messages in the channel into those to
be included in the snapshot (i.e., channel state or process state) from those not to be recorded in
the snapshot. This addresses issueI1. The role of markers in a FIFO system is to act as delimiters
for the messages in the channels so that the channel state recorded by the process at the receiving
end of the channel satisfies the conditionC2.

87

Marker Sending Rule for processi

1. Processi records its state.

2. For each outgoing channel C on which a marker
has not been sent,i sends a marker along C
beforei sends further messages along C.

Marker Receiving Rule for processj
On receiving a marker along channel C:

if j has not recorded its statethen
Record the state of C as the empty set
Follow the “Marker Sending Rule"

else
Record the state of C as the set of messages
received along C afterj’s state was recorded
and beforej received the marker along C

Figure 4.3: The Chandy-Lamport algorithm.

Since all messages that follow a marker on channelCij have been sent by processpi afterpi has
taken its snapshot, processpj must record its snapshot no later than when it receives a marker on
channelCij. In general, a process must record its snapshot no later thanwhen it receives a marker
on any of its incoming channels. This addresses issueI2.

The Algorithm

The Chandy-Lamport snapshot recording algorithm is given in Figure 4.3. A process initiates
snapshot collection by executing the “Marker Sending Rule"by which it records its local state
and sends a marker on each outgoing channel. A process executes the “Marker Receiving Rule"
on receiving a marker. If the process has not yet recorded itslocal state, it records the state of
the channel on which the marker is received as empty and executes the “Marker Sending Rule" to
record its local state. Otherwise, the state of the incomingchannel on which the marker is received
is recorded as the set of computation messages received on that channel after recording the local
state but before receiving the marker on that channel. The algorithm can be initiated by any process
by executing the “Marker Sending Rule". The algorithm terminates after each process has received
a marker on all of its incoming channels.

The recorded local snapshots can be put together to create the global snapshot in several ways.
One policy is to have each process send its local snapshot to the initiator of the algorithm. Another
policy is to have each process send the information it records along all outgoing channels, and
to have each process receiving such information for the firsttime propagate it along its outgoing
channels. All the local snapshots get disseminated to all other processes and all the processes can
determine the global state.

Multiple processes can initiate the algorithm concurrently. If multiple processes initiate the al-

88

gorithm concurrently, each initiation needs to be distinguished by using unique markers. Different
initiations by a process are identified by a sequence number.

Correcteness

To prove the correctness of the algorithm, we show that a recorded snapshot satisfies conditions
C1 andC2. Since a process records its snapshot when it receives the first marker on any incom-
ing channel, no messages that follow markers on the channelsincoming to it are recorded in the
process’s snapshot. Moreover, a process stops recording the state of an incoming channel when a
marker is received on that channel. Due to FIFO property of channels, it follows that no message
sent after the marker on that channel is recorded in the channel state. Thus, conditionC2 is satis-
fied. When a processpj receives messagemij that precedes the marker on channelCij, it acts as
follows: If processpj has not taken its snapshot yet, then it includesmij in its recorded snapshot.
Otherwise, it recordsmij in the state of the channelCij . Thus, conditionC1 is satisfied.

Complexity

The recording part of a single instance of the algorithm requiresO(e) messages andO(d) time,
wheree is the number of edges in the network andd is the diameter of the network.

$50

$0$0C21

C12 $0
4t3t0 2t1

$50

$630$630

$50

$80

$80

$170$120$120

$550$550$600

$0

$0$50

$0

tt

markers

(2nd example)

markers

(1st example)

execution

message

$200$200

S1:A

S2:B

Figure 4.4: Timing Diagram of Two Possible Executions of theBanking Example.

4.3.2 Properties of the Recorded Global State

The recorded global state may not correspond to any of the global states that occurred during the
computation. Consider two possible executions of the snapshot algorithm (shown in Figure 4.4)
for the money transfer example of Figure 4.2.

89

1. (Markers shown using dashed-and-dotted arrows.) Let site S1 initiate the algorithm just after
t1. Site S1 records its local state (Account A = $550) and sends amarker to site S2. The
marker is received by site S2 aftert4. When site S2 receives the marker, it records its local
state (Account B = $170), the state of channelC12 as $0, and sends a marker along channel
C21. When site S1 receives this marker, it records the state of ChannelC21 as $80. The $800
amount in the system is conserved in the recorded global state,

A = $550, B = $170, C12 = $0, C21 = $80

2. (Markers shown using dotted arrows.) Let site S1 initiatethe algorithm just aftert0 and
before sending the $50 for S2. Site S1 records its local state(Account A = $600) and sends
a marker to site S2. The marker is received by site S2 betweent2 and t3. When site S2
receives the marker, it records its local state (Account B = $120), the state of channelC12 as
$0, and sends a marker along channelC21. When site S1 receives this marker, it records the
state of ChannelC21 as $80. The $800 amount in the system is conserved in the recorded
global state,

A = $600, B = $120, C12 = $0, C21 = $80

In both these possible runs of the algorithm, the recorded global states never occurred in the exe-
cution. This happens because a process can change its state asynchronously before the markers it
sent are received by other sites and the other sites record their states.

Nevertheless, as we discuss next, the system could have passed through the recorded global
states in some equivalent executions. Suppose the algorithm is initiated in global stateSi and it
terminates in global stateSt. Let seq be the sequence of events which takes the system fromSi

to St. LetS∗ be the global state recorded by the algorithm. Chandy and Lamport [6] showed that
there exists a sequenceseq′ which is a permutation ofseq such thatS∗ is reachable fromSi by
executing a prefix ofseq′ andSt is reachable fromS∗ by executing the rest of the events ofseq′.

A brief skecth of the proof is as follows: An evente is defined as a prerecording/postrecording
event if e occurs on a processp and p records its state after/beforee in seq. A postrecording
event may occur after a prerecording event only if the two events occur on different processes. It
is shown that a postrecording event can be swapped with an immediately following prerecording
event in a sequence without affecting the local states of either of the two processes on which the two
events occur. By iteratively applying this operation toseq, the above-described permutationseq′

is obtained. It is then shown thatS∗, the global state recorded by the algorithm for the processes
and channels, is the state after all the prerecording eventshave been executed, but before any
postrecording event.

Thus, the recorded global state is a valid state in an equivalent execution and if a stable prop-
erty (i.e., a property that persists such as termination or deadlock) holds in the system before the
snapshot algorithm begins, it holds in the recorded global snapshot. Therefore, a recorded global
state is useful in detecting stable properties.

A physical interpretation of the collected global state is as follows: Consider the two instants of
recording of the local states in the banking example. If the cut formed by these instants is viewed as
being an elastic band and if the elastic band is stretched so that it is vertical, then recorded states of
all processes occur simultaneously at one physical instant, and the recorded global state occurs in
the execution that is depicted in this modified space-time diagram. This is called therubber-band

90

criterion. For example, consider the two different executions of the snapshot algorithm, depicted in
Figure 4.4. For the execution for which the markers are shownusing dashed-and-dotted arrows, the
instants of the local state recordings are marked by squares. Applying the rubber-band criterion,
these can be stretched to be vertical or instantaneous. Similarly for the other execution for which
the markers are shown using dotted arrows and the instants oflocal state rcordings are marked
by circles. Note that the system execution would have been like this, had the processors’ speeds
and message delays been different. Yet another physical interpretation of the collected global
state is as follows: All the recorded process states are mutually concurrent – no recorded process
state causally depends upon another. Therefore, logicallywe can view that all these process states
occurred simultaneously even though they might have occurred at different instants in physical
time.

4.4 Variations of the Chandy-Lamport Algorithm

Several variants of the Chandy-Lamport snapshot algorithmfollowed. These variants refined and
optimized the basic algorithm. For example, Spezialetti and Kearns algorithm [29] optimizes con-
current initiation of snapshot collection and efficiently distributes the recorded snapshot. Venkate-
san’s algorithm [32] optimizes the basic snapshot algorithm to efficiently record repeated snapshots
of a distributed system that are required in recovery algorithms with synchronous checkpointing.

4.4.1 Spezialetti-Kearns Algorithm

There are two phases in obtaining a global snapshot: locallyrecording the snapshot at every process
and distributing the resultant global snapshot to all the initiators. Spezialetti and Kearns [29]
provided two optimizations to the Chandy-Lamport algorithm. The first optimization combines
snapshots concurrently initiated by multiple processes into a single snapshot. This optimization
is linked with the second optimization which deals with the efficient distribution of the global
snapshot. A process needs to take only one snapshot, irrespective of the number of concurrent
initiators and all processes are not sent the global snapshot. This algorithm assumes bidirectional
channels in the system.

Efficient Snapshot Recording

In the Spezialetti-Kearns algorithm, a markers carries theidentifier of the initiator of the algorithm.
Each process has a variablemasterto keep track of the initiator of the algorithm. When a process
executes the “Marker Sending Rule" on the receipt of its firstmarker, it records the initiator’s iden-
tifier carried in the received marker in themastervariable. A process that initiates the algorithm
records its own identifier in themastervariable.

A key notion used by the optimizations is that of aregionin the system. A region encompasses
all the processes whosemasterfield contains the identifier of the same initiator. A region is iden-
tified by the initiator’s identifier. When there are multipleconcurrent initiators, the system gets
partitioned into multiple regions.

When the initiator’s identifier in a marker received along a channel is different from the value
in the mastervariable, a concurrent initiation of the algorithm is detected and the sender of the

91

marker lies in a different region. The identifier of the concurrent initiator is recorded in a local
variableid-border-set. The process receiving the marker does not take a snapshot for this marker
and does not propagate this marker. Thus, the algorithm efficiently handles concurrent snapshot
initiations by suppressing redundant snapshot collections – a process does not take a snapshot or
propagate a snapshot request initiated by a process if it hasalready taken a snapshot in response to
some other snapshot initiation.

The state of the channel is recorded just as in the Chandy-Lamport algorithm (including those
that cross a border between regions). This enables the snapshot recorded in one region to be
merged with the snapshot recorded in the adjacent region. Thus, even though markers arriving at a
node contain identifiers of different initiators, they are considered part of the same instance of the
algorithm for the purpose of channel state recording.

Snapshot recording at a process is complete after it has received a marker along each of its
channels. After every process has recorded its snapshot, the system is partitioned into as many re-
gions as the number of concurrent initiations of the algorithm. Variableid-border-set at a process
contains the identifiers of the neighboring regions.

Efficient Dissemination of the Recorded Snapshot

The Spezialetti-Kearns algorithm efficiently assembles the snapshot as follows: In the snapshot
recording phase, a forest of spanning trees is implicitly created in the system. The initiator of the
algorithm is the root of a spanning tree and all processes in its region belong to its spanning tree. If
processpi executed the “Marker Sending Rule" because it received its first marker from processpj,
then processpj is the parent of processpi in the spanning tree. When a leaf process in the spanning
tree has recorded the states of all incoming channels, the process sends the locally recorded state
(local snapshot,id-border-set) to its parent in the spanning tree. After an intermediate process in
a spanning tree has received the recorded states from all itschild processes and has recorded the
states of all incoming channels, it forwards its locally recorded state and the locally recorded states
of all its descendent processes to its parent.

When the initiator receives the locally recorded states of all its descendents from its children
processes, it assembles the snapshot for all the processes in its region and the channels incident on
these processes. The initiator knows the identifiers of initiators in adjacent regions usingid-border-
set information it receives from processes in its region. The initiator exchanges the snapshot of
its region with the initiators in adjacent regions in rounds. In each round, an initiator sends to
initiators in adjacent regions, any new information obtained from the initiator in the adjacent region
during the previous round of message exchange. A round is complete when an initiator receives
information, or theblankmessage (signifying no new information will be forthcoming) from all
initiators of adjacent regions from which it has not alreadyreceived ablankmessage.

The message complexity of snapshot recording isO(e) irrespective of the number of concurrent
initiations of the algorithm. The message complexity of assembling and disseminating the snapshot
is O(rn2) wherer is the number of concurrent initiations.

4.4.2 Venkatesan’s Incremental Snapshot Algorithm

Many applications require repeated collection of global snapshots of the system. For example, re-
covery algorithms with synchronous checkpointing need to advance their checkpoints periodically.

92

This can be achieved by repeated invocations of the Chandy-Lamport algorithm. Venkatesan [32]
proposed the following efficient approach: Execute an algorithm to record an incremental snapshot
since the most recent snapshot was taken and combine it with the most recent snapshot to obtain the
latest snapshot of the system. The incremental snapshot algorithm of Venkatesan [32] modifies the
global snapshot algorithm of Chandy-Lamport to save on messages when computation messages
are sent only on a few of the network channels, between the recording of two successive snapshots.

The incremental snapshot algorithm assumes bidirectionalFIFO channels, the presence of a
single initiator, a fixed spanning tree in the network, and four types of control messages:init_snap,
snap_completed, regular, andack. init_snapandsnap_completedmessages traverse spanning tree
edges.regular andack messages which serve to record the state of non-spanning edges are not
sent on those edges on which no computation message has been sent since the previous snapshot.

Venkatesan [32] showed that the lower bound on the message complexity of an incremental
snapshot algorithm isΩ(u + n) whereu is the number of edges on which a computation message
has been sent since the previous snapshot. Venkatesan’s algorithm achieves this lower bound in
message complexity.

The algorithm works as follows: Snapshots are assigned version numbers and all algorithm
messages carry this version number. The initiator notifies all the processes the version number
of the new snapshot by sendinginit_snapmessages along the spanning tree edges. A process
follows the “Marker Sending Rule" when it receives this notification or when it receives aregular
message with a new version number. The “Marker Sending Rule"is modified so that the process
sendsregular messages along only those channels on which it has sent computation messages
since the previous snapshot, and the process waits forack messages in response to theseregular
messages. When a leaf process in the spanning tree receives all the ack messages it expects, it
sends asnap_completedmessage to its parent process. When a non-leaf process in thespanning
tree receives all theackmessages it expects, as well as asnap_completedmessage from each of its
child processes, it sends asnap_completedmessage to its parent process.

The algorithm terminates when the initiator has received all the ack messages it expects, as
well as asnap_completedmessage from each of its child processes. The selective manner in which
regular messages are sent has the effect that a process does not know whether to expect aregular
message on an incoming channel. A process can be sure that no such message will be received
and that the snapshot is complete only when it executes the “Marker Sending Rule" for the next
initiation of the algorithm.

4.4.3 Helary’s Wave Synchronization Method

Helary’s snapshot algorithm [12] incorporates the conceptof message waves in the Chandy-Lamport
algorithm. A wave is a flow of control messages such that everyprocess in the system is visited
exactly once by a wave control message, and at least one process in the system can determine when
this flow of control messages terminates. A wave is initiatedafter the previous wave terminates.
Wave sequences may be implemented by various traversal structures such as a ring. A process
begins recording the local snapshot when it is visited by thewave control message.

In Helary’s algorithm, the “Marker Sending Rule" is executed when a control message belong-
ing to the wave flow visits the process. The process then forwards a control message to other pro-
cesses, depending on the wave traversal structure, to continue the wave’s progression. The “Marker
Receiving Rule" is modified so that if the process has not recorded its state when a marker is re-

93

ceived on some channel, the “Marker Receiving Rule" is not executed and no messages received
after the marker on this channel are processed until the control message belonging to the wave flow
visits the process. Thus, each process follows the “Marker Receiving Rule" only after it is visited
by a control message belonging to the wave.

Note that in this algorithm, the primary function of wave synchronization is to evaluate func-
tions over the recorded global snapshot. This algorithm hasa message complexity ofO(e) to
record a snapshot (because all channels need to be traversedto implement the wave).

An example of this function is the number of messages in transit to each process in a global
snapshot, and whether the global snapshot is strongly consistent. For this function, each process
maintains two vectors,SENT andRECD. Theith elements of these vectors indicate the number
of messages sent to/received from processi, respectively, since the previous visit of a wave con-
trol message. The wave control messages carry a global abstract counter vector whoseith entry
indicates the number of messages in transit to processi. These entries in the vector are updated
using theSENT andRECD vectors at each node visited. When the control wave terminates, the
number of messages in transit to each process as recorded in the snapshot is known.

4.5 Snapshot Algorithms for Non-FIFO Channels

A FIFO system ensures that all messages sent after a marker ona channel will be delivered after the
marker. This ensures that conditionC2 is satisfied in the recorded snapshot ifLSi, LSj , andSCij

are recorded as described in the Chandy-Lamport algorithm.In a non-FIFO system, the problem of
global snapshot recording is complicated because a marker cannot be used to delineate messages
into those to be recorded in the global state from those not tobe recorded in the global state. In
such systems, different techniques have to be used to ensurethat a recorded global state satisfies
conditionC2.

In a non-FIFO system, either some degree of inhibition (i.e., temporarily delaying the execution
of an application process or delaying the send of a computation message) or piggybacking of
control information on computation messages to capture out-of-sequence messages, is necessary
to record a consistent global snapshot [31]. The non-FIFO algorithm by Helary uses message
inhibition [12]. The non-FIFO algorithms by Lai and Yang [18], Li et al. [20], and Mattern [23]
use message piggybacking to distinguish computation messages sent after the marker from those
sent before the marker.

The non-FIFO algorithm of Helary [12] uses message inhibition to avoid an inconsistency in
a global snapshot in the following way: When a process receives a marker, it immediately returns
an acknowledgement. After a processpi has sent a marker on the outgoing channel to processpj,
it does not send any messages on this channel until it is sure thatpj has recorded its local state.
Processpi can conclude this if it has received an acknowledgement for the marker sent topj, or it
has received a marker for this snapshot frompj .

We next discuss snapshot recording algorithms for systems with non-FIFO channels that use
piggybacking of computation messages.

94

4.5.1 Lai-Yang Algorithm

Lai and Yang’s global snapshot algorithm for non-FIFO systems [18] is based on two observations
on the role of a marker in a FIFO system. The first observation is that a marker ensures that
conditionC2 is satisfied forLSi andLSj when the snapshots are recorded at processesi andj,
respectively. The Lai-Yang algorithm fulfills this role of amarker in a non-FIFO system by using
a coloring scheme on computation messages that works as follows:

1. Every process is initially white and turns red while taking a snapshot. The equivalent of the
“Marker Sending Rule" is executed when a process turns red.

2. Every message sent by a white (red) process is colored white (red). Thus, a white (red)
message is a message that was sent before (after) the sender of that message recorded its
local snapshot.

3. Every white process takes its snapshot at its convenience, but no later than the instant it
receives a red message.

Thus, when a white process receives a red message, it recordsits local snapshot before process-
ing the message. This ensures that no message sent by a process after recording its local snapshot
is processed by the destination process before the destination records its local snapshot. Thus,
an explicit marker message is not required in this algorithmand the ‘marker’ is piggybacked on
computation messages using a coloring scheme.

The second observation is that the marker informs processj of the value of{send(mij)|
send(mij) ∈ LSi } so that the state of the channelCij can be computed astransit(LSi, LSj). The
Lai-Yang algorithm fulfills this role of the marker in the following way:

4. Every white process records a history of all white messages sent or received by it along each
channel.

5. When a process turns red, it sends these histories along with its snapshot to the initiator
process that collects the global snapshot.

6. The initiator process evaluatestransit(LSi, LSj) to compute the state of a channelCij as
given below:
SCij = white messages sent bypi onCij −white messages received bypj onCij = {send(mij)|send(mij) ∈
LSi } − {rec(mij)|rec(mij) ∈ LSj }.

Condition C2 holds because a red message is not included in the snapshot ofthe recipient
process and a channel state is the difference of two sets of white messages. ConditionC1 holds
because a white messagemij is included in the snapshot of processpj if pj receivesmij before
taking its snapshot. Otherwise,mij is included in the state of channelCij.

Though marker messages are not required in the algorithm, each process has to record the
entire message history on each channel as part of the local snapshot. Thus, the space requirements
of the algorithm may be large. However, in applications (such as termination detection) where
the number of messages in transit in a channel is sufficient, message histories can be replaced by
integer counters reducing the space requirement. Lai and Yang describe how the size of the local

95

storage and snapshot recording can be reduced by storing only the messages sent and received
since the previous snapshot recording, assuming that the previous snapshot is still available. This
approach can be very useful in applications that require repeated snapshots of a distributed system.

4.5.2 Li et al.’s Algorithm

Li et al.’s algorithm [20] for recording a global snapshot ina non-FIFO system is similar to the
Lai-Yang algorithm. Markers are tagged so as to generalize the red/white colors of the Lai-Yang
algorithm to accommodate repeated invocations of the algorithm and multiple initiators. In addi-
tion, the algorithm is not concerned with the contents of computation messages and the state of
a channel is computed as the number of messages in transit in the channel. A process maintains
two counters for each incident channel to record the number of messages sent and received on
the channel and reports these counter values with its snapshot to the initiator. This simplification
is combined with the incremental technique to compute channel states, which reduces the size of
message histories to be stored and transmitted. The initiator computes the state ofCij as: (the
number of messages inCij in the previous snapshot) + (the number of messages sent onCij since
the last snapshot at processpi) − (the number of messages received onCij since the last snapshot
at processpj).

Snapshots initiated by an initiator are assigned a sequencenumber. All messages sent after a lo-
cal snapshot recording are tagged by a tuple< init_id,MKNO >, whereinit_id is the initiator’s
identifier andMKNO is the sequence number of the algorithm’s most recent invocation by initia-
tor init_id; to insure liveness, markers with tags similar to the above tags are explicitly sent only
on all outgoing channels on which no messages might be sent. The tuple< init_id,MKNO > is
a generalization of the red/white colors used in Lai-Yang toaccommodate repeated invocations of
the algorithm and multiple initiators.

For simplicity, we explain this algorithm using the framework of the Lai-Yang algorithm. The
local state recording is done as described by Rules 1-3 of theLai-Yang algorithm.

A process maintains Input/Output counters for the number ofmessages sent and received on
each incident channel after the last snapshot (by that initiator). The algorithm is not concerned with
the contents of computation messages and so the computationof the state of a channel is simplified
to computing the number of messages in transit in the channel. This simplification is combined
with an incremental technique for computing in-transit messages, also suggested independently by
Lai and Yang [18], for reducing the size of the entire messagehistory to be locally stored and to
be recorded in a local snapshot to compute channel states. The initiator of the algorithm maintains
a variableTRANSITij for the number of messages in transit in the channel from processpi to
processpj, as recorded in the previous snapshot. The channel states are recorded as described in
Rules 4-6 of the Lai-Yang algorithm.

4. Every white process records a history, as Input and Outputcounters, of all white messages
sent or received by it along each channel after the previous snapshot (by the same initiator).

5. When a process turns red, it sends these histories (i.e., Input and Output counters) along with
its snapshot to the initiator process that collects the global snapshot.

6. The initiator process computes the state of channelCij as follows:
SCij = transit(LSi, LSj) = TRANSITij + (# messages sent on that channel since the last

96

snapshot)− (# messages received on that channel since the last snapshot).

If the initiator initiates a snapshot before the completionof the previous snapshot, it is possible
that some process may get a message with a lower sequence number after participating in a snap-
shot initiated later. In this case, the algorithm uses the snapshot with the higher sequence number
to also create the snapshot for the lower sequence number.

The algorithm works for multiple initiators if separate Input/Output counters are associated
with each initiator, and marker messages and the tag fields carry a vector of tuples, with one tuple
for each initiator.

Though this algorithm does not require any additional message to record a global snapshot
provided computation messages are eventually sent on each channel, the local storage and size
of tags on computation messages are of sizeO(n), wheren is the number of initiators. The
Spezialetti and Kearns technique [29] of combining concurrently initiated snapshots can be used
with this algorithm.

4.5.3 Mattern’s Algorithm

Mattern’s algorithm [23] is based on vector clocks. Recall that in vector clocks, the clock at a
process in an integer vector of lengthn, with one component for each process.

Mattern’s algorithm assumes a single initiator process andworks as follows:

1. The initiator “ticks" its local clock and selects a futurevector times at which it would like a
global snapshot to be recorded. It then broadcasts this times and freezes all activity until it
receives all acknowledgements of the receipt of this broadcast.

2. When a process receives the broadcast, it remembers the value s and returns an acknowl-
edgement to the initiator.

3. After having received an acknowledgement from every process, the initiator increases its
vector clock tos and broadcasts a dummy message to all processes. (Observe that before
broadcasting this dummy message, the local clocks of other processes have a value6≥ s.)

4. The receipt of this dummy message forces each recipient toincrease its clock to a value≥ s
if not already≥ s.

5. Each process takes a local snapshot and sends it to the initiator when (just before) its clock
increases from a value less thans to a value≥ s. Observe that this may happen before the
dummy message arrives at the process.

6. The state ofCij is all messages sent alongCij, whose timestamp is smaller thans and which
are received bypj after recordingLSj .

Processes record their local snapshot as per rule (5). Any messagemij sent by processpi after
it records its local snapshotLSi has a timestamp> s. Assume that thismij is received by process
pj before it recordsLSj. After receiving thismij and beforepj recordsLSj , pj ’s local clock reads a
value> s, as per rules for updating vector clocks. This impliespj must have already recordedLSj

as per rule (5), which contradicts the assumption. Therefore,mij cannot be received bypj before

97

it recordsLSj . By rule (6),mij is not recorded inSCij and therefore, conditionC2 is satisfied.
ConditionC1 holds because each messagemij with a timestamp less thans is included in the
snapshot of processpj if pj receivesmij before taking its snapshot. Otherwise,mij is included in
the state of channelCij.

The following observations about the above algorithm lead to various optimizations: (i) The
initiator can be made a “virtual" process; so, no process hasto freeze. (ii) As long as a new higher
value ofs is selected, the phase of broadcastings and returning the acks can be eliminated. (iii)
Only the initiator’s component ofs is used to determine when to record a snapshot. Also, one
needs to know only if the initiator’s component of the vectortimestamp in a message has increased
beyond the value of the corresponding component ins. Therefore, it suffices to have just two
values ofs, say, white and red, which can be represented using one bit.

With these optimizations, the algorithm becomes similar tothe Lai-Yang algorithm except for
the manner in whichtransit(LSi, LSj) is evaluated for channelCij . In Mattern’s algorithm, a
process is not required to store message histories to evaluate the channel states. The state of any
channel is the set of all the white messages that are receivedby a red process on which that channel
is incident. A termination detection scheme for non-FIFO channels is required to detect that no
white messages are in transit to ensure that the recording ofall the channel states is complete. One
of the following schemes can be used for termination detection:

1. Each processi keeps a countercntri that indicates the difference between the number of
white messages it has sent and received before recording itssnapshot. It reports this value
to the initiator process along with its snapshot and forwards all white messages, it receives
henceforth, to the initiator. Snapshot collection terminates when the initiator has received
∑

i cntri number of forwarded white messages.

2. Each red message sent by a process carries a piggybacked value of the number of white
messages sent on that channel before the local state recording. Each process keeps a counter
for the number of white messages received on each channel. A process can detect termination
of recording the states of incoming channels when it receives as many white messages on
each channel as the value piggybacked on red messages received on that channel.

The savings of not storing and transmitting entire message histories, over the Lai-Yang algo-
rithm, comes at the expense of delay in the termination of thesnapshot recording algorithm and
need for a termination detection scheme (e.g., a message counter per channel).

4.6 Snapshots in a Causal Delivery System

Two global snapshot recording algorithms, namely, Acharya-Badrinath [1] and Alagar-Venkatesan
[2] assume that the underlying system supports causal message delivery. The causal message
delivery propertyCO provides a built-in message synchronization to control andcomputation
messages. Consequently, snapshot algorithms for such systems are considerably simplified. For
example, these algorithms do not send control messages (i.e., markers) on every channel and are
simpler than the snapshot algorithms for a FIFO system.

Several protocols exist for implementing causal ordering [5, 6, 26, 28].

98

4.6.1 Process State Recording

Both these algorithms use an identical principle to record the state of processes. An initiator
process broadcasts a token, denoted astoken, to every process including itself. Let the copy of the
token received by processpi be denotedtokeni. A processpi records its local snapshotLSi when
it receivestokeni and sends the recorded snapshot to the initiator. The algorithm terminates when
the initiator receives the snapshot recorded by each process.

These algorithms do not require each process to send markerson each channel, and the pro-
cesses do not coordinate their local snapshot recordings with other processes. Nonetheless, for any
two processespi andpj, the following property (called PropertyP1) is satisfied:

send(mij) 6∈ LSi :rec(mij) 6∈ LSj .

This is due to the causal ordering property of the underlyingsystem as explained next. Let a
messagemij be such thatrec(tokeni)−→ send(mij). Thensend(tokenj)−→ send(mij) and the
underlying causal ordering property ensures thatrec(tokenj), at which instant processpj records
LSj , happens beforerec(mij). Thus,mij whose send is not recorded inLSi, is not recorded as
received inLSj .

Methods of channel state recording are different in these two algorithms and are discussed next.

4.6.2 Channel State Recording in Acharya-Badrinath Algorithm

Each processpi maintains arraysSENTi[1, ...N] andRECDi[1, ..., N]. SENTi[j] is the number
of messages sent by processpi to processpj andRECDi[j] is the number of messages received
by processpi from processpj . The arrays may not contribute to the storage complexity of the
algorithm because the underlying causal ordering protocolmay require these arrays to enforce
causal ordering.

Channel states are recorded as follows: When a processpi records its local snapshotLSi on
the receipt oftokeni, it includes arraysRECDi andSENTi in its local state before sending
the snapshot to the initiator. When the algorithm terminates, the initiator determines the state of
channels in the global snapshot being assembled as follows:

1. The state of each channel from the initiator to each process is empty.

2. The state of channel from processpi to processpj is the set of messages whose sequence
numbers are given by{RECDj [i] + 1, . . . , SENTi[j]}.

We now show that the algorithm satisfies conditionsC1 andC2.
Let a messagemij be such thatrec(tokeni) −→ send(mij). Clearly, send(tokenj) −→

send(mij) and the sequence number ofmij is greater thanSENTi[j]. Therefore,mij is not
recorded inSCij. Thus, send(mij)6∈LSi :mij 6∈SCij. This in conjunction with PropertyP1 implies
that the algorithm satisfies conditionC2.

Consider a messagemij which is thekth message from processpi to processpj beforepi takes
its snapshot. The two possibilities below imply that condition C1 is satisfied.

• Processpj receivesmij before taking its snapshot. In this case,mij is recorded inpj ’s
snapshot.

99

• Otherwise,RECDj [i] ≤ k ≤ SENTi[j] and the messagemij will be included in the state
of channelCij.

This algorithm requires2n messages and2 time units for recording and assembling the snap-
shot, where one time unit is required for the delivery of a message. If the contents of messages in
channels state are required, the algorithm requires 2n messages and 2 time units additionally.

4.6.3 Channel State Recording in Alagar-Venkatesan Algorithm

A message is referred to asold if the send of the message causally precedes the send of the token.
Otherwise, the message is referred to asnew. Whether a message is new or old can be determined
by examining the vector timestamp in the message, which is needed to enforce causal ordering
among messages.

In Alagar-Venkatesan algorithm [2], channel states are recorded as follows:

1. When a process receives thetoken, it takes its snapshot, initializes the state of all channels
to empty, and returnsDone message to the initiator. Now onwards, a process includes a
message received on a channel in the channel state only if it is an old message.

2. After the initiator has receivedDonemessage from all processes, it broadcasts aTerminate
message.

3. A process stops the snapshot algorithm after receiving aTerminate message.

An interesting observation is that a process receives all the old messages in its incoming chan-
nels before it receives theTerminate message. This is ensured by the underlying causal message
delivery property.

Causal ordering property ensures that no new message is delivered to a process prior to the
tokenand only old messages are recorded in the channel states. Thus, send(mij)6∈LSi :mij 6∈SCij.
This together with PropertyP1 implies that conditionC2 is satisfied. ConditionC1 is satis-
fied because each old messagemij is delivered either before the token is delivered or before the
Terminate is delivered to a process and thus gets recorded inLSi or SCij, respectively.

A comparison of the salient features of the various snapshotrecording algorithms discused is
given in Table 4.1.

4.7 Monitoring Global State

Several applications such as debugging a distributed program need to detect a system state which
is determined by the values of variables on a subset of processes. This state can be expressed
as a predicate on variables distributed across the involvedprocesses. Rather than recording and
evaluating snapshots at regular intervals, it is more efficient to monitor changes to the variables
that affect the predicate and evaluate the predicate only when some component variable changes.

Spezialetti and Kearns [30] proposed a technique, calledsimultaneous regions, for the consis-
tent monitoring of distributed systems to detect global predicates. A process whose local variable is
a component of the global predicate informs a monitor whenever the value of the variable changes.

100

Algorithms Features

Chandy- Baseline algorithm. Requires FIFO channels.O(e) messages
Lamport [6] to record snapshot andO(d) time.
Spezialetti- Improvements over [6]: supports concurrent initiators, efficient assembly
Kearns [29] and distribution of a snapshot. Assumes bidirectional channels.

O(e) messages to record,O(rn2) messages to assemble and
distribute snapshot.

Venkatesan [32] Based on [6]. Selective sending of markers.
Provides message-optimal incremental snapshots.
Ω(n + u) messages to record snapshot.

Helary [12] Based on [6]. Uses wave synchronization.
Evaluates function over recorded global state.
Adaptable to non-FIFO systems but requires inhibition.

Lai-Yang [18] Works for non-FIFO channels. Markers piggybacked
on computation messages. Message history required
to compute channel states.

Li et al. [20] Similar to [18]. Small message history
needed as channel states are computed incrementally.

Mattern [23] Similar to [18]. No message history required.
Termination detection (e.g., a message counter per channel)
required to compute channel states.

Acharya- Requires causal delivery support, Centralized computation of channel
Badrinath [1] states, Channel message contents need not be known.

Requires 2n messages, 2 time units.
Alagar-Venkatesan [2] Requires causal delivery support, Distributed computation of channel

states. Requires 3n messages, 3 time units, small messages.

Table 4.1: A comparison of snapshot algorithms.

n = # processes, u = # edges on which messages were sent after previous snapshot, e = # channels,
d is the diameter of the network, r = # concurrent initiators.

101

This process also coerces other processes to inform the monitor of the values of their variables
that are components of the global predicate. The monitor evaluates the global predicate when it
receives the next message from each of the involved processes, informing it of the value(s) of
their local variable(s). The periods of local computation on each process between theith and the
i+ 1st events at which the values of the local component(s) of the global predicate are reported to
the monitor are defined to be thei + 1st simultaneous regions. The above scheme is extended to
arrange multiple monitors hierarchically to evaluate complex global predicates.

4.8 Necessary and Sufficient Conditions for Consistent Global
Snapshots

Many applications (such as transparent failure recovery, distributed debugging, monitoring dis-
tributed events, setting distributed breakpoints, protocol specification and verification, etc.) require
that local process states are periodically recorded and analyzed during execution or post martem. A
saved intermediate state of a process during its execution is called alocal checkpointof the process.
A global snapshot of a distributed system is a set of local checkpoints one from each process and it
represents a snapshot of the distributed computation execution at some instant. A global snapshot
is consistent, if there is no causal path between any two distinct checkpoints in the global snapshot.
Therefore, a consistent snapshot consists of a set of local states that occurred concurrently or had a
potential to occur simultaneously. This condition for the consistency of a global snapshot (that no
causal path between any two checkpoints) is only the necessary condition but it is not the sufficient
condition. In this section, we present the necessary and sufficient conditions under which a local
checkpoint or a set of arbitrary collection of local checkpoints can be grouped with checkpoints at
other processes to form a consistent global snapshot.

Processes take checkpoints asynchronously. Each checkpoint taken by a process is assigned a
unique sequence number. Theith(i ≥ 0) checkpoint of processpp is assigned the sequence number
i and is denoted byCp,i. We assume that each process takes an initial checkpoint before execution
begins and takes avirtual checkpoint after execution ends. Theith checkpoint intervalof process
pp consists of all the computation performed between its(i−1)th andith checkpoints (and includes
the(i− 1)th checkpoint but notith).

p1

p2

p3

C2,0 C2,1

C1,1

C3,1C3,0

C2,2

C3,2

C1,2C1,0

C2,3

C3,3

 A checkpoint Legend:

4

m m

mm

1

2

3 m5

m6

Figure 4.5: An Illustration of zigzag paths.

We first show with the help of an example that even if two local checkpoints do not have a
causal path between them (i.e., neither happened before theother using Lamport’s happen before

102

relation), they may not belong to the same consistent globalsnapshot. Consider the execution
shown in Figure 4.5. Although neither of the checkpointsC1,1 andC3,2 happened before the
other, they cannot be grouped together with a checkpoint on processp2 to form a consistent global
snapshot. No checkpoint onp2 can be grouped with bothC1,1 andC3,2 while maintaining the
consistency. Because of messagem4,C3,2 cannot be consistent withC2,1 or any earlier checkpoint
in p2, and because of messagem3, C1,1 cannot be consistent withC2,2 or any later checkpoint in
p2. Thus no checkpoint onp2 is available to form a consistent global snapshot withC1,1 andC3,2,.

To describe the necessary and sufficient conditions for a consistent snapshot, Netzer and Xu
[25] defined a generalization of the Lamport’s happen beforerelation, called a zigzag path. A
checkpoint C1 happens before a checkpoint C2 (or a causal path exists between two checkpoints)
if a sequence of messages exists from C1 to C2 such that each message is sent after the previous
one in the sequence is received. A zigzag path between two checkpoints is a causal path, however,
a zigzag path allows a message to be sent before the previous one in the path is received. For
example, in Figure 4.5 although a causal path does not exist fromC1,1 to C3,2, a zigzag path does
exist fromC1,1 to C3,2. This zigzag path is formed by messagesm3 andm4. This zigzag path
means that no consistent snapshot exists in this execution that contains bothC1,1 andC3,2.

Several applications require saving or analyzing consistent snapshots and zigzag paths have
implication on such applications. For example, the state from which a distributed computation
must restart after a crash must be consistent. Consistency ensures that no process is restarted from
a state that has recorded the receipt of a message (called an orphan message) that no other process
claims to have sent in the rolled back state. Processes take local checkpoints independently and
a consistent global snapshot/checkpoint is found from the local checkpoints for a crash recovery.
Clearly, due to zigzag paths, not all checkpoints taken by the processes will belong to a consistent
snapshot. By reducing the number of zigzag paths in the localcheckpoints taken by processes, one
can increase the number of local checkpoints that belong to aconsistent snapshot, thus minimizing
the roll back necessary to find a consistent snapshot1. This can be achieved by tracking zigzag paths
online and allowing each process to adaptively take checkpoints at certain points in the execution
so that the number of checkpoints that cannot belong to a consistent snapshot is minimized.

4.8.1 Zigzag Paths and Consistent Global Snapshots

In this section, we provide a formal definition of zigzag paths and use zigzag paths to character-
ize condition under which a set of local checkpoints together can belong to the same consistent
snapshot. We then present two special cases: First, the conditions for an arbitrary checkpoint to be
useful (i.e., a consistent snapshot exists that contains this checkpoint), and second, the conditions
for two arbitrary checkpoints to belong to the same consistent snapshot.

A Zigzag Path

Recall that if a global snapshot is consistent, then none of its checkpoints happened before the other
(i.e., there is no causal path between any two checkpoints inthe snapshot). However, as explained
earlier using Figure 4.5, if we have two checkpoints such that none of them happened before the
other, still it is not sufficient to ensure that they can belong together to the same consistent snapshot.

1In the worst case, the system would have to restart its execution right from the beginning after repeated rollbacks.

103

This happens when a zigzag path exists between such checkpoints. A zigzag path is defined as a
generalization of Lamport’s happened before relation.

Definition 1. A zigzag pathexists from a checkpointCx,i to a checkpointCy,j iff there exists mes-
sagesm1,m2, ...mn (n≥1) such that

1. m1 is sent by processpx afterCx,i.

2. If mk (1≤k≤n) is received by processpz, thenmk+1 is sent bypz in the same or a later
checkpoint interval (althoughmk+1 may be sent before or aftermk is received), and

3. mn is received by processpy beforeCy,j.

For example, in Figure 4.5, a zigzag path exists fromC1,1 to C3,2 due to messagesm3 and
m4. Even though processp2 sendsm4 before receivingm3, it does these in the same checkpoint
interval. However, a zigzag path does not exist fromC1,2 to C3,3 (due to messagesm5 andm6)
because processp2 sendsm6 and receivesm5 in different checkpoint intervals.

Definition 2. A checkpoint C is involved in azigzag cycleiff there is a zigzag path from C to itself.

For example, in Figure 4.6,C2,1 is on a zigzag cycle formed by messagesm1 andm2. Note
that messagesm1 andm2 are respectively sent and received in the same checkpoint interval atp1.

Difference Between a Zigzag Path and a Causal Path

It is important to understand differences between a causal path and a zigzag path. A causal path
exists from a checkpoint A to another checkpoint B iff there is chain of messages starting after A
and ending before B such that each message is sent after the previous one in the chain is received.
A zigzag path consists of such a message chain, however, a message in the chain can be sent before
the previous one in the chain is received, as long as the send and receive are in the same checkpoint
interval. Thus a causal path is always a zigzag path, but a zigzag path need not be a causal path.

Figure 4.5 illustrates the difference between causal and zigzag paths. A causal path exists
from C1,0 to C3,1 formed by chain of messagesm1 andm2; this causal path is also a zigzag path.
Similarly, a zigzag path exists fromC1,1 toC3,2 formed by the chain of messagesm3 andm4. Since
the receive ofm3 happened after the send ofm4, this zigzag path is not a causal path andC1,1 does
not happen beforeC3,2.

Another difference between a zigzag path and a causal path isthat a zigzag path can form a
cycle but a causal path never forms a cycle. That is, it is possible for a zigzag path to exist from a
checkpoint back to itself, called a zigzag cycle. In contrast, causal paths can never form cycles. A
zigzag path may form a cycle because a zigzag path need not represent causality – in a zigzag path,
we allow a message to be sent before the previous message in the path is received as long as the
send and receive are in the same interval. Figure 4.6 shows a zigzag cycle involvingC2,1, formed
by messagesm1 andm2.

104

3,2C

C1,1

4
m

m2

m3

p1

C2,1

m1
C2,0

C3,0

C1,0

3,1C

C2,2 C2,3

1,2C

p
2

p
3

Figure 4.6: A zigzag cycle, inconsistent snapshot, and consistent snapshot.

Consistent Global Snapshots

Netzer and Xu [25] proved that if no zigzag path (or cycle) exists between any two checkpoints
from a set S of checkpoints, then a consistent snapshot can beformed that includes the set S of
checkpoints and vice versa.

For a formal proof, the readers should consult the original paper. Here we give an intuitive
explanation. Intuitively, if a zigzag path exists between two checkpoints, and that zigzag path is
also a causal path, then the checkpoints are ordered and hence cannot belong to the same consistent
snapshot. If the zigzag path between two checkpoints is not acausal path, a consistent snapshot
cannot be formed that contains both the checkpoints. The zigzag nature of the path causes any
snapshot that includes the two checkpoints to be inconsistent. To visualize the effect of a zigzag
path, consider a snapshot line2 through the two checkpoints. Because of the existance of a zigzag
path between the two checkpoints, the snapshot line will always cross a message that causes one of
the checkpoints to happen before the other, making the snapshot inconsistent. Figure 4.6 illustrates
this. Two snapshot lines are drawn fromC1,1 toC3,2. The zigzag path fromC1,1 toC3,2 renders both
the snapshot lines to be inconsistent. This is because messagesm3 andm4 cross either snapshot
line in way that orders the two of its checkpoints.

Conversely, if no zigzag path exists between two checkpoints (including zigzag cycles), then it
is always possible to construct a consistent snapshot that includes these two checkpoints. We can
form a consistent snapshot by including the first checkpointat every process that has no zigzag
path to either checkpoint. Note that messages can cross a consistent snapshot line as long as they
do not cause any of the line’s checkpoints to happen before each other. For example, in Figure
4.6,C1,2 andC2,3 can be grouped withC3,1 to form a consistent snapshot even though messagem4

crosses the snapshot line.
As a summary,

• The absence of a causal path between checkpoints in a snapshot corresponds to the necessary
condition for a consistent snapshot, and the absence of a zigzag path between checkpoints in
a snapshot corresponds to the necessary and sufficient conditions for a consistent snapshot.

• A set of checkpoints S can be extended to a consistent snapshot if and only if no checkpoint
in S has a zigzag path to any other checkpoint in S.

2A snapshot line is a line drawn through a set of checkpoints.

105

• A checkpoint can be a part of a consistent snapshot if and onlyif it is not invloved in a
Z-cycle.

4.9 Finding Consistent Global Snapshots in a Distributed Com-
putation

We now address the problem to determine how individual localcheckpoints can be combined with
those from other processes to form global snapshots that areconsistent. A solution to this problem
forms the basis for many algorithms and protocols that must record on-the-fly consistent snapshots
or determine post-mortem which global snapshots are consistent.

Netzer and Xu [25] proved the necessary and sufficient conditions to construct a consistent
snapshot from a set of checkpointsS. However, they did not define the set of possible consistent
snapshots and did not present an algorithm to construct them. Manivannan-Netzer-Singhal ana-
lyzed the set ofall consistent snapshots that can be built from a set of checkpointsS. They proved
exactly which sets of local checkpoints from other processes can be combined with those inS to
form a consistent snapshot. They also developed an algorithm that enumerates all such consistent
snapshots.

We define the following notations due to Wang [33, 34].

Definition 3. Let A, B be individual checkpoints andR, S be sets of checkpoints. Let; be a
relation defined over checkpoints and sets of checkpoints such that

1. A ; B iff a Z-path exists fromA toB,

2. A ; S iff a Z-path exists fromA to somemember ofS,

3. S ; A iff a Z-path exists fromsomemember ofS toA, and

4. R ; S iff a Z-path exists fromsomemember ofR to somemember ofS.

S 6; S defines that no Z-path (including Z-cycle) exists from any member ofS to any other
member ofS and implies that checkpoints inS are all from different processes.

Using the above notations, the results of Netzer and Xu can beexpressed as follows:

Theorem 1. A set of checkpointsS can be extended to a consistent global snapshot if and only if
S 6; S.

Corollary 1. A checkpointC can be part of a consistent global snapshot if and only if it isnot
involved in a Z-cycle.

Corollary 2. A set of checkpointsS is a consistent global snapshot if and only ifS 6; S and
|S| = N , whereN is the number of processes.

4.9.1 Finding Consistent Global Snapshots

We now discuss exactly which consistent snapshots can be built from a set of checkpointsS. We
also present an algorithm to enumerate these consistent snapshots.

106

Extending S to a Consistent Snapshot

Given a setS of checkpoints such thatS 6; S, we first discuss what checkpoints from other pro-
cesses can be combined withS to build a consistent global snapshot. The result is based onthe
following three observations.

First Observation: None of the checkpoints that have a Z-path to or from any of thecheckpoints
in S can be used. This is because from Theorem 1, no checkpoints between which a Z-path exists
can ever be part of a consistent snapshot. Thus, only those checkpoints that have no Z-paths to or
from any of the checkpoints inS are candidates for inclusion in the consistent snapshot. Wecall
the set of all such candidates theZ-coneof S. Similarly, we call the set of all checkpoints that have
no causal path to or from any checkpoint inS theC-coneof S. 3

The Z-cone and C-cone help us reason about orderings and consistency. Since a causal path
is always Z-path, the Z-cone ofS is a subset of the C-cone ofS for an arbitraryS, as shown in
Figure 4.7. Note that if a Z-path exists from checkpointCp,i in processpp to a checkpoint inS,
then a Z-path also exists from every checkpoint inpp precedingCp,i to the same checkpoint inS
(because Z-paths are transitive). Likewise, if a Z-path exists from a checkpoint inS to a checkpoint
Cq,j in processpq, then a Z-path also exists from the same checkpoint inS to every checkpoint in
pq following Cq,j. Causal paths are also transitive and similar results hold for them.

Z − cone)(

(C − cone)

Z − paths to S Z − unordered with S Z − paths from S

Casually unordered with S Casual paths from S

Edge of C − cone Edges of Z − cone Edge of C − cone

S

Casual paths to S

Figure 4.7: TheZ-coneand theC-coneassociated with a set of checkpointsS.

Second Observation:Although candidates for building a consistent snapshot from S must lie

3These terms are inspired by the so-calledlight coneof an evente which is the set of all events with causal paths
from e (i.e., events ine’s future). Although the light cone ofe contains events orderedafter e, we define the Z-cone
and C-cone ofS to be those events withnozigzag or causal ordering, respectively, to or from any member ofS.

107

in the Z-cone ofS, not all checkpoints in the Z-cone can form a consistent snapshot withS.
From Corollary 1, if a checkpoint in the Z-cone is involved ina Z-cycle, then it cannot be part of a
consistent snapshot. Lemma 2 below states that if we remove from consideration all checkpoints in
the Z-cone that are involved in Z-cycles, then each of the remaining checkpoints can be combined
with S to build a consistent snapshot.

First we define the set of useful checkpoints with respect to setS.

Definition 4. Let S be a set of checkpoints such thatS 6; S. Then, for each processpq, the set
Sq

useful is defined as

Sq
useful = {Cq,i | (S 6; Cq,i) ∧ (Cq,i 6; S) ∧ (Cq,i 6; Cq,i)}.

In addition, we define
Suseful =

⋃

q

Sq
useful.

Thus, with respect to setS, a checkpointC is useful ifC does not have a zigzag path to any
checkpoint inS, no checkpoint inS has a zigzag path toC, andC is not on a Z-cycle.

Lemma 2. LetS be a set of checkpoints such thatS 6; S. LetCq,i be any checkpoint of process
pq such thatCq,i 6∈ S. ThenS ∪ {Cq,i} can be extended to a consistent snapshot if and only if
Cq,i ∈ Suseful.

We omit the proof of the Lemma and interested readers can refer to the original paper for a
proof.

Lemma 2 states that if we are given a setS such thatS 6; S, we are guaranteed that anysingle
checkpoint fromSuseful can belong to a consistent global snapshot that also containsS.

Third Observation: However, if we attempt to build a consistent snapshot fromS by choosing a
subsetT of checkpoints fromSuseful to combine withS, there is no guarantee that the checkpoints
in T have no Z-paths between them. In other words, although none of the checkpoints inSuseful has
a Z-path to or from any checkpoint inS, Z-paths may exist between members ofSuseful. Therefore,
we place one final constraint on the setT we choose fromSuseful to build a consistent snapshot
from S: checkpoints inT must have no Z-paths between them. Furthermore, sinceS 6; S, from
Theorem 1, at least one suchT must exist.

Theorem 3. Let S be a set of checkpoints such thatS 6; S and letT be any set of checkpoints
such thatS ∩ T = ∅. Then,S ∪ T is a consistent global snapshot if and only if

1. T ⊆ Suseful,

2. T 6; T , and

3. |S ∪ T | = N .

We omit the proof of the Theorem and interested readers can refer to the original paper for a
proof.

108

4.9.2 Manivannan-Netzer-Singhal Algorithm for Enumerating Consistent
Snapshots

In the previous section, we showed which checkpoints can be used to extend a set of checkpoints
S to a consistent snapshot. We now present an algorithm due to Manivannan-Netzer-Singhal that
explicitly computes all consistent snapshots that includea given set a set of checkpointsS. The
algorithm restricts its selection of checkpoints to those within the Z-cone ofS and it checks for the
presence of Z-cycles within the Z-cone. In the next section,we discuss how to detect Z-cones and
Z-paths using a graph by Wang [33, 34],

1: ComputeAllCgs(S) {
2: let G = ∅
3: if S 6; S then
4: letAllProcs be the set of all processes not represented in S
5: ComputeAllCgsFrom(S,AllP rocs)
6: return G
7: }
8: ComputeAllCgsFrom(T, ProcSet) {
9: if (ProcSet = ∅) then
10: G = G ∪ {T}
11: else
12: let pq be any process inProcSet
13: for each checkpointC ∈ T q

useful do
14: ComputeAllCgsFrom(T ∪ {C}, P rocSet \ {pq})
15: }

Figure 4.8: Algorithm for computing all consistent snapshots containingS.

The algorithm is shown in Figure 4.8 and it computes all consistent snapshots that include a
given setS. The functionComputeAllCgs(S) returns the set of all consistent checkpoints that
containS. The heart of the algorithm is the functionComputeAllCgsFrom(T, ProcSet) which
extends a set of checkpointsT in all possible consistent ways, but uses checkpoints only from pro-
cesses in the setProcSet. After verifying thatS 6; S,ComputeAllCgs callsComputeAllCgsFrom,
passing aProcSet consisting of the processes not represented inS (lines 2–5). The resulting con-
sistent snapshots are collected in the global variableG which is returned (line 6). It is worth
nothing that ifS = ∅, the algorithm computesall consistent snapshots that exist in the execution.

The recursive functionComputeAllCgsFrom(T, ProcSet) works by choosing any process
from ProcSet, saypq, and iterating through all checkpointsC in T q

useful. From Lemma 2, each
such checkpoint extendsT toward a consistent snapshot. This meansT ∪ C can itself be further
extended, eventually arriving at a consistent snapshot. Since this further extension is simply an-
other instance of constructing all consistent snapshots that contain checkpoints from a given set,
we make a recursive call (line 14), passingT∪C and aProcSet from which processpq is removed.
The recursion eventually terminates when the passed set contains checkpoints from all processes

109

(i.e.,ProcSet is empty). In this caseT is a global snapshot, as it contains one checkpoint from
every process, and it is added toG (line 10). When the algorithm terminates, all candidates in
Suseful have been used in extendingS, so G contains all consistent snapshots that containS.

The following theorem argues the correctness of the algorithm.

Theorem 4. Let S be a set of checkpoints andG be the set returned byComputeAllCgs(S). If
S 6; S, thenT ∈ G if and only ifT is a consistent snapshot containingS. That is,G contains
exactly the consistent snapshots that containS.

We omit the proof of the theorem and interested readers can refer to the original paper for a
proof.

4.9.3 Finding Z-paths in a Distributed Computation

Tracking Z-paths on-the-fly is difficult and remains an open problem. We describe a method for
determining the existence of Z-paths between checkpoints in a distributed computation that has
terminated or has stopped execution, using the rollback-dependency graph (R-graph) introduced
by Wang [33, 34]. First, we present the definition of an R-graph.

Definition 5. The rollback-dependency graph of a distributed computation is a directed graph
G = (V,E), where the verticesV are the checkpoints of the distributed computation and an edge
(Cp,i, Cq,j) from checkpointCp,i to checkpointCq,j belongs toE if

1. p = q andj = i+ 1, or

2. p 6= q and a messagem sent from theith checkpoint interval ofpp is received bypq in its jth

checkpoint interval (i, j > 0).

Construction of an R-graph

When a processpp sends a messagem in its ith checkpoint interval, it piggybacks the pair(p, i)
with the message. When the receiverpq receivesm in its jth checkpoint interval, it records the
existence of an edge fromCp,i to Cq,j. When a process wants to construct the R-graph for find-
ing Z-paths between checkpoints, it broadcasts a request message to collect the existing direct
dependencies from all other processes and constructs the complete R-graph. We assume that each
process stops execution after it sends a reply to the requestso that additional dependencies between
checkpoints are not formed while the R-graph is being constructed. For each process, a volatile
checkpoint is added; the volatile checkpoint represents the volatile state of the process [33, 34].

Example of an R-graph

Figure 4.10 shows the R-graph of the computation shown in Figure 4.9. In Figure 4.10,C1,3, C2,3,
andC3,3 represent the volatile checkpoints, the checkpoints representing the last state the process
attained before terminating.

We denote the fact that there is a path fromC toD in the R-graph byC
rd
; D. It only denotes

the existence of a path; it does not specify any particular path. For example, in Figure 4.10,

110

p2

p3

p1

m6
m

2

C1,0 C1,1

C2,0

C3,0

C2,1

C1,2

C2,2

C3,2C3,1

m3
m

m

m

1
4

5

Figure 4.9: A distributed computation.

C3,1 CC3,2 3,3

C
3,0

C2,3

C2,2

C
2,1C

2,0

C
1,0

C1,1
C

1,2 C
1,3

Volatile
checkpoints

Figure 4.10: The R-graph of the computation in Figure 4.9.

C1,0
rd
; C3,2. When we need to specify a particular path, we give the sequence of checkpoints that

constitute the path. For example,(C1,0, C1,1, C1,2, C2,1, C3,1, C3,2) is a path fromC1,0 to C3,2 and
(C1,0, C1,1, C1,2, C2,1, C2,2, C2,3, C3,2) is also a path fromC1,0 toC3,2.

The following theorem establishes the correspondence between the paths in the R-graph and
the Z-paths between checkpoints. This correspondence is very useful in determining whether or
not a Z-path exists between two given checkpoints.

Theorem 5. Let G = (V,E) be the R-graph of a distributed computation. Then, for any two
checkpointsCp,i andCq,j, Cp,i ; Cq,j if and only if

1. p = q andi < j, or

2. Cp,i+1
rd
; Cq,j in G (note that in this casep could still be equal toq).

For example, in the distributed computation shown in Figure4.9, a zigzag path exists fromC1,1

toC3,1 because in the corresponding R-graph, shown in Figure 4.10,C1,2
rd
; C3,1. Likewise,C2,1

is on a Z-cycle because in the corresponding R-graph, shown in Figure 4.10,C2,2
rd
; C2,1.

4.10 Chapter Summary

Recording global state of a distributed system is an important paradigm in the design of the dis-
tributed systems and the design of efficient methods of recording the global state is an important

111

issue. Recording of global state of a distributed system is complicated due to the lack of both a
globally shared memory and a global clock in a distributed system. This chapter first presented a
formal definition of the global state of a distributed systemand exposed issues related to its cap-
ture; it then described several algorithms to record a snapshot of a distributed system under various
communication models.

Table 4.1 gives a comparison of the salient features of the various snapshot recording algo-
rithms. Clearly, the higher the level of abstraction provided by a communication model, the simpler
the snapshot algorithm. However, there is no best performing snapshot algorithm and an appropri-
ate algorithm can be chosen based on the application’s requirement. For examples, for termination
detection, a snapshot algorithm that computes a channel state as the number of messages is ade-
quate; for checkpointing for recovery from failures, an incremental snapshot algorithm is likely to
be the most efficient; for global state monitoring, rather than recording and evaluating complete
snapshots at regular intervals, it is more efficient to monitor changes to the variables that affect the
predicate and evaluate the predicate only when some component variable changes.

As indicated in the introduction, the paradigm of global snapshots finds a large number of
applications (such as detection of stable properties, checkpointing, monitoring, debugging, analy-
ses of distributed computation, discarding of obsolete information). Moreover, in addition to the
problems they solve, the algorithms presented in this chapter are of great importance to people
interested in distributed computing as these algorithms illustrate the incidence of properties of
communication channels (FIFO, non-FIFO, causal ordering)on the design of a class of distributed
algorithms.

We also discussed the necessary and sufficient conditions for consistent snapshots. The non-
causal path between checkpoints in a snapshot corresponds to the necessary condition for consis-
tent snapshot, and the non-zigzag path corresponds to the necessary and sufficient conditions for
consistent snapshot. Tracking of zigzag path is helpful in forming a global consistent snapshot.
The avoidance of zigzag path between any pair of checkpointsfrom a collection of checkpoints
(snapshot) is the necessary and sufficient conditions for a consistent global snapshot. Avoidance
of causal paths alone will not be sufficient for consistency.

We also presented an algorithm for finding all consistent snapshots containing a given setS of
local checkpoints; if we takeS = ∅, then the algorithm gives the set of all consistent snapshots
of a distributed computation run. We established the correspondence between the Z-paths and the
paths in the R-graph which helps in finding the existence of Z-paths between checkpoints.

4.11 Bibliographic Notes

The notion of a global state in a distributed system was formalized by Chandy and Lamport [6] who
also proposed the first algorithm (CL) for recording the global state, and first studied the various
properties of the recorded global state. The space-time diagram which is a very useful graphical
tool to visualize distributed executions was introduced byLamport [19]. A detailed survey of
snapshot recording algorithms is given by Kshemkalyani, Raynal, and Singhal [16].

Spezialetti and Kearns proposed a variant of the CL algorithm to optimize concurrent initia-
tions by different processes, and to efficiently distributethe recorded snapshot [29]. Venkatesan
proposed a variant that handles repeated snapshots efficiently [32]. Helary proposed a variant of
the CL algorithm to incorporate message waves in the algorithm [12]. Helary’s algorithm is adapt-

112

able to a system with non-FIFO channels but requires inhibition [31]. Besides Helary’s algorithm
[12], the algorithms proposed by Lai and Yang [18] Li, Radhakrishnan, and Venkatesh [20], and
by Mattern [23] can all record snapshots in systems with non-FIFO channels. If the underlying
network can provide causal order of message delivery [5], then the algorithms by Acharya and
Badrinath [1] and by Alagar and Venkatesan [2] can record theglobal state usingO(n) number of
messages.

The notion of simultaneous regions for monitoring global state was proposed by Spezialetti
and Kearns [30]. The necessary and sufficient conditions forconsistent global snapshots were
formulated by Netzer and Xu [25] based on the zigzag paths. These have particular application in
checkpointing and recovery. Manivannan, Netzer, and Singhal analyzed the set of all consistent
snaspshots that can be built from a given set of checkpoints [21]. They also proposed an algorithm
to enumerate all such consistent snapshots. The definition of theR − graph and other notations
and framework used by [21] were proposed by Wang [33, 34].

Recording the global state of a distributed system finds applications at several places in dis-
tributed systems. For applications in detection of stable properties such as deadlocks, see [17] and
for termination, see [22]. For failure recovery, a global state of the distributed system is periodi-
cally saved and recovery from a processor failure is done by restoring the system to the last saved
global state [15]. For debugging distributed software, thesystem is restored to a consistent global
state [8, 9] and the execution resumes from there in a controlled manner. A snapshot record-
ing method has been used in the distributed debugging facility of Estelle [13, 11], a distributed
programming environment. Other applications include monitoring distributed events [30], setting
distributed breakpoints [24], protocol specification and verification [4, 10, 14], and discarding ob-
solete information [12].

We will study snapshot algorithms for shared memory in the Distributed Shared Memory Chap-
ter.

4.12 Exercise Problems

1. Consider the following simple method to collect a global snapshot (it may not always collect
a consistent global snapshot): Initiator process takes itssnapshot and broadcasts a request to
take snapshot. When some other process receives this request, it takes a snapshot. Channels
are not FIFO.

Prove that such a collected distributed snapshot will be consistent iff the following holds
(assume there aren processes in the system andV ti denotes the vector timestamp of the
snapshot taken processpi):

(V t1[1], V t2[2],,V tn[n])= max(V t1, V t2,,V tn)

Don’t worry about channel states.

2. What good is a distributed snapshot when the system was never in the state represented by
the distributed snapshot? Give an application of distributed snapshots.

3. Consider a distributed system where every node has its physical clock and all physical clocks
are perfectly synchronized. Give an algorithm to record global state assuming the commu-

113

nication network is reliable. (Note that your algorithm should be simpler than the Chandy-
Lamport algorithm.)

4. What modifications should be done to the Chandy-Lamport snapshot algorithm so that it
records a strongly consistent snapshot (i.e., all channel states are recorded empty).

5. Consider two consistent cuts whose events are denoted byC1 = C1(1), C1(2), ..., C1(n) and
C2 = C2(1), C2(2), ..., C2(n), respectively.

Define a third cut,C3 = C3(1), C3(2), ..., C3(n) that is the maximum ofC1 andC2; that is,
for every k,C3(k) = later ofC1(k) andC2(k).

Define a fourth cut,C4 = C4(1), C4(2), ..., C4(n) that is the minimum ofC1 andC2; that is,
for every k,C4(k) = earlierofC1(k) andC2(k).

Prove thatC3 andC4 are also consistent cuts.

114

Bibliography

[1] A. Acharya, B. R. Badrinath,Recording Distributed Snapshots Based on Causal Order of
Message Delivery,Information Processing Letters, North Holland, 44, 317-321, 1992.

[2] S. Alagar, S. Venkatesan,An Optimal Algorithm for Distributed Snapshots with CausalMes-
sage Ordering,Information Processing Letters, vol 50, 1994, pp. 311-316.

[3] O. Babaoglu, K. Marzullo,Consistent Global States of Distributed Systems: Fundamental
Concepts and Mechanisms,Distributed Systems, ACM Press (editor S.J. Mullender), Chapter
4, 1993.

[4] O. Babaoglu, Raynal M.,Specification and verification of dynamic properties in distributed
computations,Journal of Parallel and Distributed Systems, Vol. 28(2), 1995.

[5] K. Birman, T. Joseph,Reliable Communication in Presence of Failures,ACM Transactions on
Computer Systems, 47-76, 3, 1987.

[6] K. Birman, A. Schiper, P. Stephenson,Lightweight Causal and Atomic Group Multicast,ACM
Transactions on Computer Systems, 272-314, 9(3), 1991.

[7] K.M. Chandy, L. Lamport,Distributed Snapshots: Determining Global States of Distributed
Systems,ACM Transactions on Computer Systems, 63-75, 3(1), 1985.

[8] R. Cooper and K. Marzullo,Consistent Detection of Global Predicates, Proc. of ACM/ONR
Workshop on Parallel and Distributed Debugging, May 1991, pp. 163-173.

[9] E. Fromentin, Plouzeau N., Raynal M.,An introduction to the analysis and debug of dis-
tributed computations,Proc. 1st IEEE Int. Conf. on Algorithms and Architectures for Parallel
Processing, Brisbane, Australia, April 1995, pp.545-554.

[10] K. Geihs, M. Seifert,Automated Validation of a Cooperation Protocol for Distributed Sys-
tems,Proceedings of the 6th International Conference on Distributed Computing Systems,
436-443, 1986.

[11] O. Gerstel, Hurfin M., Plouzeau N., Raynal M., Zaks S.,On-the-fly replay: a practical
paradigm and its implementation for distributed debugging, Proc. 6th IEEE Int. Symposium
on Parallel and Distributed Debugging, pages 266-272, Dallas, TX, Oct. 1995.

115

[12] J.-M., Helary,Observing Global States of Asynchronous Distributed Applications,Proceed-
ings of the 3rd International Workshop on Distributed Algorithms, LNCS 392, Springer Verlag,
124-134, 1989.

[13] M. Hurfin, Plouzeau N., Raynal M.,A debugging tool for distribted Estelle programs,Journal
of Computer Communications, Vol. 16 (5), 328-333, may 1993.

[14] J. Kamal and M. Singhal,Specification and Verification of Distributed Mutual Exclusion
Algorithms, Tech. Report, Dept. of Computer and Information Science, The Ohio State Uni-
versity, Columbus, Fall 1992.

[15] R. Koo and S. Toueg,Checkpointing and Rollback-Recovery in Distributed Systems, IEEE
Trans. on Software Engineering, January 1987.

[16] A. Kshemkalyani, M. Raynal, and M. Singhal. “Global Snapshots of a Distributed System”,
Distributed Systems Engineering Journal, Vol 2, No 4, December 1995, pp. 224-233.

[17] A. Kshemkalyani and M. Singhal,Efficient Detection and Resolution of Generalized Dis-
tributed Deadlocks, IEEE Trans. on Software Engineering, January 1994, Vol 20,No. 1, pp.
43-54.

[18] T. H. Lai, T. H. Yang,On Distributed Snapshots,Information Processing Letters, North Hol-
land, 25, 153-158, 1987.

[19] L. Lamport,Time, Clocks, and the Ordering of Events in a Distributed System,Communica-
tions of the ACM, 558-565, 21(7), July 1978.

[20] H. F. Li, T. Radhakrishnan, K. Venkatesh,Global State Detection in Non-FIFO Networks,
Proceedings of the 7th International Conference on Distributed Computing Systems, 364-370,
1987.

[21] D. Manivannan, R.H.B Netzer, and M. Singhal,Finding Consistent Global Checkpoints in
a Distributed Computation, IEEE Trans. of Parallel and Distributed Systems, June 1997, pp.
623-627.

[22] F. Mattern,Algorithms for Distributed Termination Detection, Distributed Computing, pp.
161-175, 1987.

[23] F. Mattern,Efficient Algorithms for Distributed Snapshots and Global Virtual Time Approxi-
mation,Journal of Parallel and Distributed Computing, 18, 423-434, 1993.

[24] B. Miller, J. Choi,Breakpoints and Halting in Distributed Programs,Proceedings of the 8th
International Conference on Distributed Computing Systems, 316-323, 1988.

116

[25] Robert H. B. Netzer, Jian Xu: Necessary and Sufficient Conditions for Consistent Global
Snapshots, IEEE Transactions on Parallel and Distributed Systems, vol. 6, Issue 2 (February
1995), pg 165-169.

[26] M. Raynal, A. Schiper, S. Toueg,Causal Ordering Abstraction and A Simple Way to Imple-
ment It,Information Processing Letters, 343-350, Sept. 1989.

[27] S. Sarin, N. Lynch,Discarding Obsolete Information in a Replicated Database System,IEEE
Transactions on Software Engineering, Volume 13, Issue 1, January 1987, (Special issue on
distributed systems) pp 39 - 47.

[28] A. Schiper, J. Eggli, A. Sandoz,A New Algorithm to Implement Causal Ordering,Proceed-
ings of the 3rd International Workshop on Distributed Algorithms, LNCS 392, Springer Verlag,
219-232, 1989.

[29] M. Spezialetti, P. Kearns,Efficient Distributed Snapshots,Proceedings of the 6th International
Conference on Distributed Computing Systems, 382-388, 1986.

[30] M. Spezialetti, P. Kearns,Simultaneous Regions: A Framework for the Consistent Monitor-
ing of Distributed Systems,Proceedings of the 9th International Conference on Distributed
Computing Systems, 61-68, 1989.

[31] K. Taylor, The Role of Inhibition in Consistent Cut Protocols,Proceedings of the 3rd Inter-
national Workshop on Distributed Algorithms, LNCS 392, Springer Verlag, 124-134, 1989.

[32] S. Venkatesan,Message-Optimal Incremental Snapshots,Journal of Computer and Software
Engineering, Vol. 1, No. 3, pp 211-231, 1993.

[33] Yi-Min Wang. “Maximum and Minimum Consistent Global Checkpoints and their Applica-
tions”. In Proceedings of the14th IEEE Symposium on Reliable Distributed Systems, pages
86–95, Bad Neuenahr, Germany, September 1995.

[34] Yi-Min Wang. “Consistent Global Checkpoints That Contain a Given Set of Local Check-
points”. In IEEE Transactions on Computers, 1997.

117

Chapter 5

Terminology and Basic Algorithms

In this chapter, we first study a methodical framework in which distributed algorithms can be
classified and analyzed. We then consider some basic distributed graph algorithms. We then
studysynchronizers, which provide the abstraction of a synchronous system overan asynchronous
system. Lastly, we look at some practical graph problems, toappreciate the necessity of designing
efficient distributed algorithms.

5.1 Topology Abstraction and Overlays

The topology of a distributed system can be typically viewedas an undirected graph in which
the nodes represent the processors and the edges represent the links connecting the processors.
Weights on the edges can represent some cost function we needto model in the application. There
are usually three (not necessarily distinct) levels of topology abstraction that are useful in analyzing
the distributed system or a distributed application. Theseare now described using Figure 5.1. To
keep the figure simple, only the relevant end hosts participating in the application are shown. The
WANs are indicated by ovals drawn using dashed lines. The switching elements inside this WAN,
and other end hosts that are not participating in the application, are not shown even though they
belong to the physical topological view. Similarly, all theedges connecting all end hosts and all
edges connecting to all the switching elements inside the WAN also belong to the physical topology
view even though only some edges are shown.

• Physical topology.The nodes of this topology represent all the network nodes, including
switching elements (also called routers) in the WAN and all the end hosts – irrespective of
whether the hosts are participating in the application. Theedges in this topology represent
all the communication links in the WAN in addition to all the direct links between the end
hosts.

In Figure 5.1(a), the physical topology is not shown explicitly to keep the figure simple.

• Logical topology. This is usually defined in the context of a particular application. The
nodes represent all the end hosts where the application executes. The edges in this topology

118

WAN

WAN

WANWAN

WAN or other network

(a) (b)

participating process(or)

Figure 5.1: Two examples of topological views at different levels of abstraction.

are logical channels (also termed as logical links) among these nodes. This view is at a
higher level of abstraction than that of the physical topology, and the nodes and edges of the
physical topology need not be included in this view.

Often, logical links are modeled between particular pairs of end hosts participating in an
application to give a logical topology with useful properties. Figure 5.1(b) shows each pair
of nodes in the logical topology is connected to give a fully connected network. Each pair
of nodes can communicate directly with each other participant in the application using an
incident logical link at this level of abstraction of the topology. However, the logical links
may also define some arbitrary connectivity (neighborhood-relation) on the nodes in this ab-
stract view. In Figure 5.1(a), the logical view provides each node with a parital view of the
topology, and the connectivity provided is some neighborhood connectivity. To communi-
cate with another application node that is not a logical neighbour, a node may have to use a
multi-hop path composed of logical links at this level of abstraction of the topology.

While the fully connected logical topology in Figure 5.1(b)provides a complete view of the
system, updating such a view in a dynamic system incurs an overhead. Neighbourhood-
based logical topologies as in Figure 5.1(a) are easier to manage.

We will consider distributed algorithms on logical topologies in this book, Peer-to-peer (P2P)
networks that we shall study in Chapter 18 are also defined by alogical topology at the
application layer. However, the emphasis of P2P networks ison self-organizing networks
with built-in functions, e.g., the implementation of application layer functions such as object
lookup and location in a distributed manner.

• Superimposed topology.This is a higher-level topology that is superimposed on the logical
topology. It is usually a regular structure such as a tree, ring, mesh, or hypercube. The main
reason behind defining such a topology is that it provides a specialized path for efficient
information dissemination and/or gathering as part of a distributed algorithm.

119

Consider the problem of collecting the sum of variables, onefrom each node. This can be
efficiently solved usingn messages by circulating a cumulative counter on a logical ring, or
usingn − 1 messages on a logical tree. The ring and tree are examples of superimposed
topologies on the underlying logical topology – which may bearbirtrary as in Figure 5.1(a)
or which may be fully connected as in Figure 5.1(b).

We will encounter various examples of these topologies, Asuperimposed topologyis also
termed as atopology overlay. This latter term is becoming increasingly popular with thespread of
the peer-to-peer computing paradigm.
Notation: Whatever the level of topological view we are dealing with, we assume that an undi-
rected graph(N,L) is used to represent the topology. The notationn = |N | andl = |L| will also
be used.

5.2 Classifications and Basic Concepts

5.2.1 Application Executions and Control Algorithm Executions

The distributedapplication executionis comprised of the execution of instructions, including the
communication instructions, within the distributed application program. The application execution
represents the logic of the application. In many cases, acontrol algorithmalso needs to be executed
in order to monitor the application execution or to perform various auxiliary functions. The control
algorithm performs functions such as: creating a spanning tree, creating a connected dominating
set, achieving consensus among the nodes, distributed transaction commit, distributed deadlock
detection, global predicate detection, termination detection, global state recording, checkpointing,
and also memory consistency enforcement in distributed shared memory systems.

The code of the control algorithm is allocated its own memoryspace. Thecontrol algorithm
executionis superimposedon the underlying application execution, but does not interfere with
the application execution. In other words, the control algorithm execution including all its send,
receive, and internal events are transparent to (or not visible by) the application execution.

The distributedcontrol algorithmis also sometimes termed as aprotocol; although the term
protocolis also loosely used for any distributed algorithm. In the literature on formal modeling of
network algorithms, the termprotocolis more commonly used.

5.2.2 Centralized and Distributed Algorithms

In a distributed system, acentralized algorithmis one in which a predominant amount of work
is performed by one (or possibly a few) processors, whereas other processors play a relatively
smaller role in accomplishing the joint task. The roles of the other processors are usually confined
to requesting information or supplying information, either periodically or when queried.

A typical system configuration suited for centralized algorithms is theclient-serverconfigu-
ration. Presently, much commercial software is written using this configuration, and is adequate.

120

From a theoretical perspective, the single server is a potential bottleneck for both processing and
bandwidth access on the links. The single server is also a single point of failure. Of course, these
problems are alleviated in practice by using replicated servers distributed across the system, and
then the overall configuration is not as centralized any more.

A distributed algorithmis one in which each processor plays an equal role in sharing the mes-
sage overhead, time overhead, and space overhead. It is difficult to design a purely distributed
algorithm (that is also efficient) for some applications. Consider the problem of recording a global
state of all the nodes. The well-known Chandy-Lamport algorithm which we will study in Chap-
ter ?? is distributed - yet one node, which is typically the initiator, is responsible for assembling
the local states of the other nodes, and hence plays a slightly different role. Algorithms that are
designed to run on a logical-ring superimposed topology tend to be fully distributed to exploit the
symmetry in the connectivity. Algorithms that are designedto run on the logical tree and other
asymmetric topologies with a predesignated root node tend to have some asymmetry that mirrors
the asymmetric topology. Although fully distributed algorithms are ideal, partly distributed algo-
rithms are sometimes more practical to implement in real systems. At any rate, the advances in
peer-to-peer networks, ubiquitous and ad-hoc networks, mobile systems will require distributed
solutions.

5.2.3 Symmetric and Asymmetric Algorithms

A symmetric algorithmis an algorithm in which all the processors execute the same logical func-
tions. Anasymmetric algorithmis an algorithm in which different processors execute logically
different (but perhaps partly overlapping) functions.

A centralized algorithm is always asymmetric. An algorithmthat is not fully distributed is also
asymmetric. In the client-server configuration, the clients and the server execute asymmetric algo-
rithms. Similarly, in a tree configuration, the root and the leaves usually perform some functions
that are different from each other, and that are different from the functions of the internal nodes of
the tree. Applications where there is inherent asymmetry inthe roles of the cooperating processors
will necessarily have asymmetric algorithms. A typical example is where one processor initiates
the computation of some global function (e.g.,min, sum).

5.2.4 Anonymous Algorithms

An anonymous systemis a system in which neither processes nor processors use their process
identifiers and processor identifiers to make any execution decisions in the distributed algorithm.
An anonymous algorithmis an algorithm which runs on an anonymous system and therefore does
not use process identifiers or processor identifiers in the code.

An anonymous algorithm possesses structural elegance. However, it is equally hard, and some-
times provably impossible, to design – as in the case of designing an anonymous leader election
algorithm on a ring. If we examine familiar examples of multiprocess algorithms, such as the
famous Bakery algorithm for mutual exclusion in a shared memory system, or the “wait-wound”

121

or “wound-die” algorithms used for transaction serializability in databases, we observe that the
process identifier is used in resolving ties or contentions that are otherwise unresolved despite the
symmetric and noncentralized nature of the algorithms.

5.2.5 Uniform Algorithms

A uniform algorithmis an algorithm which does not usen, the number of processes in the system,
as a parameter in its code. A uniform algorithm is desirable because it allows scalability trans-
parency, and processes can join or leave the distributed execution without intruding on the other
processes, except its immediate neighbors that need to be aware of any changes in their immedi-
ate topology. Algorithms that run on a logical ring and have nodes communicate only with their
neighbours are uniform. In Chapter??, we will study a uniform algorithm for leader election.

5.2.6 Adaptive Algorithms

Consider the context of a problemX. In a system withn nodes, letk, k ≤ n be the number
of nodes “participating” in the context ofX when the algorithm to solveX is executed. If the
complexity of the algorithm can be expressed in terms ofk rather than in terms ofn, the algorithm
is adaptive. For example, if the complexity of a mutual exclusion algorithm can be expressed
in terms of the actual number of nodes contending for the critical section when the algorithm is
executed, then the algorithm would be adaptive.

5.2.7 Deterministic Versus Nondeterministic Executions

A deterministic receiveprimitive specifies the source from which it wants to receivea message. A
nondeterministic receiveprimitive can receive a message from any source – the messagedelivered
to the process is the first message that is queued in the local incoming buffer, or the first message
that comes in subsequently if no message is queued in the local incoming buffer. A distributed
program that contains no nondeterministic receives has adeterministic execution; otherwise, if
it contains at least one nondeterministic receive primitive, it is said to have anondeterministic
execution.

Each execution defines a partial order on the events in the execution. Even in an asynchronous
system (defined formally in Section 5.2.9), for any deterministic (asynchronous) execution, re-
peated re-execution will reproduce the same partial order on the events. This is a very useful
property for applications such as debugging, detection of unstable predicates, and for reasoning
about global states.

Given any nondeterministic execution, any re-execution ofthat program may result in a very
different outcome, and any assertion about a nondeterministic execution can be made only for
that particular execution. Different re-executions may result in different partial orders because of
variable factors such as (i) lack of an upper bound on messagedelivery times and unpredictable

122

congestion; (ii) local scheduling delays on the CPUs due to timesharing. As such, nondeterministic
executions are difficult to reason with.

5.2.8 Execution Inhibition

Blocking communication primitives freeze the local execution 1 until some actions connected with
the completion of that communication primitive have occurred. But from a logical perspective, is
the process really prevented from executing further? The nonblocking flavors of those primitives
can be used to eliminate the freezing of the execution, and the process invoking that primitive may
be able to execute further (from the perspective of the program logic) until it reaches a stage in the
program logic where it cannot execute further until the communication operation has completed.
Only now is the process really frozen!

Distributed applications can be analyzed for freezing. Often, it is more interesting to examine
the control algorithm for its freezing/inhibitory effect on the application execution. Here, inhibition
refers to protocols delaying actions of the underlying system execution for an interval of time.
In the literature on inhibition, the term “protocol” is used synonymously with the term “control
algorithm”. Protocols that require processors to suspend their normal execution until some series
of actions stipulated by the protocol have been performed are termed asinhibitory or freezing
protocols.

Different executions of a distributed algorithm can resultin a different interleavings of the
events. Thus, there are multiple executions associated with each algorithm (or protocol). Protocols
can be classified as follows, in terms of inhibition.

• A protocol isnoninhibitoryif no system event is disabled in any execution of the protocol.
Otherwise, the protocol isinhibitory.

• A disabled evente in an execution is said to belocally delayedif there issomeextension of
the execution (beyond the current state) such that: (i) the event becomes enabled after the
extension, and (ii) there is no intervening receive event inthe extension, Thus, the interval
of inhibition is under local control, A protocol islocally inhibitory if any event disabled in
any execution of the protocol is locally delayed.

• An inhibitory protocol for which there is some execution in which some delayed event is
not locally delayed is said to beglobally inhibitory. Thus, in some (or all) execution of a
globally inhibitory protocol, at least one event is delayedwaiting to receive communication
from another processor.

An orthogonal classification is that ofsend inhibition, receive inhibition, andinternal event inhibi-
tion.

• A protocol issend inhibitoryif some delayed events are send events.

1The OS dispatchable entity – the process or the thread – is frozen.

123

• A protocol isreceive inhibitoryif some delayed events are receive events.

• A protocol isinternal event inhibitoryif some delayed events are internal events.

These classifications help to characterize the degree of inhibition necessary to design protocols
to solve various problems. Problems can be theoretically analyzed in terms of the possibility or
impossibility of designing protocols to solve them under the various classes of inhibition. These
classifications also serve as a yardstick to evaluate protocols. The more stringent the class of
inhibition, the less desirable is the protocol. When we study algorithms for recording global states
and algorithms for checkpointing, we will have the opportunity to analyze the protocols in terms
of inhibition.

5.2.9 Synchronous and Asynchronous Systems

A synchronous systemis a system that satisfies the following properties.

• There is a known upper bound on the message communication delay.

• There is a known bounded drift rate for the local clock of eachprocessor with respect to
real-time. The drift rate between two clocks is defined as therate at which their values
diverge.

• There is a known upper bound on the time taken by a process to execute a logical step in the
execution.

An asynchronous systemis a system in which none of the above three properties of synchronous
systems are satisfied. Clearly, systems can be designed thatsatisfy some combination but not all
of the criteria that define a synchronous system. The algorithms to solve any particular problem
can vary drastically, based on the model assumptions; henceit is important to clearly identify the
system model beforehand. Distributed systems are inherently asynchronous; later in this chapter,
we will study synchronizers that provide the abstraction ofa synchronous execution.

5.2.10 Online versus Offline Algorithms

An on-linealgorithm is an algorithm that executes as the data is being generated. Anoff-linealgo-
rithm is an algorithm that requires all the data to be available before algorithm execution begins.
Clearly, on-line algorithms are more desirable. Debuggingand scheduling are two example areas
where on-line algorithms offer clear advantages. On-line scheduling allows for dynamic changes
to the schedule to account for newly arrived requests with closer deadlines. On-line debugging can
detect errors when they occur, as opposed to collecting the entire trace of the execution and then
examining it for errors.

124

5.2.11 Failure Models

A failure model specifies the manner in which the component(s) of the system may fail. There
exists a rich class of well-studied failure models. It is important to specify the failure model clearly
because the algorithm used to solve any particular problem can vary dramatically, depending on the
failure model assumed. A system ist-fault tolerantif it continues to satisfy its specified behavior
as long as no more thant of its components (whether processes or links or a combination of them)
fail. The Mean Time between Failures (MTBF)is usually used to specify the expected time until
failure, based on statistical analysis of the component/system.

Process Failure Models

• Fail-stop. In this model, a properly functioning process may fail by stopping execution from
some instant thenceforth. Additionally, other processes can learn that the process has failed.
This model provides an abstraction – the exact mechanism by which other processes learn
of the failure can vary.

• Crash. In this model, a properly functioning process may fail by stopping to function from
any instance thenceforth. Unlike the fail-stop model, other processes do not learn of this
crash.

• Receive omission.A properly functioning process may fail by intermittently receiving only
some of the messages sent to it, or by crashing.

• Send omission.A properly functioning process may fail by intermittently sending only some
of the messages it is supposed to send, or by crashing.

• General omission.A properly functioning process may fail by exhibiting either or both of
send omission and receive omission failures.

• Byzantine or malicious failure, with authentication.In this model, a process may exhibit
any arbitrary behavior. However, if a faulty process claimsto have received a specific mes-
sage from a correct process, then that claim can be verified using authentication, based on
unforgeable signatures.

• Byzantine or malicious failure.In this model, a process may exhibit any arbitrary behavior
and no authentication techniques are applicable to verify any claims made.

The above process failure models, listed in order of increasing severity (except for send omissions
and receive omissions which are incomparable with each other), apply to both synchronous and
asynchronous systems.

Timing failurescan occur in synchronous systems, and manifest themselves as some or all
of the following at each process. (1) General omission failures. (2) Process clocks violating
their prespecified drift rate. (3) The process violating thebounds on the time taken for a step of

125

execution. In term of severity, timing failures are more severe than general omission failures but
less severe than Byzantine failures with message authentication.

The failure models less severe than Byzantine failures, andtiming failures, are considered
“benign” because they do not allow processes to arbitrarilychange state or send messages that are
not to be sent as per the algorithm. Benign failures are easier to handle than Byzantine failures.

5.2.11.1 Communication Failure Models

• Crash failure. A properly functioning link may stop carrying messages fromsome instant
thenceforth.

• Omission failures.A link carries some messages but not the others sent on it.

• Byzantine failures.A link can exhibit any arbitrary behavior, including creating spurious
messages and modifying the messages sent on it.

The above link failure models apply to both synchronous and asynchronous systems.Timing fail-
urescan occur in synchronous systems, and manifest themselves as links transporting messages
faster or slower than their specified behavior.

5.2.12 Wait-free algorithms

A wait-free algorithmis an algorithm that can execute (synchronization operations) in a(n − 1)-
process fault tolerant manner, i.e., it is resilient ton − 1 process failures. Thus, if an algorithm
is wait-free, then the (synchronization) operations of anyprocess must complete in a bounded
number of steps irrespective of the failures of all the otherprocesses.

Although the concept of ak-fault-tolerant system is very old, wait-free algorithm design in dis-
tributed computing received attention in the context of mutual exclusion synchronization for the
distributed shared memory abstraction. The objective was to enable a process to access its critical
section, even if the process in the critical section fails ormisbehaves by not exiting from the critical
section. Wait-free algorithms offer a very high degree of robustness. Designing a wait-free algo-
rithm is usually very expensive and may not even be possible for some synchronization problems,
e.g., the simple producer-consumer problem. Wait-free algorithms will be studied in Chapters 12
and 14. Wait-free algorithms can be viewed as a special classof fault-tolerant algorithms.

5.2.13 Communication Channels

Communication channels are normally First-In First-Out queues (FIFO). At the network layer, this
property may not be satisfied, giving non-FIFO channels. These and other properties such as causal
order of messages will be studied in Chapter 6.

126

5.3 Complexity Measures and Metrics

The performance of sequential algorithms is measured in terms of the lower bounds (Ω, ω) rep-
resenting the best case, the upper bounds (O, o) representing the worst case, and the exact bound
(θ), on the time and space complexity. For distributed algorithms, the definitions of space and time
complexity need to be refined, and additionally, message complexity also needs to be considered
for message-passing systems. At the appropriate level of abstraction at which the algorithm is run,
the system topology is usually assumed to be an undirected unweighted graphG = (N,L). We de-
note|N | asn, |L| asl, and the diameter of the graph asd. Thediameterof a graph is the minimum
number of edges that need to be traversed to go from any node toany other node. More formally,
the diameter ismaxi,j∈N{ length of the shortest path betweeni andj }. For a tree embedded in
the graph, its depth is denoted ash. Other graph parameters, such as eccentricity and degree of
edge incidence, can be used when they are required. It is alsoassumed that identical code runs at
each processor; if this assumption is not valid, then different complexities need to be stated for the
different codes. The complexity measures are as follows.

• Space complexity per node.This is the memory requirement at a node. The best case,
average case, and worst case memory requirement at a node canbe specified.

• Systemwide space complexity.The system space complexity (best-case, average case, or
worst case) is not necessarilyn times the corresponding space complexity (best-case, average
case, or worst case) per node. For example, the algorithm maynot permit all nodes to achieve
the best case at the same time. We will later study a distributed predicate detection algorithm
(Algorithm 11.14 in Chapter 11) for which both the worst-case space complexity per node
as well as the worst-case systemwide space complexity are proportional toO(n2). If during
execution, the worst case occurs at one node, then the worst case will not occur at all the
other nodes in that execution.

• Time complexity per node.This measures the processing time per node, and does not ex-
plicitly account for the message propagation/transmission times, which are measured as a
separate metric.

• Systemwide time complexity.If the processing in the distributed system occurs at all the
processors concurrently, then the system time complexity is notn times the time complexity
per node. However, if the executions by the different processes are done serially, as in the
case of an algorithm in which only the unique token-holder isallowed to execute, then the
overall time complexity is additive.

• Message complexity.This has two components – a space component and a time component.

– Number of messages.The number of messages contributes directly to the space com-
plexity of the message overhead.

127

– Size of messages.This size, in conjunction with the number of messages, measures the
space component on messages. Further, for very large messages, this also contributes
to the time component via the increased transmission time.

– Message time complexity.The number of messages contributes to the time component
indirectly, besides affecting the count of the send events and message space overhead.
Depending on the degree of concurrency in the sending of the messages – i.e., whether
all messages are sequentially sent (with reference to the execution partial order), or
all processes can send concurrently, or something in between – the time complexity is
affected. For asynchronous executions, the time complexity component is measured in
terms ofsequential message hops, i.e., the length of the longest chain in the partial order
(E,≺) on the events. For synchronous executions, the time complexity component is
measured in terms of rounds (also termed as steps or phases).

It is usually difficult to determine all of the above complexities for most algorithms. Nevertheless, it
is important to be aware of the different factors that contribute towards overhead. When stating the
complexities, it should also be specified whether the algorithm has a synchronous or asynchronous
execution. Depending on the algorithm, further metrics such as the number of send events, or the
number of receive events, may be of interest. If message multicast is allowed, it should be stated
whether a multicast send event is counted as a single event. Also, whether the message multicast
is counted as a single message or as multiple messages needs to be clarified. This would depend
on whether or not hardware multicasting is used by the lower layers of the network protocol stack.

For shared memory systems, the message complexity is not an issue if the shared memory is
not being provided by the distributed shared memory abstraction over a message-passing system.
The following additional changes in the emphasis on the usual complexity measures would need
to be considered.

• The size of shared memory, as opposed to the size of local memory, is important. The
justification is that shared memory is expensive, local memory is not.

• The number of synchronization operationsusing synchronization variables is a useful metric
because it affects the time complexity.

5.4 Program Structure

Hoare, who pioneered programming language support for concurrent processes, designed Concur-
rent Sequential Processes (CSP) which allows communicating processes to synchronize efficiently.
The typical program structure for any process in a distributed application is based on CSP’s repet-
itive command over the alternative command on multiple guarded commands, is as follows.

∗ [G1 −→ CL1 ||G2 −→ CL2 || · · · ||Gk −→ CLk]

Therepetitivecommand (denoted by “*”) denotes an infinite loop. Inside therepetitivecommand
is thealternativecommand overguardedcommands. Thealternativecommand, denoted by a

128

sequence of “||” separating guarded commands, specifies execution of exactly one of its constituent
guarded commands. Theguardedcommand has the syntax “G −→ CL” where the guardG is a
boolean expression andCL is a list of commands that are executed only ifG is true. The guard
expression may contain a term to check if a message from a/anyother process has arrived. The
alternative command over the guarded commands fails if all the guards fail; if more than one guard
is true, one of those successful guarded commands is nondeterministically chosen for execution.
When aguardedcommandGm −→ CLm does get executed, the execution ofCLm is atomic with
the execution ofGm.

The structure of distributed programs has similar semantics to that of CSP although the syntax
has evolved to something very different. The format for the pseudo-code used in this book is as
indicated below. The algorithm in Figure 5.4 serves to illustrate this format.

1. The process-local variables whose scope is global to the process, and message types, are
declared first.

2. Shared variables, if any, (for distributed shared memorysystems) are explicitly labeled as
such.

3. This is followed by any initialization code.

4. Therepetitiveand thealternativecommands are not explicitly shown.

5. Theguardedcommands are shown as explicit modules or procedures (e.g.,(1) through (4) in
Figure 5.4). The guard usually checks for the arrival of a message of a certain type, perhaps
with additional conditions on some parameter values and other local variables.

6. The body of the procedure gives the list of commands to be executed if the guard evaluates
to true.

7. Process termination may be explicitly stated in the body of any procedure(s).

8. The symbol⊥ is used to denote an undefined value. When used in a comparison, its value is
−∞.

5.5 Elementary Graph Algorithms

This section examines elementary distributed algorithms on graphs. The reader is assumed to
be familiar with the centralized algorithms to solve these basic graph problems. The distributed
algorithms here introduce the reader to the difficulty of designing distributed algorithms wherein
each node has only a partial view of the graph (system), that is confined to its immediate neighbors.
Further, a node can communicate with only its immediate neighbors along the incident edges.
Unless otherwise specified, we assume unweighted undirected edges, and asynchronous execution
by the processors. Communication is by message-passing on the edges.

129

(local variables)
int visited, depth←− 0
int parent←−⊥
set of int Neighbors←− set of neighbors
(message types)
QUERY

(1) if i = root then
(2) visited←− 1;
(3) depth←− 0;
(4) sendQUERY toNeighbors;
(5) for round = 1 to diameter do
(6) if visited = 0 then
(7) if any QUERY messages arrivethen
(8) parent←− randomly select a node from which QUERY was received;
(9) visited←− 1;
(10) depth←− round;
(11) sendQUERY toNeighbors \ {senders of QUERYs received in this round};
(12) delete any QUERY messages that arrived in this round.

Figure 5.2: Spanning tree Algorithm 0: The synchronous BFS spanning tree algorithm. The code
shown is for processorPi, 1 ≤ i ≤ n.

The first algorithm is a synchronous spanning tree algorithm. The next three are asynchronous
algorithms to construct spanning trees. These elementary algorithms are theoretically important
from a practical perspective because spanning trees are a very efficient form of information distri-
bution and collection in distributed systems.

5.5.1 Synchronous Single-Initiator Spanning Tree Algorithm Using Flood-
ing: Algorithm 0

The code for all processes is not only symmetrical, but also proceeds in rounds. This algorithm
assumes a designated root node,root, which initiates the algorithm. The pseudo-code for each
processPi is shown in Figure 5.2. The root initiates a flooding of QUERY messages in the graph
to identify tree edges. The parent of a node is that node from which a QUERY is first received; if
multiple QUERYs are received in the same round, one of the senders is randomly chosen as the
parent. Exercise 1 asks you to modify the algorithm so that each node identifies not only its parent
node but also all its children nodes.
Example: Figure 5.3 shows an example execution of the algorithm. The resulting tree is shown
in boldface, and the round numbers in which the QUERY messages are sent are indicated next to
the messages. The reader should trace through this example for clarity. For example, at the end of
round 2, E receives a QUERY from B and F and randomly chooses F as the parent. A total of nine
QUERY messages are sent in the network which has eight links.

130

������

������

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

������������

B CA

E DF

(1)

(2)

(2)

(2)(1)

(3)

(3)

(3)

(3) QUERY

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�������������������

������������������

����������������

����������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��������

Figure 5.3: Example execution of the synchronous BFS spanning tree algorithm of Figure 5.2
(Algorithm 0).

Termination: The algorithm terminates after all the rounds are executed.It is straightforward to
modify the algorithm so that a process exits after the round in which it sets itsparent variable (See
Exercise 1).
Complexity:

• The local space complexity at a node is of the order of the degree of edge incidence.

• The local time complexity at a node is of the order of (diameter + degree of edge incidence).

• The global space complexity is the sum of the local space complexities.

• This algorithm sends at least 1 messages per edge, and at most2 messages per edge. Thus
the number of messages is betweenl and2l.

• The message time complexity isd rounds or message hops.

The spanning tree obtained is a Breadth-First Tree (BFS). Although the code is the same for all
processes, the predesignated root executes a different logic to being with. Hence, in the strictest
sense, the algorithm is asymmetric.

5.5.2 Asynchronous Single-Initiator Spanning Tree Algorithm Using Flood-
ing: Algorithm I

This algorithm assumes a designated root node which initiates the algorithm. The pseudo-code
for each processPi is shown in Figure 5.4. The root initiates a flooding of QUERY messages in
the graph to identify tree edges. The parent of a node is that node from which a QUERY is first
received; an ACCEPT message is sent in response to such a QUERY. Other QUERY messages
received are replied to by a REJECT message. Each node terminates its algorithm when it has

131

(local variables)
int parent←−⊥
set of int Children,Unrelated←− ∅
set of int Neighbors←− set of neighbors
(message types)
QUERY, ACCEPT, REJECT

(1) When the predesignated root node wants to initiate the algorithm:
(1a) if (i = root and parent =⊥) then
(1b) sendQUERY to all neighbors;
(1c) parent←− i.

(2) When QUERY arrives fromj:
(2a) if parent =⊥ then
(2b) parent←− j;
(2c) sendACCEPT toj;
(2d) sendQUERY to all neighbors exceptj;
(2e) if (Children ∪ Unrelated) = (Neighbors/{parent}) then
(2f) terminate.
(2g) else sendREJECT toj.

(3) When ACCEPT arrives fromj:
(3a)Children←− Children ∪ {j};
(3b) if (Children ∪ Unrelated) = (Neighbors/{parent}) then
(3c) terminate.

(4) When REJECT arrives fromj:
(4a)Unrelated←− Unrelated ∪ {j};
(4b) if (Children ∪ Unrelated) = (Neighbors/{parent}) then
(4c) terminate.

Figure 5.4: Spanning tree Algorithm I: The asynchronous algorithm assuming a designated root
that initiates a flooding. The code shown is for processorPi, 1 ≤ i ≤ n.

received from all its non-parent neighbors a response to theQUERY sent to them. The procedures
(1), (2), (3), and (4) are each executed atomically.

In this asynchronous system, there is no bound on the time it takes to propagate a message, and
hence no notion of a message round. Unlike in the synchronousalgorithm, each node here needs
to track its neighbours to determine which nodes are its children and which nodes are not. This
tracking is necessary in order to know when to terminate. After sending QUERY messages on
the outgoing links, the sender needs to know how long to keep waiting. This is accomplished by
requiring each node to return an “acknowledgement” for eachQUERY it receives. The acknowl-
edgement message has to be of a different type than the QUERY type. The algorithm in the figure
uses two messages types – called as ACCEPT (+ ack) and REJECT (- ack) – besides the QUERY
to distinguish between the child nodes and non-child nodes.

132

Complexity:

• The local space complexity at a node is of the order of the degree of edge incidence.

• The local time complexity at a node is also of the order of the degree of edge incidence.

• The global space complexity is the sum of the local space complexities.

• This algorithm sends at least 2 messages (QUERY and its response) per edge, and at most
4 messages per edge (when two QUERIES are sent concurrently,each will have a REJECT
response). Thus the number of messages is between2l and4l.

• The message time complexity is(d+ 1) message hops, assuming synchronous communica-
tion. In an asynchronous system, we cannot make any claim about the tree obtained, and its
depth may be equal to the length of the longest path from the root to any other node, which
is bounded only byn− 1 corresponding to a depth-first tree.

Termination: The termination condition is given above. Some notes on distributed algorithms are
in place. In some algorithms such as this algorithm, it is possible to locally determine the termina-
tion condition; however, for some algorithms, the termination condition is not locally determinable
and an explicit termination detection algorithm needs to beexecuted.

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

B CA

E DF

(1)

(1)

QUERY

(3)

(2)

(4)

(3)

(5)

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
����������

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��������������������������������

��������������������������������
����������������

�������� ������

������������

������

����������������

Figure 5.5: Example execution of the asynchronous flooding-based single initiator spanning tree
algorithm of Figure 5.4 (Algorithm I).

Example: Figure 5.5 shows an example execution of the asynchronous algorithm (i.e., in an asyn-
chronous system). The resulting spanning tree is shown in boldface. The numbers next to the
QUERY messages indicate the approximate chronological order in which messages get sent. Re-
call that each procedure is executed atomically; hence the sending of a message sent at a particular
time is triggered by the receipt of a corresponding message at the same time. The same numbering
used for messages sent by different nodes implies that thoseactions occur concurrently and inde-
pendently. ACCEPT and REJECT messages are not shown to keep the figure simple. It does not
matter when the ACCEPT and REJECT messages are delivered.

133

1. A sends a QUERY to B and F.

2. F receives QUERY from A and determines that AF is atree edge. F forwards the QUERY to
E and C.

3. E receives a QUERY from F and determines that FE is atree edge. E forwards the QUERY
to B and D. C receives a QUERY from F and determines that FC is atree edge. C forwards
the QUERY to B and D.

4. B receives a QUERY from E and determines that EB is atree edge. B forwards the QUERY
to A, C, and D.

5. D receives a QUERY from E and determines that ED is atree edge. D forwards the QUERY
to B and C.

Each node sends an ACCEPT message (not shown in figure for simplicity) back to the parent node
from which it received its first QUERY. This is to enable the parent, i.e., the sender of the QUERY,
to recognize that the edge is a tree edge, and to identify its child. All other QUERY messages
are negatively acknowledged by a REJECT (also not shown for simplicity). Thus, a REJECT gets
sent on each back-edge (such as BA) and each-cross edge (suchas BD, BC, and CD) to enable the
sender of the QUERY on that edge to recognize that that edge does not lead to a child node. We
can also observe that on each tree edge, two messages (a QUERYand an ACCEPT) get sent. On
each cross-edge and each back-edge, four messages (two QUERY and two REJECT) get sent.

Note that this algorithm does not guarantee a breadth-first tree. Exercise 3 asks you to modify
this algorithm to obtain a BFS tree.

5.5.3 Asynchronous Concurrent-Initiator Spanning Tree Algorithm Using
Flooding: Algorithm II

We modify Algorithm I by assuming that any node may spontaneously initiate the spanning tree
algorithm provided it has not already been invoked locally due to the receipt of a QUERY mes-
sage. The resulting algorithm is shown in Figure 5.6. The crucial problem to handle is that of
dealing with concurrent initiations, where two or more processes that are not yet participating in
the algorithm initiate the algorithm concurrently. As the objective is to construct a single spanning
tree, two options seem available when concurrent initiations are detected. Note that even though
there can be multiple concurrent initiations, along any single edge, only two concurrent initiations
will be detected.

Design 1: When two concurrent initiations are detected by two adjacent nodes that have sent a
QUERY from different initiations to each other, the two partially computed spanning trees
can be merged. However, this merging cannot be done based only on local knowledge or
there might be cycles.

134

(local variables)
int parent,myroot←−⊥
set of int Children,Unrelated←− ∅
set of int Neighbors←− set of neighbors
(message types)
QUERY, ACCEPT, REJECT

(1) When the node wants to initiate the algorithm as a root:
(1a) if (parent =⊥) then
(1b) sendQUERY(i) to all neighbors;
(1c) parent,myroot←− i.

(2) When QUERY(newroot) arrives fromj:
(2a) if myroot < newroot then // discard earlier partial execution due to its lower priority
(2b) parent←− j; myroot←− newroot; Children,Unrelated←− ∅;
(2c) sendQUERY(newroot) to all neighbors exceptj;
(2d) if Neighbors = {j} then
(2e) sendACCEPT(myroot) to j; terminate. // leaf node
(2f) else sendREJECT(newroot) to j. // if newroot = myroot thenparent is already identified.

// if newroot < myroot ignore the QUERY.j will update its root when it receives QUERY(myroot).

(3) When ACCEPT(newroot) arrives fromj:
(3a) if newroot = myroot then
(3b) Children←− Children ∪ {j};
(3c) if (Children ∪ Unrelated) = (Neighbors/{parent}) then
(3d) if i = myroot then
(3e) terminate.
(3f) else sendACCEPT(myroot) to parent.

//if newroot < myroot then ignore the message.newroot > myroot will never occur.

(4) When REJECT(newroot) arrives fromj:
(4a) if newroot = myroot then
(4b) Unrelated←− Unrelated ∪ {j};
(4c) if (Children ∪ Unrelated) = (Neighbors/{parent}) then
(4d) if i = myroot then
(4e) terminate.
(4f) else sendACCEPT(myroot) to parent.

//if newroot < myroot then ignore the message.newroot > myroot will never occur.

Figure 5.6: Spanning tree Algorithm II (asynchronous) without assuming a designated root. Ini-
tiators use flooding to start the algorithm. The code shown isfor processorPi, 1 ≤ i ≤ n.

Example: In Figure 5.7, consider that the algorithm is initiated concurrently by A, G, and
J. The dotted lines show the portions of the graphs covered bythe three algorithms. At this
time, the initiations by A and G are detected along edge BD, the initiations by A and J are
detected along edge CF, the initiations by G and J are detected along edge HI. If the three

135

A

C

D

B

E F

JIHG

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 5.7: Example execution of the asynchronous flooding-based concurrent initiator spanning
tree algorithm of Figure 5.6 (Algorithm II).

partially computed spanning trees are merged along BD, CF, and HI, there is no longer a
spanning tree.

Interestingly, even if there are just two initiations, the two partially computed trees may
‘meet’ along multiple edges in the graph, and care must be taken not to introduce cycles
during the merger of the trees.

Design 2: Suppress the instance initiated by one root and continue theinstance initiated by the
other root, based on some rule such as tie-breaking using theprocessor identifier. Again, it
must be ensured that the rule is correct.

Example: In Figure 5.7, if A’s initiation is suppressed due to the conflict detected along
BD, G’s initiation is suppressed due to the conflict detectedalong HI, and J’s initiation is
suppressed due to the conflict detected along CF, the algorithm hangs.

The algorithm presented below uses the second option, allowing only the algorithm initiated by
the root with the higher processor identifier to continue. Toimplement this, the messages need
to be enhanced with a parameter that indicates the root node which initiated that instance of the
algorithm. It is relatively more difficult to use the first option to merge partially computed spanning
trees.

When a QUERY(newroot) from j arrives ati, there are three possibilities.

newroot > myroot: Processi should suppress its current execution due to its lower priority. It
reinitializes the data structures and joinsj’s subtree withnewroot as the root.

newroot = myroot: j’s execution is initiated by the same root asi’s initiation, andi has already
identified its parent. Hence a REJECT is sent toj.

136

newroot < myroot: j’s root has a lower priority and hencei does not joinj’s subtree.i sends
a REJECT.j will eventually receive a QUERY(myroot) from i; and abandon its current
execution in favour ofi’s myroot (or a larger value).

When an ACCEPT(newroot) from j arrives ati, there are three possibilities.

newroot = myroot: The ACCEPT is in response to a QUERY sent byi. The ACCEPT is pro-
cessed normally.

newroot < myroot: The ACCEPT is in response to a QUERYi had sent toj earlier, buti has
updated itsmyroot to a higher value since then. Ignore the ACCEPT message.

newroot > myroot: The ACCEPT is in response to a QUERYi had sent earlier. Buti never
updates itsmyroot to a lower value. So this case cannot arise.

The three possibilities when a REJECT(newroot) from j arrives ati are the same as for the
ACCEPT message.
Complexity: The time complexity of the algorithm isO(l) messages, and the number of messages
isO(nl).
Termination: A serious drawback of the algorithm is that only the root knows when its algorithm
has terminated. To inform the other nodes, the root can send aspecial message along the newly
constructed spanning tree edges.

5.5.4 Asynchronous Concurrent-Initiator Depth First Search Spanning Tree
Algorithm: Algorithm III

As in Algorithm II, this algorithm assumes that any node may spontaneously initiate the spanning
tree algorithm provided it has not already been invoked locally due to the receipt of a QUERY
message. It differs from Algorithm II in that it is based on a Depth-First Search (DFS) of the graph
to identify the spanning tree. The algorithm should handle concurrent initiations (when two or
more processes that are not yet participating in the algorithm initiate the algorithm concurrently).
The pseudo-code for each processPi is shown in Figure 5.8. The parent of each node is that node
from which a QUERY is first received; an ACCEPT message is sentin response to such a QUERY.
Other QUERY messages received are replied to by a REJECT message. The actions to execute
when a QUERY, ACCEPT or REJECT arrives are nontrivial and theanalysis for the various cases
(newroot <,=, > myroot) are similar to the analysis of these cases for Algorithm II.
Complexity: The time complexity of the algorithm isO(l) messages, and the number of messages
isO(nl).
Termination: The analysis is the same as for Algorithm II.

5.5.5 Broadcast and Convergecast on a Tree

A spanning tree is useful for distributing (via a broadcast)and collecting (via a convergecast)
information to/from all the nodes. A generic graph with a spanning tree, and the convergecast and

137

(local variables)
int parent,myroot←−⊥
set of int Children←− ∅
set of int Neighbors, Unknown←− set of neighbors
(message types)
QUERY, ACCEPT, REJECT

(1) When the node wants to initiate the algorithm as a root:
(1a) if (parent =⊥) then
(1b) sendQUERY(i) to i (itself).

(2) When QUERY(newroot) arrives fromj:
(2a) if myroot < newroot then
(2b) parent←− j; myroot←− newroot; Unknown←− set of neighbours;
(2c) Unknown← Unknown/{j};
(2d) if Unknown 6= ∅ then
(2e) deletesomex from Unknown;
(2f) sendQUERY(myroot) to x;
(2g) else sendACCEPT(myroot) to j;
(2h) else ifmyroot = newroot then
(2i) sendREJECT toj. // if newroot < myroot ignore the query.

// j will update its root to a higher root identifier when it receives its QUERY.

(3) When ACCEPT(newroot) or REJECT(newroot) arrives fromj:
(3a) if newroot = myroot then
(3b) if ACCEPT message arrivedthen
(3c) Children←− Children ∪ {j};
(3d) if Unknown = ∅ then
(3e) if parent 6= i then
(3f) sendACCEPT(myroot) to parent;
(3g) elseseti as the root;terminate.
(3h) else
(3i) deletesomex from Unknown;
(3j) sendQUERY(myroot) to x.

// if newroot < myroot ignore the query. Since sending QUERY toj, i has updated itsmyroot.
// j will update itsmyroot to a higher root identifier when it receives a QUERY initiatedby it.
// newroot > myroot will never occur.

Figure 5.8: Spanning tree Algorithm III (DFS, asynchronous). The code shown is for processor
Pi, 1 ≤ i ≤ n.

broadcast operations are illustrated in Figure 5.9.
A broadcast algorithmon a spanning tree can be specified by two rules.

BC1. The root sends the information to be broadcast to all its children. Terminate.

BC2. When a (nonroot) node receives information from its parent,it copies it and forwards it to

138

b
ro

a
d

ca
st

co
n

ve
rg

e
ca

st

in
iti

a
te

d
 b

y
le

a
ve

s

root

in
iti

a
te

d
 b

y
ro

o
t

tree edge
cross−edge back−edge

Figure 5.9: A generic spanning tree on a graph. The broadcastand convergecast operations are
indicated.

its children. Terminate.

A convergecast algorithmcollects information from all the nodes at the root node in order to
compute someglobal function. It is initiated by the leaf nodes of the tree, usually in response to
receiving a request sent by the root using a broadcast. The algorithm is specified as follows.

CVC1. Leaf node sends its report to its parent. Terminate.

CVC2. At a nonleaf node that is not the root: When a report is received from all the child nodes,
the collective report is sent to the parent. Terminate.

CVC3. At the root: When a report is received from all the child nodes, the global function is
evaluated using the reports. Terminate.

Termination: The termination condition for each node in a broadcast as well as in a convergecast
is self-evident.
Complexity: Each broadcast and each convergecast requiresn−1 messages and time equal to the
maximum height of the treeh, which isO(n).

An example of the use of convergecast is as follows. Suppose each node has an integer variable
associated with the application, and the objective is to compute the minimum of these variables.
Each leaf node can report its local value to its parent. When anon-leaf node receives a report from
all its children, it computes the minimum of those values, and sends this minimum value to its
parent.

Another example of the use of convergecast is in solving theleader electionproblem. Leader
election requires that all the processes agree on a common distinguished process, also termed as
the leader. A leader is required in many distributed systems and algorithms because algorithms

139

(local variables)
int length←−∞
int parent←−⊥
set of int Neighbors←− set of neighbors
set of int {weighti,j , weightj,i | j ∈ Neighbors} ←− the known values of the weights of incident links

(message types)
UPDATE

(1) if i = i0 then length←− 0;
(2) for round = 1 to n− 1 do
(3) sendUPDATE(i, length) to all neighbors;
(4) await UPDATE(j, lengthj) from eachj ∈ Neighbors;
(5) for eachj ∈ Neighbors do
(6) if (length > (lengthj + weightj,i) then
(7) length←− lengthj + weightj,i; parent←− j.

Figure 5.10: The single source synchronous distributed Bellman-Ford shortest path algorithm. The
source isi0. The code shown is for processorPi, 1 ≤ i ≤ n.

are typically not completely symmetrical, and some processhas to take the lead in initiating the
algorithm; another reason is that we would not want all the processes to replicate the algorithm
initiation, to save on resources.

5.5.6 Single Source Shortest Path Algorithm: Synchronous Bellman-Ford

Given a weighted graph, with potentially unidirectional links, representing the network topology,
the Bellman-Ford sequential shortest path algorithm finds the shortest path from a given node, say
i0, to all other nodes. The algorithm is correct when there are no cyclic paths having negative
weight.

A synchronous distributed algorithm to compute the shortest path is given in Figure 5.10. It is
assumed that the topology(N,L) is not known to any process; rather, each process can commu-
nicate only with its neighbors and is aware of only the incident links and their weights. It is also
assumed that the processes know the number of nodes|N | = n, i.e., the algorithm is not uniform.
This assumption onn is required for termination.

The following features can be observed from the algorithm.

• After k rounds, each node has itslength variable set to the length of the shortest path con-
sisting of at mostk hops. Theparent variable points to the parent node along such a path.
Thisparent field is used in the routing table to route toi0.

• After the first round, thelength variable of all nodes one hop away from the root in the final
minimum spanning tree (MST) would have stablized; afterk rounds, thelength variable of
all the nodes up tok hops away in the final MST would have stabilized.

140

• Termination. As the longest path can be of lengthn− 1, the values of all variables stabilize
aftern− 1 rounds.

• Complexity. The time complexity of this synchronous algorithm is:n − 1 rounds. The
message complexity of this synchronous algorithm is:(n− 1)l messages.

5.5.7 Distance Vector Routing

When the network graph is dynamically changing, as in a real communication network wherein
the link weights model the delays or loads on the links, the shortest paths are required for routing.
The classic Distance Vector Routing algorithm (DVR) used inthe ARPANET up to 1980, is based
on the above synchronous algorithm (Figure 5.10) and requires the following changes.

• The outerfor loop runs indefinitely, and thelength andparent variables never stabilize,
because of the dynamic nature of the system.

• The variablelength is replaced by arrayLENGTH [1..n], whereLENGTH [k] denotes
the length measured with nodek as source/root. TheLENGTH vector is also included on
each UPDATE message. Now, thekth component of theLENGTH received from nodem
indicates the length of the shortest path fromm to the rootk. For each destinationk, the
triangle inequality of the Bellman-Ford algorithm is applied over all theLENGTH vectors
received in a round.

• The variableparent is replaced by arrayPARENT [1..n], wherePARENT [k] denotes
the next hop to which to route a packet destined fork. The arrayPARENT serves as the
routing table.

• The processes exchange their distance vectors periodically over a network that is essentially
asynchronous. If a message does not arrive within the period, the algorithm assumes a
default value, and moves to the next round. This makes it virtually synchronous. Besides, if
the period between exchanges is assumed to be much larger than the propagation time from
a neighbor and the processing time for the received message,the algorithm is effectively
synchronous.

5.5.8 Single Source Shortest Path Algorithm: AsynchronousBellman-Ford

The asynchronous version of the Bellman-Ford algorithm is shown in Figure 5.11. It is assumed
that there are no negative weight cycles in(N,L).

The algorithm does not give the termination condition for the nodes. Exercise 14 asks you to
modify the algorithm so that each node knows when the length of the shortest path to itself has
been computed.

This algorithm, unfortunately, has been shown to have an exponentialΩ(cn) number of mes-
sages and exponentialΩ(cn · d) time complexity in the worst case, wherec is some constant (See
Exercise 16).

141

(local variables)
int length←−∞
set of int Neighbors←− set of neighbors
set of int {weighti,j , weightj,i | j ∈ Neighbors} ←− the known values of the weights of incident links

(message types)
UPDATE

(1) if i = i0 then
(1a) length←− 0;
(1b) sendUPDATE(i0, 0) to all neighbours;terminate.

(2) When UPDATE(i0, lengthj) arrives fromj:
(2a) if (length > (lengthj + weightj,i)) then
(2b) length←− lengthj + weightj,i; parent←− j;
(2c) sendUPDATE(i0, length) to all neighbors;

Figure 5.11: The asynchronous distributed Bellman-Ford shortest path algorithm for a given source
i0. The code shown is for processorPi, 1 ≤ i ≤ n.

If all links are assumed to have equal weight, the algorithm which computes the shortest path
effectively computes the minimum-hop path; the minimum-hop routing tables to all destinations
are computed usingO(n2 · l) messages. (See Exercise 17).

5.5.9 All Sources Shortest Paths: Asynchronous Distributed Floyd-Warshall

The Floyd-Warshall algorithm computes all-pairs shortestpaths in a graph in which there are no
negative weight cycles. It is briefly summarized first, before a distributed version is studied. The
centralized algorithm usesn× n matricesLENGTH andV IA.

LENGTH [i, j] is the length of the shortest path fromi to j. LENGTH [i, j] is initialized to the
initial known conditions: (i)weighti,j if i andj are neighbours, (ii) 0 ifi = j, and (iii)∞
otherwise.

V IA[i, j] is the first hop on the shortest path fromi to j. V IA[i, j] is initialized to the initial
known conditions: (i)j if i andj are neighbours, (ii) 0 ifi = j, and (iii)∞ otherwise.

After pivot iterations of the outer loop, the followinginvariant holds:

“LENGTH [i, j] is the shortest path going through intermediate nodes from the set
{i, . . . , pivot}. V IA[i, j] is the corresponding first hop.”

Convince yourself of this invariant using the code in Figure5.12 and Figure 5.13. In this figure,
the LEN is for the paths that pass through nodes from{1 . . . pivot − 1}. The time complexity of
the centralized algorithm isO(n3).

142

(1) for pivot = 1 to n do
(2) for s = 1 to n do
(3) for t = 1 to n do
(4) if LENGTH [s, pivot] + LENGTH [pivot, t] < LENGTH [s, t] then
(5) LENGTH [s, t]←− LENGTH [s, pivot] + LENGTH [pivot, t];
(6) V IA[s, t]←− V IA[s, pivot].

Figure 5.12: The centralized Floyd-Warshall all-pairs shortest paths routing algorithm.

The distributed asynchronous algorithm is shown in Figure 5.14. Rowi of theLENGTH
andV IA data structures is stored at nodei which is responsible for updating this row. To avoid
ambiguity, we rename these data structures asLEN andPARENT , respectively. When the
algorithm terminates, the final values of rowi of LENGTH is available at nodei asLEN .

passes through nodes inpasses through nodes in
{1,2,...,pivot−1} {1,2,...,pivot−1}

s d

pivot

{1,2,...,pivot−1}
passes through nodes in

LEN[s,pivot] LEN[pivot,d]

LEN[s,d]

(a) (b)

VIA(s,d)

VIA((VIA(s,d), d)

d

s

Figure 5.13: The all-pairs shortest paths algorithm by Floyd-Warshall. (a) Triangle inequality used
in iterationpivot uses paths via{1, . . . , pivot− 1}. (b) TheV IA relationships along a branch of
the sink tree for a given(s, d) pair.

There are two challenges in making the Floyd-Warshall algorithm distributed.

1. How to access the remote datumLENGTH [pivot, t] for each execution of line (4) in the
centralized algorithm of Figure 5.12, now being executed byi?

2. How to synchronize the execution at the different nodes? If the different nodes are not
executing the same iteration of the outermost loop of Figure5.12, the distributed algorithm
becomes incorrect.

The problem of accessing the remote datumLENGTH [pivot, t] is solved by using the idea of
the distributedsink tree. In the centralized algorithm, after each iterationpivot of the outermost
loop, if LENGTH [s, t] 6=∞, thenV IA[s, t] points to the parent node on the path tot and this is
the shortest path going through nodes{1 . . . pivot}. Observe thatV IA[V IA[s, t], t] will also point
toV IA[s, t]’s parent node on the shortest path tot, and so on. Effectively, tracing through theV IA
nodes gives the shortest path todest; this path is acyclic because of the “shortest path” property

143

(local variables)
array of int LEN [1..n] // LEN [j] is the length of the shortest known path fromi to nodej.

// LEN [j] = weightij for neighborj, 0 for j = i,∞ otherwise
array of int PARENT [1..n] // PARENT [j] is the parent of nodei (myself) on the sink tree rooted atj.

// PARENT [j] = j for neighborj,⊥ otherwise
set of int Neighbours←− set of neighbors
int pivot, nbh←− 0

(message types)
IN_TREE(pivot), NOT_IN_TREE(pivot), PIV_LEN(pivot, PIV OT_ROW [1..n])

// PIV OT_ROW [k] is LEN [k] of nodepivot, which isLEN [pivot, k] in the central algorithm
// the PIV_LEN message is used to conveyPIV OT_ROW .

(1) for pivot = 1 to n do
(2) for each neighbournbh ∈ Neighbours do
(3) if PARENT [pivot] = nbh then
(4) sendIN_TREE(pivot) to nbh;
(5) else sendNOT_IN_TREE(pivot) to nbh;
(6) await IN_TREE or NOT_IN_TREE message from each neighour;
(7) if LEN [pivot] 6=∞ then
(8) if pivot 6= i then
(9) receivePIV_LEN(pivot, PIV OT_ROW [1..n]) from PARENT [pivot];
(10) for each neighbournbh ∈ Neighbours do
(11) if IN_TREE message was received fromnbh then
(12) if pivot = i then
(13) sendPIV_LEN(pivot, LEN [1..n]) to nbh;
(14) else sendPIV_LEN(pivot, PIV OT_ROW [1..n]) to nbh;
(15) for t = 1 to n do
(16) if LEN [pivot] + PIV OT_ROW [t] < LEN [t] then
(17) LEN [t]←− LEN [pivot] + PIV OT_ROW [t];
(18) PARENT [t]←− PARENT [pivot].

Figure 5.14: Toueg’s asynchronous distributed Floyd-Warshall all-pairs shortest paths routing al-
gorithm. The code shown is for processorPi, 1 ≤ i ≤ n.

(seeinvariant). Thus, all nodess for whichLENGTH [s, t] 6= ∞ are part of a tree tot, and this
tree is termed as asink tree, with t as the root or thesink node. In the distributed algorithm, the
parent of any node on the sink tree fordest is stored inPARENT [t].

Applying the sink tree idea to nodepivot in iterationpivot of the distributed algorithm, we
have the following observations for any nodei in any iterationpivot.

• If LEN [pivot] =∞, theni will not update itsLEN andPARENT arrays in this iteration.
Hence there is no need fori to receive the remote dataPIV _ROW [1, . . . , n]. In fact, there
is no known path fromi to pivot at this stage.

• If LEN [pivot] 6=∞, then the remote dataPIV OT_ROW [1, . . . , n] is distributed to all the

144

nodes lying on the sink tree ofpivot. Observe thati necessarily lies on the sink tree ofpivot.
The parent ofi, and its parent’s parent, and so on, all lie on that sink tree.

The asynchronous distributed algorithm proceeds as follows. It iterationpivot, nodepivot
broadcasts itsLEN vector along its sink tree. To implement this broadcast, theparent-child edges
of the sink tree need to be identified. Note that any node on thesink tree ofpivot does not know
which of its neighbours are its children. Hence, each node awaits a IN_TREE or NOT_IN_TREE
message from each of its neighbours (lines (2)-(6)) to identify it children. These flows seen at node
i are illustrated in Figure 5.15. The broadcast of the pivot’sLEN vector is initiated by nodepivot
in lines (10)-(13). For example, consider the first iteration, wherepivot = 1.

Node 1. The node executes (1), (2)-(5) by sending NOT_IN_TREE, (6) in which it gets IN_TREE
messages from its neighbours, (10)-(13) wherein the node sends itsLEN vector to its neigh-
bours.

Node > 1. In line (1)-(4), the neighbours of node 1 send IN_TREE to node1. In line (9), the
neighbours receivePIV OT_LEN from the pivot, i.e., node 1. The reader can step through
the remainder of the protocol.

Wheni receivesPIV _LEN message containing the pivot’sPIV OT_ROW [1..n] from its parent
(line (9)), it forwards it to its children (lines (10)-(12) and (14)). The two inner loops of the
centralized algorithm are then executed in lines (15)-(18)of the distributed algorithm.

The inherent distribution ofPIV OT_ROW in lines (9)-(12) via thereceivefrom the parent
(line (9)) andsendto the children (line (14)), as well as the synchronization of thesend(lines (4)-
(5)) andreceive (line (6)) of IN_TREE and NOT_IN_TREE messages among neighbour nodes
ensures that the asynchronous execution of the nodes gets synchronized and all nodes are forced
to execute the innermost nested iteration concurrently with each other. Notice also the dependence
between thesendof lines (4)-(5) andreceiveof line (6), and between thereceiveof line (9) and
thesendof lines (13) or (14).

The techniques for synchronization used here will be formalized in Section 5.6 under the sub-
ject of synchronizers.
Complexity: In each of then iterations of the outermost loop, two IN_TREE or NOT_IN_TREE
messages are sent per edge, and at mostn − 1 PIV_LEN messages are sent. The overall number
of messages isn · (2l + n). The PIV_LEN is of sizen while the IN_TREE and NOT_IN_TREE
messages are of sizeO(1). The execution time complexity per node isO(n2), plus the time forn
convergecast-broadcast phases.

5.5.10 Asynchronous and Synchronous Constrained Flooding(w/o a Span-
ning Tree)

Asynchronous algorithm (Figure 5.16). This algorithm allows any process to initiate a broad-
cast via (constrained) flooding along the edges of the graph.It is assumed that all chan-
nels are FIFO. Duplicates are detected by using sequence numbers. Each process uses the

145

B

C

A
i

NOT_IN_TREE(pivot)

NOT_IN_TREE(pivot) NOT_IN_TREE(pivot)

IN_TREE(pivot)

IN_TREE(pivot)

NOT_IN_TREE(pivot)

Figure 5.15: Message flows to determine how to selectively distributePIV _ROW in iteration
pivot in Toueg’s distributed Floyd-Warshall algorithm.

SEQNO[1..n] vector, whereSEQNO[k] tracks the latest sequence number of the update
initiated by processk. If the sequence number on a newly arrived message is not greater
than the sequence numbers already seen for that initiator, the message is simply discarded;
otherwise, it is flooded on all other outgoing links. This mechanism is used by the Link
State Routing protocol in the Internet to distribute any updates about the link loads and the
network topology.

Complexity: The message complexity is:2l messages in the worst case, where each mes-
sage is of size|M |. The time complexity is: diameterd number of sequential hops.

Synchronous algorithm (Figure 5.17).This algorithm allows all processes to flood a local value
throughout the network. The local arraySTATEV EC[1..n] is such thatSTATEV EC[k]

is the estimate of the local value of processk. After d number of rounds, it is guaranteed that
the local value of each process has propagated throughout the network.

Complexity: The time complexity is: diameterd rounds, and the message complexity is:
2l · d messages, each of sizen.

5.5.11 Minimum Weight Spanning Tree (MST) Algorithm in a Synchronous
System

A minimum spanning tree (MST) minimizes the cost of transmission from any node to any other
node in the graph. The classical centralized MST algorithmssuch as those by Prim, Dijkstra, and
Kruskal assume that the entire weighted graph is available for examination.

• Kruskal’s algorithm begins with a forest of graph components. In each iteration, it identifies
the minimum-weight edge that connects two different components, and uses this edge to
merge two components. This continues until all the components are merged into a single
component.

146

(local variables)
array of int SEQNO[1..n]←− 0
set of int Neighbors←− set of neighbors
(message types)
UPDATE

(1) To send a messageM :
(1a) if i = root then
(1b) SEQNO[i]←− SEQNO[i] + 1;
(1c) sendUPDATE(M, i, SEQNO[i]) to eachj ∈ Neighbors.

(2) When UPDATE(M, j, seqnoj) arrives fromk:
(2a) if SEQNO[j] < seqnoj then
(2b) Process the messageM ;
(2c) SEQNO[j]←− seqnoj;
(2d) sendUPDATE(M, j, seqnoj) to Neighbors/{k}
(2e)elsediscard the message.

Figure 5.16: The asynchronous flooding algorithm. The code shown is for processorPi, 1 ≤ i ≤ n.
Any and all nodes can initiate the algorithm spontaneously.

(local variables)
array of int STATEV EC[1..n]←− 0
set of int Neighbors←− set of neighbors
(message types)
UPDATE

(1) STATEV EC[i]←− local value;
(2) for round = 1 to diameterd do
(3) sendUPDATE(STATEV EC[1..n]) to eachj ∈ Neighbors;
(4) for count = 1 to |Neighbors| do
(5) await UPDATE(SV [1..n]) from somej ∈ Neighbors;
(6) STATEV EC[1..n]←− max(STATEV EC[1..n], SV [1..n]).

Figure 5.17: The synchronous flooding algorithm for learning all node’s identifiers. The code
shown is for processorPi, 1 ≤ i ≤ n.

• In Prim’s algorithm and Dijkstra’s algorithm, a single-node component is selected. In each
iteration, a minimum weight edge incident on the component is identified, and the compo-
nent expands to include that edge and the node at the other endof that edge. Aftern − 1

iterations, all the nodes are included. The MST is defined by the edges that are identified in
each iteration to expand the initial component.

In a distributed algorithm, each process can communicate only with its neighbors and is aware of
only the incident links and their weights. It is also assumedthat the processes know the value of

147

|N | = n. The weight of each edge is unique in the network, which is necessary to guarantee a
unique MST. (If weights are not unique, the IDs of the nodes onwhich they are incident can be
used as tie-breakers by defining a well-formed order.)

A distributed algorithm that generalizes the strategy of Kruskal’s centralized algorithm is given
after reviewing some definitions. Aforest(i.e., a disjoint union of trees) is a graph in which any
pair of nodes is connected by at most one path. Aspanning forestof an undirected graph(N,L)

is a maximal forest of(N,L), i.e., an acyclic and not necessarily connected graph whoseset of
vertices isN . When a spanning forest is connected, it becomes aspanning tree.

A spanning forest ofG is a subgraphG′ of G having the same node set asG; the spanning
forest can be viewed as a set of spanning trees, one spanning tree per “connected component” of
G′. All MST algorithms begin with a spanning forest havingn nodes (or connected components)
and without any edges. They then add a ‘minimum weight outgoing edge’ (MWOE) between
two components.2 The spanning trees of the combining conencted components combine with the
MWOE to form a single spanning tree for the combined connected component. The addition of the
MWOE is repeated until a spanning tree is produced for the entire graph(N,L). Such algorithms
are correct because of the following observation.

Observation 1. For any spanning forest{(Ni, Li) | i = 1 . . . k} of a weighted undirected graphG,
consider any component(Nj , Lj). Denote byλj, the edge having the smallest weight among those
that are incident on only one node inNj . Then an MST for the graphG that includes all the edges
in eachLi in the spanning forest, must also include edgeλi.

This observation says that for any “minimum weight” component created so far, when it grows
by joining another component, the growth must be via the MWOEfor that component under con-
sideration. Intuitively, the logic is as follows. For any component containing node setNj , if edge
x is used instead of the MWOEλj to connect with nodes inN \Nj , then the resulting tree cannot
be a MST because edgex can always be replaced with the MWOE that was not chosen to yield a
lower cost tree.

Consider Figure 5.18(a) where three components have been identified and are encircled. The
MWOE for each component is marked by an outgoing edge (other outgoing edges are not shown).
Each of the three components shown must grow only by merging with the component at the other
end of the MWOE.

In a distributed algorithm, the addition of the edges shouldbe done concurrently by having
all the components identify their respective minimum-weight outgoing edge. The synchronous
algorithm of Gallagher-Humblet-Spira uses this above observation, and is given in Figure 5.19.
Initially, each node is the leader of its component which contains only that node. The algorithm
useslog(n) iterations. In each iteration, each component merges with at least one other component.
Hence,log(n) iterations guarantee termination with a single component.

Each iteration goes through a broadcast-convergecast-broadcast sequence to identify the MWOE
of the component, and to select theleaderfor the next iteration. The MWOE is identified after the

2Note that this is an undirected graph. The direction of the “outgoing” edge is logical in the sense that it identifies
the direction of expansion of the connected component underconsideration.

148

C

A
BB

A

C

(b)(a)

Figure 5.18: Merging of MWOE components. (a) A cycle of length 2 is possible. (b) A cycle of
length greater than 2 is not possible.

broadcast (Steps 1 and 2) and convergecast (Step 3) by the current leader, which then does a sec-
ond broadcast (Step 4). The leader is selected at the end of this second broadcast (Step 4); among
all the components that merge in an iteration, a single leader is selected, and it identifies itself
among all the nodes in the newly-forming component by doing athird broadcast (Step 5). This
sequence of steps can be visualized using the connected component enclosed within a rectangle in
Figure 5.20, using the following narrative. (a) Root broadcasts SEARCH_MWOE; (b) Converge-
cast REPLY_MWOE occurs. (c) Root broadcasts ADD_MWOE; (d) If the MWOE is also chosen
as the MWOE by the component at the other end of the MWOE, the incident process with the
higher ID is the leader for the next iteration and broadcastsNEW_LEADER.

The correctness of the above algorithm hinges on the fact that in any iteration, when each
component of the spanning forest joins with one or more othercomponents of the spanning forest,
the result is still a spanning forest! Observe that each component picks exactlyoneMWOE with
which it connects to another component. However, more than two components can join together in
one iteration. If multiple components join, we need to observe that the resulting component is still
a spanning forest. To do so, model a directed graph(P,M) whereP is the set of components at
the start of an iteration andM is the set of|P | MWOE edges chosen by the components inP . In
this graph, there is exactly one outgoing edge from each nodein P . Recall that the direction of the
MWOE is logical; the underlying graph remains undirected. If componentA chooses to include a
MWOE leading to componentB, then directed edge(A,B) exists in(P,M). By tracing any path
in this graph, observe that MWOE weights must be monotonically decreasing. To see that (i) the
merging of components retains the spanning forest property, and that (ii) there is a unique leader
in each component after the merger in the previous round, consider the following two cases.

1. If two components join, then each must have picked the other to join with, and we have a
cycle of length two. As each component was a spanning forest,joining via the common
MWOE still retains the spanning forest property, and there is a unique leader in the merged
component.

149

(message types:)
SEARCH_MWOE(leader) // broadcast by current leader on tree edges
EXAMINE(leader) // sent on non-tree edges after receiving SEARCH_MWOE
REPLY_MWOES(local_ID, remote_ID) // details of potential MWOEs are convergecast to leader
ADD_MWOE(local_ID, remote_ID) // sent by leader to add MWOE and identify new leader
NEW_LEADER(leader) // broadcast by new leader after merging components

leader = i;
for round = 1 to log(n) do // each merger in each iteration involves at least two components

1. if leader = i then
broadcastSEARCH_MWOE(leader) along marked edges of tree (Sect. 5.5.5).

2. On receiving a SEARCH_MWOE(leader) message that was broadcast on marked edges:

(a) Each processi (includingleader) sends an EXAMINE message along unmarked (i.e., non-tree)
edges to determine if the other end of the edge is in the same component (i.e., whether its leader
is the same).

(b) From among all incident edges ati, for which the other end belongs to a different component,
processi picks its incident MWOE(localID,remoteID).

3. The leaf nodes in the MST within the component initiate theconvergecast(Sect. 5.5.5) using RE-
PLY_MWOEs, informing their parent of their MWOE(localID,remoteID). All the nodes participate
in this convergecast.

4. if leader = i then
await convergecast replies along marked edges.
Select the minimum MWOE(localID,remoteID) from all the replies.
broadcastADD_MWOE(localID,remoteID) along marked edges of tree (Sect. 5.5.5).
// To ask processlocalID to mark the(localID, remoteID) edge,
// i.e., include it in MST of component.

5. if an MWOE edge gets marked by both the components on which it is incidentthen

(a) Definenew_leaderas the process with the larger ID on which that MWOE is incident (i.e.,
process whose ID ismax(localID, remoteID)).

(b) new_leaderidentifies itself as the leader for the next round.

(c) new_leaderbroadcastsNEW_LEADER in the newly formed component along the marked
edges (Sect. 5.5.5) announcing itself as the leader for the next round.

Figure 5.19: The synchronous MST algorithm by Gallagher-Humblet-Spira (GHS algorithm). The
code shown is for processorPi, 1 ≤ i ≤ n.

2. If three or more components join, then two sub-cases are possible.

• There is some cycle of length three or more (see Figure 5.18(b)). But as any path in
(P,M) follows MWOEs of monotonically decreasing weights, this implies a contra-

150

cross edge
out−edgetree edge

root of component

(MWOE)
11

21

16

112

13 14 34

8744

27

54 88

43

16

�
�
�
�

�
�
�
�

Figure 5.20: The phases within an iteration in a component.

diction because at least one node must have chosen an incorrect MWOE.

• There is no cycle of length 3 or more, and at least one node in(P,M) will have two
or more incoming edges (component C in Figure 5.18(a)). Further, there must exist a
cycle of length two. Exercise 22 asks you to prove this formally. As the graph has a
cycle of length at most two (Case (1)), the resulting component after the merger of all
the involved components is still a spanning component, and there is a unique leader
in the merged component. That leader is the node with the larger PID incident on the
MWOE that gets marked by both components on which it is incident.

Complexity:

• In each of thelog(n) iterations, each component merges with at least one other component.
So after the first iteration, there are at mostn/2 components, after the second, at mostn/4

components, and so on. Hence, at mostlog(n) iterations are needed and the number of nodes
in each component after iterationk is at least2k. In each iteration, the time complexity
is O(n) because the time complexity for broadcast and convergecastis bounded byO(n).
Hence the time complexity isO(n · log(n))

• In each of thelog(n) iterations,O(n) messages are sent along the marked tree edges (steps
(1), (3), (4), and (5)). There may be up tol = |L| EXAMINE messages to determine the
MWOEs in step (2) of each iteration. Hence, the total messagecomplexity isO((n + l) ·
log(n)).

The correctness of the GHS algorithm hinges on the fact that the execution occurs in syn-
chronous rounds. This is necessary in Step (2), where a process sends EXAMINE messages to
its unmarked neighbors to determine whether those neighbors belong to the same or a different
component than itself. If the neighbor is not synchronized,problems can occur. For example,

151

consider edge(j, k), wherej andk become a part of the same component in ‘iteration’x. From
j’s perspective, the neighbork may not yet have received its leader’s ID that was broadcast in step
(5) of the previous iteration; hencek replies to the EXAMINE message sent byj based on an older
ID for its leader. The testing processj may (incorrectly) includek in the same component as itself,
thereby creating cycles in the graph. As the distance from the leader to any node in its component
is not known, this needs to be dealt with even in a synchronoussystem. One way to enforce the
synchronicity is to wait forO(n) number of communication steps; this way, all communication
within the round would have completed in the synchronous model.

5.5.12 Minimum Weight Spanning Tree (MST) in an Asynchronous System

There are two approaches to designing the asynchronous MST algorithm.
In the first approach, the synchronous GHS algorithm issimulatedin an asynchronous setting.

In such a simulation, the same synchronous algorithm is run,but is augmented by additional proto-
col steps and control messages to provide the synchronicity. Observe from the synchronous GHS
that the difficulty in making it asynchronous lies in Step (2). If the two nodes at the ends of an
unmarked edge are in different levels, the algorithm can go wrong. Two possible ways to deal with
this problem are as follows.

• After each round, an additional broadcast and convergecaston the marked edges are serially
done. The newly identified leader broadcasts its ID and roundnumber on the tree edges;
the convergecast is then initiated by the leaves to acknowledge this broadcast. When the
convergecast completes at the leader, it then begins the next round. Now in Step (2), if the
recipient of an EXAMINE message is in an earlier round, it simply delays the response to
the EXAMINE, thus forcing synchrony.

This costsn · log(n) extra messages and increases the message complexity.

• When a node gets involved in a new round, it simply informs each neighbor (reachable along
unmarked or non-tree edges) of its new level. Only when the neighbors along unmarked
edges are all in the same round that the node sends the EXAMINEmessages in Step (2).

This costs|L| · log(n) extra messages and increases the message complexity.

The second approach to designing the asynchronous MST is to directly address all the diffi-
culties that arise due to lack of synchrony. The original asynchronous GHS algorithm uses this
approach even though it is patterned along the synchronous GHS algorithm. By carefully engi-
neering the asynchronous algorithm, it achieves the same message complexityO(n · log(n) + l)

and the same time complexityO(n · log(n) · (l + d)) as the synchronous algorithm. We do not
present the algorithm here because it is a well-engineered algorithm with intricate details; rather,
we only point out some of the difficulties in designing this algorithm.

• In step (2), if the two nodes are in different components or indifferent levels, there needs to
be a mechanism to determine this.

152

• If the combining of components at different levels is permitted, then some component may
keep combining with only single-node components in the worst-case, thereby increasing the
complexity by changing thelog(n) factor to the factorn.

• The search for MWOEs by adjacent components at different levels needs to be coordinated
carefully. Specifically, the rules for merging such components, as well as the rules for the
concurrent search for the MWOE by these two components need to be specified.

5.6 Synchronizers

General Observations on Synchronous and Asynchronous Algorithms: From the spanning
tree algorithms, shortest path routing algorithms, constrained flooding algorithms, and the MST
algorithms, it can be observed that it is much more difficult to design the algorithm for an asyn-
chronous system, than for a synchronous system. This can be generalized to all algorithms, with
few exceptions. The example algorithms also suggest that simulating synchronous behavior (of an
algorithm designed for a synchronous system) on an asynchronous system is often a direct way to
realize the algorithms on asynchronous systems.

Given that typical distributed systems are asynchronous, the logical question to address is
whether there is a general technique to convert an algorithmdesigned for a synchronous system, to
run on an asynchronous system. The generic class of transformation algorithms to run synchronous
algorithms on asynchronous systems are calledsynchronizers. We make the following observa-
tions. (1) We consider only failure-free systems, whether synchronous or asynchronous. We will
later see (in Chapter??) that such transformations may not be possible in asynchronous systems
in which either processes fail or channels are unreliable. (2) Using a synchronizer provides a sure
way to obtain an asynchronous algorithm. However, such an algorithm may have high complex-
ity. Although more difficult, it may be possible to design more efficient asynchronous algorithms
from scratch, rather than transforming the synchronous algorithms to run on asynchronous sys-
tems. (This was seen in the case of the GHS algorithm.) Thus, the field of systematic algorithm
design for asynchronous systems is an open and challenging field.

Practically speaking, in an asynchronous system, a synchronizer is a mechanism that indicates
to each process when it is safe to proceed to the next round of execution of the “synchronous”
algorithm. Conceptually, the synchronizer signals to eachprocess when it is sure that all messages
to be received in the current round have arrived.

The mesage complexityMa and time complexityTa of the asynchronous algorithm are as
follows.

Ma = Ms + (Minit + rounds ·Mround) (5.1)

Ta = Ts + Tinit + rounds · Tround (5.2)

• Ms is the number of messages in the synchronous algorithm.

• rounds is the number of rounds in the synchronous algorithm.

153

Simple synchronizer α synchronizer β synchronizer γ synchronizer

Minit 0 0 O(n · log(n) + |L|) O(kn2)
Tinit d 0 O(n) n · log(n)/log(k)

Mround 2|L| O(|L|) O(n) O(Lc) (≤ O(kn))
Tround 1 O(1) O(n) O(hc) (≤ O(log(n)/log(k)))

Table 5.1: The message and time complexities for thesimple, α, β, andγ synchronizers.hc is
the greatest height of a tree among all the clusters.Lc is the number of tree edges and designated
edges in the clustering scheme for theγ synchronizer.d is the graph diameter.

• Ts is the time for the synchronous algorithm. Assuming one unit(message hop) per round,
this equalsrounds.

• Mround is the number of messages needed to simulate a round,

• Tround is the number of sequential message hops needed to simulate around.

• Minit andTinit are the number of messages and the number of sequential message hops,
respectively, in the initialization phase in the asynchronous system.

We now look at four standard synchronizers: the simple, theα, theβ, and theγ synchronizers,
proposed by Awerbuch. The message and time complexities of these are summarized in Table 5.1.

Theα, β, andγ synchronizers use the notion of process safety, defined as follows. A process
i is said to besafein roundr if all messages sent byi in roundr have been received. Theα, β
synchronizers are extreme cases of theγ synchronizer and form its building blocks.

A Simple Synchronizer: This synchronizer requires each process to send every neighbor one and
only one message in each round. If no message is to be sent in the synchronous algorithm, an
empty dummy message is sent in the asynchronous algorithm; if more than one message are
sent in the synchronous algorithm, they are combined into one message in the asynchronous
algorithm. In any round, when a process receives a message from each neighbor, it moves to
the next round.

We make the following observations about this synchronizer.

• In physical time, any two processes may be only one round apart. Thus, if processi is
in roundroundi, any other adjacent processj must be in roundsroundi − 1, roundi,
or roundi + 1 only.

• When processi is in roundroundi, it can receive messages only from roundsroundi

or roundi + 1 from its neighbours.

• Initialization: Any process may start roundi. Within d time units, all processes will
participate in that round. Hence,Tinit = d. Minit = 0 because no explicit messages are
required solely for initialization.

154

• Complexity: Each round requires a message to be sent on each incident linkin each
direction. Hence,Mround = 2|L| andTround = 1.

execution message

BB

EE

D

CA

D

C

A

acknowledgement

(b)(a)

3

3

3

33

3

3

312

2
2

1

1 21

"safe"

��������������������������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� ����������������������������

Figure 5.21: An example showing steps of theα synchronizer. (a) Execution messages (Step (1))
and their acknowledgements (Step (2)). (b) “I am safe” messages (Step (3)).

The α-synchronizer: At any processi, theα synchronizer in roundr moves the process to the
next roundr + 1 if all the neighboring processes aresafefor roundr.

A process can learn about the safety of its neighbor if any message sent by this process is
required to be acknowledged. Once a neighborj has received acknowledgements for all the
messages it sent, it sends a message informingi (and all its other neighbors) that it is safe.

Example: The operation is illustrated in Figure 5.21. (1) Node A sendsa message to nodes
C and E, and receives messages from B and E in the same round. (2) These messages are
acknowledged after they are received. (3) Once node A receives the acknowledgements from
C and E, it sends a message to all its neighbours to notify themthat node A is safe. This
allows the neighbours to not wait on A before proceeding to the next round. Node A itself
can proceed to the next round only after it receives a safety notification from each of its
neighbours, whether or not there was any exchange of application execution messages with
them in that round.

Complexity: For every message sent (≤ |L|) in a round, an ack is required. Ifl′(< |L|)
messages are sent in a round,l′ acks are needed, giving a message overhead of2l′ thus far;
but it is assumed that an underlying transport layer (or equivalent) protocol uses acks, and
hence these come for free. But additionally,2|L|messages are required so that each process
can inform all its neighbors that it is safe. Thus the messagecomplexityMround = 2|L|+ 2l′

= O(|L|). The time complexityTround = O(1).

Initialization: No explicit initialization is needed. A process that spontaneously wakes up

155

and initializes the algorithm sends messages to (some of) its neighbours, who then acknowl-
edge any message received, and also reply that they are safe.

The β-synchronizer: This synchronizer assumes a rooted spanning tree. Safe leafnodes initiate
a convergecast; an intermediate node propagates the convergecast to its parent when all the
nodes in its subtree, including itself, are safe. When the root becomes safe and receives the
convergecast from all its children, it uses a tree broadcastto inform all the nodes to move to
the next phase.

Example: Compared to theα-synchronizer, steps (1) and (2) as described with respect
to Figure 5.21 are the same to determine when to notify othersabout safety. The actual
notification about safety uses the convergecast-broadcastsequence on a pre-established tree,
instead of using Step (3) of Figure 5.21.

Complexity: Just as for theα synchronizer, an ack is required by theβ-synchronizer for
each message of thel′ messages sent in a round; hencel′ acks are required, but these can be
assumed to come for free, thanks to the transport layer or an equivalent lower layer protocol.
Now instead of2l further messages as in theα synchronizer, only2(n− 1) further messages
are required for the convergecast and broadcast. Hence,Mround = 2(n − 1). For each
round, there is an average case2 · log(n) delay forTround and worst-case2n delay forTround,
incurred by the convergecast and the broadcast.

Initialization: There is an initialization cost, incurred by the set up of thespanning tree
(Algorithms in Section 5.5). As studied earlier in Section 5.5, this cost is:O(n · log(n)+ |L|)
messages andO(n) time.

�
�
�
� �

�
�
�

DEF

A CB

root
designated (inter−cluster) edge
tree edge �

�
�
�

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

�
�
�
��

�
�
�

�
�
�
�

�
�
�
�

Figure 5.22: Cluster organization for theγ synchronizer, showing six clusters A-F. Only the tree
edges within each cluster, and the inter-clusterdesignatededges are shown.

The γ-synchronizer: The network is organized into a set of clusters, as shown in Figure 5.22.
Within a cluster, a spanning tree hierarchy exists with a distinguished root node. The height

156

(message types)
Subtree_safe // β synchronizer phase’s convergecast within cluster
This_cluster_safe // β synchronizer phase’s broadcast within cluster
My_cluster_safe // embedded inter-clusterα synchronizer’s messages across cluster boundaries
Neighboring_cluster_safe // Convergecast following inter-clusterα synchronizer phase
Next_round // Broadcast following inter-clusterα synchronizer phase

for eachrounddo

1. (β synchronizer phase:)This phase aims to detect when all the nodes within a cluster are safe, and
inform all the nodes in that cluster.

(a) Using the spanning tree, leaves initiate theconvergecastof the ‘Subtree_safe’ message towards
the root of the cluster.

(b) After the convergecast completes, the root initiates abroadcast of ‘This_cluster_safe’ on the
spanning tree within the cluster.

(c) (Embeddedα synchronizer:)

i. During this broadcast in the tree, as the nodes get engaged, the nodes also send
‘My_cluster_safe’ messages on any incidentdesignatedinter-cluster edges.

ii. Each node also awaits ‘My_cluster_safe’ messages along any such incidentdesignated
edges.

2. (Convergecast and broadcast phase:)This phase aims to detect when all neighboring clusters are
safe, and to inform every node within this cluster.

(a) (Convergecast:)

i. After the broadcast of the earlier phase (1b) completes, the leaves initiate a convergecast us-
ing ‘Neighboring_cluster_safe’ messages once they receive any expected ‘My_cluster_safe’
messages (step (1c)) on all thedesignatedincident edges.

ii. An intermediate node propagates the convergecast once it receives the ‘Neighbor-
ing_cluster_safe’ message from all its children, and also any expected ‘My_cluster_safe’
message (as per step (1c)) alongdesignatededges incident on it.

(b) (Broadcast:) Once the convergecast completes at the root of the cluster, a‘Next_round’ message
is broadcast in the cluster’s tree to inform all the tree nodes to move to the next round.

Figure 5.23: Theγ synchronizer.

of a clustering scheme,h(c), is the maximum height of the spanning trees across all of
the clusters. Two clusters are neighbors if there is at leastone edge between one node in
each of the two clusters; one of such multiple edges is thedesignatededge for that pair of
clusters. Within a cluster, theβ-synchronizer is executed; once a cluster is ‘stabilized’,the
α-synchronizer is executed among the clusters, over thedesignatededges. To convey the
results of the stabilization of the inter-clusterα synchronizer, within each cluster, a con-
vergecast and broadcast phase is then executed. Over thedesignatedinter-cluster edges, two
types of messages are exchanged for theα synchronizer:My_cluster_safe, andNeighbor-
ing_cluster_safe, with the self-evident semantics. The details of the algorithm are given in
Figure 5.23.

157

Complexity:

• LetLc be the total number of tree edges plus designated edges in theclustering scheme.
In each round, there are four messages –Subtree_safe, This_cluster_safe, Neighbor-
ing_cluster_safe, andNext_round– per tree edge, and twoMy_cluster_safemessages
over each designated edge. Hence,Mround isO(Lc).

• Let hc be the maximum height of any tree among the clusters, then thetime complexity
componentTround is O(hc). This is due to the four phases – convergecast, broadcast,
convergecast, and broadcast – contributing4hc time, the 2 units of time needed for
all processes to become safe, and 1 unit of time needed for theinter-cluster messages
My_cluster_safe.

Exercise 25 asks you to work out a formal design of how to partition the nodes into clusters,
how to choose a root and a spanning tree of appropriate depth for each cluster, and how
to designate the preferred edges. The requirements on the design scheme are to be able to
control the complexity by suitably tuning a parameterk. Theγ(k)-synchronizer reduces to
theα-synchronizer whenk = n − 1, i.e., each cluster contains a single node. Theγ(k)-
synchronizer reduces to theβ-synchronizer whenk = 2, i.e., there is a single cluster. The
construction will allow theγ(k)-synchronizer to be viewed as a parameterized synchronizer
based on clustering.

5.7 Maximal Independent Set (MIS)

For a graph(N,L), an independent setof nodesN ′, whereN ′ ⊂ N , is such that for eachi andj
in N ′, (i, j) 6∈ L. An independent setN ′ is amaximal independent setif no strict superset ofN ′

is an independent set. A graph may have multiple maximal independent sets; all of which may not
be of the same size.3

The maximal independent set problem requires that adjacentnodes must not be chosen. This
has application in wireless broadcast where it is required that transmitters must not broadcast on
the same frequency within range of each other. More generally, for any shared resources (radio
frequency bandwidth in the above example) to allow a maximumconcurrent use while avoiding
interference or conflicting use, a maximal independent set is required.

Computing a maximum independent set in a distributed manneris challenging. The problem
becomes further interesting when a maximal independent setmust be maintained when processes
join and leave, and links can go down, or new links between existing nodes can be established.

A simple and elegant distributed algorithm for the MIS problem in a static system, proposed
by Luby, is presented in Figure 5.24 for an asynchronous system. The idea is as follows. In
each iteration, each nodePi selects a random numberrandomi and exchanges this value with its
neighbours using the RANDOM message. Ifrandomi is less than the random numbers chosen by

3The problem of finding the largest sized independent set is the maximum independent setproblem. This is NP-
hard.

158

(variables)
set of integerNeighbours // set of neighbours
real randomi // random number from a sufficiently large range
booleanselectedi // becomes true whenPi is included in the MIS
booleaneliminatedi // becomes true whenPi is eliminated from the candidate set
(message types)
RANDOM(real random) // a random number is sent
SELECTED(integer pid, booleanindicator) // whether sender was selected in MIS
ELIMINATED(integer pid, booleanindicator) // whether sender was removed from candidates

(1a)repeat
(1b) if Neighbours = ∅ then
(1c) selectedi ←− true; exit();
(1d) randomi ←− a random number;
(1e) sendRANDOM(randomi) to each neighbour;
(1f) await RANDOM(randomj) from each neighbourj ∈ Neighbours;
(1g) if randomi < randomj (∀j ∈ Neighbours) then
(1h) sendSELECTED(i, true) to eachj ∈ Neighbours;
(1i) selectedi ←− true; exit(); // in MIS
(1j) else
(1k) sendSELECTED(i, false) to eachj ∈ Neighbours;
(1l) await SELECTED(j, ⋆) from eachj ∈ Neighbours;
(1m) if SELECTED(j, true) arrived from somej ∈ Neighbours then
(1n) for eachj ∈ Neighbours from which SELECTED(⋆, false) arriveddo
(1o) sendSELECTED(i, true) to j;
(1p) eliminatedi ←− true; exit(); // not in MIS
(1q) else
(1r) sendELIMINATED (i, false) to eachj ∈ Neighbours;
(1s) await ELIMINATED (j, ⋆) from eachj ∈ Neighbours;
(1t) for all j ∈ Neighbours do
(1u) if ELIMINATED (j, true) arrivedthen
(1v) Neighbours←− Neighbours \ {j};
(1w) forever.

Figure 5.24: Luby’s algorithm for the Maximal Independent Set in an asynchronous system. Code
shown is for processPi, 1 ≤ i ≤ n.

all its neighbours, the node includes itself in the MIS and exits. However, whether or not a node
gets included in the MIS, it informs its neighbours via the indicator parameter on the SELECTED
message. On receiving SELECTED messages from all the neighbours, if a node finds that at
least one of its neighbours has been selected for inclusion in the MIS, the node eliminates itself
from the candidate set for inclusion. However, whether or not an unselected node eliminates itself
from the candidate set, it informs its neighbours via the indicator parameter on the ELIMINATED
message. If a node learns that a neighbourj is eliminated from candidature, the node deletesj

fromNeighbours, and proceeds to the next iteration.

159

6

7 2

1

0

2

5

6

8

1

6
K

A E

B

C

D

G H

F

J

I

(a)

24

5

9

1

(b)

A E

B

C

D

F

G H

I

J K

Figure 5.25: An example showing the execution of the MIS algorithm. (a) Winners and losers in
round 1. (b) Winners up to round 2, and the losers in round 2.

The algorithm constructs an IS because once a node is selected to be in the IS, all its neigh-
bours are deleted from the set of remaining candidate nodes for inclusion in the IS. The algorithm
constructs an MIS because only the neighbours of the selected nodes are eliminated from being
candidates.
Example: Figure 5.25(a) and (b) show the first two rounds in the execution of the MIS algorithm.
The winners have a check mark and the losers have a cross next to them. In the third round, the
node labeled I includes itself as a winner. The MIS is{C,E,G, I,K}.
Complexity: It is evident that in each iteration, at least one node will beincluded in the MIS, and
at least one node will be eliminated from the candidate set. So at mostn/2 iterations of therepeat
loop are required. In fact, the expected number of iterations isO(log n). The reader is referred to
the paper by Luby for the proof of this bound.

5.8 Connected Dominating Set

A dominating setof graph(N,L) is a setN ′ ⊆ N such that each node inN\N ′ has an edge to some
node inN ′. Determining whether there exists a dominating set of sizek < |N | is NP-complete. A
connected dominating set(CDS) of(N,L) is a dominating setN ′ such that the subgraph induced
by the nodes inN ′ is connected.

Finding the miminum connected dominating set (MCDS) is NP-complete, and hence poly-
nomial time heuristics are used to design approximation algorithms. In addition to the time and
message complexities, theapproximation factorbecomes an important metric. The approximation
factor is the worst case ratio of the size of the CDS obtained by the algorithm to the size of the
MCDS. Another useful metric is thestretch factor. This is the worst-case ratio of the length of
the shortest route between the dominators of two nodes in theCDS overlay, to the length of the
shortest routes between the two nodes in the underlying graph.

The connected dominating set can form a backbone along whicha broadcast can be performed.
All nodes are guaranteed to be within range of the backbone and can hence receive the broad-

160

cast. The set is thus useful for routing, particularly in thewide-area network and also in wireless
networks.

A simple heuristic is to create a spanning tree and delete theedges to the leaf nodes to get a
CDS. Another heuristic is to create a MIS and add edges to create a CDS. However, designing
an algorithm with a low approximation factor is non-trivial. The Bibliographic Notes point to a
couple of references for efficient distributed CDS algorithms.

5.9 Compact Routing Tables

Routing tables are traditionally as large as the number of destinationsn. This can have high storage
requirements as well as table lookup and processing overheads when routing each packet. If the
table can be reorganized such that it is indexed by the incident incoming link, and the table entry
gives the outgoing link, then the table size becomes the degree of the node, which can be much
smaller thann. Further efficiency would depend on how the destinations reachable per channel are
represented and accessed. Some of the approaches to designing compact routing tables include the
following.

• Hierarchical routing schemes: The network graph is organized into clusters in a hierarchical
manner, with each cluster having one clusterhead designated node that represents the cluster
at the next higher level in the hierarchy. There is detailed information about routing within a
cluster, at all the routers within that cluster. If the destination does not lie in the same cluster
as the source, the packet is sent to the clusterhead and up thehierarchy as appropriate. Once
the clusterhead of the destination is found in the routing tables, then the packet is sent across
the network at that level of the hierarchy, and then down the hierarchy in the destination
cluster. This form of routing is widely used in the Internet.

• Tree-labeling schemes: This family of schemes uses a logical tree topology for routing. The
routing scheme requires labeling the nodes of the graph in such a way that all the destinations
reachable via any link can be represented as a range of contiguous addresses[x, y]. A node
with degreedeg need only maintaindeg entries in its routing table, where each entry is a
range of contiguous addresses. For all the address intervals [x, y] except at most one, the
scheme must satisfyx < y.

Example: Figure 5.26 shows a tree labeling. on a tree with 7 nodes. The tree edge labels
are enclosed in rectangles. Non-tree edges are in dashed lines.

Tree-labeling can provide great savings, compared to a table of sizen at each node. Unfor-
tunately, all traffic is confined to the logical tree edges. Exercise 26 asks you to show that it
is always possible to generate a tree-labeling scheme.

• Interval routing schemes: The tree-labeling schemes suffer from the fact that data can be
sent only over tree edges, wasting the remaining bandwidth in the system. Interval routing
extends the tree labeling so that the data packets need not besent only on the edges of a tree.

161

1 3

2

4

6

5 7

2−7

1−1

4−7

1−3 5−7

1−4

6−44−2

3−3 5−5

1−6

7−7

Figure 5.26: Tree labeling on a graph with 7 nodes.

Formally, given a graph(N,L), an interval routing scheme is a tuple(B, I), where:

1. Node labeling:B is a 1:1 mapping onN , that assigns labels to nodes.

2. Edge labeling: The mappingI labels each edge inL by some subset of node labels
B(N) such that for any nodex, all destinations are covered (∪y∈NeighboursI(x, y) ∪
B(x) = N) and there is no duplication of coverage (I(x, w) ∩ I(x, y) = ∅ for
w, y ∈ Neighbours).

3. For any sources and destinationt nodes, there must exist a sequence of nodes〈s =

x0, x1 . . . xk−1, xk = t〉 whereB(t) ∈ I(xi−1, xi) for eachi between 1 andk. There-
fore, for each source and destination pair, there must exista path under the new map-
ping.

To show that an interval labeling scheme is possible for every graph, a tree with the following
property is constructed: “there are no cross-edges in the corresponding graph”. The tree
generated by a depth-first traversal always satisfies this property. Nodes are labeled by a
preorder traversal whereas the edges are labeled by a more detailed scheme, see [31].

Two drawbacks of interval routing schemes are that: (i) theydo not give any guarantees on
the efficiency (lengths) of the routing paths that get chosen, and (ii) they are not robust to
small changes in the topology.

• Prefix routing schemes: Prefix routing schemes overcome the drawbacks of interval routing.
(This prefix routing is not to be confused with the CIDR routing used in the internet. CIDR
also uses the prefixes of the destination IP address.) In prefix routing, the node labels as
well as the channel labels are drawn from the same domain and are viewed as strings. The
routing decision at a router is as follows: identify the channels whose label is the longest
prefix of the address of the destination. This is the channel on which to route the packet for
that particular destination.

The stretch factorof a routing schemer is defined asmaxi,j∈N{ distancer(i,j)
distanceopt(i,j)

}. This is an
important metric in evaluating a compact routing scheme.

162

All the above approaches for compact routing are rich in distributed graph algorithmic prob-
lems and challenges, including identifying and proving bounds on the efficiency of computed
routes. Different graph topologies yield interesting results for these routing schemes.

5.10 Leader Election

We have seen the role of a leader process in several algorithms such as the Minimum spanning tree
and broadcast/convergecast to compute a function over all the participating processes.

Leader election requires that all the processes agree on a common distinguished process, also
termed as theleader. A leader is required in many distributed systems because algorithms are typi-
cally not completely symmetrical, and some process has to take the lead in initiating the algorithm;
another reason is that we would not want all the processes to replicate the algorithm initiation, to
save on resources.

Typical algorithms for leader election assume a ring topology is available. Each process has a
left neighbour and a right neighbour. The Lelang, Chang, andRoberts (LCR) algorithm assumes
an asynchronous unidirectional ring. It also assumes that all processes have unique identifiers.
Each process in the ring sends its identifier to its left neighbour. When a processPi receives the
identifierk from its right neighbourPj , it acts as follows.

• i < k: forward the identifierk to its left neighbour

• i > k: ignore the message received from neighbourj

• i = k: due to the assumption on nonanonymity,Pi’s identifier must have circluated across
the entire ring. HencePi can declare itself the leader.

Pi can then send another message around the ring announcing that it has been chosen as the leader.
The algorithm is given in Figure 5.27.
Complexity: The LCR algorithm in Figure 5.27 is in its simplest form. Several optimizations
are possible. For example, ifi has frowarded a probe with valuez and a probe with valueX,
wherei < x < z arrives, no forwarding action on the probe needs to be taken.Despite this, it is
straightforward to see that the message complexity of this algorithm isn · (n− 1)/2 and the time
complexity isO(n).

TheO(n2) message cost can be reduced toO(n logn) by using a binary search in both direc-
tions. In roundk, the token is circulated to2k neighbours on both the left and right sides. To cover
the entire ring, a logarithmic number of steps are needed. Consider that in each round, a process
tries to become a leader, and only the winners in roundk can proceed to roundk + 1. In effect,
a processi is a leader in roundk if and only if i is the highest identifier among2k neighbours in
both directions. Hence, any pair of leaders after roundk are at least2k apart. Hence the number of
leaders diminishes logarithmically asn/2k Observe that in each round, therer are at mostn mes-
sages sent, using the suprewssion technique of the LCR algorithm. Thus the overall complexity is
O(n · log n).

163

(variables)
booleanparticipate← false // becomes true whenPi is included in the MIS
(message types)
PROBEinteger // contains a node identifier
SELECTEDinteger // announcing the result

(1) When a process wakes up to participate in leader eleciton:
(1a)sendPROBE(i) to right neighbor;
(1b)participate←− true. (2) When a PROBE(k) message arrives from the left neighbourPj :
(2a) if participate = false then execute step (1) first. (2b)if i > k then
(2c) discard the probe;
(2d) else ifi < k then (2e)forward PROBE(k) to right neighbour;
(2f) else ifi = k then
(2g) declarei is the leader;
(2h) circulate SELECTED(i) to right neighbour; (3) When a SELECTED(x) message arrives from left neighbour: (3a)if x
(3b) notex as the leader and forward message to right neighbour; (3c)elsedo not forward the SELECTED message.

Figure 5.27: The LCR leader election algorithm in a synchronous system. Code shown is for
processPi, 1 ≤ i ≤ n.

It has been shown that there cannot exist a determinisitc leader election algorithm for anony-
mous rings. Hence, the assumption about uniform node identifiers is necessary in this model.
However, the algorithm can be uniform, i.e., thre total number of porcesses need not be known.

5.11 Challenges in Designing Distributed Graph Algorithms

We have thus far considered some elementary but important graph problems, and seen how to solve
them in distributed algorithms. The algorithms either failor require a more complicated redesign
if we assume that the graph topology changes dynamically, which happens in mobile systems.

• The graph(N,L) changes dynamically in the normal course of execution of a distributed
execution. An example is the load on a network link, which is really determined as the
aggregate of many different flows. It is unrealistic to expect that this will ever be static. All
of a sudden, the MST algorithms (and others) need a complete overhaul.

• The graph can change if either there are link or node failures, or worse still, partitions in
the network. The graph can also change when new links and new nodes are added to the
network. Again, the algorithms seen thus far need to be redesigned to accommodate such
changes.

The challenge posed by mobile systems additionally needs todeal with the new communication
model. Here, each node is capable of transmitting data wirelessly, and all nodes within a certain
radius can receive it. This is the unit-disk radius model.

164

5.12 Object Replication Problems

We now describe a real-life graph problem based on web/data replication, and that also requires
dynamic distributed solutions.

1. Consider a weighted graph(N,L), whereink users are situated at someNk ⊆ N nodes, and
r replicas of a data item can be placed at someNr ⊆ N . What is the optimal placement of
the replicas ifk > r and the users access the data item in read-only mode?

A solution requires evaluating all placements ofNr among the nodes inN to identify
min(

∑

i∈Nk,ri∈Nr
disti,ri

), wheredisti, ri is the cost from nodei to ri, the replica nearest
to i.

2. If we assume that the Read accesses from each of the users inNk have a certain frequency
(or weight), the minimization function would change.

3. If each edge has a certain bandwidth or capacity, that too has to be taken into account in
identifying a feasible solution.

4. Now assume that a user access to the shared data is a Read operation with probabilityx, and
an Update operation with probability1 − x. An Update operation also requires all replicas
to be updated. What is the optimal placement of the replicas if k > r?

Many such graph problems do not always have polynomial solutions even in the static case. With
dynamically changing input parameters, the case appears even more hopeless for an optimal solu-
tion. Fortunately, heuristics can often be used to provide good solutions.

5.12.1 Problem Definition

In a large distributed system, data replication is useful for rapid access to data and for fault-
tolerance. Here we look at Wolfson, Jajodia, and Huang’s optimal data replication strategy that
is dynamic in that it adapts to the read and write patterns from the different nodes. Let the network
be modeled by the graph(V,E), and let us focus on a single object for simplicity. Define arepli-
cation schemeas a subsetR of V such that each node inR has a replica of the object. Letri and
wi denote the rates of reads and writes issued by nodei. Let cr(i) andcw(i) denote the cost of a
read and write issued by nodei. LetR denote the set of all possible replication schemes. The goal
is to minimize the cost of the replication scheme:

min
R∈R

[
∑

i∈V

ri · cr(i) +
∑

i∈V

wi · cw(i)] (5.3)

The algorithm assumes one copy serializability which can beimplemented by the Read-One-Write-
All (ROWA) policy. ROWA can be strictly implemented in conjunction with a concurrency control
mechanism such as two-phase locking; however, lazy propagation can also be used for weaker
semantics.

165

5.12.2 Algorithm Outline

For arbitrary graph topologies, minimizing the cost as in Equation (5.3) is NP-complete. So we
assume a tree topologyT , as shown in Figure 5.28. The nodes inthe replication schemeR are
shown in the ellipse. IfT is allowed to be atree overlayT on the network topology, then all
algorithm communication is confined to the overlay. Conceptually, the set of nodesR containing
the replicas is an amoeba-like connected subgraph that moves around the overlay treeT towards
the “center of gravity” of the read and write activity. The amoeba-like subgraph expands when the
relative cost of the reads is more than that of writes, and shrinks as the relative cost of writes is
more than that of reads, reaching an equilibrium under steady state activity. This equilibrium-state
subgraph for the replication scheme is optimal. The algorithm executes in steps that are separated
by predetermined time periods or “epochs”. Irrespective ofthe initial replication scheme, the
algorithm converges to the optimal replication scheme in (diameter+1) number of steps once the
read-and-write pattern stabilizes.

A B
C

D
E

R R−fringe

R−neighbour

R−neighbour
and

R−fringe

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 5.28: The tree topology and the replication schemeR. Nodes inside the ellipse belong to
the replication scheme.

5.12.3 Reads and Writes

Read: A read operation is performed from the closest replica on thetreeT . If the node issuing
the read query or receiving a forwarded read query is not inR, it forwards the query towards
the nodes inR along the tree edges – for this, it suffices that aparentpointer point in the
direction of the subgraphR. Once the query reaches a node inR, the value read is returned
along the same path.

Write: A write is performed to every replica in the current replication schemeR. If a write
operation is issued by a node not inR, the operation request is propagated to the closest
node inR, like for the read operation request. Once a write operationreaches a nodei in R,
the local replica is updated, and the operation is propagated to all neighbours ofi that belong
to R. To implement this, a node needs to track the set of its neighbours that belong toR.
This is done using a variable,R-neighbours.

166

Implementation: To execute a read or write operation, a node needs to know (i) whether it is in
R (so it can read/write from the local replica), (ii) which of its neighbours are inR (to propagate
write requests), and (iii) if the node is not inR, then which of its neighbours is the unique node that
leads on the tree toR (so it can propagate read and write requests). After appropriate initialization,
this information is always locally available by tracking the status of the neighbour nodes.

5.12.4 Converging to an Replication Scheme

Within the replication schemeR, three types of nodes are defined.

R-neighbour: Such a nodei belongs toR but has at least one neighbourj that does not belong to
R.

R-fringe: Such a nodei belongs toR and has only one neighbourj that belongs toR. Thus,i is
a leaf node in the subgraph ofT induced byR andj is the parent ofi.

singleton: |R| =1 andi ∈ R.

Example: In Figure 5.28, nodeC is an R-fringenode, nodesA andE are bothR-fringe and
R-neighbournodes, and nodeD is anR-neighbournode.

The algorithm uses the following three tests to adjust the replication scheme to converge to the
optimal scheme.

(a) (b) (c)

r

w r

w r+w

r+wij ij
i

j
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 5.29: Adaptive data replication tests executed by nodei. (a) Expansion test. (b) Contraction
test. (c) Switch test.

Expansion test: An R-neighbournodei examines each such neighbourj to determine whetherj
can be included in the replication scheme, using anexpansion test. Nodej is included in the
replication scheme if the volume of reads coming from and viaj is more than the volume
of writes that would have to be propagated toj from i if j were included in the replication
scheme.

Example (Figure 5.29(a)):Nodei includesj in the replication scheme ifr > w.

Contraction test: An R-fringe nodei examines whether it can exclude itself from the replication
scheme, using acontraction test. Nodei excludes itself from the replication scheme if the
volume of writes being propagated to it fromj is more than the volume of reads thati would

167

have to forward toj if i were to exit the replication scheme. Before exiting, nodeimust seek
permission fromj to prevent a situation whereR = {i, j} and bothi andj simultaneously
have a successfulcontraction testand exit, leaving no copies of the object.

Example (Figure 5.29(b)):Nodei excludes itself from the replication scheme ifw > r.

Switch test: A singletonnodei executes theswitch testto determine if it can transfer its replica
to some neighbour to optimize the objective function. A singleton node transfers its replica
to a neighbourj if the volume of requests being forwarded by that neighbour is greater than
the volume of requests the node would have to forward to that neighbour if the replica were
shifted from itself to that neighbour. If such a nodej exists, observe that it is uniquely
identified among the neighbours of nodei.

Example (Figure 5.29(c)):Nodei transfers its replica toj if r +w being forwarded byj is
greater thanr + w that nodei receives from all other nodes.

The various tests are executed at the end of each “epoch”. AR-neighbournode may also be
a R-fringe node or asingletonnode; in either case, theexpansion testis executed first and if it
fails, then thecontraction testor theswitch testis executed. Note that a singleton node cannot be
aR-fringenode. The code is given in Figure 5.30.
Implementation: Each node needs to be able to determine whether it is inR, whether it is aR-
neighbournode, aR-fringe node, or asingletonnode. This can be determined if a node knows
whether it is inR, the set of neighbour nodes, and for each such neighbour, whether it is inR.
This is a subset of the information required for implementing read and write operations, and can
be tracked easily using local exchanges. Hence, these operations are not shown in the code in Fig-
ure 5.30. The actions to service read and write requests described earlier are also straightforward
and are not shown code.
Correctness:

Given an initial connected replication scheme, the replication scheme after each epoch remains
connected, and the replication schemes in two consecutive epochs either intersect or are adjacent
singletons. This property follows from the fact that for each nodei ∈ R, in each epoch, at most
one of the three tests – expansion, contraction, and switch –succeeds, and the corresponding
transformation satisfies the above property. Given two disconnected components of a replication
scheme, it is easy to see that by adding nodes to combine the components can never increase the
cost (Equation (5.3)) of the replication scheme.

Once the read-write pattern stabilizes, the replication scheme stabilizes withingdiameter + 1

number of epochs, and the resulting replication scheme is optimal. The proof if fairly complex;
below are the main steps to show termination, and these can bevalidated intuitively. For the opti-
mality argument, note that each change in an epoch reduces the cost. The proof that the replication
scheme on termination is globally optimal and not just locally optimal is given in the full paper
[31].
Termination:

168

• After aswitch testsucceeds, no otherexpansion testcan succeed.

• If a node exits the replication scheme in acontraction test, it cannot re-enter the replication
scheme via anexpansion test.

• If a node exits the replication scheme in aswitch test, it cannot re-enter the replication
scheme again.

Thus, if a node exits the replication scheme, it can re-enteronly by aswitch test, and that too if the
exit was via acontraction test. But then, no furtherexpansion testcan succeed. Hence, a node can
exit the replication scheme at most once more – via aswitch test. Each node can exit the replication
scheme at most twice, and after the firstswitch test, no expansion can occur. Hence the replication
scheme stabilizes.

It can be seen that the replication scheme first expands wherever possible, and then contracts.
If it becomes asingleton, then the only changes possible are switches.
Arbitrary graphs: The algorithm so far assumes the graph was a tree, on which thereplication
scheme “amoeba” moves into optimal position. For arbitrarygraphs, a tree overlay can be used.
However, the tree structure also has to change dynamically because the shortest path in the span-
ning tree between two arbitrary nodes is not always the shortest path between the nodes in the
graph. Modified versions of the three tests can now be used, but the structure of the graph does not
guarantee the global optimum solution, but only that a loal optimum is reached.

5.13 Chapter Summary

This chapter first examined various views of the distributedsystem at different levels of abstraction
of the topology of the system graph. It then introduced basicterminology for classifying distributed
algorithms and distributed executions. This covered failure models of nodes and links. It then
examined several performance metrics for distributed algorithms.

The chapter then examined several traditional distributedalgorithms on graphs. The most ba-
sic of such algorithms are the spanning tree, minimum weightspanning tree, and the shortest path
algorithms - both single source and multi-source. The importance of these algorithms lies in the
fact that spanning trees are used for information distribution and collection viabroadcastandcon-
vergecast, respectively, and these functions need to be performed by awide range of distributed
applications. The convergecast and broadcast performed onthe spanning trees also allow the re-
peated computation of a global function such asmin, max, and

∑

. Some of the shortest path
routing algorithms studied are seen to be used in the Internet at the network layer. In all cases, the
synchronous version and then the asynchronous version of the algorithms were examined.

The various examples of algorithm design showed that it is often easier to construct an algo-
rithm for a synchronous system than it is for an asynchronoussystem. The chapter then studied
synchronizers, which are transformations that allow any algorithm designed for a synchronous sys-
tem to run in an asynchronous system. Specifically, four synchronizers, in the order of increasing

169

complexity, were studied – the simple synchronizer, theα synchronizer, theβ synchronizer, and
theγ synchronizer.

A distributed randomized algorithm for the Maximal Independent Set problem was studied, and
then the problem of determining a a Connected Dominating Setwas examined. The chapter then
examined several compact routing schemes. These aim to trade-off routing table size for slightly
longer routes. The chapter concluded by taking a look at someof the challenges introduced in
re-engineering or re-designing these distributed graph algorithms in the face of mobility as well as
the wireless communication model.

5.14 Bibliographic Notes

The discussion on the classification of distributed algorithms is based on the vast literature, and
many of the definitions are difficult to attribute to a particular source. The discussion on execution
inhibition is based on Critchlow and Taylor [3]. The discussion on failure models is based on
Hadzilacos and Toueg [14]. Crash failures were proposed by Lamport and Fischer [21]. Failstop
failures were introduced by Schlichting and Schneider [24]. Send omission failures were intro-
duced by Hadzilacos [16]. General omission failures and timing failures were introduced by Perry
and Toueg [25] and Christian et al.[8], respectively. The notion of wait-freedom was introduced
by Lamport [18] and later developed by Herlihy [18]. The notions of the space, message, and time
complexities appear to be part of the folklore. The time and message complexity measures were
formalized by Peterson and Fischer [24] and later by Awerbuch [3].

The various spanning tree algorithms are common knowledge and have used informally in
many contexts. Broadcast, convergecast, and distributed spanning trees are listed as part of a
suite of elmentary algorithms [13]. Segall [28] formally presented the broadcast and convergecast
algorithms, and the breadth-first search spanning tree algorithm, on which Algorithm 0 is based.
Algorithms II and III which compute flooding-based and depth-first search based spanning trees,
respectively, in the face of concurrent initiators, use thetechnique of supressing lower priority
initiations. This technique has been used in many other contexts in computer science (e.g., database
transaction serialization, deadlock detection). An asynchronous DFS algorithm with a specified
root was given by Cheung [7]. Algorithm III adapts this to handle concurrent initiators. The
solution to Problem 9 which asks for a linear-time DFS tree was given by Awerbuch [2].

The synchronous Bellman-Ford algorithm is derived from theBellman-Ford shortest path al-
gorithm [4, 12]. The asynchronous Bellman-Ford was formalized by Chandy and Misra [5]. The
Distance Vector Routing algorithm and Synchronous floodingalgorithm of Figure 5.17 are based
on the Arpanet protocols [29]. The Floyd-Warshall algorithm is from [9] and its distributed version
was given by Toueg [30]. The asynchronous flooding algorithmoutlined in Figure 5.16 is based
on the the Link State Routing protocol used in the Internet [29].

The synchronous distributed minimum spanning tree algorithm was given by Gallagher, Hum-
blet, and Spira [14]. Its asynchronous version was also proposed by the same authors. The notion
of synchronizers, and theα, β, andγ synchronizers were introduced by Awerbuch [3]. The ran-

170

domized algorithm for the Independent Maximal Set (MIS) wasproposed by Luby [23]. Several
distributed algorithms to create connected dominating sets with a low approximation factor are
surveyed by Wan, Alzoubi and Frieder [32]. The randomized algorithm for connected dominating
set by Dubhashi, Mei, Panconesi, Radhakrishnan, and Srinivasan [11] has an approximation factor
of O(log∆), where∆ is the maximum degree of the network. This algorithm also hasa stretch
factor ofO(log n). Compact routing based on the tree topology was introduced by Santoro and
Khatib [27]. Its generalization to interval routing was introduced by van Leeuwen and Tan [31].
A survey of interval routing mechanisms is given by Gavoille[15]. The LCR algorithm for leader
election was proposed by LeLann [22] and Chang and Roberts who provided several optimizations
[6]. TheO(n log n) alogrithm for leader election was given by Hirschberg and Sinclair [19]. The
result on the impossibility of election on anonymous rings was shown by Angluin [1]. The adaptive
replication algorithm was proposed by Wolfson, Jajodia, and Huang [31].

171

(variables)
array of integer Neighbours[1 . . . bi]; // bi neighbours in treeT topology
array of integer Read_Received[1 . . . |bi|]; // jth element gives # reads fromNeighbours[j]
array of integer Write_Received[1 . . . |bi|]; // jth element gives # writes fromNeighbours[j]
integer writei, readi; // # writes and # reads issued locally
booleansuccess;

(1) Pi determines which tests to execute at the end of each epoch:
(1a) if i is R-neighbourandR-fringethen
(1b) if expansion testfails then
(1c) reduction test
(1d) else ifi is R-neighbourandsingletonthen
(1e) if expansion testfails then
(1f) switch test
(1g) else ifi is R-neighbourand notR-fringeand notsingletonthen
(1h) expansion test

(1i) else ifi is R− neighbourandR-fringethen
(1j) contraction test.

(2) Pi executesexpansion test:
(2a) for j from 1 to bi do
(2b) if Neighbours[j] not inR then
(2c) if Read_Received[j] > (writei +

∑

k=1...bi,k 6=j Write_Received[k]) then
(2d) send a copy of the object toNeighbours[j]; success←− 1;
(2e)return (success).

(3) Pi executescontraction test:
(3a) letNeighbours[j] be the only neighbour inR;
(3b) if Write_Received[j] > (readi +

∑

k=1...bi,k 6=j Read_Received[k]) then
(3c) seek permission fromNeighbours[j] to exit fromR;
(3d) if permission receivedthen
(3e) success←− 1; inform all neighbours;
(3f) return (success).

(4) Pi executesswitch test:
(4a) for j from 1 to bi do
(4b) if (Read_Received[j] + Write_Received[j]) >

[
∑

k=1...bi,k 6=j(Read_Received[k] + Write_Received[k]) + readi + writei] then
(4c) transfer object copy toNeighbours[j]; success←− 1; inform all neighbours;
(4d) return (success).

Figure 5.30: Adaptive Data Replication algorithm executedby a nodePi in replication schemeR.
All variables exceptNeighbours are reset at the end of each epoch.R stabilizes indiameter + 1
epochs after the read-write rates stabilize.

172

Bibliography

[1] D. Angluin, Local and global properties in networks of processors, Proc. 12th ACM Sympo-
sium on Theory of Computing, 82-93, 1980.

[2] B. Awerbuch, Optimal distributed algorithms for minimum weight spanning tree, counting,
leader election, and related problems, Proc. 19th ACM Symposium on Principles of Theory of
Computing (STOC), 230-240, 1987.

[3] B. Awerbuch, Complexity of network synchronization, Journal of the ACM, 32(4): 804-823,
October 1985.

[4] R. Bellman, Dynamic Programming, Princeton, NJ, Princeton University Press, 1957.

[5] K. M. Chandy, J. Misra, Distributed computations on graphs: Shortest path algorithms, Com-
munications of the ACM, 25(11): 833-838, 1982.

[6] E. Chang, R. Roberts, An improved algorithm for decentralized extrema-finding in circular
configurations of processes, Communications ofthe ACM, 22(5): 281-283, 1979,

[7] T.-Y. Cheung, Graph traversal techniques and the maximum flow problem in distributed com-
putation, IEEE Transactions on Software Engineering, 9(4): 504-512, July 1983.

[8] F. Christian, H. Aghili, H. Strong, D. Dolev, Atomic broadcast: From simple message diffusion
to Byzantine agreement, Proc. 15th International Symposium on Fault-Tolerant Computing,
200-206, 1985.

[9] T. Cormen, C. Lieserson, R. Rivest, C. Stein, An Introduction to Algorithms, 2nd edition,
2001.

[10] C. Critchlow, K. Taylor, The inhibition spectrum and the achievement of causal consistency,
Distributed Computing, 10(1): 11-27, 1996.

[11] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, A.Srinivasan, Fast distributed algo-
rithms for (weakly) connected dominating sets and linear-size skeletons, Proc. 14th Annual
Symposium on Discrete Algorithms, 717-724, 2003.

[12] L. Ford, D. Fulkerson, Flows in Networks, Princeton, NJ, Princeton University Press, 1962.

173

[13] E. Gafni, Perspectives on distributed network protocols,: A case for building blocks, Proc.
IEEE MILCOM, 1986.

[14] R. Gallagher, P. Humblet, P. Spira, A distributed algorithm for minimum-weight spanning
trees, ACM Transactions on Programming Languages and Systems, 5(1): 66-77, Jan. 1983.

[15] C. Gavoille, A survey on interval routing, TheoreticalComputer Science, 245(2): 217-253,
2000.

[16] V. Hadzilacos, Issues of Fault Tolerance in ConcurrentComputations, Ph.D. dissertation,
Harvard University, Computer Science Tech. Report 11-84, 1984.

[17] V. Hadzilacos, S. Toueg, Fault-tolerant broadcasts and related problems, pp. 97-146, In: Dis-
tributed Systems, Ed: S. Mullender, Addison-Wesley, 1993.

[18] M. Herlihy, Wait-free synchronization, ACM Transactions on Programming Languages and
Systems, 15(5): 745-770, Nov. 1991.

[19] D. Hirschberg, J. Sinclair, Decentralized extrema-finding in circular configurations of pro-
cessors. Communications of the ACM, 23(11): 627-628, 1980.

[20] L. Lamport, Concurrent reading and writing, Communications of the ACM, 20(11): 806-811,
1977.

[21] L. Lamport, M. Fischer, Byzantine Generals and Transaction Commit Protocols, SRI Inter-
national, Technical Report 62, 1982.

[22] G. LeLann, Distributed Systems, Towards a formal approach, IFIP Congress Proceedings,
155-160, 1977.

[23] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J.
Comput. 15(4): 1036-1053 (1986)

[24] R. Schlichting, F. Schneider, Fail-stop processors: An approach to designing fault-tolerant
computing systems, ACM Transactions on Computer Systems, 1(3): 222-238, 1983.

[25] K. Perry, S. Toueg, Distributed agreement in the presence of processor and communication
faults, IEEE Transactions on Software Engineering, 12(3):477-482, March 1986.

[26] G. Peterson, M. Fischer, Economical solutions for the critical section problem in a distributed
system, Proc. 9th ACM Symposium on Theory of Computing, 91-97, 1977.

[27] N. Santoro, R. Khatib, Labelling and implicit routing in networks, The Computer journal,
Vol. 28, 5-8, 1985.

[28] A. Segall, Distributed network protocols, IEEE Transactions on Information Theory, 29(1):
23-35, 1983.

174

[29] A. Tanenbaum, Computer Networks, 3rd edition, Prentice-Hall PTR, NJ, 1996.

[30] S. Toueg, An all-pairs shortest path distributed algorithm, IBM Technical Report RC 8327,
1980

[31] J. van Leeuwen, R. Tan, Interval routing, The Computer Journal, Vol. 30, 298-307, 1987.

[32] P. Wan, K. Alzoubi, O. Frieder, Distributed construction of connected dominating set in wire-
less ad-hoc networks, Proc. IEEE Infocom 2002.

5.15 Exercise Problems

1. Adapt the synchronous BFS spanning tree algorithm shown in Figure 5.2 to satisfy the fol-
lowing properties.

• The root node can detect after the entire algorithm has terminated. The root should
then terminate.

• Each node is able to identify its child nodes without using any additional messages.

What is the resulting space, time, and message complexity?

2. What is the exact number of messages sent in the spanning tree algorithm shown in Fig-
ure 5.4. You may want to use additional parameters to characterize the graph. Is it possible
to reduce the number of messages to exactly2l?

3. Modify the algorithm of Figure 5.4 to obtain a BFS tree win the asynchronous system, while
retaining the framework of the flooding mechanism.

4. Modify the asynchronous spanning tree algorithm of Figure 5.4 to eliminate the use of RE-
JECT messages. What is the message overhead of the modified algorithm?

5. What is the maximum distance between any two nodes in the tree obtained by running the
algorithm in Figure 5.6?

6. For the algorithm in Figure 5.6, show each of the performance complexities introduced in
Section 5.3.

7. For the algorithm in Figure 5.8, show each of the performance complexities introduced in
Section 5.3.

8. (based on Cheung [7]) Simplify the algorithm in Figure 5.8to deal with only a single initia-
tor. What is the message complexity and the time complexity of the resulting algorithm?

9. (based on [2]) Modify the algorithm derived in Exercise 8 to obtain a depth-first search tree
but with time complexityO(n). (Assuming a single intiator for simplicity does not reduce
the time complexity. A different strategy needs to be used.)

175

10. Formally write the convergeecast algorithm of Section 5.5.5 using the style for the other
algorithms in this chapter.

Modify your algorithm to satisfy the following property. Each node has a sensed temperature
reading. The maximum temperature reading is to be collectedby the root.

11. Modify the synchronous flooding algorithm of Figure 5.17so as to reduce the complexity,
assuming that all the processes only need to know the highestprocess identifier among all
the processes in the network. For this adapted algorithm, what are the lowered complexity
measures?

12. Adapt Algorithms 5.10 and 5.17 to design a synchronous algorithm that achieves the fol-
lowing property: “In each round, each node may or may not generate a new update that it
wants to distribute throughout the network. If such an update is locally generated within a
round, it should be synchronously propagated in the network.”

13. In the synchronous distributed Bellman-Ford algorithmin Figure 5.10, the termination con-
dition for the algorithm assumed that each process knew the number of nodes in the graph.
If this number is not known, what can be done to find it?

14. In the asynchronous Bellman-Ford algorithm of Figure 5.11 what can be said about the
termination conditions when (i)n is not known, and when (ii)n is known?

For each of these two cases, modify the asynchronous Bellman-Ford algorithm of Fig-
ure 5.11 to allow each process to determine when to terminate.

15. Modify the asynchronous Bellman-Ford algorithm to devise the Distance Vector Routing
algorithm outlined in Section??.

16. For the asynchronous Bellman-Ford algorithm of Figure 5.11 show that it has an exponential
Ω(cn) number of messages and exponentialΩ(cn·d) time complexity in the worst case, where
c is some constant

17. For the asynchronous Bellman-Ford algorithm of Figure 5.11, if all links are assumed to
have equal weight, the algorithm effectively computes the minimum-hop path. Show that
under this assumption, the minimum-hop routing tables to all destinations are computed
usingO(n2 · l) messages.

18. For the asynchronous Bellman-Ford algorithm of Figure 5.11,

(a) if some of the links may have negative weights, what wouldbe the impact on the
shortest paths? Explain your answer.

(b) if the link weights can keep changing (as in the Internet), can cycles be formed during
routing based on the computed next hop?

176

19. In the distributed Floyd-Warshall algorithm of Figure 5.14, consider iterationk at nodei and
iterationk + 1 at nodej. Examine the dependencies in the code ofi and j in these two
iterations.

20. In the distributed Floyd-Warshall algorithm of Figure 5.14,

(a) show that the parameterpivot is redundant on all the message types when the commu-
nication channels are FIFO.

(b) show that the parameterpivot is required on all the message types when the communi-
cation channels are non-FIFO.

21. In the synchronous distributed GHS algorithm, it was assumed that all the edge weights were
unique. Explain why this assumption was necessary, and givea way to make the weights
unique if they are not so.

22. In the synchronous GHS MST algorithm, prove that when several components join to form a
single component, there must exist a cycle of length two in the component graph of MWOE
edges.

23. Identify how the complexity of the synchronous GHS algorithm can be reduced fromO((n+

|L|)log n) toO((n log n) + |L|). Explain and prove your answer.

24. Consider the simple, theα, and theβ synchronizers. Identify some algorithms or application
areas where you can identify one synchronizer as being more efficient than the others.

25. For theγ-synchronizer, significant flexibility can be achieved by varying a parameterk that
is used to give a bound onLc (sum of the number of tree edges and clustering edges) andhc

(maximum height of any tree in any cluster). Visually, this parameter determines the flatness
of the cluster hierarchy.

Show that for everyk, 2 ≤ k < n, a clustering scheme can be designed so as to satisfy the
following bounds: (1)Lc < k · n, and (2)hc ≤ (log n)/(log k).

26. (a) For the tree labeling scheme for compact routing, show that a pre-order traversal of the
tree generates a numbering that always permits tree-labeled routing.

(b) Will post-order traversal always generate a valid tree labeling scheme?

(c) Will in-order traversal always generate a valid tree-labeling scheme?

27. (a) For the tree labeling schemes, show that there is nouniform bound on thedialation,
which is defined as the ratio of the length of the tree path to the optimal path, between
any pair of nodes and an arbitrary tree.

(b) Is it possible to bound the dialation by choosing a tree for any given graph? Explain
your answer.

177

28. Examine all the algorithms in this chapter, and classifythem using the classifications intro-
duced in Section 5.2 (5.2.1- 5.2.10).

29. Examine the impact of both fail-stop process failures and of crash process failures on all the
algorithms described in this chapter. Explain your answersin each case.

30. (Adaptive Data Replication.) In the adaptive data replication scheme (Section 5.12), consider
a node that is both anR-neighbourand aR-fringenode.

• Can theexpansion testand thereduction testboth be successful? Prove your answer.

• The algorithm first performs theexpansion test, and if it fails, then it performs the
reduction test. Is it possible to restructure the algorithm to perform thereduction test
first, and then theexpansion test? Prove your answer.

31. Modify the rules of theexpansion, contraction, andswitch tests in the adaptive dynamic
replication algorithm of Section 5.12 to adapt to tree overlays on arbitrary graphs, rather
than to tree graphs. Justify the correctness of the modified tests.

178

Chapter 6

Message Ordering and Group
Communication

Inter-process communication via message-passing is at thecore of any distributed system. In this
chapter, we will study the non-FIFO, the FIFO, causal order,and synchronous order communica-
tion paradigms for ordering messages. We will then examine protocols that provide these message
orders. We will also examine several semantics for group communication with multicast – in
particular, causal ordering and total ordering. We will then look at how exact semantics can be
specified for the expected behaviour in the face of processoror link failures. Multicasts are re-
quired at the application layer when superimposed topologies or overlays are used, as well as at
the lower layers of the protocol stack. We will examine some popular multicast algorithms at the
network layer. An example of such an algorithm is the Steinertree algorithm, which is useful for
setting up multi-party teleconferencing and videoconferencing multicast sessions.
Notations: As before, we model the distributed system as a graph(N,L). The following notations
are used to refer to messages and events.

• When referring to a message without regard for the identity of the sender and receiver pro-
cesses, we usemi. For messagemi, its send and receive events are denoted assi andri,
respectively.

• More generally, send and receive events are denoted simply as s andr. When the relation-
ship between the message and its send and receive events is tobe stressed, we also useM ,
send(M), andreceive(M), respectively.

For any two eventsa andb, where each can be either a send event or a receive event, the notation
a ∼ b denotes thata andb occur at the same process, i.e.,a ∈ Ei andb ∈ Ei for some process
i. The send and receive event pair for a message is said to be a pair of correspondingevents. The
send event corresponds to the receive event, and vice-versa. For a given executionE, let the set
of all send-receive event pairs be denoted asT = {(s, r) ∈ Ei × Ej | s corresponds tor}. When
dealing with message ordering definitions, we will consideronly send and receive events, but not
internal events, because only communication events are relevant.

179

6.1 Message Ordering Paradigms

The order of delivery of messages in a distributed system is an important aspect of system ex-
ecutions because it determines the messaging behavior thatcan be expected by the distributed
program. Distributed program logic greatly depends on thisorder of delivery. To simplify the task
of the programmer, programming languages in conjunction with the middleware provide certain
well-defined message delivery behavior. The programmer canthen code her logic with respect to
this behavior.

Several orderings on messages have been defined: (i) non-FIFO, (ii) FIFO, (iii) causal order,
and (iv) synchronous order. There is a natural hierarchy among these orderings. This hierarchy
represents a trade-off between concurrency and ease of use and implementation. After studying the
definitions of and the hierarchy among the ordering models, we will study some implementations
of these orderings in the middleware layer.

6.1.1 Asynchronous Executions

Definition 6. (A-execution.) An asynchronous execution (orA-execution) is an execution(E,≺)

for which the causality relation is a partial order.

There can not exist any causality cycles in any real asynchronous execution because cycles lead
to the absurdity that an event causes itself. On any logical link between two nodes in the system,
messages may be delivered in any order,not necessarilyFirst-In First-Out. Such executions are
also known asnon-FIFO executions. Although each physical link typically delivers the messages
sent on it in FIFO order due to the physical properties of the medium, a logical link may be formed
as a composite of physical links and multiple paths may existbetween the two end points of the
logical link. As an example, the mode of ordering at the Network Layer in connectionless networks
such as IPv4 is non-FIFO. Figure 6.1(a) illustrates anA-execution under non-FIFO ordering.

s

r

s
P

P r r r r

s ss
m

mmm
m

1 2

1 2

1
2

1 2 3

2 1 3

31
2

1

2

(a) (b)

Figure 6.1: Illustrating FIFO and non-FIFO executions. (a)anA-execution that is not a FIFO
execution. (b) anA-execution thatis also a FIFO execution.

6.1.2 FIFO Executions

Definition 7. (FIFO executions.) A FIFO execution is anA-execution in which:
for all (s, r) and(s′, r′) ∈ T , (s ∼ s′ andr ∼ r′ ands ≺ s′) =: r ≺ r′

180

s

sr r

r

(a) (b) (c) (d)

s r r

r

ss s

s

s s

s

s

s

r

r

r
r

r
m

m
m

m

m
m

m

m

m
m

m

P
1

P
2

P
3 1 2

3

13

3

2

2
1

3 1 3 113r
3

3 31 1 13

33

2

2

2

2

2 2

2

2

m2

1 1 1

Figure 6.2: Illustration of causally ordered executions. (a) Not a CO execution. (b,c,d) CO execu-
tions.

On any logical link in the system, messages are necessarily delivered in the order in which
they are sent. Although the logical link is inherently non-FIFO, most network protocols provide a
connection-oriented service at the transport layer. Therefore, FIFO logical channels can be realis-
tically assumed when designing distributed algorithms. A simple algorithm to implement a FIFO
logical channel over a non-FIFO channel would use a separatenumbering scheme to sequence the
messages on each logical channel. The sender assigns and appends a〈 sequence_num, connec-
tion_id 〉 tuple to each message. The receiver uses a buffer to order theincoming messages as per
the sender’s sequence numbers, and accepts only the “next” message in sequence. Figure 6.1(b)
illustrates anA-execution under FIFO ordering.

6.1.3 Causally Ordered (CO) Executions

Definition 8. (Causal order (CO)). A CO execution is anA-execution in which,
for all (s, r) and(s′, r′) ∈ T , (r ∼ r′ ands ≺ s′) =:r ≺ r′

If two send eventss ands′ are related by causality ordering (not physical time ordering), then
a causally ordered execution requires that their corresponding receive eventsr andr′ occur in the
same order at all common destinations. Note that ifs ands′ are not related by causality, then CO
is vacuously satisfied becuase the antecedent of the implication is false.
Example:

Figure 6.2(a) shows an execution that violates CO becauses1 ≺ s3 and at the common destination
P1, we haver3 ≺ r1.

Figure 6.2(b) shows an execution that satisfies CO. Onlys1 ands2 are related by causality but the
destinations of the corresponding messages are different.

Figure 6.2(c) shows an execution that satisfies CO. No send events are related by causality.

Figure 6.2(d) shows an execution that satisfies CO.s2 and s1 are related by causality but the
destinations of the corresponding messages are different.Similarly for s2 ands3.

181

Causal order is useful for applications requiring updates to shared data, implementing dis-
tributed shared memory, and fair resource allocation such as granting of requests for distributed
mutual exclusion. Some of these uses will be discussed in detail in Section 6.5 on ordering message
broadcasts and multicasts.

To implement CO, we distinguish between the arrival of a message and its delivery. A message
m that arrives in the local OS buffer atPi may have to be delayed until the messages that were
sent toPi causally beforem was sent (the “overtaken” messages) have arrived and are processed
by the application. The delayed messagem is then given to the application for processing. The
event of an application processing an arrived message is referred to as adeliveryevent (instead of
as areceiveevent) for emphasis.
Example: Figure 6.2(a) shows an execution that violates CO. To enforce CO, messagem3 should
be kept pending in the local buffer after it arrives atP1, untilm1 arrives andm1 is delivered.

Definition 9. (Definition of causal order (CO) for implementations). If send(m1) ≺ send(m2)

then for each common destinationd of messagesm1 andm2, deliverd(m
1) ≺ deliverd(m

2) must
be satisfied.

Observe that if the definition of causal order is restricted so thatm1 andm2 are sent be the same
process, then the property degenerates into the FIFO property. In a FIFO execution, no message
can be overtaken by another message between the same (sender, receiver) pair of processes. The
FIFO property which applies on a per-logical channel basis can be extended globally to give the
CO property. In a CO execution, no message can be overtaken bya chain of messages between the
same (sender, receiver) pair of processes.
Example: Figure 6.2(a) shows an execution that violates CO. Messagem1 is overtaken by the
messages in the chain〈m2, m3〉.

CO executions can also be alternatively characterized by Definition 10 by simultaneously drop-
ping the requirement from the implicand of Definition 8 that the receive events be on the same pro-
cess, and relaxing the consequence from(r ≺ r′) to ¬(r′ ≺ r), i.e., the messagem′ sent causally
later thanm is not received causally earlier at the common destination.This ordering is known as
Message Ordering (MO).

Definition 10. (Message order (MO)). A MO execution is anA-execution in which,
for all (s, r) and(s′, r′) ∈ T , s ≺ s′ =:¬(r′ ≺ r)

Example: Consider any message pair, saym1 andm3 in Figure 6.2(a).s1 ≺ s3 but¬(r3 ≺ r1) is
false. hence, the execution does not satisfy MO.

You are asked to prove the equivalence of MO executions and COexecutions in Exercise 1.
This will show that in a CO execution, a message cannot be overtaken by a chain of messages.

Another characterization of a CO execution in terms of the partial order(E,≺) is known as the
Empty-Interval (EI) property.

Definition 11. (Empty-Interval execution.) An execution(E,≺) is an Empty-Interval (EI) exe-
cution if for each pair of events(s, r) ∈ T , the open interval set{x ∈ E | s ≺ x ≺ r} in the partial
order is empty.

182

P

P

P

1

2

3

(b)
r r

r

rr

s s s s s

m
m m

mm

s

ss

m

33 2

2

2

2 6

6

6

6r

4

4

4

5

5

5

s 4

1
1

r1

141s r

r5

(a)

5s3r

4

6

2m
3

5
6

s
m

r 1

m 2
r 3

m

m
m 3

Figure 6.3: Illustration of a synchronous communication. (a) Execution in an asynchronous sys-
tem. (b) Equivalent instantaneous communication.

Example: Consider any message, saym2, in Figure 6.2(b). There does not exist any eventx such
thats2 ≺ x ≺ r2. This holds for all messages in the execution. Hence, the execution is EI.

You are asked to prove the equivalence of EI executions and COexecutions in Exercise 1.
A consequence of the EI-property is that for an empty interval 〈s, r〉, there exists somelinear
extension1 < such that the corresponding interval{x ∈ E | s < x < r} is also empty. An empty
〈s, r〉 interval in a linear extension indicates that the two eventsmay be arbitrarily close and can
be represented by a vertical arrow in a timing diagram, whichis a characteristic of a synchronous
message exchange. Thus, an executionE is CO if and only if for each message, there exists
somespace-time diagram in which that message can be drawn as a vertical message arrow. This,
however, does not imply thatall messages can be drawn as vertical arrows in thesamespace-time
diagram. If all messages could be drawn vertically in an execution, all the〈s, r〉 intervals would
be empty in thesamelinear extension and the execution would be synchronous.

Another characterization of CO executions is in terms of thecausal past/future of a send event
and its corresponding receive event. The following corollary can be derived from the EI character-
ization above (Definition 11).

Corollary 3. An execution(E,≺) is CO if and only if for each pair of events(s, r) ∈ T and each
evente ∈ E,

• Weak common past:e ≺ r =:¬(s ≺ e)

• Weak common future:s ≺ e =:¬(e ≺ r)

Example: Corollary 3 can be observed for the executions in Figures 6.2(b)–(d).
If we require that the past of both thes andr events are identical (and analogously for the

future), viz.,e ≺ r = :e ≺ s ands ≺ e = :r ≺ e, we get a subclass of CO executions, called
synchronous executions.

1A linear extension of a partial order(E,≺) is any total order(E, <) such that each ordering relation of the partial
order is preserved.

183

6.1.4 Synchronous Execution (SYNC)

When all the communication between pairs of processes uses synchronous send and receive prim-
itives, the resulting order is the synchronous order. As each synchronous communication involves
a handshake between the receiver and the sender, the corresponding send and receive events can
be viewed as occuring instantaneously and atomically. In a timing diagram, the “instantaneous”
message communication can be shown by bidirectional vertical message lines. Figure 6.3(a) shows
a synchronous execution on an asynchronous system. Figure 6.3(b) shows the equivalent timing
diagram with the corresponding instantaneous message communication.

The “instantaneous communication” property of synchronous executions requires a modified
definition of the causality relation because for each(s, r) ∈ T , the send event is not causally
ordered before the receive event. The two events are viewed as being atomic and simultaneous,
and neither event precedes the other.

Definition 12. (Causality in a synchronous execution.)The synchronous causality relation≪
onE is the smallest transitive relation that satisfies the following.

S1. If x occurs beforey at the same process, thenx≪ y

S2. If (s, r) ∈ T , then for allx ∈ E, [(x≪ s⇐ :x≪ r) and (s≪ x⇐ :r ≪ x)]

S3. If x≪ y andy ≪ z, thenx≪ z

We can now formally define a synchronous execution.

Definition 13. (Synchronous execution.) A synchronous execution (orS-execution) is an execu-
tion (E,≪) for which the causality relation≪ is a partial order.

We now show how to timestamp events in synchronous executions.

Definition 14. (Timestamping a synchronous execution.) An execution(E,≺) is synchronous if
and only if there exists a mapping fromE to T (scalar timestamps) such that

• for any messageM , T (s(M)) = T (r(M))

• for each processPi, if ei ≺ e′i thenT (ei) < T (e′i)

By assuming that a send event and its corresponding receive event are viewed atomically, i.e.,
s(M) ≺ r(M) andr(M) ≺ s(M), it follows that for any eventsei andej that are not the send
event and the receive event of the same message,ei ≺ ej =: T (ei) < T (ej).

6.2 Asynchronous Execution with Synchronous Communica-
tion

When all the communication between pairs of processes is by using synchronous send and receive
primitives, the resulting order is synchronous order. The send and receive events of a message
appear instantaneous, see the example in Figure 6.3. We now address the following question.

184

Processi Processj

... ...
Send(j) Send(i)
Receive(j) Receive(i)
... ...

Figure 6.4: A communication program for an asynchronous system deadlocks when using syn-
chronous primitives.

• If a program is written for an asynchronous system, say a FIFOsystem, will it still exe-
cute correctly if the communication is done by synchronous primitives instead? There is a
possibility that the program maydeadlock, as shown by the code in Figure 6.4.

Charron-Bost et al. observed that a distributed algorithm designed to run correctly on asynchronous
systems (calledA-executions) may not run correctly on synchronous systems. An algorithmthat
runs on an asynchronous system maydeadlockon a synchronous system.
Examples. The asynchronous execution of Figure 6.4, illustrated in Figure 6.5(a) using a timing
diagram, will deadlock if run with synchronous primitives.The executions in Figure 6.5(b)–(c)
will also deadlock when run on a synchronous system.

1

r3

(c)(b)(a)
1 1

1

2

2

22

2

3

3 2

s
3

3

1m
1

1
mm2 2 2mm

m
m

m

3s
1

P

P

1

r

r

rr

r

r

r s

s

ss

s

s

3

2

1

P

Figure 6.5: Illustrations of asynchronous executions and of crowns. (a) Crown of size 2. (b)
Another crown of size 2. (c) Crown of size 3.

6.2.1 Executions Realizable with Synchronous Communication (RSC)

An execution can be modeled (using the interleaving model) as a feasible schedule of the events
to give a total order that extends the partial order(E,≺). In an A-execution, the messages can be
made to appear instantaneous if there exists a linear extension of the execution, such that each send
event is immediately followed by its corresponding receiveevent in this linear extension. Such an

185

A-execution can be realized under synchronous communication and is called aRealizable with
Synchronous Communication(RSC) execution.

Definition 15. (Non-separated linear extension.) A non-separated linear extension of(E,≺) is
a linear extension of(E,≺) such that for each pair(s, r) ∈ T , the interval{ x ∈ E | s ≺ x ≺ r }
is empty.

Examples:

Figure 6.2(d). 〈s2, r2, s3, r3, s1, r1〉 is a linear extension that is non-separated.〈s2, s1, r2, s3, r3, s1〉
is a linear extension that is separated.

Figure 6.3(b). 〈s1, r1, s2, r2, s3, r3, s4, r4, s5, r5, s6, r6〉 is a linear extension that is non-separated.
〈s1, s2, r1, r2, s3, s4, r4, r3, s5, s6, r6, r5〉 is a linear extension that is separated.

Definition 16. (RSC execution.) An A-execution(E,≺) is an RSC execution if and only if there
exists a non-separated linear extension of the partial order (E,≺).

In the non-separated linear extension, if the adjacent sendevent and its corresponding receive
event are viewed atomically, then that pair of events sharesa common past and a common future
with each other. The various other characterizations of S-executions seen in Section 6.1.4 are also
seen to hold.

To use Definition 16 requires checking for all the linear extensions, incurs exponential over-
head. You can verify this by trying to create and examine all the linear extensions of the execution
in Figure 6.5(b) or (c). Thus, Definition 16 does not provide apractical test to determine whether
a program written for a nonsynchronous system, say a FIFO system, will still execute correctly if
the communication is done by synchronous primitives.

We now study a characterization of the execution in terms of agraph structure called acrown;
the crown leads to a feasible test for a RSC execution.

Definition 17. (Crown.) LetE be an execution. A crown of sizek in E is a sequence〈 (si,ri), i ∈
{ 0, . . ., k-1 } 〉 of pairs of corresponding send and receive events such that:s0 ≺ r1, s1 ≺ r2, . . .
. . . sk−2 ≺ rk−1, sk−1 ≺ r0.

Examples:

• Figure 6.5(a): The crown is〈(s1, r1), (s2, r2)〉 as we haves1 ≺ r2 and s2 ≺ r1. This
execution represents the program execution in Figure 6.4.

• Figure 6.5(b): The crown is〈(s1, r1), (s2, r2)〉 as we haves1 ≺ r2 ands2 ≺ r1.

• Figure 6.5(c): The crown is〈(s1, r1), (s3, r3), (s2, r2)〉 as we haves1 ≺ r3 ands3 ≺ r2 and
s2 ≺ r1.

• Figure 6.2(a): The crown is〈(s1, r1), (s2, r2), (s3, r3)〉 as we haves1 ≺ r2 ands2 ≺ r3 and
s3 ≺ r1.

186

1. Define the֒→: T × T relation on messages in the execution(E,≺) as follows. Let→֒
([s, r], [s′, r′]) if and only if s ≺ r′. Observe that the conditions ≺ r′ (which has the form
used in the definition of a crown) is implied by all the four conditions: (i) s ≺ s′, or (ii)
s ≺ r′, or (iii) r ≺ s′, and (iv)r ≺ r′.

2. Now define adirectedgraphG→֒ = (T , →֒), where the vertex set is the set of messagesT
and the edge set is defined by→֒.

Observe that the relation֒→: T × T is a partial order if and only ifG→֒ has no cycle, i.e.,
there must not be a cycle with respect to→֒ on the set of corresponding(s, r) events.

3. It can be seen from the definition of a crown (Definition 17) thatG→֒ has a directed cycle if
and only if(E,≺) has a crown.

Figure 6.6: The crown test to determine the existence of cyclic dependencies among messages.

In a crown, the send eventsi and receive eventri+1 may lie on the same process (e.g., Fig-
ure 6.5(c)) or may lie on different processes (e.g., Figure 6.5(a)). We can also make the following
observations.

• In an execution that is not CO (see the example in Figure 6.2(a)), there must exist pairs(s, r)
and(s′, r′) such thats ≺ r′ ands′ ≺ r. We will show that it is possible to genralize this to
state that a non-CO execution must have a crown of size at least 2. (Exercise 4 askes you to
prove that in a non-CO execution, there must exist a crown of size exactly 2.)

• CO executions that are not synchronous, also have crowns, e.g., the execution in Figure 6.2(b)
has a crown of size 3.

Intuitively, the cyclic dependencies in a crown indicate that it is not possible to find a linear
extension in which all the(s, r) event pairs are adjacent. In other words, it is not possible to
schedule entire messages in a serial manner, and hence the execution is not RSC.

To determine whether the RSC property holds in(E,≺), we need to determine whether there
exist any cyclic dependencies among messages. Rather than incurring the exponential overhead of
checking all linear extensions ofE, we can check for crowns by using the test in Figure 6.6. On
the set of messagesT , we define an ordering֒→ such thatm →֒ m′ if and only if s ≺ r′.
Example: By drawing the directed graph(T , →֒) for each of the executions in Figures 6.2, 6.3,
and 6.5, it can be seen that the graphs for Figures 6.2(d) and Figure 6.3 are acyclic. The other
graphs have a cycle.

This test leads to the following theorem.

Theorem 6. Crown criterion. Thecrown criterionstates that an A-computation is RSC, i.e., it
can be realized on a system with synchronous communication,if and only if it contains no crown.

187

Example: Using the directed graph(T , →֒) for each of the executions in Figures 6.2, 6.3(a), and
6.5, it can be seen that the executions in Figures 6.2(d) and Figure 6.3(a) are RSC. The others are
not RSC.

Although checking for a non-separated linear extension of(E,≺) has exponential cost, check-
ing for the presence of a crown based on the message scheduling test of Figure 6.6) can be per-
formed in time that is linear in the number of communication events (see Exercise 3). An execution
is not RSC and its graphG→֒ contains a cycle if and only if in the corresponding space-time dia-
gram, it is possible to form a cycle by moving (i) along message arrows in either direction, but (ii)
always going left to right along the time line of any process.

As an RSC execution has a non-separated linear extension, itis possible to assign scalar times-
tamps to events, as it was assigned for a synchronous execution (Definition 14), as follows.

Definition 18. (Timestamps for a RSC execution.) An execution(E,≺) is RSC if and only if
there exists a mapping fromE to T (scalar timestamps) such that

• for any messageM , T (s(M)) = T (r(M))

• for each(a, b) in (E × E)/T , a ≺ b =:T (a) < T (b)

From the acyclic message scheduling criterion (Theorem 6) and the timestamping property
above, it can be observed that an A-execution is RSC if and only if its timing diagram can be
drawn such that all the message arrows are vertical.

6.2.2 Hierarchy of Ordering Paradigms

LetSYNC (orRSC), CO,FIFO, andA denote the set of all possible executions ordered by syn-
chronous order, causal order, FIFO order, and non-FIFO order, respectively. We have the following
results.

SYNC

CO

FIFO

A

A

FIFO

CO

SYNC

(b)(a)

Figure 6.7: Hierarchy of execution classes.(a) Venn diagram. (b) Example executions.

188

• For an A-execution, A is RSC if and only if A is an S-execution.

• RSC ⊂ CO ⊂ FIFO ⊂ A. This hierarchy is illustrated in Figure 6.7(a), and example
executions of each class are shown side-by-side in Figure 6.7(b).

Figure 6.1(a) shows an execution that belongs toA but not toFIFO. Figure 6.2(a) shows
an execution that belongs toFIFO but not toCO. Figures 6.2(b) and (c) show executions
that belong toCO but not toRSC.

• The above hierarchy implies that some executions belongingto a classX will not belong to
any of the classes included inx. Thus, there are more restrictions on the possible message
orderings in the smaller classes. Hence, we informally say that the included classes have less
concurrency. The degree of concurrency is most inA and least inSYNC.

• A program using synchronous communication is easiest to develop and verify. A program
using non-FIFO communication, resulting in anA-execution, is hardest to design and verify.
This is because synchronous order offers the most simplicity due to the restricted number
of possibilities, whereas non-FIFO order offers the greatest difficulties because it admits a
much larger set of possibilities that the developer and verifier need to account for.

Thus, there is an inherent trade-off between the amount of concurrency provided, and the ease of
designing and verifying distributed programs.

6.2.3 Simulations

Asynchronous programs on synchronous systems:Theorem 6 indicates that an A-execution
can be run using synchronous communication primitives if and only if it is an RSC execution.
The events in the RSC execution are scheduled as per some nonseparated linear extension, and
adjacent(s, r) events in this linear extension are executed sequentially in the synchronous system.
The partial order of the asynchronous execution remains unchanged.

If an A-execution is not RSC, then there is no way to schedule the events to make them RSC,
without actually altering the partial order of the given A-execution. However, the following indirect
strategy that does not alter the partial order can be used. Each channelCi,j is modeled by a
control processPi,j that simulates the channel buffer. An asynchronous communication fromi to j
becomes a synchronous communication fromi to Pi,j followed by a synchronous communication
fromPi,j to j. This enables the decoupling of the sender from the receiver, a feature that is essential
in asynchronous systems. This approach is illustrated in Figure 6.8. The communication events at
the application processesPi andPj are encircled. Observe that it is expensive to implement the
channel processes.
Synchronous programs on asynchronous systems:A (valid) S-execution can be trivially real-
ized on an asynchronous system by scheduling the messages inthe order in which they appear in
the S-execution. The partial order of the S-execution remains unchanged but the communication

189

P

Pi

Pj

i,j

j,iP

m

m

m’

m’

Figure 6.8: Modeling channels as processes to simulate an execution using asynchronous primi-
tives on an synchronous system.

occurs on an asynchronous system that uses asynchronous communication primitives. Once a mes-
sage send event is scheduled, the middleware layer waits foran acknoweldgment; after the ack is
received, the synchronous send primitive completes.

6.3 Synchronous Program Order on an Asynchronous System

There do not exist real systems with instantaneous communication that allows for synchronous
communication to be naturally realized. We need to address the basic question of how a sys-
tem with synchronous communication can be implemented. We first examine nondeterminism
in program execution, and CSP as a representative synchronous programming language, before
examining an implementation of synchronous communication.
Non-determinism. The discussions on the message orderings and their characterizations so far
assumed a given partial order. This suggests that the distributed programs aredeterministic, i.e.,
repeated runs of the same program will produce the same partial order. In many cases, programs are
non-deterministicin the following senses. (We are not considering here the unpredictable message
delays which cause different runs to non-deterministically have different global orderings of the
events in physical time.)

1. A receive call can receive a message from any sender who hassent a message, if the expected
sender is not specified. The receive calls in most of the algorithms in Chapter 5 are nonde-
terministic in this sense – the receiver is willing to perform a rendezvous with any willing
and ready sender.

2. Multiple send and receive calls which are enabled at a process can be executed in an inter-
changeable order.

If i sends toj, andj sends toi concurrently using blocking synchronous calls, there results
a deadlock, similar to the one in Figure 6.4. However, there is no semantic dependency

190

between the send and the immediately following receive at each of the processes. If the
receive call at one of the processes can be scheduled before the send call, then there is no
deadlock. In this section, we consider scheduling synchronous communication events (over
an asynchronous system).

6.3.1 Rendezvous

One form of group communication is calledmultiway rendezvous, which is a synchronous commu-
nication among an arbitrary number of asynchronous processes. All the processes involved “meet
with each other”, i.e., communicate “synchronously” with each other at one time. The solutions
to this problem are fairly complex, and we will not consider them further as this model of syn-
chronous communication is not popular. Here, we study rendezvous between a pair of processes
at a time, which is calledbinary rendezvousas opposed to themultiway rendezvous.

Support forbinary rendezvouscommunication was first provided by programming languages
such as CSP and Ada. We consider here a subset of CSP. In these languages, the repetitive com-
mand (the⋆ operator) over the alternative command (the|| operator) on multiple guarded com-
mands (each having the formGi −→ CLi) is used, as follows.

∗[G1 −→ CL1 || G2 −→ CL2 || · · · || Gk −→ CLk]

Each communication command may be a part of a guardGi, and may also appear within the
statement blockCLi. A guardGi is a boolean expression. If a guardGi evaluates to true thenCLi

is said to beenabled, otherwiseCLi is said to bedisabled. A send command of local variablex
to processPk is denoted as “x !Pk”. A receive from processPk into local variablex is denoted as
“Pk ? x”. Some typical observations about synchronous communication underbinary rendezvous
are as follows.

• For the receive command, the sender must be specified. However, multiple recieve com-
mands can exist. A type check on the data is implicitly performed.

• Send and received commands may be individually disabled or enabled. A command is dis-
abled if it is guarded and the guard evaluates tofalse. The guard would likely contain an
expression on some local variables.

• Synchronous communication is implemented byschedulingmessages under the covers using
asynchronous communication. Scheduling involves pairingof matching send and receive
commands that are both enabled. The communication events for the control messages under
the covers do not alter the partial order of the execution.

The concept underlyingbinary rendezvous, which provides synchronous communication, dif-
fers from the concept underlying the classification of synchronous send and receive primitives as
blocking or nonblocking (studied in Chapter 1).Binary rendezvousexplicitly assumes that multiple

191

send and receives are enabled. Any send or receive event thatcan be “matched” with the corre-
sponding receive or send event can be scheduled. This is dynamically scheduling the ordering of
events and the partial order of the execution.

M ack(M)
permission(M)

Mrequest(M)

(b)(a)

higher
priority

lower
priority jP

iP

Figure 6.9: Messages used to implement synchronous order.Pi has higher priority thanPj . (a)Pi

issues SEND(M). (b)Pj issues SEND(M).

6.3.2 Algorithm for Binary Rendezvous

Various algorithms were proposed to implementbinary rendezvousin the 1980s. These algorithms
typically share the following features. At each process, there is a set of tokens representing the
current interactions that are enabled locally. If multipleinteractions are enabled, a process chooses
one of them and tries to “synchronize” with the partner process. The problem reduces to one of
scheduling messages satisfying the following constraints.

• Schedule on-line, atomically, and in a distributed manner,i.e., the scheduling code at any
process does not know the application code of other processes.

• Schedule in a deadlock-free manner (i.e., crown-free), such that both the sender and receiver
are enabled for a message when it is scheduled.

• Schedule to satisfy the progress property (i.e., find a schedule within a bounded number of
steps) in addition to the safety (i.e., correctness) property.

Additional features of a good algorithm are: (i) symmetry orsome form of fairness, i.e., not
favoring particular processes over others during scheduling, and (ii) efficiency, i.e., using as few
messages as possible, and involving as low a time overhead aspossible.

We now outline a simple algorithm that makes the following assumptions.

1. Receive commands are forever enabled from all processes.

2. A send command, once enabled, remains enabled until it completes, i.e., it is not possible
that a send command gets disabled (by its guard getting falsified) before the send is executed.

3. To prevent deadlock, process identifiers are used to introduce asymmetry to break potential
crowns that arise.

192

(message types)
M , ack(M), request(M), permission(M)

1. Pi wants to execute SEND(M) to a lower priority processPj :
Pi executessend(M)and blocks until it receivesack(M) from Pj . The send event SEND(M) now
completes.

Any M’ message (from a higher priority processes) andrequest(M’)request for synchronization (from
a lower priority processes) received during the blocking period are queued.

2. Pi wants to execute SEND(M) to a higher priority processPj :

(a) Pi seeks permission fromPj by executingsend(request(M)).
// to avoid deadlock in which cyclically blocked processes queue messages.

(b) WhilePi is waiting for permission, it remains unblocked.

i. If a messageM ′ arrives from a higher priority processPk, Pi acceptsM ′ by scheduling a
RECEIVE(M’) event and then executessend(ack(M’))to Pk.

ii. If a request(M’) arrives from a lower priority processPk, Pi executes
send(permission(M’))to Pk and blocks waiting for the messageM ′. When M ′

arrives, the RECEIVE(M’) event is executed.

(c) When thepermission(M)arrives,Pi knows partnerPj is synchronized andPi executessend(M).
The SEND(M) now completes.

3. Request(M)arrival at Pi from a lower priority process Pj :
At the time arequest(M)is processed byPi, processPi executessend(permission(M))to Pj and
blocks waiting for the messageM . WhenM arrives, the RECEIVE(M) event is executed and the
process unblocks.

4. MessageM arrival at Pi from a higher priority process Pj :
At the time a messageM is processed byPi, processPi executes RECEIVE(M) (which is assumed
to be always enabled) and thensend(ack(M))to Pj .

5. Processing whenPi is unblocked:
WhenPi is unblocked, it dequeues the next (if any) message from the queue and processes it as a
message arrival (as per Rules 3 or 4).

Figure 6.10: A simplified implementation of synchronous order. Code shown is for processPi,
1 ≤ i ≤ n.

4. Each process attempts to schedule only onesend event at any time.

The algorithm illustrates how crown-free message scheduling is achieved on-line.
The message types used are: (i)M , (ii) ack(M), (iii) request(M), and (iv)permission(M). A

process blocks when it knows for sure that it can successfully synchronize the current message
with the partner process. Each process maintains a queue that is processed in FIFO order only
when the process is unblocked. When a process is blocked waiting for a particular message that it
is currently synchronizing, any other message that arrivesis queued up.

193

Execution events in the synchronous execution are only thesendof the messageM andreceive
of the messageM . The send and receive events for the other message types –ack(M), request(M),
andpermission(M)which are control messages – are under the covers, and are notincluded in
the synchronous execution. The messagesrequest(M), ack(M), andpermission(M)useM ’s unique
tag; the message M is not included in these messages. We use capital SEND(M) and RECEIVE(M)
to denote the primitives in the application execution, the lower case send and receive are used for
the control messages.

The algorithm to enforce synchronous order is given in Figure 6.10. The key rules to prevent
cycles among the messages are summarized as follows.

• To send to a lower priority process, messagesM and ack(M) are involved in that order.
The sender issuessend(M)and blocks untilack(M)arrives. Thus, when sending to a lower
priority process, the sender blocks waiting for the partnerprocess to synchronize and send
an acknowledgement.

• To send to a higher priority process, messagesrequest(M), permission(M)andM are in-
volved, in that order. The sender issuessend(request(M)), do not block, and awaits permis-
sion. Whenpermission(M)arrives, the sender issuessend(M).

Thus, when sending to a higher priority process, the sender asks the higher priority pro-
cess via therequest(M)to give permission to send. When the higher priority processgives
permission to send, the higher priority process, which is the intended receiver, blocks.

In either case, a higher priority process blocks on a lower priority process. So cyclic waits are
avoided.

Pi

Pj

kP

(highest priority)

(lowest priority)
(a) (b)

M, sent to lower
 priority process

request(M)

ack(M)

permission(M)

M, sent to higher
 priority process

blocking period

Figure 6.11: Examples showing how to schedule messages sentwith synchronous primitives.

In more detail, a cyclic wait is prevented because before sending a messageM to a higher
priority process, a lower priority process requests the higher priority process for permission to
synchronize onM , in a nonblocking manner. While waiting for this permission, there are two
possibilities.

194

1. If a messageM ′ from a higher priority process arrives, it is processed by a receive (assuming
receives are always enabled) andack(M’) is returned. Thus, a cyclic wait is prevented.

2. Also, while waiting for this permission, if arequest(M’)from a lower priority process arrives,
apermission(M’)is returned and the process blocks untilM ′ actually arrives.

Note that thereceive(M’)event effectively gets permuted before thesend(M)event (steps 2(b)i and
2(b)ii). This is a change to the partial order embodied in theprogram.
Examples: Figure 6.11 shows two examples of how the algorithm breaks cyclic waits to schedule
messages. Observe that in all cases in the algorithm, a higher priority process blocks on lower
priority processes, irresepctive of whether the higher priority process is the intended sender or
the receiver of the message beign scheduled. In Figure 6.11(a), at processPk, the receive of the
message fromPj effectively gets permuted beforePk’s own send(M)event due to step 2(b)i. In
Figure 6.11(b), at processPj, the receive of therequest(M’)message fromPj effectively causes
M ′ to be permuted beforePj ’s own message that it was attempting to schedule withPi, due to
step 2(b)ii.

6.4 Group Communication

Processes across a distributed system cooperate to solve a joint task. Often, they need to communi-
cate with each other as a group, and therefore there needs to be support forgroup communication.
A message broadcastis the sending of a message to all members in the distributed system. The no-
tion of a system can be confined only to those sites/processesparticipating in the joint application.
Refining the notion ofbroadcasting, there ismulticastingwherein a message is sent to a certain
subset, identified as agroup, of the processes in the system. At the other extreme isunicasting
which is the familiar point-to-point message communication.

Broadcast and multicast support can be provided by the network protocol stack using variants
of the spanning tree. This is an efficient mechanism for distributing information. However, the
hardware-assisted or Network Layer protocol assisted multicast cannot efficiently provide features
such as the following.

• Application-specific ordering semantics on the order of delivery of messages.

• Adapting groups to dynamically changing membership.

• Sending multicasts to an arbitrary set of processes at each send event.

• Providing various fault-tolerance semantics.

If a multicast algorithm requires the sender to be a part of the destination group, the multicast
algorithm is said to be aclosed groupalgorithm. If the sender of the multicast can be outside the
destination group, the multicast algorithm is said to be anopen groupalgorithm. Open group algo-
rithms are more general, and therefore more difficult to design and more expensive to implement,

195

than closed group algorithms. Closed group algorithms cannot be used in several scenarios such as
in a large system (e.g., on-line reservation or Internet banking system) where client processes are
short-lived and in large numbers. Also worth noting is that for multicast algorithms, the number of
groups may be potentially exponential, i.e.,O(2n), and algorithms that have to explicitly track the
groups can incur this high overhead.

In the remainder of this chapter, we will examine multicast and broadcast mechanisms under
varying degrees of strictness of assumptions on the order ofdelivery of messages. Two popular
orders for the delivery of messages were proposed in the context of group communication:causal
order and total order. Much of the seminal work on group communication was initiated by the
ISIS project.

6.5 Causal Order (CO)

Causal order has many applications such as updating replicated data, allocating requests in a fair
manner, and synchronizing multimedia streams. We explain here the use of causal order in updat-
ing replicas of a data item in the system. Consider Figure 6.12(a) which shows two processesP1

andP2 that issue updates to the three replicasR1(d), R2(d), andR3(d) of data itemd. Message
m creates a causality betweensend(m1) andsend(m2). If P2 issues its update causally afterP1

issued its update, thenP2’s update should be seen by the replicas after they seeP1’s update, in
order to preserve the semantics of the application. (In thiscase, CO is satisfied.) However, this
may happen at some, all, or none of the replicas. Figure 6.12(b) shows thatR1 seesP2’s update
first, whileR2 andR3 seeP1’s update first. Here, CO is violated. Figure 6.12(b) shows that all
replicas seeP2’s update first. However, CO is still violated. If messagem did not exist as shown,
then the executions shown in Figure 6.12(b) and (c) would satisfy CO.

P1 P2

P

P

1R1 R2 R3

R3

2

R1

R2
m m

m1m1

m2m2

(c)(b)(a)

Figure 6.12: Updates to object replicas are issued by two processes.

Given a system with FIFO channels, causal order needs to be explicitly enforced by a protocol.
The following two criteria must be met by a causal ordering protocol.

• Safety: In order to prevent causal order from being violated, a messageM that arrives at a

196

(local variables)
array of int SENT [1 . . . n, 1 . . . n]
array of int DELIV [1 . . . n] // DELIV [k] = # messages sent byk that are delivered locally

(1) send event, wherePi wants to send messageM to Pj :
(1a)send(M,SENT) to Pj ;
(1b)SENT [i, j] ←− SENT [i, j] + 1.

(2) message arrival,when(M,ST) arrives atPi from Pj :
(2a)deliver M to Pi whenfor each processx,
(2b) DELIV [x] ≥ ST [x, i];
(2c)∀x, y, SENT [x, y]←− max(SENT [x, y], ST [x, y]);
(2d)DELIV [j]←− DELIV [j] + 1.

Figure 6.13: Canonical algorithm by Raynal-Schiper-Toueg(RST) to implement causal ordering
of messages. Code forPi, 1 ≤ i ≤ n.

process may need to be buffered until all systemwide messages sent in the causal past of the
send(M) event to that same destination have already arrived.

Therefore, we distinguish between the arrival of a message at a process (at which time it is
placed in a local system buffer) and the event at which the message is given to the application
process (when the protocol deems it safe to do so without violating causal order). The arrival
of a message is transparent to the application process. The delivery event corresponds to the
receiveevent in the execution model.

• Liveness:A message that arrives at a process must eventually be delivered to the process.

Both the algorithms we will study in this section allow each send event to unicast, multicast, or
broadcast a message in the system.

6.5.1 The Raynal-Schiper-Toueg Algorithm

Intuitively, it seems logical that each messageM should carry with it, a log of all other messages,
or their identifiers, sent causally beforeM ’s send event, and sent to the same destinationdest(M).
This log can then be examined to ensure whether it is safe to deliver a message. All algorithms aim
to reduce this log overhead, and the space and time overhead of maintaining the log information at
the processes. Figure 6.13 gives a canonical algorithm thatis representative of several algorithms
that try to reduce the size of the local space and message space overhead by various techniques. In
order to implement safety, the messages piggyback the control information that helps to determine
when it is safe to deliver the message to the destination. FIFO channels are assumed in the system.
Each process maintains ann×n arraySENT and a sizen arrayDELIV . SENTi[j, k] at process
Pi gives the number of messages sent byPj to Pk, as known toPi. DELIVi[j] gives the number
of messages fromPj that have been delivered toPi. Safety is implemented primarily by step

197

(2a). Liveness is implemented under the assumption that there are no failures, and that message
propagation/transmission times are finite.
Complexity: This algorithm takesO(n2) integers space at each process, and the message space
overhead is alson2 integers. The time complexity at each process for each send and deliver event
isO(n2).

6.5.2 The Kshemkalyani-Singhal Optimal Algorithm

The space and time optimal algorithm of Kshemkalyani and Singhal (KS) uses the following no-
tation. Theath multicast message sent by processi is denotedMi,a, and the set of destinations
of this multicast is denotedMi,a.Dests. The algorithm uses the followingDelivery Conditionfor
correctness: A messageM∗ that carries information “d ∈M.Dests", where messageM was sent
to d in the causal past ofSend(M∗), is not delivered tod if M has not yet been delivered tod.

A natural question to address to obtain optimality is: For how long should the information “d
∈Mi,a.Dests” be stored in the log at a process, and piggybacked on messages? The following are
the necessary and sufficient conditions on how long this information should be stored.

An optimal CO algorithm stores in local message logs and propagates on messages, information
of the form “d is a destination ofM” about a messageM sent in the causal past,as long asand
only as long as

(Propagation Constraint I:) it is not known that the messageM is delivered tod, and

(Propagation Constraint II:) it is not known that a message has been sent tod in the causal future
of Send(M), and hence it is not guaranteed using a reasoning based on transitivity that the
messageM will be delivered tod in CO.

The Propagation Constraints also imply that if either (I) or(II) is false, the information “d ∈
M.Dests” must not be stored or propagated, even to remember that (I) or (II) hasbeen falsified.
Stated differently, the information“d ∈Mi,a.Dests” must be available in the causal future of event
ei,a, but

• not in the causal future ofDeliverd(Mi,a), and

• not in the causal future ofek,c, whered ∈ Mk,c.Dests and there is no other message sent
causally betweenMi,a andMk,c to the same destinationd.

In the causal future ofDeliverd(Mi,a), andSend(Mk,c), the information is redundant; elsewhere, it
is necessary. Additionally, to maintain optimality, no other information should be stored, including
information about what messages have been delivered. As information about what messages have
been delivered (or are guaranteed to be delivered without violating causal order) is necessary for
the Delivery Condition, this information is inferred usinga set-operation based logic.

The Propagation Constraints are illustrated with the help of Fig. 6.14. The messageM is sent
by processi at evente to processd. The information “d ∈M.Dests”

198

e6

e8

d

i

e4

e7
e1

M

Deliver(M)

event on any causal path between event e and this event

message sent to d

info "d is a dest. of M" must not exist for optimality

info "d is a dest. of M" must exist for correctness

event at which message is sent to d, and there is no such
border of causal future of corresponding event

e

e‘‘

e‘
e5

e2

e3

Figure 6.14: Illustrating the necessary and sufficient conditions for causal ordering.

• must exist ate1 ande2 because (I) and (II) are true.

• must not exist ate3 because (I) is false

• must not exist ate4, e5, e6 because (II) is false

• must not exist ate7, e8 because (I) and (II) are false

Information about messages (i) not known to be delivered and(ii) not guaranteed to be deliv-
ered in CO, isexplicitly tracked by the algorithm using (source, timestamp, destination) informa-
tion. The information must be deleted as soon as either (i) or(ii) becomes false. The key problem
in designing an optimal CO algorithm is to identify the events at which (i) or (ii) becomes false.
Information about messages already delivered and messagesguaranteed to be delivered in CO is
implicitly tracked without storing or propagating it, and is derived from the explicit information.
Such implicit information is used for determining when (i) or (ii) becomes false for the explicit
information being stored or carried in messages.

The algorithm is given in Figures 6.15 and 6.16. Procedure SND is executed atomically. Pro-
cedure RCV is executed atomically except for a possible interruption in step RCV(1) where a
nonblocking wait is required to meet the Delivery Condition. Note that the pseudo-code can be
restructured to complete the processing of each invocationof SND and RCV procedures in a single
pass of the data structures, by always maintaining the data structures sorted row-major and then
column-major.

1. Explicit Tracking: Tracking of (source, timestamp, destination) informationfor messages
(i) not known to be delivered and (ii) not guaranteed to be delivered in CO, is done explicitly
using thel.Dests field of entries in local logs at nodes ando.Dests field of entries in mes-
sages. Setsli,a.Dests andoi,a.Dests contain explicit information of destinations to which

199

(local variables)
clockj ←− 0; // local counter clock at nodej
SRj [1...n]←− 0; // SRj [i] is the timestamp of last msg. fromi delivered toj
LOGj = {(i, clocki,Dests)} ←− {∀i, (i, 0, ∅)};

// Each entry denotes a message sent in the causal past, byi at clocki. Dests is the set of remaining
destinations

// for which it is not known thatMi,clocki
(i) has been delivered, or (ii) is guaranteed to be deliveredin CO.

SND: j sends a message M to Dests:

1. clockj ←− clockj + 1;

2. for all d ∈M.Dests do:
OM ←− LOGj ; // OM denotesOMj,clockj

for all o ∈ OM , modify o.Dests as follows:
if d 6∈ o.Dests then o.Dests←− (o.Dests \M.Dests);
if d ∈ o.Dests then o.Dests←− (o.Dests \M.Dests)

⋃{d};
// Do not propagate information about indirect dependencies that are

// guaranteed to be transitively satisfied when dependencies of M are satisfied.
for all os,t ∈ OM do

if os,t.Dests = ∅∧

(∃o′s,t′ ∈ OM | t < t′) then OM ←− OM \ {os,t};
// do not propagate older entries for whichDests field is∅

send(j, clockj ,M,Dests,OM) to d;

3. for all l ∈ LOGj do l.Dests←− l.Dests \Dests;
// Do not store information about indirect dependencies that are guaranteed

// to be transitively satisfied when dependencies ofM are satisfied.
ExecutePURGE_NULL_ENTRIES(LOGj); // purgel ∈ LOGj if l.Dests = ∅

4. LOGj ←− LOGj
⋃{(j, clockj ,Dests)}.

Figure 6.15: The algorithm by Kshemkalyani-Singhal to optimally implement causal ordering of
messages. Code forPj , 1 ≤ j ≤ n. (Part 1 of 2)

Mi,a is not guaranteed to be delivered in CO and is not known to be delivered. The informa-
tion about “d ∈Mi,a.Dests" is propagated up to the earliest events on all causal paths from
(i, a) at which it is known thatMi,a is delivered tod or is guaranteed to be delivered tod in
CO.

2. Implicit Tracking: Tracking of messages that are either (i) already delivered,or (ii) guar-
anteed to be delivered in CO, is performed implicitly.

The information about messages (i) already delivered or (ii) guaranteed to be delivered in
CO, is deleted and not propagated because it is redundant as far as enforcing CO is con-
cerned. However, it is useful in determining what information that is being carried in other
messages and that is being stored in logs at other nodes has become redundant and thus can
be purged. This semantics is implicitly stored and propagated. This information of messages
that are (i) already delivered or (ii) guaranteed to be delivered in CO, is tracked without ex-

200

RCV: j receives a message(k, tk,M,Dests,OM) from k:

1. // Delivery Condition; ensure that messages sent causally before M are delivered.
for all om,tm ∈ OM do

if j ∈ om.tm .Dests wait until tm ≤ SRj [m];

2. Deliver M;SRj[k]←− tk;

3. OM ←− {(k, tk,Dests)}⋃

OM ;
for all om,tm ∈ OM do om,tm .Dests←− om,tm .Dests \ {j};

// delete the now redundant dependency of message representedby om,tm
sent toj

4. // MergeOM andLOGj by eliminating all redundant entries.
// Implicitly track “already delivered” & “guaranteed to be delivered in CO” messages.
for all om,t ∈ OM and ls,t′ ∈ LOGj such thats = m do

if t < t′
∧

ls,t 6∈ LOGj then markom,t;
// ls,t had been deleted or never inserted, asls,t.Dests = ∅ in the causal past

if t′ < t
∧

om,t′ 6∈ OM then mark ls,t′ ;
// om,t′ 6∈ OM becausels,t′ had become∅ at another process in the causal past

Delete all marked elements inOM andLOGj ; // delete entries about redundant information
for all ls,t′ ∈ LOGj and om,t ∈ OM , such thats = m

∧

t′ = t do
ls,t′ .Dests←− ls,t′ .Dests

⋂

om,t.Dests; // delete destinations for which Delivery
// Condition is satisfied or guaranteed to be satisfied as perom,t

Deleteom,t from OM ; // information has been incorporated inls,t′

LOGj ←− LOGj
⋃

OM ; // merge nonredundant information ofOM into LOGj

5. PURGE_NULL_ENTRIES(LOGj). // Purge older entriesl for which l.Dests = ∅

PURGE_NULL_ENTRIES(Logj): // Purge older entriesl for which l.Dests = ∅ is implicitly inferred

for all ls,t ∈ Logj do
if ls,t.Dests = ∅∧

(∃l′s,t′ ∈ Logj | t < t′) then Logj ←− Logj \ {ls,t}.

Figure 6.16: (contd.) The algorithm by Kshemkalyani-Singhal to optimally implement causal
ordering of messages. Code forPj, 1 ≤ j ≤ n. (Part 2 of 2)

plicitly storing it! Rather, the algorithm derives it from the existing explicit information
about messages (i) not known to be delivered and (ii) not guaranteed to be delivered in CO,
by examining onlyoi,a.Dests or li,a.Dests, which is a part of the explicit information.

There are two types of implicit tracking.

• The absence of a node id from destination information – i.e.,∃d∈ Mi,a.Dests | d 6∈
li,a.Dests

∨

d 6∈ oi,a.Dests – implicitly contains information that the message has been
already delivered or is guaranteed to be delivered in CO tod. Clearly, li,a.Dests = ∅
or oi,a.Dests = ∅ implies that messageMi,a has been delivered or is guaranteed to
be delivered in CO toall destinations inMi,a.Dests. An entry whose.Dests = ∅
is maintained because of the implicit information in it, viz., that of known delivery or
guaranteed CO delivery to all destinations of the multicast, is useful to purge redundant

201

information as per the Propagation Constraints.

• As the distributed computation evolves, several entriesli,a1
, li,a2

, ... such that∀p,
li,ap

.Dests= ∅ may exist in a node’s log and a message may be carrying severalen-
tries oi,a1

, oi,a2
, ... such that∀p, oi,ap

.Dests= ∅. The second implicit tracking uses a
mechanism to prevent the proliferation of such entries. Themechanism is based on the
following observation:“For any two multicastsMi,a1

, Mi,a2
such thata1 < a2, if li,a2

∈ LOGj, thenli,a1
∈ LOGj. (Likewise for any message.)"

Therefore, ifli,a1
.Dests becomes∅ at a nodej, then it can be deleted fromLOGj

provided∃ li,a2
∈ LOGj such thata1 < a2. The presence of suchli,a1

s in LOGj is
automatically implied by the presence of entryli,a2

in LOGj . Thus, for a multicast
Mi,z, if li,z does not exist inLOGj , thenli,z.Dests = ∅ implicitly exists inLOGj iff ∃
li,a ∈ LOGj | a > z.

As a result of the second implicit tracking mechanism, a nodedoes not keep (and
a message does not carry) entries of typeli,a.Dests = ∅ in its log. However, note
that a node must always keep at least one entry of typeli,a (the one with the highest
timestamp) in its log for each sender nodei. The same holds for messages.

The information tracked implicitly is useful in purging information explicitly carried in other
OM ′′s and stored inLOG entries about “yet to be delivered to" destinations for the same
messageMi,a as well as for messagesMi,a′ , wherea′ < a. Thus, wheneveroi,a in some
OM ′ propagates to nodej, in step RCV(4), (i) the implicit information inoi,a.Dests is used
to eliminate redundant information inli,a.Dests ∈ LOGj; (ii) the implicit information in
li,a.Dests ∈ LOGj is used to eliminate redundant information inoi,a.Dests; (iii) the implicit
information inoi,a is used to eliminate redundant informationli,a′ ∈ LOGj if 6 ∃ oi,a′ ∈ OM ′

anda′ < a; (iv) the implicit information inli,a is used to eliminate redundant information
oi,a′ ∈OM ′ if 6 ∃ li,a′ ∈ LOGj anda′ < a; (v) only nonredundant information remains inOM ′

andLOGj; this is merged together into an updatedLOGj.

An example

In the example in Figure 6.17, the timing diagram illustrates (i) the propagation of explicit in-
formation “P6 ∈ M5,1.Dests” and (ii) the inference of implicit information that “M5,1 has been
delivered toP6, or is guaranteed to be delivered in causal order toP6 with respect to any future
messages”. A thick arrow indicates that the corresponding message contains the explicit informa-
tion piggybacked on it. A thick line during some interval of the time line of a process indicates the
duration in which this information resides in the log local to that process. The number “a” next to
an event indicates that it is theath event at that process.

Multicasts M5,1 andM4,2. MessageM5,1 sent to processesP4 andP6 contains the piggybacked
information “M5,1.Dests = {P4, P6}.” Additionally, at the send event (5,1), the informa-
tion “M5,1.Dests = {P4, P6}” is also inserted in the local logLog5. WhenM5,1 is de-
livered toP6, the (new) piggybacked information “P4 ∈ M5,1.Dests” is stored inLog6 as

202

2

2 3

2

431 2

causal past contains event (6,1)

1

1

1

1

1

M 5,1

4,2

M
4,2

2,2

4,3

4,3

M

MM

5,1 6,2 5,2M

3,3M

5

6information about P as a destination

as piggybacked information and in Logs
of multicast at event (5,1) propagates

2 3

32
3 4

3,3M

2,3

M M

M

M

6P

5P

4P

3P

2P

1P

M
5,1

to P

M
4,2

to P
3
,P

2

2,2
M to P

1
M

6,2
to P

1
M

4,3
to P

6
M

4,3
to P

3
M

5,2
to P

6
M

2,3
to P

M
1

3,3
to P

2
,P

6

{P
4

{P
6

{P
6

{P
4

{P
6

{}

{P ,
4

P
6

{P

{}

}

}

}

}

}

64
P }

Message to dest.
piggybacked
M5,1.Dests

,
6

,P

}
6

Figure 6.17: An example to illustrate the propagation constraints.

“M5,1.Dests = {P4}”; information about “P6 ∈M5,1.Dests” which was needed for routing
mustnot be stored inLog6 because of Constraint I. Symmetrically, whenM5,1 is delivered
to processP4 at event (4,1),only the new piggybacked information “P6 ∈ M5,1.Dests” is
inserted inLog4 as “M5,1.Dests = {P6}”, which is later propagated during multicastM4,2.

Multicast M4,3. At event (4,3), the information “P6 ∈M5,1.Dests” in Log4 is propagated on mul-
ticastM4,3 only to processP6 to ensure causal delivery using the Delivery Condition. The
piggybacked information on messageM4,3 sent to processP3 must not contain this informa-
tion because of Constraint II. (The piggybacked information contains “M4,3.Dests = {P6}”.
As long as any future message sent toP6 is delivered in causal order w.r.t.M4,3 sent toP6, it
will also be delivered in causal order w.r.t.M5,1 sent toP6.) And asM5,1 is already delivered
to P4, the information “M5,1.Dests = ∅” is piggybacked onM4,3 sent toP3. Similarly, the
information “P6 ∈ M5,1.Dests” must be deleted fromLog4 as it will no longer be needed,
because of Constraint II. “M5,1.Dests = ∅” is stored inLog4 to remember thatM5,1 has
been delivered or is guaranteed to be delivered in causal order to all its destinations.

Learning implicit information at P2 and P3. When messageM4,2 is received by processesP2

andP3, they insert the (new) piggybacked information in their local logs, as information
“M5,1.Dests = {P6}”. They both continue to store this inLog2 andLog3 and propagate this
information on multicasts until they “learn” at events (2,4) and (3,2) on receipt of messages
M3,3 andM4,3, respectively, that any future message is guaranteed to be delivered in causal
order to processP6, w.r.t.M5,1 sent toP6. Hence by Constraint II, this information must be
deleted fromLog2 andLog3. The logic by which this “learning” occurs is as follows.

•WhenM4,3 with piggybacked information “M5,1.Dests = ∅” is received byP3 at (3,2), this
is inferred to be valid currentimplicit information about multicastM5,1 because the logLog3

203

already contains explicit information “P6 ∈M5,1.Dests” about that multicast. Therefore the
explicit information inLog3 is inferred to be old and must be deleted to achieve optimality.
M5,1.Dests is set to∅ in Log3.

• The logic by whichP2 learns implicit knowledge on the arrival ofM3,3 is identical.

Processing atP6. Recall from step (1) that when messageM5,1 is delivered toP6, only “M5,1.Dests =

{P4}” is added toLog6. Further,P6 propagates only “M5,1.Dests = {P4}” (from Log6) on
messageM6,2, and this conveys the currentimplicit information “M5,1 has been delivered to
P6”, by its very absence in the explicit information.

•When the information “P6 ∈M5,1.Dests” arrives onM4,3, piggybacked as “M5,1.Dests =

{P6}”, it is used only to ensure causal delivery ofM4,3 using the Delivery Condition, and
is not inserted inLog6 (Constraint I) – further, the presence of “M5,1.Dests = {P4}” in
Log6 implies theimplicit information thatM5,1 has already been delivered toP6. Also, the
absence ofP4 in M5,1.Dests in the explicit piggybacked information implies theimplicit
information thatM5,1 has been delivered or is guaranteed to be delivered in causalorder to
P4, and therefore,M5,1.Dests is set to∅ in Log6.

•When the information “P6 ∈M5,1.Dests” arrives onM5,2, piggybacked as “M5,1.Dests =

{P4, P6}”, it is used only to ensure causal delivery ofM4,3 using the Delivery Condition, and
is not inserted inLog6 becauseLog6 contains “M5,1.Dests = ∅”, which gives theimplicit
information thatM5,1 has been delivered or is guaranteed to be delivered in causalorder to
bothP4 andP6. (Note that at event (5,2),P5 changesM5,1.Dests in Log5 from {P4, P6} to
{P4}, as per Constraint II, and inserts “M5,2.Dests = {P6}” in Log5.)

Processing atP1. We have the following processing.

• WhenM2,2 arrives carrying piggybacked information “M5,1.Dests = {P6}”, this (new)
information is inserted inLog1.

• WhenM6,2 arrives with piggybacked information “M5,1.Dests = {P4}”, P1 “learns”
implicit information “M5,1 has been delivered toP6” by the very absence of explicit infor-
mation “P6 ∈ M5,1.Dests” in the piggybacked information, and hence marks information
“P6 ∈M5,1.Dests” for deletion fromLog1. Simultaneously, “M5,1.Dests = {P6}” in Log1

implies theimplicit information thatM5,1 has been delivered or is guaranteed to be deliv-
ered in causal order toP4. Thus,P1 also “learns” that the explicit piggybacked information
“M5,1.Dests = {P4}” is outdated.M5,1.Dests in Log1 is set to∅.
• Analogously, the information “P6 ∈ M5,1.Dests” piggybacked onM2,3 that arrives atP1

is inferred to be outdated (and hence ignored) using theimplicit knowledge derived from
“M5,1.Dests = ∅” in Log1.

204

(1) When processPi wants to multicast a messageM to groupG:
(1a)sendM(i,G) to central coordinator.

(2) WhenM(i,G) arrives fromPi at the central coordinator:
(2a)sendM(i,G) to all members of the groupG.

(3) WhenM(i,G) arrives atPj from the central coordinator:
(3a)deliver M(i,G) to the application.

Figure 6.18: A centralized algorithm to implement total order and causal order of messages.

6.6 Total Order

While causal order has many uses, there are other orderings that are also useful.Total orderis such
an ordering. Consider the example of updates to replicated data, as shown in Figure 6.12. As the
replicas are of just one data itemd, it would be logical to expect that all replicas see the updates in
the same order, whether or not the issuing of the updates are causally related. This way, the issue
of coherence and consistency of the replica values goes away. Such a replicated system would
still be useful for fault-tolerance, as well as for easy availability for “read” operations. Total order
which requires that all messages be received in the same order by the recipients of the messages is
formally defined as follows.

Definition 19. (Total order.) For each pair of processesPi andPj and for each pair of messages
Mx andMy that are delivered to both the processes,Pi is deliveredMx beforeMy if and only ifPj

is deliveredMx beforeMy.

Example: The execution in Figure 6.12(b) does not satisfy total order. Even if the messagem did
not exist, total order would not be satisfied. The execution in Figure 6.12(c) satisfies total order.

6.6.1 Centralized Algorithm for Total Order

Assuming all processes broadcast messages, the following centralized solution (Figure 6.18) en-
forces total order in a system with FIFO channels. Each process sends the message it wants to
broadcast to a centralized process, which simply relays allthe messages it receives to every other
process over FIFO channels. It is straightforward to see that total order is satisfied. Furthermore,
this algorithm also satisfies causal message order.
Complexity: Each message transmission takes 2 message hops, and exactlyn messages in a
system ofn processes.
Drawbacks: A centralized algorithm has a single point of failure and congestion, and is therefore
not an elegant solution.

205

6.6.2 Three-Phase Distributed Algorithm

A distributed algorithm that enforces total and causal order for closed groups is given in Fig-
ure 6.19. The three phases of the algorithm are first described from the viewpoint of the sender,
and then from the viewpoint of the receiver.

Sender: Phase 1:In the first phase, a process multicasts (line 1b) the messageM with a locally
unique tag and the local timestamp to the group members.

Phase 2: In the second phase, the sender process awaits a reply from all the group members
who respond with a tentative proposal for a revised timestamp for that messageM .
The await call in line (1d) is nonblocking, i.e., any other messages received in the
meanwhile are processed. Once all expected replies are received, the process computes
the maximum of the proposed timestamps forM , and uses the maximum as the final
timestamp.

Phase 3: In the third phase, the process multicasts the final timestamp to the group in line
(1f).

Receivers: Phase 1:In the first phase, the receiver receives the message with a tentative/ pro-
posed timestamp. It updates the variablepriority that tracks the highest proposed
timestamp (line 2a), then revises the proposed timestamp tothe priority, and places
the message with its tag and the revised timestamp at the tailof the queuetemp_Q
(line 2b). In the queue, the entry is marked as undeliverable.

Phase 2: In the second phase, the receiver sends the revised timestamp (and the tag) back
to the sender (line 2c). The receiver then waits in a nonblocking manner for the final
timestamp (correlated by the message tag).

Phase 3: In the third phase, the final timestamp is received from the multicaster (line 3).
The corresponding message entry intemp_Q is identified using the tag (line 3a), and
is marked as deliverable (line 3b) after the revised timestamp is overwritten by the final
timestamp (line 3c). The queue is then resorted using the timestamp field of the entries
as the key (line 3c). As the queue is already sorted except forthe modified entry for the
message under consideration, that message entry has to be placed in its sorted position
in the queue. If the message entry is at the head of thetemp_Q, that entry, and all
consecutive subsequent entries that are also marked as deliverable, are dequeued from
temp_Q, and enqueued indeliver_Q in that order (loop in lines 3d-3g).

Complexity: This algorithm uses three phases, and to send a message ton − 1 processes, it uses
3(n− 1) messages and incurs a delay of three message hops.
Example: An example execution to illustrate the algorithm is given inFigure 6.20. Here, A and B
multicast to a set of destinations and C and D are the common destinations for both multicasts.

Figure 6.20(a): The main sequence of steps is as follows.

206

record Q_entry
M : int ; // the application message
tag: int ; // unique message identifier
sender_id: int ; // sender of the message
timestamp: int ; // tentative timestamp assigned to message
deliverable: boolean; // whether message is ready for delivery

(local variables)
queue ofQ_entry: temp_Q, delivery_Q
int : clock // Used as a variant of Lamport’s scalar clock
int : priority // Used to track the highest proposed timestamp
(message types)
REVISE_TS(M, i, tag, ts) // Phase 1 message sent byPi, with initial timestampts
PROPOSED_TS(j, i, tag, ts) // Phase 2 message sent byPj , with revised timestamp, toPi

FINAL_TS(i, tag, ts) // Phase 3 message sent byPi, with final timestamp

(1) When processPi wants to multicast a messageM with a tagtag:
(1a)clock = clock + 1;
(1b) sendREVISE_TS(M, i, tag, clock) to all processes;
(1c) temp_ts = 0;
(1d) await PROPOSED_TS(j, i, tag, tsj) from each processPj ;
(1e)∀j ∈ N , do temp_ts = max(temp_ts, tsj);
(1f) sendFINAL_TS(i, tag, temp_ts) to all processes;
(1g) clock = max(clock, temp_ts).

(2) WhenREVISE_TS(M, j, tag, clk) arrives fromPj :
(2a)priority = max(priority + 1, clk);
(2b) insert (M, tag, j, priority, undeliverable) in temp_Q; // at end of queue
(2c) sendPROPOSED_TS(i, j, tag, priority) to Pj .

(3) WhenFINAL_TS(j, tag, clk) arrives fromPj :
(3a) Identify entryQ_entry(tag) in temp_Q, corresponding totag;
(3b) mark qtag as deliverable;
(3c) UpdateQ_entry.timestamp to clk and re-sorttemp_Q based on thetimestamp field;
(3d) if head(temp_Q) = Q_entry(tag) then
(3e) moveQ_entry(tag) from temp_Q to delivery_Q;
(3f) while head(temp_Q) is deliverabledo
(3g) movehead(temp_Q) from temp_Q to delivery_Q.

(4) WhenPi removes a message(M, tag, j, ts, deliverable) from head(delivery_Qi):
(4a)clock = max(clock, ts) + 1.

Figure 6.19: A distributed algorithm to implement total order and causal order of messages. Code
atPi, 1 ≤ i ≤ n.

207

A B

C D

7

7

7

10

9

9

9

9

temp_Q delivery_Qtemp_Q

(9,u)(10,u)(7,u)(9,u)

delivery_Q

PROPOSED_TS

(a)

REVISE_TS

C D

9

temp_Q delivery_Qtemp_Q delivery_Q

10

10
9

(9,u)(10,d) (10,u) (9,d)

max(7,9)=9max(7,10)=10

FINAL_TS

(b)

BA

Figure 6.20: An example to illustrate the 3-phase total ordering algorithm. (a) A snapshot for
PROPOSED_TS and REVISE_TS messages. The dashed lines show the further execution after
the snapshot. (b) The FINAL_TS messages in the example.

1. A sends aREVISE_TS(7) message, having timestamp 7. B sends aREVISE_TS(9)
message, having timestamp 9.

2. C receives A’sREVISE_TS(7), enters the corresponding message intemp_Q, and marks
it as undeliverable.priority = 7. C then sendsPROPOSED_TS(7) message to A.

3. D receives B’sREVISE_TS(9), enters the corresponding message intemp_Q, and marks
it as undeliverable.priority = 9. D then sendsPROPOSED_TS(9) message to B.

4. C receives B’sREVISE_TS(9), enters the corresponding message intemp_Q, and marks
it as undeliverable.priority = 9. C then sendsPROPOSED_TS(9) message to B.

5. D receives A’sREVISE_TS(7), enters the corresponding message intemp_Q, and marks
it as undeliverable.priority = 10. D assigns a tentative timestamp value of 10, which
is greater than all of the timestamps onREVISE_TSs seen so far, and then sendsPRO-
POSED_TS(10) message to A.

208

The state of the system is as shown in the figure.

Figure 6.20(b): The continuing sequence of main steps is as follows.

6. When A receivesPROPOSED_TS(7) from C andPROPOSED_TS(10) from D, it com-
putes the final timestamp asmax(7, 10) = 10, and sendsFINAL_TS(10) to C and D.

7. When B receivesPROPOSED_TS(9) from C andPROPOSED_TS(9) from D, it com-
putes the final timestamp asmax(9, 9) = 9, and sendsFINAL_TS(9) to C and D.

8. C receivesFINAL_TS(10) from A, updates the corresponding entry intemp_Qwith the
timestamp, resorts the queue, and marks the message as deliverable. As the message
is not at the head of the queue and some entry ahead of it is still undeliverable, the
message is not moved todelivery_Q.

9. D receivesFINAL_TS(9) from B, updates the corresponding entry intemp_Qby mark-
ing the corresponding message as deliverable, and resorts the queue. As the message is
at the head of the queue, it is moved todelivery_Q.

This is the system snapshot shown in Figure 6.20(b). The following further steps will occur.

10. When C receivesFINAL_TS(9) from B, it will update the corresponding entry intemp_Q
by marking the corresponding message as deliverable. As themessage is at the head
of the queue, it is moved to thedelivery_Qand the next message (of A) which is also
deliverable, is also moved to thedelivery_Q.

11. When D receivesFINAL_TS(10) from A, it will update the corresponding entry in
temp_Qby marking the corresponding message as deliverable. As themessage is at
the head of the queue, it is moved to thedelivery_Q.

The algorithm in Figure 6.19 is closely structured along thelines of Lamport’s algorithm for
mutual exclusion. We will later see that Lamport’s mutual exclusion algorithm has the property
that when a process is at the head of its own queue and has received a REPLY from all other
processes, the REQUEST of that process is at the head of all the queues. This can be exploited
to deliver the message by all the processes in the same total order (instead of entering the critical
section).

6.7 A Nomenclature For Multicast

In this section, we systematically classify the various kinds of multicast algorithms possible. Ob-
serve that there are four classes of source-destination relationships, as illustrated in Figure 6.21,
for open groups.

SSSG: Single source and single destination group

MSSG: Multiple sources and single destination group

209

(a) Single Source Single Group (c) Single Source Multiple Groups

(b) Multiple Sources Single Group (d) Multiple Sources Multiple Groups

�
�
�
�

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� �

�
�
� �

�
�
�

�
�
�
�

�
�
�
�

Figure 6.21: Four classes of source-destination relationships for open-group multicasts. For
closed-group multicasts, the sender needs to be part of the recipient group.

SSMG: Single source and multiple, possibly overlapping, groups

MSMG: Multiple sources and multiple, possibly overlapping, groups

The SSSG and SSMG classes are straightforward to implement,assuming the presence of
FIFO channels between each pair of processes. Both total order and causal order are guaranteed.
The MSSG class is also straightforward to handle; the centralized implementation in Figure 6.18
provides both total and causal order. The central coordinator effectively converts this class to the
SSSG class. For the MSMG class, an algorithm such as that in Figure 6.19 can be used.

We now consider another design approach for the MSMG class. This approach, commonly
termed as thepropagation treeapproach, uses a semi-centralized structure that adapts the central-
ized algorithm of Figure 6.18.

6.8 Propagation Trees For Multicast

To manage the complications of delivery order across multiple overlapping groupsG = {G1 . . . Gg},
the algorithm first identifies a set ofmeta-groupsMG = {MG1, . . .MGh} with the following
properties. (1) Each process belongs to a single meta-group, and has the exact same group mem-
bership as every other process in that meta-group. (2) No other process outside that meta-group
has that exact group membership.
Example: Figure 6.22(a) shows some groups and their meta-groups.〈ABC〉, 〈AB〉, 〈AC〉, and
〈A〉 are the meta-groups of user group〈A〉.

The definition of meta-groups transforms the problem of MSMGmulticast to groups, to the
problem of MSSG multicast to meta-groups, which is easier tosolve.

A distinguished node in each meta-group acts as the manager for that meta-group. For each
user groupGi, one of its meta-groups is chosen to be itsprimary meta-group (PM)and denoted

210

ABC

AB

A

AC

C CE E

DB

CD

BD

BC
BCD

DE

F
EF

ABC

A B C AB AC BC BCD

BD CD D DE

E CE EF

F

PM(C) PM(D)

PM(E)

PM(F)

(a) (b)

PM(A),PM(B),

A

E
F

C

B
D

Figure 6.22: Example illustrating a propagation tree. Metagroups are shown in boldface. (a)
GroupsA,B,C,D,E andF , and their meta-groups. (b) Apropagation tree, with the primary
meta-groups labeled.

asPM(Gi). All the meta-groups are organized in apropagation forestor treestructure satisfying
the property: For user groupGi, its primary metagroupPM(Gi) is at the lowest possible level
(i.e., farthest from the root) of the tree such that all the metagroups whose destinations contain any
nodes ofGi belong to the subtree rooted atPM(Gi).
Example (with respect to Figure 6.22): 〈ABC〉 is the primary metagroup of A, B, and C.
〈B,C,D〉 is the primary meta-group of D.〈D,E〉 is the primary meta-group of E.〈E,F 〉 is the
primary meta-group of F.

The following properties can be seen to be satisfied by thepropagation tree.

1. The primary meta-groupPM(G), is the ancestor of all the other meta-groups ofG in the
propagation tree.

2. PM(G) is uniquely defined.

3. For any meta-group MG, there is a unique path to it from the PM of any of the user groups
of which the meta-group MG is a subset.

4. In addition, for any two primary meta-groupsPM(G1) andPM(G2), they should either
lie on the same branch of a tree, or be in disjoint trees. In thelatter case, their groups
membership sets are necessarily disjoint.

Key idea: The meta-groupPM(Gi) of user groupGi, is useful for multicasts, as follows.Mul-
ticasts toGi are sent first to the meta-groupPM(Gi) as only the subtree rooted atPM(Gi) can
contain the nodes inGi. The message is then propagated down the subtree rooted atPM(Gi).

The following definitions are useful to understand and explain the algorithm.

• MG1 subsumesMG2 (whereMG1 6= MG2) if for each groupG such that a member of
MG2 is a member ofG, we have that some member ofMG1 is also a member ofG. In other
words,MG1 is a subset of each user groupG of whichMG2 is a subset.

211

Example: In Figure 6.22,〈AB〉 subsumes〈A〉. Any member ofMG2 = 〈A〉 is a member of
A and each member of〈AB〉 is also a member ofA. Similarly, 〈AB〉 subsumes〈B〉.

• MG1 is joint withMG2 if neither meta-group subsumes the other and there is some group
G such thatMG1,MG2 ⊂ G.

Example: In Figure 6.22,〈ABC〉 is joint with 〈CD〉. Neither subsumes the other and both
are a subset ofC.

Example: Figure 6.22 shows some groups, their meta-groups, and theirpropagation tree. Meta-
group〈ABC〉 is the primary meta-groupPM(A), PM(B), PM(C). Meta-group〈BCD〉 is the
primary meta-groupPM(D). Thus, a multicast to groupD will be sent to〈BCD〉.

We note that the propagation tree is not unique because it depends on the order in which meta-
groups are processed. Various optimizations on the propagation tree can also be performed, but we
require that features (1) – (4) above should be satisfied by the tree. Exercise 10 asks you to design
an algorithm to construct a propagation tree. A metagroup that has members from multiple user
groups is desirable in order to have a tree with low height.
Correctness:The rules for forwarding messages during a multicast are given in Figure 6.23. Each
process needs to know the propagation tree, computed at a central location. Each meta-group has
a distinguished process which acts as themanageror representative of that meta-group.

The arraySV [1 . . . h] kept by each processPi tracks inSV [k], the number of messages multicast
byPi that will traverse through primary meta-groupPM(Gk). This array is piggybacked on
each message multicast by processPi.

The manager of each primary meta-group keeps an arrayRV [1 . . . n] that tracks inRV [k], the
number of messages sent by processPk that have been received by this primary meta-group.

As in the CO algorithms, a message fromPi can be processed by a primary meta-groupj if
RVj[i] = SVi[j]; otherwise it buffers the message until this condition is satisfied (lines 2a-2c).
At a non-primary meta-group, this check need not be performed because it never receives a mes-
sage directly from the sender of the multicast. The multicast sender always sends the message to
the primary meta-group first. At the non-primary meta-group, the relative order of messages has
already been determined by some ancestor meta-group; so it simply forwards the message as per
(2d-2g).

• The logic behind why total order is maintained is straightforward. For any metagroupsMG1

andMG2, and any groupsGx andGy of which the metagroups are a subset, the primary
meta-groupsPM(Gx) andPM(Gy) both subsumeMG1 andMG2, and both lie on the
same branch of thepropagation treeto eitherMG1 orMG2. The primary meta-group that is
lower in the tree will necessarily receive the two multicasts in some order. The assumption of
FIFO channels guarantees that all processes in meta-groupssubsumed by this lower primary
meta-group will receive the messages sent to the two groups in a common order.

212

(local variables)
array of integers:SV [1 . . . h]; //kept by each process.h is #(primary meta-groups),h ≤ |G|
array of integers:RV [1 . . . n]; //kept by each primary metagroup manager.n is #(processes)
set of integers:PM_set; //set of primary meta-groups through which message must traverse

(1) When processPi wants to multicast messageM to groupG:
(1a)sendM(i,G, SVi) to manager ofPM(G), primary meta-group ofG;
(1b)PM_set←− { primary meta-groups through whichM must traverse};
(1c) for all PMx ∈ PM_set do
(1d) SVi[x]←− SVi[x] + 1.

(2) WhenPi, the manager of a meta-groupMG receivesM(k,G, SVk) from Pj :
// Note:Pi may not be a manager of any meta-group

(2a) if MG is a primary meta-groupthen
(2b) buffer the messageuntil (SVk[i] = RVi[k]);
(2c) RVi[k]←− RVi[k] + 1;
(2d) for each child meta-group that is subsumed byMG do
(2e) sendM(k,G, SVk) to the manager of that child meta-group;
(2f) if there are no child meta-groupsthen
(2g) sendM(k,G, SVk) to each process in this meta-group.

Figure 6.23: Protocol to enforce total and causal order using propagation trees.

• Causal order is guaranteed because of the check made by managers of primary meta-groups
in lines (2a-2c). Assume that messagesM andM ′ are multicast toG andG′, respectively.
For nodes inG∩G′, there are two cases, as shown in Figure 6.24. In each case, the sequence
numbers next to messages indicate the order in which the messages are sent.

Case Figure 6.24(a,b):Here, the senders ofM andM ′ are different.Pk sendsM to G.
After Pi ∈ G receivesM , Pi sendsM ′ to G′. Thus, we have the causal chain
Sendk(k,M,G),Deliveri(k,M,G), Sendi(i,M

′, G′). For any destinationMGq such
thatMGq ⊂ G ∩ G′, the primary meta-group ofG andG′ must both be ancestors of
the meta-group ofPi because of the assumption ofclosed groups.

Case (a): PM(G′) will have already received and processedM (flow (2)) before it
receivesM ′ (flow (4)).

Case (b): PM(G) will have already received and processedM (flow (1)) before it re-
ceivesM ′ (flow (4)). Assuming FIFO channels, CO is guaranteed for all processes
in G ∩G′.

Case Figure 6.24(c,d):Pi sendsM to G and thenPi sendsM ′ to G′. Thus, we have the
causal chainSendi(i,M,G), Sendi(i,M

′, G′).

Case (c): The check in lines (2a-2c) byPM(G′) ensures thatPM(G′) will not process
M ′ before it processesM .

213

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Pk Pk

P P
i i

PM(G’)

PM(G)

iiP

1 2

3
4

1

2

3 4

PM(G)

PM(G’)

1

2
2 3

1

Case(a) Case (b)

Case (c) Case (d)

PM(G)

PM(G’)

PM(G’)

PM(G)P

2

Figure 6.24: The four cases for the correctness of causal ordering usingpropagation trees. The
sequence numbersd indicate the order in which the messages are sent.

Case (d): The check in lines (2a-2c) byPM(G) ensures thatPM(G) will not process
M ′ before it processesM . Assuming FIFO channels, CO is guaranteed for all
processes inG ∩G′.

6.9 Classification of Application-Level Multicast Algorithms

We have seen some algorithmically challenging techniques in the design of multicast algorithms.
The most general scenario allows each process to multicast to an arbitrary and dynamically chang-
ing group of processes at each step. As this generality incurs more overhead, algorithms imple-
mented on real systems tend to be more ‘centralized’ in one sense or another. Many multicast
protocols have been developed and deployed, but they can allbe classified as belonging to one of
the following five classes.

Communication history based algorithms: Algorithms in this class use a part of the communi-
cation history to guarantee ordering requirements.

The RST and KS algorithms belong to this class, and provide only causal ordering. They do
not need to track separate groups, and hence work for open-group multicasts.

Lamport’s algorithm, wherein messages are assigned scalartimestamps and a process can
deliver a message only when it knows that no other message with a lower timestamp can
be multicast, also belongs to this class. The NewTop protocol which extends Lamport’s al-
gorithm to overlapping groups guarantees both total and causal ordering, unlike Lamport’s
algorithm that guarantees only total ordering. Both these algorithms use closed-group con-
figurations.

214

Destinations

(c) Fixed sequencer

(b) Moving sequencer(a) Privilege−based

(d) Destination agreement

Destinations

Senders

sequencerFixed

Destinations

Senders

Sequencers

token
rotates

Senders

Destinations

Senders

privilege rotates

�
�
�
�

�
�
�
�

�
�
�
�

Figure 6.25: Models for sequencing messages. (a) Privilege-based algorithms. (b) Moving se-
quencer algorithms. (c) Fixed sequencer algorithms. (d) Destination agreement algorithms.

Privilege based algorithms: The operation of such algorithms is illustrated in Figure 6.25(a). A
token circulates among the sender processes. The token carries the sequence number for
the next message to be multicast, and only the token-holder can multicast. After a multicast
send event, the sequence number is updated. Destination processes deliver messages in the
order of increasing sequence numbers. Senders need to know the other senders, hence closed
groups are assumed. Such algorithms can provide total ordering, as well as causal ordering
using a closed group configuration (See Exercise 12.)

Examples of specific algorithms are On-Demand, and Totem. They differ in implementation
details such as whether a token ring topology is assumed (Totem) or not (On-Demand). Such
algorithms are not scalable because they do not permit concurrent send events. Hence they
are of limited use in large systems.

Moving sequencer algorithms: The operation of such algorithms is illustrated in Figure 6.25(b).
The original algorithm was proposed by Chang and Maxemchuck; various variants of it
were given by the Pinwheel and RMP algorithms. These algorithms work as follows. (1)
To multicast a message, the sender sends the message to all the sequencers. (2) Sequencers
circulate a token among themselves. The token carries a sequence number and a list of all

215

the messages for which a sequence number has already been assigned - such messages have
been sent already. (3) When a sequencer receives the token, it assigns a sequence number
to all received but unsequenced messages. It then sends the newly sequenced messages to
the destinations, inserts these messages in to the token list, and passes the token to the next
sequencer. (4) Destination processes deliver the messagesreceived in the order of increasing
sequence number.

Moving sequencer algorithms work with open groups. They guarantee total ordering but not
causal ordering. (See Exercise 12.)

Fixed sequencer algorithms:The operation of such algorithms is illustrated in Figure 6.25(c).
This class is a simplified version of the previous class. There is a single sequencer (unless a
failure occurs), which makes this class of algorithms essentially centralized.

The propagation tree approach studied earlier, belongs to this class. Other algorithms are: the
ISIS sequencer, Amoeba, Phoenix, and Newtop’s asymmetric algorithm. Let us briefly look
at Newtop’s asymmetric algorithm. All processes maintain logical clocks, and each group
has an independent sequencer. The unicast from the sender tothe sequencer, as well as the
multicast from the sequencer are timestamped. A process that belongs to multiple groups
must delay the sending of the next message (to the relevant sequencer) until it has received
and processed all messages, from the various sequencers, corresponding to the previous
messages it sent. Assuming FIFO channels, it can be shown that both total order and causal
order are maintained. (See Exercise 12.)

Destination agreement algorithms: The operation of such algorithms is illustrated in Figure 6.25(d).
In this class of algorithms, the destinations receive the messages with some limited ordering
information. They then exchange information among themselves to define an order. There
are two sub-classes here: (1) the first sub-class uses timestamps. Lamport’s 3-phase algo-
rithm (Figure 6.19) belongs to this sub-class. (2) The second sub-class uses an agreement or
‘consensus’ protocol among the processes. We will study agreement protocols in Chapter 14.

6.10 Semantics of Fault-Tolerant Group Communication

A failure-free system can be assumed only in an ideal world. When a system component fails in
the midst of the multicast operation, which is a non-atomic operation that spans across time and
across multiple links and nodes, the behavior of a multicastprotocol must adhere to a well-defined
specification, and correspondingly, the protocol must ensure that the specification under the failure
mode is also implemented. This enables well-defined actionsduring recovery after the failure.
Questions such as the following need to be addressed.

• For a multicast, if one correct process delivers the messageM , what can be said about the
other correct processes and faulty processes being deliveredM?

216

• For a multicast, if one faulty process delivers the messageM , what can be said about the
other correct processes and faulty processes being deliveredM?

• For causal or total order multicast, if one correct or faultyprocess deliversM , what can be
said about other correct processes and faulty processes being deliveredM?

There are two broad flavors of the specifications. In the regular flavor, there are no conditions
on the messages delivered to faulty processors (because they are faulty). However, assuming the
benign failure model, under some conditions, it may be useful to specify and control the behavior
of such faulty processes also. Therefore, the second flavor of specifications, termed as theUniform
specifications, also states the expected behavior of faultyprocesses. In the following description
of the specifications, the regular flavor and the uniform flavor are stated. To parse for theregular
flavor, the parenthesized words should be omitted. To parse for theuniformflavor, theitalicized
and parenthesized modifiers to the definitions of the regularflavor are included.

Uniform Reliable Multicast ofM .

Validity. If a correct process multicastsM , then all correct processes will eventually deliver
M .

(Uniform Agreement. If a correct (or faulty) process deliversM , then all correct processes
will eventually deliverM .

(Uniform) Integrity. Every correct (or faulty) process deliversM at most once, and only if
M was previously multicast bysender(M).

The Validity property states that once the multicast is initiated by a correct process, it will go
to completion. The Agreement property states that all correct processes get the same view of a
message, irrespective of whether a correct process or a faulty process broadcasts it. The Integrity
property states that correct processes have nonduplicate delivery of messages, and that they are not
delivered spurious messages. While the regular Agreement property permits a faulty process to
deliver a message that is never delivered to any correct process, this undesirable behavior can be
problematic in applications such as Atomic Commit in database protocols, and is explicitly ruled
out by Uniform Agreement. While the regular Integrity property permits a faulty process to deliver
a message multiple times, and to deliver a message that was never sent, this behavior is explicitly
ruled out by Uniform Agreement.

The orderings: FIFO order, causal order, and total order, are now defined for multicasts, in both
the regular anduniformflavors. Theuniformflavor requires that even faulty processes do not vio-
late the ordering properties. These definitions of the regular anduniformflavors are superimposed
on the basic definition of a (uniform) reliable multicast, given above. The regular flavor and the
uniform flavor of each definition is read using the semantics above for parsing the corresponding
flavors of multicast. In these definitions which deal with therelative order of messages, it is im-
portant that the multicast groups are identical, in which case the messages get broadcast within the
common group.

217

(Uniform) FIFO ordeer. If a process broadcastsM before it broadcastsM ′, then no correct (or
faulty) process deliversM ′ unless it previously deliveredM .

(Uniform) Causal Order. If a process broadcastsM causally before it broadcastsM ′, then no
correct (or faulty) process deliversM ′ unless it previously deliveredM .

(Uniform) Total Order. If correct (or faulty) processesa andb both deliverM andM ′, thena
deliversM beforeM ′ if and only if b deliversM beforeM ′.

It is time to remember the folklore result that any protocol or implementation that deals with
fault-tolerance incurs a greater cost than what it would in afailure-free environment. In some case,
this extra cost can be substantial. Nevertheless, it is important to formally specify the behavior in
the face of faults, and to provide the implementations that can realize such behavior. We will not
deal with implementations of the above fault-tolerant specifications of multicasts.

Excessive delay in delivering a multicast message can also be viewed as a fault. Applications
with real-time constraints require that if a message is delivered, it should be within a bounded
period∆, termed the latency, after it was multicast. This specification can be based on either
a global observer’s notion of time, or the local time at each process, leading to Real-time∆-
Timeliness and Local-time∆-Timeliness, respectively.

(Uniform) Real-time∆-Timeliness. For some known constant∆, if M is multicast at real-time
t, then no correct (or faulty) process deliversM after real-timet+ ∆.

(Uniform) Local ∆-Timeliness. For some known constant∆, if M is multicast at local timetm,
then no correct (or faulty) process deliversM after its local timetm + ∆.

Specifying local-time∆-Timeliness requires care because the local clocks at processes can vary. It
is assumed that the sender timestamps the message multicastwith its local timetm, and any receiver
should receive the message withintm + ∆ on its local clock. The efficacy of this specification
depends on how closely the local clocks are synchronized. A few protocols to synchronize physical
clocks will be studied in a later chapter.

6.11 Distributed Multicast Algorithms At The Network Layer

Several applications can interface directly with the network layer and the lower hardware-related
layers to exploit the physical connectivity and the physical topology for group communication.
The network is viewed as a graph(N,L), and various graph algorithms – centralized or distributed
– are run to establish and maintain efficient routing structures. For example,

• LANs connected by bridges maintain spanning trees for distributing information and for
forward/backward learning of destinations.

• The Network Layer of the Internet has a rich suite of multicast algorithms.

218

(1) When processPi wants to multicast messageM to groupDests:
(1a)sendM(i,Dests) on all outgoing links.

(2) When a nodei receives messageM(x,Dests) from nodej:
(2a) if Next_hop(x) = j then // this will necessarily be a new message
(2b) forward M(x,Dests) on all other incident links besides(i, j);
(2c) elseignore the message.

Figure 6.26: Reverse Path Forwarding (RPF).

In this section, we will study the principles underlying several such algorithms. Some of the
algorithms in this section may not be distributed. Nevertheless, they are intended for a distributed
setting, namely the LAN or the WAN.

6.11.1 Reverse Path Forwarding (RPF) For Constrained Flooding

As studied in Chapter 5, broadcasting data using flooding in anetwork(N,L) requires up to2|L|
messages. Reverse Path Forwarding is a simple but elegant technique that brings down the over-
head significantly at very little cost. Network nodes are assumed to run the Distance Vector Routing
(DVR) algorithm (Chapter 5) which was used in the Internet till 1983. (After 1983, the LSR-based
algorithms (Chapter 5) are used. These are more sophisticated and provide more information than
that required by DVR.)

The simple DVR algorithm assumes that each node knows the next hop on the path to each
destinationx. This path is assumed to be the approximation to the ‘best’ path. LetNext_hop(x)
denote the function that gives the next hop on the ‘best’ pathto x. The RPF algorithm leverages
the DVR algorithm for point-to-point routing, to achieve constrained flooding. The RPF algorithm
for constrained flooding is shown in Figure 6.26.

This simple RPF algorithm has been experimentally shown to be effective in bringing the num-
ber of messages for a multicast closer to|N | than to|L|. Actually, the algorithm does a broadcast
to all the nodes, and this broadcast is smartly curtailed to approximate a spanning tree. The cur-
tailed broadcast is effective because, implicitly, an approximation to a tree rooted at the source is
identified, without it being computed or stored at any node.

Pruning of the implicit broadcast tree can be used to deal with unwanted multicast packets.
If a node receives the packets but the application running onit does not need the packets, and all
‘downstream’ (in the implicit tree) nodes also do not need the packets, the node can send aprune
message to the parent in the tree indicating that packets should not be forwarded on that edge.
Implementing this in a dynamic network where the tree periodically changes and the application’s
node membership also changes dynamically is somewhat tricky (see Exercise 14).

219

Input: weighted graphG = (N,L), andN ′ ⊆ N , whereN ′ is the set of Steiner points

1. Construct the complete undirected distance graphG′ = (N ′, L′) as follows.
L′ = {(vi, vj) | vi, vj in N ′}, andwt(vi, vj) is the length of the shortest path fromvi to vj in
(N,L).

2. Let T ′ be the minimal spanning tree ofG′. If there are multiple minimum spanning trees,
select one randomly.

3. Construct a subgraphGs of G by replacing each edge of the MSTT ′ of G′, by its corre-
sponding shortest path inG. If there are multiple shortest paths, select one randomly.

4. Find the minimum spanning treeTs of Gs. If there are multiple minimum spanning trees,
select one randomly.

5. UsingTs, delete edges as necessary so that all the leaves are the Steiner pointsN ′. The
resulting tree,TSteiner, is the heuristic’s solution.

Figure 6.27: The Kou-Markowsky-Berman heuristic for a minimum Steiner tree.

6.11.2 Steiner Trees

The problem of finding an optimal ‘spanning’ tree that spans only all nodes participating in a
multicast group, known as theSteinertree problem, is formalized as follows.
Steiner tree problem: Given a weighted graph(N,L) and a subsetN ′ ⊆ N , identify a subset
L′ ⊆ L such that(N ′, L′) is a subgraph of(N,L) that connects all the nodes ofN ′.

A minimal Steiner treeis a minimal weight subgraph(N ′, L′). The minimal Steiner tree prob-
lem has been well-studied and is known to be NP-complete. When the link weights change, the
tree has to be recomputed to obtain the new minimal Steiner tree, making it even more difficult to
use in dynamic networks.

Several heuristics have been proposed to construct an approximation to the minimal Steiner
tree. A simple heuristic constructs a MST, and deletes edgesthat are not necessary. This algorithm
is given by the first three steps of Figure 6.27. The worst casecost of this heuristic is twice the cost
of the optimal solution. The algorithm in Figure 6.27, can show better performance when using the
heuristic by Kou, Markowsky, and Berman, given by steps 4 and5. in Figure 6.27. The resulting
Steiner tree cost is also at most twice the cost of the minimalSteiner tree, but behaves better on the
average.
Cost: The time complexity of the heuristic algorithm for each of the 5 steps is as follows. Step (1):
O(|N ′| · |N |2), Step (2):O(|N ′|2), Step (3):O(|N |), Step (4):O(|N |2), Step (5):O(|N |). Step
(1) dominates, hence the time complexity isO(|N ′| · |N |2).

220

6.11.3 Multicast Cost Functions

Consider a source nodes that has to do a multicast to Steiner nodes. As before, we are given the
weighted graph(N,L) and the Steiner node setN ′. We can define several cost functions. For
example, letcost(i) be the cost of the path froms to i in the routing schemeR.

The network costof R is defined as
∑

i∈N ′ cost(i). This cost accounts for the weighted cost
incurred on the path froms to eachi ∈ N ′. As a variant, a link is counted only once even if it is
used on the minimum cost path to multiple destinations. Thisvariant reduces to the Steiner tree
problem of Section 6.11.2.

Thedestination costof R is defined as This represents the average cost of the routing.If the
cost is measured in time delay, this routing function metricgives the shortest average time for the
multicast to reach nodes inN ′.

6.11.4 Delay-Bounded Steiner Trees

Multimedia networks and interactive applications have given rise to the need for a minimum Steiner
tree that also satisfies delay constraints on the transmission. Thus now, the goal is not only to min-
imize the cost of the tree (measured in terms of a parameter such as the link weight, which models
the available bandwidth or a similar cost measure) but also to minimize the delay (propagation
delay). The problem is formalized as follows.
Delay-Bounded Minimal Steiner Tree Problem: Given a weighted graph(N,L), there are two
weight functionsC(l) andD(l) for each edge inL. C(l) is a positive real cost function onl ∈ L
andD(l) is a positive integer delay function onl ∈ L. For a given delay tolerance∆, a given
sources and a destination setDest, where{s} ∪ Dest = N ′ ⊆ N , identify a spanning treeT
covering all the nodes inN ′, subject to the constraints below. Here, we letpath(s, v) denote the
path froms to v in T .

• ∑

l∈T C(l) is minimized, subject to

• ∀v ∈ N ′, ∑

l∈path(s,v)D(l) < ∆

Finding such a minimal Steiner tree, subject to another parameter, is at least as difficult as
finding a Steiner tree. It can be shown that this problem reduces to the Steiner Tree problem. A
detailed study of two heuristics to solve this problem is presented by Kompella, Pasquale, and
Polyzos. Aconstrained cheapest pathbetweenx andy is the cheapest path betweenx andy that
has delay less than∆. The cost and delay on such a path are denoted byC(x, y) andD(x, y),
respectively. If two or more paths have the lowest cost, the lowest delay path is chosen. The steps
to compute the constrained Steiner tree are shown in Figure 6.29. Step (1) computes the complete
closure graphG′ on nodes inN ′. The two heuristics given below are used in Step (2) to greedily
build a constrained Steiner tree onG′. Step (3) expands the tree edges inG′ to their original paths
in G.

Heuristic CSTCD: This heuristic tries to choose low-cost edges, while also trying to pick edges
that maximize the remaining allowable delay. The motivation is to try to reduce the tree

221

B

E

F

G

(9,2)

(5,1)

(1,2)

(4,2)

(8,3)(1,1)

(2,1)

(5,3)
(5,3)

(2,2)

source node non−Steiner node

Steiner node (x,y) (cost, delay)

(2,1) (1,2)

H D

C

A A

D

CB

E

F

G

(9,2)

(5,1)

(1,2)

(4,2)

(8,3)

(2,1)

(5,3)
(5,3)

(2,2)

source node non−Steiner node

Steiner node (x,y) (cost, delay)

(2,1)

H

(1,2)

(1,1)

Figure 6.28: Constrained Steiner tree example. (a) Networkgraph. (b,c) MST and Steiner tree
(optimal) are the same and shown in thick lines.

cost by path sharing, by extending the path beyond the selected edge. This heuristic has the
tendency to optimize on delay also, while adding to the cost.

Heuristic CSTC : This heuristic simply minimizes the cost while ensuring that the delay bound is
met.

Complexity. Assuming integer-valued∆, step (1) which finds the constrained cheapest shortest
paths over all the nodes hasO(n3∆) time complexity. This is because all pairs of end and in-
termediate nodes have to be examined, for all integer delay values from 1 to∆. Step (2) which
constructs the constrained MST on the closure graph havingk nodes hasO(k3) time complexity.
Step (3) which expands the constrained spanning tree, involves expanding thek edges to up to
n− 1 edges each and then eliminating loops. This hasO(kn) time overhead. The dominating step
is step (1).

6.11.5 Core-Based Trees

In the core-based tree approach, each group has a center node, or core node. A multicast tree is
constructed dynamically, and grows on-demand, as follows.(1) A node wishing to join the tree
as a receiver sends a unicast ‘join’ message to the core node.(2) The join message marks the
edges as it travels; it either reaches the core node, or some node which is already a part of the
multicast tree. The path followed by the ‘join’ message fromits source till the core/multicast tree
is grafted to the multicast tree, and defines the path to the ‘core’. (3) A node on the tree multicasts
a message by using a flooding on the core tree. (4) A node not on the tree sends a message towards
the core node; as soon as the message reaches any node on the tree, the message is flooded on
the tree. In a network with a dynamically changing topology,care needs to be taken to maintain
the tree structure and prevent messages from looping. This problem also exists for normal routing
algorithms, such as the LSR and DVR algorithms (Module 2), indynamic networks.

222

Current systems do not widely implement the Steiner tree forgroup multicast, even though it is
more efficient after the initial cost to construct the Steiner tree. They prefer the simpler core-based
tree (CBT) approach.

Core-based trees have various variants. A multi-core-based tree has more than one core node.
For all CBT algorithms, high-bandwidth links can be specially chosen over others for forming
the tree. Core-based trees have a natural analog in wirelessnetworks, wherein it is reasonable to
constitute the core tree of high-bandwidth wired links or high-power wireless links.

6.12 Chapter Summary

At the core of distributed computing is the communication bymessage-passing among the pro-
cesses participating in the application. This chapter studied several message ordering paradigms
for communication, such as the synchronous, the FIFO, the causally ordered, and the non-FIFO
orderings. These orders form a hierarchy. The chapter then examined several algorithms to im-
plement these orderings. Group communication is an important aspect of communication in dis-
tributed systems. Causal order and total order are the popular forms of ordering when doing group
multicasts and broadcasts. Algorithms to implement these orderings in group communication were
also studied.

Maintaining communication in the presence of faults is necessary in real-world systems. Faults
and their impacts are unpredictable. However, the behaviour in the presence of faults needs to be
clearly specified so that the application knows what to expect in terms of message delivery and
message ordering in the presence of potential faults. The chapter studied some formal specifica-
tions of the expected behaviour of group communication whenfaults might occur.

This chapter also studied some distributed multicast algorithms at the Network layer. These
algorithms include Reverse Path Forwarding, multicast along Steiner Trees and delay-bounded
Steiner trees, and multicast based on core-based trees overthe network graph. The solutions to
some of these problems are NP-complete. Hence only heuristics for polynomial time solutions are
examined assuming a centralized setting to perform the computation.

6.13 Bibliographic Notes

The discussion on synchronous, asynchronous, and RSC-executions is based on Charron-Bost, Tel,
and Mattern [7]. The CSP language for synchronous communication was first proposed and for-
malized by Hoare [15]. The discussion on implementing synchronous order is based on Bagrodia
[1]. The discussion on the group communication paradigm, aswell as on total order and causal
order is based on Birman and Joseph [4, 5]. The algorithm for causal order in Figure 6.13 is given
by Raynal, Schiper, and Toueg [21]. The space and time optimal algorithm for causal order is
given by Kshemkalyani and Singhal [19, 20]. The example to illustrate this algorithm is taken
from [6]. The algorithm for total order in Figure 6.19 is taken from the ISIS project by Birman
and Joseph [4, 5]. The algorithm for total order using propagation trees is based on Garcia-Molina

223

and Spauster [12], Jia [16], and Chiu and Hsiao [9]. The moving sequencer algorithms were pro-
posed by Chang and Maxemchuk [8]. An efficient fault-tolerant group communication protcol is
given in [11]. A comprehensive survey of group communication specifications given by Chock-
ler, Keidar, and Vitenberg [10] discusses the systems Totem, Pinwheel, RMP, On-Demand, Isis,
Amoeba, Phoenix, and Newtop. The Steiner tree problem was named after Steiner and developed
in [13]. The Steiner tree heuristic discussed was proposed by Kou, Markowsky, and Berman [18].
The network cost and destination cost metrics were introduced by [3]. They further showed a
detailed analysis of the bounds on the metrics. The discussion on the delay-bounded minimum
Steiner tree is based on Kompella, Pasquale, and Polyzos [17]. The discussion on the semantics of
fault-tolerant group communication is given by Hadzilacosand Toueg [14]. Core-based trees were
proposed by Ballardie et al. [2].

6.14 Exercise Problems

1. (Characterizing causal ordering)

(a) Prove that the CO property (Definition 8) and the Message Order property (Defini-
tion 10) characterize an identical class of executions.

(b) Prove that the CO property (Definition 8) and the Empty Interval property (Defini-
tion 11) characterize an identical class of executions.

2. Draw the directed graph(T , →֒) for each of the executions in Figures 6.2, 6.3, and 6.5.

3. Give a linear time algorithm to determine whether an A-execution(E,≺) is RSC.
Hint: Use the definition of a crown and perform a topological sort on the messages using the
→֒ relation.

4. Show that a non-CO execution must have a crown of size 2.

5. Synchronous systems were defined in Chapter 5. Synchronous send and receive primitives
were also introduced in Chapter 1. Synchronous executions were defined formally in Defi-
nition 13.

These concepts are closely related. Explain carefully the differences and relationships be-
tween: (i) a synchronous execution, (ii) an (asynchronous)execution that uses synchronous
communication, and (iii) a synchronous system.

6. Rewrite the spanning tree algorithm of Figure 5.6 using CSP-like notation. You can assume
a wildcard operator in a receive call to specify that any sender can be matched.

7. The algorithm to implement synchronous order by scheduling messages, as given in Fig-
ure 6.10, uses process identifiers to break cyclic waits.

(a) Analyze the fairness of this algorithm.

224

(b) If the algorithm is not fair, suggest some ways to make it fair.

(c) Will the use of rotating logical identifiers in crease thefairness of ther algorithm?

8. Show the following containment relationships between causally ordered and totally ordered
executions. (Hint: You may use Figure 6.12.)

(a) Show that a causally ordered multicast need not be a totalorder multicast.

(b) Show that a total order multicast need not be a causal order multicast.

9. Assume that all messages are being broadcast. Justify your answers to each of the following.

(a) Modify the causal message ordering algorithm in Figure 6.13 so that processes use only
two vectors of sizen, rather than then × n array.

(b) Is it possible to implement total order using a vector of sizen?

(c) Is it possible to implement total order using a vector of sizeO(1)?

(d) Is it possible to implement causal order using a vector ofsizeO(1)?

10. Design a (centralized) algorithm to create a propagation tree satisfying the properties given
in Section 6.8.

11. For the multicast algorithm based on propagation trees,answer the following.

(a) About a tight upper bound on the number of multicast groups.

(b) About a tight upper bound on the number of meta-groups of the multicast groups.

(c) Examine and justify in detail, the impact (to the propagation tree) of (i) an existing
process departing from one of the multiple groups of which itis a member. (ii) an
existing process joining another group. (iii) the formation of a new group containing
new processes. (iv) the formation of a new group containing processes that are already
part of various other groups.

12. For multicast algorithms, show the following.

(a) Privilege-based multicast algorithms provide (i) causal ordering if closed groups are
assumed, and (ii) total ordering.

(b) Moving sequencer algorithms, which work with open groups, provide total ordering
but not causal ordering.

(c) Fixed sequencer algorithms provide both total orderingand causal ordering.

13. In the example of Figure 6.22, draw the propagation tree that results if:〈CE〉were considered
before〈BCD〉 as a child of〈ABC〉.

14. Consider the Reverse Path Forwarding algorithm of Figure 6.26 for doing a multicast.

225

(a) Modify the code to performpruningof the multicast tree.

(b) Now modify the code of (1) to also deal with dynamic changes to the network topology
(use the algorithms in Module 2).

(c) Now modify the code to deal with dynamic changes in the membership of the applica-
tion at the various nodes.

15. Give the (centralized) algorithm for creating a propagation tree, for any set of groups.

16. Prove that the propagation tree for a given set of groups is not unique.

17. For the graph in Figure 6.28, compute the following spanning trees.

(a) Steiner tree (based on the KMB heuristic)

(b) Delay-bounded Steiner (heuristicCSTCD), with a delay bound of 8 units.

(c) Delay-bounded Steiner (heuristicCSTC), with a delay bound of 8 units.

18. Design a graph for which theCSTCD andCSTC heuristics yield different delay-bounded
Steiner trees.

19. The algorithms for creating the propagation tree, the Steiner tree, and the delay-bounded
Steiner tree are centralized. Identify the exact challenges in making these algorithms dis-
tributed.

226

C(l); // cost of edgel
D(⌉); // delay of edgel
T ; // constrained spanning tree to be constructed
P (x, y); // path fromx to y
PC(x, y); // cost of constrained cheapest path fromx to y
PD(x, y); // delay on constrained cheapest path fromx to y
Cd(x, y); // cost of the cheapest path with delay exactlyd

Input: weighted graphG = (N,L), andN ′ ⊆ N , whereN ′ is the set of Steiner points and sources
and∆ is the constraint on the delay.

1. Compute the closure graphG′ on (N ′, L), to be the complete graph onN ′. The closure graph is
computed using the all-pairs constrained cheapest paths using a dynamic programming approach
analogous to Floyd’s algorithm. For any pair of nodesx, y ∈ N ′:

• Pc(x, y) = mind<∆ Cd(x, y) This selects the cheapest constrained path, satisfying thecondition
of ∆, among the various paths possible betweenx andy. The variousCd(x, y) can be calculated
using DP as follows.

• Cd(x, y) = minz∈N{Cd−D(z,y)(x, z) + C(z, y)} For a candidate path fromx to y passing
throughz, the path with weight exactlyd must have a delay ofd−D(z, y) for x to z when the
edge(z, y) has delayD(z, y).

In this manner,the complete closure graphG′ is computed.PD(x, y) is the constrained cheapest path
that corresponds toPC(x, y).

2. Construct a constrained spanning tree ofG′ using a greedy approach that sequentially adds edges to
the subtree of the constrained spanning treeT (thus far) until all the Steiner points are included. The
initial value ofT is the singletons. Consider that nodeu is in the tree and we are considering whether
to add edge(u, v).

The following two edge selection criteria (heuristics) canbe used to decide whether to include edge
(u, v) in the tree.

• HeuristicCSTCD: fCD(u, v) =

{

C(u,v)
∆−(PD(s,u)+D(u,v)) , if PD(s, u) +D(u, v) < ∆

∞, otherwise

The numerator is the "incremental cost" of adding(u, v) and the denominator is the "residual
delay" that could be afforded. The goal is to minimize the incremental cost, while also maxi-
mizing the residual delay by choosing an edge that has low delay. Thus, the heuristic picks the
neighbourv that minimizesfCD, for all u in T and all adjacentv adjacent toT .

• HeuristicCSTC : fc =

{

C(u, v), if PD(s, u) +D(u, v) < ∆
∞, otherwise

This heuristic picks the lowest cost edge between the already included tree edges and their
nearest neighbour, as long as the total delay is less than∆.

The chosen nodev is included inT . This step 2 is repeated untilT includes all|N ′| nodes inG′.

3. Expand the edges of the constrained spanning treeT on G′ into the constrained cheapest paths they
represent in the original graphG. Delete/break any loops introduced by this expansion.

Figure 6.29: The constrained minimum Steiner tree algorithm using theCSTCD andCSTC heuris-
tics. 227

Bibliography

[1] R. Bagrodia, Synchronization of asynchronous processes in CSP, ACM Trans. Programming
Languages and Systems, 11(4): 585-597, 1989.

[2] T. Ballardie, P. Francis, J. Crowcroft, Core based trees(CBT), ACM Sigcomm, 85-95, 1993.

[3] K. Bharath-Kumar, J. Jaffe, Routing to multiple destinations in computer networks, IEEE
Transactions on Communications, 31(3):343-351, March 1983.

[4] K. Birman, T. Joseph, Reliable communication in the presence of failures, ACM Trans. Com-
puter Systems, 5(1): 47-76, Feb. 1987.

[5] K. Birman, A. Schiper, P. Stephenson, Lightweight causal and atomic group multicast, ACM
Trans. Computer Systems, 9(3): 272-314, Aug. 1991.

[6] P. Chandra, P. Gambhire, A. D. Kshemkalyani, Performance of the Optimal Causal Multicast
Algorithm: A Statistical Analysis, IEEE Transactions on Parallel and Distributed Systems,
15(1): 40-52, January 2004.

[7] B. Charron-Bost, G. Tel, F. Mattern, Synchronous, asynchronous, and causally ordered com-
munication, Distributed Computing, 9(4): 173-191, 1996.

[8] J.-M. Chang, N. Maxemchuk, Reliable broadcast protocols, ACM Trans. Computer Systems,
2(3): 251-273, 1984.

[9] G.-M. Chiu, C.-M. Hsiao, A Note on total ordering multicast using propagation trees, IEEE
Trans. Parallel and Distributed Systems, 9(2): 217-223, Feb. 1998.

[10] G. Chockler, I. Keidar, R. Vitenberg, Group communication specifications: A comprehensive
study, ACM Computing Surveys, 33(4): 1-43, Dec. 2001.

[11] P. Ezhilchelvan, R. Macdo, S. Shrivastava, Newtop: A fault-tolerant group communication
protocol, 15th IEEE International Conference on Distributed Computing Systems, 296-306,
1995.

[12] H. Garcia-Molina, A. Spauster, Ordered and reliable multicast communication, ACM Trans.
Computer Systems, 9(3): 242-271, Aug. 1991.

228

[13] E. Gilbert, H. Pollack, Steiner minimal trees, SIAM J. Applied Mathematics, 16(1): 1-29,
1968.

[14] V. Hadzilacos, S. Toueg, Fault-tolerant broadcasts and related problems, pp. 97-146, In: Dis-
tributed Systems, Ed: S. Mullender, Addison-Wesley, 1993.

[15] C.A.R. Hoare, Communicating Sequential Processes, Communications of the ACM, 21(8):
666-677 (1978)

[16] X. Jia, A total ordering multicast protocol using propagation trees, IEEE Trans. Parallel and
Distributed Systems, 6(6): 617-627, June 1995.

[17] V. Kompella, Pasquale, G. Polyzos, Multcast routing for multimedia communication,
IEEE/ACM Transactions on Networking, 1(3): 86-92, June 1993.

[18] L. Kou, G. Markowsky, L. Berman, A fast algorithm for Steiner trees, Acta Informatica, 15:
141-145, 1981.

[19] A.D. Kshemkalyani, M. Singhal, An optimal algorithm for generalized causal message or-
dering, 15th ACM Symposium on Principles of Distributed Computing, 87, May 1996.

[20] A.D. Kshemkalyani, M. Singhal, Necessary and sufficient conditions on information for
causal message ordering and their optimal implementation,Distributed Computing, 11(2): 91-
111, April 1998.

[21] M. Raynal, A. Schiper, S. Toueg, The causal ordering abstraction and a simple way to imple-
ment it, Information Processing Letters, 39:343-350, 1991.

229

Chapter 7

Termination Detection

7.1 Introduction

In distributed processing systems, a problem is typically solved in a distributed manner with the
cooperation of a number of processes. In such an environment, inferring if a distributed computa-
tion has ended is essential so that the results produced by the computation can be used. Also, in
some applications, the problem to be solved is divided into many subproblems, and the execution
of a subproblem cannot begin until the execution of the previous subproblem is complete. Hence,
it is necessary to determine when the execution of a particular subproblem has ended so that the
execution of the next subproblem may begin. Therefore, a fundamental problem in distributed
systems is to determine if a distributed computation has terminated.

The detection of the termination of a distributed computation is non-trivial since no process
has complete knowledge of the global state, and global time does not exist. A distributed compu-
tation is considered to be globally terminated if every process is locally terminated and there is no
message in transit between any processes. “Locally terminated" state is a state in which a process
has finished its computation and will not restart any action unless it receives a message. In the
termination detection problem, a particular process (or all of the processes) must infer when the
underlying computation has terminated.

When we are interested in inferring when the underlying computation has ended, a termina-
tion detection algorithm is used for this purpose. In such situations, there are two distributed
computations taking place in the distributed system, namely, the underlying computationandthe
termination detection algorithm. Messages used in the underlying computation are calledbasic
messages, and messages used for the purpose of termination detection (by a termination detection
algorithm) are calledcontrolmessages.

A termination detection (TD) algorithm must ensure the following:

1. Execution of a TD algorithm cannot indefinitely delay the underlying computation; that is,
execution of the termination detection algorithm must not freeze the underlying computation.

2. The termination detection algorithm must not require addition of new communication chan-
nels between processes.

230

7.2 System Model of a Distributed Computation

A distributed computation consists of a fixed set of processes which communicate solely by mes-
sage passing. All messages are received correctly after an arbitrary but finite delay. Communi-
cation isasynchronous, i.e., a process never waits for the receiver to be ready before sending a
message. Messages sent over the same communication channelmay not obey the FIFO ordering.

The distributed computation has the following characteristics:

1. At any given time during execution of the distributed computation, a process can be in only
one of the two states:active, where it is doing local computation andidle, where the process
has (temporarily) finished the execution of its local computation and will be reactivated only
on the receipt of a message from another process. The active and idle states are also called
thebusyandpassivestates, respectively.

2. An active process can become idle at any time. This corresponds to the situation where the
process has completed its local computation and has processed all received messages.

3. An idle process can become active only on the receipt of a message from another process.
Thus, an idle process cannot spontaneously become active (except when the distributed com-
putation begins execution).

4. Only active processes can send messages. (Since we are notconcerned with the initialization
problem, we assume that all processes are initially idle anda message arrives from outside
the system to start the computation.)

5. A message can be received by a process when the process is ineither of the two states, i.e.,
active or idle. On the receipt of a message, an idle process becomes active.

6. The sending of a message and the receipt of a message occur as atomic actions.

We restrict to executions in which every process eventuallybecomes idle, although this prop-
erty is in general undecidable. If a termination detection algorithm is applied to a distributed
computation in which some processes remain in their active states forever, the TD algorithm itself
will not terminate.

Definition of Termination Detection

Let pi(t) denote the state (active or idle) of processpi at instantt andci,j(t) denote the number
of messages in transit in the channel at instantt from processpi to processpj. A distributed
computation is said to be terminated at time instantt0 iff:

(∀i:: pi(t0) = idle)∧ (∀i, j:: ci,j(t0)=0).

231

7.3 Termination Detection Using Distributed Snapshots

The algorithm uses the fact that a consistent snapshot of a distributed system captures stable prop-
erties. Termination of a distributed computation is a stable property. Thus, if a consistent snapshot
of a distributed computation is taken after the distributedcomputation has terminated, the snapshot
will capture the termination of the computation.

The algorithm assumes that there is a logical bidirectionalcommunication channel between
every pair of processes. Communication channels are reliable but non-FIFO. Message delay is
arbitrary but finite.

7.3.1 Informal Description

The main idea behind the algorithm is as follows: When a computation terminates, there must
exist a unique process which became idle last. When a processgoes from active to idle, it issues
a request to all other processes to take a local snapshot, andalso requests itself to take a local
snapshot. When a process receives the request, if it agrees that the requester became idle before
itself, it grants the request by taking a local snapshot for the request. A request is said to be
successfulif all processes have taken a local snapshot for it. The requester or any external agent
may collect all the local snapshots of a request. If a requestis successful, a global snapshot of the
request can thus be obtained and the recorded state will indicate termination of the computation,
viz., in the recorded snapshot, all the processes are idle and there is no message in transit to any of
the processes.

7.3.2 Formal Description

The algorithm needs logical time to order the requests. Eachprocessi maintains anlogical clock
denoted byx, which is initialized to zero at the start of the computation. A process increments its
x by one each time it becomes idle. A basic message sent by a process at its logical timex is of
the formB(x). A control message that requests processes to take local snapshot issued by process
i at its logical timex is of the formR(x, i). Each process synchronizes its logical clockx loosely
with the logical clocksx’s on other processes in such a way that it is the maximum of clockvalues
ever received or sent in messages. Besides logical clockx, a process maintains a variablek such
that when the process is idle,(x,k) is the maximum of the values(x, k)on all messagesR(x, k)ever
received or sent by the process. Logical time is compared as follows: (x, k)> (x’, k’) iff (x> x’)
or ((x=x’) and (k>k’)), i.e., a tie betweenx andx’ is broken by the process identification numbers
k andk’.

The algorithm is defined by the following four rules. We use guarded statements to express the
conditions and actions. Each processi applies one of the rules whenever it is applicable.

(R1): When processi is active, it may send a basic message to processj at any time by doing
send aB(x) to j.

232

(R2): Upon receiving aB(x’), processi does
let x:=x’+1 ;
if (i is idle)→ go active.

(R3): When processi goes idle, it does
let x:=x+1;
let k:=i;
send messageR(x, k)to all other processes;
take a local snapshot for the request byR(x, k).

(R4): Upon receiving messageR(x’, k’), processi does
[((x’, k’) > (x,k))∧ (i is idle)→ let (x,k):= (x’, k’);

take a local snapshot for the request byR(x’, k’);
2

((x’, k’) ≤ (x,k))∧ (i is idle)→ do nothing;
2

(i is active)→ let x:=max(x’, x)].

7.3.3 Discussion

As per Rule R1, when a process sends a basic message to any other process, it sends its logical
clock value in the message. From Rule R2, when a process receives a basic message, it updates its
logical clock based on the clock value contained in the message. Rule 3 states that when a process
becomes idle, it updates its local clock, sends a request forsnapshotR(x, k)to every other process,
and takes a local snapshot for this request.

Rule R4 is the most interesting. On the receipt of a messageR(x’, k’), the process takes a local
snapshot if it is idle and(x’, k’) > (x, k), i.e., timing in the message is later than the local time at the
process, implying that the sender ofR(x’, k’) terminated after this process. In this case, it is likely
that the sender is the last process to terminate and thus, thereceiving process takes a snapshot for
it. Because of this action, every process will eventually take a local snapshot for the last request
when the computation has terminated, that is, the request bythe latest process to terminate will
become successful.

In the second case,(x’, k’) ≤ (x,k), implying that the sender ofR(x’, k’) terminated before
this process, hence, the sender ofR(x’, k’) can not be the last process to terminate. Thus, the
receiving process does not take a snapshot for it. In the third case, the receiving process has not
even terminated. Hence, the sender ofR(x’, k’) can not be the last process to terminate and no
snapshot is taken.

The last process to terminate will have the largest clock value. Therefore, every process will
take a snapshot for it, however, it will not take a snapshot for any other process.

233

7.4 Termination Detection by Weight Throwing

In termination detection by weight throwing, a process calledcontrolling agent1 monitors the com-
putation. A communication channel exists between each of the processes and the controlling agent
and also between every pair of processes.

Basic Idea

Initially, all processes are in the idle state. The weight ateach process is zero and the weight at the
controlling agent is 1. The computation starts when the controlling agent sends a basic message to
one of the processes. The process becomes active and the computation starts. A non-zero weight
W (0<W≤1) is assigned to each process in the active state and to each message in transit in the
following manner: When a process sends a message, it sends a part of its weight in the message.
When a process receives a message, it add the weight receivedin the message to its weight. Thus,
the sum of weights on all the processes and on all the messagesin trasit is always 1. When a
process becomes passive, it sends its weight to the controlling agent in a control message, which
the controlling agent adds to its weight. The controlling agent concludes termination if its weight
becomes 1.

Notations

The weight on the controlling agent and a process is in general represented by W.

B(DW) - a basic message B sent as a part of the computation, where DW is the weight assigned to
it.

C(DW) - a control message C sent from a process to the controlling agent where DW is the weight
assigned to it.

7.4.1 Formal Description

The algorithm is defined by the following four rules:

Rule 1: The controlling agent or an active process may send a basic message to one of the pro-
cesses, say P, by splitting its weight W into W1 and W2 such that W1+W2=W, W1>0 and W2>0.
It then assigns its weight W:=W1 and sends a basic message B(DW:=W2) to P.

Rule 2: On the receipt of the message B(DW), process P adds DW to its weight W (W:=W+DW).
If the receiving process is in the idle state, it becomes active.

1The controlling agent can be one of the processes in the computation.

234

Rule 3: A process switches from the active state to the idle state at any time by sending a control
message C(DW:=W) to the controlling agent and making its weight W:=0.

Rule 4: On the receipt of a message C(DW), the controlling agent addsDW to its weight (W:=W+DW).
If W=1, then it concludes that the computation has terminated.

7.4.2 Correctness of the Algorithm

To prove the correctness of the algorithm, the following sets are defined:

A: set of weights on all active processes
B: set of weights on all basic messages in transit
C: set of weights on all control messages in transit
Wc: weight on the controlling agent.

Two invariantsI1 andI2 are defined for the algorithm:

I1: Wc +
∑

W∈(A∪B∪C)

W = 1

I2: ∀W ∈ (A∪B∪C), W>0

InvariantI1 states that sum of weights at the controlling process, at allactive processes, on all
basic messages in transit, and on all control messages in transit is always equal to 1. Invariant
I2 states that weight at each active process, on each basic message in transit, and on each control
message in transit is non-zero.

Hence,
Wc=1

:
∑

W∈(A∪B∪C) W = 0 (byI1)
: (A∪B∪C) = φ (by I2)
: (A∪B) = φ.

Note that (A∪B) = φ implies the computation has terminated. Therefore, the algorithm never
detects a false termination.

Further,
(A∪B) = φ
: Wc +

∑

W∈C W = 1 (byI1)

Since the message delay is finite, after the computation has terminated, eventually Wc=1. Thus,
the algorithm detects a termination in finite time.

235

7.5 A Spanning-Tree-Based Termination Detection Algorithm

The algorithm assumes there are N processesPi, 0≤i≤N, which are modeled as the nodesi,
0≤i≤N, of a fixed connected undirected graph. The edges of the graph represent the communica-
tion channels, through which a process sends messages to neighboring processes in the graph. The
algorithm uses a fixed spanning tree of the graph with processP0 at its root which is responsible for
termination detection. ProcessP0 communicates with other processes to determine their states and
the messages used for this purpose are called signals. All leaf nodes report to their parents, if they
have terminated. A parent node will similarly report to its parent when it has completed processing
and all of its immediate children have terminated, and so on.The root concludes that termination
has occurred, if it has terminated and all of its immediate children have also terminated.

The termination detection algorithm generates two waves ofsignals moving inward and out-
ward through the spanning tree. Initially, a contracting wave of signals, calledtokens, moves
inward from leaves to the root. If this token wave reaches theroot without discovering that termi-
nation has occurred, the root initiates a second outward wave of repeatsignals. As this repeat wave
reaches leaves, the token wave gradually forms and starts moving inward again. This sequence of
events is repeated until the termination is detected.

7.5.1 Definitions

1. Tokens: A contracting wave of signals that move inward from the leaves to the root.

2. Repeat signal: If a token wave fails to detect termination, node P0 initiates another round of
termination detection by sending a signal called Repeat, tothe leaves.

3. The nodes which have one or more tokens at any instant form aset S.

4. A node j is said to be outside of set S if j does not belong to S and the path (in the tree) from
the root to j contains an element of S. Every path from the rootto a leaf may not contain a
node of S.

5. Note that all nodes outside S are idle. This is because, anynode that terminates, transmits a
token to its parent. When a node transmits the token, it goes out of the set S.

We first give a simple algorithm for termination detection and discuss a problem associated
with it. Then we provide the correct algorithm.

7.5.2 A Simple Algorithm

Initially, each leaf process is given a token. Each leaf process, after it has terminated sends its
token to its parent. When a parent process terminates and after it has received a token from each
of its children, it sends a token to its parent. This way, eachprocess indicates to its parent process
that the subtree below it has become idle. In a similar manner, the tokens get propagated to the

236

root. The root of the tree concludes that termination has occurred, after it has become idle and has
received a token from each of its children.

A Problem with the algorithm

This simple algorithm fails under some circumstances. After a process has sent its token to its
parent, it should remain idle. However, this is not true. Theproblem arises when a process after it
has sent a token to its parent, receives a message from some other process. Note that this message
could cause the process (that has already sent a token to its parent) to again become active. Hence
the simple algorithm fails since the process that indicatedto its parent that it has become idle, is
now active because of the message it received from an active process. Hence, the root node just
because it received a token from a child, can’t conclude thatall processes in the child’s subtree have
terminated. The algorithm has to be reworked to accommodatesuch message-passing scenarios.

0

1 2

3 4 5 6

T1

T5 T6

m

denotes a token

Figure 7.1: An Example of the Problem.

The problem is explained with the example shown in Figure 7.1. Assume that process 1 has
sent its token (T1) to its parent, namely, process 0. On receiving the token, process 0 concludes that
process 1 and its children have terminated. Process 0 if it isidle, can conclude that termination has
occurred, whenever it receives a token from process 2. But now assume that just before process 5
terminates, it sends a message m to process 1. On the reception of this message, process 1 becomes
active again. Thus, the information that process 0 has aboutprocess 1 (that it is idle) becomes void.
Therefore, this simple algorithm does not work.

7.5.3 The Correct Algorithm

We now present the correct algorithm that works even when messages such as above are present.
The main idea is to color the processes and tokens and change the color when messages such as
above are involved.

237

The Basic Idea

In order to enable the root node to know that a node in its children’s subtree, that was assumed
to be terminated, has become active due to a message, a coloring scheme for tokens and nodes is
used. The root can determine that an idle process has been activated by a message, based on the
color of the token it receives from its children. All tokens are initialized to white color. If a process
had sent a message to some other process, it sends a black token to its parent on termination;
otherwise, it sends a white token on termination. Hence, theparent process on getting the black
token knows that its child had sent a message to some other process. The parent, when sending its
token (on terminating) to its parent, sends a black token only if it received a black token from one
of its children. This way, the parent’s parent knows that oneof the processes in its child’s subtree
had sent a message to some other process. This gets propagated and finally the root node knows
that message-passing was involved when it receives a black token from one of its children. In this
case, the root asks all nodes in the system to restart the termination detection. For this, the root
sends a repeat signal to all other process. After receiving the repeat signal, all leaves will restart
the termination detection algorithm.

The Algorithm Description

The algorithm works as follows:

1. Initially, each leaf process is provided with a token. Theset S is used for book-keeping to
know which processes have the token. Hence S will be the set ofall leaves in the tree.

2. Initially, all processes and tokens are colored white. Asexplained above, coloring helps the
root know if a message-passing was involved in one of the subtrees.

3. When a leaf node terminates, it sends the token it holds to its parent process.

4. A parent process will collect the token sent by each of its children. After it has received a
token from all of its children and after it has terminated, the parent process sends a token to
its parent.

5. A process turns black when it sends a message to some other process. This coloring scheme
helps a process remember that it has sent a message. When a process terminates, if its color
is black, it sends a black token to its parent.

6. A black process turns back to white, after it has sent a black token to its parent.

7. A parent process holding a black token (from one of its children), sends only a black token
to its parent, to indicate that a message-passing was involved in its subtree.

8. Tokens are propagated to the root in this fashion. The root, upon receiving a black token,
will know that a process in the tree had sent a message to some other process. Hence, it
restarts the algorithm by sending a Repeat signal to all its children.

238

9. Each child of the root propagates the Repeat signal to eachof its children and so on, until
the signal reaches the leaves.

10. The leaf nodes restart the algorithm on receiving the Repeat signal.

11. The root concludes that termination has occurred, if

(a) it is white,

(b) it is idle, and

(c) it received a white token from each of its children.

7.5.4 An Example

We now present an example to illustrate the working of the algorithm.

1. Initially, all nodes 0 to 6 are colored white (Figure 7.2).Leaf nodes 3, 4, 5 and 6 are each given
a token. Node 3 has token T3, node 4 has token T4, node 5 has token T5, and node 6 has token T6.
Hence, S is{3, 4, 5, 6}.

0

1 2

3 4 5 6

T5 T6T4T3

Figure 7.2: All leaf nodes have tokens. S={3,4,5,6}.

2. When node 3 terminates, it transmits T3 to node 1. Now S changes to 1, 4, 5, 6. When node 4
terminates, it transmits T4 to node 1 (Figure 7.3). Hence, S changes to{1, 5, 6}.

3. Node 1 has received a token from each of its children and when it terminates, it transmits a
token T1 to its parent (Figure 7.4). S changes to{0, 5, 6}.

4. After this, suppose node 5 sends a message to node 1, causing node 1 to again become ac-
tive (Figure 7.5). Since node 5 had already sent a token to itsparent node 0 (thereby, making
node 0 assume that node 5 had terminated), the new message makes the system inconsistent as far
as termination detection is concerned. To deal with this, the algorithm executes the following steps.

239

0

1 2

3 4 5 6

T5 T6

T3

T4

Figure 7.3: Nodes 3 and 4 become idle. S={1,5,6}.

0

1 2

3 4 5 6

T5 T6

T1

Figure 7.4: Node 1 becomes idle. S={0,5,6}.

0

1 2

3 4 6

T5 T6

T1

5

Figure 7.5: Node 5 sends a message to node 1.

240

5. Node 5 is colored black, since it sent a message to node 1.

6. When node 5 terminates, it sends a black token T5 to node 2. So, S changes to{0, 2, 6}. After
node 5 sends its token, it is colored white (Figure 7.6). WhenNode 6 terminates, it sends the white
token T6 to node 2. Hence, S changes to{0, 2}.

0

1 2

3 4 6

T1

5

T6

T5

Figure 7.6: Nodes 5 and 6 become idle. S={0,2}.

7. When node 2 terminates, it sends a black token T2 to node 0, since it holds a black token T5
from node 5 (Figure 7.7).

0

1 2

3 4 6

T1

5

T2

Figure 7.7: Node 2 becomes idle. S={0}. Node 0 initiates a repeat signal.

8. Since node 0 has received a black token T2 from node 2, it knows that there was a message sent
by one or more of its children in the tree and hence it sends a repeat signal to each of its children.

9. The repeat signal is propagated to the leaf nodes and the algorithm is repeated. Node 0 concludes
that termination has occurred, if it is white, it is idle, andit has received a white token from each
of its children

241

7.5.5 Performance

The best case message complexity of the algorithm is O(N), where N is the number of processes
in the computation. The best case occurs when all nodes send all computation messages in the first
round. Therefore, the algorithm executes only twice and themessage complexity depends only on
the number of nodes.

However, the worst case complexity of the algorithm is O(N*M), where M is the number
of computation messages exchanged. The worst case occurs when only computation message
is exchanged every time the algorithm is executed. This causes the root to restart termination
detection as many times as there are no computation messages. Hence, the worst case complexity
is O(N*M).

7.6 Message-Optimal Termination Detection

Now we discuss a message optimal termination detection algorithm by Chandrasekaran and Venkate-
san [2]. The network is represented by a graph G = (V, E), whereV is the set of nodes, and E⊆
V×V is the set of edges or communication links. The communication links are bidirectional and
exhibit FIFO property. The processors and communication links incur arbitrary but finite delays in
executing their functions. The algorithm assumes the existence of a leader and a spanning tree in
the network. If a leader is not available, the minimum spanning tree algorithm of Gallager et al.
can be used to elect a leader and find a spanning tree using O(|E| + |V| log|V|) messages.

7.6.1 The Main Idea

Let us consider the following method for termination detection due to Topor: The root of the tree
initiates one phase of termination detection by turning white. An interior node, on receiving a white
token from its parent, turns white and transmits a white token to all of its children. Eventually each
leaf receives a white token and turns white. When a leaf node becomes idle, it transmits a token
to its parent and the token has the same color as that of the leaf node. An interior node waits for a
token from each of its children. It also waits until it becomes idle. It then sends a white token to its
parent if its color is white and it received a white token fromeach of its children. Finally, the root
node infers the termination of the underlying computation if it receives a white token from each
child, its color is white, and it is idle.

This simple algorithm is inefficient in terms of message complexity due to the following rea-
sons: Consider the scenario shown in Figure 7.8, where nodep sends a messagem to nodeq.
Before nodeq received the messagem, it had sent a white token to its parent (because it was idle
and it had received a white token from each of its children). In this situation, nodep can not send
a white token to its parent until nodeq becomes idle. To insure this, in Topor’s algorithm, node
p changes its color to black and sends a black token to its parent so that termination detection is
performed once again. Thus, every message of the underlyingcomputation can potentially cause

242

the execution of one more round of the termination detectionalgorithm, resulting in significant
message traffic.

p

white token

’s parentq

q

m

Figure 7.8: Nodep sends a messagem to nodeq that has already sent a white token to its parent.

The main idea behind the message-optimal algorithm is as follows: When a nodep sends a
messagem to nodeq, p should wait untilq becomes idle and only after that,p should send a white
token to its parent. This rule ensures that if an idle nodeq is restarted by a messagem from from
a nodep, then the senderp waits till q terminates beforep can send a white token to its parent. To
achieve this, when nodeq terminates, it sends an acknowledgement (a control message) to node
p informing nodep that the set of actions triggered by messagem has been completed and that
nodep can send a white token to its parent. However, note that nodeq, after being woken up by
messagem from nodep, may wake up another idle noder, which in turn may wake up other nodes.
Therefore, nodeq should not send an acknowledgement top until it receives acknowledgement
messages for all of the messages it sent after it received messagem from nodep. This restriction
also applies to noder and other nodes. Clearly, both the sender and the receiver keep track of each
message, and a node sends a white token to its parent only after it receives an acknowledgement
for every message it sent and it has received a white token from each of its children.

7.6.2 Formal Description of the Algorithm

Initially, all nodes in the network are in state NDT (not detecting termination) and all links are
uncolored. For termination detection, the root node changes its state to DT (detecting termination)
and sends a warning message on each of its outgoing edges. When a nodep receives a warning
message from its neighbor, sayq, it colors2 the incoming link (q, p) and if it is in state NTD, it
changes its state to DT, colors each of its outgoing edges, and sends a warning message on each of
its outgoing edges.

When a nodep in state DT sends a basic message to its neighborq, it keeps track of this
information by pushing the entry TO(q) on its local stack.

When a nodex receives a basic message from nodey on the link (y, x) that is colored byx,
nodex knows that the sender nodey will need an acknowledgement for this message from it. The

2All links are uncolored or colored. The shade of the color does not matter.

243

receiver nodex keeps track of this information by pushing the entry FROM(y) on its local stack.
Procedure receive_message is given below:

Procedurereceive_message(y: neighbor);
(* performed when a nodex receives a message from its neighbory on the link (y,x) that was
colored byx *)

begin
receive message fromy on the link (y,x)
if (link(y,x) has been colored byx) then

push FROM(y) on the stack
end;

Eventually, every node in the network will be in the state DT as the network is connected. Note
that both sender and receiver keep track of every message in the system.

When a nodep becomes idle, it calls procedure stack_cleanup which is defined below. Pro-
cedure stack_cleanup examines its stack from the top, and for every entry of the form FROM(q),
it deletes the entry and sends theremove_entrymessage to nodeq. Nodep repeats this until it
encounters an entry of the form TO(x) on the stack. The idea behind this step is to inform those
nodes that sent a message top that the actions triggered by their messages top are complete.

Procedurestack_cleanup;
begin

while (top entry on stack is not of the form “TO()") do
begin

pop the entry on the top of the stack;
let the entry be FROM(q);
send a remove_entry message toq

end
end;

When a nodex receives aremove_entrymessage from its neighboury, nodex infers that the
operations triggered by its last message toy have been completed and hence it no longer needs to
keep track of this information. Nodex on receipt of the control messageremove_entryfrom node
y, examines its stack from the top and deletes the first entry ofthe form TO(y) from the stack. If
nodex is idle, it also performs thestack_cleanup operation. The procedurereceive_remove_entry
is defined as follows:

Procedurereceive_remove_entry(y: neighbor);
(* performed when a node x receives a remove_entry message from its neighbory *)

244

begin
scan the stack and delete the first entry of the form TO(y);
if idle then

stack_cleanup
end;

A node sends a terminate message to its parent when it satisfies all the following conditions:

1. It is idle.

2. Each of its incoming links is colored (it has received a warning message on each of its
incoming links).

3. Its stack is empty.

4. It has received aterminatemessage from each of its children (this rule does not apply toleaf
nodes).

When the root node satisfies all of the above conditions, it concludes that the underlying com-
putation has terminated.

7.6.3 Performance

We analyze the number of control messages used by the algorithm in the worst case. Each node
in the network sends one warning message on each outgoing link. Thus, each link carries two
warning messages, one in each direction. Since there are|E| links, the total number of warning
messages generated by the algorithm is 2*|E|. For every message generated by the underlying
computation (after the start of the termination detection algorithm), exactly oneremove_message
is sent on the network. If M is the number of messages sent by the underlying computation, then at
most Mremove_entrymessages are used. Finally, each node sends exactly oneterminatemessage
to its parent (on the tree edge) and since there are only|V| nodes and|V|−1 tree edges, only|V| −
1 terminatemessages are sent. Hence, the total number of messages generated by the algorithm is
2* |E| + |V| − 1 + M. Thus, the message complexity of the algorithm is O(|E| + M) as|E| > |V| −
1 for any connected network. The algorithm is asymptotically optimal in the number of messages.

7.7 Termination Detection in a Very General Distributed Com-
puting Model

So far we assumed that the reception of a single message is enough to activate a passive process.
Now we consider a general model of distributed computing where a passive process does not
necessarily become active on the receipt of a message. Instead, the condition of activation of a
passive process is more general and a passive process requires a set of messages to become active.

245

This requirement is expressed by anactivation conditiondefined over the set DSi of processes from
which a passive processPi is expecting messages. The set DSi associated with a passive process
Pi is called thedependent setof Pi. A passive process becomes active only when its activation
condition is fulfilled.

7.7.1 Model Definition and Assumptions

The distributed computation consists of a finite set P of processesPi, i=1, ...,n, interconnected
by unidirectional communication channels. Communicationchannels are reliable, but they do not
obey FIFO property. Message transfer delay is finite but unpredictable.

A passive process that has terminated its computation by executing for example an end or stop
statement is said to be individually terminated; its dependent set is empty and therefore, it can
never be activated.

AND, OR, and ANO-OR Models

There are several request models, such as AND, OR, AND-OR models. In the AND model, a
passive processPi can be activated only after a message from every process belonging to DSi

has arrived. In the OR model, a passive processPi can be activated when a message from any
process belonging to DSi has arrived. In the AND-OR model, the requirement of a passive process
Pi is defined by a setRi of setsDSi

1,DSi
2,...DSi

qi, such that for allr, 1≤ r≤ qi, DSi
r⊆P.

The dependent set ofPi is DSi = DSi
1∪DSi

2∪...DSi
qi. ProcessPi waits for messages from all

processes belonging toDSi
1 or for messages from all processes belonging toDSi

2 or...or for
messages from all processes belonging toDSi

qi.

The k out of n Model

In the k out of n model, the requirement of a passive processPi is defined by the setDSi and an
integerki, 1≤ki≤ |DSi| = ni and processPi becomes active when it has received messages from
ki distinct processes inDSi. Note that a more general k out of n model can be constructed as
disjunctions of several k out of n requests.

Predicate fulfilled

To abstract the activation condition of a passive processPi, a predicatefulfilledi(A) is introduced,
where A is a subset of P. Predicatefulfilledi(A) is true if and only if messages arrived (and not yet
consumed) from all processes belonging to set A are sufficient to activate processPi.

7.7.2 Notations

The following notations will be used to define termination ofa distributed computation:

• passivei: true iff Pi is passive

246

• empty(j, i): true iff all messages sent byPj to Pi have arrived atPi; the messages not yet
consumed byPi are in its local buffer.

• arri(j): true iff a message fromPj toPi has arrived atPi and has not yet been consumed by
Pi.

• ARRi = {processesPj such thatarri(j)}.

• NEi = {processesPj such that¬ empty(j, i)}.

7.7.3 Termination Definitions

Two different types of terminations are defined, dynamic termination and static termination:

• Dynamic termination:The set of processesP is said to be dynamically terminated at some
instant if and only if the predicateDterm is true at that moment where:

Dterm≡∀Pi∈ P:passivei ∧ ¬ fulfilledi(ARRi ∪ NEi).

Dynamic termination means that no more activity is possiblefrom processes, though mes-
sages of the underlying computation can still be in transit.This definition is useful in "early"
detection of termination as it allows concluding a computation has terminated even if some
of its messages have not yet arrived.

Note that dynamic termination is a stable property because onceDterm is true, it remains
true.

• Static termination:The set of processesP is said to be statically terminated at some instant
if and only if the predicateStermis true at that moment where:

Sterm≡ ∀ Pi ∈ P:passivei ∧ (NEi =∅) ∧ ¬ fulfilledi(ARRi)

Static termination means all channels are empty and none of the processes can be acti-
vated. Thus, static termination is focused on the state of both channels and processes. When
compared toDterm, the predicateStermcorresponds to “late" detection as, additionally, all
channels must be empty.

7.7.4 A Static Termination Detection Algorithm

Informal Description

A control processCi, calledcontroller, is associated with each application processPi. Its role is to
observe the behavior of processPi and to cooperate with other controllersCj to detect occurrence

247

of the predicateSterm. In order to detect static termination, a controller, sayCa, initiates detection
by sending a control messagequeryto all controllers (including itself). A controllerCi responds
with a messagereply(ldi), whereldi is a Boolean value.Ca combines all the Boolean values
received inreply messages to computetd:=

∧

1≤i≤n

ldi. If td is true,Ca concludes that termination

has occurred. Otherwise, it sends newquerymessages. The basic sequence of sending ofquery
messages followed by the reception of associatedreplymessages is called awave.

The core of the algorithm is the way a controllerCi computes the valueldi sent back in areply
message. To ensure safety, the valuesld1,...ldn must be such that:

∧

1≤i≤n

ldi : Sterm

: ∀Pi ∈ P:passivei ∧ (NEi = ∅) ∧ ¬ fulfilledi(ARRi).

A controllerCi delays a response to aqueryas long as the following locally evaluable predicate
is false:passivei ∧ (notacki = 0) ∧ ¬ fulfilledi(ARRi). When this predicate is false, the static
termination cannot be guaranteed.

For correctness, the values reported by a wave must not miss activity of processes “in the back"
of the wave. This is achieved in the following manner: each controllerCi maintains a Boolean
variablecpi (initialized to true iffPi is initially passive) in the following way:

• WhenPi becomes active,cpi is set to false.

• WhenCi sends a reply message toCa, it sends the current value ofcpi with this message,
and then setscpi to true.

Thus, if a reply message carries value true fromCi toCa, it means thatPi has been continuously
passive since the previous wave, and the messages arrived and not yet consumed are not sufficient
to activatePi, and all output channels ofPi are empty.

Formal Description

The algorithm for static termination detection is as follows. By amessage, we mean any message
of the underlying computation;queriesandrepliesare calledcontrolmessages.

S1: WhenPi sends a message toPj

notacki := notacki + 1

S2: When a message fromPj arrives toPi

send ack toCj

S3: WhenCi receives ack fromCj

notacki = notacki -1

248

S4: WhenPi becomes active
cpi:= false

(* A passive process can only become active when its activation condition is true; this activation is
under the control of the underlying operating system, and the termination detection algorithm only
observes it. *)

S5: WhenCi receives query fromCα

(* Executed only byCα *)
Wait until
((passivei ∧ (notacki = ∅) ¬ fulfilledi (ARRi));
ldi := cpi;
cpi :=true;
sendreply(ldi) toCα

S6: When controllerCa decides to detect static termination
repeat sendqueryto allCi;

receivereply(ldi) from allCi;
td:=

∧

1≤i≤n

ldi;

until td;
claim static termination

Performance

The efficiency of this algorithm depends on the implementation of waves. Two waves are in general
necessary to detect static termination. A wave needs two types of messages:n queries andn
replies, each carrying one bit. Thus, 4n control messages of two distinct types carrying at most
one bit each are used to detect the termination once it has occurred. If waves are supported by
a ring, this complexity reduces to 2n. The detection delay is equal to duration of two sequential
wave executions.

7.7.5 A Dynamic Termination Detection Algorithm

Recall that a dynamic termination can occur before all messages of the computation have arrived.
Thus, termination of the computation can be detected soonerthan in static termination.

249

Informal Description

LetCα denote the controller that launches the waves. In addition to cpi, each controllerCi has the
following two vector variables, denoted assi andri, that count messages, respectively, sent to and
received from every other process.

si[j] denotes the number of messages sent byPi toPj.
ri[j] denotes the number of messages received byPi from Pj.

Let S denote an n×n matrix of counters used byCα; entry S[i, j] representsCα’s knowledge
about the number of messages sent byPi to Pj.

First,Ca sends to eachCi a query message containing the vector (S[1,i],...,S[n,i]), denoted by
S[.,i]. Upon receiving this query message,Ci computes the setANEi of its non-empty channels.
This is an approximate knowledge but is sufficient to ensure correctness. ThenCi computesldi

which is true if and only ifPi has been continuously passive since the previous wave and its
requirement cannot be fulfilled by all the messages arrived and not yet consumed (ARRi) and
all messages potentially in its input channels (ANEi). Ci sends toCα a reply message carrying
the valuesldi and vectorsi. Vector si is used byCα to update row S[i,.] and thus gain more
accurate knowledge. If

∧

1≤i≤n

ldi evaluates to true,Ca claims dynamic termination of the underlying

computation. Otherwise,Cα launches a new wave by sendingquerymessages.
Vector variablessi andri allow Cα to update its (approximate) global knowledge about mes-

sages sent by eachPi to eachPj and get an approximate knowledge of the set of non-empty input
channels.

Formal Description

All controllersCi execute statements S1 to S4. Only the initiatorCα executes S5. Local variables
si, ri and S are initialized to 0.

S1: WhenPi sends a message toPj

si[j] := si[j] + 1

S2: When a message fromPj arrives atPi

ri[j]:= ri[j] + 1

S3: WhenPi becomes active
cpi := false

S4: WhenCi receives query(VC[1..n]) from Cα

(* VC[1...n] = S[1...n,i] is the i-th column of S *)
ANEi := {Pj : VC[j] > ri[j]};

250

ldi := cpi ∧ ¬ fulfilledi(ARRi ∪ NEi);
cpi := (statei = passive);
send reply(ldi,si) toCα

S5: When controllerCα decides to detect dynamic termination
repeat for eachCi

sendquery(S[1..n,i]) to Ci;
(* the i-th column of S is sent toCi *)

receive reply(ldi,si) from allCi;
∀ i ∈ [1..n] : S[i,.]:= si;
td :=

∧

1≤i≤n

ldi

until td;
claim dynamic termination

Performance

The dynamic termination detection algorithm needs two waves after dynamic termination has oc-
curred to detect it. Thus, its message complexity is 4n which is lower than the static termination
detection algorithm since no acknowledgements are necessary. However, messages are composed
of n monotonically increasing counters. As waves are sequential, query(andreply) messages be-
tweenCα and eachCi are received and processed in their sending order; this FIFOproperty can
be used in conjunction with the Singhal-Kshemkalyani’s differential technique to decrease the size
of control messages. The detection delay is two waves but is shorter than the delay of the static
termination algorithm as acknowledgements are not used.

7.8 Termination Detection in the Atomic Computation Model

Mattern [12] developed several algorithm for termination detection in the atomic computation
model.

Assumptions

1. Processes communicate solely by messages. Messages are received correctly after an arbi-
trary but finite delay. Messages sent over the same communication channel may not obey
the FIFO rule.

2. A time cutis a line crossing all process lines. A time line can be a straight vertical line or
a zigzag line, crossing all process lines. Time cut of a distributed computation is a set of
actions characterized by a fact that whenever an action of a process belongs to that set, all
previous actions of the same process also belongs to the set.

251

3. We assume that all atomic actions are totally globally ordered i.e., no two actions occur at
the same time instant.

7.8.1 The Atomic Model of Execution

In theatomic modelof the distributed computation, a process may at any time take any message
from one of its incoming communication channels, immediately change its internal state and at the
same instant send out zero or more messages. All local actions at a process are performed in zero
time. Thus, consideration of process states is eliminated when performing termination detection.

In the atomic model, a distributed computation has terminated at time instantt if at this instant
all communications channels are empty. This is because execution of an internal action at a process
is instantaneous.

A dedicated process,P1, the initiator, determines if the distributed computationhas terminated.
The initiatorP1 starts termination detection by sending control messages directly or indirectly to
all other processes. Let us assume that processesP1,...,Pn are ordered in sequence of the arrival of
the control message.

7.8.2 A Naive Counting Method

To find out if there are any messages in transit, an obvious solution is to let every processcount
the number of basic messages sent and received. We denote thetotal number of basic messages
Pi has sent at (global) time instantt by si(t), and the number of messages received byri(t). The
values of the two local counters are communicated to the initiator upon request. Having directly
or indirectly received these values from all processes, theinitiator can accumulate the counters.
Figure 7.9 shows an example, where the time instants at whichthe processes receive the control
messages and communicate the values of their counters to theinitiator are symbolized by striped
dots. These are connected by a line representing a “control wave", which induces a time cut.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

������
������
������
������
������
������

������
������
������
������
������
������ ������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Control Wave

P

P

P

n

3

2

1P

Figure 7.9: An example showing a control wave with a backwardcommunication.

If the accumulated values at the initiator indicate that thesum of all the messages received by

252

all processes is the same as the sum of all messages sent by allprocesses, it may give an impression
that all the messages sent have been received, i.e., there isno message in transit.

Unfortunately because of the time delay of the control wave,this simple method is not correct.
The example in Figure 7.9 shows that the counters can become corrupted by messages “from the
future", crossing from the right side of the control wave to its left.

The accumulated result indicates that one message was sent and one received although the
computation has not terminated. This misleading result is caused by the fact that the time cut is
inconsistent. A time cut is considered to be inconsistent, if when the diagonal line representing it
is made vertical, by compressing or expanding the local timescales, a message crosses the control
wave backwards.

However, this naive method for termination detection worksif the time cut representing the
control wave is consistent.

Various strategies can be applied to correct the deficiencies of the naive counting method:

• If the time cut is inconsistent, restart the algorithm later.

• Design techniques that will only provide consistent time cuts.

• Do not lump the count of all messages sent and all messages received. Instead, relate the
messages sent and received between pairs of processes.

• Use techniques like freezing the underlying computation.

7.8.3 The Four Counter Method

A very simple solution consists of counting twice using the naive counting method and comparing
the results. After the initiator has received the response from the last process and accumulated the
values of the counters R* and S* (where R*:=

∑

∀i
ri(ti) and S*:=

∑

∀i
si(ti)), it starts a second

control wave (see Figure 7.10), resulting in values R’* and S’*. The system is terminated, if values
of the four counters are equal, i.e., R* = S* = R’* = S’*. In fact, a slightly stronger result exists: If
R* = S’*, then the system had terminated at the end of the first wave (t2 in Figure 7.10).

Let t2 denote the time instant at which the first wave is finished, andt3 (≥ t2) denote the
starting time of the second wave (see Figure 7.10).

1. Local message counters are monotonic,t ≤ t′ implies si(t)≤si(t′) andri(t)≤ri(t′). This
follows from the definition.

2. The total number of messages sent or received is monotonic, that is,t ≤ t′ impliesS(t)≤S(t′)
andR(t)≤R(t′).

3. R*≤ R(t2). This follows from (1) and the fact that all valuesri are collected beforet2.

253

t4

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��

��

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�

�
�
�

First Wave Second Wave

P

P

P

Pn

3

2

1

t1 t3t2

Figure 7.10: An example showing two control waves.

4. S’*≥ S(t3). This follows from (1) and the fact that all valuessi are collected aftert3.

5. For allt: R(t)≤ S(t). This is because the number of messages in transit D(t):= S(t) - R(t) ≥
0.

Now we show that if R* = S’*, then the computation had terminated at the end of the first wave.
R∗ = S ′ ∗ : R(t2)≥S(t3)

: R(t2)≥S(t2)
:R(t2) = S(t2)

That is, the computation terminated att2 (at the end of the first wave).
If the system terminated before the start of the first wave, itis trivial that all messages arrived

before the start of the first wave, and hence the values of the accumulated counters will be identical.
Therefore, termination is detected by the algorithm in two “rounds" after it had occurred. Note
that the second wave of an unsuccessful termination test canbe used as the first wave of the next
termination test. However, a problem with this method is to decide when to start the next wave
after an unsuccessful test - there is a danger of an unboundedcontrol loop.

7.8.4 The Sceptic Algorithm

Note that the values of the counters obtained by the first waveof the four counter method can
become corrupted if there is some activity at the right of thewave. To detect such activity, we
useflagswhich are initialized by the first wave, and set by the processes when they receive (or
alternatively when they send) messages. The second wave checks if any of the flags have been set,
in which case a possible corruption is indicated. A general drawback is that at least two waves are
necessary to detect the termination.

It is possible to devise several variants based on thelogical control topology. If the initiator asks
every process individually, it corresponds to a star topology. It is possible to implement the sceptic
algorithm on a ring, however, symmetry is not easily achieved since different waves may interfere
when single flag is used at each process. Spanning tree is alsoan interesting control configuration.

254

Echo algorithms used as a parallel graph traversal method induce two phases. The “down" phase
is characterized by the receipt of a first control message which is propagated to all other neighbors,
and the “up" phase by the receipt of the last of the echoes fromits neighboring nodes. These two
phases can be used as two necessary waves of the sceptice method for termination detection.

7.8.5 The Time Algorithm

The time algorithm is a single wave detection algorithm where termination can be detected in
one single wave after its occurrence at the expense of increased amount of control information or
augmenting every message with a timestamp. In the time algorithm, each process has alocal clock
represented by a counter initialized to 0.

A control wave started by the initiator at timei, accumulates the values of the counters and
“synchronizes" the local clocks by setting them toi+1. Thus, the control wave separates “past"
from “future". If a process receives a message whosetimestampis greater than its own local time,
the process has received a message from the future (i.e., themessage crossed the wave from right
to left) and the message has corrupted the counters. After such a message has been received, the
current control wave is nullified on arrival at the process.

Formal Description

Every processPj (1 ≤ j ≤ n) has a local message counter COUNT (initialized to 0) that holds the
valuesj - rj, a local discrete CLOCK (initialized to 0), and a variable TMAX (also initialized to
0) that holds the latest send time of all messages received byPj.

The psuedo code for processPj is as follows:

(a) When sending a basic message toPi:
1. COUNT←COUNT +1;
2. send<CLOCK,...> to Pi;

/* time-stamped basic message */
(b) When receiving a basic message<TSTAMP,...>:
3. COUNT←COUNT -1;
4. TMAX←max(TSTAMP, TMAX);
5. /* process the message */
(c) When receiving a control message<TIME, ACCU, INVALID, INIT >:
6. CLOCK← max(TIME, CLOCK): /* synchronize the local closk */
7. if INIT = j /* complete round? */
8. then if ACCU = 0 and not INVALID
9. then "terminated"else"try again";
10. endif;
11. else send<TIME, ACCU + COUNT, INVALID or TMAX≥TIME,INIT>

255

to P(j mod n)+1;
12. end_if;

(d) When starting a control round:
13. CLOCK←CLOCK +1;
14. send<CLOCK, COUNT,false, j> toP(j mod n)+1;

A control message consists of four parameters, the (local) time at which the control round was
started, the accumulator for the message counters, a flag which is set when a process has received
a basic message from future (TMAX≥TIME) and the identification of the initiating process. The
first component of a basic message is always the timestamp.

For each single control wave, any basic message that crossesthe wave from the right side of
its induced cut to its left side is detected. Note that different control waves do not interfere; they
merely advance the local clocks further. Once the system is terminated, the values of the TMAX
variables remain fixed and since for every processPj, TMAXj≤maxCLOCKi (1 ≤ i ≤ n), the
process with the maximum clock value can detect global termination in one round. Other processes
may need more rounds.

7.8.6 Vector Counters Method

Vector counters method of termination detection consists of counting messages in such a way, that
it is not possible to mislead the accumulated counters.

The configuration used is the ring withn processes where every processPj (1 ≤ j ≤ n) has
a COUNT vector of lengthn, where COUNT[i] (1 ≤ i ≤ n) denotes the i-th component of the
vector. A circulating control message also consists of a vector of lengthn. For each processPj,
the local variable COUNT[i] (i 6= j) holds the number of basic messages which have been sent to
processPi since the last visit of the control message. Likewise, the negative value of COUNT[j]
indicates how many messages have been received from any other process. At any (global) time
instant, the sum of the k-th components of alln COUNT vectors including the circulating control
vector equals the number of messages currently on their way to processPk, 1 ≤ k ≤ n. This prop-
erty is maintained invariant by the implementation given below. For simplicity, we assume that no
process communicates with itself,Pn+1 is identical toP1, an operation on a vector is defined by
the operating on each of its components, and 0* denotes the null vector.

The psuedo code for processPj is as follows:

COUNT is initialized to 0*
(a) When sending a basic message toPi (i6=j):
1. COUNT[i] ← COUNT[i]+1;
(b) The following instructions are executed at the end of alllocal actions triggered by the receipt
of a basic message:

256

2. COUNT[j]←COUNT[j]-1;
3. if COUNT[j] = 0 then
4. if COUNT = 0*

then "system terminated"
5. else sendaccumulate<COUNT> to Pj+1;
6. COUNT←0*;
7. end_if;
8. end_if;

(c) When receiving a control message ’accumulate<ACCU>’:
9. COUNT←COUNT + ACCU;
10. if COUNT [j] ≤ 0 then
11. if COUNT = 0*

then “system terminated"
12. else sendaccumulate<COUNT> to Pj+1;
13. COUNT←0*;
14. end_if;
15. end_if;

An initiatorPi starts the algorithm by sending the control message ’accumulate<0*>’ to Pi+1. A
mechanism is needed to ensure that every process is visited at least once by the control message,
i.e., that the control vector makes at least one complete round after the start of the algorithm.

Every process counts the number of outgoing messages individually by incrementing the counter
indexed by the receiver’s process number (line 1); the counter indexed by its own number is decre-
mented on receipt of a message (line 2). When a process receives the circulating control message,
it accumulates the values in the message to its COUNT vector (line 9). A check is then made (line
10) to determine whether any basic messages known to the control message have still not arrived at
Pj. If this is the case (COUNT[j]>0), the control message is removed from the ring and regener-
ated at later time (line 5) when all expected messages have been received byPj . For this purpose,
every time a basic message is received by a processPj, a test is made to check whether COUNT[j]
is equal to 0 (line 3). Note that lines 4-15 are only executed when the control vector is atPj. Note
that there is at most one processPj with COUNT[j]>0, and if this is the case atPj, the control
vector “waits" at processPj (lines 11 to 13 are not executed and the control vector remains atPj).

If it is not required that the control message waits at nodes for outstanding basic messages, the
algorithm can be simplified considerably by removing lines 3-8 as well as lines 10 and 15.

257

Performance

The number of control messages exchanged by this algorithm is bounded byn(m+1),m denotes
the number of basic messages, because at least one basic message is received in every round of the
control message, excluding the first round. Therefore, the worst case communication complexity
for this algorithm is O(mn).

7.8.7 A Channel Counting Method

The channel counting method is a refinement of the vector counter method in the following way: a
process keeps track of the number of messages sent to each process and keeps track of the number
of messages received from each process, using appropriate counters.

Each processPj hasn counters,C+
j1,...,C

+
jn, for outgoing messages andn counters,C−1j,...,C

−
nj,

for incoming messages.C−ij is incremented whenPj receives a message from processPi, andC+
jk

is incremented whenPj sends a message toPk. Upon demand, each process informs the values of
the counters to the initiator. The initiator reports termination ifC−ij = C+

ij for all i,j.
The method becomes more practical if it is combined with the echo algorithm, where test

messages flow down on every edge of the graph and echoes proceed in the opposite direction. The
value ofC−ij is transmitted upwards from processPj to Pi in an echo; whereas, a test message
sent byPi to Pj carries the value ofC+

ij with it. A process receiving a test message from another
process (the activator), propagates it in parallel to any other process to which it sent basic messages
whose receipts have not yet been confirmed. If it has already done this, or if all basic messages
sent out have been confirmed, an echo is immediately sent to the activator. There are no special
acknowledgement messages. A processPi receiving the value ofC−ij in an echo, knows that all
messages it sent toPj have arrived if the value ofC−ij equals the value of its own counterC+

ij . An
echo is only propagated towards the activator if an echo has been received from each subtree and
all channels in the subtrees are empty.

Formal Description

Each processPj has the following arrays of counters:

1. OUT[i]: counts the number of basic messages sent toPi.

2. IN[i]: counts the number of basic messages received fromPi.

3. REC[i]: records the number of its messagesPj is aware have been received byPi.

OUT[i] corresponds toC+
ji and IN[i] to C−ij . A variable ACTIVATOR is used to hold the in-

dex number of the activating process and a counter DEGREE indicates how many echoes are still
missing.

The psuedo code for processPj is as follows:

258

{OUT, IN, REC are initialized to 0* and DEGREE to 0.}

(a) When sending a basic message toPi:
1. OUT[i]→OUT[i]+1;
(b) When receiving a basic message fromPi:
2. IN[i]←IN[i]+1;

(c) On the receipt of a control message test< m > from Pi wherem≤IN[i]:
3. if DEGREE> 0 or OUT = REC /* already engaged or subtree is quiet */
4. then sendecho<IN[i]> toPi;
5. elseACTIVATOR←i; /* trace activating process */
6. PROPOGATE /* and test all subtrees */
7. end_if;

(d) On the receipt of a control message echo< m > from Pi:
8. REC[i]←m;
9. DEGREE←DEGREE - 1; /* decrease missing echoes counter */
10. if DEGREE=0then
/* last echo checks whether all subtrees are quiet */
11. PROPAGATE;
12. end_if;
13. if DEGREE=0then /*all echoes arrived, everything quiet */
14. sendecho<IN[ACTIVATOR]> to PACTIV ATOR;
15. end_if;

(e) The procedure PROPAGATE called at lines 6 to 11 is defined as follows:
16. procedure PROPAGATE:
17. loop for K = 1 to n do
18. if OUT[K] 6=REC[K] then /* confirmation missing */
19. sendtest<OUT[K]> to Pk; /* check subtree */
20. DEGREE←DEGREE + 1;
21. end_if;
22. end_loop;
23. end_procedure;

Varibale DEGREE is incremented when a process sends a test message (line 20) and it is decre-
mented when a process receives an ECHO message (line 9). If DEGREE>0, it means the node is
“engaged" and a test message is immediately responded to with an echo message (line 4). An echo
is also returned for a test message if OUT = REC (line 3), i.e.,if process sent no messages at all

259

or if all messages sent out by it have been acknowledged. Lines 10-15 insure that an echo is only
returned if the arrival of all basic messages has been confirmed and all computations in the subtree
finished. This is done by sending further test messages (via procedure PROPAGATE) after the last
echo has arrived (lines 10-12). These test messages visit any of the subtree root processes which
have not yet acknowledged all basic messages sent to them. The procedure PROPAGATE increases
the value of the variable DEGREE if any processes are visited, thus preventing the generation of
an echo (lines 13-15).

To minimize the number of control messages, test messages should not overtake basic mes-
sages. To achieve this, test messages carry with them a countof the number of basic messages sent
over the communication channel (line 19). If a test messagesovertakes some basic messages (and
it is not overtaken by basic messages), its count will be greater than the value of the IN-counter of
the receiver process. In this case, the test message is put onhold and delivered later when all basic
messages with lower count have been received (guardm ≤IN[i] in point(c) insures this).

The initiator starts the termination test only once, as if ithad received a test< 0 > message
from some imaginary processP0. On termination detection, instead of eventually sending an echo
to P0, it reports termination. Test messages only travel along channels which were used by basic
messages; processes that did not participate in the distributed computation are not visited by test
messages. For each test message, an echo is eventually sent in the opposite direction.

Performance

At least one basic message must have been sent between the send of two test messages along the
same channel. This results in an upper bound of 2m control messages, wherem denotes the number
of basic messages. Hence, the worst case communication complexity is O(m). However, The worst
case should rarely occur, specially, if the termination test is started well after the computation
started. In many situations, the number of control messagesshould be much smaller thanm. The
exact number of control messages involved in channel counting is difficult to estimate because it
is highly dependent on communication patterns of the underlying computation.

7.9 Termination Detection in a Faulty Distributed System

An algorithm is presented that detects termination in distributed systems in which processes fail in
a fail-stop manner. The algorithm is based on the weight-throwing method. In such a distributed
system, a computation is said to be terminated if and only if each healthy process is idle and there
is no basic message in transit whose destination is a healthyprocess. This is independent of faulty
processes and undeliverable messages (i.e., whose destination is a faulty process). Based on the
weight-throwing scheme, a scheme called flow detecting scheme is developed by Tseng [20]to
derive a fault-tolerant termination detection algorithm.

260

Assumptions

LetS =P1, P2, ...,Pn be the set of processes in the distributed computation.Cij represents the bidi-
rectional channel betweenPi andPj . Communication network is asynchronous. Communications
channels are reliable, but they are non-FIFO. At any time, anarbitrary number of processes may
fail. However, the network remains connected in the presence of faults. Fail-stop model implies
that a failed process stops all activities and can not rejointhe computation in the current session.
Detection of faults takes a finite amount of time.

7.9.1 Flow Detecting Scheme

Weights may be lost because a process holding non-zero weight may crash or a message destined to
a crashed process is carrying a weight. Thus, due to faulty processes and undeliverable messages
carrying weights, it may not be possible for the leader to accumulate the total weight of 1 to
declare termination. Thus, in case of a process crash, the lost weight must be calculated. To solve
this problem, concept of flow invariant is used.

The Concept of Flow Invariant

DefineH ⊆ S the set of all healthy processes. DefinesubsystemH to be part of the system con-
taining all processes inH and communication channels connecting two processes inH. According
to the concept of flow invariant, weight change of the subsystem during the time interval I, during
which the system is doing computation, is equal to (weights flowing intoH during I)− (weights
flowing out ofH during I). To implement this concept, a variable called neti is assigned to each
processPi belonging toH. This variable records the total weight flowing into and out of the sub-
systemH. Initially, ∀i neti = 0. The following flow-detecting rules are defined.

Rule 1: Whenever a processPi which belongs toH receives a message with weightx from
another processPj which does not belong toH, x is added to neti.

Rule 2: Whenever a processPi which belongs toH sends a message with weightx to a pro-
cessPj which does not belong toH, x is subtracted from neti.

Let WH be the sum of the weights of all processes inH and all in-transit messages transmitted
between processes inH.

WH =
∑

Pi∈H

(neti + 1/n)

where, 1/n is the initial weight held by each processPi.

Let H = S–H be the set of faulty processes. The distribution of weights is divided into four

261

parts:

WH : weights of processes inH.
WH : weights of processes inH.
WH→H : weights held by in-transit messages fromH toH.
WH→H : weights held by in-transit messages fromH toH.

H

H

HW
H

W

H

H

H

H

W

W

Figure 7.11: Healthy and faulty process sets and message flowbetween them.

This is shown in Figure 7.11. WH and WH→H are lost and can not be used in the termination
detection.

7.9.2 Taking Snapshots

In distributed systems, due to the lack of a perfectly synchronized global clock, it is not possible to
get a global view of the subsystemH and hence it may not possible to determine WH . We obtain
WH , which is an estimated value of WH by taking snapshots on the subsystemH and by using the
above equation for WH .

However, note that weights in WH→H carried by in-transit messages may joinH and change
WH . To obtain a stable value of WH , channels fromH to H are disconnected before taking
snapshots ofH. Once a channel is disconnected, a healthy process can no longer send or receive
messages along this channel.

A snapshot onH is the collection of neti’s from all processes inH. A snapshot is said to be
consistent if all channels fromH toH are disconnected before taking the snapshot (i.e., recording
the values ofneti).

A snapshot is taken upon a snapshot request by the leader process. The leader uses the in-
formation in a consistent snapshot and equation to compute WH to calculateWH . Snapshots are
requested when a new faulty process is found or when a new leader is elected. It should be noted
thatWH is an estimate of the weight that is remaining in the system. This is because processes can
fail and stop any time and there may not exist any point in realtime in the computation whereH is
the healthy set of processes. SupposeH ′ is the set of healthy processes at some point in time in the
computation after taking the snapshot. IfH = H ′, thenWH = WH′ ; otherwise,WH ≥WH′ must

262

be true, because of the fail stop model of processes. This eliminates the possibility of declaring
termination falsely. Thus, the leader can safely declare termination after it has collectedWH of
weight.

7.9.3 Description of the Algorithm

The algorithm combines the weight-throwing scheme, the flowdetecting scheme and a snapshot-
recording scheme. ProcessPi elects itself the leader if it knows that allPj, j < i, are faulty. The
leader process takes snapshots and estimates remaining weight in the system.

Data Structures

The following data structures are used at process aPi, i=1, ...,n:

• li is the id of the leader known toPi. Initially l i=1

• wi is the weight currently held byPi. Initially w i = 1/n.

• si is the systems total weight assumed byPi. Pi will try to collect this amount of weight.
Initially, si=1.

• NETi[1,. . . ,n] is an array real numbers. NETi[j] keeps track of the total weight flowing into
Pi from Pj . Initially, NETi[j]=0 for all j=1,. . . ,n.

• Fi is a set of faulty processes. A processPj belongs to Fi if and only if Pi knows thatPj is
faulty andPi has disconnected its channel toPj. Initially, Fi is a null set.

• SNi is a set of processes. WhenPi initiates a snapshot, SNi is a set of processes to whichPi

sends snapshot requests. A processPj belonging to SNi is removed from SNi if Pi receives
a reply fromPj or if Pi findsPj is faulty. No new snapshot is started unless SNi is an empty
set. Initially, SNi is a null set, which implies no snapshot is in progress.

• ti is used for temporarily calculating the total remaining weight while a snapshot is in
progress.

• ci a boolean, used for temporarily calculating the consistency of a snapshot.

Types of Messages

The following four types of messages are exchanged by the algorithm:

• B(x) is a basic message B with weightx.

• C(x) is a control message that is used to report weightx to the leader process.

263

• Request(Fi) is a snapshot requesting message sent by the leader processPi. The set Fi is to
inform the receiver the set of faulty processes known toPi.

• Reply(Fj , NETj) is the state reporting message sent byPj in reply to the leader’s Request()
message.

The Algorithm

The algorithm is described for processPi. The algorithm consists of nine event-driven atomic ac-
tions, each having the format “(guard)→ (actions)”. Actions are triggered by sending/receiving
messages, changing local states, or detecting new faulty processes. The following actions from A1
to A5 implement weight throwing and flow detecting schemes.

A1: (Pi sending a basic message B toPj)→
wi is partitioned intox andy such thatx>0,y>0 andx+y =wi;
B(x) is sent toPj ;
NETi[j]:= NETi[j] – x;
wi:= y;

A2: (Pi receiving a basic message B(x) from Pj)→
NETi[j]:= NETi[j] + x;
wi:= wi + x;
pass the basic message to the underlying system;

A3: (Pi becoming idle)→
if l i 6= i then

send C(wi) to Pli;
NETi[l i]:= NETi[l i] – wi;
wi:= 0;

end if;

A4: (Pi receiving a control message C(x) from Pj)→
NETi[j]:= NETi[j] + x;
wi:= wi + x;

A5: (Pi is idle)∧ (si = wi)→
announce “termination”;

A1 is activated whenPi sends a basic message to another process. A2 is triggered by receiv-
ing a basic message. A3 is the weight reporting action. WhenPi is not the leader, it sends its
weight to the leader process in a control message. A4 describesPi’s response on receiving a con-

264

trol message. In all actions A1-A4, NETi[1. . .n] records the weight flowing information. In A5,
leaderPi announces the termination.

The following actions from F1 to F4 deal with faults and take snapshots of the system.

(* Actions for detecting a fault when no snapshot is in progress *)
F1: (Pi detectingPj faulty)∧ (Pj 6∈ Fi) ∧ (SNi = ∅)→

disconnect the channel fromPi toPj ;
Fi:= Fi ∪ {Pj};
li = min{k | Pk ∈ S – Fi};
if (l i = i), then call snapshot(); end if;

(* Actions on receiving a snapshot request *)
F2: (Pi receiving Request(Fj) from Pj)→

li:= j;
for every Pf belonging to Fj − Fi, disconnect the channel Ci,f ;
Fi:= Fi ∪ Fj ;
Send a Reply(Fi, NETi[1. . .n]) to Pj ;

(* Actions on receiving a snapshot response *)
F3: (Pi receiving Reply(Fj , NETj[1. . .n] from Pj)→

if (Fi 6= Fj) ∨ ¬ci then
for every Pf belonging to Fj − Fi, disconnect the channel Ci,f ;
Fi = Fi ∪ Fj ;
ci = false;

else
ti= ti + 1/n +

∑

Pf∈Fj
NETj[f];

end if;
SNi = SNi – {Pj};
if SNi = ∅ then

if ci then si:= ti else call snapshot(); end if;
end if;

(* Actions for detecting a fault when a snapshot is in progress *)
F4: (Pi detectingPj faulty)∧ (SNi 6= ∅)→

Disconnect the channel Ci,j;
Fi:= Fi ∪ {Pj};
ci:= false;
SNi:= SNi – {Pj};
if SNi = ∅ then call snapshot(); end if;

265

(* Snapshot taking procedure *)
Proceduresnapshot() (* assuming the caller isPi *)

Begin
SNi = S – Fi – {Pi}; (* processes that will receive requests *)
∀ Pk ∈ SNi, send a Request(Fi) to Pk;
ti:= 1/n +

∑

Pf∈Fi

NETi[f];

ci:= true;
end;

F1 is triggered whenPi detects for the first time that a processPj is faulty and no snapshot is
currently in progress. The channel fromPi toPj is disconnected. ThenPi elects a healthy process
with least id as its leader. If processPi itself is the leader, then it invokes snapshot procedure to
initiate a snapshot.

In the snapshot() procedure, first SNi is set to the set of processes to which Request()’s are
to be sent and sends a Request() to these processes. This prevents F1 from being executed until
the snapshot finishes. Assuming that the current healthy process set is S – Fi and this snapshot is
consistent, more weight is added to ti asPi receives Reply() messages from other processes.

F2 describesPi‘s response on receiving a Request() message fromPj. Pi disconnects channels
to faulty processes and sends a Reply() message toPj, that sent the Request() message.

The initiator of the snapshotPi waits for eachPj belonging to SNi for either a Reply() coming
from Pj or Pj being detected as faulty.

If a Reply() is received fromPj, F3 is executed. F3 describesPi’s actions on receiving such a
snapshot response. The consistency of the snapshot is checked. If the snapshot is still consistent,
ti is updated. Then the barrier SNi is reduced by one. If the barrier becomes null and the snapshot
is consistent, si is updated to ti. If the snapshot is not consistent, another snapshot is initiated.

The snapshot initiatorPi executes F4 when it detects a processPj ∈ SNi, is faulty and a
snapshot is in progress. Another snapshot is started only when SNi=∅. Such a procedure is repeated
until a consistent snapshot is obtained. Because of the failstop model of processes, the number of
healthy processes is a non-increasing function of time and eventually the procedure will terminate.

7.9.4 Performance Analysis

If k processes become faulty, at most 2k snapshots will be taken. Each snapshot costs at mostn–1
Request()s andn–1 Reply()s. Thus, the message overhead due to snapshots is bounded by 4kn.

266

If M basic messages are issued, processes will be activated by atmostM times. So processes
will not turn idle more thanM + n times. So at mostM + n control messages C(x) will be issued.

Thus, the message complexity of the algorithm is O(M + kn + n).
The termination detection delay is bounded by O(k+1). The termination detection delay is

defined as the maximum number of message hops needed, after the remination has occurred, by
the algorithm to detect the termination.

7.10 Bibliographic Notes

The termination detection problem was brought to prominence in 1980 by Francez [5] and by
Dijkstra and Scholten [4]. Since then, a large number of termination detection algorithms hav-
ing different features and for a variety of logical system configurations have been developed. A
termination detection algorithm that uses distributed snapshot is discussed in [8]. A termination
detection algorithm based on weight throwing is discussed in [9]. A termination detection algo-
rithm based on weight throwing was first developed by Mattern[13]. Dijkstra et al. [3] present
a ring-based termination detection algorithm. Topor [19] adapts this algorithm to a spanning tree
configuration. Chandrasekaran and Venkatesan [2] present amessage optimal termination detec-
tion algorithm. Brzezinski et al. [1] define a very general model of the termination problem,
introduce the concept of static and dynamic terminations, and develop algorthms to detect static
and dynamic terminations. Mattern developed [12] several algorithms for termination detection
for the atomic model of computation. An algorithm for termination detection under faulty pro-
cesses is given by Tseng [20]. Mayo and Kearns [14, 15] present efficient termination detection
based on roughly synchronized clocks. Other algorithms fortermination detction can be found in
[6, 10, 11, 16, 17, 18, 21].

Many termination detection algorithms use a spanning tree configuration. An efficient dis-
tributed algorithm to construct a minimum weight spanning tree is given in [7].

7.11 Exercise Problems

1. Haung’s termination detection algorithm could be redesigned using a counter to avoid the
need of splitting weights. Present an algorithm for termination detection that uses counters
instead of weights.

2. Design a termination detection algorithm that is based onthe concept of weight throwing
and is tolerant to message losses. Assume that processe do not crash.

3. Termination detection algorithms assume that an idle process can only be activated on the
reception of a message. Consider a system where an idle process can become active spon-
taneously without receiving a message. Do you think a termination detection algorithm can
be designed for such a system? Give reasons for your answer.

267

4. Design an efficient termination detection algorithm for asystem where communication delay
is zero.

5. Design an efficient termination detection algorithm for asystem where computation at a
process is instantaneous (that is, all proceses are always in the idle state.)

268

Bibliography

[1] J. Brzezinski, J.M. Helary and M. Raynal, "Termination detection in a very general dis-
tributed computing model". in Proc. of International Conf.on Distributed Computing Sys-
tems, Poland, 1993, pp. 374-381.

[2] S. Chandrasekaran and S. Venkatesan, “A Message-Optimal Algorithm for Distributed Ter-
mination Detection". J. of Parallel and Distributed Computing, 1990, pp. 245-252.

[3] E.W.Dijikstra, WH.J.Feijen and A.J.M.van Gasteren, “Derivations of a termination detection
algorithm for distributed computations". Information Processing Letters, 16, 5, June 1983,
pp. 217-219.

[4] E.W. Dijkstra and C.S. Scholten, “Termination Detection for Distributed Computations", In-
formation Processing Letters, 11, 1, 1980, pp. 1-4.

[5] N. Francez, “Distributed Termination", ACM Trans. on Programming Langauges, 2(1), 1980,
pp. 42-55.

[6] N. Francez and M. Rodeh, “Achieving distributed termination without freezing", IEEE Trans.
on Software Engineering, May 1982, pp. 287-292.

[7] R.G. Gallager, P. Humblet, and P. Spira, “A Distributed Algorithm for Minimum Weight
Spanning Trees", ACM Trans. on Programming Langauges and Systems, January 1983, pp.
66-77.

[8] Shing-Tsaan Huang, “Termination detection by using distributed snapshots". Information
Processing Letters, 32, August 1989, pp. 113-119.

[9] S. T. Huang, “Detecting Termination of Distributed Computations by External Agents", Proc.
of the 9th International Conf. on Distributed Computing Systems, 1989, pp. 79-84.

[10] D. Kumar, “A Class of Termination Detection Algorithmsfor Distributed Computations", 5th
Conf. on Foundation of Software Technology and TheoreticalComputer Science, New Delhi,
Springer-Verlag, LNCS 206, 1985, pp. 73-100.

[11] T.H. Lai, “Termination Detection for Dynamically Distributed Systems with non-first-in-first-
out Communication", J. of Parallel and Distributed Computing, December 1986, pp. 577-599.

269

[12] Friedemann Mattern, “Algorithms for distributed termination detection". Distributed Com-
puting, Vol 2, 1987, pp. 161-175.

[13] F. Mattern, “Global quiescence detection based on credit distribution and recovery", Infor-
mation Processing Letters, 30, 4, 1989, pp. 195 - 200.

[14] Jean Mayo and Phil Kearns, Distributed Termination Detection with Roughly Synchronized
Clocks. Inf. Process. Letters, 52(2), 105-108, (1994).

[15] Jean Mayo and Phil Kearns, Efficient Distributed Termination Detection with Roughly Syn-
chronized Clocks, Parallel and Distributed Computing and Systems, 1995, 305-307.

[16] J. Misra and K.M. Chandy, “Termination Detection of Diffusing Computations in Communi-
cation Sequential Processes", ACM Trans. on Programming Languages and Systems, January
1982, pp. 37-42.

[17] S.P. Rana, “A Distributed Solution of the Distributed Termination Problem", Information
Processing Letters, 17, 1, pp. 43-46.

[18] Stefan Ronn and Heikki Saikkonen, “Distributed Termination Detection with Counters". In-
formation Processing Letters, 34, 5, 1990, pp. 223-227.

[19] Rodney W. Topor, “Termination detection for distributed computations". Information Pro-
cessing Letters, 18, 1, January 1984, pp. 33-36.

[20] Yu-Chee Tseng, “Detecting Termination by Weight-Throwing in a Faulty Distributed Sys-
tem". J. Parallel Distrib. Computing, 25(1), (1995), pp. 7-15.

[21] Yu-Chee Tseng, Cheng-Chung Tan, “On Termination Detection Protocols in a Mobile Dis-
tributed Computing Environment", Proc. of ICPADS, 1998, pp. 156-163.

270

Chapter 8

Reasoning with Knowledge

In a distributed system, processes make local decisions based on their limited view of the system
state. A process learns of new facts when it receives messages from other processes, and can reason
only with the additional knowledge available to it. This chapter provides a formal framework in
which it is easier to understand the role of knowledge in the system, and how processes can reason
with such knowledge. The logic of knowledge, classically termed asepistemic logic, is the formal
logical analysis of reasoning about knowledge. Epistemic knowledge first received much attention
from philosophers in the mid-twentieth century.

8.1 The Muddy Children Puzzle

Consider the classical “muddy children” puzzle of Halpern and Moses. Imagine there aren chil-
dren who return from playing outdoors, andk, k ≥ 1, of then children have mud on their fore-
heads. LetΨ denote the fact “at least one child has a muddy forehead.” Assume that each child
can see all other children and their foreheads, but not his/her own forehead. We also assume that
the children are intelligent and truthful, and answer any question asked of them, simultaneously.
We now consider two scenarios.

In Scenario A, the father who now shows up on the scene, first makes a statement announcing
Ψ. We assume that this announcement is heard by everyone, and that everyone is aware that
the announcement is being made in their common presence. Thefather now repeatedly asks the
children, “Do you have mud on your forehead?” The firstk − 1 times that the father asks the
question, all the children will say “No” and thekth time the father asks the question, the children
with mud on their foreheads (henceforth, referred to as the muddy children) will all say “Yes.”
This can be proved by induction onk.

• If k = 1, the single muddy child, seeing no other muddy children and knowing the announce-
ment ofΨ, will conclude on hearing the father’s question that he himself is the muddy child.

• If k = 2, let the two muddy children bem1 andm2. The first time the question is asked,
neither can answer in the affirmative. But whenm1 hears the negative answer ofm2,m1 can

271

reason thatm1 himself must be muddy because otherwisem2 would have answered “Yes”
in the first round using the logic for thek = 1 case. Hence,m1 answers “Yes” the second
time, andm2 who uses analogous reasoning, also answers “Yes.”

• We assume the induction hypothesis is true fork = x muddy children.

• For k = x + 1 muddy children, the proof is as follows. Each muddy child reasons in the
following manner. “If there werexmuddy children, then they would all have answered ‘Yes’
when the question is asked for thexth time. As that did not happen, there must be more than
x muddy children, and as I can see onlyx other muddy children, I myself must also be
muddy. So I will answer ‘Yes’ when the question is asked for thex+ 1th time.”

In Scenario B, the father who now shows up on the scene, doesnot make the announcement
of Ψ, but repeatedly asks the children, “Do you have mud on your forehead?” All the children
repeatedly respond with a “No.” This can be shown by induction on q, the number of times the
father asks the question, that “no matter how many muddy children there are, all children answer
‘No’ to the first q questions.” Forq = 1, each child answers “No” because he cannot distinguish
the two situations wherein he has and does not have mud on his forehead. Assume the hypothesis
is true forq = x. For q = x + 1, the situation is unchanged because each child has no further
knowledge to distinguish the two situations wherein he has and does not have mud on his forehead.

In Scenario A, the father announcedΨ whereas in Scenario B, the father did not announceΨ,
and the responses of the children were very different. The announcement ofΨ effectively madeΨ
common knowledgeamong the children, and this enabled the children to reason differently. The
above puzzle introduces the notions of knowledge, levels ofknowledge, and common knowledge in
a system. We now define these formally and consider how such logic can be adapted to computing
systems.

8.2 Logic of Knowledge

8.2.1 Knowledge Operators

A definition of knowledge requires the identification of an appropriate set ofpossible worlds(also
called possible universes or possible configurations), anda family of possible relations between
those worlds. In a given global state, the possible worlds ata process denote all the global states
that the process believes may be consistent with its local state. These states are expressible as
logical formulas.

Factφ can be a primitive proposition or a formula using the usual logical connectives (∧,∨,¬
on primitive propositions, the “knowledge operator”K, and the “everyone knows” operatorE.
Propositional logic is adequate to cover many interesting scenarios that occur in distributed exe-
cutions, although first-order and higher-order logics can also be used. The traditional semantics
of knowledge, using theK andE operators, were first based ontimed executions. Intuitively, a

272

processi that knows a factφ is said to have knowledgeKi(φ), and if “every process in the sys-
tem knowsφ”, then the system exhibits knowledgeE1(φ) =

∧

i∈N Ki(φ). A knowledge level of
E2(φ) indicates that every process knowsE1(φ), i.e.,E2(φ) = E (E1(φ)). Inductively,Ek(φ) =
Ek−1 (E1(φ)) for k > 1. Thus, a hierarchy of levels of knowledgeEj(φ) (j ∈ Z∗) gets defined,
whereZ∗ is used to denote the set of whole numbers{0, 1, 2, 3, . . .}. It can be seen thatEk+1(φ)

= : Ek(φ). Each level in the hierarchy represents a different level ofgroup knowledge among the
processes.

In the limiting case, we have the
∧

j∈Z∗E
j(φ). Informally, this knowledge of a factφ stands

for ”everyone knows that everyone knows that everyone knows. . . (infinitely often) the factφ.”
This limit is informally called common knowledge ofφ. Strictly speaking, the epistemic logic
is finitary and hence does not allow such infinite conjunctions. On a more formal note, common
knowledge ofφ, denoted asC(φ), is defined as the knowledgeX which is the greatest fixed point
of E(φ ∧ X). Stated differently, common knowledge is a state of knowledgeX satisfying the
equality,X = E(φ ∧ X). The theory of fixed points is quite intricate. For our purposes, it
suffices if we informally view the fixed point as implying the infinite conjunction

∧

j∈Z∗E
aj(φ).

Common knowledge of a fact captures the notion of everyone agreeing on the fact, and is therefore
an important notion in distributed systems.

8.2.2 The Muddy Children Puzzle Again

indexmuddy children puzzle We now revisit the muddy children puzzle. Assume there arek chil-
drenm1, . . .mk with mud on their forehead. In this system,Ek−1(Ψ) is true, but notEk(Ψ).

In Scenario A, we have the following.

• Considerk = 1. Here, the child with the mud on the forehead does not see any muddy child,
and henceE(Ψ) is false.

• Considerk = 2. Here,E1(Ψ) is true because every child can see at least one muddy child,
and thus∧i∈NKi(Ψ). However,m1 can see only one muddy childm2 and therefore in some
possible world,m1 believes that atm2,Km2(Ψ) may be false, i.e.,¬Km1Km2(Ψ), and hence
E2(Ψ) is false.

• Generalizing this reasoning fork muddy children,Ek−1(Ψ) is true becauseKi1 . . . Kik−1
(Ψ)

is true for all instantations ofi1, . . . ik−1. This is so because everyone can see at leastk −
1 muddy children. However,Ek(Ψ) is false becauseKi1 . . .Kik(Ψ) is false wheni1 is
instantiated by any ofm1, . . .mk. This is so because everyone can seek−1 muddy children,
and only then− k clean children can see thek muddy children.

In Scenario B, the only knowledge available in the system isEk−1(Ψ), and this is not enough
for the children with mud on their forehead to ever respond affirmatively to the father. In order that
the children with mud be able to respond affirmatively,Ek(Ψ) needs to be true in the system so
that the children can use the knowledge progressively step-by-step and answer correctly in thekth

round of questioning. How was thisEk(Ψ) achievable in Scenario A? When the father announced

273

Ψ in everyone’s common presence, he provided the systemC(Ψ) and henceEk(Ψ). Thus, every
child knewΨ, and every child knew that every child knewΨ, and every child knew that every
child knew that every child knewΨ, and so on. With thisEk(Ψ) being present in the system, the
children could use it progressively round-by-round until in thekth round, they could answer the
father’s question correctly.

8.2.3 Kripke Structures

A popular approach to defining semantics is in terms ofpossible worlds. This approach is formal-
ized usingKripke structures.

Definition 20. (Kripke structure.) A Kripke structureM for n agents and a set of primitive
propositionsΦ is a tuple(S, π,K1, . . .Kn), where the components of this tuple are as follows.

1. S is the set of all consistent states (or possible worlds), with respect to an execution.

2. π is an interpretation that associates a truth assignment to each primitive proposition inΦ,
for each states ∈ S. Thus,∀s ∈ S, π(s) : Φ→ {0, 1}.

3. Ki is a binary relation onS giving all the pairs of states that are indistinguishable byPi.

A Kripke structure is conveniently viewed as a graph with labeled nodes connected by labeled
edges. The set of nodes is the set of statesS; the label of nodes ∈ S also gives the primitive
propositions that are true and false ats. In our simple example, we assume thatΦ contains a
single proposition. The logic can be extended to multiple propositions in a straightforward manner.
The edge(s, t) is labeled by the identity of every processPi such that(s, t) ∈ Ki, i.e., every
processPi that cannot distinguish between statess andt. We assume (for simplicity) that edges
are bidirectional and that theK relations are reflexive, i.e., there is a self-loop at each node. In
Section 8.2.4, the Muddy Children puzzle is used to illustrate the definitions and concepts of this
section.

The formal definition of knowledge is now given in Figure 8.1.Here, “|=” denotes the “satis-
faction” operator.

This definition of levels of knowledge has a very convenient and useful graph-theoretic repre-
sentation, as we will illustrate for the Muddy Children puzzle.

Definition 21. (Reachability of states.)

1. A statet is reachable from states in k steps if there exist statess0, s1, . . . , sk such thats0 =
s, sk = t, and for allj ∈ [0, k − 1], there exists somePi such that(sj, sj+1) ∈ Ki.

2. A statet is reachable from states if t is reachable froms in k steps, for somek > 1.

Definition 21 defines state reachability in the Kripke structure. The following definitions of
knowledge are expressed in terms of reachability of states within the Kripke structure, and can be
readily seen to mirror the original definition of knowledge.

274

(M, s) |= φ if and only if φ is true in states in Kripke structureM , i.e.,π(s)(φ) = true.
Analogously, we can define formulae using conjunctions and negations over primitive propo-
sitions.

(M, s) |= Ki(φ) if and only if (M, t) |= φ, for all statest such that(s, t) ∈ Ki

(M, s) |= E1(φ) if and only if (M, s) |= ∧

i∈N Ki(φ)

(M, s) |= Ek+1(φ) for k ≥ 1 if and only if (M, s) |= ∧

i∈N Ki(E
k(φ)), for k ≥ 1

(M, s) |= C(φ) if and only if (M, s) |= ∧

k∈Z∗ E
k(φ)

(Distributed KnowledgeD.) (M, s) |= D(φ) if and only if (M, t) |= φ for each statet such that
(s, t) ∈ ∩iKi

Figure 8.1: The definitions of regular knowledge.

Theorem 7. (Knowledge in terms of reachability of states.)

1. (M, s) |= Ek(φ) if and only if(M, t) |= φ for each statet that is reachable from states in k
steps.

2. (M, s) |= C(φ) if and only if(M, t) |= φ for each statet that is reachable from states.

8.2.4 Muddy Children Puzzle using Kripke Structures

We now illustrate the Kripke structure for the Muddy Children puzzle. The definitions and concepts
of the previous section will be clarified by the example.

Let us assume there aren = 3 children; andk = 2 children have mud on their forehead. Each
of the 8 states can be described by a booleann-vector, where a clean child is denoted by a 0 and
a child with mud on the forehead is denoted by a 1. Let us further assume that the actual state is
(1, 1, 0). The Kripke structureM is illustrated in Figure 8.2(a).

In the world(1, 1, 0), each child can see that there is at least one other child who has mud on
the forehead, and hence(M, (1, 1, 0)) |= E(ψ). From Theorem 7, it follows that(M, (1, 1, 0)) |=
¬E2(Ψ) because the world(0, 0, 0) is 2-reachable from(1, 1, 0) andΨ is not true in this world.
Generalizing this observation in terms of Kripke structures assumingk muddy children, we have
thatEk−1(Ψ) is true because each world reachable ink − 1 hops has at least one′′1′′, implying
there is at least one child with a muddy forehead. However,Ek(Ψ) is false because the world
(0, . . . , 0) is reachable ink hops.
Scenario A. FactΨ is already known to all children in the state(1, 1, 0). Still, when the father
announcesΨ in Scenario A, the state of knowledge changes. Before the father’s announcement,
Child 1 believes the state(1, 0, 0) possible, and in that state(1, 0, 0), child 2 considers the state
(0, 0, 0) possible. After the father announcesΨ, it becomescommon knowledgethat one child has

275

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)

2
3 3

33

1 1

2

2

2

11

(a)

(0,0,0)

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)
3

33

1 1

2

2

2

1

(b)

(0,0,0)

(c)

2

1

3

(0,1,1)

(0,1,0)

(1,1,1)
(1,0,1)

(0,0,1)

(1,1,0)(1,0,0)

(0,0,0)

Figure 8.2: Kripke structure forn = 3 muddy children puzzle. Note that the actual state is (1,1,0).
(a) The entire Kripke structure. (b) After the father announcesΨ. (c) After the first round of
questioning and its answers.

a muddy forehead - this change in the group’s state of knowledge can be graphically depicted by
deleting all the edges connecting state(0, 0, 0). After the father has announcedΨ, even if one
child has a muddy forehead, he will not consider the state(0, 0, 0) possible. When the father asks
the question the first time and all children respond “No”, then all edges connecting to all possible
worlds with a single “1” in the state tuple get deleted – this is because if there were only a single
child with mud on his forehead, he would have answered “yes” in response to the first question.
Thus, it is now common knowledge that there are at least two children with muddy foreheads.
Generalizing this by induction, when the father askes the question thexth time and all children
respond “No”, then all edges connecting to all possible worlds withx or fewer thanx “1”s in the
state tuple get deleted – this is because if there were onlyx children with mud on their forehead,
they would all have answered “yes” in response to thexth question. It is now common knowledge
that there are at leastx+ 1 children with mud on their forehead. If there are exactlyx+ 1 children
with mud on their forehead, those children will all answer “Yes” thex + 1th time the question is
asked because they can see exactlyx other children with mud on their foreheads. They could not
answer “Yes” earlier because they considered a world possible, in which they did not have mud on
their own forehead.

Graphically, the Kripke structure gets modified in each iteration as follows. If in the iteration,
it becomes common knowledge that worldt is impossible, then for each nodes reachable from the
actual stater, any edge(s, t) is deleted. The Kripke structure shown in Figure 8.2(a) getsmodified
to that shown in part (b) after the father’s announcement. That further gets modified as shown in
part (c), after the first time the question is asked and all thechildren reply “No”.
Scenario B. In Scenario B, the childrens’ state of knowledge never changes and hence the Kripke
structure in Figure 8.2(a) never changes, no matter how often the father askes the question. When
the father asks the question the first time, all children answer “No” because they each consider both
worlds possible - one in which they have mud on their forehead, and one in which they do not. As
it is common knowledge even before the father asks the question that the answer is going to be

276

“No”, no knowledge is added by the question or the response. Inductively, this argument holds for
each round of questioning. Hence, the Kripke structure never changes.

8.2.5 Properties of Knowledge

In a formal framework to reason about knowledge, the properties of knowledge must also be spec-
ified formally. Although these properties can be specified with different semantics, the most com-
mon semantics that are adequate for modeling real distributed systems are given by the axiom
system that is historically termed as the S5 system. We first characterize the formulae that are
always true. A formulaψ is valid in Kripke structureM , denotedM |= ψ, if (M, s) |= ψ, for all
s ∈ S. A formulaψ is satisfiablein M if (M, s) |= ψ, for somes ∈ S. A formula isvalid if it is
valid in all structures, and it issatisfiableif it is satisfiable in some structure. The five axioms of
modal logic S5, given in Figure 8.3, are satisfied for all formulas, all structures, and all processes.

• Distribution Axiom:Kiψ ∧Ki(ψ =:φ) =:Kiφ

Each process knows the logical consequences of its local knowledge. The knowledge operator
gets distributed over the implication relation.

• Knowledge Axiom:Kiψ =:ψ

If a process knows a fact, then the fact is necessarily true. If Kiψ is true in a particular state,
thenψ is true in all states that the process considers as possible.

• Positive Introspection Axiom:Kiψ =:KiKiψ

A process knows what it knows.

• Negative Introspection Axiom:¬Kiψ =:Ki¬Kiψ

A process knows what it does not know.

• Knowledge Generalization Rule: For a valid formula or factψ,Kiψ

If ψ is true in all possible worlds, thenψ must be true in all the possible worlds with respect
to any process and any given world. Hence,Kiψ must be true in all possible worlds. Here, it
is assumed that a process knows allvalid formulas, which are necessarily true. Note that this
rule is different from the rule “ψ =:Kiψ”.

Figure 8.3: The axioms of the S5 modal logic.

8.3 Knowledge in Synchronous Systems

indexknowledge!synchronous system Classical problems such as the “muddy children” problem
and the “cheating husbands” problem which are widely used toillustrate the theory of knowl-

277

edge have been explained in the synchronous system model. The definitions and the treatment of
knowledge we have seen thus far was again for synchronous systems.

Common knowledge captures the notion of agreement in distributed systems. What are the
various ways by which common knowledge can be attained in a synchronous system?

• By initializing all the processes with common knowledge of the fact.

• By broadcasting the fact to every process in a round of communication, and having all the
processes know that the fact is being broadcast. Each process can begin supporting common
knowledge from the next round. This is the mechanism that wasused by the father when he
announcedΨ in the Muddy Children puzzle in Scenario A.

8.4 Knowledge in Asynchronous Systems

Here, we adapt the definitions of knowledge given in Figure 8.1 to asynchronous systems.

8.4.1 Logic and Definitions

In the system model, the possible worlds are the consistent cuts of the set of possible executions
in an asynchronous system. Let(a, c) denote acut c in asynchronous executiona. As each cut
also identifies a global state,(a, c) is also used to denote the state of the system after(a, c). (a, c)i

denotes the projection ofc on processi, and is also used to denote the state of processi after(a, c).
Two cutsc andc′ are indistinguishable by processi, denoted(a, c) ∼i (a′, c′), if and only if (a, c)i

= (a′, c′)i. The semantics of knowledge are based onasynchronous executions, instead of timed
executions.

The modal operatorKi(φ) means “φ is true in all possible consistent global states (cuts) that
include processi’s local state”. Observe thatKi(φ) is implicitly quantified over all consistent states
over all runs, that includei’s local state. Similar meanings hold forE(φ) andEk(φ), for k > 1.
We also defineE0(φ) to beφ for simplicity. Formal definitions of knowledge for asynchronous
distributed systems are given in Figure 8.4.

As knowledge can be known by a process only in a specific local state, we also say that “i
knowsφ in statesx

i ”, denotedsx
i |= φ, as a shorthand for(∀(a, c)) ((a, c)i = sx

i = : (a, c) |= φ).
Analogously, we definesx

i |= Ki(φ) to be(∀(a, c)) ((a, c)i = sx
i =: (a, c) |= Ki(φ)). Recall thatφ

can be of the formEk(ψ), for any factψ.

Definition 23. (Learning.) Processi learnsφ in statesx
i of executiona if i knowsφ in sx

i and, for
all statessy

i in executiona such thaty < x, i does not knowφ.

We also say that aprocess attainsφ (in some state) if the process learnsφ in the present or an
earlier state. A factφ is attained in an executiona if ∃c, (a, c) |= φ. Observe that a process cannot
attain a fact before the fact is attained in an execution. This corresponds to the intuition that even
though a fact becomes true in an execution, information may need to be propagated for a process
to learn the fact.

278

Definition 22. (Knowledge in asynchronous systems defined using consistent cuts)

(a, c) |= φ if and only ifφ is true in cutc of asynchronous executiona.

(a, c) |= Ki(φ) if and only if∀(a′, c′), ((a′, c′) ∼i (a, c) =:(a′, c′) |= φ)

(a, c) |= E0(φ) if and only if(a, c) |= φ

(a, c) |= E1(φ) if and only if(a, c) |= ∧

i∈N Ki(φ)

(a, c) |= Ek+1(φ) for k ≥ 1 if and only if(a, c) |= ∧

i∈N Ki(E
k(φ)), for k ≥ 1

(a, c) |=C(φ) if and only if(a, c) |= the greatest fixed point knowledgeX satisfyingX = E(X∧φ).
C(φ) implies∧k∈Z∗E

k(φ).

Figure 8.4: The definition of knowledge for asynchronous distributed systems.

Definition 24. (Local fact.) A factφ is local to processi in systemA if A |= (φ =:Kiφ)

A fact that is not local is aglobal fact. The state of a process, the local clock value of a process,
and the local component of the timestamp of an event at a process are examples of local facts. The
global state of a system and the timestamp of a cut are examples of global facts.

8.4.2 Agreement in Asynchronous Systems

We consider the following problem: “Two processes that communicate by asynchronous message-
passing need to agree on a binary value. Does there exist a protocol that they can follow to reach
consensus?” Reaching consensus among a group of processes implies the attainment of common
knowledge among that group of processes. We first consider a system where communication is not
reliable, implying that messages may be lost in transit.

Theorem 8. There does not exist any protocol for two processes to reach common knowledge about
a binary value in an asynchronous message-passing system with unreliable communication.

An informal argument is as follows. Without loss of generality, we assume that the fact is true at
Pi, and the processesPi andPj follow a protocol in which they send messages to each other serially.
Thus,Pi first sends a message M toPj informing it of the fact, and because communication is not
reliable,Pi needs an acknowledgement ACK1 back to know thatPj has received the message. But
then,Pj does not know whetherPi has received the acknowledgement ACK1. Hence, it does not
know whether or whenPi will begin supporting the common knowledge, and hence it itself cannot
begin supporting the common knowledge. Therefore,Pi needs to send back an acknowledgement
ACK2 toPj to acknowledge the receipt of ACK1. However,Pi now needs an acknowledgement of
the delivery of ACK2, similar to its need for an acknowledgement for M. This is a non-terminating
argument, and hence this protocol will not work to achieve common knowledge.

279

More generally, let there exist a protocol withk messages being sent betweenPi andPj, and
let this be theminimalprotocol in the sense of using the minimum number of messages. Then, the
sender of the last message asserts common knowledge of the fact even if it does not know whether
the message was delivered. Hence, thekth message is redundant, which implies there is a protocol
with k−1 messages to attain common knowledge. This contradicts the assumption that the minimal
protocol requiresk messages. Hence, such a protocol does not exist. Using similar reasoning, we
also have the following similar impossibility result for reliable asynchronous systems.

Theorem 9. There does not exist any protocol for two processes to reach common knowledge
about a binary value in a reliable asynchronous message-passing system without an upper bound
on message transmission times.

Even though the upper bound on message transmission time is guaranteed, a process does not
know when to support the common knowledge and hence requiresan acknowledgement, and the
sender of that acknowledgement will itself require an acknowledgement, and so on.

8.4.3 Variants of Common Knowledge

Common knowledge captures the notion of agreement among theprocesses, and hence attain-
ing common knowledge is a fundamental problem in distributed systems. Common knowledge
requires the notion of simultaneity of action across the processes. The instantaneous simultane-
ity attained by tightly synchronized clocks has some marginof error. Given the impossibility of
achieving simultaneity, and hence of attaining common knowledge in reliable asynchronous sys-
tems, what hope is there? Fortunately, there are weaker versions of common knowledge that can
be substituted for regular common knowledge.

Epsilon common knowledge.This form of common knowledge corresponds to the processes
reaching agreement withinǫ time units. This definition implicitly assumes timed runs as
it is not possible to exactly define time units in an asynchronous system. This common
knowledge is defined usingEǫ which denotes “everyone knows within a time duration ofǫ

units”. Epsilon common knowledgeCǫ(φ) is the greatest fixed point ofX = Eǫ(φ ∧ X),
whereX is the free variable in the greatest fixed-point operator.

Eventual common knowledge.This form of common knowledge corresponds to the processes
reaching agreement at some (not necessarily consistent) global state in the execution.E⋄ de-
notes “everyone will eventually know (at some point in theirexecution)”. Eventual common
knowledgeC⋄(φ) is the greatest fixed point ofX = E⋄(φ ∧X).

Timestamped common knowledge.This form of common knowledge corresponds to the pro-
cesses reaching agreement at local states having the same local clock value. It is applicable
to asynchronous systems. LetKT

i (φ) denote the fact that processi knowsφ at local clock
valueT . ThenET (φ) = ∧iK

T
i (φ) and timestamped common knowledgeCT (φ) is the great-

est fixed point ofX = ET (φ ∧ X). If it is common knowledge that all clocks are always

280

perfectly synchronized, then timestamped common knowledge is equivalent to regular com-
mon knowledge.

Concurrent common knowledge.This form of common knowledge corresponds to the processes
reaching agreement at local states that belong to a consistent cut. When a processPi attains
concurrent common knowledge of a factφ, it also knows that each other processPj has also
attained the same concurrent common knowledge in its local state which is consistent with
Pi’s local state.

This form of knowledge is applicable to asynchronous systems and is the most popular form
of common knowledge in real systems. Hence, we define it in detail below, and give two
protocols for attaining such common knowledge. Here, we note that this variant of common
knowledge is incomparable withCǫ, C⋄, andCT .

8.4.4 Concurrent Common Knowledge

Concurrent common knowledge is based on the notion of the various processes attaining the com-
mon knowledge on a consistent cut. Thepossibly operator1 Pi in conjunction with theKi operator
is used to formally define such knowlege.Pi(φ) means “φ is true insomeconsistent state in the
same asynchronous run, that includes processi’s local state”.EC(φ) is defined as

∧

i∈N Ki(Pi(φ)).
EC(φ) means that every process at the (given) cut knows only thatφ is true insomecut that is con-
sistent with its own local state. By induction, similar meanings can be assigned for higher levels of
knowledge. The formal definition of levels of concurrent knowledgeEC is as shown in Figure 8.5.

(a, c) |= φ if and only if φ is true in cutc of executiona.

(a, c) |= Ki(φ) if and only if ∀(a′, c′), ((a′, c′) ∼i (a, c) =:(a′, c′) |= φ)

(a, c) |= Pi(φ) if and only if ∃(a, c′), ((a, c′) ∼i (a, c) ∧ (a, c′) |= φ)

(a, c) |= EC0

(φ) if and only if (a, c) |= φ

(a, c) |= EC1

(φ) if and only if (a, c) |= ∧

i∈N KiPi(φ)

(a, c) |= ECk+1

(φ) for k ≥ 1 if and only if (a, c) |= ∧

i∈N KiPi(E
Ck

(φ)), for k ≥ 1

(a, c) |= CC(φ) if and only if (a, c) |= the greatest fixed point knowledgeX satisfyingX =
EC(X ∧ φ).
CC(φ) implies∧k∈Z∗(E

C)k(φ).

Figure 8.5: The definition of concurrent knowledge for asynchronous distributed systems.

1The notationPi for this operator is not to be confused withPi used to denote processi. Also, the semantics of
this operator is different from thePossibly modality defined on global predicates.

281

The concurrent knowledge definitions are weaker than the corresponding knowledge definitions
in Definition 22 (Figure 8.4). But for alocal, stablefact, and assuming other processes learn the
fact via message chains, it can be seen that the two definitions become equivalent.

If concurrent common knowledgeCC(φ) is attained at a consistent cut, then (informally speak-
ing) each process at its local cut state knows that “in some state consistent with its own local cut
state,φ is trueand thatall other process know all this same knowledge (described within quotes)”.

Concurrent common knowledge is a necessary and sufficient condition for performing concur-
rent actions in asynchronous distributed systems, analogous to simultaneous actions and common
knowledge in synchronous systems. The form of knowledge underlying many existing protocols
involves processes reaching agreement about some propertyof a consistent global state, defined
using logical timeandcausality, and can be easily understood in terms of concurrent common
knowledge.

Global snapshot algorithms can be run concurrently with theunderlying computation and can
be used to achieve concurrent common knowledge. Snapshot algorithms typically require|L|mes-
sages andd time steps, whered is the diameter of the network. More message-efficient snapshot
algorithms that need onlyO(|N |) messages use certain forms of computation inhibition – local
or global inhibition, and send inhibition and/or receive inhibition based on network characteris-
tics such as availability of FIFO channels, to reduce the number of messages to take a snapshot.
Nevertheless, each snapshot requires at leastO(|N |) messages and possibly inhibitory delay as
overhead.

Specifically, concurrent common knowledge can be attained in an asynchronous system, as
shown by the protocols in Figure 8.6– 8.9. In these protocols, each processPi must attainCC(φ)

on a consistent cut, (i) by learningφ, and (ii) by learning that each other processPj will also attain
that exact state of knowledge in a local state that is consistent withPi’s local state in whichPi

attainsCC(φ).

Snapshot-based algorithm.Protocol 1 (Figure 8.6) is a form of a global snapshot algorithm,
where each process knows that all processes are participating in the same algorithm. It can
also be viewed as a variant of the distributed asynchronous breadth-first search algorithm
(seen in Module 2). Observe that the set of states denoted ascut stateat each process, and at
which the processes begin supportingCC(φ), indeed form a consistent set of states.

Complexity: Protocol 1 uses2l messages and a time complexity equal to the diameter of
the network.

Three-phase send-inhibitory algorithm. Protocol 2 (Figure 8.7) has three phases and uses send-
inhibition. It also assumes that the predicateφ that becomes true when the protocol is initi-
ated remains true for the duration of the protocol. Observe that send inhibition is necessary
to ensure that the set ofcut statesat which the processes begin supportingCC(φ) are consis-
tent. A processPi does not send any message between receiving thePREPAREand sending
theCUT (when it reaches itscut state), and receiving theRESUMEcontrol messages, and
any message sent byPi after receiving theRESUMEmessage will necessarily be received by

282

any other processPj afterPj has reached itscut state. Hence thecut statesare guaranteed
to be consistent with each other.

Complexity: Protocol 2 uses3(n − 1) messages and a time complexity of three message
hops. However, it is send-inhibitory and requires FIFO channels.

The three-phase send-inhibitory tree algorithm. Protocol 3 (Figure 8.8) is a variant of Protocol
2. It protocol uses a (Broadcast - Convergecast - Broadcast)sequence on a spanning tree
(ST) on the network topology to record the global state alonga consistent cut.

Complexity: This message-send inhibitory algorithm requires a total of3(n− 1) messages
and works in a system with non-FIFO channels.

Inhibitory Ring algorithm: Protocol 4 (Figure 8.9) assumes that a logical ring is superimposed
on the network topology.

Complexity. This message-send inhibitory algorithm requires2n messages, and works in a
system with FIFO channels. The time complexity is2n hops.

Therefore the process can infer(EC)i(φ) (for anyi) is attained by processes along a consis-
tent cut including the current local state.

Protocol 1 (Snapshot-based algorithm).

1. At some time when the initiatorI knowsφ:

• it sends a markerMARKER(I, φ, CCK) to each neighbourPj, and atomically reaches
its cut state.

2. When a processPi receives for the first time, a messageMARKER(I, φ, CCK) from a
processPj:

• processPi forwards the message to all of its neighbours exceptPj , and atomically
reaches itscut state.

Figure 8.6: Snapshot-based protocol to attain concurrent common knowledge. A process attains
CC(φ) when it reaches itscut state.

Algorithms such as the above variants of the classical snapshot algorithm require at leastO(l)

messages, orO(n) messages and varying degrees of message inhibitioneachtime there is a need
to achieve concurrent knowledge of some fact.

8.5 Knowledge Transfer

Formalizing how processes learn facts is done by relating knowledge gain to message chains in the
execution.

283

Protocol 2 (Three-phase send-inhibitory algorithm).

1. At some time when the initiatorI knowsφ:

• it sends a markerPREPARE(I, φ, CCK) to each processPj.

2. When a (non-initiator) process receives a markerPREPARE(I, φ, CCK):

• it begins send-inhibition for non-protocol events.

• sends a markerCUT (I, φ, CCK) to the initiatorI.

• it reaches itscut stateat which it attainsCC(φ).

3. When the initiatorI receives a markerCUT (I, φ, CCK) from each other process:

• the initiator reaches itscut state

• sends a markerRESUME(I, φ, CCK) to all other processes.

4. When a (non-initiator) process receives a markerRESUME(I, φ, CCK):

• it resumes sending its nonprotocol messages which had been inhibited in step 2.

Figure 8.7: Three-phase send-inhibitory protocol to attain concurrent common knowledge. A
process attainsCC(φ) when it reaches itscut state.

Protocol 3 (Three-phase send-inhibitory tree algorithm).

Phase I (broadcast): The root initiatesPREPAREcontrol messages down the ST; when a process
receives such a message, it inhibits computation message sends and propagates the received
control message down the ST.

Phase II (convergecast):A leaf node initiates this phase after it receives thePREPAREcontrol
message broadcast in phase I. The leaf reaches and records itscut state, and sends aCUTcon-
trol message up the ST. An intermediate (and the root) node reaches and records itscut state
when it receives such aCUT control message from each of its children, and then propagates
the control message up the ST.

Phase III (broadcast): The root initiates a broadcast of aRESUMEcontrol message down the ST
after Phase II terminates. On receiving such aRESUMEmessage, a process resumes inhibited
computation message send activity and propagates the control message down the ST.

Figure 8.8: Three-phase send-inhibitory tree protocol to attain concurrent common knowledge. A
process attainsCC(φ) when it reaches itscut state.

284

Protocol 4 (Send-inhibitory ring algorithm).

1. Once a factφ about the system state is known to some process, the process atomically reaches
its cut stateand begins supportingC(φ), begins send inhibition, and sends a control message
CUT (φ) along the ring.

2. This CUT (φ) message announcesφ. When a process receives theCUT (φ) message, it
reaches itscut stateand begins supportingC(φ), begins send inhibition, and forwards the
message along the ring.

3. When the initiator gets backCUT (φ), it stops send inhibition, and forwards aRESUME
message along the ring.

4. When a process receives theRESUMEmessage, it stops send-inhibition, and forwards the
RESUMEmessage along the ring. The protocol terminates when the initiator gets back the
RESUMEit initiated.

Figure 8.9: Send-inhibitory ring protocol to attain concurrent common knowledge. A process
attainsCC(φ) when it reaches itscut state.

Definition 25. (Message chain.)A message chainin an execution is a sequence of messages
〈mik , mik−1

, mik−2
, . . ., mi1〉 such that for all0 < j ≤ k, mij is sent by processij to processij−1

and receive(mij) ≺ send(mij−1
). A message chain identifies the correspondingprocess chain

〈i0, i1, . . . , ik−2, ik−1, ik〉.

The above definition adopts the convention that a process chain lists the processes in an order
which is the reverse of the order in which they send the messages in the corresponding message
chain. Furthermore, a process chain includes the recipientof the last message sent in the corre-
sponding message chain, and this is the first process in the process chain. A message chain with
k messages thus identifies a process chain withk + 1 processes. Knowledge can be transferred
among processes only if a process chain exists among those processes. Ifφ is false in an execu-
tion and laterP1 knows thatP2 knows that. . . Pk knowsφ, then there must exist a process chain
〈i1, i2, . . . ik〉.

In the system model used thus far,(a, c)i denotes the projection ofc on processi, and is
also used to denote the state of processi after (a, c). Two cutsc andc′ are indistinguishable by
processi, denoted(a, c) ∼i (a′, c′), if and only if (a, c)i = (a′, c′)i. In the interleaving modelof
the distributed system execution, wherein all the events atthe different processes are interleaved
to form a global total order, the indistinguishability of different views can be expressed using
isomorphism of executions. In the following explanation, we assumex, y, z denote executions or
execution prefixes in the interleaving model. We letxp denote the projection of executionx on
processp.

indexexecution isomorphism

Definition 26. (Isomorphism of executions.)

285

1. For all executionsx andy, relationx[p]y is defined to be true if and only ifxp = yp.

2. For all executionsx andy and a process groupG, relationx[G]y is defined to be true if and
only if, for all p ∈ G, xp = yp.

3. LetGi be process groupi and letk > 1. Then,x[G0, G1, . . . , Gk]z if and only ifx[G0, G1, . . . , Gk−1]y

andy[Gk]z.

Two executions are isomorphic with respect to a group of processes if and only if none of the
processes in the group can distinguish between the two executions. For Definition 26.1 and 26.2,
drawing an analogy with Kripke structures (Definition 21), the edge connecting two state nodes
(which would correspond to the states after executionsx andy) are labeled by all the processes that
cannot distinguish between the two states. Thus, for alli such that(x, y) ∈Ki, the edge connecting
(x, y) is labeled withPi. For Definition 26(3), analogously in Kripke structures (Definition 21),
the set of states reachable fromx in k steps, denotedz, can be expressed in terms of the set of
states reachable fromx in k − 1 steps, denotedy, and the set of statesz reachable from states iny
in one step. The definition of isomorphism of executions allows an alternate way of reasoning with
local views of processes, tailored more for asynchronous distributed computing systems. When a
message is received in an execution, the set of executions that are isomorphic can only decrease
because now executions that do not contain the corresponding send event can be ruled out. The
knowledge operator in the interleaving model is defined as follows.

Definition 27. (Knowledge operator in the interleaving model.) p knowsφ at executionx if and
only if, for all executionsy such thatx[p]y, φ is true aty.

The following theorem formally shows in the interleaving model that knowledge is gained
sequentially.

Theorem 10. (Knowledge transfer.)For process groupsG1, . . .,Gk, and executionsx andy,
(KG1

KG2
. . .KGk

(φ) at x andx[G1, . . . Gk]y) =: KGk
(φ) at y.

The theorem can be shown to be true by induction onk, along the lines of the following argu-
ment. Fork = 1, the result is straightforward. Assume the induction hypothesis fork−1. Fork, we
can infer there exists somez such thatx[G1, . . . Gk−1]z andz[Gk]y. FromKG1

KG2
. . .KGk−1

[KGk
(φ)]

atx, and from the induction hypothesis, it can be inferred thatKGk−1
[KGk

(φ)] atz. Hence,KGk
(φ)

at z. As z[Gk]y,KGk
(φ) aty.

In terms of Kripke structures, Theorem 10 states that there is a path from state nodex = s0 to
state nodey = sk, via state nodess1, s2, . . ., sk−1, such that thek edges(si, si+1), 0 ≤ i ≤ k − 1,
on the path are labeled byGi+1.

Theorem 11 formalizes the observation that there must exista message chain〈mik , mik−1
,

mik−2
, . . .,mi1〉 in order that a factφ that becomes known toPk after execution prefixx of y, leads

to the state of knowledgeK1K2 . . .Kk(φ) after executiony.

Theorem 11. (Knowledge gain theorem.)For processesP1, . . ., Pk, and executionsx and y,
wherex is a prefix ofy, let

286

• ¬Kk(φ) at x andK1K2 . . .Kk(φ) at y.

Then there is a process chain〈i1, . . . ik−1, ik〉 in (x, y).

8.6 Knowledge and Clocks

We assume all facts are timestamped (physically or logically) by the of their becoming true and by
the process at which they became true. Afull-information protocol(FIP) is a protocol in which a
process piggybacks all the knowledge it has on outgoing messages, and in which a process adds to
its knowledge all the knowledge that is piggybacked on any message it receives. Thus, knowledge
always increases when a message is received. The amount of knowledge would keep increas-
ing as the execution proceeds, which may not make FIP protocols a practical way to distributed
knowledge.

Facts can always be appropriately encoded as integers. Monotonic facts are facts about a prop-
erty that keep increasing monotonically (e.g., the latest time of taking a checkpoint at a process).
By using a mapping between logical clocks and monotonic facts, information about the mono-
tonic facts can be communicated between processes using logical clock values piggybacked on
messages. Being monotonic, all earlier facts can be inferred from the fixed amount of information
that is maintained and piggybacked on messages. As a specificexample, the vector clockClki[j]

indicates the local time at each processPj, and implicitly that all lower clock values atPj have
occurred. With appropriate encoding, facts about a monotonic property can be represented using
vector clocks.

Matrix clocks are an extension of the idea behind vector clocks and contain information about
other processes’ views of the system execution. A matrix clock is an array of sizen × n. Matrix
clocks are used to design distributed database protocols, fault-tolerant protocols, and protocols to
discard obsolete information in distributed databases. They are also used to solve the distributed
dictionary and distributed log problems. The rules that processPi executes atomically to maintain
its matrix clock using thematrix clock protocolare given in Figure 8.10.

Vector clocks can be thought of as imparting knowledge to a process: whenClk[i] = x at
processh, processh knows that processi has executed at leastx events. Matrix clocks impart one
more level of knowledge: whenClk[i, j] = x at processh, processh knows that processi knows
that processj has executed at leastx events.

1. Thejth row of the matrix clock at processPi, indicated byClki[j, ·], gives the latest vector
clock value ofPj ’s clock, as known toPi.

2. Thejth column of the matrix clock at processPi, indicated byClki[·, j], gives the latest
scalar clock values of processPj , i.e.,Clk[j, j], as known to each process in the system.

For a vector clockClki, thejth entryClki[j] represents the knowledgeKiKj(φj), whereφj

is the local component of processPj ’s clock. For a matrix clockClki, the[j, k]th entryClki[j, k]

287

(local variables)
array of int Clki[1 . . . n, 1 . . . n]

MC0. Clki[j, k] is initialized to 0 for allj andk

MC1. Before processi executes an internal event, it does the following.
Clki[i, i] = Clki[i, i] + 1

MC2. Before processi executes a send event, it does the following:Clki[i, i] = Clki[i, i] + 1
Send message timestamped byClki.

MC3. When processi receives a message with timestampT from processj, it does the following.
(k ∈ N) Clkj [i, k] = max(Clki[i, k], T [j, k]);
(l ∈ N \ {i}) (k ∈ N), Clki[l, k] = max(Clki[l, k], T [l, k]);
Clki[i, i] = Clki[i, i] + 1;
deliver the message.

Figure 8.10: Matrix clocks.

represents the knowledgeKiKjKk(φk), whereφk is the local componentClkk[k, k] of process
Pk’s clock.

Vector and matrix clocks are convenient because they are updated without sending any addi-
tional messages; knowledge is imparted via theinhibition-free ambient message-passingthat (i)
eliminates protocol messagesby using piggybacking, and (ii)diffusesthe latestknowledgeusing
only messages, whenever sent, by the underlying execution.

Observe that the vector clock at a process provides knowledgeE0(φ), whereφ is a property of
the global state (namely, the local scalar clock value of each process). Analogously, observe that a
matrix clock at a processPj gives the knowledge

Kj(E
1(φ)) = Kj(∧i∈NKi(φ)),

whereφ is a property of the global state, namely, the local scalar clock value of each process.

8.7 Chapter Summary

Processes in a distributed system can reason only with the partial view they have of the computa-
tion. The knowledge at a process is based on the values of its variables and any messages received
by the process. The chapter first discussed the role of knowledge by using the Muddy Children
puzzle of Halpern and Moses. To formalize the role of knowledge, several knowledge operators –
E (every process knows),K (the process knows), andC (common knowledge) were introduced,
Kripke structures were introduced to formalize these semanticvs in terms ofpossible worlds. The
Muddy Children puzzle was recast in terms of the more formal Kripke structures.

288

The definitions of knowledge in synchronous systems and in asynchronous systems were then
studied. The findamemtal result that common knowledge cannot be attained in an error-free
message-passing asynchronous system was then examined. FOur weaker versions of common
knowledge – epsilion common knowledge, eventual common knowledge, timestamped common
knowledge, and concurrent common knowledge – that are achievable in asynchronous were then
examined. Concurrent common knowledge underlies most of the protocols in asynchronous sys-
tems. Several algorithms to achieve concurrent common knowledge were then studied – the snap-
shot based algorithm, a 3-phase send-inhibitory algorithm, an algorithm that use the tree overlay,
and one algorithm that uses a logical ring. A section on how proesses learn new information
(viz, gain new knowledge) considered knowledge transfer and knowledge gain in terms of process
chains and isomorphism of execution views. Finally, the relationship between the level of knowl-
edge in message-passsing asynchronous systems and size of matrix logical clocks was studied.

8.8 Bibliographic Notes

The muddy children example is taken from Halpern and Moses [6] and Halpern and Fagin [5]. The
discussions on Kripke structures, S5 modal logic, and the definitions of regular knowledge and
(regular) common knowledge in synchronous systems (Figure8.1) are based on an excellent text
by Fagin, Halpern, Moses, and Vardi [4]. The discussion on local facts, learning, knowledge trans-
fer, and isomorphisms is based on the work by Chandy and Misra[1]. The results (Theorems 8 and
9) on agreement in asynchronous message-passing systems appear to be folklore. The notion of
inhibition was formalized by Critchlow and Taylor [3]. Concurrent common knowledge and pro-
tocols to attain it for asynchronous systems were formalized by Panangaden and Taylor [10]. The
definitions of epsilon, eventual, and timestamped common knowledge for asynchronous systems
are also based on [10]. The defintion of knowledge for asynchronous systems (Figure 8.4) is based
on Kshemkalyani [8, 9]. Matrix clocks are first used by Krishnakumar and Bernstein [7], Wuu
and Bernstein [13], and Sarin and Lynch [12], and also studied by Ruget [11]. The relationship
between clocks of various dimensions and knowledge was formalized by Kshemkalyani [8, 9].

8.9 Exercise Problems

1. In the Muddy Children puzzle (Section 8.1), ifΨ = “At most k children have mud on the
forehead,” will the muddy children be able to identify themselves? If yes, in how many
rounds of questioning? If not, why not? Analyze this scenario in detail.

2. There are two black hats and two white hats. One of these hats is hidden away and the color
of this hat is not known to anybody. The remaining three hats are placed on the heads of
three persons A, B, and C in such a way that none of the persons knows the color of the hat
placed on his/her head. Draw a Kripke structure that describes this situation.

289

3. In a failure-free asynchronous message-passing system of n processes, processPi learns a
factφ.

(a) Devise simple noninhibitory protocols using a logical ring along which to pass control
messages to achieve the following, and justify your answers. Use timing diagrams to
illustrate your answers.

i. A protocol to attainE2(φ) in the system.

ii. A protocol so that each process knowsE2(φ).

(b) What is the earliest global time at which all processes know that everyone knows
E2(φ)? How can all the processes know about this time?

4. In Theorem 9, assume that there exists an upper bound on message transmissiontimes.
Which (if any) variant of concurrent common knowledge can hold in the system? please
state your assumptions clearly to justify your reasoning used in your answer.

5. Consider the matrix clocks given in Figure 8.10. At any point in time after the execution of
atomic steps MC0, MC1, MC2, or MC3, what is the minimum numberof entries among the
n2 entries ofClki that are guaranteed to be replicas of other entries inClki? Identify the
exact set(s) of elements of the arrayClki that will necessarily be identical.

6. Prove the following. For the equalities, you need to provethe implication in both directions.
For each part, first prove the results using the interleavingmodel, and then prove the results
using the partial order model.

(a) Ki ¬φ implies that¬Kiφ

(b) Ki φ ∨ ¬Ki φ

(c) Ki φ ∨ Ki ¬φ, if φ is a constant.

(d) Kiφ ∧ Kiψ = Ki(φ ∧ ψ)

(e) Kiφ ∨ Kiψ = Ki(φ ∨ ψ)

(f) Ki(¬Kiφ) = ¬Kiφ

290

Bibliography

[1] K. M. Chandy, J. Misra, How processes learn, DistributedComputing, 1: 40-52, 1986.

[2] K. M. Chandy, L. Lamport, Distributed snapshots: Determining global states of distributed
systems, ACM Transactions on Computer Systems, 3(1): 63-75, 1985.

[3] C. Critchlow, K. Taylor, The inhibition spectrum and theachievement of causal consistency,
Distributed Computing, 10(1): 11-27, 1996.

[4] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning aboutKnowledge, MIT Press, 1995.

[5] J. Halpern, R. Fagin, Modeling knowledge and action in distributed systems, Distributed
Computing, 3(4): 139-179, 1989.

[6] J. Halpern, Y. Moses, Knowledge and common knowledge in adistributed environment, Jour-
nal of the ACM, 37(3): 549-587, 1990.

[7] A. Krishnakumar, A. Bernstein, Bounded ignorance: A technique for increasing concurrency
in a replicated system, ACM Transactions on Database Systems, 19(4): 586-625, Dec. 1994.

[8] A. Kshemkalyani, The power of logical clock abstractions, Distributed Computing, 17(2):
131-151, August 2004.

[9] A. Kshemkalyani, Concurrent knowledge and logical clock abstractions, Proc. 20th Confer-
ence on Foundations of Software Technology and TheoreticalComputer Science, Lecture
Notes in Computer Science 1974, Editors: S. Kapoor, S. Prasad, Springer-Verlag, 489-502,
2000.

[10] P. Panangaden, K. Taylor, Concurrent common knowledge: Defining agreement for asyn-
chronous systems, Distributed Computing, 6(2): 73-94, Sept. 1992.

[11] F. Ruget, Cheaper matrix clocks, Proc. 8th Workshop on Distributed Algorithms, Editors: G.
Tel, P. Vitanyi, Lecture Notes in Computer Science, Springer-Verlag, 355-369, 1994.

[12] S. Sarin, N. Lynch, Discarding obsolete information ina distributed database system, IEEE
Transactions on Software Engineering, 13(1): 39-46, 1987.

291

[13] G. Wuu, A. Bernstein, Efficient solutions to the replicated log and dictionary problems, Proc.
3rd ACM Symposium on Principles of Distributed Computing, 232-242, 1984.

292

Chapter 9

Distributed Mutual Exclusion Algorithms

9.1 Introduction

Mutual exclusion is a fundamental problem in distributed computing systems. Mutual exclusion
ensures that concurrent access of processes to a shared resource or data is serialized, that is, exe-
cuted in mutually exclusive manner. Mutual exclusion in a distributed system states that only one
process is allowed to execute the critical section (CS) at any given time. In a distributed system,
shared variables (semaphores) or a local kernel cannot be used to implement mutual exclusion.
Message passing is the sole means for implementing distributed mutual exclusion. The decision
as to which process is allowed access to the CS next is arrivedat by message passing, in which
each process learns about the state of all other processes insome consistent way. The design of
distributed mutual exclusion algorithms is complex because these algorithms have to deal with un-
predictable message delays and incomplete knowledge of thesystem state. There are three basic
approaches for implementing distributed mutual exclusion:

1. Token based approach

2. Non-token based approach

3. Quorum based approach

In the token-based approach, a unique token (also known as the PRIVILEGE message) is shared
among the sites. A site is allowed to enter its CS if it possesses the token and it continues to
hold the token until the execution of the CS is over. Mutual exclusion is ensured because the
token is unique. The algorithms based on this approach essentially differ in the way a site carries
out the search for the token. In the non-token based approach, two or more successive rounds of
messages are exchanged among the sites to determine which site will enter the CS next. A site
enters the critical section (CS) when an assertion, defined on its local variables, becomes true.
Mutual exclusion is enforced because the assertion becomestrue only at one site at any given time.
In the quorum based approach, each site requests permissionto execute the CS from a subset of
sites (called a quorum). The quorums are formed in such a way that when two sites concurrently

293

request access to the CS, one site receives both the requestsand which is responsible to make sure
that only one request executes the CS at any time.

In this chapter, we describe several distributed mutual exclusion algorithms and compare their
features and performance. We discuss relationship among various mutual exclusion algorithms
and examine trade-offs among them.

9.2 Preliminaries

In this section, we describe the underlying system model, discuss the requirements that mutual
exclusion algorithms should satisfy, and discuss what metrics we use to measure the performance
of mutual exclusion algorithms.

9.2.1 System Model

The system consists of N sites,S1, S2, ...,SN . Without loss of generality, we assume that a single
process is running on each site. The process at siteSi is denoted bypi. All these processes
communicate asynchronously over an underlying communication network. A process wishing to
enter the CS, requests all other or a subset of processes by sending REQUEST messages, and waits
for appropriate replies before entering the CS. While waiting the process is not allowed to make
further requests to enter the CS. A site can be in one of the following three states: requesting the
CS, executing the CS, or neither requesting nor executing the CS (i.e., idle). In the ‘requesting the
CS’ state, the site is blocked and can not make further requests for the CS. In the ‘idle’ state, the
site is executing outside the CS. In the token-based algorithms, a site can also be in a state where a
site holding the token is executing outside the CS. Such state is refereed to as theidle tokenstate.
At any instant, a site may have several pending requests for CS. A site queues up these requests
and serves them one at a time.

We do not make any assumption regarding communication channels if they are FIFO or not.
This is algorithm specific. We assume that channels reliablydeliver all messages, sites do not
crash, and the network does not get partitioned. Some mutualexclusion algorithms are designed
to handle such situations. Many algorithms use Lamport-style logical clocks to assign a timestamp
to critical section requests. Timestamps are used to decidethe priority of requests in case the of
a conflict. A general rule followed is that the smaller the timestamp of a request,the higher its
priority to execute the CS.

We use the following notations:N denotes the number of processes or sites involved in invok-
ing the critical section,T denotes the average message delay, andE denotes the average critical
section execution time.

9.2.2 Requirements of Mutual Exclusion Algorithms

A mutual exclusion algorithm should satisfy the following properties:

294

Last site exits the CS

Synchronization delay

time

Next site enters the CS

Figure 9.1: Synchronization Delay

1. Safety Property: The safety property states that at any instant, only one process can execute
the critical section. This is an essential property of a mutual exclusion algorithm.

2. Liveness Property: This property states the absence of deadlock and starvation. Two or
more sites should not endlessly wait for messages which willnever arrive. In addition, a site
must not wait indefinitely to execute the CS while other sitesare repeatedly executing the
CS. That is, every requesting site should get an opportunityto execute the CS in finite time.

3. Fairness: Fairness in the context of mutual exclusion means that each process gets a fair
chance to execute the CS. In mutual exclusion algorithms, the fairness property generally
means the CS execution requests are executed in the order of their arrival (time is determined
by a logical clock) in the system.

The first property is absolutely necessary and the other two properties are considered important
in mutual exclusion algorithms.

9.2.3 Performance Metrics

The performance of mutual exclusion algorithms is generally measured by the following four met-
rics:

• Message complexity:It the number of messages that are required per CS execution by a
site.

• Synchronization delay: After a site leaves the CS, it is the time required and before the
next site enters the CS (see Figure 9.1). Note that normally one or more sequential message
exchanges may be required after a site exits the CS and beforenext site can enter the CS.

• Response time:It is the time interval a request waits for its CS execution tobe over after its
request messages have been sent out (see Figure 9.2). Thus, response time does not include
the time a request waits at a site before its request messageshave been sent out.

295

messages sent out

time

Response Time

CS execution time

The site exits the CS
The site enters
the CS

CS Request arrives

Its request

Figure 9.2: Response Time

• System throughput: It is the rate at which the system executes requests for the CS. If SD
is the synchronization delay andE is the average critical section execution time, then the
throughput is given by the following equation:

system throughput=1/(SD+E)

Generally, the value of a performance metric fluctuates statistically from request to request and
we generally consider the average value of such a metric.

Low and High Load Performance: The load is determined by the arrival rate of CS execution
requests. Performance of a mutual exclusion algorithm depends upon the load and we often study
the performance of mutual exclusion algorithms under two special loading conditions, viz., “low
load" and “high load". Underlow loadconditions, there is seldom more than one request for the
critical section present in the system simultaneously. Underheavy loadconditions, there is always
a pending request for critical section at a site. Thus, in heavy load conditions, after having executed
a request, a site immediately initiates activities to execute its next CS request. A site is seldom in
the idle state in heavy load conditions. For many mutual exclusion algorithms, the performance
metrics can be computed easily under low and heavy loads through a simple mathematical reason-
ing.

Best and Worst Case Performance:Generally, mutual exclusion algorithms have best and worst
cases for the performance metrics. In the best case, prevailing conditions are such that a perfor-
mance metric attains the best possible value. For example, in most mutual exclusion algorithms the
best value of the response time is a round-trip message delayplus the CS execution time,2T +E.
Often for mutual exclusion algorithms, the best and worst cases coincide with low and high loads,
respectively. For examples, the best and worst values of theresponse time are achieved when load
is, respectively, low and high; in some mutual exclusion algorithms the best and the worse message
traffic is generated at low and heavy load conditions, respectively.

296

9.3 Lamport’s Algorithm

Lamport developed a distributed mutual exclusion algorithm as an illustration of his clock synchro-
nization scheme [12]. The algorithm is fair in the sense thata request for CS are executed in the
order of their timestamps and time is determined by logical clocks. When a site processes a request
for the CS, it updates its local clock and assigns the requesta timestamp. The algorithm executes
CS requests in the increasing order of timestamps. Every siteSi keeps a queue,request_queuei,
which contains mutual exclusion requests ordered by their timestamps. (Note that this queue is
different from the queue that contains local requests for CSexecution awaiting their turn.) This
algorithm requires communication channels to deliver messages the FIFO order.

The Algorithm

Requesting the critical section:

• When a siteSi wants to enter the CS, it broadcasts a REQUEST(tsi, i) message to all other
sites and places the request onrequest_queuei. ((tsi, i) denotes the timestamp of the re-
quest.)

• When a siteSj receives the REQUEST(tsi, i) message from siteSi,places siteSi’s request
onrequest_queuej and it returns a timestamped REPLY message toSi.

Executing the critical section:SiteSi enters the CS when the following two conditions hold:

L1: Si has received a message with timestamp larger than (tsi, i) from all other sites.

L2: Si’s request is at the top ofrequest_queuei.

Releasing the critical section:

• Site Si, upon exiting the CS, removes its request from the top of its request queue and
broadcasts a timestamped RELEASE message to all other sites.

• When a siteSj receives a RELEASE message from siteSi, it removesSi’s request from its
request queue.

When a site removes a request from its request queue, its own request may come at the top of the
queue, enabling it to enter the CS. Clearly, when a site receives a REQUEST, REPLY or RELEASE
message, it updates its clock using the timestamp in the message.

Correctness

Theorem 1: Lamport’s algorithm achieves mutual exclusion.

Proof: Proof is by contradiction. Suppose two sitesSi andSj are executing the CS concur-
rently. For this to happen conditions L1 and L2 must hold at both the sitesconcurrently. This

297

S

S

S
1

2

3

(1,1)

(1,2)

Figure 9.3: SitesS1 andS2 are Making Requests for the CS.

implies that at some instant in time, sayt, bothSi andSj have their own requests at the top of
their request_queues and condition L1 holds at them. Without loss of generality, assume that
Si’s request has smaller timestamp than the request ofSj . From condition L1 and FIFO prop-
erty of the communication channels, it is clear that at instant t the request ofSi must be present
in request_queuej whenSj was executing its CS. This implies thatSj ’s own request is at the
top of its ownrequest_queue when a smaller timestamp request,Si’s request, is present in the
request_queuej – a contradiction!! Hence, Lamport’s algorithm achieves mutual exclusion.

Theorem 2: Lamport’s algorithm is fair.

Proof: A distributed mutual exclusion algorithm is fair if the requests for CS are executed in the
order of their timestamps. The proof is by contradiction. Suppose a siteSi’s request has a smaller
timestamp than the request of another siteSj andSj is able to execute the CS beforeSi. ForSj

to execute the CS, it has to satisfy the conditions L1 and L2. This implies that at some instant in
time say t,Sj has its own request at the top of its queue and it has also received a message with
timestamp larger than the timestamp of its request from all other sites. Butrequest_queue at a site
is ordered by timestamp, and according to our assumptionSi has lower timestamp. SoSi’s request
must be placed ahead of theSj ’s request in therequest_queuej. This is a contradiction. Hence
Lamport’s algorithm is a fair mutual exclusion algorithm.

An Example

In Figures 9.3 to 9.6, we illustrate the operation of Lamport’s algorithm. In Figure 9.3, sitesS1 and
S2 are making requests for the CS and send out REQUEST messages to other sites. The timestamps
of the requests are (1, 1) and (1, 2), respectively. In Figure9.4, both the sitesS1 andS2 have
received REPLY messages from all other sites.S1 has its request at the top of itsrequest_queue
but siteS2 does not have its request at the top of itsrequest_queue. Consequently, siteS1 enters
the CS. In Figure 9.5,S1 exits and sends RELEASE mesages to all other sites. In Figure9.6,
siteS2 has received REPLY from all other sites and also received a RELEASE message from site
S1. SiteS2 updates itsrequest_queue and its request is now at the top of itsrequest_queue.
Consequently, it enters the CS next.

298

Site S1 enters the CS

S

2

3

(1,1)

(1,2)

S

S

1

Figure 9.4: SiteS1 enters the CS.

S

S

S
1

2

3

(1,1), (1,2)

(1,1), (1,2)

(1,1)

(1,2)

Site S1 enters the CS Site S1 exits the CS

(1,2)

Figure 9.5: SiteS1 exits the CS and sends RELEASE messages.

S

S

S
1

2

3

(1,1), (1,2)

(1,1), (1,2)

(1,1)

(1,2)

Site S2 enters the CS

Site S1 enters the CS Site S1 exits the CS

Figure 9.6: SiteS2 enters the CS

299

Performance

For each CS execution, Lamport’s algorithm requires(N − 1) REQUEST messages,(N − 1)

REPLY messages, and(N−1) RELEASE messages. Thus, Lamport’s algorithm requires3(N−1)

messages per CS invocation. Synchronization delay in the algorithm isT .

An Optimization

In Lamport’s algorithm, REPLY messages can be omitted in certain situations. For example, if
siteSj receives a REQUEST message from siteSi after it has sent its own REQUEST message
with timestamp higher than the timestamp of siteSi’s request, then siteSj need not send a REPLY
message to siteSi. This is because when siteSi receives siteSj ’s request with timestamp higher
than its own, it can conclude that siteSj does not have any smaller timestamp request which is still
pending (because communication channels preserves FIFO ordering).

With this optimization, Lamport’s algorithm requires between3(N−1) and2(N−1) messages
per CS execution.

9.4 Ricart-Agrawala Algorithm

The Ricart-Agrawala [21] algorithm assumes the communication channels are FIFO. The algo-
rithm uses two types of messages: REQUEST and REPLY. A process sends a REQUEST message
to all other processes to request their permission to enter the critical section. A process sends a
REPLY message to a process to give its permission to that process. Processes use Lamport-style
logical clocks to assign a timestamp to critical section requests. Timestamps are used to decide the
priority of requests in case of conflict – if a processpi that is waiting to execute the critical sec-
tion, receives a REQUEST message from processpj , then if the priority ofpj ’s request is lower,
pi defers the REPLY topj and sends a REPLY message topj only after executing the CS for its
pending request. Otherwise,pi sends a REPLY message topj immediately, provided it is currently
not executing the CS. Thus, if several processes are requesting execution of the CS, the highest
priority request succeeds in collecting all the needed REPLY messages and gets to execute the CS.

Each processpi maintains the Request-Deferred array,RDi, the size of which is the same as
the number of processes in the system. Initially,∀i ∀j: RDi[j]=0. Wheneverpi defer the request
sent bypj, it setsRDi[j]=1 and after it has sent a REPLY message topj , it setsRDi[j]=0.

9.4.1 Description of the Algorithm

Requesting the critical section:

(a) When a siteSi wants to enter the CS, it broadcasts a timestamped REQUEST message to all
other sites.

300

(b) When siteSj receives a REQUEST message from siteSi, it sends a REPLY message to site
Si if siteSj is neither requesting nor executing the CS, or if the siteSj is requesting andSi’s
request’s timestamp is smaller than siteSj ’s own request’s timestamp. Otherwise, the reply
is deferred andSj setsRDj[i]=1

Executing the critical section:

(c) SiteSi enters the CS after it has received a REPLY message from everysite it sent a REQUEST
message to.

Releasing the critical section:

(d) When siteSi exits the CS, it sends all the deferred REPLY messages:∀j if RDi[j]=1, then
send a REPLY message toSj and setRDi[j]=0.

When a site receives a message, it updates its clock using thetimestamp in the message. Also,
when a site takes up a request for the CS for processing, it updates its local clock and assigns a
timestamp to the request. In this algorithm, a site’s REPLY messages are blocked only by sites
which are requesting the CS with higher priority (i.e., smaller timestamp).Thus, when a site sends
out deffered REPLY messages, site with the next highest priority request receives the last needed
REPLY message and enters the CS. Execution of the CS requestsin this algorithm is always in the
order of their timestamps.

Correctness

Theorem 3: Ricart-Agrawala algorithm achieves mutual exclusion.

Proof: Proof is by contradiction. Suppose two sitesSi andSj are executing the CS concurrently
andSi’s request has higher priority (i.e., smaller timestamp) than the request ofSj. Clearly,Si

receivedSj ’s request after it has made its own request. (Otherwise,Si’s request will have lower
priority.) Thus,Sj can concurrently execute the CS withSi only if Si returns a REPLY toSj (in
response toSj ’s request) beforeSi exits the CS. However, this is impossible becauseSj ’s request
has lower priority.Therefore, Ricart-Agrawala algorithmachieves mutual exclusion.2

In Ricart-Agrawala algorithm, for every requesting pair ofsites, the site with higher priority
request will always defer the request of the lower priority site. At any time only the highest priority
request succeeds in getting all the needed REPLY messages.

An Example

Figures 9.7 to 9.10 illustrate the operation of Ricart-Agrawala algorithm. In Figure 9.7, sites
S1 andS2 are making requests for the CS and send out REQUEST messages to other sites. The
timestamps of the requests are (2, 1) and (1, 2), respectively. In Figure 9.8,S2 has received REPLY
messages from all other sites and consequently, it enters the CS. In Figure 9.9,S2 exits the CS and
sends a REPLY mesage to siteS1. In Figure 9.10, siteS1 has received REPLY from all other sites
and enters the CS next.

301

(1,2)

S1

S

S

2

3

(1,1)

Figure 9.7: SitesS1 andS2 are making request for the CS

enters the CS

S1

S

S

2

3

(1,1)

(1,2)

 Request is deferred Site S1

Figure 9.8: SiteS1 enters the CS

Request is deferred

S1

S

S

2

3

(1,1)

(1,2)

 Site S1enters the CS Site S1 exits the CS

Figure 9.9: SiteS1 exits the CS and sends a REPLY message toS2’s deferred request

302

2

S1

S

S

2

3

(1,1)

(1,2)

 Site S1enters the CS Site S1 exits the CSRequest is deferred

Site S enters the CS

Figure 9.10: SiteS2 enters the CS

Performance

For each CS execution, Ricart-Agrawala algorithm requires(N − 1) REQUEST messages and
(N−1) REPLY messages. Thus, it requires2(N−1) messages per CS execution. Synchronization
delay in the algorithm isT .

9.5 Singhal’s Dynamic Information-Structure Algorithm

Most mutual exclusion algorithms use a static approach to invoke mutual exclusion; i.e., they
always take the same course of actions to invoke mutual exclusion no matter what is the state of
the system. A problem with these algorithms is the lack of efficiency because these algorithms
fail to exploit the changing conditions in the system. Note that an algorithm can exploit dynamic
conditions of the system to optimize the performance.

For example, if few sites are invoking mutual exclusion veryfrequently and other sites invoke
mutual exclusion much less frequently, then a frequently invoking site need not ask for the permis-
sion of less frequently invoking site every time it requestsan access to the CS. It only needs to take
permission from all other frequently invoking sites. Singhal [29] developed an adaptive mutual
exclusion algorithm based on this observation. The information-structure of the algorithm evolves
with time as sites learn about the state of the system throughmessages. Dynamic information-
structure mutual exclusion algorithms are attractive because they can adapt to fluctuating system
conditions to optimize the performance.

The design of such adaptive mutual exclusion algorithms is challenging and we list some of
the design challenges next:

• How does a site efficiently know what sites are currently actively invoking mutual exclusion?

• When a less frequently invoking site needs to invoke mutual exclusion, how does it do it?

303

• How does a less frequently invoking site makes a transition to more frequently invoking site
and vice-versa.

• How to insure that mutual exclusion is guaranteed when a sitedoes not take the permission
of every other site.

• How to insure that a dynamic mutual exclusion algorithm doesnot waste resources and time
in collecting systems state, offsetting any gain.

System Model

We consider a distributed system consisting of n autonomoussites, sayS1, S2, ...,Sn, which are
connected by a communication network. We assume that the sites communicate completely by
message passing. Message propagation delay is finite but unpredictable and between any pair of
sites, messages are delivered in the order they are sent. Forthe ease of presentation, we assume
that the underlying communication network is reliable and sites do not crash. However, methods
have been proposed for recovery from message losses and sitefailures.

Data Structures

Information-structure at a siteSi consists of two sets. The first setRi, calledrequest set, contains
the sites from whichSi must acquire permission before executing CS. The second setIi, called
inform set, contains the sites to whichSi must send its permission to execute CS after executing its
CS.

Every siteSi maintains a logical clockCi, which is updated according to Lamport’s rules.
Every request for CS execution is assigned a timestamp whichis used to determine its priority.
The smaller the timestamp of a request, the higher its priority. Every site maintains three boolean
variables to denote the state of the site:Requesting, Executing, and My_priority. Requesting and
executing are true if and only if the site is requesting or executing CS, respectively. My_priority is
true if pending request ofSi has priority over the current incoming request.

Initialization

The system starts in the following initial state:

For a siteSi (i = 1 to n),
Ri := {S1, S2,...,Si − 1, Si}
Ii := Si

Ci := 0
Requesting = Executing := False

304

Thus, initially siteSi, 1≤i≤n, sends request messages only to sitesSi, Si − 1, ..., S1. If
we stagger sitesSn to S1 from left to right, then the initial system state has the following two
properties:

1. Each site requests permission from all the sites to its right and from no site to its left. Con-
versely, for a site, all the sites to its left asks for its permission and no site to its right asks
for its permission. Or putting together, for a site, only allthe sites to its left will ask for its
permission and it will ask for the permission of only all the sites to its right. Therefore, ev-
ery siteSi divides all the sites into two disjoint groups; all the sitesin the first group request
permission fromSi andSi requests permission from all the sites in the second group. This
property is important for enforcing mutual exclusion.

2. The cardinality ofRi decreases in stepwise manner from left to right. Due to this reason,
this configuration has been called "staircase pattern" in topological sense [27].

9.5.1 The Algorithm

Site Si executes the following three steps to invoke mutual exclusion:

Step 1: (Request Critical Section)
Requesting = true;
Ci = Ci + 1;
Send REQUEST(Ci, i) message to all sites in Ri;
Wait until Ri = ∅; /* Wait until all sites in Ri have sent a reply to Si */
Requesting = false;

Step 2: (Execute Critical Section)
Executing = true;
Execute CS;
Executing = false;

Step 3: (Release Critical Section)
For every site Sk in Ii (except Si) do

Begin
Ii= Ii – {Sk};
Send REPLY(Ci, i) message to Sk;
Ri= Ri + {Sk}

End

305

REQUEST message handler

REQUEST message handler at a site processes incoming REQUEST messages. It takes actions
such as updating information-structure and sending REQUEST/REPLY messages to other sites.
REQUEST message handler at siteSi is given below:

/* Site Si is handling message REQUEST(c, j) */
Ci := max{Ci, c};
Case
Requesting = true:
Begin if My_priority then Ii:= Ii + { j}
/*My_Priority is true if the pending request of Si has priority over the incoming request */
Else

Begin
Send REPLY(Ci, i) message to Sj ;
If not (Sj ∈ Ri) then

Begin
Ri= Ri + {Sj};
Send REQUEST(Ci, i) message to site Sj ;

End;
End;

End;
Executing = true: Ii = Ii + {Sj};
Executing = false∧ Requesting = false:Begin
Ri= Ri + {Sj};
Send REPLY(Ci, i) message to Sj ;
End;

REPLY message handler

The REPLY message handler at a site processes incoming REPLYmessages. It updates the
information-structure. REPLY message handler at siteSi is given below:

/* Site Si is handling a message REPLY(c, j) */
Begin
Ci := max{Ci, c};
Ri = Ri – {Sj};
End;

Note that REQUEST and REPLY message handlers and the steps ofthe algorithm access shared
data structures, viz.,Ci, Ri, andIi. To guarantee the correctness, it’s important that execution of
REQUEST and REPLY message handlers and all three steps of thealgorithm (except "wait forRi

306

= ∅ to hold" in Step 1) mutually exclude each other.

An Explanation of the Algorithm

At high level,Si acquires permission to execute the CS from all sites in its request setRi and it
releases the CS by sending a REPLY message to all sites in its inform setIi.

If site Si which itself is requesting the CS, receives a higher priority REQUEST message from
a siteSj , thenSi takes the following actions: (i)Si immediately sends a REPLY message toSj,
(ii) if Sj is not inRi, then1 Si also sends a REQUEST message toSj, and (iii) Si places an entry
for Sj in Ri. Otherwise, (i.e., if the request ofSi has priority over the request ofSj), Si places an
entry forSj into Ii so thatSj can be sent a REPLY message whenSi finishes with the execution of
the CS.

If Si receives a REQUEST message fromSj when it is executing the CS, then it simply puts
Sj in Ii so thatSj can be sent a REPLY message whenSi finishes with the execution of the CS. If
Si receives a REQUEST message fromSj when it is neither requesting nor executing the CS, then
it places an entry forSj in Ri and sendsSj a REPLY message.

Rules for information exchange and updating request and inform sets are such that the staircase
pattern is preserved in the system even after the sites have executed the CS any number of times.
However, the positions of sites in the staircase pattern change as the system evolves. (For a proof
of this, see [28]). The site to execute CS last positions itself at the right end of the staircase pattern.

9.5.2 Correctness

We informally discuss why the algorithm achieves mutual exclusion and why it is free from dead-
locks. For a formal proof, the readers are referred to [28].

Achieving Mutual Exclusion: Note that the initial state of the information-structure satisfies the
following condition: for everySi andSj , eitherSj ∈ Ri or Si ∈ Rj . Therefore, if two sites re-
quest CS, one of them will always ask for the permission of theanother. However, this is not
sufficient for mutual exclusion [18]; However, whenever there is a conflict between two sites (i.e.,
they concurrently invoke mutual exclusion), the sites dynamically adjust their request sets such
that both request permission of each other satisfying the condition for mutual exclusion. This is
a nice feature of the algorithm because if the information-structures of sites satisfy the condition
for mutual exclusion all the time, sites will exchange more messages. Instead, it is more desirable
to dynamically adjust the request set of the sites as and whenneeded to insure mutual exclusion
because it optimizes the number of messages exchanged.

1Absence ofSj from Ri implies thatSi has not previously sent a REQUEST message toSj . This is the reason why
Si also sends a REQUEST message toSj when it receives a REQUEST message fromSj . This step is also required
to preserve the staircase pattern of the information-structure of the system.

307

Freedom from Deadlocks:In the algorithm, each request is assigned a globally uniquetimestamp
which determines its priority. The algorithm is free from deadlocks because sites use timestamp
ordering (which is unique system wide) to decide request priority and a request is blocked by only
higher priority requests.

An Example

Consider a system with five sitesS1, . . . , S5. SupposeS2 andS3 want to enter the CS concurrently,
and they both send appropriate request messages.S3 sends a request message to sites in its Request
set - {S1, S2} and S2 sends a request message to the only site in its Request set – {S1}. There are
three possible scenarios:

1. If timestamp ofS3’s request is smaller, then on receivingS3’s request,S2 sends a REPLY
message toS3. S2 also addsS3 to its Request set and sendsS3 a REQUEST message.
On receiving a REPLY message fromS2, S3 removesS2 from its Request set.S1 sends a
REPLY to bothS2 andS3 because its neither requesting to enter the CS nor executingthe
CS.S1 addsS2 andS3 to its Request set because any one of these sites could possibly be
in the CS whenS1 requests for an entry into CS in the future. On receivingS1’s REPLY
message,S3 removesS1 from its Request set and since it has got REPLY messages from all
sites in its (initial) Request Set, it enters the CS.

2. If timestamp ofS3 is larger, then on receivingS3’s request,S2 addsS3 to its Inform set.
WhenS2 gets a REPLY fromS1, it enters the CS. WhenS2 relinquishes the CS, it informs
S3 (id of S3 is present inS2’s Inform set) about its consent to enter the CS. Then,S2 removes
S3 from its Inform set and addS3 to its Request set. This is logical becauseS3 could be
executing in CS whenS2 requests an ‘CS entry’ permission in the future.

3. If S2 receives a REPLY fromS1 and starts executing CS beforeS3’s REQUEST reachesS2,
S2 simply addsS3 to its Inform set, and sendsS3 a REPLY after exiting the CS.

9.5.3 Performance Analysis

The synchronization delay in the algorithm is T. Below, we compute the message complexity in
low and heavy loads.

Low load condition: In case of low traffic of CS requests, most of the time only one or no request
for the CS will be present in the system. Consequently, the staircase pattern will reestablish be-
tween two sucssive requests for CS and there will seldom be aninterference among the CS requests
from different sites. In the staircase configuration, cardinality of the request sets of the sites is 1,
2, ..., (n-1), n, respectively, from right to left. Therefore, when traffic of requests for CS is low,
sites will send 0, 1, 2, ..., (n-1) number of REQUEST messageswith equal likelihood (assuming
uniform traffic of CS requests at sites). Therefore, the meannumber of REQUEST messages sent

308

per CS execution for this case is =(0+1+2++(n-1))/n = (n-1)/2. Since a REPLY message is
returned for every REQUEST message, the average number of messages exchanged per CS execu-
tion is 2*(n-1)/2 = (n-1).

Heavy load condition: When the rate of CS requests is high, all the sites always havea pending
request for CS execution. In this case, a site on the average receives (n-1)/2 REQUEST messages
from other sites while waiting for its REPLY messages. Sincea site sends REQUEST messages
only in response to REQUEST messages of higher priority, on the average it will send (n-1)/4 RE-
QUEST messages while waiting for REPLY messages. Therefore, the average number of messages
exchanged per CS execution in high demand is 2*[(n-1)/2+(n-1)/4] = 3*(n-1)/2.

9.5.4 Adaptivity in Heterogeneous Traffic Patterns

An interesting feature of the algorithm is that its information-structure adapts itself to the envi-
ronments of heterogeneous traffic of CS requests and to statistical fluctuations in traffic of CS
requests to optimize the performance (the number of messages exchanged per CS execution). In
non-uniform traffic environments, sites with higher trafficof CS requests will position themselves
towards the right end of the staircase pattern. That is, sites with higher traffic of CS requests will
tend to have lower cardinality of their request sets. Also, at a high traffic siteSi, if Sj ∈ Ri, thenSj

is also a high traffic site (this comes intuitively because all high traffic sites will cluster towards the
right end of the staircase). Consequently, high traffic sites will mostly send REQUEST messages
only to other high traffic sites and will seldom send REQUEST messages to sites with low traffic.
This adaptivity results in a reduction in the number of messages as well as in delay in granting CS
in environments of heterogeneous traffic.

9.6 Lodha and Kshemkalyani’s Fair Mutual Exclusion Algo-
rithm

Lodha and Kshemakalyani’s algorithm [13] decreases the message complexity of Ricart-Agrawala
algorithm by using the following interesting observation:When a site is waiting to execute the CS,
it need not receive REPLY messages from every other site. To enter the CS, a site only needs to
receive a REPLY message from the site whose request just precedes its request in priority. For
example, if sitesSi1,Si2 , ..Sin have a pending request for CS and the request ofSi1 has the highest
priority and that ofSin has the lowest priority and the priority of requests decreases fromSi1 to
Sin , then a siteSik only needs a REPLY message from siteSik−1

, 1< k ≤ n to enter the CS.

9.6.1 System Model

Each request is assigned a priorityReqIDand requests for the CS access are granted in the order
of decreasing priority. We will defer the details of whatReqID is composed of to later sections.

309

The underlying communication network is assumed to be errorfree.

Definition 1: Ri andRj are concurrent iffPi’s REQUEST message is received byPj afterPj has
made its request andPj ’s REQUEST message is received byPi afterPi has made its request.

Definition 2: Given Ri, we define the concurrency set of Ri as follows:
CSeti = {Rj | Ri is concurrent with Rj}

⋃

{Ri}.

9.6.2 The Algorithm

The algorithm uses three types of messages: REQUEST, REPLY and FLUSH and obtains savings
on the number of messages exchanged per CS access by assigning multiple purposes to each. For
the purpose of blocking a mutual exclusion request, every site Si has a data structure calledlo-
cal_request_queue(denoted as LRQi) which contains all concurrent requests made with respect to
Si’s request and these requests are ordered with respect to thepriority.

All requests are totally ordered by their priorities and thepriority is determined by the timestamp
of the request. Hence, when a process receives a REQUEST message from some other process, it
can immediately determine if it is allowed the CS access before the requesting process or after it.

In this algorithm, messages play multiple roles and that is discussed next.

• Multiple uses of a REPLY message

1. A REPLY message acts as a reply from a process that is not requesting.

2. A REPLY message acts as a collective reply from processes that have higher priority
requests.

A REPLY(Rj) from a process Pj indicates that Rj is the request made by Pj for which it has
executed the CS. It also indicates that all the requests withpriority ≥ priority of Rj have
finished executing CS and are no longer in contention.

Thus, in such situations, a REPLY message is a logical reply and denotes a collective re-
ply from all processes that had made higher priority requests.

• Uses of a FLUSH message

Similar to a REPLY message,a FLUSH message is a logical reply and denotes a collec-
tive reply from all processes that had made higher priority requests. After a process has
exited the CS, it sends a FLUSH message to a process requesting with the next highest pri-
ority, which is determined by looking up the process’s localrequest queue. When a process
Pi finishes executing the CS, it may find a process Pj in one of the following states:

310

1. Rj is in the local queue of Pi and located in some position after Ri, which implies that
Rj is concurrent with Ri.

2. Pj had replied to Ri and Pj is now requesting with a lower priority. (Note that in this
case Ri and Rj are not concurrent).

3. Pj ’s requst had higher priority than Pi’s (implying that it had finished the execution of
the CS) and is now requesting with a lower priority. (Note that in this case Ri and Rj

are not concurrent).

A process Pi after executing the CS, sends a FLUSH message to a process identified in the
Case 1 above, which has the next highest priority, whereas itsends REPLY messages to
the processes identified in Cases 2 and 3 as their requests arenot concurrent with Ri (the
resuests of processes in Cases 2 and 3 were deferred by Pi till it exits the CS). Now it is up
to the process receiving the FLUSH message and the processesrecieving REPLY messages
in Cases 2 and 3 to determine who is allowed to enter the CS next.

Consider a scenario where we have a set of requests R3 R0 R2 R4 R1 ordered in decreasing
priority where R0 R2 R4 are concurrent with one another, then P0 maintains a local queue of
[R0, R2, R4] and when it exits the CS, it sends a FLUSH (only) to P2.

• Multiple uses of a REQUEST message

Considering two processes Pi and Pj , there can be two cases:

Case 1: Pi and Pj are not concurrently requesting. In this case, the process which requests
first will get a REPLY message from the other process.

Case 2: Pi and Pj are concurrently requesting. In this case, there can be two subcases:

1. Pi is requesting with a higher priority than Pj . In this case, Pj ’s REQUEST mes-
sage serves as an implicit REPLY message to Pi’s request. Also, Pj should wait
for REPLY/FLUSH message from some process to enter the CS.

2. Pi is requesting with a lower priority than Pj . In this case, Pi’s REQUEST message
serves as an implicit REPLY message to Pj ’s request. Also, Pi should wait for
REPLY/FLUSH message from some process to enter the CS.

The Algorithm

• Initial local state for process Pi

- int My_Sequence_Numberi=0

- array of booleanRVi[j] =0,∀j ∈ {1...N}

- queue of ReqIDLRQi is NULL

- int Highest_Sequence_Number_Seeni=0

311

• InvMutEx: Process Pi executes the following to invoke mutual exclusion:

1. My_Sequence_Numberi = Highest_Sequence_Number_Seeni + 1

2. LRQi = NULL

3. Make REQUEST(Ri) message, whereRi = (My_Sequence_Numberi, i).

4. Insert this REQUEST in theLRQi in sorted order.

5. Send this REQUEST message to all other processes.

6. RVi[k] =0∀k ∈ {1...N}-{i}. RVi[i] =1.

• RcvReq:Process Pi receives REQUEST(Rj), where Rj=(SN, j), from process Pj :

1. Highest_Sequence_Number_Seeni = max(Highest_Sequence_Number_Seeni, SN).

2. if Pi is requesting:

(a) if RVi[j] = 0, then insert this request in theLRQi (in sorted order) and markRVi[j]
= 1. If (CheckExecuteCS), then execute CS.

(b) if RVi[j] = 1, then defer the processing of this request, which willbe processed
after Pi executes CS.

3. If Pi is not requesting, then send a REPLY(Ri) message to Pj . Ri denotes the ReqID of
the last request made by Pi that was satisfied.

• RcvReply: Process Pi receives REPLY(Rj) message from process Pj : Rj denotes the ReqID
of the last request made by Pj that was satisfied.

1. RVi[j]=1

2. Remove all requests from LRQi that have a priority≥ the priority of Rj

3. If(CheckExecuteCS), then execute CS.

• FinCS: Process Pi finishes executing CS.

1. Send FLUSH(Ri) message to the next candidate in the LRQi. Ri denotes the ReqID
that was satisfied.

2. Send REPLY(Ri) to the deferred requests. Ri is the ReqID corresponding to which Pi

just executed the CS.

• RcvFlush: Process Pi receives a FLUSH(Rj) message from a process Pj :

1. RVi[j] = 1

2. Remove all requests in LRQi that have the priority≥ the priority of Rj .

3. If (CheckExecuteCS) then execute CS.

• CheckExecuteCS: if (RV i[k]=1, ∀k ∈ {1..N}) and Pi’s request is at the head of LRQi, then
return true, else return false.

312

2

P1

P

P3

Figure 9.11: ProcessesP1 andP2 send out REQUESTs

9.6.3 Safety, Fairness and Liveness

Prrofs for safety, fairness and liveness are quite involvedand interested readers are referred to the
original paper for detailed proofs.

9.6.4 An Example

Figure 9.11: ProcessesP1 andP2 are concurrent and they send out REQUESTs to all other pro-
cesses. The REQUEST sent byP1 to P3 is delayed and hence is not shown until in Figure
9.13.

Figure 9.12: WhenP3 receives the REQUEST fromP2, it sends REPLY toP2.

Figure 9.13: The delayed REQUEST ofP1 arrives atP3 and at the same time,P3 sends out its
REQUEST for CS, which makes it concurrent with the request ofP1.

Figure 9.14: P1 exits the CS and sends out a FLUSH message toP2.

Figure 9.15: Since the requests ofP2 andP3 are not concurrent,P 2 sends a FLUSH message to
P3. P3 removes (1,1) from its local queue and enters the CS.

The data structures LRQ and RV are updated in each step as discussed previously.

9.6.5 Message Complexity

To execute the CS, a process Pi sends N-1 REQUEST messages. It receives (N-|CSeti |) REPLY
messages. There are two cases to consider:

1. |CSeti |≥ 2. There are two sub cases here.

a. There is at least one request in CSeti whose priority is smaller than that of Ri. So Pi will
send one FLUSH message. In this case the total number of messages for CS access is
2N-|CSeti |. When all the requests are concurrent, this reduces to N messages.

313

2

P1

P

P3

Figure 9.12:P3 sends out REPLY to justP2

1

P1

P

P3

2

enters the CSP

Figure 9.13:P3 sends out REQUEST

2

P1

P

P3

2

enters the CSP
1

1P sends a FLUSH message to P

Figure 9.14:P1 exits the CS and sends out a FLUSH message toP2

314

2

P1

P

P3

2

enters the CSP
1

enters the CSP3

REQUEST from P

REPLY from P

REQUEST from P1

REQUEST from P2

3

3

FLUSH message

P2 sends a FLUSH
message to P

3

P sends a FLUSH
1

message to P

Figure 9.15:P3 enters the CS

315

b. There is no request in CSeti, whose priority is less than the priority of Ri. Pi will not
send a FLUSH message. In this case, the total number of messages for CS access is
2N-1-|CSeti |. When all the requests are concurrent, this reduces to N-1 messages.

2. |CSeti | = 1. This is the worst case, implying that all requests are satisfied serially. Pi will not
send a FLUSH message. In this case, the total number of messages for CS access is 2(N-1)
messages.

9.7 Quorum-Based Mutual Exclusion Algorithms

Quorum-based mutual exclusion algorithms respresented a departure from the trend in the follow-
ing two ways:

1. A site does not request permission from all other sites, but only from a subset of the sites.
This is a radically different approach as compared to Lamport and Ricart-Agrawala algo-
rithms where all sites participate in conflict resolution ofall other sites. In quorum-based
mutual exclusion algorithm, the request set of sites are chosen such that∀i ∀j : 1 ≤ i, j ≤ N

:: Ri ∩Rj 6= Φ. Consequently, every pair of sites has a site which mediatesconflicts between
that pair.

2. In quorum-based mutual exclusion algorithm, a site can send out only one REPLY message
at any time. A site can send a REPLY message only after it has received a RELEASE
message for the previous REPLY message. Therefore, a siteSi locksall the sites inRi in
exclusive mode before executing its CS.

Quorum-based mutual exclusion algorithms significantly reduce the message complexity of
invoking mutual exclusion by having sites ask permission from only a subset of sites.

Since these algorithms are based on the notion of ‘Coteries’and ‘Quorums’, we first describe
the idea of coteries and quorums. A coterieC is defined as a set of sets, where each set g∈ C is
called a quorum. The following properties hold for quorums in a coterie:

• Intersection property: For every quorum g, h∈ C, g∩ h6= ∅.
For example, sets{1,2,3}, {2,5,7} and{5,7,9} cannot be quorums in a coterie because the
first and third sets do not have a common element.

• Minimality property: There should be no quorums g, h in coterie C such that g⊇ h. For
example, sets {1,2,3} and {1,3} cannot be quorums in a coterie because the first set is a
superset of the second.

Coteries and quorums can be used to develop algorithms to ensure mutual exclusion in a dis-
tributed environment. A simple protocol works as follows: Let ‘a’ is a site in quorum ‘A’. If ‘a’
wants to invoke mutual exclusion, it requests permission from all sites in its quorum ‘A’. Every

316

site does the same to invoke mutual exclusion. Due to the Intersection Property, quorum ‘A’ con-
tains at least one site that is common to the quorum of every other site. These common sites send
permission to only one site at any time. Thus, mutual exclusion is guaranteed.

Note that the Minimality property ensures efficiency ratherthan correctness. In the simplest
form, quorums are formed as sets that contain a majority of sites. There exists a variety of quorums
and a variety of ways to construct quorums. For example, Maekawa used the theory of projective
planes to develop quorums of size

√
N .

9.8 Maekawa’s Algorithm

Maekawa’s algorithm [14] was the first quorum-based mutual exclusion algorithm. The request
sets for sites (i.e., quorums) in Maekawa’s algorithm are constructed to satisfy the following con-
ditions:

M1: (∀i ∀j : i 6= j, 1 ≤ i, j ≤ N :: Ri ∩ Rj 6= φ)

M2: (∀i : 1 ≤ i ≤ N :: Si ∈ Ri)

M3: (∀i : 1 ≤ i ≤ N :: |Ri| = K)

M4: Any site Sj is contained inK number of Ris,1 ≤ i, j ≤ N .

Maekawa used the theory of projective planes and showed thatN = K(K − 1) + 1. This
relation gives|Ri| =

√
N .

Since there is at least one common site between the request sets of any two sites (condition
M1), every pair of sites has a common site which mediates conflicts between the pair. A site
can have only one outstanding REPLY message at any time; thatis, it grants permission to an
incoming request if it has not granted permission to some other site. Therefore, mutual exclusion
is guaranteed. This algorithm requires delivery of messages to be in the order they are sent between
every pair of sites.

Conditions M1 and M2 are necessary for correctness; whereasconditions M3 and M4 provide
other desirable features to the algorithm. Condition M3 states that the size of the requests sets of all
sites must be equal implying that all sites should have to do equal amount of work to invoke mutual
exclusion.Condition M4 enforces that exactly the same number of sites should request permission
from any site implying that all sites have “equal responsibility” in granting permission to other
sites.

9.8.1 The Algorithm

In Maekawa’s algorithm, a siteSi executes the following steps to execute the CS.

Requesting the critical section

317

(a) A siteSi requests access to the CS by sending REQUEST(i) messages to all sites in its request
setRi.

(b) When a siteSj receives the REQUEST(i) message, it sends a REPLY(j) message toSi pro-
vided it hasn’t sent a REPLY message to a site since its receipt of the last RELEASE mes-
sage. Otherwise, it queues up the REQUEST(i) for later consideration.

Executing the critical section

(c) SiteSi executes the CS only after it has received a REPLY message from every site inRi.

Releasing the critical section

(d) After the execution of the CS is over, siteSi sends a RELEASE(i) message to every site inRi.

(e) When a siteSj receives a RELEASE(i) message from siteSi, it sends a REPLY message to the
next site waiting in the queue and deletes that entry from thequeue. If the queue is empty,
then the site updates its state to reflect that it has not sent out any REPLY message since the
receipt of the last RELEASE message.

Correctness

Theorem 3: Maekawa’s algorithm achieves mutual exclusion.

Proof: Proof is by contradiction. Suppose two sitesSi andSj are concurrently executing the CS.
This means siteSi received a REPLY message from all sites inRi and concurrently siteSj was
able to receive a REPLY message from all sites inRj . If Ri ∩ Rj = {Sk}, then siteSk must have
sent REPLY messages to bothSi andSj concurrently, which is a contradiction.2

Performance

Note that the size of a request set is
√
N . Therefore, an execution of the CS requires

√
N RE-

QUEST,
√
N REPLY, and

√
N RELEASE messages, resulting in3

√
N messages per CS execu-

tion. Synchronization delay in this algorithm is2T . This is because after a siteSi exits the CS, it
first releases all the sites inRi and then one of those sites sends a REPLY message to the next site
that executes the CS. Thus, two sequential message transfers are required between two successive
CS executions. As discussed next, Maekawa’s algorithm is deadlock-prone. Measures to handle
deadlocks require additional messages.

9.8.2 Problem of Deadlocks

Maekawa’s algorithm can deadlock because a site is exclusively locked by other sites and requests
are not prioritized by their timestamps [14, 22]. Thus, a site may send a REPLY message to a site
and later force a higher priority request from another site to wait.

318

Without the loss of generality, assume three sitesSi, Sj , andSk simultaneously invoke mutual
exclusion. SupposeRi ∩Rj= {Sij}, Rj ∩ Rk= {Sjk}, andRk ∩ Ri= {Ski}. Since sites do not send
REQUEST messages to the sites in their request sets in any particular order and message delays
are arbitrary, the following scenario is possible:Sij has been locked bySi (forcing Sj to wait at
Sij), Sjk has been locked bySj (forcingSk to wait atSjk), andSki has been locked bySk (forcing
Si to wait atSki). This state represents a deadlock involving sitesSi, Sj , andSk.

Handling Deadlocks

Maekawa’s algorithm handles deadlocks by requiring a site to yield a lock if the timestamp of
its request is larger than the timestamp of some other request waiting for the same lock (unless
the former has succeeded in acquiring locks on all the neededsites) [14, 22]. A site suspects a
deadlock (and initiates message exchanges to resolve it) whenever a higher priority request arrives
and waits at a site because the site has sent a REPLY message toa lower priority request.

Deadlock handling requires the following three types of messages:

FAILED: A FAILED message from siteSi to siteSj indicates thatSi can not grantSj ’s request
because it has currently granted permission to a site with a higher priority request.

INQUIRE: An INQUIRE message fromSi to Sj indicates thatSi would like to find out fromSj

if it has succeeded in locking all the sites in its request set.

YIELD: A YIELD message from siteSi to Sj indicates thatSi is returning the permission toSj

(to yield to a higher priority request atSj).

Details of how Maekawa’s algorithm handles deadlocks are asfollows:

• When a REQUEST(ts, i) from siteSi blocks at siteSj becauseSj has currently granted
permission to siteSk, thenSj sends a FAILED(j) message toSi if Si’s request has lower
priority. Otherwise,Sj sends an INQUIRE(j) message to siteSk.

• In response to an INQUIRE(j) message from siteSj, siteSk sends a YIELD(k) message to
Sj providedSk has received a FAILED message from a site in its request set orif it sent a
YIELD to any of these sites, but has not received a new GRANT from it.

• In response to a YIELD(k) message from siteSk, siteSj assumes as if it has been released
by Sk, places the request ofSk at appropriate location in the request queue, and sends a
GRANT(j) to the top request’s site in the queue.

Thus, Maekawa-type algorithms require extra messages to handle deadlocks and may exchange
these messages even though there is no deadlock. Maximum number of messages required per CS
execution in this case is 5

√
N .

319

9.9 Agarwal-El Abbadi Quorum-Based Algorithm

Agarwal and El Abbadi [1] developed a simple and efficient mutual exclusion algorithm by in-
troducing tree quorums. They gave a novel algorithm for constructing tree-structured quorums in
the sense that it uses hierarchical structure of a network. The mutual exclusion algorithm is inde-
pendent of the underlying topology of the network and there is no need for a multicast facility in
the network. However, such facility will improve the performance of the algorithm. The mutual
exclusion algorithm assumes that sites in the distributed system can be organized into a structure
such as tree, grid, binary tree, etc. and there exists a routing mechanism to exchange messages
between different sites in the system.

Agarwal-El Abbadi quorum-based algorithm, however, constructs quorums from trees. Such
quorums are called ‘tree-structured quorums’. The following sections describe an algorithm for
constructing tree-structured quorums and present an analysis of the algorithm and a protocol for
mutual exclusion in distributed systems using tree-structured quorums.

9.9.1 Constructing a tree-structured quorum

All the sites in the system are logically organized into a complete binary tree. To build such a tree,
any site could be chosen as the root, any other two sites may bechosen as its children and so on.
For a complete binary tree with level ‘k’, we have 2k+1 – 1 sites with its root at level k and leaves
at level 0. The number of sites in a path from the root to a leaf is equal to the level of the tree
k+1 which is equal to O(log n). There will be 2k leaves in the tree. A path in a binary tree is the
sequence a1, a2. . . ai , ai+1. . . . ak such that ai is the parent of ai+1.

The algorithm for constructing structured quorums from thetree is given in Figure 9.16. For
the purpose of presentation, we assume that the tree is complete, however, the algorithm works for
any arbitrary binary tree.

The algorithm for constructing tree-structured quorums uses two functions called GetQuo-
rum(tree) and GrantsPermission(site) and assumes that there is a well-defined root for the tree.
GetQuorum is a recursive function that takes a tree node ‘x’ as the parameter and calls GetQuorum
for its child node provided that the GrantsPermission(x) istrue. The GrantsPermission(x) is true
only when the node ‘x’ agrees to be in the quorum. If the node ‘x’ is down due to a failure, then it
may not agree to be in the quorum and the value of GrantsPermission(x) will be false. The algo-
rithm tries to construct quorums in a way that each quorum represents any path from the root to a
leaf, i.e., in this case (no failures) quorum is any set a1, a2. . . ai, ai+1. ak where a1 is the root
and ak is a leaf, and for all i<k, ai is the parent of ai+1. If it fails to find such a path (say, because
node ’x’ has failed), the control goes to the ELSE block whichspecifies that the failed node ‘x’ is
substituted by two paths both of which start with the left andright children of ‘x’ and end at leaf
nodes. Note that each path must terminate in a leaf site. If the leaf site is down or inaccessible
due to any reason, then the quorum cannot be formed and the algorithm terminates with an error

320

FUNCTION GetQuorum (Tree: NetworkHierarchy): QuorumSet; (*line 1*)
VAR left, right : QuorumSet; (*line 2*)
BEGIN (*line 3*)
IF Empty (Tree) THEN (*line 4*)

RETURN ({}); (*line 5*)
ELSE IF GrantsPermission(Tree↑.Node) THEN (*line 6*)

RETURN ((Tree↑.Node)∪ GetQuorum (Tree↑.LeftChild)); (*line 7*)
OR (*line 8*)
RETURN ((Tree↑.Node)∪ GetQuorum (Tree↑.RightChild));(*line 9*)

ELSE (*line 10*)
left←GetQuorum(Tree↑.left); (*line 11*)
right←GetQuorum(Tree↑.right); (*line 12*)
IF (left = ∅ ∨ right = ∅) THEN (*line 13*)

(* Unsuccessful in establishing a quorum *) (*line 14*)
EXIT(-1); (*line 15*)

ELSE (*line 16*)
RETURN (left∪ right); (*line 17*)

END; (* IF *) (*line 18*)
END; (* IF *) (*line 19*)

END; (* IF *) (*line 20*)
END GetQuorum (*line 21*)

Figure 9.16: Algorithm for constructing a tree-structuredquorum.

condition. The sets that are constructed using this algorithm are termed astree quorums.

9.9.2 Analysis of the algorithm for constructing tree-structured quorums

The best case scenario of the algorithm takes O(log n) sites to form a tree quorum. There are certain
cases where even in the event of a failure, O(log n) sites are sufficient to form a tree quorum. For
example, if the site that is parent of a leaf node fails, then the number of sites that are necessary
for a quorum will be still O(log n). Thus, the algorithm requires very few messages in a relatively
fault-free environment. It can tolerate the failure up to n-O(log n) sites and still form a tree quorum.
In the worst case, the algorithm requires the majority of sites to construct a tree quorum and the
number of sites is same for all cases (faults or no faults). The worst case tree quorum size is
determined as O ((n+1)/2) by induction.

9.9.3 Validation

The tree quorums constructed by the above algorithm are valid, i.e., they conform to the coterie
properties such as Intersection property and Minimality Property. To prove the correctness of the
algorithm, consider a binary tree with level k+1. Assume that root of the tree is a1. The tree can be
viewed as consisting of a root, a left subtree and a right subtree. According to algorithm in figure
QBA1, the constructed quorums contain one of the following:

321

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 9.17: A tree of 15 sites

1. a1 ∪ sites from the left subtree

2. a1 ∪ sites from the right subtree

3. sites from the quorum set of left subtree∪ sites from the quorum set of right subtree

Clearly, the quorum of type (1) has non-empty intersection with those quorums formed using
types (2) or (3) which shows that the Intersection Property holds true. Also, the members in
the quorum of type (1) are not contained in quorums of types (2) and (3). Thus, the Minimality
Property holds true. Similar conditions exist for quorums of types (2) and (3). This forms as the
basis for proving correctness of the algorithm based on induction.

9.9.4 Examples of Tree-Structured Quorums

Now we present examples of tree-structured quorums for a better understanding of the algorithm.
In the simplest case, when there is no node failure, the number of quorums formed is equal to the
number of leaf sites.

Consider the tree of height 3 show in Figure 9.17 constructedfrom 15 (23+1-1) sites. Now, a
quorum has all sites along any path from root to leaf. In this case 8 quorums are formed from 8
possible root-leaf paths: 1-2-4-8, 1-2-4-9, 1-2-5-10, 1-2-5-11, 1-3-6-12, 1-3-6-13, 1-3-7-14 and
1-3-7-15. If any site fails, the algorithm substitutes for that site two possible paths starting from
the site’s two children and ending in leaf nodes. For example, when node 3 fails, we consider
the possible paths starting from children 6 and 7 and ending at the leaf nodes. The possible paths
starting from child 6 are 6-12 and 6-13, while the possible paths starting from child 7 are 7-14
and 7-15. So, when node 3 fails, the following eight quorums can be formed:{1,6,12,7,14},
{1,6,12,7,15}, {1,6,13,7,14}, {1,6,13,7,15}, {1,2,4,8}, {1,2,4,9},{1,2,5,10}, {1,2,5,11}.

If a failed site is a leaf node, the operation has to be abortedand a tree-structured quorum can-
not be formed (see lines 13-15 of the algorithm above). However, quorum formation can continue
with other working nodes. Since the number of nodes from rootto leaf in an ‘n’ node complete tree

322

is log n, the best case for quorum formation, i.e, the least number ofnodes needed for a quorum is
log n. In the worst case, a majority of sites (similar to quorum protocol [6]) are needed for mutual
exclusion. For example, if sites 1 and 2 are down in Figure QBA1, the quorums that are formed
must include either{4, 8} or {4, 9} and either{5, 10} or {5, 11} and one of the four paths{3, 6,
12}, {3, 6, 13} {3, 7, 14} or {3, 7, 15}. In this case, the following are the candidates for quorums:
{4, 5, 3, 6, 8, 10, 12}, {4, 5, 3, 6, 8, 10, 13}, {4, 5, 3, 6, 8, 11, 12}, {4, 5, 3, 6, 8, 11, 13}, {4, 5, 3,
6, 9, 10, 12}, {4, 5, 3, 6, 9, 10, 13}, {4, 5, 3, 6, 9, 11, 12}, {4, 5, 3, 6, 9, 11, 13}, {4, 5, 3, 7, 8, 10,
14}, {4, 5, 3, 7, 8, 10, 15}, {4, 5, 3, 7, 8, 11, 14}, {4, 5, 3, 7, 8, 11, 15}, {4, 5, 3, 7, 9, 10, 14}, {4,
5, 3, 7, 9, 10, 15}, {4, 5, 3, 7, 9, 11, 14} and{4, 5, 3, 7, 9, 11, 15}.

When the number of node failures is greater than or equal tolog n, the algorithm may not be
able to form tree-structured quorum. For example when sites1, 2, 4 and 8 are inaccessible, the
set of sites{3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} form a majority of sites but not a structured
quorum. So, as long as the number of site failures is less thanlog n, the tree quorum algorithm
gurantees the formation of a quorum and it exhibits the property of ‘graceful degradation’, which
is useful in distributed fault tolerance. As failures occurand increase, the probability of forming
quorums decreases and mutual exclusion is achieved at increasing costs because when a node fails,
instead of one path from node, the quorum must include two paths starting from node’s children.
For example, in a tree of level k, the size of quorum is (k+1). If a node failure occurs at level i> 0,
then the quorum size increases to (k-i) +2i. The penalty is severe when the failed node is near the
root. Thus, the tree quorum algorithm may still allow quorums to be formed even after the failures
of n - |log n |sites.

9.9.5 The Algorithm for Distributed Mutual Exclusion

We now describe the algorithm for achieving distributed mutual exclusion using tree-structured
quorums. Suppose a site s wants to enter the critical section(CS). The following events should
occur in the given order:

1. Sitessends a ‘Request’ message to all other sites in the structured quorum it belongs to.

2. Each site in the quorum stores incoming requests in arequest queue, ordere by their times-
tamps.

3. A site sends a ‘Reply’ message, indicating its consent to enter CS, only to the request at the
head of itsrequest queue, having the lowest timestamp.

4. If the sites gets a ‘Reply’ message from all sites in the structured quorum it belongs to, it
enters the CS.

5. After exiting the CS,s sends a ‘Relinquish’ message to all sites in the structured quorum.
On the receipt of the ‘Relinquish’ message, each site removes s’s request from the head of
its request queue.

323

6. If a new request arrives with a timestamp smaller than the request at the head of the queue,
an ‘Inquire’ message is sent to the process whose request is at the head of the queue and
waits for a ‘Yield’ or ‘Relinquish’ message.

7. When a sites receives an ‘Inquire’ message, it acts as follows:

If s has acquired all of its necessary replies to access the CS, then it simply ignores the
‘Inquire’ message and proceeds normally and sends a ‘Relinquish’ message after exiting the
CS.

If s has not yet collected enough replies from its quorum, then itsends a ‘Yield’ message to
the inquiring site.

8. When a site gets the ‘Yield’ message, it puts the pending request (on behalf of which the
‘Inquire’ message was sent) at the head of the queue and sendsa ‘Reply’ message to the
requestor.

9.9.6 Correctness proof

Mutual exclusion is guaranteed because the set of quorums satisfy the Intersection property. Proof
for freedom from deadlock is similar to that of Maekawa’s algorithm. The readers are referred to
the original source.

9.9.7 An Example

Consider a coterie C which consists of quorums{1,2,3}, {2,4,5} and{4,1,6}. Suppose nodes 3, 5
and 6 want to enter CS, and they send requests to sites (1, 2), (2, 4) and (1, 4), respectively. Suppose
site 3’s request arrives at site 2 before site 5’s request. Inthis case, site 2 will grant permission to
site 3’s request and reject site 5’s request. Similarly, suppose site 3’s request arrives at site 1 before
site 6’s request. So site 1 will grant permission to site 3’s request and reject site 6’s request. Since
sites 5 and 6 did not get consent from all sites in their quorums, they do not enter the CS. Since site
3 alone gets consent from all sites in its quorum, it enters the CS and mutual exclusion is achieved.

9.10 Token-Based Algorithms

In token-based algorithms, a unique token is shared among the sites. A site is allowed to enter its
CS if it possesses the token. A site holding the token can enter its CS repeatedly until it sends
the token to some other site. Depending upon the way a site carries out the search for the token,
there are numerous token-based algorithms. Next, we discuss two token-based mutual exclusion
algorithms.

Before we start with the discussion of token-based algorithms, two comments are in order:
First, token-based algorithms use sequence numbers instead of timestamps. Every request for the
token contains a sequence number and the sequence numbers ofsites advance independently. A site

324

increments its sequence number counter every time it makes arequest for the token. (A primary
function of the sequence numbers is to distinguish between old and current requests.) Second,
correctness proof of token-based algorithms, that they enforce mutual exclusion, is trivial because
an algorithm guarantees mutual exclusion so long as a site holds the token during the execution of
the CS. Instead, the issues of freedom from starvation, freedom from deadlock, and detection of
the token loss and its regeneration become more prominent.

9.11 Suzuki-Kasami’s Broadcast Algorithm

In Suzuki-Kasami’s algorithm [30], if a site that wants to enter the CS, does not have the token,
it broadcasts a REQUEST message for the token to all other sites. A site which possesses the
token sends it to the requesting site upon the receipt of its REQUEST message. If a site receives a
REQUEST message when it is executing the CS, it sends the token only after it has completed the
execution of the CS.

The basic idea underlying this algorithm may sound rather simple, however, there are the fol-
lowing two design issues must be efficiently addressed:

1. How to distinguishing an outdated REQUEST message from a current REQUEST mes-
sage:Due to variable message delays, a site may receive a token request message after the
corresponding request has been satisfied. If a site can not determined if the request corre-
sponding to a token request has been satisfied, it may dispatch the token to a site that does
not need it. This will not violate the correctness, however,this may seriously degrade the
performance by wasting messages and increasing the delay atsites that are genuinely re-
questing the token. Therefore, appropriate mechanisms should implemented to determine if
a token request message is outdateded.

2. How to determine which site has an outstanding request for the CS: After a site has
finished the execution of the CS, it must determine what siteshave an outstanding request
for the CS so that the token can be dispatched to one of them. The problem is complicated
because when a siteSi receives a token request message from a siteSj, siteSj may have
an outstanding request for the CS. However, after the corresponding request for the CS has
been satisfied atSj , an issue is how to inform siteSi (and all other sites) efficiently about it.

Outdated REQUEST messages are distinguished from current REQUEST messages
in the following manner: A REQUEST message of siteSj has the form REQUEST(j, n) where

n (n=1, 2, ...) is a sequence number which indicates that siteSj is requesting itsnth CS execution.
A siteSi keeps an array of integersRNi[1..N] whereRNi[j] denotes the largest sequence number
received in a REQUEST message so far from siteSj. When siteSi receives a REQUEST(j, n)
message, it setsRNi[j]:= max(RNi[j], n). Thus, when a siteSi receives a REQUEST(j, n) message,
the request is outdated ifRNi[j]>n.

Sites with outstanding requests for the CS are determined inthe following manner: The token
consists of a queue of requesting sites, Q, and an array of integers LN[1..N], where LN[j] is the

325

sequence number of the request which siteSj executed most recently. After executing its CS, a site
Si updates LN[i]:=RNi[i] to indicate that its request corresponding to sequence numberRNi[i] has
been executed. Token array LN[1..N] permits a site to determine if a site has an outstanding request
for the CS. Note that at siteSi if RNi[j]=LN[j]+1, then siteSj is currently requesting token. After
executing the CS, a site checks this condition for all the j’sto determine all the sites which are
requesting the token and places their id’s in queue Q if theseid’s are not already present in the Q.
Finally, the site sends the token to the site whose id is at thehead of the Q.

The Algorithm

Requesting the critical section

(a) If requesting siteSi does not have the token, then it increments its sequence number,RNi[i],
and sends a REQUEST(i,sn) message to all other sites. (‘sn’ is the updated value ofRNi[i].)

(b) When a siteSj receives this message, it setsRNj [i] to max(RNj [i], sn). If Sj has the idle
token, then it sends the token toSi if RNj [i]=LN[i]+1.

Executing the critical section

(c) SiteSi executes the CS after it has received the token.

Releasing the critical sectionHaving finished the execution of the CS, siteSi takes the following
actions:

(d) It sets LN[i] element of the token array equal toRNi[i].

(e) For every siteSj whose id is not in the token queue, it appends its id to the token queue if
RNi[j]=LN[j]+1.

(f) If the token queue is nonempty after the above update,Si deletes the top site id from the token
queue and sends the token to the site indicated by the id.

Thus, after executing the CS, a site gives priority to other sites with outstanding requests for the
CS (over its pending requests for the CS). Note that Suzuki-Kasami’s algorithm is not symmetric
because a site retains the token even if it does not have a request for the CS, which is contrary to
the spirit of Ricart and Agrawala’s definition of symmetric algorithm: “no site possesses the right
to access its CS when it has not been requested”.

326

Correctness

Mutual exclusion is guaranteed because there is only one token in the system and a site holds the
token during the CS execution.

Theorem: A requesting site enters the CS in finite time.

Proof: Token request messages of a siteSi reach other sites in finite time. Since one of these sites
will have token in finite time, siteSi’s request will be placed in the token queue in finite time.
Since there can be at mostN − 1 requests in front of this request in the token queue, siteSi will
get the token and execute the CS in finite time.2

Performance

Beauty of Suzuki-Kasami algorithm lies in its simplicity and efficiency. No message is needed and
the synchronization delay is zero if a site holds the idle token at the time of its request. If a site
does not hold the token when it makes a request, the algorithmrequiresN messages to obtain the
token. Synchronization delay in this algorithm is 0 orT .

9.12 Raymond’s Tree-Based Algorithm

Raymond’s Tree-Based mutual exclusion algorithm [19] usesa spanning tree of the computer
network to reduce the number of messages exchanged per critical section execution. The algorithm
exchanges only O(log N) messages under light load, and approximately four messages under heavy
load to execute the CS, where N is the number of nodes in the network.

The algorithm assumes that the underlying network guarantees message delivery. The time or
order of message arrival cannot be predicted. All nodes of the network are ’completely reliable.
(Only for the initial part of the discussion, i.e., until node failure is discussed.). If the network
is viewed as a graph, where the nodes in the network are the vertices of the graph, and the links
between nodes are the edges of the graph, a spanning tree of a network of N nodes will be a tree that
contains all the N nodes. A minimal spanning tree is one such tree with minimum cost. Typically,
this cost function is based on the network link characteristics. The algorithm operates on a minimal
spanning tree of the network topology or a logical structureimposed on the network.

The algorithm considers the network nodes to be arranged in an unrooted tree structure as
shown in Figure 9.18. Messages between nodes traverse alongthe undirected edges of the tree in
the Figure 9.18. The tree is also a spanning tree of the seven nodes A, B, C, D, E, F, and G. It also
turns out to be a minimal spanning tree because it is the only spanning tree of these seven nodes. A
node needs to hold information about and communicate only toits immediate-neighboring nodes.
In Figure 9.18, for example, node C holds information about and communicates only to nodes B,
D, and G; it does not need to know about the other nodes A, E, andF for the operation of the
algorithm.

327

B C D

E F G

A

Figure 9.18: Nodes with an unrooted tree structure.

Similar to the concept of tokens used in token-based algorithms, this algorithm uses a concept of
privilege to signify which node has the privilege to enter the critical section. Only one node can be
in possession of the privilege (called the privileged node)at any time, except when the privilege
is in transit from one node to another in the form of a PRIVILEGE message. When there are no
nodes requesting for the privilege, it remains in possession of the node that last used it.

9.12.1 The HOLDER Variables

Each node maintains a HOLDER variable that provides information about the placement of the
privilege in relation to the node itself. A node stores in itsHOLDER variable the identity of a node
that it thinks has the privilege or leads to the node having the privilege. The HOLDER variables of
all the nodes maintain directed paths from each node to the node in the possession of the privilege.

For two nodes X and Y, if HOLDERX = Y, we could redraw the undirected edge between the
nodes X and Y as a directed edge from X to Y. Thus, for instance,if node G holds the privilege,
Figure 9.18 can be redrawn with logically directed edges as shown in the Figure.

The shaded node above represents the privileged node. The following will be the values of the
HOLDER variables of various nodes:

HOLDERA = B (Since the privilege is located in a sub-tree of A denoted by B.)
Proceeding with similar reasoning, we have
HOLDERB = C
HOLDERC = G
HOLDERD = C
HOLDERE = A
HOLDERF = B
HOLDERG = self

Now suppose node B that does not hold the privilege wants to execute the critical section.
Then B sends a REQUEST message to HOLDERB, i.e., C, which in turn forwards the REQUEST
message to HOLDERC , i.e., G. So a series of REQUEST messages flow between the nodemaking
the request for the privilege and the node having the privilege.

The privileged node G, if it no longer needs the privilege, sends the PRIVILEGE message to its

328

B C D

E F G

A

Figure 9.19: Tree with logically directed edges, all pointing in a direction towards node G - the
privileged node.

G

C D

E F

A B

Figure 9.20: Tree with logically directed edges, all pointing in a direction towards node G - the
privileged node.

neighbor C, which made a request for the privilege, and resets HOLDERG to C. Node C, in turn,
forwards the PRIVILEGE to node B, since it had requested the privilege on behalf of B. Node C
also resets HOLDERC to B. The tree in Figure 9.19 will now look as in Figure 9.20
Thus, at any stage, except when the PRIVILEGE message is in transit, the HOLDER variables
collectively make sure that directed paths are maintained from each of the N - 1 nodes to the
privileged node in the network.

9.12.2 The Operation of the Algorithm

Data Structures

The algorithm requires each node to maintain the following variables:

Variable Name Possible Values Comments

HOLDER
“self” or the identity of one of
the immediate neighbours.

Indicates the location of the
privileged node in relation to
the current node.

329

USING True or false.
Indicates if the current node is
executing the critical section.

REQUEST_Q

A FIFO queue that could con-
tain “self” or the identities of
immediate neighbors as ele-
ments.

The REQUEST_Q of a node
consists of the identities of
those immediate neighbors
that have requested for privi-
lege but have not yet been sent
the privilege .

ASKED True or false.
Indicates if node has sent a re-
quest for the privilege.

The value “self” is placed in REQUEST_Q if the node makes a request for the privilege for its
own use. The maximum size of REQUEST_Q of a node is the number of immediate neighbors + 1
(for “self”). ASKED prevents the sending of duplicate requests for privilege, and also makes sure
that the REQUEST_Qs of the various nodes do not contain any duplicate elements.

The Algorithm

The algorithm consists of the following parts:

• ASSIGN_PRIVILEGE

• MAKE_REQUEST

• Events

• Message Overtaking

ASSIGN_PRIVILEGE

This is a routine to effect the sending of a PRIVILEGE message. A privileged node will send a
PRIVILEGE message if

• it holds the privilege but is not using it,

• its REQUEST_Q is not empty, and

• the element at the head of its REQUEST_Q is not “self.” That is, the oldest request for
privilege must have come from another node.

330

A situation where “self” is at the head of REQUEST_Q may occurimmediately after a node
receives a PRIVILEGE message. The node will enter into the critical section after removing “self”
from the head of REQUEST_Q. If the id of another node is at the head of REQUEST_Q, then it
is removed from the queue and a PRIVILEGE message is sent to that node. Also, the variable
ASKED is set to false since the currently privileged node will not have sent a request to the node
(called HOLDER-to-be) which is about to receive the PRIVILEGE message.

MAKE_REQUEST

This is a routine to effect the sending of a REQUEST message. An unprivileged node will send a
REQUEST message if

• it does not hold the privilege,

• its REQUEST_Q is not empty, i.e., it requires the privilege for itself, or on behalf of one of
its immediate neighboring nodes, and

• it has not sent a REQUEST message already.

The variable ASKED is set to true to reflect the sending of the REQUEST message. The MAKE_REQUEST
routine makes no change to any other variables. The variableASKED will be true at a node when
it has sent REQUEST message to an immediate neighbor and has not received a response. The
variable will be false otherwise. A node does not send any REQUEST messages, if ASKED is true
at that node. Thus the variable ASKED makes sure that unnecessary REQUEST messages are not
sent from the unprivileged node, and consequently ensures that the REQUEST_Q of an immediate
neighbor does not contain duplicate entries of a neighbouring node. This makes the REQUEST_Q
of any node bounded, even when operating under heavy load.

Events

Below we show four events that constitute the algorithm.

Event Algorithm Functionality

A node wishes to execute critical section.
Enqueue(REQUEST_Q, self); AS-
SIGN_PRIVILEGE; MAKE_REQUEST

A node receives a REQUEST message from
one of its immediate neighbors X.

Enqueue(REQUEST_Q, X); AS-
SIGN_PRIVILEGE; MAKE_REQUEST

331

A node receives a PRIVILEGE message.
HOLDER := self; ASSIGN_PRIVILEGE;
MAKE_REQUEST

A node exits the critical section.
USING := false; ASSIGN_PRIVILEGE;
MAKE_REQUEST

A node wishes critical section entry: If it is the privileged node, the node could enter the
critical section using the ASSIGN_PRIVILEGE routine. If not, the node could send a REQUEST
message using the MAKE_REQUEST routine in order to get the privilege.

A node receives a REQUEST message from one of its immediate neighbors: If this node is
the current HOLDER, it may send the PRIVILEGE to a requestingnode using the ASSIGN_PRIVILEGE
routine. If not, it could forward the request using the MAKE_REQUEST routine.

A node receives a PRIVILEGE message:The ASSIGN_PRIVILEGE routine could result
in the execution of the critical section at the node, or may forward the privilege to another node.
After the privilege is forwarded, the MAKE_REQUEST routinecould send a REQUEST message
to reacquire the privilege, for a pending request at this node.

A node exits the critical section: On exit from the critical section, this node may pass the
privilege on to a requesting node using the ASSIGN_PRIVILEGE routine. It may then use the
MAKE_REQUEST routine to get back the privilege, for a pending request at this node.

Message Overtaking

This algorithm does away with the use of sequence numbers because of its inherent operation. The
algorithm works such that message flow between any two neighboring nodes sticks to a logical
pattern as shown in the Figure 9.21.

If at all message overtaking occurs between the nodes A and B,it can occur when a PRIVI-
LEGE message is sent from node A to node B, which is then very closely followed by a REQUEST
message from node A to node B. In other words, node A sends the privilege and immediately wants
it back. Such message overtaking as described above will notaffect the operation of the algorithm.
If node B receives the REQUEST message from node A before receiving the PRIVILEGE message
from node A, A’s request will be queued in REQUEST_QB. Since B is not a privileged node, it
will not be able to send a privilege to node A in reply. When node B receives the PRIVILEGE
message from A after receiving the REQUEST message, it couldenter the critical section or could
send a PRIVILEGE message to an immediate neighbor at the headof REQUEST_QB, which need
not be node A. So message overtaking does not affect the algorithm.

332

 <pattern repeats>

Node A <−−−− REQUEST −−−− Node B
Node A −−−− PRIVILEGE −−−−> Node B
Node A −−−− REQUEST −−−−> Node B
Node A <−−−− PRIVILEGE −−−− Node B

Figure 9.21: Logical pattern of message flow between neighboring nodes A and B

9.12.3 Correctness

The algorithm provides the following guarantees:

• Mutual exclusion is guaranteed

• Deadlock is impossible

• Starvation is impossible

Mutual Exclusion is Guaranteed

The algorithm ensures that at any instant of time, not more than one node holds the privilege, which
is a necessity for mutual exclusion. Whenever a node receives a PRIVILEGE message, it becomes
privileged. Similarly, whenever a node sends a PRIVILEGE message, it becomes unprivileged.
Between the instants one node becomes unprivileged and another node becomes privileged, there
is no privileged node. Thus, there is at most one privileged node at any point of time in the network.

Deadlock is Impossible

When the critical section is free, and one or more nodes want to enter the critical section but are
not able to do so, a deadlock may occur. This could happen due to any of the following scenarios:

1. The privilege cannot be transferred to a node because no node holds the privilege.

2. The node in possession of the privilege is unaware that there are other nodes requiring the
privilege.

333

3. The PRIVILEGE message does not reach the requesting unprivileged node.

None of the above three scenarios can occur in this algorithm, thus guarding against deadlocks.
The scenario 1 can never occur in this algorithm because we have assumed that nodes do not fail
and messages are not lost. There can never be a situation where REQUEST messages do not arrive
at the privileged node. The logical pattern established using HOLDER variables ensures that a
node that needs the privilege sends a REQUEST message eitherto a node holding the privilege or
to a node that has a path to a node holding the privilege. Thus scenario 2 can never occur in this
algorithm. The series of REQUEST messages are enqueued in the REQUEST_Qs of various nodes
such that the REQUEST_Qs of those nodes collectively provide a logical path for the tranfer of the
PRIVILEGE message from the privileged node to the requesting unprivileged nodes. So scenario
3 can never occur in this algorithm.

Starvation is Impossible

When a node A holds the privilege, and another node B requestsfor the privilege, the identity of
B or the id’s of proxy nodes for node B will be present in the REQUEST_Qs of various nodes
in the path connecting the requesting node to the currently privileged node. So depending upon
the position of the id of node B in those REQUEST_Qs, node B will sooner or later receive the
privilege. Thus once node B’s REQUEST message reaches the privileged node A, node B,is sure
to receive the privilege.

To better illustrate, let us consider Figure 9.20. Node B is the current holder of the privilege.
Suppose that node C is already at the head of REQUEST_QB. Assume that the REQUEST_Qs
of all other nodes are empty. Now if node E wants to enter the critical section, it will send a RE-
QUEST message to its immediate neighbor, node A. We will showthat node E does not starve.
Assume that B is executing the critical section by the time E’s REQUEST is propagated to node B.
At this instance, the REQUEST_Qs of E, A, and B will be as follows:

REQUEST_QE = self,
REQUEST_QA = E,
REQUEST_QB = C, A

When node B exits the critical section, it removes the node atthe head of REQUEST_QB, i.e.,
node C, and send the privilege to node C. Node B will then send aREQUEST to node C on behalf
of node A, which requested privilege on behalf of node E. After node C receives the privilege and
completes executing the critical section, the REQUEST_Qs of nodes C, B, A, and E will look as
follows:

REQUEST_QC = B,
REQUEST_QB = A,
REQUEST_QA = E,

334

REQUEST_QE = self

Now, the next node to receive the privilege will be node E, a fact that is represented by the logi-
cal path “BAE” that the REQUEST_Qs of nodes C, B, and A form. Since node B had requested
privilege on behalf of node A, and node A on behalf of node E, the PRIVILEGE ultimately gets
propagated to node E. Thus, a node never starves.

9.12.4 Cost and Performance Analysis

The algorithm exhibits the following worst-case cost: (2 * longest path length of the tree) messages
per critical section entry. This happens when the privilegeis to be passed between nodes at either
ends of the longest path of the minimal spanning tree. Thus the worst possible network topology
for this algorithm will be one where all nodes are arranged ina straight line. In a straight line
the longest path length will be N – 1, and thus the algorithm will exchange 2 * (N – 1) messages
per CS execution. However, if all nodes generate equal number of REQUEST messages for the
privilege, the average number of messages needed per critical section entry will be approximately
2N/3 because the average distance between a requesting nodeand a privileged node is (N + 1)/3.

The best topology for the algorithm is the radiating star topology. The worst case cost of this
algorithm for this topology is O(logK−1N). Even among radiating star topologies, trees with higher
fan-outs are preferred. The longest path length of such trees is typically O(log N). Thus, on an
average, this algorithm involves the exchange of O(log N) messages per critical section execution.

When under heavy load, the algorithm exhibits an interesting property. “As the number of
nodes requesting for the privilege increases, the number ofmessages exchanged per critical section
entry decreases.” In fact, it requires the exchange of only four messages per CS execution as
explained below.

When all nodes are sending privilege requests, PRIVILEGE messages travel along all N – 1
edges of the minimal spanning tree exactly twice to give the privilege to all N nodes. Each of these
PRIVILEGE messages travel in response to a REQUEST message.Thus, a total of 4 * (N – 1)
messages travel across the minimal spanning tree. Hence, the total number of messages exchanged
per critical section execution is 4(N-1)/N, which is approximately 4.

9.12.5 Algorithm Initialization

Algorithm initialization begins with one node being chosenas the privileged node. This node then
sends INITIALIZE messages to its immediate neighbors. On receiving the INITIALIZE message,
a node sets its HOLDER variable to the node that sent the INITIALIZE message, and send INI-
TIALIZE messages to its own immediate neighbors. Once INITIALIZE message is received, a
node can start making privilege requests even if the entire tree is not initialized.

The initialization of the following variables is the same atall nodes:
USING:= false

335

ASKED:= false
REQUEST_Q := empty.

9.12.6 Node Failures and Recovery

If a node fails, lost information can be reconstructed on restart. Once a node restarts, it enters
into a recovery phase and selects a delay period for the recovery phase in order to get back all the
lost information. It sends RESTART messages to its immediate neighbors and waits for ADVISE
messages. During the recovery phase, the node can still receive REQUEST and PRIVILEGE
messages; it acts as any normal node would act in response to those messages except that AS-
SIGN_PRIVILEGE and MAKE_REQUEST routines are not executed.

The ADVISE message that a recovering node A receives from each immediate neighbor B will
contain information on the HOLDER, ASKED, and REQUEST_Q variables of B, from which A
can reconstruct its own HOLDER, ASKED, and REQUEST_Q variables.

For example, if HOLDERB = A for all immediate neighbors B of node A, it means node A
holds the privilege, and hence HOLDERA = self. Similar reasoning can be applied to determine
value of ASKEDA and the elements of REQUEST_QA. REQUEST_QA can be reconstructed but
the elements may not be in proper order. To ensure proper order, the ADVISE messages could
provide real or logical timestamps for its REQUEST messages. USINGA can be set to false.

The recovering node’s REQUEST_Q can have duplicates if it processes REQUEST messages
sent currently and the ones it receives in the ADVISE messages. However, this does not affect
the working of the algorithm as long as the REQUEST_Q is largeenough to accommodate such
situations. A node can also possibly fail when recovering from an earlier failure. In such a case,
ASSIST messages related to the first recovery phase can be identified by making use of the delay
chosen for recovery or unique identifiers, and those messages can be discarded.

9.13 Bibliographic Notes

Singhal gives a taxonomy on distributed mutual exclusion in[24]. Raynal presents a survey of
mutual exclusion algorithms in n [20]. A large number of token-based mutual exclusion algorithms
have appeared in last several years, e.g., mutual exclusionalgorithms by Ahamad and Bernabeu [2],
Helary et al. [10], Naimi and Trehel [15], Chang-Singhal-Liu [6], and Neilsen and Mizuno [16]. In
[23], Saxena and Rai present a survey of permission-based distributed mutual exclusion algorithms.

Nishio et al. [18] presented a technique for generation of unique token in case of a token loss.
A dynamic heuristic-based token mutual exclusion algorithm is given in [27]. Snepscheut [31]
extended tree-based algorithms to handle a connected network of any topology (i.e., graphs). Due
to network topology, such algorithm is fault-tolerant to site and link failures. Chang-Singhal-Liu
[7] present a fault-tolerant mutual exclusion algorithm. Goscinski [8] has presented two mutual ex-
clusion algorithms for real-time distributed systems. Coterie based mutual exclusion algorithms,
which are a generalization of Maekawa’s

√
N algorithm, have lately attracted considerable at-

336

tention. Barbara and Garcia-Molina [9] and Ibaraki and Kameda [11] have discussed theoretical
aspects of coteries. Cao and Singhal developed a delay optimal coterie-based mutual exclusion
algorithm [5].

Sanders [22] gave the concept of information structures to develop a generalized mutual exclu-
sion algorithm.

9.14 Exercise Problems

1. Consider the following simple method to enforce mutual exclusion: All sites are arranged
in a logical ring fashion and a unique token circulates around the ring hopping from a site
to another site. When a site needs to executes its CS, it waitsfor the token, grabs the token,
executes the CS, and then dispatches the token to the next site on the ring. If a site does
not nned the token on its arrival, it immediately dispatchesthe token to the next site (in zero
time).

(i) What is the reponse time when the load is low?

(ii) What is the reponse time when the load is heavy?

Assume there are N sites, the message/token delay is T, and CSaxecution time is E.

2. In Lamport’s algorithm Condition L1 can hold concurrently at several sites. Then why do
we need this condition for guaranteeing mutual exclusion.

3. Show that in Lamport’s algorithm if a siteSi is executing the critical section, thenSi’s
request need not be at the top of therequest_queue at another siteSj. Is this still true when
there are no messages in transit?

4. What is the purpose of a REPLY message in Lamport’s algorithm? Note that it is not neces-
sary that a site must always return a REPLY message in response to a REQUEST message.
State the condition under which a site does not have to returnREPLY message. Also, give
the new message complexity per critical section execution in this case.

5. Show that in Ricart-Agrawala algorithm the critical section is accessed in the increasing
order of timestamps. Does the same hold in Maekawa’s algorithm?

6. Mutual exclusion can be achieved using the following simple method in a distributed system
(called the “centralized" mutual exclusion algorithm):

To access the shared resource, a site sends the request to thesite that contains the re-
source. This site executes the requests using any classicalmethods for mutual exclusion (like
semaphores). Discuss what prompted Lamport’s mutual exclusion algorithm even though it
requires many more messages (3(N − 1) as compared to only 3).

337

7. Show that in Lamport’s algorithm the critical section is accessed in the increasing order of
timestamps.

8. Show by examples that the staircase configuration among sites is preserved in Singhal’s
dynamic mutual exclusion algorithm when two or more sites request the CS concurrently
and have executed the CSs.

338

Bibliography

[1] D.Agrawal and A.E. Abadi,An efficient solution to the distributed Mutual Exclusion problem,
Proc. ACM Symp. Principles Distributed Comput. (PODC’89)

[2] Bernabeu-Auban, J. M., and M. Ahamad, “Applying a Path-compression Technique to Obtain
an Effective Distributed Mutual Exclusion Algorithm”,Proc. of 3rd International Workshop
on Distributed Algorithms, Sept. 1989.

[3] Buckley, G, and A. Silberschatz, “ A Failure Tolerant Centralized Mutual Exclusion Algo-
rithm”, Proc. of the 4th International Conference on Distributed Computing Systems, May
1984.

[4] Carvalho, O. S. F., and G. Roucairol, “On Mutual Exclusion in Real-Time Distributed Com-
puting Systems, Technical Correspondence", Communications of the ACM, Feb 1983.

[5] G. Cao and M. Singhal, “A Delay-Optimal Quorum-Based Mutual Exclusion Algorithm for
Distributed Systems",IEEE Transactions on Parallel and Distributed Systems, Vol 12, No. 12,
pp. 1256-1268, Dec. 2001.

[6] Y. Chang, M. Singhal, and Mike Liu, “A Dynamic Token-Based Distributed Mutual Exclusion
Algorithm”, in the Proc. of the 10th IEEE International Phoenix Conference on Computer and
Communications, March 1991, pp. 240-246.

[7] Y. Chang, M. Singhal, and Mike Liu, “A Fault-Tolerant Mutual Exclusion Algorithm for Dis-
tributed Systems”, in the Proc. of the 9th Symposium on Reliable Distributed Software and
Systems, October 1990, pp. 146-154.

[8] A. Goscinski, “Two Algorithms for Mutual Exclusion in Real-Time Distributed Computing
Systems”, Journal of Parallel and Distributed Computing, Vol. 9, 1990.

[9] Garcia-Molina, H., and D. Barbara, “How to Assign Votes in a Distributed System”, Journal
of the ACM, 1985.

[10] Helary M, Plouzeau N, and Raynal M, A Distributed algorithm for mutual exclusion in an
arbitrary network, Comput. J. 31, 4(1988).

339

[11] Ibaraki, T., and T. kameda, “Theory of Coteries”, Technical Report, CSS/LCCR TR90-09,
University of Kyoto, Kyoto, Japan, 1990.

[12] Lamport, L., “Time, Clocks and Ordering of Events in Distributed Systems”, Communica-
tions of the ACM, July 1978.

[13] Sandeep Lodha and Ajay Kshemkalyani, A Fair Distributed Mutual Exclusion Algorithm,
IEEE Transactions on Parallel and Distributed Systems, Volume 11 , Issue 6 (June 2000),
Pages: 537 - 549.

[14] Maekawa, M., “AsqrtN Algorithm for Mutual Exclusion in Decentralized Systems”,ACM
Transactions on Computer Systems, May 1995.

[15] Naimi, M., and M. Trehel, “An Improvement of thelogN Distributed Algorithm for Mutual
Exclusion”, Proc. of the 7th International Conference on Distributed Computing Systems”,
Sept. 23-25, 1987.

[16] Neilsen M. L., and M. Mizuno, “A DAG-Based Algorithm forDistributed Mutual Exclusion,
“ Proc. of the 11th International Conference on DistributedComputing Systems, May 21-23,
1991.

[17] Mikhail Nesterenko and Masaaki Mizuno, A Quorum-BasedSelf-Stabilizing Distributed Mu-
tual Exclusion Algorithm, Journal of Parallel and Distributed Computing, Volume 62, Issue 2
, February 2002, Pages 284-305.

[18] Nishio, S., K. F. Li, and E. G. Manning, “ A Resilient Mutual Exclusion Algorithm for
Computer Networks”, IEEE Trans. on Parallel and Distributed Systems, July 1990.

[19] Raymond, K., “ Tree-Based Algorithm for Distributed Mutual Exclusion”, ACM Transac-
tions on Computer Systems, vol. 7, Feb. 1989, pp. 61-77.

[20] Raynal, M., “ A Simple Taxonomy of Distributed Mutual Exclusion Algorithms”, Operating
Systems Review. April 1991.

[21] G.Ricart and A.K.Agrawala, An optimal algorithm for Mutual Exclusion in Computer Net-
works, Communications of the ACM, 1981

[22] Sanders, B., “The information Structure of Distributed Mutual Exclusion Algorithms”, ACM
Trans. on Computer Systems, Aug. 1987.

[23] P. C. Saxena and J. Rai, A survey of permission-based distributed mutual exclusion algo-
rithms, Computer Standards & Interfaces, Volume 25, Issue 2, May 2003, Pages 159-181.

[24] M. Singhal, “A Taxonomy of Distributed Mutual Exclusion”, Journal on Parallel and Dis-
tributed Computing, May 1993, Vol 18 no. 1, pp. 94-101.

340

[25] Mukesh Singhal,A Dynamic Information-Structure Mutual Exclusion Algorithm for Dis-
tributed Systems, IEEE Transactions on Parallel and Distributed Systems, Vol. 3, No. 1, Jan
1992.

[26] Mukesh Singhal, “A Class of Deadlock-Free Maekawa TypeMutual Exclusion Algorithms
for Distributed Systems”,Distributed Computing, February 1991, Vol 4, No 3, pp. 131-138.

[27] Mukesh Singhal, “A Heuristically-Aided Algorithm forMutual Exclusion in Distributed Sys-
tems”,IEEE Transactions on Computers, May 1989, Vol 38, No. 5, pp. 651-662.

[28] Mukesh Singhal, “A Dynamic Information Structure Mutual Exclusion Algorithm for Dis-
tributed Systems”, in the Proceedings of the 9th International Conference on Distributed Com-
puting Systems, June 5-9, 1989, Newport Beach, CA, pp. 70-78.

[29] Mukesh Singhal, A Dynamic Information-Structure Mutual Exclusion Algorithm for Dis-
tributed Systems, IEEE Transactions on Parallel and Distributed Systems, Vol. 3, No. 1, Jan
1992

[30] Suzuki, I., and T. Kasami, “A Distributed Mutual Exclusion Algorithm”, ACM Trans. on
Computer Systems, Nov, 1985.

[31] Vas de Snepscheut, J. L. A., “Fair Mutual Exclusion on a Graph of Processes”, Distributed
Computing, vol. 2, Aug. 1987, pp. 113-115.

[32] R.H Thomas, A majority consensus approach to concurrency control for multiple copy
databases, ACM Transaction on Database Systems, 1979.

341

Chapter 10

Deadlock Detection in Distributed Systems

10.1 Introduction

Deadlocks is a fundamental problem in distributed systems and deadlock detection in distributed
systems has received considerable attention in the past. Indistributed systems, a process may re-
quest resources in any order, which may not be known a priori and a process can request resource
while holding others. If the sequence of the allocations of resources to the processes is not con-
trolled in such environments, deadlocks can occur. A deadlock can be defined as a condition where
a set of processes request resources that are held by other processes in the set.

Deadlock deals with various components like deadlock prevention, deadlock avoidance other
then deadlock detection. Deadlock prevention is commonly achieved by either having a process
acquire all the needed resources simultaneously before it begins execution or by preempting a
process that hold the needed resource. In the deadlock avoidance approach to distributed system, a
resource is granted to a process if the resulting global system is safe. Deadlock detection requires
an examination of the status of the process-resources interaction for the presence of a deadlock
condition. To resolve the deadlock, we have to abort a deadlocked process.

In this chapter, we study several distributed deadlock detection techniques based on various
strategies.

10.2 System Model

A distributed system consists of a set of processors that areconnected by a communication net-
work. The communication delay is finite but unpredictable. Adistributed program is composed
of a set of n asynchronous processes p1, p2, . . . , pi, . . . , pn that communicates by message pass-
ing over the communication network. Without loss of generality we assume that each process is
running on a different processor. The processors do not share a common global memory and com-
municate solely by passing messages over the communicationnetwork. There is no physical global
clock in the system to which processes have instantaneous access. The communication medium
may deliver messages out of order, messages may be lost garbled or duplicated due to timeout and

342

retransmission, processors may fail and communication links may go down. The system can be
modeled as a directed graph in which vertices represent the processes and edge represent unidirec-
tional communication channels.

We make the following assumptions:

• The systems have only reusable resources.

• Processes are allowed to make only exclusive access to resources.

• There is only one copy of each resource.

A process can be in two states:running or blocked. In the running state (also calledactive
state), a process has all the needed resources and is either executing or is ready for execution. In
the blocked state, a process is waiting to acquire some resource.

10.2.1 Wait-For-Graph (WFG)

In distributed systems, the state of the system can be modeled by directed graph, called await for
graph(WFG). In a WFG , nodes are processes and there is a directed edge from node P1 to mode
P2 if P1 is blocked and is waiting for P2 to release some resource. A system is deadlocked if and
only if there exists a directed cycle or knot in the WFG.

Figure 10.1 shows a WFG, where process P11 of site 1 has an edge to process P21 of site 1
and P32 of site 2 is waiting for a resource which is currently held by process P21. At the same
time process P32 is waiting on process P33 to release a resource. If P21 is waiting on process P11,
then processes P11, P32 and P21 form a cycle and all the four processes are involved in a deadlock
depending upon the request model.

10.3 Preliminaries

10.3.1 Deadlock Handling Strategies

There are three strategies for handling deadlocks, viz., deadlock prevention, deadlock avoidance,
and deadlock detection. Handling of deadlock becomes highly complicated in distributed systems
because no site has accurate knowledge of the current state of the system and because every inter-
site communication involves a finite and unpredictable delay. Deadlock prevention is commonly
achieved either by having a process acquire all the needed resources simultaneously before it begins
executing or by preempting a process which holds the needed resource. This approach is highly
inefficient and impractical in distributed systems.

In deadlock avoidance approach to distributed systems, a resource is granted to a process if the
resulting global system state is safe (note that a global state includes all the processes and resources
of the distributed system). However, due to several problems, deadlock avoidance is impractical in
distributed systems.

343

Deadlock detection requires examination of the status of process-resource interactions for pres-
ence of cyclic wait. Deadlock detection in distributed systems seems to be the best approach to
handle deadlocks in distributed systems. In this chapter, we limit the discussion to deadlock detec-
tion techniques in distributed systems.

10.3.2 Issues in Deadlock Detection

Deadlock handling using the approach of deadlock detectionentails addressing two basic issues:
First, detection of existing deadlocks and second resolution of detected deadlocks.

Detection of Deadlocks

Detection of deadlocks involves addressing two issues: maintenance of the WFG and searching
of the WFG for the presence of cycles (or knots). Since in distributed systems, a cycle or knot
may involve several sites, the search for cycles greatly depends upon how the WFG of the system
is represented across the system. Depending upon the way WFGinformation is maintained and
search for cycles is carried out, there are centralized, distributed, and hierarchical algorithms for
deadlock detection in distributed systems [44].

Correctness Criteria: A deadlock detection algorithm must satisfy the following two conditions:

(i) Progress (No undetected deadlocks):The algorithm must detect all existing deadlocks in fi-
nite time. Once a deadlock has occurred, the deadlock detection activity should continuously
progress until the deadlock is detected. In other words, after all wait-for dependencies for a
deadlock have formed, the algorithm should not wait for any more events to occur to detect
the deadlock.

(ii) Safety (No false deadlocks):The algorithm should not report deadlocks which do not exist
(calledphantom or falsedeadlocks). In distributed systems where there is no globalmemory
and there is no global clock, it is difficult to design a correct deadlock detection algorithm
because sites may obtain out of date and inconsistent WFG of the system. As a result, sites
may detect a cycle which never existed but whose different segments existed in the system
at different times. This is the main reason why many deadlockdetection algorithms reported
in the literature are incorrect.

Resolution of a Detected Deadlock

Deadlock resolution involves breaking existing wait-for dependencies between the processes to
resolve the deadlock. It involves rolling back one or more deadlocked processes and assigning
their resources to blocked processes so that they can resumeexecution. Note that several deadlock
detection algorithms propagate information regarding wait-for dependencies along the edges of

344

P11

P21

P32

P54

P24P44

P33

site 1 site 2

site 4

site 3

Figure 10.1: Example of a WFG

the wait-for graph. Therefore, when a wait-for dependency is broken, the corresponding informa-
tion should be immediately cleaned from the system. If this information is not cleaned in timely
manner, it may result in detection of phantom deadlocks. Untimely and inappropriate cleaning of
broken wait-for dependencies is the main reason why many deadlock detection algorithms reported
in the literature are incorrect.

10.4 Models of Deadlocks

Distributed systems allow many kinds of resource requests.A process might require a single
resource or a combination of resources for its execution. This section introduces a hierarchy of
request models starting with very restricted forms to the ones with no restrictions whatsoever. This
hierarchy shall be used to classify deadlock detection algorithms based on the complexity of the
resource requests they permit.

10.4.1 The Single Resource Model

The single resource model is the simplest resource model in adistributed system, where a process
can have at most one outstanding request for only one unit of aresource. Since the maximum
out-degree of a node in a WFG for the single resource model canbe 1, the presence of a cycle in
the WFG shall indicate that there is a deadlock. In a later section, an algorithm to detect deadlock
in the single resource model is presented.

345

10.4.2 The AND Model

In the AND model, a process can request for more than one resource simultaneously and the
request is satisfied only after all the requested resources are granted to the process. The requested
resources may exist at different locations. The out degree of a node in the WFG for AND model
can be more than 1. The presence of a cycle in the WFG indicatesa deadlock in the AND model.
Each node of the WFG in such a model is called an AND node.

Consider the example WFG described in the Figure 10.1. Process P11 has two outstanding
resource requests. In case of the AND model, P11shall become active from idle state only after
both the resources are granted. There is a cycle P11->P21->P24->P54->P11 which corresponds to a
deadlock situation.

In the AND model, if a cycle is detected in the WFG, it implies adeadlock but not vice versa.
That is, a process may not be a part of a cycle, it can still be deadlocked. Consider process P44

in Figure 10.1. It is not a part of any cycle but is still deadlocked as it is dependent on P24which
is deadlocked. Since in the single-resource model, a process can have at most one outstanding
request, the AND model is more general than the single-resource model.

10.4.3 The OR Model

In the OR model, a process can make a request for numerous resources simultaneously and the
request is satisfied if any one of the requested resources is granted. The requested resources may
exist at different locations. If all requests in the WFG are OR requests, then the nodes are called
OR nodes. Presence of a cycle in the WFG of an OR model does not imply a deadlock in the OR
model. To make it more clear, consider Figure 10.1. If all nodes are OR nodes, then process P11

is not deadlocked because once process P33 releases its resources, P32 shall become active as one
of its requests is satisfied. After P32 finishes execution and releases its resources, process P11 can
continue with its processing.

In the OR model, the presence of a knot indicates a deadlock [20]. In a WFG, a vertex v is in
a knot if for all u:: u is reachable from v: v is reachable from u. No paths originating from a knot
shall have dead ends.

A deadlock in the OR model can be intuitively defined as follows [6]: A process Pi is blocked
if it has a pending OR request to be satisfied. With every blocked process, there is an associated
set of processes called dependent set. A process shall move from idle to activestate on receiving a
grant message from any of the processes in its dependent set.A process is permanently blocked if
it never receives a grant message from any of the processes inits dependent set. Intuitively, a set
of processes S is deadlocked if all the processes in S are permanently blocked. To formally state
that a set of processes is deadlocked, the following conditions hold true:

1. Each of the process is the set S is blocked,

2. The dependent set for each process in S is a subset of S, and

3. No grant message is in transit between any two processes inset S.

346

We now show that a set of processes S shall remain permanentlyblocked in the OR model if
the above conditions are met. A blocked process P is the set S becomesactiveonly after receiving
a grant message from a process in its dependent set, which is asubset of S. Note that no grant
message can be expected from any process in S because they areall blocked. Also, the third
condition states that no grant messages in transit between any two processes in set S. So, all the
processes in set S are permanently blocked.

Hence, deadlock detection in the OR model is equivalent to finding knots in the graph. Note
that, there can be a process deadlocked which is not a part of aknot. Consider the Figure 10.1
where P44 can be deadlocked even though it is not in a knot. So, in an OR model, a blocked
process P is deadlocked if it is either in a knot or it can only reach processes on a knot.

10.4.4 The AND-OR Model

A generalization of the previous two models (OR model and ANDmodel) is the AND-OR model.
In the AND-OR model, a request may specify any combination ofand and or in the resource
request. For example, in the AND-OR model, a request for multiple resources can be of the form
x and (y or z). The requested resources may exist at different locations. To detect the presence
of deadlocks in such a model, there is no familiar construct of graph theory using WFG. Since a
deadlock is a stable property (i.e., once it exists, it does not go away by itself), this property can be
exploited and a deadlock in the AND-OR model can be detected by repeated application of the test
for OR-model deadlock. However, this is a very inefficient strategy. Efficient algorithms to detect
deadlocks in AND-OR model are discussed in Herman [17].

10.4.5 The
(

p
q

)

Model

Another form of the AND-OR model is the
(

p
q

)

model (called the P-out-of-Q model) which allows
a request to obtain any k available resources from a pool of n resources. Both the models are the
same in expressive power. However,

(

p
q

)

model lends itself to a much more compact formation of
a request.

Every request in the
(

p
q

)

model can be expressed in the AND-OR model and vice-versa. Note
that AND requests for p resources can be stated as

(

p
p

)

and OR requests for p resources can be

stated as
(p

1

)

.

10.4.6 Unrestricted Model

In the unrestricted model, no assumptions are made regarding the underlying structure of resource
requests. In this model, only one assumption that the deadlock is stable is made and hence it is the
most general model. This way of looking at the deadlock problem helps in separation of concerns:
Concerns about properties of the problem (stability and deadlock) are separated from underly-
ing distributed systems computations (e.g., message passing versus synchronous communication).
Hence, these algorithms can be used to detect other stable properties as they deal with this general

347

model. But, these algorithms are of more theoretical value for distributed systems since no fur-
ther assumptions are made about the underlying distributedsystems computations which leads to
a great deal of overhead (which can be avoided in simpler models like AND or OR models).

10.5 Knapp’s Classification of Distributed Deadlock Detection
Algorithms

Distributed deadlock detection algorithms can be divided into four classes [23]: path-pushing,
edge-chasing, diffusion computation, and global state detection.

10.5.1 Path-Pushing Algorithms

In path-pushing algorithms, distributed deadlocks are detected by maintaining an explicit global
WFG. The basic idea is to build a global WFG for each site of thedistributed system. In this class
of algorithms, at each site whenever deadlock computation is performed, it sends its local WFG to
all the neighboring sites. After the local data structure ofeach site is updated, this updated WFG
is then passed along to other sites, and the procedure is repeated until some site has a sufficiently
complete picture of the global state to announce deadlock orto establish that no deadlocks are
present. This feature of sending around the paths of global WFG has led to the term path-pushing
algorithms.

Examples of such algorithms are Menasce-Muntz [34], Gligorand Shattuck [12], Ho and
Ramamoorthy [19] and Obermarck [39].

10.5.2 Edge-Chasing Algorithms

In an edge-chasing algorithm, the presence of a cycle in a distributed graph structure is be verified
by propagating special messages called probes, along the edges of the graph. These probe mes-
sages are different than the request and reply messages. Theformation of cycle can be deleted by
a site if it receives the matching probe sent by it previously.

Whenever a process that is executing receives a probe message, it simply discards this message
and continues. Only blocked processes propagate probe messages along their outgoing edges. An
interesting variation of this method can be found in Mitchell [36], where probes are sent upon
request and in the opposite direction of the edges.

Main advantage of edge-chasing algorithms is that probes are fixed size messages which is
normally very short. Examples of such algorithms include Chandy et al. [6], Choudhary et al. [7],
Kshemkalyani-Singhal [28], and Sinha-Natarajan [43] algorithms.

10.5.3 Diffusing Computations Based Algorithms

In diffusion computationbased distributed deadlock detection algorithms, deadlock detection com-
putation is diffused through the WFG of the system. These algorithms make use of echo algorithms

348

to detect deadlocks [5]. This computation is superimposed on the underlying distributed compu-
tation. If this computation terminates, the initiator declares a deadlock. The main feature of the
superimposed computation is that the global WFG is implicitly reflected in the structure of the
computation. The actual WFG is never built explicitly.

To detect a deadlock, a process sends out query messages along all the outgoing edges in the
WFG. These queries are successively propagated (i.e., diffused) through the edges of the WFG.
Queries are discarded by a running process and are echoed back by blocked processes in the
following way: When a blocked process receives first query message for a particular deadlock
detection initiation, it does not send a reply message untilit has received a reply message for
every query it sent (to its successors in the WFG). For all subsequent queries for this deadlock
detection initiation, it immediately sends back a reply message. The initiator of a deadlock detec-
tion detects a deadlock when it receives reply for every query it had sent out. Examples of these
types of deadlock detection algorithms are Chandy-Misra-Haas algorithm for OR model [6] and
Chandy-Herman algorithm [17].

10.5.4 Global State Detection Based Algorithms

Global state detection based deadlock detection algorithms exploit the following facts: (i) A consis-
tent snapshot of a distributed system can be obtained without freezing the underlying computation
and (ii) a consistent snapshot may not represent the system state at any moment in time, but if a
stable property holds in the system before the snapshot collection is initiated, this property will
still hold in the snapshot.

Therefore, distributed deadlocks can be detected by takinga snapshot of the system and exam-
ining it for the condition of a deadlock. Examples of these types of algorithms include Bracha-
Toueg [2], Wang et al. [46], and Kshemkalyani-Singhal [27] algorithms.

10.6 Mitchell and Merritt’s Algorithm for the Single-Resource
Model

Mitchell and Merritt’s algorithm belongs to the class of edge-chasing algorithms where probes are
sent in opposite direction of the edges of WFG. When a probe initiated by a process comes back
to it, the process declares deadlock. The algorithm has manygood features like:

1. Only one process in a cycle detects the deadlock. This simplifies the deadlock resolution –
this process can abort itself to resolve the deadlock. This algorithm can be improvised by
including priorities and the lowest priority process in a cycle detects deadlock and aborts.

2. In this algorithm process which is detected in deadlock isaborted spontaneously, even though
under this assumption phantom deadlocks cannot be excluded. It can be shown, however,
that only genuine deadlocks will be detected in the absence of spontaneous aborts.

349

Activate

Transmit

Block

u z

z

v v

vu

u

u v

u < v

z

z

Detect

u vv

Figure 10.2: The four possible state transitions

Each node of the WFG has two local variables, called labels: aprivate label, which is unique
to the node at all times, though it is not constant, and a public label, which can be read by other
processes and which may not be unique. Each process is represented as u/v where u and u are
the public and private labels, respectively. Initially, private and public labels are equal for each
process.

A global WFG is maintained and it defines the entire state of the system.The Algorithm is
defined by the four state transitions shown in Figure 10.2, where z = inc(u, v), and inc(u, v) yields
a unique label greater than both u and v labels that are not shown do not change. Block creates
an edge in the WFG. Two messages are needed, one resource request and one message back to the
blocked process to inform it of the public label of the process it is waiting for. Activate denotes that
a process has acquired the resource from the process it was waiting for. Transmit propagates larger
labels in the opposite direction of the edges by sending a probe message. Whenever a process
receives a probe which is less then its public label, then it simply ignores that probe. Detect means
that the probe with the private label of some process has returned to it, indicating a deadlock.

Mitchell and Merritt showed that every deadlock is detected. Next, we show that in the absence
of spontaneous aborts, only genuine deadlocks are detected. As there are no spontaneous aborts,
we have following invariant:

For all processes u/v: u <= v

Proof. Initially u = u for all processes. The only requests that change u or v are

350

(1) Block: u and v are set such that u = v.
(2) Transmit: u is increased.
Hence, the invariant.

From the previous invariant, we have the following lemmas.

Lemma 12. For any process u/v, if u > u, then u was set by a Transmit step.

Theorem 13. If a deadlock is detected, a cycle of blocked nodes exists.

Proof. A deadlock is detected if the following edge p→ p’ exists:

u u

u

We will prove the following claims:
(1) u has been propagated from p to p’ via a sequence of Transmits.
(2) P has been continuously blocked since it transmitted u.
(3) All intermediate nodes in the transmit path of (l), including p’, have been continuously

blocked since they transmitted u.
From the above claims, the proof for the theorem follows as discussed below:
From the invariant and the uniqueness of private label u of p’: u < v. By Lemma 4.1, u was

set by a Transmit step. From the semantics of Transmit, thereis some p” with private label u
and public label w. If w = u, then p” = p, and it is a success. Otherwise, if w <u, we repeat the
argument. Since there are only processes, one of them is p. Ifp is active then it indicates that it
has transmitted u else it is blocked if it detects deadlock. Hence upon blocking it incremented its
private label. But then private and public labels cannot be equal. Consider a process which has
been active since it transmitted u. Clearly, its predecessor is also active, as Transmits migrate in
opposite direction. By repeating this argument, we can showp has been active since it transmitted
u.

The above algorithm can be easily extended to include priorities where whenever a deadlock
occurs, the lowest priority process gets aborted. This algorithm has two phases. The first phase is
almost identical to the algorithm. In the second phase the smallest priority is propagated around
the circle, The propagation stops when one process recognizes the propagated priority as its own.

Message Complexity

Now we calculate the complexity of the algorithm. If we assume that a deadlock persists long
enough to be detected, the worst-case complexity of the algorithm is s(s - 1)/2 Transmit steps,
where s is the number of processes in the cycle.

351

10.7 Chandy-Misra-Haas Algorithm for the AND Model

We now discuss Chandy-Misra-Haas’s distributed deadlock detection algorithm for AND model
[6] that is based on edge-chasing.

The algorithm uses a special message calledprobe, which is a triplet (i, j, k), denoting that it
belongs to a deadlock detection initiated for processPi and it is being sent by the home site of
processPj to the home site of processPk. A probe message travels along the edges of the global
WFG graph, and a deadlock is detected when a probe message returns to the process that initiated
it.

A processPj is said to bedependenton another processPk if there exists a sequence of pro-
cessesPj , Pi1, Pi2, ..., Pim, Pk such that each process exceptPk in the sequence is blocked and
each process, except thePj, holds a resource for which the previous process in the sequence is
waiting. ProcessPj is said to belocally dependentupon processPk if Pj is dependent uponPk

and both the processes are on the same site.

Data Structures

Each processPi maintains a boolean array,dependenti, wheredependenti(j) is true only if Pi

knows thatPj is dependent on it. Initially,dependenti(j) is false for all i and j.

The Algorithm

The following algorithm is executed to determine if a blocked process is deadlocked:
if Pi is locally dependent on itself

then declare a deadlock
else for allPj andPk such that

(a)Pi is locally dependent uponPj , and
(b) Pj is waiting onPk, and
(c) Pj andPk are on different sites,

send a probe (i, j, k) to the home site ofPk

On the receipt of a probe (i, j, k), the site takes
the following actions:

if
(d) Pk is blocked, and
(e)dependentk(i) is false, and
(f) Pk has not replied to all requestsPj,
then

begin

352

dependentk(i) = true;
if k=i

then declare thatPi is deadlocked
else for allPm andPn such that

(a’) Pk is locally dependent uponPm, and
(b’) Pm is waiting onPn, and
(c’) Pm andPn are on different sites,
send a probe (i, m, n) to the home site ofPn

end.

Therefore, a probe message is continuously circulated along the edges of the global WFG graph
and a deadlock is detected when a probe message returns to itsinitiating process.

Performance Analysis

In the algorithm, one probe message (per deadlock detectioninitiation) is sent on every edge of the
WFG which that two sites. Thus, the algorithm exchanges at mostm(n − 1)/2 messages to detect
a deadlock that involvesm processes and that spans overn sites. The size of messages is fixed and
is very small (only 3 integer words). Delay in detecting a deadlock is O(n).

10.8 Chandy-Misra-Haas Algorithm for the OR Model

We now discuss Chandy-Misra-Haas distributed deadlock detection algorithm for OR model [6]
that is based on the approach of diffusion-computation.

A blocked process determines if it is deadlocked by initiating a diffusion computation. Two
types of messages are used in a diffusion computation: query(i, j, k) and reply(i, j, k), denoting that
they belong to a diffusion computation initiated by a process Pi and are being sent from process
Pj to processPk.

Basic Idea

A blocked process initiates deadlock detection by sending query messages to all processes in its
dependent set (i.e., processes from which it is waiting to receive a message). If an active process
receives a query or reply message, it discards it. When a blocked processPk receives a query(i, j,
k) message, it takes the following actions:

1. If this is the first query message received byPk for the deadlock detection initiated byPi

(called theengaging query), then it propagates the query to all the processes in its dependent
set and sets a local variablenumk(i) to the number of query messages sent.

353

2. If this is not the engaging query, thenPk returns a reply message to it immediately pro-
videdPk has been continuously blocked since it received the corresponding engaging query.
Otherwise, it discards the query.

ProcessPk maintains a boolean variablewaitk(i) that denotes the fact that it has been continu-
ously blocked since it received the last engaging query fromprocessPi. When a blocked process
Pk receives a reply(i, j, k) message, it decrementsnumk(i) only if waitk(i) holds. A process sends
a reply message in response to an engaging query only after ithas received a reply to every query
message it had sent out for this engaging query.

The initiator process detects a deadlock when it receives reply messages to all the query mes-
sages it had sent out.

The Algorithm

The algorithm works as follows:
Initiate a diffusion computation for a blocked processPi:

send query(i, i, j) to all processesPj in the dependent setDSi of Pi;
numi(i):= |DSi|; waiti(i):= true;

When a blocked processPk receives a query(i, j, k):
if this is the engaging query for processPi

then send query(i, k, m) to allPm in its dependent setDSk;
numk(i):= |DSk|; waitk(i):= true
else ifwaitk(i) then send areply(i, k, j) to Pj.

When a processPk receives a reply(i, j, k):
if waitk(i)

then begin
numk(i):= numk(i) − 1;
if numk(i)= 0

then if i=k thendeclare a deadlock
else send reply(i, k, m) to the processPm

which sent the engaging query.

For ease of presentation, we assumed that only one diffusioncomputation is initiated for a
process. In practice, several diffusion computations may be initiated for a process (A diffusion
computation is initiated every time the process gets blocked), but, at any time only one diffusion
computation is current for any process. However, messages for outdated diffusion computations
may still be in transit. The current diffusion computation can be distinguished from outdated ones
by using sequence numbers.

354

Performance Analysis

For every deadlock detection, the algorithm exchanges e quesry messages and e reply messages,
where e=n(n-1) is the number of edges.

10.9 Kshemkalyani-Singhal Algorithm for P-out-of-Q Model

Kshemkalyani-Singhal algorithm [27] to detect deadlocks in the P-out-of-Q model (also called the
generalized distributed deadlocks) is based on the global state detection approach. Kshemkalyani-
Singhal algorithm [27] is a single phase algorithm, which consists of a fan-out sweep of messages
outwards from an initiator process and a fan-in sweep of messages inwards to the initiator process.
A sweepof a WFG is a traversal of the WFG in which all messages are sentin the direction
of the WFG edges (outward sweep) or all messages are sent against the direction of the WFG
edges (inward sweep). In the outward sweep, the algorithm records a snapshot of a distributed
WFG. In the inward sweep, the recorded distributed WFG is reduced to determine if the initiator is
deadlocked. Both the outward and the inward sweeps are executed concurrently in the algorithm.
Complications are introduced because the two sweeps can overlap in time at a process, i.e., the
reduction of the WFG at a process can begin before the WFG at that process has been completely
recorded. The algorithm deals with these complications.

System Model

The system hasn nodes, and every pair of nodes is connected by a logical channel. An event in
a computation can be an internal event, a message send event,or a message receive event. Events
are assigned timestamps using Lamport’s clocks [30].

The computation messages can be either REQUEST, REPLY or CANCEL messages. To ex-
ecute api-out-of-qi request, an active nodei sendsqi REQUESTs toqi other nodes and remains
blocked until it receives sufficient number of REPLY messages. When nodei blocks on nodej,
nodej becomes a successor of nodei and nodei becomes a predecessor of nodej in the WFG. A
REPLY message denotes the granting of a request. A nodei unblocks whenpi out of itsqi requests
have been granted. When a node unblocks, it sends CANCEL messages to withdraw the remaining
qi − pi requests it had sent.

Sending and receiving of REQUEST, REPLY, and CANCEL messages arecomputation events.
The sending and receiving of deadlock detection algorithm messages arealgorithmic or control
events.

Data Structures

A nodei has the following local variables:

waiti : boolean (:=false); /*records the current status.*/

355

ti : integer (:= 0); /*denotes the current time.*/

t_blocki : real; /*denotes the local time wheni blocked last.*/

in(i) : set of nodes whose requests are outstanding at nodei.

out(i) : set of nodes on which nodei is waiting.

pi : integer (:= 0); /*the number of replies required for unblocking.*/

wi : real (:= 1.0); /*keeps weight to detect the termination of the algorithm.*/

Computation Events

REQUEST_SEND(i)
/*Executed by nodei when it blocks on api-out-of-qi request.*/

For every nodej on whichi is blocked do
out(i) ← out(i)

⋃

{ j};
sendREQUEST(i) to j;

setpi to the number of replies needed;
t_blocki := ti;
waiti ← true;

REQUEST_RECEIVE(j)
/*Executed by nodei when it receives a request made byj */

in(i) ← in(i)
⋃{j}.

REPLY_SEND(j)
/*Executed by nodei when it replies to a request byj.*/

in(i) ← in(i) − {j};
sendREPLY(i) to j.

REPLY_RECEIVE(j)
/*Executed by nodei when it receives a reply from j to its request.*/

if valid reply for the current request
then begin
out(i) ← out(i) − {j};
pi ← pi − 1;
pi = 0→

{waiti ← false;
∀k ∈ out(i), sendCANCEL(i) to k;
out(i) ← ∅.}

356

end
CANCEL_RECEIVE(j)

/*Executed by nodei when it receives a cancel fromj.*/

if j ∈ in(i) thenin(i)← in(i) − {j}.

10.9.1 Informal Description of the Algorithm

When a nodeinit blocks on aP -out-of-Q request, it initiates the deadlock detection algorithm.
The algorithm records part a of the WFG that is reachable frominit (henceforth, called theinit’s
WFG) in a distributed snapshot [4]; the distributed snapshot includes only those dependency edges
and nodes that forminit’s WFG.

The distributed WFG is recorded using FLOOD messages in the outward sweep and recoeded
WFG is examined for deadlocks using ECHO messages in the inward sweep. To detect a deadlock,
the initiatorinit records its local state and sends FLOOD messages along all ofits outward depen-
dencies. When nodei receives the first FLOOD message along an existing inward dependency, it
records its local state. If nodei is blocked at this time, it sends out FLOOD messages along all
of its outward dependencies to continue the recording of theWFG in the outward sweep. If node
i is active at this time, (i.e., it does not have any outward dependencies and is a leaf node in the
WFG), then it initiates reduction of the WFG by returning an ECHO message along the incoming
dependency even before the states of all incoming dependencies have been recorded in the WFG
snapshot at the leaf node.

ECHO messages perform reduction of the recorded WFG by simulating the granting of requests
in the inward sweep. A nodei in the WFG is reduced if it receives ECHOs alongpi out of itsqi
outgoing edges indicating thatpi of its requests can be granted. An edge is reduced if an ECHO is
received on the edge indicating that the request it represents can be granted. After a local snapshot
has been recorded at nodei, any transition made byi from idle to active state is captured in the
process of reduction. The nodes that can be reduced do not form a deadlock whereas the nodes
that cannot be reduced are deadlocked. The order in which reduction of the nodes and edges of the
WFG is performed does not alter the final result. Nodeinit detects the deadlock if it is not reduced
when the deadlock detection algorithm terminates.

In general, WFG reduction can begin at a non-leaf node beforerecording of the WFG has been
completed at that node; this happens when an ECHO message arrives and begins reduction at a
non-leaf node before all the FLOODs have arrived at it and recorded the complete local WFG at
that node. Thus, the activities of recording and reducing the WFG snapshot are done concurrently
in a single phase. Unlike the algorithm in [46], no serialization is imposed between the two
activities. Since a reduction is done on an incompletely recorded WFG at nodes, the local snapshot
at each node has to be carefully manipulated so as to give the effect that WFG reduction is initiated
after WFG recording has been completed.

When multiple nodes block concurrently, they may each initiate the deadlock detection algo-

357

rithm concurrently. Each invocation of the deadlock detection algorithm is treated independently
and is identified by the initiator’s identity and initiator’s timestamp when it blocked. Every node
maintains a local snapshot for the latest deadlock detection algorithm initiated by every other node.
We will describe only a single instance of the deadlock detection algorithm.

The Problem of Termination Detection

The algorithm requires a termination detection technique so that the initiator can determined that it
will not receive any more ECHO messages. The algorithm uses atermination detection technique
based on weights [21] in cojunction with SHORT messages to detect the termination of the algo-
rithm. A weight of 1.0 at the initiator node, when the algorithm is initiated, is distributed among
all FLOOD messages sent out by the initiator. When the first FLOOD is received at a non-leaf
node, the weight of the received FLOOD is distributed among the FLOODs sent out along outward
edges at that node to expand the WFG further. Since any subsequent FLOOD arriving at a non-leaf
node does not expand the WFG further, its weight is returned to the initiator in a SHORT message.
When a FLOOD is received at a leaf node, its weight is piggybacked to the ECHO sent by the leaf
node to reduce the WFG. When an ECHO that arrives at a node unblocks the node, the weight of
the ECHO is distributed among the ECHOs that are sent by that node along the incoming edges in
its WFG snapshot. When an ECHO arriving at a node does not unblock the node, its weight is sent
directly to the initiator in a SHORT message.

Note that the following invariant holds in an execution of the algorithm: the sum of the weights
in FLOOD, ECHO, and SHORT messages plus the weight at the initiator (received in SHORT and
ECHO messages) is always 1.0. The algorithm terminates whenthe weight at the initiator becomes
1.0, signifying that all WFG recording and reduction activity has completed.

FLOOD,ECHO, andSHORT messages carry weights for termination detection. Variable
w, a real number in the range[0, 1], denotes the weight in a message.

10.9.2 The Algorithm

A nodei stores the local snapshot for snapshotsinitiated by other nodes in a data structureLSi

(Local Snapshot), which is an array of records.
LSi: array [1..n] of record;

A record has several fields to record snapshot related information and is defined below for an
initiator init:

LSi[init].out : set of integers (:=∅); /*nodes on whichi is waiting in the snapshot.*/

LSi[init].in : set of integers (:=∅); /*nodes waiting oni in the snapshot.*/

LSi[init].t : integer (:= 0); /*time wheninit initiated snapshot.*/

LSi[init].s : boolean (:=false); /*local blocked state as seen by snapshot.*/

358

LSi[init].p : integer; /*value ofpi as seen in snapshot.*/

The deadlock detection algorithm is defined by the followingprocedures. These procedures
are executed atomically.

SNAPSHOT_INITIATE
/*Executed by nodei to detect whether it is deadlocked. */

init ← i;
wi← 0;
LSi[init].t ← ti;
LSi[init].out ← out(i);
LSi[init].s ← true;
LSi[init].in ← ∅;
LSi[init].p ← pi;
sendFLOOD(i, i, ti, 1/|out(i)|) to eachj in out(i). /* 1/|out(i)| is the fraction of weight

sent in a FLOOD message. */

FLOOD_RECEIVE(j, init, t_init, w)
/*Executed by nodei on receiving a FLOOD message fromj. */

LSi[init].t < t_init
∧

j ∈ in(i)→ /*Valid FLOOD for a new snapshot. */

LSi[init].out ← out(i);
LSi[init].in ← {j};
LSi[init].t ← t_init;
LSi[init].s ← waiti;
waiti = true → /* Node is blocked. */

LSi[init].p ← pi;
sendFLOOD(i, init, t_init, w/|out(i)|) to eachk ∈ out(i);

waiti = false→ /* Node is active. */

LSi[init].p ← 0;
sendECHO(i, init, t_init, w) to j;
LSi[init].in ← LSi[init].in − {j}.

2

LSi[init].t < t_init
∧

j 6∈ in(i)→ /* Invalid FLOOD for a new snapshot. */

sendECHO(i, init, t_init, w) to j.
2

LSi[init].t = t_init
∧

j 6∈ in(i)→ /* Invalid FLOOD for current snapshot. */

sendECHO(i, init, t_init, w) to j.
2

LSi[init].t = t_init
∧

j ∈ in(i)→ /*Valid FLOOD for current snapshot. */

LSi[init].s = false→
sendECHO(i, init, t_init, w) to j;

359

LSi[init].s = true→
LSi[init].in ← LSi[init].in

⋃{j};
sendSHORT (init, t_init, w) to init.

2

LSi[init].t > t_init→ discard the FLOOD message. /*Out-dated FLOOD. */

ECHO_RECEIVE(j, init, t_init, w)
/*Executed by nodei on receiving an ECHO fromj. */

[
/*Echo for out-dated snapshot. */

LSi[init].t > t_init→ discard the ECHO message.
2

LSi[init].t < t_init→ cannot happen. /*ECHO for unseen snapshot. */

2

LSi[init].t = t_init → /*ECHO for current snapshot. */

LSi[init].out ← LSi[init].out − {j};
LSi[init].s = false→ sendSHORT (init, t_init, w) to init.
LSi[init].s = true→

LSi[init].p ← LSi[init].p − 1;
LSi[init].p = 0→ /* getting reduced */

LSi[init].s ← false;
init = i → declare not deadlocked; exit.
sendECHO(i, init, t_init, w/|LSi[init].in|) to all k ∈ LSi[init].in;

LSi[init].p 6= 0→
sendSHORT (init, t_init, w) to init.

]

SHORT_RECEIVE(init, t_init, w)
/*Executed by nodei (which is alwaysinit) on receiving a SHORT. */

[
/*SHORT for out-dated snapshot. */

t_init < t_blocki → discard the message.
2

/*SHORT for uninitiated snapshot. */

t_init > t_blocki → not possible.
2

/*SHORT for currently initiated snapshot. */

t_init = t_blocki

∧

LSi[init].s = false→ discard. /* init is active. */

t_init = t_blocki

∧

LSi[init].s = true→
wi← wi +w;

360

REQUEST
FLOOD
REPLY
ECHO

��
��
��

��
��
��

B
1/2

C
2/3

D

2/4 E

1/2

FGH

I

1/2

A (initiator)

Figure 10.3: An Example-run of the Algorithm.

wi = 1→ declare a deadlock.
]

10.9.3 An Example

We now illustrate the operation of the algorithm with the help of an example [27] shown in Fig-
ures 10.3 and 10.4). Figure 10.3 shows initiation of deadlock detection by node A and Figure 10.4
shows the state after node D is reduced. The notationx/y beside a node in the figures indicates
that the node is blocked and needs replies tox out of they outstanding requests to unblock.

In Figure 10.3, node A sends out FLOOD messages to nodes B and C. When node C receives
FLOOD from node A, it sends FLOODs to nodes D, E, and F. If the node happens to be active when
it receives a FLOOD message, it initiates reduction of the incoming wait-for edge by returning an
ECHO message on it. For example, in Figure 10.3, node H returns an ECHO to node D in response
to a FLOOD from it. Note that node can initiate reduction (by sending back an ECHO in response
to a FLOOD along an incoming wait-for edge) even before the states of all other incoming wait-for

361

edges have been recorded in the WFG snapshot at that node. Forexample, node F in Figure 10.3
starts reduction after receiving a FLOOD from C even before it has received FLOODs from D and
E.

Note that when a node receives a FLOOD, it need not have an incoming wait-for edge from
the node that sent the FLOOD because it may have already sent back a REPLY to the node. In this
case, the node returns an ECHO in response to the FLOOD. For example, in Figure 10.3, when
node I receives a FLOOD from node D, it returns an ECHO to node D.

ECHO messages perform reduction of the nodes and edges in theWFG by simulating the
granting of requests in the inward sweep. A node that is waiting ap-out-of-q request, gets reduced
after it has receivedp ECHOs. When a node is reduced, it sends ECHOs along all the incoming
wait-for edges incident on it in the WFG snapshot to continuethe progress of the inward sweep.

In general, WFG reduction can begin at a non-leaf node beforerecording of the WFG has been
completed at that node. This happens when ECHOs arrive and begin reduction at a non-leaf node
before FLOODs have arrived along all incoming wait-for edges and recorded the complete local
WFG at that node. For example, node D in Figure 10.3 starts reduction (by sending an ECHO
to node C) after it receives ECHOs from H and G, even before FLOOD from B has arrived at D.
When a FLOOD on an incoming wait-for edge arrives at a node which is already reduced, the node
simply returns an ECHO along that wait-for edge. For example, in Figure 10.4, when a FLOOD
from node B arrives at node D, node D returns an ECHO to B.

In Figure 10.3, node C receives a FLOOD from node A followed bya FLOOD from node
B. When node C receives a FLOOD from B, it sends a SHORT to the initiator node A. When a
FLOOD is received at a leaf node, its weight is returned in theECHO message sent by the leaf
node to the sender of the FLOOD. Note that an ECHO is like a reply in the simulated unblocking of
processes. When an ECHO arriving at a node does not reduce thenode, its weight is sent directly
to the initiator through a SHORT message. For example, in Figure 10.3, when node D receives an
ECHO from node H, it sends a SHORT to the initiator node A. Whenan ECHO that arrives at a
node reduces that node, the weight of the ECHO is distributedamong the ECHOs that are sent by
that node along the incoming edges in its WFG snapshot. For example, in Figure 10.4, at the time
node C gets reduced (after receiving ECHOs from nodes D and F), it sends ECHOs to nodes A and
B. (When node A receives an ECHO from node C, it is reduced and it declares no deadlock.) When
an ECHO arrives at a reduced node, its weight is sent directlyto the initiator through a SHORT
message. For example, in Figure 10.4, when an ECHO from node Earrives at node C after node C
has been reduced (by receiving ECHOs from nodes D and F), nodeC sends a SHORT to initiator
node A.

Correctness

Proving the correctness of the algorithm involves showing that it satisfies the following conditions:

1. The execution of the algorithm terminates.

362

REQUEST
FLOOD
REPLY
ECHO

��
��
��

��
��
��

B
1/2

C
2/3

D

E

1/2

F

A (initiator)

1/2

Figure 10.4: An Example-run of the Algorithm (continued).

363

2. The entire WFG reachable from the initiator is recorded ina consistent distributed snapshot
in the outward sweep.

3. In the inward sweep, ECHO messages correctly reduce the recorded snapshot of the WFG.

The algorithm is initiated within a timeout period after a node blocks on a P-out-of-Q request.
On the termination of the algorithm, only all the nodes that are not reduced, are deadlocked. For a
correctness proof of the algorithm, the readers are referred to the original source [27].

Complexity Analysis

The message complexity of the algorithm has been analyzed in[27]. The algorithm has a message
complexity of4e− 2n + 2l and a time complexity1 of 2d hops, wheree is the number of edges,n
the number of nodes,l the number of leaf nodes, andd the diameter of the WFG. This is better than
two-phase algorithms for detecting generalized deadlocksand gives the best time complexity that
can be achieved by an algorithm that reduces a distributed WFG to detect generalized deadlocks in
distributed systems.

10.10 Summary

Out of the three approaches to handle deadlocks, deadlock detection is the most promising in dis-
tributed systems. Detection of deadlocks requires performing two tasks: first, maintaining or con-
structing whenever needed a WFG; second, searching the WFG for a deadlock condition (cycles
or knots).

In distributed deadlock-detection algorithms, every sitemaintains a portion of the global state
graph and every site participates in the detection of a global cycle or knot. Due to lack of globally
shared memory, design of distributed deadlock-detection algorithms is difficult because sites may
report the existence of a global cycle after seeing its segments at different instants (though all the
segments never existed simultaneously).

Distributed deadlock detection algorithms can be divided into four classes: path-pushing, edge-
chasing, diffusion computation, and global state detection. In path-pushing algorithms, wait-for
dependency information of the global WFG is disseminated inthe form of paths (i.e., a sequence
of wait-for dependency edges). In edge-chasing algorithms, special messages called probes are
circulated along the edges of the WFG to detect a cycle. When ablocked process receives a
probe, it propagates the probe along its outgoing edges in the WFG. A process declares a deadlock
when it receives a probe initiated by it. Diffusion computation type algorithms make use of echo
algorithms to detect deadlocks. Deadlock detection messages are successively propagated (i.e,
“diffused” through) through the edges of the WFG. Global state detection based algorithms detect
deadlocks by taking a snapshot of the system and by examiningit for the condition of a deadlock.

1Time complexity denotes the delay in detecting a deadlock after its detection has been initiated.

364

10.11 Bibliographic Notes

Two survey articles on distributed deadlock detection can be found in papers by Knapp [23] and
Singhal [44]. The literature is full of distributed deadlock detection algorithms. Path-pushing dis-
tributed deadlock detection algorithms can be found in papers by Gligor-Shattuck [12], Menasce-
Muntz [34], Ho and Ramamoorthy [19], and and Obermarck [39].Other edge-chasing distributed
deadlock detection algorithms can be found in papers by Choudary et al. [7], and Kshemkalyani-
Singhal [28]. Herman and Chandy [17] discuss detection of deadlocks in AND/OR model. In
[25], Kshemkalyani and Singhal give an optimal algorithm todetect distributed deadlocks under
the generalized request model. Other algorithms to detect generalized deadlocks include Bracha-
Toueg [2] and Wang et al. [46].

In [26], Kshemkalyani and Singhal give a characterization of distributed deadlocks. A rigorous
correctness proof of a distributed deadlock detection algorithm is given in Kshemkalyani-Singhal
[28]. Brezezinski et al. [3] discuss the deadlock models under a very generalized blocking condi-
tions. Two knot detection algorithms in distributed systems are given in Chandy-Misra [35] and
Manivannan-Singhal [32].

10.12 Exercise Problems

1. Consider the following simple approach to handle deadlocks in distributed systems by using
“time-outs”: a process that has waited for a specified periodfor a resource declares that it
is deadlocked and aborts to resolve the deadlock. What are the shortcomings of using this
method?

2. Suppose all the processes in the system are assigned priorities which can be used to totally
order the processes. Modify the Chandy et al.’s algorithm for the AND model so that when
a process detects a deadlock, it also knows the lowest priority deadlocked process.

3. Show that in the AND model, false deadlocks can occur due todeadlock resolution in dis-
tributed systems [44]. Can something be done about it or theyare bound to happen?

4. Show that in Kshemkalyani-Singhal algorithm for the P-out-of-Q model, if the weight at the
initiator process becomes 1.0, then the intiator is involved in a deadlock.

365

Bibliography

[1] B. Awerbuch and S. Micali, Dynamic deadlock resolution protocols. In Proc. of the Founda-
tions of Computer Science, Toronto, Canada, 1986, pp. 196-207.

[2] G. Bracha and S. Toueg, Distributed Deadlock Detection,Distributed Computing, 2(3), 127-
138, 1987.

[3] J. Brezezinski, J.M. Helary, M. Raynal, and M. Singhal, “Deadlock Models and Generalized
Algorithm for Distributed Deadlock Detection”,Journal of Parallel and Distributed Comput-
ing, December 1995, Vol 31, No 2, pp. 112-125.

[4] K. M. Chandy and L. Lamport, Distributed snapshots: Determining global states of dis-
tributed systems, ACM Trans. Program. Lang. Syst. 3, 1 (Feb.), 1985, pp. 63-75.

[5] K. M. Chandy and J. Misra, A distributed algorithm for detecting resource deadlocks in dis-
tributed systems, In Proc. of the ACM Symposium on Principles of Distributed Computing,
Ottawa, Canada, Aug 1982, pp. 157-164.

[6] K. M. Chandy, J. Misra and L. M. Haas, Distributed deadlock detection, ACM Trans. Comput.
Syst. 1,2 , May 1983, 144-156.

[7] A. Choudhary, W. Kohler, J. Stankovic, and D. Towsley, A Modified Priority Based Probe Al-
gorithm for Distributed Deadlock Detection and Resolution, IEEE Trans. on Software Eng.,
Jan 1989.

[8] Jose Ramon Gonzalez de Mendivil , Federico Farina , Jose Garitagoitia , Carlos F. Alastruey
, J. M. Bernabeu-Auban, A Distributed Deadlock Resolution Algorithm for the AND Model,
IEEE Transactions on Parallel and Distributed Systems, v.10 n.5, p.433-447, May 1999.

[9] E. W. Dijkstra and C. S. Scholten, Termination detectionfor diffusing computations, Znf.
Process. Lett. 11, 1, Aug 1980.

[10] Ahmed K. Elmagarmid, Neelam Soundararajan, Ming T. Liu: A Distributed Deadlock De-
tection and Resolution Algorithm and Its Correctness Proof, IEEE Trans. on Software Eng.,
Volume 14, Number 10, October 1988, pp. 1443-1452.

366

[11] Mitchell Flatebo , Ajoy Kumar Datta, Self-stabilizingdeadlock detection algorithms, Pro-
ceedings of the 1992 ACM annual conference on Communications, p.117-122, March 03-05,
1992, Kansas City, Missouri.

[12] V. Gligor and S. Shattuck, On deadlock detection in distributed databases, IEEE Trans. Softw.
Eng. SE-6, 5 (Sept.), 1980

[13] J. N. Gray, P. Homan, H. F. Korth and R. L. Obermarck, A straw man analysis of the prob-
ability of waiting and deadlock in a database system, Tech. Rep. RJ 3066, IBM Research
Laboratory, San Jose, Calif, 1981

[14] L. M. Haas, Two approaches to deadlock detection in distributed systems. Ph.D. dissertation,
Dept. of Computer Sciences, Univ. of Texas, Austin, Tex, 1981

[15] L. M. Haas, and C. Mohan, A distributed deadlock detection algorithm for a resource-based
system, Res. Rep. RJ 3765, IBM Research Laboratory,San Jose, Calif, 1983

[16] J. Helary, C. Jard, N. Plouzeau and M. Raynal, Detectionof stable properties in distributed
applications, In Proc. of the ACM Symposium on Principles ofDistributed Computing, Van-
couver, Canada, Aug 1987, pp. 125-136.

[17] T. Herman, and K. M. Chandy, A distributed procedure to detect AND/OR deadlock, Tech.
Rep. TR LCS-8301, Dept. of ComputerSciences, Univ. of Texas, Austin, Tex, 1983

[18] Beverly A. Sanders , Philipp A. Heuberger, DistributedDeadlock Detection and Resolu-
tion with Probes, Proceedings of the 3rd International Workshop on Distributed Algorithms,
p.207-218, September 26-28, 1989.

[19] G. S. Ho and C. V. Ramamoorthy, Protocols for deadlock detection in distributed database
systems, IEEE Trans. Softw. Eng. SE-8, 6 (Nov.), 1982, pp 554-557.

[20] R. C. Holt, Some deadlock properties on computersystems, ACM Comput. Surv. 4, 3 (Sept.),
1972, pp 179-196.

[21] Shing-Tsaan Huang, Detecting Termination of Distributed Computations by External Agents,
ICDCS 1989, pp. 79-84.

[22] J. R. Jagannathan and R. Vasudevan, A distributed deadlock detection and resolution scheme;
performance study, In Proc. of the Third International Conference on Distributed Computing
Systems, Miami, Florida, 1982, pp. 496-501.

[23] Edgar Knapp, Deadlock detection in distributed databases, ACM Computing Surveys, Vol-
ume 19, Issue 4, December 1987, pp. 303 - 328.

367

[24] Murali Krishnamurthi , Amar Basavatia , Sanjeev Thallikar, Deadlock detection and resolu-
tion in simulation models, Proceedings of the 26th conference on Winter simulation, p.708-
715, December 11-14, 1994, Orlando, Florida.

[25] Ajay Kshemkalyani and Mukesh Singhal, “A One-Phase Algorithm to Detect Distributed
Deadlocks in Replicated Databases”,IEEE Trans. on Knowledge and Data Engineering, Vol
11, No 6, Nov/Dec 1999, pp. 880-895.

[26] Ajay Kshemkalyani and Mukesh Singhal, “On Characterization and Correctness of Dis-
tributed Deadlocks”,Journal of Parallel and Distributed Computing, July 1994, No 22, pp.
44-59.

[27] Ajay Kshemkalyani and Mukesh Singhal, “Efficient Detection and Resolution of Generalized
Distributed Deadlocks”,IEEE Trans. on Software Engineering, January 1994, Vol 20, No. 1,
pp. 43-54.

[28] Ajay Kshemkalyani and Mukesh Singhal, “An Invariant-Based Verification of a Probe Algo-
rithm for Distributed Deadlock Detection and Resolution”,IEEE Transactions on Software
Engineering, August 1991, pp. 789-799.

[29] Natalija Krivokapic, Alfons Kemper, Ehud Gudes, Deadlock detection in distributed database
systems: A new algorithm and a comparative performance analysis, VLDB Journal: Very
Large Data Bases. vol 8, number 2, pages 79–100, 1999.

[30] L. Lamport, Time, clocks, and the ordering of events in distributed systems, Comm. ACM
21, 7 (July), 1978, pp 558-565.

[31] Soojung Lee, Junguk L. Kim, Performance Analysis of Distributed Deadlock Detection Al-
gorithms, IEEE Transactions on Knowledge and Data Engineering, v.13 n.4, p.623-636, July
2001.

[32] D. Manivannan and M. Singhal, “An Efficient DistributedAlgorithm for Detection of Knots
and Cycles in a Distributed Graph",IEEE Trans. on Parallel and Distributed Systems, Vol
14, No 10, October 2003, pp. 961-972.

[33] Jean Mayo and Phil Kearns, Distributed Deadlock Detection and Resolution Based on Hard-
ware Clocks, ICDCS 1999, 208-215.

[34] D.E. Menasce and R. Muntz, Locking and Deadlock Detection in Distributed databases, IEEE
Trans. on Software Eng., May 1979.

[35] J. Misra and K. M. Chandy, A distributed graph algorithm: Knot detection, ACM Trans.
Program. Lang. Syst. 4,4 (Oct.), 1982, pp 678-686.

[36] D. P. Mitchell and M. J Merritt, A distributed algorithmfor deadlock detection and resolution,
In-Proc. of the ACM Symposium on Principles of Distributed Computing, 1984, pp. 282-284.

368

[37] N. Natarajan, A distributed scheme for detecting communication deadlock, IEEE Trans.
Softw. Eng. SE-12, 4 (Apr.), 1986, 531-537.

[38] R. Obermarck, Deadlock detection for all resourse classes, Res. Rep. RJ2955, IBM Research
Laboratory, San Jose, Calif, 1980

[39] R. Obermarck, Distributed deadlock detection algorithm, ACM Trans. Database Syst. 7, 2
(June), 1982, 187-208.

[40] Young Chul Park, Peter Scheuermann, and Hsiang Lung Tung, A distributed deadlock detec-
tion and resolution algorithm based on a hybrid wait-for graph and probe generation scheme,
Proceedings of the fourth international conference on Information and knowledge manage-
ment, Baltimore, Maryland, Pages: 378 - 386, 1995.

[41] Young Chul Park, Peter Scheuermann, Sang H. Lee, A Periodic Deadlock Detection and
Resolution Algorithm with a New Graph Model for Sequential Transaction Processing, Pro-
ceedings of the Eighth International Conference on Data Engineering, Pages: 202 - 209,
1992.

[42] M. Roesler , W. A. Burkhard, Resolution of Deadlocks in Object-Oriented Distributed Sys-
tems, IEEE Transactions on Computers, v.38 n.8, p.1212-1224, August 1989.

[43] M. K. Sinha and N. Natarajan, A distributed deadlock detection algorithm based on times-
tamps, In Proc. of the 4th International Conference on Distributed Computing Systems, 1984,
pp. 546-556.

[44] Mukesh Singhal, “Deadlock Detection in Distributed Systems”,IEEE Computer, November
1989, pp. 37-48.

[45] Jesus Villadangos, Federico Farina, Jose Ramon Gonzalez de Mendivil, Jose Garitagoitia,
and Alberto Cordoba, A Safe Algorithm for Resolving OR Deadlocks, IEEE Transactions on
Software Engineering, v.29 n.7, p.608-622, July 2003.

[46] J. Wang, S. Huang, and N. Chen, A Distributed Algorithm for Detecting generalized Dead-
locks, Tech. Report, Dept. of Computer Science, National Tsing-Hua University, 1990.

[47] Hui Wu, Wei-Ngan Chin, Joxan Jaffar, An Efficient Distributed Deadlock Avoidance Algo-
rithm for the AND Model, IEEE Transactions on Software Engineering, v.28 n.1, p.18-29,
January 2002.

[48] D. Zobel, The deadlock problem: A classifying bibliography, Operat. Syst. Rev. 17, 2 (Oct.),
1983, pp 6-15.

369

Chapter 11

Global Predicate Detection

11.1 Stable and Unstable Predicates

Specifying predicates on the system state provides an important handle to specify, observe, and
detect the behavior of a system. This is useful in formally reasoning about the system behavior.
By being able to detect a specified predicate in the execution, we gain the ability to monitor the
execution. Predicate specification and detection has uses in distributed debugging, sensor networks
used for sensing in various applications, and industrial process control. As an example in the
manufacturing process, a system may be monitoring the pressure of Reagent A and the temperature
of Reagent B. Only whenψ1 = (Pressurea > 240KPa) ∧ (Temperatureb > 300◦C) should the
two reagents be mixed. As another example, consider a distributed execution where variablesx,
y, andz are local to processesPi, Pj andPk, respectively. An application might be interested in
detecting the predicateψ2 = xi + yj + zk < −125. In a nuclear power plant, sensors at various
locations would monitor the relevant parameters such as theradioactivity level and temperature at
multiple locations within the reactor.

Observe that the “predicate detection” problem is inherently different from the global snapshot
problem. A global snapshot gives one of the possible states that could have existedduring the
period of the snapshot execution. Thus, a snapshot algorithm can observe only one of the predicate
values thatcould have existedduring the algorithm execution.

Predicates can be either stable or unstable. Astablepredicate is a predicate that remains true
once it becomes true. In traditional systems, a predicateφ is stable ifφ =: φ, where “ ” is
the “henceforth” operator from temporal logic. In distributed executions, a more precise definition
is needed, due to the absence of global time. Formally, a predicateφ at a cutC is stable if the
following holds.

(C |= φ) =: (∀C ′ |C ⊆ C ′, C ′ |= φ)

Deadlock in a system is a stable property because the deadlocked processes continue to remain
deadlocked (until deadlock resolution is performed). Termination of an execution is another stable
property. Specific algorithms to detect termination of the execution, and to detect deadlock will be
considered in separate chapters. Here, we look at a general technique to detect a stable predicate.

370

11.1.1 Stable Predicates

Deadlock: A deadlock represents a system state where a subset of the processes are blocked on
one another, waiting for a reply from the other processes in that subset. The waiting relationship
is represented by a Wait-For Graph (WFG) where an edge fromi to j indicates that processi is
waiting for a reply from processj. Given a Wait-For GraphG = (V,E), adeadlockis a subgraph
G′ = (V ′, E ′) such thatV ′ ⊆ V andE ′ ⊆ E and for each processi in V ′, the processi remains
blocked unless it receives a reply from some process(es) inV ′. There are two conditions that
characterize the deadlock state of the execution.

• (local condition:) each deadlocked process is locally blocked, and

• (global condition:) the deadlocked process will not receive a reply from some process(es) in
V ′.

Termination: Termination of an execution is another stable property, andis best understood by
viewing a process as alternating between two states:active stateandpassive state. An active
process spontaneously becomespassivewhen it has no further work to do; apassive processcan
becomeactiveonly when it receives a message from some other process. If such a message arrives,
then the process becomesactiveby doing CPU processing and maybe sending messages as a result
of the processing. An execution isterminatedif each process ispassive, and will not become active
unless it receives more messages. There are two conditions that characterize the termination state
of the execution.

• (local condition:) each process is in passive state, and

• (global condition:) there is no message in transit between any pair of processes.

Generalizing from the above two most frequently encountered stable properties, we assume
that each stable property can be characterized by a local process state component, and a channel
component or a global component. Recall from our discussionof global snapshots that any channel
property can be observed by observing the local states at thetwo endpoints of the channel, in a
consistent manner. Thus, any global condition can be observed by observing the local states of the
processes.

We now address the question: “What are the most effective techniques for detecting a stable
property?” Clearly, repeatedly or periodically taking a global snapshot will work; if the property
is true in some snapshot, then it can be claimed that the property is henceforth true. However,
recording a snapshot is expensive; recall that it can require up toO(n2) control messages without
inhibition, orO(n) messages with inhibition. The approach that has been widelyadopted is the
two-phase approach of observing potentially inconsistentglobal states. In each state observation,
all the local variables necessary for defining the local conditions, as well as the global condi-
tions, are observed. Two potentially inconsistent global states are recorded consecutively, such
that the second recording is initiated after the first recording has completed. This is illustrated in
Figure 11.1. The stable property can be declared to be true ifthe following holds.

371

P

P

P

P

2

1

n−1

n

phase 2phase 1

time

event at which local variables are sampled

Figure 11.1: Two-phase detection of a stable property. If the values of the relevant local variables
that capture the property have not changed between the two phases, then the stable property is true.

• The variables on which the local conditions as well as the global conditions are defined have
not changed in the two observations, as well as between the two observations.

If none of the variables changes between the two observations, it can be claimed that after the
termination of the first observation and before the start of the second observation, there is an instant
in physical time when the variables still have the same value. Even though the two observations are
each inconsistent, if the global property is true at a commonphysical time, then the stable property
will necessarily be true.

The most common ways of taking a pair of consecutive, not necessarily consistent, snapshots
usingO(n) control messages are as follows.

• Each process randomly records its state variables and sendsthem to a central process via
control messages. When the central process receives this message from each other process,
the central process informs each other process to send its (uncoordinated) local state again.

• A token is passed around a ring, and each process appends its local state to the contents of
the token. When the token reaches the initiator, it passes the token around for a second time.
Each process again appends its local state to the contents ofthe token.

• On a predefined spanning tree, the root (coordinator) sends aquery message in the fan-out
sweep of the tree broadcast. In the fan-in sweep of the ensuing tree convergecast, each node
collects the local states of the nodes in its subtree rooted at itself and forwards it to its parent.
When the root gets the local states from all the nodes in its tree, the first phase completes.
The second phase, which contains another broadcast followed by a convergecast, is initiated.

11.1.2 Unstable Predicates

An unstablepredicate is a predicate that is not stable and hence may holdonly intermittently. The
following are some of the several challenges in detecting unstable predicates.

372

• Due to unpredictable message propagation times, and unpredictable scheduling of the vari-
ous processes on the processors under various load conditions, even for deterministic execu-
tions, multiple executions of the same distributed programmay pass through different global
states. Further, the predicate may be true in some executions and false in others.

• Due to the nonavailability of instantaneous time in a distributed system,

– Even if a monitor finds the predicate to be true in a global state, it may not have actually
held in the execution.

– Even if a predicate is true for a transient period, it may not be detected by intermittent
monitoring.

Hence, periodic monitoring of the execution is not adequate.

These challenges are faced by snapshot-based algorithms aswell as by a central monitor that
evaluates data collected from the monitored processes. To address these challenges, we can make
two important observations.

• It seems necessary to examine all the states that arise in theexecution, so as not to miss the
predicate being true. Hence, it seems useful to define predicates, not on individual states, but
on the observation of the entire execution.

• For the same distributed program, even given that it is deterministic, multiple observations
may pass through different global states. Further, a predicate may be true in some of the
program observations but not in others. Hence it is more useful to define the predicates on
all the observations of the distributed program and not juston a single observation of it.

11.2 Modalities on Predicates

To address the above complications, predicates are defined,not on global states or on an individual
observation of an execution, but on all the possible observations of the distributed execution. The
following two modalities on any predicateφ are defined.

• Possibly(φ): There exists a consistent observation of the execution such that predicateφ
holds in a global state of the observation.

• Definitely(φ): For every consistent observation of the execution, there exists a global state
of it in which predicateφ holds.

Consider the example in Figure 11.2(a). The execution is runat processesP1 andP2. Eventek
i

denotes thekth event at processPi. Variablea is local toP1 and variableb is local toP2. The state
lattice for the execution is shown in Figure 11.2(b). Each state is labeled by a tuple(c1, c2), where
c1 andc2 are the event counts atP1 andP2, respectively. The execution shown in part (a) goes
through the following sequence of global states, and eventscausing the state transitions between

373

the global states.
(0, 0), e12, (0, 1), e11, (1, 1), e22, (1, 2), e21, (2, 2), e32, (2, 3), e42, (2, 4), e31, (3, 4), e41, (4, 4), e52, (4, 5), e51,

(5, 5), e61, (6, 5), e62, (6, 6), e72, (6, 7)

When the same distributed program is run again, observe thatit may not pass through the same
intermediate states as the state transitions from the initial state (0,0) to the final state (6,7).

• Now observe thatDefinitely(a + b = 10) holds by the following reasoning. Whenb is
assigned 7 at evente12, processP1’s execution may be in any state from the initial state up to
the state preceding evente31, in whicha = 3. However, before the value ofb changes from
7 to 5 at evente42, and in fact beforeP2 executes evente32, P1 must have executed evente11 at
which timea = 3. This is true for all equivalent executions. Hence,Definitely(a+b = 10)

holds. With respect to the state lattice in Figure 11.2(b), the states in whicha + b = 10 is
true are marked therein. From the state lattice, it can be seen that in every execution, the
state (2,2) must occur, and in this statea+ b = 10.

• Observe thatPossibly(a+b = 5) holds by the following reasoning. The predicatea+b = 5

can be true only if: (i)a = 3 ∧ b = 2, which is true in states (2,5) and (3,5), or (ii)
a = 0 ∧ b = 5, which is true in state (6,4), or (iii)a = 8 ∧ b = −3 which is true
in state (5,7), in some equivalent execution. State (i) is possible in physical time after the
occurrence of evente52 and before the occurrence ofe41. In the execution shown,e52 occurs
aftere41. However, in an equivalent execution, evente41 may be delayed to occur after event
e52, in which caseb changes to a value other than 2 aftera becomes 8. Hence, the predicate
is true in this equivalent execution. It so happens that a similar argument also holds for (ii)
and (iii).

• PredicateDefinitely(a + b = 5) is not true in the shown execution because there exists at
least one path through the state lattice such thata + b = 5 is never true in any state along
that path.

11.2.1 Complexity of Predicate Detection

As we suspect from the examples in this section, the predicate detection problem is complex. For
n processes and a maximum ofm events per process, we need to examine up to an exponential
numbermn states. The global predicate detection problem can be readily shown to be NP-complete
using a standard reduction from the satisfiability problem (see Exercise 4).

11.3 Centralized Algorithm for Relational Predicates

To detect predicates, we first assume that the state lattice is available. A global stateGS =

{sk1

1 , s
k2

2 , . . . , s
kn
n } is abbreviated asGSk1,k2,...kn.

374

31
111111

7653

2

2222

4

(a)

local
var.

var.
local

2
2

1

b = 7 b = 5 b = 2 b = −3

a = 0a = 8 a = 3

4

65

22
e eeee e

eeee

e

e

time

e

p
2

p
1

5,4

6,4

4,3

5,3

6,3 4,5

3,5

6,6

5,5

4,4

3,3

2,3

2,4

2,5

3,2

4,2

3,4

(b)

1
P

2
P

a+b = 10

a+b = 5 a+b = 5

a+b = 5

a+b = 10

initial state

final state 6,7

5,7

5,66,5

5,2

6,2

2,1

1,1

1,0

2,0

2,2

1,2

0,2

0,1

0,0

Figure 11.2: Example to illustratePossibly(φ) andDefinitely(φ). (a) The example execution.
(b) The state lattice for the execution. Each label in the lattice gives the event count atP1, P2.

• Possibly(φ): To detectPossibly(φ), an exhaustive search of the state lattice for any one
state that satisfiesφ needs to be done. The search can terminate as soon as such a state is
found. Presumably, there is particular interest in finding the ‘earliest’ state that satisfiesφ.
The level of a global state〈ski

i (∀i)〉 is
∑i=n

i=1 ki. The algorithm in Figure 11.3 examines the
state lattice level-by-level, beginning from the initial state at level 0 and going to the final
state. Each level is examined to find a state in whichφ is true. If such a state is found, the
algorithm terminates.

• Definitely(φ): ForDefinitely(φ) to be true, there should exist a set of states satisfyingφ

such that every path through the lattice goes through one of these states. It is sufficient but
not necessary that all the states at any particular level in the lattice satisfyφ. To see this,
consider the execution in Figure 11.4. Here,Definitely(φ) is true, yet the states satisfying
φ are at different levels.

AsDefinitely(φ) may be true but there may not exist any level in which all the states satisfy
φ, the algorithm in Figure 11.3 to detectDefinitely(φ) cannot use an approach similar to
that used forPossibly(φ). In particular, replacing the loop condition in line (1a) bythe
following will not work: “(some state inReachφ satisfies¬φ)”. The algorithm examines the
state lattice level-by-level but differs in the following two respects.

1. Rather than track the states (at a level) in whichφ is true, it tracks the states in whichφ
is not true.

375

(variables)
set of global statesReachφ, Reach_Nextφ ←− {GC0,0,...0}
int lvl ←− 0

(1) Possibly(φ)

(1a)while (no state inReachφ satisfiesφ) do
(1b) if (Reachφ = {final state}) then return false;
(1c) lvl ←− lvl + 1;
(1d) Reachφ ←− {states at levellvl };
(1e)return true.

(2)Definitely(φ)

(2a) remove fromReachφ those states that satisfyφ
(2b) lvl ←− lvl + 1;
(2c) while (Reachφ 6= ∅) do
(2d) Reach_Nextφ ←− {states of levellvl reachable from a state inReachφ};
(2e) remove fromReach_Nextφ all the states satisfyingφ;
(2f) if Reach_Nextφ = {final state} then return false;
(2g) lvl ←− lvl + 1;
(2h) Reachφ ←− Reach_Nextφ;
(2i) return true.

Figure 11.3: Detecting a relational predicate by examiningthe state lattice (on-line, centralized).

2. Additionally, the set of states tracked at a level have to be reachable from the set of
those states at the previous level, that are known to satisfy(1) and recursively this same
property (2).

The variableReach_Nextφ is used to track such states at levellvl, as constructed from the
states at the previous level. Thus,Reach_Nextφ at levellvl contains the set of states at level
lvl that are reachable from the initial statewithoutpassing through any state satisfyingφ. The
algorithm terminates successfully whenReach_Nextφ becomes the empty set; otherwise it
terminates unsuccessfully after examining the final state.

Example: Figure 11.4 shows an example execution and the corresponding state lattice. The
states belonging toReach_Nextφ (line (2d)) at any level are either marked by shaded circles
or clear circles. The states belonging toReach_Nextφ (line (2f)) at any level are marked by
clear circles. In line (2b), whenlvl = 11, Reachφ becomes∅ and the algorithm exits from
the loop.

The centralized algorithms in Figure 11.3 assumed that the states at any level were readily
available. But in an on-line algorithm, these global statesneed to be assembled from local states,
on the fly. How can that be accomplished? Each processPi can send a local trace of its local states
ski

i , with their vector timestamps, to the central processP0. P0 maintainsn queues,Q1 . . . Qn, for

376

76
1

5
11

43
11

21
1

2

1
P

P

1

(a)

2
7

2
6

2
54

22
31

2
2

2

1
8

e e e e e e e

eeeeeeee

2,3

5,2

4,6

3,4

3,2
4,2

2,2

1,1

state lattice labelled using event numbers

5,5

(b)

0
1
2
3
4
5
6

9
8
7

10
11
12
13
14
15

levels

state reachable without predicate being true
state in which predicate is true

p2 p1

initial 0,0

7,46,5
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 11.4: Example to show that states in whichDefinitely(φ) is satisfied need not be at the
same level in the state lattice. (a) Execution. (b) Corresponding state lattice.

P
2

P

Q
1

Q
2

Q
n

Z1

X1 X2

Y1 Y2 Y3 Y4

X1X2

Y4 Y3 Y2 Y1

Z1

1

n

P

Figure 11.5: QueuesQ1 toQn for each of then processes.

the events of each of the processes, as shown in Figure 11.5. Each local state received from process
Pi is enqueued inQi. As global stateGS = {sk1

1 , s
k2

2 , . . . , s
kn
n }, also abbreviated asGSk1,k2,...kn,

is assembled from the corresponding local states, how long does a local state need to be kept in its
queue? This is answered by the following two observations, based on the vector clocks.

• The earliest global stateGSk1,k2,...kn

min containingski

i is identified as follows. Thejth compo-
nent ofV C(ski

i) is the local value ofPj in its local snapshot stateskj

j . This is expressed as
Equation 11.1.

(∀j) V C(s
kj

j)[j] = V C(ski

i)[j] (11.1)

It now follows that the lowest level of the state lattice, in which local stateski

i (kth local state
of Pi) participates, is the sum of the components ofV C(ski

i) – this assumes that in the vector
clock operation, the local component is incremented by one for each local event.

377

• The latest global stateGSk1,k2,...kn
max containingski

i is identified as follows. Theith component
of V C(s

kj

j) should be the largest possible value but cannot exceed or equal V C(ski

i)[i] for

consistency of the two statesski

i andskj

j . V C(ski

i) is identified as per Equation 11.2; but note

that the condition onV C(s
kj+1
j)[i] is applicable ifskj

j is the last state atPj .

(∀j) V C(s
kj

j)[i] < V C(ski

i)[i] ≤ V C(s
kj+1
j)[i] (11.2)

Hence, the highest level of the state lattice, in which localstateski

i participates, is
∑n

j=1 V C(s
kj

j [j])

subject to the above equation.

From Expressions 11.1 and 11.2, we have that
∑n

j=1 V C(ski

i)[j] is the lowest level, and
∑n

j=1 V C(s
kj

j [j]),

whereskj

j ∈ GSmax, is the highest level, between which local stateski

i is useful in constructing a
global state.

Given the states of levellvl, the set of states at levellvl + 1 can be constructed as fol-
lows. For each stateGSk1,k2,...,kn, construct then global statesGSk1+1,k2,...,kn, GSk1,k2+1,...,kn . . .

GSk1,k2,...,kn+1.
Deterministic versus nondeterministic programs:We need to remember that the entire analysis
of predicates, their modalities, and detection algorithms, applies only to deterministic programs.
For non-deterministic programs, different executions mayhave different partial orders.

11.4 Conjunctive Predicates

The predicates considered so far are termedrelational predicatesbecause the predicate can be an
arbitrary relation on the variables in the system. A predicate φ is a conjunctive predicateif and
only if φ can be expressed as the conjunction∧i∈Nφi, whereφi is a predicate local to processi. For
a wide range of applications, the predicate of interest can be modeled as a conjunctive predicate.
Conjunctive predicates have the following property.

• If φ is false in any cutC, then there is at least one processi such that the local state ofi in
cutC will never form part of any other cutC ′ such thatφ is true inC ′. More formally, a
conjunctive predicateφ is defined as the following.

C 6|= φ =:∃i ∈ N, ∀C ′ ∈ Cuts, C ′ 6|= φ, whereC ′[i] = C[i]

Here, the stateC[i] is aforbidden statebecause it will never form part of any cut that satisfies
the predicate. Given a conjunctive predicate, if it is evaluated as false in some cutC, we
can advance the local state of at least one process to the nextevent, and then evaluate the
predicate in the resulting cut.

This gives aO(mn) time algorithm, wherem is the number of events at any process, to check for
a linear predicate, as opposed to an exponential algorithm.

Consider the following example on modalities on conjunctive predicates, shown for the same
execution considered earlier in Figure 11.2.

378

P
2

1
P

0
P

Figure 11.6: For a conjunctive predicate, the shaded durations indicate the periods when the local
predicates are true.

• The predicatePossibly(a = 3∧ b = 2) holds by the following reasoning. The predicate can
be true only if a = 3 ∧ b = 2 simultaneously in the execution. This is possible in physical
time after the occurrence of evente52 and before the occurrence ofe41. In the execution shown,
e41 occurs beforee52. However, in an equivalent execution, evente41 may be delayed to occur
after evente52, in which case,a changes to a value other than 3 afterb becomes 2. Hence,
Possibly(a = 3∧ b = 2) is true. Note that in Figure 11.2,a+ b = 5 was true in states(2, 5),
(3, 5), (6, 4), and(5, 7). Among these,a = 3 ∧ b = 2 is true only in(2, 5) and(3, 5).

• Definitely(a = 3 ∧ b = 7) holds by the following reasoning. Whena is assigned 3 at
evente11, processP2’s execution may be at any event frome02 up to but not includinge32.
However, before the value ofa changes from 3 to 8 at evente41, P2 must have executed event
e22 at which timeb = 7. This is true for all equivalent executions. Note that in Figure 11.2,
a + b = 10 was true in states(1, 1), (2, 1), (1, 2), (2, 2), (3, 2), (2, 3), (3, 3), (4, 5), (5, 5),
and(5, 6). Among these,a = 3 ∧ b = 7 is true only in all except(4, 5), (5, 5), and(5, 6).

11.4.1 Interval-based Centralized Algorithm for Conjunctive Predicates

Conjunctive predicates are a popular class of predicates. Conjunctive predicates have the advantage
that each process can locally determine whether the local componentφi is satisfied; if not, the local
state cannot be part of any global state satisfyingφ! This has the following implication: starting
with the initial state, we examine global states. Ifφ is not satisfied, then the local state of at least
one process can be advanced and the next global state is examined. Eitherφ is satisfied, or we
repeat the step. Withinmn steps, we will have examined all necessary global states, giving a
O(mn) upper bound on the time complexity.

There are two broad approaches to detecting conjunctive predicates: theglobal statebased
approach, and theinterval based approach. The global state based approach involves examining
the global states, as suggested above and also seen in the previous Section 11.3.

In the interval-based approach, each process identifies alternating time durations when the
local predicate alternates betweentrueandfalse. This is illustrated in Figure 11.6. Let us consider
any two processesPi andPj , and let the intervals at these processes when the local predicates
φi andφj are true be denotedXi andYj, respectively. Let the start and end of an intervalX be

379

max(X)

max(Y)min(Y)

min(X) min(X) max(X)

min(Y) max(Y)

X

Y Y

X

(a) Definitely(phi) (b) Possibly(phi)

Figure 11.7: Illustrating conditions forDefinitely(φ) and¬Possibly(φ), for two processes.

denoted asmin(X) andmax(X), respectively. Assume the global predicate is defined on these
two processes. We can observe the following definitions ofDefinitely(φ) andPossibly(φ) with
the aid of Figure 11.7.

Definitely(φ) : min(X) ≺ max(Y)
∧

min(Y) ≺ max(X) (11.3)

Possibly(φ) : max(X) ≺ min(Y)
∨

max(Y) ≺ min(X) (11.4)

When the global predicate is defined on more than two processes, the following results for
Possibly andDefinitely are expressible in terms ofPossibly andDefinitely for pairs of pro-
cesses. The results can be observed to be true with the help ofFigure 11.6.

Definitely(φ) if and only if ∧i,j∈N Definitely(φi ∧ φj) (11.5)

Possibly(φ) if and only if ∧i,j∈N Possibly(φi ∧ φj) (11.6)

Figure 11.8 gives an algorithm that is run by a central serverP0 to detectPossibly(φ) or
Definitely(φ) for a conjunctive predicateφ. Whenever an interval completes, a process could
send the vector timestamp of the start and of the end events ofthat interval as aLog entry to the
central server process. But observe that for any two local intervalsY andY ′, if there is no send
or receive event between the start of the previous interval and the end of the latter interval, then
Y andY ′ have the exact same relation with respect to all other intervals at all other processes.
Hence, an interval needs to be sent toP0 if there is a send or receive event since the start of the
previous interval and the end of this interval. Each execution message thus causes at most four
control messages toP0 – two at the sender and two at the receiver.

The algorithm uses two queues,updatedQueues andnewUpdatedQueues. TheupdatedQueues
stores the indices of all the queues whose heads got updated.The latter is a temporary variable
for updatingupdatedQueues. A queue gets updated when a new interval potentially becomes the
head of the queue; such a new interval becomes a ‘candidate’ interval for the solution. A queue
gets updated under two situations: (1) a new interval is enqueued on to an empty queue, or (2) the
current head of a queue gets deleted because it is determinedthat it cannot possibly be a part of the
solution. Each new candidate interval (i.e., head of some queue) is examined with respect to the

380

heads of all other queues, in accordance with Equations 11.3and 11.4, to determine if the desired
modality is satisfied. In each comparison, if the desired modality is not satisfied, one of the two
intervals examined is marked for deletion (and the corresponding queue is said to be updated).

• Specifically, statements (12)-(15) can be used to check forDefinitely(φ) in accordance
with Equation 11.3.

• Statements (12’)-(15’) can be used to check forPossibly(φ) in accordance with Equa-
tion 11.4.

The setupdatedQueues stores the indices of all the queues whose heads get updated.In each itera-
tion of thewhile loop, the index of each queue whose head is updated is stored in setnewUpdatedQueues
(lines (12)-(15)or (12’)-(15’)). In lines (16) and (17), the heads of all these queues are deleted and
indices of the updated queues are stored in the setupdatedQueues. Thus, an interval gets deleted
only if it cannot be part of the solution. Now observe that each interval gets processed unless a
solution is found using an interval from each process. From Equations 11.5 and 11.6, ifevery
queue is non-empty and their heads cannot be pruned, then a solution exists and the set of intervals
at the head of each queue forms a solution.
Termination: If a solution exists, it is eventually detected by lines (18)-(19). Otherwise,P0 waits
to receive an interval from some process. The code can be modified to detect the end of the
execution at a process, and to notifyP0 about it.
Complexity: Let p be the number of intervals per process, andM be the number of messages sent
in the execution.

Message complexity:The number of control messages sent by then processes toP0 ismin(pn, 4M).
The first term denotes a message being sent for each interval completed. The second term
denotes that at most 4 control messages get sent for each execution message, in accordance
with the observation made earlier. Each control message contains the vector timestamp,
which has sizen integers.

Space complexity: The space complexity atP0 is min(pn, 4M) · 2n because all the intervals may
have to be queued up among the queuesQ1, . . . Qn.

Time complexity: When an interval is compared with others (loop in lines (9)-(15)), there are
O(n) steps in one such comparison. Any interval participates in at mostn such compar-
isons before at least one interval gets deleted (otherwise asolution is found). As there are
min(pn, 4M) · 2n intervals, the time complexity isO(n · n · (min(pn, 4M))).

11.4.2 Global State based Centralized Algorithm forPossibly(φ), whereφ
is conjunctive

A more efficient algorithm to detectPossibly(φ) than the generic algorithm in Figure 11.8 can be
devised by tailoring an algorithm to this specific modality.

381

queue ofLog: Q1, Q2, . . . Qn ⇐=⊥
set of int: updatedQueues, newUpdatedQueues⇐= {}

On receiving interval from processPz atP0:
(1) Enqueue the interval onto queueQz

(2) if (number of intervals onQz is 1) then
(3) updatedQueues ←− {z}
(4) while (updatedQueues is not empty)
(5) newUpdatedQueues ←− {}
(6) for eachi ∈ updatedQueues
(7) if (Qi is non-empty)then
(8) X ←− head ofQi

(9) for j = 1 to n
(10) if (Qj is non-empty)then
(11) Y ←− head ofQj

(12) if (min(X) 6≺ max(Y)) then // Definitely
(13) newUpdatedQueues←− {j} ∪ newUpdatedQueues
(14) if (min(Y) 6≺ max(X)) then // Definitely
(15) newUpdatedQueues←− {i} ∪ newUpdatedQueues
(12’) if (max(X) ≺ min(Y)) then // Possibly
(13’) newUpdatedQueues←− {i} ∪ newUpdatedQueues
(14’) if (max(Y) ≺ min(X)) then // Possibly
(15’) newUpdatedQueues←− {j} ∪ newUpdatedQueues
(16) Delete heads of allQk wherek ∈ newUpdatedQueues
(17) updatedQueues←− newUpdatedQueues
(18) if (all queues are non-empty)then
(19) solution found. Heads of queues identify intervals that form the solution.

Figure 11.8: Detecting a conjunctive predicate (centralized, on-line) forPossibly or Definitely
modality. ForDefinitely(φ), lines (12)-(15) are executed. ForPossibly(φ), lines (12’)-(15’) are
executed. To detect both, disjoint data structures are required.

Observe thatPossibly(φ) holds if and only if there is a consistent global state in the execution
in whichφ holds. Thus, detectingPossibly(φ) is equivalent to identifying a consistent global state
in which the local state at each processPi satisfiesφi. In this consistent global state, for any two
local statessi andsj atPi andPj, respectively, the following must hold.

(mutually concurrent)∀i, ∀j, si 6≺ sj ∧ sj 6≺ si (11.7)

Each processPi sends the vector timestamp of the local state whenφi becomes true, to the server
processP0. In fact, such a message needs to be sent only each time that the local predicate becomes
true for the first time since the previous communication event. This is because internal events that
are not separated by communication events are equivalent interms of consistent global states. The
algorithm in Figure 11.9 tracks the most recent global statethat can potentially satisfyPossibly(φ)

using a two-dimensional arrayGS[1 . . . n, 1 . . . n], where rowGS[i] stores the vector timestamp of

382

type Log
start: array[1n] of integer;
end: array[1n] of integer;

array of integer: GS[1 . . . n, 1 . . . n]; //ith row tracks vector time ofPi

array of boolean: V alid[1 . . . n]; //V alid[j] = 0 impliesPj stateGS[j, ·] needs to be advanced
queue ofLog: Q1, Q2, . . . Qn ←−⊥; //Qi stores timestamp info fromPi

(1) while (∃j |V alid[j] = 0) do //Pj ’s stateGS[j, ·] is not consistent with others
(2) if (Qj =⊥ andPj has terminated)then
(3) return(0) ;
(4) else
(5) await Qj becomes non-empty;
(6) GS[j, 1 . . . n]←− head(Qj); //Consider next state ofPj for consistency
(7) dequeue(head(Qj));
(8) V alid[j]←− 1;
(9) for k = 1 to n do //CheckPj ’s state w.r.t.Pk ’s state (for everyPk)
(10) if k 6= j and V alid[k] = 1 then
(11) if GS[j, j] ≤ GS[k, j] then //Pj ’s state is inconsistent withPk ’s state
(12) V alid[j]←− 0; //next state ofPj needs to be considered
(13) else ifGS[k, k] ≤ GS[j, k] then //Pk ’s state is inconsistent withPj ’s state
(14) V alid[k]←− 0; //next state ofPk needs to be considered
(15) return(1) .

Figure 11.9: Global state based detection of a conjunctive predicate (centralized, on-line,
Possibly).

the local state of processPi. At P0, the queuing of the vector timestamps received fromPi intoQi

is not shown explicitly. The algorithm run byP0 picks any processPj such thatV alid[j] = 0 and
dequeues the head ofQj for consideration of consistency with respect to the current states of all
processes (lines (6-8)). The main check is in lines (9)-(14)wherePj ’s state is checked for mutual
consistency withPk’s state, for allk.

• If Pj ’s state is old and hence causes inconsistency, it is marked as invalid (lines (11-12)). See
Fig 11.10(a).

• If Pk’s state is old and hence causes inconsistency, it is marked as invalid (lines (13-14)).
See Fig 11.10(b).

After this main check, the algorithm continues in the mainwhile loop and picks another process
Pj such thatV alid[j] = 0. A consistent state is detected whenV alid[j] = 1 for all j.
Termination: The algorithm terminates successfully (line (15)) ifV alid[j] = 1 for all j, indicating
a solution is found. It terminates unsuccessfully (line (3)) if some process terminates and its queue
is empty.

383

(b)(a)

k

j

GS[k,j]

GS[j,j] GS[j,k]

GS[k,k]

Figure 11.10: In the algorithm of Figure 11.9,P0 tests whetherPj ’s andPk’s candidate local states
are consistent with each other. (a)Pj ’s old state is invalid. (b)Pk’s old state is invalid.

Complexity: Letm be the number of local states at any process. LetM denote the total number
of messages sent in the execution.

Time complexity: As there are at mostmn local states that are processed byP0, and for each such
local state, thefor loop in line (9) is invoked once and requires2n integer comparisons, the
time complexity of the algorithm isO(n2m).

Space complexity: The space complexity atP0 is O(n2m) because there are at mostmn states,
each represented as a vector timestamp, that can be queued among then queuesQ1 toQn.

Message complexity:The number of control messages sent by then processes toP0 is 2M , and
each message contains the vector timestamp, which has sizen integers.

11.5 Distributed Algorithms for Conjunctive Predicates

11.5.1 Distributed State-based Token Algorithm forPossibly(φ), whereφ is
Conjunctive

The algorithm in Figure 11.11 is a distributed version of thealgorithm in Figure 11.9. Each queue
Qi is maintained locally atPi. The data structureGS no longer needs to be an×n array. Instead, a
unique token is passed among the processes serially. The token carries a vectorGS corresponding
to the vector timestamp of the earliest global state under consideration as a candidate solution.

A processPi receives a token only whenToken.V alid[i] = 0. All local states ofPi up to
Token.GS[i] will necessarily benot consistent with the earliest possible candidate local state of
some other process. SoPi has to now consider from its local queueQi, the first local state with
timestamp greater thanToken.GS[i] (lines (3)-(6)). Based on such a state ofPi, now written to
Token.GS[i] in line (4), for eachj, Pi now determines in line (8) whetherPj ’s candidate local
stateToken.GS[j] is consistent withToken.GS[i]. This test is illustrated in Figure 11.12.

• If the condition in line (8) is true (Figure 11.12(a)),Pj ’s state is not consistent.Token.V alid[j]
is reset. This implies that the token must visitPj before termination of the algorithm andPj

needs to find a local state that is mutually consistent with all the other states inToken.GS.

384

struct token {
array of integer: GS[1 . . . n]; //Earliest possible global state as a candidate solution
array of boolean: V alid[1 . . . n]; }Token; //V alid[j] = 0 indicatesPj ’s stateGS[j] is invalid

queue ofLog: Qi ←−⊥

Initialization.Token is at a randomly chosen process.

On receivingToken atPi

(1) while (Token.V alid[i] = 0) do // Token.GS[i] is the latest state ofPi known to be inconsistent
(2) await (Qi to be nonempty); //with other candidate local state ofPj , for somej
(3) if ((head(Qi))[i] > Token.GS[i]) then
(4) Token.GS[i]←− (head(Qi))[i]; // earliest possible state ofPi that can be part of solution
(5) Token.V alid[i]←− 1; //is written toToken and its validity is set.
(6) else dequeuehead(Qi);
(7) for j = 1 to n (j 6= i) do // for each other processPj : based onPi’s local state, determine whether
(8) if j 6= i and (head(Qi))[j] ≥ Token.GS[j] then // Pj ’s candidate local state (inToken)
(9) Token.GS[j]←− (head(Qi))[j]; // is consistent. If not,Pj needs to consider a
(10) Token.V alid[j]←− 0; // later candidate state with a timestamp> head((Qi)[j]
(11)dequeuehead(Qi);
(12) if for somek, Token.V alid[k] = 0 then
(13) sendToken to Pk;
(14)else return(1).

Figure 11.11: Global state based detection of a conjunctivepredicate (distributed, on-line,
Possibly). Code shown is forPi, 1 ≤ i ≤ n.

• If the condition in line (8) is false (Figure 11.12(b)),Pj ’s state is consistent.

Termination: The algorithm finds a solution whenToken.V alid[j] is 1, for all j (line (14)).
If a solution is not found, the code hangs in line (2). The codecan be modified to terminate
unsuccessfully in line (2) by modeling an explicit ‘processterminated’ state in this case.
Complexity:

Time complexity: Each time a token is received byPi, at least one local state is examined and
deleted. This involvesO(n) comparisons in the main loop (lines (7)-(10)). Assuming a
total ofm states at a process, the time overhead at a process isO(mn). The time overhead
across processes is cumulative as the token travels serially. Hence, total time complexity is
O(mn2).

Space complexity: In the worst case, all the local states may get queued inQi, leading to a space
requirement ofO(mn). Across all processes the space requirement becomesO(mn2).

Message complexity:The token makesO(mn) hops, and the size of the token is2n integers.

385

Token.GS[j]

Token.GS[j]

head(Q_i)[j]

head(Q_i)head(Q_i)

head(Q_i)[j]

i

j

(b)(a)

Figure 11.12: In the algorithm of Figure 11.11,Pi tests whetherPj ’s candidate local state
Token.GS[j] is consistent withhead(Qi)[i], which is assigned toToken.GS[i]. The two pos-
sibilities are illustrated. (a) Not consistent. (b) Consistent.

11.5.2 Distributed Interval-based Token Algorithm forDefinitely(φ), where
φ is Conjunctive

We now study an interval-based distributed token-based algorithm to detectDefinitely(φ) based
on the tests in Equations 11.3 and 11.5. DefineIi →֒ Ij as:min(Ii) ≺ max(Ij).
Problem Statement.In a distributed execution, identify a set of intervalsI containing one interval
from each process, such that (i) the local predicateφi is true inIi ∈ I, and (ii) for each pair of
processesPi andPj ,Definitely(φi,j) holds, i.e.,Ii →֒ Ij andIj →֒ Ii.

The algorithm is given in Figure 11.14. The vector timestamps of the start of and of the end of
an interval form a data typeLog, as shown in Figure 11.13. When an interval completes at pro-
cessPi, the interval’sLog is added to a local queueQi selectively, as shown in Figure 11.13.
An interval Y at Pj is deleted if on comparison with some intervalX on Pi, X 6 →֒ Y , i.e.,
Vi(min(X))[i] 6≤ Vj(max(Y))[i]. Thus the interval (Y) being deleted or retained depends on
its value ofVj(max(Y))[i]. The valueVj(max(Y))[i] changes only when a message is received.
Hence an interval needs to be stored only if a receive has occurred since the last time aLog of a
local interval was queued.

The token-based algorithm uses three types of messages (seeFigure 11.14) that are sent among
the processes. Request messages of typeREQUEST , reply messages of typeREPLY , and token
messages of typeTOKEN , are denotedREQ, REP , andT , respectively. Only the token-holder
process can sendREQs and receiveREPs. The process (Pi) having the token sendsREQs to all
other processes (line 3f).Logi.start[i] andLogi.end[j] for the interval at the head of the queue
Qi are piggybacked on the requestREQ sent to processPj (lines 3c-3e). On receiving aREQ
from Pi, processPj compares the piggybacked intervalX with the intervalY at the head of its
queueQj (line 4e). The comparisons between intervals on processPi andPj can result in these
outcomes. (1)Definitely(φi,j) is satisfied. (2)Definitely(φi,j) is not satisfied and intervalX
can be removed from the queueQi. The process indexi is stored inREP.updated (line 4f). (3)
Definitely(φi,j) is not satisfied and intervalY can be removed from the queueQj. The interval

386

type Log
start: array[1n] of integer;
end: array[1n] of integer;

type Q: queue ofLog;

When an interval begins:
Logi.start←− Vi.
When an interval ends:
Logi.end←− Vi

if (a receive event has occurred since the last time aLog was queued onQi) then
EnqueueLogi on to the local queueQi.

Figure 11.13: Maintaining intervals for detection of a conjunctive predicate (distributed, on-line,
Definitely).

at the head ofQj is dequeued and process indexj is stored inREP.updated (lines 4g, 4h). Note
that outcomes (2) and (3) may occur together. After the comparisons,Pj sendsREP to Pi. Once
the token-holder processPi receives aREP from all other processes, it stores the indices of all
the updated queues in the setT.updatedQueues (lines 3h, 3i). A solution, identified by the setI
formed by the intervalIk at the head of each queueQk, is detected if the setupdatedQueues is
empty. Otherwise, if indexi is contained inT.updatedQueues, processPi deletes the interval at
the head of its queueQi (lines 3m, 3n). As the setT.updatedQueues is non-empty, the token is
sent to a process selected randomly from the set (line 3o).

The crux of the correctness of this algorithm is based on Equations 11.3 and 11.5 forDefinitely(φ).
We can make the following observations from the algorithm.

• If Definitely(φi,j) is not true for a pair of intervalsXi andYj, then eitheri or j is inserted
into T.updatedQueues.

• An interval is deleted from queueQi at processPi if and only if the indexi is inserted into
T.updatedQueues.

• When a solutionI is detected by the algorithm, the solution is correct, i.e.,for each pair
Pi, Pj ∈ N , the intervalsIi = head(Qi) andIj = head(Qj) are such thatIi →֒ Ij and
Ij →֒ Ii (and hence by Equations 11.3 and 11.5,Definitely(φ) must be true).

• If a solutionI exists, i.e., for each pairPi, Pj ∈ N , the intervalsIi, Ij belonging toI are
such thatIi →֒ Ij andIj →֒ Ii (and henceDefinitely(φ) must be true), then the solution is
detected by the algorithm.

Complexity: The complexity analysis can be done in terms of two parameters – the maximum
number of messages sent per process (m) and the maximum number of intervals per process (p).

387

type REQUEST //used byPi to send a request to eachPj

start : integer; //containsLogi.start[i] for the interval at the queue head ofPi

end: integer; //containsLogi.end[j] for the interval at the queue head ofPi, when sending toPj

type REPLY //used to send a response to a received request
updated: set of integer; //contains the indices of the updated queues

type TOKEN //used to transfer control between two processes
updatedQueues: set of integer; //contains the index of all the updated queues

(1) ProcessPi initializes local state
(1a) Qi is empty.

(2) Token initialization
(2a) A randomly elected processPi holds the tokenT .
(2b) T.updatedQueues←− {1, 2, . . . , n}.

(3) RcvToken : WhenPi receives a tokenT
(3a) Remove indexi from T.updatedQueues
(3b) wait until (Qi is nonempty)
(3c) REQ.start←− Logi.start[i], whereLogi is the log at head ofQi

(3d) for j = 1 ton
(3e) REQ.end←− Logi.end[j]
(3f) Send the requestREQ to processPj

(3g) wait until (REPj is received from each processPj)
(3h) for j = 1 ton
(3i) T.updatedQueues←− T.updatedQueues∪REPj .updated
(3j) if (T.updatedQueues is empty)then
(3k) Solution detected. Heads of the queues identify intervals that form the solution.
(3l) else
(3m) if (i ∈ T.updatedQueues) then
(3n) dequeue the head fromQi

(3o) Send token toPk wherek is randomly selected from the setT.updatedQueues.

(4) RcvReq : When aREQ from Pi is received byPj

(4a) wait until (Qj is nonempty)
(4b) REP.updated←− φ
(4c) Y ←− head of local queueQj

(4d) V −
i (X)[i]←− REQ.start andV +

i (X)[j]←− REQ.end
(4e) DetermineX →֒ Y andY →֒ X
(4f) if (Y 6 →֒ X) then REP.updated←− REP.updated ∪ {i}
(4g) if (X 6 →֒ Y) then
(4h) REP.updated←− REP.updated ∪ {j}
(4i) DequeueY from local queueQj

(4j) Send replyREP to Pi.

Figure 11.14: Interval based detection of a conjunctive predicate (distributed, on-line,
Definitely).

388

Space complexity: This is analyzed for each process, and for the entire system.

• The worst-case space overhead across all the processes is2mn2. The worst-case space
overhead at any process isO(mn2).

• The total number ofLogs stored at each process isp because in the worst case, the
Log for each interval may need to be stored. As eachLog has size2n, the worst-case
overhead is2np integers over allLogs per process, and the worst-case space complexity
across all processes is2n2p = O(n2p).

As the total number ofLogs stored on all the processes ismin(np,mn), the worst-case space
overhead across all the processes ismin(2n2p, 2n2m). This is equivalent tomin(2np, 2nm)

per process if themn message destinations are divided equally among the processes (imply-
ing that each process has up tomin(p,m) Logs). The worst-case space overhead at a process
is min(2np, 2n(n− 1)m).

Time complexity: The two components contributing to time complexity areRcvReq andRcvToken.

RcvReq: In the worst case, the number ofREQs received by a process is equal to the
number ofLogs on all other processes, because aREQ is sent only once for each
Log. The total number ofLogs over all the queues ismin(np,mn), hence the number
of interval pairs compared per process ismin((n − 1)p,m(n − 1)). As it takesO(1)

time to executeRcvReq, the worst-case time complexity per process forRcvReq is
O(min(np,mn)). As the processes executeRcvReq in parallel, this is also the total
time complexity forRcvReq.

RcvToken: The token makes at mostmin(np,mn) hops serially and each hop requires
O(n) time complexity. Hence the worst-case time complexity forRcvToken across all
processes isO(min(pn2, mn2)). In the worst case, a process receives the token each
time its queue head is deleted, and this can happen as many times as the number of
Logs at the process. As the number ofLogs at a process ismin(p,m(n − 1)), the
worst-case time complexity per process isO(min(pn,mn2)).

The worst-case time complexity across all the processes isO(min(pn2, mn2)). This is equiv-
alent toO(min(pn,mn)) per process if themn message destinations are divided equally
among the processes (implying that each process has up tomin(p,m) Logs). The worst-
case time complexity at a process isO(min(pn,mn2)).

Message complexity:For eachLog, either no messages are sent, orn − 1 REQs,n − 1 REPs
and one tokenT are sent.

• As the total number ofLogs over all the queues ismin(np,mn), hence the worst-case
number of messages over all the processes isO(nmin(np,mn)).

389

• The size of eachT is equal toO(n), while the size of eachREP and eachREQ is
O(1). Thus for eachLog, the message space overhead isO(n) if any messages are sent
for thatLog. Hence the worst-case message space overhead over all the processes is
equal toO(nmin(np,mn)).

i

j

k

log entry

Least_Sol Current_Conc_Ints

(b)(a)
interval

Figure 11.15: Illustrations of definitions used by the algorithm in Figure 11.16. (a) Definition of
an interval. (b) Definitions of interval vectorsLeast_Sol, Current_Conc_Ints, andLog entries.

11.5.3 Distributed Interval-based Piggybacking Algorithm for Possibly(φ),
whereφ is Conjunctive

Unlike the previous algorithm which was a token-based algorithm to detectDefinitely(φ), we
now look at a distributed algorithm for detectingPossibly(φ) without using any control messages.
Instead, the algorithm piggybacks the necessary information on the application messages. The
algorithm therefore illustrates a different design approach.

In this algorithm, thesemantics of an intervalis that each interval at a process represents the
duration between two consecutive communication events at the process. Intervals are sequen-
tially numbered at any processPi, asI0

i , I
1
i , I

2
i , Two intervals atPi andPj are concurrent if

Possibly(φ) is true as determined by using Equation 11.4, and assumingφi is true inIi andφj is
true inIj .

The following variables are used at each process.

• not_yet_logged[1 . . . n], a boolean, is used to determine whether in the current interval, the
‘sequence number’ of the interval is logged when the predicate first became true in this
interval. This variable helps to minimize the number of intervals logged, by ensuring that
in any interval, the interval is logged only once in the locallog (see below) when the local
predicate first becomes true in the interval (lines 1a-1b). Logging just once is important
when the predicate may toggle its truth value multiple timeswithin an interval.

390

• Current_Conc_Ints[1 . . . n], an array of integers, is used to keep track of the latest known
concurrent set of intervals (as per Equations 11.4 and 11.6). However, it is not necessar-
ily known whether the local predicates at the various processes are true in these intervals,
because this array is updated at the start of an interval.

• Least_Sol[1 . . . n], an array of integers, is used to track the least possible global state (i.e.,
set of intervals) that could possibly satisfyPossibly(φ). In other words, no interval at any
process, that precedes that process’s interval inLeast_Sol, can ever be part of the solution
global state.

We have that (∀k) Current_Conc_Ints[k] ≥ Least_Sol[k].

• V alid[1 . . . n], a boolean array, tells whether the corresponding intervalin Least_Sol is
valid, i.e., whether the local predicate is ever satisfied inthat interval.V alid[j] = 1 means
φj is necessarily satisfied inLeast_Sol[j]; if 0, it is not yet known whetherφj is satisfied
because the interval has not yet completed.

It follows thatPossibly(φ) is true andφ is satisfied in the state identified byLeast_Sol
when all the entries in arrayV alid are true.

• The queueLog at each process tracks the various values (vectors) of intervals (one interval
per process) that are locally generated, one for each local communication event. In some
sense, this tracks the intermediate statesCurrent_Conc_Ints as they are generated, be-
tween global stateLeast_Sol and the ‘current’ global stateCurrent_Conc_Ints.

At the time the local predicate becomes true andnot_yet_loggedis false, (i)Current_Conc_Ints
is enqueued locally, and (ii) ifCurrent_Conc_Ints[i] = Least_Sol[i], thenV alid[i] is set to true
(lines 1c-1d).

The arrayCurrent_Conc_Ints’s local component is always updated for each send and receive
event. The array is also piggybacked on each message sent. The receiver takes the maxima of its
local array and the sender’s array (line 3a). Thus, this global state is always kept up to date.

The arrayLeast_Sol plays ‘catch up’ withCurrent_Conc_Ints. At a send event atPi,
Least_Sol[i] is set toCurrent_Conc_Int[i] if the log Logi is empty (lines 2c-2d). The arrays
Least_Sol andV alid are also piggybacked on the message sent (line 2e). At a receive event, the
receiverPi takes the more up to date information (line 3b) onLeast_Sol andV alid, that it has and
what it receives fromPj . (Assuming a solution is not found here, i.e.,V alid is not all 1, further pro-
cessing is necessary to advanceLeast_Sol.) In this step, the previous value ofLeast_Sol[i] may
advance. As a result, entries ofCurrent_Conc_Ints in the logLogi that are older than the new
value ofLeast_Sol[i] are dequeued and deleted (lines 3e-3f). IfLogi becomes empty,Least_Sol
catches up completely withCurrent_Conc_Ints and all the entries in the vectorV alid are reset
as we no longer know whether the local predicates were true inthe corresponding intervals of
Current_Conc_Ints (lines 3g-3h). IfLogi is nonempty (line 3i), then the current head of the
Log represents one of the earlier values ofCurrent_Conc_Ints. The information of this queue
head and associated validity vector of all 0s, is combined with the value of(Least_Soli, V alidi)

391

array of integer: Least_Sol[1 . . . n];
array of boolean: V alid[1 . . . n];
array of integer: Current_Conc_Ints[1 . . . n];
queue ofCurrent_Conc_Ints: Log ←−⊥
boolean: not_yet_loggedi←− 1;

(1) When local predicateφi becomes true atPi:
(1a) if not_yet_loggedi then
(1b) enqueue(Logi, Current_Conc_Intsi); not_yet_loggedi←− false;
(1c) if Least_Soli[i] = Current_Conc_Intsi[i] then
(1d) V alidi[i]←− true.

(2) Pi sends a message, with〈Current_Conc_Intsi, Least_Soli, V alidi〉 appended
(2a) Current_Conc_Intsi[i]←− Current_Conc_Intsi[i] + 1;
(2b) not_yet_loggedi←− true;
(2c) if empty(Logi) then
(2d) Least_Soli[i]←− Current_Conc_Intsi[i];
(2e) sendthe message with vectors〈Current_Conc_Intsi, Least_Soli, V alidi〉 piggybacked.

(3) WhenPi receives a message fromPj with 〈Current_Conc_Intsj , Least_Solj, V alidj〉 piggybacked
(3a) Current_Conc_Intsi ←− max(Current_Conc_Intsi, Current_Conc_Intsj);
(3b) (Least_Soli, V alidi)←− Combine_Maxima((Least_Soli, V alidi), (Least_Solj , V alidj));
(3c) Current_Conc_Intsi[i]←− Current_Conc_Intsi[i] + 1;
(3d) not_yet_loggedi←− true;
(3e) while ((not empty(Logi)) and((head(Logi))[i] < Least_Soli[i]) do
(3f) dequeue(Logi);
(3g) if empty(Logi) then
(3h) Least_Soli ←− Current_Conc_Intsi; V alidi ←− [0, 0, . . . , 0];
(3i) else
(3j) (Least_Soli, V alidi)←− Combine_Maxima((Least_Soli, V alidi), (head(Logi), [0, 0, . . . , 0]));
(3k) V alidi[i]←− 1;
(3l) if V alidi ←− [1, 1, . . . , 1] then
(3m) Possibly(φ) is true in global stateLeast_Soli;
(3n) Deliver the message.

(4) functionCombine_Maxima((C1, A1), (C2, A2))

array of integer: C[1 . . . n];
array of boolean: A[1 . . . n];
(4a) for x = 1 to n do
(4b) case:
(4c) C1[x] > C2[x] −→ (C[x]←− C1[x]; A[x]←− A1[x]);
(4d) C1[x] < C2[x] −→ (C[x]←− C2[x]; A[x]←− A2[x]);
(4e) C1[x] = C2[x] −→ (C[x]←− C1[x]; A[x]←− (A1[x] or A2[x]));
(4f) return (C, A).

Figure 11.16: Interval based detection of a conjunctive predicate (distributed, on-line,Possibly).

(line 3j) andV alid[i] is set to 1 (line 3k) because the global state fromhead(Logi) implies thatφi

was true in the local interval in that global state. At this stage, ifV alidi[k] is true for allk, then a
solution state is given byLeast_Sol.

392

Termination: If V alid[k] = 1 for all k, the algorithm finds a set of intervals satisfyingPossibly(φ).
Note that for this to happen, some process must have receivedinformation about all such intervals
and that they were valid. It may happen that such a set of intervals indeed exists but no process
is able to see all these intervals under two related conditions: (i) there is not enough communica-
tion on which such information can be piggybacked, and (ii) the underlying execution terminates
shortly after such a set of intervals come into existence. Exercise 8 asks you to analyze this termi-
nation condition further.
Complexity: LetMs andMc denote the number of messages sent by a process, and the number of
communication events at a process, respectively.

Time complexity: Each message send and message receive requiresO(n) processing. The time
complexity at a process isO(Mcn) and across all processes, this isO(Mcn

2) = O(Msn
2).

Space complexity: TheLog at a process may have to hold up toMc intervals, each of sizeO(n).
The other data structures are integer or boolean arrays of size n and requireO(n) space
locally. Hence, the system space complexity isO(

∑n
i=1Mcn) = O(Mcn

2) = O(Msn
2).

Message complexity:On each message sent by the application,O(3n) data is piggybacked. No
control messages are used. If a process sends up toMs messages, the total space overhead is
O(Msn

2).

Fault-tolerance: The algorithm is resilient to message losses because it usespiggybacking of
control information (See Exercise 9).

11.6 Further Classification of Predicates

We have thus far seenrelational predicates,conjunctivepredicates,local predicates (in an earlier
chapter), andstablepredicates. Here we formally define local predicates, and then consider two
more types of predicates.

Local predicate: A local predicate is a predicate whose value is fully controlled by a single pro-
cess.

Disjunctive predicates: If a predicateφ can be expressed as the disjunction∨i∈Nφi, whereφi is
a predicate local to processi, thenφ is a disjunctive predicate. Disjunctive predicates are
straightforward to detect; each process monitors the localdisjunct, and when it becomes
true, informs the other processes. If the disjunct atPi becomes true after thexth local event,
then in the state lattice diagram,φ will be true in all global states havingx events atPi. It is
now easy to see that for a disjunctive predicate,Possibly(φ) = Definitely(φ).

Observer-independent predicates:Different observers may observe different cuts of the execu-
tion; an observer can only determine if the predicateφ became true in the cuts it can observe.

393

If φ is observer-independent, different observers will all agree on whether the predicateφ be-
came true.

We have seen thatDefinitely(φ) = : Possibly(φ). If the predicateφ also satisfies the
conditionPossibly(φ) = : Definitely(φ), and thusPossibly(φ) = Definitely(φ), then
it is an observer-independent predicate. The predicate will be seen to hold or to not hold
independent of the observer.

Stable predicates as well as disjunctive predicates are both observer-independent.

The modalitiesPossiblyand Definitely are coarse-grained. Predicates can also be detected
under a rich, fine-grained suite of modalities based on the causality relation.

11.7 Chapter Summary

Observing global states is a fundamental problem in asynchronous distributed systems, as studied
in Chapter??. A natural extension of this problem is to detect global states that satisfy a given
predicate on the variables of the distributed program. The chapter first consideredstablepredicates,
which are predicates that remain true once they become true.Deadlock detection and termination
detection are based on stable predicate detection.

Unstable predicates on the program variables are difficult to detect because the values of vari-
ables that make the predicate true can changes and falsify the predicate. Hence, unstable predicates
are defined under modalities:PossiblyandDefinitely. Furthermore, a predicate can be broadly clas-
sified asconjunctiveor relational. A relational predicate is a predicate using any relation ofthe
distributed variables, whereas a conjuctive predicate is defined to be a conjunct of local predicates.

The chapter studied a centralized algorithm for detecting relational predicates, having expo-
nential complexity. This complexity seems to be inherent for relational predicates. The next cen-
tralized algorithms considered for conjunctive predicates were: (i) an interval-based algorithm
for detecting both modalitiesPossiblyandDefinitely, and (ii) a global state based algorithm for
detecting underPosssiblymodality.

The chapter then covered three distributed algorithms for conjunctive predicates, all having
polynomial complexity. The first was a state-based token-based algorithm for thePossiblymodal-
ity. The second was an interval-based token-based algorithm for theDefinitelymodality. The third
was an interval-based piggybacking algorithm for thePossiblymodality. These representative al-
gorithms illustrate different techniques for conjunctivepredicate detection. The chapter concluded
by mentioning other more sophisticated predicate modalities.

11.8 Bibliographic Notes

The discussion on stable and unstable predicates is based onChandy and Lamport [6]. Pnueli first
introduced a temporal logic for programs with the ‘henceforth’ operator [21]. The discussion on
detecting deadlocks is based on Kshemkalyani and Singhal [16] and the discussion on termination

394

detection is based on Mattern [20]. The challenges in detecting unstable predicates, thePossibly
andDefinitely modalities, and the notion of the state lattice were formulated by Cooper and
Marzullo [8] and Marzullo and Neiger [18]. The centralized algorithms to detectPossibly and
Definitely for relational predicates are based on Cooper and Marzullo [8]. Various techniques
to improve the efficiency are given by Alagar and Venkatesan [1]. Conjunctive predicates were
discussed by Venkatesan and Dathan [22], Garg and Waldecker[11] and Kshemkalyani [14]. The
discussion on the conditions to detect conjunctive predicates is based on Kshemkalyani [14] and
Chandra and Kshemkalyani [4]. The centralized algorithm for Possibly(φ) andDefinitely(φ)

whereφ is conjunctive, in Figure 11.8, is adapted from Chandra and Kshemkalyani [2] and Garg
and Waldecker [11, 12]. The centralized algorithm forPossibly(φ) whereφ is conjunctive, in Fig-
ure 11.9, is based on the test for consistent states using vector clocks of Mattern [19] and Fidge [9].
The distributed state-based algorithm forPossibly(φ) whereφ is conjunctive, in Figure 11.11, is
based on Garg and Chase [10]. The distributed interval-based algorithm forDefinitely(φ) where
φ is conjunctive, in Figure 11.14, is based on Chandra and Kshemkalyani [3]. The distributed
interval-based algorithm forPossibly(φ) whereφ is conjunctive, in Figure 11.16, is based on
Hurfin, Mizuno, Raynal,and Singhal [13]. Observer-independent predicates were introduced by
Charron-Bost, Delporte-Gallet, and Fauconnier [7]. A fine-grained set of modalities was intro-
duced by [14]. Their mapping to thePossibly/Definitelymodalities was proposed in [15]. Algo-
rithms to detect predicates under these fine-grained modalities were given in [4, 2, 5].

11.9 Exercise Problems

1. State whether True or False for each of the following. Justify your answers.

(a) Possibly(φ) =:¬Definitely(φ)

(b) Possibly(φ) =:Definitely(φ)

(c) Possibly(φ) =:Definitely(¬φ)

(d) Possibly(φ) =:¬Definitely(¬φ)

(e) Definitely(φ) =:Possibly(φ)

(f) Definitely(φ) =:Possibly(¬φ)

(g) Definitely(φ) =:¬Possibly(φ)

(h) Definitely(φ) =:¬Possibly(¬φ)

2. A conjunctivepredicateφ = ∧i∈Nφi, whereφi is a predicate defined on variables local to
processPi.

In a distributed execution(E,≺), letFirst_Cut(φ) be denote theearliestor smallestcon-
sistent cut in which the global conjunctive predicateφ becomes true.

395

Recall that in different equivalent executions, a different “path” may be traced through the
state lattice. Therefore, for different re-executions of this (deterministic) distributed pro-
gram, is the stateFirst_Cut(φ) well-defined? i.e., is it uniquely identified? Worded equiv-
alently, is the set of cutsC(φ) closed under intersection?

3. Somewhat similar to the earlier problem, we now need to show a stronger property for linear
predicates. Using the standard notation, letCuts(φ) denote the set of cuts satisfyingφ. Prove
the following. “Cuts(φ) is closed under intersection if and only ifφ is linear.”

4. Prove that the predicate detection problem is NP-complete.
(Hint: Show a reduction from the satisfiability (SAT) problem.)

5. If it is known thatPossibly(φ) is true andDefinitely(φ) is false in an execution, then what
can be said aboutPossibly(φ) and aboutDefinitely(φ) in terms of the paths of the state
lattice of that execution?

6. For the algorithm in Figure 11.3, answer the following.

(a) When can the algorithm begin constructing the global states of levellvl?

(b) When are all the global states of levellvl constructed?

7. Can the algorithm for global state based detection of a conjunctive predicate (centralized,
on-line,Possibly) of Figure 11.9 be modified to detectDefinitely(φ)? If yes, give the
modified algorithm and show it is correct.

8. Determine whether the interval-based distributed algorithm (Figure 11.16) to detectPossibly(φ)

will always detectPossibly(φ), even though the algorithm is correct in principle. If it will
not, extend the algorithm to ensure that a solution is alwaysdetected if it exists.
Hint: Consider the termination of the execution and thePossibly modality holding just a
little before the termination.

9. Analyze the degree to which the algorithm in Figure 11.16 is resilient to message losses.

10. Show the following relationships among the various classes of predicates.

(a) The set of stable predicates is a proper subset of the set of observer-independent predi-
cates.

(b) The set of disjunctive predicates is a proper subset of the set of observer-independent
predicates.

396

Bibliography

[1] S. Alagar, S. Venkatesan, Techniques to tackle state explosion in global predicate detection,
IEEE Trans. Software Engg., 27(8): 704-714, 2001.

[2] P. Chandra, A.D. Kshemkalyani, Algorithms for detecting global predicates under fine-grained
modalities, Proc. ASIAN 2003, LNCS, Springer, p. 91-109, December 2003.

[3] P. Chandra, A.D. Kshemkalyani, Distributed algorithm to detect strong conjunctive predicates,
Information Processing Letters, 87(5): 243-249, September 2003.

[4] P. Chandra, A.D. Kshemkalyani, Detection of orthogonalinterval relations, Proc. High-
Performance Computing Conference, 323-333, LNCS 2552, Springer, 2002.

[5] P. Chandra, A. D. Kshemkalyani, Causality-based predicate Detection across space and time,
IEEE Transactions on Computers, 54(11): 1438-1453, November 2005

[6] K. M. Chandy, L. Lamport: Distributed snapshots: Determining global states of distributed
systems, ACM Transactions on Computer Systems, 3(1): 63-75, 1985.

[7] B. Charron-Bost, C. Deloprte-Gallet, H. Fauconnier, Local and temporal predicates in dis-
tributed systems, ACM Trans. on Programming Languages and Systems, 17(1): 157-179,
1995.

[8] R. Cooper, K. Marzullo, Consistent detection of global predicates, Proc. ACM/ONR Workshop
on Parallel & Distributed Debugging, 163-173, May 1991.

[9] C. J. Fidge, Timestamps in message-passing systems thatpreserve partial ordering, Australian
Computer Science Communications, 10(1): 56-66, 1988.

[10] V.K. Garg, C. Chase, Distributed algorithms for detecting conjunctive predicates, Proceed-
ings 15th IEEE International Conference on Distributed Computing Systems, p. 423-430,
1995.

[11] V.K. Garg, B. Waldecker, Detection of weak unstable predicates in distributed programs,
IEEE Trans. Parallel & Distributed Systems, 5(3):299-307,Mar. 1994.

[12] V.K. Garg, B. Waldecker, Detection of strong unstable predicates in distributed programs,
IEEE Trans. Parallel & Distributed Systems, 7(12):1323-1333, Dec. 1996.

397

[13] M. Hurfin, M. Mizuno, M. Raynal, M. Singhal, Efficient distributed detection of conjunctions
of local predicates, IEEE Trans. Software Engg., 24(8): 664-677, 1998.

[14] A.D. Kshemkalyani, Temporal interactions of intervals in distributed systems, Journal of
Computer and System Sciences, 52(2): 287-298, April 1996.

[15] A.D. Kshemkalyani, A fine-grained modality classification for global predicates, IEEE Trans.
Parallel & Distributed Systems, 14(8): 807-816, August 2003.

[16] A.D. Kshemkalyani, M. Singhal, Correct two-phase and one-phase deadlock detection al-
gorithms for distributed systems, Proceedings of 2nd IEEE Symposium on Parallel and Dis-
tributed Processing, p. 126-129, Dec. 1990.

[17] L. Lamport, Time, clocks, and the ordering of events in adistributed system, Communications
of the ACM, 21(7): 558-565, July 1978.

[18] K. Marzullo, G. Neiger, Detection of global state predicates, Proc. 5th Workshop on Dis-
tributed Algorithms, LNCS 579, Springer-Verlag, 254-272,October 1991.

[19] F. Mattern, Virtual time and global states of distributed systems, Proc. International Workshop
on Parallel and Distributed Algorithms, North-Holland, pp. 215-226, October 1998.

[20] F. Mattern, Algorithms for distributed termination detection, Distributed Computing, 2: 161-
175, 1987.

[21] A. Pnueli, The temporal logic of programs, Proc. IEEE Symposium on Foundations of Com-
puter Science, p. 46-57, 1977.

[22] S. Venkatesan, B. Dathan, Testing and debugging distributed programs using global predi-
cates, IEEE Trans. Software Engg., 21(2): 163-177, Feb. 1995.

398

Chapter 12

Distributed Shared Memory

12.1 Abstraction and Advantages

Distributed shared memory (DSM) is an abstraction providedto the programmer of a distributed
system. It gives the impression of a single monolithic memory, as in a traditional von Neumann
architecture. The programmer accesses the data across the network using onlyread and write
primitives, as he would in a uniprocessor system. The programmer does not have to deal with
sendandreceivecommunication primitives and the ensuing complexity of dealing explicitly with
synchronization and consistency in the message-passing model. The DSM abstraction is illustrated
in Figure 12.1. A part of each computer’s memory is earmarkedfor shared space, and the remainder
is private memory. To provide the programmers the illusion of a single shared address space, a
memory mapping management layer is required to manage theshared virtual memoryspace.

Shared Virtual Memory

Memory Memory Memory
manager managermanager

CPU CPU CPU
Memory Memory Memory

Figure 12.1: Abstract view of DSM

The following are the advantages of DSM.

1. Communication across the network is achieved by the read/write abstraction that simplifies
the task of the programmer.

399

Shared Virtual Memory

Memory Memory Memory
manager managermanager

Distributed shared memory

invocation

response

invocation

response

invocation

response

processprocess process

Figure 12.2: Detailed abstraction of DSM and interaction with application processes.

2. A single address space is provided, thereby providing thepossibility of avoiding data move-
ment across multiple address spaces by usingpassing-by-reference, instead ofpassing-by-
value.

3. If a block of data needs to be moved, the system can exploit locality of reference to reduce
the communication overhead.

4. DSM is often cheaper than using dedicated multiprocessorsystems, because it uses simpler
software interfaces and off-the-shelf hardware.

5. There is no bottleneck presented by a single memory accessbus.

6. DSM effectively provides a large (virtual) main memory.

7. DSM provides portability of programs written using DSM. This portability arises due to a
common DSM programming interface, that is independent of the operating system and other
low-level system characteristics.

Although a familiar (i.e., read/write) interface is provided to the programmer, there is a catch to
it. Under the covers, there is inherently a distributed system and a network, and the data needs to be
shared in some fashion. There is no silver bullet. Moreover,with the possibility of data replication
and/or the concurrent access to data, concurrency control needs to be enforced. Specifically, when
multiple processors wish to access the same data object, a decision about how to handle concurrent
accesses needs to be made. As in traditional databases, if a locking mechanism based on read and
write locks for objects is used, concurrency is severely restrained, defeating one of the purposes
of having the distributed system. On the other hand, if concurrent access is permitted by different
processors to different replicas, the problem of replica consistency (which is a generalization of the
problem of cache consistency in computer architecture studies) needs to be addressed. The main
point of allowing concurrent access (by different processors) to the same data object is to increase
throughput. But in the face of concurrent access, the semantics of what value a read operation

400

returns to the program needs to be specified. The programmer ultimately needs to understand
this semantics, which may differ from the Von Neumann semantics, because the program logic
depends greatly on this semantics. This compromises the assumption that the DSM is transparent
to the programmer.

Before examining the challenges in implementing replica coherency in DSM systems, we look
at the disadvantages.

1. The programmer is not shielded from having to know about various replica consistency
models and coding his distributed application according tothe semantics of these models.

2. As DSM is implemented under the covers using asynchronousmessage-passing, the over-
heads incurred are at least as high as those of a message-passing implementation. As such,
DSM implementations cannot be more efficient than asynchronous message-passing imple-
mentations. The generality of the DSM software may make it less efficient.

3. By yielding control to the DSM memory management layer, the programmer loses the ability
to use his own message-passing solutions for accessing shared objects. It is likely that the
standard vanilla implementations of DSM have a higher overhead than a programmer-written
implementation tailored for a specific application and system.

The main issues in designing a DSM system are the following.

• Determining what semantics to allow for concurrent access to shared objects. The seman-
tics needs to be clearly specified so that the programmer can code his program using an
appropriate logic.

• Determining the best way to implement the semantics of concurrent access to shared data.
One possibility is to use replication. One decision to be made is the degree of replication –
partial replication at some sites, or full replication at all the sites. A further decision then
is to decide on whether to use read-replication (replication for the read operations) or write-
replication (replication for the write operations) or both.

• Selecting the locations for replication (if full replication is not used), to optimize efficiency
from the system’s viewpoint.

• Determining the location of remote data that the application needs to access, if full replica-
tion is not used.

• Reducing communication delays and the number of messages that are involved under the
covers while implementing the semantics of concurrent access to shared data.

There is a wide range of choices on how these issues can be addressed. In part, the solution
depends on the system architecture. Recall from Chapter 1 that DSM systems can range from
tightly-coupled (hardware and software) multicomputers to wide-area distributed systems with
heterogenous hardware and software. There are four broad dimensions along which DSM systems
can be classified and implemented.

401

Type of DSM Examples Management Caching Remote access
single-bus multiprocessorFirefly, Sequent by MMU hardware control by hardware
switched multiprocessor Alewife, Dash by MMU hardware control by hardware

NUMA system Butterfly, CM* by OS software control by hardware
Page-based DSM Ivy, Mirage by OS software control by software

Shared variable DSM Midway, Munin by language software control by software
runtime system

Shared object DSM Linda, Orca by language software control by software
runtime system

Table 12.1: Comparison of DSM systems

• Whether data is replicated or cached

• Whether remote access is by hardware or by software

• Whether the caching/replication is controlled by hardwareor software

• Whether the DSM is controlled by the distributed memory managers, by the operating sys-
tem, or by the language runtime system.

The various options for each of these four dimensions, and their comparison, are shown in Fig-
ure 12.1.

12.2 Memory Consistency Models

Memory coherenceis the ability of the system to execute memory operations correctly. Assume
n processes andsi memory operations per processPi. Also assume that all the operations issued
by a process are executed sequentially (that is, pipeliningis disallowed), as shown in Figure 12.3.
Observe that there are a total of

(s1 + s2 + . . .+ sn)!/(s1!s2! . . . sn!)

possible permutations or interleavings of the operations issued by the processes. The problem of
ensuring memory coherence then becomes the problem of identifying which of these interleavings
are “correct”, which of course requires a clear definition of“correctness”. Thememory consistency
modeldefines the set of allowable memory access orderings. While atraditional definition of
correctness says that a correct memory execution is one thatreturns to eachReadoperation, the
value stored by the most recentWrite operation, the very definition of “most recent” becomes
ambigious in the presence of concurrent access and multiplereplicas of the data item. Thus, a clear
definition of correctness is required in such a system; the objective is to disallow the interleavings
that make no semantic sense, while not being overly restrictive so as to permit a high degree of
concurrency.

402

response response
invocation

response response
invocationinvocationinvocation

process

local
memory manager

op3 opkop2op1

Figure 12.3: Sequential invocations and responses in a DSM system, without any pipelining.

The DSM system enforces a particular memory consistency model; the programmer writes his
program keeping in mind the allowable interleavings permitted by that specific memory consis-
tency model. A program written for one model may not work correctly on a DSM system that
enforces a different model. The model can thus be viewed as acontractbetween the DSM system
and the programmer using that system. We now consider six consistency models, that are related
as shown in Figure 12.12.
Notation: A write of valuea to variablex is denoted asWrite(x,a). A read of variablex that returns
valuea is denoted asRead(x,a). A subscript on these operations is sometimes used to denotethe
processor that issues these operations.

12.2.1 Strict consistency/Atomic consistency/Linearizability

The strictest model, corresponding to the notion of correctness on the traditional Von Neumann
architecture or the uniprocessor machine, requires that any Readto a location (variable) should
return the value written by the most recentWrite to that location (variable). Two salient features
of such a system are the following. (i) A common global time axis is implicitly available in
a uniprocessor system. (ii) Each write is immediately visible to all processes. Adapting this
correctness model to a DSM system with operations that can beconcurrently issued by the various
processes gives thestrict consistency model, also known as theatomic consistency model. The
model is more formally specified as follows.

1. Any Readto a location (variable) is required to return the value written by the most recent
Write to that location (variable) as per a global time reference.

For operations that do not overlap as per the global time reference, the specification is clear.
For operations that overlap as per the global time reference, the following further specifica-
tions are necessary.

2. All operations appear to be executed atomically and sequentially.

3. All processors see the same ordering of events, which is equivalent to the global-time occur-
rence of non-overlapping events.

An alternate way of specifying this consistency model is in terms of the ‘invocation’ and ‘re-
sponse’ to eachReadandWrite operation, as shown in Figure 12.3. Recall that each operation

403

takes a finite time interval and hence different operations by different processors can overlap in
time. However, the invocation and the response to each invocation can both be separately viewed
as being atomic events. An execution sequence in global timeis viewed as a sequenceSeq of such
invocations and responses. Clearly,Seq must satisfy the conditions:

• (Liveness:) Each invocation must have a corresponding response, and

• (Correctness:) The projection ofSeq on any processori, denotedSeqi, must be a sequence
of alternating invocations and responses if pipelining is disallowed.

Despite the concurrent operations, a linearizable execution needs to generate an equivalent global
order on the events, that is a permutation ofSeq, satisfying the semantics oflinearizability. More
formally, a sequenceSeq of invocations and responses islinearizable(LIN) if there is a permuta-
tion Seq′ of adjacent pairs of corresponding〈invoc, resp〉 events satisfying:

1. For every variablev, the projection ofSeq′ onv, denotedSeq′v, is such that

• everyRead(adjacent〈invoc, resp〉 event pair) returns the most recentWrite (adjacent
〈invoc, resp〉 event pair) that immediately preceded it.

2. If the responseop1(resp) of operationop1 occurred before the invocationop2(invoc) of op-
erationop2 in Seq, thenop1 (adjacent〈invoc, resp〉 event pair) occurs beforeop2 (adjacent
〈invoc, resp〉 event pair) inSeq′.

Condition 1 specifies that every processor sees a common order Seq′ of events, and that in this
order, the semantics is that eachReadreturns the most recent completedWritevalue. Condition 2
specifies that the common orderSeq′ must satisfy the global time order of events, viz., the order
of non-overlapping operations inSeq must be preserved inSeq′.
Examples: Figure 12.4 shows three executions.

Figure 12.4(a): The execution is not linearizable because although theReadby P2 begins after
Write(x, 4), theReadreturns the value that existed before theWrite. Hence, a permutation
Seq′ satisfying the above condition(2) on global time order doesnot exist.

Figure 12.4(b): The execution is linearizable. The global order of operations (corresponding to
〈response, invocation〉 pairs inSeq′), consistent with the real-time occurrence is:Write(y, 2),
Write(x, 4), Read(x, 4), Read(y, 2). This permutationSeq′ satisfies the conditions (1 and 2).

Figure 12.4(c): The execution is not linearizable. The two dependencies:Read(x, 0) before
Write(x, 4), and Read(y, 0) beforeWrite(x, 2) cannot both be satisfied in a global order
while satisfying the local order of operations at each processor. Hence, there does not exist
any permutationSeq′ satisfying conditions (1 and 2).

404

Read(y,2)

Read(x,4)

Read(x,0)

Write(x,4)

Write(y,2) Read(x,0)

Read(y,0)

(b) Sequentially consistent and linearizable

(c) Not sequentially consistent (and hence not linearizable)

(a)Sequentially consistent but not linearizable

P

P

P

P

P

P

1

2

2

1

1

2

Read(y,2)Write(x,4)

Write(y,2)

Write(x,4)

Write(y,2)

Figure 12.4: Examples to illustrate definitions of linearizability and sequential consistency. The
initial values of variables are zero.

12.2.1.1 Implementations

Implementing linearizability is expensive because a global time scale needs to be simulated. As
all processors need to agree on a common order, the implementation needs to use total order.
For simplicity, we assume full replication of each data itemat all the processors. Hence, total
ordering needs to be combined with a broadcast. Figure 12.5 gives the implementation assuming
the existence of atotal order broadcastprimitive that broadcasts to all processors including the
sender. Hence, the Memory Manager software has to be placed between the application above it
and the total order broadcast layer below it.

Although the algorithm in Figure 12.5 appears simple, it is also subtle. The total order broad-
cast ensures that all processors see the same order.

• For two nonoverlapping operations at different processors, by the very definition of nonover-
lapping, the response to the former operation precedes the invocation of the latter in global
time.

• For two overlapping operations, the total order ensures a common view by all processors.

For aReadoperation, when the Memory Managers systemwide receive thetotal order broadcast,
they do not perform any action. Why is the broadcast then necessary? The reason is this. If
Readoperations do not participate in the total order broadcasts, they do not get totally ordered
with respect to theWriteoperations as well as with respect to the otherReadoperations. This can
lead to a violation of linearizability, as shown in Figure 12.6. TheReadby Pk returns the value
written byPi. The laterReadby Pj returns the initial value of 0. As per the global time ordering
requirement of linearizability, theReadby Pj that occurs after theReadby Pk must also return

405

(shared var)
int : x;

(1) When the Memory Manager receives aReador Write from application:
(1a) total_order_broadcast theReador Write request to all processors;
(1b) await own request that was broadcast;
(1c) perform pending response to the application as follows
(1d) caseRead: return value from local replica;
(1e) caseWrite: write to local replica and return ack to application.

(2) When the Memory Manager receives atotal_order_broadcast(Write, x, val) from network:
(2a)write val to local replica ofx.

(3) When the Memory Manager receives atotal_order_broadcast(Read, x) from network:
(3a)no operation.

Figure 12.5: Implementing Linearizability (LIN) using total order broadcasts. Code shown is for
Pi, 1 ≤ i ≤ n.

broadcast
total order

P_k

P_j

P_i
Write(x,4)

Read(x,0)

Read(x,4)

Figure 12.6: A violation oflinearizability (LIN) if Readoperations do not participate in the total
order broadcast.

the value 4. However, that is not the case in this example, wherein theReadoperations do not
participate in the total order broadcast.

12.2.2 Sequential Consistency

Linearizability or strict/atomic consistency is difficultto implement because the absence of a global
time reference in a distributed system necessitates that the time reference has to be simulated. This
is very expensive. Programmers can deal with weaker models.The first weaker model, that of
sequential consistency(SC) was proposed by Lamport and uses logical time referenceinstead of
the global time reference.

Sequential consistency is specified as follows.

• The result of any execution is the same as if all operations ofthe processors were executed
in somesequential order.

406

• The operations of each individual processor appear in this sequence in the local program
order.

Although any possible interleaving of the operations from the different processors is possible, all
the processors must seethe sameinterleaving. In this model, even if two operations from different
processors (on the same or different variables) do not overlap in a global time scale, they may
appear in reverse order in thecommonsequential order seen by all the processors.

More formally, a sequenceSeq of invocation and response events is sequentially consistent if
there is a permutationSeq′ of adjacent pairs of corresponding〈invoc, resp〉 events satisfying:

1. For every variablev, the projection ofSeq′ onv, denotedSeq′v, is such that:

• everyRead(adjacent〈invoc, resp〉 event pair) returns the most recentWrite (adjacent
〈invoc, resp〉 event pair) that immediately preceded it.

2. If the responseop1(resp) of operationop1 at processPi occurred before the invocation
op2(invoc) of operationop2 by processPi in Seq, thenop1 (adjacent〈invoc, resp〉 event
pair) occurs beforeop2 (adjacent〈invoc, resp〉 event pair) inSeq′.

Condition (1) is the same as that for linearizability. Condition (2) differs from that for linearizabil-
ity. It specifies that the common orderSeq′ must satisfy only the local order of events at each pro-
cessor, instead of the global order of nonoverlapping events. Hence the order of non-overlapping
operations issued by different processors inSeq need not be preserved inSeq′.
Examples: Three examples are considered in Figure 12.4.

Figure 12.4(a): The execution is sequentially consistent: the global orderSeq′ is: Write(y, 2),
Read(x, 0), Write(x, 4), Read(y, 2).

Figure 12.4(b): As the execution is linearizable (seen in Section 12.2.1), it is also sequentially
consistent. The global order of operations (correspondingto 〈response, invocation〉 pairs
in Seq′), consistent with the real-time occurrence is:Write(y, 2), Write(x, 4), Read(x, 4),
Read(y, 2).

Figure 12.4(c): The execution is not sequentially consistent (and hence notlinearizable). The two
dependencies:Read(x, 0) beforeWrite(x, 4), andRead(y, 0) beforeWrite(x, 2) cannot both
be satisfied in a global order while satisfying the local order of operations at each processor.
Hence, there does not exist any permutationSeq′ satisfying conditions (1 and 2).

12.2.2.1 Implementations

As sequential consistency (SC) is less restrictive than linearizability (LIN), it should be easier
to implement it. As all processors are required to see the same global order, but global time
ordering need not be preserved across processes, it is sufficient to use total order broadcasts for the
Write operations only. In the simplified algorithm, no total orderbroadcast is required forRead
operations, because:

407

(shared var)
int : x;

(1) When the Memory Manager atPi receives aReador Write from application:
(1a)caseRead: return value from local replica;
(1b) caseWrite(x,val): total_order_broadcasti (Write(x,val)) to all processors including itself.

(2) When the Memory Manager atPi receives atotal_order_broadcastj (Write, x, val) from network:
(2a)write val to local replica ofx;
(2b) if i = j then return acknowledgement to application.

Figure 12.7: Implementing Sequential Consistency (SC) using localReadoperations. Code shown
is for Pi, 1 ≤ i ≤ n.

1. all consecutive operations by the same processor are ordered in that same order because of
not using pipelining, and

2. Readoperations by different processors are independent of eachother and need to be ordered
only with respect to theWriteoperations in the execution.

In Exercise 1, you will be asked to reason this more thoroughly. Two algorithms for SC are next
given, that exhibit a trade-off of the inhibition ofReadversusWriteoperations.

Local-Read algorithm: The first algorithm for SC, given in Figure 12.7, is a direct simplification
of the algorithm for linearizability, given in Figure 12.5.In the algorithm, aReadoperation
completes atomically, whereas aWriteoperation does not. Between the invocation of aWrite
by Pi (line 1e) and its acknowledgement (lines 2a,2b), there may be multipleWrite opera-
tions initiated by other processors that take effect atPi (line 2a). Thus, aWrite issued locally
has its completion locally delayed. Such an algorithm is acceptable forRead-intensive pro-
grams.

Local-Write algorithm: The algorithm in Figure 12.8 does not delay acknowledgementof Writes.
For Write-intensive programs, it is desirable that a locally issuedWrite gets acknowledged
immediately (as in lines 2a-2c), even though the total orderbroadcast for theWrite, and the
actual update for theWritemay not go into effect by updating the variable at the same time
(line 3a). The algorithm achieves this at the cost of delaying aReadoperation by a processor
until all previously issued localWrite operations by that same processor have locally gone
into effect (i.e., previousWrites issued locally have updated their local variables being writ-
ten to). The variablecounter is used to track the number ofWriteoperations that have been
locally initiated but not completed at any time. AReadoperation completes only if there
are no prior locally initiatedWrite operations that have not written to their variables (line
1a), i.e., there are no pending locally initiatedWriteoperations to any variable. Otherwise, a
Readoperation is delayed until after all previously initiatedWriteoperations have written to

408

(shared var)
int : x;

(1) When the Memory Manager atPi receives aRead(x) from application:
(1a) if counter = 0 then
(1b) return x
(1c) elseKeep theReadpending.

(2) When the Memory Manager atPi receives aWrite(x,val)from application:
(2a)counter ←− counter + 1;
(2b) total_order_broadcasti theWrite(x, val);
(2c) return acknowledgement to the application.

(3) When the Memory Manager atPi receives atotal_order_broadcastj (Write, x, val) from network:
(3a)write val to local replica ofx.
(3b) if i = j then
(3c) counter ←− counter − 1;
(3d) if (counter = 0 and anyReads are pending)then
(3e) perform pending responses for theReads to the application.

Figure 12.8: Implementing Sequential Consistency (SC) using localWriteoperations. Code shown
is for Pi, 1 ≤ i ≤ n.

their local variables (lines 3b-3d), which happens after the total order broadcasts associated
with theWritehave delivered the broadcast message locally.

This algorithm performs fast (local)Writes and slowReads. The algorithm pipelines all
Writeupdates issued by a processor. TheReadoperations have to wait for allWriteupdates
issued earlier by that processor to complete (i.e., take effect) locally before the value to be
read is returned to the application.

12.2.3 Causal Consistency

For the sequential consistency model, it is required thatWrite operations issued by different pro-
cessors must necessarily be seen in some common order by all processors. This requirement can
be relaxed to require only thatWrites that arecausally relatedmust be seen in that same order by
all processors, whereas ‘concurrent’Writesmay be seen by different processors in different orders.
The resulting consistency model is thecausal consistencymodel. We have seen the definition of
causal relationships among events in a message passing system. What does it mean for twoWrite
operations to be causally related?

Thecausality relationfor shared memory systems is defined as follows.

Local order: At a processor, the serial order of the events defines the local causal order

409

P

P

R(x,2)R(x,7)

R(x,7)R(x,4)

(c) Not causally consistent but PRAM consistent

(a)Sequentially consistent and causally consistent

(b) Causally consistent but not sequentially consistent

R(x,7) R(x,4)

R(x,7)R(x,2)

W(x,7)R(x,4)

W(x,2) W(x,4)

R(x,7)

W(x,7)

W(x,2)

P

4P

4

3

3

2

2

1

1

4

3

2

1

P

P

P

P

P

P

P

P

W(x,4)

R(x,4)

R(x,7)R(x,2)

W(x,7)R(x,4)

W(x,2) W(x,4)

Figure 12.9: Examples to illustrate definitions of sequential consistency (SC), causal consistency
(CC), and PRAM consistency. The initial values of variablesare zero.

Inter-process order: A Write operation causally precedes aReadoperation issued by another
processor if theReadreturns a value written by theWrite.

Transitive closure: The transitive closure of the above two relations defines the(global) causal
order.

Examples: The examples in Figure 12.9 illustrate causal consistency.

Figure 12.9(a): The execution is sequentially consistent (and hence causally consistent). BothP3

andP4 see the operations atP1 andP2 in sequential order and in causal order.

Figure 12.9(b): The execution is not sequentially consistent but it is causally consistent. BothP3

andP4 see the operations atP1 andP2 in causal order because the lack of a causality relation
between theWrites byP1 and byP2 allows the values written by the two processors to be
seen in different orders in the system. The execution is not sequentially consistent because
there is no global satisfying the contradictory ordering requirements set by theReads byP3

410

and byP4. What can be said if the twoReadoperations ofP4 returned 7 first and then 4?
(See Exercise 4.)

Figure 12.9(c): The execution is not causally consistent because the secondReadby P4 returns 4
afterP4 has already returned 7 is an earlierRead.

12.2.3.1 Implementation

We first examine the definition of sequential consistency. Even though all processors only need to
seesometotal order of theWrite operations, observe that if twoWrite operations are related by
causality (i.e., the secondWritebegins causally after aReadthat reads the value written by the first
Write), then the order of the twoWritesseen by all the processors also satisfies causal order! In the
implementation, even though a total-order-broadcast primitive is used, observe that it implicitly
provides causal ordering on all theWrite operations. Thus, due to the nature of the definition
of causal ordering in shared memory systems, a total-order-broadcast also provides causal order
broadcast, unlike the case for message-passing systems. (Exactly why is it so?)

In contrast to the SC requirement, causal consistency implicitly requires only that causal order
be provided. Thus, a causal-order-broadcast can be used in the implementation. The details of the
implementation are left as Exercise 5.

12.2.4 PRAM (Pipelined RAM) or Processor Consistency

Causal consistency requires all causally-relatedWrites to be seen in the same order by all pro-
cessors. This may be viewed as being too restrictive for someapplications. A weaker form of
consistency requires only thatWrite operations issued by the same (any one) processor are seen
by all other processors in that same order in which they were issued, butWrite operations issued
by different processors nay be seen in differing orders by different processors. In relation to the
‘causality’ relation between operations, only the local causality relation, as defined by the local
order ofWriteoperations, needs to be seen by other processors. Hence, this form of consistency is
termedprocessor consistency. An equivalent name for this consistency model isPipelined RAM
(PRAM), to capture the behavior that all operations issued by any processor appear to the other
processors in a FIFO pipelined sequence.
Examples:

• In Figure 12.9(c), the execution is PRAM consistent (even though it is not causally consis-
tent) because (trivially) bothP3 andP4 see the updates made byP1 andP2 in FIFO order
along the channelsP1 toP3 andP2 to P3, and alongP1 toP4 andP2 toP4, respectively.

• While PRAM consistency is more permissive than causal consistency, this model must be
used with care by the programmer because it can lead to ratherunintuitive results. For
example, examine the code in Figure 12.10, wherex andy are shared variables. It is possible
that on a PRAM system, both processesP1 andP2 get killed. This can happen as follows. (i)
P1 writes 4 tox in line (1a) andP2 writes 6 toy in line (2a) at about the same time. (ii) Before

411

(shared variables)
int : x, y;

Process1 Process2

... ...
(1a)x←− 4; (2a)y ←− 6;
(1b) if y = 0 then kill (P2). (2b) if x = 0 then kill (P1).

Figure 12.10: A counter-intuitive behaviour of a PRAM-consistent program. The initial values of
variables are zero.

these written values propagate to the other processor,P1 readsy (as being 0) in line (1b)
andP2 readsx (as being 0) in line (2b). Here, aRead(e.g., in (1b) or (2b)) can effectively
‘overtake’ a precedingWrite(of (2a) or (1a), resp.) if the two accesses by the same processor
are to different locations. However, this would not be expected on a conventional machine,
where at most one process may get killed, depending on the interleaving of the statements.

• The execution in Figure 12.11(a) violates PRAM consistency. An explanation is given in
Section 12.2.5.

12.2.4.1 Implementations

PRAM consistency can be implemented using FIFO broadcast. The implementation details are left
an Exercise 6.

12.2.5 Slow Memory

The next weaker consistency model is that ofslow memory. This model represents a location-
relative weakening of the PRAM model. In this model, only allWrite operations issued by the
same processor and to the same memory location must be observed in the same order by all the
processors.
Examples: The examples in Figure 12.11 illustrate slow memory consistency.

Figure 12.11(a): The updates to reach of the variables are seen pipelined separately in a FIFO
fashion. The ‘x’ pipeline fromP1 to P2 is slower than the ‘y’ pipeline fromP1 to P2. Thus,
the overtaking effect is allowed. However, PRAM consistency is violated because the FIFO
property is violated over the single common ‘pipeline’ fromP1 to P2 – the update toy is
seen byP2 but the much older value ofx = 0 is seen byP2 later.

Figure 12.11(b): Slow memory consistency is violated because the FIFO property is violated for
the pipeline for variablex. ‘x = 7’ is seen byP2 before it sees ‘x = 0’ and ‘x = 2’ although
7 was written tox after the values of 0 and 2.

412

2

W(y,4)

R(y,4)

W(x,7)

R(x,7)R(x,0)

P1

P2

(a) Slow memory but not PRAM consistent

W(x,2)

R(y,4)

W(x,7)

(b) Violation of slow memory consistency

R(x,7) R(x,0) R(x,2)

R(x,0)

W(y,4)

1
W(x,2)

P

P

Figure 12.11: Examples to illustrate definitions of PRAM consistency and slow memory. The
initial values of variables are zero.

no consistency model

pipelined RAM (PRAM)

Slow memory

Causal consistency

Sequential consistency

Strict consistency
Atomic consistency/
Linearizability/

Figure 12.12: A strict hierarchy of the memory consistency models.

12.2.5.1 Implementations

Slow memory can be implemented using a broadcast primitive that is weaker than even the FIFO
broadcast. What is required is a FIFO broadcast per variablein the system, i.e., the FIFO property
should be satisfied only for updates to the same variable. Theimplementation details are left as
Exercise 7.

12.2.6 Hierarchy of Consistency Models

Based on the definitions of the memory consistency models seen so far, there exists a hierarchy
among the models, as depicted in Figure 12.12.

413

12.2.7 Other Models based on Synchronization Instructions

We have seen several popular consistency models. Based on the consistency model, the behaviour
of the DSM differs, and the programmer’s logic therefore depends on the underlying consistency
model. It is also possible that newer consistency models mayarise in the future.

The consistency models seen so far apply to all the instructions in the distributed program. We
now briefly mention some other consistency models that are based on a different principle, namely
that the consistency conditions apply only to a set of distinguished ‘synchronization’ or ‘coordi-
nation’ instructions. These synchronization instructions are typically from some run-time library.
A common example of such a statement is the barrier synchronization. Only the synchronization
statements across the various processors must satisfy the consistency conditions; other program
statements between synchronization statements may be executed by the different processors with-
out any conditions. Examples of consistency models based onthis principle are:entry consistency,
weak consistency, andrelease consistency. The synchronization statements are inserted in the pro-
gram based on the semantics of the types of accesses. For example, accesses may be conflicting
(to the same variable) or non-conflicting (to different variables), conflicting accesses may be com-
peting (aReadand aWrite, or twoWrites) or non-conflicting (twoReads), and so on. We outline
the definitions of these consistency models but skip furtherimplementation details of such models.

Weak Consistency:
Some applications do not require even seeing all writes, letalone seeing them in some order.

Consider the case of a process executing a CS, repeatedly reading and writing some variables in
a loop. Other processes are not supposed to read or write these variables until the first process
has exited its CS. However, if the memory has no way of knowingwhen a process is in a CS and
when it is not, the DSM has to propagate all writes to all memories in the usual way. But by using
synchronization variables, processes can deduce whether the CS is occupied.

A synchronization variable in this model has the followingsemantics: it is used to propagate
all writes to other processors,and to perform local updates with regard to changes to global data
that occurred elsewhere in the distributed system. When synchronization occurs, allWritesare
propagated to other processes, and allWrites done by others are brought locally. In an implemen-
tation specifically for the CS problem, updates can be propagated in the system only when the
synchronization variable is accessed (indicating an entryor exit into the CS).

Weak consistency has the following three properties which guarantee that memory is consistent
at the synchronization points.

1. Accesses to synchronization variables are sequentiallyconsistent.

2. No access to a synchronization variable is allowed to be performed until all previous writes
have completed everywhere.

3. No data access (eitherReador Write) is allowed to be performed until all previous accesses
to synchronization variables have been performed.

414

An access to the synchronization variable forcesWrite operations to complete, and effectively
flushes the pipelines. Before reading shared data, a processcan perform synchronization to ensure
it accesses the most recent data.

Release Consistency:
The drawback ofweak consistencyis that when a synchronization variable is accessed, the mem-

ory does not know whether this is being done because the process is finished writing the shared
variables (exiting the CS) or about to begin reading them (entering the CS). Hence, it must take the
actions required in both cases.

1. Ensuring that all locally initiatedWriteshave been completed, i.e., propagated to all other
processes.

2. Ensuring that allWritesfrom other machines have been locally reflected.

If the memory could differentiate between entering the CS and leaving the CS, a more efficient
implementation is possible. To provide this information, two kinds of synchronization variables or
operations are needed instead of one.

Release consistency provides these two kinds.Acquireaccesses are used to tell the memory
system that a critical region is about to be entered. Hence, the actions for Case (2). above need
to be performed to ensure that local replicas of variables are made consistent with remote ones.
Releaseaccesses say that a critical region has just been exited. Hence, the actions for Case (1).
above need to be performed to ensure that remote replicas of variables are made consistent with the
local ones that have been updated. TheAcquireandReleaseoperations can be defined to apply to a
subset of the variables. The accesses themselves can be implemented either as ordinary operations
on special variables or as special operations.

If the semantics of a CS is not associated with theAcquireandReleaseoperations, then the op-
erations effectively provide forbarrier synchronization. Until all processes complete the previous
phase, none can enter the next phase.

The following rules are followed by the protected variablesin the general case.

• All previously initiatedAcquireoperations must complete successfully before a process can
access a protected shared variable.

• All accesses to a protected shared variable must complete before aReleaseoperation can be
performed.

• TheAcquireandReleaseoperations effectively follow the PRAM consistency model.

A relaxation of the release consistency model is called thelazy release consistencymodel.
Rather than propagating the updated values throughout the system as soon as a process leaves a
critical region (or enters the next phase in the case of barrier synchronization), the updated values

415

are propagated to the rest of the system only on demand, i.e.,only when they are needed. Changes
to shared data are only communicated when anAcquireaccess is performed by another process.

Entry Consistency:
Entry consistencyrequires the programmer to useAcquireandReleaseat the start and at the end

of each CS, respectively. But unlike release consistency, entry consistency requires each ordinary
shared variable to be associated with some synchronizationvariable such as a lock or barrier.
When anAcquireis performed on a synchronization variable, only access to those ordinary shared
variables that are guarded by that synchronization variable is regulated.

12.3 Shared Memory Mutual Exclusion

Operating systems have traditionally dealt with multi-process synchronization using algorithms
based on first principles (e.g., the well-known bakery algorithm), high-level constructs such as
semaphoresand monitors, and special ‘atomically executed’ instructions supported by special-
purpose hardware (e.g.,Test-&-Set, Swap, andCompare-&-Swap). These algorithms are appli-
cable to all shared memory systems. In this section, we will review the bakery algorithm which
requiresO(n) accesses in the entry section, irrespective of the level of contention. We will then
study fast mutual exclusionwhich requiresO(1) accesses in the entry section in the absence of
contention. This algorithm also illustrates an interesting technique in resolving concurrency. As
hardware primitives have the in-built atomicity that helpsto easily solve the mutual exclusion
problem, we will then examine mutual exclusion based on these primitives.

12.3.1 Lamport’s Bakery Algorithm

Lamport proposed the classicalbakery algorithmfor n-process mutual exclusion in shared memory
systems. The algorithm is so called because it mimics the actions that customers follow in a bakery
store. A process wanting to enter the critical section picksa token number that is one greater than
the elements in the arraychoosing[1 . . . n]. Processes enter the critical section in the increasing
order of the token numbers. In case of concurrent accesses tochoosing by multiple processes, the
processes may have the same token number. In this case, a unique lexicographic orderis defined
on the tuple〈token, pid〉, and this dictates the order in which processes enter the critical section.
The algorithm for processi is given in Figure 12.13. The algorithm can be shown to satisfy the
three requirements of the critical section problem: (i) mutual exclusion, (ii) bounded waiting, and
(iii) progress.

In the entry section, a process chooses a timestamp for itself, and resets it to 0 in the exit section.
In steps (1a)-(1c), each process chooses a timestamp for itself, as the max of the latest timestamps
of all processes, plus one. These steps are non-atomic; thusmultiple processes could be choosing
timestamps in overlapping durations. When processi reaches (1d), it has to check the status of
each other processj, to deal with the effects of any race conditions in selectingtimestamps. In
(1d)-(1f), processi serially checks the status of each other processj. If j is selecting a timestamp

416

(shared vars)
array of boolean: choosing[1 . . . n];
array of integer: timestamp[1 . . . n];

repeat
(1) Pi executes the following for theentry section:
(1a)choosing[i]←− 1;
(1b) timestamp[i]←− maxk∈[1...n](timestamp[k]) + 1;
(1c) choosing[i]←− 0;
(1d) for count = 1 to n do
(1e) while choosing[count] do no-op;
(1f) while timestamp[count] 6= 0 and (timestamp[count], count) < (timestamp[i], i) do
(1g) no-op.
(2) Pi executes thecritical section (CS)after theentry section
(3) Pi executes the followingexit sectionafter theCS:
(3a)timestamp[i]←− 0.
(4) Pi executes theremainder sectionafter theexit section
until false;

Figure 12.13: Lamport’sn-process bakery algorithm for shared memory mutual exclusion. Code
shown is for processPi, 1 ≤ i ≤ n.

for itself, j’s selection interval may have overlapped with that ofi, leading to an unknown order
of timestamp values. Processi needs to make sure that any other processj (j < i) that had
begin to execute (1b) concurrently with itself and may stillbe executing (1b) does not assign itself
the same timestamp. Otherwise mutual exclusion could be violated asi would enter the CS, and
subsequently,j, having a lower process identifier and hence a lexicographically lower timestamp,
would also enter the CS. Hence,i waits for j’s timestamp to stabilize, i.e.,choosing[j] to be set
to false. Oncej’s timestamp is stabilized,i moves from (1e) to (1f). Eitherj is not requesting (in
which casej’s timestamp is 0) orj is requesting. Step (1f) determines the relative priority between
i andj. The process with alexicographicallylower timestamp has higher priority and enters the
CS; the other process has to wait (step (1g)). Hence,mutual exclusionis satisfied.

Bounded waitingis satisfied because each other processj can “overtake” processi at most
once afteri has completed choosing its timestamp. The second timej chooses a timestamp, the
value will necessarily be larger thani’s timestamp ifi has not yet entered its CS.

Progressis guaranteed because the lexicographic order is a total order and the process with the
lowest timestamp at any time in the loop (1d)-(1g) is guaranteed to enter the CS.

Attempts to improve the bakery algorithm have lead to several important results.

• Space complexity:A lower bound ofn registers, specifically, thetimestamp array, has been
shown for the shared memory critical section problem. Thus,one cannot hope to have a
more space-efficient algorithm for distributed shared memory mutual exclusion.

• Time complexity:In many environments, the level of contention may be low. TheO(n)

417

overhead of the entry section does not scale well for such environments. This concern is
addressed by the field offast mutual exclusionthat aims to haveO(1) time overhead for
the entry and exit sections of the algorithm, in the absence of contention. Although this
algorithm guarantees mutual exclusion and progress, unfortunately, this fast algorithm has a
price – in the worst case, it does not guarantee bounded delay. Next, we will study Lamport’s
algorithm for fast mutual exclusion in asynchronous sharedmemory systems. This algorithm
is notable in that it is the first algorithm for fast mutual exclusion, and uses the asynchronous
shared memory model. Further, it illustrates an important technique for resolving contention.
The worst-case unbounded delay in the presence of persisting contention has been addressed
subsequently, by using a timed model of execution, wherein there is an upper bound on the
time it takes to execute any step. We will not discuss mutual exclusion under the timed
model of execution.

12.3.2 Lamport’s WRWR Mechanism and Fast Mutual Exclusion

Lamport’sfast mutual exclusionalgorithm is given in Figure 12.14. The algorithm illustrates an
important technique – the〈W −R−W −R〉 sequence that is a necessary and sufficient sequence
of operations to check for contention and to ensure safety inthe entry section, using only two
registers.

Steps (1b), (1c), (1g) , and (1h) represent a basic〈W (x)−R(y)−W (y)−R(x)〉 sequence whose
necessity in identifying a minimal sequence of operations for fast mutual exclusion is justified as
follows.

1. The first operation needs to be aWrite, say to variablex. If it were aRead, then all contend-
ing processes could find the value of the variable even outside the entry section.

2. The second operation cannot be aWrite to another variable, for that could equally be com-
bined with the firstWrite to a larger variable. The second operation shouldnot be aReadof
x because it followsWriteof x and if there is no interleaved operation from another process,
theReaddoes not provide any new information. So the second operation must be aReadof
another variable, sayy.

3. The sequence must also containRead(x)andWrite(y)because there is no point in reading a
variable that is not written to, a writing a variable that is never read.

4. The last operation in the minimal sequence of the entry section must be aRead, as it will
help determine whether the process can enter CS. So the last operation should beRead(x),
and the second-last operation should be theWrite(y).

In the absence of contention, each process writes its own id to x and then readsy. Then finding
thaty has its initial value, the process writes its own id toy and then readsx. Findingx to still
be its own id, it enters CS. Correctness needs to be shown in the presence of contention – let us
discuss this after considering the structure of the remaining entry and exit section code.

418

(shared variables among the processes)
integer: x, y; // shared register initialized
array of boolean b[1 . . . n]; // flags to indicate interest in critical section

repeat
(1) Pi (1 ≤ i ≤ n) executes entry section:
(1a) b[i]←− true;
(1b) x←− i;
(1c) if y 6= 0 then
(1d) b[i]←− false;
(1e) await y = 0;
(1f) goto (1a);
(1g) y ←− i;
(1h) if x 6= i then
(1i) b[i]←− false;
(1j) for j = 1 to N do
(1k) await ¬b[j];
(1l) if y 6= i then
(1m) await y = 0;
(1n) goto (1a);
(2) Pi (1 ≤ i ≤ n) executes critical section:
(3) Pi (1 ≤ i ≤ n) executes exit section:
(3a) y ←− 0;
(3b) b[i]←− false;
forever.

Figure 12.14: Lamport’s deadlock-free fast mutual exclusion solution, usingΩ(n) registers. Code
is for processPi, where1 ≤ i ≤ n.

In the exit section, the process must do a Write to indicate its completion of the CS. The Write
cannot be tox which is also the first variable written in the entry section.So the operation must be
Write(y).

Now consider the sequence of interleaved operations by processesi, j, andk in the entry
section, as shown in Figure 12.15. Processi enters its critical section, but there is no record of its
identity or that it had written any variables at all, becausethe variables it wrote (shown boldfaced
above) have been overwritten. In order that other processescan discover when (and who) leaves
the CS, there needs to be another variable that is set before the CS and reset after the CS. This is
the boolean,flag[i]. Additionally,y needs to be reset on exiting the CS.

The code in lines (1c)-(1f) has the following use. If a process p finds y 6= 0, then another
process has executed at least line (1g) and not yet executed line (3a). So processp resets its own
flag, and before retrying again, it awaits fory = 0. If processp finds y = 0 in line (1c), it sets
y = p in line (1g) and checks ifx = p.

• If x = p, then no other process has executed line (1b), and any later process would be
blocked in the line (1c)-(1f) loop now becausey = p. Thus, ifx = p, processp can safely

419

ProcessPi ProcessPj ProcessPk variables
Wj(x) 〈x = j, y = 0〉

Wi(x) 〈x = i, y = 0〉
Ri(y) 〈x = i, y = 0〉

Rj(y) 〈x = i, y = 0〉
Wi(y) 〈x = i,y = i〉

Wj(y) 〈x = i, y = j〉
Ri(x) 〈x = i, y = j〉

Wk(x) 〈x = k, y = j〉
Rj(x) 〈x = k, y = j〉

Figure 12.15: An example showing the need for a boolean vector for fast mutual exclusion.

enter the CS.

• If x 6= p, then another process, sayq, has overwrittenx in line (1b) and there is a potential
race. Two broad cases are possible.

– Processq findsy 6= 0 in line (1c). It resets its flag, and stays in the (1d)-(1f) section
at least untilp has exited the CS. Processp on the other hand resets its own flag (line
(1i)) and waits for all other processes such asq to reset their own flags. As processq is
trapped in lines (1d)-(1f), processp will find y = i in line (1l) and enter the CS.

– Processq findsy = 0 in line (1c). It setsy to q in line (1g), and enters the race, even
closer to processp which is at line (1h). Of the processes such asp andq that contend
at line (1h), there will be a unique winner.

∗ If no other processr has since written tox in line (1b), the winner is the process
amongp andq that executed line (1b) last, i.e., wrote its own id tox. That winner
will enter the CS directly from line (1h), whereas the loserswill reset their own
flags, await the winner to exit and reset its flag, and also await other contenders at
line (1h) and newer contenders to reset their own flags. The losers will compete
again from line (1a) after the winner has resety.

∗ If some other processr has since written its id tox in line (1b), bothp andq will
enter code in lines (1i)-(1n). Bothp andq reset their flags, await forr which will
be trapped in lines (1d)-(1f) to reset its flag, and then bothp andq check the value
of y. Betweenp andq, the process that last wrote toy in line (1g) will become the
unique winner and enter the CS directly. The loser will then await for the winner
to resety, and then compete again from line (1a).

Thus, mutual exclusion is guaranteed, and progress is also guaranteed. However, a process
may be starved, although with decreasing probability, as its number of attempts increases.

420

(shared variables among the processes accessing each of thedifferent object types)
register: Reg ←− initial value; // shared register initialized
(local variables)
integer: old←− initial value; // value to be returned

(1) Test&Set(Reg) returnsvalue:
(1a)old←− Reg;
(1b)Reg ←− 1;
(1c) return (old).

(2) Swap(Reg, new) returnsvalue:
(2a)old←− Reg;
(2b)Reg ←− new;
(2c) return (old).

Figure 12.16: Definitions of synchronization operationsTest&Set andSwap.

(shared variables)
register: Reg ←− false; // shared register initialized
(local variables)
integer: blocked←− 0; // variable to be checked before entering CS

repeat
(1) Pi executes the following for theentry section:
(1a)blocked←− true;
(1b) repeat
(1c) Swap(Reg, blocked);
(1d) until blocked = false;
(2) Pi executes thecritical section (CS)after theentry section
(3) Pi executes the followingexit sectionafter theCS:
(3a)Reg ←− false;
(4) Pi executes theremainder sectionafter theexit section
until false;

Figure 12.17: Mutual exclusion usingSwap. Code shown is for processPi, 1 ≤ i ≤ n.

12.3.3 Hardware support for mutual exclusion

Hardware support can allow for special instructions that perform two or more operations atom-
ically. Two such instructions,Test&Set andSwap, are defined and implemented as shown in
Figure 14.22. The atomic execution of two actions (aRead and aWrite operation) can greatly
simplify a mutual excluison algorithm, as seen from the mutual exclusion code in Figure 12.17
and Figure 12.18, respectively. The algorithm in Figure 12.17 can lead to starvation. The algo-
rithm in Figure 12.18 is enhanced to guarantee bounded waiting by using a “round-robin” policy
to selectively grant permission when releasing the critical section.

421

(shared variables)
register: Reg ←− false; // shared register initialized
array of boolean: waiting[1 . . . n];
(local variables)
integer: blocked←− initial value; // value to be checked before entering CS

repeat
(1) Pi executes the following for theentry section:
(1a)waiting[i] ←− true;
(1b) blocked←− true;
(1c) while waiting[i] and blocked do
(1d) blocked←− Test&Set(Reg);
(1e)waiting[i] ←− false;
(2) Pi executes thecritical section (CS)after theentry section
(3) Pi executes the followingexit sectionafter theCS:
(3a)next←− (i + 1)modn;
(3b) while next 6= i and waiting[next] = false do
(3c) next←− (next + 1)modn;
(3d) if next = i then
(3e) Reg ←− false;
(3f) elsewaiting[j] ←− false;
(4) Pi executes theremainder sectionafter theexit section
until false;

Figure 12.18: Mutual exclusion with bounded waiting, usingTest&Set. Code shown is for process
Pi, 1 ≤ i ≤ n.

12.4 Wait-freedom

Processes that interact with each other, whether by messagepassing or by shared memory, need
to synchronize their interactions. Traditional solutionsto synchronize asynchronous processes
via shared memory objects (also calledconcurrent objects) use solutions based on locking, busy
waiting, critical sections, semaphores, or conditional waiting. An arbitrary delay of a process or
its crash failure can prevent other processes from completing their operations. This is undesirable.

Wait-freedomis a property that guarantees that any process can complete any synchroniza-
tion operation in a finite number of lower-level steps, irrespective of the execution speed of other
processes. More precisely, a wait-free implementation of aconcurrent object guarantees that any
process can complete an operation on it in a finite number of steps, irrespective of whether other
processes crash or encounter unexpected delays. Thus, processes that crash, or encounter un-
expected delays (such as delays due to high processor load, swapping out of memory, or CPU
schedulng policies) should not delay other processes in a wait-free implementation of a concurrent
object.

Not all synchronizations have wait-free solutions. As a trivial example, a producer-consumer
synchronization between two processes cannot be implemented in a wait-free manner if the pro-

422

ducer process crashes before posting its value – the consumer is necessarily blocked. Nevertheless,
the notion of wait-freedom is an important concept in designing fault-tolerant systems and algo-
rithms whenever possible. An alternate view of wait-freedom in terms of fault-tolerance is as
follows.

• An f -resilient system is a system in which up tof of then processes can fail, and the other
n− f processes can complete all their operations in a finite number of steps, independent of
the states of thef processes that may fail.

• Whenf = n − 1, any process is guaranteed to be able to complete its operations in a finite
number of steps, independent of all other processes. A process does not depend on other
processes, and its execution is therefore said to bewait-free. Wait-freedom provides inde-
pendence from the behavior of other processes, and is therefore a very desirable property.

In the remainder of this chapter which deals with shared register accesses, only wait-free solutions
are considered.

12.5 Register Hierarchy and Wait-free Simulations

Observe from our analysis of DSM consistency models that an underlying assumption was that
any memory access takes a finite time interval, and the operation, whether aReador Write, takes
effect at some point during this time duration. In the face ofconcurrent accesses to a memory
location, we cannot predict the outcome. In particular, in the face of a concurrentReadandWrite
operation, the value returned by theReadis unpredictable. This observation is true even for a
simpler multiprocessor memory, without the context of a DSM. This observation led to the research
area that tried to define the properties of access orderings for the most elementary memory unit,
hereafter called aregister. The access orderings depend on the properties of the register. An
implicit assumption is that of the availability of global time. This is a reasonable assumption
because we are studying access to a single register. Whetherthat register value is replicated in the
system or not is a lower detail that is not relevant to the level of abstraction of this analysis.

In keeping with the semantics of theReadandWrite operations, the following register types
have been identified to specify the value returned to aReadin the face of a concurrentWrite
operation. For the time being, we assume that there is a single reader process and a single writer
process.

Safe register: A Readoperation that does not overlap with aWriteoperation returns the most re-
cent value written to that register. AReadoperation that does overlaps with aWriteoperation
returnsany oneof the values that the register could possibly contain at anytime.

Consider the example of Figure 12.19 which shows several operations on an integer-valued
register. We consider two cases, without and with theWritebyP3.

423

222 Read3 (x,?)Read2 (x,?) Read1 (x,?)

Write2 (x,6)Write1 (x,4) 11

3Write1 (x,−6)
3

P

P

1

2

P

Figure 12.19: Examples to illustrate definitions ofsafe, regular, andatomicregisters. The regular
lines assume a SRSW register. If the dashed line is also used,the register is assumed to be SRMW.

No Write by P3: If the register issafe, Read12 must return the value 4, whereasRead22
andRead32 can return any possible integer (up to MAXINT) because theseoperations
overlap with aWrite, and the value returned is therefore ambiguous.

Write by P3: Same as for the “noWrite” case.

If multiple writers are allowed, or ifWriteoperations are allowed to be pipelined, then what
defines the most recent value of the register in the face of concurrentWrite operations be-
comes complicated. We explicitly disallow pipelining in this model and analysis. In the
face ofWrite operations from different processors that overlap in time,the notion of aseri-
alization pointis defined. Observe that eachWrite or Readoperation has a finite duration
between its invocation and its response. In this duration, there is effectively a single time
instant at which the operation takes effect. For aReadoperation, this instant is the one at
which the instantaneous value is selected to be returned. For a Write operation, this instant
is the one at which the value written is first ‘reflected’ in theregister. Using this notion of
the serialization point, the ‘most recent’ operation is unambiguously defined.

Regular register: In addition to being asafe register, aReadthat is concurrent with aWrite
operation returns either the value before theWrite operation, or the value written by the
Writeoperation.

In the example of Figure 12.19, we consider the two cases, with and without theWrite by
P3.

No Write by P3: Read12 must return 4, whereasRead22 can return either 4 or 6, andRead32
can also return either 4 or 6.

Write by P3: Read12 must return 4, whereasRead22 can return either 4 or -6 or 6, and
Read32 can also return either 4 or -6 or 6.

Atomic register: In addition to being aregular register, the register is linearizable (defined in
Section 12.2.1) to a sequential register.

In the example of Figure 12.19, we consider the two cases, with and without theWrite by
P3.

424

Type Value Writing Reading

safe binary Single-Writer Single-Reader
regular integer Multi-Writer Multi-Reader
atomic

Table 12.2: Classification of registers by Type, Value, Writing Access, and Reading Access. The
strength of the register increases down each column.

No Write by P3: Read12 must return 4, whereasRead22 can return either 4 or 6. IfRead22
returns 4, thenRead32 can return either 4 or 6, but ifRead22 returns 6, thenRead32
must also return 6.

Write by P3: Read12 must return 4, whereasRead22 can return either 4 or -6 or 6, depending
on the serialization points of the operations.

1. If Read22 returns 6 and the serialization point ofWrite13 precedes the serialization
point ofWrite21, thenRead32 must return 6.

2. If Read22 returns 6 and the serialization point ofWrite21 precedes the serialization
point ofWrite13, thenRead32 can return +6 or -6.

3. Cases (3) and (4) whereRead22 returns -6 are similar to cases (1) and (2).

The following properties, summarized in Table 12.2, characterize registers.

• whether the register is single-valued (boolean) or multi-valued

• whether the register is a single-reader (SR) or multi-reader (MR) register

• whether the register is a single-writer (SW) or multi-writer (MW) register

• whether the register issafe, regular, or atomic

The above characteristics lead to a hierarchy of 24 registertypes, with the most elementary being
the boolean SRSW safe register and the most complex being themulti-valued MRMW atomic
register.

A study ofregister constructiondeals with designing the more complex registers using simpler
registers. Such constructions allow us to construct any register type from the most elementary
register – the boolean SRSW safe register. We will study suchconstructions by assuming the
following convention.R1 . . . Rq areq registers that are used to construct a stronger registerR, as
shown in Figure 12.20. We assumen processes exist; note that for various constructions,q may be
different fromn.

Although the traditional memory architecture, based on serialized access via memory ports to
a memory location, does not require such an elaborate classification, the bigger picture needs to
be kept in mind. In addition to illustrating algorithmic design techniques, this study paves the way
for accommodating newer technologies such as – quantum computing and DNA computing – for
constructing system memory.

425

i

RRead from

RWrite to
R

i

Writes to individual R

Reads from individual R

qR1 R

Figure 12.20: Register simulations.
(shared variables)
SRSW safe registersR1 . . . Rn ←− 0; // Ri is readable byPi, writable byP0

(1) Write(R, val) executed by single writerP0

(1a) for all i ∈ {1 . . . n} do
(1b) Ri ←− val.

(2) Readi(R, val) executed by readerPi, 1 ≤ i ≤ n

(2a)val ←− Ri

(2b) return (val).

Figure 12.21: Construction 1: SRSW Safe register to MRSW Safe registerR. This construction
can also be used for SRSW Regular register to MRSW Regular registerR.

12.5.1 Construction 1: SRSW Safe to MRSW Safe

Figure 12.21 gives the construction of a MRSWsaferegisterR using only SRSWsaferegisters.
Assume the single writer is processP0 and then reader processes areP1 to Pn. Each of then
processesPi can read only SRSW registerRi. As multiple readers are not allowed to access the
same register, in essence, the data needs to be replicated. So in the construction, the writerP0

writes the same value to then registers. RegisterRi is read byPi. In Figure 12.20, the value of
q would hence ben. When aReadby Pi and aWrite by P0 do not overlap their access toRi, the
Readobtains the correct value. When aReadby Pi and aWrite by P0 overlap their access toRi,
asRi is asaferegister,Pi reads a legitimate value fromRi.

Complexity: This construction has a space complexity ofn times the size of a single register,
which may be either binary or integer-valued. The time complexity isn steps.

426

(shared variables)
boolean MRSW safe registersR1 . . . Rlog(m) ←− 0; // Ri readable by all, writable byP0.

(local variable)
array of boolean: V al[1 . . . log(m)];

(1) Write(R,V al[1 . . . log m]) executed by single writerP0

(1a) for all i ∈ {1 . . . log(m)} do
(1b) Ri ←− V al[i].

(2) Readi(R,V al[1 . . . log(m)]) executed by readerPi, 1 ≤ i ≤ n

(2a) for all j ∈ {1 . . . log m} do V al[j]←− Rj

(2b) return (V al[1 . . . log(m)]).

Figure 12.22: Construction 3: boolean MRSW Safe register tointeger-valued MRSW Safe register
R.

12.5.2 Construction 2: SRSW Regular to MRSW Regular

This construction is identical to Construction 1 (Figure 12.21) except thatregularregisters are used
instead ofsaferegisters. When aReadby Pi and aWrite by P0 do not overlap their access toRi,
theReadobtains the correct value. When aReadby Pi and aWrite by P0 overlap their access to
Ri, asRi is aregular register,Pi reads fromRi either the earlier value or the value being written.

Complexity: This construction has a space complexity ofn times the size of a single register,
which may be either binary or integer-valued. The time complexity isn steps.

12.5.3 Construction 3: Boolean MRSW Safe to integer-valuedMRSW Safe

Figure 12.22 gives the construction of an integer-valued MRSWsaferegisterR. Assume the single
writer is processP0 and then reader processes areP1 toPn. The construction can use only boolean
MRSW registers – to construct an integer register of sizem, at leastlog(m) boolean registers are
necessary. So in the construction, the writerP0 writes the value in its binary notation to thelog(m)

registersR1 toRlog(m). Similarly, any reader reads registersRi toRlog(m). When aReadbyPi and
a Write by P0 do not overlap, theReadobtains the correct value. When aReadby Pi and aWrite
byP0 overlap their access to the registers, as theRi (i = 1 to log(m)) registers aresafe, Pi reads a
legitimate value.
Complexity: This construction has a space complexity oflog(m) times the size of an integerm.
The time complexity isO(log(m)) steps.

12.5.4 Construction 4: Boolean MRSW Safe to boolean MRSW Regular

Figure 12.23 gives the construction of a boolean MRSWregular registerR from a MRSWsafe
register. Assume the single writer is processP0 and the reader processes arePi (1 ≤ i ≤ n). With

427

(shared variables)
boolean MRSW safe register: R′ ←− 0; // R′ is readable by all, writable byP0.

(local variables)
boolean local to writer P0: previous←− 0;

(1) Write(R, val) executed by single writerP0

(1a) if previous 6= val then
(1b) R′ ←− val;
(1c) previous←− val.

(2) Read(R, val) processPi, 1 ≤ i ≤ n

(2a)val ←− R′;
(2b) return (val).

Figure 12.23: Construction 4: boolean MRSW Safe register toboolean MRSW Regular register
R.

respect to Figure 12.20,q has the value 1.P0 writesR1 and all then processes readR1.
When aReadby Pi and aWrite by P0 do not overlap, theReadobtains the correct value.

When aReadby Pi and aWrite by P0 overlap, thesaferegister may not necessarily return the
overlapping or the previous value (as required by aregular register), but may return a value written
much earlier. If the value written before theReadbegins isα, and the value being written by the
concurrentWrite is alsoα, theReadcould returnα or (1 − α) from thesaferegister, which is a
problem for theregular register. The solution bypasses this problem by having theWrite use a
local variableprevious to track the previous value ofval. If the previous value that was written
(line (1b)) and stored inprevious (line (1c)) is the same as the new value to be written, then the
new value is simply not written. This avoids any concurrent access toR.

Complexity: This construction usesO(1) space and time.
Can the above construction also construct a binary SRSWatomicregister from asaferegister?

No. ConsiderP1 issues aWrite11(α) that completes; thenWrite21(1−α) begins and overlaps with
Read12 andRead22 of P2. With the above construction,Read12 could return1 − α whereas the
laterRead22 could returnα, thus violating the property of anatomicregister.

12.5.5 Construction 5: Boolean MRSW Regular to integer-valued MRSW
Regular

Figure 12.24 gives the construction of an integer-valued MRSW regular registerR using boolean
MRSW regular registers. Assume the single writer is processP0 and then reader processes areP1

toPn. The construction can use only boolean MRSW registers – to construct an integer register of
sizem, unary notation is used, som boolean registers are necessary. In Figure 12.20,q = m, and
all then processes can read all theq registers.

428

(shared variables)
boolean MRSW regular registersR1 . . . Rm−1 ←− 0; Rm ←− 1;

// Ri readable by all, writable byP0.
(local variables)
integer: count;

(1) Write(R, val) executed by writerP0

(1a)Rval ←− 1;
(1b) for count = val − 1 down to 1 do
(1c) Rcount ←− 0.

(2) Readi(R, val) executed byPi, 1 ≤ i ≤ n

(2a)count = 1;
(2b) while Rcount = 0 do
(2c) count←− count + 1;
(2d) val ←− count;
(2e)return (val).

Figure 12.24: Construction 5: boolean MRSW Regular register to integer-valued MRSW Regular
registerR.

When aReadby Pi and aWrite by P0 do not overlap, theReadobtains the correct value. To
deal with aReadbyPi and aWrite(s) byP0 overlapping their access to the registers, the following
approach is used. A readerPi scans left-to-right looking for a ‘1’ whereas theP0 writer process
writes ‘1’ to theRval location and then zeros out entries right-to-left. TheReadis guaranteed to
see a ‘1’ written by one of theWrite operations it overlaps with, or the ‘1’ written by theWrite
that completed just before theReadbegan. As each of the bits are regular, its current or previous
value is read; if the value is ‘0’, it is guaranteed that a ‘1’ has been written to the right. An implicit
assumption here is the integer size, bounded by the number ofbits in use. The register is initialized
by this largest value. The construction is illustrated in Figure 12.25. In the figure, the reader scans
from left to right as marked.

Complexity: This construction usesm binary registers, wherem is the largest integer that can be
written by the application.

12.5.6 Construction 6: Boolean MRSW Regular to integer-valued MRSW
Atomic

Can the above construction (Figure 12.24) also construct aninteger-valued MRSWatomicregister
from boolean MRSWregular registers? No. The problem is that when two successiveRead
operations overlapWrite operations, ‘inversion’ of values returned by theReadoperations can
occur.

Consider the following sequence of operations, depicted inFigure 12.26.

429

2 3

Zero out entries

Scan for first "1"; then scan backwards
and update pointer to lowest−ranked
register containing a "1"

Rmval
R

R

Scan for "1"; return index.(bool MRSW reg to int MRSW reg)

(bool MRSW atomic to int MRSW atomic)

Read()R

Write val to R

Write 1

R1R R

Figure 12.25: Illustrating Constructions 5 and 6.

Write(R ,1)3 Write(R ,0) Write(R ,0)
1

3Read(R ,1)Read(R ,0)2Read(R ,0) Read(R ,1)2Read(R ,0)1

Read1 (R,?) returns 3 Read2 (R,?) returns 2

2

b

b

a

a a

b

Write1 (R,2)

��

��

P

P
1

Write(R ,1)2 1Write(R ,0)

Write2 (R,3)

Figure 12.26: Example to illustrate inversion of values read byPa andPb.

1. Write1a(R, 2): The low-level operationWrite(R2, 1) begins, i.e.,R2 ←− 1 begins.

2. Read1b(R, ?): The following low-level operations get executed.count←− 1;Read(Rcount, 0);
count←− 2; Read(Rcount, 0); count←− 3;

3. Write1a(R, 2): The low-level operationWrite(R2, 1) from step 1 completes, i.e., the value
‘1’ gets written toR2; then the left scan to zero outR1 proceeds by executingWrite(R1, 0).

4. Write2a(R, 3): The low-level operationWrite(R3, 1) executes, i.e.,R3 ←− 1 begins and
ends.

5. Read1b(R, ?): The low-level operationRead(Rcount=3, ?) that was to begin after step 2 re-
turns 1; the high-levelReadcompletes and returns a value of 3.

430

(shared variables)
boolean MRSW regular registersR1 . . . Rm−1 ←− 0; Rm ←− 1.

// Ri readable by all; writable byP0.

(local variables)
integer: count, temp;

(1) Write(R, val) executed byP0

(1a)Rval ←− 1;
(1b) for count = val − 1 down to 1 do
(1c) Rcount ←− 0.

(2) Readi(R, val) executed byPi, 1 ≤ i ≤ n

(2a)count←− 1;
(2b) while Rcount = 0 do
(2c) count←− count + 1;
(2d) val ←− count;
(2e) for temp = count down to 1 do
(2f) if Rtemp = 1 then
(2g) val←− temp;
(2h) return (val).

Figure 12.27: Construction 6: boolean MRSW Regular register to integer-valued MRSW Atomic
registerR.

6. Read2b(R, ?): This operation’s left-to right scan for a ‘1’ findsR2 = 1 and returns 2.
This is because the low-level operationWrite2(R2, 0) belonging to the high-level operation
Write2a(R, 3) has not yet zeroed outR2.

Here,Read2b(R, 2) returns the value written byWrite1a(R, 2); whereas the earlierRead1b(R, 3)

returns the value written by the laterWrite2a(R, 3). Hence, this execution is not linearizable.
Figure 12.27 gives the construction of a integer-valued MRSW atomicregisterR by modifying

the above solution as follows. The reader makes a right-to-left scan for a ‘1’ after its left-to-right
scan completes. If it finds a ‘1’ in a lower index, it updates the value to be returned to this index.
The purpose is to make sure that the lowest index (sayα) in which a ‘1’ is found in this second
‘right-to-left’ scan is returned by theRead. As the writer also zeros out entries ‘right-to-left’, it is
not possible that a laterReadwill find a ‘1’ written earlier in a position lower thanα, by aWrite that
occurred earlier than theWrite which wroteα. This allows a linearizable execution. With respect
to Figure 12.20,q = m, and all then processes can read all theq registers. This construction is
also illustrated in Figure 12.25, as marked therein.

A formal argument that this construction is correct needs toshow that any execution is lineariz-
able. To do so, it would define thelinearization pointof aReadandWriteoperation to capture the
notion of the exact instant at which that operation effectively appears to take effect.

• Thevalue of the MRSW registerat any moment isx, whereRx = 1 and∀y < x, Ry = 0.

431

• The linearization point of aWrite(R, x) operation is the first instant (line (1a) or (1c)) when
Rx = 1 and∀y < x, Ry = 0.

• The linearization point of aRead(R, val) that returns(x) is the first instant (line (2d) or (2g))
whenval gets assignedx in the low-level operations.

The following observation can now be made from the construction and the definition of the lin-
earization point of aWrite.

• Thevalue of the MRSW registerremains unchanged between the linearization points of any
two consecutiveWriteoperations.

The Write operations are naturally ordered in the linearization sequence. In order to determine
a complete linearization of theReadoperations in addition to theWrite operations, observe the
following.

• A Readoperation returns the value written by thatWrite operation which has the latest
linearization point that precedes theReadoperation’s linearization point.

It naturally follows that a laterReadwill never return the value written by a earlierWrite, and
hence the construction is linearizable.

Complexity: This construction usesm binary registers, wherem is the largest integer that is
written by the application program. The time complexity isO(m).

12.5.7 Construction 7: Integer MRSW Atomic to integer MRMW Atomic

We are given MRSWatomicregisters, i.e., each register has only a single writer. To simulate a
MRMW atomic registerR, the variable has multiple copies,R1 . . . Rn, one per writer process.
Writer Pi can only write to its copyRi. ReaderPi can read all the registersR1 . . . Rn. When con-
current updates occur, a global linearization order must becreated somehow. TheReadoperations
must be able to recognize such a global order, and then returnthe appropriate version as per the
semantics of the atomic register. That is the challenge.

The construction is shown in Figure 12.28. With respect to Figure 12.20,q = n, and all
then processes can read all theq MRSW registers but onlyPi can write toRi. The idea used
is similar to that used by the Bakery algorithm for mutual exclusion (Section 12.3.1), wherein
each process competing for the critical section first sets its flag (behaving as the writer process)
signalling its intention. The competing processes that make concurrent accesses (behaving as the
reader processes) then read all the flags and deduce a global order that resolves the contention.

Each registerRi has two fields:Ri.data andRi.tag, wheretag = 〈seq_no, pid〉. A lexico-
graphic orderis defined on the tags, usingseq_no as the primary key, and thenpid as the secondary
key. A common procedure invoked by the readers and writers isthe Collect which reads all the
registers, in no particular order. The reader returns the data corresponding to the (lexicographi-
cally) most recentWrite. A writer chooses a tag greater than the (lexicographically) greatest tag
returned by theCollect, when it writes its new value.

432

(shared variables)
MRSW atomic registersof type〈data, tag〉, wheretag = 〈seq_no, pid〉: R1 . . . Rn;

(local variables)
array of MRSW atomic registers of type〈data, tag〉, wheretag = 〈seq_no, pid〉: Reg_Array[1 . . . n];
integer: seq_no, j, k;

(1) Writei(R, val) executed byPi, 1 ≤ i ≤ n

(1a)Reg_Array ←− Collect(R1, . . . , Rn);
(1b) seq_no←− max(Reg_Array[1].tag.seq_no, . . . Reg_Array[n].tag.seq_no) + 1;
(1c)Ri ←− (val, 〈seq_no, i〉).

(2) Readi(R, val) executed byPi, 1 ≤ i ≤ n

(2a)Reg_Array ←− Collect(R1, . . . , Rn);
(2b) identify j such that for allk 6= j, Reg_Array[j].tag > Reg_Array[k].tag;
(2c) val ←− Reg_Array[j].data;
(2d) return (val).

(3) Collect(R1, . . . , Rn) invoked byReadandWrite routines
(3a) for j = 1 to n do
(3b) Reg_Array[j]←− Rj ;
(3c) return (Reg_Array).

Figure 12.28: Construction 7: integer MRSW Atomic registerto integer MRMW Atomic register
R.

All the Write operations are lexicographically totally ordered. EachReadis ordered so that it
immediately follows thatWritewith the matching tag. Thus, this execution is linearizable.

Complexity: This construction usesm binary registers, wherem is the largest integer written by
the application. The time complexity isO(m).

12.5.8 Construction 8: Integer SRSW Atomic to integer MRSW Atomic

We are given SRSWatomicregisters. To simulate a MRSWatomicregisterR, the variable has
multiple copies,R1, . . . Rn, one per reader process. The single writer can write to all ofthese
registers.

A first attempt at this construction would have the writer write to all the registersR1 . . . Rn,
whereas readerPi readsRi. In Figure 12.20,q = n, and eachRi is read byPi and written to by the
single writerP0. However, such a construction does not give a linearizable execution. Consider
two readsRead1i andRead2j that both overlap aWrite andRead2begins afterRead1terminates.
It is possible that:

1. Read1i readsRi after theWritehas written toRi

2. butRead2j readsRj before the writer has had a chance to updateRj.

433

1,1 1,2 1,n

2,1 2,2 2,n

n,nn,1 n,2

R1 R2 Rn

mailboxes Last_Read_Values[1..n,1..n]

(SRSW atomic registers)

SRSW atomic registers, one per process

R

Figure 12.29: Illustrating the data structures for Construction 8.

This results in a non-linearizable execution.
The problem above arose because a reader did not have access to what other readers read; in

particular, a readerPi cannot tell if anotherReadbyPj that completed before thisReadbegan got
a value that is newer than the value that the writer has written toRi. In fact, performing multiple
reads by thePi processes, and/or more writes byP0, and/or using more registers cannot solve this
problem.

To fix this problem, a reader processPi must choose the latest of the values that other reader
processes have last read, and the value inRi. As only SRSW registers are available, unfortunately,
this requires communication between each pair of reader processes, leading toO(n2) variables.
Thus, a reader process must also write! An arrayLast_Read_V alues[1 . . . n, 1 . . . n] is used for
this purpose.Last_Read_V alues[i, j] is the value thatPi’s last Readreturned, whichPi has
set aside forPj to know about. Once a readerPi determines the latest of the values that other
readers read (lines 2(b-d)), and the value written for it by the writer process (line 2a), the reader
publishes this value inLast_Read_V alues[i, ∗] (lines 2e-2f). As there is a single writer, the format
〈data, seq_no〉 for each register value and eachLast_Read_V alue entry is adequate to give a total
order on all the values written by it. The construction is shown in Figure 12.30 and illustrated in
Figure 12.29. Here,q = n2 + n as there aren2 SRSW registers that act as personalized mailboxes
between pairs of processes, and then registers that are the mailboxs between writerP0 and each
readerPi.

Complexity: This construction usesO(n2) integer registers. The time complexity isO(n).

Achieving linearizability: All the Write operations form a total order. AReadby Pi returns the
value of the latest precedingWrite, as observed directly from the registerRi, or indirectly from
the registerRj and communicated toPi via Last_Read_V alues. In a linearized execution, a
Readis placed after theWritewhose value it reads. For nonoverlappingReads, their relative order

434

(shared variables)
SRSW atomic register of type〈data, seq_no〉, wheredata, seq_no are integers: R1 . . . Rn←− 〈0, 0〉;
SRSW atomic register array of type 〈data, seq_no〉, where data, seq_no are integers:
Last_Read_V alues[1 . . . n, 1 . . . n]←− 〈0, 0〉;

(local variables)
array of 〈data, seq_no〉: Last_Read[0 . . . n];
integer: seq, count;

(1) Write(R, val) executed by writerP0

(1a)seq ←− seq + 1;
(1b) for count = 1 to n do
(1c) Rcount ←− 〈val, seq〉. // write to each SRSW register

(2) Readi(R, val) executed byPi, 1 ≤ i ≤ n

(2a)〈Last_Read[0].data, Last_Read[0].seq_no〉 ←− Ri; // Last_Read[0] stores value ofRi

(2b) for count = 1 to n do // read intoLast_Read[count], the latest values stored forPi by Pcount

(2c) 〈Last_Read[count].data, Last_Read[count].seq_no〉 ←−
〈Last_Read_V alues[count, i].data, Last_Read_V alues[count, i].seq_no〉;

(2d) identify j such that for allk 6= j, Last_Read[j].seq_no ≥ Last_Read[k].seq_no;
(2e) for count = 1 to n do
(2f) 〈Last_Read_V alues[i, count].data, Last_Read_V alues[i, count].seq_no〉 ←−

〈Last_Read[j].data, Last_Read[j].seq_no〉;
(2g) val ←− Last_Read[j].data;
(2h) return (val).

Figure 12.30: Construction 8: integer SRSW Atomic registerto integer MRSW Atomic register
R.

represents the order in a linearizable execution, because of the indirect communication among
readers. For overlappingReads, their ordering in a linearized execution is consistent with the
Writes whose values they read. Hence, the construction is a valid construction.

12.6 Wait-free Atomic Snapshots of Shared Objects

Observing the global state of a distributed system is a fundamental problem. For message-passing
systems, we have studied how to record global snapshots which represent an instantaneous possible
global state that could have occurred in the execution. The snapshot algorithms used message-
passing of control messages, and were inherently inhibition-free, although some variants that use
fewer control messages do require inhibition.

In this section, we examine the counterpart of the global snapshot problem in a shared-memory
system, where onlyReadand Write primitives can be used. The problem can be modeled as
follows.

Given a set of SWMR atomic registersR1 . . . Rn, whereRi can be written only byPi and can

435

seq_no old_snapshot data seq_no old_snapshot

R1 Rn

P P1 n

UPDATE
UPDATEScanScan

snapshot object composed of n MRSW atomic registers

data

Figure 12.31: Atomic snapshot object, using MRSW atomic registers.

be read by all processes, and which together form a compound high-level object, devise await-free
algorithm to observe the state of the object at some instant in time. The following actions are
allowed on this high-level object, as also illustrated in Figure 12.31.

• Scani: This action invoked byPi returns the atomic snapshot which is an instantaneous view
of the object(R1, . . . , Rn) at some instant between the invocation and termination of the
Scan.

• Updatei(val): This action invoked byPi writes the dataval to registerRi.

Clearly, any kind of locking mechanism is unacceptable because it is not wait-free. Consider
the following attempt at a wait-free solution. The format ofeach registerRi is assumed to be the
tuple: 〈data, seq_no〉 in order to uniquely identify eachWriteoperation to the register. A scanner
would repeatedly scan the high-level object until two consecutive scans, calleddouble-collectin
the shared memory context, returned identical content. This principle of “double-collect” has been
encountered in multiple contexts, such in two-phase deadlock detection and two-phase termination
detection algorithms, and essentially embodies the two-phase observation rule (see Chapter 11.
However, this solution in not wait-free because between thetwo observations of each double-
collect, anUpdateby another process can prevent theScanfrom being successful.

A wait-free solution is given in Figure 12.33. ProcessPi can write to its MRSW registerRi

and can read all registersR1, . . .Rn. To design a wait-free solution, it needs to be ensured that a
scanner is not indefinitely prevented from getting identical scans in the double-collect, by some
writer process periodically making updates. The problem arises because of the imbalance in the
roles of the scanner and updater – the updater is inherently more powerful in that it can prevent all
scanners from being successful. One elegant solution therefore neutralizes the unfair advantage of
the updaters by forcing the updaters to follow the same rulesas the scanner. Namely, the updaters
also have to perform a double-collect, and only after performing a double-collect can an updater
write the value it needs to! Additionally, an updater also writes the snapshot it collected in the

436

Double collect

Collect CollectPi

i
P

j j

changed[j]=1 changed[j]=2

P writes in P writes inj j

Pj

this periodthis period

P writes P writes j j

nested within P_j’s SCAN. And so on recursively, up to n times.

(a) Double collect sees identical values in both Collects

(b) P_j’s Double−Collect nested within P_i’s SCAN. The Double−Collect
is successful, or P_j borrowed snapshot from P_k’s Double−Collect

j j

Figure 12.32: Nesting of double-collects, in Scanning for Atomic snapshots of object.

register, along with the new value of the data item. Now, if a scanner detects that an updater
has made an update after the scanner initiated itsScan, then the scanner can simply ‘borrow’ the
snapshot recorded by the updater in its register. The updater helps the scanner to obtain a consistent
value. This is the principle of “helping” that is often used in designing wait-free solutions for
various problems.

A scanner detects that an updater has made an update after thescanner initiated itsScan, by us-
ing the local arraychanged. This array is reset to 0 when theScanis invoked. Locationchanged[k]
is incremented (line (2k)) if theScanprocedure detects (line (2j)) that processPk has changed its
data andseq_no (and implicitly theold_snapshot) fields inRk. Based on the value ofchanged[k],
different inferences can be made, as now explained with the help of Figure 12.32.

• If changed[k] = 2 (line (2l)), then two updates (line (1b)) were made byPk afterPi began
its Scan. Between the first and the second update, theScanpreceding the second update
must have completed successfully, and the scanned value wasrecorded in theold_snapshot
field. This old snapshot can be safely borrowed by the scannerPi (line (2m)) because it was
recorded afterPk finished its first double-collect, and hence after the scanner Pi initiated its
Scan.

• However, if changed[k] = 1, it cannot be inferred that theold_snapshot recorded byPk

was taken afterPi’s Scanbegan. WhenPk does itsUpdate(the first ‘write’ shown in Fig-
ure 12.32(b)), the value it writes inold_snapshotis only the result of a double-scan that
preceded the ‘write’ and may be a value that existed beforePi’s Scanbegan.

There are two cases by which a snapshot can be captured, as illustrated using Figure 12.32.

437

1. A scanner can collect a snapshot (line (2g)) if the double-collect (lines (2d-2e)) returns iden-
tical views (line (2f)). See Figure 12.32(a). The returned snapshot represents an instanta-
neous state that existed at all times between the end of the first collect (line (2d)) and the
start of the secondcollect(line (2e)).

2. Otherwise the scanner returns a borrowed snapshot (line (2m)) fromPk if Pk has been no-
ticed to have made two updates (lines (2l)) and thereforePk has made aScanembedded
insidePi’s Scan. This borrowed snapshot itself (i) may have been obtained directly via a
double-collect, or (ii) indirectly been borrowed from another process (line (2l)). In case (i),
it represents an instantaneous state in the duration of thedouble-collect. In case (ii), a recur-
sive argument can be applied. Observe that there aren processes, so the recursive argument
can hold at mostn times. Then + 1th time, adouble-collectmust have been successful.
See Figure 12.32(b). Note that between the twodouble-collects ofPi that are shown, there
may be up ton − 2 other unsuccessfuldouble-collects of Pi. Each of these(n − 2) other
double-collects corresponds to somePk k 6= i, j, having ‘changed’ once.

The linearization of theScanandUpdateoperations follows in a straightforward manner. For
example, nonoverlapping operations get linearized in the order of their occurrence. An operation
by Pi that borrows a snapshot fromPk gets linearized afterPk.

Complexity: The space complexity isO(n) integers. The shared space isO(n2) corresponding
to each of then registers of sizeO(n) each. The time complexity isO(n2). This is because the
main Scan loop has a complexity ofO(n) and the loop may be executed at most(n + 1) times –
then+ 1-th time, at least one processPk must have causedPi’s local changed[k] to reach a value
of two, triggering an end to the loop (lines (2k-2l)).

12.7 Chapter Summary

Distributed shared memory (DSM) is an abstraction whereby distributed programs can communi-
cate with memory operations (Read and Write) as opposed to using message-passing. The main
motivation is to simplify the burden on the programmers. Thechapter surveyed this and other
motivating factors for DSMs, as well as provided different ways to classify DSMs. The DSM has
to be implemented by the middleware layer. Furthermore, in the face of concurrent operations
on the shared variables, the expected behaviour seen by the programmers should be well-defined.
The chapter examined the following consistency models – linearizability, sequential consistency,
causal consistency, pipelined RAM (PRAM), and slow memory.Each model is a contract between
the programmer and the system provider because the program logic must adhere to the consistency
model being provided by the middleware.

The chapter then examined the fundamental problem of mutal exclusion. The well-known
Bakery algorithm was studied first. Next, Lamport’s algorithm for fast mutual exclusion – which
gives anO(1) complexity when there are no contentions – was studied. Mutual exclusion using
hardware instructions –Test&SetandSwap– was then examined. Such hardware instructions can

438

(shared variables)
MRSW atomic register of type 〈data, seq_no, old_snapshot〉, where data, seq_no are of type integer,
and old_snapshot[1 . . . n] is array of integer: R1 . . . Rn;

(local variables)
array of int : changed[1 . . . n];
array of type 〈data, seq_no, old_snapshot〉: v1[1 . . . n], v2[1 . . . n], v[1 . . . n];

(1) Updatei(x)

(1a)v[1 . . . n]←− Scani;
(1b)Ri ←− (x,Ri.seq_no + 1, v[1 . . . n]).

(2) Scani
(2a) for count = 1 to n do
(2b) changed[count]←− 0;
(2c) while true do
(2d) v1[1 . . . n]←− collect();
(2e) v2[1 . . . n]←− collect();
(2f) if (∀k, 1 ≤ k ≤ n)(v1[k].seq_no = v2[k].seq_no) then
(2g) return (v2[1].data, . . . , v2[n].data);
(2h) else
(2i) for k = 1 to n do
(2j) if v1[k].seq_no 6= v2[k].seq_no then
(2k) changed[k] ←− changed[k] + 1;
(2l) if changed[k] = 2 then
(2m) return (v2[k].old_snapshot).

Figure 12.33: Wait-free atomic snapshot of a shared MRSW object.

perform aReadoperation and aWrite operation atomically. Hence, they are powerful, are also
expensive to implement in a machine.

In the context of DSM mutual exclusion, and more generally, DSM synchronization operations,
fault-tolerance was then examined. The notion ofwait freedom, which is the ability to complete
all the operations of a process, irrespective of the behavior of other processes. This makes the
systemn − 1 fault tolerant. Next, wait-free register constructions were considered. Registers can
be classified as being binary or multi-valued. An orthogonalclassification allows single-reader
or multiple reader, single-writer or multiple writer registers. Also orthogonally, registers cab be
safe, regular, or atomic. This allows 24 possible configurations. The chapter considered some
of these 24 possible wait-free constructions. The constructions provide insight into how different
techniqes can be used in the DSM setting. Lastly, wait-free atomic snapshots of shared objects was
considered. For an object, reading its value atomically in await-free manner (without locking)
gives a ”instantaneous" snapshot of its state. Hence, this is an important problem for DSMs.

439

12.8 Bibliographic Notes

A good survey on distributed shared memory systems is given by Protic, Tomasevic, and Miluti-
novic [25]. This includes coverage of the various DSM systems such as Firefly, Sequent, Alewife,
Dash, Butterfly, CM∗, Ivy, Mirage, Midway, Munin, Linda and Orca.

The sequential consistency model was defined by Lamport [16]. The linearizability model was
formalized by Lamport [18] and developed by Herlihy and Wing[10]. The implementations of
linearizability and sequential consistency based on the broadcast primitive and assuming full repli-
cation are from Attiya and Welch [5], whereas a similar implementation of sequential consistency
is given by Bal, Kaashoek, and Tanenbaum [6]. The causal consistency model was proposed by
[3]. The PRAM model was proposed by Lipton and Sandberg [22].The slow memory model was
proposed by Hutto and Ahamad [11]. Other consistency modelssuch as weak consistency [8], re-
lease consistency [9], and entry consistency [7] that applyto selected instructions in the code, were
developed mainly in the computer architecture research community, and are discussed in [2, 1].

The bakery algorithm for mutual exclusion was presented by Lamport [21]. The fast mutual
exclusion algorithm was presented by Lamport [19]. The two-process mutual exclusion algorithm
was presented by Peterson [23]. Its modification that is asked as Exercise 11 is based on the
algorithm by Peterson and Fischer [24].

The notion of wait-freedom was proposed by Lamport [21] and developed by Herlihy [12].
The definition and classification of registers as safe, regular, and atomic were given by Lamport
[17, 18, 19]. Constructions 1 to 5 were proposed by Lamport [18]. Register Construction 6 was
proposed by Vidyasankar [26]. Register Construction 7 was proposed by Vitanyi and Awerbuch
[27]. Register Construction 8 was proposed by Israeli and Li[13]. A construction of a MRMR
snapshot object using MRSW snapshot objects and MRMW registers was proposed by Anderson
[4].

12.9 Exercise Problems

1. Why do the algorithms for sequential consistency (Section 12.2.2) not require theReadop-
erations to be broadcast?

2. Give a formal proof to justify the correctness of the algorithm in Figure 12.7 that implements
sequential consistency using localReadoperations.

3. In the algorithm to implement sequential consistency using localWrite operations, as given
in Figure 12.8, why is a single countercounter sufficient for the algorithm’s correctness?

In other words, why is a separate countercounterx not required to track the number of up-
dates issued to each variablex, where aReadoperation onx gets delayed only ifcounterx >

0? If such a separate counter were used for every variable, what consistency model would
be implemented?

440

4. • In Figure 12.9(a), analyze whether the execution is linearizable.

• In Figure 12.9(b), what forms of memory consistency are satisfied if the twoRead
operations ofP4 return 7 first and then 4?

5. Give a detailed implementation of causal consistency, and provide a correctness argument
for your implementation.

6. Give a detailed implementation of PRAM consistency, and provide a correctness argument
for your implementation.

7. Give a detailed implementation of slow memory, and provide a correctness argument for
your implementation. Is the implementation less expensivethan that of PRAM consistency
which is a stricter consistency model?

8. Show that Constructions 1 and 2 (Figure 12.21) work for binary registers as well as integer-
valued registers.

9. Why are two passes needed by the reader in Construction 6, Figure 12.27, for a MRSW
atomic register? Why does a single right-to-left pass not suffice?

10. Assume that the writer does a single pass from left to right in Construction 6, Figure 12.27,
for a MRSW register. Can the code for the readers be modified todevise a correct algorithm?
Justify your answer.

11. Peterson’s mutual exclusion algortihm for two processes is shown in Figure 12.34.

(a) Show that it satisfies mutual exclusion, progress, and bounded waiting.

(b) Use this algorithm as a building block to construct a hierarchical mutual exclusion
algorithm for an arbitrary number of processes. (Hint: use alogarithmic number of
steps in the hierarchy.)

12. Determine the average case time complexity of the wait-free atomic snapshot of a shared
object, given in Figure 12.33.

441

(shared variables)
boolean: turn←− false; // shared register initialized
array of boolean: want[0, 1];

repeat
(1) Pi executes the following for theentry section:
(1a)wanting[i]←− true;
(1b) turn←− 1− i;
(1c) while wanting[1 − i] and turn = 1− i do
(1d) no-op;

(2) Pi executes thecritical section (CS)after theentry section

(3) Pi executes the followingexit sectionafter theCS:
(3a)wanting[i]←− false;

(4) Pi executes theremainder sectionafter theexit section

until false;

Figure 12.34: Peterson’s mutual exclusion for two processesPi = 0, 1. Modulo=2 artithmatic is
used.

442

Bibliography

[1] S. Adve, K. Gharachorloo, Shared memory consistency models: A tutorial, IEEE Computer
Magazine 29(12): 66-76, 1996.

[2] S. Adve, M. Hill, A unified formalization of four shared-memory models, IEEE Transactions
on Parallel and Distributed Systems 4(6): 613-624, 1993.

[3] M. Ahamad, G. Neiger, J. Burns, P. Kohli, P. Hutto, Causalmemory: Definitions, implemen-
tation, and programming, Distributed Computing, 9(1): 37-49, 1995.

[4] J. Anderson, Multi-writer composite registers, Distributed Computing, 7(4): 175-196, 1994.

[5] H. Attiya, J. Welch, Sequential consistency versus linearizability, ACM Transactions on Com-
puter Systems, 12(2): 91-122, 1994.

[6] H. Bal, F. Kaashoek, A. Tanenbaum, Orca: A language for parallel programming of distributed
systems, IEEE Transactions on Software Engineering, 18(3): 180-205, 1992.

[7] B. Bershad, M. Zekauskas, W. Sawdon, The Midway distributed shared memory system, CMU
Technical Report CMU-CS-93-119. (Also in Proceedings of COMPCON 1993.)

[8] M. Dubois, C. Scheurich, Memory access dependencies in shared-memory multiprocessors,
IEEE Transactions on Software Engineering, 16(6): 660-673, 1990.

[9] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. L. Hennessy, Memory
consistency and event ordering in scalable shared-memory multiprocessors, Proceedings of the
Seventeenth International Symposium on Computer Architecture, pages 15–26, Seattle, WA,
May 1990.

[10] M. Herlihy, J. Wing, Linearizability: A correctness condition for concurrent objects, ACM
Transactions on Programming Languages and Systems, 12(3):463-492, 1990.

[11] P. Hutto, M. Ahamad, Slow memory: Weakening consistency to enchance oncurrency in
distributed shared memories, Proc. IEEE International Conference on Distributed Computing
Systems, 302-311, 1990.

[12] M. Herlihy, Wait-free synchronization, ACM Transactions on Programming Languages and
Systems, 13(1): 124-149, 1991.

443

[13] A. Israeli, M. Li, Bounded timestamps, Distributed Computing, 6(4): 205-209, 1993.

[14] L. Lamport, A new solution of Dijkstra’s concurrent programming problem, Communications
of the ACM, 17(8): 453-455, 1974.

[15] L. Lamport, Proving the correctness of multiprocess programs, IEEE Transactions on Soft-
ware Engineering, 3(2): 125-143, 1977.

[16] L. Lamport, How to make a multiprocessor that correctlyexecutes multiprocess programs,
IEEE Transactions on Computers, 28(9): 690-691, 1979.

[17] L. Lamport, On interprocess communication, Part I: Basic formalism, Distributed Comput-
ing, 1(2): 77-85, 1986.

[18] L. Lamport, On interprocess communication, Part II: Algorithms, Distributed Computing,
1(2): 86-101, 1986.

[19] L. Lamport, The mutual exclusion problem, Part II: Statement and solutions, Journal of the
ACM, 33(2): 327-348, 1986.

[20] L. Lamport, A fast mutual exclusion algorithm, ACM Transactions on Computer Systems,
5(1): 1-11, 1987.

[21] L. Lamport, Concurrent reading and writing, Communications of the ACM, 20(11): 806-811,
1977.

[22] R. Lipton, J. Sandberg, PRAM: A scalable shared memory,Technical Report CS-TR-180-88,
Princeton University, Department of Computer Science, September 1988.

[23] G.L. Peterson, Myths about the Mutual exclision problem, Information Processing Letters,
12: 115-116, 1981.

[24] G.L. Peterson, M. Fischer, Economical solutions for the mutual exclusion problem in a dis-
tributed system, Proceedings 9th ACM Symposium on Theory ofComputing, 91-97, 1977.

[25] J. Protic, M. Tomasevic, V. Milutinovic, Distributed Shared Memory: Concepts and Systems,
4(2): 63-79, IEEE Concurrency, Computer Society Press, 1996.

[26] K. Vidyasankar, Converting Lamport’s regular register to atomic register, Information Pro-
cessing Letters, 28: 287-290, 1988.

[27] P. Vitanyi, B. Awerbuch, Atomic shared register accessbyu asynchronous hardware, Pro-
ceedings 27th IEEE Symposium on Foundations of Computer Science, pp. 233-243, 1986.

444

Chapter 13

Checkpointing and Rollback Recovery

13.1 Introduction

Distributed systems today are ubiquitous and enable many applications, including client-server
systems, transaction processing, World Wide Web, and scientific computing, among many others.
Distributed systems are not fault-tolerant and the vast computing potential of these systems is often
hampered by their susceptibility to failures. Many techniques have been developed to add relia-
bility and high availability to distributed systems. Thesetechniques include transactions, group
communication, and rollback recovery. These techniques have different tradeoffs and focus. This
Chapter covers the rollback recovery protocols which restore the system back to a consistent state
after a failure.

Rollback recovery treats a distributed system applicationas a collection of processes that com-
municate over a network. It achieves fault tolerance by periodically saving the state of a process
during the failure-free execution, and restarting from a saved state upon a failure to reduce the
amount of lost work. The saved state is called acheckpoint, and the procedure of restarting from
previously check pointed state is calledrollback recovery.A checkpoint can be saved on either the
stable storage or the volatile storage depending on the failure scenarios to be tolerated.

In distributed systems, rollback recovery is complicated because messages induce inter-process
dependencies during failure-free operation. Upon a failure of one or more processes in a system,
these dependencies may force some of the processes that did not fail to roll back, creating what
is commonly called arollback propagation. To see why rollback propagation occurs, consider the
situation where the sender of a messagem rolls back to a state that precedes the sending ofm.
The receiver ofm must also roll back to a state that precedesm’s receipt; otherwise, the states of
the two processes would beinconsistentbecause they would show that messagem was received
without being sent, which is impossible in any correct failure-free execution. This phenomenon of
cascaded rollback is called the domino effect. In some situations, rollback propagation may extend
back to the initial state of the computation, losing all the work performed before the failure.

In a distributed system, if each participating process takes its checkpoints independently, then
the system is susceptible to the domino effect. This approach is calledindependentor uncoor-
dinated checkpointing.It is obviously desirable to avoid the domino effect and therefore several

445

P
3

m
1

m
2

P
1

P
2

m
0

m
3

m
4

Input message Output message

Distributed system

Outside world

Figure 13.1: An example of a distributed system with three processes.

techniques have been developed to prevent it. One such technique iscoordinated checkpointing
where processes coordinate their checkpoints to form a system-wide consistent state. In case of a
process failure, the system state can be restrored such a consistent set of checkpoints, preventing
the rollback propagation. Alternatively,communication-induced checkpointingforces each pro-
cess to take checkpoints based on information piggybacked on the application messages it receives
from other processes. Checkpoints are taken such that a system-wide consistent state always exists
on stable storage, thereby avoiding the domino effect.

The approaches discussed so far implementcheckpoint-basedrollback recovery, which relies
only on checkpoints to achieve fault-tolerance.Log-basedrollback recovery combines checkpoint-
ing with logging of nondeterministic events. Log-based rollback recovery relies on thepiecewise
deterministic(PWD) assumption, which postulates that all nondeterministic events that a process
executes can be identified and that the information necessary to replay each event during recovery
can be logged in the event’sdeterminant. By logging and replaying the nondeterministic events
in their exact original order, a process can deterministically recreate its pre-failure state even if
this state has not been checkpointed. Log-based rollback recovery in general enables a system to
recover beyond the most recent set of consistent checkpoints. It is therefore particularly attractive
for applications that frequently interact with theoutside world, which consists of input and output
devices that cannot roll back.

13.2 Background and Definitions

13.2.1 System Model

A distributed system consists of a fixed number of processes P1, P2,..., PN that communicate only
through messages. Processes cooperate to execute a distributed application and interact with the
outside world by receiving and sending input and output messages, respectively. Figure 13.1 shows
a system consisting of three processes and interactions with the outside world.

Rollback-recovery protocols generally make assumptions about the reliability of the inter-

446

process communication. Some protocols assume that the communication subsystem delivers mes-
sages reliably, in First-In-First-Out (FIFO) order, whileother protocols assume that the communi-
cation subsystem can lose, duplicate, or reorder messages.The choice between these two assump-
tions usually affects the complexity of checkpointing and failure recovery.

A generic correctness condition for rollback-recovery canbe defined as follows [35]: “A system
recovers correctly if its internal state is consistent withthe observable behavior of the system before
the failure”. Rollback-recovery protocols therefore mustmaintain information about the internal
interactions among processes and also the external interactions with the outside world.

13.2.2 A Local Checkpoint

In distributed systems, all processes save their local states at certain instants of time. This saved
state is known as a local checkpoint. A local checkpoint is a snapshot of the state of the process at
a given instance and the event of recording the state of a process is called local checkpointing. The
contents of a checkpoint depend upon the application context and the checkpointing method being
used.

Depending upon the checkpointing method used, a process maykeep several local checkpoints
or just a single checkpoint at any time. We assume that a process stores all local checkpoints on the
stable storage so that they are available even if the processcrashes. We also assume that a process
is able to roll back to any of its existing local checkpoints and thus restore to and restart from the
corresponding state.

LetCi,k denote thekth local checkpoint at processPi. Generally, it is assumed that a processPi

takes a checkpointCi,0 before it starts execution. A local checkpoint is shown in the process-line
by the symbol “|”.

13.2.3 Consistent System States

A global state of a distributed system is a collection of the individual states of all participating
processes and the states of the communication channels. Intuitively, a consistent global state is
one that may occur during a failure-free execution of a distributed computation. More precisely, a
consistent system stateis one in which a process’s state reflects a message receipt, then the state of
the corresponding sender must reflect the sending of that message [9]. For instance, Figure 13.2
shows two examples of global states. The state in Figure 13.2(a) is consistent and the state in Figure
13.2(b) is inconsistent. Note that the consistent state in Figure 13.2(a) shows messagem1to have
been sent but not yet received, but that is alright. The statein Figure 13.2(a) is consistent because
it represents a situation in which every message that has been received, there is a corresponding
message send event. The state in Figure 13.2(b) is inconsistent because processP2 is shown to have
receivedm2but the state of processP1 does not reflect to have sent it. Such a state is impossible in
any failure-free, correct computation. Inconsistent states occur because of failures. For instance,
the situation shown in Figure 13.2(b) may occur if processP1 fails after sending messagem2to
processP2 and then restarts at the state shown in the Figure 13.2(b).

447

P
0

P
1

P
2

m
1

m
2

m
1

m
2

P
0

P
1

P
2

(a)
(b)

Consistent state Inconsistent state

Figure 13.2: Examples of a consistent and an inconsistent states.

Thus, a local checkpoint is a snapshot of a local state of a process and a global checkpoint
is a set of local checkpoints, one from each process. A consistent global checkpoint is a global
checkpoint such that no message is sent by a process after itslocal checkpoint that is received
by another process before its local checkpoint. The consistency of global checkpoints strongly
depends on the flow of messages exchanged by processes and an arbitrary set of local checkpoints
at processes may not form a consistent global checkpoint.

Fundamental goal of any rollback-recovery protocol is to bring the system to a consistent state
after a failure. The reconstructed consistent state is not necessarily one that occurred before the
failure. It is sufficient that the reconstructed state be onethat could have occurred before the failure
in a failure-free execution, provided that it is consistentwith the interactions that the system had
with the outside world.

13.2.4 Interactions with the Outside World

A distributed application often interacts with the outsideworld to receive input data or deliver the
outcome of a computation. If a failure occurs, the outside world cannot be expected to a roll back.
For example, a printer cannot roll back the effects of printing a character, and an automatic teller
machine cannot recover the money that it dispensed to a customer. To simplify the presentation of
how rollback-recovery protocols interact with the outsideworld, we model the latter as aspecial
process that interacts with the rest of the system through message passing. We call this special
process the “outside world process” (OWP). It is therefore necessary that the outside world see
a consistent behavior of the system despite failures. Thus,before sending output to the OWP,
the system must ensure that the state from which the output issent will be recovered despite any
future failure. This is commonly called the output commit problem. Similarly, input messages
that a system receives from the OWP may not be reproducible during recovery, because it may not
be possible for the outside world to regenerate them. Thus, recovery protocols must arrange to
save these input messages so that they can be retrieved when needed for execution replay after a

448

m
1

m
2

m
5

m
3

m
4

P
1

P
2

P
3

P
4

0

0

0

0

3

2

321

4

4

4 6

6

65 7 8

8

8

9

X

recovery line

failure

Figure 13.3: Different types of Messages

failure. A common approach is to save each input message on the stable storage before allowing
the application program to process it.

An interaction with the outside world to deliver the outcomeof a computation is shown on the
process-line by the symbol “||”.

13.2.5 Different Types of Messages

A procees failure and subsequent recovery may leave messages that were perfectly received (and
processed) before the failure, in abnormal states. This is because a rollback of processes for recov-
ery may have to rollback the send and receive operations of several messages.

In this section, we identify several types such messages using the example shown in Figure
13.3. Figure 13.3 shows an example consisting of four processes. ProcessP1 fails at the point
indicated and the whole system recovers to the state indicated by the recovery line; that is to global
state {C1,8, C2,9, C3,8, C4,8}.

In-Transit Messages
In Figure 13.3, the global state {C1,8, C2,9, C3,8, C4,8} shows that messagem1 has been sent but

not yet received. We call such a message anin-transit message. Messagem2 is also an in-transit
message.

When in-transit messages are part of a global system state, these messages do not cause any in-
consistency. However, depending on whether the system model assumes reliable communication
channels, rollback-recovery protocols may have to guarantee the delivery of in-transit messages
when failures occur. For reliable communication channels,a consistent state must include in-
transit messages because they will always be delivered to their destinations in any legal execution

449

of the system. On the other hand, if a system model assumes lossy communication channels, then
in-transit messages can be omitted from system state.

Lost messages
Messages whose send is not undone but receive is undone due torollback are called lost mes-

sages. This type of messages occurs when the process rolls back to a checkpoint prior to reception
of the message while the sender does not rollback beyond the send operation of the message. In
the Figure 13.3, message m1 is a lost message.

Delayed messages
Messages whose receive are not recorded because the receiving process was either down or

the message arrived after the rollback of the receiving process, are called delayed messages. For
example, message m2 and m5 in Figure 13.3 are delayed messages.

Orphan messages
Messages with receive recorded but message send not recorded are called the orphan messages.

For example, a rollback might have undone the send of such messages, leaving the receive event
intact at the receiving process. Orphan messages do not arise if processes roll back to a consistent
global state.

Duplicate messages
Duplicate messages arise due to message logging and replaying during a process recovery. For

example, in Figure 13.3, message m4 was sent and received before the rollback. However, due to
the rollback of process P4 to C4,8 and process P3 to C3,8, both send and receipt of message m4 are
undone. When process P3 restarts from C3,8, it will resend the message m4. Therefore, P4 should
not replay the message m4 from its log. If P4 replays the message m4, then message m4 is called a
duplicate message.

Message m5 is an excellent example of a duplicate message. No matter what, the receiver of
m5 will receive a duplicate m5 message.

13.3 Issues in Failure Recovery

In a failure recovery, we must not only restore the system to aconsistent state, but also appropri-
ately handle messages that are left in abnormal state due to the failure and recovery [33].

We now describe the issues involved in a failure recovery with the help of a distributed com-
putation shown in the Figure 13.4. The computation comprises of three processes Pi, Pj and Pk,
connected through a communication network. The processes communicate solely by exchanging
messages over fault free, FIFO communication channels. Processes Pi, Pj, and Pk have taken
checkpoints {Ci,0, Ci,1}, {C j,0, Cj,1, Cj,2}, and {Ck,0, Ck,1}, respectively, and these processes have
exchanged messages A to J as shown in the Figure 13.4.

450

iP

Pj

Pk

C i,1

C j,1C j,0

C i,0

Ck,0

Ck,1 Ck,2

C j,2

Failure

A B

F
EC

I
G

D

J

H

Figure 13.4: Illustration of Issues in Failure Recovery

Suppose process Pi fails at the instance indicated in the Figure. All the contents in the volatile
memory of Pi is lost and after Pi recovers from the failure, the system needs to be restored toa
consistent global state from where the processes resume their execution. The process Pi’s state
is restored to a valid state by rolling it back to its latest checkpoint Ci,1. To restore the system
to a consistent state process Pj rolls back to checkpoint Cj,1 because roll back of processPi to
checkpoint Ci,1 created an orphan message H (the receive event of H is recorded at process Pj
while the send event of H has been undone at process Pi). Note that process Pj does not roll
back to checkpoint Cj,2 but to checkpoint Cj,1 because rolling back to checkpoint Cj,2 does not
eliminate the orphan message H. Even this resulting state isnot a consistent global state as an
orphan message I is created due to the roll back of process Pj to checkpoint Cj,1. To eliminate
this orphan message process Pk rolls back to checkpoint Ck,1. The restored global state {Ci,1, Ci,1,
Ci,1 } is a consistent state as it is free from orphan messages. Although the system state has been
restored to a consistent state, several messages are left inan erroneous state which must be handled
correctly.

Messages A, B, D, G, H, I, and J had been received at the points indicated in the Figure and
messages C, E and F were in transit when the failure occurred.Restoration of system state to
checkpoints {Ci,1, Cj,1,Ck,1} automatically handles messages A, B, and J because send andreceive
events of messages A, B and J have been recorded and both the events for G, H, and I have been
completely undone. These messages cause no problem and we call messages A, B and J normal
messages and messages G, H and I as vanished messages [33].

Messages C, D, E, and F are potentially problematic. MessageC is in transit during the failure
and it is a delayed message. The delayed message C has severalpossibilities: C might arrive at
process Pi before it recovers, it might arrive while Pi is recovering, or it might arrive after Pi has
completed recovery. Each of these cases must be dealt with correctly.

Message D is a lost message since the send event for D is recorded in the restored state for
process Pj but the receive event has been undone at process Pi. Process Pj will not resend D without

451

additional mechanism, since the send D at Pj occurred before the checkpoint and communication
system successfully delivered D.

Messages E and F are delayed orphan messages and pose perhapsthe most serious problem
of all the messages. When messages E and F arrive at their respective destinations, they must be
discarded since their send events have been undone. Processes, after resuming execution from
their checkpoints, will generate both of these messages andrecovery techniques must be able to
distinguish between messages like C and those like E and F.

Lost messages like D can be handled by having processes keep amessage log of all the sent
messages. So when a process restores to a checkpoint, it replays the messages from its log to handle
the lost message problem. However, message logging and message replaying during recovery
can result in duplicate messages. In the example shown in theFigure, when process Pj replays
messages from its log, it will regenerate message J. ProcessPk which has already received message
J will receive it again, thereby, causing inconsistency in the system state. Therefore, these duplicate
messages must be handled properly.

Overlapping failures further complicate the recovery process. A process Pj that begins roll-
back/recovery in response to the failure of a process Pi can itself fail and develop amnesia with
respect process Pi’s failure; that is, process Pj can act in a fashion that exhibits ignorance of pro-
cess Pi’s failure. If overlapping failures are to be tolerated, a mechanism must be introduced to
deal with amnesia and the resulting inconsistencies.

13.4 Checkpoint Based Recovery

In the checkpoint based recovery approach, the state of eachprocess and the communication chan-
nel is checkpointed frequently so that upon a failure, the system is restored to a globally consistent
set of checkpoints. It does not rely on the PWD assumption, and so does not need to detect, log, or
replay nondeterministic events. Checkpoint-based protocols are therefore less restrictive and sim-
pler to implement than log-based rollback recovery. However, checkpoint-based rollback recovery
does not guarantee that pre-failure execution can be deterministically regenerated after a rollback.
Therefore, checkpoint-based rollback recovery may not be suitable for applications that require
frequent interactions with the outside world. Checkpoint based rollback-recovery techniques can
be classified into three categories: uncoordinated checkpointing, coordinated checkpointing, and
communication-induced checkpointing[13].

13.4.1 Uncoordinated Checkpointing

In uncoordinated checkpointing, each process has autonomyin deciding when to take checkpoints.
This eliminates synchronization overhead as there is no need for coordination between processes
and it allows processes to take checkpoints when it is most convenient or efficient. The main ad-
vantage is the lower runtime overhead during normal execution because no coordination among
processes is necessary. Autonomy in taking checkpoints also allows each process to select ap-

452

P

Pi

j

c

c

j,y

cc

c c c cj,0 j,1 j,y−1

i,0 i,1 i,x−1 i,xc

I

I i,x

m
(i,x)

j,y

Figure 13.5: Checkpoint Index and checkpoint Interval

propriate checkpoints positions. However, uncoordinatedcheckpointing has several shortcomings
[13].

First, there is the possibility of the domino effect during arecovery, which may cause the loss
of a large amount of useful work. Second, recovery from a failure is slow because processes need
to iterate to find a consistent set of checkpoints. Since no coordination is done at the time of check-
point is taken, checkpoints taken by a process may beuselesscheckpoints. (A useless checkpoint is
never a part of any global consistent state). Useless checkpoints are undesirable because they incur
overhead and do not contribute to advancing the recovery line. Third, uncoordinated checkpointing
forces each process to maintain multiple checkpoints, and to periodically invoke a garbage collec-
tion algorithm to reclaim the checkpoints that are no longerrequired. Fourth, it is not suitable for
applications with frequent output commits because these require global coordination to compute
the recovery line, negating much of the advantage of autonomy.

As each process takes checkpoints independently, we need todetermine a consistent global
checkpoint to rollback to, when a failure occurs. In order todetermine a consistent global check-
point during recovery, the processes record the dependencies among their checkpoints caused by
message exchange during failure-free operation. The following direct dependency tracking tech-
nique is commonly used in uncoordinated checkpointing.

Let ci,x be thexth checkpoint of processPi, where i is the process id and x is the checkpoint
index (we assume each process Pi starts its execution with an initial checkpoint ci,0). Let I i,x

denote thecheckpoint intervalor simply interval between checkpointsci,x−1 andci,x. Consider
the example shown in Figure 13.5. When processPi at intervalI i,x sends a messagem to Pj, it
piggybacks the pair (i,x) on m. WhenPj receivesm during intervalI j,y, it records the dependency
from I i,x to I j,y, which is later saved onto stable storage whenPj takes checkpointcj,y.

When a failure occurs, the recovering process initiates rollback by broadcasting adependency
requestmessage to collect all the dependency information maintained by each process. When a
process receives this message, it stops its execution and replies with the dependency information
saved on the stable storage as well as with the dependency information, if any, which is associated

453

with its current state. The initiator then calculates the recovery line based on the global depen-
dency information and broadcasts arollback requestmessage containing the recovery line. Upon
receiving this message, a process whose current state belongs to the recovery line simply resumes
execution; otherwise, it rolls back to an earlier checkpoint as indicated by the recovery line.

13.4.2 Coordinated Checkpointing

In coordinated checkpointing, processes orchestrate their checkpointing activities so that all local
checkpoints form a consistent global state [13]. Coordinated checkpointing simplifies recovery
and is not susceptible to the domino effect, since every process always restarts from its most recent
checkpoint. Also, coordinated checkpointing requires each process to maintain only one check-
point on the stable storage, reducing the storage overhead and eliminating the need for garbage
collection. The main disadvantage of this method is that large latency is involved in committing
output, as a global checkpoint is needed before a message is sent to OWP. Also, delays and over-
head are involved everytime a new global checkpoint is taken.

If perfectly synchronized clocks were available at processes, the following simple method can
be used for checkpointing: all processes agree at what instants of time they will take checkpoints,
and the clocks at processes trigger the local checkpointingactions at all processes. Since perfectly
synchronized clocks are not available, the following approaches are used to guarantee checkpoint
consistency: either the sending of messages is blocked for the duration of the protocol, or check-
point indices are piggybacked to avoid blocking.

Blocking Coordinated Checkpointing

A straightforward approach to coordinated checkpointing is to block communications while the
checkpointing protocol executes. After a process takes a local checkpoint, to prevent orphan mes-
sages, it remains blocked until the entire checkpointing activity is complete. The coordinator takes
a checkpoint and broadcasts a request message to all processes, asking them to take a checkpoint.
When a process receives this message, it stops its execution, flushes all the communication chan-
nels, takes atentativecheckpoint, and sends an acknowledgment message back to thecoordinator.
After the coordinator receives acknowledgments from all processes, it broadcasts a commit mes-
sage that completes the two-phase checkpointing protocol.After receiving the commit message, a
process removes the old permanent checkpoint and atomically makes thetentativecheckpoint per-
manent and then resumes its execution and exchange of messages with other processes. A problem
with this approach is that the computation is blocked duringthe checkpointing and therefore, non-
blocking checkpointing schemes are preferable.

Non-blocking Checkpoint Coordination

In this approach the processes need not stop their executionwhile taking checkpoints. A funda-
mental problem in coordinated checkpointing is to prevent aprocess from receiving application
messages that could make the checkpoint inconsistent. Consider the example in Figure 13.6(a)

454

checkpoint request

P

P

0

1

m

c0,x

c1,x

Initiator

checkpoint request

P

P

0

1

c0,x

Initiator

m

c1,x

(a) (b)

Figure 13.6: Non-blocking coordinated checkpointing: (a)checkpoint inconsistency; (b) a solution
with FIFO Channels.

[13]: messagem is sent byP0 after receiving a checkpoint request from the checkpoint coordina-
tor. Assumem reachesP1 beforethe checkpoint request. This situation results in an inconsistent
checkpoint since checkpointc1,x shows the receipt of messagem from P0, while checkpointc0,x

does not showm being sent fromP0.
If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint mes-

sage on each channel by a checkpoint request, forcing each process to take a checkpoint before
receiving the first post-checkpoint message, as illustrated in Figure 13.6(b). An example of a non-
blocking checkpoint coordination protocol using this ideais the snapshot algorithm of Chandy and
Lamport [9] in whichmarkersplay the role of the checkpoint-request messages. In this algorithm,
the initiator takes a checkpoint and sends a marker (a checkpoint request) on all outgoing channels.
Each process takes a checkpoint upon receiving the first marker and sends the marker on all outgo-
ing channels before sending any application message. The protocol works assuming the channels
are reliable and FIFO.

If the channels are non-FIFO, the following two approaches can be used: first, the marker
can be piggybacked on every post-checkpoint message. When aprocess receives an application
message with a marker, it treats it as if it has received a marker message, followed by the application
message. Alternatively, checkpoint indices can serve the same role as markers, where a checkpoint
is triggered when the receiver’s local checkpoint index is lower than the piggybacked checkpoint
index.

Coordinated checkpointing requires all processes to participate in every checkpoint. This re-
quirement generates valid concerns about its scalability.It is desirable to reduce the number of
processes involved in a coordinated checkpointing session. This can be done since only those pro-
cesses that have communicated with the checkpoint initiator either directly or indirectly since the
last checkpoint need to take new checkpoints. A two-phase protocol by koo and Toueg achieves
minimal checkpoint coordination.

455

13.4.3 Impossibility of Min Process Non-blocking Checkpointing

A min-process, non-blocking checkpointing algorithm is one that forces only a minimum number
of processes to take a new checkpoint, and at the same time it does not force any process to suspend
its computation. Clearly, such checkpointing algorithms will be very attractive. Cao and Singhal
[7] showed that it is impossible to design a min-process, non-blocking checkpointing algorithm.

Of course, the following type of min-process checkpointingalgorithms are possible: The algo-
rithm consists of two phases. During the first phase, the checkpoint initiator identifies all processes
with which it has communicated since the last checkpoint andsends them a request. Upon receiv-
ing the request, each process in turn identifies all processes it has communicated with since the
last checkpoints and sends them a request, and so on, until nomore processes can be identified.
During the second phase, all processes identified in the firstphase take a checkpoint. The result is
a consistent checkpoint that involves only the participating processes. In this protocol, after a pro-
cess takes a checkpoint, it cannot send any message until thesecond phase terminates successfully,
although receiving a message after the checkpoint has been taken is allowable.

Based on the concept called ’Z-dependency’, Cao and Singhalproved that there does not exist
a non-blocking algorithm that allows a minimum number of processes to take their checkpoints.
Here we give only a sketch of the proof and readers are referred to the original source [7] for a
detailed proof.

Z-dependency is defined as follows: if a process Pp sends a message to process Pq during its ith

checkpoint interval and process Pq receives the message during its jth checkpoint interval, then Pq
Z-depends on Pp during Pp’s ith checkpoint interval and Pq’s jth checkpoint interval, denoted by Pp

→i
jPq. If Pp →i

jPq and Pq → j
kPr, then Pr transitively z-depends depends on Pp during Pr’s kth

checkpoint interval and Pp’s ith checkpoint interval and this is denoted as Pp
∗→i

kPr.
A min process algorithm is one that satisfies the following condition: when a process Pp ini-

tiates a new checkpoint and takes checkpoint Cp,i, a process Pq takes a checkpoint Cq,jassociated
with Cp,i if and only if Pq

∗→j−1
i−1Pp. In a min process non-blocking algorithm, process Pp initi-

ates a new checkpoint and takes a checkpoint Cp,i and if a process Pr sends a message m to Pq after
it takes a new checkpoint associated with Cp,i, then Pq takes a checkpoint Cq,i before processing m
if and only if Pq

∗→ j−1
i−1Pp. According to min process definition, Pq takes checkpoint Cq,j if and

only if Pq
∗→j−1

i−1Pp but Pq should take Cq,i before processing m. If it takes Cq,j after processing
m, m becomes an orphan. Therefore, when a process receives a message m, it must know if the
initiator of a new checkpoint transitively Z-depends on it during the previous checkpoint interval.
But it has been proved that there is not enough information atthe receiver of a message to decide
whether the initiator of a new checkpoint transitively Z-depends on the receiver. Therefore, no
min-process non-blocking algorithm exists.

13.4.4 Communication-Induced Checkpointing

Communication-induced checkpointingis another way to avoid the domino effect, while allowing
processes to take some of their checkpoints independently.Processes may be forced to take addi-

456

tional checkpoints (over and above their autonomous checkpoints) and thus, process independence
is constrained to guarantee the eventual progress of the recovery line. Communication induced
checkpointing reduces or completely eliminates the useless checkpoints. In communication in-
duced checkpointing processes take two types of checkpoints, namely, autonomous and forced
checkpoints. The checkpoints that a process takes independently are calledlocal checkpoints,
while those that a process is forced to take are calledforcedcheckpoints. Communication-induced
checkpointing piggybacks protocol-related information on each application message. The receiver
of each application message uses the piggybacked information to determine if it has to take a forced
checkpoint to advance the global recovery line. The forced checkpoint must be taken before the
application may process the contents of the message, possibly incurring some latency and over-
head. It is therefore desirable in these systems to minimizethe number of forced checkpoints. In
contrast with coordinated checkpointing, no special coordination messages are exchanged.

There are two types of communication-induced checkpointing [13]: model-based checkpoint-
ing and index-based checkpointing. Inmodel-based checkpointing, the system maintains check-
points and communication structures that prevent the domino effect or achieve some even stronger
properties. Inindex-based coordination, the system uses an indexing scheme for the local and
forced checkpoints, such that the checkpoints of the same index at all processes form a consistent
state.

Model-based Checkpointing

Model-based checkpointing prevents patterns of communications and checkpoints that could re-
sult in inconsistent states among the existing checkpoints. A process detects the potential for
inconsistent checkpoints and independently forces local checkpoints to prevent the formation of
undesirable patterns. A forced checkpoint is generally used to prevent the undesirable patterns
from occurring. No control messages are exchanged among theprocesses during normal opera-
tion. All information necessary to execute the protocol is piggybacked on application messages.
The decision to take a forced checkpoint is done locally using the information available.

There are several domino-effect-free checkpoint and communication models. TheMRSmodel
avoids the domino effect by ensuring that within every checkpoint interval all message-receiving
events precede all message-sending events. This model can be maintained by taking an additional
checkpoint before every message-receiving event that is not separated from its previous message-
sending event by a checkpoint. Wu and Fuchs proposed anotherway to prevent the domino ef-
fect by avoiding rollback propagation completely by takinga checkpoint immediately after every
message-sending event. Recent work has focused on ensuringthat every checkpoint can belong to
a consistent global checkpoint and therefore is not useless.

Index-based Checkpointing

Index-based communication-induced checkpointing assigns monotonically increasing indexes to
checkpoints, such that the checkpoints having the same index at different processes form a consis-
tent state. Inconsistency between checkpoints of the same index can be avoided in a lazy fashion

457

0P

P1

P2

m1

m0

m4

m3

m6

m7m5m2

Figure 13.7: Deterministic and Nondeterministic Events

if indexes are piggybacked on application messages to help receivers decide when they should
take a forced a checkpoint. For instance, the protocol by Briatico et al. [5] forces a process to
take a checkpoint upon receiving a message with a piggybacked index greater than the local index.
More sophisticated protocols piggyback more information on application messages to minimize
the number of forced checkpoints.

13.5 Log-based Rollback Recovery

A log-based rollback recovery makes use of deterministic and nondeterministic events in a com-
putation. So first we discuss these events.

13.5.1 Deterministic and Nondeterministic Events

Log-based rollback recovery exploits the fact that a process execution can be modeled as a se-
quence of deterministic state intervals, each starting with the execution of a nondeterministic event.
A nondeterministic event can be the receipt of a message fromanother process or an event internal
to the process. Note that a message send event isnot a nondeterministic event. For example, in
Figure 13.7, the execution of processP0 is a sequence of four deterministic intervals. The first one
starts with the creation of the process, while the remainingthree start with the receipt of messages
m0, m3, andm7, respectively. Send event of messagem2 is uniquely determined by the initial state
of P0 and by the receipt of messagem0, and is therefore not a nondeterministic event.

Log-based rollback recovery assumes that all nondeterministic events can be identified and
their corresponding determinants can be logged into the stable storage. During failure-free op-
eration, each process logs the determinants of all nondeterministic events that it observes onto
the stable storage. Additionally, each process also takes checkpoints to reduce the extent of roll-
back during recovery. After a failure occurs, the failed processes recover by using the checkpoints
and logged determinants to replay the corresponding nondeterministic events precisely as they

458

occurred during the pre-failure execution. Because execution within each deterministic interval
depends only on the sequence of nondeterministic events that preceded the interval’s beginning,
the pre-failure execution of a failed process can be reconstructed during recovery up to the first
nondeterministic event whose determinant is not logged.

The No-Orphans Consistency Condition

Let ebe a nondeterministic event that occurs at processp. We define the following [13]:

• Depend(e): the set of processes that are affected by a nondeterministic evente. This set
consists ofp, and any process whose state depends on the eventeaccording to the Lamport’s
happened beforerelation.

• Log(e): the set of processes that have logged a copy ofe’s determinant in their volatile
memory.

• Stable(e): a predicate that is true ife’s determinant is logged on the stable storage.

Suppose a set of processesΨ crashes. A processp in Ψ becomes an orphan whenp itself does
not fail andp’s state depends on the execution of a nondeterministic event e whose determinant
cannot be recovered from the stable storage or from the volatile memory of a surviving process.
Formally, it can be stated as follows [13]:

∀ e: ¬ Stable(e): Depend(e)⊆ Log(e)

This property is called thealways-no-orphanscondition [13]. It states that if any surviving
process depends on an evente, then either evente is logged on the stable storage, or the process
has a copy of the determinant of evente. If neither condition is true, then the process is an orphan
because it depends on an evente that cannot be generated during recovery since its determinant is
lost.

Log-based rollback-recovery protocols guarantee that upon recovery of all failed processes, the
system does not contain any orphan process, i.e., a process whose state depends on a nondetermin-
istic event that cannot be reproduced during recovery. Log-based rollback-recovery protocols are
of three types: pessimistic logging, optimistic logging, and causal logging protocols. They differ
in their failure-free performance overhead, latency of output commit, simplicity of recovery and
garbage collection, and the potential for rolling back surviving processes.

13.5.2 Pessimistic Logging

Pessimistic logging protocols assume that a failure can occur after any nondeterministic event
in the computation. This assumption is “pessimistic” sincein reality failures are rare. In their
most straightforward form, pessimistic protocols log to the stable storage the determinant of each
nondeterministic event before the event affects the computation. Pessimistic protocols implement

459

0P

P1

P2

m0 m4m1

m2 m3 m5

m7

m6

A

B

C

failure

failure

Maximum recoverable state

Figure 13.8: Pessimistic logging.

the following property, often referred to assynchronous logging, which is a stronger than the
always-no-orphans condition [13].

∀ e: ¬ Stable(e): | Depend(e)| = 0

That is, if an event has not been logged on the stable storage,then no process can depend
on it. In addition to logging determinants, processes also take periodic checkpoints to minimize
the amount of work that has to be repeated during recovery. When a process fails, the process
is restarted from the most recent checkpoint and the logged determinants are used to recreate the
pre-failure execution. Consider the example in Figure 13.8. During failure-free operation the logs
of processesP0, P1 andP2 contain the determinants needed to replay messagesm0, m4, m7, m1, m3,
m6 andm2, m5, respectively. Suppose processesP1 andP2 fail as shown, restart from checkpoints
B and C, and roll forward using their determinant logs to deliver again the same sequence of
messages as in the pre-failure execution. This guarantees thatP1 andP2 will repeat exactly their
pre-failure execution and re-send the same messages. Hence, once the recovery is complete, both
processes will be consistent with the state ofP0 that includes the receipt of messagem7 from P1.
In a pessimistic logging system, the observable state of each process is always recoverable.

The price paid for these advantages is a performance penaltyincurred by synchronous logging.
Synchronous logging can potentially result in a high performance overhead. Implementations of
pessimistic logging must use special techniques to reduce the effects of synchronous logging on
the performance. This overhead can be lowered using specialhardware. For example, fast non-
volatile semiconductor memory can be used to implement the stable storage. Another approach
is to limit the number of failures that can be tolerated. The overhead of pessimistic logging is
reduced by delivering a message or executing an event and deferring its logging until the process
communicates with another process or with the outside world.

Synchronous logging in such an implementation is orders of magnitude cheaper than with a

460

traditional implementation of stable storage that uses magnetic disk devices. Another form of
hardware support uses a special bus to guarantee atomic logging of all messages exchanged in
the system. Such hardware support ensures that the log of onemachine is automatically stored
on a designated backup without blocking the execution of theapplication program. This scheme,
however, requires that all nondeterministic events be converted intoexternalmessages.

Some pessimistic logging systems reduce the overhead of synchronous logging without relying
on hardware. For example, theSender-Based Message Logging(SBML) protocol keeps the deter-
minants corresponding to the delivery of each messagem in the volatile memory of its sender. The
determinant ofm, which consists of its content and the order in which it was delivered, is logged in
two steps. First, before sendingm, the sender logs its content in volatile memory. Then, when the
receiver ofm responds with an acknowledgment that includes the order in which the message was
delivered, the sender adds to the determinant the ordering information. SBML avoids the over-
head of accessing stable storage but tolerates only one failure and cannot handle nondeterministic
events internal to a process. Extensions to this technique can tolerate more than one failure in
special network topologies.

13.5.3 Optimistic Logging

In optimistic logging protocols, processes log determinants asynchronouslyto the stable storage
[13]. These protocols optimistically assume that logging will be complete before a failure occurs.
Determinants are kept in a volatile log, and are periodically flushed to the stable storage. Thus, op-
timistic logging does not require the application to block waiting for the determinants to be written
to the stable storage, and therefore incurs much less overhead during failure-free execution. How-
ever, the price paid is more complicated recovery, garbage collection, and slower output commit. If
a process fails, the determinants in its volatile log are lost, and the state intervals that were started
by the nondeterministic events corresponding to these determinants cannot be recovered. Further-
more, if the failed process sent a message during any of the state intervals that cannot be recovered,
the receiver of the message becomes an orphan process and must roll back to undo the effects of
receiving the message.

Optimistic logging protocols do not implement thealways-no-orphanscondition. The pro-
tocols allow the temporary creation of orphan processes which are eventually eliminated. The
always-no-orphanscondition holds after the recovery is complete. This is achieved by rolling
back orphan processes until their states do not depend on anymessage whose determinant has
been lost.

Consider the example shown in Figure 13.9. Suppose processP2 fails before the determinant
for m5 is logged to the stable storage. ProcessP1 then becomes an orphan process and must roll
back to undo the effects of receiving the orphan messagem6. The rollback ofP1 further forcesP0

to roll back to undo the effects of receiving messagem7.
To perform rollbacks correctly, optimistic logging protocols track causal dependencies during

failure free execution. Upon a failure, the dependency information is used to calculate and recover
the latest global state of the pre-failure execution in which no process is in an orphan. Optimistic

461

0P

P1

P2

m0 m4m1

m2 m3 m5 m6

m7

A

B

C

D

X

Figure 13.9: Optimistic logging.

logging protocols require a nontrivial garbage collectionscheme. Also note that pessimistic proto-
cols need only keep the most recent checkpoint of each process, whereas optimistic protocols may
need to keep multiple checkpoints for each process.

Since determinants are logged asynchronously, output commit in optimistic logging protocols
requires a guarantee that no failure scenario can revoke theoutput. For example, if processP0

needs to commit output at stateX, it must log messagesm4 andm7 to the stable storage and askP2

to log m2 andm5. In this case, if any process fails, the computation can be reconstructed upto the
state X.

13.5.4 Causal Logging

Causal logging combines the advantages of both pessimisticand optimistic logging at the expense
of a more complex recovery protocol [13]. Like optimistic logging, it does not require synchronous
access to the stable storage except during output commit. Like pessimistic logging, it allows each
process to commit output independently and never creates orphans, thus isolating processes from
the effects of failures at other processes. Moreover, causal logging limits the rollback of any failed
process to the most recent checkpoint on the stable storage,thus minimizing the storage overhead
and the amount of lost work.

Causal logging protocols make sure that thealways-no-orphans propertyholds by ensuring that
the determinant of each nondeterministic event that causally precedes the state of a process is either
stable or it is available locally to that process. Consider the example in Figure 13.10. Messagesm5

andm6 are likely to be lost on the failures of P1 and P2 at the indicated instants. ProcessP0 at state
X will have logged the determinants of the nondeterministic events that causally precede its state
according to Lamport’shappened-beforerelation. These events consist of the delivery of messages
m0, m1, m2, m3 andm4. The determinant of each of these nondeterministic events is either logged
on the stable storage or is available in the volatile log of processP0. The determinant of each of
these events contains the order in which its original receiver delivered the corresponding message.
The message sender, as in sender-based message logging, logs the message content. Thus, process

462

0P

P1

P2

m0 m4m1

m2 m3 m5 m6

A

B

C

X

Maximum recoverable state

failure

failure

Figure 13.10: Causal logging

P0 will be able to “guide” the recovery ofP1 andP2 since it knows the order in whichP1 should
replay messagesm1 andm3 to reach the state from whichP1 sends messagem4. Similarly, P0 has
the order in whichP2 should replay messagem2 to be consistent with bothP0 andP1. The content
of these messages is obtained from the sender log ofP0 or regenerated deterministically during the
recovery ofP1 andP2. Note that information about messagesm5 andm6 is lost due to failures.
These messages may be resent after recovery possibly in a different order. However, since they did
not causally affect the surviving process or the outside world, the resulting state is consistent.

Each process maintains information about all the events that have causally affected its state.
This information protects it from the failures of other processes and also allows the process to
make its state recoverable by simply logging the information available locally. Thus, a process
does not need to run a multi-host protocol to commit output. It can commit output independently.

13.6 Koo-Toueg Coordinated Checkpointing Algorithm

Koo and Toueg [22] ccordinated checkpointing and recovery technique takes a consistent set of
checkpoints and avoids the domino effect and livelock problems during the recovery. Processes
coordinate their local checkpointing actions such that theset of all checkpoints in the system is
consistent [9].

13.6.1 The Checkpointing Algorithm

The checkpoint algorithm makes the following assumptions about the distributed system: Pro-
cesses communicate by exchanging messages through communication channels. Communication
channels are FIFO. It is assumed that end-to-end protocols (such as the sliding window protocol)
exist to cope with message loss due to rollback recovery and communication failure. Communica-
tion failures do not partition the network.

463

The checkpoint algorithm takes two kinds of checkpoints on the stable storage: permanent and
tentative. A permanent checkpoint is a local checkpoint at aprocess and is a part of a consistent
global checkpoint. A tentative checkpoint is a temporary checkpoint that is made a permanent
checkpoint on the successful termination of the checkpointalgorithm. In case of a failure, pro-
cesses roll back only to their permanent checkpoints for recovery.

The checkpointing algorithm assumes that a single process invokes the algorithm at any time to
take permanent checkpoints. The algorithm also assumes that no process fails during the execution
of the algorithm.

The algorithm consists of two phases.

First Phase
An initiating processPi takes a tentative checkpoint and requests all other processes to take

tentative checkpoints. Each process informsPi whether it succeeded in taking a tentative check-
point. A process says “no” to a request if it fails to take a tentative checkpoint, which could be due
to several reasons, depending upon the underlying application. If Pi learns that all the processes
have successfully taken tentative checkpoints,Pi decides that all tentative checkpoints should be
made permanent; otherwise,Pi decides that all the tentative checkpoints should be discarded.

Second Phase
Pi informs all the processes of the decision it reached at the end of the first phase. A process, on

receiving the message fromPi will act accordingly. Therefore, either all or none of the processes
advance the checkpoint by taking permanent checkpoints.

The algorithm requires that after a process has taken a tentative checkpoint, it can not send
messages related to the underlying computation until it is informed ofPi’s decision.

Correctness

A set of permanent checkpoints taken by this algorithm is consistent because of the following two
reasons: First, either all or none of the processes take permanent checkpoints. Second, no process
sends a message after taking a tentative checkpoint until the receipt of the initiating process’s
decision, by then all processes would have taken checkpoints. Thus a situation will not arise where
there is a record of a message being received but there is no record of sending it. Thus, a set of
checkpoints taken will always be inconsistent.

An Optimization

Note that the above protocol may cause a process to take a checkpoint even when it is not necessary
for consistency. Since taking a checkpoint is an expensive operation, we would like to avoid taking
checkpoints if it is not necessary.

Consider the example shown in Fig. 13.11. The set{x1, y1, z1} is a consistent set of check-
points. Suppose process X decides to initiate the checkpointing algorithm after receiving message

464

Take a tentative
checkpoint messages

Tentative
checkpointx1

y1

z1

x2

y2

z2

X

Y

Z

m

Time

Figure 13.11: Example of checkpoints taken unnecessarily.

m. It takes a tentative checkpointx2 and sends “take tentative checkpoint" messages to processes
Y and Z, causing Y and Z to take checkpointsy2 andz2, respectively. Clearly,{x2, y2, z2} forms a
consistent set of checkpoints. Note, however, that{x2, y2, z1} also forms a consistent set of check-
points. In this example, there is no need for process Z to takecheckpointz2 because Z has not sent
any message since its last checkpoint. However, process Y must take a checkpoint since has sent
messages since its last checkpoint.

13.6.2 The Rollback Recovery Algorithm

The rollback recovery algorithm restores the system state to a consistent state after a failure. The
rollback recovery algorithm assumes that a single process invokes the algorithm. It also assumes
that the checkpoint and the rollback recovery algorithms are not invoked concurrently. The roll-
back recovery algorithm has two phases.

First Phase
An initiating processPi sends a message to all other processes to check if they all arewilling

to restart from their previous checkpoints. A process may reply “no” to a restart request due to any
reason (e.g., it is already participating in a checkpointing or a recovery process initiated by some
other process). IfPi learns that all processes are willing to restart from their previous checkpoints,
Pi decides that all processes should roll back to their previous checkpoints. Otherwise,Pi aborts
the roll back attempt and it may attempt a recovery at a later time.

Second Phase
Pi propagates its decision to all the processes. On receivingPi’s decision, a process acts

accordingly.
During the execution of the recovery algorithm, a process can not send messages related to the

underlying computation while it is waiting forPi’s decision.

465

x2

Time

y2

z2

x1

y1

z1

X

Y

Z

Failure

Figure 13.12: Example of an unnecessary rollback.

Correctness

All processes restart from an appropriate state because if processes decide to restart, then they
resume execution from a consistent state (the checkpointing algorithm takes a consistent set of
checkpoints).

An Optimization

The above recovery protocol causes all processes to roll back irrespective of whether a process
needs to roll back or not. Consider the example shown in Fig. 13.12. The above protocol, in In
the event of failure of process X, the above protocol will require processes X, Y, and Z to restart
from checkpointsx2, y2, andz2, respectively. However, note that process Z need not roll back
because there has been no interaction between process Z and the other two processes since the last
checkpoint at Z.

13.7 Juang and Venkatesan Algorithm for Asynchronous Check-
pointing and Recovery

We now describe the algorithm of Juang and Venkatesan [18] for recovery in a system that employs
asynchronous checkpointing.

13.7.1 System Model and Assumptions

The algorithm makes the following assumptions about the underlying system: The communication
channels are reliable, deliver the messages in FIFO order and have infinite buffers. The message
transmission delay is arbitrary, but finite. The processorsdirectly connected to a processor via
communication channels are called its neighbors.

The underlying computation or application is assumed to be event-driven: a processor P waits
until a messagem is received, it processes the messagem, changes its state froms to s′, and
sends zero or more messages to some of its neighbors. Then theprocessor remains idle until the

466

ex1 ex2

ey1 ey2 ey3

ez1 ez2 ez3

Time

ex0

ey0

ez0

X

Y

Z

failure

Figure 13.13: An event driven computation.

receipt of the next message. The new states′ and the contents of messages sent to its neighbors
depends on states and the contents of messagem. The events at a processor are identified by
unique monotonically increasing numbers,ex0, ex1, ex2, . . . (see Fig. 13.13).

To facilitate recovery after a process failure and restore the system to a consistent state, two
types of log storage are maintained, volatile log and stablelog. Accessing the volatile log takes less
time than accessing the stable log, but the contents of the volatile log are lost if the corresponding
processor fails. The contents of the volatile log are periodically flushed to the stable storage.

13.7.2 Asynchronous Checkpointing

After executing an event, a processor records a triplet{s,m,msgs_sent} in its volatile storage,
wheres is the state of the processor before the event,m is the message (including the identity of
the sender ofm, denoted asm.sender) whose arrival caused the event, andmsqs_sent is the set
of messages that were sent by the processor during the event.Therefore, a local checkpoint at a
processor consists of the record of an event occurring at theprocessor and it is taken without any
synchronization with other processors. Periodically, a processor independently saves the contents
of the volatile log in the stable storage and clears the volatile log. This operation tantamounts to
taking a local checkpoint.

13.7.3 The Recovery Algorithm

Notations and data structure

The following notations and data structure are used by the algorithm:

• RCVDi←j(CkPti) represents the number of messages received by processorpi from pro-
cessorpj, from the beginning of the computation till the checkpointCkPti.

• SENTi→j(CkPti) represents the number of messages sent by processorpi to processorpj,
from the beginning of the computation till the checkpointCkPti.

467

Basic idea

Since the algorithm is based on asynchronous checkpointing, the main issue in the recovery is to
find a consistent set of checkpoints to which the system can berestored. The recovery algorithm
achieves this by making each processor keep track of both thenumber of messages it has sent to
other processors as well as the number of messages it has received from other processors. Recovery
may involve several iterations of roll backs by processors.Whenever a processor rolls back, it is
necessary for all other processors to find out if any message sent by the rolled back processor
has become an orphan message. Orphan messages are discovered by comparing the number of
messages sent to and received from neighboring processors.For example, ifRCVDi←j(CkPti)

> SENTj→i(CkPtj) (that is, the number of messages received by processorpi from processor
pj is greater than the number of messages sent by processorpj to processorpi, according to the
current states the processors), then one or more messages atprocessorpj are orphan messages. In
this case, processorpj must roll back to a state where the number of messages received agrees with
the number of messages sent.

Consider an example shown in Fig. 13.13. Suppose processor Ycrashes at the point indicated
and rolls back to a state corresponding to checkpointey1. According to this state, Y has sent only
one message to X; however, according to X’s current state (ex2), X has received two messages from
Y. Therefore, X must roll back to a state precedingex2 to be consistent with Y’s state. We note that
if X rolls back to checkpointex1, then it will be consistent with Y’s state,ey1. Likewise, processor Z
must roll back to checkpointez2 to be consistent with Y’s state,ey1. Note that similarly processors
X and Z will have to resolve any such mutual inconsistencies (provided they are neighbors).

The Algorithm

When a processor restarts after a failure, it broadcasts a ROLLBACK message that it had failed1.
The recovery algorithm at a processor is initiated when it restarts after a failure or when it learns
of a failure at another processor. Because of the broadcast of ROLLBACK messages, the recovery
algorithm is initiated at all processors.

Procedure RollBack_Recovery
processorpi executes the following:

STEP (a)
if processorpi is recovering after a failurethen
CkPti := latest event logged in the stable storage

else
CkPti := latest event that took place inpi {The latest event atpi can be either in stable or in
volatile storage.}

end if
STEP (b)

1Such a broadcast can be done using only O(|E|) messages where|E|is the total number of communication links.

468

for k = 1 1 toN {N is the number of processors in the system}do
for each neighboring processorpj do

computeSENTi→j(CkPti)

send aROLLBACK(i, SENTi→j(CkPti)) message topj

end for
for everyROLLBACK(j, c) message received from a neighborj do

if RCVDi←j(CkPti) > c {Implies the presence of orphan messages}then
find the latest evente such thatRCV Di←j(e) = c {Such an eventemay be in the volatile
storage or stable storage.}
CkPti := e

end if
end for

end for{for k}

The rollback starts at the failed processor and slowly diffuses into the entire system through
ROLLBACK messages. Note that the procedure has |N|iterations. During thekth iteration (k 6= 1),
a processorpi does the following: (i) based on the stateCkPti it was rolled back in the (k -
1)th iteration, it computesSENTi→j(CkPti)) for each neighborpj and sends this value in a
ROLLBACK message to that neighbor and (ii)pi waits for and processesROLLBACK mes-
sages that it receives from its neighbors inkth iteration and determines a new recovery pointCkPti
for pi based on information in these messages. At the end of each iteration, at least one processor
will rollback to its final recovery point, unless the currentrecovery points are already consistent.

13.7.4 An Example

Consider an example shown in Figure 13.14 consisting of three processors. Suppose processor
Y fails and restarts. If eventey2 is the latest checkpointed event at Y, then Y will restart from
the state corresponding toey2. Because of the broadcast nature of ROLLBACK messages, the
recovery algorithm is also initiated at processors X and Z. Initially, X, Y, and Z setCkPtX ← ex3,
CkPtY ← ey2 andCkPtZ ← ez2, respectively, and X, Y, and Z send the following messages
during the first iteration: Y sendsROLLBACK(Y,2) to X andROLLBACK(Y,1) to Z; X sends
ROLLBACK(X,2) to Y andROLLBACK(X,0) to Z; and Z sendsROLLBACK(Z,0) to X and
ROLLBACK(Z,1) to Y.

SinceRCVDX←Y (CkPtX) = 3> 2 (2 is the value received in theROLLBACK(Y,2) mes-
sage from Y), X will setCkPtX toex2 satisfyingRCV DX←Y (ex2) = 1≤ 2. SinceRCV DZ←Y (CkPtZ)

= 2> 1, Z will setCkPtZ to ez1 satisfyingRCV DZ←Y (ez1) = 1≤ 1. At Y, RCVDY←X(CkPtY)

= 1< 2 andRCV DY←Z(CkPtY) = 1 = SENTZ←Y (CkPtZ). Hence, Y need not roll back fur-
ther. In the second iteration, Y sendsROLLBACK(Y,2) to X andROLLBACK(Y,1) to Z; Z
sendsROLLBACK(Z,1) to Y andROLLBACK(Z,0) to X; X sendsROLLBACK(X,0) to Z
andROLLBACK(X, 1) to Y. Note that if Y rolls back beyondey3 and loses the message from
X that causedey3, X can resend this message to Y becauseex2 is logged at X and this message
available in the log. The second and third iteration will progress in the same manner. Note that the

469

ex2

ey1 ey2

Time

x1

y1

z1

ey3

ex3ex0

ey0

ez0

ez2

ex1

ez1

X

Y

Z

failure

Figure 13.14: An example of Juan-Venkatesan algorithm.

set of recovery points chosen at the end of the first iteration, {ex2, ey2, ez1}, is consistent, and no
further rollback occurs.

13.8 Manivannan-Singhal Quasi-Synchronous Checkpointing
Algorithm

When processes independently take their local checkpoints, there is a possiblity that some local
checkpoints can never be included in any consistent global checkpoint. (Recall that such local
checkpoints are called the useless checkpoints.) In the worst case, no consistent checkpoint can
ever be formed.

Manivannan-singhal quasi-synchronous checkpointing algorithm improves the performance by
eliminating useless checkpoints. The algorithm is based oncommunication-induced checkpoint-
ing, where each process takes basic checkpoints asynchronously and independently, and in ad-
dition, to prevent useless checkpoints, processes take forced checkpoints upon the reception of
messages with a control variable.

Manivannan-singhal quasi-synchronous checkpointing algorithm combines both the coordi-
nated and the uncoordinated checkpointing approaches to get the best of both:

• It allows processes to take checkpoints asynchronously.

• Uses communication-induced checkpointing to eliminates the “useless" checkpoints.

• Since every checkpoint lies on consistent checkpoint, determination of the recovery line
during a rollback a recovery is simple and fast.

Each checkpoint at a process is assigned a unique sequence number. The sequence numbers
assigned to basic checkpoints are picked from the local counters which are incremented periodi-
cally.

When a processPi sends a message, it appends the sequence number of its latestcheckpoint
to the message. When a processPj receives a message, if the sequence number received in the

470

message is greater than the sequence number of the latest checkpoint ofPj, then before processing
the message,Pj takes a (forced) checkpoint and assigns the sequence numberreceived in the mes-
sage as the sequence number of the checkpoint taken. When it is time for a process to take a basic
checkpoint, it skips taking a basic checkpoint if its latestcheckpoint has a sequence number greater
than or equal to the current value of its counter. This strategy helps to reduce the checkpointing
overhead, i.e., the number of checkpoints taken. An alternative approach to reduce the number of
checkpoints is to allow a process to delay processing a received message until the sequence number
of its latest checkpoint is greater than or equal to the sequence number received in the message.

13.8.1 Checkpointing Algorithm

Now, we present the quasi-synchronous checkpointing algorithm formally. The variablenexti of
processPi represents its local counter. It keeps track of the current number of checkpoint intervals
at processPi. The value of the variablesni represents the sequence number of the latest checkpoint
of Pi at any time. So, whenever a new checkpoint is taken, the checkpoint is assigned a sequence
number andsni is updated accordingly.C.sndenotes the sequence number assigned to checkpoint
C andM.sndenotes the sequence number piggybacked to messageM.

DataStructuresatProcessPi

sni := 0; {Sequence number of the current checkpoint, initialized to
0. This is updated every time a new checkpoint is taken.}

nexti := 1; {Sequence number to be assigned to the next basic check-
point; initialized to 1.}

Whenit is time for processPi to incrementnexti
nexti := nexti +1; {nexti is incremented at periodic time intervals ofX time units}

WhenprocessPi sendsamessageM
M.sn:= sni; {sequence number of the current checkpoint is appended toM}
send (M);

ProcessPj receivesamessagefrom processPi

if snj < M.snthen {if sequence number of the current checkpoint is less than
Take checkpointC; checkpoint number received in the message, then
C.sn:= M.sn; take a new checkpoint before processing the message}
snj := M.sn;

Process the message.

Whenit is time for processPi to takeabasiccheckpoint
if nexti > sni then {skips taking a basic checkpoint ifnexti ≤ sni (i.e., if it

Take checkpointC; already took aforcedcheckpoint with sequence number≥
sni := nexti; nexti)}
C.sn:= sni;

471

Properties

When processes take checkpoints in this manner, checkpoints satisfy the following interesting
properties:

1. CheckpointCi,m of processpi is concurrent with checkpointsC∗,m of all other processes.
For example, in Figure 13.15, checkpointC2,3 is concurrent with checkpointsC1,3 andC3,3.

2. CheckpointsC∗,m of all processes form a consistent global checkpoint. For example, in Fig-
ure 13.15, checkpoints {C1,4,C2,4,C3,4} form a consistent global checkpoint. An interesting
application of this result is that if processP3 crashes and restarts from checkpointC3,5 (in
Figure 13.15), thenP1 will need to take a checkpointC1,5 (without rolling back) and the set
of checkpoints {C1,5, C2,5, C3,5} will form a consistent global checkpoint.

Since there may be gaps in the sequence numbers assigned to checkpoints at a process, we
have the following result:

3. The checkpointCi,m of processpi is concurrent with the earliest checkpointCj,n at process
pj such thatm ≤ n. For example, in Figure 13.15, checkpoints {C1,3, C2,2, C3,2} form a
consistent global checkpoint.

The following corollary gives a sufficient condition for a set of local checkpoints to be a part
of a global checkpoint.

Corollary 4. Let S = {Ci1,mi1
, Ci2,mi2

, ..., Cik,mik
} be a set of local checkpoints from distinct

processes. Letm = min{mi1 , mi2, ..., mik}. Then,S can be extended to a global checkpoint if
∀ l (1 ≤ l ≤ k), Cil,mil

is the earliest checkpoint ofPil such thatmil ≥m.

The following corollary gives a sufficient condition for a global checkpoint to be consistent.

Corollary 5. LetS = {C1,m1
, C2,m2

,..., CN,mN
} be a set of local checkpoints one for each process.

Letm = min{m1,

m2, ..., mN}. Then,S is a global checkpoint if∀ i (1 ≤ i ≤ N), Ci,mi
is the earliest checkpoint of

Pi such thatmi ≥ m.

These properties have a strong implication on the failure recovery. The task of finding a con-
sistent global checkpoint after a failure is considerably simplified. If the failed process rolls back
to a checkpoint with sequence number m, then all other processes simply need to roll back to the
earliest local checkpointC∗,n such thatm ≤ n.

An Example

We illustrate the basic idea behind the checkpoints algorithm using an example.

472

Consider a system consisting of three processes P1, P2, and P3 shown in Figure 13.15. The basic
checkpoints are shown in the figure as “|” and forced checkpoints are shown as “|∗”. The sequence
numbers assigned to checkpoints are also shown in the figure.Each process Pi increments its
variable nexti every x time units. Process P3 takes a basic checkpoint every x time units, P2 takes a
basic checkpoint every 2x time units, and P1 takes a basic checkpoint every 3x time units. Message
M0 forces P3 to take a forced checkpoint with sequence number 2 before processing message M0.
As a result P3 skips taking a basic checkpoint with sequence number 2. Message M1 forces process
P2 to take a forced checkpoint with sequence number 3 before processing M1 because M1.sn <

sn2 while receiving the message. Similarly message M2 forces P1 to take a checkpoint before
processing the message and M4 forces P2 to take a checkpoint before processing the message.
However M3 does not force process P3 to take a checkpoint before processing it. Note that there
may be gaps in the sequence numbers assigned to checkpoints at a process.

13.8.2 Recovery Algorithm

The recovery process is asynchronous; that is, when a process fails, it just rolls back to its lat-
est checkpoint and broadcasts a rollback request message toevery other process and continues
it’s processing without waiting for any reply message from them. The recovery is based on the
assumption that if a process Pi fails, then no other process fails until the system is restored to a
consistent state. In addition to the variables defined in thecheckpoint algorithm, the processes also
maintains two other variables; inci and rec_linei. The inci is the incarnation number for process
Pi. It is incremented every time a process fails and restarts from its latest checkpoint. The rec_linei

is the recovery line number. These variables are stored in the stable storage, so that they are made
available for recovery. Initially,∀i, inci = 0 and rec_linei=0. With each message M, the current
values of the three variables inci, sni, and rec_linei are piggybacked. The values of these variable
piggybacked to M is denoted by M.inc, M.sn, and M.rec_line, respectively. Now we present the basic
recovery algorithm formally.

Data structures at processPi

integer sni = 0;
integer nexti = 1;
integer inci = 0;
integer rec_linei =0;

Checkpointing algorithm

Whenit is time for processPi to incrementnexti
nexti = nexti +1;

Whenit is time for processPi to takeabasiccheckpoint
If (nexti > sni) {

473

Take a checkpoint C;
Csn= nexti;
sni = Csn;

}

WhenprocessPi sendsamessageM
M .sn =sni;
M.rec_line = rec_linei;
M.inc = inci;
send(M);
WhenprocessPj receivesamessageM
if (M. inc > incj) {

rec_linej = M.rec_line;
incj = M.inc;
Roll_Back(Pj);

}
If (M sn > snj) {

Take a checkpoint C;
Csn = Msn;
snj = Csn;

}
Process the message;

Basic Recovery Algorithm (BRA)

Recoveryinitiatedby processPi afterfailure
Restore the latest checkpoint;
inci=inci +1;
rec_linei = sni;
send rollback(inci, rec_linei) to all other processes;
resume normal execution;

ProcessPj uponreceivingrollback(inci, rec_linei) from Pi

If (inci > incj) {
incj=inci;
rec_linj = rec_linei;
Roll_back(Pj);
continue as normal;

}
else

Ignore the rollback message;

ProcedureRollback(Pj

474

If (rec_linej > snj) {
Take a checkpoint C;
C.sn= rec_linej;
snj = C.sn;

}
else
{

Find the earliest checkpoint C with C.sn ≥ rec_linej ;
snj=C.sn;
Restore checkpoint C;
Delete all checkpoints after C;

}

An Explanation

When process Pi fails, it rollbacks to its latest checkpoint and broadcastsa rollback(inci, rec_linei)
message to all other processes and continues its normal execution. Upon receiving this rollback
message, a process Pj rolls back to its earliest checkpoint whose sequence number≥ rec_linei, and
continues normal execution. If process Pj does not have such a checkpoint, it takes a checkpoint
with the sequence number equal to rec_linei, and continues normally. Due to message delays, the
broadcast message might be delayed and a process Pj may come to know about a rollback indirectly
through some other process that has already seen the rollback message. Since every message is
piggybacked with M.inc, M.sn, and M.rec_line, the indirect application message that Pj receives
indicates a rollback incarnation by some other process. If process Pj receives such a message M,
and M.inc > incj , then Pj infers that some failed process had initiated a rollback with incarnation
number M.inc and Pj rolls back to its earliest checkpoint whose sequence number≥ M.rec_line; if
Pj later receives a rollback message corresponding to this incarnation, it ignores it. Thus, after
knowing directly or indirectly about the failure of a process Pi, all other processes rollback to their
earliest checkpoint whose sequence number is greater than equal to rec_linei. If any process does
not have such a checkpoint, it takes a checkpoint and adds it to the rec-line and proceeds normally.
Note that not all processes need to perform a rollback to its earliest checkpoint.

An Example

We illustrate the basic recovery using the example in Figure13.15. Suppose process P3 fails at
the instant shown. When P3 recovers, it increments inc3 to 1, sets rec_line3 to sn3 (=5), rolls
back to its latest checkpoint C3,5 and sends a rollback(1,5) message to all other processes. Upon
receiving this message, P2 will rollback to checkpoint C2,5 since C2,5 is the earliest checkpoint
at P2 with sequence number≥ 5. However, since P1 does not have a checkpoint with sequence
number greater than or equal to 5, it takes a local checkpointand assigns 5 as its sequence number.
Thus, {C1,5, C2,5, C3,5} is the recovery line corresponding this failure.

475

1P

P2

P3

M3

M1
M2

M0 M4

B

C

2

1 2

3 4

3 40

0

0

5

5

3 4

6

*

*

*

*

failure

Figure 13.15: An example illustrating Manivannan-Singhalalgorithm

Thus, the recovery is simple. The failed process (on recovering from the failure) rolls back
to its latest checkpoint and requests other processes to rollback to a consistent checkpoint which
they can easily determine solely based on the local information. There is no domino-effect and the
recovery is fast and efficient.

In this example, we find that the sequence number of all checkpoints in the recovery line is the
same, but it need not be the case always.

13.8.3 Comprehensive Message Handling

Roll back to a recovery line that is consistent may result in lost, delayed, orphan, or even duplicated
messages. Existence of these types of message may lead the system to an inconsistent state. Next,
we discuss on how to modify the BRA to handle these messages.

Handling the replay of messages

Not all messages stored in the stable storage need to be replayed. BRA has to be modified so that it
can decide which messages need to be replayed. In Figure 13.16, if we assume that process P1 fails
at the point marked X and initiates a recovery with a new incarnation. After failure it rolls back to
its latest checkpoint, C1,10, then increments the incarnation inc1 to 1 and sets the rec_line1 to 10,
and sends a rollback(1,10) message to all other processes. Upon receiving the rollback message
from P1, process P2 rolls back to its checkpoint C2,12. Consequently, all other process rolls back
to appropriate checkpoint following the BRA approach. After all the processes have rolled back
to a set of consistent checkpoints, these checkpoints form arecovery line with number 10. The
messages sent to the left of the recovery line carry incarnation number 0 and messages sent to the
right of the recovery line carry incarnation 1.

To avoid lost messages, when a process rolls back it must replay all messages from its log
whose receive was undone and whose send was not undone. In other words, a process must replay
only those messages that originated from the left of the recovery line and delivered to the right of

476

1P

P2

P3

0

4 6 8 102

4 6 9 123

P4

0 2 3 54 6 8 107 119

10

M1
M7

M5

M8

M2

M4

M3

M6

B

C

0

0

84

1

inc =1
rec_line = 10

Message sent before the rollback

Message sent after the rollback

failure

Figure 13.16: Handling of messages during the recovery.

the recovery line. In the example, after rollback process P2 must replay messages M1 and M2 from
its log but must not replay M3; because the send of M1 and M2 were not undone but the send of
M3 was undone. It is easy to determine the origin of the send of a message M by looking at the
sequence number (M.sn) piggybacked. Therefore, we can state a rule for replaying messages as
follows:

Message replay rule:After a process Pj rolls back to checkpoint C, it replays a message M only if
it was received after C and if M.sn < recovery line number.

Handling of received messages

This section discusses how a process handles received messages. Suppose process Pj receives a
message M from process Pi. At the time of receiving the message, if Pj is replaying messages from
the message log, then Pj will buffer the message M and will process it only after it finishes with
the replaying of messages from the message log. If Pj does not do this then the following three
cases may occur.

Case 1: M is a delayed message
A delayed message with respect to a recovery line carries an incarnation number less than the

incarnation number of the receiving process. The process Pi that sent such a message M was not

477

aware of the recovery process at the time of sending of M. Therefore, the piggybacked incarnation
number of Pi is less than the latest incarnation number of Pj , the receiving process. In such a situa-
tion, if M.sn < rec_linej, then M is first logged in the message log and then processed; otherwise, it
is discarded because Pi will eventually rollback and resend the message. In the figure, M4 is logged
and then processed by P2 so that P2 might have to replay M4 due to a failure that may occur later,
whereas M5 is discarded by P2. P2 discards M5 because M.sn > rec_line2 (11>10) and M.inc(=0)
is less than inc2(=1). Therefore, we have the following rule for handling delayed messages:

Rule for determining and handling delayed messages:A delayed message M received by process
Pj has M.inc less than incj. Such a delayed message is processed by process Pj only if M.sn <

rec_linej; otherwise, it is discarded.

Case 2: M was sent in the current incarnation
Suppose Pj receives a message M such that incj=M.inc. In this case, if M.sn < snj, then Pj

must log M before processing it. This is done because Pj might need to replay M due to a future
failure. For example, in Figure 13.16, message M7 is sent by process P1 to process P2 after P1’s
recovery and after P2’s rollback during the same incarnation. In this case, M.inc = inc2 =1 and
(M.sn = 10)< (sn2 =12) and M7 must be logged before being processed because P2 might have to
roll back to checkpoint C2,12 in case of a failure. In that case, P2 will need to replay message M7.
Therefore, the rule for message logging in this case is stated as follows:

Message logging rule:A message received by process Pj is logged into the message log if M.inc

< incj and M.sn < rec_linej) or (M.inc=incj and M.sn < snj).

Case 3: Message M was sent in a future incarnation
In this case, M.inc > incj and Pj handles it as follows: Pj sets rec_linej to M.rec_line and incj to

M.inc, and then rolls back to the earliest checkpoint with sequence number≥ rec_linej . After the
roll back, message M is handled as in Case 2, because M.inc=incj.

Features

Manivannan-Singhal quasi-synchronous checkpointing algorithm has several interesting features:

• Communication-induced checkpointing intelligently guides the checkpointing activities to
eliminates “useless" checkpoints. Thus, every checkpointlies on consistent checkpoint.

• There is no extra message overhead involved in checkpointing. Only a scalar is piggybacked
on application messages.

• Ensures the existence of a recovery line consistent with thelatest checkpoint of any process
all the time. This helps bound the depth of rollback during a rollback recovery.

478

• A failed process rolls back to its latest checkpoint and requests other processes to rollback
to a consistent checkpoint (no domino-effect).

• Helps in garbage collection. After a process has established a recovery line, all checkpoints
preceding the line can be deleted.

• The algorithm achieves the best of the both worlds:

– It has easeness and low overhead of uncoordinated checkpointing.

– It has recovery time advantages of coordinated checkpointing.

13.9 Peterson-Kearns Algorithm Based on Vector Time

Peterson-Kearns checkpointing and recovery protocol is based on the optimistic rollback. Vector
time is used to capture causality to identify events and messages which become orphans when a
failed process rolls back.

13.9.1 System Model

We assume that there are N processors in the system, which arelogically configured as a ring.
Each processor knows its successor on the ring and this knowledge is stored in its stable storage
since it is critical that it be recoverable after a failure. We assume a single process is executing on
each processor. These N processes are denoted as P0, P1, P2.... PN−1. We assume that P(i+1) mod N
is the successor of Pi for 0≤ i<N.

Each process Pi has a vector clock Vi[j], 0≤j≤N-1. Vi(ei) denotes the clock value of an event
ei which occurred at Pi. The ith component of vector is incremented before each event at process Pi
and the current timestamp vector is sent on each message to update the receiving process’s clock.
Vi(pi) denotes the current vector clock time process Pi andei denotes the most recent event in
Pi. ThusVi(pi) = Vi(ei). Each send and receive event increments the vector time. The processes
take periodic checkpoints of process state and also maintain a message log on the stable storage.
The receipt of incoming messages is also logged periodically. The current vector clock value is
considered a part of the process state and is logged to the stable storage when a checkpoint is taken.

Notations

The following notations are used to explain the algorithm:

• ei
j : Theith event onpj. We usee′ ande′′ to refer to generic events ofPj.

• s : A send event of the underlying computation.

• σ(s) : The process where send events occurs.

479

• ρ(s) : The process where the receive event matched with send events occurs.

• f i
j : Theith failure onPj.

• cki
j : Theith state checkpoint onPj. The checkpoint resides on the stable storage.

• rsi
j : Theith restart event onPj.

• rbij : Theith rollback event onPj.

• LastEvent(f i
j) = e′ iff e′ 7→ rsi

j

In a rollback protocol, every process must be contacted at least once to indicate that a failure
has occurred and to send it the information necessary for recovery. This process is characterized as
a series of one or more polling waves which are typified by the arrival of a polling message which
transmits information necessary for rollback and a response by the polled process. We define two
new event types:

Ci,k(m) : the arrival of the final polling wave message for rollback from failure
fim at process Pk.

wi,k(m) : the response to this final polling wave byPk. If no response is required,
wi,k(m) = Ci,k(m)

The final polling wave for recovery from failure fi
m is defined as:

PWi(m) =
N−1
⋃

k=0

wi,k(m) ∪
N−1
⋃

k=0

Ci,k(m)

13.9.2 Informal Description of the Algorithm

When a process Pi restarts after failure fi
m, it retrieves its latest checkpoint, including its vector

clock value Vi(Latest.ck(f
m
i)), from the stable storage and rolls back to it. The message logis

replayed until it is exhausted. Since the vector time of eachmessage is logged with the message,
when the messages are replayed, the clock value of the recovering process is appropriately up-
dated. After the logged messages have been replayed, the recovering process executes a restart
event,rs i

m, to begin the global rollback protocol, originates atokenmessage containing the vector
timestamp ofrsi

m and sends the token to its successor process. The token associated with failure
fm

i and restart eventrsi
m is denoted bytk(i,m). The timestamp of this token is denoted astk(i,

m).ts. Process Pi buffers all incoming application messages until the returnof the token. When
this occurs, Pi resumes normal execution.

The token is circulated through all the processes on the ring. When the token arrives at process
Pj , the timestamp in the token is used to determine whether the process Pj must roll back. Iftk(i,
m).ts< Vj (pj), then an orphan event has occurred at Pj and Pj must roll back to an earlier state.
This is accomplished by restoring Pj to the state ofck

′

j , whereck
′

j is the latest checkpoint at Pj

480

for which Vj(ck
′

j) < tk(i, m).ts, and then replaying logged messages as long as the timestamp of
the message is less thantk (i , m).ts.

It is possible that an orphan event in Pj is the receipt of a message originating in a non-orphaned
send event in process Pi. Since the send event corresponding to such a receipt does not causally
succeed any lost event in Pi, the recovery of Pi will not result in the replay of such messages.
Therefore, these messages are lost unless some special actions are taken. To make sure that these
messagesarenot lost, Pj must request their retransmission during the rollback.

During the rollback, Pj must also retransmit any message that it sent to Pi that was lost due
to failure. Process Pj can determine whether the messages it had sent have been received by the
failed process Pi by comparing the vector timestamps of the messages to the timestamp in the
token. If Vj(s)[j] >Vi(rsm

i (j))where s is a message that was sent to Pi, then it is possible that the
failed process has lost the message and it must be resent. It is also possible that the message is
not lost, but is still in transit; thus Pi must discard any duplicate messages. Because channels are
FIFO, Pi can identify any duplicate message from its timestamp.

After the logged messages have been replayed and retransmissions of the required messages
are done, Pj instigates a rollback event,rbk

j , to indicate that rollback at it is complete. Vector time
is not incremented for this event soV(jrbk

j)= V j(e’j), where e’j is the last event replayed. Any
logged event whose vector time exceedstk(i, m).tsis discarded.

If tk(i,m).ts≮ Vj(pj) when the token arrives, the state of Pj is not changed. However, for
consistency, a rollback event is instigated to indicate that rollback is complete at Pj and to allow
the token to be propagated.

Note that after the rollback is complete, Vj(pj) ≯ Vj(rs
m
i , that is, every event in Pj either

happens before the restart eventrsi
m or is concurrent to it. The property of vector time thate

′

i →
e
′′

j iff V i(e
′

i) < Vj(e
′′

j) allows us to make this claim.
The token is propagated from processpi to processp(i+1)modN . As the token propagates, it rolls

back orphan events at every process. When the token returns to the originating process, the roll
back recovery is complete.

Handling In-transit Orphan messages

It is possible for orphan messages to be in transit during therollback process. If these messages
are received and processed during or after the rollback procedure, an inconsistent global state will
result. To identify these orphan messages and discard them on arrival, it is necessary to include
an incarnation number with each message and with the token. Inci denotes the current incarnation
number of the process Pi. Inc(ei) denotes the incarnation number of an event ei. The value returned
for an event equals the current incarnation number of the process in which the event occurred. The
incarnation number in the token is denoted by tk(i,m).inc.

When Pi initiates the rollback process, it increments its current incarnation number by one
and attaches it to the token. A process receiving the token saves both the vector timestamp of the
token and the incarnation number in the stable storage. Because there is no bound on message
transmission time, the vector timestamps and associated incarnation numbers which have arrived

481

in the token must be accumulated in a set denoted as OrVecti. The set OrVecti is composed of
ordered pairs of token timestamps and incarnation numbers received by process Pi.

When an application message is received by process Pi, the vector timestamp of the message
is compared to the vector timestamps stored in OrVecti. If the vector timestamp of the message
is found to be greater than a timestamp in OrVecti, then the incarnation number of the message is
compared to the incarnation number corresponding to the timestamp in OrVecti. If the message
incarnation number is smaller, then the message is discarded. Clearly, this is an orphan message
that was in transit during the rollback process. In all othercases, the message is accepted and
processed. Upon the receipt of a token, the receiving process sets its incarnation number to that in
the token.

13.9.3 Formal Description of the RollBack Protocol

The causal rollback protocol is described as set of six rules, CRB.1 to CRB.6. For each rule, we
first present its formal description and then give a verbal explanation of the rule.

482

The Rollback Protocol
CRB.1 wi,i(m) occurs iff there exists fi

m, rsi
m such that fim 7→ rsm

i → wi,i(m).

A formerly failed process creates and propagates a token, event wi,i(m), only after
restoring the state from the latest checkpoint and executing the message log from
the stable storage.

CRB.2 The occurrence of wi,i(m) implies that
tk.(i,m).ts =Vi(rsi

m) ∧
tk.(i,m).inc = Inc(Latest.ck(fmi))+1∧
Inci = Inc(Latest.ck(fmi))+1

The restart event increments the incarnation number at the recovering process, and
the token carries the vector timestamp of the restart event and the newly incremented
incarnation number.

CRB.3 wi,j(m), i 6= j occurs iff
∃ rbi

ksuch that ci,j(m)→ rbk
i → wi,j(m)∧

∀ e
′

j such that Vj(e
′

j) > tk(i,m).ts ,¬ Recorded(e
′

j)

A non-failed process will propagate the token only after it has rolled back.

CRB.4 The occurrence of wi,j(m) implies that
Inci = tk(i, m).inc∧ (tk(i, m).ts, tk(i, m).inc)∈ OrVectj

A non-failed process will propagate the token only after it has incremented its incar-
nation number and has stored the vector timestamp of the token and the incarnation
number of the token in its OrVect set.

CRB.5 Polling wave PWi(m) is complete when Ci,j(m) occurs.

When the process which failed, recovered, and initiated thetoken, receives its token
back, the rollback is complete.

CRB.6 Any message received by event, n(s), is discarded iff∃ m∈ OrVect(p(s))such that
Inc(s) < Inc(m)∧ V(m) < V(s).

Messages which were in transit and which were orphaned by thefailure and subse-
quent restart and recovery must be discarded.

13.9.4 An Example

Consider an example consisting of three processes shown in Figure 13.17. The processes have
taken checkpoints c10, c1

1, c1
2. Each event on a process time line is tagged with the vector time (x,

483

0P

P1

P2

C (1)1,0

W (1)1,2

[1](3,0,0)

rb2

1

(1,4,4)

W (1)1,1

C (1)1,2

[1](3,0,0)

rb1

1

(1,4,0)

W (1)1,0

C (1)1,1

[1](3,0,0)

0
1rs

(3,0,0)0

1
f

failure
1
0C

(3,0,0)

1
1C

(1,2,0)

C
1
2

(0,0,1)

m2
m4m0

(1,1,0)

(1,0,0)

[0](1,0,0)

m1 m3

m5

m6

(0,0,0)

(0,0,0)

(0,0,0)

(1,4,4)

[0](2,0,0)

(5,4,0)(2,0,0) (4,4,0)

[0](1,4,0)

(1,3,0)

(1,3,2)

[0](1,3,0)

(1,4,0)

(1,4,3)

[0](1,4,0)

[0](5,4,0)

[0](1,4,4)

Figure 13.17: An Example of Rollback recovery in Peterson-Kearns Algorithm.

y, z) of its occurrence. Each message is tagged with [i](x, y,z), where i is the incarnation number
associated with the message send event, and (x, y, z) is the vector time of the send event. Process
P0 fails just after sending messagem5 which increments its vector clock to (5,4,0).

Upon restart of P0, the checkpoint c10 is restored, and the restart event, rs1
0is performed by the

protocol. We assume that messagem4 was not looged into the stable storage atP0, henec it can
not be replayed during the recovery. A token, [1](4,0,0), iscreated and propagated to P1. This is
shown in the Figure by a dotted vertical arrow. Upon the receipt of the token, P1 rolls back to a
point such that its vector time is not greater than (3,0,0), the time in the token. Hence P1 rolls back
to its state at time (1,4,0). P1 then records the token in its OrVect set and sends the token toP2.
P2 takes a similar action and rolls back to message send event with time (1,4,4). The token is then
returned to P0 and recovery is complete.

Three messages are in transit while the polling wave is executing. The messagem2 from P0

to P2 with label [0](2,0,0) will be accepted when it arrives. Likewise, messagem6 from P2 will
be accepted by P1 when it arrives. However, application of rule CRB.6 will result in messagem5

with label [0](5,4,0) being discarded when it arrives at P1. The net effect of the recovery process
is that the application is rolled back to a consistent globalstate indicated by the dotted line, and all
processes have sufficient information to discard messages sent from orphan events on their arrival.

13.9.5 Correctness Proof

First we show that all orphaned events are detected and eliminated [28].

Theorem 1: The completion of a wave in casual rollback protocol insuresthat every event or-
phaned by failure fmi is eliminated before the final polling wave.

Proof: We prove that when the initiator process receives the token back, all the orphan events

484

have been detected and eliminated. That is, for an wi,j(m) event as it specified in causal rollback
protocol,

¬ Orphan(wi,j(m), fmi)

First we prove that the token, as constructed during the restoration of a failed process, contains
necessary information to determine if any event is orphanedby a failure. If there exists any orphan
event e’i due to failure fjm, then the vector timestamp in the token will be less than the vector time
of the event, i.e, tk(j,m).ts< Vi(e’i).By the CRB.2, the vector timestamp in the token, tk(j,m).ts
must equal to Vj(rsj

m), and Vj(rsj
m) = Vj (LastEvent(fmj)). In other words, timestamp in the

token must be equal to the vector time of the restart event rsj
m at process Pj denoted as Vj (rsj

m)
and the vector time of the restart event at Pj will be one more than the vector time of the latest
event before failure fjm. Since rsjm occupies the same position in causal partial order as e’j and
LastEvent(fmj) 7→ e’j , the following must hold: Vj(rsj

m) ≤ Vj(e’j). If there exists an orphan e’i,

then there exist e’j such that LastEvent(fm
j)→ e’j → e’i.

Therefore, Vj(e’j) < Vi(e’i) and Vj(rsj
m) < Vi(e’i) which proves that when

tk(j,m).ts < Vj(e’i) — (1)

there exists an orphan event e’i.
We use the above result to prove that there exists no orphan event at the end of the final polling

wave.

¬ Orphan(wi,j(m), fmi) — (2)

The proof is by contradiction. Let us assume that there exista polling event wi,j(m) for which
orphan(wi,j(m), fmi) is true. Then there exists an event e’i such that LastEvent(fm

i)→ e’i→wi,j(m).
Then there must exist e’j such that e’i → e’j → wi,j(m). This implies orphan(e’j , fmi). But
according to eq (1), tk(i,m).ts<Vj(e’j), which contradicts the CRB 3: wi,j(m) occurs iff there
exists rbjk such that ci,j(m)→ rbj

k → wi,j(m) and for every e’j such that Vj(e’j)>tk(i,m).ts,¬
recorded(e’j).

Therefore, every event orphaned by a failure fm
i is eliminated before the final polling wave is

completed.2

Now we show that only all orphaned messages are discarded [28].

Theorem 2: All orphaned messages are discarded and all non-orphaned messages are eventually
delivered.

Proof: Let us consider a send event s, which is not orphaned by the failure fmi . In this case : n(s)
→ wi,p(s)(m)∨ wi,p(s)(m)→ n(s).

485

Given reliable channels, the message will eventually arrive. The receipt of a message can only
disappear from the causal order if it is lost by a failed process, rolled back by the protocol, or
discarded upon arrival.

The first possibility is that process Pi lost the message due to its failure. In this case the receiv-
ing process p(s) is i. During the rollback at Pσ(s) (the process where the send event occurred), this
message will be retransmitted as the occurrence ofrb event associated with wi,σ(s)(m) guarantees
this. Therefore wi,i→n(s).

The second possibility is that n(s)→wi,p(s) and n(s) has rolled back because n(s) was orphaned
by the failure fmi . However if event s is not orphaned by fm

i , Pp(s) (the receiving process) will
request retransmission before the occurrence of the rollback event rb, and wi,p(s)→n(s).

The final possibility is that n(s) occurs after the wave but isdiscarded upon arrival. By CRB.6,
n(s) will be discarded if and only if V(s)>tk(i, m).ts and inc(s)<tk(i, m).inc. If s→wi,σ(s) and
Orphan(s,fim), then V(s)≯ tk(i, m).ts. If wi,σ(s)→s, then Inc(s)≮ tk(i,m).inc. Therefore, n(s) will
not be discarded and wi,p(s)→n(s).

We now prove the converse.
If n(s)→wi,p(s)(m)∨ wi,p(s)→ n(s) then¬ Orphan(s, fmi).

Assume n(s)→wi,p(s). From our eq (2), we know¬ Orphan(wi,p(s), fmi). Therefore¬ Orphan
(n(s), fmi) and¬ Orphan (s, fmi).

Assume wi,p(s)→n(s) and orphan(s, fm
i). By eq (1), this implies tk(i ,m).ts < Vσ(s). Rule CRB

2 of the protocol guarantees that if orphan(s,fm
i) is true, then Inc(s)<tk(i, m).inc. Rule CRB.4

requires that tk(i, m).ts and tk(i, m).inc are stored in OrVectj before wi,j(m) occurs. Therefore,
there exists z∈ OrVectj such that V(z) < V(s) and Inc(z) > Inc(s). CRB 6 requires such amessage
must be discarded, contradicting our assumption that wi,p(s)→n(s).2

13.10 Helary-Mostefaoui-Netzer-Raynal Communication-induced
Protocol

Helary-Mostefaoui-Netzer-Raynal communication-induced checkpointing protocol prevents use-
less checkpoints and does it efficiently. To prevent uselesscheckpoints, some coordination is
required in taking local checkpoints. Coordinated checkpointing protocols use additional control
messages to synchronize their checkpointing activities, but these result in reduced process auton-
omy and degraded performance of the underlying application. Communication-induced check-
pointing protocols achieve this coordination by piggybacking control information on application
messages. No control messages are needed and no synchronization is added to the application.
More precisely, processes take local checkpoints independently, called basic checkpoints, and the
protocol directs them to take additional local checkpoints, called forced checkpoints. A process
takes a forced checkpoint when it receives a message and a predicate at it becomes true. This
predicate is based on local control variables of the receiving process and on the control values
carried by the message. The values of the local control variables at the process are based on causal
dependencies appearing in its past.

486

m
1

m
2

P
j

P
i

P
k

C
j,y

C
k, z

C
i, x

(b)

m
1

m
2

P
j

P
i

P
k

C
j,y

C
k, z

(a)

Figure 13.18: To checkpoint or not to checkpoint.

Helary-Mostefaoui-Netzer-Raynal communication-induced checkpointing protocol ensures that
no local checkpoint is useless and it takes as few forced checkpoints as possible. It is based on Z-
path and Z-cycle theory introduced by Netzer and Xu. The protocol is based on Z-path and Z-cycle
theory introduced by Netxer and Xu who showed that a useless checkpoint exactly corresponds to
the existence of a Z-cycle in the distributed computation. At the model level, the protocol prevents
Z-cycles. At the operational level, each message is piggybacked with an integer (Lamports clock
value), a vector of integers (checkpoint sequence number),and two Boolean vectors (the size of
each vector is n, the number of processes). An interesting feature of this protocol is that for any
checkpoint C, it is very easy to determine a consistent global checkpoint to which C belongs.

13.10.1 Design Principles

With each checkpoint C, let us associate a timestamp denotedby C.t. The protocol depends on the
following result:

“For any pair of checkpoints Cj,y and Ck,z, such that there is a Z-path from Cj,y to Ck,z, Cj,y.t
< Ck,z.t implies that there is no Z-cycle."

Thus, if we can manage the timestamps and take checkpoints insuch a way that the timestamps
always increase along any Z-path, then no Z-cycles will form, and no checkpoints will be useless.
Each process Pi has a logical clock lci managed in the following way:

• Before a process Pi takes a (basic or forced) checkpoint, it increases its clockby 1 and
associates the new clock value with the checkpoint.

• Every message m is timestamped with the value of its sender clock (let m.t denote the times-
tamp associated with message m).

• When a process Pi receives a message m, it updates its local clock lci = max (lci, m.t).

It follows from this mechanism that, if there is a causal Z-path from Cj,y to Ck,z, then we have
Cj,y.t< Ck,z.t

487

To checkpoint or not to checkpoint

Let us consider the computation depicted in the Figure 13.18where Cj,y is a local checkpoint taken
by Pj before sending m1 and Ck,z is the first checkpoint of Pktaken after the delivery of m2. As
the sending of m2 and the delivery of m1 belong to the same interval of Pi, messages m1 and m2

constitute a Z-path from Cj,y to Ck,z. When Pi receives m1, two cases can occur:

• m1.t≤m2.t. In this case, Cj,y.t < m1.t < m2.t < Ck,z.t. Hence, the Z-path due to messages m1

and m2 in Figure 13.18(a) is in accordance with the above result.

• m1.t > m2.t. In this case, a safe strategy to prevent Z-cycle formation is to direct Pi to take a
forced checkpoint Ci,x before delivering m1 (as shown in Figure 13.18(b). This “breaks” the
m1, m2 Z-path, so it’s no longer a Z-pattern.

This strategy can be implemented in the following way. Each process Pi maintains a Boolean
array sent_toi[1..n] to determine whether the reception of a message creates a Z-pattern. The value
of sent_toi[k] is true iff Pi has sent a message to Pksince its last checkpoint. Each process Pi also
maintains an array of integer’s min_toi[1. . . n] where min_toi[k] keeps the timestamp of the first
message Pisent to Pksince its last checkpoint.

The condition m1.t > m2.t is then expressed as:

C≡ (∃ k: sent_toi [k] ∧m1.t > min_toi [k])

Therefore, Pi takes a forced checkpoint if C is true. The predicate C is trueif there exists a
message from Pi to Pk since its last checkpoint and the timestamp of m1 is greater than the first
message Pi sent to Pk since its last checkpoint.

Reducing the number of forced checkpoints

Each process Pimaintains the local clock values of other processes. For each k (1≤ k ≤ n), let
cli(k) denote the value of Pk ’s local clock as perceived by Pi. If k = i, obviously cli(i) = lci.
However, if k 6= i, the perception of Pk’s local clock by Piis only an approximation such that cli(k)
≤ lck. Consider again the situation in Figure 13.18. If the following property holds

(m1.t < m2.t) ∨ P, where P≡ (Cj,y.t≤ m1.t≤ cli(k) < Ck,z.t)

then the Z-path due to messages m1and m2 is in accordance with the above result. Let us
consider the property P in the case where m1.t > m2.t. Since m1.t carries the value lcj when m1 is
sent, the first relation Cj,y.t ≤ m1.t necessarily holds when m1 is received. So, the property P can
be violated only if, when m1 is received, m1.t > cli(k) or if cli(k) ≥ Ck,z.t.

Therefore, to prevent the formation of Z-path due to messages m1 and m2 that would violate
property P, the protocol requires process Pi to take a forced checkpoint before delivering m1 if m1.t
> cli(k) or if cli(k) ≥ Ck,z.t.

Now we have to determine which value of clk, the approximation cli(k) refers to. Let us
consider the following two possible cases:

488

m
2

P
j

P
i

P
k

C
j,y

C
k, z

m
1

m’

(a)

m
2

P
j

P
i

P
k

C
j,y

C
k, z

m
1

m’’

(b)

Figure 13.19: Value of cli(k) has been brought to Pi by a causal Z-path.

1. The value of cli(k) has been brought to Piby a causal Z-path that started from Pk and ended
before Ck,z. This situation is illustrated in Figure 13.19. The value ofcli(k) is brought to
Piby m’ in Figure 13.19(a) and by m”and m1 in Figure 13.19(b). In this case, we have cli(k)
< Ck,z.t and consequently, Pi has to take a forced checkpoint only if m1.t > cli(k).

2. The value of cli(k) has been brought to Piby a causal Z-path that started from Pk and ended
after Ck,z. This situation is illustrated in Figure 13.20. Here the relevant causal Z-path is m’
in Figure 13.20(a) and by m” and m1 in Figure 13.20(b). Both these figures can be redrawn
so that they corresponds to the pattern in Figure 13.21. In one case, m’ brings the last value
of Pk’s local clock toPi and in the other case, it is m”. m1. In this case, we have cli(k) ≥
Ck,z.t and Pihas to recognize this pattern and take a forced checkpoint ifit occurs. Let C1 be
a predicate describing this pattern occurrence.

The previous condition C can be redefined as C’ as follows:

C’ ≡ (∃ k: sent_toi [k] ∧ (m1.t > min_toi [k]) ∧ (m1.t > cli(k) ∨ C1))

The predicate C’ has two parts. The first part is the previous condition C and the second part
is a predicate C1. The second part will be true if the timestamp of message m1is greater than Pk ’s
local clock value as perceived by Pi or if predicate C1 is true.

To evaluate the predicate C1, each process maintains two additional arrays.

489

m’

C

C

m

Cm

P

P

Pj

i,x

i

k

2 k,z

1

j,y

a

m"

C

C

Cm

P

P

Pj

i,x

i

k

2 k,z

j,y

b

m1

Figure 13.20: Value of cli(k) has been brought to Pi by a causal Z-path.

490

1. Array ckpti is a vector that counts the number of checkpoints taken by each process. So,
ckpti[k] denoted the number of checkpoints taken by Pk to Pi’s knowledge. Let m.ckpt be
the value appended to m by its sender Piwhich is the value of the array ckpti at the time of
sending of message m.

2. A Boolean array takeni is used in conjunction with ckpti to evaluate C1. The value of takeni
[k] is true iff there is a causal Z-path from the last checkpoint of Pk known by Pito the next
checkpoint of Pi and this causal Z-path includes a checkpoint.

The array takeni is updated in the following way:

• When process a Pitakes a checkpoint, it sets to true all entries of takeni except takeni [i],
which always remains false.∀ k 6= i: takeni [k]= true

• When process Pi sends a message, Pi appends to its current value of takeni to the message.

• When process Pi receives m, Pi updates takeni in the following way:

∀ k 6= i do case m.ckpt[k] < ckpti[k]→ skip

m.ckpt[k] > ckpti[k] → takeni [k]=m.taken[k]

m.ckpt[k] = ckpti[k] → takeni[k]= (takeni[k] ∨m.taken[k])

end docase

With these data structures, the predicate C1 can be expressed as follows:

C1≡ (m1.ckpt[i] = ckpti[i]) ∧m1.taken[i]

Consider the example shown in Figure 13.21. The first part of the condition C1 states that there
is a causal Z-path starting from Ci,x and arriving at Pi before Ci,x+1, while the second part indicates
that some process has taken a checkpoint along this causal Z-path.

13.10.2 The Checkpointing Protocol

Now we describe Helary-Mostefaoui-Netzer-Raynal communication induced checkpointing pro-
tocol which takes as few forced checkpoints as possible and also ensures that no local checkpoint
is useless. The protocol is executed by each process Pi. S0, S1, S2 describe the initialization, the
statements executed by Pi when it sends a message, and statements it executes when it receives
a message, respectively. The procedure take-checkpoint iscalled each time Pi takes a checkpoint
(basic or forced).

The protocol uses the following additional data structure:Every processPi maintains an array
clocki[1..n], whereclocki[j] denotes the highest value oflcj known toPi. clocki[1..n] is initialized
to (0,0,. . . ,0) and is updated as follows:

491

m’

Ck,z

m2

C

P

P
i,x

i

k

Figure 13.21: An example of a Z-cycle.

492

• When a process Pi takes a (basic or forced) checkpoint, it increasesclocki[i] clock by 1.

• WhenPi sends a message m, the current value ofclocki is sent on the message. Let m.clock
the timestamp associated with a message m.

• When a process Pi receives a message m fromPj, it updates its clock as follows:

– clocki[i] = max (clocki[i], m.clock[j])

– ∀ k 6= i : clocki[k] = max (clocki[k], m.clock[k])

Note thatclocki[i] is lci, so we do not need to keeplci.

Procedure take-checkpoint
∀ k do sent_toi[k] = false end do;
∀ k do min_toi[k] = +∞ end do;
∀ k 6= i do takeni [k] = true end do;
clocki[i]=clocki[i] + 1;
Save the current local state with a copy of clocki [i];
/* let Ci,xdenote this checkpoint. We have Ci,x.t= clocki[i] */
ckpti[i] = ckpti[i]+1;

(S0) initialization
∀ k do clocki[k] = 0; ckpti[k] =0 end do;
takeni[i] = false;
take_checkpoint;

(S1) When Pi sends a message to Pk
if ¬ sent_toi[k] then sent_toi[k] = true; min_toi[k]= clocki[i] end if;
Send (m, clocki, ckpti, takeni) to Pk;

(S2) When Pi receives (m, clocki i, ckpt i, takeni) from Pj

/* m.clock[j] is the Lamport’s timestamp of m (i.e., m.t) */
if (∃ k : sent_toi[k] ∧ (m.clock[j]> min_toi[k]) ∧ ((m.clock[j]> max(clocki[k],
m.clock[k]))∨ (m.ckpt[i] = ckpti[i] ∧ m.taken[i]))

then take_checkpoint /*forced checkpoint */
end if;
clocki [i] = max(clocki[i], m.clock[j]); /* update of the scalar clock lci ≡ clocki[i] */
∀ k 6= i do

clocki[k] = max(clocki[k], m.clock[k]);
case

m.ckpt[k] < ckpti[k] → skip
m.ckpt[k] > ckpti[k] → ckpti[k] = m.ckpt[k]; takeni[k]=m.taken[k]
m.ckpt[k] < ckpti[k] → takeni[k]= takeni[k] ∨m.taken[k]

end case
end do

deliver (m);

Helary-Raynal-Netzer-Mostefaoui [15] showed that given alocal checkpointCi,x with times-
tamp a, the checkpoint can be associated with the consistentglobal checkpoint it belongs to using

493

the following result:

Theorem: Let a be a Lamport timestamp andCa be a global checkpoint, {C1,x1,C2,x2, . . . ,Cn,xn,}.
If ∀ k, Ck,xk is the last checkpoint ofPk such thatCk,xk.t ≤ a, thenCa is a consistent global
checkpoint.

For a proof, the readers are referred to the original source [15]. This result implies that given
a local checkpoint at a process, it is easy to determine what local checkpoints at other processes
form a consistent global checkpoint with it. This result hasa strong implications on the recovery
from a failure.

13.11 Bibliographic Notes

Checkpoiting and failure recovery is a well studied topic and a large number of checkpoiting and
failure recovery algorithms exist. A classical paper on fault tolerance is by Randell [32]. Classical
failure recovery algorithms are Leu and Bhargava algorithm[4], Sistla and Welch algorithm [34],
Kim [19], and Strom and Yemini algorithm [35]. Other checkpointing and failure recovery
algorithms can be found in [3], [12], [8], [30], [31], [24], [38], [39], [40], [14], [11], [37], and [15].

An excellent review paper on the topic is by Elnozahy, Alvisi, Wang and Johnson [13]. Richard
and Singhal give a comprehensive recovery protocol using vector timestamp [33]. An impossibility
proof of min-process non-blocking in coordinated checkpointing is given in [7]. Cao and Singhal
introduced the concept of mutable checkpointing [8] to improve the performance. Alvisi and
Marzullo discuss various message logging techniques [1]. Netzer and Xu discuss necessary and
sufficient conditions for consistent global snapshots in distributed systems [27]. Manivannan et al.
[26] and Wang [40] discuss how to construct consistent global checkpoints that contain a given set
of local checkpoints. Prakash and Singhal discuss how to take maximal global snapshot with
concurrent initiators [29]. Other communication-inducedcheckpointing algorithms can be found
in paper by Baldoni et al. [2, 3, 17]. Tong et al. [36] present rollback recovery using loosely
synchronized clocks.

494

13.12 Exercise Problems

1. Consider the following simple checkpointing algorithm:A process takes a local checkpoint
right after sending a message. Show that the last checkpointat all processes will always be
consistent. What are the trade-offs with this method?

2. Show by example that if Koo-Toueg checkpointing algrithm, if processes do not block after
taking a tentative checkpoint, then global checkpoint taken by all processes may not be
consistent.

3. Show that in Manivannan-Singhal algorithm, every checkpoint taken is useful.

4. Design a checkpointing and recovery algorithm that uses vector clocks, and does not assume
any underlying topology (like ring or tree).

5. Give a rigorous proof of impossibility of a min-process, non-blocking checkpointing algo-
rithm.

495

Bibliography

[1] Lorenzo Alvisi , Keith Marzullo, Message Logging: Pessimistic, Optimistic, Causal, and
Optimal, IEEE Transactions on Software Engineering, v.24 n.2, p.149-159, February 1998

[2] Roberto Baldoni, Jean Michel Helary, Achour Mostefaouiand Michel Raynal, A
Communication-Induced Checkpointing Protocol that Ensures Rollback-Dependency Track-
ability, Symposium on Fault-Tolerant Computing, 1997, pp.68-77.

[3] Roberto Baldoni, A Communication-Induced Checkpointing Protocol that Ensures Rollback-
Dependency Trackability, Proceedings of the 27th International Symposium on Fault-
Tolerant Computing (FTCS ’97), p.68, June 25-27, 1997.

[4] B. Bhargava and P. Leu, Concurrent Robust Checkpointingand Recovery in Distributed Sys-
tems, Proc of the IEEE Int. Conf. on Data Eng., pages 154- 163,February 1988.

[5] Daniele Briatico, Augusto Ciuffoletti, and Luca Simoncini. A distributed domino-effect
free recovery algorithm. In Proc. of Symposium on Reliability in Distributed Software and
Database Systems, pages 207-215, Silver Spring (Maryland), October 1984.

[6] Guohong Cao, Mukesh Singhal Mutable Checkpoints: A New Checkpointing Ap-
proach for Mobile Computing Systems, IEEE Transactions on Parallel and Dis-
tributed Systems, Volume 12 , Issue 2 (February 2001), Pages: 157 - 172.
(http://www.cse.psu.edu/ gcao/paper/gcao/TPDS01.pdf.)

[7] Guohong Cao and Mukesh Singhal, On the Impossibility of Min-Process Non-Blocking
Checkpointing and An Efficient Checkpointing Algorithm forMobile Computing Systems,
Proceedings of the 1998 International Conference on Parallel Processing table of contents
Pages: 37 - 44, 1998.

[8] Guohong Cao and Mukesh Singhal, Checkpointing with mutable checkpoints, Theoretical
Computer Science, Volume 290, Issue 2 (January 2003), (Special issue – Dependable com-
puting), Pages: 1127 - 1148, 2003 (http://www.cse.psu.edu/ gcao/paper/gcao/TCS03.pdf).

[9] K. Mani Chandy and Leslie Lamport, Distributed snapshots: determining global states of
distributed systems, ACM Transactions on Computer Systems(TOCS), v.3 n.1, p.63-75, Feb.
1985.

496

[10] Chandy, M. and Ramamoorthy, C. V., Rollback and recovery strategies for computer pro-
grams. IEEE Trans. Comput. 21, 6, 546–556, 1972.

[11] Om P. Damani , Yi-Min Wang , Vijay K. Garg, Distributed recovery with K-optimistic log-
ging, Journal of Parallel and Distributed Computing, v.63 n.12, p.1193-1218, December
2003.

[12] Elmootazbellah N. Elnozahy and Willy Zwaenepoel, Manetho: Transparent RollBack-
Recovery with Low Overhead, Limited Rollback, and Fast Output Commit,
http://www.cs.utexas.edu/users/mootaz/cs372/Projects/paper2.pdf.

[13] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang and David B. Johnson,
A Survey of Rollback-Recovery Protocols in Message-Passing Systems, ACM Com-
puting Surveys, Volume 34 , Issue 3 (September 2002), Pages:375 - 408.
(http://www.cs.utexas.edu/users/lorenzo/papers/SurveyFinal.pdf)

[14] Elmootazbellah N. Elnozahy and James S. Plank, Checkpointing for Peta-Scale Systems: A
Look into the Future of Practical Rollback-Recovery, IEEE Transactions on Dependable and
Secure Computing, v.1 n.2, p.97-108, April 2004

[15] J. M. Helary , A. MosteFaul, R. H. Netzer and Raynal, Communication-Based Prevention
of Useless Checkpoints in Distributed Computations, In Proc. of Sixteenth Symposium on
Reliable Distributed Systems, 183-190.

[16] Jean-Michel Helary , Achour Mostefaoui , Michel Raynal, Preventing Useless Checkpoints
in Distributed Computations, Proceedings of the 16th Symposium on Reliable Distributed
Systems (SRDS’97), p.183, October 22-24, 1997.

[17] Jean-Michel Helary , Achour Mostefaoui , Michel Raynal, Communication-Induced Deter-
mination of Consistent Snapshots IEEE Transactions on Parallel and Distributed Systems,
Volume 10 , Issue 9 (September 1999), Pages: 865 - 877.

[18] T. T-Y. Juang and S. Venkatesan, Crash Recovery with Little Overhead, in Proc. of 11th
International Conf. on Distributed Comput. Syst., pages 4154-461, 1991.

[19] K. H. Kim, Programmer-Transparent Coordination of Recovering Concurrent Processes: Phi-
losophy and Rules for Efficient Implementation, IEEE Transactions on Software Engineering,
Volume 14 , Issue 6 (June 1988), Pages: 810 - 821.

[20] K. H. Kim, "Approach to mechanization of the conversation scheme based on monitor," IEEE
Trans. Software Eng., vol. SE-8, no. 3, pp. 189- 197, May 1982.

[21] K. H. Kim, "Software fault tolerance," in Handbook of Software Engineering, C. R. Vick and
C. V. Ramamoorthy, Eds. New York: Van Nostrand Reinhold, 1984.

497

[22] Richard Koo , Sam Toueg, Checkpointing and rollback-recovery for distributed systems,
IEEE Transactions on Software Engineering, v 13, no 1, p. 23-31, Jan. 1987.

[23] Leslie Lamport, Time, clocks, and the ordering of events in a distributed system, Communi-
cations of the ACM, v.21 n.7, p.558-565, July 1978.

[24] D. Manivannan , M. Singhal, Asynchronous recovery without using vector timestamps, Jour-
nal of Parallel and Distributed Computing, v.62 n.12, p.1695-1728, December 2002

[25] D. Manivannan and Mukesh Singhal, A Low Overhead Recovery Technique Using Quasi-
Synchronous Checkpointing, ICDCS 1996, pg 100-107.

[26] D. Manivannan , Robert H. B. Netzer , Mukesh Singhal, Finding Consistent Global Check-
points in a Distributed Computation, IEEE Transactions on Parallel and Distributed Systems,
v.8 n.6, p.623-627, June 1997.

[27] R. H. B. Netzer and J. Xu., Necessary and Sufficient Conditions for Consistent Global Snap-
shots, IEEE Transactions on Parallel and Distributed Systems, 6(2):165-169, 1995.

[28] S. L. Peterson and Phil Kearns, Rollback Based on VectorTime, in Proc. of the Symposium
on Reliable Distributed Systems, 1993: 68-77.

[29] R. Prakash, M. Singhal, Maximal global snapshot with concurrent initiators, Proc. 6th IEEE
Symp. on Parallel Distributed Processing, Dallas, Texas, 1994, pp. 344-351.

[30] Ravi Prakash , Mukesh Singhal, Low-Cost Checkpointingand Failure Recovery in Mo-
bile Computing Systems, IEEE Transactions on Parallel and Distributed Systems, v 7 n 10,
p.1035-1048, October 1996.

[31] Parameswaran Ramanathan , Kang G. Shin, Use of Common Time Base for Checkpointing
and Rollback Recovery in a Distributed System, IEEE Transactions on Software Engineering,
v.19 n.6, p.571-583, June 1993

[32] B. Randell, System Structure for Software Fault Tolerance, IEEE Trans. on Software Engi-
neering, Vol 1, No 2, 1975, pp. 220-232.

[33] Golden G. Richard III , Mukesh Singhal, Complete Process Recovery: Using Vector Time to
Handle Multiple Failures in Distributed Systems, IEEE Parallel and Distributed Technology:
Systems and Technology, v.5 n.2, p.50-59, April 1997.

[34] A. P. Sistla and J. L. Welch, Efficient distributed recovery using message logging, Proceed-
ings of the eighth annual ACM Symposium on Principles of distributed computing table of
contents, Edmonton, Alberta, Canada, Pages: 223 - 238, 1989.

[35] Rob Strom and Shaula Yemini, Optimistic recovery in distributed systems ACM Transactions
on Computer Systems, Volume 3 , Issue 3 (August 1985), Pages:204 - 226.

498

[36] Z. Tong , R. Y. Kain , W. T. Tsai, Rollback Recovery in Distributed Systems Using Loosely
Synchronized Clocks, IEEE Transactions on Parallel and Distributed Systems, v.3 n.2, p.246-
251, March 1992.

[37] S. Venkatesan , Tony Tong-Ying Juang , Sridhar Alagar, Optimistic Crash Recovery without
Changing Application Messages, IEEE Transactions on Parallel and Distributed Systems, v.8
n.3, p.263-271, March 1997.

[38] Yi-Min Wang and W. Kent Fuchs, Lazy Checkpoint Coordination for Bounding Rollback
Propagation, IEEE Symposium on Reliable Distributed Systems, 1993.

[39] Yi-Min Wang , Pi-Yu Chung , In-Jen Lin , W. Kent Fuchs, Checkpoint Space Reclamation for
Uncoordinated Checkpointing in Message-Passing Systems., IEEE Transactions on Parallel
and Distributed Systems, v.6 n.5, p.546-554, May 1995

[40] Yi-Min Wang, Consistent Global Checkpoints that Contain a Given Set of Local Checkpoints,
IEEE Transactions on Computers, v.46 n.4, p.456-468, April1997.

499

Chapter 14

Consensus and Agreement Algorithms

14.1 Problem Definition

Agreement among the processes in a distributed system is a fundamental requirement for a wide
range of applications. Many forms of coordination require the processes to exchange informa-
tion to negotiate with one another and eventually reach a common understanding or agreement,
before taking application-specific actions. A classical example is that of thecommitdecision in
database systems, wherein the processes collectively decide whether tocommitor abort a trans-
action that they participate in. In this chapter, we study the feasibility of designing algorithms to
reach agreement under various system models and failure models, and where possible, examine
some representative algorithms to reach agreement.

We first state some assumptions underlying our study of agreement algorithms.

Failure Models: Among then processes in the system, at mostf processes can be faulty. A
faulty process can behave in any manner allowed by the failure model assumed. The various
failure models – fail-stop, send omission and receive omission, and Byzantine failures – were
discussed in Chapter 2. Recall that in the fail-stop model, aprocess may crash in the middle
of a step, which could be the execution of a local operation orprocessing of a message for a
send or receive event. In particular, it may send a message toonly a subset of the destination
set before crashing. In the Byzantine failure model, a process may behave arbitrarily. The
choice of the failure model determines the feasibility and complexity of solving consensus.

Synchronous/Asynchronous communication:If a failure-prone process chooses to send a mes-
sage to processPi but fails, thenPi cannot detect the non-arrival of the message in an asyn-
chronous system because this scenario is indistinguishable from the scenario in which the
message takes a very long time in transit. We will see this argument again when we con-
sider the impossibility of reaching agreement in asynchronous systems in any failure model.
However, in a synchronous system, the scenario in which a message has not been sent can
be recognized by the intended recipient, at the end of the round. The intended recipient
can deal with the non-arrival of the expected message by assuming the arrival of a message
containing some default data, and then proceeding with the next round of the algorithm.

500

Network connectivity: The system has full logical connectivity, i.e., each process can communi-
cate with any other by direct message passing.

Sender identification: A process that receives a message always knows the identity of the sender
process. This assumption is important – because even with Byzantine behaviour, even though
the payload of the message can contain fictitious data sent bya malicious sender, the under-
lying network layer protocols can reveal the true identity of the sender process.

When multiple messages are expected from the same sender in asingle round, we implic-
itly assume a scheduling algorithm that sends these messages in sub-rounds, so that each
message sent within the round can be uniquely identified.

Channel reliability: The channels are reliable, and only the processes may fail (under one of
various failure models). This is a simplifying assumption in our study. As we will see even
with this simplifying assumption, the agreement problem iseither unsolvable, or solvable in
a complex manner.

Authenticated vs. non-authenticated messages:In our study, we will be dealing only withunau-
thenticatedmessages. With unauthenticated messages, when a faulty process relays a mes-
sage to other processes, (i) it can forge the message and claim that it was received from
another process, and (ii) it can also tamper with the contents of a received message before
relaying it. When a process receives a message, it has no way to verify its authenticity. An
unauthenticated message is also called anoral message or anunsignedmessage.

Using authentication via techniques such as digital signatures, it is easier to solve the agree-
ment problem because if some process forges a message or tampers with the contents of a
received message before relaying it, the recipient can detect the forgery or tampering. Thus,
faulty processes can inflict less damage.

Agreement variable: The agreement variable may be boolean or multi-valued, and need not be
an integer. When studying some of the more complex algorithms, we will use a boolean
variable. This simplifying assumption does not affect the results for other data types, but
helps in the abstraction while presenting the algorithms.

Consider the difficulty of reaching agreement using the following example, that is inspired by
the long wars fought by the Byzantium Empire in the Middle Ages. 1 Four camps of the attacking
army, each commanded by a general, are camped around the fortof Byzantium. They can succeed
in attacking only if they attack simultaneously. Hence, they need to reach agreement on the time
of attack. The only way they can communicate is to send messengers among themselves. The
messengers model the messages. An asynchronous system is modeled by messengers taking an
unbounded time to travel between two camps. A lost message ismodeled by a messenger being
captured by the enemy. A Byzantine process is modeled by a general being a traitor. The traitor

1Byzantium was the name of present-day Instanbul in the Middle Ages; Byzantium itself was the new name of
Constantinople in the Early Ages.

501

will attempt to subvert the agreement-reaching mechanism,by giving misleading information to
the other generals. For example, a traitor may inform one general to attack at 10am, and inform the
other generals to attack at noon. Or he may not send a message at all to some general. Likewise,
he may tamper with messages he gets from other generals, before relaying those messages.

G2

G3 G4

0

1

1

1
0

0

1

0

0

01

0
G1

Figure 14.1: Byzantine generals sending confusing messages.

A simple example of Byzantine behavior is shown in Figure 14.1. Four generals are shown, and
a consensusdecision is to be reached about a boolean value. The various generals are conveying
potentially misleading values of the decision variable to the other generals, which results in con-
fusion. In the face of such Byzantine behavior, the challenge is to determine whether it is possible
to reach agreement, and if so under what conditions. If agreement is reachable, then protocols to
reach it need to be devised.

14.1.1 The Byzantine Agreement and Other Problems

14.1.1.1 The Byzantine Agreement Problem

Before studying algorithms to solve the agreement problem,we first define the problem formally.
TheByzantine agreementproblem requires a designated process, called thesource processthat has
an initial value, to reach agreement with the other processes about its initial value, subject to the
following conditions.

Agreement: All non-faulty processes must agree on the same value.

Validity: If the source process is non-faulty, then the agreed upon value by all the non-faulty
processes must be the same as the initial value of the source.

Termination: Each non-faulty process must eventually decide on a value.

The validity condition rules out trivial solutions, such asone in which the agreed upon value
is a constant. It also ensures that the agreed upon value is correlated with the source value. If the

502

source process is faulty, then the correct processes can agree upon any value. It is irrelevant what
the faulty processes agree upon – or whether they terminate and agree upon anything at all.

There are two other popular flavors of the Byzantine agreement problem – theConsensusprob-
lem, and theInteractive Consistencyproblem.

14.1.1.2 The Consensus Problem

The Consensus problem differs from the Byzantine Agreementproblem in that each process has
an initial value and all the correct processes must agree on asingle value. Formally,

Agreement: All non-faulty processes must agree on the same (single) value.

Validity: If all the non-faulty processes have the same initial value,then the agreed upon value by
all the non-faulty processes must be that same value.

Termination: Each non-faulty process must eventually decide on a value.

14.1.1.3 The Interactive Consistency Problem

The Interactive Consistency problem differs from the Byzantine agreement problem in that each
process has an initial value, and all the correct processes must agree upon a set of values, one value
for each process. The formal specification is as follows.

Agreement: All non-faulty processes must agree on the same array of valuesA[v1 . . . vn].

Validity: If processi is non-faulty and its initial value isvi, then all non-faulty processes agree on
vi as theith element of the arrayA. If processj is faulty, then the non-faulty processes can
agree on any value forA[j].

Termination: Each non-faulty process must eventually decide on the arrayA.

14.1.2 Equivalence of the Problems and Notations

The three problems defined above are equivalent in the sense that a solution to any one of them can
be used as a solution to the other two problems. This equivalence can be shown using a reduction
of each problem to the other two problems. If problem A is reduced to problem B, then a solution
to problem B can be used as a solution to problem A in conjunction with the reduction. Exercise 1
asks the reader to show these reductions.

Formally, the difference between theagreement problemand theconsensus problemis that in
the agreement problem, a single process has the initial value, whereas in the consensus problem,
all processes have an initial value. However, the two terms are used interchangably in much of the
literature and hence we shall also use the terms interchangably.

503

Failure Synchronous system Asynchronous system
mode (message-passing and shared memory)(message-passing and shared memory)

No agreement attainable; agreement attainable;
failure common knowledge also attainable concurrent common knowledge attainable
Crash agreement attainable agreement not attainable
failure f < n Byzantine processes

Ω(f + 1) rounds
Byzantine agreement attainable agreement not attainable
failure f ≤ ⌊(n − 1)/3⌋ Byzantine processes

Ω(f + 1) rounds

Table 14.1: Overview of results on agreement.f denotes number of failure-prone processes.n is
the total number of processes.

Solvable Failure model and overhead Definition
Variants (MP and SM) MP and SM

Reliable crash failures Validity, Agreement, Integrity conditions
broadcast (Section 14.5.7)
k-set crash failures.f < k. size of the set of values agreed
agreement upon must be less thank (Section 14.5.4)

ǫ-agreement crash failures values agreed upon are
within ǫ of each other (Section 14.5.5)

Renaming up tof fail-stop processes,n > 2f + 1 select a unique name from
a set of names (Section 14.5.6)

Table 14.2: Some solvable variants of the agreement problemin asynchronous system. The over-
head bounds are for the given algorithms, and not necessarily tight bounds for the problem.

14.2 Overview of Results

Table 14.1 gives an overview of the results and lower bounds on solving the consensus problem
under different assumptions.

It is worth understanding the relation between the consensus problem and the problem of attain-
ing common knowledge of the agreement value. For the “no failure” case, consensus is attainable.
Further, in a synchronous system, common knowledge of the consensus value is also attainable,
whereas in the asynchronous case, concurrent common knowledge of the consensus value is at-
tainable.

Consensus is not solvable in asynchronous systems even if one process can fail by crashing.
To circumvent this impossibility result, weaker variants of the consensus problem are defined in
Table 14.2. The overheads given in this Table are for the algorithms described. Figure 14.2 shows
further how asynchronous message-passing systems and shared memory systems deal with trying
to solve consensus.

504

Circumventing the impossibility results for consensus in asynchronous systems

k set consensus

epsilon−consensus

Renaming

consensusepsilon−

Shared memory

Reliable broadcast using atomic registers and

k set consensus

Renaming

Consensus

atomic snapshot objects
constructed from atomic registers

using more powerful
objects than atomic registers.

universal objects and
universal constructions.

Message−passing

This is the study of

Figure 14.2: Circumventing the impossibility result for consensus in asynchronous systems.

14.3 Agreement in a Failure-Free System (Synchronous or Asyn-
chronous)

In a failure-free system, consensus can be reached by collecting information from the different
processes, arriving at a ‘decision’, and distributing thisdecision in the system. A distributed mech-
anism would have each process broadcast its values to others, and each process computes the same
function on the values received. The decision can be reachedby using an application-specific func-
tion – some simple examples being themajority, max andmin functions. Algorithms to collect
the initial values and then distribute the decision may be based on the token circulation on a logi-
cal ring, or the three-phase tree-based broadcast-convergecast-broadcast, or direct communication
with all nodes.

• In a synchronous system, this can be done simply in a constantnumber of rounds (depending
on the specific logical topology and algorithm used). Furthermore, common knowledge of
the decision value can be obtained using an additional round(See Chapter 4).

• In an asynchronous system, consensus can similarly be reached in a constant number of
message hops. Further, concurrent common knowledge of the consensus value can also be
attained, using any of the algorithms in Chapter 4.

Reaching agreement is straightforward in a failure-free system. Hence, we focus on failure-prone
systems.

505

(global constants)
integer:f ; // maximum number of crash failures tolerated
(local variables)
integer:x←− local value;

(1) ProcessPi (1 ≤ i ≤ n) executes the Consensus algorithm for up tof crash failures:
(1a) for round from 1 to f + 1 do
(1b) if the current value ofx has not been broadcastthen
(1c) broadcast(x);
(1d) yj ←− value (if any) received from processj in this round;
(1e) x←− min(x, yj);
(1f) output x as the consensus value.

Figure 14.3: Consensus with up tof fail-stop processes in a system ofn processes,n > f . Code
shown is for processPi, 1 ≤ i ≤ n.

14.4 Agreement in (Message-Passing) Synchronous Systems with
Failures

14.4.1 Consensus Algorithm for Crash Failures (Synchronous System)

Figure 14.3 gives a consensus algorithm forn processes, where up tof processes, wheref < n,
may fail in the fail-stop model. Here, the consensus variablex is integer-valued. Each process has
an initial valuexi. If up to f failures (f < n) are to be tolerated, then the algorithm hasf + 1

rounds. In each round, a processi sends the value of its variablexi to all other processes if that
value has not been sent before. Of all the values received within the round and its own valuexi at
the start of the round, the process takes the minimum, and updatesxi. After f +1 rounds, the local
valuexi is guaranteed to be the consensus value.

• Theagreement conditionis satisfied because in thef + 1 rounds, there must be at least one
round in which no process failed. In this round, say roundr, all the processes that have not
failed so far succeed in broadcasting their values, and all these processes take the minimum
of the values broadcast and received in that round. Thus, thelocal values at the end of the
round are the same, sayxr

i for all non-failed processes. In further rounds, only this value
may be sent by each process at most once, and no processi will update its valuexr

i .

• The validity condition is satisfied because processes do not send fictitious values in this
failure model. (Thus, a process that crashes has sent only correct values until the crash). For
all i, if the initial value is identical, then the only value sent by any process is that identical
value which is the value agreed upon as per theagreement condition.

• Thetermination conditionis seen to be self-evidently satisfied.

506

Complexity: There aref + 1 rounds, wheref < n. The number of messages is at mostO(n2)

in each round, and each message has one integer. Hence the total number of messages isO((f +

1) · n2). The worst case scenario is as follows. Assume that the minimum value is with a single
process initially. In the first round, the process manages tosend its value to just one other process
before failing. In subsequent rounds, the single process having this minimum value also manages
to send that value to just one other process before failing.

The algorithm in Figure 14.3 requiresf + 1 rounds, independent of the actual number of
processes which fail. Anearly-stoppingconsensus algorithm terminates sooner; if there aref ′

actual failures, wheref ′ < f , then the early-stopping algorithm terminates inf ′ + 1 rounds.
Exercise 2 asks you to design an early-stopping algorithm for consensus under crash failures, and
to prove its correctness.
A Lower Bound on the Number of Rounds: At leastf + 1 rounds are required, wheref < n.
The idea behind this lower bound is that in the worst-case scenario, one process may fail in each
round; withf + 1 rounds, there is at least one round in which no process fails.In that guaranteed
failure-free round, all messages broadcast can be delivered reliably, and all processes that have not
failed can compute the common function of the received values to reach an agreement value.

14.4.2 Consensus Algorithms for Byzantine Failures (Synchronous System)

P

P

P

P

P Pa ab b

c c

(a) (b)

malicious process

0

1

1

0

second round messagefirst round message

correct process

0

commandercommander

0 0

1

Figure 14.4: Impossibility of achieving Byzantine agreement whenn = 3 processes andf = 1
malicious process.

14.4.3 Upper Bound on Byzantine Processes

In a system ofn processes, the Byzantine agreement problem (as also the other variants of the
agreement problem) can be solved in a synchronous system only if the number of Byzantine pro-

507

cessesf is such thatf ≤ ⌊n−1
3
⌋.

We informally justify this result using two steps.

• With n = 3 processes, the Byzantine agreement problem cannot be solved if the number
of Byzantine processesf = 1. The argument uses the illustration in Figure 14.4 which
shows a commanderPc and two lieutenant processesPa andPb. The malicious process is
the lieutenantPb in the first scenario and hencePa should agree on the value of the loyal
commanderPc, which is 0. But note the second scenario in whichPa receives identical
values fromPb andPc, but nowPc is the disloyal commander whereasPb is a loyal lieutenant.
In this case,Pa needs to agree withPb. However,Pa cannot distinguish between the two
scenarios and any further message exchange does not help because each process has already
conveyed what it knows from the third process.

In both scenarios,Pa gets different values from the other two processes. In the first scenario,
it needs to agree on a 0, and if that is the default value, the decision is correct, but then if it is
in the second indistinguishable scenario, it agrees on an incorrect value. A similar argument
shows that if 1 is the default value, then in the first scenario, Pa makes an incorrect decision.
This shows the impossibility of agreement whenn = 3 andf = 1.

• With n processes andf ≥ n/3 processes, the Byzantine agreement problem cannot be
solved. The correctness argument of this result can be shownusing reduction. LetZ(3, 1)

denote the Byzantine agreement problem for parametersn = 3 andf = 1. LetZ(n ≤ 3f, f)

denote the Byzantine agreement problem for parametersn(≤ 3f) andf . A reduction from
Z(3, 1) to Z(n ≤ 3f, f) needs to be shown, i.e., ifZ(n ≤ 3f, f) is solvable, thenZ(3, 1)

is also solvable. After showing this reduction, we can arguethat asZ(3, 1) is not solvable,
Z(n ≤ 3f, f) is also not solvable.

The main idea of the reduction argument is as follows. InZ(n ≤ 3f, f), partition the
n processes into three setsS1, S2, S3, each of size≤ n/3. In Z(3, 1), each of the three
processesP1, P2, P3 simulates the actions of the corresponding setS1, S2, S3 in Z(n ≤
3f, f). If one process is faulty inZ(3, 1), then at mostf , wheref ≤ n/3, processes are
faulty in Z(n, f). In the simulation, a correct process inZ(3, 1) simulates a group of up
to n/3 correct processes inZ(n, f). It simulates the actions (send events, receive events,
intra-set communication, and inter-set communication) ofeach of the processes in the set
that it is simulating.

With this reduction in place, if there exists an algorithm tosolveZ(n ≤ 3f, f), i.e., to satisfy
the validity, agreement, and termination conditions, thenthere also exists an algorithm to
solveZ(3, 1), which has been seen to be unsolvable. Hence, there cannot exist an algorithm
to solveZ(n ≤ 3f, f).

508

0001

commander commander

dd

cc PP

(b)(a)

bb a
1

correct processmalicious process

first round exchange second round exchange

0

0

1 00
00 110 0 0

0
a PP

P

P

P

P

Figure 14.5: Achieving Byzantine agreement whenn = 4 processes andf = 1 malicious process.

14.4.4 Byzantine Agreement Tree Algorithm: Exponential (Synchronous
System)

14.4.4.1 Recursive formulation

We begin with an informal description of how agreement can beachieved withn = 4 andf = 1

processes, as depicted in Figure 14.5. In the first round, thecommanderPc sends its value to the
other three lieutenants, as shown by dotted arrows. In the second round, each lieutenant relays to
the other two lieutenants, the value it received from the commander in the first round. At the end
of the second round, a lieutenant takes the majority of the values it received (i) directly from the
commander in the first round, and (ii) from the other two lieutenants in the second round. The
majority gives a correct estimate of the “commander’s” value. Consider Figure 14.5(a) where the
commander is a traitor. The values that get transmitted in the two rounds are as shown. All three
lieutenants take the majority of (1, 0, 0) which is ‘0’, the agreement value. In Figure 14.5(b),
lieutenantPd is malicious. Despite its behavior as shown, lieutenantsPa andPb agree on ‘0’, the
value of the commander.

The first algorithm for solving Byzantine agreement was proposed by Lamport, Shostak, and
Pease. We present two versions of the algorithm.

The recursive version of the algorithm is given in Figure 14.6. Each message has the following
parameters: a consensus estimate value (v), set of destinations (Dests), list of nodes traversed by
the message, from most recent to least recent (List), and the number of Byzantine processes that
the algorithm still needs to tolerate (faulty). The listL = 〈Pi, Pk1

. . . Pkf+1−faulty
〉 represents the

sequence of processes (subscripts) in the knowledge expressionKi(Kk1
(Kk2

. . .Kkf+1−faulty
(v0) . . .)).

This knowledge is whatPkf+1−faulty
conveyed toPkf−faulty

conveyed to. . . Pk1
conveyed toPi who

is conveying to the receiver of this message, the value of theCommander (Pkf+1−faulty
)’s initial

509

(variables)
boolean: v ←− initial value;
integer: f ←−maximum number of malicious processes,≤ ⌊(n − 1)/3⌋;
(message type)
Oral_Msg(v,Dests, List, faulty), where
v is a boolean,
Dests is a set of destination process ids to which the message is sent,
List is a list of process ids traversed by this message, ordered from most recent to earliest,
faulty is an integer indicating the number of malicious processes to be tolerated.

Oral_Msg(f), wheref > 0:

1. The algorithm is initiated by the Commander, who sends hissource valuev to all other processes
using aOM(v,N, 〈i〉, f) message. The commander returns his own valuev and terminates.

2. [Recursion unfolding:] For each message of the formOM(vj ,Dests, List, f ′) received in this round
from some processj, the processi uses the valuevj it receives from the source, and using that value,
acts as anewsource. (If no value is received, a default value is assumed.)

To act as a new source, the processi initiatesOral_Msg(f ′ − 1), wherein it sends
OM(vj,Dests− {i}, concat(〈i〉, L), (f ′ − 1))
to |N | − 1− (f − f ′ + 1) destinations not inconcat(〈i〉, L)
in the next round.

3. [Recursion folding:] For each message of the formOM(vj,Dests, List, f ′) received in Step 2, each
processi awaits the computed valuevk from each of the|N | − 2 − (f − f ′) processes (excluding
itself) not inList in the folding phase of the recursion. If it receives no valuein this round, it uses a
default value. Processi then uses the valuemajorityk 6∈List,k 6=i(vj , vk) as the agreement value and
returns it to the next higher level in the recursive invocation.

Oral_Msg(0):

1. [Recursion unfolding:] Process acts as a source and sends its value to each other process.

2. [Recursion folding:] Each process uses the value it receives from the other sources, and uses that
value as the agreement value. If no value is received, a default value is assumed.

Figure 14.6: Byzantine generals algorithm – exponential number of unsigned messages,n > 3f .
Recursive formulation.

value.
The commander invokes the algorithm with parameterfaulty set tof , the maximum number

of malicious processes to be tolerated. The algorithm usesf + 1 synchronous rounds. Each
message (having this parameterfaulty = k) received by a process invokes several other instances
of the algorithm with parameterfaulty = k−1. The terminating case of the recursion is when the
parameterfaulty is 0. As the recursion folds, each process progressively computes the majority
function over the values it used as a source for that level of invocation in the unfolding, and the
values it has just computed as consensus values using the majority function for the lower level of

510

round a message has aims to tolerate and each message total number of
number already visited these many failures gets sent to messages in round

1 1 f n− 1 n− 1

2 2 f − 1 n− 2 (n − 1) · (n− 2)

.

x x (f + 1)− x n− x (n− 1)(n − 2) . . . (n− x)

x + 1 x + 1 (f + 1)− x− 1 n− x− 1 (n− 1)(n − 2) . . . (n− x− 1)

f + 1 f + 1 0 n− f − 1 (n − 1)(n − 2) . . . (n − f − 1)

Table 14.3: Relationships between messages and rounds in the Oral Messages algorithm for Byzan-
tine agreement.

invocations.
There are an exponential number of messages used by this algorithm. Table 14.3 shows the

number of messages used in each round of the algorithm, and relates that number to the number of
processes already visited by any message as well as the number of destinations of that message.

As multiple messages are received in any one round from each of the other processes, they can
be distinguished using theList, or by using a scheduling algorithm within each round. A detailed
iterative version of the high-level recursive algorithm isgiven in Figure 14.7. Lines (2a)-(2e)
correspond to the unfolding actions of the recursive pseudo-code, and lines (2f)-(2h) correspond
to the folding of the recursive pesudo-code. Two operationsare defined in the listL: head(L) is
the first member of the listL, whereastail(L) is the listL after removing its first member. Each
process maintains a tree of boolean variables. The tree datastructure is used as follows.

• There aref + 1 levels from level 0 through levelf .

• Level 0 has one root node,v〈〉0 .

• Level i, 0 < i ≤ f has1 · (n − 2) · (n − 3) . . . (n − i) · (n − (i + 1)) nodes. Each node at
level (i− 1) has(n− (i+ 1)) child nodes.

• NodevL
k denotes the command received from the nodehead(L) by nodek. The command

was relayed tohead(L) by head(tail(L)), which received it fromhead(tail(tail(L))), and
so on. The very last element ofL is the commander, denotedP0.

• In thef + 1 rounds of the algorithm (lines (2a)-(2e) of the iterative version), each levelk,
0 ≤ k ≤ f , of the tree is successively filled to remember the values received at the end
of roundk + 1, and with which the process sends the multiple instances of the Oral_Msg
message with the fourth parameter asf − (k + 1) in round k + 2 (other than the final
terminating round).

• For each message that arrives in a round (lines 2b-2c of the iterative version), a process
setsvtail(L)

head(L) (line 2d). It then removes itself fromDests, prepends itself toL, decrements
faulty, and forwards the valuev to the updatedDests (line 2e).

511

(variables)
boolean: v ←− initial value;
integer: f ←−maximum number of malicious processes,≤ ⌊n/3⌋;
tree of boolean:

• level 0 root isvL
0 , whereL = 〈〉;

• level i(f ≥ i > 0) nodes: for eachvL
j at levelsizeof(L)(= i− 1), its n− 2− sizeof(L) descendants at level

i = sizeof(L) + 1 arev
concat(〈j〉,L)
k , ∀k such thatk 6= j, i andk is not a member of listL.

(message type)
OM(v, Dests, List, faulty), where the parameters are as in the recursive formulation.

(1) Initiator (i.e., Commander) initiates Oral Byzantine agreement:
(1a)sendOral_Msg(v, N − {i}, 〈Pi〉, f) to N − {i};
(1b) return (v).

(2) (Non-initiator, i.e., Lieutenant) receives Oral MessageOM :
(2a)for rnd = 0 to f do
(2b) for each message OM that arrives in this round, the following is performed:
(2c) receiveOral_Msg(v, Dests, L = 〈Pk1

. . . Pkf+1−faulty
〉, faulty) from Pk1

;
// faulty+ round = f; |Dests|+ sizeof(L) = n

(2d) v
tail(L)
head(L) ←− v; // sizeof(L) + faulty = f + 1. fill in estimate of node at levelsizeof(tail(L))

(2e) sendOral_Msg(v, Dests− {i}, 〈Pi, Pk1
. . . Pkf+1−faulty

〉, faulty − 1) to Dests− {i} ;
(2f) for level = f − 1 down to 0 do
(2g) for each of the1 · (n− 2) · . . . (n− (level + 1)) nodesvL

x in level level, the following is performed:

(2h) vL
x (x 6= i, x 6∈ L) = majorityy 6∈ concat(〈x〉,L);y 6=i(v

L
x , v

concat(〈x〉,L)
y);

Figure 14.7: Byzantine generals algorithm – exponential number of unsigned messages,n > 3f .
Iterative formulation.

• Once the entire tree is filled from root to leaves, the actionsin the folding of the recursion
are simulated in lines (2f)-(2h) of the iterative version, proceeding from the leaves up to the
root of the tree. These actions are crucial – they entail taking the majority of the values at
each level of the tree. The final value of the root is the aagreement value, which will be the
same at all processes.

14.4.4.2 Example

Figure 14.8 shows the tree at a lieutenant nodeP3, for n = 10 processesP0 throughP9 andf = 3

processes. The commander isP0. Only one branch of the tree is shown for simplicity. The reader
is urged to work through all the steps to ensure a thorough understanding. Some key steps from
P3’s perspective are outlined next, with respect to the iterative formulation of the algorithm.

Round 1: P0 sends its value to all other nodes. This corresponds to invoking Oral_Msg(3)in the
recursive formulation. At the end of the round,P3 stores the received value inv〈〉0

Round 2: P3 acts as a source for this value and sends this value to all nodes except itself andP0.

512

This corresponds to invokingOral_Msg(2)in the recursive formulation. Thus,P3 sends 8
messages. It will receive a similar message from all other nodes exceptP0 and itself; the
value received fromPk is stored inv〈0〉k .

Round 3: For each of the 8 values received in round 2,P3 acts as a source and sends the values to
all nodes except (i) itself, (ii) nodes visited previously by the corresponding value, as remem-
bered in the superscript list, and (iii) the direct sender ofthe received message, as indicated
by the subscript. This corresponds to invokingOral_Msg(1)in the recursive formulation.
Thus,P3 sends 7 messages for each of these 8 values, giving a total of 56 messages it sends
in this round. Likewise it receives 56 messages from other nodes; the values are stored in
level 2 of the tree.

Round 4: For each of the 56 messages received in round 3,P3 acts a source and sends the val-
ues to all nodes except (i) itself, (ii) nodes visited previously by the corresponding value,
as remembered in the superscript list, and (iii) the direct sender of the received message,
as indicated by the subscript. This corresponds to invokingOral_Msg(0)in the recursive
formulation. Thus,P3 sends 6 messages for each of these 56 values, giving a total of336
messages it sends in this round. Likewise, it receives 336 messages, and the values are stored
at level 3 of the tree. As this round isOral_Msg(0), the received values are used as estimates
for computing the majority function in the folding of the recursion.

An example of the majority computation is as follows.

• P3 revises its estimate ofv〈5,0〉
7 by taking

majority(v
〈5,0〉
7 , v

〈7,5,0〉
1 , v

〈7,5,0〉
2 , v

〈7,5,0〉
4 , v

〈7,5,0〉
6 , v

〈7,5,0〉
8 , v

〈7,5,0〉
9). Similarly for the other nodes

at level 2 of the tree.

• P3 revises its estimate ofv〈0〉5 by taking
majority(v

〈0〉
5 , v

〈5,0〉
1 , v

〈5,0〉
2 , v

〈5,0〉
4 , v

〈5,0〉
6 , v

〈5,0〉
7 , v

〈5,0〉
8 , v

〈5,0〉
9). Similarly for the other nodes at

level 1 of the tree.

• P3 revises its estimate ofv〈〉0 by taking
majority(v

〈〉
0 , v

〈0〉
1 , v

〈0〉
2 , v

〈0〉
4 , v

〈0〉
5 , v

〈0〉
6 , v

〈0〉
7 , v

〈0〉
8 , v

〈0〉
9). This is the consensus value.

14.4.4.3 Correctness

The correctness of the Byzantine agreement algorithm in Figure 14.7 can be observed from the
following two informal inductive arguments. Here we assumethat theOral_Msg algorithm is
invoked with parameterx, and that there are a total off malicious processes. There are two cases
depending on whether the commander is malicious. A malicious commander causes more chaos
than an honest commander. This is the second case consideredbelow.

513

<7,5,0> <7,5,0> <7,5,0> <7,5,0>v
1 2 4 6 8 9

2
4

5

<7,5,0>

6<0> <0>
<0>

<0>

<0>

v

<5,0>

<5,0>
8

v v

<5,0>

<7,5,0>

8

v
7

enter after round 1

v<5,0>
9

round 2

round3

round4

level 1

level 0

level 2

level 3

v

9
<0>
7

<0> <0>

v
6

4
<5,0><5,0><5,0>v

1
v
2

1
v

v

v v v

<>
0

v

v v v
vvv

Figure 14.8: Local tree atP3 for solving Byzantine agreement, forn = 10 andf = 3. Only one
branch of the tree is shown for simplicity.

Loyal commander: Givenf andx, if the commander process is loyal, thenOral_Msg(x) is cor-
rect if there are at least2f + x processes.

This can easily be seen by induction onx.

• For x = 0, Oral_Msg(0) is executed, and the processes simply use the (loyal) com-
mander’s value as the consensus value.

• Now assume the above induction hypothesis for anyx.

• Then forOral_Msg(x+ 1), there are2f + x+ 1 processes including the Commander.
Each loyal process invokesOral_Msg(x) to broadcast the (loyal) commander’s value
v0 – here it acts as a commander for this invocation it makes. As there are2f + x

processes for each such invocation, by the induction hypothesis, there is agreement on
this value (at all the honest processes) – this would be at level 1 in the local tree in the
folding of the recursion. In the last step, each loyal process takes the majority of the
direct order received from the commander (level 0 entry of the tree), and its estimate of
the commander’s order conveyed to other processes as computed in the level 1 entries
of the tree. Among the2f + x values taken in the majority calculation (this includes
the Commanders’s value but not its own), the majority is loyal becausex > 0. Hence,
taking the majority works.

No assumption about commander:Given f , Oral_Msg(x) is correct ifx ≥ f and there are a
total of3x+ 1 or more processes.

514

This case accounts for both possibilities – the commander being malicious or honest. An
inductive argument is again useful.

• For x = 0, Oral_Msg(0) is executed, and as there are no malicious processes (0 ≥ f)
the processes simply use the (loyal) commander’s value as the consensus value. Hence
the algorithm is correct.

• Now assume the above induction hypothesis for anyx.

• Then forOral_Msg(x+1), there are at least3x+4 processes including the Commander
and at mostx+ 1 are malicious.

– (Loyal commander:) If the commander is loyal, then we can apply the argument
used for the “loyal Commander” case above, because there will be more than
(2(f + 1) + (x+ 1)) total processes.

– (Malicious commander:) There are now at mostx other malicious processes and
3x+3 total processes (excluding the commander). From the induction hypothesis,
each loyal process can compute the consensus value using themajority function in
the protocol.

Oral_Msg(k)

commander
commander

? ?

1

00

(a) (b)

malicious processcorrect process

Oral_Msg(k−1) Oral_Msg(k−1)
Oral_Msg(k)

Figure 14.9: The effects of a loyal or a disloyal commander ina system withn = 14 andf = 4.
The subsystems that need to toleratek andk − 1 traitors are shown for two cases. (a) Loyal
commander. (b) No assumptions about commander.

Illustration of arguments (Figure 14.9): In part (a), the commander who invokesOral_Msg(x)
is loyal, so all the loyal processes have the same estimate. Although the subsystem of3x processes
hasx malicious processes, all the loyal processes have the same view to begin with. Even if this
case repeats for each nested invocation ofOral_Msg, even afterx rounds, among the processes, the
loyal processes are in a simple majority, so the majority function works in having them maintain

515

the same common view of the loyal commander’s value. (Of course, had we known the commander
was loyal, then we could have terminated after a single round, and neither would we be restricted
by then > 3x bound.) In part (b), the commander who invokesOral_Msg(x)may be malicious
and can send conflicting values to the loyal processes. The subsystem of3x processes hasx − 1

malicious processes, but all the loyal processes do not havethe same view to begin with.
Complexity: The algorithm requiresf + 1 rounds, an exponential amount of local memory, and

(n− 1) + (n− 1)(n− 2) + . . .+ [(n− 1)(n− 2) . . . (n− f − 1)]

messages.

14.4.4.4 Phase-King Algorithm for Consensus: Polynomial (Synchronous System)

The Lamport-Shostak-Pease algorithm requiresf + 1 rounds and can tolerate up tof ≤ ⌊n−1
3
⌋

malicious processes, but requires an exponential number ofmessages. Thephase-kingalgorithm
solves the consensus problem under the same model, requiring f + 1 phases, and a polynomial
number of messages (which is a huge savings), but can tolerate onlyf < ⌈n/4⌉ malicious pro-
cesses. The algorithm is so called because it operates inf + 1 phases, each with two rounds, and
a unique process plays an asymmetrical role as a leader in each round.

phase f+1phase 2phase 1

f+1
P

k

P
1

P

0
P

Figure 14.10: Message pattern for the phase-king algorithm.

The phase king algorithm is given in Figure 14.11, and assumes a binary decision variable. The
message pattern is illustrated in Figure 14.10.

Round 1: In the first round (lines (1b) - (1f)) of each phase, each process broadcasts its estimate of
the consensus value to all other processes, and likewise awaits the values broadcast by others.
At the end of the round, it counts the number of ‘1’ votes and the number of ‘0’ votes. If
either number is greater thann/2, then it sets itsmajority variable to that consensus value,
and setsmult to the number of votes received for the majority value. If neither number is
greater thann/2, which may happen when the malicious processes do not respond, and the

516

(variables)
boolean: v ←− initial value;
integer: f ←−maximum number of malicious processes,f < ⌈n/4⌉;
tree of boolean:

(1) Each process executes the followingf + 1 phases, wheref < n/4:
(1a) for phase = 1 to f + 1 do
(1b) Execute the following Round 1 actions: // actions in round one of each phase
(1c) broadcastv to all processes;
(1d) await valuevj from each processPj ;
(1e) majority ←− the value among thevj that occurs> n/2 times (default value if no majority);
(1f) mult←− number of times thatmajority occurs;
(1g) Execute the following Round 2 actions: // actions in round two of each phase
(1h) if i = phase then // only the phase leader executes this send step
(1i) broadcastmajority to all processes;
(1j) receivetiebreaker from Pphase (default value if nothing is received);
(1k) if mult > n/2 + f then
(1l) v ←− majority;
(1m) elsev ←− tiebreaker;
(1n) if phase = f + 1 then
(1o) output decision valuev.

Figure 14.11: Phase-king algorithm – polynomial number of unsigned messages,n > 4f . Code is
for processPi, 1 ≤ i ≤ n.

correct processes are split among themselves, then a default value is used for themajority
variable.

Round 2: In the second round (lines (1g)-(1o)) of each phase, the phase king initiates processing
– the phase king for phasek is the process with identifierPk, wherek ∈ {1 . . . n}. The phase
king broadcasts its majority valuemajority, which serves the role of a tie-breaker vote for
those other processes which have a value ofmult of less thann/2+f . Thus, when a process
receives the tie-breaker from the phase king, it updates itsestimate of the decision variable
v to the value sent by the phase king if its ownmult variable< n/2 + f . The reason for
this is that among the votes for its ownmajority value,f votes could be bogus and hence
it does not have a clear majority of votes (i.e.,> n/2) from the non-malicious processes.
Hence, it adopts the value of the phase king. However, ifmult > n/2 + f (lines (1k)-(1l)),
then it has received a clear majority of votes from the non-malicious processes, and hence
it updates its estimate of the consensus variablev to its own majority value, irrespective of
what tie-breaker value the phase king has sent in the second round.

At the end off + 1 phases, it is guaranteed that the estimatev of all the processes is the correct
consensus value.
Correctness:The correctness reasoning is in three steps.

517

1. Among thef + 1 phases, the phase king of some phasek is non-malicious because there are
at mostf malicious processes.

2. As the phase king of phasek is non-malicious, all non-malicious processes can be seen to
have the same estimate valuev at the end of phasek. Specifically, observe that any two
non-malicious processesPi andPj can set their estimatev in three ways.

(a) BothPi andPj uses their ownmajority values. AssumePi’s majority value isx,
which implies thatPi’s mult > n/2 + f , and of these voters, at leastn/2 are non-
malicious. This impliesPj must also have received at leastn/2 votes forx, implying
that its majority valuemajority must also bex.

(b) BothPi andPj use the phase king’s tie-breaker value. AsPk is non-malicious it must
have sent the same tie-breaker value to bothPi andPj .

(c) Pi uses its majority value as the new estimate andPj uses the phase king’s tie-breaker
as the new estimate. AssumePi’smajority value isx, which implies thatPi’smult >
n/2 + f , and of these voters, at leastn/2 are non-malicious. This implies phase king
Pk must also have received at leastn/2 votes forx, implying that its majority value
majority that it sends as tie-breaker must also bex.

For all three possibilities, any two non-malicious processesPi andPj agree on the consensus
estimate at the end of phasek, where the phase kingPk is non-malicious.

3. All non-malicious processes have the same consensus estimatex at the start of phasek + 1

and they continue to have the same estimate at the end of phasek + 1. This is self-evident
because we have thatn > 4f and each non-malicious process receives at leastn − f >

n/2+ f votes forx from the other non-malicious processes in the first round of phasek+1.
Hence, all the non-malicious processes retain their estimatev of the consensus value asx at
the end of phasek + 1.

The same logic holds for all subsequent phases. Hence, the consensus value is correct.

Complexity: The algorithm requiresf + 1 phases and two sub-rounds each, and(f + 1)[(n −
1)(n+ 1)] messages.

14.5 Agreement in Asynchronous Message-Passing Systems with
Failures

14.5.1 Impossibility Result for the Consensus Problem

Fischer, Lynch, and Paterson showed a fundamental result onthe impossibility of reaching agree-
ment in an asynchronous (message-passing) system, even if asingle process is allowed to have a
crash failure. This result, popularly known as the FLP impossibility result, has a significant impact

518

on the field of designing distributed algorithms in a failure-susceptible system. The correctness
proof of this result also introduced the important notion ofvalencyof global states.

For any global stateGS, let v(GS)denote the set of possible values that can be agreed upon in
some global state reachable fromGS. |v(GS)| is defined as thevalencyof global stateGS. For a
boolean decision value, a global state can bebivalent, i.e., have a valency of two, ormonovalent,
i.e., having a valency of one. A monovalent stateGSis 1-valentif v(GS) = {1} and it is0-valent
if v(GS) = {0}. Bivalency of a global state captures the idea of uncertainty in the decision, as
either a 0-valent or a 1-valent state may be reachable from this bivalent state.

In an (asynchronous) failure-free system, Section 14.3 showed how to design protocols that can
reach consensus. Observe that the consensus value can be solely determined by the inputs. Hence,
the initial state is monovalent!

In the face of failures, it can be shown that a consensus protocol necessarily has a bivalent
initial state (assuming each process can have an arbitrary initial value from{0, 1}, to rule out
trivial solutions). This argument is by contradiction. Clearly, the initial state where inputs are
all 0 is 0-valent and the initial state where inputs are all 1 is1-valent. Transforming the input
assignments from the all-0 case to the all-1 case, observe that there must exist input assignments
~Ia and~Ib that are0-valent and1-valent, respectively, and that differ in the input value ofonly one
process, sayPi. If a 1-failure tolerant consensus protocol exists, then:

• Starting from~Ia, if Pi fails immediately, the other processes must agree on 0 due tothe
termination condition.

• Starting from~Ib, if Pi fails immediately, the other processes must agree on 1 due tothe
termination condition.

However, execution (2) looks identical to execution (1), toall processes, and must end with a
consensus value of 0, a contradiction. Hence, there must exist at least one bivalent initial state.

Observe that reaching consensus requires some form of exchange of the intial values (either by
message-passing or shared memory, depending on the model).Hence, a running process cannot
make a unilateral decision on the consensus value The key idea of the impossibility result is that in
the face of a potential process crash, it is not possible to distinguish between a crashed process and
a process or link that is extremely slow. Hence, from a bivalent state, it is not possible to transition
to a univalent state. More specifically, the argument runs asfollows. For a protocol to transition
from a bivalent global state to a monovalent global state, and using the global time interleaved
model for reasoning in the proof, there must exist acritical stepexecution that changes the valency
by making a decision on the consensus value. There are two possibilities.

• Thecritical stepis an event that occurs at a single process. However, other processes cannot
tell apart the two scenarios in which this process has crashed, and in which this process is
extremely slow. In both scenarios, the other processes can continue to wait forever and hence
the processes may not reach a consensus value, remaining in bivalent state.

519

• Thecritical stepoccurs at two or more independent (i.e., not send-receive related) events at
different processes. However, as independent events at different processes can occur in any
permutation, thecritical stepis not well-defined and hence this possibility is not admissible.

Thus, starting from a bivalent state, it is not possible to transition to a monovalent state. This is the
key to the impossibility result for reaching consensus in asynchronous systems.

The impossibility result is significant because it implies that all problems to which the agree-
ment problem can be reduced are also not solvable in any asynchronous system in which crash
failures may occur. As all real systems are prone to crash failures, this result has practical sig-
nificance. We can show that all the problems, such as the following, requiring consensus are not
solvable in the face of even a single crash failure.

• the leader election problem.

• the computation of a network-side global function using broadcast-convergecast flows.

• terminating reliable broadcast.

• atomic broadcast.

The common strategy is to use a reduction mapping from the consensus problem to the problemX
under consideration. We need to show that using an algorithmto solveX, we can solve consensus.
But as consensus is unsolvable, so must be problemX.

14.5.2 Terminating Reliable Broadcast

As an example, consider the Terminating Reliable Broadcastproblem which states that a correct
process always gets a message even if the sender crashes while sending. If the sender crashes while
sending the message, the message may be a null message but it must be delivered to each correct
process. The formal specification of Reliable Broadcast wasstudied in Chapter 3; here we have
the additional termination condition which states that each correct process must eventually deliver
some message.

Validity: If the sender of a broadcast messagem is nonfaulty, then all correct processes eventually
deliverm.

Agreement: If a correct process delivers a messagem, then all correct processes deliverm.

Integrity: Each correct process delivers at most one message. Further,if it delivers a message
different from the null message, then the sender must have broadcastm.

Termination: Every correct process eventually delivers some message.

520

The reduction from consensus to Terminating Reliable Broadcast is as follows. A commander
process broadcasts its input value using the Terminating Reliable Broadcast. A process decides
on a ‘0’ or ‘1’ depending on whether it receives ‘0’ or ‘1’ in the message from this process.
However, if it receives the null message, it decides on a default value. As the broadcast is done
using the Terminating Reliable Broadcast, it can be seen that the conditions of the consensus
problem (Section 14.1.1) are satisfied. But as consensus is not solvable, an algorithm to implement
Terminating Reliable Broadcast cannot exist.

14.5.3 Distributed Transaction Commit

Database transactions require theCommitoperation to preserve the ACID properties (atomicity,
consistency, integrity, durability) of transactional semantics. Thecommitoperation requires polling
all participants whether the transaction should be committed or rolled back. Even a single rollback
vote requires the transaction to be rolled back. Whatever the decision, it is conveyed to all the
participants in the transaction. Clearly, this can be seen to be a consensus problem. Exercise 5 asks
you to formally prove that distributed commit is not solvable under a crash failure.

Despite the unsolvability of the distributedcommitproblem under crash failure, the (blocking)
two-phase commit and the non-blocking three-phase commit protocols do solve the problem. This
is because the protocols use a somewhat different model in practice, than that used for our theo-
retical analysis of the consensus problem. The two-phase protocol waits indefinitely for a reply,
and it is assumed that a crashed node eventually recovers andsends in its vote. Optimizations
such aspresumed abortandpresumed commitare pessimistic and optimistic solutions that are not
guaranteed to be correct under all circumstances. Similarly, the three-phase commit protocol uses
timeouts to default to the ‘abort’ decision when the coordinator does not get a reply from all the
participants within the timeout period.

14.5.4 k-set consensus

Although consensus is not solvable in an asynchronous system under crash failures, a weaker
version, known as thek-set consensusproblem, is solvable as long as the number of crash failures
f is less than the parameterk. The parameterk indicates that the nonfaulty processes agree on
different values, as long as the size of the set of values agreed upon is bounded byk.

Assuming that the consensus value is from a multi-valued domain, the problem specification is
as follows.

k-Agreement: All non-faulty processes must make a decision, and the set ofvalues that the pro-
cesses decide on can contain up tok values.

Validity: If a non-faulty process decides on some value, then that value must have been proposed
by some process.

Termination: Each non-faulty process must eventually decide on a value.

521

(variables)
integer: v ←− initial value;

(1) A processPi, 1 ≤ i ≤ n, initiatesk-set consensus:
(1a)broadcastv to all processes.
(1b)await values from|N | − f processes and add them to setV ;
(1c) decideonmax(V).

Figure 14.12: Protocol fork-set consensus. Code shown is for processPi, 1 ≤ i ≤ n.

Thek-Agreement condition is new, the Validity condition is different from that for regular con-
sensus, and the Termination condition is unchanged from that for regular consensus. The protocol
in Figure 14.12 can be seen to solvek-set consensus in a straightforward manner, as long as the
number of crash failuresf is less thank.

14.5.5 Approximate Agreement

Another weaker version of consensus that is solvable in an asynchronous system under crash fail-
ures is known as theapproximate consensusproblem. Likek-set consensus, approximate agree-
ment also assumes the consensus value is from a multi-valueddomain. However, rather than
restricting the set of consensus values to a set of sizek, ǫ-approximate agreement requires that the
agreed upon values by the nonfaulty processes be withinǫ of each other. The problem specification
is as follows.

ǫ-Agreement: All non-faulty processes must make a decision and the valuesdecided upon by any
two non-faulty processes must be withinǫ range of each other.

Validity: If a non-faulty processPi decides on some valuevi, then that value must be within the
range of values initially proposed by the processes.

Termination: Each non-faulty process must eventually decide on a value.

14.5.5.0.1 Algorithm Outline. The Dolev et al. algorithm to solve approximate agreement in
the message-passing model is studied next. The algorithm for the message-passing model assumes
n ≥ 5f + 1, although the problem is solvable forn > 3f + 1.

The asynchronous approximate agreement algorithm simulates synchronous communication
by operating in rounds. The algorithm in given in Figure 14.13. Steps (1a)-(1c) perform the
initialization computation to decide the number of synchronous rounds to be simulated. We will
examine this logic after examining the rest of the algorithm. The main loop, in lines (1d)-(1f),
performs an all-to-all message exchange asynchronously for the determined number of rounds.
In each round (simulated byAsynchronous_Exchange), a process broadcasts its estimate of the
agreement value, and awaitsn− f such messages from other processes before moving to the next

522

(variables)
real: v ←− input value; //initial value
multiset of real V ;
integer r←− 0; // number of rounds to execute

(1) Execution at processPi, 1 ≤ i ≤ n:
(1a)V ←− Asynchronous_Exchange(v, 0);
(1b) v ←− any element in(reduce2f (V));
(1c) r ←− ⌈logc(diff(V))/ǫ⌉, wherec = c(n− 3f, 2f).
(1d) for round from 1 to r do
(1e) V ←− Asynchronous_Exchange(v, round);
(1f) v ←− new2f,f (V);
(1g) broadcast(〈v,halt〉, r + 1);
(1h) output v as decision value.

(2) Asynchronous_Exchange(v,h)returnsV :
(2a)broadcast(v, h) to all processes;
(2b) await n− f responses belonging to roundh;
(2c) for each processPk that sent〈x,halt〉 as value, usex as its input henceforth;
(2d) return the multisetV .

Figure 14.13: Asynchronous approximation agreement algorithm. Here,n ≥ 5f + 1.

round. After each round, each process revises its estimate of the consensus value. The estimate
is revised in such a way that the choices of the different processes are guaranteed to converge at a
certain rate.

Consider any sorted collectionU . The new estimate of a process is chosen by computing
newk,f(U), which is parameterized byk andf , and defined asmean(selectk(reduce

f(U)))

reducef(U) removes thef largest andf smallest members ofU .

selectk(U) selects everykth member ofU , beginning with the first. IfU hasm members,
selectk(U) hasc(m, k) = ⌊(m − 1)/k⌋ + 1 members. This constantc represents acon-
vergence factortowards the final agreement value, i.e., ifx is the range of possible values
held by correct processes before a round, thenx/c is the possible range of estimate values
held by those processes after that round.

Illustration of definitions: Figure 14.14 shows theselectk(reducef(U)) operation, withk = 5

andf = 4. The mean of the selected members is the new estimatenew5,4(U).
The algorithm usesm = n− 3f andk = 2f . Soc(n− 3f, 2f) will represent theconvergence

factor towards reaching approximate agreement andnew2f,f is the new estimate after each round.
The choice of these parameters will be justified.

14.5.5.0.2 Notation. The algorithm usesmultisets, which are sets with repeating elements in-
cluded. Union, intersection, and set difference operations on multisets are natural extensions of the

523

u u u u u1550 10 2520

select (reduce (U))
5

4shaded members belong to

k=5

f=4reduce (U)f

u

U

Figure 14.14: Illustratingselectk(reducef(U)), with k = 5 and f = 4. reduce4(U) has 26
members, hencec(26, 5) = 6 members are selected.

counterparts for regular sets.mean(U) is the arithmetic mean ofU , calculated by considering each
instance in the multiset.min(U) andmax(U) are defined as for sets.range(U) is the interval
[min(U), max(U)]. diff(U) ismax(U)−min(U).

Some essential combinatorial results are first proved. Let|U | = m, and let them elements
u0 . . . um−1 of multisetU be in nondecreasing order. The following properties on nonempty mul-
tisetsU , V , andW can easily be seen.

Property 1. The number of the elements in multisetsU andV is reduced by at most 1 when the
smallest element is removed from both. Similarly for the largest element.

Property 2. The number of elements common toU andV before and afterj reductions differ by
at most2j. Thus, forj ≥ 0 and|V |, |W | ≥ 2j, |V ∩W |−|reducej(V)∩reducej(W)| ≤ 2j.

Property 3. LetV contain at mostj values not inU , i.e.,|V −U | ≤ j, and let size ofV be at least
2j. Then by removing thej low andj high elements fromV , it is easy to see that remaining
elements inV must belong to the range ofU , see Figure 14.15. Thus,

• each value inreducej(V) is in the range ofU , i.e.,range(reducej(V)) ⊆ range(U).

• newk,j(V) ∈ range(U).

14.5.5.0.3 Convergence Rate of Approximation. Let U be the multiset of estimates, one es-
timate per correct process, at the start of a round. LetV andW be the multisets received at two
arbitrary correct proceses in that round. The processes usethe approximation function to choose
their values for the next round. The new estimates chosen by any two arbitrary correct processes,
using the approximation functionnewk,f , are guaranteed to be withinrange(U)/c(m, k) of each
other, when (i)|V | = |W | = m, (ii) |W − V |, |V −W | ≤ k and (iii) (|V − U |, |W − U | ≤ f .

524

Convergence Rate.Let k > 0, f ≥ 0, andm > 2f . For the multisets received,|V | = |W | = m.
Let the multisets received differ fromU in at mostf elements (|V −U |, |W−U | ≤ f), and let
the multisets received differ from each other in at mostk elements (|W −V |, |V −W | ≤ k).
Then

|newk,f(V)− newk,f(W)| ≤ diff(U)/c(m− 2f, k) (14.1)

The proof of this relationship is outlined next. There are exactlym− 2f members in each ofM =

reducef(V) andN = reducef(W). Hence,selectk(M) = {m0, m1 . . .mc−1} andselectk(N) =
= {n0, n1 . . . nc−1}, whereselectk(M) and selectk(N) each havec = c(m − 2f, k) members.
Observe that (i) at leastki + 1 members ofM are less than or equal to anymi (likewise forN).
Also, (ii) at mostkimembers ofM are less thanmi (likewise forN). The following can be shown
using the earlier properties and definitions.

max(mi, ni) ≤ min(mi+1, ni+1), where0 ≤ i ≤ c− 2. (14.2)

This directly follows ifmi ≤ ni+1 andni ≤ mi+1 can be shown.

V

U

W

range(reduce (W))
f

range(U)

new (V)
k,f

new (W)
k,f

<=diff(U) / c(m−2f,k)

range(reduce (V))
f

Figure 14.15: Illustrating Property 3 for theǫ-agreement problem.|V | = |W | = m, |V −W | =
|W − V | = k, and|V − U |, |W − U | ≤ f . Note that the horizontal spacing in the figure shows
only the relative positioning of elements in the sorted multisets and need not be to scale.

Assume to the contrary thatmi > ni+1. From (i), at leastk(i+ 1) + 1 elements ofN are less
than or equal toni+1, and hence less thanmi. But from (ii), at mostki elements ofM are less than
mi. Hence, at leastk + 1 elements inN are not inM , i.e.,|N −M | ≥ k + 1.

Observe that|W − V | ≤ k and |W ∩ V | ≥ m − k. Using Property (2), This implies that
|N ∩M | ≥ m− k − 2f and hence|N −M | ≤ (m− 2f)− (m− k − 2f) ≤ k. This contradicts
the conclusion of the assumption aboutmi > ni+1. Hence,mi ≤ ni+1. Symmetrically,ni ≤ mi+1

525

can be shown. So Equation (14.2) holds.

|newk,f(V)−newk,f(W)| = 1

c
|

c−1
∑

i=0

(mi−ni)| ≤
1

c

c−1
∑

i=0

|mi−ni| =
1

c

c−1
∑

i=0

(max(mi, ni)−min(mi, ni))

Using Equation 14.2 in the R.H.S., expanding terms, and simplifying:

|newk,f(V)− newk,f(W)| ≤ 1

c
(max(mc−1, nc−1)−min(m0, n0))

Using Property 3,max(mc−1, nc−1)−min(m0, n0) ≤ range(U) and Equation (14.1) follows.

14.5.5.0.4 Correctness. Let T , the set of correct processes, be such that|T | ≥ n − f . Let
U andU ′ be the multiset of estimates (one estimate from each process) before and after some
roundh. |V | = |W | = n − f . Also, |V − U |, |W − U | ≤ f because at mostf processes are
faulty. |V ∩W | ≥ n − 3f because bothp andq would have received the same values from the
correct processes from which both received messages. Hence, the difference betweenV andW
|V − W | = |W − V | = |V | − |V ∩ W | ≤ 2f (the upper bound on this was denoted ask in
Equation 14.1). Then, we have the following.

• ǫ-agreement. |new2f,f (V) − new2f,f (W)| ≤ diff(U)/c(n − 3f, 2f). This immediately
follows by observing that the multisetsU , V , andW satisfy Equation 14.1 whenm is set to
n− f andk is set to2f , and hencec(m− 2f, k) becomesc(n− 3f, 2f).

This inequality implies that the range of the multiset of estimates chosen by all processes in
T reduces by a factor ofc(n− 3f, 2f). This≥ 2 as the algorithm assumes thatn ≥ 5f + 1.
Hence, after a logarithmic number of iterations (determined in lines (1a)-(1c) and described
below), this range reduces to belowǫ.

• Validity. range(U ′) ⊆ range(U). As the multisetsU andV satisfy Property 14.5.5.0.2,
we have thatnew2f,f(V) ∈ range(U). For each round, it can be seen that the value of each
correct process is within the range of the values of the correct processes at the start of the
first round.

Initialization (lines 1a-1c): The upper bound on the number of iterations is determined in the
initialization phase, in lines (1a)-(1c). Let the multisets of estimates received by two arbitrary
correct processesPp andPq after line (1a) beVp andVq. |Vp|, |Vq| > 4f becausen ≥ 5f + 1;
and|Vp − Vq|, |Vq − Vp| ≤ 2f (shown above). We can apply Property 2 to bothVp andWq with
respect to each other (and by settingj = 2f) – to get thatrange(reduce2f(Vp)) ⊆ range(Vq) and
range(reduce2f(Vq)) ⊆ range(Vp).

It follows thatvp ∈ range(Vq) andvq ∈ range(Vp) after line (1b). This guarantees that each
correct processPq knows at the end of the initialization round that its rangerange(Vq) contains
all the valuesvp of all correct processesPp at the end of this initialization round. Knowingǫ and
the convergence ratec, epsilon ≥ [diff(V)/cround] and hence it is adequate to executeround =

526

⌈logc(diff(V)/ǫ)⌉ rounds. Hence, the number of rounds computed in line (1c) is an upper bound
on the number of iterations in which every two correct processes are guaranteed to converge to
within ǫ.
Termination (lines 1g-1h): Observe that each process may determine a different number of rounds
to execute at line (1c). When a process finishes the required number of rounds, it executes (lines 1g-
1h) wherein it sends a special symbol “halt” and terminates itself. When some processPq receives
such a message fromPp, it should use the value ofPq for this and all of its subsequent rounds until
it finishes its own precomputed number of rounds. This detailis left out of the pseudo-code for
simplicity.

14.5.5.0.5 Complexity

Time complexity: ⌈logc(diff(V)/ǫ)⌉+ 1 rounds.

Message complexity:n× [⌈logc(diff(V)/ǫ)⌉+ 1] messages of sizeO(1) each.

14.5.6 Renaming Problem

Problem Definition
The consensus problem which was a problem about agreement required the processes to agree on
a single value, or a small set of values (k-set consensus), or a set of values close to one another
(approximate agreement), or reach agreement with high probability (probabilistic or randomized
agreement). A different agreement problem introduced by Attiya et al. requires the processes
to agree on necessarily distinct values. This problem is termed as therenamingproblem. The
renaming problem assigns to each processPi, a namemi from a domainM , and is formally
specified as follows.

Agreement: For nonfaulty processesPi andPj ,mi 6= mj .

Termination: Each nonfaulty process is eventually assigned a namemi.

Validity: The namemi belongs toM .

Anonymity: The code executed by any process must not depend on its initial identifier.

The renaming problem is useful for name space transformation. A specific example where this
problem arises is when processes from different domains need to collaborate, but must first assign
themselves distinct names from a small domain. A second example of the use of renaming is when
processes need to use their names as “tags” to simply mark their presence, as in a priority queue.
A third example is when the name space has to be condensed. This can occur when, for a system
consisting of a large number of processes,k-mutual exclusion has to be enforced. Of the large pool
of processes, onlyk can be in the mutual exclusion at any time to use thek copies of a replicated
resource. Each resource can be viewed as holding a permit, 1 throughk. For a process to gain
access to the resource, it has to gain a permit.

The assumptions about the renaming problem are as follows.

527

• Then processesP1 . . . Pn have their identifiers in the old name space.Pi knows only its
identifier, and the total number of processes,n. The names of other processes are not known
to a process.

• Then processes take on new identifiersm1 . . .mn, respectively, from the name spaceM .

• Due to asynchrony, each process that chooses its new name must continue to cooperate with
the others until they have chosen their new names.

The above formulation of the renaming problem is called theone-time renamingproblem.
If processes continually acquire and release names from a common pool, then the formulation
becomes thelong-lived renamingproblem.Long-lived renamingis a resource acquisition problem.

name rank

< f+2

pick new name

based on rank

as own name

V arrives

V not

same as

MRV

count=0

V=MRV

No

Yes

YesYes

No

broadcast own

name as Most

Recent View (MRV)

decide MRV as name and help others to decide

No

S

T

A

R

T

conflict

count++

> n−f

count

MRV new view

Figure 14.16: Flow-chart of the asynchronous renaming algorithm in a message-passing system.

Algorithm
Figure 14.17 gives Attiya et al.’s algorithm for one-time renaming whenn ≥ 2f + 1, and up tof
processes may fail in a fail-stop manner. The size of the transformed name spaceM is n+ f .

The high-level functioning of the algorithm is given in Figure 14.16. Each process has a list
V iew in which it tracks the latest proposed name by each process, as and when it learns of it. Its
own proposed name is tracked inV iew[1]. In more details, the view of a name has four compo-
nents, as described in theViewdata structure in Figure 14.17.V iew is a list of up ton objects of
typebid. Various views are ordered by the≤ relation, defined as follows.

• V iew ≤ V iew′ if and only if for each processPi such thatV iew[k].P = Pi, we also have
that for somek′, V iew′[k′].P = Pi andV iew[k].attempt ≤ V iew′[k′].attempt.

If V iew′ 6≤ V iew (line 1n), thenV iew is updated usingV iew′ (line 1o) by:

1. including all process entries fromV iew′ that are missing inV iew (i.e., V iew′[k′].P is not
equal toV iew[k].P , for all k), so such entriesV iew′[k′] are added toV iew.

528

2. replacing older entries for the same process with more recent ones, (i.e., ifV iew′[k′].P =

Pi = V iew[k].P andV iew′[k′].attempt > V iew[k].attempt, replaceV iew[k] byV iew′[k′]).

Any new information learnt is broadcast to all processes (lines 1c, 1v), and a process uses a
countercount to track the number of other processes that have broadcast the exact same view as
the latest view of this process (line 1k). If the view in a received message contains information that
is not in the current view (line 1n), the current view is updated (line 1o). Note that this is similar to
taking the pairwise maximum of vector clocks. However, a crucial difference is that the ordering
of the components is not predetermined, as each process may order the other processes differently.
Whencount reachesn − f (line 1l), no more messages may arrive because the otherf processes
may have failed. Such a view for whichn− f affirmations were received is said be astable view.

Once a process determines a view to be stable (lines 1m, 1q), the process checks if there is a
conflict with its choice of a new name and the choices of other processes (lines 1r, 1s). If there
is no conflict, it finalizes its choice of the new name (lines 1t, 1u) and goes to the loop (lines
1G-1K) wherein it helps other processes to gain stable viewsand finalize their new name choices.
If there is a conflict (lines 1w-1F), a new name must be chosen once again and competed with
other processes. There are two cases here, depending on therank of the process among all the
processes that have not yet finalized their new names (i.e., among all processes except those for
whichV iew[j].decide = 1). Let the set of such processes be denoted asUNDECIDED(V iew).
Clearly, as the new names of such processes are not finalized,the rank is determined based on the
old names (line 1x).

• If the rank r is less thanf + 2 (line 1y), the process chooses therth free name from
FREE(V iew), the “free” names fromM that have not been finalized by the processes
(which have theirdecide component set to 1 inV iew). The process has to restart the bidding
process, by going back to step (1a), broadcasting its updated view (line 1c), and so on.

• If the rank r exceedsf + 1 (lines 1C,ID), the process goes to line (1e) and then waits for
some other process to send its updated views. The logic here is that at least one correct
process will have a rank up tof + 1 amongUNDECIDED, and will pick and stabilize its
new name before processes with rank greater thanf + 1 begin to compete for a new name.

Some definitions and properties are now given.

P1. An algorithm islocally properif for each run and each process, the sequence of theV iew list
is totally ordered by≤. The algorithm in Figure 14.17 is seen to be locally proper, from lines
(1j)-(1o).

P2. A view is stable with respect to a processif the process has receivedn − f − 1 messages
containing identical information in the accompanying view. (Along with its own identical
view, there aren − f affirmations.) A view isstable in a runif it is stable with respect to
some process.

529

(local variables)
struct bid:

integer P ; // old name of process
integer x; // new name being bid by the process
integer attempt; // the number of bids so far, including this current bid
booleandecide; // whether new namex is finalized

list of bid : V iew[1 . . . n]←− 〈〈i, 0, 0, false〉〉; // initialize list with an entry forPi

integer count; // number of copies of the latest local view, received from others
boolean: restart, stable, no_choose; // loop control variables

(1) A processPi, 1 ≤ i ≤ n, participates in renaming:
(1a)repeat
(1b) restart←− false;
(1c) broadcastmessage(V iew);
(1d) count←− 1;
(1e) repeat
(1f) no_choose←− 0;
(1g) repeat
(1h) await message(V iew′);
(1i) stable←− false;
(1j) if V iew′ = V iew then
(1k) count←− count + 1;
(1l) if count ≥ n− f then
(1m) stable←− true;
(1n) else ifV iew′ 6≤ V iew then
(1o) updateV iew usingV iew′ by taking latest information for each process;
(1p) restart←− true;
(1q) until (stable = true or restart = true); // n− f copies received, or new view obtained
(1r) if restart = false then // V iew[1] has information aboutPi

(1s) if V iew[1].x 6= 0 and V iew[1].x 6= V iew[j].x for anyj then
(1t) decideV iew[1].x;
(1u) V iew[1].decide←− true;
(1v) broadcastmessage(V iew);
(1w) else
(1x) let r be the rank ofPi in UNDECIDED(V iew);
(1y) if r ≤ f + 1 then
(1z) V iew[1].x←− FREE(V iew)(r), therth free name inV iew;
(1A) V iew[1].attempt←− V iew[1].attempt + 1;
(1B) restart←− 1;
(1C) else
(1D) no_choose←− 1;
(1E) until no_choose = 0;
(1F)until restart = 0;
(1G) repeat
(1H) on receivingmessage(V iew′)
(1I) updateV iew with V iew′ if necessary;
(1J) broadcastmessage(V iew);
(1K) until false.

Figure 14.17: Asynchronous renaming in the message passingmodel. Code shown is for process
Pi, 1 ≤ i ≤ n.

530

P3. If an algorithm is locally proper, then in any run, the set of stable views is totally ordered.

This is seen as follows. Let viewsV iew andV iew′ be stable with respect to processesi and
j, respectively. Thenn− f processes (say, setAi) agree onV iew, andn− f processes (say,
setAj) agree onV iew′.

If V iew andV iew′ are not totally ordered,Ai ∩ Aj = ∅. Disjointness implies size ofAj is at
mostn− (n−f) = f . Thus,n−f ≤ f , implying,n ≤ 2f . This contradicts the assumption
thatn ≥ 2f + 1, hence, at least one process must have sent bothV iew andV iew′. SoV iew
andV iew′ must be totally ordered.

P4. As the algorithm in Figure 14.17 is locally proper, its set ofstable views is totally ordered.

Correctness

Safety: A process finalizes a new name once it has a stable view.Pi andPj cannot finalize the
same name because the stable views are totally ordered. Without loss of generality, assume thatPi

stable view≤ Pj ’s stable view when they respectively finalize their names. ThenPj ’s stable view
must include the name finalized byPi, andPj will not pick the same name.
Liveness/Termination: Observe that when a process picks a new name (line 1z), there are at
mostn − 1 names used by others, sof + 1 names are available. To show that all processes
eventually finalize a name, letFREE(V iew) be the set of free names fromM as perV iew. Let
DECIDED be the set of processes that finalize their new names (i.e., for which bid.decide is
true). ThenN − DECIDED is UNDECIDED, the set of processes which cannot finalize a
new name. We now argue using contradiction thatUNDECIDED is empty.

• Consider the execution after the time that all processes inDECIDED have decided their
new names, and at least one bid sent by every other correct process has been received by
each correct process, implying that|V iew| ≥ n−f . As no correct process blocks, this point
in time will occur. LetV iewmin be the smallest stable view after this point in time. By (P4),
all the views are totally ordered and henceV iewmin is uniquely defined. Let the set of free
names at this time be denoted asFREE(V iewmin) and the set of undecided processes at
this time be denoted asUNDECIDED(V iewmin).

• Among the processes inUNDECIDED(V iewmin), consider the processPmin with the
smallestrank, based on the old names. The rank is at mostf + 1, and hence the pro-
cess will select a new name (lines (1y, 1z, 1A)). Asrank is unique, no other process in
UNDECIDED(V iewmin) will now or henceforth choose this name chosen byPmin.

• Pmin updates and broadcasts its view. When other processes receive this view, they update
their local views with this new information, and will also broadcast their updated views

– either in the loop (lines 1G-1K), or

– via execution of lines (1C-1D), then lines (1n-1o), and then(1b-1c).

531

(variables)
boolean: clean←− 1; //variable at each process

(1) ProcessP0 initiates Reliable Broadcast:
(1a)broadcastmessageM to all processes.

(2) A processPi, 1 ≤ i ≤ n, receives messageM :
(2a) if clean then broadcastM to all processes;
(2b) clean←− 0.

Figure 14.18: Protocol for reliable broadcast.

Pmin and all other correct processes receive at leastn − f confirmations, making the view
containingPmin’s choice of a new name a stable view. Hence,Pmin can decide a new name,
leading to a contradiction thatUNDECIDED(V iewmin) is empty.

Complexity: Each time a process bids with a new name for itself, a broadcast is sent (n − 1

messages) and each recipient of the broadcast, seeing as newview, also does a broadcast (n − 1

messages). This leads toO(n2) messages per new name bid. Let the final stable view be denoted
by V iewfinal. The total number of messages isΣn

i=1V iewfinal.attempti×n2. Exercise 9 asks you
to analyze the bound on the number of attempts made by the processes.

14.5.7 Reliable Broadcast

Although Reliable Terminating Broadcast (RTB) is not solvable under failures (recall that we
showed a reduction from consensus to that problem), a weakerversion of RTB, namely Reliable
Broadcast, in which the Termination condition is dropped, is solvable under crash failures. The
protocol is shown in Figure 14.18. This protocol uses up toO(n2) messages to broadcast message
M and works in the face of any number of failures. The key difference between RTB and Reliable
Broadcast is that RTB requires eventual delivery of some message – even if the sender fails just
when about to broadcast. In this case, a null message must getsent, whereas this null message
need not be sent under Reliable Broadcast. Thus, RTB requires the recognition of the failure (as
described above) as opposed to no message getting sent. Thisreduces to the ability of distinguish-
ing between a slow process and a failed process, which was thecrux in solving the consensus
problem under crash failure.

532

14.6 Wait-free Shared Memory Consensus in Asynchronous Sys-
tems

14.6.1 Impossibility Result

The impossibility of achieving consensus in asynchronous message-passing systems in a system
prone to crash failures (discussed in Section 14.5.1) also extends to asynchronous shared memory
systems. A shared memory system can be emulated by a message-passing system – if consensus
could be reached in a shared memory system, it could also be reached in a message-passing system,
leading to a contradiction. Thus, consensus cannot be reached in an asynchronous shared memory
system in the crash failure model. The intuition behind the impossibility result in shared memory
systems is similar – in the face of a potential process crash,it is not possible to distinguish between
a crashed process and a process that is extremely slow in doing its Reador Write operation. The
FLP argument using 0-valent and 1-valent states and thecritical stepused earlier for asynchronous
message-passing systems can also be used here for asynchronous shared memory systems. The
reasoning to show that consensus cannot be achieved even if asingle process fails runs informally
along the following lines.

i i i

j

z

X

i

0−val 0−val 1−val 1−val

Z
Y

Figure 14.19: Execution prefix used to show impossibility of1-failure tolerant consensus.

Assume there exists a protocol in which consensus can be reached even if a single process
fails. Recall from Section 14.5.1 that there exists a bivalent initial state. Due to the termination
requirement of the problem, there must exist some processi that makes a transition from a bivalent
state to an univalent state even if there are no failures. (For a wait-free consensus, this is also true.)
So there must be some execution prefixX that is bivalent, but from which a step byi makes it0-
valent, whereas a step byi after an extensionY ofX leads to a1-valent state. (See Figure 14.19.) If
there are multiple events betweenX andY , then there must be a prefixZ such that a step byi leads
to 0-valence but a step by another processj (j 6= i as processes are assumed to be deterministic)
followed by a step byi leads to1-valence.

The argument now uses a simple case analysis based on the actions ofi andj afterZ, to show
that the configuration ofZ as shown in Figure 14.19 is impossible, showing the impossibility of a
1-failure consensus protocol. The notationextend(Z, i ◦ j) denotes the state after processesi and
j take steps in that order, after executionZ.

533

Processi’s event is a Read. (See Figure 14.20(a).)Thenextend(Z, i ◦ j) andextend(Z, j ◦ i)
are identical to all processes excepti. If i does not take any step afterextend(Z, i ◦ j), then
all process must eventually terminate with consensus on 0 while executing a suffix, sayδ.
But if the same suffix is executed afterextend(Z, j ◦ i), they must reach a consensus on 1.
As extend(Z, i ◦ j) andextend(Z, j ◦ i) are isomorphic to all processes except the stopped
processi, we have a contradiction.

Processj’s event is a Read.The states afterextend(Z, i) andextend(Z, j ◦ i) are identical to all
processes exceptj. The same logic as for the previous case, this time lettingj stop instead
of i, leads to a similar contradiciton.

Processesi and j execute Write on different variables. (See Figure 14.20(b)). The system state
afterextend(Z, i◦ j) which is 0-valent is the same as the system state afterextend(Z, j ◦ i),
which is 1-valent. There now arises a contradiction, irrespective of whether all processes
decide on 0 or on 1.

Processesi and j execute Write on the same variable. (See Figure 14.20(c)).The system state
afterextend(Z, i) andextend(Z, j ◦ i) are identical to all processes exceptj. If all processes
exceptj run afterextend(Z, i), the consensus value must be 0. If all processes exceptj run
afterextend(Z, j ◦ i), the consensus value must be 1. Asextend(Z, j ◦ i) andextend(Z, i)
are isomorphic to all processes except the stopped processj, we have a contradiction.

Hence, there cannot exist any bivalent state that allows anyprocess to go a univalent state.

Read

Read
by i

j

j

0−val

0−val0−val

ZZ Z

0−val0−val

Write

Write

Write

Write

WriteWrite
by

by

i

iby
i

by i by j

Write
by j

by jby i

(a) i does a Read

different variables
(c) i and j write to
the same variable

(same logic if
j does a Read)

0−val

all processes
except i

all processes

1−val1−val

except j

(b) i and j write to

Figure 14.20: Various cases to show impossibility of 1-failure tolerant consensus in the asyn-
chronous message-passing model.

534

The key reason why this result for the 1-failure case is different from that for the failure-free
case is that the 1-failure case allows for a bivalent initialstate, whereas the initial state for a failure-
free execution is univalent.

Between the time a process reads various registers and (deciding on a consensus value) writes
its consensus value, the values of the other registers read can get updated by other processes.
Herein lies the difficulty for shared memory systems – the reads and the writes are not together
guaranteed to be an atomic action – and hence taking action about deciding a consensus value,
independent of processes that are “suspected" to have failed, can lead to an erroneous decision on
consensus. Hence, from a bivalent state, it is not possible to transition to a univalent state. This
leads to the following two results – the second one follows trivially from the first.

• It is not possible to reach consensus in an asynchronous shared memory system using Read/Write
atomic registers, even if a single process can fail by crashing.

• There is no wait-free consensus algorithm for reaching consensus in an asynchronous shared
memory system using Read/Write atomic registers.

There are two ways of overcoming the impossibility result.

• Weakening the consensus problem, as was done for message-passing systems. This area
covers the design of asynchronous algorithms fork-set consensus, approximate consensus,
and renaming using atomic registers and atomic snapshot objects which are built from atomic
registers, studied in Chapter 12. These algorithms are studied in Sections 14.6.4-14.6.6.

• Using memory that is stronger than atomic Read/Write memoryto design wait-free consen-
sus algorithms. Such a memory would have corresponding access primitives.

Recall that await-free algorithm in a system ofn processes is a(n − 1)-crash resilient
algorithm. Thus, any process should be able to perform its execution, independent of any
other processes. The above results lead to the question:

– are there objects (with supporting operations), using which there is a wait-free (i.e.,
(n− 1)-crash resilient) algorithm for reaching consensus in an-process system?

In the remainder of this section, we assume only the crash failure model, and also require
the solutions to bewait-free.

As it turns out, the answer is Yes. Objects/primitives such as Test-&-Set, Swap, Compare-
&-Swap, andMemory Move, that were designed in the context of efficient computer archi-
tectures, do indeed allow consensus to be reached in a wait-free manner. Such objects are
stronger than the safe, regular, or atomic Read/Write registers. The notion ofconsensus
numberprovides a metric to measure the degree to which these various primitives allow
consensus to be reached. This study of these more complex objects also extends our study
of the register simulations of Chapter 6, wherein stronger register types were simulated from
weaker register types.

535

Object Consensus number
Read/Write objects 1
Test-&-Set, stack, FIFO queue, Fetch-&-Inc 2
Augmented queue withpeek - sizek k
Compare-&-Swap, Augmented queue, memory-memory move ∞
memory-memory swap, Fetch-&-Cons, store-conditional

Table 14.4: Consensus numbers of some object types. Some of these objects are described in
Figure 14.22.

14.6.2 Consensus Numbers and Consensus Hierarchy

Definition 28. An object of typeX has consensus numberk, denoted asCN(X) = k, if k is the
largest number for which the objectX can solve wait-freek-process consensus in an asynchronous
system subject tok − 1 crash failures, using only objects of typeX and read/write objects.

Consensus numbers of some well-known objects are shown in Table 14.4. Figure 14.22 gives
the definitions of some of these objects. As seen from Definition 28, there is an infinite hierarchy
- called theconsensus hierarchy- that gets defined, according to the power of the objects to solve
wait-free consensus under crash failures.

A natural consequence of the definition ofconsensus numberis the following result.

Theorem 14. For objectsX andY such thatCN(X) < CN(Y), there is no wait-free simulation
of objectY usingX and read/write registers (whose consensus number is 1) in a system with more
thanCN(X) processes.

If such a simulation did exist, then by Definition 28,CN(X) = CN(Y), leading to a contra-
diction. Note that if there are up toCN(X) processes, it is possible (as shown in Section 14.6.3)
forX and read/write registers to wait-free simulateY because the full power of reaching consensus
among more thanCN(X) processes is never required to be exercised.

A corollary of this result is that there is no wait-free simulation of any object with consensus
number more than one, using only read/write atomic registers. This corollary is important because
it implies that objects with stronger properties than the read/write atomic register are needed. The
ability to read and write, perhaps conditionally, in an atomic manner was earlier found to be useful
in designing semaphores in operating systems, and certain primitives in computer architecture and
design. Several of the objects in Figure 14.22 were first designed in hardware in these specialized
contexts. We will now see two examples of achieving wait-free consensus – one using the FIFO
queue, and another using the Compare-&-Swap instruction.

14.6.2.1 FIFO queue

Figure 14.21 shows how 2-consensus is achieved using a FIFO queue. The queue operations
areenqueueanddequeue. The queue is initialized with a single value, 0. Both processes try to

536

(shared variables)
queue: Q←− 〈0〉; // queueQ initialized
array of integer: Choice[1, 2]←− [⊥,⊥] // preferred value of each process
(local variables)
integer: temp←− 0;
integer: x←− initial choice;

(1) ProcessPi, 1 ≤ i ≤ 2, executes this for 2-process consensus using a FIFO queue:
(1a)Choice[i]←− x;
(1b) temp←− dequeue(Q);
(1c) if temp = 0 then
(1d) output(x)
(1e)else output(Choice[1 − i]).

Figure 14.21: Protocol for 2-process wait-free consensus using a FIFO queue. Code forPi, 1 ≤
i ≤ 2.

dequeue from the queue. However, due to the atomicity of thedequeueoperation, access is always
serialized. The first process that dequeues the ‘0’ element uses its own initial value (localx) as the
consensus value and outputs it. The other process, on completing its dequeueoperation, gets⊥,
and learns that the first process has dequeued first, and therefore borrows the value set aside by the
first process inChoice[1 − i]. Thus, both processes agree on the same value and hence 2-process
consensus is achieved. The operations of any process can be seen to be wait-free. The same logic
cannot be extended to three processes because of the following informal reasoning. Some one
process will dequeue the ‘0’. When the other two processes dequeue and get a⊥, they know that
one of the other two processes’ value is the consensus value,but do not know which of the other
two processes it is. This is because the queue object does notatomically allow the first process
to leave behind (i.e., write) its identifier as an imprint forthe second and third processes to learn
about when they issue theirdequeue. Therefore,CN(queue) = 2.

14.6.2.2 Compare&Swap

Figure 14.23 shows how wait-free consensus is achieved among any number of processes using
the Compare&Swap operation (see Figure 14.22) on a shared registerReg. TheCompare&Swap
performs all actions of an invocation atomically, thus serializing all concurrent accesses. Each
process executesCompare&Swap(Reg,⊥, x). The value of the objectReg is read into local
variableval, and if this valueval equals the key⊥, then the process’s preferencex gets written
toReg atomically. Due to the serialization of the operations, some process always gets serialized
first, even if accesses are concurrent. There are thus two cases.

• Consider the process that gets serialized first. The value ofReg read viaCompare&Swap-
(Reg,⊥, x) equals the key⊥, and the preferencex of this process gets written toReg. The
process returns itsx as the consensus value.

537

(shared variables among the processes accessing each of thedifferent object types)
register: Reg ←− initial value; // shared register initialized
(local variables)
integer: old←− initial value; // value to be returned
integer: key ←− comparison value for conditional update;

(1)RMW (Reg, functionf) returnsvalue:
(1a)old←− Reg;
(1b)Reg ←− f(Reg);
(1c) return (old).

(2)Compare&Swap(Reg, key, new) returnsvalue:
(2a)old←− Reg;
(2b) if key = old then
(2c) Reg ←− new;
(2d) return (old).

(3) Fetch&Inc(Reg) returnsvalue:
(3a)old←− Reg;
(3b)Reg ←− r + 1;
(3c) return (old).

Figure 14.22: Definitions of synchronization operationsRMW , Compare&Swap, Fetch&Inc.

• Any other process executingCompare&Swap(Reg,⊥, x) will find that the value ofReg
(which is the valuex set by the first process) does not match the key⊥. Hence it leaves
Reg unmodified and returns the value ofReg as the consensus value. The implication is that
another process has earlier foundReg =⊥ and set its own preference as the value ofReg.
So this process borrows the value set by the earlier process inReg as the consensus value.

Due to the atomicity of theCompare&Swap operation and the fact that this logic works for any
number of processes, the code for consensus is wait-free andcan tolerate up ton− 1 failures, for
all n. Hence,CN(Compare&Swap) is∞.

14.6.2.3 Read-Modify-Write abstraction

The Read-Modify-Write (abbreviated asRMW) abstracts several objects wherein a register can
be read and modified using an arbitrary functionf atomically. Such objects includeFetch&Inc,
Swap, andTest&Set. TheRMW object has a consensus number of at least 2 because the first
process to read the object can atomically modify its value toleave an imprint that the object has
been accessed at least once (e.g., as in the FIFO queue). If the imprint can also include the identity
of the first process to read, or of the choice of the first process, processes that subsequently access
the object can by pointed to the choice made by the first process, and the consensus number may

538

(shared variables)
integer: Reg ←−⊥; // shared registerReg initialized
(local variables)
integer: temp←− 0; // temp variable to read value ofReg
integer: x←− initial choice; // initial preference of process

(1) ProcessPi, (∀i ≥ 1), executes this for consensus usingCompare&Swap:
(1a)temp←− Compare&Swap(Reg,⊥, x);
(1b) if temp =⊥ then
(1c) output(x)
(1d)else output(temp).

Figure 14.23: Protocol for wait-free consensus usingCompare&Swap, for any number of pro-
cesses. Code forPi, 1 ≤ i ≤ ∞.

then be more than 2.
The variousRMW objects differ in their functionf . A function is termed asinterfering if

for all process pairsi andj, and for all legal valuesv of the register, (i)fi(fj(v)) = fj(fi(v)),
i.e., function is commutative, or (ii) the function is not write-preserving, i.e.,fi(fj(v)) = fi(v) or
vica-versa with the roles ofi andj interchanged.
Examples: TheFetch&Inc commutes even though it is write-preserving. TheTest&Set com-
mutes and is not write-preserving. TheSwap does not commute but it is not write-preserving.
Hence, all three objects uses functions that areinterfering.

Figure 14.25 shows how wait-free consensus is achieved among two processes using theRMW
operation (see Figure 14.22) on a shared registerReg. TheRMWperforms all actions of an invoca-
tion atomically, thus serializing all concurrent accesses. Each process executesRMW (Reg, f, x),
wherex is the initial choice of the process. The shared data structures are shown in Figure 14.24.
Reg has an initial distinguished value⊥, known to all processes. The assumption here is that the
functionf is non-trivial, meaning, it is not the identity function.

RMW register

Choice [0] [1]

Reg

Figure 14.24: Shared data structures for solving 2-processwait-free consensus using theRMW
operation.

Although any nontrivial RMW operation has a consensus number of at least 2, it can be seen
that a nontrivialinterferingRMW operation has a consensus number of exactly 2, i.e., there is no

539

(shared variables)
integer: Reg ←−⊥; // shared registerReg initialized
(local variables)
integer: Choice[0, 1] ←− [⊥,⊥]; // data structure
integer: x←− initial choice; // initial preference of process

(1) ProcessPi, (0 ≤ i ≤ 1), executes this for consensus usingRMW:
(1a)Choice[i]←− x;
(1b) if val =⊥ then
(1c) output(Choice[i])
(1d) else output(1− i).

Figure 14.25: Protocol for wait-free consensus for two processes usingRMW . Code is forPi,
0 ≤ i ≤ 1.

algorithm to reach consensus with three processes. An informal argument to see this is as follows.
Consider the third process to access the object. If the RMW operation is commutative, the third
process cannot tell which of the other two processes accessed the object first, and hence does not
know what consensus value to use. If the RMW operation is not write-preserving, the third process
cannot tell if it is the second or the third process to access the object; and hence does not know
what consensus value to use. Operations such asCompare&Swap are noninterfering operations,
and hence have consensus numbers higher than 2.

14.6.3 Universality of Consensus Objects

In Chapter 6, we studied the wait-free simulations of various types of registers using weaker forms
of registers. We now build on this notion of wait-free simulation of one object type using another
object type, in the context of consensus under crash failures. An object is defined to beuniversal
if that object along with read/write registers can simulateany other object in a wait-free manner.
The main result of this section is that in any system containing up tok processes, an objectX such
thatCN(X) = k is universal, i.e., it can simulate any other object. The condition on thenumber
of processes in the system is essential; becauseX does not and can not manifest the greater power
that is required when the number of objects exceedsCN(X). If the condition were removed, then
an objectX would truly wait-free simulate another object with a greater consensus number in a
system with more thanCN(X) processes, leading to a violation of the definition of consensus
number.

For any system with up tok processes, the universality of objectsX with consensus number
k is shown by giving auniversalalgorithm to wait-free simulateanyobject using only objects of
typeX and read/write registers. This is shown in two steps.

1. A universalalgorithm to wait-free simulateanyobject whatsoever using read/write registers
and arbitraryk-processor consensus objects is given. This is the main step.

540

2. Then, the arbitraryk-process consensus objects are simulated with objects of typeX, also
having consensus numberk. This trivially follows after the first step.

Hence, any objectX with consensus numberk is universal in a system withn ≤ k processes. In the
rest of this subsection, we study a universal algorithm to wait-free simulate any object whatsoever
using read/write registers and arbitraryk-processor consensus objects (step 1). The following two
concepts are useful.

• An arbitrary consensus objectX allows a single operation,Decide(X, vin) and returns a
valuevout, where bothvin andvout have to assume a legal value from known domainsVin and
Vout, respectively. For the correctness of this shared object version of the consensus problem,
all vout values returned to each invoking process must equal thevin of some process.

• A nonblockingoperation, in the context of shared memory operations, is anoperation that
may not complete itself but is guaranteed to complete (i.e.,provide aresponse indication
(see Chapter 6) to) at least one of the pending operations in afinite number of steps. This
operation is a weaker version of a wait-free operation.

We will first study a universal algorithm that does a nonblocking simulation of any object, and then
refine this algorithm to get a wait-free algorithm.

14.6.3.1 A Nonblocking Universal Algorithm

The algorithm shown in Figure 14.26 uses a linked list (with the initial record termedanchor_record)
to store the linearized sequence of operations and resulting states on an arbitrary objectZ. The
data structureop defines the format of one such element in this linked list. Thelinked list and data
structure format are illustrated in Figure 14.27. Operations to the arbitrary objectZ are simulated
in a nonblocking way using only an arbitrary consensus object (namely, the fieldop.next in each
record) which is accessed via theDecide call. We are not concerned with how the consensus object
itself orDecide is implemented.

When an operationZ being simulated is invoked usinginvoc, a record calledmy_new_record
is allocated and the record’soperationfield is set to the invoked operation (lines 1a-1b). The main
challenge in simulatingZ is to linearize all the operations being invoked on it concurrently by the
various processes – there is competition among the processes to apply their own operation next,
i.e., to thread their own operation next to the tail of the linked list. This is where the consensus
object comes in useful – with respect to the current most recent operation that has been linearized,
the consensus object “decides” on the next operation that isto be linearized.

Before a process competes, it first needs to identify the tailof the linked list which is dynam-
ically changing. ArrayHead stores pointers to the tail of the linked list;Head[i] is Pi’s best
estimate of the pointer that points to the tail record. In loop (1c)-(1e),Pi selects the most up to date
estimate of the tail pointer. However, observe that this maystill be hopelessly out of date due to
the nonatomic nature of scanning the arrayHead. Still, Head[i] isPi’s best estimate of the record
that is at the tail of the linked list. In the main loop, lines (1f)-(1k),Pi competes on the consensus
objectHead[i].next to thread itself next to the list (line (1g)). The following possibilities arise.

541

(shared variables)
record op

integer: seq←− 0; // sequence number of serialized operation
integer: operation←−⊥; // operation, with associated parameters
integer: state←− initial state; // the state of the object after the operation
integer: result←−⊥; // the result of the operation, to be returned to invoker
integer: next←−⊥; // pointer to the next record

(local variables)
array of integer Head[1 . . . k]←− ∗(anchor_record);

(1) ProcessPi, 1 ≤ i ≤ k performs operationinvocon an arbitrary consensus object:
(1a)my_new_record←− malloc(op);
(1b)my_new_rec.operation←− invoc;
(1c) for count = 1 to k do
(1d) if Head[i].seq < Head[count].seq then
(1e) Head[i]←− Head[count];
(1f) repeat
(1g) winner ←− Decide(Head[i].next,&my_new_record);
(1h) winner.seq ←− Head[i].seq + 1;
(1i) winner.state, winner.result←− apply(winner.operation,Head[i].state);
(1j) Head[i]←− winner;
(1k) until winner = my_new_record;
(1l) enable the response toinvoc, that is stored atwinner.result.

Figure 14.26: Nonblocking universal algorithm to simulatean arbitrary object using any consensus
object. Code forPi, 1 ≤ i ≤ k.

1. Head[i] is indeed the correct tail of the list. The processPi invokesDecide on the consensus
object which is thenext field of the record pointed to byHead[i] – to learn if it succeeds in
threading its operation next. But there may be concurrent calls toDecide. The winner of the
“race” is pointed to bywinner. (We do not yet know ifPi won.) The fields ofwinner – its
new state, new sequence number, new result – are computed andstored inwinner in lines
(1h)-(1i).Head[i] is updated to point towinner (line (1j)).

(a) If winner is the same asmy_new_record (line (1k)), thenPi won the race and suc-
ceeded in threading its operation after theHead[i] record before the current iteration
of therepeat loop. The process exits after returning the value stored in theresult field
(line (1l)).

(b) If winner is not the same asmy_new_record, thenPi lost the race. The record of the
true winner of the race was returned inwinner by the consensus object. The record
of the true winner got filled in again byPi in (1h)-(1j). But nowHead[i] is pointing
to the next record, i.e., the record with sequence number onemore than in the previous
iteration. The process competes again by going through the next iteration of therepeat
loop.

542

Announce[1..n]Head[1..n]

RecordAnchor_

op

result
state

operation
seq

t

e
n

x

Figure 14.27: Wait-free simulation of a universal consensus object. For a nonblocking simulation
of the object, the arrayAnnounceis not used.

2. Head[i] is an old tail of the list. The process executes therepeat loop (see case (1b) that
repeats itself) untilHead[i] points to the record that is the most recent tail. It then competes
to thread its own operationmy_new_recordas in step 1.

We make some notes that give an insight into the design of thisalgorithm.

• We cannot use a single consensus object because consensus has to be reached on-line with
respect to the current most recent operation, on the next operation to be linearized. A con-
sensus object always returns the same decision value. Thus the algorithm uses as many
consensus objects (thenext fields of the records) as there are records on whose order to
reach consensus.

• A single pointer in a read/write object cannot be used instead of the arrayHead to point
to the latest operation record. This is because reading the pointer to contend, and updating
it after contention is over and threaded to the list, cannot be done atomically in a wait-free
manner.

• The linearization of the operations is given by the sequencenumbers. The sequence numbers
increase monotonically along the linked list.

• A process may never succeed in threading its own operation tothe list. It continues the
repeat loop forever. This may happen if it loses the contention every time to another process
trying to thread concurrently. This can be used to observe that the algorithm is not wait-free
but the algorithm is nonblocking.

• The estimate of the tail of the list in lines (1c-1e) may be very out of date due to the way it
is computed. This is a drawback as the process has to iterate through therepeat loop at least
as many times as the number of operations by which the estimate is out of date.

543

(shared variables)
record op

integer: seq←− 0; // sequence number of serialized operation
integer: operation←−⊥; // operation, with associated parameters
integer: state←− initial state; // the state of the pbject after the operation
integer: result←−⊥; // the result of the operation, to be returned to invoker
integer: next←−⊥; // pointer to the next record

(local variables)
array of integer Head[1 . . . k], Announce[1 . . . k]←− ∗(anchor_record);

(1) ProcessPi, 1 ≤ i ≤ k performs operationinvocon an arbitrary consensus object:
(1a)Announce[i]←− malloc(op);
(1b)Announce[i].operation←− invoc; Announce[i].seq←− 0;
(1c) for count = 1 to k do
(1d) if Head[i].seq < Head[count].seq then
(1e) Head[i]←− Head[count];
(1f) while Announce[i].seq = 0 do
(1g) turn←− (Head[i].seq + 1)mod (k);
(1h) if Announce[turn].seq = 0 then
(1i) my_new_record←− Announce[turn];
(1j) elsemy_new_record←− Announce[i];
(1k) winner ←− Decide(Head[i].next, &my_new_record);
(1l) winner.seq ←− Head[i].seq + 1;
(1m) winner.state, winner.result←− apply(winner.operation, Head[i].state);
(1n) Head[i]←− winner;
(1o) enable the response toinvoc, that is stored atwinner.result.

Figure 14.28: Wait-free universal algorithm to simulate anarbitrary object using any consensus
object. Code forPi, 1 ≤ i ≤ k.

Complexity: The worst-case time complexity to thread a specific operation isnot bounded due to
the nonblocking nature of the algorithm. Exercise 14 asks you to perform an average-case analysis.

14.6.3.2 A Wait-free Universal Algorithm

The nonblocking algorithm in the previous section is enhanced to make it wait-free. To ensure that
a process does not happen to continually lose the contention, a round-robin approach of “helping”
is used. If a processPj determines that the next operation is to be assigned sequence numberx,
then it first checks whether the processPi such thati = x (modn) is contending for threading its
operation. If so, thenPj tries to threadPi operation instead of its own.

The algorithm is shown in Figure 14.28. The implementation of the round-robin “helping”
is done using the arrayAnnounce[1 . . . n]. When a processPi wants to thread its operation, it
first announces it by makingAnnounce[i] point to the record where the operation is stored (lines
(1a)-(1b)). It then proceeds as before to estimate the latest tail of the list, using theHead array
(lines (1c)-(1e)). Each process is required to determine whether it should try to thread the record of
the rightful process (lines (1g)-(1h)), as determined by the modulo function, or its own (line (1j)).
Only if the “rightful” process is not interested in threading its own operation does a process try to

544

(variables)
integer: v ←− initial value;
array of integer local_array ←− ⊥;
(shared variables)
atomic snapshot objectObj[1 . . . n]←− ⊥;

(1) A processPi, 1 ≤ i ≤ n, initiatesk-set consensus:
(1a)updatei(Obj, x) with v;
(1b) repeat
(1c) local_array ←− scani(Obj);
(1d)until there are at least|N | − f non-null values inObj;
(1e)v ←−minimum of the values inlocal_array.

Figure 14.29: Asynchronous protocol fork-set consensus in the shared memory model using an
atomic snapshot object. Code shown is for processPi, 1 ≤ i ≤ n.

thread its own operation (line (1j)).
We argue using contradiction that withinn iterations of thewhile loop, processPi will have

succeeded in having its operation threaded to the linked list, and exit the loop. Assume by way of
contradiction thatPi’s record is not threaded byPi’s (n + 1)th iteration of thewhile loop. After
theAnnounce[i] having been set in lines (1a-1b),n other records initiated by other processes must
have been threaded to the linked list. But of thesen sequence numbers, one of them modulon

must have equalledi and the other processes would have threadedPi’s record instead of their own
(see lines (1g)-(1i)).
Complexity: Each process completes its operation withinn iterations of the mainwhile loop,
irrespective of the other processes.

14.6.4 Shared Memoryk-set Consensus

The message-passing version ofk-set consensus was presented in Section 14.5.4. Here, its coun-
terpart for the shared memory model assuming an atomic snapshot object is given in Figure 14.29.
The algorithm can be easily derived from the message-passing algorithm. A process writes its
initial value to its component within the shared object, andrepeatedly scans the shared object until
n− f processes have written to the object. It then takes the minimum of the values scanned.

14.6.5 Shared Memory Renaming

The renaming problem was introduced in Section 14.5.6 and analgorithm to solve renaming in
the message passing model was given. An asynchronous algorithm for wait-free renaming for the
shared memory model is given in Figure 14.30. The algorithm assumes an atomic snapshot object
Obj, which has the nice property that it linearizes all asynchronous operations to it. Each process
begins by bidding a new name of ‘1’ for itself (line 1a). The process then repeats the following

545

(variables)
integer: mi ←− 0;
integer: Pi ←− name from old domain space;
array of integer tuples local_array ←− 〈⊥,⊥〉;
(shared variables)
atomic snapshot objectObj[1 . . . n]←− 〈⊥,⊥〉;

(1) A processPi, 1 ≤ i ≤ n, participates in wait-free renaming:
(1a)mi ←− 1;
(1b) repeat
(1c) updatei(Obj, 〈Pi,mi〉); // updateith component with bidmi

(1d) local_array(〈P1,m1〉, . . . 〈Pn,mn〉)←− scani(Obj);
(1e) if mi = mj for somej 6= i then
(1f) Determine rankranki of Pi in {Pj |Pj 6=⊥ ∧j ∈ [1, n]};
(1g) mk ←− rankith smallest integer not in{mj |mj 6=⊥ ∧j ∈ [1, n] ∧ j 6= i};
(1h) else
(1i) decide(mk); exit;
(1j) until false.

Figure 14.30: Asynchronous wait-free renaming using an atomic snapshot object in the shared
memory model. Code shown is for processPi, 1 ≤ i ≤ n.

loop. It writes its latest bid to its component ofObj (line 1c); it reads the entire object using ascan
into its local array (line 1d).Pi examines the local array for a possible conflict with its proposed
new name (line 1e).

• If Pi detects a conflict with its proposed namemi (line 1e) it determines its rankrank among
theold names (line 1f); and selects therankth smallest integer among the names that have
not been proposed in the view of the object just read (line 1g). This will be used asPi’s bid
for a new name in the next iteration.

• If Pi detects no conflict with its proposed namemi (line 1e), it selects this name and exits
(line 1i).

We now consider the following properties of this algorithm.

Correctness: If two processes were to choose the same new name, then the Scans returned to them
in their final iteration must have indicated that the name they bid was unique. However, due
to the linearizability property of the atomic snapshot objectObj, the Scan that was returned
to the “later” process could not have indicated that the nameit bid was unique. Hence, no
two processes can choose the same name when they terminate.

Size of name space:At any time, there are at mostn − 1 names that are bid by other processes,
and the rank of a process is at mostn. Hence, a process will never bid a name greater than
2n− 1. The name space is confined to[1, 2n− 1].

546

Termination: Assume there is a subsetT ⊆ N of processes that never terminate. Letmin(T) be
the process inT with the lowest ranked process identifier (old name). Letrank(min(T)) be
the rank of this process amongall the processesP1 . . . Pn. Once every process inT has done
at least oneupdate, and once all the processes inT have terminated, we have the following.

• The set of names of the terminated processes, sayMT , remains fixed.

• The processmin(T) will choose a name not inMT , that is rankedrank(min(T)). As
rank(min(T)) is unique, no other process inT will ever choose this name.

• Hence,min(T) will not detect any conflict withrank(min(T)) and will terminate.

Asmin(T) cannot exist, the setT = ∅.

Wait-freedom: A process can choose its new name independent of the actions of the other pro-
cesses.

Complexity: Exercise 17 asks you to perform a time complexity analysis ofthis algorithm, and
show the following lower bounds.
Lower bounds: Let M be the new name space. For crash-failures, the following lower bounds
can be seen to exist.

• For wait-free renaming, wherein all othern− 1 processes may fail, the name space must be
of size2n− 1.

• To tolerate up tof failures, the name space must be of sizen + f .

14.6.6 Shared Memory Renaming using Splitters

Moir and Anderson presented a very elegant wait-free renaming algorithm using thesplitter con-
current object defined as follows. Whenn (n ≥ 1) processes invoke thesplitter, each is returned a
value from the set{stop, down, right} subject to the following constraints.

• At most one process is returnedstop.

• At mostn− 1 processes are returneddown.

• At mostn− 1 processes are returnedright.

Figure 14.31 shows a schematic definition of a splitter. Figure 14.32 shows a wait-free imple-
mentation of a splitter.

• The first time that some processPi findsX equal to its own identifier in line (1d),Y must be
true, and hence all other processes must get the valueright (unless they fail) whilePi must
get valuestop. Hence, at most one process is returnedstop.

547

at most n−1

processesn

processes
n−1

at most DOWN

processes1 process
at most

STOP

RIGHT

Figure 14.31: The structure for a splitter.

(shared variables)
MRMW atomic snapshot objectX,Y ←− false;

(1) splitter(), executed by processPi, 1 ≤ i ≤ n:
(1a)X ←− i;
(1b) if Y then
(1c) return (right);
(1d) else
(1e) Y ←− true;
(1f) if X = i then return (stop)
(1g) else return(down).

Figure 14.32: A wait-free implementation of a splitter. Code shown is for processPi, 1 ≤ i ≤ n.

• LetPi be the last process to execute (1a). UnlessPi crashes, it will either get valueright (if
it is th first process to execute line (1b)) or it will get the value stop. Hence at mostn − 1

processes are returneddown.

• The first process that readsY in line (1b) cannot get valueright becauseY is initialized to
false. Hence, not all processes can are returnedright.

The renaming algorithm is now constructed usingn(n + 1)/2 splitters arranged as shown in
Figure 14.33. Each splitter is labelled by coordinatesr, d. Observe that each process is guaranteed
to get astop value from one of then(n+1)/2 splitters, and no two processes will stop at the same
splitter. So the coordinates of the splitter where a processstops can serve as the new label. The
code is shown in Figure 14.34.
Complexity: The new name space isn(n+1)/2 when the number of processes isn. Each process
takesO(n) steps to select its new name. The algorithm is clearly wait-free.

548

0,30,20,10,0

2,0

3,0

1,11,0 1,2

2,2

d

r

Figure 14.33: The Moir-Anderson wait-free renaming algorithm using splitters. Code shown is for
Pi, 1 ≤ i ≤ n.

(local variables)
next, r, d, new_name←− 0;

(1) ProcessPi, 1 ≤ i ≤ n, participates in wait-free renaming:
(1a)r, d←− 0;
(1b) while nexti 6= stop do
(1c) nexti ←− splitter(r, d);
(1d) case
(1e) next = right then r ←− r + 1;
(1f) next = down then d←− d + 1;
(1g) next = stop then break()
(1h) return (new_name = n · d− d(d− 1)/2 + r).

Figure 14.34: Moir and Anderson’s asynchronous wait-free renaming using splitters. Code shown
is for processPi, 1 ≤ i ≤ n.

14.7 Chapter Summary

Consensus problems are fundamental aspects of distributedcomputing because they require in-
herently distributed processes to reach agreement. This chapter first covers different forms of the
consensus problem, which are shown to be equivalent to one another. Consensus is attainable in
fault-free systems. The chapter then gives an overview of what forms of consensus are solvable
under different failure models and different assumptions on the synchrony /asynchrony.

The chapter then covers agreement in the following categories. (1) Synchronous message-
passing systems with failures. Here, different fault models are considered - the fail-stop model and
the Byzantine model. Lower bounds on the number of failure-prone processes are given. Also, rep-
resentative algorithms under different asumptions and fault models are given. (2) Asynchronous
message-passing systems with failures. The first result here is that it is impossible to reach con-

549

sensus in this model. Hence, several weaker versions of the consensus problem, such ask-set
consensus, approximate consensus, the renaming problem, and reliable broadcast are considered.
Algorithms to solve the weakened forms of consensus in thesemodels are then given. (3) Wait-
free shared memory consensus in asynchronous systems. Here, the first result is the impossibility
result, analogous to that for message-passing systems. Thechapter then solves consensus using
registers (or objects) that are stronger than the atomic read/write registers. The consensus hierar-
chy that naturally emerges for stronger consensus objects is then studied. Algorithms for shared
memory renaming andk-set consensus are also covered.

14.8 Exercise Problems

1. For each of the six ordered pairs of problems among: theByzantine agreementproblem, the
Consensusproblem, and theInteractive consistencyproblem, demonstrate a reduction from
the former to the latter.

2. Modify the algorithm in Figure 14.3 to design anearly-stoppingalgorithm for consensus
under failstop failures, that terminates withinf ′ + 1 rounds, wheref ′, the actual number of
stop-failures, is less thanf . Prove the correctness of your algorithm.
Hint: A process can be required to send a mesage in each round, even if the value was sent
in the earlier round. Processes should also track the other processes that failed, which is
detectable by identifying the processes from which no message was received.

3. Modify the iterative Byzantine Agreement algorithm and the tree data structure specification
given in Figure 14.7, as well as the example in Figure 14.8, tonow solve theconsensus
problem.

4. Examine the phase-king algorithm for consensus in the face of Byzantine failures, as given
in Figure 14.11. This algorithm works whenn > 4f . Presumably, the algorithm will fail
for 4f ≥ n > 3f , even though this condition is a sufficient condition for theexistence of a
solution to the consensus problem in a synchronous message-passing system.

(a) Why will the algorithm fail for4f ≥ n > 3f?

(b) Even though the algorithm is not correct for4f ≥ n > 3f , under some circumstance(s),
the correct processors will end up with the same value. Characterize one such circum-
stance, independent of the behavior of the malicious processes.

(c) To derive a correct solution for4f > n > 3f , change line (1k) to read:

if mult > f

Will this solution work?

(d) To derive another correct solution for4f ≥ n > 3f , run the algorithm for4(f + 1)

rounds instead of for2(f+1) rounds of the original algorithm. Will this solution work?

550

5. Prove that thedistributed commitproblem is not solvable under a crash failure.
Hint: Show a reduction from the consensus problem to the distributed commit problem.

6. Prove that theleader electionproblem is not solvable under a crash failure.

7. In theǫ-agreement problem, can a correct process halt if it receives f + 1 halting tags from
other processes, even before it has completed its precomputed number of rounds? Justify
your answer.

8. How can the algorithm forǫ-agreement, given in Figure 14.13, be simplified if a synchronous
system is available? Identify all the changes to the variousparameter values. Can a better
value be obtained for the convergence rate?

9. Analyze the number of bids for a new name made by each process in the asynchronous
renaming algorithm given in Figure 14.17.

10. How can the algorithm for asynchronous renaming, given in Figure 14.17, be simplified if a
synchronous system is available?

11. Examine the Test-&-Set instruction in Figure 14.22. What is the consensus numberx of this
register object? Give an algorithm to achieve consensus forthis consensus number.

12. (k-Write instruction).

(a) Consider the2-Writeinstruction that can write two locations atomically. Show how the
2-Write instruction can be used to implement a wait-free 2-consensus protocol. (Hint:
structure the solution using a structure similar to that of the protocols forRMW and
Swap.)

(b) Consider thek-Write instruction. Can thisk-Write instruction be used to implement a
wait-free consensus protocol fork processes? Justify your answer.

13. Examine the standard stack object, having its standardpushandpopoperations. What is the
consensus numberx of the stack? Give the code for achieving 2-process consensus using
the stack.

14. Perform an average-case time complexity analysis of thenonblocking universal algorithm
for consensus objects given in Figure 14.26.

15. Simplify the nonblocking universal algorithm for consensus objects (Figure 14.28) by using
the specific Compare&Swap object, but also eliminating theHead array.

16. Adapt the message-passing asynchronous approximate agreement algorithm given in Sec-
tion 14.5.5 for a shared memory system.

551

17. Perform a time complexity analysis of the wait-free renaming algorithm using the atomic
snapshot object in asynchronous systems, given in Figure 14.30. Also prove the lower
bounds on the size of the name space, as indicated in Section 14.5.6.

18. Show how the number of splitters used in the renaming algorithm of Section 14.6.6 can be
reduced ton(n− 1)/2.

14.9 Bibliographic Notes

The Byzantine agreement and the consensus problems were defined by Lamport, Shostak, and
Pease [24, 20]. The exponential messages algorithm for solving consensus in the face of Bzyantine
failures and the3f + 1 lower bound were given in these papers. A later proof of the exponential
algorithm was given by Bar-Noy, Dolev, Dwork, and Strong [3], and a later proof of the3f + 1

lower bound was given by Fischer, Lynch, and Merritt [11]. The polynomial-message phase-king
algorithm to solve consensus in the same Byzantine failure model was given by Berman and Garey
[4]. A polynomial-message algorithm requiringt+ 1 rounds andn > 3t processes has been given
by Gary and Moses [13]. The result on the impossibility of reaching consensus in an asynchronous
message-passing system was given by Fischer, Lynch, and Paterson [12]. The same impossbility
result for an asynchronous shared memory system was given byLoui and Abu-Amara [21]. Fischer
and Lynch [10] and Dolev and Strong [9] proved the lower boundof f + 1 rounds for reaching
consensus in the Byzantine failure and crash failure models, respectively.

Thek-set consensus problem was defined by Chaudhuri [6]. This work also presented the first
algorithm for solvingk-set consensus underf faults, wheref < k. The lower bound off < k

crash-failure processes for solving this problem was shownby Borowski and Gafni [5], Herlihy and
Shavit [15], and Saks and Zaharoglou [26]. The approximate agreement problem was proposed,
and solved for crash failure and Byzantine failures in the message-passing model by Dolov, Lynch,
Pinter, Stark, and Weihl [8]. The wait-free shared memory solution to this problem was proposed
by Moran [23].

Wait-free synchronization was introduced by Lamport [18] and developed by Peteron [25].
The theory of wait-free synchronization, consensus hierarchy, and the universal constructions for
arbitrary consensus objects was given by Herlihy [14]. The discussion of RMW operations and the
analysis of the consensus number of RMW objects with interfering operations is given by Kruskal,
Rudolph, and Snir [17]. The renaming problem was proposed and solved for the message-passing
model by Attiya, Bar-Noy, Dolev, Peleg, and Reischuk [1]. They also showed that at leastn+1 new
names are needed iff crash failures are to be tolerated. This lower bound was tightened ton + f

by Herlihy and Shavit [15]. This lower bound, as well as the lower bound fork-set consensus are
derived from a theorem that characterizes the solvable problems by af -resilient algorithm using
only Read and Write operations, as shown by Herlihy and Shavit [16]. The wait-free renaming
algorithm for the shared memory algorithm is adapted from [1] and Attiya and Welch [2]. The
wait-free shared memory renaming algorithm using splitters was proposed by Moir and Anderson
[22]. The abstraction of wait-free splitters was proposed and implemented by Lamport [19].

552

Bibliography

[1] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, R. Reischuk, Renaming in an asynchronous envi-
ronment, Journal of the ACM, 41(1): 524-548, 1990.

[2] H. Attiya, J. Welch, Distributed Computing: Fundamentals, Simulations, and Advanced Top-
ics, Wiley Interscience, 2nd edition, 2004.

[3] A. Bar-Noy, D. Dolev, C. Dwork, H. R. Strong, Shifting gears: Changing algorithms on the
fly to expedite Byzantine agreement, Information and Computation, 92(2): 205-233, 1992.

[4] P. Berman, J. Garay, Closure votes:n/4-resilient distributed consensus in(t + 1) rounds,
Mathematical Systems Theory, 26(1): 3-19, 1993.

[5] E. Borowsky, E. Gafni, Generalized FLP impossibility result for t-resilient asynchronous
computations, Proceedings of the 25th IEEE STOC, 91-100, 1993.

[6] S. Chaudhuri, More choices allow more faults: Set consensus problems in totally asyn-
chronous systems, Information and Computation, 105(1): 132-158, 1993.

[7] S. Chaudhuri, M. Herlihy, N. Lynch, M. Tuttle, A tight lower bound for k-set agreement,
Proceedings IEEE FOCS, pp. 206-215, 1993.

[8] D. Dolev, N. Lynch, S. Pinter, E. Stark, W. Weihl, Reaching approximate agreements in the
presence of faults, Journal of the ACM, 33(3): 499-516, 1986.

[9] D. Dolev, H.R. Strong, Authenticated algorithms for Byzantine agreement, SIAM Journal of
Computing, 12(4): 656-666, 1983.

[10] M. Fischer, N. Lynch, A lower bound for the time to assureinteractive consistency, Informa-
tion Processing Letters, 14(4): 183-186, 1982.

[11] M. Fischer, N. Lynch, M. Merritt, Easy impossibility proofs for distributed consensus prob-
lems, Distributed Computing, 1(1): 26-39, 1986.

[12] M. Fischer, N. Lynch, M. Paterson, Impossibility of distributed consensus with one faulty
processor, Journal of the ACM, 32(2): 374-382, 1985.

553

[13] J. Garey, Y. Moses, Fully polynomial Byzantine agreement for n > 3t processors int + 1

rounds, SIAM Journal of Computing, 27(1): 247-290, 1998.

[14] M. Herlihy, Wait-free synchronization, ACM Transactions on Programming Languages and
Systems, 11(1): 124-149, 1991.

[15] M. Herlihy, N. Shavit, The asynchronous computabilitytheorem fort-resilient tasks, Pro-
ceedings of the 25th IEEE STOC, 111-120, 1993.

[16] M. Herlihy, N. Shavit, The topological structure of asynchronous computability, Journal of
the ACM, 46(6): 858-923, 1999.

[17] C. Kruskal, L. Rudolph, M. Snir, Efficient synchronization of multiprocessors with shared
memory, Proceedings of ACM Principles of Distributed Computing, Aug. 1986.

[18] L. Lamport, Concurrent reading and writing, Communications of the ACM, 20(11): 806-811,
1977.

[19] L. Lamport, A fast mutual exclusion algorithm, ACM Trans. on Computer Systems, 5(1):
1-11, 1987.

[20] L. Lamport, R. Shostak, M. Pease, The Byzantine generals problem, ACM Transactions on
Programming Languages and Systems, 4(3): 382-401, 1982.

[21] M.C. Loui, H.H. Abu-Amara, Memory requirements for agreement among unreliable asyn-
chronous processes, Advances in Computinng Research (Vol.4): Parallel and Distributed
Computing, JAI Press, 1987.

[22] M. Moir, J. Anderson, Wait-free algorithms for fats long-lived renaming, Science of Com-
puter Programming, 25(1): 1-39, 1995.

[23] S. Moran, Using approximate agreement to obtain complete disagreement: The output struc-
ture of input free asynchronous computations, Proc. 3rd Israeli Symposium on Theory of
Computing and Systems, 251-257, 1995.

[24] M. Pease, R. Shostak, L. Lamport, Reaching agreement inthe presence of faults, Journal of
the ACM, 27(2): 228-234, 1980.

[25] G. Peterson, Concurrent reading while writing, ACM Transactions on Programming Lan-
guages and Systems, 5(1): 46-55, 1983.

[26] M. Saks, F. Zaharoglou, Wait-freek-set agreement is impossible: The topology of public
knowledge, Proc. 25th IEEE STOC, 101-110, 1993.

554

Chapter 15

Failure Detectors

15.1 Introduction

This chapter deals with the design of fault-tolerant distributed systems. It is widely known that the
design and verification of fault-tolerent distributed systems is a difficult problem. Consensus and
atomic broadcast are two important paradigms in the design of fault-tolerent distributed systems
and they find wide applications. Consensus allows a set of processes to reach a common decision or
value that depends upon the initial values at the processes,regardless of failures. In atomic broad-
cast, processes reliably broadcast messages such that theyagree on the set of messages delivered
and the order of message deliveries.

This chapter focuses on solutions to consensus and atomic broadcast problems in asynchronous
distributed systems. In asynchronous distributed systems, there is no bound on the time it takes
for a process to execute a computation step or for a message togo from its sender to its receiver.
In an asynchronous distributed system, there is no upper bound on the relative processor speeds,
execution times, clock drifts, and delay during the transmission of messages although they are
finite. This is mainly casued by unpredictable loads on the system that causes asynchrony in the
system and one can not make any timing assumptions of any types. On the other hand, synchronous
systems are characterized by strict bounds on the executiontimes and message transmission delays.

The asynchronous model of distributed system has simpler semantics when compared to syn-
chronous model. Applications based on the asynchronous model are easily portable because there
are no strict timing assumptions to take care of. The asynchronous model of distributed systems is
very popular and has attracted lot of attention due to these reasons. Inspite of the attractiveness of
asynchronous distributed systems, it is well known that consensus, atomic broadcast, and several
other reliable broadcast problems cannot be solved deterministically even for a single process fail-
ure due to the unbounded timing characteristics. The main cause of this impossibility result is that
it is very difficult to determine in asynchronous systems whether a process has failed or is simply
taking a long time for execution; so it is difficult to deal with failures in these systems. On the
other hand, in synchronous systems due to strict timing constraints, failures can easily be detected.

The asynchronous model of distributed systems is widely used, and such systems are prone
to failures. Thus, detection and/or prevention of failuresin these systems is of vital importance.

555

The detection of process failures is a crucial task in the design of fault tolerant distributed systems.
Detection of crashed processes is especially difficult in asynchronous systems as it is impossible to
determine whether a process has really crashed or is very slow (as there are no timing constraints
present).

In this chapter, we discuss the concept of unreliable failure detectors to deal with the impossi-
bility results in asynchronous distributed systems with crash failures. Basically, the asynchronous
model of computation is extended with a failure detection mechanism that is prone to errors in the
sense that a process can brand another process as crashed even though the process is running. We
study failure detectors in asynchronous distributed systems. We investigate two major problems
faced in asynchronous distributed environments, namely, consensus and atomic broadcast. We
study several solutions for these problems.

15.2 Unreliable Failure Detectors

Chandra and Toueg [3] introduced the concept of unreliable failure detectors and showed how
unreliable failure detectors can be used to solve two fundamental paradigms of asynchronous dis-
tributed systems with crash failures, namely, consensus and atomic broadcast.

15.2.1 The System Model

We consider asynchronous distributed systems in which there is no bound on message delay, clock
drift, or the time taken to execute a step. The system consists of a finite set ofn processes,Q =

p1, p2, ..., pn. Each pair of processes is connected by a reliable communication channel. A process
can fail by crashing only, i.e., by prematurely halting. A process behaves correctly (i.e., according
to its specification) until it crashes.

A discrete global clock is assumed, and the range of the clock’s ticks, Φ, is the set of natural
numbers. The global clock is used for the sake of simplicity of presentation and reasoning and is
not accessible to the processes.

A processpi is said to crash at time t ifpi does not perform any action after time t. Process
failures are permanent; once a process crashes, it does not recover. Acorrectprocess is a process
that does not crash.

Informally, a run is an infinite execution of the system. Given any runσ, Crashed(t,σ) is the
set of processes that have crashed by time t and Up(t,σ) is the set of processes that are correct
(i.e., have not crashed) by time t, that is, Up(t,σ) = Q − Crashed(t,σ). Crashed(σ) is the set
of processes that have crashed in a runσ and is equal to

⋃

tCrashed(t,σ). Up(σ) is the set of
processes that are correct in a runσ and is equal toQ− Crashed(σ). If a process p∈ Crashed(σ),
we say that p is a faulty process inσ. If a process p∈ Up(σ), we say that p is a correct process in
σ. We consider only execution runs where at least one process is correct.

556

Failure Patterns and Environments

A failure pattern is a function F fromΦ to 2Q, where F(t) denotes the set of processes that have
crashed through time t. An environment E is a set of failure patterns. Environments describe
the crashes that can occur in a system. In general, we consider the environments that contain all
possible failure patterns; i.e., there is no bound on the number of processes that crash.

Each processpi has a local failure detector module of D, denoted byDi. Associated with each
failure detector D is a rangeRD of values output by the failure detector. A failure detectorhistory
H with range R is a fuction H fromΩXΦ to R. D(F) denotes the set of possible failure detector
histories permitted for the failure pattern F, i.e., each history represents a possible behaviour of D
for the failure pattern F. For any failure detector D, any failure pattern F and any history H in D(F),
H(pi,t) is the set of processes suspected by processpi at time t.

15.2.2 Failure Detectors

A failure detectorD is a distributed oracle that gives hints about failure patterns. Each process
pi in the distributed environment has its own local failure detectorDi, which monitors all other
processes and maintains a list of processes, currentlypi suspects to have crashed. The suspicion is
based on relative timeouts of other processes atpi.

Thus, a failure detectorD as the vectorD =< Dp1, Dp2,Dpn >, whereDi is the failure
detector module at processpi which outputs the set of processes that it currently suspects to have
crashed. Formally, a failure detector is a function “from time and the set of all runs" to2Q. Dp(t, σ)

is the set of processes that are suspected to have crashed by p’s failure detector module at time t
in runσ. If q ∈ Dp(t, σ), we say that p suspects q at timet in runσ. After a process crashes, it is
immaterial what its failure detector module indicates. We formalize this by assuming that if p∈
Crashed(t,σ), thenDp(t, σ) = φ.

The failure detectors can make mistakes, i.e., a correct process may be added to the list of
suspects and can later be removed if the failure detector realizes that it was a mistake. Thus, a
failure detector may continually add and remove processes from its list of suspects. Processes can
be added and removed from the list of suspects by each failuredetector module any number of
times. At any time, failure detector modules at two processes may have different lists of suspects.

It should be noted that addition of a correct process to the list of suspects by any other processes
or by all other processes should not prevent this process from behaving correctly, according to its
specifications.

15.2.3 Completeness and Accuracy Properties

Chandra and Toueg classified failure detectors in terms of their completeness and accuracy prop-
erties. Informally, completeness requires that a failure detector eventually suspects all processes
that have crashed and accuracy resticts the mistakes a failure detector can make (i.e., a correct
process suspect another correct process). They define two types of completeness and four types of
accuracy properties, giving rise to eight classes of failure detectors.

557

Chandra and Toueg introduced the concept of reducibility among failure detectors. Informally,
a failure detector D isreducible into another failure detector D’ if there exists a distributed al-
gorithm that can transform D into D’. In this case, any problem that can be solved using D’ can
also be solved using D. If two failure detectors are reducible to each other, they are said to be
equivalent.

Chandra and Toueg put failure detectors into eight classes and ordered them into a hierarchy
according to the reducibility relationship. In this hierarchy, some failure detectors can solve the
consensus problem with any number of process failures, while others require a certain number of
correct processes to solve the consensus problem. This requirement and the boundary where this
requirement becomes necessary have been clearly specified.

We now define completeness and accuracy properties of a failure detector.

Completeness

Definition 29. Completeness:There is a time after which every process that has crashed is per-
manently suspected by a correct process.

Completeness can be of two types:

1. Strong completeness:Eventually every process that crashes is permanently suspected by
every correct process. Notationally,

∀σ, ∀p ∈ Crashed(σ), ∀q ∈ Up(σ), ∃t such that ∀t′ ≥ t : p ∈ Dq(t
′, σ)

2. Weak completeness:Eventually every process that crashes is permanently suspected by some
correct process. Notationally,

∀σ, ∀p ∈ Crashed(σ), ∃q ∈ Up(σ), ∃t such that ∀t′ ≥ t : p ∈ Dq(t
′, σ)

Note that completeness by itself may not be of much use. For example, a failure detector
may satisfy the strong completeness property by having every process permanently suspect all
other processes. Such a failure detector is useless becauseit provides no information about actual
failures. Thus, a failure detector must satisfy some accuracy property to be useful. We define this
property next.

Accuracy

Definition 30. Accuracy: There is a time after which a correct process is never suspected by any
correct process.

There are two types of accuracy properties:

1. Strong accuracy:Correct processes are never suspected by any correct process. Formally,

558

∀σ, ∀t, ∀p, q ∈ Up(t, σ) : p 6∈ Dq(t, σ)

Since in any practical system it is extremely difficult to achieve accuracy, we weaken it as
follows:

2. Weak accuracy:Some correct process is never suspected by any correct process. Formally,

∀σ, ∃p ∈ Up(σ), ∀t, ∀q ∈ Up(t, σ) : p 6∈ Dq(t, σ)

We collectively refer to strong accuracy and weak accuracy as theperpetual accuracyproper-
ties because these properties hold all the time. Note that even weak accuracy is difficult to achieve
because a failure detector (even at a correct process) may suspect a correct process and then later
correct its mistake. The weak accuracy property does not permit this. Thus, we further weaken the
accuracy requirement and allow failure detectors that may suspect a correct process at some points
in the run, but theyeventuallysatisfy the strong and weak accuracy properties.

Eventual Accuracy

Definition 31. Eventual Accuracy: We need not require accuracy property to be satisfied by each
process at all the time. Instead, we require the accuracy property to be eventually satisfied.

There are two types of eventual accuracies:

1. Eventual strong accuracy:There is a time after which correct processes are not suspected
by any correct process. Formally,

∀σ, ∃t, ∀t′ ≥ t, ∀p, q ∈ Up(t′, σ) : p 6∈ Dq(t
′, σ)

2. Eventual weak accuracy:There is a time after which some correct process is not suspected
by any correct process. Formally,

∀σ, ∃t, ∀t′ ≥ t, ∃p ∈ Up(σ), ∀q ∈ Up(σ) : p 6∈ Dq(t
′, σ)

We collectively refer to eventual strong accuracy and eventual weak accuracy as theeventual
accuracyproperties because these properties hold eventually.

559

15.2.4 Types of Failure Detectors

Based on types of accuracies and completeness defined above,failure detectors can be classified
into the following categories:

1. Perfect Failure Detectors (P):Failure detectors that satisfy the strong completeness andthe
strong accuracy properties are called the Perfect Failure Detectors.

2. Eventually Perfect Failure Detectors (♦P): Failure detectors that satisfy the strong complete-
ness and the eventual strong accuracy properties are termedas the Eventually Perfect Failure
Detectors.

3. Strong Failure Detectors (S):Failure detectors that satisfy the strong completeness andthe
weak accuracy properties are called the Strong Failure Detectors.

4. Eventually Strong Failure Detectors (♦S):Failure detectors that satisfy the strong complete-
ness and the eventual weak accuracy properties are called the Eventually Strong Failure
Detectors.

5. Weak Failure Detectors (W):Failure detectors that satisfy the weak completeness and the
weak accuracy properties are called the Weak Failure Detectors.

6. Eventually Weak Failure Detectors (♦W): Failure detectors that satisfy the weak complete-
ness and the eventual weak accuracy properties are called the Eventually Weak Failure De-
tectors.

7. Another class of failure detectors is the one that satisfies weak completeness and strong
accuracy properties. This class is denoted byϑ.

8. The last class is the set of failure detectors that satisfyweak completeness and eventually
strong accuracy properties. This class is denoted by♦ϑ.

15.2.5 Reducibility of Failure Detectors

A failure detector D is reducible to another failure detector D’ if there is an algorithm that trans-
forms a failure detector D into another failure detector D’.A natural question is: what does it mean
that an algorithm transforms D into D’? An algorithm TD → D′ transforms a failure detector D
into another failure detector D’ if and only if for every run Rof TD → D′ under a failure pattern F
using D,outputR∈D’(F), whereoutputR is the output of run R using failure detector D and D’(F)
denotes the set of histories of failure detector D’ for failure pattern F. That is, variableoutputp at
process p emulates the output of D’. Thus, TD → D′ can emulate D’ using D. TD → D′ need not
emulate all failure detector histories of D’; however, all failure detector histories it emulates must
be histories of D’. Algorithm TD → D′ is called thereduction algorithm.

Given a reduction algorithm TD → E, any problem that can be solved using E, can also be
solved using D. We illustrate this with an example: suppose agiven algorithm A requires failure

560

detector E, but only failure detector D is available. We can execute A using failure detector D as
follows. Concurrently with A, processes run TD → E to transform D to E. Algorithm A is modified
at process p as follows: whenever A requires that p queries its failure detector module, p reads the
current value ofoutputp which is concurrently maintained by TD → E.

Since TD → E is able to use D to emulate E, D must provide at least as much information about
process failures as E does. Thus, if there is an algorithm TD → E, that transforms D into E, we say
that E is weaker than D and denote it by D⊑ E. Note that⊑ is a transitive relation. If D⊑ E and
E⊑ D, then we say that D and E areequivalentand denote it by D≡ E.

If D andε are two classes of failure detectors and there exists an algorithm TD → E that can
transform every failure detector D∈ D into a failure detector E∈ ε, then we say that the class of
failure detectorsD is reducible to the class of failure detectorsε and this is denoted byD ⊑ ε. In
this case,ε is weaker thanD. If D ⊑ ε andε ⊑ D, thenD andε are equivalent and this is denoted
by D ≡ ε.

From a trivial reduction algorithm where each process p periodically writes the current output
of its failure detector module intooutputp, the following relations between the classes of failure
detectors are obvious:

Observation 1: P⊑ ϑ, S⊑W,♦P ⊑ ♦ϑ,♦S ⊑ ♦W .

15.2.6 Reducing Weak Failure Detector W to a Strong Failure Detector S

In Figure 15.1, we give a reduction algorithm TD → D′ (due to Chandra and Toueg) that transforms
any given failure detector D that satisfies weak completeness, into a failure detector D’ that satisfies
strong completeness. D’ satisfies the same accuracy property that D satisfies. Thus, this algorithm
strenghtens the completeness while preserving the accuracy.

Informally, the conversion of any weak failure detector W toa strong failure detector S is as
follows: Initially, for every process p,outputp is set to null. (Recall thatoutputp is the vari-
able emulating the output of the failure detector moduleD′p.) Every process p periodically sends
(p,suspectsp) to every process, wheresuspectsp denotes the set of processes that p suspects ac-
cording to its failure detector moduleDp. When a process p recieves a message (q,suspectsq)
from a process q, process p adds the suspect list of process q,suspectsq, to its output,outputp,
and removes the process q from its output as it is a correct process.

A Correctness Argument

The correctness proof of the algorithm involves showing thefollowing three properties:

1. It transforms weak completeness into strong completeness.

2. It preserves the perpetual accuracy.

561

Every process p executes the following:

outputp ← φ

cobegin

|| Task 1: repeat forever

suspectsp ← Dp {p queries its local failure detector moduleDp}
send(p,suspectsp) to all other processes.

|| Task 2: when recieve (q,suspectsq) for a process q

outputp ← (outputp ∪ suspectsq) − {q} { outputp emulatesEp}

coend

Figure 15.1: Transforming weak completeness to strong completeness.

3. It preserving the eventual accuracy.

We show these properties in the following three lemmas.

Lemma 1: Let p be any process that crashes. If eventually some correctprocess permanently
suspects p inHD, then eventually all correct processes permanently suspect p in outputR, where
HD is the history of failure detector D andoutputR is the output of an arbitrary run R using failure
detector D.

Since process p crashes, there is a time t’ after which no process recieves a message from p.
Suppose there is a correct process q that permanently suspects p inHD after time t. Consider the
execution of Task 1 by process q after timetp= max(t,t’). Process q sends a message (q,suspectsq)
such that p∈ suspectsq to all processes. Eventually, every correct process recieves (q,suspectsq)
and adds p to output (in Task 2). Since no correct process recieves any messages from p after time
t’ and tp ≥ t’, no correct process removes p from its output aftertp. Thus, there is a time after
which every correct process permanently suspects p inoutputR.

Lemma 2: Let p be any process. If no process suspects p inHD before time t, then no process
suspects p inoutputR before time t.

Suppose there is a time t before which no process suspects process p inHD. Thus, no process
sends a message of type (-,suspects) such that p∈ suspects before time t. Thus, no process q adds
p tooutputq before time t.

Lemma 3: Let p be a correct process. If there is a time after which no correct process suspects p
in HD, then there is a time after which no correct process suspectsp in outputR.

562

Suppose there is a time t after which no correct process suspects p inHD. Thus, all processes
that suspect p after time t eventually crash. Thus, there is time after which no process will send
messages of type (-, suspects) such that p∈ suspects. Thus, there is a time t’ after which no correct
process recieves a message of type (-, suspects) such that p∈ suspects. Let q be a correct process.
We need to show that there is a time after which q does not suspect p in outputR. Consider the
execution of Task 1 by process p after time t’. Process p sendsthe message (p,suspectsp) to q.
When q receives this message, it removes p fromoutputq if p is present inoutputq (Task 2). Note
that q does not recieve any messages of type (-, suspects) such that p∈ suspects after time t’,
therefore, q does not add p tooutputq after time t’. Thus, there is a time after which q does not
suspect p inoutputR.

Theorem 1: ϑ ⊑ P,W ⊑ S,♦ϑ ⊑ ♦P and ♦W ⊑ ♦S.

Proof: Let D be any failure detector inϑ, W,♦ϑ or♦W. We show that TD → E transforms D into
a failure detector E in P, S,♦P , or♦S. Since D satisfies weak completeness, E satisfies strong
completeness (from Lemma 1). We now argue that D and E have thesame accuracy properties. If
D is in ϑ or W, then D and E have the same accuracy property (from Lemma 2). If D is in ♦ ϑ or
♦W, then D and E have the same accuracy property (from Lemma 3).

Thus we have,

ϑ ⊑ P,W ⊑ S,♦ϑ ⊑ ♦P and ♦W ⊑ ♦S

2

From Theorem 1 and Observation 1, we have the following result:

P≡ ϑ, S≡W,♦P ≡ ♦ϑ, and♦S ≡ ♦W.

A significance of this result is that if we solve a problem for the four failure detectors with
strong completeness, the problem is automatically solved for the remaining four failure detectors.

15.2.7 Reducing an Eventually Weak Failure Detector♦W to an Eventually
Strong Failure Detector♦S

Figure 15.2 gives an algorithm that converts any eventuallyweak failure detector D∈ ♦W into an
eventually strong failure detector E∈ ♦S. Q is the set of all processes.

At process p, variable suspectedp(r, q) denotes how many times process q has suspected process
r and variable refutedp(r, q) denotes how many times process r has refuted process q.Both variables
are initialized to zero. Sp denotes the suspect list of process p.

An Explanation of the Algorithm

The algorithm consists of four tasks.

563

Process p runs the following:

for all q,r∈ Q
{Number of times q suspected r according to p}
suspectedp(r, q)← 0
{Number of times r refuted q according to p}
refutedp(r, q)← 0

cobegin
|| Task 1: repeat forever
if (r ∈ Dp and refutedp(r, p)≤ suspectedp(r, p)) then

p rbcasts (p, suspects, r, refutedp(r, p) + 1)

|| Task 2: when p rbdelivers (q, suspects, r, k)
suspectedp(r, q)← k
if p = r then p rbcasts (p, refutes, q, k)

|| Task 3: when p redelivers (r, refutes, q, k)
refutedp(r, q)← k

|| Task 4: repeat forever
for all processes r

if ∃ q : suspectedp(r, q) > refutedp(r, q)
then Sp ← Sp

⋃{r}
else Sp ← Sp - {r}

coend

Figure 15.2: An algorithm to reduce an eventually weak failure detector into an eventually strong
failure detector.

In Task 1, a process p continuously performs the following for every process r that it suspects
according to its failure detector moduleDp: if the number of times process r is suspected by p
is greater than the number of times r has refuted p, then p broadcasts a suspect message which
contains the incremented refuted value.

In Task 2, when process p recieves a suspect message (q, suspects, r, k) from a process q, it
updates suspectedp(r, q) to k. If process p discovers that it was erroneously suspected by process
q, p broadcasts an appropriate refutation, refuting the suspicion of process q.

In Task 3, when process p receives a refutation message (r, refutes, q, k) from process r, it
updates refutedp(r, q) to k.

In Task 4, the following is repeatedly done for every processr: if there exists a process q such
that the number of times q suspects process r is greater than the number of times the process r
refutes q according to p, then process r is added to the suspect list of process p. Otherwise, r is
removed from the suspect list of process p.

564

Correctness Argument

A correctness argument of the algorithm is as follows. When aprocess q recieves a suspect message
accusing process p, process q may add p to its list of suspectsSq. However, upon receiving p’s
refutation, process q will remove p from its list of suspectsSq. However, p can be suspected again
and added toSq a second time. However, a further refutation from p will cause p to be again
removed fromSq. Thus, a possibly infinite sequence of suspicions followed by corresponding
refutations may occur, resulting in p being repeatedly added to and removed fromSq. However,
from the eventual weak accuracy property of D, there is a timeafter which some correct process is
not suspected. That is, there is a process p such that there isa time after which no correct process
receives a message of type (*, suspects, p, k), suspecting p.Thus, after a time no correct process
adds process p to its suspect list. Together with the refutation mechanism, this ensures the eventual
weak accuracy property of the constructed E.

Now let us see why E satisfies the strong completeness property. Since D satisfies the weak
completeness property, eventually every process that crashes is permanently suspected by some
correct process, say p. Thus, eventually process p will repeatedly broadcast (p, suspects, *, k)
messages for these crashed processes and since these processed have crashed, no one will send
refute messages for them. Thus all crashed processes will eventually belong to the suspect list
of all correct processes. Thus, due to the broadcast of suspect messages and weak completeness
property of D, E satisfies the strong completeness property.Thus E satisfies strong completeness
and weak accuracy.

15.3 The Consensus Problem

In the consensus problem, each correct process proposes a value and all processes must reach a
unanimous and irrevocable decision on a value that is related to the proposed values [9]. The
consensus problem is defined in terms of the following properties:

1. Termination:Every correct process eventually decides some value.

2. Uniform Integrity: Every process decides at most once.

3. Agreement:No two correct processes decide differently.

4. Uniform Validity: If a process decides a value v, then some process proposed v.

It is widely known that the Consensus can not be solved in asynchronous systems in the pres-
ence of even a single crash failure. This is primarily because one can not distinguish between
a process that has crashed and a process that is responding very slow (may be due to the slow
network).

565

15.3.1 Solutions to the Consensus Problem

Chandra and Toueg showed how to solve the consensus problem using unreliable failure detectors
for each of the eight classes of failure detectors. From the following property, the classes of
failure detectors P, S,♦P,♦S are, respectively, equivalent to failure detectorsϑ,W,♦ϑ,♦W .
Notationally,

P≡ ϑ, S≡W,♦P ≡ ♦ϑ, and♦S ≡ ♦W

So the problem of solving the consensus problem using unreliable failure detectors reduces to
solving it for four classes of failure detectors that satisfy strong completeness (i.e., P, S,♦ P and♦
S), instead of solving it for all eight classes. Since P is reducible to S and♦ P is reducible to♦S
(i.e., P⊑S and♦P⊑♦S), the algorithms for solving consensus using S also solvesthe consensus
using P and the algorithms for solving consensus using♦S also solves the consensus using♦P.

Next, we present algorithms that solve consensus using S and♦ S. The consensus algorithm
using S can tolerate any number of process failures. However, the consensus algorithm using♦ S
requires a majority of the processes to be up.

15.3.2 A Solution Using Strong Failure Detector S

The algorithm in Figure 15.3 solves the consensus problem inan asynchronous system using a
failure detector D that satisfies strong completeness and weak accuracy (i.e., D∈ S). This algorithm
tolerates any number of process failures (upto n-1 faulty processes among a total of n processes).
Notations:

• ip is the value proposed by process p.

• ⊥ is null value.

• Vp[q] is the process p’s estimate of process q’s proposed value.

• Vp is process p’s estimate of the proposed values by all other processes.

• △p contains all the values ofVp.

• rp is the current round number of process p.

• msgsp(rp) is the set of messages that p recieves from other processes about the proposed
values in roundrp.

• lastmsgsp contains the recievedVq for all processes q by the process p.

566

Every process p executes the following:
procedure propose(ip)

Vp ←<⊥,⊥, ...,⊥> {p’s estimate of the proposed values}
Vp[p]← ip;
△p ← Vp

Phase 1:{Execute roundrp, 1≤ rp ≤ n-1}
for rp← l to n-1

p sends (rp,△p, p) to all other processes
wait until [∀q:received(rp,△q,q) or q∈ Dp] {query the failure detector}
msgsp[rp]← {(rp,△q, q) | received(rp,△q,q)}
△p ←<⊥,⊥, ...,⊥>
for k← 1 to n

if (Vp[k] =⊥ and∃(rp,△q, q) ∈msgsp(rp) with△q[k] 6=⊥)
thenVp[k]←△q[k]
△p[k]←△q[k]

Phase 2:p sendsVp to all processes
wait until [∀q:receivedVq or q∈ Dp] {query the failure detector}
lastmsgsp ← {Vq | receivedVq}
for k← 1 to n

if ∃Vq ∈ lastmsgsp with Vq[k] =⊥
thenVp[k]←⊥

Phase 3:decide on the first non-⊥ element ofVp

Figure 15.3: An Algorithm to Solve the consensus problem Using a Strong Failure Detector D∈ S
.

An Explanation of the Algorithm

This algorithm has 3 phases. Initially,Vp is set to null andVp[p] contains the value,ip, proposed by
process p.

In the first phase, each process executes n-1 asynchronous rounds. In each round, processes
broadcast and relay their proposed values. Then, each process p waits until it receives a round r
message from every process that is not inDp, before proceeding to round r + 1. While p is waiting
for a message from a process q in round r, it is possible that q is added toDp. If this is the case,
p does not wait for q’s message before it proceeds to round r + 1. All messages recieved by p in
roundrp are stored inmsgsp(rp). If p’s estimate of some process k’s proposed value is null and it
has recieved a message of the form(rp,△q, q) such that q’s estimate of process k’s proposed value
is not null, then p updates its estimate of k’s proposed valueto q’s estimate of process k’s proposed
value.

In the second phase, a process p broadcasts its estimate of the proposed values of the processes

567

and waits until it receives the estimate from every process that is not inDp. While p is waiting
for an estimate from q, it is possible that q is added toDp. If this occurs, p stops waiting for
q’s estimate. By the end of the second phase, correct processes agree on a vector based on the
proposed values of all processes. The ith element of this vector either contains the proposed value
of processpi or ⊥. If any of the correct processes does not agree with the proposed value of a
process, saypi, then the ith element in the vector is set to null and consensus is not reached on
the proposed value. It has been shown that this vector contains the proposed value of at least one
process.

In the third phase, all correct processes decide the first non-trivial component of this vector.
This solution for the consensus problem using strong failure detectors, even one having weak

accuracy property, has an excellent fault tolerance capacity; the solution tolerates any number of
process failures.

Also, since a weak failure detector W is reducible to a strongfailure detector S using the
algorithm given above, this algorithm also solves the consensus using a weak failure detector W.

15.3.3 A Solution Using Eventually Strong Failure Detector♦S

The previous solution to the Consensus problem used failuredetectors withweak accuracy: some
correct process is never suspected. We now present a solution to the consensus problem using a
failure detector that satisfies theeventual weak accuracy: all processes may be erroneously added
to the lists of suspects at one time or another, but there is a time after which a correct process p
is permanently removed from the list of suspects. However, at any given time t, processes cannot
determine if a particular process is correct, or whether a correct process will never be suspected
after time t.

Figure 15.4 presents a solution to the consensus using an eventually strong failure detector
D∈♦S. Such failure detectors satisfy strong completeness and eventual weak accuracy. The al-
gorithm requires that a majority of the processes are alwaysup. If f is the maximum number of
processes that may crash at any time, this algorithm requires that f< ⌈ n/2 ⌉, that is, at least (n +
1)/2 processes are correct at all times.

An Explanation of the Algorithm

This algorithm proceeds in asynchronous rounds and makes use of therotating coordinatorparadigm
until a decision is reached. All processes know that during round r, the coordinator is process c=(r
mod n) + 1. All messages are either to or from the "current" coordinator. The "current" coordi-
nator tries to determine a consistent decision value. If thecurrent coordinator is correct and is not
suspected by any surviving process, then it succeeds and broadcasts the decision value.

The algorithm goes through three asynchronous stages whereeach stage can contain several
asynchronous rounds. In the first stage, several decision values are proposed. In second stage, a
value gets locked: no other decision value is possible. In the third and final stage, the processes
decide on the locked value and consensus is reached.

568

Every process p executes the following:
estimatep ← ip {p’s estimate of the decision value}
statep ← undecided
rp ← 0 {rp denotes the current round number}
tsp ← 0 {the round in which estimatep was last updated, initially 0}
cobegin
||Task 1:{Rotate through coordinators until a decision is reached}
while statep = undecided

rp ← rp + l
cp ← (rp mod n) + 1{cp is the current coordinator}

Phase 1:{All processes p send estimatep to the current coordinator}
p sends (p, rp, estimatep, tsp) to cp

Phase 2:{The current coordinator gathers⌈(n + 1)/2⌉ estimates and proposes a new estimate}
if p = cp then
wait until [for ⌈(n + 1)/2⌉ processes q: received(q,rp,estimateq,tsq) from q]
msgsp[rp] ← {(q,rp,estimateq ,tsq)| p received(q,rp,estimateq ,tsq) from q}
t← largest tsq such that (q,rp,estimateq ,tsq)∈msgsp[rp]
estimatep ← select one estimateq such that (q,rp,estimateq ,t)∈msgsp[rp]
p sends (p, rp, estimatep) to all processes

Phase 3:{All processes wait for the new estimate proposed by
the current coordinator}

wait until [received(cp,rp,estimatecp) from cp or cp ∈ Dp] {Query the failure detector}
if [received(cp,rp,estimatecp) from cp] then {p receivedestimatecp from cp}

estimatep ← estimatecp

tsp ← rp
p sends (p, rp, ack) to cp

else
p sends(p, rp, nack) to cp {p suspects that cp crashed}

Phase 4:{The current coordinator waits for⌈(n + 1)/2⌉ replies.
If these replies indicate that⌈(n + 1)/2⌉ processes adopted

its estimate, the coordinator broadcatss a request to decide.}
if p = cp then

wait until [for ⌈(n+1)/2⌉ processes q: received (q, rp, ack) or (q, rp, nack)]
if [for ⌈(n+1)/2⌉ processes q: received (q, rp, ack)]

then p R-broadcasts (p, rp, estimatep, decide)

|| Task 2:{When p receives a decide message, it decides}
when p R-delivers (q,rq,estimateq ,decide) for some q
if statep = undecided then

decide on estimateq
statep ← decided

coend
Figure 15.4: An algorithm to solve the consensus problem using an eventually strong failure de-
tector D∈♦S.

569

Initially, the state of a process p is "undecided" and its estimate of the decision value isip.
A timestamptsp is associated with every process p which contains the round number when its
estimate was last updated.

Each round of Task 1 consists of four asynchronous phases.
In phase 1, every process p sends its current estimate of the decision value to the current

coordinatorcp. It also sends the round number (tsp) in which it adopted this estimate.
In phase 2, the coordinator c gathers⌈(n + 1)/2⌉ such estimates and proposes a new estimate.

The current coordinator waits until it receives estimates from ⌈(n + 1)/2⌉ processes. It stores all
these estimates in the arraymsgsp[rp], selects one with the largest timestamp, and sends it to all
the processes as the new estimate,estimatep.

In phase 3, all processes wait for the new estimate proposed by the current coordinator. For
each process p, there are two possibilities:

1. Process p recievesestimatecp from the coordinatorcp: in this case, p updates its timestamp
to the current round number and sends an ack tocp to indicate that it adoptedestimatecp as
its own estimate.

2. Process p does not recieve anestimatecp from the coordinatorcp and upon consulting its
failure detector moduleDp, p suspects that the coordinatorcp has crashed: in this case, p
sends a nack tocp.

In phase 4, the coordinatorcp waits for⌈(n + 1)/2⌉ replies (acks or nacks). If all replies are
acks, thencp knows that a majority of processes changed their estimates to estimatecp and thus
estimatep is locked andcp broadcasts a request to decide valueestimatep.

In Task 2, at any time, if a process receives such a request, itdecides accordingly, i.e., when
a process p recieves a message of the form (q,rq, estimateq, decide) from a process q, then p
decides on the estimate of q provided it has not already decided. In this case, process p changes its
state to "decided".

For correctness of the algorithm, we have to show that the algorithm satisfies termination,
uniform validity, agreement, and uniform integrity properties. The readers are referred to the
original source for a correctness proof.

This algorithm requires that f< ⌈n/2⌉, i.e., at least⌈n/2⌉ processes are correct and assumes
that processes have a priori knowledge of the list of potential coordinators.

15.4 Atomic Broadcast

Atomic broadcast is one of the fundamental problems in fault-tolerant distributed computing. It
is a powerful paradigm in the design of fault-tolerant distributed computing systems. Chandra
and Toueg showed that the results of consensus can be appliedto solve the problem of atomic
broadcast. Informally, atomic broadcast requires that allcorrect processes deliver the same set of

570

messages in the same order (i.e., deliver the same sequence of messages). Formally,atomic broad-
castcan be defined as a reliable broadcast with the total order property.

The Total Order property: If two correct processes p and q deliver two messages m and m′, then
p delivers m before m′ if and only if q delivers m before m′.

The total order and agreement properties of atomic broadcast ensure that all correct processes
deliver the same sequence of messages.

In asyncronous sytems with crash failures, consensus and atomic broadcast are equivalent and
this can be shown by reducing one to the another. Consensus can be reduced to atomic broadcast
as follows: In the consensus problem, to propose a value, a process atomically broadcasts it. To
decide a value, a process picks the value of the first message that it atomically delivers. The total
order property of atomic broadcast ensures that all correctprocesses deliver the same first message.
Hence, all correct processes choose the same value and the agreement property of the consensus is
satisfied. In the next section, we show how to reduce atomic broadcast to consensus.

A consequence of this equivalence is that a solution for one can be used to solve the other. In
addition, it implies the following for solving atomic broadcast in asynchronous systems:

1. Since consensus has no deterministic solution in aynchronous systems, even if we assume
that at most one process may fail by crashing, atomic broadcast cannot be solved by a deter-
ministic algorithm even if at most one process may fail by crashing.

2. As consensus is solvable using randomization or unreliable failure detectors in asynchronous
systems, atomic broadcast can be solved using these techniques.

15.5 A Solution to Atomic Broadcast

Figure 15.5 presents a solution (due to Chandra and Toueg) toatomic broadcast problem using
the consensus in asynchronous systems. This algorithm shows how to transform any consensus
algorithm into an atomic broadcast algorithm in asynchronous systems. This atomic broadcast
algorithm tolerates as many faulty processes as the consensus algorithm does.

This atomic broadcast algorithm uses repeated executions of consensus. The kth execution of
consensus is used to decide on the kth batch of messages to be atomically delivered. Processes
distinguish between these executions by tagging all the messages pertaining to the kth execution
of consensus with the counter k.

The atomic broadcast algorithm uses R_broadcast(m) and R_deliver(m) primitives of reliable
broadcast. To avoid any confusion, note that the primitivesA_broadcast(m) and A_deliver(m) re-
spectively refer to a broadcast and a delivery in atomic broadcast, while primitives R_broadcast(m)
and R_deliver(m) respectively refer to a broadcast and a delivery associated with reliable broad-
cast. propose(k,−) and decide(k,−) are the propose and decide primitives corresponding to the
kth execution of consensus.

571

Every process p executes the following:

Initialization:

R_delivered← ∅
A_delivered← ∅
k← 0

To execute A-broadcast(m): {Task 1}
R-broadcast(m)

A_deliver(-) occurs as follows:

when R_deliver(m) {Task 2}
R_delivered← R_delivered

⋃

{m}
when R_delivered - A_delivered6= ∅ {Task 3}

k← k + 1
A_undelivered← R_delivered - A_delivered
propose(k, A_undelivered)
wait until decide(k, msgSetk)
A_deliverk ←msgSetk - A_delivered
atomically deliver all messages in A_deliverk in some determinisic order
A_delivered← A_delivered

⋃

A_deliverk

Figure 15.5: A Solution to Atomic Broadcast Using Consensus.

An Explanation of the Algorithm

The algorithm consists of three tasks such that: (1) a task that is enabled is eventually executed and
(2) a task i can execute concurrently with another Task j provided i6=j.

In Task 1, when a process p wants to A-broadcast a message m, itR_broadcasts m. In Task 2,
a message m is added to setR_deliveredp when process p R_delivers it.

In Task 3, when a process p A_delivers a message m, it adds m to setA_deliveredp. A_undeliveredp

(defined asR_deliveredp − A_deliveredp) is the set of messages that p has R_delivered but
has not A_delivered yet. Process p periodically checks whetherA_undeliveredp contains mes-
sages. IfA_undeliveredp contains messages, p enters its next execution of consensus, say the
kth one, and proposesA_undeliveredp as the next batch of messages to be A_delivered. Process
p then waits for the kth consensus decision, which is denotedby msgSetk. msgSetk contains
messages which are R_delivered but they are yet to be A_delivered. Finally, p A_delivers all
the messages inmsgSetk except those already A_delivered by it (i.e, all the messages in the set
A_deliverk

p=msgSetk − A_deliveredp) in some deterministic order that was agreeda priori by
all processes.

For a correctness proof of the algorithm, the readers shouldrefer to the original source.

572

15.6 The Weakest Failure Detectors to Solve Fundamental Agree-
ment Problems

Delporte-Gallet et al. [5] showed that if exclude unrealistic failure detectors1, then in an environ-
ment where we do not bound the number of faulty processes, theclass of Perfect failure detectors P
is the weakest to solve fundamental agreement problems likeunifrom consensus, atomic broadcast
and terminating reliable broadcast (also called the Byzantine Generals).

Delporte-Gallet et al. [5] collapsed the Chandra-Toueg failure detector hierarchy in this en-
vironment, and showed that P is the only useful class to solvethese agreement problems. This
explains why most reliable distributed systems, we know of,rely on a group membership service
that precisely aims at emulating a Perfect failure detectorP, that is, when a process is suspected
due to a time-out, it is excluded from the group. Thus, every suspicion is taken as being accurate.

Uniform Consensus

In consensus, the agreement property allows the bad processes to decide differently from good
processes. This fact can be sometimes undesirable as it doesnot prevent a bad process from
propagating a different decision in the system before crashing. In the unifrom consensus, the
uniform-agreement property allows no two processes (good or bad) to decide differently, which
enforces the same decision on any process that decides.

Terminating Reliable Broadcast

Solving the consensus problem is equivalent to solving the atomic broadcast problem, in any sys-
tem with reliable channels (i.e., where only a finite number of messages can be lost). Atomic
broadcast entails delivering messages to processes in a reliable and totally ordered manner. Termi-
nating reliable broadcast is a stronger form of atomic broadcast. Interminating reliable broadcast,
the processes deliver messages in the same sequence as atomic broadcast does, but, in addition,
processes should deliver a specific nil value for every message that was broadcast by a faulty pro-
cess but was not delivered by any correct process. This problem is a rephrasing of the famous
Byzantine Generals problem in the fail-stop model.

Delporte-Gallet et al. [5] showed that in environments where the number of faulty processes
is not bounded, uniform consensus is strictly harder than consensus, and uniform consensus and
atomic broadcast are strictly weaker than terminating reliable broadcast.

In environments where the number of faulty processes is not bounded, the exact information
about failures needed to solve consensus (hence atomic broadcast) and terminating reliable broad-
cast, is captured by P. Thus, in the failure detector hierarchy, P is the only useful class to solve the
agreement problems.

1Unrealistic failure detectors are failure detectors that can guess the future and thus, can not be implemented even
in a perfectly synchronous systems.

573

15.6.1 Realistic Failure Detectors

Note that a failure detector has been defined asanyfunction of the failure pattern and this function
may be able to provide information about the future failures. Such a failure detector does not
factor out synchrony assumptions of the system and can not beimplemented even in a perfectly
synchronous system.

Delporte-Gallet et al. [5] restricted the scope of failure detectors as functions of the "past"
failure patterns and defined the class of realistic failure detectorsR, which can not guess the future.

A failure detector is realistic if it cannot guess the future, i.e., there is no time t and no failure
pattern F at which the failure detector can provide exact information about crashes that will hold
after t in F.

Formally, the class of realistic failure detectorR is the set of failure detectors D that satisfy the
following property:

∀(F, F′) ∈ E, ∀t ∈ φ such that∀t1≤t; F(t1) = F′(t1),

we have:

∀H ∈ D(F), ∃H′ ∈ D(F′) such that∀t1≤t; ∀pi∈ Ω: H(pi;t1)=H′(pi;t1)

That is, a failure detector D is realistic if for any pair of failure patterns F and F′ that are similar
up to a given time t, whenever D outputs some information at a time t-k in F, D could output the
very same information at t-k in F′. Thus, a realistic failure detector cannot distinguish twofailure
patterns according to what will happen in the future. In other words, the output of a realistic failure
detector depends only upon the past. For a realistic failuredetector D, for any failure pattern F, the
output of D at time t is a function of F up to time t.

Two Examples

We now present two failure detector examples to illustrate the concept. The first failure detector is
realistic and the second is non-realistic.

1. Scribe(C): A scribe,’C’, is a failure detector which sees what happens at all processes in real
time and outputs a list of processes based on what it sees. Forany failure pattern F, failure
detector C outputs, at any time t, the list of values of F up to time t, denoted by F[t]. For
each failure pattern F, C(F) is the singleton set that contains the failure detector history H
such that:

∀t ∈ φ, ∀pi ∈ Ω, H(pi,t) = F[t]

C is an example of a realistic failure detector.

574

2. The Marabout (M): Failure detector M (Marabout) outputs a list of processes. For any
failure pattern F and at any process pi, the output of the failure detector M is constant and it
is the list of faulty processes in F. Thus, M outputs the list of processes that have crashed or
will crash in F. This is an example of an unrealistic failure detector.

To better understand why M is an unrealistic failure detector, consider the failure patterns F
and F′ such that (i) all processes are correct in F exceptp1 which crashes at time 10, (ii) all
processes are correct in F′, and (iii) F and F′ are same up to time t=9.

Consider any historyH of M(F) and any historyH ′ of M(F′). By the definition of M,

• the output at any process and at any time of H′ is φ and

• for any history H∈ M(F), for any processpi, and any time t∈Φ, the output, H(pi,t), is
{ p1}.

However, if M was realistic, its failure detector historiesH in M(F) and H’ in M(F’) should
be such that H′ and H are dentical up to time 9. Thus, M is unrealistic becauseitis accurate
about the future.

15.6.2 The weakest failure detector for consensus

Recall that in the consensus problem, every process proposes an initial value and all processes must
agree on one of these values such that termination, agreement, and validity properties are satisfied.
Delporte-Gallet et al. [5] showed that if the number of faulty processes is not restricted, then P is
the weakest “realistic" failure detector class to solve consensus. Prcisely, they showed that if the
number of faulty processes is not restricted, any realisticfailure detector that solves consensus can
be tranformed into a failure detector of class P. We next givean intuitive proof of this lower bound,
which includes the following two parts.

1. First, we show that "any consensus algorithm is total", that is, the causal chain of any decision
event contains a message from every process that has not crashed at the time of the decision.

We argue that a consensus decision cannot be reached by any process without having con-
sulted every other correct process. If this is not true, a situation is possible where, after the
decision, all the consulted processes crash except the one which is not consulted and this
process later decides differently. If all the processes areconsulted before every decision, we
call such an algorithm total.

2. Second part of the proof entails showing that "if a realistic failure detector D implements a
total consensus algorithm, then D can be transformed into a perfect failure detector P."

This proof uses the fact that D is realistic and the algorithmis total. Therefore, for accurate
tracking of process failures, no decision is taken without consulting every correct process.
A process is suspected to have crashed in a sequence of consensus instances, if and only if a
decision is reached and the process was not consulted in the decision.

575

15.6.3 The Weakest Failure Detector for Terminating Reliable Broadcast

Terminating reliable broadcast is a strong form of reliablebroadcast in which processes must de-
liver a specific valuenil if the sender process has crashed, else, the processes must deliver the
message m, broadcast by sender(m).

A general variant of the problem is considered where every process is a potential initiator of
the broadcast. The kth instance of the broadcast initiated by processpi is denoted by (i,k). Instance
(i,*) is defined by the following properties:

1. Validity: If a correct processpi broadcasts a message m, thenpi eventually delivers m.

2. Agreement: If a process delivers a message m, then every correct process delivers m.

3. Integrity: If a process delivers a message m andpi is correct, then sender(m)=pi.

If we do not bound the number of processes that can crash, thenamong realistic failure de-
tectors, the weakest class to solve terminating reliable broadcast is P. A sketch of the proof is as
follows.

Sufficient condition: Terminating reliable broadcast problem can be solved by anyperfect fail-
ure detector, including realistic failure detectors. Wheninstance (k, k′) of the terminating reliable
broadcast is executed, each process waits until it receivesthe value from pk or it suspects pk. In the
former case, it proposes the received value to consensus, and in the latter case, it proposes value
nil. The value delivered is the consensus value.

Necessary condition: Suppose A is any terminating reliable broadcast algorithm using a fail-
ure detector D. We can emulate the output of D, a failure detector of class P, using terminating
reliable broadcast algorithm A in a distributed variable output(P) in the following way: whenever
a process pj delivers nil for an instnace (i, *) of the algorithm, pj adds pi to output(P)j. Any pro-
cess that crashes will eventually be permanently added to output(P) at every correct process. Thus,
strong completeness will be ensured. A process pi is added to output(P)j at some time t only if pi
is faulty. Since D is assumed to be realistic, pi must have crashed by time t.

15.7 An Implementation of a Failure Detector

Now we present an algorithm to implement a dailure fetector.The algorithm is a timeout based
implementation of eventually perfect failure detector D∈♦P in partially synchronous models.
The concept of partial synchrony in a distributed system lies between the cases of a synchronous
system and an asynchronous system. In partial synchrony, the system is asynchronous initially but
after an unknown time t, the system becomes synchronous. This assumption captures the fact that
the system does not behave always as synchronous. Generallydistributed systems are synchronous

576

Every process p executes the following:
Outputp← ∅ {Initializes output set to empty}
for all q∈∏

∆p(q)← default time-out interval {Set the timeout interval}
Cobegin
Task1: repeat periodically

send “p-is-alive” to all

Task2: repeat periodically
for all q∈∏

if q 6= Outputp and
p did not receive “q-is-alive” during the last∆p(q) ticks of p’s clock

Outputp← Outputp ∪ {q} {p times-out on q and starts suspecting that q has crashed}

Task3: when receive “q-is-alive” for some q
If q ∈ Outputp {p knows that it prematurely timed-out on q}

Outputp←Outputp− (q) {p repents on q}
∆p(q)← ∆p(q) + 1 {p increases its time-out period for q}

Coend

Figure 15.6: A time-out based implementation of D∈ ♦ P in the partial synchrony model.

most of the time and then they experience bounded asynchronyperiods. We expect from partial
synchrony a period of synchrony long enough to terminate thedistributed algorithm.

Each process p maintains a default timeout interval for every other process in the system. A
process sets a timeout based on worst case round trip of a message exchange. To measure the
elapsed time, each process p maintains a local clock, say, bycounting the number of steps that it
takes.
Variables used in the algorithm:

• Outputp (called the suspect list of p) is a set to hold all the suspected processes by process p.
This set is initially empty. This set is local to process p which is executing the algorithm.

• q is the loop variable used to identify each process in the system.

• Π is a set of all processes in the system.

• ∆p(q) is the duration of p’s timeout interval for q.

The algorithm is presented in Figure 15.6.

Explanation of the Algorithm

Task 1: Each process p periodically sends a “p-is-alive” message to all other processes. This is like
a heart-beat message that informs other processes that process p is alive.

577

Task 2: If a process p does not receive a “q-is-alive” messagefrom a process q within∆p(q) time
units on its clock, then p adds q to its set of suspects if q is not already in the suspect list of p.
Task 3: When a process delivers a message from a suspected process, it corrects its error about
the suspected process and increases its time-out for that process. If process p receives “q-is-alive”
message from a process q that it currently suspects, p knows that its previous time-out on q was pre-
mature – p removes q from its set of suspects and increases itstime-out period for process q,∆p(q).

Correctness of the Algorithm
The algorithm insures the properties of an Eventually Perfect Failure Detector as discussed

below:

• Strong completeness: If a process p crashes, it will stop sending “p-is-alive” messages.
Eventually every process that crashes is permanently detected by every correct process.
Therefore, a crashed process will be suspected by any correct process and no process will
revise the judgement.

• Eventual strong accuracy: After time t, the system becomes synchronous, i.e., after time t, a
message sent by a correct process p to another process q will be delivered within a bounded
time. If p was wrongly suspected by q, then q will revise its suspicious. Eventually, no
correct process is ever suspected.

15.8 An Adaptive Failure Detection Protocol

In this section, we discuss an adaptive failure detection protocol that allows a process to moni-
tor other processes and eventually detects its crash. The protocol relies as much as possible on
application messages to do this monitoring and uses controlmessages only when no application
message is sent by the monitoring process to the observed process. More precisely, the proposed
protocol allows a process to monitor another process using the application messages it is exchang-
ing to communicate with the other process, saving failure detection messages. A failure detector
(thus, failure detection messages) are used when the processes are not communicating. The cost
associated with the implementation of a failure detector incurs only when the failure detector is
used (hence, it is called a lazy failure detector). When the underlying system satisfies the partial
synchrony assumption, the protocol implements an eventually perfect failure detector D∈♦P. Re-
call that an eventually perfect failure detector makes no mistake (i.e, the list of suspects at a process
includes all crashed processes, but no correct process) after a finite, but unknown time.

For any failure detector in♦P, after it becomes perfect, if the average observed transmission
delay is finite and the upper layer application terminates within a bounded number of steps, then
it terminates correctly when run with the proposed protocol. These properties make the protocol
attractive: it is inexpensive, implementable, and powerful.

The basic failure detection protocol (denoted byFDL) ensures that if a process queries another
process that has crashed, then it will definitely suspect it.Thus, completeness of the detection is

578

satisfied. The failure detection protocol is plugged into two particular contexts. The first context
is defined by the properties to be satisfied by the lower layer,namely, partial synchrony. When
the failure detection protocol is plugged in such a system, the protocol provides a failure detector
of the class♦P. The second context is defined by a property assumed to be satisfied by the upper
layer, i.e., the application and some weaker properties to be satisfied by the lower level. The first
context is defined by partial synchrony.

The second context defines a property (called♦P−terminating) that the application has to sat-
isfy. A failure detector-based application (the failure detector it uses belongs to♦P) is♦P−terminating
if it terminates correctly within at most some l steps after the failure detector becomes perfect.
When run with a♦P−terminating application, the protocol provides the application with the same
properties as♦P if the average observed transmission delay is finite. Interestingly, unlike the first
context, the second context does not require an upper bound on message transfer delays. These
two contexts show that this failure detection protocol is inexpensive, implementable, and powerful.

15.8.1 Lazy Failure Detection Protocol (FDL)

Assumptions
The basic system consists of a finite set of processes P = {p1, p2, ...pn}. Each processpi has a

local hardware clockhci that strictly monotonically increases. The local clocks are not required
to be synchronized, and there is no assumption on their possible drift. The behaviour of a process
can be modeled by a finite state automaton. Each step of a process is triggered by a message. An
event is the execution of communication statement by a process. The historyhi of a processpi is
the sequence of communication events it produces.

Every pair of processes is connected by a channel and they communicate by sending and re-
ceiving messages through channels. Channels are not required to be FIFO. They are only assumed
to be reliable in the following sense: they do not create, duplicate, alter or loose messages, i.e., if
a processpj is correct, message sent by a processpi to pj is eventually received bypj .

Primitives Provided

The protocol provides the following primitives to each upper layer application process pi:

1. SEND M to pj: used by pi to send an application message M to pj.

2. RECEIVE M: used by pi to receive an application message M.

3. QUERY(j): used to know whether pj is suspected to have crashed. This primitive returns an
answer, namely, the value suspect or no_suspect.

At operational level, the protocol uses three types of messages: "appl", "ack" and "ping".
To send an application message M topj , a processpi invokes "sendappl(m) topj" where the
protocol message m includes M plus some control information. When it receives such a message,

579

pj systematically acknowledges it by sending back ack(m). When it receives ack(m),pi computes
the round trip delay of the pair appl(m)+ack(m). For each destination processpj, pi aditionally
computes maximum round trip delay for the messages that havebeen acknowledged bypj .

The answer provided by QUERY(j) when it is invoked by the upper layer depends on the
existence of a "pending" message,i.e., a message m such thatappl(m) has been sent topj but the
corresponding ack(m) has not yet been received bypi:(1) If there is no such message, the answer
is nosuspect, butpi sends a ping message topj inorder to verify its answer. (2) If there are such
"pending" messages, the answer depends on the maximum roundtrip delay already experienced.

The ProtocolFDL

The protocol manages two arrays of local variables for each processpi: 1) pending_msg_sti[j]:
this set is initially empty and it contains the sending timesof the messages sent bypi to pj, whose
acknowledgements have not yet been received bypi. 2) max_rtdi[j]: contains the biggest round trip
time of the messages thatpi sent topj and that have been acknowledged. Initially, this variable has
the value zero. If the value of max_rtdi[j] from the previous execution is known, then max_rtdi[j]
can be initialized to this value.

A call to SEND M is interpreted as a message reception from theupper layer. Similarly, RE-
CEIVE M is interpreted as a message sent to the upper layer. A protocol message m has a type
(appl/ack/ping). In addition to a content (m.content), a message m also carries the local send time
(m.st). More precisely, appl(m) and ping(m) carry their local send time and ack(m) carries the send
time of the appl(m) or ping(m) message it is associated with.

The protocol for processpi is defined as follows:

The protocol works as follows: When SEND M topj is invoked bypi, m.content is ini-
tialized to the application message M and m.st is initialized to the local hardware clock time.
Since the acknowledgement of this message is not yet received by pi, m.st is added to the set
pending_msg_sti[j]. Now, pi sends the application message appl(m) topj .

Whenpi receives a message frompj , it acts as follows: If the message received by process
pi is of type ’appl’, then the message content(m.content) is transmitted to the upper layer and an
acknowledgement message, ack(m)is sent topj . If the message is an acknowledgement, ’ack’,
then the maximum round trip delay time of the messages sent topj by processpi is updated to the
maximum of the previous and current round trip delay times. Since this is an acknowledgement
message, its sending time is deleted from the pending time set. When the message of type ping is
received bypi, it sends an acknowledgement message ack(m) topj.

When QUERY(j) is invoked by the processpi, the following two conditions arise: (1) If
pending_msg_sti[j] is empty, then a control message m is created and is used toping process
pj. A control message is used as there is no communication between the processes. The ping
message send time is added to the pending time set and a value ’no_suspect’ is returned. (2) When
pending_msg_sti[j] is non-empty, if the time taken to receive an acknowledgement from processpj

580

when SEND M to pj is invoked:
m.content←M; m.st← hci;
pending_msg_sti[j] ← pending_msg_sti[j]

⋃

{m.st}
send appl(m) to pj

when type(m) is recieved from pj:
case type=appl then transmit M=m.content to upper layer,

{* RECIEVE M *} send ack(m) to pj {* m.st keeps its value *}
type=ack then rt← hci;

max_rtdi[j]←max(max_rtdi[j], rt-m.st);
pending_msg_sti[j]←pending_msg_sti[j] - {m.st}

type=ping then send ack(m) to pj {* m.st keeps its value *}
endcase

when QUERY(j) is invoked:
if pending_msg_sti[j] = ∅ then create a control message m;
m.content← null; m.st← hci

send ping(m) to pj;
pending_msg_sti[j] ← {m.st};
return(no_suspect)
else
rt← hci;
if rt-min(pending_msg_sti[j]) > max_rtdi[j]

then return (suspect)
else return (no_suspect)

endif
endif

Figure 15.7: Lazy Failure Detection Protocol for processpi.

is greater than the max_rtdi[j], then the processpj is suspected to be crashed and a value ’suspect’
is returned else ’no_suspect’ is returned.

Properties ofFDL

If from some time t, a processpi obtains the answer suspect each time it invokes QUERY(j), we
say that from that time it "permanently suspectspj" from t.

Completeness Property:Let us assume that pi is correct, while pj is faulty (i.e., it has crashed).
Then, FDL ensures that eventually pi permanently suspects pj to have crashed.

The Protocol in Partially Synchronous Systems2: If the underlying system is partially syn-
chronous, there is a time t after which FDL ensures that no correct process is suspected by a

2This means that there is a time after which there are upper bounds on messages transfer delays and associated
processing times

581

correct process.

♦P Terminating Protocol: If the upper layer protocol is♦P-Terminating, then it terminates with
probability 1 when, instead of using a failure detector of♦P, it uses FDL.

Message Cost:Each appl() or ping() message generates atmost one ack() message. Both appl()
and ping() are due to the application layer. appl() when it sends an application message and ping()
when it invokes QUERY().

The cost of invocation of QUERY(j) by a processpi after pj has crashed: According to the
current state of pending_msg_sti[j], pi can be forced to send ping(m) message topj . But from
now, the condition pending_msg_sti[j] 6= Φ remains permanently true. Consequently, the next
invocations of QUERY(j) do not send messages, and their communication cost is zero.

15.9 Bibliographic Notes

The area of failure detectors was initiated by Chandra and Toueg [3] and a large number of re-
searchers followed it. An excellent short review paper on the topic is by Raynal [22]. Delporte-
Gallet et al. [5] present a realistic failure detector. An adaptive failure detector can be found in
Fetzer et al. [8].

Implementations of failure detectors can be found in [17, 18, 19, 20]. Garg and Mitchell [11]
describe implementable failure detectors. Gupta et al. [14] discuss scalable failure detectors.
Hurfin et al. [15, 16] present a family of consensus protocolsbased on failure detectors. Schiper
[23] discusses early consensus using weak failure detectors. Chandra et al. [4] discuss the weak-
est failure detector to solve the consensus. Guerraoui [12]present non-blocking atomic commit
using failure detectors. Delporte-Gallet et al. [6] discuss how to achieve mutual exclusion in
asynchronous distributed systems with failure detectors.

15.10 Exercise Problems

1. It is well known fact that consensus and atomic broadcast problems cannot be solved deter-
ministically in asynchronous distributed systems even fora single process failure. Then how
failure detectors solve these problems?

582

Bibliography

[1] Marcos Aguilera Wei Chen Sam Toueg, Heartbeat: A Timeout-Free Failure Detector for
Quiescent Reliable Communication, Proc. of DISC, 1997.

[2] Marcos Aguilera, Wei Chen, Sam Toueg, Using the heartbeat failure detector for quiescent
reliable communication and consensus in partitionable networks, Theoretical Computer Sci-
ence, Volume 220, Issue 1, June 1999, Pages: 3 - 30.

[3] Chandra T.D. and Toueg S., Unreliable Failure Detectorsfor Reliable Distributed Systems.
Journal of the ACM, 43(2):225-267, 1996. (First version published in the proceedings of the
10th ACM Symposium on Principles of Distributed Computing,1991.)

[4] Tushar Deepak Chandra, Vassos Hadzilacos and Sam Toueg,The Weakest Failure Detector
for Solving Consensus, Journal of the ACM, 43:4, July 1996, 685-722.

[5] Delporte-Gallet C., Fauconnier H. and Guerraoui R., A Realistic Look at Failure Detectors.
Proc. IEEE Inter. Conference on Dependable Systems and Networks (DSN’02), IEEE Com-
puter Society Press, pp. 345352, Washington D.C., 2002.

[6] Delporte-Gallet Carole, Fauconnier Hugues, GuerraouiRachid, Kouznetsov Petr, Mutual ex-
clusion in asynchronous systems with failure detectors, Journal of parallel and distributed
computing, 2005, vol. 65, no4, pp. 492-505.

[7] Delporte-Gallet C., Fauconnier H. and Guerraoui R., Failure Detection Lower Bounds on
Registers and Consensus. Proc. 16th Symposium on Distributed Computing (DISC’02),
SpringerVerlag LNCS #2508, pp. 237251, 2002.

[8] Fetzer C., Raynal M. and Tronel F., An Adaptive Failure Detection Protocol. Proc. 8th IEEE
Pacific Rim Int. Symposium on Dependable Computing (PRDC’01), IEEE Computer Society
Press, pp. 146153, Seoul (Korea), 2001.

[9] M.J.Fischer,N.A.Lynch,and M.S.Paterson.Impossibility of distributed consensus with one
faulty process.Journal of the ACM ,32(3):374 .382, April 1985.

[10] Friedman R., Mostefaoui A. and Raynal M., A Weakest Failure DetectorBased Asynchronous
Consensus Protocol for f < n, Information Processing Letters, Volume 90, Issue 1, April 2004,
Pages: 39 - 46.

583

[11] Vijay K. Garg and J. Roger Mitchell, Implementable Failure Detectors in Asynchronous Sys-
tems, Lecture Notes in Computer Science, Springer Berlin/Heidelberg, Volume 1530/2004,
Foundations of Software Technology and Theoretical Computer Science Pages 158-170,
1998.

[12] Guerraoui R., NonBlocking Atomic Commit in Asynchronous Distributed Systems with Fail-
ure Detectors. Distributed Computing, 15:17-25, 2002.

[13] Guerraoui R., Indulgent Algorithms. Proc. 19th ACM Symposium on Principles of Dis-
tributed Computing, (PODC’00), ACM Press, pp. 289298,Portland (OR), 2000.

[14] Indranil Gupta, Tushar D. Chandra, German S. Goldszmidt, On scalable and efficient dis-
tributed failure detectors, Proc. of the twentieth annual ACM symposium on Principles of
distributed computing, p.170-179, August 2001, Newport, Rhode Island.

[15] M. Hurfin , A. Mostefaoui, M. Raynal, A Versatile Family of Consensus Protocols Based on
Chandra-Toueg’s Unreliable Failure Detectors, IEEE Transactions on Computers, v.51 n.4,
p.395-408, April 2002.

[16] Michel Hurfin, Michel Raynal, A simple and fast asynchronous consensus protocol based on
a weak failure detector, Distributed Computing, v.12 n.4, p.209-223, September 1999.

[17] Mikel Larrea, Sergio Arevalo, Antonio Fernandez, Efficient Algorithms to Implement Unre-
liable Failure Detectors in Partially Synchronous Systems, Proceedings of the 13th Interna-
tional Symposium on Distributed Computing, p.34-48, September 27-29, 1999.

[18] Mikel Larrea, Antonio Fernandez, Sergio Arevalo, Optimal Implementation of the Weak-
est Failure Detector for Solving Consensus, Proceedings ofthe 19th IEEE Symposium on
Reliable Distributed Systems (SRDS’00), p.52, October 16-18, 2000.

[19] Gerard Le Lann and Ulrich Schmid, How to Implement a Time-Free Perfect Failure Detector
in Partially Synchronous Systems, Technical University ofVienna, Institute for Technische
Informatik, Research Report, Number 28/2005, 2005.

[20] Mostefaoui A., Mourgaya E., and Raynal M., Asynchronous Implementation of Failure De-
tectors. Proc. Int. IEEE Conference on Dependable Systems and Networks (DSN’03), IEEE
Computer Society Press, pp. 351360, San Francisco (CA), 2003.

[21] Achour Mostefaoui, Eric Mourgaya, Michel Raynal, An introduction to oracles for asyn-
chronous distributed systems, Future Generation ComputerSystems, v.18 n.6, p.757-767,
May 2002.

[22] Raynal M., A Short Introduction to Failure Detectors for Asynchronous Distributed Systems,
ACM SIGACT News, Volume 36, Issue 1, March 2005, Pages: 53 - 70.

584

[23] Andre Schiper, Early consensus in an asynchronous system with a weak failure detector,
Distributed Computing, v.10 n.3, p.149-157, April 1997.

[24] Lynda Temal, Denis Conan, Failure, connectivity and disconnection detectors, Proceedings of
the 1st French-speaking conference on Mobility and ubiquity computing, June 01-03, 2004,
Nice, France.

585

Chapter 16

Authentication in Distributed System

16.1 Introduction

A fundamental concern in building a secure distributed system is authentication of local and remote
entities in the system [41]. In a distributed system, the hosts communicate by sending and receiving
messages over the network. Various resources (like files andprinters) distributed among the hosts
are shared across the network in the form of network servicesprovided by servers. The entities in a
distributed system like users, clients, servers, processes are collectively referred to as principals. A
distributed system is susceptible to a variety of threats mounted by intruders as well as legitimate
users of the system.

In an environment where a principal can impersonate other principal, principals must adopt a
mutually suspicious attitude toward one another and authentication becomes an important require-
ment. Authentication is a process by which one principal verifies the identity of other principal.
For example, in a client-server system, the server may need to authenticate the client. Likewise,
the client may want to authenticate the server so that it is assured that it is talking to the right entity.
Authentication is needed for both authorization and accounting functions. In one-way authentica-
tion, only one principal verifies the identity of the other principal and in mutual authentication, both
communicating principals verify each other’s identity. A user gains access to a distributed system
by logging to a host in the system. In an open access environment where hosts are scattered across
unrestricted areas, a host can be arbitrarily compromised,necessitating mutual authentication be-
tween the user and host. In a distributed system, authentication is carried out using a protocol
involving message exchanges and these protocols are termedauthentication protocols[41].

16.2 Background and Definitions

In simple terms, authentication is identification plus verification. Identification[41] is the proce-
dure whereby an entity claims a certain identity, whileverificationis the procedure whereby that
claim is checked. Authentication is a process of verifying that the principal’s identity is as claimed.
Thecorrectnessof authentication relies heavily on the verification procedure employed.

586

A successful identity authentication results in a belief held by the authenticating principal (the
verifier) that the authenticated principal (theclaimant) possesses the claimed identity. The other
types of authentication include message origin authentication and message content authentication.
In this chapter, we restrict our attention to the identity authentication only.

Authentication in distributed systems is carried out with protocols. A protocol is a precisely
defined sequence of communication and computation steps. A communication step transfers mes-
sages from one principal (the sender) to another (the receiver), while a computation step updates a
principal’s internal state. Two distinct states can be identified upon the termination of the protocol:
one signifying successful authentication and the other failure.

Although the goal of any authentication is to verify the claimed identity of a principal, specific
success and failure states are highly protocol dependent. For example, the success of an authenti-
cation during the connection establishment phase of a communication protocol is usually indicated
by the distribution of a fresh session key between two mutually authenticated peer processes. On
the other hand, in a user login authentication, success usually results in the creation of a login
process on behalf of the user.

16.2.1 Basis of Authentication

Authentication is based on the possession of some secret information, like password, known only to
the entities participating in the authentication. When an entity wants to authenticate another entity,
the former will verify if the latter possesses the knowledgeof the secret. If the entity demonstrates
the knowledge of the right secret information, the authentication succeeds, else authentication fails.
Examples of secret information for the purpose of authentication include the following: something
known (e.g., a shared key), something possessed (e.g., smartcard), or something inherent (e.g., bio-
metrics). However, the verification process should not allow an attacker to reuse an authentication
exchange to impersonate an entity. The verification processmust provide the verifier with enough
confidence that an attacker is not trying to impersonate an entity.

16.2.2 Types of Principals

In a distributed system, the entities that require identification are hosts, users and processes [26].
They thus are the principals involved in an authentication.

Hosts. These are addressable entities at the network level. A host is usually identified by its
name (for example, a fully qualified domain name) or its network address (for example, an IP
address).

Users.These entities are ultimately responsible for all system activities. Users initiate and are
accountable for all system activities. Most access controland accounting functions are based on
users. Typical users include humans, as well as accounts maintained in the user database. Users
are considered to be outside the system boundary.

Processes.The system creates processes within the system boundary to represent users. A
process requests and consumes resources on the behalf of itsuser.

587

Processes fall into two classes: client and server. Client processes are consumers who obtain
services from server processes, who are service providers.A particular process can act as both a
client and a server.

16.2.3 A Simple Classification of Authentication Protocols

Authentication protocols can be categorized based on the following criteria [28]: type of cryp-
tography (symmetric vs. asymmetric), reciprocity of authentication (mutual vs. one-way), key
exchange, real-time involvement of a third party (on-line vs. off-line), nature of trust required
from a third party, nature of security guarantees, and storage of secrets.

In this chapter, we classify authentication protocols [41]primarily based on the cryptographic
technique used. There are two basic types of cryptographic techniques: symmetric ("private key")
and asymmetric ("public key"). Symmetric cryptography uses a single private key to both encrypt
and decrypt data. Any party that has the key can use it to encrypt and decrypt data. Symmetric
cryptography algorithms are typically fast and are suitable for processing large streams of data.
Asymmetric cryptography, also called Public-key cryptography, uses a secret key that must be
kept from unauthorized users and a public key that is made public. Both the public key and the
private key are mathematically linked: data encrypted withthe public key can be decrypted only
by the corresponding private key, and data signed with the private key can only be verified with the
corresponding public key. Both keys are unique to a communication session.

16.2.4 Notations

We specify authentication protocols [39] with precise syntax and semantics and define a system
model that characterizes protocol executions. We assume a given set of constant symbols which
denote the names of principals, nonces, and keys. In symmetric key cryptography, let{X}k denote
the encryption of X using a symmetric key k and{Y }k−1 denote the decryption of Y using a
symmetric key k. In asymmetric key cryptography, for a principal x, Kx and K−1

x denote its public
and private keys, respectively.

We present authentication protocols using the following format. A communication step whereby
P sends a message M to Q is represented as P→ Q : M, whereas a computation step of P is written
as P : . . . , where “. . . ” is a specification of the computation step.

For example, a typical login protocol between a host H and a user U is given in Table 16.1 (f
denotes aone-wayfunction, that is, given y, it is computationally infeasible to find an x such that
f(x) =y).

Since authentication protocols for distributed systems directly use cryptosystems, their basic
design principles also follow the type of cryptosystem used. Specifically, we identify two basic
categories of authentication: one based on symmetric cryptosystems and other on asymmetric
cryptosystems. Protocols presented in this chapter are intended to illustrate basic design principles
and a realistic protocol is certainly a refinement of these basic protocols.

588

U→H : U
H→U : "Please enter password"
U→H : p

H : compute y = f (p)
: Retrieve user record (U, f (password) U) from the database
: If y = f (password) U, then accept; otherwise reject

Table 16.1: A login protocol

16.2.5 Design Principles for Cryptographic Protocols

Abadi and Needham set out a set of principles [2, 36] to denoteprudent engineering practices
for cryptographic protocols design [2, 4]. They are not meant to apply to every protocol in every
instance, but they do provide rules of thumb that should be considered when designing a crypto-
graphic protocol.

We next present these principles and briefly comment on them [2, 4].

• Principle 1. Every message should say what it means: The interpretation of the message
should depend only on its content. It should be possible to write down a straightforward
English sentence describing the content—though if there isa suitable formalism available,
which is good, too.

• Principle 2. The conditions for a message to be acted upon should be clearly set out so that
someone reviewing the design may see whether they are acceptable or not.

• Principle 3. If the identity of a principal is essential to the meaning of a message, it is prudent
to mention the principal’s name explicitly in the message.

• Principle 4. Be clear as to why encryption is being done. Encryption is not wholly cheap,
and not asking precisely why it is being done can lead to redundancy. Encryption is not
synonymous with security, and its improper use can lead to errors.

• Principle 5. When a principal signs material that has already been encrypted, it should not be
inferred that the principal knows the content of the message. On the other hand, it is proper
to infer that the principal that signs a message and then encrypts it for privacy knows the
content of the message.

• Principle 6. Be clear about what properties you are assumingabout nonces. What may do for
ensuring temporal succession may not do for ensuring association—and perhaps association
is best established by other means.

• Principle 7. The use of a predictable quantity (such as the value of a counter) can serve in
guaranteeing newness, through a challenge-response exchange. But if a predictable quantity
is to be effective, it should be protected so that an intrudercannot simulate a challenge and
later replay a response.

589

• Principle 8. If timestamps are used as freshness guaranteesby reference to absolute time,
then the difference between local clocks at various machines must be much less than the
allowable age of a message deemed to be valid. Furthermore, the time maintenance mecha-
nism everywhere becomes part of the trusted computing base.

• Principle 9. A key may have been used recently, for example, to encrypt a nonce, yet be
quite old, and possibly compromised. Recent use does not make the key look any better than
it would otherwise.

• Principle 10. If an encoding is used to present the meaning ofa message, then it should be
possible to tell which encoding is being used. In the common case where the encoding is
protocol dependent, it should be possible to deduce that themessage belongs to this protocol,
and in fact to a particular run of the protocol, and to know itsnumber in the protocol.

• Principle 11. The protocol designer should know which trustrelations his protocol depends
on, and why the dependence is necessary. The reasons for particular trust relations being
acceptable should be explicit though they will be founded onjudgment and policy rather
than on logic.

16.3 Protocols Based on Symmetric Cryptosystems

In a symmetric cryptosystem, knowing the shared key lets a principal encrypt and decrypt arbitrary
messages [41]. Without such knowledge, a principal cannot create the encrypted version of a
message, or decrypt an encrypted message. Hence, authentication protocols can be designed using
to the following principle,

“If a principal can correctly encrypt a message using a key that the verifier believes is known
only to a principal with the claimed identity (outside of theverifier), this act constitutes sufficient
proof of identity.”

Thus the principle embodies the fact that a principal’s knowledge is indirectly demonstrated
through its ability to encrypt or decrypt.

16.3.1 Basic Protocol

Using the above principle, we immediately obtain the basic protocol (shown in Table 16.2) where
principal P is authenticating itself to principal Q. ‘k’ denotes a secret key that is shared between
only P and Q [41].

In this protocol, the principal P prepares a message m and encrypts the message and identity of
Q using the symmetric key k and sends to Q both the plain text message and the encrypted message.
Principal Q on receiving the message encrypts the plaintextmessage and its identity to get the
encrypted message. If it is equal to the encrypted message sent by P, then Q has authenticated P,
else, the authentication fails.

590

P : Create a message m = "I am P."
: Compute m′ ={m, Q} k

P→Q : m, m′

Q : verify {m, Q}k = m′

: if equal then accept; otherwise the authentication fails

Table 16.2: Basic Protocol

Weaknesses

Clearly, this method is sound only if the underlying cryptosystem is strong (one cannot create
the encrypted version of a message without knowing the key) and the key is secret (it is shared
only between the real principal and the verifier). Note that this protocol performs only one-way
authentication, mutual authentication can be achieved by reversing the roles of P and Q.

One major weakness of the protocol is its vulnerability to replays. More precisely, an adversary
could masquerade as P by recording the message m, m’ and laterreplaying it to Q. As mentioned,
replay attacks can be countered by using nonces or timestamps. Since both plaintext message
m and its encrypted version m’ are sent together by P to Q, thismethod is vulnerable to known
plaintext attacks. Thus the cryptosystem must be able to withstand known plaintext attacks.

16.3.2 Modified Protocol with Nonce

To prevent replay attacks, we modify the protocol by adding achallenge-and-response step using
nonce (shown in Table 16.3). A nonce is a large random or pseudo-random number that is drawn
from a large space so that it is difficult to guess by an intruder. This property of a nonce helps
ensure that old communications cannot be reused in replay attacks.

P→Q : "I am P."
Q : generate nonce n

Q→P : n
P : compute m′ ={P, Q, n}k

P→Q : m′

Q : verify {P, Q, n}k = m′

: if equal then accept; otherwise the authentication fails

Table 16.3: Challenge-and-response protocol using a nonce

In the modified version of the protocol [41], the principal P wants to authenticate itself to Q.
Q generates a nonce and sends this nonce to P. P then encrypts Q, the nonce and its own identity
with the secret key and sends this encrypted message to Q. Q verifies this encrypted message by
encrypting its identity, P’s identity and the nonce with thekey k. Q authenticates P if encrypted
information equals that sent by P, else the authentication fails.

591

Replay is foiled by the freshness of nonce n and because n is drawn from a large space. There-
fore, it is highly unlikely that the nonce n generated by Q in the current session is the same as
one used in a previous session. Thus an attacker cannot use a message of type m′ from a previous
session to mount a replay attack. In addition, even if an eavesdropper has monitored all previous
authentication conversations between P and Q, it is impossible to produce the message m because
it does not know the secret key k. The challenge-and-response step can be repeated any number of
times until the desired level of confidence is reached by Q.

Weaknesses

This protocol has scalability problems because each principal must store the secret key for every
other principal it would ever want to authenticate [41]. This presents major initialization (the
predistribution of secret keys) and storage problems. Moreover, the compromise of one principal
can potentially compromise the entire system. Note that this protocol is also vulnerable to known
plaintext attacks.

16.3.3 Wide-Mouth Frog Protocol

The above raised problems can be significantly reduced by postulating a centralized server S. The
wide-mouth frog protocol [28] uses a similar approach wherea principal A authenticates itself to
principal B using a Server S. The protocol works as follows:

A→S : A, {TA, KAB, B}KAS

S→B : {T S, KAB, A} KBS

A decides that it wants to set up communication with B. A sendsto S its identity and a packet
encrypted with the key, KAS, it shares with S. The packet contains the current timestamp, A’s
desired communication partner, and a randomly generated key KAB, for communication between
A and B. S decrypts the packet to obtain KAB and then forwards this key to B in an encrypted
packet that also contains the current timestamp and A’s identity. B decrypts this message with the
key it shares with S and retrieves the identity of the other party and the key, KAB. Any principal
receiving a message with an out-of-date timestamp during this protocol discards it to prevent replay
attacks. This protocol achieve two objectives: First, it securely establishes a secret key between
two principals A and B. Second, A authenticates itself to B with the help of the server S. This is
because, only the server S could have constructed the message {TS, KAB, A} KBS

in Step (2) only
after receiving a message from A in step 1.

A weakness of the protocol is that a global clock is required and the protocol will fail if the
server S is compromised.

592

16.3.4 A Protocol Based On an Authentication Server

Another approach to solve the problem is by using a centralizedauthentication server S thatshares
a secret key KXS with every principal X in the system [41]. The basic authentication protocol is
shown in Table 16.4.

P→Q : "I am P."
Q : generate nonce n

Q→P : n
P : compute x = {P, Q, n}KPS

P→Q : x
Q : compute y = {P, Q, x}KQS

Q→A : y
A : recover P, Q, x from y by decrypting y withKQS

: recover P,Q, n from y by decrypting x withKPS

: compute m = {P, Q, n}KQS

A→Q : m
Q : independently compute {P, Q, n}KQS

and verify {P, Q, n}KQS
= m

: if equal, then accept; otherwise, the authentication fails

Table 16.4: A protocol using an authentication server

In the protocol using an authentication server, the principal P sends its identity to Q. Q generates
a nonce and sends this nonce to P. P then encrypts P, Q, n with the keyKPS and sends this encrypted
value x to Q. Q then encrypts P, Q, x withKQS and sends this encrypted value y to authentication
server S. Since S knows both the secret keys, it decrypts y withKQS, recovers x , decrypts x with
KPS and recovers P, Q, n. Server S then encrypts P, Q, n with keyKQS and sends the encrypted
value m to Q. Q then computes P, Q, nKQS and verifies if this value is equal to the value received
from S. If both values are equal, then authentication succeeds, else it fails.

Thus Q’s verification step is preceded by akey-translationstep by S. Since P and Q do not
share a secret key, the authentication server S does the key translation because it shares a secret
key with both principals P and Q. Q sends the message (encrypted withKPS that it received from
P) to S. S does the key translation by decrypting it withKPS, encrypting P, Q, n withKQS, sending
the message encrypted withKQS to Q. This is termed as the key-translation step [41].

The basis of this protocol is a challenge for Q to P if P can encrypt the nonce n with the secret
key that it shares with server S. The protocol correctness rests on S’s trustworthiness—that S will
properly decrypt using P’s key and reencrypt using Q’s key. The initialization and storage problems
are greatly alleviated because each principal needs to keeponly one key. The risk of compromise
is mostly shifted to S, whose security can be guaranteed by various measures, such as encrypting
stored keys using a master key and putting S in a physically secure room.

593

16.3.5 One-Time Password Scheme

In the One-Time Password scheme [24], a password can only be used once. A one-time password
system generates a list of passwords and secretly communicates this list to the client and the server.
The client uses the passwords in the list to log on to a server.Once a password has been used, it
cannot be used again. To log on again, the client must use the next password in the list. The
server always expects the next password in the list at the next logon. Therefore, even if a password
is disclosed, the possibility of replay attacks is eliminated because the system expects the next
password in the subsequent logon. This protocol is best suited for distributed systems where an
authentication mainly takes place between client and the server.

Protocol Description

Protocol consist of two stages:

1. Registration stage: where the client registers with the server and gets a list of passwords.

2. Login and authentication stage: where the server authenticates the client.

(1) Registration Stage

1. Every client shares a pre-shared secret key, representedas SEED with the server. It is a large
random number secretly communicated by the server to the client.
2. The server generates a session key (SK) with the help of a random number D and a timestamp T,
i.e., SK = D||T. The server computes and sends SEED⊕ SK to the client. When the client receives
SEED⊕ SK, it computes the value of SK as follows:

SK = SEED⊕ (SEED⊕ SK)

The client then generates an initial key IK with the help of a randomly generated secret key K,

IK = K ⊕ SEED

The client then decides the number of times (N) it wants to login to the server and sends the
generated initial key (IK) to the server. To do this, the client performs IK⊕ SK and N⊕ SK and
sends these values to the server.
3. When the server receives IK⊕ SK and N⊕ SK, it retrieves IK and N from the received values
and computes

p0 = HN (IK) for the user where H is a Hash Function

and performs p0 = p0 ⊕ SK and stores p0 and N in its database and sends p0 ⊕ SK back to the
client as a response. It also computes p1 and p2 as follows:

594

p1 = HN−1 (IK) and

p2 = HN−2 (IK)

The server then sends p0 ⊕ SK, p1⊕ SK and p2⊕ SK to the client
4. On receiving p0 ⊕ SK, p1⊕ SK and p2⊕ SK from the server, the client performs the XOR
operation on SK and p0 ⊕ SK, p1⊕ SK and p2⊕ SK separately, to obtain p0, p1and p2, respectively.
The client hashes IK for N times and then compares it with p0. If both values are equal, the client
is sure of the authenticity of the server and that it is not communicating with an intruder.

It then saves the values of p0, p1, p2 and N for future communication with the server. This
marks the end of the registration stage.

The above steps are described in Table 16.5.

Server→ Client : SEED
Server→ Client : SEED⊕ SK
Client→ Server : IK⊕ SK and N⊕ SK
Server→ Client : p0 ⊕ SK, p1⊕ SK, p2⊕ SK

Table 16.5: The Registration Stage

If N is 50, the user can log in to the server 50 times and p0 =H 50(IK). After 50 logins, the user
must repeat the steps in the registration.

(2) Login and Authentication Stage

Once the client is registered, every time it needs to access aservice provided by the server, the
client needs to get authenticated. Authentication requires the following steps:
1. If the client is logging in for the tth time, the server generates a new session key (SK)

SK = D||T where T is the timestamp and D is a random number.

The server also computes pt−1 = H C+1(IK) where C=N-t. It then performs pt−1 ⊕ SK and SK
⊕ SEED (SEED is stored in the database) and sends these values to the client.
2. On the receipt of the values from the server, the client computes SK as follows:

SK = pt−1 ⊕ (pt−1⊕ SK)

Then the Client checks the timestamp T of the session key SK. If the timestamp is valid, the
client computes SEED = SK⊕ (SK⊕ SEED) and checks the value of SEED with the one saved to
make sure of the server’s identity. If they match, the server’s authenticity is verified.
3. Now the client proves its identity to the server as follows: It sends SK⊕ pt to the server. The
client uses the pt saved in the previous login in this EX-OR operation.

Server calculates pt from SK⊕ pt received from the client as follows:

595

pt = SK⊕ (SK⊕ pt)

From the received pt value, it calculates pt−1= H (pt) and compares it with pt−1 obtained in the
Step 1. If both match, the identity of the client is verified.

Finally, the server updates N with C, where C=N-t and computes pt+1 using p0 and sends pt+1

⊕ SK to the client.
4. The client computes value of pt+1 as pt+1=SK⊕ (SK⊕ pt+1) and stores it for its next login.

For example, if t =10 and N=100, then pt−1 = H91(IK), pt = H90(IK) and pt+1 = H89(IK).

The above steps are described in Table 16.6.

Server→Client : pt−1 ⊕ SK, SEED⊕ SK
Client→Server : pt⊕ SK
Server→Client : pt+1⊕ SK

Table 16.6: The Login and Authentication

In this protocol, the client and the server communicate witheach other by passing parameters
which are encrypted, i.e., exclusive ORed with either SK or SEED. SK is the session key of a
particular session and SEED is the pre-shared secret key. Since these two values are known only
to the client and server, eavesdropping of the connection does not have any effect. Since SK is
obtained by using the timestamp, replay of previous sessiondoes not work and thus the scheme is
robust against replay attacks. The use of hash function makes the Dictionary attacks impossible.

Weaknesses

One-time passwords that are not time-synchronized are vulnerable to phishing. Phishing usually
occurs when a fraudster sends an email that contains a link toa fraudulent website where the users
are asked to provide personal account information. The email and website are usually disguised
to appear to recipients as though they are from a bank or another well-known brand. In late 2005,
customers of a Swedish bank were tricked into giving up theirone-time passwords.

16.3.6 Otway-Rees Protocol

The Otway-Rees protocol [28] is a server-based protocol that provides authenticated key trans-
port only in four messages without requiring timestamps. Itprovides key authentication and key
freshness assurances. It does not, however, provide entityauthentication or key confirmation.

The notations used in the protocol are as follows: KAB is a session key that the sever S generates
for users A and B to share. NA and NB are nonces chosen by A and B, respectively, to allow
verification of key freshness (thereby, detecting replay attacks). M is another nonce chosen by
A which serves as a transaction identifier. S shares symmetric keys KAS and KBS with A, B,
respectively. This protocol is shown in Table 16.7.

596

(1) A→B : M, A, B, (NA, M, A, B)KAS

(2) B→S : M, A, B, (NA, M, A, B)KAS
, (NB, M, A, B)KBS

(3) S→B : (NA, KAB)KAS
, (NB, KAB)KBS

(4) B→A : M, (NA, KAB)KAS

Table 16.7: Otway Rees Protocol

In the step (1), user A encrypts two nonces, NA and M, and the identities of itself and the
identity of the party B to whom it wishes to communicate, withthe key KAS and sends this to B
along with M, A, B in plaintext. On the receipt of this message, user B creates its own nonce NB

and an analogous encrypted message, (NB, M, A, B)KBS
, in step (2) and sends this along with A’s

message to server S. When the server S receives this message,it uses the clear text identifiers in the
message to retrieve KAS and KBS , then verifies if the clear text (M, A, B) matches that recovered
upon decrypting both parts of the message in step (2). Verifying M in particular confirms the
encrypted parts are linked. If so, S decides on a new key KAB for communication between A
and B, prepares two distinct messages (NA, M, A, B)KAS

and (NB, M, A, B)KBS
for A and B,

respectively, and sends both to B in step (3). When B receivesthis message, it decrypts the second
part of the message received in step (3) and checks if NB matches that sent in step (2). If so, it
sends the first part to A in step (4). When A receives this message, it decrypts message received in
step (4) and checks if NA matches that sent in step (1).

If all checks pass, A and B are assured that KAB is fresh (due to their respective nonces), and
trust that (NA, KAB)KAS

and (NB, KAB)KBS
have been constructed by the server S. A knows that

B is active as verification of step (4) implies that B sent message in step (2) recently; B however
has no assurance that A is active until subsequent use of KAB by A, since B cannot determine if
message in step (1) is fresh.

Weaknesses

One problem with this protocol is that a malicious intruder can arrange for A and B to end up with
different keys as follows: A and B execute the first three messages; at this point, B has received
the key KAB. The intruder intercepts the fourth message. He/She replays step (2), which results in
S generating a new key K′AB and sending it to B in step (3). The intruder intercepts this message,
too, but sends to A the part of it that B would have sent to A. So Ahas finally received the expected
fourth message, but with K′AB instead of KAB. Another problem is that although the server tells B
that A used a nonce, B doesn’t know if this was a replay of an oldmessage.

16.3.7 Kerberos Authentication Service

Kerberos [20, 30] primarily addresses client-server authentication using a symmetric cryptosystem.
Kerberos is an authentication system designed for MIT’s Project Athena [1]. The goal of Project
Athena was to create an educational computing environment based on high-performance worksta-

597

Request a ticket

for th
e server

Provide server

authenticator

Server (TGS)
Ticket Granting

Authentication
System (AS)

Ticket and session key

Ticket and session key

Request service

ticket graoting tic
ket

Request fo
r

User/ Work station

Server

Data
base

Kerberos

Figure 16.1: Steps in Authentication in Kerberos.

tions, high-speed networking, and servers of various types. Researchers envisioned a large-scale
(10,000 workstations to 1,000 servers) open network computing environment in which individual
workstations can be privately owned and operated. Therefore, a workstation cannot be trusted
to identify its users correctly to network services. Kerberos is not a complete authentication ser-
vice required for secure distributed computing in general;it only addresses issues of client-server
interactions.

In this section, we describe the Kerberos authentication protocol. Kerberos’ design is based on
the use of a symmetric cryptosystem together with trusted third-party authentication servers. The
basic components include authentication servers (Kerberos servers) and ticket-granting servers
(TGSs).

Initial Registration

Every Client/user registers with the Kerberos server by providing its user id, U and a password,
passwordu. The Kerberos server computes a key ku = f(passwordu) using a one-way function f and
stores this key in a database. Note that ku is a secret key that depends on the password of the user
and is shared by client U and Kerberos server only.

598

The Authentication Protocol

Authentication in Kerberos proceeds in three steps:

1. Initial Authentication at Login: Kerberos Server authenticates user login at a host and installs
a ticket for the ticket granting server, TGS, at the login host.

2. Obtain a ticket for the server: Using the ticket for the ticket granting server, the client re-
quests the ticket granting server, TGS, for a ticket for the server.

3. Requesting Service from the server: The client uses the server ticket obtained from the TGS
to request services from the server.

These steps are shown in Figure 16.1. Next, we explain these steps in detail.

(i) Initial Authentication at Login

Initial Authentication at Login uses Kerberos server and isshown in Table 16.8. Let U be a user
who is attempting to log in a host H.

1) U→ H : U
2) H→Kerberos : U, TGS

3) Kerberos : retrieve kU and kTGS from database
: generate new session key k
: create a ticket-granting ticket
: tickTGS = {U, TGS, k, T, L}KTGS

4) Kerberos→H : {TGS, k, T, L, tickTGS} kU

5) H→ U : “Password?”
6) U→ H : password

7) H : compute k′U = f(password)
: recover k, tickTGS by decrypting

TGS, k, T, L, tickTGS kU
with k’U : if decryption fails, abort login, otherwise, retain

tickTGS and k. : erase password from the memory

Table 16.8: Initial Authentication at Login

In step (1), user U initiates login by entering his/her user name. In step (2), the login host
H forwards the login request and the id of TGS to a Kerberos server. In step (3), the Kerberos
server retrieves kU and kTGS from the database, generates a new session key k and creates aticket-
grantingticket tickTGS = {U, TGS, k, T, L}KTGS

where U is the identity of the user who wishes to
communicate with the server, TGS is the identity of the ticket granting server, k is the session key,
T is a timestamp, L is the ticket’s lifetime and kTGS is the key shared between TGS and Kerberos
Server. In Step 4, Kerberos server encrypts the ticket tickTGS , the identity of the TGS, the session
key, timestamp and lifetime with kU and sends it to host H.

599

In step (5), on receiving this message from the Kerberos server, host H prompts the user for
his/her password, which the user supplies in step (6). In step (7), host H computes the key, K′U ,
corresponding to the password using the one-way function f.The host recovers the session key k by
decrypting {TGS, k, T, L, tickTGS} kU

with k′U . If the password supplied by the user is not the valid
password of U, k′U would not be identical to kU , and the authentication will fail. Thus, the user is
authenticated if the host is able to decrypt the message for the Kerberos server. Upon successful
authentication, the host saves the new session key k and the ticket-granting ticket, tickTGS, for
further use and erases the user password from the memory. Theticket-granting ticket is used
to request server tickets from a TGS. Note that tickTGS is encrypted with kTGS, the key shared
between TGS and Kerberos.

(ii) Obtain a ticket for the server

The client executes steps shown in Table 16.9 to request a ticket for the server from TGS. Basically
the client sends the ticket tickTGS to TGS, requesting it a ticket for the server S. (T1 and T2 are
timestamps).

Because a ticket is susceptible to interception and replay,it does not by itself constitute suf-
ficient proof of identity. For authentication, a principal presenting a ticket must also demonstrate
the knowledge of the session key k named in the ticket. Anauthenticator{C, T} k, where C is the
client identity, T is the timestamp and k is the session key, provides the demonstration. Unlike the
ticket which is reusable, an authenticator can be used only once and has a very short lifetime. The
ticket proves the client’s identity and also distributes the key; however, it is susceptible to replay
attacks. The authenticator is used to counter this attack. Because an authenticator can be used only
once and has a very short lifetime, the threat of an opponent stealing the ticket for a replay attack
is countered.

1) C→ TGS : S, tickTGS, {C, T1} k

2) TGS : recover k from tickTGS by decrypting with kTGS,
recover T1 from {C, T1} k by decrypting with k
check timelines of T1 with respect to local clock
generate new session key k.
Create server ticket tickS = {C, S, k, T, L}kS

3) TGS→ C : {S, k, T, L, tickS} k

4) C : recover k, tickS by decrypting the message with k

Table 16.9: Obtain a ticket for the server

In step (1), to request a ticket for server S, client C presents its ticket-granting ticket tickTGS

along with the authenticator to TGS. C’s knowledge of k is demonstrated using the authenticator
{C, T1} k. In step (2), TGS decrypts tickTGS with kTGS to recover k, verifies the authenticity of the
authenticator by decrypting C, T1} k with k, and checks the timeliness of T1 in the authenticator
and T in the tickTGS. If both decryptions in step (2) timeliness of T1 of the authenticator and T

600

in the tickTGS. If both decryptions in step(2) are successful and T1 is timely, TGS is convinced of
the authenticity of the ticket, creates a ticket tickS = {C, S, k, T, LkS

for server S, where C is the
identity of the client, S is the server identity, k is the new session key, T is the timestamp of the
TGS, L is the lifetime of the ticket, kS is the key shared between TGS and server S. This ticket is
returned to C in step (3). In step (4), C recovers k and tickS from {S, k, T, L, tickS} k by decrypting
it with k.

(iii) Requesting Service from the server

Client C sends the ticket and the authenticator to server. The server decrypts the tickS and recovers
k. It then uses k to decrypt the authenticator {C, T2} k′ and checks if the timestamp is current and
the client identifier matches with that in the tickS before granting service to the client. If mutual
authentication is required, the server returns an authenticator.

1) C→S : tickS, {C, T2} k′

2) S : recover k from tickS by decrypting it with kS
recover T2 from {C, T2} k by decrypting with k
check timeliness of T2 with respect to the local clock

3) S→C : {T2 + 1}k

Table 16.10: Requesting Service from the server

In step (1), C presents S with tickS and a new authenticator. In step (2), S recovers k from tickS

by decrypting it with kS and uses k obtained to decrypt C,T2k. If both decryptions are successful
and T2 is timely, then S is assured of the authenticity of the Client. Finally, step (3) assures C of
the server’s identity.

Weaknesses

Kerberos [21] makes no provisions for host security; it assumes that it is running on trusted hosts
with an untrusted network. If host security is compromised,then Kerberos is compromised as well.
Kerberos uses a principal’s password (encryption key) as the fundamental proof of identity. If a
user’s Kerberos password is stolen by an attacker, then the attacker can impersonate that user with
impunity. Since the Kerberos’ password database holds all the passwords for all of the principals in
a realm, if the host security on the database is compromised,then the entire realm is compromised.
In Kerberos version 4, authenticators are valid for a particular time. If an attacker sniffs the network
for authenticators, they have a small time window in which they can re-use it and gain access to
the same service. Kerberos version 5 introduced a replay cache which prevents any authenticator
from being used more than once. Since anybody can request a Ticket Granting Ticket for any user,
and that ticket is encrypted with the user’s secret key (password), it is simple to perform an offline
attack on this ticket by trying to decrypt it, say using the dictionary attack. Kerberos version 5
introduced pre-authentication to solve this problem.

601

16.4 Protocols Based on Asymmetric Cryptosystems

In an asymmetric cryptosystem [41], each principal P publishes his public key kp and keeps secret
his private key k−1

p . Thus only P can generate {m}k−1
p

for any message m by signing it using k−1
p .

The signed message {m}k−1
p

can be verified by any principal with the knowledge of kp (assuming a
commutative asymmetric cryptosystem). Asymmetric authentication protocols can be constructed
using a design principle called ASYM which is as follows:

“If a principal can correctly sign a message using the private key of the claimed identity, this
act constitutes a sufficient proof of identity.”

This ASYM principle follows the proof-by-knowledge principle for authentication, in that a
principal’s knowledge is indirectly demonstrated throughits signing capability.

16.4.1 The Basic Protocol

Using ASYM, we obtain a basic protocol as follows [41]:

P→Q : “I am P.”
Q : generate nonce n

Q→P : n
P : compute m = {P, Q, n}k−1

p

P→Q : m
Q : verify (P, Q, n) = {m}kp

: if equal, then accept; otherwise, the authentication fails

Table 16.11: Basic protocol

In this protocol, Q sends a random number n to P and challengesit to encrypt with its private
key. P encrypts (P, Q, n) with its private key k−1

p and sends it to Q. Q verifies the received message
by decrypting it with P’s public key kp and checking with the identity of P, Q and n. This protocol
depends on the guarantee that {P, Q, n}k−1

p
cannot be produced without the knowledge of k−1

p and
the correctness of kp as published by P and kept by Q.

16.4.2 A Modified Protocol with a Certification Authority

The basic protocol requires that Q has the knowledge of P’s public key. A problem arises if Q
does not know P’s public key. This problem is alleviated by postulating a centralizedcertification
authorityCA that maintains a database of all published public keys [41]. If a user A does not have
the public key of another user B, A can request B’s public key from the CA.

The basic protocol can be modified as shown in Table 16.12 to address this issue.
This protocol is similar to the basic protocol described above but a certification authority CA

is involved. When Q receives a message encrypted with P’s private key from P, it requests the
authentication server for P’s public key. CA retrieves public key of P from the key database and

602

P→Q : “I am P.”
Q : generate nonce n

Q→P : n
P : compute m = {P, Q, n}k−1

p

P→Q : m
Q→CA : “I need P’s public key.”

CA : retrieve public key kP of P from key Database
Create certificate c = {P, kP } k−1

CA

CA→Q : P, c
Q : recover P, kP from c by decrypting with kCA

verify (P, Q, n) = {m}kP

: if equal, then accept; otherwise, the authentication fails

Table 16.12: A Modified Protocol with a certification authority CA

provides Q with a certificate for P’s public key. The certificate, {P, kP } k−1

CA
contains P’s identity and

its public key, encrypted with the private key of the certification authority. Q retrieves the public
key of P by decrypting the certificate with the public key of CA. Then it decrypts the message m,
it received from P using the public key kP and checks if {m}kP

equals {P, Q, n}. If both are equal,
authentication succeeds, else it fails.

Note that c, called apublic key certificate, represents a certified statement by CA that P’s public
key is kp. Other information such as an expiration date and the classification of principal P can
also be included in the certificate. However, each principalin the system must know the public key
kCA of CA.

In this protocol, CA is an example of anon-linecertification authority. It supports interactive
queries and is actively involved in authentication exchanges. A certification authority can also
operateoff-line. In this case, a public key certificate is issued to a principal when it first registered.
The certificate is kept by the principal and is forwarded during an authentication exchange, thus
eliminating the need to make a separate query to a CA. Forgeryis impossible, since a certificate is
signed by the certification authority.

16.4.3 Needham and Schroeder Protocol

The Needham-Schroeder public key protocol [29] uses a trusted key server that issues certificates
containing the public key of a user. The protocol is described in Table 16.13. In this protocol,
the initiator A seeks to establish a session with responder Bwith the help of trusted key server S.
(Recall that for a principal x, Kxand K−1

x denote its public and private keys, respectively.)
In step 1, A sends a message to the server S, requesting B’s public key. S responds by returning

B’s public key Kb along with B’s identity (to prevent attacks based upon diverting key deliveries),
encrypted using S’s secret key (to assure A that this messageoriginated from S). A then seeks
to establish a connection with B by selecting a nonce Na, and sending it along with its identity
to B (message 3) encrypted using B’s public key. When B receives this message, it decrypts the

603

1. A→ S : A, B
2. S→ A : {K b, B}K−1

s

3. A→ B : {N a, A} Kb

4. B→ S : B, A
5. S→ B : {K a, A} K−1

s

6. B→ A : {N a, Nb} Ka

7. A→ B : {N b} Kb

Table 16.13: Needham-Schroeder Protocol

message to obtain the nonce Na and to learn that user A is trying to communicate with it. It then
requests the public key of A from server S (message 4) which the server sends to B in message 5.
B then returns nonce Na, along with a new nonce Nb, to A, encrypted with A’s public key (message
6). When A receives this message, it decrypts it with its private key and is assured that it is talking
to B, since only B could have decrypted message in step 3 to obtain Na. A then returns nonce Nb
to B, encrypted with B’s key. When B receives this message, itis assured that it is talking to A,
since only A could have decrypted message in step 6 to obtain Nb. Thus, after step 7, A and B have
mutually authenticated themselves.

This protocol can be considered as the interleaving of two logically disjoint protocols: mes-
sages 1, 2, 4 and 5 are concerned with obtaining public keys, whereas messages 3, 6 and 7 are
concerned with the authentication of A and B.

Weaknesses

This protocol provides no guarantee that the public keys obtained are current and not replays of
old, possibly compromised keys. This problem can be overcome in various ways. For example,
one way is that the server S includes timestamps in messages 2and 5; however, this requires
synchronized clocks at processes. Another method is that A sends a nonce in message 1 and S
returns the same nonce in message 2.

An Impersonation attack on the protocol

We now show how an intruder can mount an impersonation attackon this protocol [25]. We assume
that the intruder I is a user of the computer network, and so isable to set up standard sessions
with other users, and other users may try to set up sessions with I. We assume that the intruder
can intercept any messages in the system and introduce new messages. However, we make some
assumptions about what sort of messages the intruder may introduce. We assume that the intruder
cannot guess the value of nonces being passed in encrypted messages, unless those messages are
encrypted with his own key. Thus the intruder can only produce new messages using nonces that it
invented itself, or that it has previously seen and understood. It can also replay complete encrypted
messages, even if it is unable to understand the contents.

The attack shown in Table 16.14, starts with a user A trying toestablish a session with I.

604

The attack on the protocol allows an intruder I to impersonate the user A to set up a false session
with a user B. The attack involves two simultaneous runs of the protocol: In run 1, A establishes a
valid session with I; in run 2, I impersonates A to establish afake session with B. In Table 16.14,
1.3 represents message 3 in run 1 and I(A) represents the intruder I impersonating A.

1.3 A→ I : {N a, A} Ki

2.3 I(A)→ B : {N a, A} Kb

2.6 B→ I(A) : {N a, Nb} Ka

1.6 I→ A : {N a, Nb} Ka

1.7 A→ I : {N b} Ki

2.7 I(A)→ B : {N b} Kb

Table 16.14: An Impersonation attack on Needham-SchroederProtocol

In step 1.3, A starts to establish a session with I, sending ita nonce Na. In step 2.3, the intruder
impersonates A to try to establish a false session with B sending it the nonce Na obtained in the
previous message from A. B responds in step 2.6 by selecting anew nonce Nband returning it, along
with Na to A. The intruder intercepts this message, but cannot decrypt it because it is encrypted
with A’s public key. The intruder uses A as an oracle, by forwarding the message to A in step
1.6; note that this message is of the form expected by A in run 1of the protocol. A decrypts the
message to obtain Nb and returns this to I in step 1.7. I decrypts this message to obtain Nb and
returns it to B in step 2.7, thus completing run 2 of the protocol. After B receives the message in
step 2.7, B is led to believe that A has correctly establisheda session with it.

A Solution to the Attack

The main cause of this attack is that step 6 does not contain the identity of the responder. If we
include the responder’s identity in step 6 of the protocol:

6. B→ A : {B, N a, Nb} ka

then step 2.6 of the attack would become

2.6. B→ I(A) : {B, N a, Nb} ka

and the intruder I can not successfully replay this message in step 1.6 because A is expecting a
message containing I’s identity.

16.4.4 SSL Protocol

SSL stands for Secure Sockets Layer protocol [37] developedby Netscape and is the standard
Internet protocol for secure communications. The secure hypertext transfer protocol (HTTPS) is a
communications protocol designed to transfer encrypted information between computers over the

605

World Wide Web. HTTPS is http using a Secure Socket Layer (SSL). SSL resides between TCP/IP
and upper layer applications, requiring no changes to the application layer. SSL is used typically
between server and client to secure the connection. One advantage of SSL is that it is application
protocol independent. A higher level protocol can layer on top of the SSL Protocol transparently.

SSL protocol allows client/server applications to communicate in a way so that eavesdrop-
ping, tampering, and message_forgery are prevented. The SSL protocol, in general, provides the
following features:

• End point authentication: The server is the “real” party that a client wants to talk to,
not someone faking the identity.

• Message integrity: If the data exchanged with the server hasbeen modified
along the way, it can be easily detected.

• Confidentiality: Data is encrypted. A hacker cannot read your information
by simply looking at the packets on the network.

SSL record protocol

The record protocol takes an application message to be transmitted, fragments the data into man-
ageable blocks, optionally compresses the data, applies MAC, encrypts adds a header and transmits
the resulting unit into a TCP segment. Received data are decrypted, verified, decompressed and
reassembled and then delivered into high level users.

SSL handshake protocol

The SSL Handshake Protocol [37] allows the server and clientto authenticate each other and to
negotiate an encryption algorithm and cryptographic keys before the application protocol transmits
or receives its first byte of data.

The following steps, shown in Figure 16.2, are involved in the SSL handshake:

1. The SSL client sends a "client hello" message that lists cryptographic information such as the
SSL version and, in the client’s order of preference, the CipherSuites supported by the client.
The message also contains a random byte string that is used insubsequent computations.

2. The SSL server responds with a "server hello" message thatcontains the CipherSuite chosen
by the server from the list provided by the SSL client, the session ID and another random
byte string. The SSL server also sends its digital certificate. If the server requires a digital
certificate for client authentication, the server sends a "client certificate request" that in-
cludes a list of the types of certificates supported and the Distinguished Names of acceptable
Certification Authorities (CAs).

3. The SSL client verifies the digital signature on the SSL server’s digital certificate and checks
that the CipherSuite chosen by the server is acceptable.

606

4. The SSL client, usind all data generated in the handshake so far, creates a premaster secret
for the session that enables both the client and the server tocompute the secret key to be
used for encrypting subsequent message data. The premastersecret itself is encrypted with
the server’s public key.

5. If the SSL server sent a "client certificate request", the SSL client sends another signed piece
of data which is unique to this handshake and known only to theclient and server, along with
the encrypted premaster secret and the client’s digital certificate, or a "no digital certificate
alert". This alert is only a warning, but with some implementations the handshake fails if
client authentication is mandatory.

6. The SSL server verifies the signature on the client certificate.

7. The SSL client sends the SSL server a "finished" message, which is encrypted with the secret
key, indicating that the client part of the handshake is complete.

8. The SSL server sends the SSL client a "finished" message, which is encrypted with the secret
key, indicating that the server part of the handshake is complete.

9. For the duration of the SSL session, the SSL server and SSL client can now exchange mes-
sages that are encrypted with the shared symmetric secret key.

How SSL provides authentication

During both client and server authentication, there is a step that requires data to be encrypted with
one of the keys in an asymmetric key pair and is decrypted withthe other key of the pair[37].

For server authentication, the client uses the server’s public key to encrypt the data that is used
to compute the secret key. The server can generate the secretkey only if it can decrypt that data
with the correct private key.

For client authentication, the server uses the public key inthe client certificate to decrypt the
data the client sends during step 5 of the handshake. The exchange of finished messages that
are encrypted with the secret key (steps 7 and 8 in the overview) confirms that authentication is
complete.

If any of the authentication steps fails, the handshake fails and the session terminates.
The exchange of digital certificates during the SSL handshake is a part of the authentication

process. The certificates required are as follows, where CA Xissues the certificate to the SSL
client, and CA Y issues the certificate to the SSL server:

For server authentication only, the SSL server needs:

• The personal certificate issued to the server by CA Y

• The server’s private key

607

SSL Client SSL Server

1. "client hello"

Cryptograhpic information

2. "server hello"

CipherSuite

"client certificate request" (optional)
Server certificate

4. Client key exchange

Send secret key information
(encrypted with server public key)

7. Client "finished"

5. Send client certificate

9. Exchange messages

8. Server "finished"

(encrypted with the shared secret key)

3. Verify server
certificate.
Check

cryptograohic
paremeters.

6. Verify client

(if required).
certificate.

Figure 16.2: SSL Handshake Protocol and Data Exchange

and the SSL client needs:

• The CA certificate for CA Y or the personal certificate issued to the server by CA Y

If the SSL server requires client authentication, the server verifies the client’s identity by verify-
ing the client’s digital certificate with the public key for the CA that issued the personal certificate
to the client, in this case CA X. For both server and client authentication, the SSL server needs:

• The personal certificate issued to the server by CA Y

• The server’s private key

• The CA certificate for CA X or the personal certificate issued to the client by CA X

and the SSL client needs:

• The personal certificate issued to the client by CA X

608

• The client’s private key

• The CA certificate for CA Y or the personal certificate issued to the server by CA Y

Both the SSL server and the SSL client might need other CA certificates to form a certificate
chain to the root CA certificate.

16.5 Password-based Authentication

The use of passwords is a highly popular technique to achieveauthentication because of low cost
and convenience. This section is concerned with authentication techniques that are based on pass-
words.

A problem with passwords is that people tend to pick a password that is convenient, i.e., short
and easy to remember. Such passwords are vulnerable to a password-guessing attack which works
as follows: an adversary builds a database of possible passwords, called a dictionary. The adversary
picks a password from the dictionary and checks if it works. This may amount to generating a
response to a challenge or decrypting a message using the password or a function of the password.
After every failed attempt, the adversary picks a differentpassword from the dictionary and repeats
the process. This non-interactive form of attack is known astheoff-line dictionary attack.

Preventing Off-line Dictionary Attacks

Thus, a major problem is that users tend to choose weak passwords which are chosen from a
sample space small enough to be enumerated by an adversary. Hence, protocols which are stronger
than simple challenge-response protocols are needed whichcan use these cryptographically weak
passwords to securely authenticate entities. A password-based authentication protocol aims at
preventing off-line dictionary attacks by producing a cryptographically strong shared secret key,
called the session key, after a successful run of the protocol. This session key can be used by both
entities to encrypt subsequest messages for a seceret session.

In this section, we focus on protocols designed to prevent off-line dictionary attacks on password-
based authentication. Next, we present two password-basedauthentication protocols.

16.5.1 Encrypted Key Exchange (EKE) Protocol

The first attempt to protect a password protocol against off-line dictionary attacks was made by
Bellovin and Merritt [6] who developed a password-based encrypted key exchange (EKE) pro-
tocol using a combination of symmetric and asymmetric cryptography. Figure 16.3 describes the
EKE protocol that works as follows: suppose usersA andB are participating in a run of the proto-
col. (Recall that{X}k denotes the encryption of X using a symmetric key k and{Y }k−1 denotes
the decryption of Y using a symmetric key k.)

In Step 1, userA generates a public/private key pair(EA, DA) and also derives a secret key
Kpwd from his passwordpwd. In Step 2,A encrypts his public keyEA with Kpwd and sends it

609

to B. In Steps 3 and 4,B decrypts the message and usesEA together withKpwd to encrypt a
session keyKAB and sends it toA. In Steps 5 and 6,A uses this session key to encrypt a unique
challengeCA and sends the encrypted challenge toB. In Step 7,B decrypts the message to obtain
the challenge and generates a unique challengeCB. In Step 8,B then encrypts {CA, CB} with
the session keyKAB and sends it toA. In Step 9,A decrypts this message to obtainCA andCB

and compares the former with the challenge it had sent toB. If they match, the correctness ofB’s
response is verified (i.e.,B is authenticated). In Step 10,A encryptsB’s challengeCB with the
session keyKAB and sends it toB. WhenB receives this message, it decrypts the message to
obtainCB and uses it verify the correctness ofA’s response and to authenticateA. Note that the
protocol results in a session key (stronger than the shared password) which the users can later use
to encrypt sensitive data.

1. A : (EA, DA),Kpwd=f(pwd). {* f is a function. *}

2. A→ B : A, {Kpwd}EA
.

3. B : ComputeEA = {{EA}Kpwd
}K−1

pwd
and generate a random secret keyKAB.

4. B → A : {{KAB}EA
}{Kpwd}.

5. A : KAB = {{{{KAB}EA
}{Kpwd}}K−1

pwd
}DA

. Generate a unique challengeCA.

6. A→ B : {CA}KAB
.

7. B : ComputeCA = {{CA}KAB
}K−1

AB
and generate a unique challengeCB.

8. B → A : {CA, CB}KAB
.

9. A : Decrypt message sent byB to obtainCA andCB. Compare the former with his own
challenge. If they match, go to the next step, else abort.

10. A→ B : {CB}KAB
.

Figure 16.3: Encrypted Key Exchange Protocol

The EKE protocol suffers from the plain-text equivalence, which means the user and the host
have access to the same secret password or hash of the password.

16.5.2 Secure Remote Password (SRP) Protocol

Wu [44] combined the technique of zero-knowledge proof withasymmetric key exchange pro-
tocols to develop a verifier-based protocol, called secure remote password (SRP) protocol. SRP
protocol eliminates plain-text equivalence.

610

All computations in SRP are carried out on the finite fieldFn, wheren is a large prime. Letg
be a generator ofFn. LetA be a user andB be a server. Before initiating the SRP protocol,A and
B do the following:

1. A andB agree on the underlying field.

2. A picks a passwordpwd, a random salts and computes the verifierv = gx, wherex =

H(s, pwd) is the long-term private-key andH is a cryptographic hash function.

3. B stores the verifierv and the salts.

Now, A andB can engage in the SRP protocol (shown in Figure 16.4). The SRPprotocol
works as follows: In Step 1,A sends its username “A” to serverB. In Step 2,B looks-upA’s
verifier v and salts and sendsA his salt. In Steps 3 and 4,A computes its long-term private-key
x = H(s, pwd), generates an ephemeral public-keyKA = ga wherea is randomly chosen from
the interval1 < a < n and sendsKA to B. In Steps 5 and 6,B computes ephemeral public-key
KB = v + gb whereb is randomly chosen from the interval1 < a < n and sendsKB and a
random numberr to A. In Step 7,A computesS = (KB − gx)a+rx = gab+brx andB computes
S = (KAv

r)b = gab+brx. The values ofS computed byA andB will match if the passwordA
entered in Step 3 matches the one thatA used to calculate the verifierv which is stored atB.
In Step 8, bothA andB use a cryptographically strong hash function to compute a session key
KAB = H(S). In Step 9,A computesCA = H(KA, KB, KAB) and sends it toB as an evidence
that it has the session key.CA also serves as a challenge. In Step 10,B computesCA itself and
matches it withA’s message.B also computesCB = H(KA, CA, KAB). In Step 11,B sendsCB

toA as an evidence that it has the same session key asA. In Step 12,A verifiesCB, accepts if the
verification passes and aborts otherwise.

Note that unlike EKE, none of the protocol are messages encrypted in the SRP protocol. Since
neither the user nor the server has access to the same secret password or hash of the password,
SRP eliminates plain-text equivalence. SRP was unique in its swapped-secret approach in building
a verifier-based, zero-knowledge protocol, resisting off-line dictionary attacks.

16.6 Authentication Protocol Failures

Despite the apparent simplicity of the basic design principles, realistic authentication protocols
[11, 29] are notoriously difficult to design [39]. There are several reasons for it.

• First, most realistic cryptosystems satisfy algebraic additional identities. These extra prop-
erties may generate undesirable effects when combined witha protocol logic.

• Second, even assuming that the underlying cryptosystem is perfect, unexpected interactions
among the protocol steps can lead to subtle logical flaws.

611

1. A→ B : A.

2. B → A : s.

3. A : x = H(s, pwd);KA = ga.

4. A→ B : KA.

5. B : KB = v + gb.

6. B → A : KB, r.

7. A : S = (KB − gx)a+rx andB : S = (KAv
r)b.

8. A,B : KAB = H(S).

9. A→ B : CA = H(KA, KB, KAB).

10. B verifiesCA and computesCB = H(KA, CA, KAB).

11. B → A : CB.

12. A verifiesCB. Accept if verification passes; abort otherwise.

Figure 16.4: Secure Remote Password (SRP) Protocol

• Third, assumptions regarding the environment and the capabilities of an adversary are not
explicitly specified, making it extremely difficult to determine when a protocol is applicable
and what final states are achieved.

We illustrate the difficulty by showing an authentication protocol proposed, with a subtle weak-
ness. consider the following authentication protocol: (kp and kq are symmetric keys shared between
P and A, and Q and A, respectively, where A is an authentication server. k is a session key.)

1) P→ A : P, Q, np
2) A→ P : {np, Q, k , {k, P}kQ

} kp

3) P→ Q : {k, P}kQ

4) Q→ P : {nQ} K

5) P→ Q : {nQ+1}K

The message {k, P}kQ
in step (3) can only be decrypted by Q and hence can only be understood

by Q. Step (4) reflects Q’s knowledge of k, while step (5) assures Q of P’s knowledge of k; hence
the authentication handshake is based entirely on the knowledge of k.

The subtle weakness in the protocol arises from the fact thatthe message {k, P}kQ
sent in step

(3) contains no information for Q to verify its freshness. This is the first message sent to Q about

612

P’s intention to establish a secure connection. An adversary who has compromised an old session
key k′ can impersonate P by replaying the recorded message {k′, P}kQ

in step (3) and subsequently
executing the steps (4) and (5) using k′.

To avoid protocol failures, formal methods may be employed in the design and verification of
authentication protocols. A formal design method should embody the basic design principles. For
example, informal reasoning such as “If you believe that only you and Bob know k , then you
should believe any message you receive encrypted with k was originally sent by Bob.” should be
formalized by a verification method.

16.7 Bibliographic Notes

Authentication in distributed systems is a well studied topic and a large number of authentication
protocols exist. An excellent survey on the topic is by Woo amd Lam [39]. Burrows, Abadi and
Needham discuss the logic of authentication [7]. A classical paper on the topic is by Needham and
Schroeder [29].

A review paper on password based authentication is by Chakrabarti and Singhal [8]. Biometric
authentication has been very popular recently. Information on this topic can be found in [16, 17, 34,
15, 31]. King and Dos Santos [22] discuss AI based methods forhuman authentication. Kaminsky
et al. [18] discuss user authentication in a global file system. A list of papers on authentication can
be found at: http://www.passwordresearch.com/papers/pubindex.html.

16.8 Exercise Problems

1. List three attacks/threats that are associated with userauthentication on the Internet.

2. What is a nonce? What security problem does it solve?

3. Consider the following simple method to handle attacks onthe password based authenti-
cation: If a user fails to login in three successive attempts, the system locks his account
suspecting an attack/intrusion. What major problem do you see with this method?

4. Choose two principles given by Needham and Abadi for designing cryptographic protocols.
For each, give an example where their principle applies and results in an improved protocol.

5. Consider the following protocol for Authentication/KeyDistribution: (X and Y are two prin-
cipals, A is a Certificate Authority or a Key Distribution Center,RX is a randon number, and
EX means encrypted with the secret key of X.)
1. X→A: X, Y,RX

2. A→X: EX(RX , Y,K,EY (K,X))

3. X→Y: EY (K,X)

4. Y→X: EK(RY)

613

5. X→Y: EK(RY − 1)

(a) What does the presence ofRX in message 2 assure?

(b) What problem will be created if an attacker were to break an oldK (and the attacker
has also copied messages for that session)? Explain your answer.

(c) Suggest a method to solve this problem?

6. Discuss two biometric based methods for authentication.What are pros and cons of biomet-
ric based methods for authentication?

614

Bibliography

[1] Arfman, J. M.; Roden, Peter. Project Athena: Supportingdistributed computing at MIT IBM
Systems Journal Volume 31, Number 3, 1992.

[2] Martin Abadi and Roger Needham. Prudent engineering practices for cryptographic proto-
cols. In Proceedings of the IEEE Computer Society Symposiumon Research in Security and
Privacy, pages 122–136. IEEE CS Press, May 1994.

[3] M. Abadi, M. Burrows, C. Kaufman, and B.W. Lampson. Authentication and delegation with
smart-cards.Science of Computer Programming, 21(2):93–113, October 1993.

[4] Ross Anderson and Roger Needham. Robustness principlesfor public key protocols. In D.
Coppersmith, editor, Advances in Cryptology — CRYPTO’95, pages 236–247. Springer-
Verlag, LNCS 963, August 1995.

[5] S.M. Bellovin and M. Merritt. Limitations of the Kerberos authentication system. InProceed-
ings of USENIX Winter Conference, pages 253–267, Dallas, TX, January 1991.

[6] S.M. Bellovin and M. Merritt, Encrypted Key Exchange: Password-based Protocol Secure
Against Dictionary Attacks, in Proc. of the IEEE Symposium on Security and Privacy, Wash-
ington, DC, 1992.

[7] M. Burrows, M. Abadi, and R.M. Needham. A logic of authentication.ACM Transactions on
Computer Systems, 8(1):18–36, February 1990.

[8] S. Chakrabarti and M. Singhal, Password-based Authentication, to appear in IEEE Computer.

[9] CCITT Recommendation X.509 The Directory—Authentication framework, 1988. See also
ISO/IEC 9594-8, 1989.

[10] Art Conklin, Glenn Dietrich, Diane Walz, Password-Based Authentication: A System Per-
spective, Proceedings of the 37th Hawaii International Conference on System Sciences, Jan-
uary 2004.

[11] D.E. Denning.Cryptography and Data Security. Addison-Wesley, 1982.

[12] D. Dolev and A.C. Yao. On the security of public key protocols.IEEE Transactions on Infor-
mation Theory, IT-29(2):198–208, March 1983.

615

[13] M. Gasser, A. Goldstein, C. Kaufman, and B.W. Lampson. The Digital distributed system
security architecture. InProceedings of 12th National Computer Security Conference, pages
305–319, Baltimore, Maryland, October 1989.

[14] M. Gasser and E. McDermott. An architecture for practical delegation in a distributed system.
In Proceedings of 11th IEEE Symposium on Research in Security and Privacy, pages 20–30,
Oakland, California, May 7–9 1990.

[15] L. O’Gorman, Practical Systems for Personal Fingerprint Authentication, IEEE Computer,
33, No. 2, 58.60 (2000).

[16] A. Jain, L. Hong, and S. Pankanti, Biometrics Identification, Communications of the ACM,
43, No. 2, 91.98 (2000).

[17] M. Indovina, U. Uludag, R. Snelick, A. Mink and A. Jain, "Multimodal Biometric Authen-
tication Methods: A COTS Approach", Proc. MMUA 2003, Workshop on Multimodal User
Authentication, pp. 99-106, Santa Barbara, CA, December 11-12, 2003.

[18] M. Kaminsky, G. Saviddes, D. Mazieres and M. F. Kaashoek, Decentralized User Authenti-
cation in a Global File System, Symp. on Oper. Sys. Principles, 2003.

[19] C. Kaufman,DASS Distributed Authentication Security Service, September 1993. RFC 1507.

[20] J.T. Kohl, B.C. Neuman, and T.Y. Ts’o. The evolution of the Kerberos authentication sys-
tem. In F. Brazier and D. Johansen, editors,Distributed Open Systems, pages 78–94. IEEE
Computer Society Press, 1994.

[21] Kerberos Frequently Asked Questions, URL:http://www.nrl.navy.mil/CCS/
people/kenh/kerberos-faq.html.

[22] Jeffrey King and Andre dos Santos, "A User-Friendly Approach to Human Authentication of
Messages", in Financial Cryptography and Data Security, LNCS 3570, pp 225-239. Febru-
ary/March 2005.

[23] Lampson, B., Abadi, M. and Burrows, M, Authentication in Distributed Systems: Theory
and Practice, ACM Transactions on Computer Systems, 1992.

[24] Min-Hui Lin and Chin-Chen Chang, A secure one-time password authentication scheme with
low-computation for mobile communications, ACM SIGOPS Operating Systems Review,
Volume 38, Issue 2, April 2004, Pages: 76 - 84.

[25] Gavin Lowe, An Attack on the Needham-Schroeder Public-Key Authentication Protocol,
Information Processing Letters, Aug 22, 1995, pages 131-133.

616

[26] J. Linn. Practical authentication for distributed computing. InProceedings of 11th IEEE Sym-
posium on Research in Security and Privacy, pages 31–40, Oakland, California, May 7–9
1990.

[27] Cheng-Chi Lee, Min-Shiang Hwang, Li-Hua Li, A New Key Authentication Scheme Based
on Discrete Logarithms, Applied Mathematics and Computation, Volume 139, Issue 2-3, July
2003.

[28] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Crytography, Chapter
12 - Key Establishment Protocols, CRC Press, October 1996.

[29] R.M. Needham and M.D. Schroeder. Using encryption for authentication in large networks
of computers.Communications of the ACM, 21(12):993–999, December 1978.

[30] B.C. Neuman and T.Y. Ts’o. An authentication service for computer networks.IEEE Com-
munications Magazine, 32(9):33–38, September 1994.

[31] N. K. Ratha, J. H. Connell, and R. M. Bolle Enhancing security and privacy in biometrics-
based authentication systems, IBM Systems Journal, issue 40-3, End-to-End Security, 2001.

[32] J.G. Steiner, C. Neuman, and J.I. Schiller.Kerberos: An authentication service for open
network systems. InProceedings of USENIX Winter Conference, pages 191–202, Dallas,
TX, February 1988.

[33] B. Schneier, Applied Cryptography, John Wiley & Sons, Inc., New York (1996).

[34] B. Schneier, The Uses and Abuses of Biometrics, Communications of the ACM, 42, No. 8,
136 (1999).

[35] William Stallings, Cryptography and Network Security: Principles and Practice, Prentice-
Hall, 4th edition.

[36] Paul Syverson and Iliano Cervesato, The Logic of Authentication Protocols, Lecture Notes
in Computer Science", Vol 2171, 2001.

[37] The Secure Socket Layer, URL: http://publib.boulder.ibm.com/
infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzas.

doc/cssauthentication.htm.

[38] J.J. Tardo and K. Alagappan. SPX: Global authentication using public key certificates. In
Proceedings of 12th IEEE Symposium on Research in Security and Privacy, pages 232–244,
Oakland, California, May 20–22 1991

[39] T.Y.C. Woo and S.S. Lam. Authentication for distributed systems.Computer, 25(1):39–52,
January 1992. See also “Authentication” revisited.Computer, 25(3):10, March 1992.

617

[40] T.Y.C. Woo and S.S. Lam. A lesson on authentication protocol design.ACM Operating Sys-
tems Review, 28(3):24–37, July 1994.

[41] Thomas Y.C. Woo, Simon Lam , Authentication for Distributed Systems, revised version
of a paper with the same title published in Computer, Volume 25, Number 1, pages 39–52,
January 1992.

[42] T.Y.C.Woo and S.S. Lam. Design, verification, and implementation of an au-
thentication protocol. In Proceedings of International Conference on Network
Protocols, Boston, Massachusetts, October 25–28 1994. (Also available from
http://www.cs.utexas.edu/users/lam/NRL/.)

[43] T.Y.C. Woo, R. Bindignavle, S. Su, and S.S. Lam. SNP: An interface for secure network
programming. InProceedings of USENIX Summer Technical Conference, Boston, Mas-
sachusetts, June 6–10 1994. (Also available from http://www.cs.utexas.edu/users/lam/NRL/.)

[44] T.D. Wu, The Secure Remote Password Protocol, in Proc. of the Network and Distributed
Systems Security, NDSS 1998, San Diego, CA, 1998.

618

Chapter 17

Self-Stabilization

17.1 Introduction

The idea of self-stabilization in distributed computing [36] was first proposed by Dijkstra in 1974.
The concept of self-stabilization is that regardless of itsinitial state, the system is guaranteed to
converge to a legitimate state in a bounded amount of time by itself without any outside interven-
tion. A non self-stabilizing system may never reach a legitimate state or it may reach a legitimate
state only temporarily. The main complication in designinga self-stabilizing distributed system
is that nodes do not have a global memory that they can access instantaneoulsy. Each node must
make decisions based on the local knowledge available to it and actions of all nodes must achieve
a global ojective.

The definition of legitimate and illegitimate states depends on the particular application. Gen-
erally, all illegitimate states are defined to be those states which are not legitimate states. Dijkstra
also gave an example of the concept of self-stabilization using a self-stabilizing token ring system.
For any given token ring when there are multiple tokens or there is no token, then such global
states are known as illegitimate states. When we consider a distributed system where a large num-
ber of systems are widely distributed and communicate with each other using message passing or
shared memory approach , there is a possibility for these systems to go into an illegitimate state,
for example, if a message is lost. The concept of self-stabilization can help us recover from such
situations in distributed system.

Let us explain the concept of self-stabilization using an example. Let us take a group of children
and ask them to stand in the form of a circle. After few minutes, you will get almost a perfect circle
without having to take any further action. In addition, you will discover that the shape of this circle
is stable, at least until you ask the children to disperse. Ifyou force one of the children out of
the position, the others will move accordingly, moving the entire circle in another position, but
keeping its shape unchanged.

In this example, the group of children build a self-stabilizing circle: if some thing goes wrong
with the circle, they are able to rebuild the circle by themselves, without any external intervention.
The time required for stabilization varies from experimentto experiment, depending on the (ran-
dom) initial position. However, if the field size is limited,this time will be bounded. The algorithm

619

does not define the position of the circle in the field and so it will not always be the same. The
position of each child relative to each other will also vary.

The self-stabilization principle applies to any system built on a significant number of compo-
nents which are evolving independently from one another, but which are cooperating or competing
to achieve common goals. This applies, in particular, to large distributed systems which tend to
result from the integration of many subsystems and components developed separately at earlier
times or by different people.

In this chapter, we first present the system model of a distributed system and present definitions
of self-stabilization. Next, we discuss Dijkstra’s seminal work and use it to motivate the topic. We
discuss the issues arising from the Dijkstra’s original presentation as well as several related issues
in the design of self-stabilizing algorithms and systems. After that, we discuss three important
themes that have recently emerged. In particular, we discuss the methods that have been used
to design complex self-stabilizing systems, we discuss therole of compilers in designing self-
stabilization, and we enumerate factors that have been found to interfere with self-stabilization.
We also discuss self-stabilizing protocols for construction of spanning trees and present a self-
stabilizing algorithm for 1-maximal independent set. We conclude the chapter with limitations of
self-stabilization.

17.2 System Model

The term distributed system is used to describe set of computers that communicate over network.
Variants of distributed systems have similar fundamental coordination requirements among the
communicating entries, whether they are computers, processors or processes. Thus an abstract
model that ignores the specific settings and captures the important characteristics of a distributed
system is usually used.

In a distributed system, each computer runs a program composed of executable statements.
Each execution changes the content of the computer’s logical memory. An abstract way to model
a computer that executes a program is to use the state machinemodel. A distributed system model
comprises of a set of n state machines called processors thatcommunicate with each other. We
usually denote theith processor in the system byPi. Neighbors of processor are processors that are
directly connected to it. A processor can directly communicate with its neighbors. A distributed
system can be conveniently represented by a graph in which each processor is represented by a
node and every pair of neighboring nodes are connected by a link.

The communication between neighboring processors can be carried out either by message pass-
ing or shared memory. Communication by writing in and reading from the shared memory usually
fits systems with processors that are geographically close together, such as multiprocessor com-
puter. A message-passing distributed model fits both processors that are located close to each other
as well as that are widely distributed over a network.

In the message-passing model, neighbors communicate by sending and receiving messages.
In asynchronous distributed systems, the speed of processors and message transmission can vary.

620

First-in first-out (FIFO) queues are used to model asynchronous delivery of messages. A commu-
nication link is either unidirectional or bidirectional. Aunidirectional communication link from
processor Pi to Pj transfers messages only from Pi to Pj . The abstraction used for such a unidirec-
tional link is a first-in first-out (FIFO) queue Qi,j that contains all messages sent by a processor Pi

to its neighbor Pj that have not yet been received. Whenever Pi sends a message m to Pj, the mes-
sage is en-queued (added to the tail of the queue). The bidirectional communication link between
processors Pi and Pj is modeled by two FIFO queues, one from Pi to Pj and the other from Pj to
Pi.

It is convenient to identify the state of a computer or a distributed system at a given time, so
that no additional information about the past of the computation is needed in order to predict the
future behavior (state transitions) of the computer or the distributed system. A full description of
a message passing distributed system at a particular time consists of the state of every processor
and the content of every queue (messages traveling in the communication links). The term system
configuration (or configuration) is used for such a description. A configuration is denoted by c=(s1,
s2. . . sn, q1,2, q1,3, . . . qi,j.qn,n−1), where si, 1≤ i ≤n is the state of Pi and qi,j, i 6=j is the state
of queue Qi,j, that is, messages sent by Pi to Pj but not yet received. The behavior of a system
consists of a set of states, a transition relation between those states, and a set of fairness criteria on
the transition relation [81].

The system is usually modeled as a graph of processing elements (modeled as state machines),
where edges between these elements model unidirectional orbidirectional communication links.
Let N be an upper bound on n (the number of nodes in the system).Communication network is
usually restricted to the neighbors of a particular node. Let δ denote the diameter of the network
(i.e., the length of the longest unique path between two nodes) and let∆ denote the upper bound
on δ. A network is static if the communication topology remains fixed. It is dynamic if links and
network nodes can go down and recover later. In the context ofdynamic systems, self-stabilization
refers to the time after the “final” link or node failure. The term “final failure” is typical in the
literature on self-stabilization. Since stabilization isonly guaranteed eventually, the assumption
that faults eventually stop to occur implies that there are no faults in the system for “sufficiently
long period” for the system to stabilize. In any case, it is assumed that the topology remains
connected, i.e., there exists a path between any two nodes.

In the shared memory model, processors communicate using shared communication registers
(hereafter, called registers). Processors may write in a set of registers and may read from a possibly
different set of registers. Two neighboring nodes have access to a common data structure, variable
or register which can store a certain amount of information.These variables can be distinguished
between input and output variables (depending on which process can modify them). When exe-
cuting a step, a process may read all its input variables, perform a state transition and write all its
output variables in a single atomic operation. This is called composite atomicity. A weaker notion
of a step (called read/write atomicity) also exists where a process can only either read or write its
communication variables in one atomic step.

The configuration of a system with n processors and m communication registers is denoted by

621

c= (s1, s2, s3.sn, r1, r2. . . , rm), where si, 1≤ i ≤n, is the state of Pi and rj, 1≤ j ≤ m, is the
contents of a communication register.

Algorithms are modeled as state machines performing a sequence of steps. A step consists of
reading input and the local state, then performing a state transition and writing output. Commu-
nication can be by exchanging messages over the communication channels. An algorithm may be
randomized, i.e., have access to a source of randomness (a random number generator or a random
coin flip). If an algorithm is not randomized, we will call it deterministic. A related characteris-
tic of a system model is its execution semantics. In self-stabilization, this has been encapsulated
within the notion of a scheduler or daemon (also demon). Under a central daemon, at most one
processing element is allowed to take a step at the same time.

17.3 Definition of Self-Stabilization

We have seen an informal definition of self-stabilization atthe beginning. Formally, we define
self-stabilization for a system S with respect to a predicate P over its set of global states, where P
is intended to identify its correct execution [81]. States satisfying P are called legitimate states and
those not satisfying P are called illegitimate states. We use the terms safe and unsafe interchange-
ably with legitimate and illegitimate, respectively.

A system S is self-stabilizing with respect to predicate P ifit satisfies the following two prop-
erties:

1. Closure— P is closed under the execution of S. That is, once P is established in S, it cannot
be falsified.

2. Convergence— Starting from an arbitrary global state, S is guaranteed toreach a global
state satisfying P within a finite number of state transitions.

Arora and Gouda [13] introduced a more generalized definition of self-stabilization, called
stabilization, which is defined as follows. We define stabilization for a system S with respect to
two predicates P and Q, over its set of global states. Predicate Q denotes a restricted start condition.
S satisfies Q→ P (read as Q stabilizes to P) if it satisfies the following two properties:

1. Closure— P is closed under the execution of S. That is, once P is established in S, it cannot
be falsified.

2. Convergence— If S starts from any global state that satisfies Q, then S is guaranteed to
reach a global state satisfying P within a finite number of state transitions.

Note that self-stabilization is a special case of stabilization where Q is alwaystrue, that is, if S
is self-stabilizing with respect to P, then this may be restated as TRUE→ P in S.

Next, we define two terms that relevant to the discussion of self-stabilization.

622

Reachable Set:Often when a programmer writes a program, he does not have a particular defini-
tion of safe and unsafe states in mind but develops the program to function from a particular set of
start states. In such siruations, it is reasonable to define as safe those states that are reachable under
normal program execution from the set of legitimate start states. These states are referred to as the
reachable set. So, when we say that a program is self- stabilizing without mentioning a predicate,
we mean with respect to the reachable set. By definition, the reachable set is closed under program
execution, and it corresponds to a predicate over the set of states [81].

We use transient failure model in the discussion.

Transient failure: A transient failure is temporary (short lived) and it does not persist. A transient
failure may be caused by corruption of local state of processes or by corruption of chennels or
shared memory. A transient failure may change the state of the system, but not its behavior.

Randomized and Probabilistic Self-Stabilization

Randomized methods for self-stabilization are useful in achieving self-stabilization under process
symmetry (i.e., all processes are identical). Depending onthe stabilization time, self-stabilization
can be classified as randomized and probabilistic self-stabilization.

Randomized Self-Stabilization:A system is said to berandomized self-stabilizing system, if and
only if it is self-stabilizing and the expected number of rounds needed to reach a correct state (legal
state) is bounded by some constant k.

Probabilistic Self-Stabilization: A system S is said to beprobabilistically self stabilizingwith
respect to a predicate P if it satisfies the following two properties:

1. Closure: P is closed under the execution of S. That is, once P is established in S, it cannot
be falsified.

2. Convergence:There exists a function f from natural numbers to [0,1] satisfying lim k→∞
f(k) = 0, such that the probability of reaching a state satisfying P, starting from an arbitrary
global state within k state transitions, is 1- f(k).

Pseudo-stabilizing systemis one, which if started in an arbitrary state is guaranteed to reach a
state after which itdoes notdeviate from its intended specification. Astabilizing systemis one,
which if started at an arbitrary state is guaranteed to reacha state after which itcannotdeviate
from its intended specification. Thus, the difference between the two notions comes down to
the difference between cannot and does not - a difference that hardly matters in many practical
situations. The stronger requirement of self-stabilization is advantageous over pseudo-stabilization
in finite-state systems, since self-stabilization property implies a bounded convergence span while
the pseudo stabilization does not. Algorithms have been proposed for probabilistic orientation of an

623

asynchronous bi-directional ring, as well as for a synchronous ring with odd number of processes
and one token.

In the next section, we discuss the issues in the design of self-stabilization algorithms.

17.4 Issues in the design of self-stabilization algorithms

A distributed system comprises of many individual units andmany issues arise in the design of
self-stabilization algorithms in distributed system. Some of the main issues are as follows:

1. Number of states in each of the individual units in a distributed system

2. Uniform and Non-uniform Algorithms in distributed systems

3. Central and Distributed Demon

4. Reducing the number of states in a token ring

5. Shared memory models

6. Mutual exclusion.

7. Costs of self-stabilization

Dijkstra’s Self-Stabilizing Token Ring System

We explain the above stated issues with the help of Dijkstra’s landmark self-stabilizing token ring
system [36]. His system consisted of a set of n finite state machines connected in the form a
ring. He defines a privilege of a machine to be the ability to change its current state. This ability
is based on a Boolean predicate that consists of its current state and the states of its neighbors.
When a machine has a privilege, it is able to change its current state, which is referred to as a
move. Furthermore, when multiple machines enjoy a privilege at the same time, the choice of the
machine that is entitled to make a move is made by a central demon, which arbitrarily decides
which privileged machine will make the next move.

A legitimate state must satisfy the following constraints:

1. There must be at least one privilege in the system (liveness or no deadlock).

2. Every move from a legal state must again put the system intoa legal state (closure).

3. During an infinite execution, each machine should enjoy a privilege an infinite number of
times (no starvation).

4. Given any two legal states, there is a series of moves that change one legal state to the other
(reachability).

624

Dijkstra [36] considered a legitimate (or legal) state as one in which exactly one machine enjoys
the privilege. This corresponds to a form of mutual exclusion, because the privileged process is
the only process that is allowed in its critical section. Once the process leaves the critical section,
it passes the privilege to one of its neighbors.

With this background, let us see how the above stated issues effect the design of a self-
stabilization algorithm.

17.4.1 The Number of States in Each of the Individual Units

An interesting issue in self-stabilizing systems is the number of states that each machine is required
to have. Dijkstra offered three solutions for a directed ring with n machines, 0, 1, , n-1,
each having K states, (i) K≥ n, (ii) K=4, (iii) K=3. It was later proven that a minimum of three
states is required in a self-stabilizing ring. In all three algorithms, Dijkstra assumed the existence
of at least one exceptional machine that behaved differently from the others.

The first solution (K≥ n) is described below.

First Solution

For any machine, we use the symbols S, L, and R to denote its ownstate, the state of the left
neighbor and the state of the right neighbor on the ring, respectively.
The exceptional machine

If L = S then
S: = (S+ 1) mod K
End If;

The other machines
If L 6= S then
S: = L
End If;

In this algorithm, except the exceptional machine (machine0), all other machines follow the
same algorithm. In the ring topology, each machine comparesits state with the state of the anti-
clockwise neighbor and if they are not same, it updates its state to be the same as that of its
anti-clockwise neighbor.

So, if there are n machines and each of them is initially at a random state rd K, then all the
machines (except the exceptional machine, machine 0) whosestates are not the same as their anti-
clockwise neighbor are said to be privileged and there is a central demon which decides which of
these privileged machines will make the move.

Suppose machine 6 (assume n≫6) makes the first move. It is obvious that it’s state is not
the same as that of machine 5 and hence it had the privilege to make the move and finally sets
its state to be the same as that of machine 5. Now machine 6 loses its privilege as its state is

625

same as that of its anti-clockwise neighbor (machine 5). Next, suppose machine 7, whose state
is different from the state of machine 6, is given the privilege. It results in making the state of
machine 7 same as that of machine 6. Now machines 5, 6 and 7 are in the same state. Eventually,
all the machines will be in the same state in the similar manner. At this point, only the exceptional
machine (machine 0) will be privileged as its condition L = S is satisfied, i.e., it’s state is same as
that of its anti-clockwise neighbor. Now there exists only one privilege or token in the system (at
machine 0). Machine 0 makes a move and changes its state from Sto (S+1) mod K. This will make
the next machine, machine 1, privileged as its state is not the same as its anti-clockwise neighbor,
i.e., machine 0. Thus, it can be interpreted as the token is currently with machine 1. Machine 1,
as per the algorithm, changes its state to the same state as that of machine 0. This will move the
token to machine 2 as its state is now not same as that of machine 1. Likewise, the token keeps
circulating around the ring and the system is stable.

This is a simple algorithm, but it requires a number of states, which depends on the size of the
ring, which may be awkward for some applications.

Second Solution

The second solution uses only 3-state machines and is presented below. The state of each machine
is in {0, 1, 2}.

In the first algorithm, there is only one exceptional machine, machine 0. In the second solution,
there are two such machines, machine 0, referred to as the bottom machine and machine n-1,
referred to as the top machine.
Algorithm
The bottom machine, machine 0

If (S+ 1) mod 3 = R then
S: = (S - 1) mod 3

The top machine, machine n - 1
If L = R and (L + 1) mod 36=S then

S: = (L+1) mod 3

The other machines
If (S + 1) mod 3 = L then

S: = L
If (S + 1) mod 3 = R then

S: = R

In this algorithm, the bottom machine, machine 0 behaves, asfollows:
If (S+ 1) mod 3 = R then

626

S: = (S - 1) mod 3

Thus, the state of the bottom machine depends upon its current state and the state of its right
neighbor.

The condition (s+1) mod 3 covers the three possible states; for s=0, 1, 2, we have (s+1) mod 3
= 1, 2, 0. These result in the following three possibilities:

1. if s=0 and r=1, then the state of s is changed to 2

2. if s=1 and r=2, then the state of s is changed to 0

3. if s=2 and r=0 then, the state of s is changed to 1

The top machine, machine n - 1, behaves as follows:
If L = R and (L + 1) mod 36= S then

S: = (L+1) mod 3

The state of the top machine depends upon both its left and right neighbors (the bottom ma-
chine). The condition specifies that the left neighbor (L) and the right neighbor (R) should be in
the same state and (L+1) mod 3 should not be equal to S. (Note that (L+1) mod 3 is 1, 2, 0 when L
is 0, 1, 2, respectively) Thus, the state of the top machine isas follows:

1. 1, when its left neighbor is 0

2. 2, when its left neighbor is 1

3. 0 when its left neighbor is 2

All other machines behave as follows:

If (S + 1) mod 3 = L then
S: = L

If (S + 1) mod 3 = R then
S: = R

While finding out the state of the other machines (machine 1, 2in the example below), we first
compare the state of a machine with its left neighbor:

1. If s=0 and L=1, then s=0

2. If s=1 and L=2, then s=2

3. If s=2 and L=0, then s=1

627

If the above conditions are not satisfied, then the machine compares its state with its right
neighbor.

628

State of
machine 0

State of
machine 1

State of
machine 2

State of
machine 3

Privileged
machines

Machine to
make move

0 1 0 2 0,2,3 0
2 1 0 2 1,2 1
2 2 0 2 1 1
2 0 0 2 0 0
1 0 0 2 1 1
1 1 0 2 2 2
1 1 1 2 2 2
1 1 2 2 1 1
1 2 2 2 0 0
0 2 2 2 1 1
0 0 2 2 2 2
0 0 0 2 3 3
0 0 0 1 2 2

Table 17.1: An Example of Dijkstra’s Three-State Algorithm

A sample execution of Dijkstra’s three-state algorithm is shown in Table 17.1. The example is
for a ring of four processes (0, 1, 2, 3). Machine 0 is the bottom machine and machine 3 is the top
machine. The last column in the table gives the number of the machine chosen to make the next
move. Initially, three privileges exist in the system. The number of privileges decreases until there
is only one privilege in the system.

We make the following observations:

1. There are no deadlocks in any state (at least one privilegeis present).

2. The closure property is satisfied (the system moves from a legal state to a legal state).

3. No starvation (each machine has a chance of making more than 1 move).

4. Reachability (there are always a series of moves to reach from one legal state to other).

All four properties given in the beginning of this section are satisfied. So the system is stabi-
lized.

Special Networks

In the above two algorithms, each processor needs K states and 3 states, respectively. There are
special networks, where the number of states required by each processor is two.

A network organized like the one in Figure 17.1 needs only twostates per machine. The algo-
rithm uses information from all of its neighbors. The following algorithm uses s[i] to denote the
state of machine i and there are two possible states for each machine, 0 and 1. In the algorithm,

629

1

2

3

4

5

6

7

8

2n−3

2n−2

0 2n−1

Figure 17.1: A Special Network Needing Only Binary State Machines

b is used to denote an arbitrary state (0 or 1) and b∼ is used to denote the complementary state of b.

For machine 0:
If (s[0], s[1]) = (b∼ , b) then s[0]:=b

For machine 2n- 1:
If (s[2n-1], s[2n-2]) = (b, b) then s [2n-1]:= b∼

For even numbered machines:
If (s[2i-2], s[2i-1], s[2i], s[2i+1]) = (b, b, b∼ , b) then s[2i]:= b

For odd numbered machines:
If (s [2i-2], s [2i-1], s [2i], s [2i +1]) = (b, b, b, b∼) then s [2i-1]:= b∼

In this algorithm, each machine must examine the states of all its neighbors. Thus, a large
atomicity is assumed because each machine must be able to examine the states of all its neighbors
in one atomic step. The algorithm also requires an even number of machines (at least 6). However,
the algorithm shows that self-stabilizing algorithms requiring a small number of states can be
designed.

Dolev et al.’s Solution

For a system with odd number of machines in a ring, a solution for self-stabilization by Dolev et
al. [42] is as follows: Each node has two states, 0 and 1. Givena global state, the nodes make
moves according to the following rules:

1. If the local state is different from its left neighbor’s state, then the state is changed to be the
same as its left neighbor.

2. If the local state is the same as its left neighbor’s state,the state is chosen randomly from 0
and 1.

At each step, the nodes make their moves in synchronization.A node has a privilege if its state
is the same as its left neighbor’s state. It is shown, using probability theory, that eventually only

630

one privilege exists in the system. This algorithm requiresthat the nodes operate synchronously,
but it shows that the number of states required for each node may be reduced using a probabilistic
algorithm.

17.4.2 Uniform Vs. Non-uniform Networks

Whether processes are uniform or nor is an important aspect of self-stabilization. In a distributed,
it is desirable to have each machine use the same algorithm. In self-stabiliziing systems, it is
desirable to have non-uniformity among machines. In the preceding section, at least one of the
machines had a privilege and a move that was different from the rest of the machines. These
machines are known as exceptional machines, and the algorithms are non-uniform.

The individual processes can be anonymous, meaning they areindistinguishable and all run
the same algorithm. Often, anonymous networks are called uniform networks. A network is semi-
uniform if there is one process (the root) which executes a different algorithm. While there is no
way to distinguish nodes, in uniform or semi-uniform algorithms nodes usually have a means of
distinguishing their neighbors by ordering the incoming communication links. In the most general
case it is assumed that processes have globally unique identifiers.

Self-stabilization algorithms for distributed systems should be uniform, but this is not always
possible. As a simple example, consider the ring of four processors shown in Figure 17.2.

0 2 31

Figure 17.2: A Ring of Four Processors

Assume there is a uniform self-stabilizing algorithm for this ring. In a distributed system, the
state of a machine/process is changed depending on the stateof its neighbors. In this example, if
all processors have the same state when started, all must have privileges because there must be at
least one privilege in the system (property 1 of a legal state).

Note that 0 and 2 make a move (because if one makes a move, it does not affect the neighbors
of the other), and change their states. In this example, 0 and2 make an independent set. After the
transition, 0 and 2 are in the same state and so are 1 and 3.

The system is partitioned into two sets: {0,2} and {1,3}. At least two machines must have
a privilege because 0 and 2 have the same states and also theirneighbors 1 and 3 have the same
states. Thus once again, machines 0 and 2 can make moves and leave the network in a similar
situation. The scenario with 1 and 3 is also the same, they both are in the same state and their
neighbors 0 and 2 are in the same state. So, if 1 has privilege,then 3 will also have privilege and

631

both machines can make moves and leave the network in a similar situation. So, in either case,
there will be two privileged machines at any time in the network.

Even though uniformity is a desirable property, most algorithms that have been developed to
use at least one exceptional machine. However, uniformity is sometimes attainable. A uniform
self-stabilizing algorithm for a ring of n processors, where n is prime, was developed by Burns and
Pachl [22] and it was observed that for a ring of composite size, the algorithm failed only because
it could deadlock. Thus, if deadlock can be tolerated or can be corrected easily from outside the
system, then the algorithm may be useful. These examples show that uniformity may be achieved
if we are willing to sacrifice a property of self-stabilization.

17.4.3 Central and Distributed Demons

Dijkstra original assumption was that there is a central demon that decides which machine with a
privilege will make the next move. However, the presence of acentral demon is an undesirable
constraint. A distributed demon is more desirable where each privileged machine makes its own
decision on whether to make a move. In a self-stabilizing system without a central demon, each
machine makes a decision locally. Even though the decisionsare made locally, these decisions will
eventually take the system towards a global goal. Once this global goal is achieved, the system is
self-stabilized.

Interestingly, many early algorithms (e.g., Dijkstra’s three, four, and K-state algorithms) were
developed assuming the presence of a central demon and they did not deal with the possibility of
having a distributed demon, yet these algorithms also work with distributed demons.

Even though a central demon is not desirable, it is usually easier to verify a weak correctness
criterion on an algorithm using this assumption. For this reason, self-stabilizing systems are often
developed assuming the presence of a central demon. After the weak correctness is verified, the
system is examined to see if it is still self-stabilizing when the assumption of a central demon is
removed. If it is not, the algorithm is extended so that a central demon is not necessary.

Burns et al. [23, 25] examine the extensibility of some algorithms. They showed that letting
all machines operate simultaneously will not affect the correctness of some algorithms. Such in-
terleaving assumption is very useful in the verification of self-stabilizing systems. As an example,
Burns et al. [25] verified that Dijkstra’s algorithms are correct even in the presence of a distributed
demon. Originally, Dijkstra’s algorithms were only provento be correct in the presence of a cen-
tral demon. However, they showed that the central demon assumption is unnecessary for both, the
three and four state algorithms. The K-state solution is shown to be valid for a distributed demon
only if K > n (n is the number of machines), because there is a cycle of illegal global states if K =
n.

Burns et al. also developed results, which can be used to showan algorithm that is correct in
the presence of a central demon, is also correct when the central demon assumption is removed.
This is useful in the verification process because once the algorithm is verified in the presence of
a central demon, the algorithm may be correct even when the central demon assumption is lifted
without any modification to the algorithm. This of course maynot be the case for all algorithms,

632

but these results can be helpful in the process of verification.

17.4.4 Reducing the number of states in a token ring

A natural question is: what is the number of states of a machine to achieve self-stabilization in
various configurations. Clearly, the objective is to minimize the number of states of a machine for
efficient implementation.

It has been shown that if self-stabilization is not a requirement, then there exists an asymmetric
token ring with two states per machine. In a self-stabilizing token ring with a central demon and
deterministic execution, Ghosh [51] showed that a minimum of three states per machine is required.
However, for a non-ring topology, the number of states can bereduced to two per machine. There
exists a non-trivial self-stabilizing system with two states per machine [49]. It requires a high
degree of atomicity in each action. Each non-exceptional process reads from three of its neighbors.
Thus, obviously, the topology is non-ring.

Herman [61] presented a unidirectional and symmetric solution, that has only two states, for
a "probabilistically" self-stabilizing synchronous token ring with randomized actions. a solution
requiring two states per machine exists. Flatebo and Datta [43] developed a two-state, unidirec-
tional and asymmetric solution for a "probabilistically" self-stabilizing token ring with randomized
actions under the assumption of a randomized central demon.With a randomized central demon, a
demon is chosen randomly among privileged machines and it minimizes the problem of malicious
scheduling on the part of the demon.

Thus, it appears that to obtain self-stabilizing systems with two states per machine, we must
either relax the objective to "probabilistic self-stabilization" using randomized actions, or use a
non-ring topology with higher atomicity in the actions.

17.4.5 Shared memory Models

Distributed systems having shared memory between machineswhere processes communicate with
each other by reading and writing to registers have also beenused as self-stabilizing systems. In
this type of model, no processor has direct access to the state of its neighbors, and the only way
to determine it is by passing information through shared registers. If two processors, Pi and Pj are
neighbors, then there are two registers, i and j between the two nodes. To communicate, Pi writes
to i and reads from j and Pj writes to j and reads from i. It is convenient to represent a distributed
system by a graph in which each processor is represented by a node and the neighboring nodes are
connected by a link which shows the communication between a node and its neighbors.

The self-stabilization algorithms work for an arbitrarilyconnected graph. They also work if
the graph is changed during execution (due to a node failure,etc.). So, there is no problem even
if the system is dynamic. In a self-stabilization algorithm, eventually only one process can change
a register at any instance, and this is when the system is stabilized. The only assumption made is
that all read/write operations performed on the registers are atomic. Later in this chapter, we study
a dynamic self-stabilizing algorithm.

633

Dolev et al. [42] present a dynamic self-stabilizing algorithm for mutual exclusion. The al-
gorithm only requires that all nodes be connected (that is, the network should not be partitioned).
Node failures may cause an illegal global state, but the protocol is dynamic and self-stabilizing.
This means that even with a node failing, the system will again converge to a legal state. If a
node is restarted, an illegal global state may again occur, but the system will automatically correct
itself. The size of the registers are on the order of log (n), where n is the number of processors.
The only assumption made is that the read/write operations on the registers are atomic. This weak
assumption makes the implementation of the algorithm feasible.

17.4.6 Mutual Exclusion

In previous sections, we discussed self-stabilizing systems where there is only one action being
done after a finite amount of time. The action could be changing a state or the contents of a
register. In a mutual exclusion algorithm, each process hasa critical section of code, and only one
process can enter its critical section at any time, and everyprocess that wants to enter its critical
section, will be allowed to enter its critical section within a finite amount of time. If a process has
a privilege, it can enter its critical section, and once it isfinished (execuing the critical section),
it passes the privilege to the neighbor. If the process does not want to enter its critical section, it
simply passes the privilege to its neighbor. Since the self-stabilizing algorithms mentioned adhere
to the four properties discussed previously, mutual exclusion is also satisfied. Since eventually,
there is only one privilege in the system and each process enjoys a privilege an infinite number of
times, a process is guaranteed to enter its critical sectionin a finite amount of time.

A self-stabilizing mutual exclusion system can also be described in terms of a token system. A
token system has the processes circulating tokens. If a process has one of these tokens, it is allowed
to enter its critical section. Brown, Gouda, and Wu [21] usedthis system to develop self-stabilizing
mutual exclusion systems. At first, there may be more than onetoken in the system, but after a
finite amount of time, only one token exists in the system which is circulated among the processes.
Such systems are easier to implement in circuits, and Brown et al. showed how the implementation
is done using flip-fops. All of the models, token systems, privileges, shared memory, are forms of
mutual exclusion, and the algorithms also tolerate node failures and restarts or a bad initialization.
So these algorithms are more tolerant of errors than other mutual exclusion algorithms.

17.4.7 Costs of self-stabilization

The definition of self-stabilization does not put any upper bound on the number of transitions
required by the system to reach a safe state starting from an unsafe one. Thus, the system might
remain in an unsafe state for a considerable amount of time before reaching a safe state. A study
and assessment of these cost factor is very important in any practical implementation.

Gouda and Evangelist [55] introduced the following two concepts related to the cost of self-
stabilization:

634

• Convergence span: It is the maximum number of transitions that can be executed in a
system, starting from an arbitrary state, before it reachesa safe state.

• Response span:It is the maximum number of transitions that can be executed in a system
to reach a specified target state, starting from some initialstate. The choice of initial state
and target state depends upon the application.

Clearly, the aim of the designer of a self-stabilizing algorithm is to reduce the convergence
span and response span.

Time-complexity measure for self-stabilizing algorithmsis the number of rounds. In syn-
chronous models, algorithms execute in rounds, i.e., processors execute steps at the same time and
at a constant rate. Rounds can be defined in asynchronous models too, where the first round ends
in a computation when every processor has executed at least one step. In general, the ithround
ends, when every processor has executed at least i steps. Generally, communication between any
two processors in a particular system takes at least (d) rounds. This is because it normally takes at
least one round to propagate information between two adjacent processors.

17.5 Methodologies for designing self-stabilizing systems

Having seen the issues in the design of self-stabilizing system, let us now discuss the methodolo-
gies for designing self-stabilizing systems.

Self-stabilization is characterized in terms of a "malicious adversary" whose objective is to dis-
rupt the normal operation of the system. This adversary (e.g., a virus or a hardware problem) may
destroy some portions of the system, or disrupt the operation of one or more portions. Furthermore,
it might not be possible for a system to detect that it has been"attacked", as soon as the attack ap-
pears. To be called self-stabilizing, a system must have thecapability to recover normal operation
when exposed to such attacks. If the system (or parts of it) isdestroyed completely, so that it is no
longer possible for the system to operate, then no self-stabilizing system can work. The adversary
succeeds in achieving his goals. However, if enough components are left for the system to operate,
then a self-stabilizing system will slowly resume normal operation after the attack. It is up to the
designer to decide under what conditions the system may be termed "completely destroyed" or
"still capable of operating".

Layering and Modularization

The most commonly used techniques for building self-stabilizing systems are layering and modu-
larization. The basic idea is to divide the system into smaller component, make each component
self-stabilizing independently, and then integrate them to compose the system.

Self-stabilization is amenable to layering because the self-stabilization relation is transitive, i.e.
if P→Q (P Stabilizes Q) and Q→R, then P→R. Thus, different layers of self-stabilizing programs
(each by itself self stabilizing) can be composed. First step is to build a self-stabilizing "platform"

635

and any program written on that platform automatically becomes self-stabilizing. The basic idea
behind a self-stabilizing platform is to provide primitives using which, other programs can be
written.

To develop self-stabilizing systems using the technique oflayering, we require primitives to
provide structures on which algorithms may be built. There are two basic structuring mechanism
primitives: common clock primitives, and topology based primitives.

(1) Common Clock Primitives

Unison is the process of maintaining time through the use of local clocks in shared memory sys-
tems. The properties required here are the safety property and the progress property. For a syn-
chronous shared memory system, safety and progress properties for unison are as follows:

• Safety: All clocks have the same value.

• Progress: At each step, each clock is incremented by the sameamount.

For asynchronous systems with shared memory, safety and progress properties for unison are
as follows:

• Safety: Clocks of two neighboring nodes can differ by at most1.

• Progress: A clock is incremented to i +1 when clocks at all neighboring nodes have value i
or i +l.

(2) Topology Based Primitives

Leader election is perhaps the most basic primitive with respect to an arbitrary dynamic topology.
Once a leader has been found, a spanning tree might be constructed. Algorithms for mutual exclu-
sion and reset can be easily developed on the top of self-stabilizing spanning tree algorithms for
arbitrarily connected graphs.

We now discuss two examples of self-stabilizing programs, namely, mutual exclusion and re-
set, developed using the concept of layering.

Example 1: A two-layered self-stabilizing algorithm for mutual exclusion [42].

The first layer creates a spanning tree from an arbitrarily connected graph, whose topology
might change dynamically with the exception of a distinguished process (the root). The self-
stabilizing spanning tree protocol is based on breadth firstsearch of the graph, rooted at the dis-
tinguished node. The distinguished node is needed to break symmetry and all other nodes execute
identical program.

The second layer achieves mutual exclusion on a dynamic treestructured system. It is a token
based system. When a node receives the token/privilege, it executes its critical section (if it wants

636

to) and then it passes to the token to its children in left-to-right order. Thus, the token traverses the
tree in depth first manner.

Finally, the two protocols are superposed to obtain a singleself-stabilizing protocol for mutual
exclusion an arbitrarily connected graph.

Example 2: Self-stabilizing reset algorithm for asynchronous sharedmemory system [13].

Arora and Gouda [13] used layering technique to develop a self-stabilizing reset algorithm for
asynchronous shared-memory systems. The algorithms allows dynamic topology as long as the
underlying graph remains connected. There is no distinguished process, hoever, each process has
a unique identifier.

The algorithm consists of three layers. In the first layer, a root is elected forming a spanning
tree. In the second layer, the root initiates a diffusing computation in which reset requests are
propagated to the leaf nodes and are refelected back to the root node. The reset request passes
through every node, detecting any anomaly in the global state. When the reset returns to the root,
the reset is complete.

A self-stabilizing "platform" resets the system upon encountering an illegitimate state. Plat-
form writes to variables of original program only if an illegitimate state is detected. Platform does
not affect the original program under normal execution.

17.6 Communication Protocols

A communication protocol is a collection of processes that exchange messages over communica-
tion links in a network. A protocol may be adversely affectedfor several reasons:

(1) Initialization to an illegal state.

(2) A change in the mode of operation. Not all processes get the request for the change at the
same time, so an illegal global state may occur.

(3) Transmission errors because of message loss or corruption.

(4) Process failure and recovery.

(5) A local memory crash which changes the local state of a process.

Previously, these five types of errors have been treated separately. However, if a protocol is
self-stabilizing, they will all be corrected in a finite number of steps, regardless of the reason for
the loss of coordination.

A communication protocol is stabilizing if and only if starting from any unsafe state (i.e., one
that violates the intended invariant of the protocol), the protocol is guaranteed to converge to a safe
state within a finite number of state transitions. Stabilization allows the processes in a protocol to
reestablish coordination between one another whenever coordination is lost due to some failure.

637

Gouda and Multari [57] showed that a communication protocolmust satisfy the following three
properties to be self-stabilizing:

1. It must be non-terminating.

2. There are an infinite number of safe states.

3. There are timeout actions in a non-empty subset of processes.

Self-stabilizing systems can automatically recover from arbitrary state perturbations in finite
time. They are therefore well-suited for dynamic, failure prone environments. Spanning-tree con-
struction in distributed systems is a fundamental operation that forms the basis for many other
network algorithms (like token circulation or routing). Next, we discuss some self-stabilizing al-
gorithms that construct a spanning tree within a network of processing entities.

Let us consider an arbitrary distributed algorithm, e.g., for termination detection, and start it
in a state where one of its variables has been set to a random value from its domain. Usually, the
behavior is not predictable: either the algorithm will output garbage (e.g., declare a computation as
finished although it is still running), or (most probably) itwill deadlock (e.g., it will fail to output
anything at all). It may be argued that changing the value of avariable is unfair: no algorithm can
tolerate such manipulations since algorithms have to rely on proper initialization. This argument,
however, is not true.

Self-stabilizing algorithms are guaranteed to recover from an arbitrary perturbation of their
local state in a finite number of execution steps. This means that the variables of such algorithms
do not need to be initialized properly. If we assign each variable an arbitrary value from its domain,
still the algorithm will eventually start to behave as expected. Arbitrary state perturbations can also
happen without curious users playing around with their algorithm: Cosmic rays in spacecraft for
example can arbitrarily change the contents of memory cellsin random access memory. Self-
stabilizing algorithms have the desirable property to recover from such faults automatically.

17.7 Self-Stabilizing Distributed Spanning Trees

In distributed systems, a spanning tree is the basis for manycomplex distributed protocols. To
define a spanning tree, the network is modeled as a graph G = (V,E) where V is the set of network
nodes (vertices) and E is the set of communication links (edges) between network nodes (formally
it is a subset of E× E). A spanning tree T = (V, E′) of G is a graph consisting of the same set of
nodes V, but only a subset E′ of edges E such that there exists exactly one path between every pair
of network nodes. Basically, this means that the graph is connected and it does not contain cycles.
A basic theorems of spanning trees states that in a network ofn nodes, the tree contains exactly n-1
communication links. A spanning tree of a graph is in generalnot unique (even if the root node is
fixed).

Figure 17.3 shows an example of a network of five nodes and a spanning tree of the network
[45].

638

P1 P2 P3

P5P4

P1 P2 P3

P5P4

Figure 17.3: A network and its spanning tree

A spanning tree in a network is often a prerequisite for more involved network protocols like
routing or token circulation. It generally increases the efficiency of network protocols. For exam-
ple, consider the problem of broadcasting messages in the network. There are algorithms which
flood the network, i.e., the broadcast message is recursively sent to all neighbors. Consequently,
the message crosses all communication links before the protocol terminates. However, if a span-
ning tree of the network is available, the message only needsto be sent along all the edges of the
spanning tree. Instead of crossing all E links, the message just crosses n-1 links. Since |E| is usu-
ally significantly larger than n-1, a spanning tree can considerably reduce the message complexity
of the broadcast algorithm.

Two kinds of spanning trees may be distinguished: breadth-first search (BFS) trees result from
a breadth-first traversal of the underlying network topology. Similarly, depth-first search (DFS)
trees are obtained from a depth-first traversal. A notion underlying DFS and BFS trees is that of
a rooted tree. A rooted spanning tree is a spanning tree of thenetwork where the tree edges are
consistently directed with respect to a particular node (the root). Edges can be directed towards the
root or “away from” the root. Rooted spanning trees have a notion of “parent” and naturally result
from the execution of semi-uniform algorithms. In fact, since almost all algorithms use a single
pointer (to a neighbor, the parent) to store the structures of the tree, all these algorithms implicitly
construct a rooted spanning tree.

In spanning-tree construction, it is impossible to deterministically construct a spanning tree in
uniform networks. Intuitively, this is caused by problems of symmetry, and so at least a semi-
uniform setting (e.g., a distinguished root processor) or asource of randomization is needed.

Time-complexity of self-stabilizing algorithms is often measured by the number of rounds.
In self-stabilizing spanning-tree construction, an arbitrary initial state may make it necessary to
propagate information through the entire network. Therefore, a general lower bound of (d) rounds
can be assumed for self-stabilizing spanning-tree algorithms. By combining the algorithm with a
hierarchical structure and sacrificing true distribution,this bound can be lowered.

Space complexity measures the the amount of state necessaryto perform self-stabilizing span-
ning tree construction. Dolev, Gouda, and Schneider [40] derived the following result on lower
bounds regarding the space complexity: self-stabilizing spanning tree construction needs at least
(log n) bits per processor if the algorithm is silent (i.e., if the contents of the communication regis-
ters eventually stop changing). If the algorithm is not required to be silent, Johnen [68] showed that

639

it is possible to construct an algorithm using only O(1) bitsper edge in a uniform rooted network
with a central daemon.

17.8 Self-Stabilizing Algorithms for Spanning-tree Construc-
tion

In this section, we discuss a set of representative self-stabilizing algorithms for constructing spanning-
trees [45].

17.8.1 Dolev, Israeli, and Moran Algorithm

Dolev, Israeli and Moran [42] developed a self-stabilizingBFS spanning-tree construction algo-
rithm for semi-uniform systems with a central daemon under read/write atomicity. In the algorithm,
every node maintains two variables: (1) a pointer to one if its incoming edges (this information
is kept in a bit associated with each communication register), and (2) an integer measuring the
distance in hops to the root of the tree. The distinguished node in the network acts as the root.

The algorithm works as follows: The network nodes periodically exchange their distance value
(current distance from the root node) with each other. Afterreading the distance values of all
neighbors, a network node chooses the neighbor with minimumdistancedist as its new parent. It
then writes its own distance into its output registers, which isdist+ 1. The distinguished root node
does not read the distance values of its neighbors and alwayssends a value of 0.

The algorithm stabilizes starting from the root process. After sufficient activations of the root,
it has written 0 values into all of its output variables. These values will not change anymore.
Note that without a distinguished root process the distancevalues in all nodes would grow without
bound. More specifically, after reading all neighbors values for k times, the distance value of a
process is at least k + 1. This means, that after the root has written its output registers, the direct
neighbors of the root- after inspecting their input variables - will see that the root node has the
minimum distance of all other nodes (the other nodes have distance at least 1). Hence, all direct
neighbors of the root will select the root as their parent andupdate their distance correctly to 1.
This line of reasoning can be continued incrementally for all other distances from the root. That is,
after all nodes at distance d from the root have computed their distance from the root correctly and
written it in their registers, their registers no longer change and nodes at distance d+1 from root are
ready to compute their distance from the root. After O(δ) update cycles, the entire tree will have
stabilized.

Dolev et al.’s self-stabilizing algorithm for constructing spanning trees is shown in Algorithm
2. Two neighbors Pi and Pj communicate with each other by reading from and writing to two
shared registers,rij andrji. To communicate, Pi writes torij and reads fromrji and Pj writes to
rji and reads fromrij.

The root node repeatedly writes values <0,0> in the registers of all of its neighbors. All other
processors repeatedly perform the following steps: in eachiteration, the processor reads the reg-

640

isters of all of its neighbors and computes the a value for variabledist as follows: it chooses the
minimum distance of their neighbors, sets itdist variable to the minimum distance plus 1, and
updates the registers of its neighbors. The internal vriable corresponding to registerrij is denoted
by lrij. It stores the last value ofrji that is read by Pi.

A snapshot of the system state in Dolev et al.’s self-stabilizing algorithm is given in Figure
17.4.

Variables:

no_neighbors = Number of processor’s neighbors
i = the writing processor
m = for whom the data is written
lrji (local registerrji) the last value of rji read byPi

Root Node:
{do forever}
while TRUEdo

for m := 1 to no_neighborsdo
write lrim := <0, 0>

end
end

Other Nodes:
{do forever}
while TRUEdo

for m := 1 to no_neighborsdo
lrmi := read(lrmi)
FirstFound:= false
dist := 1 + min(lrmi.dist) ∀m: 1≤m≤ no_neighbors
for m := 1 to no_neighborsdo

if not FirstFoundand lr mi.dis= dist -1
write rim := <1,dist>
FirstFound:= true
else writer im := <0,dist>

end
end

end
Algorithm 2 : Dolev et al.’s Spanning-tree Construction Algorithm forPi

Dolev et al.’s self-stabilizing algorithm has been used as the basis for a topology update al-
gorithm in dynamic networks. Based on the similar idea, Collin and Dolev [32] present a semi-
uniform spanning-tree algorithm under a central daemon andread/write atomicity that constructs
a DFS tree (instead of a BFS tree). A similar algorithm which also constructs a DFS tree but
uses composite atomicity was developed by Herman. In this algorithm, the outgoing links at every
process are ordered, and the DFS tree is defined as the tree resulting from a DFS graph traversal
always selecting the smallest outgoing edge. Instead of writing its current level into the output

641

The distributed system − computation step

P1 P2

12r m1:

P1 P2

12r m1:

P2 reads

m1m1

P1 writes

P1 P2

12r : x

1

2

7

6

3

4

8

5

r21

parent = 1

dist = 1

:

r73

parent = 2

dist = 3

:

r58

parent = 8

dist = 3

:

Spanning−tree, system and code

Figure 17.4: An example of Dolev et al.’s algorithm

registers, it writes a representation of its current estimate of the path (the sequence of outgoing link
identifiers) to the root. The root repeatedly writes the “empty path” (⊥) to its output registers. If a
node has k neighbors, there are k alternative paths to choosefrom. From these, the node chooses
the path which is minimal according to a lexicographic orderwhich prefers smaller link identifiers.
For example, (⊥) < (⊥, 1) < (⊥, 1, 1) < (⊥, 2) < (1). Thus, a node does not choose the shortest
path to the root but a path along the smallest link identifiers.

The memory requirement for the DFS algorithm is O(n logK) bits where K is an upper bound
on the maximum degree of a node. The time complexity is O(δnK) rounds.

17.8.2 Afek, Kutten, and Yung Algorithm for Spanning-tree Construction

The algorithm by Afek, Kutten and Yung [3] constructs a BFS spanning-tree in the read/write
atomicity model. However, this algorithm does not make the assumption of a distinguished root
process. Instead, it assumes that all nodes have globally unique identifiers which can be totally
ordered. The node with the largest identifier will eventually become the root of the tree.

The idea of the algorithm is as follows: Every node maintainsa parent pointer and a distance
variable like in the Dolev, Israeli, and Moran algorithm. Inaddition, it stores the identifier of the
root of the tree in which it thinks it is present. Periodically, nodes exchange this information. If

642

a node notices that it has the maximum identifier in its neighborhood, it makes itself the root of
its own tree. If a node learns that there is a tree with a largerroot identifier nearby, it joins this
tree by sending a “join request” to the root of that tree and receiving a “grant” back from the root.
Local consistency checks ensure that cycles and fake root identifiers are eventually detected and
removed.

The algorithm stabilizes in O(n2) asynchronous rounds and needs O(log n) space per edge to
store the process identifier. Afek et al. argued this is optimal since message communication buffers
need to communicate “at least” the identifier.

17.8.3 Arora and Gouda Algorithm for Spanning-tree Construction

Arora and Gouda [13] developed a self-stabilizing BFS spanning-tree algorithm for the composite
atomicity model under the assumption of a central daemon. Like Afek, Kutten and Yung, they also
assume unique identifiers and the node with maximum identifier eventually becomes the root of
the system. However, the algorithm needs a bound N on the number n of nodes in the network
to work correctly. The bound on the number of nodes is necessary because the algorithm uses a
different technique to detect and remove cycles.

Every node maintains variables for distance, parent and root identifier. Periodically, every node
compares its own distance and root identifier values with thevalues stores in the node pointed to
by the parent variable. In the final spanning tree, the root identifiers should be identical and the
distance should be the distance of the parent plus one. If this is not the case, the root identifier
is copied from the parent and the distance is set to the parent’s distance plus one. A node also
continuously monitors the root identifier and distance settings of its neighbors. If a neighbor has
a larger root identifier or the same identifier with smaller distance, the node adjusts its values
accordingly.

Cycles are detected in the following manner: If there is a cycle in the tree (or the graph to be
precise), say, due to improper initialization, the distance values are incremented along this cycle
without bound. Hence, a cycle is detected when the distance value exceedes the bound N. The first
node to detect this makes itself the root of a new tree.

A bound on the number of nodes in the network, N, allows the Arora and Gouda algorithm to
be simpler than the one by Afek, Kutten and Yung. However, thestabilization time in Arora and
Gouda algorithm is O(N2), which can be much larger than that of Afek, Kutten and Yung,O(n2).
In dynamic networks where network nodes may go down, a stabilization time in the order of the
actual number of nodes is preferable.

17.8.4 Huang et al. Algorithms for Spanning-tree Construction

Chen, Yu and Huang [30] developed a self-stabilizing spanning tree algorithm for semi-uniform
systems with composite atomicity. It is based on the same idea of cycle breaking (bumping up the
distance counter). The fact that there is a distinguished root makes the algorithm even simpler than
the one by Arora and Gouda [13]. However, the algorithm does not necessarily stabilize to a BFS

643

tree since the choice of a new parent after a cycle is broken isnon-deterministic and is governed
by the scheduler.

This algorithm was later improved by Huang and Chen [65] to yield an algorithm which con-
structs a BFS tree using knowledge of the size n of the network.

17.8.5 Afek and Bremler Algorithm for Spanning-tree Construction

Afek and Bremler [6] gave a self-stabilizing algorithm for constructing spanning trees for systems
with unidirectional, bounded capacity communication links. They assumed node have unique
identifiers and adopted the algorithm for the synchronous and the asynchronous networks. The
network node with the smallest identifier eventually becomes the root of the spanning tree.

The algorithm is based on a new idea called “power supply”. The power supply method exploits
the fact that self-stabilizing algorithms must continuously check their own state. Nodes which are
part of a spanning tree expect to receive “power” from the root of the tree. Power, like electric
current, means a continuous flow of certain messages, one perround. The basic idea is that only
legal roots may be the source of power and nodes attached to fake roots eventually fail to receive
power and subsequently make themselves the root of a new tree.

Whenever a node receives power from a neighbor with a smalleridentifier, it attaches itself
to its tree. In the asynchronous case, the power supply idea is implemented using different types
of messages: weak messages are exchanged periodically between the nodes to synchronize their
states, while strong messages carry power.

The idea of called power supply imparts the algorithm several interesting features. For exam-
ple, the algorithm stabilizes in O(n) rounds without processes to have the knowledge of n. Afek
and Bremler gave a generic power supply algorithm which can be instantiated to a leader election
algorithm, or an algorithm to construct DFS or BFS spanning trees.

The spanning-tree algorithms discussed in this section have been applied in many different
settings in practice. For example, a variant of the algorithm by Dolev, Israeli and Moran [42] was
used to implement a reliable data storage subsystem for the self-stabilizing file system developed
at the Ben Gurion University [70].

As another example [45], consider the protocol to eliminateredundant paths in switched Eth-
ernets [31]. If a network segment becomes unreachable or network parameters are changed, the
protocol automatically reconfigures the spanning-tree topology by activating a standby path. The
protocol can be briefly described as follows: Initially, switches believe they are the root of the span-
ning tree but they do not forward any packets. Based by a timer, they regularly exchange status
information. The status information contains (1) the identifier of the transmitting switch (usually
a MAC address), (2) the identifier of the switch which is believed to be the root of the tree, and (3)
the “cost” of the path towards the root. A switch uses this information to choose the shortest path
towards the root. If there are multiple possible roots, it selects the root with the smallest identifier
(lowest MAC address). Links that are not included in the spanning tree are placed in blocking
mode and they do not forward packets, but still transport status information.

644

17.9 An anonymous self-stabilizing algorithm for 1-maximal
independent set in trees

In a distributed system, an independent set is defined as a large subset of nodes that are pair-
wise nonadjacent.Maximal independent setis a set of nodes such that every node not in the set
is adjacent to a node in the set. Maximal independent sets areimportant in several distributed
network applications and several parallel or distributed algorithms have been developed for this
task [75].

This algorithm for finding a 1-maximal independent set in a tree uses constant space at each
node. Also this algorithm is somewhat unusual in that it stabilizes on all graphs, but is only
guaranteed to be correct on some graphs.

A distributed system is modeled as a connected, undirected graphG with node setV and edge
setE. Two nodes joined by an edge are said to beneighborsand N(i) is used to denote the set
of neighbors of nodei. A self-stabilizing algorithm is presented as a set of rules, each with a
Boolean predicate and an action. A node is said to beprivileged if the predicate is true. If a node
becomes privileged, it may execute the corresponding action called amove. The assumption is
that there exists acentral daemon, which at each time-step selects one of the privileged nodesto
move (and thus two nodes never move at the same time). When no further move is possible, the
system is said to be in astable configuration. While the definition of self-stabilizing is normally
more general, since this is a graph algorithm we say that an algorithm is self-stabilizing if from any
initial configuration it always terminates in a legitimate stable configuration after a finite number
of moves no matter the selections of the daemon.

Description of algorithm

In the algorithm citeShi04 for 1-maximal independent set, each node is in one of a finite number
of distinct states. Those nodes in the state called 0 will endup being in the desired set: let us
call this setM. A node with no neighbor in state 0 will change to state 0 and a node in state 0
with a neighbor in state 0 will change to something else. Thisidea readily produces a maximal
independent set.

To achieve 1-maximality, however, a node must be able to leave setM when that would allow
two of its neighbors to enterM. Available neighbors are those which have no other neighborin
state 0: these will be in the state called 1. In order to allow this interchange, we implement a hand-
shaking process: the node offers to leaveM by changing to state 0′, the relevant neighbors agree
to enterM by changing to state 1′, the node leaves by changing to state 2′, and then the relevant
neighbors go in by changing to state 0.

Specifically, the set of states is 0, 0′, 1, 1′, 2, 2′. The states with a prime aretransition states,
used in the hand-shaking process described above. These transition states will be absent when the
algorithm terminates if the network satisfies certain properties.

For the purpose of the algorithm, the nodes with state 0′ are also considered to be inM. The
states 0, 1 and 2 are used to indicate that a node has zero, one,or at least two neighbors inM,

645

respectively.
Actions of a node in the algorithm can be summarized as follows:

• If not involved in a transition process, then set state to thenumber of neighbors in state 0 or
state 0′. (The value 2 is used to indicate two or more such neighbors.)

• If in state 0 and adjacent to at least two 1s, change state to 0′.

• If in state 1 and adjacent to a 0′, change state to 1′.

• If in state 0′ and adjacent to at least two 1′s, change state to 2′.

• If in state 1′ and adjacent to no 0′, change state to 0.

• If in state 2′ and adjacent to no 1′, change state to 2.

The complexity of the actual algorithm arises from invalid initial states and from two inter-
changes affecting one another.

For a statey, we use the notationS(y)to represent the set of nodes in statey. Furthermore, we
use the notationS (y1/y2/y3/ ···) to denoteS (y1) ∪ S (y2) ∪ S (y3) ···.

For example, the notationS (0) denotes the nodes in state 0. The state of a node is stored in
a local variable denoted byx. The states with a prime are transition states. We will also identify
the prime with a virtual flag—we will say the flag is set when thenode is in a transition state, and
clearing the flag will mean changing from statei ′ to statei.

To define the rules of the algorithm, we define the following function f. Let i be a node andt a
state. Then we definef i (t) = min {2, | N (i) ∩ S (t)|}.

The functionfi gives the number of neighbors of nodei in a specified state. We further use the
notation:f i(x/y/z/ ···) = min {2, f i(x) + f i(y) + f i (z)+···} When the nodei is clear from the context,
we will drop the subscript fromfi. We also utilize the concept ofbad edge, which is defined next.
The rules will be such that a bad edge can only occur as a resultof faulty initialization. A bad
edge is an edge connecting two nodes in the following list of pairs of states: 0–0, 0–0′, 0′–0′, 0′–2′,
1′–1′, and 2′–2′.

The complete algorithm for finding a 1-maximal independent set is given in Algorithm 3.
The algorithm converges in O(mn) time, where m is the number of edges and n is the number

of nodes in the network. The algorithm stabilizes to a 1-maximal independent set in O(n2) steps in
an arbitrary tree.

Having seen two regular self-stabilizing algorithms, let us now discuss a probabilistic self-
stabilizing algorithm.

17.10 A Probabilistic Self-Stabilizing Leader Election Algorithm

We now discuss a probabilistic self-stabilizing leader election algorithm by Dolev et al. [37]. The
distributed system consist of n stations (sites) and they need to choose a leader among themselves

646

{* All moves are tried in the listed order *}
V1: if flag is setand node is incident on bad edge

and after clearing flag node would not be incident on any bad edge
then clear flag

V2: if flag is clearand x ′= f (0/0′) and (f (0/0′) ≥ 1 or f (1′/2′) = 0)
then setx = f (0/0′)

C1: if x = 0 and f (1) = 2 and f (0/0′/2′) = 0
then setx = 0′

C2: if x = 0′ and (f (1/1′) ≤ 1 or f (0/0′) ≥ 1)
then setx = f (0/0′)

C3: if x = 0′ and f (1′) = 2 and f (0′/2′) = 0
then setx = 2′

C4: if x = 2′ and f (1′) = 0
then setx = f (0/0′)

C5: if x = 1 and f (0′) = 1 and f (0/1′/2′) = 0
then setx = 1′

C6: if x = 1′ and (f (0′) 6= 1 or f (0/1′/2′) ≥ 1)
then setx = f (0/0′)

Algorithm 3 : An algorithm for finding a 1-maximal independent set

by using a leader election algorithm. The following three possibilities arise: During a time unit,
stations can detect either silence, success or collision.

Silence in the system implies that no station tried to transmit a message. Success implies that
only one station used the channel to transmit a message, and finally, a collision implies that at least
two stations attempted to transmit messages.

Leader election algorithm is shown in Algorithm 4.

{ Termination Condition. }
If n = 1 then Stop.

{ Randomized Selection Process}
If n ≥ 2 then randomly divide n into (n1, n - n1).
If n1 6= 0 then Applyd (n1).
Else Applyd (n).

Algorithm 4 : Dolev et al.’s Leader Election Algorithmd (n)

If the number of stations is greater than or equal to two, thenin the first time unit, all the
stations send their messages via the channel and as a result,a collision occurs. First time unit is
nothing but the first instance of a time unit.

If we consider a station S into consideration, in the next time unit, there are two possibilities:

• Case-1) S tries to send the message again or

647

• Case-2) S does not try to send the message again.

There are two possibilities for the first case (S tries to sendthe message again): success or
collision. If result is a success, then S is the leader, else (a collision occurs) S flips a coin (send/not
send.

For the second case (S does not participate), there are threepossibilities: Silence, Success,
or Collision. If Silence occurs, then the station S flips the coin (send/not send) again, if Success
occurs, then station S detects the leader, and if a collisionoccurs, S is eliminated.

Thus, the algorithm can be written as:

n Stations, n≥2
— First time unit : All stations send their messages via the channel; Collision.

→ Each station flips a coin (send or not send) again.
— Next time unit:

Case 1− Station S tries again
Success: S is the leader
Collision: S flips a coin again

Case 2− Station S isn’t participating
Silence: S flips again the coin
Success: S detects the leader
Collision: S is eliminated

An Example

We now illustrate the algorithm using the example shown in Figure 17.5.

Collision

Collision

Sucess

Φ

B A

AB

ABCD

AB CD

Silence

Figure 17.5: An example.

648

In Figure 17.5 initially (in the first time unit), ABCD try to send messages and a collision
occurs. In the next time unit, A and B send message again, while C and D do not participate.
Since both A and B try to send their messages, there is a collision again. As a result, C and D
are eliminated. Now in the next time unit, both A and B do not participate and the result is a
Silence. So both of them flip a coin and B decides to send a message again and A decides not to
participate. Since B is the only one sending a message, the result is Success and B is the Leader
and the algorithm terminates.

17.11 The role of compilers in self-stabilization

A compiler converts a program written in a language into an equivalent program in another lan-
guage. Typically, the latter is an object program that is to be run on a particular architecture.
Formally, a compiler is a homomorphism f: A→ B where A and B are two classes of architecture
or systems. Then, for each mdA, f (M) mimics the actions of M in some well-defined fashion
[81].

When a source program is self-stabilizing, we expect the compiler to produce an object program
that is self-stabilizing on the target architecture. It would be highly desirable to have a "self-
stabilizing compiler" that will convert a non-self-stabilizing source program into self-stabilizing
object code.

It is very important for the compiler to preserve the properties of the source program that are
important to the designers.

• In a sequential paradigm under termination it’s important that both the programs compute
the same results (quantitative).

• In a distributed or parallel paradigm, preservation of qualitative properties due to the need
for control and coordination among the processes is important.

Dijkstra [36], in his seminal work, implied that there doesn’t exist a compiler from asymmetric
rings to symmetric rings that forces or preserves self-stabilization. However, if self-stabilization is
not required, we can compile an asymmetric ring into a symmetric ring [81].

Gouda et al. [55] showed that self-stabilization across architectures is in principle unstable.
They also demonstrated that the ability to force or preserveself stabilization is very much de-
pendent on how certain properties, like termination, fairness and concurrency, are required to be
preserved when compiling from one system to other.

Next we discuss compilers that force self stabilization in sequesntial programs, asynchronous
distributed systems, and shared memory systems [81].

17.11.1 Compilers for sequential programs

The main focus of research on self-stabilization has been inthe domains of concurrent and dis-
tributed systems, where the goals of algorithms are both qualitative and quantitative. Achieving

649

self stabilization in sequential programs becomes much more difficult due to the termination re-
quirement.

Browne et al. [20] and Schneider [79] suggested a rule-basedprogram model. A rule based
program consists of an initialization section and a finite set of rules. Arule is a multiple assignment
statement with an enabling condition, called aguard, which is a predicate over the variables of the
program. If the guard of a rule is true for a state, then the rule is said to beenabled. A computation
is a sequence of rule firings, where at each step an enabled rule is non-deterministically selected
for execution. A program is said to haveterminatedwhen afixed pointis reached. Afixed pointis
a state in which the values of the variables can no longer change. A partial fixed pointis defined
as a state from which the values of a subset of variables do notchange.

For a terminating program to be self stabilizing, the relation it computes should be verifiable
in one step, else it might terminate in an unsafe state. Browne et al. [20] showed that a class
of programs exists for which there is a compiler that forces self-stabilization while preserving
termination. Object programs have runtime and size within aconstant factor of the source program.
However, it is assumed that inputs are incorruptible. Theseprograms must satisfy the following
properties [81]:

• Data dependency graphs of these programs are acyclic.

• Each rule in the program assigns only one variable.

• For any pair of enabled rules with the same target variable, both rules will assign the same
value to the variable.

For arbitrary programs, one cannot obtain the same result asfor acyclic programs. Consider
the class of programs restricted to Boolean variables. Schneider [79] showed that if there exists a
compiler that forces self-stabilization onto Boolean programs, while preserving termination, then
PSPACE = NP, which is not a very likely result. Further, if we require that the source and target to
have the same set of variables, then PSPACE = P, which is even less likely result.

However, if we waive the requirement that the object programreach a fixed point (i.e., the
condition of termination), life becomes simpler. Schneider [78, 79] introduced the notion of partial
fixed-points (where termination not required) and showed that one can produce, in quadratic time,
an equivalent self-stabilizing program with time complexity and size within a constant factor of
the original.

17.11.2 Compilers for asynchronous message passing systems

Such a compiler should convert a non self-stabilizing program into a self-stabilizing version in an
asynchronous message passing system [71]. This is accomplished through a self-stabilizing plat-
form, which when nterleaved with a non self-stabilizing program, yields a self-stabilizing program.
The resulting program is called an extension of the originalprogram.

The algorithm consists of three components [?]:

650

• Self-stabilizing version of Chandy-Lamport’s global snapshot algorithm [29].

• Self-stabilizing reset algorithm that si superposed on it.

• A non self-stabilizing program on which the former two are superposed to obtain a self-
stabilizing program.

The algorithm works as follows: A distinguished initiator repeatedly takes global snapshots.
After the distinguished initiator has obtained a snapshot,it evaluates a predicate1. on the collected
state. If an illegitimate global state is detected, then theinitiator initiates the execution of the reset
algorithm which resets the global state of the source program to an initial state. In this methodol-
ogy, the compiler takes the program and the predicate (specifying the set of safe states) as input
and produces a self-stabilizing version of the program.

An Extension: Informally, a program Q is an extension of program P if the subset of Q corre-
sponding to P behaves exactly like P, except that the same state may repeat. If P terminates, its
extension Q needs to repeat the final state of P forever, changing only the variables not present in
P, in order to achieve self-stabilization. If Q terminates,it can not be a self-stabilizing extension of
P because it could terminate in an illegal state.

The Katz and Perry methodology [71] has the following two drawbacks: First, it might not
be always possible to find a predicate that can distinguish between legitimate and illegitimate
states. Legitimate states could be defined in terms of the reachable states. However, computing the
reachable set might become intractable. Second, a global snapshot algorithm does not produce the
current state. It captures a possible successor to the stateit was initited in. If the original program
stabilizes by itself, we might end up doing a reset from a legitimate state.

17.11.3 Compilers for asynchronous shared memory systems

In shared-memory systems, we can write the snapshot and reset algorithms in a way very similar
to message passing systems. A self-stabilizing synchronous shared memory system might be com-
piled into an asynchronous self-stabilizing shared memorysystem as follows [81]: Assume that a
process can read and write in one atomic action and that each shared variable is written by only
one process (called the owner of the variable). The steps of the synchronous system are simulated
using self-stabilizing asynchronous unison algorithm. One step of the synchronous algorithm is
executed each time the clock is incremented. For each sharedvariable, two copies are maintained:
one to store the current value and another to store the previous value. This allows a process to ac-
cess the previous value of a shared variable even if it has been updated by another process. When
the local clock of a process ticks from i to i+1, it concurrently executes one step of the synchronous
system and updates current and previous values of all variables that it owns.

1It is assumed that there exists a decidable predicate that can detect whether a global state is legitimate

651

17.12 Self stabilization as a Solution to Fault Tolerance

Self-Stabilization is the property of a system, component,process or object to correct itself no
matter how severely it’s state variables, including memory, message buffers, and registers, are
corrupted. Self-stabilization is most interesting for distributed and concurrent systems because
local detection of a faulty condition is difficult.

Self stabilization has risen beyond the theory and has served as a guiding principle in many
network protocols (in fact, a number of Internet and LAN protocols are self-stabilizing or very
close to it). Recent applied research has succeeded in demonstrated self-stabilizing file systems
and in implementing protocols for routing, reprogramming,and synchronizing nodes in sensor
networks. These examples show that the principles of self-stabilization can be used to implement
lightweight solutions to the problems of fault tolerance inreal-life systems.

Fault Tolerance

Fault tolerance is defined as tolerance to transient failures, in which the state of a component
changes spontaneously, but the component remains correct.

Fault-tolerance or graceful degradation is the property that enables a system to continue oper-
ating properly in the event of the failure of some of its components. The quality of operation may
decrease in proportion to the severity of the failure, whilein a naively-designed system, even a
small failure can cause the total system breakdown.

In a system, fault tolerance is generally achieved by anticipating exceptional conditions and
designing the system to cope with them. The concept of self-stabilization has emerged as a com-
plementary paradigm to fault tolerance in distributed computing. A system is said to be self-
stabilizing, if starting from any state, it automatically recovers to a specified set of legal states in
finite time. The arbitrary state from which the system startsmay be a faulty state due to a transient
failure within the system. Such a fault could be the corruption of local memory, loss of a mes-
sage, or reception of a corrupted message. During the recovery process, the user may experience a
partial loss of services and performance, but guarantee is given that correct system operation will
eventually resume.

Self-stabilizing systems meet a stronger notion of correctness under failures. If a transient error
pushes the system into an inconsistent or incorrect state, then regardless of the origin and type of
the failure, the system eventually coverges to a correct state without any outside assistance. The
fact that the type of fault is not specified further contains the striking power of the paradigm: The
ability to mask the effect of faults is traded for the abilityto tolerate any kind and any number
of faults. Thus, self-stabilizing systems offer a degree offault tolerance that goes beyond the
shortcomings of traditional approaches for designing fault-tolerant systems.

Robustness is one of the most important requirements of modern distributed systems and a
practical distributed system should be able to recover fromtransient faults of the processors and
communication links. Ideally, the recovery process shouldautomatically start as soon as a fault
is detected and must not rely on the assumption that it is possible to start the system from a well

652

defined state. It is not reasonable to assume that the code executed by every processor is not altered
by transient faults. This code may be stored in a read-only memory or may be reloaded from a non-
volatile memory after a transient fault. A distributed self-stabilizing system is a system that can
start from any possible initial state and reach a legitimatestate in finite time.

Self-stabilization is a different way of looking at distributed system fault tolerance; it provides a
“built-in-safeguard" against “transient failures" that might corrupt the data in a distributed system;
self-stabilization enables systems to recover from failures automatically without any intervention
by any external agency. Stabilizing algorithms are optimistic in the sense that the distributed
system may temporarily behave inconsistently but a return to correct system behavior is guaranteed
in finite time while traditional robust distributed algorithms follow a pessimistic approach in that it
protects against the worst possible scenario which demandsan assumption of the upper bound on
the number of faults.

Self-stabilization provides a unified approach to transient failures by formally incorporating
them into the design model. The following transient faults can be handled by a self-stabilizing
system [81]:

1. Inconsistent initialization: Different processes in the program may be initialized to local
states that are inconsistent with one another.

2. Mode of change: There can be different modes of execution of a system. In changing the
mode of operation, it is impossible for all of the processes to effect the change at the same
time. The program is bound to reach a global state in which some processes have changed
while others have not.

3. Transmission errors: These errors include loss, corruption, or reordering of messages and
can cause inconsistency between the states of the sender andreceiver.

4. Process failure and recovery: If a process goes down and recovers later, its local state may
be inconsistent with the rest of the system/program.

5. Memory crash: A memory crash may cause the loss of local state, making it inconsistent
with the rest of the system/program.

Traditional approaches to fault tolerance have addressed each of these issues separately. Self-
stabilization provides a unified approach to fault tolerance by handling all these issues single-
handedly.

Global initialization is not necessary; each component canbe started separately in an arbitrary
state. Self-stabilization does not rely on particular initial state as other distributed algorithms do.
There is no need for proper and consistent initialization. Aself-stabilizing distributed system even-
tually reaches a legitimate system state, regardless of itsinitial state. Because of this property, a
self-stabilizing distributed system is extremely robust against failures; it tolerates any finite number
of transient failures.

653

Self-stabilization can be applied to topology preservation/control. After a topological change
the system converges to a new feasible configuration. The self-stabilization principle applies to
any system built on significant number of components which are evolving independently from one
another, but which are cooperating or competing to achieve some common goals. This applies, in
particular to large distributed systems which tend to result from the integration of many subsystems
and components developed separately earlier by different people.

The investigation and use of self stabilization as an approach to fault-tolerance has been un-
dergoing a renaissance. Dijkstra’s notion of self stabilization, which originally had a very narrow
scope of application, is proving to encompass a formal and unified approach to fault tolerance
under a model of transient failures for distributed systems. Self-stabilization has most obvious
application to the network protocols area since communication protocols should be especially tol-
erant to temporary faults.

17.13 Factors Preventing Self-Stabilization

In this section, we discuss some of the factors that prevent self-stabilization. The factors preventing
self-stabilization include the following:

1. Symmetry

2. Termination

3. Isolation and

4. Look-alike configuration.

Symmetry

Self-Stabilization requires that all processes should notbe identical/symmetric because a self-
stabilization solution generally relies on a distiguishedprocess. Asymmetry must be maintained
in systems where processes may synchronize with one anothersuch as mutual exclusion, dining
philosophers, drinking philosophers, and resource allocation systems under deterministic rules.

A system can be asymmetric by state or asymmetric by identity. A system is asymmetric by
state when all processes are identical, however, they startfrom different initial local states. A
system is asymmetric by identity when not all of the processes are identical. In general, a system
asymmetric only by state cannot be self stabilizing, while asystem asymmetric by identity can be
self stabilizing.

Termination

Self stabilization is generally incompatible with termination. If any unsafe global state is a final
state, then a system will not be able to stabilize. Though self-stabilization is generally incompatible

654

with termination, there is one exceptional case where self-stabilization can be achieved in the
presence of termination. That is, in the case of finite-statesequential programs since the number
of states is finite, a compiler can remove all the unsafe states [81].

While the property of termination is very natural when dealing with algorithms whose goal
is to compute a function (i.e., quantitative), it is unnatural in the domain of distributed systems,
where computations are non-terminating by design and have qualitative goals such as coordination
and control.

One form of termination that occurs within distributed systems is deadlock where one or more
processes wait for an event that will never occur [71]. In a distributed message passing system,
processes will be waiting for messages to come from other processes. A process sends a message
and then waits for a response. By way of a malicious adversary, control of a local process could
be placed at a point just after a send instruction without a message actually having been sent. Thus
at any local process state that follows the sending of a message, it is impossible for that process to
know whether a message has in fact been sent.

This situation can lead to deadlock where one or more processes wait for messages that will
never come. The problem of deadlock is not seen in a shared memory system. Because a process
can test the value of shared memory when required, there is nowaiting for messages and thus no
deadlock.

Isolation

Isolation occurs within a system when the local state and computation of each process is consistent
with some safe global state and computation, however, the resulting global state and computation
is not safe. In such a situation, the system is unable to stabilize due to inadequate communication
and coordination between its processes [55, 81].

Look-alike configurations

Look-alike configurations result when the same computation(sequence of actions) is enabled in
two different states with no way to differentiate between them [55, 81]. If one of the two states is
unsafe, then the system cannot guarantee convergence from the unsafe state.

17.14 Limitations of Self-Stabilization

The problem in self-stabilizing systems is the time it takesfor a system to correct itself when started
in an illegal state or there is an error causing it to go in an illegal state. If a system cannot tolerate
this initial unknown period, then self-stabilization doesnot help. Even if the initial unknown can
be tolerated for a brief period of time, the system may not converge to a legal state quickly enough.

655

Need for an exceptional machine

Almost all self-stabilization algorithms rely on the fact that is at least one exceptional machine in
the system. This may be difficult to achieve in some systems, but itis not a major drawback in most
distributed systems.

Convergence - Response Tradeoffs

Convergence span denotes the maximum number of critical transitions made before the system
reaches a legal state and response span denotes the maximum number of transitions to get from
some starting state to some goal state. Critical transitions are similar to errors occurring in the
system due to a move. For example, in a mutual exclusion system, if one process is in its critical
section and another process makes a move and enters its critical section, an error has occurred
because more than one process has been allowed to enter its critical section.

Several self-stabilizing termination detection algorithms, each having different properties, have
been developed. For a ring of n processes, if one has comparative convergence and response spans,
one has a fast convergent span and a slow response span, and one shows the relationship between
the two spans. If the convergence span is decreased by a factor of k (1≤ k≤ n), the response span
is increased by the same factor. So, the convergence span is of the order of n/k while the response
span is n*k. This relationship exists in all the other classes of self-stabilizing systems.

This relationship is reasonable because the more checks that are made, the longer it will take
to converge, while there will be a fewer number of errors made. This relationship is very useful
in the design of self-stabilizing systems because the system can be modified according to the goal
of the system. Depending on the requirements of the system, one can have fast convergence with
many errors or slower convergence with fewer errors or something in between.

Pseudo stabilization

It is sometimes expensive to design self-stabilizing systems. Lessening the requirements of the
system can reduce some of the cost. A system is said to stabilize if and only if every computation
has some state in it such that any computation starting from this state will be in the set of legal
computations. On the other hand, in order for a system to pseudo stabilize, every computation
only needs to have some state such that the suffix of the computation beginning at this state is in
the set of legal computations [24]. The property of pseudo-stabilization is obviously weaker than
the requirement of stabilization, however, it is less expensive to implement.

Verification of Self-Stabilizing Systems

When designing self-stabilizing systems, verifying the correctness of these algorithms may be
difficult, but there has been some work in this area. A convergence stair method has been developed
where the legal states are built up step by step. Proof that the algorithm stabilizes in each step,
verifies the correctness of the entire algorithm. The interleaving assumptions can be relaxed to

656

make it easier to verify the correctness of the algorithm. Algorithms that are pseudo-stabilizing
[24] are usually good enough for many systems, and these are easier to implement, easier to verify,
and more efficient to run.

17.15 Chapter Summary

Self-stabilization has been used in many areas and the areasof study continue to grow. Algorithms
have been developed using central or distributed daemons and uniform and non-uniform networks.
The algorithms that assume a central daemon can usually be easily extended to support distributed
daemon, so these algorithms are still useful when applied todistributed systems.

Extensions of communication protocols that are self-stabilizing have also been developed such
as the sliding window protocol, the two-way handshake, and the alternating-bit protocol [2]. The
major drawback of self-stabilizing systems is the initial illegal configurations. The system must
converge quickly in order to make the illegal configurationsless serious. Verification of the sys-
tems can be difficult, but there are ways to make it easier. Relaxing interleaving assumptions and
usage of a convergence stair are two of the ways. Some of the assumptions made while designing
the systems make it nearly impossible to implement the systems. For example, self-stabilizing
protocols require a timeout action that needs to examine thecontents of the communication link
and also needs to know the values of some non-local variables. Global timeout actions are usually
avoided which makes these algorithms not easy to implement.

These requirements may not be necessary in some cases. The alternating-bit protocol [2], for
example, does not need unbounded sequence numbers, nor doesit need expensive global timeout
actions. Therefore, this protocol can be implemented relatively easily, and even though the algo-
rithm is pseudo stabilizing and not exactly stabilizing, this does not affect the usefulness of the
algorithm in most situations.

17.16 Bibliographic Notes

The idea of self-stabilization was first proposed by Dijkstra in a seminal paper [36] in 1974. Since
then considerable volume of work has been done on this topic.The most extensive work in self-
stabilization has been done in the area of mutual exclusion [66, 69, 76, 26]. The reason for this is
mainly due to Dijkstra’s original self-stabilizing model there a legal state is defined to be a state in
which only one privilege exists in the system.

An excellent survey on the topic is due to by Schneider [81]. Gartner [45] presents a survey
of algorithms for construction of self-stabilizing spanning-trees. Aggarwal [7] presents a time
optimal self-stabilizing algorithms for spanning trees. More details on distributed reset can be
found in [13]. Chang et al. [28] discuss the cost of self-stabilization. Self-stabilization has been
used to design more robust distributed mechanisms like synchronization [14].

657

17.17 Exercise Problems

1. When self-stabilization claims to solve so many problemsin fault tolerance in a unified
manner, why are people still studying and investigating each of those problems individually?

2. Describe self-stabilizing alternating-bit protocol.

3. Give a psuedo-stabilization algorithm. Discuss how it reduces the cost compared to stabi-
lization.

4. What is “superstabilization"? What type of guarantees dosuperstabilization provide?

5. What are the trade-offs in a self-stabilizing system/algorithm?

6. Fault containment is a problem with self-stablizing algorithms. What are fault-containing
self-stablizing algorithms [50]? Describe how they solve the problem.

7. Describe a self-stabilizing mutual exclusion algorithm.

8. One weakness of self-stabilization is that it is a global property. A failure that is local to a
machine may spread and lead to corrective actions across theentire system. Discuss how
this problem can be addressed by local detection and correction of failures [4, 16].

658

Bibliography

[1] Abadir, M.S., and Gouda, M. G. 1992. The stabilizing computer. In Proc. of the 1992 Inter-
national Conference on Parallel and Distributed Systems, (Dec.).

[2] Y. Afek, and G. Brown, Self-stabilization of the alternating-bit protocol. In Proceedings of
the 8th Symposium on Reliable Distributed Systems, 80-83, 1989.

[3] Y. Afek, S. Kutten and M. Yung, Memory efficient self-stabilizing protocols for general net-
works, Proc. of the 4th International Workshop on Distributed Algorithms, 1991, 15-28.

[4] Y. Afek, S. Kutten and M. Yung, The Local Detection Paradigm and its Applications to Self-
stabilization, Theoretical Computer Science, 186(1-2), 199-229, 1997.

[5] Y. Afek, S. Kutten, and M. Yung, Memory-efficient self-stabilization on general networks.
In Proc. of the 4th International Workshop on Distributed Algorithms (Bari, Italy, Sept.). In
Lecture Notes in Computer Science, vol. 486. Springer-Ver-lag, New York, 15-28, 1990.

[6] Yehuda Afek and Anat Bremler, Self-stabilizing unidirectional network algorithms by power
supply, Chicago Journal of Theoretical Computer Science, 1998(3), December 1998.

[7] S. Aggarwal, Time optimal self-stabilizing spanning tree algorithms, Technical Report MIT-
LCS/ MIT/ LCS/ TR-632, Massachusetts Institute of Technology, Laboratory for Computer
Science, August 1994.

[8] S. Aggarwal and S. Kutten, Time optimal self–stabilizing spanning tree algorithms, In Rudra-
patna K. Shyamasundar, editor, Proceedings of Foundationsof Software Technology and
Theoretical Computer Science, volume 761 of Lecture Notes in Computer Science, pages
400–410, Berlin, Germany, December 1993. Springer-Ver-lag.

[9] Gheorghe Antonoiu and Pradip K. Srimani, A self-stabilizing distributed algorithm to con-
struct an arbitrary spanning tree of a connected graph, Computers and Mathematics with
Applications, 30:1–7, 1995.

[10] Gheorghe Antonoiu and Pradip K. Srimani, Distributed self-stabilizing algorithm for mini-
mum spanning tree construction, In Euro-Par ’97 Parallel Processing, Proceedings, number
1300 in Lecture Notes in Computer Science, pages 480–487. Springer-Verlag, 1997.

659

[11] Gheorghe Antonoiu and Pradip K. Srimani, A self-stabilizing distributed algorithm for min-
imal spanning tree problem in a symmetric graph, Computers and Mathematics with Appli-
cations, 35(10):15–23, 1998.

[12] A. Arora And M. G. Gouda, Closure and convergence: A foundation for fault-tolerant com-
puting, In Proc. of the 22nd International Conference on Fault-Tolerant Computing Systems,
1992.

[13] Anish Arora and Mohamed G, Gouda. Distributed reset, IEEE Transactions on Computers,
43(9):1026–1038, September 1994.

[14] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir and George Varghese,
Time optimal self-stabilizing synchronization, In ACM, editor, Proc. of the twenty-fifth an-
nual ACM Symposium on the Theory of Computing, San Diego, California, May 16–18,
1993, pages 652–661, New York, NY, USA, 1993. ACM Press.

[15] Baruch Awerbuch and Rafail Ostrovsky, Memory-efficient and self-stabilizing network reset,
In Symposium on Principles of Distributed Computing (PODC ’94), pages 254–263, New
York, USA, August 1994, ACM Press.

[16] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese, Self-stabilization by local check-
ing and correction, In FOCS91 Proceedings of the 31st AnnualIEEE Symposium on Foun-
dations of Computer Science, pages 268–277, 1991.

[17] B. Awerbuch and G Varghese, Distributed program checking: A paradigm for building self-
stabilizing distributed protocols, In Proc. of the 32nd IEEE Symposium on Foundations of
Computer Science (Oct.), 1991

[18] Awerbuch, Patt, and G. Varghese, Self-stabilization by local checking and correction, In Proc.
of the 32nd IEEE Symposium on Foundations of Computer Science(Oct.), 1991.

[19] Bastani, Yen, and Y. Zhao, On self stabilization, non-determinism, and inherent fault toler-
ance, In Proc. of the MCC Workshop on Self-Stabilizing Systems. MCC Tech. Rep. STP-
379-89, 1989

[20] J. C Browne, A. Emerson, M. Gouda, D. Miranker, A. Mok andL. Rosier, Bounded time
fault-tolerant rule-based systems, Telematics Informat.7, 3/4, 441–454, 1990.

[21] Geoffrey M. Brown, Mohamed G. Gouda and Chuan-Lin Wu, Token Systems That Self Sta-
bilize, IEEE Transactions on Computers, Vol. 38, No. 6, pp 845-852, June 1989.

[22] J. E. Burns and Jan K. Pachl, Uniform self-stabilizing rings, ACM Transactions on Program-
ming Languages and Systems(TOPLAS),v.11 n.2, p.330-344, April 1989.

[23] J. E. Burns, Self-stabilizing rings without demons, Technical Report GITICS-87/36, Georgia
Institute of Technology, 1987.

660

[24] J. E. Burns, M. G. Gouda And R. E Miller, Stabilization and pseudo-stabilization, Distributed
Computing archive Volume 7, Issue 1, November 1993. (Special issue: Self-stabilization)

[25] J. E Burns , M. G Gouda And R. E. Miller, On relaxing interleaving assumptions, In proc. of
the MCC Workshop on Self-Stabilizing Systems MCC, Tech. Rep. STP-379-89, 1989.

[26] R. W. Buskens and R. P. Bianchini, Jr., Self-Stabilizing Mutual Exclusion in the Presence of
Faulty Nodes, 25th International Symposium on Fault Tolerant Computing Digest of Papers,
144–153, 1995.

[27] Franck Butelle, Christian Lavault, and Marc Bui, A uniform self-stabilizing minimum di-
ameter tree algorithm (extended abstract), In Jean-MichelH´elary and Michel Raynal, edi-
tors, Distributed Algorithms, 9th International workshop, WDAG ’95, volume 972 of Lecture
Notes in Computer Science, pages 25–272, Le Mont-Saint-Michel, France, 13–15 September
1995. Springer-Verlag.

[28] Ernest J. H. Chang, Gaston H. Gonnet and Doron Rotem, On the costs of self-stabilization,
Information Processing Letters, Vol. 24, No. 5, pp 311-316,16 March 1987.

[29] K. M. Chandy and L. Lamport, Distributed snapshots: Determining global states of dis-
tributed systems, ACM Trans. Comput. Syst. (63-75), 1985.

[30] Nian-Shing Chen, Hwey-Pyng Yu, and Shing-Tsaan Huang,A self-stabilizing algorithm for
constructing spanning trees, Information Processing Letters, 39:147–151,1991.

[31] Cisco Systems Inc, Using Vlan Director system documentation, Internet:
http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/swntman/cwsimain/cwsi2/cwsiug2/vlan2/index.htm
1998.

[32] Zeev Collin and Shlomi Dolev, Self-stabilizing depth first search, Information Processing
Letters, 49:297–301, 1994.

[33] Couvreur, N. Francez and M. G. Gouda, Asynchronous unison, In Proc. of the 12th Interna-
tional Conference on Distributed Computing Systems, Yokohama, Japan, June 1992.

[34] E. W. Dijkstra, A belated proof of self-stabilization,Distrib. Comput., 1, 5-6, 1986.

[35] E. W. Dijkstra, Self-stabilization in spite of distributed control, In Selected Writings on Com-
puting: A Personal Perspective. Springer-Verlag, Berlin,1982, 41–46. Originally published
in 1973.

[36] Edsger W. Dijkstra, Self stabilizing systems in spite of distributed control, Communications
of the ACM, 17(11):643–644, 1974.

[37] S. Dolev, A. Israeli, and S. Moran, Uniform dynamic self-stabilizing leader election, IEEE
Transactions on Parallel and Distributed Systems, 8(4):424–440, 1997.

661

[38] Shlomi Dolev, Optimal time self stabilization in dynamic systems (preliminary version), In
Andr´e Schiper, editor, Proce. of the 7th International Workshop on Distributed Algorithms
(WDAG93), volume 725 of Lecture Notes in Computer Science, pages 160–173, Lausanne,
Switzerland, 27–29 September 1993. Springer-Verlag

[39] Shlomi Dolev, Self-Stabilization, MIT Press, 2000.

[40] Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider, Memory requirements for silent
stabilization, Acta Informatica, 36(6):447–462, 1999.

[41] Shlomi Dolev, A. Israeli and S. Moran, Self stabilization of dynamic systems, In Proc. of the
MCC Workshop on Self-Stabilizing Systems, MCC Technical Report No. STP-379-89, 1989.

[42] Shlomo Dolev, Amos Israeli and Shlomo Moran, Self-stabilization of dynamic systems as-
suming only read/write atomicity, In Proc. of the ninth annual ACM symposium on Principles
of distributed computing, Quebec City, Quebec, Canada, August 22-24, 1990, pp 103-117.
(Also in Distributed Computing 7(1993), 3-16.)

[43] M. Flatebo and A. Datta, Two-state self-stabilizing algorithms, In Proc. of the 6th Interna-
tional Parallel Processing Symposium, Beverly Hills. Calif. Mar 1992, 198-203.

[44] M. Flatebo and S. Ghosh, Self-stabilization in distributed systems, IEEE Comput, 1991. (Also
in Readings in Distr. Comp. Systems. T. L. Casavant and M. Singhal Eds. New York: IEEE
Computer Society Press, 1994, p.100-114.)

[45] Felix C. Gartner, A Survey of Self-Stabilizing Spanning-
Tree Construction Algorithms, EPFL Technical Report, 2003.
(icwww.epfl.ch/publications/documents/IC_TECH_REPORT_200338.pdf)

[46] Felix C. Gartner and Henning Pagnia, Time-efficient self-stabilizing algorithms through hi-
erarchical structures, In Proc. of the 6th Symposium on Self-Stabilizing Systems, Lecture
Notes in Computer Science, San Francisco, June 2003. Springer-Verlag.

[47] C. Genolini and S. Tixeuil, A lower bound on dynamic k-stabilization in asynchronous sys-
tems, In SRDS 2002 21st Symposium on Reliable Distributed Systems, IEEE Computer So-
ciety Press, pages 211–221, 2002.

[48] Sukumar Ghosh, Binary self-stabilization in distributed systems, Information Processing Let-
ters, v.40 n.3, p.153-159, Nov. 1991

[49] S. Ghosh, Self-stabilizing distributed systems with binary machines, In Proc. of the 28th
Annual Allerton Conference, 1988-997, 1990.

[50] S. Ghosh, A. Gupta, T. Herman and S. V. Pemmaraju, Fault-Containing Self-Stabilizing Al-
gorithms, In Proc. of the fifteenth annual ACM symposium on Principles of distributed com-
puting, Philadelphia, 1996.

662

[51] S. Ghosh, Understanding self-stabilization in distr,systems. Tech. Rep. TR-90-02, Dept. of
Computer Science, Univ. of Iowa, 1990.

[52] S. Ghosh, A. Gupta, and S. Pemmaraju, A fault-containing self-stabilizing algorithm for
spanning trees, Journal of Computing and Information 2(1996), 322-338.

[53] S. Ghosh, A. Gupta, M. Karaata, S. Pemmaraju, Self-stabilizing dynamic programming al-
gorithms on trees, in: Proc. of the Second Workshop on Self-Stabilizing Systems, 1995, pp.
11.1-11.15.

[54] M. G. Gouda, The stabilizing Philosopher: Asymmetry byMemory and by Action, Technical
Report TR-87-12, Dept. of Computer Sciences, University ofTexas at Austin, 1987.

[55] M. G. Gouda and M. Evangelist, Convergence/response tradeoffs in concurrent systems, In
Proc. of the 2nd IEEE Symposium on Parallel and Distributed Processing, Dec 1990.

[56] M. G. Gouda and T. Herman, Stabilizing unison. Inf. Process. Lett. 35 (1990), 171–175.,
1990.

[57] M. G. Gouda and N. Multari, Stabilizing communication protocols, IEEE Trans. Comput. 40,
4 (Apr.), 448–458, 1991.

[58] M. G. Gouda, R. R. Howell and L. E. Rosier, The instability of self-stabilization, Acts Inf.
27, (1990), 697-724, 1990.

[59] F. F. Haddix, Stabilization of bounded token rings, Tech. Rep. ARL-TR-91-31, Applied Re-
search Lab., Univ. of Texas at Austin, 1991.

[60] S. M. Hedetniemi, S.T. Hedetniemi, D. P. Jacobs, P. K. Srimani, Self-stabilizing algorithms
for minimal dominating sets and maximal independent sets, Comput. Math. Appl. 46 (5-6)
(2003) 805-811.

[61] T. Herman, Probabilistic self-stabilization, Information Processing Letters, v.35 n.2, p.63-67,
June 1990.

[62] T. Herman, Self-stabilization: Randomness to reduce space, Distributed Computing, vol. 6,
p.95-98,1992.

[63] Lisa Higham and Zhiying Liang, Self-stabilizing minimum spanning tree construction on
message-passing networks, In Proc. of the 15th International Symposium on Distributed
Computing (DISC), number 2180 in Lecture Notes in Computer Science, Lisbon, Portugal,
and October 2001. Springer-Verlag.

[64] Su-Chu Hsu and Shing-Tsaan Huang, A self-stabilizing algorithm for maximal matching,
Information Processing Letters, Volume 43, Issue 2, pp 77-81, August 1992.

663

[65] S. Huang and N. Chen, A self-stabilizing algorithm for constructing breadth-first trees, In-
form. Process. Lett. 41 (1992),109-117.

[66] Amos Israeli and Marc Jaflon, Token management schemes and random walks yield self-
stabilizing mutual exclusion, Proceedings of the ninth annual ACM symposium on Principles
of distributed computing, p.119-131, August 22-24, 1990, Quebec City, Quebec, Canada.

[67] G. Itkis and L. Levin, Fast and lean self-stabilizing asynchronous protocols, In Shafi Gold-
wasser, editor, Proc.: 35th Annual Symposium on Foundations of Computer Science, Novem-
ber 20–22, 1994, Santa Fe, New Mexico, pages 226–239, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1994. IEEE Computer Society Press.

[68] Colette Johnen, Memory efficient, self-stabilizing algorithm to construct BFS spanning trees,
In Proc. of the 16th Annual ACM Symposium on Principles of Distributed Computing
(PODC ’97), pages 288–288, August 1997.

[69] Hirotsugu Kakugawa, Masafumi Yamashita, A Universal Self-Stabilizing Mutual Exclusion
Algorithm, Dagstuhl Seminor 00431: SelfStabilization, Dagstuhl, Germany, 2000. (url =
"citeseer.ist.psu.edu/yamashita00universal.html")

[70] Ronen Kat, Self-stabilizing replication file system, Internet: http://www.cs.bgu.ac.il/ srfs/,
September 2002.

[71] S. Katz and K. J. Perry, Self-stabilizing extensions for message -passing systems, In Proc.
of the 9th Annual ACM Symposium on Principles of DistributedComputing, Quebec City,
Canada, Aug 1990.

[72] H. S. M. Kruijer, Self-stabilization (in spite of distributed control) in tree-structured systems,
Inf. Process. Lett., 8, 2, 2– 79, 1979.

[73] D. Lehman and M. Rabin, On the advantages of free choice:A symmetric and fully dis-
tributed solution of the dining philosopher’s problem, In Proc. of the 8th Annual ACM Sym-
posium on Principles of Programming Languages, 1981.

[74] X. Lin and S. Ghosh, Self-stabilizing maxima finding. InProceedings of the 28th Annual
Allerton Conf., pp. 662-671, 1991.

[75] Michael Luby, A simple parallel algorithm for the maximal independent set problem, SIAM
Journal on Computing, Volume 15 , Issue 4, pp 1036-1055, November, 1986.

[76] Masaaki Mizuno and Mikhail Nesterenko and Hirotsugu Kakugawa, Lock Based Self-
Stabilizing Distributed Mutual Exclusion Algorithms, International Conference on Dis-
tributed Computing Systems, 708-716, 1996.

664

[77] Reuay-Ching Pan, Jone-Zen Wang, and Louis R. Chow. A self-stabilizing distributed span-
ning tree construction algorithm with a distributed demon.Tamsui Oxford Journal of Mathe-
matical Sciences, 15:23–32, 1999.

[78] M. Schneider, Self-Stabilization – A Unified Approach to Fault Tolerance in the Face Tran-
sient Errors, TechReport TR-91-18, Dept. of Computer Science, University of Texas at
Austin, Austin, TX, 1991.

[79] M. Schneider, Compiling Self-Stabilization into Sequential Programs, Dept. of Computer
Science, University of Texas at Austin, Austin, TX, 1992.

[80] M. Schneider, Lecture notes on Self-Stabilization, The University of Texas at Austin,http:
//www.cs.utexas.edu/users/plaxton/c/395t/slides/Schneider.pdf

[81] M. Schneider, Self Stabilization, ACM Computing Surveys, Vol. 25, No. 1, March 1993.

[82] S. Shukla, D. Rosenkrantz, S. Ravi, Observations on self-stabilizing graph algorithms for
anonymous networks, in: Proc. of the Second Workshop on Self-Stabilizing Systems, 1995,
p. 7.17.15.

[83] Zhengnan Shi, Wayne Goddard and Stephen T. Hedetniemi,An Anonymous Self-Stabilizing
Algorithm for 1-Maximal Independent Set in Trees, Information Processing Letters, Volume
91 , Issue 2, pp 77-83, July 2004.

[84] S. Sur and P. K. Srimani. A self-stabilizing distributed algorithm to construct BFS spanning
trees of a symmetric graph. Parallel Processing Letters, 2(2-3):171–179, September 1992.

[85] Ming-Shin Tsai and Shing-Tsaan Huang. A self-stabilizing algorithm for the shortest paths
problem with a fully distributed demon. Parallel Processing Letters, 4(1-2):65–72, June 1994.

665

Chapter 18

Peer-to-Peer Computing and Overlay
Graphs

18.1 Introduction

Peer-to-peer (P2P) network systems use an application-level organization of the network overlay
for flexibly sharing resources (e.g., files and multimedia documents) stored across network-wide
computers. In contrast to the client-server model, any nodein a P2P network can act as a server
to others and at the same time, it can act as a client. Communication and exchange of information
is performed directly between the participating peers and the relationships among the nodes in the
network are equal. Thus, P2P networks differ from other Internet applications in that they tend
to share data from a large number of end users rather than fromthe more central machines and
Web servers. Several well known P2P networks that allow P2P file-sharing include Napster [22],
Gnutella [14, 15], Freenet [9], Pastry [27], Chord [29]. andCAN [24].

Traditional distributed systems used DNS (Domain Name service) to provide a lookup from
host names (logical names) to IP addresses. Special DNS servers are required, and manual con-
figuration of the routing information is necessary to allow requesting client nodes to navigate the
DNS hierarchy. Further, DNS is confined to locating hosts or services (not data objects that have to
be a priori associated with specific computers), and host names need to be structured as per admin-
istrative boundary regulations. P2P networks overcome these drawbacks, and more importantly,
allow the location of arbitrary data objects.

An important characteristic of P2P networks is their ability to provide a large combined storage,
CPU power, and other resources while imposing a low cost for scalability, and for entry into and
exist from the network. The ongoing entry and exit of variousnodes, as well as dynamic insertion
and deletion of objects is termed aschurn. The impact of churn should be as transparent as possible.
P2P networks exhibit a high level of self-organization and are able to operate efficiently despite the
lack of any prior infrastructure or authority. The philosophy of this model requires that if a node
wants to enjoy the services which other nodes provide, that node should provide service to other
nodes. Some desirable features of P2P systems are summarized in Table 18.1.

666

Features Performance
self-organizing large combined storage, CPU power, and resources
distributed control fast search for machines and data objects
role symmetry for nodes scalable
anonymity efficient management of churn
naming mechanism selection of geographically close servers
security, authentication, trustredundancy in storage and paths

Table 18.1: Desirable characteristics and performance features of P2P systems.

18.1.1 Napster

One of the earliest popular P2P systems, Napster, used a server-mediated central index architecture
that is organized around clusters of servers that store direct indices of the files in the system. The
central server maintains a table with the following information of each registered client: (i) the
client’s address (IP) and port, and offered bandwidth, and (ii) information about the files that the
client can allow to share. The basic steps of operation to search for content and to determine a
node from which to download the content are the following.

1. A client connects to a meta-server that assigns a lightly-loaded server from one of the close-
by clusters of servers to process the client’s query.

2. The client connects to the assigned server and forwards its query along with its own identity.

3. The server responds to the client with information about the users connected to it and the
files they are sharing.

4. On receiving the response from the server, the client chooses one of the users from whom
to download a desired file. The address to enable the P2P connection between the client and
the selected user is provided by the server to the client.

Users are generally anonymous to each other. The directory serves to provide the mapping from a
particular host that contains the required content, to the IP address needed to download from it.

18.1.2 Application Layer Overlays

A core mechanism in P2P networks is searching for data, and this mechanism depends on how
(i) the data, and (ii) the network, are organized. Search algorithms for P2P networks tend to be
data-centric, as opposed to the host-centric algorithms for traditional networks. P2P search uses
theP2P overlay, which is a logical graph among the peers, that is used for theobject search and
object storage and management algorithms. Note that above the P2P overlay is the application
layer overlay, where communication between peers is point-to-pont (representing a logical all-to-
all connectivity,) once a connection is established.

The P2P overlay can bestructured(e.g., hypercubes, meshes, butterfly networks, de Bruijn
graphs) orunstructured, i.e., no particular graph structure is used. Structured overlays use some

667

rigid organizational principles based on the properties ofthe P2P overlay graph structure, for the
object storage algorithms and the object search algorithms. Unstructured overlays use very loose
guidelines for object storage. As there is no definite structure to the overlay graph, the search
mechanisms are more “ad-hoc”, and typicaly use some forms offloodingor random walkstrategies.
Thus, object storage and search strategies are intricatelylinked to the overlay structure as well as
to the data organization mechanisms.

18.2 Data Indexing and Overlays

The data in a P2P network is identified by using indexing. Dataindexing allows the physical data
independence from the applications. Indexing mechanisms can be classified as beingcentralized,
local, or distributed.

Centralized indexing entails the use of one or a few central servers to store references (indexes) to
the data on many peers. The DNS lookup as well as the lookup by some early P2P networks
such as Napster used a central directory lookup.

Distributed indexing involves the indexes to the objects at various peers being scattered across
other peers throughout the P2P network. In order to access the indexes, a structure is used
in the P2P overlay to access the indexes. Distributed indexing is the most challenging of
the indexing schemes, and many novel mechanisms have been proposed, most notably the
distributed hash table (DHT). Various DHT schemes differ in the hash mapping, search
algorithms, diameter for loookup, search diameter, fault-tolerance, and resilience to churn.

A typical DHT uses a flat key space to associate the mapping between network nodes and
data objects/files/values. Specifically, the node address is mapped to a logical identifier in
the key space using a consistent hash function. The data object/file/value is also mapped to
the same key space using hashing. These mappings are illustrated in Figure 18.1.

Local indexing requires each peer to index only the local data objects and remote objects need to
be searched for. This form of indexing is typically used in unstructured overlays in conjunc-
tion with flooding search or random walk search. Gnutella uses local indexing.

An alternate way to classify indexing mechanisms is as beinga semantic index mechanismor
a semantic-freeindex mechanism. A semantic index is human readable, for example, a document
name, a keyword, or a database key. A semantic-free index is not human readable and typically
corresponds to the index obtained by a hash mechanism, e.g.,the DHT schemes. A semantic index
mechanism supports keyword searches, range searches, and approximate searches, whereas these
searches are not supported by semantic-free index mechanisms.

668

(address) space value space
Object/ fileNative node identifier

space
Common key (identifier)

Figure 18.1: The mappings from node address space and objectspace in a typical DHT scheme,
e.g., Chord, CAN, Tapestry.

18.2.1 Distributed Indexing

Structured overlays. The P2P network topology has a definite structure, and the placement of
files or data in this network is highly deterministic as per some algorithmic mapping. (The
placement of files can sometimes be “loose”, as in some earlier P2P systems like Freenet,
where “hints” are used.) The objective of such a deterministic mapping is to allow a very
fast and deterministic lookup to satisfy queries for the data. These systems are termed as
lookup systemsand typically use a hash table interface for the mapping. Thehash function,
which efficiently mapskeystovalues, in conjunction with the regular structure of the overlay,
allows fast search for the location of the file.

An implicit characteristic of such a deterministic mappingof a file to a location is that the
mapping can be based on a single characteristic of the file (such as its name, its length,
or more generally somepredeterminedfunction computed on the file). A disadvantage of
such a mapping is that arbitrary queries, such as range queries, attribute queries and exact
keyword queries cannot be handled directly.

Another implicit effect of the tight coupling of the regularoverlay structure and the rigid
mapping function to enable fast access is that file insertions and deletions incur some over-
head which may be nontrivial under churn.

Unstructured overlays. The P2P network topology does not have any particular controlled struc-
ture, nor is there any control over where files/data is placed. Each peer typically indexes only
its local data objects, hence,local indexingis used. Node joins and departures are easy - the
local overlay is simply adjusted. File placement is not governed by the topology. Search
for a file may entail high message overhead and high delays. However, complex queries are
supported because the search criteria can be arbitrary.

Although the P2P network topology does not have any controlled structure, some topologies
naturally emerge. The following topologies are common and will be studied in later sections.

669

1. Power Law Random Graph (PLRG): This is a random graph wherethe node degrees
follow the power law. Here, if the nodes are ranked in terms oftheir degree, then the
ith node hasc/iα neighbors, wherec is a constant.

2. Normal Random Graph: This is a normal random graph where the nodes typically have
a uniform degree.

We study search in unstructured overlay networks in the nextsection.

18.3 Unstructured Overlays

18.3.1 Unstructured Overlays: Properties

Unstructured overlays have the serious disadvantage that queries may take a long time to find a file
or may even be unsuccessful even if the queried object exists. The message overhead of a query
search may also be high.
Advantages:The following are the main advantages of unstructured overlays such as the one used
by Gnutella.

1. Exact keyword queries, range queries, attribute-based queries and other complex queries can
be supported because the search query can capture the semantics of the data being sought;
and the indexing of the files and data is not bound to any non-semantic structure.

2. Unstructured overlays can accommodate high churn, i.e.,the rapid joining and departure of
many nodes without affecting performance.

The following are advantages of unstructured overlays if certain conditions are satisfied.

1. Unstructured overlays are efficient when there is some degree of data replication in the net-
work.

2. Users are satisfied with a best-effort search.

3. The network is not so large as to lead to scalability problems during the search process.

18.3.2 Gnutella

Gnutella uses a fully decentralized architecture. In Gnutella logical overlays, nodes index only
their local content. The acutal overlay topology can be arbitrary as nodes join and leave randomly.
A node joins the Gnutella network by forming a connection to some nodes found in standard
Gnutella directory-like databases. (Note that the function of joining the network cannot be said
to be fully decentralized.) Users communicate with each other, performing the role of bothserver
and client, termed asservent. The following are the main message types used by Gnutella.

• Pingmessages are used to discover hosts, and allow a new host to announce itself.

670

• Pongmessages are the responses toPings. ThePongmessages indicate the port and (IP)
address of the responder, and some information about the amount of data (the number and
size of files) that node can make available.

• Querymessages. The search strategy used is flooding.Querymessages contain a search
string and the minimum download speed required of the potential responder, and are flooded
in the network.

• QueryHitmessages are sent as responses if a node receiving aQuerydetects a local match
in response to a query. AQueryHitcontains the port and address (IP), speed, the number of
files found, and related information. The path traced by aQueryis recorded in the message,
so theQueryHitfollows the same path in reverse.

18.3.3 Search in Gnutella and Unstructured Overlays

Consider a system withn nodes andm objects. Letqi be the popularity of objecti, as measured
by the fraction of all queries that are queries for objecti. All objects may be equally popular, or
more realistically, a Zipf-like power law distribution of popularity exists. Thus,

m
∑

i=1

qi = 1 (18.1)

Uniform: qi = 1/m; Zipf-like: qi ∝ i−α (18.2)

Let ri be the number of replicas of objecti, and letpi be the fraction of all objects that are replicas
of i. Three static replication strategies are: uniform, proportional, and square root. Thus,

m
∑

i=1

ri = R; pi = ri/R (18.3)

Uniform: ri = R/m; Proportional:ri ∝ qi; Square-root:ri ∝
√
qi (18.4)

Under uniform replication, all objects have an equal numberof replicas and hence the performance
for all query rates is the same. With a uniform query rate, proportional and sqaure-root replication
schemes reduce to the uniform replication scheme.

For an object search, some of the more popular metrics of efficiency are:

• probability of success of finding the queried object.

• delay or the number of hops in finding an object.

• the number of messages processed by each node in a search.

• node coverage, the fraction of (distinct) nodes visited

• message duplication, which is (#messages - #nodes visited)/#messages

671

• maximum number of messages at a node

• recall, the number of objects found satisfying the desired search criteria. This metric is
useful for keyword, inexact, and range queries.

• message efficiency, which is the recall per message used

Guided versus Unguided Search. In unguided or blind search, there is no history of earlier
searches, andf hence, each search is inherently independent. In guided search, nodes store some
history of past searches to aid future searches. Various mechanisms for caching hints to guide
and narrow down future searches are used. In this chapter, wefocus on unguided searches in the
context of unstructured overlays.
Search strategies: Flooding

• In order to curtail the high message overhead that flooding introduces, the initial strategy
was to usechecking. Here, a node checks back with the query originator before forwarding a
query. Unfortunately, this cause heavy load on the originator, in addition to excessive delays,
and hence is not practical.

• The next approach is to use thetime to live(TTL) field or the hop count. However, this does
not guarantee that a match can be found for the query even if the object exists in the network,
and requires a high value of TTL to have a high degree of success.

• A refinement that allows more control is theexpanding ringstrategy. A node first floods
with a small TTL. If the search is not successful, it starts another flood with a larger TTL,
and so on. This strategy is more successful when objects are replicated.

The expanding ring approach is significantly more successful than the TTL approach, for
all replication strategies, and all query distributions, and the cost is only a relatively small
increase in delay.

Although expanding ring is superior to TTL, both are flooding-based strategies and suffer from
message duplication.
Search strategies: Random walk.Another strategy to use is that ofrandom walking. Here, a
query is randomly forwarded by a node when it is received. Random walk greatly reduces the
message overhead but it increases the search latency. Hence, k random walkerscan be used. To
terminate thek random walkers, a “checking-cum-TTL” strategy is effective. Here, each walker
periodically (after a certain number of hops) checks with the query originator whether to terminate;
the TTL is used to prevent looping, and is usually set to a large value.
Search strategies: Performance.The performance of searches in unstructured overlays has been
studied via simulations and by experiments. The following are some of the relationships of interest,
for both flooding and fork-random walk (for various values ofk) for various graph topologies such
as the random graph and the PLRG.

• The success rate as a function of the number of message hops, or TTL.

672

n number of nodes in the system
m number of objects in the system
qi normalized query rate, where

∑m
i=1 qi = 1

ri number of replicas of objecti
ρ capacity (measured as number of objects) per node
R nρ =

∑m
i=1 ri, the total capacity in the system

pi ri/R, the population fraction of objecti replicas

Table 18.2: Parameters to study replication.

• The number of messages as a function of the number of message hops, or TTL.

• The above metrics as the replication ratio and the replication strategy changes.

• The node coverage, recall, and message efficiency, as a function of the number of hops, or
TTL; and of various replication ratios and replication strategies.

Search strategies: Guidelines

• Adaptively determining the termination condition is important. Checking is adaptive whereas
TTL is not.

• Message duplication must be minimized, for it represents wasted resources.

• At each step in the search, the number of messages (or number of nodes visited) should not
increase by a large ammount.

Overall, k-random walk performs much better than flooding and is more scalable, for various
replication and query distributions, and various graph topologies.

18.3.4 Replication Strategies

Scott and Shenker [11] studied the degree of replication forblind or unguidedsearch in random
overlay graphs. The various parameters used to study replication are defined in Table 18.2. Ran-
dom search is modeled by the following process. A node is repeatedly drawn at random from a
bin, examined for a match with the copy of the object, and replaced in ther bin, until the object
is found. The metric then is the number of nodes drawn (or equivalently, the number of hops of
a random walker) until success. The probability that the object is found on thekth drawing is:
Pri(k) = ri

n
(1− ri

n
)k−1. The average search size fori, denoted asAi, is:

Ai = Eover all k(Pri(k)) =
n

∑

k=1

[k
ri

n
(1− ri

n
)k−1] ∼ n

ri

, for largen (18.5)

Across the system, the average search sizeA is:

Average search sizeA =

m
∑

i=1

qiAi = n
∑

i

qi
ri

(18.6)

673

Settingri to n maximizesA, but requires full replication. As resources are constrained, assume
that average number of replicas per node isρ = R/n < m. (It is easy to see thatR ≥ m ≥ ρ.)
Substituting forn with R/ρ in the equation above, we have

Average search sizeA =
R

ρ

∑

i

qi
ri

=
1

ρ

∑

i

qi
pi

(18.7)

Theutilization rateui of a replica of objecti is the average rate of requests serviced by a replica
of i. With random search,ui = qi

pi
= R qi

ri
. Over all all replicas of objecti, the utilization is simply

= Rqi. The average utilization rate over (all copies of) all objects isu =
∑m

i=1 ri
ui

R
=

∑m
i=1 pi

qi

pi

= 1. This average is a constant, and independent of the replication scheme. It is desirable to have
a low maximum utilization rate in order to distribute the load more uniformly.

The replication problem is formulated as the optimization solution for Equation 18.7. We
assume that all objects are of uniform size. To simplify analysis, we also assume that each object
that is queried exists in the system and a search continues until the object is found, i.e., all searches
are eventually successful. (In practice, there is a parameter L – such as TTL – that control the
maximum search size. Search on insoluble queries continuesuntil this parameter is exceeded. The
cost of such queries isfsA+ (1− fs)L, wherefs is the fraction of queries that are soluble.)

Two natural replication strategies areUniformandProportional.

Uniform: ri = R
m

which impliespi = ri

R
= 1

m
.

Average search size for objecti isAi = n
ri

. This equalsR
ρri

= R
ρR/mi

= m
ρ

. This is the same
for all objects.
From Equation (18.7), average search sizeAuniform = 1

ρ

∑

i
qi

pi
= 1

ρ

∑

imqi = m
ρ

.
Utilization of a replica ofi is ui = qi

pi
which is proportional to the query rate aspi is same

for all objects.
Maximum utilization of a replica ofi ismaxiui = maxi

qi

pi
= R qi

ri
, which can vary signifi-

cantly.

Proportional: ri = Rqi which impliespi = qi.
Average search size for objecti is Ai = n

ri
= n

Rpi
= n

Rqi
= 1

ρqi
, which is inversely propor-

tional to the query rate.
From Equation (18.7), average search sizeAproportional = 1

ρ

∑

i
qi

pi
= 1

ρ

∑m
i=1 1 = m

ρ
.

Utilization of a replica ofi is ui = qi

pi
= 1, a constant for all replicas of all objects.

Maximum utilization of a replica ofi ismaxiui = maxi
qi

pi
= maxi

qi

qi
= 1 for all i.

Both Uniform and Proportional replication have the same average search size which is independent
of the query distribution. However, objects whose query rates are below the average have lower
overhead with uniform replication, while those with query rates larger than the average have lower
overhead with proportional replication.

Square root: The optimal replication strategy that minimizes the average search size is the Square-
Root replication, which is defined as havingpi = ri

R
∝ √qi/

∑

j

√
qj , assuming that1/R ≤√

qi/
∑

j

√
qj ≤ n/R for all i.

674

ri A Ai = n/ri ui = Rqi/ri

Uniform constant,R/m m/ρ m/ρ qim

Proportional qiR m/ρ 1/(ρqi) 1

Square-root R
√

qi/
∑

j
√

qj (
∑

i

√
qi)

2/ρ
P

j

√
qj/
√

qi

ρ

√
qi

∑

j
√

qj

Table 18.3: Comparison of Uniform, Proportional, and Square-root replication.

The optimality of square-root replication can be seen as follows. Substituting1−∑m−1
i=1 pi

for pm in the cost function of Equation 18.7, we have

search sizeAsq−rt =
1

ρ

∑

i

qi/pi =
1

ρ
[

m−1
∑

i=1

qi/pi + qm/(1−
m−1
∑

i=1

pi)]

By solvingds/dpi = 0, the value ofpi that minimizesAsq−rt is seen to bepm

√

qi/qm.

Analogous to Uniform and Proportional replications, the values ofA, Ai, andui for Square-
root replication can be dervied. Exercise 1 asks you to show the derivations. The results are
summarized in Table 18.3. It can be seen that to minimizeA, ri = R

√
qi/

∑

j

√
qj.

The Square-root replication rate (∝ √qi) is more than that of Uniform (∝ 1), but less than that
of Proportional (∝ qi). It has been shown that

1. any allocation rate “in between” that of Uniform and of Proportional has a lower average
search sizeA than that of Uniform and Proportional, and

2. any allocation rate either less than that of Uniform, or greater than that of Proportional has a
higher average search sizeA than that of Uniform and Proportional.

18.3.5 Implementing Replication Strategies.

Proportional and Uniform can be trivally implemented. For Proportional, each query creates a
copy; for Uniform, a fixed number of copies are made when an object is created.

The simple “path replication” scheme, wherein the number ofcopies made is proportional to
the length of the (successful) search path, implements Square-root replication. Here objecti is
replicatedc n

ri
times per query, wherec is some constant. Thenri can be captured by the following

equation:dri

dt
= qic

n
ri

.

Let a = ln(ri

rj
). Thenda

dt
= cn(

qj

r2
j

− qi

r2
i

) = 1
rj

drj

dt
− 1

ri

dri

dt
.

Square-root replication, whereinri = R
P√

qi

√
qi, is a fixed point solution of this equation.

Therefore, path replication implements Square-root replication.
The analysis implicitly assumes that replicas also get deleted, in a way that is independent of

their object identity or query rate, and the lifetime of a replica is a non-decreasing function of its
age. (Policies such as random and FIFO satisfy this condition, but LRU and LFU do not.) Then,
during steady state, the creation rate can equal the deletion rate.

675

An alternate way of analyzing replication schemes is as follows. LetC be the number of
replicas created on a successful query;C is its average. Then in steady state,

pi

pj

=
qiCi

qjCj

. (18.8)

To implement distributed algorithms for various replication policies, it is necessary to deter-
mineCi locally without knowingpi or qi.

• For Proportional,C is the same for all objects.

• For Square-root, ifCi ∝ 1/
√
qi thenpi/pj =

√

qi/qj , by substituting in Equation (18.8).

AsAi ∝ nR
pi

andpi ∝ qiCi, thereforeAi ∝ 1
qiCi

.

With path replication,Ci ∝ Ai, henceCi ∝ Ai ∝ 1
qiCi

.

In steady state,Ai andCi are equal. SolvingCi ∝ 1
qiCi

for the fixed point,Ci ∝ 1√
qi

. As
pi ∝ qiCi whenCi is steady, this givespi ∝ √qi. In a practical implementation, it needs to
be ensured that convergence occurs once steady state sets in.

18.4 Chord Distributed Hash Table

18.4.1 Overview

The Chord protocol, proposed by Stoica et al. [29], uses a flatkey space to associate the map-
ping between network nodes and data objects/files/values. The node address as well as the data
object/file/value is mapped to a logical identifier in the common key space using a consistent hash
function. These mappings are illustrated in Figure 18.1. Both these mappings should ensure that
the keys are distributed roughly equally among the nodes. This also insures that with high probabil-
ity, the overhead of key management when nodes join or leave the P2P network is low. Specifically,
when a node joins or leaves the network havingn nodes, onlyO(1/n) keys need to be moved from
one location to another.

The Chord key space is flat, thus giving applications flexibility in mapping their files/ data to
keys. Chord supports a single operation,lookup(x), that maps a given keyx to a network node.
Specifically, Chord stores a file/object/value at the node towhich the file/object/value’s key maps.
Two steps are involved.

1. Map the object/file/value to its key in the common address space.

2. Map the key to the node in its native address space usinglookup. The design oflookup is
the main challenge.

In Chord, a node’s IP address is hashed to am-bit identifier which servers as the node identifier
in the common key (identifier) space. Similarly, the file/data key is hashed to am-bit identifier that

676

K87

N5

N18

N23

N28 K28

K8 K15

K121

N99

N104

N115
N119

N73

K53

N63

lookup(K8)

Figure 18.2: An example Chord ring withm = 7, showing mappings to the Chord address space,
and a query lookup using a simple scheme.

serves as the key identifier.m is sufficiently large so that the probability of collisions during the
hash is negligible. The Chord overlay uses a logical ring of size2m. The identifier space is ordered
on the logical ring modulo2m. Henceforth in this section, we will assume modulom arithmetic. A
keyk gets assigned to the first node such that its node identifier equals or follows the key identifier
of k in the common identifier space. The node is the successor ofk, denotedsucc(k). A Chord
ring for m = 7 is depicted in Figure 18.2. Nodes N5, N18, N23, N28, N63, N73,N99, N104,
N115 and N119 are shown. Six keys: K8, K15, K28, K53, K87, K121are stored among these
nodes as follows.succ(8) = 18, succ(15) = 18, succ(28) = 28, succ(53) = 63, succ(87) = 99,
andsucc(121) = 5.

18.4.2 Simple lookup

A simple key lookup algorithm that requires each node to store only 1 entry in its routing table
works as follows. Each node tracks its successor on the ring,in the variablesucc; a query for
key x is forwarded to the successors of nodes until it reaches the first node such that that node’s
identifiery is greater than the keyx, modulo2m. The result, which includes the IP address of the
node with keyy, is returned to the querying node along the reverse of the path that was followed
by the query. This mechanism requiresO(1) local space butO(n) hops, wheren is the number of
nodes in the P2P network. The pseudo-code for this simple lookup is given in Figure 18.3. The
following convention is assumed. Notation(x, y] represents the left-open right-closed segment of
the Chord logical ring modulom. Notationx.Proc(·) is a RPC to executeProc on nodex while
x.var is a RPC to read the variablevar at processx.
Example: The steps for the query:lookup(K8) initiated atnode 28, are shown in Figure 18.2
using arrows.

677

(variables)
integer: successor ←− initial value;

(1) i.Locate_Successor(key), wherekey 6= i:
(1a) if key ∈ (i, successor] then
(1b) return (successor)
(1c) else return successor.Locate_Successor(key).

Figure 18.3: A simple object location algorithm in Chord at nodei.

18.4.3 Scalable Lookup

A scalable lookup algorithm that usesO(log n) message hops at the cost ofO(log n) space in the
local routing tables, uses the following idea. Each nodei maintains a routing table, called the
finger table, with O(log n) entries, such that thexth entry (1 ≤ x ≤ m) is the node identifier of
the nodesucc(i + 2x−1). This is denoted byi.f inger[x] = succ(i+ 2x−1). This is the first node
whose key is greater than the key of nodei by at least2x−1modm. Note that each finger table
entry would have to contain the IP address and port number in addition to the node identifier, in
order thati can communicate withi.f inger[x]; henceforth we will assume this implicitly without
showing these entries.

The size of the finger table is bounded bym entries. Due to the logarithmic structure, the
finger table has more information about nodes closer ahead ofit in the Chord overlay, than about
nodes further away. Given any key whose node is to be located,the highly scalable logarithmic
search shown in Figure 18.4 is used. For a query on keykey at nodei, if key lies betweeni and
its successor, thekey would reside at the successor and the successor’s address isreturned. Ifkey
lies beyond the successor, then nodei searches through them entries in its finger table to identify
the nodej such thatj most immediately precedeskey, among all the entries in the finger table.
As j is the closest known node that precedeskey, j is most likely to have the most information on
locatingkey, i.e., locating the immediate successor node to whichkey has been mapped.
Example: The use of the finger tables in answering the querylookup(K8) at node N28 is
illustrated in Figure 18.5. The finger tables of N28, N99, andN5 that are used are shown.

18.4.4 Managing Churn

The code to manage dynamic node joins, departures, and failures is given in Figure 18.6.

Node Joins. To create a new ring, a nodei executesCreate_New_Ring which creates a ring
with the singleton node. To join a ring that contains some node j, nodei invokesJoin_Ring(j).
Nodej locatesi’s successor on the logical ring and informsi of its successor. Beforei can par-
ticipate in the P2P exchanges, several actions need to happen: i’s successor needs to update its
predecessor entry toi, i’s predecessor needs to revise its successor field toi, i needs to identify
its predecessor, the finger table ati needs to be built, and the finger tables of all nodes need to be

678

(variables)
integer: successor ←− initial value;
integer: predecessor ←− initial value;
array of integer finger[1 . . . log n];

(1) i.Locate_Successor(key), wherekey 6= i:
(1a) if key ∈ (i, successor] then
(1b) return (successor)
(1c) else
(1d) j ←− Closest_Preceding_Node(key);
(1e)return j.Locate_Successor(key).

(2) i.Closest_Preceding_Node(key), wherekey 6= i:
(2a) for count = m down to 1 do
(2b) if finger[count] ∈ (i, key] then
(2c) break();
(2d) return (finger[count]).

Figure 18.4: A scalable object location algorithm in Chord at nodei.

updated to account fori’s presence. This is achieved by proceduresStabilize(), Fix_Fingers(),
andCheck_Predecessor() that are periodically invoked by each node.

Figure 18.7 illustrates the main steps of the joining process. A recent joiner nodei that has
executedJoin_Ring(·) gets integrated into the ring by the following sequence.

(a). The configuration after a recent joiner nodei has executedJoin_Ring(·).

(b). Nodei executesStabilize(), which allows its successorj to adjustj’s variablepredecessor to
i. Specifically, when nodei invokesStabilize(), it identifies the successor’s predecessork.
If k ∈ (i, successor), theni updates itssuccessor to k. In either case,i notifies its successor
of itself via successor.Notify(i), so the successor has a chance to adjust itspredecessor

variable toi.

(c). The earlier predecessork of j (i.e., the predecessor in Step (a)) executesStabilize() and
adjusts itssuccessor pointer fromj to i.

(d). Node i executesFix_Fingers() to build its finger table, and other nodes also execute the
procedure to update their finger tables if necessary.

Once all the successor variables and finger tables have stabilized, a call by any node toLocate_Successor(·)
will reflect the new joineri. Until then, a call by toLocate_Successor(·) may result in the
Locate_Successor(·) call performing a conservative scan. The loop inClosest_Preceding_Node
that scans the finger table will result in a search traversal using smaller hops rather than truly log-
arithmic hops, resulting in some inefficiency. Still, the node i will be located although via more
hops.

679

5+1

N104
N104
N104
N115
N115
N5

99+1
99+2
99+4
99+8
99+16
99+32

N99
N63
N63
N63
N63

5+2

finger table for N5

for N28

for N99
finger table

finger table

N73
N63
N23
N18
N18
N18
N18

5+64
5+32
5+16
5+8
5+4

N63

N18

N5

N23

N63

28+64
28+32
28+16
28+8
28+4
28+2
28+1

lookup(K8)

N6399+64 N63
N73

N119
N115

N104

N99

K8

N28

Figure 18.5: An example showing a query lookup using the logarithmically-structured finger ta-
bles.

Showing the correctness of the Chord protocol in the face of concurrent join operations and
stablize operations in which pointers are being rewired is nontrivial. It can be shown that for any
set of concurrent join operations, at some point after the last join operation completes, all the
pointers and finger tables will be correct. However, in the transient period before the Chord ring
stabilizes, an object search can result in three outcomes.

• The finger tables used in a search are up to date and the correctsuccessor of the key is sought
in O(log n) hops.

• The finger tables are not up to date but the successor pointersare correct. The sought key
will be located but may take more steps as the full advantage of a logarithmic search space
pruning cannot be used.

• If the successor pointers are incorrect, or the key transferto the new joiners in procedure
Notify has not completed, the search may fail. This is during a transient duration, and the
source has the choice of reissuing the query.

Node Failures and Departures. When a nodej fails abruptly, its successori on the ring will
discover the failure when the successori executesCheck_Predecessor() periodically. Processi
gets a chance to update itspredecessor field when another nodek causesi to executeNotify(k).
But that can happen only ifk’s successor variable isi. This requires the predecessor of the failed
node to recognize that its successor has failed, and get a newfunctioning successor! In fact, the
successor pointers are required for object search; the predecessor variables are required only to
accommodate new joiners. Note from Figure 18.4 that knowingthat the successor is functional,
and that the nodes pointed to by the finger pointers are functional, is essential.

Example: In Figure 18.5, assume that node N63 fails. The closest successor that node N28 can

680

(variables)
integer: successor ←− initial value;
integer: predecessor ←− initial value;
array of integer finger[1 . . . log m];
integer: next_finger ←− 1;

(1) i.Create_New_Ring():
(1a)predecessor ←−⊥;
(1b) successor ←− i.

(2) i.Join_Ring(j), wherej is any node on the ring to be joined:
(2a)predecessor ←−⊥;
(2b) successor ←− j.Locate_Successor(i).

(3) i.Stabilize(): // executed periodically to verify and inform successor
(3a)x←− successor.predecessor;
(3b) if x ∈ (i, successor) then
(3c) successor ←− x;
(3d) successor.Notify(i).

(4) i.Notify(j): // j believes it is predecessor ofi

(4a) if predecessor =⊥ or j ∈ (predecessor, i)) then
(4b) transfer keys in the range[j, i) to j;
(4c) predecessor ←− j.

(5) i.F ix_Fingers(): // executed periodically to update the finger table
(5a)next_finger ←− next_finger + 1;
(5b) if next_finger > m then
(5c) next_finger ←− 1;
(5d) finger[next_finger]←− Locate_Successor(i + 2next_finger−1).

(6) i.Check_Predecessor(): // executed periodically to verify whether predecessor still exists
(6a) if predecessor has failedthen
(6b) predecessor ←−⊥.

Figure 18.6: Managing churn in Chord. Code shown is for nodei.

find via the finger table is N99. N73 cannot be detected, and keys K64 through K73 will effectively
be lost.

A solution such as introducing aCheck_Successor() procedure analogous toCheck_Predecessor
procedure will not solve the problem because it does not helpto identify the functional successor.
The Chord protocol proposes that rather than maintain a single successor, each node maintains a
list of α successors, which are the node’s firstα successors. If the first successor does not respond,
the node can try the next successor from the list, and so on. Only the simultaneous failure of all
theα successors can then cause the protocol to fail. Maintaininga list of successors requires some

681

successor=j

predecessor=i predecessor=i

predecessor=i

j

i

j

ii

j

j

i

successor=isuccessor=i

k

predecessor=

k

successor=j

predecessor

successor

(c) after k executes Stabilize(), that

(a) after i executes Join_Ring(.)

(d) after i executes Notify(k)
triggers step (d)

j executes Notify(i)
(b) after i executes Stabilize() and

T

T

T

predecessor=ksuccessor=j successor=j

successor=jsuccessor=j

k

successor=

predecessor= successor=

predecessor=

k

predecessor=

k

predecessor=

Figure 18.7: Steps in the integration of nodei in the ring, wherej > i > k.

changes to the code in Figure 18.6. Exercise 2 asks you to adapt this code to the changes required
for maintaining successor lists.

The provision for a successor list at each node provides a natural mechanism for the application
to manage replicated objects. The replicas get placed at thenode corresponding to the object key,
as well as at the nodes in the successor list of that node. As Chord is able to update its successor
list as the successor list changes, Chord can also interfacewith the application to let it track the
locations of the replicas.

A voluntary departure from the ring can be treated as a failure. However, a failed node causes
all the data (keys) stored at that node to be lost until corrective action is taken. When a node
departs voluntarily, it should first transfer all the keys itis responsible for to its successor. The
departing node should also inform its successor and predecessor. This will enable the successor
to update its predecessor to the predecessor of the departing node. The predecessor will also be
able to update its successor list by deleting the departing node and adding the last successor of the
departing node’s successor list to its own successor list.

18.4.5 Complexity

The following results on the complexity have a nontrivial correctness proof and interested readers
should consult the Chord papers for the proofs.

1. For a Chord network withn nodes, each node is responsible for at most(1 + ǫ)K/n keys,
with “high probability”, whereK is the total number of keys.

Using consistent hashing,ǫ can be shown to be bounded byO(log n). The “high probability”
clause is required because the validity of the result depends on the randomness and conflict-
free mappings of the hash function used.

682

2. The search for a successor inLocate_Successor in a Chord network withn nodes requires
time complexityO(log n) with high probability.

This result is based on the observation that assuming completely random distributions of the
key mappings and node mappings, after2 log n hops, the distance between the key being
searched for and the present node that the query has reached is at most1/n.

3. The size of the finger table islog(n) ≤ m.

4. The average lookup time is1/2 log(n).

Exercises 2 and 3, based on the Chord papers, ask you to prove further results about the complexity
under churn conditions.

18.5 Content Addressible Networks: CAN

18.5.1 Overview

A content-addressible network (CAN) is essentially an indexing mechanism that maps objects to
their locations in the network. The CAN project originated from the observation that the bottleneck
to designing a scalable P2P network is this indexing mechanism. An efficient and scalable CAN is
useful not only for object location in P2P networks, but alsofor large-scale storage management
systems and wide-area name resolution services that decouple name resolution and the naming
scheme. All these applications inherently require efficient and scalable addition of and location of
objects using arbitrary location-independent names or keys for the objects.

A CAN supports three basic operations: insertion, search, and deletion of(key, value)tuples.
(A “value” is an object in the context of a CAN.) A good CAN design is distributed, fault-tolerant,
scalable, independent of the naming structure, implementable at the application layer, andauto-
nomic, i.e., self-organizing and self-healing. Although CAN is ageneric phrase, it also specifically
denotes the particular design of a CAN proposed by Ratnasamyet al. [24]. We now study this
particular CAN design.

CAN is a logical d-dimensional Cartesian coordinate space organized as ad-torus logical
topology, i.e., a virtual overlayd-dimensional mesh with wrap-around. A two-dimensional torus
was shown in Figure??, Chapter 1. The entire space is partitioneddynamicallyamong all the
nodes present, so that each nodei is assigned a disjoint regionr(i) of the space. As nodes arrive,
depart, or fail, the set of participating nodes, as well as the assignment of regions to nodes, change.

For any objectv, its keyk(v) is mapped using a deterministic hash function to a point~p in
the Cartesian coordinate space. The(k, v) pair is stored at the node that is presently assigned the
region that contains the point~p. In other words, the(k, v) pair is stored at nodei if presently the
point~p corresponding to(k, v) lies in regionr(i). Analogously, to retrieve objectv, the same hash
function is used to map its keyk to the same point~p. The node that is presently assigned the
region that contains~p is accessed (using a CAN routing algorithm) to retrievev. The three core
components of a CAN design are the following.

683

1. Setting up the CAN virtual coordinate space, and partitioning it among the nodes as they
join the CAN.

2. Routing in the virtual coordinate space to locate the nodethat is assigned the region contain-
ing ~p.

3. Maintaining the CAN due to node departures and failures.

18.5.2 CAN Initialization

1. Each CAN is assumed to have a unique DNS name that maps to theIP address of one or
a few bootstrap nodes of that CAN. A bootstrap node is responsible for tracking a partial
list of the nodes that it believes are currently participating in the CAN. These are reasonable
assumptions, and perhaps the most “non-distributed” portions of the CAN design.

2. To join a CAN, the joiner node queries a bootstrap node via aDNS lookup, and the boot-
strap node replies with the IP addresses of some randomly chosen nodes that it believes are
participating in the CAN.

3. The joiner chooses a random point~p in the coordinate space. The joiner sends a request to
one of the nodes in the CAN, of which it learnt in Step 2, askingto be assigned a region
containing~p. The recipient of the request routes the request to the ownerold_owner(~p) of
the region containing~p, using the CAN routing algorithm.

4. Theold_owner(~p) node splits its region in half and assigns one half to the joiner. The
region splitting is done using an a priori ordering of all thedimensions, so as to decide
which dimension to split along. This also helps to methodically merge regions, if necessary.
The (k, v) tuples for which the keyk now maps to the zone to be transferred to the joiner,
are also transferred to the joiner.

5. The joiner learns the IP addresses of its neighbours fromold_owner(~p). The neighbors are
old_owner(~p) and a subset of the neighbours ofold_owner(~p). old_owner(~p) also updates
its set of neighbours. The new joiner as well asold_owner(~p) inform their neighbours of the
changes to the space allocation, so that that they have correct information about their neigh-
bourhood and can route correctly. In fact, each node has to send an immediate update of its
assigned region, followed by periodic HEARTBEAT refresh messages, to all its neighbours.

When a node joins a CAN, only the neighbouring nodes in the coordinate space are required to
participate in the joining process. The overhead is thus of the order of the number of neighbours,
which isO(d) and independent ofn, the number of nodes in the CAN.

684

18.5.3 CAN Routing

CAN routing uses the straight-line path from the source to the destination in the logical Eu-
clidean space. This routing is realized as follows. Each node maintains a routing table that
tracks its neighbour nodes in the logical coordinate space.In d-dimensional space, nodesx
andy are neighbours if the coordinate ranges of their regions overlap in d − 1 dimensions, and
abut in one dimension. All the regions areconvexand can be characterized as follows. Let
region(x) = [[x1

min, x
1
max], . . . [x

d
min, x

d
max]]. Let region(y) = [[y1

min, y
1
max], . . . [y

d
min, y

d
max]].

Nodesx andy are neighbours if there is some dimensionj such thatxj
max = yj

min and for all
other dimensionsi, [xi

min, x
i
max] and[yi

min, y
i
max] overlap. An example of neighbouring nodes in

2-dimensional space is shown in Figure 18.8.

4 5

[[75,100],
[25,50]]

6

[[75,100],
[0,25]]

7

[[50,75],
[0,50]]

[[0,0],[50,50]]

[[0,25],
[50,100]]

[[25,50],

[50,100]]

3

(100,100)(0,100)

(0,0) (100,0)

[[50,50],[100,100]]

1 2

Figure 18.8: Two-dimensional CAN space. Seven regions are shown. The dashed arrows show the
routing from node 2 to the coordinate~p shown by the shaded circle.

The routing table at each node tracks the IP address and the virtual coordinate region of each
neighbour. To locate valuev, its keyk(v) is mapped to a point~p whose coordinates are used in the
message header. Knowing the neighbours’ region coordinates, each node follows simple greedy
routing by forwarding the message to that neighbour having coordinates that are closest to the
destination’s coordinates. To implement greedy routing toa destination nodex, the present node
routes a message to that neighbour among the neighboursk ∈ Neighbours, given by

argmink∈Neighbours[min |~x− ~k|]

Here,~x and~k are the coordinates of nodesx andk.
Assuming equal-sized zones ind-dimensional space, the average number of neighbours for a

node isO(d). The average path length isd
4
· n1/d. The implication on scaling is that each node

has about the same number of neighbours and needs to maintainabout the same amount of state
information, irrespective of the total number of nodes participating in the CAN. In this respect,

685

the CAN structure is superior to that of Chord. Also note thatunlike in Chord, there are typically
many paths for any given source-destination pair. This greatly helps for fault-tolerance. Average
path length in CAN scales asO(n1/d) as opposed tolog n for Chord.

18.5.4 CAN Maintainence

When a node voluntarily departs from CAN, it hands over its region and the associated database
of (key, value) tuples to one of its neighbours. The neighbour is chosen as follows. If the node’s
region can be merged with that of one of its neighbours to forma valid convex region, then such
a neighbour is chosen. Otherwise the node’s region is handedover to the neighbour whose region
has the smallest volume or load – the regions are not merged and the neighbour handles both zones
temporarily until a periodic background region reassignment process runs to integrate the regions
and prevent further fragmentation.

CAN requires each node to periodically send a HEARTBEAT update message to each neigh-
bour, giving its assigned region coordinates, the list of its neighbours, and their assigned region
coordinates. When a node dies, the neighbours suspect its death and initiate a TAKEOVER proto-
col to decide who will take over the crashed node’s region. Despite this TAKEOVER protocol, the
(key, value) tuples in the crashed node’s database remain lost until the primary sources of those
tuples refresh the tuples. Requiring the primary sources toperiodically issue such refreshes also
serves the dual purpose of updating stale (dirty) objects inthe CAN.

The TAKEOVER protocol is as follows. When a node suspects that a neighbour has died, it
starts a timer in proportion to its region’s volume. On timeout, it sends a TAKEOVER message,
with its region volume piggybacked on the message, to all theneighbours of the suspected failed
node. When a TAKEOVER message is received, a node cancels itsbid to take over the failed
node’s region if the received TAKEOVER message contains a smaller region volume than that
of the recipient’s region. This protocol thus helps in load balancing by choosing the neighbour
whose region volume is the smallest, to take over the failed node’s region. As all nodes initiate
the TAKEOVER protocol, the node taking over also discovers its neighbours and vica versa. In
the case of multiple concurrent node failures in one vicinity of the Cartesian space (this is rare), a
more complex protocol using a expanding ring search for the TAKEOVER messages can be used.

A graceful departure as well as a failure can result in a neighbour holding more than one region
if its region cannot be merged with that of the departed or failed node. To prevent the resulting
fragmentation and restore the1→ 1 node to region assignment, there is a background reassignment
algorithm that is run periodically. Conceptually, consider a binary tree whose root represents the
entire space. An internal node represents a region that existed earlier but is now split into regions
represented by its children nodes. A leaf represents a currently existing region, and (to overloading
the semantics and the notation), also the node that represents that region.

When a leaf nodex fails or departs, there are two cases.

1. If its sibling nodey is also a leaf, then the regions ofx andy are merged and assigned toy.
The region corresponding to the parent ofx andy becomes a leaf and it is assigned to node

686

y.

2. If the sibling nodey is not a leaf, run a depth-first search in the subtree rooted aty until a
pair of sibling leaves (say,z1 andz2) is found. Merge the regions ofz1 andz2, making their
parentz a leaf node, assign the merged region to nodez2, and the region ofx is assigned to
nodez1.

Figure 18.9 illustrates this reassignment. If node 2 fails,its region is assigned to node 3. If node 7
fails, regions 5 and 6 get merged and assigned to node 5 whereas node 6 is assigned the region of
the failed node 7.

1

2

5

3

4

6

7

1

2 3 4

6

7

5

(entire coordinate space) root

Figure 18.9: Example showing region reassignment in a CAN.

A distributed version of the above depth-first centralized tree traversal can be performed by
the neighbours of a departed node. The distributed traversal leverages the fact that when a region
is split, it is done in accordance to a particular ordering onthe dimensions. Nodei performs its
part of the depth-first traversal (initiated by the node to which the region of the departed nodex is
assigned in the TAKEOVER protocol) as follows.

1. Identify the highest ordered dimensiondima that has the shortest coordinate range[idima

min , i
dima
max].

Nodei’s region was last halved along dimensiondima.

2. Identify neighbourj such thatj is assigned the region that was split off fromi’s region in
the last partition along dimensiondima. Nodej’s region abutsi’s region along dimension
dima.

3. If j’s region volume equalsi’s region volume, the two nodes are siblings and the regions can
be combined. This is the terminating case of the depth-first tree search for siblings. Node
j is assigned the combined region, and nodei takes over the region of the departed nodex.
This takeover by nodei is done by returning the recursive search request to the originator
node, and communicatingi’s identity on the replies.

4. Otherwise,j’s region volume must be smaller thani’s region volume. Nodei forwards a
recursive depth-first search request toj.

687

18.5.5 CAN Optimizations

The following design techniques aim to improve one or more ofthe performance factors: the per-
hop latency, the path length, fault tolerance, availability, and load balancing. These techniques
typically demonstrate a trade-off.

1. Multiple dimensions. As the path length isO(d·n1/d), increasing the number of dimensions
decreases the path length and increases routing fault tolerance at the expense of larger state
space per node.

2. Multiple realities. A coordinate space is termed as areality. The use of multiple indepen-
dent realities assigns to each node a different region in each different reality. This implies
that in each reality, the same node will store different(k, v) tuples belonging to the region
assigned to it in that reality, and will also have a differentneighbour set. The data contents
(k, v) get replicated in each reality, leading to higher data availability. Furthermore, the mul-
tiple copies of each(k, v) tuple, one in each reality, offer a choice – the closest copy can be
accessed. Routing fault tolerance also improves because each reality offers a set of different
paths to the same(k, v) tuple. All these advantages come at the cost of more storage –for
state information for the neighbours in each reality, as well as for the(k, v) tuples mapped
to the region allocated to a node in each reality.

3. Delay latency. Rather than using just the Cartesian distance as a metric to make routing
decisions, the delay latency (measured using round-trip time RTT) on each of the candidate
logical links can also be used in making the routing decision.

4. Overloading coordinate regions.Each region can be shared by multiple nodes, up to some
upper limit. This offers several advantages. First, the path length and path latency get
reduced because overloading is equivalent to having fewer nodes in the CAN. Second, the
fault tolerance improves because a region becomes empty only if all the nodes assigned to it
depart or fail concurrently. Third, the per-hop latency decreases because a node can select
the closest node from the neighbouring region to forward a message towards the destination.
The cost of gaining these advantages is that many of the aspects of the basic CAN protocol
need to be reengineered to accommodate overloading of coordinate regions (See Exercise 5).

5. Multiple hash functions. The use of multiple hash functions maps each key to different
points in the coordinate space. This replicates each(k, v) pair for each hash function used.
The effect is similar to that of using multiple realities.

6. Topologically sensitive overlay.The CAN overlay described so far has no correlation to the
physical proximity or to the IP addresses of domains. Logical neighbours in the overlay may
be geographically far apart, and logically distant nodes may be physical neighbours. By con-
structing an overlay that accounts for physical proximity in determining logical neighbours,
the average query latency can be significantly reduced.

688

18.5.6 CAN Complexity

The time overhead for a new joiner isO(d) for updating the new neighbours in the CAN, and
O(d/4 · log(n)) for routing to the appropriate location in the coordinate space. This is also the
overhead in terms of the number of messages. The time overhead and the overhead in terms of
the number of messages for a node departure isO(d2), because the TAKEOVER protocol uses a
message exchange between each pair of neighbours of the departed node. Exercise 4 asks you to
compute the complexity of the distributed region reassignment protocol.

18.6 Tapestry

18.6.1 Overview

The Tapestry P2P overlay network provides efficient scalable location-independent routing to lo-
cate objects distributed across the Tapestry nodes. Much ofthe design is adapted from an earlier
design of Plaxton trees. The notable enhancements of Tapestry include dealing with node churn
as well as dynamic addition and deletion of objects. As in Chord, nodes as well as objects are as-
signed identifiers obtained by mapping from their native name spaces to a common large identifier
space using a uniformly distributed hash function such as SHA-1. The hashed node identifiers are
termed VIDs and the hashed object identifiers are termed as GUIDs (acronym forglobally unique
ids). For brevity, a specific nodev’s identifier is denotedvid and a specific objectO’s GUID is
denotedOG.

18.6.2 Overlay and Routing

18.6.2.0.1 Root and Surrogate Root. Tapestry uses a common identifier space specified using
m bit values. This identifier is typically expressed in hexadecimal notation, i.e., baseb = 16 and
presently Tapestry recommendsm = 160. Each identifierOG in this common overlay space is
mapped to a set ofuniquenodes that exists in the network, termed as the identifier’ s root set
denotedOGR. Typically, |OGR | is a small constant, and the main purpose of having|OGR| > 1 is
to increase fault-tolerance. In our discussion, we assume|OGR| = 1, and refer to a root node of
OG asOGR

.
If there exists a nodev such thatvid = OGR

, thenv is the root of identifierOG. If such a node
does not exist, then a globally known deterministic rule is used to identify another unique node
sharing the largest common prefix withOG, that acts as thesurrogateroot. To access objectO, the
goal is to reach the rootOGR

(whether real or surrogate). Routing toOGR
is done using distributed

routing tables that are constructed usingprefix routing information. Prefix routing in Tapestry
is somewhat analogous to prefix routing within the telephonenetwork, or to address allocation
in the Internet using Classless InterDomain Routing (CIDR). Unlike the telephone numbers or
CIDR-assigned IP addresses, Tapestry’s VIDs are in a virtual space without correlation to topology,
however, topological information can be used to select nodes that are “close” as per some metric.

689

7C27

7C21

7C2B

4

4

1

12
2

2
3

3

3

1

4
0672

9833

AA21

7114

7DD0

7C4A

7C13

7CFF

7B28

7C25

Figure 18.10: Some example links of the Tapestry routing mesh at node with identifier “7C25”.
Three links from each level 1 through 4 are labeled by the level.

18.6.2.0.2 Prefix Routing. Prefix routing at any node to select the next hop is done by increas-
ing the prefix match of the next hop’s VID with the destinationOGR

. Thus, a message destined
for OGR

= 62C35 could be routed along nodes with VIDs 6****, then 62***, then62C**, then
62C3*, and then to 62C35. LetM = 2m. The routing table at nodevid containsb · logbM entries,
organized inlogbM levelsi = 1 . . . logbM . Each entry is of the form〈wid, IP address〉. In level
i, there areb entries with the following property.

• Each entry denotes some “neighbour” node VIDs with a(i − 1)-digit prefix match withvid

– thus, the entry’swid matchesvid in the (i − 1)-digit prefix. Further, in leveli, for each
digit j in the chosen base (e.g.,0, 1, . . .E, F whenb = 16), there is an entry for which the
ith digit position isj. Specifically, thejth entry (counting from 0) in leveli has valuej for
digit positioni. Let ani digit prefix of vid be denoted asprefix(vid, i). Then thejth entry
(counting from 0) in leveli begins with ani-digit prefixprefix(vid, i− 1) ◦ j. For example,
the fifth entry in level 2 at node 9F248 will be 94***, thus having a2-digit prefix “94”.

18.6.2.0.3 Router Table. The nodes in the router table atvid are theneighboursin the overlay,
and these are exactly the nodes with whichvid communicates. A part of the routing mesh at one
node is shown in Figure 18.10. For eachforward pointerfrom nodev to v′, there is abackward
pointerfrom v′ to v. Observe the following regarding the router table construction.

• There is a choice of which entry to add in the router table. Forexample, thejth entry in level
i can be the VID of any node whosei-digit prefix is determined; the(m − i)-digit suffix
can vary. The flexibility is useful to select a node that is “close”, as defined by some metric
space (e.g., round-trip time). In fact, this choice also allows a more fault-tolerant strategy
for routing. Multiple VIDs can be stored in the routing table, as follows. For each prefix
β of a nodev’s identifier and for each digitj ∈ {0 . . . b − 1} in the alphabet, define the
neighbour setN v

β,j as the set of all nodes whose identifiers share prefixβ ◦ j. The nodes in
this neighbour set are also referred to as(β, j) neighbours ofv. Theb sets, one for each value

690

(variables)
array of array of integer Table[1 . . . logb 2m, 1 . . . b]; // routing table

(1) NEXT_HOP (i, OG = d1 ◦ d2 . . . ◦ dlogbM) executed at nodevid to route toOG:
// i is (1+ length of longest common prefix), also level of the table

(1a)while Table[i, di] =⊥ do // dj is ith digit of destination
(1b) di ←− (di + 1) modb;
(1c) if Table[i, di] = v then // nodev also acts as next hop (special case)
(1d) return NEXT_HOP (i + 1, OG) // locally examine next digit of destination
(1e)else return(Table[i, di]). // nodeTable[i, di] is next hop

Figure 18.11: Routing in Tapestry. The logic for determining the next hop at a node with node
identifier v, 1 ≤ v ≤ n, based on theith digit of OG, i.e., based on the digit in theith most
significant position inOG.

of j, form the routing table of level|β|+ 1. |N v
β,j| grows exponentially as|β| decreases, so

the size of this set can be limited by a predetermined parameter c. The closest node in each
set is the primary neighbour. Thus the size of the routing table is: c · b · logβM .

The route fromv0
id (source) to destinationj1◦j2 . . .◦jlog m, is via nodesv1, v2 . . . vlog m, where

v1 ∈ N v0

⊥,j1
(first hop),v2 ∈ N v1

j1,j2
(second hop),v1 ∈ N v2

j1◦j2,j3
(third hop), and so on. The

primary neighbour is chosen at each hop. Observe that this provideslocation-independent
routing, i.e., irrespective of the source, the same unique root node is reached.

• Thejth entry in leveli may not exist because no node meets the criterion. This is ahole in
the routing table. Stated more generally,|N v

β,j|may be 0, signifying a hole for digitj at level
|β|+ 1.

Surrogate routingcan be used to route around holes. If thejth entry in leveli should be
chosen but is missing, route to the next non-empty entry in level i, using wraparound if
needed. All the levels from 1 tologb 2m need to be considered in routing, thus requiring
logb 2m hops. The code for determining the next hop usingNEXT_HOP (i, OG) is shown
in Figure 18.11. This is invoked asNEXT_HOP (1, OG) at the source node. To determine
hop i of the route, the nodev that executes the function has a prefix at leasti − 1 digits in
common withOG.

Example: An example of routing is shown in Figure 18.12.

P1. Surrogate routing leads to a unique root.

If the routing were to lead to different nodesA andB, let the most significant position in
which the digits ofA andB differ be i. This implies leveli routing caused the routing
at some nodesX andY along different digits. However, the firsti digits do not change
henceforth, and assuming synchronized routing tables, theholes would be consistent in the
tables atX andY . Hence both should route to the sameith digit, which is a contradiction.
It can now be seen that:

691

62C3A

64000FAB11

62C3A

6C144

62409

62C11
62C35

62C24

4

4 4

5
5

5

4

3

4

3
2

4

3

1
2

2

65011 62006

62CAB

62C7962CFF

62C01

62C31

62655

Figure 18.12: An example of routing from FAB11 to 62C35. The numbers on the arrows show the
level of the routing table used. The dashed arrows show some unused links.

P2. The routing algorithm identifies for each identifiervid, a unique spanning tree rooted at
vid.

18.6.3 Object Publication and Object Search

The unique spanning tree used to route tovid is used to publish and locate an object whose unique
root identifierOGR

is vid. A server S that stores objectO having GUIDOG and rootOGR
period-

ically publishes the object by routing apublishmessage fromS towardsOGR
. At each hop and

including the root nodeOGR
, thepublishmessage creates a pointer to the object. Ideally, “each

node betweenO andOGR
must maintain a pointer toO despite churn”. (Note that the publishing

is done by each server at which a replica of the object resides, as well as for each GUID of the
object. Recall that an object can be assigned multiple GUIDs, each mapping to a different root
node, and giving rise to the set of root nodesOGR

.) If a node lies on the path from two or more
servers storing replicas, that node will store a pointer to each replica, sorted in terms of a distance
metric (such as latency from itself). This is the directory information for objects, and is maintained
as asoft-state, i.e., it requires periodic updates from the server, to dealwith changes and to provide
fault-tolerance.
Example: An example showing publishing of an object withOG = 72EA1 by two replicas, at
1F329 and C2B40 is shown in Figure 18.13.

To search for an objectO with GUID OG, a client sends a query destined for the rootOGR
.

Along the logb 2m hops, if a node finds a pointer to the object residing on serverS, the node
redirects the query directly toS. Otherwise, it forwards the query towards the rootOGR

which is
guaranteed to have the pointer for the location mapping. A query gets redirected directly to the
object as soon as the query path overlaps the publish path towards the same root. Each hop towards
the root reduces the choice of the selection of its next node by a factor ofb; hence, the more likely
by a factor ofb that a query path and a publish path will meet. Furthermore, as the next hop is
chosen based on the network distance metric whenever there is a choice, we also observe that the

692

72EA8

72EA1

object pointer

72F11

72E34
7826C

1F32925011

routing pointerpublish path

BCF35
serverserver

094ED

C2B40 17202

75BB1 7D4FF

729CC720B4

72E33

70666

7FAB1

Figure 18.13: An example showing publishing of object with identifier 72EA1 at two replicas
1F329 and C2B40.

closer the client is to the server in terms of the distance metric, the more likely that their paths to
the object root will meet sooner, and the faster the query will be redirected to the object.

Example: Consider the objectOG which has identifier 72EA1 and two replicas at 1F329 and
C2B40, as shown in Figure 18.13. A query for the object from 094ED will find the object pointer
at 7FAB1. A query from 7826C will find the object pointer at 72F11. A query from BCF35 will
find the object pointer at 729CC.

18.6.4 Node Insertion

When nodes join the network, the result should be the same as though the network and the routing
tables had been initialized with the nodes as part of the network. The procedure for the insertion
of nodeX should maintain the following property of Tapestry:
P3. For any nodeY on the path between a publisher of objectO and the rootGOR

, nodeY should
have a pointer toO.

More generally, the insertion should satisfy the followingproperties.

• Nodes which have a hole in their routing table should be notified if the insertion of nodeX
can fill that hole.

• If X becomes the new root of existing objects, references to those objects should now lead
toX.

• The routing table for nodeX must be constructed.

• The nodes nearX should includeX in their routing tables to perform more efficient routing.

The main steps in node insertion are outlined here.

693

• NodeX uses some gateway node into the Tapestry network to route a message to itself. This
leads to its “surrogate”, i.e., the root node with identifierclosest to that of itself (which is
Xid). The surrogateZ identifies the lengthα of the longest common prefix thatZid shares
with Xid.

• NodeZ initiates a MULTICAST-CONVERGECAST on behalf ofX by essentially creating
a logical spanning tree as follows. Acting as a root,Z contacts all the(α, j) nodes, for allj ∈
{0, 1 . . . b−1} (tree level 1). These are the nodes with prefixα followed by digitj. Each such
(level 1) nodeZ1 contacts all the(prefix(Z1, |α|+ 1), j) nodes, for allj ∈ {0, 1 . . . b− 1}
(tree level 2). This continues up to levellogb2

m − |α| and completes the MULTICAST. The
nodes at this level are the leaves of the tree, and initiate the CONVERGECAST, which also
helps to detect the termination of this phase.

All the nodes contacted fill in any holes in their routing table and, if necessary, transfer
any references of pointers that are rooted locally. All these nodes also contactX with their
information, so thatX can build its routing table from level|α| + 1 up to logb2

m. All these
nodes that contactX have a common prefix ofα.

To construct the rest of its routing table from levels 1 through |α|, nodeX procures similar
lists for successively smaller prefixes until it gets closest b nodes matching the empty prefix.
NodeX begins with the list of nodes for levelα, corresponding to the levell of its routing
table which is already filled. To construct the levell − 1 list, nodeX contacts all the nodes
in the levell list to find out all the levell − 1 nodes they know about by asking for both
forward pointers and backward pointers. Levell− 1 of the routing table is filled in using the
K closest nodes from the levell − 1 list, for each of the digits0 . . . b − 1. In this manner,
X completes its routing table, and all the nodes contacted in the process can optimize their
routing tables by usingX if it helps.

The insertion protocols are fairly complex and deal with concurrent insertions.

18.6.5 Node Deletion

When a nodeA leaves the Tapestry overlay, the following actions are performed.

• NodeA informs the nodes to which it has (routing) backpointers. Italso provides them
with replacement entries for each level from its routing table. This is to prevent holes in
their routing tables. (The notified neighbours can periodically run the nearest neighbour
algorithm to fine-tune their tables.)

• The servers to whichA has object pointers are also notified. The notified servers send object
republish messages.

• During the above steps, nodeA routes messages to objects rooted at itself to their new roots.
On completion of the above steps, nodeA informs the nodes reachable via its backpointers
and forward pointers that it is leaving, and then leaves.

694

Nodes failures are handled by using the redundancy that is built in to the routing tables and
object location pointers. For example, each routing table entry has up toc neighbours in the
neighbour setN v

β,j. A nodeX detects a failure of another nodeA by using soft-state beacons or
when a node sends a reply but does not get a response. NodeX updates its routing table entry forA
with a suitable substitute node, running the nearest neighbour algorithm if necessary. IfA’s failure
leaves a hole in the routing table ofX, thenX contacts the suggorate ofA in an effort to identify
a node to fill the hole. The details of the protocol can be foundin the Tapestry papers. In addition
to repairing the routing mesh, the object location pointersalso have to be adjusted. Objects rooted
at the failed node may be inaccessible until the object is republished. The protocols for doing
so essentially have to (i) maintain path availability, and (ii) optionally collect garbage/dangling
pointers which would otherwise persist until the next soft-state refresh and timeout.

Overall, experiments have shown that Tapestry continues toperform well with high probability
despite dynamic node insertions and failures.

Complexity:

• A search for an object is expected to take(logb2
m) hops. However, the routing tables are

optimized to identify nearest neighbour hops (as per the space metric). Thus, the latency for
each hop is expected to be small, compared to that for CAN and Chord protocols.

• The size of the routing table at each node isc · b · logb2
m, wherec is the constant that limits

the size of the neighbour set that is maintained for fault-tolerance.

The larger the Tapestry network, the more efficient is the performance. Hence, it is better that
different applications share the same overlay.

18.7 Some Other Challenges in P2P System Design

18.7.1 Fairness: A Game Theory Application

P2P systems depend on all the nodes cooperating to store objects and allowing other nodes to
download from them. However, nodes tend to be selfish in nature; thus there is a tendancy to
download files without reciprocating by allowing others to download the locally available files.
This behavior, termed asleachingor free-riding, leads to a degradation of the overall P2P system
performance. Hence, penalties and incentives should be built in the system to encourage sharing
and maximize the benefit to all nodes.

We now examine at the classical problem, termed thePrisoners’ Dilemma, from game theory,
that has some useful lessons on how selfish agents might cooperate. This problem is an example
of a non-zero-sum-game.

“Two suspects, A and B, are arrested by the police. There is not enough evidence for a convic-
tion. The police separate the two prisoners, and separately, offer each the same deal: if the prisoner
testifies against (betrays) the other prisoner and the otherprsioner remains silent, the betrayer gets
freed and the silent accomplice get a 10 year sentence. If both testify against the other (betray),

695

they each receive a 2 year sentence. If both remain silent, the police can only sentence both to a
small 6-month term on a minor offence.”

Rational selfish behavior dictates that both A and B would betray the other. This is a not a
Pareto optimal solution, where a Pareto-optimal solution is one in which the overall good of all the
participants is maximized. In the above example, both A and Bstaying silent results in a Pareto
optimal solution. The dilemma is that this is not consideredthe rational behaviour of choice.

In the Iterative Prisoners’ Dilemma, the game is played multiple times, until an “equilibrium”
is reached. Each player retains emmory of the last move of both players (In more general versions,
the memory extends to several past moves.) After trying out various strategies, both players should
converge to the ideal optimal solution of staying silent. This is Pareto-optimal.

The commonly accepted view is that thetit-for-tat strategy, described next, is the best for
winning such a game. In the first step, a prisoner cooperates,and in each subsequent step, he
reciprocates the action taken by the other party in the immediately preceding step.

The BitTorrent P2P system has adopted the tit-for-tat strategy in deciding whether to allow a
download of a file in solving the leaching problem. Here, cooperation is analogous to allowing
others to upload local files, and betrayal is analogous to notallowing others to upload. The term
chockingrefers to the refusal to allow uploads. As the interactions in a P2P system are long-
lived, as opposed to a one-time decision to cooperate or not,optimistic unchockingis periodically
done to unchoke peers that have been chocked. This optimistic action roughly corresponds to the
re-initiation of the game with the previously chocked peer after some time epoch has elapsed.

18.7.2 Trust or Reputation Management

Various incentive-based economic mechanisms to ensure maximum cooperation among the selfish
peers inherently depend on the notion of trust. In a P2P environment where the peer population is
highly transient, there is also a need to have trust in the quality of data being downloaded. This
requirements have lead to the area of trust and trust management in P2P systems. As no node has a
complete view of the other downloads in the P2P system, it mayhave to contact other nodes to eval-
uate the trust in particular offerers from which it could download some file. These communication
protocol messages for trust management may be susceptible to various forms of malicious attack
(such as man-in-the-middle attacks and Sybil attacks), thereby requiring strong security guaran-
tees. The many challenges to tracking trust in a distributedsetting include: quantifying trust and
using different metrics for trust, how to maintain trust about other peers in the face of collusion,
how to minimize the cost of the trust management protocols.

18.8 Tradeoffs between Table Storage and Route Lengths

18.8.1 Unifying DHT Protocols

Chord, CAN, and Tapestry are three well-known representative protocols for managing structured
P2P overlays. Despite their seeming differences, Xu, Kumar, and Yu [32] showed that the routing

696

function they perform can be expressed in a uniform way by generalizing the function of Classless
Interdomain Domain Routing (CIDR) used by the IP protocol. We assume that all identifiers are
in the common address space. We also assume modulo arithmetic (modulon for Chord, modulo
n−d for CAN, modulob for Tapestry).
Routing Rule: The next-hop routing to node with identifierdest from the current node with
identifierid is as follows.

Let thek entries in a routing table at a node with identifierid be the tuples〈Sid,i, Jid,i〉, for
1 ≤ i ≤ k. If |dest − id| ∈ the rangeSid,i then route toR(id + Jid,i), whereR(x) is the node
responsible for keyR(x).

Clearly, we must have that for distincti andj, Sid,i ∩ Sid,j = ∅ andJid,i 6= Jid,j. Further,
∪1≤i≤sSid,i contains all the keys not stored by nodeid. WhenSid,i andJid,i are independent ofid,
as is the case for CAN, CHord, and Tapestry, the subscriptid can be deleted.

Chord: if dest− id ∈ Si = [2i−1, 2i) then nodeid routes to nodeid + Ji, whereJi = 2i−1.

This corresponds to looking up theith entry in the finger table, as described in Section 18.4.3.

CAN: The greedy routing function for CAN was given in Section 18.5.3. Here we assume a simple
uniform distribution of nodes in the address space,xd = n, and that nodes are numbered by
an integer in basex, wherex is the number of nodes in each dimension. Routing is assumed
to be done dimension by dimension (rather than using greedy routing). Wraparound routing
is assumed in each dimension. Then, for each dimensioni, the following holds: Ifdest and
id differ in dimensioni, route toi’s neighbour in that dimension. Formally,

If dest − id ∈ (Si =)[xi−1, xi) then route toid + Ji whereJi + id is a neighbour node in
dimension ini− 1 andJi = kxi−1 for somek ≤ x.

Tapestry: Let x = logbn, lvl = 1 . . . x andj ∈ 0 . . . b − 1. After deleting the longest common
prefix betweenid anddest, prefix(dest, lvl − 1), from dest, we havesuffix(dest, x −
lvl + 1). The routing function was described in Section 18.6.2.

If suffix(dest, x − lvl + 1) ∈ S(lvl−1)·b+j = [j · bx−lvl+1, (j + 1) · bx−lvl+1) then nodeid
routes to nodeprefix(id, lvl − 1) ◦ suffix(J(lvl−1)·b+j , x − lvl + 1), whereJ(lvl−1)·b+j ∈
[j · bx−lvl+1, (j + 1) · bx−lvl+1).

These routing relationships are summarized in Table 18.4.

18.8.2 Bounds on DHT Storage and Routing Distance

Based on Table 18.4, the router table size and network diameter are represented in Figure 18.14. A
fundamental question is whether the asymptotic bounds on (routing table size, network diameter
as determined by the maximum number of hops) are(log2 n,Ω(log2 n)) as for Chord and Tapestry,
and(d,Ω(n−d)) as for CAN. Xu et al. [32] uased the following definitions to answer this.

697

Protocol Chord CAN Tapestry
Routing table size k = O(log2n) k = O(d) k = O(logbn)

Worst case distance O(log2n) O(n1/d) O((b− 1) · logbn)

n, common name space2k xd bx

Si [2i−1, 2i) [xi−1, xi) [j · bx−lvl+1, (j + 1) · bx−lvl+1)

Ji 2i−1 kxi−1 suffix(J(lvl−1)·b+j , x− lvl + 1)

Table 18.4: Comparison of representative P2P overlays.d is the number of dimensions in CAN.b
is the base in Tapestry.

maintain full state

asymptotic tradeoff curve

Chord, Tapestry

maintain no state

CAN

O(n)−dO(log n)

n

log n

<= d

0

O(1) O(n)

Routing table size

distance

Worst

case

Figure 18.14: Fundamental asymptotic tradeoffs between router table size and network diameter.

• A routing algorithm isweakly uniformif for any nodesid andid′, the jump sizesJid,i = Jid′,i.
Thus, a weakly uniform algorithm requires the corresponding “jump sizes” for any indexi
to be the same for all nodes, irrespective of the node identifier.

• A routing algorithm isstrongly uniformif it is weakly uniform and if for any nodesid and
id′, Sid,i = Sid′,i. A strongly uniform algorithm requires all routing tables to also have the
same corresponding sizes of the index ranges.

• A network is node-congestion-free (resp., edge-congestion free) if all nodes (resp., edges) are
handling the same average traffic. A network is congestion-free it it is node-congestion-free
and edge-congestion-free. Chord, CAN, and Tapestry are allcongestion-free algorithms. A
strongly uniform algorithm is node-congestion-free.

The following result has been shown by Xu, Kumar, and Yu.

• When the routing algorithms are weakly uniform,Ω(log2 n) andΩ(n−d) are the lower bounds
on the diameter in networks with routing tables of sizesO(log n) andd, respectively. As

698

Chord, CAN, and Tapestry are strongly uniform, they achievethe asymptotic lower bounds
in the tradeoff.

18.9 Graph Structures of Complex Networks

P2P overlay graphs can have different structures. An intriguing question is to characterize the
structure of overlay graphs. This question is a small part ofa much wider challenge of how to
characterize large networks that grow in a distributed manner without any coordination. Such
networks exist in:

• computer science: the WWW graph (WWW), the Internet graph that models individual
routers and interconnecting links (INTNET), the Autonomous Systems (AS) graph in the
Internet;

• in social networks (SOC), phone call graph (PHON), movie actor collaboration graph (ACT),
author collaboration graph (AUTH) citation networks (CITE);

• in linguistics: word co-occurrence graph (WORDOCC), the word synonym graph (WORDSYN);

• the power distribution grid (POWER);

• in nature: protein folding (PROT) where nodes are proteins and an edge represents that the
two proteins bind together, substrate graph for various bacteria and micro-organisms (SUB-
STRATE), where nodes are substrates and edges are chemical reactions in which substrates
participate.

It is widely intuited that such complex graphs must display some organizational principles that are
encoded in their topology in some subtle ways. This has driven research on a unification theory to
determine a suitable model in which all such uncontrolled graphs are instantiations.

The first logical attempt to model large networks without anyknown design principles is to use
random graphs. The random graph model, also known as the Erdos-Renyi (ER) model, assumes
n nodes and a link between each pair of nodes with probabilityp, leading ton(n − 1)p/2 edges.
Many interesting mathematical properties have been shown for random graphs (see Section 18.11)
for examples. However, the complex networks encountered inpractice are not entirely random,
and show some, somewhat intangible, organizational principles.

Three ideas have received much investigative attention in recent times.

Small world networks: Even in very large networks, the path length between any pairof nodes
is relatively small. This principle of a “small world” was popularized by sociologist Stanley
Milgram by the “six degrees of separation” uncovered between any two people [21].

As the average distance between any pair of nodes in the ER model grows logarithmically
with n, the ER graphs are small worlds.

699

Clustering: Social networks are characterized by cliques. The degree ofcliques in a graph can be
measured by various clustering coefficients, such as the following. Consider a nodei having
ki out-edges. Letli be the actual number of edges among theki nearest neighbours ofi. If
theseki nearest neighbours were in a clique, they would haveki.(ki − 1)/2 edges among
them. The clustering coefficient for nodei is Ci = 2li/(ki(ki − 1)). The network-wide
clustering coefficient is the average of allCis, for all nodesi in the network.

The random graph model has a clustering coefficient of exactly p. As most real networks
have a much larger clustering coefficient, this random graphmodel (ER) is unsatisfactory.

Degree distributions: Let P (k) be the probability that a randomly selected node hask incident
edges. In many networks – such as INTER, AS, WWW, SUBST –P (k) ∼ k−γ , i.e.,P (k)

is distributed with a power-law tail. Such networks that arefree of any characteristic scale,
i.e., whose degree characterization is independent ofn, are calledscale-free networks.

In a random graph, the degree distribution is Poisson-distributed with a peak ofP (〈k〉),
where〈k〉, which is a function ofn, is the average degree in the graph. Thus, random graphs
are not scale-free. While some real networks have an exponential tail, the actual form of
P (k) is still very different from that for a Poisson distribution.

Current empirical measurements show the following properties of some commonly occuring
graphs.

WWW: In-degree and out-degree distributions both follow power laws; WWW is a small world;
directed graph, but does show a high clustering coefficient.

INTNET: Degree distributions follow power law; INTNET is a small world; shows clustering.

AS: Degree distributions follow power law; INTNET is a small world; shows clustering.

ACT: Degree distributions follow power law tail; ACT is a small world (similar path length as
ER); shows high clustering.

AUTH: Degree distributions follow power law; AUTH is a small world; shows high clustering.

SUBSTRATE: In-degree and out-degree distributions both follow power laws; small world; large
clustering coefficient.

PROT: Degree distribution has a power law with exponential cutoff.

PHON: In-degree and out-degree distributions both follow power laws.

CITE: In-degree follows power law, out-degree has an exponentialtail.

WORDOCC: Two-regime power-law degree distribution; small world; high clustering coeffi-
cient.

700

WORDSYN: power-law degree distribution; small world; high clustering coefficient.

POWER: Degree distribution is exponential.

Efforts on developing models focus on: random graphs to model random phenomena, small
worlds to interpolate between random graphs and structuredclustered lattices, scale-free graphs to
study network dynamics and network evolutions.

18.10 Internet graphs

18.10.1 Basic Laws and their Definitions

In this section, we consider some properties of the Internet, that demonstrate a power-law behavior
as measured empirically. Power law informally implies thatlarge occurrences are very rare, and
the frequency of the occurrence increases as the size decreases. Examples pertaining to the web
are: the number of links to a page, the number of pages within aweb locaiton, and the number of
accesses to a web page. We begin by taking the example of the popularity of web sites to illustrate
the definitions of 3 related observed laws: the Zipf Law, the Pareto Law, and the Power Law.

LOG

rank of site# visitors

slope a slope b = a−1 slope c = 1/b

(b) Power Law (c) Pareto law(a) Power law
 (linear scale) (log−log scale) (log−log scale) (log−log scale)

(d) Zipf’s Law

> x visitors)
P(site has

PDF PDF CDF PDF

(i.t.o. > y visitors)

LOG

sites# sites

LOG

visitors# visitors

visitors

LOG LOG LOG

Figure 18.15: The popularity of web sites. (a) Power law showing the PDF using a linear scale.
(b) Power Law showing the PDF using a log-log scale. (c) Pareto Law showing the CDF using a
log-log scale. (d) Zipf’s Law using a log-log scale.

Power Law: P [X = x] ∼ x−a

This law is stated as a Probability Distribution Function (PDF). It says that the number of
occurrences of events that equalx is an inverse power ofx. Figures 18.15(a) and (b) show
the typical Power Law PDF plots on a nomral scale and on a log-log scale, respectively. In
the log-log plot, the slope isa.

In our example, this corresponds to the number of sites whichhave exactlyx visitors.

Pareto Law: P [X ≥ x] ∼ x−b = x−(a−1)

701

This law is stated as a Cumulative Distribution Function (CDF). The number of occurrences
larger thanx is an inverse power ofx. The CDF can be obtained by integrating the PDF.
The exponentsa andb of the Pareto (CDF) and Power Laws (PDF) are related asb+ 1 = a.
Figure 18.15(c) shows the Pareto Law CDF plot on a log-log scale. In the log-log plot, the
slope isb = a− 1.

In our example, this corresponds to the number of sites whichhave at leastx visitors.

Zipf’s Law: n ∼ r−c.

This law states the countn (i.e., the number) of the occurrences of an event, as a function of
the event’s rankr. It says that the count of therth largest occurrence is an inverse power of
the rankr. Figure 18.15(d) shows the Zipf plot on a log-log scale. In the log-log plot, the
slope isc, which we see below is1

b
= 1

a−1
.

The context initally used by Zipf was the frequency of occurrence of words in English,
where the most frequently occurring word had rank 1. Zipf’s law is widely occurring, e.g.,
magnitude of earthquakes, and populations of cities followthis law. In our example, this
corresponds to the number of visits to therth most popular site.

Clearly, that the Pareto Law (CDF) and Power law (PDF) are related. The Zipf Lawn ∼ r−c,
stating “ther-ranked object hasn = rc occurrences, can be equivalently expressed as: “r objects
(X-axis) haven = r−c (Y-axis) of more occurrences”. This becomes the same as the Pareto Law’s
CDF after transposing the X and Y axes, i.e., by restating as:“the number of occurrences larger
thann = r−c (Y-axis) isr (X-axis)”.

From Zipf’s Law,n = r−c, hence,r = n−
1

c . Hence, the Pareto exponentb is 1
c
. As b = (a−1),

wherea is the Power Law exponent, we see thata = 1 + 1
c
. Hence, the Zipf Law distribution also

satisfies a Power Law PDF.

18.10.2 Properties of the Internet

The Internet is a prime example of a complex entity that exhibits power-law behaviour. Based on
extensive empirical measurements, Siganos at el. [28] showed the following results.

Rank exponent/ Zipf’s law: The nodes in the Internet graph are ranked in decreasing order of
their degree. When the degreedi is plotted as a function of the rankri on a log-log scale, the
graph is like Figure 18.15(d). The slope is termed the rank exponentR, anddi ∝ rRi . If the
minimum degreedn = m is known, thenm = dn = CnR, implying that the proportionality
constantC ism/nR. Exercise 6 asks you to estimate the number of edges as a function of
the rank exponent and the number of nodes.

Degree exponent/ PDF and CDF:Let the CDFfd of the node degreed be the fraction of nodes
with degree greater thand. Thenfd ∝ dD, whereD is the degree exponent that is the slope
of the log-log plot offd as a function ofd.

702

Analogously, let the PDF begd. Thengd ∝ dD
′

, whereD′ is the degree exponent that is the
slope of the log-log plot ofgd as a function ofd.

Empirically,D′ ∼ D + 1, as theoretically predicted. Further,Rsim 1
D , also as theoretically

predicted. The imperfect match is attributed to imperfect measurements and approximations
in curve-fitting. In practice, the CDF is preferred as it can be estimated with greater accuracy.

Eigen exponentE : For the adjacency matrixA of a graph, its eigenvalueλ is the solution to
AX = λX, whereX is a vector of real numbers. The eigenvalues are related to the graph’s
number of edges, number of connected components, the numberof spanning trees, the diam-
eter, and other important topological properties. Let the various eigenvalues beλi, wherei is
the order and between 1 andn. Then the graph ofλi as a function ofi is a straight line, with a
slope ofE , the eigen-exponent. Thus,λi ∝ iE . More intriguingly, when the eigenvalues and
the degree are sorted in descending order, it is found thatλi =

√
di, implying thatE = D

2
.

The following additional hypotheses have not been very vigorously tested and verified. Nev-
ertheless, they offer very insightful looks into the prevalance and use of power laws in complex
uncontrolled entities such as the Internet. Two definitionsare useful at this stage.

• PN(h) is the number of pairs of nodes withinh hops, counting self-pairs, and counting all
other pairs twice due to the dual edge incidence.

• NH(h), the neighbourhood, is the expected number of nodes withinh hops.

Hop-plot exponent,H: Experimental measurements have shown thatPN(h) follows a power law
regime more closely, rather than the exponential regime as previously estimated. Thus,PN(h) ∝
hH, whereH is the slope of the log-log plot ofPN(h) as a function ofh for h ≪ dia. From the
definition ofPN(h), observe thatPN(1) = n+ 2l. Hence,

PN(h) =

{

(n+ 2l)hH, if h≪ dia
n2, if h ≥ dia

(18.9)

The hop-plot exponent is useful to estimate the effective diameterdiaeff of the network. Infor-
mally, any two nodes in the network are withindiaeff hops of each other, with “high probability”.
When some destination node whose location is unknown needs to be reached, the use of hop-
constrained broadcast is the standard solution. A large hopcount takes too long, whereas a small
hop count may not reach the entire network. If the hop count, is set todiaeff , then with high
probability, the destination can be reached with just the right amount of overhead. Usingn,H, and
the number of edgesl (see Exercise 6), the effective diameter is defined as:

diaeff = (
n2

n + 2l
)1/H

This effective diameter is estimated as the abscissa of the intersection of the log-log hop-plot
with slopeH and then2 coverage that is expected within diameter hops.

703

Observe that the average size of the neighbourhoodNN(h) = PN(h)
n
− 1. HenceNN(h) =

(n+2l)hH

n
− 1. TheNN(h) is seen to be a more accurate estimate of the neighbourhood than the

average-degree estimate,NNd(h) = d(d − 1)h−1 TheNNd(h) estimate assumes that the degree
distributionis mor uniform, and that each hop addsd − 1 new nodes per node at the boundary of
the examined network. As the degree distribution is highly skewed, the traditionalNN ′(h) metric
is not accurate.

For all the cases above, the power law regime has so far been mpirically valiated. The exponent
itself has been observed to change gradually over time as thenetworks evolve. The power law
regime provides a good handle on predicting the future growth of the Internet, and building accurate
graphs for simulations.

18.10.2.0.4 Classification of Scale-free Networks.Scale-free networks of different types –
WWW, INTNET, AS, ACT, AUTH, SUBSTRAE, PROT, PHON, in-degreefor CITE, WORDSYN
- have different degree exponents, typically ranging from 2to 3. The quest to seek a more universal
and common factor resulted in the analysis of another metric, called the “betweenness centrality”.
For any graph, let its geodesics, i.e., set of shortest paths, between any pair of nodesi andj be
denotedS(i, j). Let Sk(i, j) be a subset ofS(i, j) such that all the geodesics inSk(i, j) pass
through nodek. The betweenness centrality BC of nodek, bk, is

∑

i6=j gk(i, j) =
∑

i6=j
|Sk(i,j)|
|S(i,j)| .

Thebk denotes the importance of nodek in shortest-path connections between all pairs of nodes in
the network.

The metric BC follows the power lawPBC(g) ∼ g−β, whereβ is the BC-exponent. Unlike the
degree exponent which varies across different network types, the BC-exponent has been empiri-
cally found to take on values of only 2 or 2.2 for these varied network types. This very interesting
observation is under further study.

18.10.3 Error and Attack Tolerance of Complex Networks

Based on the node degree distributionP (k), two broad classes of small world networks are the
exponential networks and the scale-free networks. In exponential networks, such as the ER random
graph model and the Watts Strogatz small world model,P (k) reaches a maximum at ak value and
thenP (k) decreases exponentially per a Poisson distribution ask increases. In scale-free networks,
such as the web and the Internet,P (k) decreases as per a power law,P (k) ∼ k−γ .

The following are two key differences that leads to different behaviour of exponential networks
and of scale-free networks, under errors and attakcs. (1) Nodes with a very high degree are statis-
tically significant in scale-free networks, whereas they are close to an impossibility in exponential
networks. (2) In an exponential network, all nodes have about the same number of links, whereas
in a scale-free network, some nodes have many links and the majority of the nodes have a small
number of links.

Errors are simulated by removing nodes at random. Attacks are simulated by removing the
nodes with highest degree. Their impact is measured on network diameter and network partition-
ing.

704

network
diameter

exponential (attack & errors)

0.10.05

f, the fraction of nodes removed

0

(under attack)scale−free

scale−free (under errors)

Figure 18.16: Impact of attacks and failures on the diameterof exponential networks and scale-free
networks, from Albert, Jeong, and Barabasi.

18.10.3.0.5 Impact on network diameter. Figure?? is used to descibe the impact on the di-
ameter. The graph shows only the relative trends, as empirically verified by simulations for many
large networks, including the Web and Internet. Any numberssimply in the graph convey an ap-
proximate order of magnitude for the particular networks studied by Albert, Jeong, and Barabasi
[5].

Errors. As all nodes have about the same degree, the removal of any node has approximately
the same amount of small impact in terms of decreases connectivity. The network diameter
increases gradually. The diameter of scale-free networks remains almost same under errors,
as nodes that are removed have small degree with very high probability and are very unlikely
to alter the lengths of the paths among other nodes.

Attacks. As nodes in an exponential network have about the same degree, the network behaves
similarly under attack as under errors. Under attack, the diameter of scale-free networks
increases dramatically, as the few nodes with highest connectivity are removed, thereby
greatly reducing the connectivity of the entire network.

18.10.3.0.6 Impact on network partitioning. The impact of removal of nodes on partitioning
is measured using two metrics:Smax, the ratio of the size of the pargest cluster to the system size,
andSothers, the average size of all clusters except the largest.

Exponential networks. See Figure 18.17.Asf , the fraction of nodes removed is increased,Sothers

increases from 1 to around 2 for some threshold fractionfthreshold. This implies that for very
smallf , whereSothers ∼ 1, single nodes break off. Asf increases, several small but larger
partitions set in, leading to a peak ofSothers at fthreshold. Forf > fthreshold, Sothers reduces
back to 1, as the isolated clusters (fragments) in the network further disintegrate. In terms
of Smax, asf is varied from 0 tofthreshold, Smax decreases from 1 to a low value as small
(mostly single-node) partitions break off. Asfthreshold is approached, the main cluster dis-
integrates, leading toSmax tending to 0. Asf is increased beyondfthreshold, Smax remains
near 0.

705

0 0.5

o
th

e
rs

m
a

x
S

a
n

d
 S

2

1

S

f > f
partitions at

threshold
f

partitions at
very low f
partitions at

f. the fraction of nodes removed

thresholdf

under errors

under errors
under attack and

under attack and

maxS

others

Figure 18.17: Impact on cluster size of exponential networks, from Albert, Jeong, and Barabasi.
(a) Graphical trend. (b) Pictoral cluster sizes for lowf , i.e., f ≪ fthreshold. (c) Pictoral cluster
sizes forf ∼ fthreshold. (d) Pictoral cluster sizes forf > fthreshold. The pictoral trend in (b)-(d) is
also exhibited by scale-free networks under attack, but fora lower value offthreshold.

The impact of attacks on network partitioning is the same as the impact of errors, for the
same reasoning given for the analysis on the diameter.

Scale-free networks. See Figure 18.18.When nodes are randomly removed,Smax decreases from
1 very gradually. Also,Sothers remains steady at 1, indicating that singleton nodes get re-
moved from the main network. There is no thresholdfthreshold observed, even for high values
of f , such as 0.5 error rate.

However, under attack, when the most connected nodes are removed, the behaviour is similar
to (but more acute than) that of the exponential network. Thus, the thresholdfthreshold sets
in at a lower value. This is because the impact of removing thehighly connected nodes first
causes disintegration to set in quickly.

max
S

under attack
max

S

0.4

f. the fraction of nodes removed

thresholdf
0

o
th

e
rs

m
a

x
S

a

n
d

 S

2

1
under errors

(higher f)(moderate f)
under errorsunder errorsunder errors

(very low f)

partitions partitions partitions

Sothers under attack

under errorsSothers

Figure 18.18: Impact on cluster size of scale-free networks, from Albert, Jeong, and Barabasi. The
pictoral impact of attacks on cluster sizes are similar to those in Figure 18.17. (a) Graphical trend.
(b) Pictoral cluster sizes for lowf under failure. (c) Pictoral cluster sizes for moderatef under
failure. (d) Pictoral cluster sizes for highf under failure.

706

18.11 Random Graphs

Some interesting features of random graphs are as follows.

18.11.1 Graph Model

The probability of obtaining a particular random graphG = (V, L), where|V | = n and|L| = l,
is P (G) = pl(1 − p)n(n−1)/2−l. Alternately,G can be viewed as a random graph obtained from a
space ofC l

n(n−1)/2 equiprobable graphs.Gp is used to denote that the probability of a conneciton
between any pair of edges inG is p.

18.11.1.1 Graph Properties

A graph has a propertyQ if limitn→∞p(Q) = 1. A main focus of random graph theory is to
determine the connection probabilityp at which a particular propertyQ, such as the occurence of
a specific subgraph like tree or ring, can most likely arise. Asignificant result by Erdos and Renyi
is that many properties in random networks appear or disappear “suddenly”, at a particular value
of probabilitypc(n), called thecritical probability.

The connection probability is itself modeled as a function of n. If p(n) grows faster thanpc(n),
then almost any graph will exhibit the propertyQ. But if p(n) grows slower thanpc(n), then almost
no graph will exhibit the propertyQ.

limitn→∞p(Q) =

{

0 if p(n)
pc(n)

→ 0

1 if p(n)
pc(n)

→∞ (18.10)

An interesting property of random graphs is the appearance of subgraphs. For example, is there
a critical probability at which arbitrary subgraphs consisting of k nodes andl edges appear in the
graph? Given a graphGp, the number of such subgraphsF was shown by Bollobas [8] to be:

E(G′) = Ck
n

k!

a
pl ∼ nkpl

a
(18.11)

Here,a is the number of number of subgraphs that are isomorphic to one another. Ifp(n) = cn−k/l,
the mean number of subgraphsF isλ = cl/a. Using the distribution of subgraph numbersPp(X =

r), Bollobas showed that

limitn→∞Pp(X = r) = e−λλ
r

r!
(18.12)

The probability thatG contains at least one subgraphF is:

∞
∑

i=1

Pp(X = r) = 1− e−λ (18.13)

This probability converges to 1 with increasingc. Hence the critical probability for which each
graph contains a subgraphF (k, l) is pc(n) = cn−k/l. Instantiating this,

707

1. for a tree ofk nodes,pc(n) = cn−k/(k−1)

2. for a complete subgraph ofk nodes,pc(n) = cn−2/(k−1)

3. for a cycle of sizek, pc(n) = cn−1

18.11.2 Graph Degree Distribution

The degree distributionki of nodei is a binomial distribution, given by Bollobas [7] as:

P (ki = k) = Ck
n−1p

k(1− p)n−k−1 (18.14)

For the entire graphGp, the expected number of nodes with degreek is simplynP (ki = k), which
we denote asλ. The degree distribution of the graph givesXk, the number of nodes with degreek,
which then becomes the Poisson distribution with meanλk:

P (Xk = r) = e−λλ
r
k

k!
(18.15)

For largen,

P (k) = e−pn (pn)k

k!
= e−k (k)k

k!
(18.16)

Much work studied the existence and uniqueness of the maximum and minimum degrees of a
random graph. Among the many interesting results is the result that for a sufficiently highp, if
pn/ln(n) → ∞, then the average degree and the maximum degree of almost allrandom graphs
is of the same order of magnitude. A typical random graph has the same number of edges for the
majority of the nodes.

18.11.3 Graph Diameter

Further, the diameter of a random graph is typically small. With a high probability, the number of
nodesl hops away is close tok

l
. As k

l ∼ Coverage, thenl = ln(Coverage)

ln(k)
. This gives:

d =
n

pn
=
ln(n)

k
(18.17)

In particular, ifk ≥ ln(n), the diameter of all graph with the samen andk is very close toln(n)

k
.

18.11.4 Graph Clustering Coefficient

In a random graph, the probability that two of the neighboursof any node are connected is the
clustering coefficient, which is simply:k

n
. However, real networks have a clustering coefficient

that is independent ofn or another parameter.

708

18.11.5 Generalized Random Graph Networks

Random graphs cannot capture the scale-free nature of real networks, which states that the node
degree distribution follows a power law. Thegeneralized random graph modeluses the degree
distribution as an input, but is random in all other respects. Thus, the constraint that the degree
distribution must obey a power law is superimposed on an otherwise random selection of nodes
to be connected by edges. These semi-random graphs can be analyzed for various properties of
interest. Although a simple formal model for the clusteringcoefficient is not known, it has been
observed that generalized random graphs have a random distribution of edges similar to the ER
model, and hence the clustering coefficient will likely tendto zero asN increases.

18.12 Small-world Networks

Real-world networks are small worlds, having small diameter, like random graphs, but they have
relatively large clustering coefficients that tend to be independent of the network size.

Ordered lattices tend to satisfy this property that clustering coefficients are independent of the
network size. Figure 18.19(a) shows a one-dimensional lattice in which each node is connected to
k = 4 closest nodes. The clustering coefficientC = 3(k−2)

4(k−1)
.

(a) (c)(b)

��

��

������
��
��
��

��

��

��

��

��

��

�� ��

��

��

��

�� ��

��

��

��

��
��
��
��

��

��

��

�� ��

��

�� ��

��

��

�� ��

��

��

Figure 18.19: The Watts-Strogatz random rewiring procedure. (a) Regular. (b) Small-world. (c)
Random. The rewiring shown maintains the degree of each node.

The first model for small world graphs with high clustering coefficients and low path length is
the Watts Strogatz (WS) model.

1. Define a ring lattice withn nodes and each node connected toK closest neighbours (k/2 on
either side). Letn≫ k ≫ ln(n)≫ 1.

2. Rewire each edge randomly with probabilityp. Whenp = 0, there is a perfect structure, as
in Figure 18.19(b). Whenp = 1, complete randomness, as in Figure 18.19(c).

A characteristic of small-world graphs is the small averagepath length. Whenp is small,len
scales linearly withn but whenp is large,len scales logarithmically. Through analytical arguments

709

and simulations, it is now believed that the characteristicpath length varies as:

len(n, p) ∼ n1/d

k
f(pkn) (18.18)

where the functionf behaves as follows.

f(u) =

{

constant if u≪ 1
ln(u)

u
if u≫ 1

(18.19)

The variableu ∝ pknd has the intuitive interpretation that it depends on the average number of
random links that provide “jumps” across the graph, andf(u) is the average factor by which the
distance between a pair of nodes gets reduced by the “jumps”.

18.13 Scale-free Networks

Many real networks are scale-free, and even for those that are not scale-free, the degree distribution
follows an exponential tail that is significantly differentfrom that of the Poisson distribution. Semi-
random graphs that are constrained to obey a power law for thedegree distributions and constrained
to have large clustering coefficients yield scale-free networks, but do not shed any insight into the
mechanisms that give birth to scale-free networks. Rather than modeling the network topology, it
is better to model the network assembly and evolution process. Specifically,

• Rather than begin with a constant number of nodesn that are then randomly connected or
rewired, real networks (e.g., WWW, INTERNET) exhibitgrowthby the addition of nodes
and edges.

• Rather than assume that the probability of adding (or rewiring) an edge between two nodes
is a constant, real networks exhibit the property ofpreferential attachment, where the prob-
ability of connecting to a node depends on the node degree.

The simple Barabasi-Albert model which captures growth andpreferential attachment is de-
scribed in Figure 18.20. Numerically, it is verified that thedegree distribution follows a power law
with degree=3, that is independent of the parameterm.

Two techniques to analyze the degree distribution of modelsare now exemplified in the context
of the BA model.

18.13.1 Master-equation approach

Let p(k, ti, t) denote the probability that at timet, a nodei that was added at timeti has degreek.
When a new node withm edges is added to the graph, the degree of nodei increases by one with
probabilitym ·∏(k) = k/2t. Hence, we have:

p(k, ti, t+ 1) =
k − 1

2t
· p(k − 1, ti, t)− [1− k

2t
] · p(k, ti, t) (18.21)

710

Initially, there arem0 isolated nodes. At each sequential step, perform one of the following operations.

With probability p, add m, wherem ≤ m0, new edges.For each new edge, one end is randomly se-
lected, the other end with probability

∏

(ki) =
ki + 1

∑

j(kj + 1)
(18.20)

With probability q, rewire m edges.To rewire an edge, randomly select nodei, delete some edge(i, w),
add edge(i, x) to nodex that is chosen with probability

∏

(kx) as per Equation (18.20).

With probability 1− p− q, insert a new node.Add m new edges to the new node, such that with proba-
bility

∏

(ki), an edge connects to a nodei already present before this step.

Figure 18.20: The simple Barabasi-Albert model.

The first term is the probability that a node withk − 1 degree gets a new edge; the second term is
the probability that a node with degreek does not get a new edge. Based on this formulation, the
degree distribution can be expressed as

P (k) = limitt→∞
∑

ti

p(k, ti, t)/t (18.22)

From Equation (18.21), it can be shown that

P (k) =

{

k−1
k+2

P (k − 1) if k ≥ m+ 1
2

m+2
if k = m

(18.23)

This solves as:

P (k) =
2m(m+ 1)

k(k + 1)(k + 2)
(18.24)

18.13.2 Rate-equation approach

Let Nk(t) be the average number of nodes havingk edges at timet. When a new node is added,
Nk(t) changes as follows. New edges are added to some nodes with degreek − 1, new edges are
added to some nodes with degreek, and new nodes withm edges are added. These three changes
affectNk(t) in the following manner.

dNk

dt
= m · [(k − 1) ·Nk−1(t)

∑

k kNk(t)
− k ·Nk(t)

∑

k kNk(t)
] + δk,m (18.25)

By taking the asymptotic limit,Nk(t) = t · P (k), and
∑

k kNk(t) = 2mt. This yields the same
recursive Equation (??) obtained using the Master-equation approach.

711

18.14 Evolving Networks

The BA algorithm in Figure 18.20 represents a basic model that cannot fully capture real network
properties. For example, the BA model has a fixed exponent of 3for the power law, independent
of the parameterm. Real networks have an exponent that varies, typically between 1 and 3. Some
real networks sometimes have exponential cutoffs that are not within the power law regime. The
study of more general and flexible models that can accuratelycapture real networks has lead to
several notable directions of investigation.

Preferential attachment: The BA model assumed that the probability
∏

(k) that a node connects
to a node ofi is proportional to the degreeki. This implied that

∏

(k) is linearly proportional
to k.

It has been shown analytically that forsublinear preferential attachmentas well as forsu-
perlinear preferential attachment, the scale-free nature of the network cannot be preserved.

In real networks, there is a finite probability that a node attaches to a isolated node, i.e.,
∏

(0) 6= 0 and
∏

(k) = C + kα.

Here,C denotes theintial attractiveness. It can be seen that initial attractiveness changes
the degree exponent but preserves the scale-free nature of the degree distribution.

Growth: The BA model assumed that the rate of addition of nodes and edges was uniform. Many
real networks like INTNET, AS, WEB, SUBSTRATE, WORDOCC, have the property that
the number of edges increases faster than the number of nodes, implying an increase in
the average degree as the number of nodes increases. It has been analytically shown that
accelerated growth does not affect the power law nature although the exponent degree is
altered.

Local events: Real networks undergo local (microscopic) changes to the topology, such as node
addition and node deletion, edge addition and edge deletion. A popular model that explores
the properties of such local events is the extended Barabasi-Albert model, shown in Fig-
ure 18.21.

Growth constraints: Real networks often have bounded capacity for the number of edges (e.g.,
connections at a router) or a finite lifetime for the nodes (asin social networks). In the electri-
cal power distribution network which exhibits an exponential distribution, there are practical
reasons why the node degree is bounded. In the actors networkwhich exhibits a power law
with an exponential cutoff for largek, ageing limits the accrual of new edges. Thus, ageing
and finite capacity need to explicitly captured in a good model for such networks.

Competition: Real-world networks exhibit competition, wherein some nodes can attract more
edges (e.g., via advertising) at the cost of other nodes. This feature can be modeled by a
fitness parameter. Similarly, a new node may inherit edges belonging to some other node or
nodes (e.g., modifying a replica of a web page). This needs tobe explicitly modeled.

712

Initially, there arem0 isolated nodes. At each sequential step, perform one of the following operations.

With probability p, add m, wherem ≤ m0, new edges.For each new edge, one end is randomly se-
lected, the other end with probability

∏

(ki) =
ki + 1

∑

j(kj + 1)
(18.26)

With probability q, rewire m edges.To rewire an edge, randomly select nodei, delete some edge(i, w),
add edge(i, x) to nodex that is chosen with probability

∏

(kx) as per Equation 18.26.

With probability 1− p− q, insert a new node.Add m new edges to the new node, such that with proba-
bility

∏

(ki), an edge connects to a nodei already present before this step.

Figure 18.21: The extended Barabasi-Albert model.

Preferential attachment: Various local-level mechanisms such as: copying mechanism(copy
edges of another node as in web pages), and tracing selected walks (as in recursively fol-
lowing the citation trail in a citation network), need to be modeled.

18.14.1 Extended Barabasi-Albert Model

The extended BA model is an example model for evolving networks.
Continuum theory analysis: In continuum theory, it is assumed thatki changes continuously and
∏

(ki) then represents the rate at whichki changes. Each of the three possible events in a sequential
step can affect the rate at whichki changes as follows.

1. With probabilityp, m new links are added. For each link, one end is randomly chosen,
leading to a change inki of pm/N . For each link, the second end attaches preferentially,
leading to a change inki of pm · (ki+1)

P

j(kj+1)
. Hence,

dki

dt
= pm

1

N
+ pm

ki + 1
∑

j(kj + 1)
(18.27)

2. With probabilityp, m existing links are rewired. For each rewired link, a randomly chosen
node loses one incident edge which then attaches preferentially. Thus, the impact onki is:

dki

dt
= −qm 1

N
+ qm

ki + 1
∑

j(kj + 1)
(18.28)

3. With probability(1−p−q), a new node is added withm links. Each of them links connects
preferentially, thus:

dki

dt
= (1− p− q)C ki + 1

∑

j(kj + 1)
(18.29)

713

Summing the three effects, we have:

dki

dt
= (p− q)m 1

N
+m

ki + 1
∑

j(kj + 1)
(18.30)

As the system size and topology varies with time, we have:

N(t) = m0 + (1− p− q)t;
∑

j

kj = 2mt(1− q)−m (18.31)

As t increases, the constantsm andm0 can be deleted. Further, for a node added atti, we
have thatk(ti) = m (the initialization step). Exercise 9 asks you to show that the solution to
Equation (18.30) has the form

ki(t) = [A(p, q,m) +m+ 1](
t

ti
)1/B(p,q,m), (18.32)

A(p, q,m) = (p− q)(2m(1− q)
1− p− q + 1), B(p, q,m) =

2m(1− q) + 1− p− q
m

(18.33)

Based on further algebraic derivations, Albert and Barabasi showed that

P (k)α[k+κ(p, q,m)]−γ(p,q,m), whereκ(p, q,m) = A(p, q,m)+1 andγ(p, q,m) = B(p, q,m)+1

(18.34)
Equation (18.34) is valid if, for a fixedp andm,

q < qmax = min(1− p, (1− p+m)/(1 + 2m))

There are now two cases.

q < qmax: Equation (18.34) is valid and the degree distribution is a power law.

q < qmax: Equation (18.34) is invalid, andP (k) can be shown to behave like an exponential dis-
tribution. The model now behaves like the ER and WS models.

This is similar to the behaviour seen in real networks – some networks show a power law
while others show an exponential tail – and a single model cancapture both behaviors by tuning
the parameterq. The scale-free regime and the exponential regime are marked in the graph in
Figure 18.22. The boundary between the two regimes depends on the value ofm and has slope
−m/(1 + 2m). The area enclosed by thick lines shows the scale-free regime; the dashed line is its
boundary whenm→∞ and the dotted line is its boundary whenm→ 0.

18.15 Chapter Summary

Peer-to-peer (P2P) networks allow equal participation andresource sharing among the users. This
chapter first analyzed the different types of P2P networks. Unstructured P2P networks are like

714

SF

q

0

p0 1.0

1.0

E

Figure 18.22: Phase diagram for the Extended Barabasi-Albert model. SF denotes the scale-free
regime, which is enclosed by the thick border.E denotes the exponential regime which exists in
the remainder of the lower diagonal region of the graph. The plain line shows the boundary for
m = 1, having a Y-axis intercept at 0.67.

Gnutella and BitTorrent. We studied different search mechanisms - flooding, constrained flooding,
and blind search - for such unstructured networks. We also examined some data replication strate-
gies, and their impact on the search performance. The chapter then studied 3 classical structured
P2P networks - Chord, CAN, Tapestry - all of which use the distributed hash table concept in their
implementations. Although all the three mechanisms differ, they are similar in that they represent
different trade-offs in search efficiency, i.e., path length, and the amount of local storage for im-
plementing the hash tables. The spectrum of P2P networks from unstructured to structured offer a
wide range of trade-offs for user requirements. The chapteralso examined issues such as fairness
and trust management. These issues are important because inthe P2P environment where there is
no control authority, the system must be able to autonomously alllow for fairness.

The internet, AS-AS level internets, and the web (WWW) overlays exhibit some interesting
properties about how they grow and evolve. Many network overlays outside of computer science
also exhibit the same properties. The chapter studied several properties of the Internet and the
web graphs. Then, in a more general setting, the chapter examined random networks, small-
world networks, node degree distributions, scale-free networks, and the impact of error and attack
tolerance for such networks. Networks grow in an uncontrolled fashion, yet, there seems to be
some underlying basis for such growth. Of the several proposals to model the growth of networks,
we study the Barabasi-Albert model which appears to be promising in its applicability to not just
the computer science networks, but also to networks in otherdisciplines and natural phenomena.

are being widely used as the

715

18.16 Exercise Problems

1. (Replication.) Derive the values of average search size A, Ai, and utilizationui for Square-
root replication. The derived answers should match the entries in Table 18.3.

2. (Fault-tolerance in Chord.) Adapt the code in Figure 18.6so that the nodes manage a suc-
cessor list orα successors, rather than a single successor.

3. (Chord.) In the Chord protocol, assume that the successorlist at each node hasα = Ω(log n)

nodes. Show the following.

(a) If a Chord ring is initially stable, and if the probability of subsequent failure of each
node is 0.5, thenLocate_Successor returns the closest functional successor node to
the key being searched with high probability.

(b) If a Chord ring is initially stable, and if the probability of subsequent failure of each
node is 0.5, it takesO(log n) average-case time forLocate_Successor to complete.

4. (CAN.) Compute the time and message complexity of the distributed region reassignment
protocol that is run periodically by the CAN protocol.

5. (CAN.) Identify all the changes to the base CAN protocol toaccommodate the optimization
of overloading coordinate regions, discussed in Section 18.5.5.

6. (Power Law in the Internet. [28]) Show that the number of edges in the Internet graph that
obeys the power law for the rank exponent is given as follows.Let the graph haven nodes
and rank exponentR. Then:l ∼ 1

2(R+1)
(1− 1

nR+1)n

7. Show that Equation (18.23) using the Master-equation approach for the degree distribution
in the extended BA model can be solved as Equation (18.24).

8. Show that the Master-equation approach used to solve for the degree distribution in the
extended BA model in Section 18.13.2 gives the solution expressed by Equation (??).

9. Show that the solution to Equation (18.30) for the degree distribution in the Extended BA
model using continuum theory analysis is given by Equation (18.33).

18.17 Bibliographic Notes

The introduction is based on the survey by Risson and Moors [26] and Androutsellis-Theotokis
and Spinellis [6]. The discussion on replication and searchin unstructured networks is based
on Cohen and Shenker [11], and on Lv, Cao, Cohen, Li, Shenker [20], respectively. Gnutella
[14, 15], Napster [22], and Freenet [9] are widely implemented commercial P2P protocols. The
Chord protocol was proposed by Stoica et al. [29]. The Content Addressible Network (CAN)
was proposed by Ratnasamy et al. [24]. The design of Tapestry[18, 19, 33, 34] and the related

716

Pastry [27] overlay was based on the ideas of Plaxton trees proposed by Plaxton, Rajaraman, and
Richa [23]. Tapestry built on the Plaxton trees by providingbetter fault-tolerance and resilience in
the face of node joins and departures. The discussion on fundamental tradeoffs between routing
table size and network diameter is based on Xu, Kumar, and Yu [32] and Ratnasamy, Stoica, and
Shenker [25]. The BitTorrent system was initially proposedby Brahm Cohen [10]. The discussion
of trust management is based on Gupta et al. [16].

The discussion on the graph structures of complex networks is structured and based on the
excellent survey by Albert and Barabasi [4]. The discussionon power laws and Zipf’s law is taken
from the tutorial by Adamic [2]. The power laws for the Internet were discovered by Siganos
and the Faloutsos brothers [28]. The discussion on the betweenness centrality metric for graphs is
based on the work by Goh et al. [13]. The random graphs model was proposed and analyzed by
Erdos and Renyi [12]. Further results on the properties on random graphs were given by Bollobas
[7, 8]. The small worlds model was proposed by Watts and Strogatz [30]. The Extended Barabasi-
Albert model for graph evolution was given by Barabasi and Albert [3]. The analysis of error and
attack tolerance on exponential networks and on scale-freenetworks in based was done by Albert,
Jeong, and Barabasi [5].

717

Bibliography

[1] K. Aberer and Z. Despotovic, Managing Trust in a Peer-To-Peer Information System,In Pro-
ceedings of the 10th International Conference on Information and Knowledge Management,
Atlanta, Georgia, USA, November 2001, pp. 310-317.

[2] L. Adamic, Zipf, Power-Laws, and Pareto - A Ranking Tutorial,
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html

[3] R. Albert, A.-L. Barabasi, Topology of Evolving Networks: Local Events and Universality,
Physical Review Letters, Volume 85(24): 5234-5237, December 2000.

[4] R. Albert, A.-L. Barabasi, Statistical Mechanics of Complex Networks, Review of Modern
Physics, Volume 74(1): 47-97, January 2002.

[5] R. Albert, H. Jeong, A. Barabasi, Error and Attack Tolerance of Complex Networks, Nature,
Vol. 406, 378-381, July 2000.

[6] S. Androutsellis-Theotokis, D. Spinellis, A Survey of Peer-to-Peer Content Distribution
Technologies, ACM Computing Surveys, Vol. 36(4): 335-371,December 2004.

[7] B. Bollobas, Discrete Math, Vol. 33, pp. 1-, 1981.

[8] B. Bollobas, Random Graphs, Academic Press, London, 1985.

[9] I. Clarke, O. Sandberg, B. Wiley, T. W. Hong, Freenet: A Distributed Anonymous Informa-
tion Storage and Retrieval System.In Workshop on Design Issues in Anonymity and Unob-
servability, Berkeley, California, USA, July 2000, pp. 46-66.

[10] B. Cohen, Incentives Build Robustness in BitTorrent,
http://www.bittorrent.com/bittorrentecon.pdf

[11] E. Cohen, S. Shenker, Replication Strategies in Unstructured Peer-to-Peer Networks, ACM
SIGCOMM, 177-190, 2002.

[12] P. Erdos, A. Renyi, Random Graphs. Publ. math. (Debrecen), Vol 6, p. 290-, 1959

[13] K. Goh, E. Oh, H. Jeong, B. Kahng, D. Kim, Classification of Scale-Free Networks, Proceed-
ings of the National Academy of Sciences, 2002.

718

[14] Gnutella,http://www.gnutella.com/.

[15] The Gnutella protocol specification,
http://www9.limewire.com/

developer/gnutella_protocol_0.4.pdf.

[16] M. Gupta, P. Judge and M. Ammar, A Reputation System for Peer-to-Peer Networks.In
Proceedings of the 13th International Workshop on Network and Operating Systems Support
for Digital Audio and Video, (ACM Press), Monterey, California, USA, June 2003, pp. 144-
152.

[17] M. Gupta, M. H. Ammar, M. Ahamad: Trade-offs between Reliability and Overheads in
Peer-to-peer Reputation Tracking, Computer Networks 50(4): 501-522 (2006)

[18] K. Hildrum, J. Kubiatowicz, S. Rao, B. Y. Zhao, Distributed Object Location in a Dynamic
Network, ACM SPAA 2002: 41-52

[19] K. Hildrum, J. Kubiatowicz, S. Rao and B. Y. Zhao, Distributed Object Location in a Dynamic
Network, Theory of Computing Systems, March 2004, No. 37, Pgs. 405-440, Springer-Verlag

[20] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, Search and Replication in Unstructured Peer-to-
peer Networks, International Conference on Supercomputing, 2002: 84-95

[21] S. Milgram, The Small World Problem. Psychology Today,2, page 60-67, 1967.

[22] Napster,http://www.napster.com/.

[23] C. G. Plaxton, R. Rajaraman, A. W. Richa, Accessing Nearby Copies of Replicated Objects
in a Distributed Environment. ACM SPAA 1997: 311-320

[24] S. Ratnasamy, P. Francis, M. Handley, R.M. Karp, S. Shenker: A scalable content-addressable
network. SIGCOMM 2001: 161-172.

[25] S. Ratnasamy, I. Stoica, S. Shenker: Routing Algorithms for DHTs: Some Open Questions.
IPTPS 2002: 45-52

[26] J. Risson, T. Moors, Survey of research towards robust peer-to-peer networks: Search Meth-
ods. Computer networks, 2006 (to appear).

[27] A. Rowstron and P. Druschel, Pastry: Scalable, Distributed Object Location and Routing
for Large-Scale Peer-to-Peer Systems,In Proceedings of the IFIP/ACM Middleware 2001,
Heidelberg, Germany, November 2001, pp. 329-350.

[28] G. Siganos, M. Faloutsos, P. Faloutsos, C. Faloutsos, Power Laws and the AS-level Internet
Topology, IEEE/ACM Transactions on Networking, 11(4): 514-524, 2003.

719

[29] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M.F. Kaashoek, F. Dabek, H. Balakrishnan,
Chord: A Scalable Peer-to-peer Lookup Service for InternetApplications, IEEE Transactions
on Networking 11(1): 17-31, February 2003.

[30] D.J. Watts, S.H. Strogatz. Nature, 393, page 440, 1998.

[31] O. Wolfson, S. Jajodia, Y. Huang, An Adaptive Data Replication Algorithm, ACM Transac-
tions on Database Systems, 22(2): 255-314, 1997.

[32] J. Xu, A. Kumar, X. Yu, On the Fundamental Tradeoffs between Routing Table Size and
Network Diameter in Peer-to-Peer Networks, IEEE Journal onSelected Areas in Communi-
cations, 22(1): 151-163, Jan 2004.

[33] B. Y. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, J.Kubiatowicz, Tapestry: A Resilient
Global-Scale Overlay for Service Deployment, IEEE Journalon Selected Areas inCommu-
nications, 22(1): 41-53, Jan 2004.

[34] B. Y. Zhao, J. D. Kubiatowicz and A. D. Joseph, Tapestry:An Infrastructure for Fault-
Resilient Wide-Area Location and Routing,Technical Report UC Berkeley, CSD-01-1141,
U. C. Berkeley, Berkeley, California, USA, April 2001.

720

Index

Compare&Swap, 536
Fetch&Increment, 536
Swap, 421
Test&Set, 421
Definitely, 373
Possibly, 373
Read-Modify-Write, 539

Abadi, M, 589, 613
accuracy properties, 558
Acharya, 99
adaptive algorithms, 122
Afek, Y, 642, 644
Agarwal, D, 320
Agrawala, AK, 300
agreement

failure-free system, 505
Alagar, 100
Alvisi, L, 494
anonymous algorithms, 121
antimessages, 68
Arora, A, 622, 637, 643
asynchronous execution, 18
asynchronous system, 124
atomic broadcast, 570
atomic registers, 424
authentication, 586
authentication protocol failures, 611
authentication protocols

with asymmetric cryptosystem, 602
with symmetric cryptosystem, 590

authentication server, 593

Badrinath, 99

Baldoni, R, 494
Barabasi-Albert model

extended Barabasi-Albert model, 713
Bellovin, SM, 609
Bhargava, B, 494
Bremler, A, 644
Briatico, D, 458
broadcast, 137
Burrows, M, 613
Byzantine agreement, 502

exponential tree algorithm, 509
upper bound, 507

Cao, G, 456
causal delivery, 98
causal order, 196

optimal algorithm, 198
Raynal-Sciper-Toueg algorithm, 197

causal ordering, 40
causal path, 104
causal precedence relation, 39
Chakrabarti, S, 613
Chandra, TD, 556, 557, 561, 566, 570, 571
Chandrasekaran, S, 242
Chandy, 87, 352, 353
Chandy, KM, 365
channel state recording, 99
checkpoint, 102, 447

global, 448
local, 447

checkpointing
communication-induced, 456
coordinated, 454

721

uncoordinated, 452
checkpointing algorithm

Helary-Mostefaoui-Netzer-Raynal proto-
col, 486

Juang and Venkatesan algorithm, 466
Koo-Toueg, 463
Manivannan-Singhal algorithm, 470
Peterson-Kearns algorithm, 479

Chord, 676
churn, 678

clock inaccuracies, 73
clock offset, 73
clock skew, 73
clocks

matrix, 63
physical, 72
scalar, 49
vector, 51

closure, 622
clustering, 700
common clock primitives, 636
common knowledge, 280

concurrent common knowledge, 281
Epsilon common knowledge, 280
eventual common knowledge, 280
protocols for concurrent common knowl-

edge, 282
timestamped common knowledge, 280

communication
asynchronous, 44
synchronous, 44

communication primitives, 14
asynchronous, 14
blocking, 14
nonblocking, 14
synchronous, 14

Compare&Swap, 537
completeness properties, 558
complex networks

Barabasi-Albert model, 710

error and attack tolerance, 704
graph structures, 699
Internet, 702
Internet graph, 701

complexity metrics, 127
concurrency, 12
concurrency measure, 47
conistent cut, 86
conjunctive predicate detection

interval-based piggybacking algorithm, 390
interval based algorithm, 379
interval-based token algorithm, 386
state-based token algorithm, 384

conjunctive predicate detetion
state-based algorithm, 381

consensus, 503
k-set consensus, 521
approximate agreement, 522
impossibility in shared memory asynchronous

systems, 533
impossibility result for asynchronous sys-

tems, 518
phase king algorithm, 516
reliable broadcast, 532
renaming problem, 527
transaction commit, 521
wait-free renaming using splitters, 547
wait-free shared memory renaming, 545

consensus hierarchy, 536
consensus problem, 565

solution using eventually strong FD, 568
solution using strong FD, 566

consensus under crash failures, 507
Consistent clobal gnapshots, 105
consistent global snapshots

necessary and bufficient conditions, 102
consistent global state, 85
consistent global states, 41
consnesus

shared memoryk-set consensus, 545

722

terminating reliable broadcast, 520
content-addressible networks (CAN), 683
convergecast, 137
convergence, 622
crown, 186
cryptographic protocols

design principles, 589
cut, 86
cut in a ditributed computation, 42

data indexing, 668
deadlock

avoidance, 343
Chandy-Misra-Haas algorithm, 352, 353
detection, 344
Kshemkalyani-Singhal algorithm, 355
Mitchell-Merritt algorithm, 349
phantom, 344
prevention, 343
resolution, 344

deadlock detection, 344
deadlocks, 318

diffusing computations based algorithms,
348

edge-chasing algorithm, 348
global state detection based algorithms,

349
path-pushing algorithms, 348

degree distributions, 700
delayed messages, 450
Delporte-Gallet, C, 573
deterministic execution, 122
dictionary attack, 609
diffusion computation, 348
Dijkstra, E, 619, 624, 649
distributed deadlock, 342
distributed discrete event simulations, 71
Distributed Program, 37
distributed reset, 637
distributed systems

characteristics, 1

design issues, 21
Dolev, S, 646
Dolve, S, 640
duplicate messages, 450
dynamic termination detection, 249

El Abbadi, A, 320
Elnozahy, EN, 494
emulations, 20

message-passing, 13
shared memory, 13
synchronous system, 19

Encrypted Key Exchange (EKE) protocol, 609
enumerating consistent snapshots, 109
event counting, 51
eventual accuracy properties, 559
evolving networks, 712
executions realizable with synchronous com-

munication, 185
timestamps, 188

failure detector
adaptive, 578
implementation, 576
realistic, 574
weakest, 575, 576

failure detectors, 557
reducibility, 560
types, 560

failure pattern, 557
failure recovery, 450
Fowler, 58
free-riding, 695
Fuchs, WK, 457
future cone of an event, 43

Garg, V, 582
Gartner, F, 640
generalized deadlocks, 355
generalized random graph networks, 709
Gligor, V, 365
global state, 40, 86

723

consistent, 85
global virtual time, 70
Gnutella, 670
Gouda, M, 622, 637, 638, 643, 649
graph algorithms, 129

maximal independent set (MIS), 158
all sources shortest paths, 142
compact routing tables, 161
connected dominating set (CDS), 160
constrained flooding, 145
delay bounded Steiner trees, 221
distance vector rouitng, 141
leader election, 163
minimum weight spanning tree, 146, 152
reverse path forwarding, 219
single source shortest path, 140, 141
spanning tree, 130, 131, 134, 137
Steiner trees, 220

group communication, 195
fault-tolerant, 216
multicast, 209

Guerraoui, R, 582

Haas, L, 352, 353
Helary, 93
Helary, JM, 486
Herman, T, 365
Huang, ST, 643

illegitimate state, 622
impersonation attack, 604
incarnation number, 473
incremental snapshot, 92
inhibition, 123
interactive consistency, 503
interconnection networks, 6, 667
Israeli, A, 640

Jard, 60
Johnson, D, 494
Jourdan, 60
Juang, 466

Kaminsky, M, 613
Kasami, 325
Katz, S, 651
Kearns, 91, 100
Kearns, P, 479
Kerberos

authentication service, 597
authenticator, 600

Kerberos authentication service, 597, 599
Kim, KH, 494
Knapp, 348
Knapp, E, 365
knowledge

agreement, 279
asynchronous system, 278
logic, 272
multi-dimensional clocks, 287
operators, 272
properties, 277
transfer, 283

Koo, R, 463
Kripke structures, 274
Kshemkalyani, 56, 309, 355
Kshemkalyani, AD, 365
Kutten, S, 642

Lai, 95
Lam, S, 613
Lamport, 87, 297
Lamport’s happens before relation, 39
layering, 635
lazy failure detection protocol, 579
legitimate state, 622
Lodha, 309
log-based rollback recovery, 458
logging

causal, 462
optimistic, 461
pessimistic, 459

logical clocks, 48
lost messages, 450

724

Maekawa, M, 317
Manivannan, 109, 470
Marzullo, K, 494
matrix clocks, 63
matrix time, 63
Mattern, 97
Mattern, F, 251
memory consistency, 402

atomic consistency, 403
causal consistency, 409
hierarchy, 413
linearizability, 403
pipelined RAM (PRAM), 411
processor consistency, 411
sequential consistency, 406
slow memory, 412

Menasce, D, 365
Merritt, 349
Merritt, M, 609
message ordering, 180

asynchronous executions, 180
hierarchy, 188
synchronous executions, 184

message ordering paradigms
causal order, 181
FIFO executions, 180

Misra, 352, 353
Mitchell, 349
modularization, 635
monitoring global gtate, 100
Moran, S, 640
Mostefaoui, 486
muddy children puzzle, 271
multicast, 209

core-based trees, 222
destination agreement based, 216
fixed sequencer based, 216
history based, 214
moving sequencer based, 215
privilege based, 215

propagation trees, 210
Muntz, R, 365
mutual exclusion

Agarwal-El Abbadi algorithm, 320
fast mutual exclusion, 418
hardware-assisted, 421
Lamport’s algorithm, 297
Lamport’s bakery algorithm, 416
Lodha-Kshemkalyani algorithm, 309
Maekawa’s algorithm, 317
quorum-based algorithms, 316
Raymond’s algorithm, 327
Ricart-Agrawala algorithm, 300
Singhal’s dynamic algorithm, 303
Suzuki-Kasami algorithm, 325
token-based algorithms, 324

Napster, 667
Needham and Schroeder protocol, 603
Needham, R, 589, 603, 613
Network Time Protocol (NTP), 74
Netzer, 105, 109
Netzer, R, 486
nonblocking universal algorithm, 541
nonce, 591
nondeterministic execution, 122

object replication, 165
one-time password, 594
orphan messages, 450
Otway-Rees protocol, 596
overlays, 118, 668

structured, 669
unstrucuted, 669

parallel system, 5
coupling, 10
Flynn’s taxonomy, 10
interconnection networks, 6
multiprocessor, 5
paralelism, 11

Pareto law, 701

725

partial synchrony, 576
partially synchronous models, 576
past cone of an event, 43
path

causal, 104
zigzag, 103

peer-to-peer
flooding, 672
proportional replication, 674
random walk, 672
replication, 674
square-root replication, 674
uniform replication, 674

Peterson, SL, 479
physical clock cynchronization, 72
physical clocks, 72
power law, 701
Prakah, R, 494
predicates, 371

conjunctive, 378
disjunctive, 393
modalities, 373
observer-independent, 393
relational, 374
stable, 371
unstable, 372

Prisoners’ dilemma, 695
probabilistic self-stabilization, 623
probe message, 353
program structure, 128
progress, 344
pseudo stabilization, 656
pseudo-stabilizing system, 623
public key certificate, 603

R-graph, 110
Ramamoorthy, CV, 365
random graphs, 707
randomized self-stabilization, 623
Raymond, K, 327
Raynal, M, 486, 582

Reducing Weak FD to a Strong FD, 561
register hierarchy, 423
regular registers, 424
relational predicate detection, 374
rendezvous, 191
reputation management, 696
Ricart, 300
Richard, G, 494

safe registers, 423
safety, 344
scalar time, 49
scale-free networks, 704, 706, 710
Schiper, A, 582
Schneider, M, 650
Schroeder, MD, 603
Secure Remote Password (SRP) protocol, 610
secure sockets layer, 605
self-stabilization, 622

cost, 634
for fault folerance, 652
role of compilers, 649

self-stabilizing algorithm for 1-maximal in-
dependent set, 645

self-stabilizing distributed spanning trees, 638
self-stabilizing token ring, 624
shared memory, 399
shared memory mutual exclusion, 416
simultaneous regions, 100
Singhal, 56, 109, 303, 355, 365, 456, 470
Sistla, P, 494
small-world networks, 699, 709
snapshots, 262
solution to atomic broadcast, 571
spanning tree, 236
Spezialetti, 91, 100
splitters, 547
SSL Protocol, 605
stable property, 90
stable storage, 445–447
starvation, 334

726

state lattice, 374
static termination detection, 247
Strom, 494
surface of the future cone, 44
surface of the past cone, 44
Suzuki, 325
symmetry, 654
synchronizers, 153

α synchronizer, 155
β synchronizer, 156
gamma synchronizer, 156
simple synchronizer, 154

synchronous execution, 19
synchronous order, 192
synchronous system, 124

Tapestry, 689
termination detection, 231, 358

atomic computation model, 251
channel counting method, 258
distributed snapshots, 232
faulty distributed system, 260
four counter method, 253
message-optimal, 242
spanning-sreetbased, 236
vector counters method, 256
very general model, 245
weight throwing, 234

time
matrix, 63
physical, 72
scalar, 49
vector, 51
virtual, 64

time warp mechanism, 67
time-space diagram, 38
topology based primitives, 636
total order, 205

centralized algorithm, 205
three-phase distributed algorithm, 206

total order property, 571

total ordering, 50
Toueg, S, 463, 556, 557, 561, 566, 570, 571
transient failure, 623
tree-structured quorum, 320
Tseng, 260

uniform algorithms, 122
uniform consensus, 573
universality of consensus objects, 540
useless checkpoints, 453, 457

vector clocks, 51
efficient implementations, 56
size, 54

vector clocks size, 54
vector time, 51, 479
Venkatesan, 92
Venkatesan, S, 242, 466
Venkatesan, S., 100
virtual time, 64

wait-for-graph (WFG), 343
wait-free algorithms, 126
wait-free atomic snapshot, 435
wait-free consensus

Compare&Swap, 538
wait-free register simulations, 426–429, 432,

433
wait-free simulations, 423
wait-free universal algorithm, 544
wait-freedom, 422
Wang, Y-M, 106
Watts Strogatz model, 709
weight-throwing scheme, 260
Welch, J, 494
wide-mouth frog protocol, 592
Woo, T, 613
Wu, TD, 610

Xu, 105

Yang, 95
Yemini, 494

727

Yung, M, 642

zigzag cycle, 104
zigzag path, 103
Zipf’s law, 702
Zwaenepoel, 58

728

