


Multicore
Application

Programming



Multicore
Application

Programming
For Windows, Linux, and

Oracle® Solaris

Darryl Gove

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City



Editor-in-Chief
Mark Taub

Acquisitions Editor
Greg Doench

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Kim Wimpsett

Indexer
Ted Laux

Proofreader
Lori Newhouse

Editorial Assistant
Michelle Housley

Cover Designer
Gary Adair

Cover Photograph
Jenny Gove

Compositor
Rob Mauhar

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital let-
ters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Gove, Darryl.
Multicore application programming : for Windows, Linux, and Oracle

Solaris / Darryl Gove.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-71137-3 (pbk. : alk. paper)

1.  Parallel programming (Computer science)  I. Title. 
QA76.642.G68 2011
005.2'75--dc22

2010033284

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected 
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-71137-3
ISBN-10: 0-321-71137-8
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, IN.
First printing, October 2010



Contents at a Glance

Preface xv

Acknowledgments xix

About the Author xxi

1 Hardware, Processes, and Threads 1

2 Coding for Performance 31

3 Identifying Opportunities for Parallelism 85

4 Synchronization and Data Sharing 121

5 Using POSIX Threads 143

6 Windows Threading 199

7 Using Automatic Parallelization and OpenMP 245

8 Hand-Coded Synchronization and Sharing 295

9 Scaling with Multicore Processors 333

10 Other Parallelization Technologies 383

11 Concluding Remarks 411

Bibliography 417

Index 419



This page intentionally left blank 



Contents

Preface xv

Acknowledgments xix

About the Author xxi

1 Hardware, Processes, and Threads 1

Examining the Insides of a Computer 1

The Motivation for Multicore Processors 3

Supporting Multiple Threads on a Single Chip 4

Increasing Instruction Issue Rate with Pipelined
Processor Cores 9

Using Caches to Hold Recently Used Data 12

Using Virtual Memory to Store Data 15

Translating from Virtual Addresses to Physical
Addresses 16

The Characteristics of Multiprocessor Systems 18

How Latency and Bandwidth Impact Performance 20

The Translation of Source Code to Assembly 
Language 21

The Performance of 32-Bit versus 64-Bit Code 23

Ensuring the Correct Order of Memory Operations 24

The Differences Between Processes and Threads 26

Summary 29

2 Coding for Performance 31

Defining Performance 31

Understanding Algorithmic Complexity 33

Examples of Algorithmic Complexity 33

Why Algorithmic Complexity Is Important 37

Using Algorithmic Complexity with Care 38

How Structure Impacts Performance 39

Performance and Convenience Trade-Offs in Source
Code and Build Structures 39

Using Libraries to Structure Applications 42

The Impact of Data Structures on Performance 53



viii Contents

The Role of the Compiler 60

The Two Types of Compiler Optimization 62

Selecting Appropriate Compiler Options 64

How Cross-File Optimization Can Be Used to Improve
Performance 65

Using Profile Feedback 68

How Potential Pointer Aliasing Can Inhibit Compiler
Optimizations 70

Identifying Where Time Is Spent Using Profiling 74

Commonly Available Profiling Tools 75

How Not to Optimize 80

Performance by Design 82

Summary 83

3 Identifying Opportunities for Parallelism 85

Using Multiple Processes to Improve System 
Productivity 85

Multiple Users Utilizing a Single System 87

Improving Machine Efficiency Through Consolidation 88

Using Containers to Isolate Applications Sharing a
Single System 89

Hosting Multiple Operating Systems Using 
Hypervisors 89

Using Parallelism to Improve the Performance of a Single
Task 92

One Approach to Visualizing Parallel Applications 92

How Parallelism Can Change the Choice of 
Algorithms 93

Amdahl’s Law 94

Determining the Maximum Practical Threads 97

How Synchronization Costs Reduce Scaling 98

Parallelization Patterns 100

Data Parallelism Using SIMD Instructions 101

Parallelization Using Processes or Threads 102

Multiple Independent Tasks 102

Multiple Loosely Coupled Tasks 103

Multiple Copies of the Same Task 105

Single Task Split Over Multiple Threads 106



ixContents

Using a Pipeline of Tasks to Work on a Single 
Item 106

Division of Work into a Client and a Server 108

Splitting Responsibility into a Producer and a
Consumer 109

Combining Parallelization Strategies 109

How Dependencies Influence the Ability Run Code in
Parallel 110

Antidependencies and Output Dependencies 111

Using Speculation to Break Dependencies 113

Critical Paths 117

Identifying Parallelization Opportunities 118

Summary 119

4 Synchronization and Data Sharing 121

Data Races 121

Using Tools to Detect Data Races 123

Avoiding Data Races 126

Synchronization Primitives 126

Mutexes and Critical Regions 126

Spin Locks 128

Semaphores 128

Readers-Writer Locks 129

Barriers 130

Atomic Operations and Lock-Free Code 130

Deadlocks and Livelocks 132

Communication Between Threads and Processes 133

Memory, Shared Memory, and Memory-Mapped 
Files 134

Condition Variables 135

Signals and Events 137

Message Queues 138

Named Pipes 139

Communication Through the Network Stack 139

Other Approaches to Sharing Data Between Threads
140

Storing Thread-Private Data 141

Summary 142



x Contents

5 Using POSIX Threads 143

Creating Threads 143

Thread Termination 144

Passing Data to and from Child Threads 145

Detached Threads 147

Setting the Attributes for Pthreads 148

Compiling Multithreaded Code 151

Process Termination 153

Sharing Data Between Threads 154

Protecting Access Using Mutex Locks 154

Mutex Attributes 156

Using Spin Locks 157

Read-Write Locks 159

Barriers 162

Semaphores 163

Condition Variables 170

Variables and Memory 175

Multiprocess Programming 179

Sharing Memory Between Processes 180

Sharing Semaphores Between Processes 183

Message Queues 184

Pipes and Named Pipes 186

Using Signals to Communicate with a Process 188

Sockets 193

Reentrant Code and Compiler Flags 197

Summary 198

6 Windows Threading 199

Creating Native Windows Threads 199

Terminating Threads 204

Creating and Resuming Suspended Threads 207

Using Handles to Kernel Resources 207

Methods of Synchronization and Resource Sharing 208

An Example of Requiring Synchronization Between
Threads 209

Protecting Access to Code with Critical Sections 210

Protecting Regions of Code with Mutexes 213



xiContents

Slim Reader/Writer Locks 214

Semaphores 216

Condition Variables 218

Signaling Event Completion to Other Threads or
Processes 219

Wide String Handling in Windows 221

Creating Processes 222

Sharing Memory Between Processes 225

Inheriting Handles in Child Processes 228

Naming Mutexes and Sharing Them Between
Processes 229

Communicating with Pipes 231

Communicating Using Sockets 234

Atomic Updates of Variables 238

Allocating Thread-Local Storage 240

Setting Thread Priority 242

Summary 244

7 Using Automatic Parallelization and OpenMP 245

Using Automatic Parallelization to Produce a Parallel
Application 245

Identifying and Parallelizing Reductions 250

Automatic Parallelization of Codes Containing 
Calls 251

Assisting Compiler in Automatically Parallelizing 
Code 254

Using OpenMP to Produce a Parallel Application 256

Using OpenMP to Parallelize Loops 258

Runtime Behavior of an OpenMP Application 258

Variable Scoping Inside OpenMP Parallel 
Regions 259

Parallelizing Reductions Using OpenMP 260

Accessing Private Data Outside the Parallel 
Region 261

Improving Work Distribution Using Scheduling 263

Using Parallel Sections to Perform Independent 
Work 267

Nested Parallelism 268



xii Contents

Using OpenMP for Dynamically Defined Parallel 
Tasks 269

Keeping Data Private to Threads 274

Controlling the OpenMP Runtime Environment 276

Waiting for Work to Complete 278

Restricting the Threads That Execute a Region of 
Code 281

Ensuring That Code in a Parallel Region Is Executed in
Order 285

Collapsing Loops to Improve Workload Balance 286

Enforcing Memory Consistency 287

An Example of Parallelization 288

Summary 293

8 Hand-Coded Synchronization and Sharing 295

Atomic Operations 295

Using Compare and Swap Instructions to Form More
Complex Atomic Operations 297

Enforcing Memory Ordering to Ensure Correct 
Operation 301

Compiler Support of Memory-Ordering Directives 303

Reordering of Operations by the Compiler 304

Volatile Variables 308

Operating System–Provided Atomics 309

Lockless Algorithms 312

Dekker’s Algorithm 312

Producer-Consumer with a Circular Buffer 315

Scaling to Multiple Consumers or Producers 318

Scaling the Producer-Consumer to Multiple 
Threads 319

Modifying the Producer-Consumer Code to Use 
Atomics 326

The ABA Problem 329

Summary 332

9 Scaling with Multicore Processors 333

Constraints to Application Scaling 333

Performance Limited by Serial Code 334



xiiiContents

Superlinear Scaling 336

Workload Imbalance 338

Hot Locks 340

Scaling of Library Code 345

Insufficient Work 347

Algorithmic Limit 350

Hardware Constraints to Scaling 352

Bandwidth Sharing Between Cores 353

False Sharing 355

Cache Conflict and Capacity 359

Pipeline Resource Starvation 363

Operating System Constraints to Scaling 369

Oversubscription 369

Using Processor Binding to Improve Memory 
Locality 371

Priority Inversion 379

Multicore Processors and Scaling 380

Summary 381

10 Other Parallelization Technologies 383

GPU-Based Computing 383

Language Extensions 386

Threading Building Blocks 386

Cilk++ 389

Grand Central Dispatch 392

Features Proposed for the Next C and 
C++ Standards 394

Microsoft's C++/CLI 397

Alternative Languages 399

Clustering Technologies 402

MPI 402

MapReduce as a Strategy for Scaling 406

Grids 407

Transactional Memory 407

Vectorization 408

Summary 409



xiv Contents

11 Concluding Remarks 411

Writing Parallel Applications 411

Identifying Tasks 411

Estimating Performance Gains 412

Determining Dependencies 413

Data Races and the Scaling Limitations of Mutex 
Locks 413

Locking Granularity 413

Parallel Code on Multicore Processors 414

Optimizing Programs for Multicore Processors 415

The Future 416

Bibliography 417

Books 417

POSIX Threads 417

Windows 417

Algorithmic Complexity 417

Computer Architecture 417

Parallel Programming 417

OpenMP 418

Online Resources 418

Hardware 418

Developer Tools 418

Parallelization Approaches 418

Index 419



Preface

For a number of years, home computers have given the illusion of doing multiple tasks
simultaneously. This has been achieved by switching between the running tasks many
times per second. This gives the appearance of simultaneous activity, but it is only an
appearance. While the computer has been working on one task, the others have made no
progress. An old computer that can execute only a single task at a time might be referred
to as having a single processor, a single CPU, or a single “core.”  The core is the part of
the processor that actually does the work.

Recently, even home PCs have had multicore processors. It is now hard, if not impossi-
ble, to buy a machine that is not a multicore machine. On a multicore machine, each
core can make progress on a task, so multiple tasks really do make progress at the same
time.

The best way of illustrating what this means is to consider a computer that is used for
converting film from a camcorder to the appropriate format for burning onto a DVD.
This is a compute-intensive operation—a lot of data is fetched from disk, a lot of data is
written to disk—but most of the time is spent by the processor decompressing the input
video and converting that into compressed output video to be burned to disk.

On a single-core system, it might be possible to have two movies being converted at
the same time while ignoring any issues that there might be with disk or memory
requirements. The two tasks could be set off at the same time, and the processor in the
computer would spend some time converting one video and then some time converting
the other. Because the processor can execute only a single task at a time, only one video
is actually being compressed at any one time. If the two videos show progress meters, the
two meters will both head toward 100% completed, but it will take (roughly) twice as
long to convert two videos as it would to convert a single video.

On a multicore system, there are two or more available cores that can perform the
video conversion. Each core can work on one task. So, having the system work on two
films at the same time will utilize two cores, and the conversion will take the same time
as converting a single film. Twice as much work will have been achieved in the same
time.

Multicore systems have the capability to do more work per unit time than single-core
systems—two films can be converted in the same time that one can be converted on a
single-core system. However, it’s possible to split the work in a different way. Perhaps the
multiple cores can work together to convert the same film. In this way, a system with
two cores could convert a single film twice as fast as a system with only one core.



This book is about using and developing for multicore systems. This is a topic that is
often described as complex or hard to understand. In some way, this reputation is justi-
fied. Like any programming technique, multicore programming can be hard to do both
correctly and with high performance. On the other hand, there are many ways that multi -
core systems can be used to significantly improve the performance of an application or
the amount of work performed per unit time; some of these approaches will be more
difficult than others.

Perhaps saying “multicore programming is easy” is too optimistic, but a realistic way
of thinking about it is that multicore programming is perhaps no more complex or no
more difficult than the step from procedural to object-oriented programming. This book
will help you understand the challenges involved in writing applications that fully utilize
multicore systems, and it will enable you to produce applications that are functionally
correct, that are high performance, and that scale well to many cores.

Who Is This Book For?
If you have read this far, then this book is likely to be for you. The book is a practical
guide to writing applications that are able to exploit multicore systems to their full
advantage. It is not a book about a particular approach to parallelization. Instead, it covers
various approaches. It is also not a book wedded to a particular platform. Instead, it pulls
examples from various operating systems and various processor types. Although the book
does cover advanced topics, these are covered in a context that will enable all readers to
become familiar with them.

The book has been written for a reader who is familiar with the C programming lan-
guage and has a fair ability at programming. The objective of the book is not to teach
programming languages, but it deals with the higher-level considerations of writing code
that is correct, has good performance, and scales to many cores.

The book includes a few examples that use SPARC or x86 assembly language.
Readers are not expected to be familiar with assembly language, and the examples are
straightforward, are clearly commented, and illustrate particular points.

Objectives of the Book
By the end of the book, the reader will understand the options available for writing pro-
grams that use multiple cores on UNIX-like operating systems (Linux, Oracle Solaris,
OS X) and Windows. They will have an understanding of how the hardware implemen-
tation of multiple cores will affect the performance of the application running on the
system (both in good and bad ways). The reader will also know the potential problems to
avoid when writing parallel applications. Finally, they will understand how to write
applications that scale up to large numbers of parallel threads.
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Structure of This Book
This book is divided into the following chapters.

Chapter 1 introduces the hardware and software concepts that will be encountered
in the rest of the book. The chapter gives an overview of the internals of processors. It is
not necessarily critical for the reader to understand how hardware works before they can
write programs that utilize multicore systems. However, an understanding of the basics of
processor architecture will enable the reader to better understand some of the concepts
relating to application correctness, performance, and scaling that are presented later in
the book. The chapter also discusses the concepts of threads and processes.

Chapter 2 discusses profiling and optimizing applications. One of the book’s prem-
ises is that it is vital to understand where the application currently spends its time before
work is spent on modifying the application to use multiple cores. The chapter covers all
the leading contributors to performance over the application development cycle and dis-
cusses how performance can be improved.

Chapter 3 describes ways that multicore systems can be used to perform more work
per unit time or reduce the amount of time it takes to complete a single unit of work. It
starts with a discussion of virtualization where one new system can be used to replace
multiple older systems. This consolidation can be achieved with no change in the soft-
ware. It is important to realize that multicore systems represent an opportunity to change
the way an application works; they do not require that the application be changed. The
chapter continues with describing various patterns that can be used to write parallel
applications and discusses the situations when these patterns might be useful.

Chapter 4 describes sharing data safely between multiple threads. The chapter leads
with a discussion of data races, the most common type of correctness problem encoun-
tered in multithreaded codes. This chapter covers how to safely share data and synchro-
nize threads at an abstract level of detail. The subsequent chapters describe the operating
system–specific details.

Chapter 5 describes writing parallel applications using POSIX threads. This is the
standard implemented by UNIX-like operating systems, such as Linux, Apple’s OS X,
and Oracle’s Solaris. The POSIX threading library provides a number of useful building
blocks for writing parallel applications. It offers great flexibility and ease of development. 

Chapter 6 describes writing parallel applications for Microsoft Windows using
Windows native threading. Windows provides similar synchronization and data sharing
primitives to those provided by POSIX. The differences are in the interfaces and require-
ments of these functions.

Chapter 7 describes opportunities and limitations of automatic parallelization pro-
vided by compilers. The chapter also covers the OpenMP specification, which makes it
relatively straightforward to write applications that take advantage of multicore processors.

Chapter 8 discusses how to write parallel applications without using the functional-
ity in libraries provided by the operating system or compiler. There are some good rea-
sons for writing custom code for synchronization or sharing of data. These might be for
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finer control or potentially better performance. However, there are a number of pitfalls
that need to be avoided in producing code that functions correctly.

Chapter 9 discusses how applications can be improved to scale in such a way as to
maximize the work performed by a multicore system. The chapter describes the common
areas where scaling might be limited and also describes ways that these scaling limitations
can be identified. It is in the scaling that developing for a multicore system is differenti-
ated from developing for a multiprocessor system; this chapter discusses the areas where
the implementation of the hardware will make a difference.

Chapter 10 covers a number of alternative approaches to writing parallel applica-
tions. As multicore processors become mainstream, other approaches are being tried to
overcome some of the hurdles of writing correct, fast, and scalable parallel code.

Chapter 11 concludes the book.

xviii Preface
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1
Hardware, Processes,

and Threads

It is not necessary to understand how hardware works in order to write serial or parallel
applications. It is quite permissible to write code while treating the internals of a com-
puter as a black box. However, a simple understanding of processor internals will make
some of the later topics more obvious. A key difference between serial (or single-threaded)
applications and parallel (or multithreaded) applications is that the presence of multiple
threads causes more of the attributes of the system to become important to the applica-
tion. For example, a single-threaded application does not have multiple threads contend-
ing for the same resource, whereas this can be a common occurrence for a multithreaded
application. The resource might be space in the caches, memory bandwidth, or even just
physical memory. In these instances, the characteristics of the hardware may manifest in
changes in the behavior of the application. Some understanding of the way that the
hardware works will make it easier to understand, diagnose, and fix any aberrant applica-
tion behaviors.

Examining the Insides of a Computer
Fundamentally a computer comprises one or more processors and some memory. A
number of chips and wires glue this together. There are also peripherals such as disk
drives or network cards. 

Figure 1.1 shows the internals of a personal computer. A number of components go
into a computer. The processor and memory are plugged into a circuit board, called the
motherboard. Wires lead from this to peripherals such as disk drives, DVD drives, and so
on. Some functions such as video or network support either are integrated into the
motherboard or are supplied as plug-in cards.

It is possibly easier to understand how the components of the system are related if the
information is presented as a schematic, as in Figure 1.2. This schematic separates the
compute side of the system from the peripherals.
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Figure 1.1 Insides of a PC
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The compute performance characteristics of the system are basically derived from the
performance of the processor and memory. These will determine how quickly the
machine is able to execute instructions.

The performance characteristics of peripherals tend to be of less interest because their
performance is much lower than that of the memory and processor. The amount of data
that the processor can transfer to memory in a second is measured in gigabytes. The
amount of data that can be transferred to disk is more likely to be measured in mega -
bytes per second. Similarly, the time it takes to get data from memory is measured in
nanoseconds, and the time to fetch data from disk is measured in milliseconds. 

These are order-of-magnitude differences in performance. So, the best approach to
using these devices is to avoid depending upon them in a performance-critical part of
the code. The techniques discussed in this book will enable a developer to write code so
that accesses to peripherals can be placed off the critical path or so they can be sched-
uled so that the compute side of the system can be actively completing work while the
peripheral is being accessed.

The Motivation for Multicore Processors
Microprocessors have been around for a long time. The x86 architecture has roots going
back to the 8086, which was released in 1978. The SPARC architecture is more recent,
with the first SPARC processor being available in 1987. Over much of that time per-
formance gains have come from increases in processor clock speed (the original 8086
processor ran at about 5MHz, and the latest is greater than 3GHz, about a 600× increase
in frequency) and architecture improvements (issuing multiple instructions at the same
time, and so on). However, recent processors have increased the number of cores on the
chip rather than emphasizing gains in the performance of a single thread running on the
processor. The core of a processor is the part that executes the instructions in an applica-
tion, so having multiple cores enables a single processor to simultaneously execute multi-
ple applications.

The reason for the change to multicore processors is easy to understand. It has
become increasingly hard to improve serial performance. It takes large amounts of area
on the silicon to enable the processor to execute instructions faster, and doing so
increases the amount of power consumed and heat generated. The performance gains
obtained through this approach are sometimes impressive, but more often they are rela-
tively modest gains of 10% to 20%. In contrast, rather than using this area of silicon to
increase single-threaded performance, using it to add an additional core produces a
processor that has the potential to do twice the amount of work; a processor that has
four cores might achieve four times the work. So, the most effective way of improving
overall performance is to increase the number of threads that the processor can support.
Obviously, utilizing multiple cores becomes a software problem rather than a hardware
problem, but as will be discussed in this book, this is a well-studied software problem.

The terminology around multicore processors can be rather confusing. Most people
are familiar with the picture of a microprocessor as a black slab with many legs sticking
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out of it. A multiprocessor system is one where there are multiple microprocessors
plugged into the system board. When each processor can run only a single thread, there
is a relatively simple relationship between the number of processors, CPUs, chips, and
cores in a system—they are all equal, so the terms could be used interchangeably. With
multicore processors, this is no longer the case. In fact, it can be hard to find a consensus
for the exact definition of each of these terms in the context of multicore processors.

This book will use the terms processor and chip to refer to that black slab with many
legs. It’s not unusual to also hear the word socket used for this. If you notice, these are all
countable entities—you can take the lid off the case of a computer and count the num-
ber of sockets or processors. 

A single multicore processor will present multiple virtual CPUs to the user and oper-
ating system. Virtual CPUs are not physically countable—you cannot open the box of a
computer, inspect the motherboard, and tell how many virtual CPUs it is capable of sup-
porting. However, virtual CPUs are visible to the operating system as entities where
work can be scheduled. 

It is also hard to determine how many cores a system might contain. If you were to
take apart the microprocessor and look at the silicon, it might be possible to identify the
number of cores, particularly if the documentation indicated how many cores to expect!
Identifying cores is not a reliable science. Similarly, you cannot look at a core and iden-
tify how many software threads the core is capable of supporting. Since a single core can
support multiple threads, it is arguable whether the concept of a core is that important
since it corresponds to neither a physical countable entity nor a virtual entity to which
the operating system allocates work. However, it is actually important for understanding
the performance of a system, as will become clear in this book.

One further potential source of confusion is the term threads. This can refer to either
hardware or software threads. A software thread is a stream of instructions that the
processor executes; a hardware thread is the hardware resources that execute a single soft-
ware thread. A multicore processor has multiple hardware threads—these are the virtual
CPUs. Other sources might refer to hardware threads as strands. Each hardware thread
can support a software thread. 

A system will usually have many more software threads running on it than there are
hardware threads to simultaneously support them all. Many of these threads will be inac-
tive. When there are more active software threads than there are hardware threads to run
them, the operating system will share the virtual CPUs between the software threads.
Each thread will run for a short period of time, and then the operating system will swap
that thread for another thread that is ready to work. The act of moving a thread onto or
off the virtual CPU is called a context switch.

Supporting Multiple Threads on a Single Chip
The core of a processor is the part of the chip responsible for executing instructions. The
core has many parts, and we will discuss some of those parts in detail later in this chap-
ter. A simplified schematic of a processor might look like Figure 1.3.
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Cache is an area of memory on the chip that holds recently used data and instruc-
tions. When you look at the piece of silicon inside a processor, such as that shown in
Figure 1.7, the core and the cache are the two components that are identifiable to the
eye. We will discuss cache in the “Caches” section later in this chapter.

The simplest way of enabling a chip to run multiple threads is to duplicate the core
multiple times, as shown in Figure 1.4. The earliest processors capable of supporting mul-
tiple threads relied on this approach. This is the fundamental idea of multicore proces-
sors. It is an easy approach because it takes an existing processor design and replicates it.
There are some complications involved in making the two cores communicate with each
other and with the system, but the changes to the core (which is the most complex part
of the processor) are minimal. The two cores share an interface to the rest of the system,
which means that system access must be shared between the two cores.

Figure 1.3 Single-core processor
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Figure 1.4 Dual-core processor capable of running two simultaneous
hardware threads
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However, this is not the only approach. An alternative is to make a single core execute
multiple threads of instructions, as shown in Figure 1.5. There are various refinements on
this design:
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n The core could execute instructions from one software thread for 100 cycles and
then switch to another thread for the next 100. 

n The core could alternate every cycle between fetching an instruction from one
thread and fetching an instruction from the other thread. 

n The core could simultaneously fetch an instruction from each of multiple threads
every cycle. 

n The core could switch software threads every time the stream that is currently
executing hits a long latency event (such as a cache miss, where the data has to be
fetched from memory).

Figure 1.5 Single-core processor with two hardware threads
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With two threads sharing a core, each thread will get a share of the resources. The size
of the share will depend on the activity of the other thread and the number of resources
available. For example, if one thread is stalled waiting on memory, then the other thread
may have exclusive access to all the resources of the core. However, if both threads want
to simultaneously issue the same type of instruction, then for some processors only one
thread will be successful, and the other thread will have to retry on the next opportunity.

Most multicore processors use a combination of multiple cores and multiple threads
per core. The simplest example of this would be a processor with two cores with each
core being capable of supporting two threads, making a total of four threads for the
entire processor. Figure 1.6 shows this configuration.

When this ability to handle multiple threads is exposed to the operating system, it
usually appears that the system has many virtual CPUs. Therefore, from the perspective
of the user, the system is capable of running multiple threads. One term used to describe
this is chip multithreading (CMT)—one chip, many threads. This term places the emphasis
on the fact that there are many threads, without stressing about the implementation
details of how threads are assigned to cores. 

The UltraSPARC T2 is a good example of a CMT processor. It has eight replicated
cores, and each core is capable of running eight threads, making the processor capable of
running 64 software threads simultaneously. Figure 1.7 shows the physical layout of the
processor.
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Figure 1.6 Dual-core processor with a total of four hardware threads
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Figure 1.7 Floorplan of the UltraSPARC T2 processor



The UltraSPARC T2 floor plan has a number of different areas that offer support
functionality to the cores of the processor; these are mainly located around the outside
edge of the chip. The eight processor cores are readily identifiable because of their struc-
tural similarity. For example, SPARC Core 2 is the vertical reflection of SPARC Core 0,
which is the horizontal reflection of SPARC Core 4. The other obvious structure is the
crosshatch pattern that is caused by the regular structure elements that form the second-
level cache area; this is an area of on-chip memory that is shared between all the cores.
This memory holds recently used data and makes it less likely that data will have to be
fetched from memory; it also enables data to be quickly shared between cores.

It is important to realize that the implementation details of CMT processors do have
detectable effects, particularly when multiple threads are distributed over the system. But
the hardware threads can usually be considered as all being equal. In current processor
designs, there are not fast hardware threads and slow hardware threads; the performance
of a thread depends on what else is currently executing on the system, not on some
invariant property of the design.

For example, suppose the CPU in a system has two cores, and each core can support
two threads. When two threads are running on that system, either they can be on the
same core or they can be on different cores. It is probable that when the threads share a
core, they run slower than if they were scheduled on different cores. This is an obvious
result of having to share resources in one instance and not having to share resources in
the other. 

Fortunately, operating systems are evolving to include concepts of locality of memory
and sharing of processor resources so that they can automatically assign work in the best
possible way. An example of this is the locality group information used by the Solaris oper-
ating system to schedule work to processors. This information tells the operating system
which virtual processors share resources. Best performance will probably be attained by
scheduling work to virtual processors that do not share resources. 

The other situation where it is useful for the operating system to understand the
topology of the system is when a thread wakes up and is unable to be scheduled to
exactly the same virtual CPU that was running it earlier. Then the thread can be sched-
uled to a virtual CPU that shares the same locality group. This is less of a disturbance
than running it on a virtual processor that shares nothing with the original virtual
processor. For example, Linux has the concept of affinity, which keeps threads local to
where they were previously executing.

This kind of topological information becomes even more important in systems where
there are multiple processors, with each processor capable of supporting multiple threads.
The difference in performance between scheduling a thread on any of the cores of a sin-
gle processor may be slight, but the difference in performance when a thread is migrated
to a different processor can be significant, particularly if the data it is using is held in
memory that is local to the original processor. Memory affinity will be discussed further
in the section “The Characteristics of Multiprocessor Systems.”

In the following sections, we will discuss the components of the processor core. A
rough schematic of the critical parts of a processor core might look like Figure 1.8. This

8 Chapter 1 Hardware, Processes, and Threads
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shows the specialized pipelines for each instruction type, the on-chip memory (called
cache), the translation look-aside buffers (TLBs) that are used for converting virtual mem-
ory addresses to physical, and the system interconnect (which is the layer that is responsi-
ble for communicating with the rest of the system).

The next section, “Increasing Instruction Issue Rate with Pipelined Processor Cores,”
explains the motivation for the various “pipelines” that are found in the cores of modern
processors. Sections “Using Caches to Hold Recently Used Data,” “Using Virtual Memory
to Store Data,” and “Translating from Virtual Addresses to Physical Addresses” in this
chapter cover the purpose and functionality of the caches and TLBs.

Increasing Instruction Issue Rate with Pipelined Processor Cores
As we previously discussed, the core of a processor is the part of the processor responsible
for executing instructions. Early processors would execute a single instruction every
cycle, so a processor that ran at 4MHz could execute 4 million instructions every sec-
ond. The logic to execute a single instruction could be quite complex, so the time it
takes to execute the longest instruction determined how long a cycle had to take and
therefore defined the maximum clock speed for the processor.

To improve this situation, processor designs became “pipelined.” The operations nec-
essary to complete a single instruction were broken down into multiple smaller steps.
This was the simplest pipeline:

n Fetch. Fetch the next instruction from memory.
n Decode. Determine what type of instruction it is.

Figure 1.8 Block diagram of a processor core
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n Execute. Do the appropriate work.
n Retire. Make the state changes from the instruction visible to the rest of the

system.

Assuming that the overall time it takes for an instruction to complete remains the
same, each of the four steps takes one-quarter of the original time. However, once an
instruction has completed the Fetch step, the next instruction can enter that stage. This
means that four instructions can be in execution at the same time. The clock rate, which
determines when an instruction completes a pipeline stage, can now be four times faster
than it was. It now takes four clock cycles for an instruction to complete execution. This
means that each instruction takes the same wall time to complete its execution. But there
are now four instructions progressing through the processor pipeline, so the pipelined
processor can execute instructions at four times the rate of the nonpipelined processor.

For example, Figure 1.9 shows the integer and floating-point pipelines from the
UltraSPARC T2 processor. The integer pipeline has eight stages, and the floating-point
pipeline has twelve stages.

Figure 1.9 UltraSPARC T2 execution pipeline stages
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The names given to the various stages are not of great importance, but several aspects
of the pipeline are worthy of discussion. Four pipeline stages are performed regardless of
whether the instruction is floating point or integer. Only at the Execute stage of the
pipeline does the path diverge for the two instruction types. 

For all instructions, the result of the operation can be made available to any subse-
quent instructions at the Bypass stage. The subsequent instruction needs the data at the
Execute stage, so if the first instruction starts executing at cycle zero, a dependent
instruction can start in cycle 3 and expect the data to be available by the time it is
needed. This is shown in Figure 1.10 for integer instructions. An instruction that is
fetched in cycle 0 will produce a result that can be bypassed to a following instruction
seven cycles later when it reaches the Bypass stage. The dependent instruction would
need this result as input when it reaches the Execute stage. If an instruction is fetched
every cycle, then the fourth instruction will have reached the Execute stage by the time
the first instruction has reached the Bypass stage.

The downside of long pipelines is correcting execution in the event of an error; the
most common example of this is mispredicted branches. 



To keep fetching instructions, the processor needs to guess the next instruction that
will be executed. Most of the time this will be the instruction at the following address in
memory. However, a branch instruction might change the address where the instruction
is to be fetched from—but the processor will know this only once all the conditions that
the branch depends on have been resolved and once the actual branch instruction has
been executed. 

The usual approach to dealing with this is to predict whether branches are taken and
then to start fetching instructions from the predicted address. If the processor predicts
correctly, then there is no interruption to the instruction steam—and no cost to the
branch. If the processor predicts incorrectly, all the instructions executed after the branch
need to be flushed, and the correct instruction stream needs to be fetched from memory.
These are called branch mispredictions, and their cost is proportional to the length of the
pipeline. The longer the pipeline, the longer it takes to get the correct instructions
through the pipeline in the event of a mispredicted branch.

Pipelining enabled higher clock speeds for processors, but they were still executing
only a single instruction every cycle. The next improvement was “super-scalar execution,”
which means the ability to execute multiple instructions per cycle. The Intel Pentium
was the first x86 processor that could execute multiple instructions on the same cycle; it
had two pipelines, each of which could execute an instruction every cycle. Having two
pipelines potentially doubled performance over the previous generation.

More recent processors have four or more pipelines. Each pipeline is specialized to
handle a particular type of instruction. It is typical to have a memory pipeline that han-
dles loads and stores, an integer pipeline that handles integer computations (integer addi-
tion, shifts, comparison, and so on), a floating-point pipeline (to handle floating-point
computation), and a branch pipeline (for branch or call instructions). Schematically, this
would look something like Figure 1.11.

The UltraSPARC T2 discussed earlier has four pipelines for each core: two for inte-
ger operations, one for memory operations, and one for floating-point operations. These
four pipelines are shared between two groups of four threads, and every cycle one thread
from both of the groups can issue an instruction. 
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Figure 1.10 Pipelined instruction execution including bypassing of results
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Figure 1.11 Multiple instruction pipelines
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Using Caches to Hold Recently Used Data
When a processor requests a set of bytes from memory, it does not get only those bytes
that it needs. When the data is fetched from memory, it is fetched together with the sur-
rounding bytes as a cache line, as shown in Figure 1.12. Depending on the processor in a
system, a cache line might be as small as 16 bytes, or it could be as large as 128 (or more)
bytes. A typical value for cache line size is 64 bytes. Cache lines are always aligned, so a
64-byte cache line will start at an address that is a multiple of 64. This design decision
simplifies the system because it enables the system to be optimized to pass around aligned
data of this size; the alternative is a more complex memory interface that would have to
handle chunks of memory of different sizes and differently aligned start addresses.

Figure 1.12 Fetching data and surrounding cache line from memory
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When a line of data is fetched from memory, it is stored in a cache. Caches improve
performance because the processor is very likely to either reuse the data or access data
stored on the same cache line. There are usually caches for instructions and caches for
data. There may also be multiple levels of cache.

The reason for having multiple levels of cache is that the larger the size of the cache,
the longer it takes to determine whether an item of data is held in that cache. A proces-
sor might have a small first-level cache that it can access within a few clock cycles and
then a second-level cache that is much larger but takes tens of cycles to access. Both of
these are significantly faster than memory, which might take hundreds of cycles to access.
The time it takes to fetch an item of data from memory or from a level of cache is
referred to as its latency. Figure 1.13 shows a typical memory hierarchy.
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Figure 1.13 Latency to caches and memory
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The greater the latency of accesses to main memory, the more benefit there is from
multiple layers of cache. Some systems even benefit from having a third-level cache.

Caches have two very obvious characteristics: the size of the cache lines and the size
of the cache. The number of lines in a cache can be calculated by dividing one by the
other. For example, a 4KB cache that has a cache line size of 64 bytes will hold 64 lines.

Caches have other characteristics, which are less obviously visible and have less of a
directly measurable impact on application performance. The one characteristic that it is
worth mentioning is the associativity. In a simple cache, each cache line in memory
would map to exactly one position in the cache; this is called a direct mapped cache. If we
take the simple 4KB cache outlined earlier, then the cache line located at every 4KB
interval in memory would map to the same line in the cache, as shown in Figure 1.14.

Obviously, a program that accessed memory in 4KB strides would end up just using a
single entry in the cache and could suffer from poor performance if it needed to simul-
taneously use multiple cache lines.

The way around this problem is to increase the associativity of the cache—that is, make
it possible for a single cache line to map into more positions in the cache and therefore
reduce the possibility of there being a conflict in the cache. In a two-way associative



cache, each cache line can map into one of two locations. The location is chosen accord-
ing to some replacement policy that could be random replacement, or it could depend
on which of the two locations contains the oldest data (least recently used replacement).
Doubling the number of potential locations for each cache line means that the interval
between lines in memory that map onto the same cache line is halved, but overall this
change will result in more effective utilization of the cache and a reduction in the num-
ber of cache misses. Figure 1.15 shows the change.
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Figure 1.14 Mapping of memory to cache lines in a directed 
mapped cache
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A fully associative cache is one where any address in memory can map to any line in the
cache. Although this represents the approach that is likely to result in the lowest cache
miss rate, it is also the most complex approach to implement; hence, it is infrequently
implemented.

On systems where multiple threads share a level of cache, it becomes more important
for the cache to have higher associativity. To see why this is the case, imagine that two
copies of the same application share a common direct-mapped cache. If each of them
accesses the same virtual memory address, then they will both be attempting to use the
same line in the cache, and only one will succeed. Unfortunately, this success will be



short-lived because the other copy will immediately replace this line of data with the
line of data that they need.

Using Virtual Memory to Store Data
Running applications use what is called virtual memory addresses to hold data. The data
is still held in memory, but rather than the application storing the exact location in the
memory chips where the data is held, the application uses a virtual address, which then
gets translated into the actual address in physical memory. Figure 1.16 shows schemati-
cally the process of translating from virtual to physical memory.
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Figure 1.16 Mapping virtual to physical memory
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This sounds like an unnecessarily complex way of using memory, but it does have
some very significant benefits.

The original aim of virtual memory was to enable a processor to address a larger
range of memory than it had physical memory attached to the system; at that point in
time, physical memory was prohibitively expensive. The way it would work was that
memory was allocated in pages, and each page could either be in physical memory or be
stored on disk. When an address was accessed that was not in physical memory, the
machine would write a page containing data that hadn’t been used in a while to disk
and then fetch the data that was needed into the physical memory that had just been
freed. The same page of physical memory was therefore used to hold different pages of
virtual memory.

Now, paging data to and from disk is not a fast thing to do, but it allowed an applica-
tion to continue running on a system that had exhausted its supply of free physical
memory.

There are other uses for paging from disk. One particularly useful feature is accessing
files. The entire file can be mapped into memory—a range of virtual memory addresses
can be reserved for it—but the individual pages in that file need only be read from disk
when they are actually touched. In this case, the application is using the minimal amount
of physical memory to hold a potentially much larger data set.



The other advantage to using virtual memory is that the same address can be reused
by multiple applications. For example, assume that all applications are started by calling
code at 0x10000. If we had only physical memory addresses, then only one application
could reside at 0x10000, so we could run only a single application at a time. However,
given virtual memory addressing, we can put as many applications as we need at the
same virtual address and have this virtual address map to different physical addresses. So,
to take the example of starting an application by calling 0x10000, all the applications
could use this same virtual address, but for each application, this would correspond to a
different physical address.

What is interesting about the earlier motivators for virtual memory is that they
become even more important as the virtual CPU count increases. A system that has
many active threads will have some applications that reserve lots of memory but make
little actual use of that memory. Without virtual memory, this reservation of memory
would stop other applications from attaining the memory size that they need. It is also
much easier to produce a system that runs multiple applications if those applications do
not need to be arranged into the one physical address space. Hence, virtual memory is
almost a necessity for any system that can simultaneously run multiple threads.

Translating from Virtual Addresses to Physical Addresses
The critical step in using virtual memory is the translation of a virtual address, as used by
an application, into a physical address, as used by the processor, to fetch the data from
memory. This step is achieved using a part of the processor called the translation look-aside
buffer (TLB). Typically, there will be one TLB for translating the address of instructions
(the instruction TLB or ITLB) and a second TLB for translating the address of data (the
data TLB, or DTLB). 

Each TLB is a list of the virtual address range and corresponding physical address
range of each page in memory. So when a processor needs to translate a virtual address
to a physical address, it first splits the address into a virtual page (the high-order bits) and
an offset from the start of that page (the low-order bits). It then looks up the address of
this virtual page in the list of translations held in the TLB. It gets the physical address of
the page and adds the offset to this to get the address of the data in physical memory. It
can then use this to fetch the data. Figure 1.17 shows this process.

Unfortunately, a TLB can hold only a limited set of translations. So, sometimes a
processor will need to find a physical address, but the translation does not reside in the
TLB. In these cases, the translation is fetched from an in-memory data structure called a
page table, and this structure can hold many more virtual to physical mappings. When a
translation does not reside in the TLB, it is referred to as a TLB miss, and TLB misses
have an impact on performance. The magnitude of the performance impact depends on
whether the hardware fetches the TLB entry from the page table or whether this task is
managed by software; most current processors handle this in hardware. It is also possible
to have a page table miss, although this event is very rare for most applications. The page
table is managed by software, so this typically is an expensive or slow event.

16 Chapter 1 Hardware, Processes, and Threads
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TLBs share many characteristics with caches; consequently, they also share some of
the same problems. TLBs can experience both capacity misses and conflict misses. A
capacity miss is where the amount of memory being mapped by the application is
greater than the amount of memory that can be mapped by the TLB. Conflict misses are
the situation where multiple pages in memory map into the same TLB entry; adding a
new mapping causes the old mapping to be evicted from the TLB. The miss rate for
TLBs can be reduced using the same techniques as caches do. However, for TLBs, there
is one further characteristic that can be changed—the size of the page that is mapped.

On SPARC architectures, the default page size is 8KB; on x86, it is 4KB. Each TLB
entry provides a mapping for this range of physical or virtual memory. Modern proces-
sors can handle multiple page sizes, so a single TLB entry might be able to provide a
mapping for a page that is 64KB, 256KB, megabytes, or even gigabytes in size. The obvi-
ous benefit to larger page sizes is that fewer TLB entries are needed to map the virtual
address space that an application uses. Using fewer TLB entries means less chance of
them being knocked out of the TLB when a new entry is loaded. This results in a lower
TLB miss rate. For example, mapping a 1GB address space with 4MB pages requires 256
entries, whereas mapping the same memory with 8KB pages would require 131,072. It
might be possible for 256 entries to fit into a TLB, but 131,072 would not.

The following are some disadvantages to using larger page sizes:
n Allocation of a large page requires a contiguous block of physical memory to allo-

cate the page. If there is not sufficient contiguous memory, then it is not possible
to allocate the large page. This problem introduces challenges for the operating sys-
tem in handling and making large pages available. If it is not possible to provide a
large page to an application, the operating system has the option of either moving
other allocated physical memory around or providing the application with multi-
ple smaller pages.

n An application that uses large pages will reserve that much physical memory even
if the application does not require the memory. This can lead to memory being

Figure 1.17 Virtual to physical memory address translation
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used inefficiently. Even a small application may end up reserving large amounts of
physical memory.

n A problem particular to multiprocessor systems is that pages in memory will often
have a lower access latency from one processor than another. The larger the page
size, the more likely it is that the page will be shared between threads running on
different processors. The threads running on the processor with the higher mem-
ory latency may run slower. This issue will be discussed in more detail in the next
section, “The Characteristics of Multiprocessor Systems.”

For most applications, using large page sizes will lead to a performance improvement,
although there will be instances where other factors will outweigh these benefits.

The Characteristics of Multiprocessor Systems
Although processors with multiple cores are now prevalent, it is also becoming more
common to encounter systems with multiple processors. As soon as there are multiple
processors in a system, accessing memory becomes more complex. Not only can data be
held in memory, but it can also be held in the caches of one of the other processors. For
code to execute correctly, there should be only a single up-to-date version of each item
of data; this feature is called cache coherence.

The common approach to providing cache coherence is called snooping. Each proces-
sor broadcasts the address that it wants to either read or write. The other processors
watch for these broadcasts. When they see that the address of data they hold can take one
of two actions, they can return the data if the other processor wants to read the data and
they have the most recent copy. If the other processor wants to store a new value for the
data, they can invalidate their copy.

However, this is not the only issue that appears when dealing with multiple proces-
sors. Other concerns are memory layout and latency. 

Imagine a system with two processors. The system could be configured with all the
memory attached to one processor or the memory evenly shared between the two
processors. Figure 1.18 shows these two alternatives.

Figure 1.18 Two alternative memory configurations
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Each link between processor and memory will increase the latency of any memory
access by that processor. So if only one processor has memory attached, then that proces-
sor will see low memory latency, and the other processor will see higher memory
latency. In the situation where both processors have memory attached, then they will
have both local memory that is low cost to access and remote memory that is higher
cost to access.

For systems where memory is attached to multiple processors, there are two options
for reducing the performance impact. One approach is to interleave memory, often at a
cache line boundary, so that for most applications, half the memory accesses will see the
short memory access, and half will see the long memory access; so, on average, applica-
tions will record memory latency that is the average of the two extremes. This approach
typifies what is known as a uniform memory architecture (UMA), where all the processors
see the same memory latency.

The other approach is to accept that different regions of memory will have different
access costs for the processors in a system and then to make the operating system aware
of this hardware characteristic. With operating system support, this can lead to applica-
tions usually seeing the lower memory cost of accessing local memory. A system with
this architecture is often referred to as having cache coherent nonuniform memory architecture
(ccNUMA).

For the operating system to manage ccNUMA memory characteristics effectively, it
has to do a number of things. First, it needs to be aware of the locality structure of the
system so that for each processor it is able to allocate memory with low access latencies.
The second challenge is that once a process has been run on a particular processor, the
operating system needs to keep scheduling that process to that processor. If the operating
system fails to achieve this second requirement, then all the locally allocated memory
will become remote memory when the process gets migrated.

Consider an application running on the first processor of a two-processor system. 
The operating system may have allocated memory to be local to this first processor.
Figure 1.19 shows this configuration of an application running on a processor and using
local memory. The shading in this figure illustrates the application running on processor 1
and accessing memory directly attached to that processor. Hence, the process sees local
memory latency for all memory accesses.

19The Characteristics of Multiprocessor Systems

Figure 1.19 Process running with local memory
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The application will get good performance because the data that it frequently accesses
will be held in the memory with the lowest access latency. However, if that application
then gets migrated to the second processor, the application will be accessing data that is
remotely held and will see a corresponding drop in performance. Figure 1.20 shows an
application using remote memory. The shading in the figure shows the application run-
ning on processor 2 but accessing data held on memory that is attached to processor 1.
Hence, all memory accesses for the application will fetch remote data; the fetches of data
will take longer to complete, and the application will run more slowly.

Figure 1.20 Process running using remote memory
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How Latency and Bandwidth Impact Performance
Memory latency is the time between a processor requesting an item of data and that
item of data arriving from memory. The more processors there are in a system, the
longer the memory latency. A system with a single processor can have memory latency
of less than 100ns; with two processors this can double, and when the system gets large
and comprises multiple boards, the memory latency can become very high. Memory
latency is a problem because there is little that a processor can do while it is waiting for
data that it needs to be returned from memory. There are techniques, such as out-of-
order (OoO) execution, which enable the processor to make some forward progress
while waiting for data from memory. However, it is unlikely that these techniques will
hide the entire cost of a memory miss, although they may manage to cover the time it
takes to get data from the second-level cache. These techniques also add significant com-
plexity and implementation area to the design of the processor core.

Cores that support multiple hardware threads are an alternative solution to the prob-
lem of memory latency. When one thread is stalled waiting for data to be returned from
memory, the other threads can still make forward progress. So although having multiple
hardware threads does not improve the performance of the stalled thread, it improves the
utilization of the core and consequently improves the throughput of the core (that is,
there are threads completing work even if one thread is stalled).

The other measurement that is relevant to discussions of memory is bandwidth. The
bandwidth measures how much data can be returned from memory per second. For
example, imagine that in one second a virtual CPU issues 10 million load instructions



and each request misses cache. Each cache miss will fetch a 64-byte cache line from
memory so that a single virtual CPU has consumed a bandwidth of 640MB in a second. 

A CMT chip can make large demands of memory bandwidth since, at any one time,
each thread could possibly have one or more outstanding memory requests. Suppose that
there are 64 threads on a processor, the memory latency is 100 cycles, and the processor
is clocked at a modest rate of 1GHz. If each thread is constantly issuing requests for new
cache lines from memory, then each thread will issue one such request every 100 cycles
(100 cycles being the time it takes for the previous request to complete). This makes 
1 billion / 100 ∗ 64 = 640 million memory requests per second. If each request is for a
fresh 64-byte cache line, then this represents an aggregate bandwidth of approximately
41GB/s.

The Translation of Source Code to 
Assembly Language
Processors execute instructions. Instructions are the basic building blocks of all computa-
tion; they perform tasks such as add numbers together, fetch data from memory, or store
data back to memory. The instructions operate on registers that hold the current values
of variables and other machine state. Consider the snippet of code shown in Listing 1.1,
which increments an integer variable pointed to by the pointer ptr.

Listing 1.1 Code to Increment Variable at Address

void func( int * ptr )

{

( *ptr )++;

}

Listing 1.2 shows this snippet of code compiled to SPARC assembly code. 

Listing 1.2 SPARC Assembly Code to Increment a Variable at an Address

ld      [%o0], %o5   // Load value from address %o0 in to register %o5

add     %o5, 1, %o5  // Add one to value in register %o5

st      %o5, [%o0]   // Store value in register %o5 into address %o0

retl                 // Return from routine

The SPARC code1 has the pointer ptr passed in through register %o0. The load
instruction loads from this address into register %o5. Register %o5 is incremented. The
store instruction stores the new value of the integer held in register %o5 into the mem-
ory location pointed to by %o0, and then the return instruction exits the routine.
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Listing 1.3 shows the same source code compiled for 32-bit x86. The x86 code is
somewhat different. The first difference is that the x86 in 32-bit mode has a stack-based
calling convention. This means that all the parameters that are passed into a function are
stored onto the stack, and then the first thing that the function does is to retrieve these
stored parameters. Hence, the first thing that the code does is to load the value of the
pointer from the stack—in this case, at the address %esp+4—and then it places this value
into the register %eax.

Listing 1.3 32-Bit x86 Assembly Code to Increment a Variable at an Address

movl      4(%esp), %eax  // Load value from address %esp + 4 into %eax

addl      $1, (%eax)     // Add one to value at address %eax

ret                      // Return from routine

We then encounter a second difference between x86 and and SPARC assembly lan-
guage. SPARC is a reduced instruction set computer (RISC), meaning it has a small number
of simple instructions, and all operations must be made up from these simple building
blocks. x86 is a complex instruction set computer (CISC), so it has instructions that perform
more complex operations. The x86 instruction set has a single instruction that adds an
increment to a value at a memory location. In the example, the instruction is used to add
1 to the value held at the address held in register %eax. This is a single CISC instruction,
which contrasts with three RISC instructions on the SPARC side to achieve the same result.

Both snippets of code used two registers for the computation. The SPARC code used
registers %o0 and %o5, and the x86 code used %esp and %eax. However, the two snippets
of code used the registers for different purposes. The x86 code used %esp as the stack
pointer, which points to the region of memory where the parameters to the function
call are held. In contrast, the SPARC code passed the parameters to functions in regis-
ters. The method of passing parameters is called the calling convention, and it is part of the
application binary interface (ABI) for the platform. This specification covers how programs
should be written in order to run correctly on a particular platform.

Both the code snippets use a single register to hold the address of the memory being
accessed. The SPARC code used %o0, and the x86 code used %eax. The other difference
between the two code snippets is that the SPARC code used the register %o1 to hold
the value of the variable. The SPARC code had to take three instructions to load this
value, add 1 to it, and then store the result back to memory. In contrast, the x86 code
took a single instruction.

A further difference between the two processors is the number of registers available.
SPARC actually has 32 general-purpose registers, whereas the x86 processor has eight
general-purpose registers. Some of these general-purpose registers have special functions.
The SPARC processor ends up with about 24 registers available for an application to
use, while in 32-bit mode the x86 processor has only six. However, because of its CISC
instruction set, the x86 processor does not need to use registers to hold values that are
only transiently needed—in the example, the current value of the variable in memory
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was not even loaded into a register. So although the x86 processor has many fewer regis-
ters, it is possible to write code so that this does not cause an issue.

However, there is a definite advantage to having more registers. If there are insuffi-
cient registers available, a register has to be freed by storing its contents to memory and
then reloading them later. This is called register spilling and filling, and it takes both addi-
tional instructions and uses space in the caches. 

The two performance advantages introduced with the 64-bit instruction set exten-
sions for x86 were a significant increase in the number of registers and a much improved
calling convention.

The Performance of 32-Bit versus 64-Bit Code
A 64-bit processor can, theoretically, address up to 16 exabytes (EB), which is 4GB
squared, of physical memory. In contrast, a 32-bit processor can address a maximum of
4GB of memory. Some applications find only being able to address 4GB of memory to
be a limitation—a particular example is databases that can easily exceed 4GB in size.
Hence, a change to 64-bit addresses enables the manipulation of much larger data sets.

The 64-bit instruction set extensions for the x86 processor are referred to as AMD64,
EMT64, x86-64, or just x64. Not only did these increase the memory that the processor
could address, but they also improved performance by eliminating or reducing two
problems. 

The first issue addressed is the stack-based calling convention. This convention leads
to the code using lots of store and load instructions to pass parameters into functions. In
32-bit code when a function is called, all the parameters to that function needed to be
stored onto the stack. The first action that the function takes is to load those parameters
back off the stack and into registers. In 64-bit code, the parameters are kept in registers,
avoiding all the load and store operations.

We can see this when the earlier code is compiled to use the 64-bit x86 instruction
set, as is shown in Listing 1.4.

Listing 1.4 64-Bit x86 Assembly Code to Increment a Variable at an Address

addl       $1, (%rdi) // Increment value at address %rdi          

ret                   // Return from routine

In this example, we are down to two instructions, as opposed to the three instructions
used in Listing 1.3. The two instructions are the increment instruction that adds 1 to the
value pointed to by the register %rdi and the return instruction.

The second issue addressed by the 64-bit transition was increasing the number of
general-purpose registers from about 6 in 32-bit code to about 14 in 64-bit code.
Increasing the number of registers reduces the number of register spills and fills.

Because of these two changes, it is very tempting to view the change to 64-bit code
as a performance gain. However, this is not strictly true. The changes to the number of
registers and the calling convention occurred at the same time as the transition to 64-bit
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but could have occurred without this particular transition—they could have been intro-
duced on the 32-bit x86 processor. The change to 64-bit was an opportunity to reevalu-
ate the architecture and to make these fundamental improvements.

The actual change to a 64-bit address space is a performance loss. Pointers change
from being a 4-byte structure into an 8-byte structure. In Unix-like operating systems,
long-type variables also go from 4 to 8 bytes. When the size of a variable increases, the
memory footprint of the application increases, and consequently performance decreases.
For example, consider the C data structure shown in Listing 1.5.

Listing 1.5 Data Structure Containing an Array of Pointers to Integers

struct s 

{ 

int *ptr[8];

};

When compiled for 32-bits, the structure occupies 8 ∗ 4 bytes = 32 bytes. So, every
64-byte cache line can contain two structures. When compiled for 64-bit addresses, the
pointers double in size, so the structure takes 64 bytes. So when compiled for 64-bit, a
single structure completely fills a single cache line. 

Imagine an array of these structures in a 32-bit version of an application; when one
of these structures is fetched from memory, the next would also be fetched. In a 64-bit
version of the same code, only a single structure would be fetched. Another way of look-
ing at this is that for the same computation, the 64-bit version requires that up to twice
the data needs to be fetched from memory. For some applications, this increase in mem-
ory footprint can lead to a measurable drop in application performance. However, on
x86, most applications will see a net performance gain from the other improvements.
Some compilers can produce binaries that use the EMT64 instruction set extensions and
ABI but that restrict the application to a 32-bit address space. This provides the perform-
ance gains from the instruction set improvements without incurring the performance
loss from the increased memory footprint.

It is worth quickly contrasting this situation with that of the SPARC processor. The
SPARC processor will also see the performance loss from the increase in size of pointers
and longs. The SPARC calling convention for 32-bit code was to pass values in registers,
and there were already a large number of registers available. Hence, codes compiled for
SPARC processors usually see a small decrease in performance because of the memory
footprint.

Ensuring the Correct Order of Memory Operations
There is one more concern to discuss when dealing with systems that contain multiple
processors or multiple cores: memory ordering. Memory ordering is the order in which
memory operations are visible to the other processors in the system. Most of the time,
the processor does the right thing without any need for the programmer to do anything. 

24 Chapter 1 Hardware, Processes, and Threads



However, there are situations where the programmer does need to step in. These can
be either architecture specific (SPARC processors and x86 processors have different
requirements) or implementation specific (one type of SPARC processor may have dif-
ferent needs than another type of SPARC processor). The good news is that the system
libraries implement the appropriate mechanisms, so multithreaded applications that use
system libraries should never encounter this.

On the other hand, there is some overhead from calling system libraries, so there
could well be a performance motivation for writing custom synchronization code. This
situation is covered in Chapter 8, “Hand-Coded Synchronization and Sharing.”

The memory ordering instructions are given the name memory barriers (membar) on
SPARC and memory fences (mfence) on x86. These instructions stop memory opera-
tions from becoming visible outside the thread in the wrong order. The following exam-
ple will illustrate why this is important.

Suppose you have a variable, count, protected by a locking mechanism and you want
to increment that variable. The lock works by having the value 1 stored into it when it is
acquired and then the value 0 stored into it when the lock is released. The code for
acquiring the lock is not relevant to this example, so the example starts with the assump-
tion that the lock is already acquired, and therefore the variable lock contains the value
1. Now that the lock is acquired, the code can increment the variable count. Then, to
release the lock, the code would store the value 0 into the variable lock. The process of
incrementing the variable and then releasing the lock with a store of the value 0 would
look something like the pseudocode shown in Listing 1.6.

Listing 1.6 Incrementing a Variable and Freeing a Lock

LOAD [&count], %A

INC %A

STORE %A, [&count]

STORE 0, [&lock]

As soon as the value 0 is stored into the variable lock, then another thread can come
along to acquire the lock and modify the variable count. For performance reasons, some
processors implement a weak ordering of memory operations, meaning that stores can be
moved past other stores or loads can be moved past other loads. If the previous code is
run on a machine with a weaker store ordering, then the code at execution time could
look like the code shown in Listing 1.7.

Listing 1.7 Incrementing and Freeing a Lock Under Weak Memory Ordering

LOAD [&count], %A

INC %A

STORE 0, [&lock]

STORE %A, [&count]
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At runtime, the processor has hoisted the store to the lock so that it becomes visible
to the rest of the system before the store to the variable count. Hence, the lock is
released before the new value of count is visible. Another processor could see that the
lock was free and load up the old value of count rather than the new value.

The solution is to place a memory barrier between the two stores to tell the processor
not to reorder them. Listing 1.8 shows the corrected code. In this example, the membar
instruction ensures that all previous store operations have completed before the next
store instruction is executed.

Listing 1.8 Using a Memory Bar to Enforce Store Ordering

LOAD [&count], %A

INC %A

STORE %A, [&count]

MEMBAR #store, #store

STORE 0, [&lock]

There are other types of memory barriers to enforce other orderings of load and
store operations. Without these memory barriers, other memory ordering errors could
occur. For example, a similar issue could occur when the lock is acquired. The load that
fetches the value of count might be executed before the store that sets the lock to be
acquired. In such a situation, it would be possible for another processor to modify the
value of count between the time that the value was retrieved from memory and the
point at which the lock was acquired.

The programmer’s reference manual for each family of processors will give details
about the exact circumstances when memory barriers may or may not be required, so it
is essential to refer to these documents when writing custom locking code.

The Differences Between Processes and Threads
It is useful to discuss how software is made of both processes and threads and how these
are mapped into memory. This section will introduce some of the concepts, which will
become familiar over the next few chapters. An application comprises instructions and
data. Before it starts running, these are just some instructions and data laid out on disk, as
shown in Figure 1.21.
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Processes are the fundamental building blocks of applications. Multiple applications
running simultaneously are really just multiple processes. Support for multiple users is
typically implemented using multiple processes with different permissions. Unless the
process has been set up to explicitly share state with another process, all of its state is pri-
vate to the process—no other process can see in. To take a more tangible example, if you
run two copies of a text editor, they both might have a variable current line, but
neither could read the other one’s value for this variable.

A particularly critical part of the state for an application is the memory that has been
allocated to it. Recall that memory is allocated using virtual addresses, so both copies of
the hypothetical text editor might have stored the document at virtual addresses
0x111000 to 0x11a000. Each application will maintain its own TLB mappings, so identi-
cal virtual addresses will map onto different physical addresses. If one core is running
these two applications, then each application should expect on average to use half the
TLB entries for its mappings—so multiple active processes will end up increasing the
pressure on internal chip structures like the TLBs or caches so that the number of TLB
or cache misses will increase.

Each process could run multiple threads. A thread has some state, like a process does,
but its state is basically just the values held in its registers plus the data on its stack.
Figure 1.23 shows the memory layout of a multithreaded application.

A thread shares a lot of state with other threads in the application. To go back to the
text editor example, as an alternative implementation, there could be a single text editor
application with two windows. Each window would show a different document, but the

Figure 1.22 Single-threaded application loaded into memory
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An executing application is called a process. A process is a bit more than instructions
and data, since it also has state. State is the set of values held in the processor registers,
the address of the currently executing instruction, the values held in memory, and any
other values that uniquely define what the process is doing at any moment in time. The
important difference is that as a process runs, its state changes. Figure 1.22 shows the lay-
out of an application running in memory.
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two documents could no longer both be held at the same virtual address; they would
need different virtual addresses. If the editor application was poorly coded, activities in
one window could cause changes to the data held in the other.

There are plenty of reasons why someone might choose to write an application that
uses multiple threads. The primary one is that using multiple threads on a system with
multiple hardware threads should produce results faster than a single thread doing the
work. Another reason might be that the problem naturally decomposes into multiple
threads. For example, a web server will have many simultaneous connections to remote
machines, so it is a natural fit to code it using multiple threads. The other advantage of
threads over using multiple processes is that threads share most of the machine state, in
particular the TLB and cache entries. So if all the threads need to share some data, they
can all read it from the same memory address.

What you should take away from this discussion is that threads and processes are ways
of getting multiple streams of instructions to coordinate in delivering a solution to a
problem. The advantage of processes is that each process is isolated—if one process dies,
then it can have no impact on other running processes. The disadvantages of multiple
processes is that each process requires its own TLB entries, which increases the TLB and
cache miss rates. The other disadvantage of using multiple processes is that sharing data
between processes requires explicit control, which can be a costly operation.

Multiple threads have advantages in low costs of sharing data between threads—one
thread can store an item of data to memory, and that data becomes immediately visible
to all the other threads in that process. The other advantage to sharing is that all threads
share the same TLB and cache entries, so multithreaded applications can end up with
lower cache miss rates. The disadvantage is that one thread failing will probably cause the
entire application to fail.

Figure 1.23 Multithreaded application loaded into memory
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The same application can be written either as a multithreaded application or as a
multiprocess application. A good example is the recent changes in web browser design.
Google’s Chrome browser is multiprocess. The browser can use multiple tabs to display
different web pages. Each tab is a separate process, so one tab failing will not bring down
the entire browser. Historically, browsers have been multithreaded, so if one thread exe-
cutes bad code, the whole browser crashes. Given the unconstrained nature of the Web, it
seems a sensible design decision to aim for robustness rather than low sharing costs.

Summary
This chapter introduced some of the terminology of processor architecture. The impor-
tant points to be aware of are how caches are used to improve the performance of appli-
cations and how TLBs are used to enable the use of virtual memory. The chapter
introduced the various ways that multiple threads can be supported on a single processor.
Although at a high level of abstraction the implementation details of this resource shar-
ing are not important, we will discuss later how they do produce visible performance
impacts. Finally, the chapter described how processes and software threads are mapped
into memory and the important differences between multithreaded and multiprocess
applications.
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2
Coding for Performance

This chapter discusses how to design and write programs with performance in mind.
Serial performance remains important even for parallel applications. There are two rea-
sons for this. Each thread in a parallel application is a serial stream of instructions.
Making these instructions execute as fast as possible will lead to better performance for
the entire application. The second reason is that it is rare to find a parallel application
that contains no serial code. As the number of threads increases, it is the performance of
the serial sections of code that will ultimately determine how fast the application runs.

There are two approaches for improving the performance of an application. The first,
which is unfortunately typical of many projects, is that performance is the problem to be
solved once the program is functionally correct. The alternative approach is that per-
formance is considered as one of the up-front specifications for the application. Taking
performance into consideration in the initial phases of application design will lead to a
better final product. This chapter discusses where performance can be gained (or lost)
and how early consideration of performance can lead to an improved product.

Defining Performance
There are two common metrics for performance:

n Items per unit time. This might be transactions per second, jobs per hour, or
some other combination of completed tasks and units of time. Essentially, this is a
measure of bandwidth. It places the emphasis on the ability of the system to com-
plete tasks rather than on the duration of each individual task. Many benchmarks
are essentially a measure of bandwidth. If you examine the SPEC Java Application
Server benchmark (SPEC jAppServer1), you’ll find that final results are reported as
transactions per second. Another example is the linpack benchmark used as a basis
for the TOP5002 list of supercomputers. The metric that is used to form the
TOP500 list is the peak number of floating-point operations per second.

1. www.spec.org/jAppServer/

2. www.top500.org/

www.spec.org/jAppServer/
www.top500.org/


n Time per item. This is a measure of the time to complete a single task. It is basi-
cally a measure of latency or response time. Fewer benchmarks specifically target
latency. The most obvious example of a latency-driven benchmark is the SPEC
CPU benchmark suite, which has a speed metric as well as a rate metric.

Although these are both common expressions of performance, it can be specified as a
more complex mix. For example, the results that e-commerce benchmark SPECweb
publishes are the number of simultaneous users that a system can support, subject to
meeting criteria on throughput and response time.

Many systems have a quality of service (QoS) metric that they must meet. The QoS
metric will specify the expectations of the users of the system as well as penalties if the
system fails to meet these expectations. These are two examples of alternative metrics:

n Number of transactions of latency greater than some threshold. This will probably
be set together with an expectation for the average transaction. It is quite possible
to have a system that exceeds the criteria for both the number of transactions per
second that it supports and the average response time for a transaction yet have
that same system fail due to the criteria for the number of responses taking longer
than the threshold.

n The amount of time that the system is unavailable, typically called downtime or
availability. This could be specified as a percentage of the time that the system is
expected to be up or as a number of minutes per year that the system is allowed to
be down.

The metrics that are used to specify and measure performance have many ramifica-
tions in the design of a system to meet those metrics. Consider a system that receives a
nightly update. Applying this nightly update will make the system unavailable. Using the
metrics that specify availability, it is possible to determine the maximum amount of time
that the update can take while still meeting the availability criteria. If the designer knows
that the system is allowed to be down for ten minutes per night, then they will make
different design decisions than if the system has only a second to complete the update.

Knowing the available time for an update might influence the following decisions:
n How many threads should be used to process the update. A single thread may not

be sufficient to complete the update within the time window. Using the data, it
should be possible to estimate the number of threads that would be needed to
complete the update within the time window. This will have ramifications for the
design of the application, and it may even have ramifications for the method and
format used to deliver the data to the application.

n If the update has to be stored to disk, then the write bandwidth of the disk storage
becomes a consideration. This may be used to determine the number of drives
necessary to deliver that bandwidth, the use of solid-state drives, or the use of a
dedicated storage appliance.
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n If the time it takes to handle the data, even with using multiple threads or multiple
drives, exceeds the available time window, then the application might have to be
structured so that the update can be completed in parallel with the application
processing incoming transactions. Then the application can instantly switch
between the old and new data. This kind of design might have some underlying
complexities if there are pending transactions at the time of the swap. These trans-
actions would need to either complete using the older data or be restarted to use
the latest version.

In fact, defining the critical metrics and their expectations early in the design helps
with three tasks:

n Clearly specified requirements can be used to drive design decisions, both for
selecting appropriate hardware and in determining the structure of the software.

n Knowing what metrics are expected enables the developers to be confident that
the system they deliver fulfills the criteria. Having the metrics defined up front
makes it easy to declare a project a success or a failure.

n Defining the metrics should also define the expected inputs. Knowing what the
inputs to the system are likely to look like will enable the generation of appropri-
ate test cases. These test cases will be used by the designers and developers to test
the program as it evolves.

Understanding Algorithmic Complexity
Algorithmic complexity is a measure of how much computation a program will perform
when using a particular algorithm. It is a measure of its efficiency and estimate of opera-
tion count. It is not a measure of the complexity of the code necessary to implement a
particular algorithm. An algorithm with low algorithmic complexity is likely to be more
difficult to implement than an algorithm with higher algorithmic complexity. The most
important fact is that the algorithmic complexity is not a model of the execution time
but a model of the way execution time changes as the size of the input changes. It is
probably best to illustrate this through some examples.

Examples of Algorithmic Complexity
Suppose you want to write a program that sums the first N numbers. You would proba-
bly write something like the code shown in Listing 2.1.

Listing 2.1 Sum of the First N Numbers

void sum(int N)

{

int total 0;

for (int i 1; i< N; i++)

{
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total +  i;

}

printf( "Sum of first %i integers is %i\n", N, total );

}

For a given input value N, the code will take N trips around the loop and do N
additions. The algorithmic complexity focuses on the number of operations, which in
this case are the N additions. It assumes that any additional costs are proportional to this
number. The time it would take to complete this calculation is some cost per addition, k,
multiplied by the number of additions, N. So, the time would be k ∗ N. The algorithmic
complexity is a measure of how this time will change as the size of the input changes, so
it is quite acceptable to ignore the (constant) scaling factor and say that the calculation
will take of the order of N computations. This is typically written O(N). It is a very use-
ful measure of the time it will take to complete the program as the size of the input
changes. If N is doubled in value, then it will take twice as long for the program to
complete.

Another example will probably clarify how this can be useful. Assume that you want
to sum the total of the first N factorials (a factorial is N ∗ (N-1) ∗ (N-2) ∗ ... ∗ 1); you
might write a program similar to the one shown in Listing 2.2.

Listing 2.2 Sum of the First N Factorials

int factorial(int F)

{

int f  1;

for (int i 1; i< F; i++)

{

f  f*i;

}

return f;

}

void fsum(int N)

{

int total  0;

for (int i 1; i<N; i++)

{

total+ factorial(i);

}

}

This program contains a doubly nested loop. The outer loop will do N iterations, and
the inner loop will do an average (over the run) of N/2 iterations. Consequently, there
will be about N ∗ N/2 multiply operations and N additions. The algorithmic complex-
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ity is concerned only with the dominant factor, which is N ∗ N. So, the entire calcula-
tion is O(N2). If N doubles in size, the time that this algorithm takes will go up by a
factor of 4. 

The complexity is represented by the dominant term in the function. If the complex-
ity turned out to be (N+1)2, then as N increased, there would eventually be little differ-
ence between this and N2. In the limit, as N becomes larger, O(N2) will dominate the
complexity of O(N). 

The previous examples are somewhat contrived, and in both cases there are more
efficient ways to provide the required result. 

A more common programming problem is sorting data. The domain of sorting has
many different algorithms, of which the two most famous are probably bubble sort and
quicksort.

Bubble sort iterates through a list of numbers, comparing adjacent pairs of numbers. If
the pair is not in the correct sort order, the pair is swapped. Listing 2.3 shows a simple
implementation.

Listing 2.3 Implementation of Bubble Sort

void bubble_sort(int*array, int N)

{
int sorted 0;

while ( !sorted )

{

sorted 1;

for ( int i 0; i < N-1; i++ )

{

if (array[i] > array[i+1])

{

int temp    array[i+1];

array[i+1]  array[i];

array[i]    temp;

sorted 0;

}

}

}

}

The smallest elements “bubble” to the top of the array, which is why it’s called a bub-
ble sort. It also leads to the optimization, omitted from this implementation, that it is not
necessary to sort the bottom of the list, because it will gradually fill with previously
sorted largest elements.

Using the algorithm as written, it will take N comparisons to get each element into
the correct place. There are N elements, so it will take N ∗ N comparisons to sort the
entire list. For unsorted data, this leads to an algorithmic complexity of O(N2).
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On the other hand, quicksort, as might be expected by its name, is a much faster algo-
rithm. It relies on splitting the list of elements into two: a list of elements that are smaller
than a “pivot” element and elements that are larger. Once the list has been split, the algo-
rithm repeats on each of the smaller lists. An implementation of the quicksort algorithm
might look like the code shown in Listing 2.4.

Listing 2.4 Implementation of Quicksort

void quick_sort(int * array, int lower, int upper)

{

int tmp;

int mid     (upper+lower)/2;

int pivot   array[mid];

int tlower  lower

int tupper  upper;

while (tlower <  tupper)

{

while ( array[tlower] < pivot ) { tlower++; }

while ( array[tupper] > pivot ) { tupper--; }

if ( tlower <  tupper )

{

tmp            array[tlower];

array[tlower]  array[tupper];

array[tupper]  tmp;

tupper--;

tlower++;

}

} 

if (lower<tupper) { quick_sort(array,  lower, tupper); }

if (tlower<upper) { quick_sort(array, tlower,  upper); }

}

The algorithmic complexity of quicksort is hard to calculate. For the average case, it is
possible to prove that the complexity is O(N∗log2(N)). This can be explained using the
following reasoning. Assume a uniform distribution of items, and that every time the
array is split, it will result in two equal halves. For a given N, it will take log2(N) splits
before the array is split into a sequence of N individual elements and the sort is com-
plete. Each time the array splits, there are two function calls, one to sort the lower half
and one to sort the upper half. So, at every split, the entire array of N elements will be
iterated through. Therefore, the algorithmic complexity is O(N∗log2(N)).

To see the practical impact of this difference in the complexity of sorting operations,
consider sorting a list of 10 items. The bubble sort algorithm will perform about 10 ∗ 10
= 100 operations, whereas quicksort will perform about 10 ∗ log2(10) = 30 operations,
which is about three times fewer operations. However, the time taken to sort a 10-element
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list is unlikely to be a significant factor in the runtime of an application. It is more inter-
esting to consider a list of 1,000 elements. The bubble sort will take about 1,000,000
operations, while quicksort will take about 3,000 operations—a ratio of about 300×.

Why Algorithmic Complexity Is Important
Algorithmic complexity represents the expected performance of a section of code as the
number of elements being processed increases. In the limit, the code with the greatest
algorithmic complexity will dominate the runtime of the application.

Assume that your application has two regions of code, one that is O(N) and another
that is O(N2). If you run a test workload of 100 elements, you may find that the O(N)
code takes longer to execute, because there may be more instructions associated with the
computation on each element. However, if you were to run a workload of 10,000 ele-
ments, then the more complex routine would start to show up as important, assuming it
did not completely dominate the runtime of the application.

Picking a small workload will mislead you as to which parts of the code need to be
optimized. You may have spent time optimizing the algorithmically simpler part of the
code, when the performance of the application in a real-world situation will be domi-
nated by the algorithmically complex part of the code. This emphasizes why it is impor-
tant to select appropriate workloads for developing and testing the application. Different
parts of the application will scale differently as the workload size changes, and regions
that appear to take no time can suddenly become dominant.

Another important point to realize is that a change of algorithm is one of the few
things that can make an order of magnitude difference to performance. If 80% of the
application’s runtime was spent sorting a 1,000-element array, then switching from a
bubble sort to a quicksort could make a 300× difference to the performance of that
function, making the time spent sorting 300× smaller than it previously was. The 80% of
the runtime spent sorting would largely disappear, and the application would end up
running about five times faster.

Table 2.1 shows the completion time of a task with different algorithmic complexities
as the number of elements grows. It is assumed that the time to complete a single unit of
work is 100ns. As the table illustrates, it takes remarkably few elements for an O(N2)
algorithm to start consuming significant amounts of time.

Table 2.1 Execution Duration at Different Algorithm Complexities

Elements O(1) O(N) O(N log2 N) O(N2)

1 100ns 100ns 100ns 100ns

10 100ns 1,000ns 3,322ns 10,000ns

100 100ns 10,000ns 66,439ns 1,000,000ns

1,000 100ns 100,000ns 996,578ns 100,000,000ns

10,000 100ns 1,000,000ns 13,287,712ns 10,000,000,000ns
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The same information can be presented as a chart of runtimes versus the number of
elements. Figure 2.1 makes the same point rather more dramatically. It quickly becomes
apparent that the runtime for an O(N2) algorithm will be far greater than one that is
linear or logarithmic with respect to the number of elements.

Figure 2.1 Different orders of algorithmic complexity
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Using Algorithmic Complexity with Care
Although algorithmic complexity is a very good guide to where time could be spent,
several issues need to be considered.

It may be tempting to select the most efficient algorithms for every aspect of the
code. Compare the lines of code necessary to implement the quicksort with those
required for the bubble sort as well as how easy it is to read those lines of code and
understand how the algorithm works. Algorithms with lower algorithmic complexity are
usually more difficult to implement and more difficult to understand. Both of these fac-
tors will lead to more developer time needed for the implementation, and the code may



potentially need a more experienced developer to maintain it. The point is that using
more complex algorithms can have an impact on developer time and cost. A simpler
algorithm might be easier to implement and result in lower development costs. It may
also be possible that the code does not need a more complex algorithm for typical
workloads.

A second point to consider is that algorithmic complexity is concerned with the
operation count. It does not consider the cost of those instructions. It may weigh the
cost of an add operation the same as a multiply yet be possible to have algorithms that
perform the same task with very different numbers of add and multiply operations. At
another level, the algorithms don’t consider implementation details such as caches. One
algorithm might be very cache friendly, whereas another could incur many cache misses.
In any code, stall time because of cache misses can easily dominate the performance.
Therefore, it is necessary to both look at the algorithmic complexity and evaluate the
actual implementation of the algorithm to determine whether the implementation is
likely to achieve good performance.

It is possible to look at an algorithm in the context of the number of loads that it will
take and how likely each load is to miss cache. This would give an estimate of the
amount of time spent waiting for data to arrive from memory. Of course, changing the
algorithm will impact both the complexity and the probability of events. In the example
of load misses, one algorithm might have higher miss rates but a lower-order complexity
versus another algorithm.

One final consideration in the selection of algorithms may be whether the algorithms
scale to multiple processors. If the algorithm has low algorithmic complexity but does
not scale beyond a single thread, it could be slower than an algorithm of higher com-
plexity that can be parallelized to run over multiple threads.

How Structure Impacts Performance
Three attributes of the construction of an application can be considered as “structure.”
The first of these is the build structure, such as how the source code is distributed
between the source files. The second structure is how the source files are combined into
applications and supporting libraries. Finally, and probably the most obvious, is that way
data is organized in the application. How these three structures influence performance is
the subject of the following sections.

Performance and Convenience Trade-Offs in Source Code and
Build Structures
The structure of the source code for an application can cause differences to its perform-
ance. Source code is often distributed across source files for the convenience of the
developers. It is appropriate that the developers’ convenience is one of the main criteria
for structuring the sources, but care needs to be taken that it does not cause inconven-
ience to the user of an application.

39How Structure Impacts Performance



Performance opportunities are lost when the compiler sees only a single file at a time.
The single file may not present the compiler with all the opportunities for optimizations
that it might have had if it were to see more of the source code. This kind of limitation
is visible when a program uses an accessor function—a short function that returns the
value of some variable. A trivial optimization is for the compiler to replace this function
call with a direct load of the value of the variable. Consider the code sequence shown in
Listing 2.5 for an example of accessor functions.

Listing 2.5 Accessor Functions

#include <stdio.h>

int a;

void setvalue( int v ) { a  v; }

int  getvalue() { return a; }

void main()

{

setvalue( 3 );
printf( "The value of a is %i\n", getvalue() );

}

The code in Listing 2.5 can be replaced with the equivalent but faster code shown in
Listing 2.6. This is an example of inlining within a source file. The calls to the routines
getvalue() and setvalue() are replaced by the actual code from the functions.

Listing 2.6 Pseudosource Code After Inlining Optimization

#include <stdio.h>

int a;

void main()

{

a  3;
printf( "The value of a is %i\n", a );

}

At some optimization level, most compilers support inlining within the same source
file. Hence, the transformation in Listing 2.6 is relatively straightforward for the compiler
to perform. The problem is when the functions are distributed across multiple source files.

Fortunately, most compilers support cross-file optimization where they take all the
source code and examine whether it is possible to further improve performance by
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inlining a routine from one source file into the place where it’s called in another source
file. This can negate much of any performance loss incurred by the structure used to
store the source code. Cross-file optimization will be discussed in more detail in the sec-
tion “How Cross-File Optimization Can Be Used to Improve Performance.”

Some build methodologies reduce the ability of the compiler to perform optimizations
across source files. One common approach to building is to use either static or archive
libraries as part of the build process. These libraries combine a number of object files into
a single library, and at link time, the linker extracts the relevant code from the library. 

Listing 2.7 shows the steps in this process. In this case, two source files are combined
into a single archive, and that archive is used to produce the application.

Listing 2.7 Creating an Archive Library

$ cc -c a.c

$ cc -c b.c

$ ar -r lib.a a.o b.o

ar: creating lib.a

$ cc main.c lib.a

There are three common reasons for using static libraries as part of the build process:
n For “aesthetic” purposes, in that the final linking of the application requires fewer

objects. The build process appears to be cleaner because many individual object
files are combined into static libraries, and the smaller set appears on the link line.
The libraries might also represent bundles of functionality provided to the executable.

n To produce a similar build process whether the application is built to use static or
dynamic libraries. Each library can be provided as either a static or a dynamic ver-
sion, and it is up to the developer to decide which they will use. This is common
when the library is distributed as a product for developers to use.

n To hide build issues, but this is the least satisfactory reason. For example, an archive
library can contain multiple versions of the same routine. At link time, the linker
will extract the first version of this routine that it encounters, but it will not warn
that there are multiple versions present. If the same code was linked using individ-
ual object files without having first combined the object files into an archive, then
the linker would fail to link the executable. 

Listing 2.8 demonstrates how using static libraries can hide problems with multiply
defined functions. The source files a.c and b.c both contain a function status().
When they are combined into an archive and linked into an executable, the linker will
extract one of the two definitions of the function. In the example, the linker selects the
definition from a.c. However, the build fails with a multiply defined symbol error if an
attempt is made to directly link the object files into an executable.
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Listing 2.8 Example of a Static Library Hiding Build Issues

$ more a.c

#include <stdio.h>

void status()

{

printf("In status of A\n");

}

$ more b.c

#include <stdio.h>

void status()

{

printf("In status of B\n");

}

$ cc -c a.c

$ cc -c b.c

$ ar -r lib.a a.o b.o

ar: creating lib.a

$ more main.c

void status();

void main()

{
status();

}

$ cc main.c lib.a

$ a.out

In status of A

$ cc main.c a.o b.o

ld: fatal: symbol 'status' is multiply-defined:

(file a.o type FUNC; file b.o type FUNC);

ld: fatal: File processing errors. No output written to a.out

An unfortunate side effect of using static libraries is that some compilers are unable to
perform cross-file optimization of code contained in the static libraries. This may mean
that functions are not inlined from the static library into the executable or that the code
held in the static library does not take any part in cross-file optimization.

Using Libraries to Structure Applications
Libraries are the usual mechanism for structuring applications as they become larger.
There are some good technical reasons to use libraries:
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n Common functionality can be extracted into a library that can be shared between
different projects or applications. This can lead to better code reuse, more efficient
use of developer time, and more effective use of memory and disk space.

n Placing functionality into libraries can lead to more convenient upgrades where
only the library is upgraded instead of replacing all the executables that use the
library.

n Libraries can provide better separation between interface and implementation. The
implementation details of the library can be hidden from the users, allowing the
implementation of the library to evolve while maintaining a consistent interface.

n Stratifying functionality into libraries according to frequency of use can improve
application start-up time and memory footprint by loading only the libraries that
are needed. Functionality can be loaded on demand rather than setting up all pos-
sible features when the application starts.

n Libraries can be used as a mechanism to dynamically provide enhanced functional-
ity. The functionality can be made available without having to change or even
restart the application.

n Libraries can enable functionality to be selected based on the runtime environ-
ment or characteristics of the system. For instance, an application may load differ-
ent optimized libraries depending on the underlying hardware or select libraries at
runtime depending on the type of work it is being asked to perform.

On the other hand, there are some nontechnical reasons why functionality gets placed
into libraries. These reasons may represent the wrong choice for the user.

n Libraries often represent a convenient product for an organizational unit. One
group of developers might be responsible for a particular library of code, but that
does not automatically imply that a single library represents the best way for that
code to be delivered to the end users.

n Libraries are also used to group related functionality. For example, an application
might contain a library of string-handling functions. Such a library might be
appropriate if it contains a large body of code. On the other hand, if it contains
only a few small routines, it might be more appropriate to combine it with
another library. 

There is a strong attraction to breaking applications down into a set of libraries.
Libraries make sense for all the reasons outlined previously, but it is quite possible to
have either inappropriate splits of functionality or libraries that implement too little
functionality.

There are costs associated with libraries. A call into a function provided by a library
will typically be more costly than a call into a function that is in the main executable.
Code provided in a library may also have more overhead than code provided in the exe-
cutable. There are a few contributors to cost:
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n Library calls may be implemented using a table of function addresses. This table
may be a list of addresses for the routines included in a library. A library routine
calls into this table, which then jumps to the actual code for the routine.

n Each library and its data are typically placed onto new TLB entries. Calls into a
library will usually also result in an ITLB miss and possibly a DTLB miss if the
code accesses library-specific data.

n If the library is being lazy loaded (that is, loaded into memory on demand), there
will be costs associated with disk access and setting up the addresses of the library
functions in memory.

n Unix platforms typically provide libraries as position-independent code. This
enables the same library to be shared in memory between multiple running appli-
cations. The cost of this is an increase in code length. Windows makes the opposite
trade-off; it uses position-dependent code in libraries, reducing the opportunity of
sharing libraries between running applications but producing slightly faster code.

Listing 2.9 shows code for two trivial libraries that can be used to examine how
memory is laid out at runtime.

Listing 2.9 Defining Two Libraries

$ more liba.c

#include <stdio.h>

void ina()

{

printf( "In library A\n" );

}

$ more libb.c

#include <stdio.h>

void inb()

{

printf( "In library B\n" );

}

Listing 2.10 shows the process of compiling these two libraries on Solaris.

Listing 2.10 Compiling Two Libraries

$ cc -G -Kpic -o liba.so liba.c

$ cc -G -Kpic -o libb.so libb.c
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The compiler flag G tells the compiler to make a library, while the flag Kpic tells
the compiler to use position-independent code. The advantage of position-independent
code is that the library can reside at any location in memory. The same library can even
be shared between multiple applications and have each application map it at a different
address.

The main program shown in Listing 2.11 will call the code in liba.so and then
pause so we can examine the memory layout of the application.

Listing 2.11 Calling Library Code

$ more libmain.c

#include <unistd.h>

void ina();

void inb();

void main()

{

ina();

sleep(20);

}

$ cc libmain.c -L. -R. -la -lb

The compile command in Listing 2.11 builds the main executable. The flag L tells
the linker where to find the library at link time. The flag R tells the runtime linker
where to locate the file at runtime. In the example, these two flags are set to the current
directory. The application will link and execute only if the current directory does con-
tain the library. However, other approaches are more resilient. Running this application
enables us to look at the memory map using the utility pmap. Listing 2.12 shows the
memory map.

Listing 2.12 Memory Map of Application and Libraries on Solaris

$ ./a.out&

In library A

[1] 1522

$ pmap -x 1522 
1522:     ./a.out 
Address   Kbytes     RSS    Anon   Locked Mode   Mapped File 
08046000       8       8       8       - rwx--    [ stack ] 
08050000       4       4       -       - r-x--    a.out 
08060000       4       4       4       - rwx--    a.out 
D29E0000      24      12      12       - rwx--    [ anon ] 
D29F0000       4       4       4       - rwx--    [ anon ] 
D2A00000    1276     936       -       - r-x--    libc_hwcap3.so.1 
D2B4F000      32      32      32       - rwx--    libc_hwcap3.so.1 
D2B57000       8       8       8       - rwx--    libc_hwcap3.so.1 
D2B60000       4       4       -     - r-x--    libb.so 
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D2B70000       4       4       4       - rwx--    libb.so
D2B80000       4       4       -       - r-x--    liba.so
D2B90000       4       4       4       - rwx--    liba.so
D2BB0000       4       4       4       - rwx--    [ anon ] 
D2BBE000     184     184       -       - r-x--    ld.so.1 
D2BFC000       8       8       8       - rwx--    ld.so.1 
D2BFE000       4       4       4       - rwx--    ld.so.1 
-------- ------- ------- ------- ------- 
total Kb    1576    1224      92       - 

In the memory map shown in Listing 2.12, each library has at least two mapped seg-
ments. The first is mapped with read and execute permissions that contain the code in
the library. The second contains data and is mapped with read, write, and execute per-
missions. Both libraries are mapped in, even though the code does not contain any calls
to libb.so and makes no use of the library. The RSS column indicates that the library
has been loaded into memory. The x86 processor uses a 4KB default page size, so pages
of memory are allocated in 4KB chunks. Although both liba.so and libb.so contain
only a few bytes of code, both libraries are allocated 4KB of memory for instructions.
The same is true for data. The concern is that each 4KB will require a single TLB entry
for a virtual address to physical address mapping when a routine in that page is called. If
liba.so and libb.so had been combined, the functions in the two libraries could have
been placed into a single 4KB segment for each of the instructions and data.

It is possible to look at the sequence of events when the application is loaded by set-
ting the environment variable LD DEBUG=flags. Listing 2.13 shows an edited form of
the output.

Listing 2.13 Output from Setting the Environment Variable LD DEBUG=files

$ LD_DEBUG=files ./a.out

01615: file /export/home/darryl/a.out  [ ELF ]; generating link map 
01615: file a.out;  analyzing 

01615: file=liba.so;  needed by a.out
01615: file ./liba.so  [ ELF ]; generating link map 

01615: file=libb.so;  needed by a.out
01615: file ./libb.so  [ ELF ]; generating link map 

01615: file=libc.so.1;  needed by a.out
01615: file /lib/libc.so.1  [ ELF ]; generating link map 

01615: file ./liba.so;  analyzing  

01615: file ./libb.so;  analyzing  

01615: file /lib/libc.so.1;  analyzing  

01615: 1: transferring control: a.out
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This shows the sequence of starting the application, having the runtime linker exam-
ine the application, and identifying the need for the libraries liba.so, libb.so, and
libc.so.1. Once those libraries are loaded, it examines them for other libraries that
might be needed.

The linker performs a sizable amount of work. However, the time spent processing
the libraries is likely to be dominated by the time spent fetching them from disk. The
more data and instructions a library contains, the more time it will take to read the
library from disk. It is possible to use lazy loading to avoid loading libraries from disk
until they are actually used. Listing 2.14 shows the application built with lazy loading
enabled and the resulting runtime linking.

Listing 2.14 Linking a Library to Use Lazy Loading

$ cc libmain.c -L. -R. -z lazyload -la -lb

$ LD_DEBUG=files ./a.out

01712: file /export/home/darryl/a.out  [ ELF ]; generating link map 
01712: file a.out;  analyzing 

01712: file=libc.so.1;  needed by a.out 

01712: file /lib/libc.so.1;  analyzing  
01712: 1: transferring control: a.out 

01712: 1: file=liba.so;  lazy loading from file=a.out: symbol=ina
01712: 1: file ./liba.so  [ ELF ]; generating link map 
01712: 1: file ./liba.so;  analyzing

In library A 

In this instance, the application runs without loading either liba.so or libb.so up
until the point where the symbol ina() is required from the library liba.so. At that
point, the runtime linker loads and processes the library. The lazy loading of libraries has
meant that the application did not need to load libb.so at all, thus reducing application
start-up time.

One more thing to consider for the costs for libraries is the cost of calling code resid-
ing in libraries. The easiest way to demonstrate this is to modify the example code so it
calls the routine ina() twice and then to use the debugger to examine what happens at
runtime. The first call will load the library into memory, but that will happen only once
and can be ignored. The second time the routine is called will be representative of all
calls to all library routines. Listing 2.15 shows the output from the Solaris Studio debug-
ger, dbx, showing execution up until the first call to the routine ina().
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Listing 2.15 Execution Until the First Call to the Routine ina

$ dbx a.out

Reading a.out

Reading ld.so.1 
Reading libc.so.1 
(dbx) stop in main

dbx: warning: 'main' has no debugger info 

-- will trigger on first instruction

(2) stop in main

(dbx) run

Running: a.out

(process id 1744)

stopped in main at 0x08050ab0

0x08050ab0: main : pushl %ebp

(dbx) nexti

stopped in main at 0x08050ab1

0x08050ab1: main+0x0001: movl %esp,%ebp

(dbx) nexti

stopped in main at 0x08050ab3

0x08050ab3: main+0x0003: call ina [PLT] [ 0x8050964, .-0x14f ] 

At this stage, the application has reached the first call to the routine ina(). As can be
seen from the disassembly, this call is actually a call to the procedure linkage table (PLT).
This table contains a jump to the actual start address of the routine. However, the first
time that the routine is called, the runtime linker will have to load the lazily loaded
library from disk. Listing 2.15 earlier skips this first call. Listing 2.16 shows the code as it
steps through the second call to the routine ina().

Listing 2.16 Jumping Through the PLT to the Routine ina

(dbx) nexti 

Reading liba.so
In library A
stopped in main at 0x08050ab8
0x08050ab8: main+0x0008: call ina [PLT] [ 0x8050964, . 0x154 ]
(dbx) stepi
stopped in (unknown) at 0x08050964
0x08050964: ina [PLT]: jmp *_GLOBAL_OFFSET_TABLE_+0x1c [ 0x8060b24 ]
(dbx) stepi
stopped in ina at 0xd2990510

0xd2990510: ina : pushl %ebp

By the second time the call to ina() is encountered, the library has already been
loaded, and the call is again into the PLT. Using the debugger to step into the call, we
can see that this time the target is a jump instruction to the start of the routine.
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All calls to library functions, possibly even those within the library, will end up routed
through the PLT. This imposes a small overhead on every call. There are ways to limit the
scope of library functions so they are not visible outside the library and so calls within
the library to those functions will not need to be routed through the PLT.

The same procedure can be followed on Linux. Listing 2.17 shows the steps necessary
to compile the application on Linux.

Listing 2.17 Compiling Libraries and Application on Linux

$ gcc -shared -fpic -o liba.so liba.c

$ gcc -shared -fpic -o libb.so libb.c

$ gcc libmain.c `pwd`/liba.so `pwd`/libb.so

Listing 2.18 shows the steps to use the Linux debugger, gdb, to step through the
process of calling the library function ina().

Listing 2.18 Stepping Through Library Call on Linux

$ gdb a.out 

(gdb) display /i $eip

(gdb) break main

Breakpoint 1 at 0x8048502

(gdb) run

Starting program: /home/darryl/a.out

Breakpoint 1, 0x08048502 in main ()

0x8048502 <main+14>: sub $0x4,%esp

(gdb) nexti

0x8048505 <main+17>: call 0x804841c <ina@plt>

(gdb) nexti

In library A

0x804850a <main+22>: call 0x804841c <ina@plt>

(gdb) stepi

0x804841c <ina@plt>: jmp *0x804a008

(gdb) stepi

0xb7ede42c <ina>: push %ebp 

The sequence for Linux shown in Listing 2.18 is basically the same as the sequence
for Solaris shown in Listing 2.15 and Listing 2.16. The executable calls into the PLT, and
then the application jumps from there into the routine.

The memory map for Linux shown in Listing 2.19 looks very similar to the memory
map for Solaris shown in Listing 2.12. In the Linux memory map, both liba.so and
libb.so are mapped onto three 4KB pages.
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Listing 2.19 Application Memory Map on Linux

$ pmap 14392

14392:   ./a.out

08048000      4K r-x--  /home/darryl/a.out 

08049000      4K r----  /home/darryl/a.out 

0804a000      4K rw---  /home/darryl/a.out 

b7e43000      4K rw---    [ anon ] 

b7e44000   1392K r-x--  /lib/tls/i686/cmov/libc-2.9.so 

b7fa0000      4K -----  /lib/tls/i686/cmov/libc-2.9.so 

b7fa1000      8K r----  /lib/tls/i686/cmov/libc-2.9.so 

b7fa3000      4K rw---  /lib/tls/i686/cmov/libc-2.9.so 

b7fa4000     16K rw---    [ anon ] 

b7fb4000      4K rw---    [ anon ] 

b7fb5000      4K r-x--  /home/darryl/libb.so 

b7fb6000      4K r----  /home/darryl/libb.so 

b7fb7000      4K rw---  /home/darryl/libb.so 

b7fb8000      4K r-x--  /home/darryl/liba.so 

b7fb9000      4K r----  /home/darryl/liba.so 

b7fba000      4K rw---  /home/darryl/liba.so 

b7fbb000      8K rw---    [ anon ] 

b7fbd000      4K r-x--    [ anon ] 

b7fbe000    112K r-x--  /lib/ld-2.9.so 

b7fda000      4K r----  /lib/ld-2.9.so 

b7fdb000      4K rw---  /lib/ld-2.9.so 

bfcc6000     84K rw---    [ stack ] 

total     1684K 

Therefore, there is a balance between the convenience of the developers of libraries
and the convenience of the libraries’ users. Rough guidelines for when to use libraries
are as follows:

n Libraries make sense when they contain code that is rarely executed. If a substan-
tial amount of code does not need to be loaded from disk for the general use of
the application, then the load time of the application can be reduced if this func-
tionality is placed in a library that is loaded only when needed.

n It is useful to place code that is common to multiple applications into shared
libraries, particularly if the applications are out of the control of the developers of
the libraries. This is the situation with most operating systems, where the applica-
tions that use the libraries will be developed separately from the core operating
system. Most applications use libc, the C standard library, so it makes sense to
deliver this library as a shared library that all applications can use. If the internals of
the operating system change or if a bug is fixed, then the libraries can be modified
without needing to change the applications that use those libraries. This is a form
of encapsulation.
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n Device drivers are usually packaged as libraries. There is a temptation to produce
multiple libraries, some of which are core and some of which are device specific. If
there is likely to only ever be a single device of a specific type attached to a sys-
tem, then it is better to provide a single library. If there are likely to be multiple
types of devices attached that all share the common core, then it might be appro-
priate to split the code into device-specific and common code.

n Libraries can also provide dynamically loaded functionality. A library could be
released to provide an existing application with new functionality. Placing as much
functionality into as few libraries as possible is the most efficient approach, but in
many instances the need to dynamically manage functionality will outweigh any
overhead induced by packaging the functionality as libraries.

In general, it is best to make libraries lazy loaded when needed rather than have all
the libraries load at start-up time. This will improve the application start-up time. Listing
2.20 shows code for a simple library that will be lazy loaded.

Listing 2.20 Simple Library with Initialization Code

#include <stdio.h>

void initialise()

{

printf( "Initialisation code run\n" );

}

#pragma init (initialise)

void doStuff()

{

printf( "Doing stuff\n" );

}

The application shown in Listing 2.21 uses the library from Listing 2.20.

Listing 2.21 Application That Calls Library Code

#include <stdio.h>

void doStuff();

void main()

{

printf( "Application now running\n" );

doStuff();

printf( "Application now exiting\n" );

}
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Listing 2.22 shows the results of compiling, linking, and running this application on
Solaris without lazy loading.

Listing 2.22 Using Library Code Without Lazy Loading

$ cc -O -G -o liba.so liba.c

$ cc -O -o main main.c -L. -R. -la

$ ./main

Initialisation code run

Application now running

Doing stuff

Application now exiting

Listing 2.23 shows the same test but with the library being lazy loaded.

Listing 2.23 Using Library Code with Lazy Loading

$ cc -O -G -o liba.so liba.c

$ cc -O -o main main.c -L. -R. -zlazyload -la

$ ./main

Application now running

Initialisation code run

Doing stuff

Application now exiting

This change in the linking has enabled the library to be loaded after the application
has started. Therefore, the start-up time of the application is not increased by having to
load the library first. It is not a significant issue for the example code, which uses one
small library, but can be a significant issue when multiple large libraries need to be
loaded before the application can start.

There is one situation where libraries that are tagged as being lazy loaded are loaded
anyway. If an application needs to find a symbol and the application was not explicitly
linked with the library containing that object at compile time, then the application will
load all the dependent libraries in order to resolve any unresolved symbols, undoing the
usefulness of lazy loading. Suppose we add a second library that prints the message
“Library B initializing” when it is loaded but contains no other code. Listing 2.24 shows
the command line to compile this library to have a lazy-loaded dependence on liba.

Listing 2.24 Compiling libb to Have a Lazy-Loaded Dependence on liba

$ cc -O -G -o libb.so libb.c -zlazyload -R. -L. -la

The next step, shown in Listing 2.25, is to deliberately link the application so that it
lazy loads libb but does not have a dependence on liba. This would usually cause the
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linker to fail with an unresolved symbol error, but we can switch that safety check off
using the znodefs flag.

Listing 2.25 Compiling the Application to Only Recode the Dependence on libb

$ cc -O -G -o main main.c -zlazyload -znodefs -R. -L. -lb

The resulting application contains an unresolved symbol for ina() but has a lazy-
loaded dependence on libb. When the application is run, it will be unable to resolve
the symbol ina(), so the runtime linker will start loading all the lazy-loaded libraries.
Once it has loaded libb, it will then lazy load the dependencies of libb, where it will
finally load liba and locate the routine ina(). Listing 2.26 shows the resulting output.

Listing 2.26 Output Showing libb Being Lazy Loaded as Part of Search for doStuff()

$ ./main

Application now running

Library B initialising

Initialisation code run

Doing stuff

Application now exiting

The other reason that lazy loading would be unsuccessful is if the code is not opti-
mally distributed between the libraries. If each library requires code from another in
order to work, then there is no way that a subset can be loaded without pulling them all
into the application. Therefore, the distribution of code between the libraries is a critical
factor in managing the start-up time of an application.

The Impact of Data Structures on Performance
Data structure is probably what most people think of first when they hear the word
structure within the context of applications. Data structure is arguably the most critical
structure in the program since each data structure will potentially be accessed millions of
times during the run of an application. Even a slight gain in performance here can be
magnified by the number of accesses and become significant.

When an application needs an item of data, it fetches it from memory and installs it
in cache. The idea with caches is that data that is frequently accessed will become resi-
dent in the cache. The cost of fetching data from the cache is substantially lower than the
cost of fetching it from memory. Hence, the application will spend less time waiting for
frequently accessed data to be retrieved from memory. It is important to realize that each
fetch of an item of data will also bring adjacent items into the caches. So, placing data
that is likely to be used at nearly the same time in close proximity will mean that when
one of the items of data is fetched, the related data is also fetched.
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The amount of data loaded into each level of cache by a load instruction depends on
the size of the cache line. As discussed in “Using Caches to Hold Recently Used Data”
in Chapter 1, 64 bytes is a typical length for a cache line; however, some caches have
longer lines than this, and some caches have shorter lines. Often the caches that are closer
to the processor have shorter lines, and the lines further from the processor have longer
lines. Figure 2.2 illustrates what happens when a line is fetched into cache from memory.

Figure 2.2 Fetching data from memory into caches

64 bytes

Memory

64 bytes

Second-
level

cache

16 bytes

First-
level

cache

On a cache miss, a cache line will be fetched from memory and installed into the sec-
ond-level cache. The portion of the cache line requested by the memory operation is
installed into the first-level cache. In this scenario, accesses to data on the same 16-byte
cache line as the original item will also be available from the first-level cache. Accesses to
data that share the same 64-byte cache line will be fetched from the second-level cache.
Accesses to data outside the 64-byte cache line will result in another fetch from memory.

If data is fetched from memory when it is needed, the processor will experience the
entire latency of the memory operation. On a modern processor, the time taken to per-
form this fetch can be several hundred cycles. However, there are techniques that reduce
this latency:

n Out-of-order execution is where the processor will search the instruction stream for
future instructions that it can execute. If the processor detects a future load
instruction, it can fetch the data for this instruction at the same time as fetching



data for a previous load instruction. Both loads will be fetched simultaneously, and
in the best case, the total cost of the loads can be potentially halved. If more than
two loads can be simultaneously fetched, the cost is further reduced.

n Hardware prefetching of data streams is where part of the processor is dedicated to
detecting streams of data being read from memory. When a stream of data is iden-
tified, the hardware starts fetching the data before it is requested by the processor.
If the hardware prefetch is successful, the data might have become resident in the
cache before it was actually needed. Hardware prefetching can be very effective in
situations where data is fetched as a stream or through a strided access pattern. It is
not able to prefetch data where the access pattern is less apparent.

n Software prefetching is the act of adding instructions to fetch data from memory
before it is needed. Software prefetching has an advantage in that it does not need
to guess where the data will be requested from in the memory, because the prefetch
instruction can fetch from exactly the right address, even when the address is not a
linear stride from the previous address. Software prefetch is an advantage when the
access pattern is nonlinear. When the access pattern is predictable, hardware
prefetching may be more efficient because it does not take up any space in the
instruction stream.

Another approach to covering memory latency costs is with CMT processors. When
one thread stalls because of a cache miss, the other running threads get to use the
processor resources of the stalled thread. This approach, unlike those discussed earlier,
does not improve the execution speed of a single thread. This can enable the processor to
achieve more work by sustaining more active threads, improving throughput rather than
single-threaded performance.

There are a number of common coding styles that can often result in suboptimal lay-
out of data in memory. The following subsections describe each of these.

Improving Performance Through Data Density and Locality
Paying attention to the order in which variables are declared and laid out in memory can
improve performance. As discussed earlier, when a load brings a variable in from memory,
it also fetches the rest of the cache line in which the variable resides. Placing variables
that are commonly accessed together into a structure so that they reside on the same
cache line will lead to performance gains. Consider the structure shown in Listing 2.27.

Listing 2.27 Data Structure

struct s

{

int var1;

int padding1[15];

int var2;

int padding2[15];

}
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When the structure member var1 is accessed, the fetch will also bring in the sur-
rounding 64 bytes. The size of an integer variable is 4 bytes, so the total size of var1 plus
padding1 is 64 bytes. This ensures that the variable var2 is located on the next cache
line. Listing 2.28 shows the structure reordered so that var1 and var2 are adjacent. This
will usually ensure that both are fetched at the same time.

Listing 2.28 Reordered Data Structure So That Important Structure Members Are Likely
to Share a Cache Line

struct s

{

int var1;

int var2;

int padding1[15];

int padding2[15];

}

If the structure does not fit exactly into the length of the cache line, there will be
situations when the adjacent var1 and var2 are split over two cache lines. This intro-
duces a dilemma. Is it better to pack the structures as close as possible to fit as many of
them as possible into the same cache line, or is it better to add padding to the structures
to make them consistently align with the cache line boundaries? Figure 2.3 shows the
two situations.

The answer will depend on various factors. In most cases, the best answer is probably
to pack the structures as tightly as possible. This will mean that when one structure is
accessed, the access will also fetch parts of the surrounding structures. The situation

Figure 2.3 Using padding to align structures
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where it is appropriate to add padding to the structure is when the structures are always
accessed randomly, so it is more important to ensure that the critical data is not split
across a cache line.

The performance impact of poorly ordered structures can be hard to detect. The cost
is spread over all the accesses to the structure over the entire application. Reordering the
structure members can improve the performance for all the routines that access the
structures. Determining the optimal layout for the structure members can also be diffi-
cult. One guideline would be to order the structure members by access frequency or
group them by those that are accessed in the hot regions of code. It is also worth consid-
ering that changing the order of structure members could introduce a performance
regression if the existing ordering happens to have been optimal for a different fre-
quently executed region of code.

A similar optimization is structure splitting, where an existing structure is split into
members that are accessed frequently and members that are accessed infrequently. If the
infrequently accessed structure members are removed and placed into another structure,
then each fetch of data from memory will result in more of the critical structures being
fetched in one action. Taking the previous example, where we assume that var3 is rarely
needed, we would end up with a resulting pair of structures, as shown in Figure 2.4.
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Figure 2.4 Using structure splitting to improve memory locality
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In this instance, the original structure s has been split into two, with s0 containing all
the frequently accessed data and s1 containing all the infrequently accessed data. In the
limit, this optimization is converting what might be an array of structures into a set of
arrays, one for each of the original structure members.



58 Chapter 2 Coding for Performance

Selecting the Appropriate Array Access Pattern
One common data access pattern is striding through elements of an array. The perform-
ance of the application would be better if the array could be arranged so that the
selected elements were contiguous. Listing 2.29 shows an example of code accessing an
array with a stride.

Listing 2.29 Noncontiguous Memory Access Pattern

{

double ** array;

double total 0;

…

for (int i 0; i<cols; i++)

for (int j 0; j<rows; j++)

total +  array[j][i];

…

}

C/C++ arrays are laid out in memory so that the adjacent elements of the final index
(in this case indexed by the variable i) are adjacent in memory; this is called row-major
order. However, the inner loop within the loop nest is striding over the first index into
the matrix and accessing the ith element of that array. These elements will not be located
in contiguous memory.

In Fortran, the opposite ordering is followed, so adjacent elements of the first index
are adjacent in memory. This is called column-major order. Accessing elements by a stride
is a common error in codes translated from Fortran into C. Figure 2.5 shows how mem-
ory is addressed in C, where adjacent elements in a row are adjacent in memory.

Figure 2.5 Row major memory ordering
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Fortunately, most compilers are often able to correctly interchange the loops and
improve the memory access patterns. However, there are many situations where the
compiler is unable to make the necessary transformations because of aliasing or the order
in which the elements are accessed in the loop. In these cases, it is necessary for the
developer to determine the appropriate layout and then restructure the code appropriately.

Choosing Appropriate Data Structures
Choosing the best structure to hold data, such as choosing an algorithm of the appropri-
ate complexity, can have a major impact on overall performance. This harks back to the
discussions of algorithmic complexity earlier in this chapter. Some structures will be effi-
cient when data is accessed in one pattern, while other structures will be more efficient
if the access pattern is changed.

Consider a simple example. Suppose you have a dictionary of words for a spell-
checker application. You don’t know at compile time how many words will be in the
dictionary, so the easiest way to cope with this might be to read in the words and place
them onto a linked list, as shown in Figure 2.6.
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Figure 2.6 Using a linked list to hold an ordered list of words
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Every time the application needs to check whether a word is in the dictionary, it
traverses the linked list of words, so a spell-check of the entire document is an O(N2)
activity.

An alternative implementation might be to allocate an array of known length to hold
pointers to the various words, as shown in Figure 2.7.

Although there might be some complications in getting the array to be the right
length to hold all the elements, the benefit comes from being able to do a binary search
on the sorted list of words held in the array. A binary search is an O(log2(N)) activity, so
performing a spell-check on an entire document would be an O(N∗log2(N)) activity,
which, as indicated earlier, would be a significantly faster approach.
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As in any example, there are undoubtedly better structures to choose for holding a
dictionary of words. Choosing the appropriate one for a particular application is a case of
balancing the following factors:

n Programmer time to implement the algorithm. There will probably be constraints
on the amount of time that a developer can spend on implementing a single part
of the application.

n User sensitivity to application performance. Some features are rarely used, so a user
might accept that, for example, performing a spell-check on an entire document
will take time. It may also be the case that the compute part of the task is not time
critical; in the case of a spell-check, if a spelling error is reported, the user may
spend time reading the text to determine the appropriate word to use, during
which the application could continue and complete the spell-check of the rest of
the document.

n The problem size is not large enough to justify the more complex algorithm. If
the application is limited to documents of only a few hundred words, it is unlikely
that a spell-check of the entire document would ever take more than about half a
second. Any performance gains from the use of an improved algorithm would be
unnoticeable.

In many situations, there are preexisting libraries of code that implement different
data management structures. For C++, the Standard Template Library provides a wealth
of data structures. Careful coding to encapsulate the use of the data structures can mini-
mize developer time by allowing the original structures to be easily replaced with more
efficient ones should that prove necessary.

The Role of the Compiler
The purpose of the compiler is to take the source code and produce a functionally cor-
rect implementation, using only the information that the developer provides either in
the source code or as part of the compilation process. It is important to recognize the
constraints that the compiler is working under—something that is obvious to the devel-
oper may not be obvious to the compiler. 

Figure 2.7 Using an array to hold an ordered list of words
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Most applications have execution paths that are rarely executed. A developer inspect-
ing the code will probably be able to identify the paths that are likely to be executed
infrequently. However, the compiler will be rarely able to extract additional contextual
information from the source code to determine which path is most common. Consider
the code shown in Listing 2.30, which has variable names that might indicate the devel-
opers’ expectations of the frequency of execution of the two code paths.

Listing 2.30 Code Where a Developer Might Guess Common Path

...

if (error) { value 0.001; }

else       { value numerator/denominator; }

...

The use of pointer variables raises a common problem. To the compiler, a pointer can
point to any location in memory, including the address of other variables or the addresses
held by other pointers. Hence, any memory location accessed through a pointer may
modify or have been modified by a different memory access. 

If two pointers hold the address of the same memory location, they are said to alias.
The safe assumption is for the compiler to assume that any pointer may alias with any
other data. In some cases, the compiler is able to prove that a particular memory location
was not accessed through the pointer, and then the compiler can avoid reloading or stor-
ing data. However, the presence of a pointer may mean that the compiler cannot safely
perform many optimizations. In Listing 2.31, the compiler has to assume that the two
pointers passed into the functions might alias the same location in memory.

Listing 2.31 Code Containing Potential Aliasing

void func(int * a, int *b)

{

*b  *b + *a;

*a  *a + 2;

}

If pointers a and b do not alias, then the value of a needs to be loaded only a single
time. If they do, then the store to b will change the value of a. In the absence of further
information, the compiler must assume that the two pointers do alias and that the vari-
able a needs to be loaded twice.

The compiler can sometimes determine from the source code that two pointers do
not alias. In other cases, the compiler may be able to produce multiversion code that, at
runtime, selects either the variant of the code where it is assumed that aliasing occurs or
another variant where it is assumed that aliasing does not occur. However, the compiler
should never produce code that will generate a wrong answer; optimizations that the
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compiler performs must either be provably safe or be specifically enabled, either implic-
itly or explicitly, by the user.

If the compiler is able to inspect more of the code, it is usually able to make better
decisions. Cross-file optimization allows the compiler to combine all the source code for
an executable. If the compiler can see all the source code, it knows how functions are
called and sees the code that gets executed in the function call so it can make better
inlining decisions. It can also see all the uses of a variable or memory region and can
better optimize the use of that variable. Allowing the compiler visibility into more of the
application will enable it to produce better-performing code.

The Two Types of Compiler Optimization
There are two fundamental types of optimization: elimination of work or restructuring
of work. Although there is a huge list of optimizations that can be performed by compil-
ers, all of them resolve to either not doing something or doing something in a more effi-
cient way. Consider the snippet of code shown in Listing 2.32.

Listing 2.32 Empty Loop

for (int i 0; i<1000; i++) { }

It quite clearly does not perform any useful work; a programmer might have included
it as a naïve delay. An optimizing compiler will eliminate the entire loop. Consider the
variant of the code shown in Listing 2.33.

Listing 2.33 Loop Containing Function Call

for (int i 0; i<1000; i++) { do_nothing(); }

Unless the compiler can inspect the body of the function do nothing() or the pro-
grammer has used some other mechanism to indicate to the compiler that the code does
nothing, then the compiler will have to leave this loop in the code.

Listing 2.34 shows another code snippet.

Listing 2.34 Loop Containing Floating-Point Arithmetic

double total 0.0;

for (int i 0; i<1000; i++) { total  total + 1.0;}

Although a human would determine that the code is equivalent to adding 1,000 to
the floating-point variable total, a compiler may perform all the individual additions.
This is in case there is some side effect from the floating-point computation that a dif-
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ferent part of the code is watching for. For example, there might be a floating-point
exception handler that gets triggered by the computation of this loop. By default, some
compilers cannot eliminate this code, but when given suitable compiler flags, the com-
piler will remove the loop. This is a demonstration that the compiler needs to be given
appropriate instructions by the user in order for it to perform all the optimizations that
it is capable of.

The other fundamental type of optimization is an improvement in the efficiency of
the operations. In the section “Array Access Patterns,” we saw a potential example where
the compiler could interchange two loops in order to improve the pattern of memory
accesses. This improved the performance of the code by reducing the memory access
costs. Another example of this improvement in the efficiency of the code is where one
operation can be replaced by a less expensive one. This is called strength reduction. A good
demonstration of strength reduction is replacing integer division by a power of two with
a shift operation. The code in Listing 2.35 contains an integer division by two.

Listing 2.35 Code with Opportunity for Optimization

unsigned int b;

...

unsigned int a  b/2;

An integer division by two can be replaced by a shift right operation, as shown in
Listing 2.36.

Listing 2.36 Code After Optimization

unsigned int b;

...

unsigned int a  b>>1;

Another common optimization is to replace conditional code with logical operations.
The performance gains come from the ease with which the processor is able to execute
the resulting code. The improved sequence may eliminate branch instructions, therefore
eliminating branch misprediction stalls, or maybe the new sequence needs fewer instruc-
tions. Listing 2.37 shows code with an opportunity for the replacement of conditional
code with logical operations.

Listing 2.37 Conditional Code

if ( (value & 1)  1 ) 

{

odd  1;

} 

else 
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{

odd  0;

}

The code shown in Listing 2.37 can be replaced by the equivalent code shown in
Listing 2.38.

Listing 2.38 Logical Operations

odd  value & 1;

Selecting Appropriate Compiler Options
Compilers tend to have many possible command-line options, or flags. The programmer’s
task is to identify the smallest subset of flags that will provide the most appropriate set of
optimizations. Usually this falls into a set of three objectives for the build:

n The basic optimization level is the debug level. These are the flags necessary to
generate code that can be effectively debugged. This kind of build is useful for
debugging logical errors in the code. If the code dies with a null-pointer excep-
tion, running the debug version of the code will allow the developer to determine
whether that exception is a result of optimization or an intrinsic property of the
code. It will also allow the developer to step through the code in the smallest pos-
sible steps to see exactly how the application gets into that state. However, this
capability usually comes at the cost of the reduced runtime performance.

n An optimized build of an application builds quickly and runs at a reasonable speed.
A developer will build and run the application many times over the development
cycle, so it is important that the compiler does not take long to compile the appli-
cation and that the application executes with reasonable performance. Typically,
compilers indicate an optimized compilation with the flag O. The optimizations
performed by this flag typically represent a good trade-off between attaining fast
runtime performance and spending large amounts of time compiling.

n Higher optimizations levels may also be appropriate. The developer first needs to
evaluate whether a more aggressive compilation of the application provides further
gains. If a more highly optimized build of the application delivers no further per-
formance gains, then it is unnecessary to use higher levels of optimization. The
build with the lower level of optimization but identical performance can be deliv-
ered as the production version of the application. On the other hand, if higher
optimization levels deliver greater performance, a production build of the applica-
tion may get better performance at the expense of a longer build cycle. If more
aggressive compiler options deliver enhanced performance, it is recommended that
these options be investigated to determine exactly which options provide the per-
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formance and whether they are appropriate to the application before being used
on the production build.

Most compilers have a set of flags that match this philosophy. A debug build of an
application is performed with either no optimization flags or a low optimization level
flag, together with the flags that generate debug information. As the optimization level is
increased, the compiler will examine the code, testing for an increasing range optimiza-
tion opportunities. The more opportunities that the compiler checks for, the longer it
takes to complete the compilation. Most compilers provide a flag, often O, that selects a
level of optimization that will deliver a good proportion of the maximum possible per-
formance, without taking an unreasonable amount of compile time. Most compilers also
provide a macro-flag, such as fast, that enables a selection of more advanced optimiza-
tions. These additional optimizations may result in the highest performance but at the
cost of a further increase in compile time.

There are two general optimizations worth exploring in some detail: cross-file opti-
mization and profile feedback.

How Cross-File Optimization Can Be Used to Improve
Performance
We have already discussed how the source structure of an application can impact the
performance of an application. In Figure 2.8, function A() calls function B(), but func-
tion B() is defined in the file b.c, and function A() is defined in the file a.c.

Figure 2.8 Function calls
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There are a number of costs to making this call:
n There will be a branch and return instruction to make the call.
n Registers might be stored to memory before the call and restored from memory

after the call because the called routine might use or modify the variables that they
currently hold.

n Registers might be spilled to memory to provide empty registers for the called
routine to use.



n Both routine A() and routine B() might perform computations that could be
identified as unnecessary if the source for the combination of the two routines
were evaluated.

One way to overcome these limitations is by using cross-file optimization. This is typ-
ically a final step after the compiler has produced object files for all the source files in an
application. At this step, the compiler reads all the object files and looks for optimizations
it can perform using full knowledge of the entire application. For inlining, the compiler
will determine that there is a call from A() to B() and rewrite routine A() with a new
version that combines the code from A() with the code from B(). This new version is
the one that appears in the final executable.

Inlining is a very good optimization to enable because it should have no impact on
the correctness of the application (the executed code should be equivalent to the origi-
nal code), but it reduces the execution costs and also introduces further opportunities for
optimization. Listing 2.39 shows code with an opportunity for an inlining optimization.

Listing 2.39 Code with an Inlining Opportunity

int B( int p, int q )

{

if ( q  1 ) 

{ 

return p; 

}

else 

{ 

return p * B( p, q-1 ); 

}

}

int A( int p )

{

return B( p, 1 );

}

In this example, the function B() is an inefficient way of calculating p^q. However, it
is called by routine A() with the value of q as a constant 1, so the return value of the
function will always be the value of the variable p. With inlining, the compiler can
choose to inline function B() into function A(), and it will discover that q is always 1
for this call and can eliminate both the conditional code and the untaken recursive
branch of the conditional code. In fact, the whole of routine A will collapse down to a
statement that returns the value of the variable p, as shown in Listing 2.40.
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Listing 2.40 Code After Inlining Optimization

int A( int p )

{

return p;

}

This new version of the routine A() is also a very good candidate for inlining since 
it only returns the value of the variable passed into it. Although this might appear to be
an unlikely example, there is a more generally occurring code pattern, as shown in
Listing 2.41.

Listing 2.41 Accessor Pattern

static int count;

int get_count()

{

return count;

}

It is very common to have routines that exist only to get and set the value of vari-
ables. These routines are very strong candidates for inlining since they contribute only
one useful instruction (the load of the variable) and at least two overhead instructions
(the call and return).

Another situation where inlining improves performance is where it can eliminate
loads and stores of variables to memory. Listing 2.42 shows code where inlining will
reduce the number of memory operations.

Listing 2.42 Code with Potential for Optimization by Function Inlining

int number_of_elements;

int max;

void calculate_max(int* elements)

{

max elements[0];

for (int i 1; i<number_of_elements; i++)

{

if ( elements[i] > max ) 

{ 

max elements[i];

}

}

}
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void doWork()

{

….

number_of_elements  ….;

calculate_max(elements);

….

}

The routine calculate max() needs the variable number of elements to be
updated before it is called. In the general case, the compiler needs to store all visible
variables to memory before calling the routine. This is necessary in case the routine reads
any of the variables. The variables need to be reloaded after the call in case the routine
has modified any of them. After inlining, the compiler does not need to include these
loads and stores because it can hold the necessary values in registers and execute only the
loads and stores that are necessary.

Cross-file optimization has a benefit in that it enables the compiler to generate opti-
mal code regardless of how the source code is distributed between source files. The only
limitation involves static or dynamic libraries, in which case the compiler may not be
able to perform the necessary cross-file inlining.

Using Profile Feedback
Most compilers support profile feedback, which is a mechanism that enables the com-
piler to gather information about the runtime behavior of the application. Consider the
snippet of code shown in Listing 2.43.

Listing 2.43 Code Where the Runtime Behavior of the Code Is Uncertain

if ( a !  0 ) 

{ d++; }

else 

{ d--; }

In this situation, the compiler has no idea whether the general case is to increment or
decrement the variable d. The usual solution is for the compiler to either guess one is
more likely than the other or produce code that favors neither assumption. However, if
the code is in the frequently executed part of the application, the appropriate choice
may lead to an observable improvement in performance. 

Another case where knowledge of the runtime behavior of the application is useful is
in determining which routines to inline. As discussed in the previous section, picking the
correct routine to inline can lead to significant performance benefits. However, every
time a called routine gets inlined, it increases the number of instructions in the calling
routine. This code size increase is likely to cause the instruction cache to be less effi-
ciently utilized, leading to a drop in performance. Hence, it can be quite important to
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inline routines that will benefit performance and avoid inlining those that will only
increase the instruction cache footprint.

Profile feedback, or feedback-directed optimization, allows the compiler the opportu-
nity to gather runtime information on the behavior of the application. It is a three-step
process. The first step is to build an instrumented version of the application to collect
runtime metrics. The next step is to run this application on a data set, which is “typical”
of the one that the application will really run on but whose runtime is much shorter.
The final step is to recompile the application using this profile information. Listing 2.44
shows the steps using the Solaris Studio compiler.

Listing 2.44 Steps for Using Profile Feedback with the Sun Studio Compiler

$ cc -O -xprofile=collect:./profile -o a.out prog.c

$ a.out

$ cc -O -xprofile=use:./profile -o a.out prog.c

The benefit of profile feedback depends on the application. Some applications will see
no benefit, while some may see a significant gain. As outlined earlier, the gains typically
come from either getting the compiler to lay out a performance-critical section of code
in an optimal way or inlining a performance-critical routine. 

It is interesting to observe that profile feedback tends to give the greatest benefit to
codes where there are lots of branches or calls rather than codes where there are a lot of
loops. The compiler can predict that loops will be iterated many times but has a harder
job correctly guessing for codes where there are plenty of control flow instructions.
Codes that have significant control flow instructions also tend to have few instructions
between control flow, so there are not many opportunities for the compiler to extract
performance in other ways. Hence, profile feedback can be the most effective way of
improving performance in a class of codes that is otherwise hard to optimize.

There are two concerns with using profile feedback. The first is that using profile
feedback complicates the build process and increases its duration. This can be controlled by
using profile feedback only on the release builds and not as part of the regular developer
builds. It can also be managed by ensuring that the build process is as efficient as possible.
For instance, the build process can be parallelized so that it takes advantage of multiple cores.

The other concern is that using profile feedback optimizes the application for one
particular scenario at the expense of the performance in other scenarios. This is the zero-
sum view of performance; a gain on one workload has to be compensated by a loss of
performance in another. In general, this concern is misplaced. Profile feedback helps the
compiler make decisions about the frequently executed paths and frequently called func-
tions. In most instances, the behavior of the application is only weakly dependent on the
input data set. For example, the same routines get called (although with a different fre-
quency), the same branches get taken, and so forth. This does not mean that every con-
trol transfer instruction has the same profile, but the majority of the control transfers in
the code have the same direction. 
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The exception is an application that has different “modes”: explicit modes where the
application is requested to perform different tasks or implicit modes where some charac-
teristic of the input data causes the application to behave in a particular way. 

An explicit mode might appear in the code as a switch/case statement that calls
entirely different code sections depending on an input condition. An implicit mode
might be an application that has multiple ways of solving a problem, and the problem-
solving approach used at each stage in the solution depends on the results of the previ-
ous steps. 

If the application has modes of operation, then it is necessary to provide training
inputs that capture all the different modes of operation. The profile of the application
and the code coverage data for the particular training data used provide the best indica-
tion of whether the application has these modes. Input data sets that do not cover signif-
icant parts of the code base are a strong indicator for the existence of these modes and
definitely indicate that more input data sets should be used in providing training data for
the application’s build.

The performance benefit from compiling with profile feedback is variable. Codes
where the time is spent in loops tend to benefit less from profile feedback, whereas codes
containing high numbers of control transfer instructions tend to see a much greater ben-
efit. The typical gain is probably around 5% to 10%, but gains can be much greater if the
profile feedback happens to lead to other opportunities for further performance gains.
The developer’s choice to use profile feedback should be taken in light of whether using
it gets performance gains.

How Potential Pointer Aliasing Can Inhibit Compiler
Optimizations
One of the most common barriers to optimization with C and C++ codes is pointer
aliasing. In most situations, a compiler cannot tell whether two (or more) pointers point
to the same address in memory or to different addresses. The compiler needs to make the
safe choice, so it will often default to assuming that the pointers do alias, even when the
programmer knows that the pointers do not. In some cases, the compiler is able to work
around this problem by producing multiple versions of the code and using runtime check-
ing to determine which version is appropriate. Consider the code shown in Listing 2.45.

Listing 2.45 Code with Potential Pointer Aliasing

void sum( double * total, double * array, int len )

{

for (i 0; i<len; i++)

{

*total +  array[i];

}

}
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The compiler cannot determine whether the memory location where the variable
total is stored is part of the array. It has to make the safe assumption that the variable is
part of the array, which results in code that stores the value of the variable total back
to memory in every iteration. The loop shown in Listing 2.46 comes from the code
compiled at a low level of optimization.

Listing 2.46 Loop Containing Store Operation Because of Potential Aliasing

top:

ldd     [%o1],%f0   ! Load of array[i]

add     %o4,1,%o4   ! Increment i

add     %o1,8,%o1   ! Increment pointer to array[i];

cmp     %o4,%o5     ! Check for end of loop

faddd   %f2,%f0,%f4 ! Perform addition

std     %f4,[%o0]   ! Store of the variable total

bl,a,pt %icc,top    ! Loop to top

ldd     [%o0],%f2   ! Reload of the variable total

At higher levels of optimization, the compiler can version the loop so that the version
that performs the store to memory can be avoided if the loop contains no alias. Listing
2.47 shows the equivalent source code.

Listing 2.47 Source Code Showing Two Versions of Loop with Potential Pointer Aliasing

void sum( double * total, double * array, int len )

{

if ( (total < array) || (total > array + len) )

{

double tmp  *total;

for (int i 0; i<len; i++)

{

tmp +  array[i];

}

*total  tmp;

}

else

for ( int i 0; i<len; i++ )

{

*total +  array[i];

}

}

The modified source code uses a temporary variable to hold the calculated value so
that the compiler knows that no aliasing is possible. This is a good technique to use in
order to avoid possible aliasing issues with pointers to global data.
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There are two fundamental performance issues in the presence of potential aliasing.
The first is illustrated in the example disassembly in Listing 2.46. Aliasing requires the
compiler to include unnecessary stores or loads of variables. It is possible to identify this
problem by counting the generated memory operations and confirming that they corre-
spond to the expected number from the source code. 

The second issue is more subtle and involves the ability of the compiler to reorder
instructions. Often, a compiler will move loads earlier in the instruction stream to give
them more time to complete and move stores to later in the instruction stream to give
more time for the instruction feeding data to them to complete. Unfortunately, aliasing
issues limit the ability of the compiler to do this. When the disassembly is viewed, the
problem appears as a store instruction followed immediately by a load instruction. This
schedule ensures the correct memory ordering, but it may not be optimal for perform-
ance. Listing 2.48 shows this problem.

Listing 2.48 Code with Potential Aliasing Issues

void func(int * a, int * b)

{

(*a)++;

(*b)++;

}

When compiled, this code produces the SPARC assembly code shown in Listing 2.49.

Listing 2.49 SPARC Assembly Code Produced in the Presence of Possible 
Pointer Aliasing

ld   [%o0],%o5  ! Load *a

add  %o5,1,%o5  ! Increment

st   %o5,[%o0]  ! Store *a   // Store of first variable

ld   [%o1],%o4  ! Load *b    // Load of second variable

add  %o4,1,%o3  ! Increment

st   %o3,[%o1]  ! Store *b

The store of the variable a needs to be completed before the load of the variable b is
issued. The code shown in Listing 2.50 has no pointer aliasing problems.

Listing 2.50 Code with No Aliasing Problems

void func(int * a)

{

a[0]++;

a[1]++;

}
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Compiling the code shown in Listing 2.50 produces the SPARC assembly code
shown in Listing 2.51.

Listing 2.51 SPARC Assembly Code Produced in the Absence of Pointer Aliasing

ld   [%o0],%o5    ! Load a[0]

ld   [%o0+4],%o4  ! Load a[1]  // Load of second variable

add  %o5,1,%o5    ! Increment

st   %o5,[%o0]    ! Store a[0] // Store of first variable

add  %o4,1,%o3    ! Increment

st   %o3,[%o1]    ! Store a[1]

Because the compiler is able to tell that there is no aliasing between the two opera-
tions, it can reorder the instructions to ensure that both loads start as early as possible.

A bigger problem with aliasing is that it often inhibits the compiler’s ability to per-
form complex transformations of the code. Once a code has more than two streams of
input data, it becomes very difficult to produce runtime code that dynamically checks
for aliasing issues. For instance, the compiler would find runtime checking for aliasing
difficult for the code shown in Listing 2.52. In this code, the matrix a is accessed con-
tiguously so the compiler has knowledge of the range of memory that will be modified.
The matrix b is accessed through the first index, which is a pointer into multiple arrays.
Any of these arrays might overlap with the one pointed to by a.

Listing 2.52 Code Where Code Runtime Checking of Aliasing Is Difficult

void add(double **a, double **b)

{
for( int i 0; i<100; i++ )

for( int j 0; j<100; j++ )

a[i][j] +  b[j][i];

}

There are multiple ways to avoid aliasing issues. The first is to use local or stack-based
variables. The compiler knows that these variables cannot alias with global variables;
therefore, it can produce code based on this knowledge. For scalar variables with aliasing
problems, this can often be the simplest solution.

Another approach is to advise the compiler what assumptions it is allowed to make
about the code. The Solaris Studio compiler supports the flag xalias level=<level>,
which allows the developer to specify, per file, the degree of aliasing that the code uses.
The compiler also supports the flag xrestrict, which tells the compiler that pointers
passed into functions do not alias. Incidentally, this is the default for the Fortran standard.
The gcc compiler supports the flag fansi alias, which tells the compiler that the
code has aliasing that conforms to the C standard. The biggest issue with these flags is
that they specify aliasing at the file or whole application level, and for large applications
it can be difficult or impossible to prove that applying the flags is safe.
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Compilers often support pragmas or directives that can be added to the source code
to indicate the degree of aliasing at a function level. The finer level of control means that
the directives can be added in places (a) where the biggest performance impact is seen
and (b) where the developer can be certain that aliasing does not occur. However, com-
piler pragmas or directives are rarely the same across multiple compilers, so using them may
lead to code that only compiles with a particular compiler and is not portable to others.

The most effective solution to the aliasing problem for C-language programs may be
the restrict keyword. This enables the developer to use restrict-qualified pointers. These
tell the compiler that no other pointers point to the same memory at the position in the
code where the pointer is assigned. This is most useful for when pointers are passed into
functions. Listing 2.53 shows the code from Listing 2.52 modified to use the restrict
keyword.

Listing 2.53 Code Modified to Use the restrict Keyword

void add( double ** restrict a, double ** restrict b )

{
for( int i 0; i<100; i++ )

for( int j 0; j<100; j++ )

a[i][j] +  b[j][i];

}

The fact that either array a or b is restrict-qualified means that there is no aliasing
between the arrays and means the compiler can generate more efficient code.

Identifying Where Time Is Spent Using Profiling
As soon as it is possible to run the application with meaningful results, a runtime profile
of the application should be collected. Profiling is important for multiple reasons, the
most fundamental of which is that what is not measured is not managed. If the performance
of the application is not monitored as it develops, then there is no mechanism to identify
changes that impact the performance of the application. However, there are other reasons
for doing this:

n Verifying that the time is mainly spent in the functionally critical part of the code.
Applications will go through multiple states at runtime, some concerned with
start-up or teardown, but there will be a critical core of functionality that actually
defines the purpose of the application. The time should be spent in the critical sec-
tions of the code and not in the parts of the code that facilitate the critical code.
Imagine an application that loads data from a database, performs some analysis of
that data, and then produces a chart as output. Time spent doing the analysis is
probably the critical purpose of the application, and the bulk of the time should be
spent there. The other sections of code should be completed as quickly as possible.
If this is not the case, then you might question the code used in those stages.
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Depending on where the time is spent, this might be the method of retrieving the
data or the complexity of the charts being printed.

n Avoid time spent in noncritical or error-handling code. A frequent performance
sink for applications is code that shouldn’t be executed. This might be exception-
handling code, writing error messages to stderr, or code that was meant to only
handle corner cases. Once an application is profiled, it is relatively easy to identify
sections of the code that were not expected to be visible in the profile.

n Checking the distribution of time between user, system, and other program states.
Some applications will spend significant time in system code or some kind of
waiting. System time might be necessary for the application to perform its task, but
it can be an indication of something either going wrong or being poorly coded.
An application might spend system time calling a heavyweight function to get the
data for a time stamp when a lighter-weight alternative exists. Similarly, an applica-
tion might spend significant time waiting for data to be returned across the net-
work or waiting for the screen to be redrawn; performance might be improved by
having a second thread carry on with computation while the main thread is in the
wait state.

n Detecting time spent in exceptional conditions. These might be software traps to
handle floating-point calculations involving subnormal numbers, or they could be
something as mundane as TLB misses. These conditions are often hard to detect
because they may not cause additional system time, but they are detectable either
through observation using hardware counters or by careful examination of the
exact assembly language instruction where the time is attributed.

Profiling applications as they are written and used is probably the most effective way
of managing the performance of the application and should be routinely done during
the development cycle as well as after any changes are made to the application.

Commonly Available Profiling Tools
Most modern profiling tools do not require you to do anything special to the applica-
tion. However, it is often beneficial to build the application with debug information. The
debug information can enable the tools to aggregate runtime at the level of individual
lines of source code. There are also two common approaches to profiling. 

The first approach is system-wide profiling. This is the approach taken by tools such
as Intel’s VTune, AMD’s CodeAnalyst, and the open source profiling tool oprofile. The
entire system is inspected, and timing information is gathered for all the processes run-
ning on the system. This is a very useful approach when there are a number of coordi-
nating applications running on the system. During the analysis of the data, it is normal to
focus on a single application. 

Figure 2.9 shows the output from the AMD CodeAnalyst listing all the active
processes on the system.
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In this instance, there are two applications using up almost all of the CPU resources
between them.

The second common approach is to profile just the application of interest. This
approach is exemplified by the Solaris Studio Performance Analyzer. Profiling a single
application enables the user to focus entirely on that application and not be distracted by
the other activity on the system.

Regardless of the tool used, there are a common set of necessary and useful features.
The most critical feature is probably the profile of the time spent in each function.
Figure 2.10 shows the time spent in each function as reported by the Solaris Studio
Performance Analyzer.

The profile for this code shows that about 70% of the user time is spent in the rou-
tine calc() with the remainder spent in the routine write().

Profile data at the function level can be useful for confirming that time is being spent
in the expected routines. However, more detail is usually necessary in order to improve the
application. Figure 2.11 shows time attributed to lines of source in the AMD CodeAnalyzer.

Figure 2.9 AMD CodeAnalyst’s list of amount of time consumed by each
running application

Figure 2.10 Solaris Studio Performance Analyzer showing hot functions



Using the source-level profile, most developers can make decisions about how to
restructure their code to improve performance. It can also be reassuring to drop down
into assembly code level to examine the quality of the code produced by the compiler
and to identify the particular operations that are taking up the time. At the assembly
code level, it is possible to identify problems such as pointer aliasing producing subopti-
mal code, memory operations taking excessive amounts of time, or other instructions
that are contributing significant time. Figure 2.12 shows the disassembly view from the
AMD CodeAnalyst.
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Figure 2.11 AMD’s CodeAnalyzer showing time attributed to 
lines of source

Figure 2.12 AMD’s CodeAnalyst showing time attributed to individual
instructions
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Figure 2.13 Apple’s Shark profiling tool offering suggestions for
performance improvement

Some tools are able to provide suggestions on how to improve the performance of
the application. Figure 2.13 shows output from Apple’s Shark tool, which suggests
improving performance by recompiling the application to use SSE instructions.

Many performance problems can be analyzed and solved at the level of lines of source
code. However, in some instances, the problem is related to how the routine is used. In
this situation, it becomes important to see the call stack for a routine. Figure 2.14 shows
a call chart from Intel’s Vtune tool. The figure shows two threads in the application and
indicates the caller-callee relationship between the functions called by the two threads.

An alternative way of presenting caller-callee data is from the Oracle Solaris Studio
Performance Analyzer, as shown in Figure 2.15. This hierarchical view allows the user to
drill down into the hottest regions of code.

Another view of the data that can be particularly useful is the time line view. This
shows program activity over time. Figure 2.16 shows the time live view from the Solaris
Studio Performance Analyzer. In this case, the time line view shows both thread activity,
which corresponds to the shaded region of the horizontal bars, together with call stack
information, indicated by the different colors used to shade the bars. Examining the run
of an application over time can highlight issues when the behavior of an application
changes during the run. An example of this might be an application that develops a great
demand for memory at some point in its execution and consequently spends a period of
its runtime exclusively in memory allocation code.
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Figure 2.14 Call graph information from Vtune

Figure 2.15 Call tree shown in the Oracle Solaris Studio Performance Analyzer
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A similar view is available from Apple’s Instruments tool, as shown in Figure 2.17. An
instrument is the name given to a tool that gathers data about processor, disk, network,
and memory usage over the run of an application. This particular example shows proces-
sor utilization by the two threads over the run of the application. The time line view is
particularly useful for multithreaded applications. To get the best performance, the work
needs to be evenly divided between all threads. The time line view is a quick way of
telling whether some threads are more active than others. It can also be useful for codes
where a synchronization event, such as garbage collection in the case of Java, causes most
of the threads in an application to pause.

Performance analysis tools are critical in producing optimal serial and parallel codes.
Consequently, it is important to become familiar with the tools available on your system.
For serial codes, a performance analysis tool will identify the region of code that needs
to be improved to increase the performance of an application. For parallel codes, they
will allow you to identify regions of code where the parallelization could be improved
or where the work could be better distributed across the available processors or threads.

How Not to Optimize
When people talk about optimizing an application, there is a temptation to immediately
think of recoding the hot routines in assembly language or of reaching for one of the

Figure 2.16 Time line view of thread activity from the Oracle 
Performance Analyzer



many books about performance optimization that talk about loop unrolling, invariant
hoisting, and so on.

These do not represent the best place to start. In general, it is best to avoid optimiza-
tions that make the code less easy to read. The best approach is to make minimal changes
to the source code or to select improved compiler flags.

It used to be the case that optimization did mean writing in assembly language or
manually applying loop transformations in the source. That is why books on optimiza-
tions typically have extensive coverage of these topics. However, these optimizations are
usually trivial for any modern compiler to do, given the right flags. Using the compiler
to do the optimization has several benefits:

n First, the compiler will get the optimization correct. Manually undertaking com-
plex instructions can potentially lead to bugs.

n The second benefit is that the code remains manageable. If the details of algorithm
change, it will require only the minimal number of modifications to the source
code, and the compiler will reapply the same optimization.

n There is a third benefit—that the compiler will do the optimization only if it is
likely to result in a performance gain. Some optimizations might be a help on one
processor but result in performance loss on a different processor.
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Figure 2.17 Time line information from Apple’s Instruments



Therefore, the important steps are to identify where the time is spent and then deter-
mine why the compiler isn’t performing an optimization. Often, solving the problem is
simply a minor change to the source code or the addition of a compiler flag.

Having said all that, there will be situations where it is impossible to coax optimal
code out of the compiler and where manually optimizing the code is unavoidable.
However, even before doing this, consider the gain that the optimization will provide.
Doubling the performance of part of the code where 10% of the runtime is spent will
result in a 5% gain in performance. This gain needs to be considered in light of the time
spent rewriting the code to get the gain and the maintenance costs of the new code.

Performance by Design
This chapter has outlined a number of different places in the design process that impact
performance. One way of visualizing this is to realize that there is a maximum possible
performance for a given combination of system and problem to be solved. The choices
made during design and implementation will either lead to the system meeting this
maximum upper bound or cause the performance to be below this.

Decisions made early in the design process potentially have the largest impact on the
performance of the application. The choice of algorithm can completely change the way
the application behaves as the size of the problem increases. Similarly, a poor choice of
algorithm can limit the scaling of the application as the number of available cores
increases.

In many cases, it is possible to write the application in such a way as to encapsulate
the choice of algorithm for critical parts of the code so that if it becomes critical to per-
formance, it can be replaced at a later point. With careful consideration, the code can be
structured so that the compiler can optimize away any inefficiencies introduced by this
encapsulation.

With all design processes, it is usually easy to make significant changes early in the
design process rather than later. Change introduced earlier takes less effort to implement
and is cheaper than late-introduced fixes. Hence, early consideration given to appropriate
workloads and use cases will lead to better choices during design and implementation.

All too often, performance tuning is considered at the point just before the applica-
tion ships or at the point that it becomes obvious that the application is too slow. At this
stage, it can be hard, and costly, to make the changes that are necessary to improve per-
formance. Figure 2.18 shows the traditional view of the impact of change over the
development cycle of an application.

Some program modifications are relatively easy to do at the end of the development
cycle, such as changing the compiler flags, but the impact is likely to be small. Other
actions, such as implementing a new algorithm, will have much higher costs if per-
formed at the end of the project but could have a much greater impact. Ideally, such
high-impact work should be completed early where it incurs less cost.

82 Chapter 2 Coding for Performance



Summary
From this chapter you should have gained an understanding of how performance needs
to be engineered into an application. Understanding the desirable performance charac-
teristics of the solution to the problem will help guide development of a product that
will meet those characteristics. That performance can be reduced by a poor choice of
algorithms, data structures, compiler flags, or other decisions made during the process of
design and implementation. Rectifying these decisions has engineering costs, and the
later fixes have greater cost. 

You should have gained an appreciation of how a compiler can be used to produce
the best code possible and how good development practices can enable the compiler to
do a better job. 

One important point to take away from this chapter is that it is important to profile
an application during the development process to ensure both that it is fast enough to
meet the acceptance criteria and that it is spending its runtime in useful work and not
suboptimal code.
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3
Identifying Opportunities

for Parallelism

This chapter discusses parallelism, from the use of virtualization to support multiple
operating systems to the use of multiple threads within a single application. It also covers
the concepts involved in writing parallel programs, some ways of visualizing parallel
tasks, and ways of architecting parallel applications. The chapter continues with a discus-
sion of various parallelization strategies, or patterns. It concludes by examining some of
the limitations to parallelization. By the end of the chapter, you should be in a position
to understand some of the ways that a system can support multiple applications and that
an existing application might be modified to utilize multiple threads. You will also be
able to identify places in the code where parallelization might be applicable.

Using Multiple Processes to Improve System
Productivity
Consider a home computer system. This will probably have only one active user at a
time, but that user might be running a number of applications simultaneously. A system
where there is a single core produces the illusion of simultaneous execution of multiple
applications by switching between the active applications many times every second. A
multicore system has the advantage of being able to truly run multiple applications at the
same time. 

A typical example of this happens when surfing the Web and checking e-mail. You
may have an e-mail client downloading your e-mail while at the same time your
browser is rendering a web page in the background. Although these applications will uti-
lize multiple threads, they do not tend to require much processor time; their perform-
ance is typically dominated by the time it takes to download mail or web pages from
remote machines. For these applications, even a single-core processor often provides suf-
ficient processing power to produce a good user experience. However, a single-core
processor can get saturated if the e-mail client is indexing mail while an animation-
heavy web page is being displayed. 



In fact, these applications will probably already take advantage of multiple threads.
Figure 3.1 shows a newly opened instance of Mozilla Firefox launching 20 threads. A
consequence of this is that just by having a multicore processor, the performance of the
system will improve because multiples of those threads can be executed simultaneously—
and this requires no change to the existing applications.

Alternatively, there are a number of tasks we perform on our personal computer sys-
tems that are inherently compute intensive, such as playing computer games, encoding
audio for an MP3 player, transforming one video format into another suitable for burn-
ing to DVD, and so on. In these instances, having multiple cores can enable the work to
take less time by utilizing additional cores or can keep the system responsive while the
task is completed in the background.

Figure 3.2 shows the system stack when a single user runs multiple applications on a
system.
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Figure 3.1 Windows Process Explorer showing thread activity in 
Mozilla Firefox



It is also possible to have multiple users in a home environment. For example, on
Windows, it is quite possible for one user to be logged in and using the computer while
another user, having logged in earlier, has set some other applications running. For
example, you may have left some DVD-authoring package running in the background
while another user logs into their account to check their e-mail.

Multiple Users Utilizing a Single System
In business and enterprise computing, it is much more common to encounter systems
with multiple simultaneous users. This is often because the computer and software being
shared are more powerful and more costly than the typical consumer system. To maxi-
mize efficiency, a business might maintain a database on a single shared system. Multiple
users can simultaneously access this system to add or retrieve data. These users might just
as easily be other applications as well as humans. 

For many years, multiuser operating systems like UNIX and Linux have enabled shar-
ing of compute resources between multiple users. Each user gets a “slice” of the available
compute resources. In this way, multicore systems provide more compute resources for
the users to share.

Figure 3.3 illustrates the situation with multiple users of the same system.
Multicore systems can be very well utilized running multiple applications, running

multiple copies of the same application, and supporting multiple simultaneous users. To
the OS, these are all just multiple processes, and they will all benefit from the capabilities
of a multicore system.

Multiuser operating systems enforce separation between the applications run by dif-
ferent users. If a program one user was running were to cause other applications to crash
or to write randomly to disk, the damage is limited to only those applications owned by
that user or the disk space they have permission to change. 
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Figure 3.2 Single user on system
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Such containment and security is critical for supporting multiple simultaneous users.
As the number of users increases, so does the chance that one of them will do something
that could “damage” the rest of the system. This could be something as simple as deleting
critical files or enabling someone to get unauthorized access to the system.

Improving Machine Efficiency Through
Consolidation
Multicore computing is really just the continuing development of more powerful system
architectures. Tasks that used to require a dedicated machine can now be performed
using a single core of a multicore machine. This is a new opportunity to consolidate
multiple tasks from multiple separate machines down to a single multicore machine. An
example might be using a single machine for both a web server and e-mail where previ-
ously these functions would be running on their own dedicated machines.

There are many ways to achieve this. The simplest would be to log into the machine
and start both the e-mail and web server. However, for security reasons, it is often neces-
sary to keep these functions separated. It would be unfortunate if it were possible to send
a suitably formed request to the web server allowing it to retrieve someone’s e-mail
archive.

The obvious solution would be to run both servers as different users. This could use
the default access control system to stop the web server from getting access to the e-mail
server’s file. This would work, but it does not guard against user error. For example,
someone might accidentally put one of the mail server’s files under the wrong permis-
sions, leaving the mail open to reading or perhaps leaving it possible to install a back
door into the system. For this reason, smarter technologies have evolved to provide bet-
ter separation between processes running on the same machine.

Figure 3.3 A single system supporting multiple users
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Using Containers to Isolate Applications Sharing a Single System
One such technology is containerization. The implementations depend on the particular
operating system, for example, Solaris has Zones, whereas FreeBSD has Jails, but the con-
cept is the same. A control container manages the host operating system, along with a
multitude of guest containers. Each guest container appears to be a complete operating
system instance in its own right, and an application running in a guest container cannot
see other applications on the system either in other guest containers or in the control
container. The guests do not even share disk space; each guest container can appear to
have its own root directory system. 

The implementation of the technology is really a single instance of the operating sys-
tem, and the illusion of containers is maintained by hiding applications or resources that
are outside of the guest container. The advantage of this implementation is very low
overhead, so performance comes very close to that of the full system. The disadvantage 
is that the single operating system image represents a single point of failure. If the operat-
ing system crashes, then all the guests also crash, since they also share the same image.
Figure 3.4 illustrates containerization.
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Figure 3.4 Using containers to host multiple guest operating systems in
one system
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Hosting Multiple Operating Systems Using Hypervisors
Two other approaches that enforce better isolation between guests’ operating systems also
remove the restriction that the guests run the same operating system as the host. These
approaches are known as type 1 and type 2 hypervisors.

Type 1 hypervisors replace the host operating system with a very lightweight but
high-level system supervisor system, or hypervisor, that can load and initiate multiple
operating system instances on its own. Each operating system instance is entirely isolated
from the others while sharing the same hardware.
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Each operating system appears to have access to its own machine. It is not apparent,
from within the operating system, that the hardware is being shared. The hardware has
effectively been virtualized, in that the guest operating system will believe it is running
on whatever type of hardware the hypervisor indicates.

This provides the isolation that is needed for ensuring both security and robustness,
while at the same time making it possible to run multiple copies of different operating
systems as guests on the same host. Each guest believes that the entire hardware resources
of the machine are available. Examples of this kind of hypervisor are the Logical
Domains provided on the Sun UltraSPARC T1 and T2 product lines or the Xen hyper-
visor software on x86. Figure 3.5 illustrates a type 1 hypervisor.

Figure 3.5 Type 1 hypervisor
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A type 2 hypervisor is actually a normal user application running on top of a host
operating system. The hypervisor software is architected to host other operating systems.
Good examples of type 2 hypervisors are the open source VirtualBox software, VMware,
or the Parallels software for the Apple Macintosh. Figure 3.6 illustrates a type 2 hypervisor.

Clearly, it is also possible to combine these strategies and have a system that supports
multiple levels of virtualization, although this might not be good for overall performance.

Even though these strategies are complex, it is worth exploring why virtualization is
an appealing technology.

n Security. In a virtualized or containerized environment, it is very hard for an
application in one virtualized operating system to obtain access to data held in a
different one. This also applies to operating systems being hacked; the damage that
a hacker can do is constrained by what is visible to them from the operating sys-
tem that they hacked into.

n Robustness. With virtualization, a fault in a guest operating system can affect
only those applications running on that operating system, not other applications
running in other guest operating systems.



n Configuration isolation. Some applications expect to be configured in particular
ways: They might always expect to be installed in the same place or find their con-
figuration parameters in the same place. With virtualization, each instance believes it
has the entire system to itself, so it can be installed in one place and not interfere with
another instance running on the same host system in a different virtualized container.

n Restricted control. A user or application can be given root access to an instance
of a virtualized operating system, but this does not give them absolute control over
the entire system.

n Replication. There are situations, such as running a computer lab, where it is nec-
essary to be able to quickly reproduce multiple instances of an identical configura-
tion. Virtualization can save the effort of performing clean reinstalls of an operating
system. A new guest operating system can be started, providing a new instance of
the operating system. This new instance can even use a preconfigured image, so it
can be up and running easily.

n Experimentation. It is very easy to distribute a virtualized image of an operating
system. This means a user can try a new operating system without doing any dam-
age to their existing configuration.

n Hardware isolation. In some cases, it is possible to take the running image of a
virtualized operating system and move that to a new machine. This means that old
or broken hardware can be switched out without having to make changes to the
software running on it.

n Scaling. It is possible to dynamically respond to increased requests for work by
starting up more virtual images. For example, a company might provide a web-
hosted computation on-demand service. Demand for the service might peak on
weekday evenings but be very low the rest of the time. Using virtualization, it
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Figure 3.6 Type 2 hypervisor
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would be possible to start up new virtual machines to handle the load at the times
when the demand increases.

n Consolidation. One of the biggest plays for virtualization is that of consolidating
multiple old machines down to fewer new machines. Virtualization can take the
existing applications, and their host operating systems can move them to a new
host. Since the application is moved with its host operating system, the transition is
more likely to be smooth than if the application had to be reconfigured for a new
environment.

All these characteristics of virtualization make it a good fit for cloud computing. Cloud
computing is a service provided by a remote farm of machines. Using virtualization, each
user can be presented with root access to an unshared virtual machine. The number of
machines can be scaled to match the demand for their service, and new machines can
quickly be brought into service by replicating an existing setup. Finally, the software is
isolated from the physical hardware that it is running on, so it can easily be moved to
new hardware as the farm evolves.

Using Parallelism to Improve the Performance of
a Single Task
Virtualization provides one way of utilizing a multicore or multiprocessor system by
extracting parallelism at the highest level: running multiple tasks or applications simulta-
neously. For a user, a compelling feature of virtualization is that utilizing this level of par-
allelism becomes largely an administrative task.

But the deeper question for software developers is how multiple cores can be
employed to improve the throughput or computational speed of a single application. The
next section discusses a more tightly integrated parallelism for enabling such perform-
ance gains.

One Approach to Visualizing Parallel Applications
One way to visualize parallelization conceptually is to imagine that there are two of you;
each thinks the same thoughts and behaves in the same way. Potentially, you could
achieve twice as much as one of you currently does, but there are definitely some issues
that the two of you will have to face.

You might imagine that your double could go out to work while you stay at home
and read books. In this situation, you are implicitly controlling your double: You tell
them what to do. 

However, if you’re both identical, then your double would also prefer to stay home
and read while you go out to work. So, perhaps you would have to devise a way to
determine which of you goes to work today—maybe splitting the work so that one
would go one week, and the other the next week.
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Of course, there would also be problems on the weekend, when you both would
want to read the same newspaper at the same time. So, perhaps you would need two
copies of the paper or work out some way of sharing it so only one of you had the
paper at a time.

On the other hand, there would be plenty of benefits. You could be painting one
wall, while your double is painting another. One of you could mow the lawn while the
other washes the dishes. You could even work together cooking the dinner; one of you
could be chopping vegetables while the other is frying them.

Although the idea of this kind of double person is fanciful, these examples represent
very real issues that arise when writing parallel applications. As a thought experiment,
imagining two people collaborating on a particular task should help you identify ways to
divide the task and should also indicate some of the issues that result.

The rest of the chapter will explore some of these opportunities and issues in more
detail. However, it will help in visualizing the later parts of the chapter if you can take some
of these more “human” examples and draw the parallels to the computational problems.

Parallelism provides an opportunity to get more work done. This work might be
independent tasks, such as mowing the lawn and washing the dishes. These could corre-
spond to different processes or perhaps even different users utilizing the same system.
Painting the walls of a house requires a little more communication—you might need to
identify which wall to paint next—but generally the two tasks can proceed independ-
ently. However, when it comes to cooking a meal, the tasks are much more tightly cou-
pled. The order in which the vegetables are chopped should correspond to the order in
which they are needed. You might even need messages like “Stop what you’re doing and
get me more olive oil, now!” Preparing a meal requires a high amount of communica-
tion between the two workers.

The more communication is required, the more likely it is that the effect of the two
workers will not be a doubling of performance. An example of communication might be
to indicate which order the vegetables should be prepared in. Inefficiencies might arise
when the person cooking is waiting for the other person to complete chopping the next
needed vegetable.

The issue of accessing resources, for example, both wanting to read the same newspaper,
is another important concern. It can sometimes be avoided by duplicating resources—
both of you having your own copies—but sometimes if there is only a single resource,
we will need to establish a way to share that resource.

In the next section, we will explore this thought experiment further and observe how
the algorithm we use to solve a problem determines how efficiently the problem can be
solved.

How Parallelism Can Change the Choice of Algorithms
Algorithms have characteristics that make them more or less appropriate for a multi-
threaded implementation. For example, suppose you have a deck of playing cards that are
in a random order but you would like to sort them in order. One way to do this would
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be to hold the unsorted cards in one hand and place each card into its appropriate place
in the other hand. There are N cards, and a binary search is needed to locate each card
into its proper place. So, going back to the earlier discussion on algorithmic complexity,
this is an O(n∗log(n)) algorithm.

However, suppose you have someone to help, and you each decide to sort half the
pack. If you did that, you would end up with two piles of sorted cards, which you would
then have to combine. To combine them, you could each start with a pile of cards, and
then whoever had the next card could place it onto the single sorted stack. The com-
plexity of the sort part of this algorithm would be O(n∗log(n)) (for a value of n that was
half the original), and the combination would be O(n). So although we have increased
the number of “threads,” we do not guarantee a doubling of performance.

An alternative way of doing this would be to take advantage of the fact that playing
cards have an existing and easily discernible order. If instead of sorting the cards, you just
place them at the correct place on a grid. The grid could have the “value” of the card as
the x-axis and the “suit” of the card as the y-axis. This would be an O(n) operation since
the time it takes to place a single card does not depend on the number of cards that are
present in the deck. This method is likely to be slightly slower than keeping the cards in
your hands because you will have to physically reach to place the cards into the appro-
priate places in the grid. However, if you have the benefit of another person helping,
then the deck can again be split into two, and each person would have to sort only half
the cards. Assuming you don’t obstruct each other, you should be able to attain a near
doubling of performance. So, comparing the two algorithms, using the grid method
might be slower for a single person but would scale better with multiple people.

The point here is to demonstrate that the best algorithm for a single thread may not
necessarily correspond to the best parallel algorithm. Further, the best parallel algorithm
may be slower in the serial case than the best serial algorithm. 

Proving the complexity of a parallel algorithm is hard in the general case and is typi-
cally handled using approximations. The most common approximation to parallel per-
formance is Amdahl’s law.

Amdahl’s Law
Amdahl’s law is the simplest form of a scaling law. The underlying assumption is that the
performance of the parallel code scales with the number of threads. This is unrealistic, as
we will discuss later, but does provide a basic starting point. If we assume that S repre-
sents the time spent in serial code that cannot be parallelized and P represents the time
spent in code that can be parallelized, then the runtime of the serial application is as
follows:

The runtime of a parallel version of the application that used N processors would
take the following:

Runtime = +S P
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It is probably easiest to see the scaling diagrammatically. In Figure 3.7, we represent
the runtime of the serial portion of the code and the portion of the code that can be
made to run in parallel as rectangles.

Runtime = +S
P

N
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Figure 3.7 Single-threaded runtime
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If we use two threads for the parallel portion of the code, then the runtime of that
part of the code will halve, and Figure 3.8 represents the resulting processor activity.

Figure 3.8 Runtime with two threads
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If we were to use four threads to run this code, then the resulting processor activity
would resemble Figure 3.9.

Figure 3.9 Runtime with four threads
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There are a couple of things that follow from Amdahl’s law. As the processor count
increases, performance becomes dominated by the serial portion of the application. In
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the limit, the program can run no faster than the duration of the serial part, S. Another
observation is that there are diminishing returns as the number of threads increases: At
some point adding more threads does not make a discernible difference to the total 
runtime.

These two observations are probably best illustrated using the chart in Figure 3.10,
which shows the parallel speedup over the serial case for applications that have various
amounts of code that can be parallelized.

Figure 3.10 Scaling with diminishing parallel regions
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If all the code can be made to run in parallel, the scaling is perfect; a code run with
18 threads will be 18x faster than the serial version of the code. However, it is surprising
to see how fast scaling declines as the proportion of code that can be made to run in
parallel drops. If 99% of the application can be converted to parallel code, the application
would scale to about 15x the serial performance with 18 threads. At 95% serial, this
would drop to about 10x the serial performance. If only half the application can be run
in parallel, then the best that can be expected is for performance to double, and the code
would pretty much attain that at a thread count of about 8.

There is another way of using Amdahl’s law, and that is to look at how many threads
an application can scale to given the amount of time it spends in code that can be
parallelized.



Determining the Maximum Practical Threads
If we take Amdahl’s law as a reasonable approximation to application scaling, it becomes
an interesting question to ask how many threads we should expect an application to scale to.

If we have an application that spends only 10% of its time in code that can be paral-
lelized, it is unlikely that we’ll see much noticeable gain when using eight threads over
using four threads. If we assume it took 100 seconds to start with, then four threads
would complete the task in 92.5 seconds, whereas eight threads would take 91.25 sec-
onds. This is just over a second out of a total duration of a minute and a half. In case the
use of seconds might be seen as a way of trivializing the difference, imagine that the
original code took 100 days; then the difference is equivalent to a single day out of a
total duration of three months.

There will be some applications where every last second is critical and it makes sense
to use as many resources as possible to increase the performance to as high as possible.
However, there are probably a large number of applications where a small gain in per-
formance is not worth the effort.

We can analyze this issue assuming that a person has a tolerance, T, within which they
cease to care about a difference in performance. For many people this is probably 10%; if
the performance that they get is within 10% of the best possible, then it is acceptable.
Other groups might have stronger or weaker constraints. 

Returning to Amdahl’s law, recall that the runtime of an application that has a pro-
portion P of parallelizable code and S of serial code and that is run with N threads is as
follows:

The optimal runtime, when there are an infinite number of threads, is S. So, a run-
time within T percent of the optimal would be as follows:

We can compare the acceptable runtime with the runtime with N threads:

We can then rearrange and solve for N to get the following relationship for N:

RuntimeN S
P

N
= +

Acceptable runtime = +( )S T* 1

S T S
P

N
* 1+( ) = +⎛
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N
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Using this equation, Figure 3.11 shows the number of threads necessary to get a run-
time that is within 10% of the best possible.

Reading this chart, it is clear that an application will have only limited scalability until
it spends at least half of its runtime in code that can be parallelized. For an application to
scale to large numbers of cores, it requires that 80%+ of the serial runtime is spent in
parallelizable code.

If Amdahl’s law were the only constraint to scaling, then it is apparent that there is lit-
tle benefit to using huge thread counts on any but the most embarrassingly parallel
applications. If performance is measured as throughput (or the amount of work done), it
is probable that for a system capable of running many threads, those threads may be bet-
ter allocated to a number of processes rather than all being utilized by a single process.

However, Amdahl’s law is a simplification of the scaling situation. The next section
will discuss a more realistic model.

How Synchronization Costs Reduce Scaling
Unfortunately, there are overhead costs associated with parallelizing applications. These
are associated with making the code run in parallel, with managing all the threads, and
with the communication between threads. You can find a more detailed discussion in
Chapter 9, “Scaling on Multicore Systems.”

In the model discussed here, as with Amdahl’s law, we will ignore any costs intro-
duced by the implementation of parallelization in the application and focus entirely on
the costs of synchronization between the multiple threads. When there are multiple
threads cooperating to solve a problem, there is a communication cost between all the

Figure 3.11 Minimum number of threads required to get 90% of 
peak performance
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threads. The communication might be the command for all the threads to start, or it
might represent each thread notifying the main thread that it has completed its work. 

We can denote this synchronization cost as some function F(N), since it will increase
as the number of threads increases. In the best case, F(N) would be a constant, indicating
that the cost of synchronization does not change as the number of threads increases. In
the worst case, it could be linear or even exponential with the number threads. A fair
estimate for the cost might be that it is proportional to the logarithm of the number of
threads (F(N)=K*ln(N)); this is relatively easy to argue for since the logarithm represents
the cost of communication if those threads communicated using a balanced tree. Taking
this approximation, then the cost of scaling to N threads would be as follows:

The value of K would be some constant that represents the communication latency
between two threads together with the number of times a synchronization point is
encountered (assuming that the number of synchronization points for a particular appli-
cation and workload is a constant). K will be proportional to memory latency for those
systems that communicate through memory, or perhaps cache latency if all the commu-
nicating threads share a common level of cache. Figure 3.12 shows the curves resulting
from an unrealistically large value for the constant K, demonstrating that at some thread
count the performance gain over the serial case will start decreasing because of the syn-
chronization costs. 

Runtime = + + ( )S
P

N
K Nln
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Figure 3.12 Scaling with exaggerated synchronization overheads
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It is relatively straightforward to calculate the point at which this will happen:

Solving this for N indicates that the minimal value for the runtime occurs when

This tells us that the number of threads that a code can scale to is proportional to the
ratio of the amount of work that can be parallelized and the cost of synchronization. So,
the scaling of the application can be increased either by making more of the code run in
parallel (increasing the value of P) or by reducing the synchronization costs (reducing the
value of K). Alternatively, if the number of threads is held constant, then reducing the
synchronization cost (making K smaller) will enable smaller sections of code to be made
parallel (P can also be made smaller).

What makes this interesting is that a multicore processor will often have threads shar-
ing data through a shared level of cache. The shared level of cache will have lower
latency than if the two threads had to communicate through memory. Synchronization
costs are usually proportional to the latency of the memory through which the threads
communicate, so communication through a shared level of cache will result in much
lower synchronization costs. This means that multicore processors have the opportunity
to be used for either parallelizing regions of code where the synchronization costs were
previously prohibitive or, alternatively, scaling the existing code to higher thread counts
than were previously possible.

So far, this chapter has discussed the expectations that a developer should have when
scaling their code to multiple threads. However, a bigger issue is how to identify work
that can be completed in parallel, as well as the patterns to use to perform this work. The
next section discusses common parallelization patterns and how to identify when to use
them.

Parallelization Patterns
There are many ways that work can be divided among multiple threads. The objective of
this section is to provide an overview of the most common approaches and to indicate
when these might be appropriate. 

Broadly speaking, there are two categories of parallelization, often referred to as data
parallel and task parallel.

A data parallel application has multiple threads performing the same operation on
separate items of data. For example, multiple threads could each take a chunk of itera-
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tions from a single loop and perform those iterations on different elements in a single
array. All the threads would perform the same task but to different array indexes.

A task parallel application would have separate threads performing different operations
on different items of data. For example, an animated film could be produced having one
process render each frame and then a separate process take each rendered frame and
incorporate it into a compressed version of the entire film.

Data Parallelism Using SIMD Instructions
Although this book discusses data parallelism in the context of multiple threads cooper-
ating on processing the same item of data, the concept also extends into instruction sets.
There are instructions, called single instruction multiple data (SIMD) instructions, that load
a vector of data and perform an operation on all the items in the vector. Most processors
have these instructions: the SSE instruction set extensions for x86 processors, the VIS
instructions for SPARC processors, and the AltiVec instructions on Power/
PowerPC processors.

The loop shown in Listing 3.1 is ideal for conversion into SIMD instructions.

Listing 3.1 Loop Adding Two Vectors

void vadd(double * restrict a, double * restrict b , int count)

{
for (int i 0; i < count; i++)

{

a[i] +  b[i];

}

}

Compiling this on an x86 box without enabling SIMD instructions generates the
assembly language loop shown in Listing 3.2.

Listing 3.2 Assembly Language Code to Add Two Vectors Using x87 Instructions

loop:

fldl   (%edx)     // Load the value of a[i]

faddl  (%ecx)     // Add the value of b[i]

fstpl  (%edx)     // Store the result back to a[i]

addl   8,%edx     // Increment the pointer to a

addl   8,%ecx     // Increment the pointer to b

addl   1,%esi     // Increment the loop counter

cmp    %eax,%esi  // Test for the end of the loop

jle    loop       // Branch back to start of loop if not complete

Compiling with SIMD instructions produces code similar to that shown in Listing 3.3.
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Listing 3.3 Assembly Language Code to Add Two Vectors Using SSE Instructions

loop:

movupd (%edx),%xmm0 // Load a[i] and a[i+1] into vector register

movupd ($ecx),%xmm1 // Load b[i] and b[i+1] into vector register

addpd  %xmm1,%xmm0  // Add vector registers

movpd  %xmm0,(%edx) // Store a[i] and a[i+1] back to memory

addl   16,%edx      // Increment pointer to a

addl   16,%ecx      // Increment pointer to b

addl   2,%esi       // Increment loop counter

cmp    %eax,%esi    // Test for the end of the loop

jle    loop         // Branch back to start of loop if not complete

Since two double-precision values are computed at the same time, the trip count
around the loop is halved, so the number of instructions is halved. The move to SIMD
instructions also enables the compiler to avoid the inefficiencies of the stack-based x87
floating-point architecture.

SIMD and parallelization are very complementary technologies. SIMD is often useful
in situations where loops perform operations over vectors of data. These same loops
could also be parallelized. Simultaneously using both approaches enables a multicore chip
to achieve high throughput. However, SIMD instructions have an additional advantage in
that they can also be useful in situations where the amount of work is too small to be
effectively parallelized.

Parallelization Using Processes or Threads
The rest of the discussion of parallelization strategies in this chapter will use the word
tasks to describe the work being performed and the word thread to describe the instruc-
tion stream performing that work. The use of the word thread is purely a convenience.
These strategies are applicable to a multithreaded application where there would be a
single application with multiple cooperating threads and to a multiprocess application
where there would be an application made up of multiple independent processes (with
some of the processes potentially having multiple threads). 

The trade-offs between the two approaches are discussed in Chapter 1, “Hardware,
Processes, and Threads.” Similarly, these patterns do not need to be restricted to a single
system. They are just as applicable to situations where the work is spread over multiple
systems.

Multiple Independent Tasks
As discussed earlier in the chapter, the easiest way of utilizing a CMT system is to per-
form many independent tasks. In this case, the limit to the number of independent tasks
is determined by resources that are external to those tasks. A web server might require a
large memory footprint for caching recently used web pages in memory. A database
server might require large amounts of disk I/O. These requirements would place load on
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the system and on the operating system, but there would be no synchronization con-
straints between the applications running on the system.

A system running multiple tasks could be represented as a single system running three
independent tasks, A, B, and C, as shown in Figure 3.13.

Figure 3.13 Three independent tasks
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An example of this kind of usage would be consolidation of multiple machines down
to a single machine. This consolidation might just be running the web server, e-mail
server, and so on, on the same machine or might involve some form of virtualization
where different tasks are isolated from each other.

This approach is very common but not terribly interesting from a parallelization strat-
egy since there is no communication between the components. Such an approach would
increase the utilization of the machine and could result in space or power savings but
should not be expected to lead to a performance change (except that which is attained
from the intrinsic differences in system performance).

One place where this strategy is common is in cluster, grid, or cloud computing. Each
individual node (that is, system) in the cloud might be running a different task, and the
tasks are independent. If a task fails (or a node fails while completing a task), the task can
be retried on a different node. The performance of the cloud is the aggregate throughput
of all the nodes.

What is interesting about this strategy is that because the tasks are independent, per-
formance (measured as throughput) should increase nearly linearly with the number of
available threads.

Multiple Loosely Coupled Tasks
A slight variation on the theme of multiple independent tasks would be where the tasks
are different, but they work together to form a single application. Some applications do
need to have multiple independent tasks running simultaneously, with each task generally
independent and often different from the other running tasks. However, the reason this is
an application rather than just a collection of tasks is that there is some element of com-
munication within the system. The communication might be from the tasks to a central
task controller, or the tasks might report some status back to a status monitor.
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In this instance, the tasks themselves are largely independent. They may occasionally
communicate, but that communication is likely to be asynchronous or perhaps limited to
exceptional situations.

Figure 3.14 shows a single system running three tasks. Task A is a control or supervi-
sor, and tasks B and C are reporting status to task A.

Figure 3.14 Loosely coupled tasks
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The performance of the application depends on the activity of these individual tasks.
If the CPU-consuming part of the “application” has been split off into a separate task,
then the rest of the components may become more responsive. For an example of this
improved responsiveness, assume that a single-threaded application is responsible for
receiving and forwarding packets across the network and for maintaining a log of packet
activity on disk. This could be split into two loosely coupled tasks—one receives and for-
wards the packets while the other is responsible for maintaining the log. With the origi-
nal code, there might be a delay in processing an incoming packet if the application is
busy writing status to the log. If the application is split into separate tasks, the packet can
be received and forwarded immediately, and the log writer will record this event at a
convenient point in the future.

The performance gain arises in this case because we have shared the work between
two threads. The packet-forwarding task only has to process packets and does not get
delayed by disk activity. The disk-writing task does not get stalled reading or writing
packets. If we assume that it takes 1ms to read and forward the packet and another 1ms
to write status to disk, then with the original code, we can process a new packet every
2ms (this represents a rate of 5,000 packets per second). Figure 3.15 shows this situation.

Figure 3.15 Single thread performing packet forwarding and log writing
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If we split these into separate tasks, then we can handle a packet every 1ms, so
throughput will have doubled. It will also improve the responsiveness because we will
handle each packet within 1ms of arrival, rather than within 2ms. However, it still takes
2ms for the handling of each packet to complete, so the throughput of the system has
doubled, but the response time has remained the same. Figure 3.16 shows this situation.
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Figure 3.16 Using two threads to perform packet forwarding and 
log writing
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Multiple Copies of the Same Task
An easy way to complete more work is to employ multiple copies of the same task. Each
individual task will take the same time to complete, but because multiple tasks are com-
pleted in parallel, the throughput of the system will increase.

This is a very common strategy. For example, one system might be running multiple
copies of a rendering application in order to render multiple animations. Each applica-
tion is independent and requires no synchronization with any other.

Figure 3.17 shows this situation, with a single system running three copies of task A.

Figure 3.17 Multiple copies of a single task
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Once again, the performance of the system is an increase in throughput, not an
improvement in the rate at which work is completed.

Single Task Split Over Multiple Threads
Splitting a single task over multiple threads is often what people think of as paralleliza-
tion. The typical scenario is distributing a loop’s iterations among multiple threads so that
each thread gets to compute a discrete range of the iterations.

This scenario is represented in Figure 3.18 as a system running three threads and each
of the threads handling a separate chunk of the work.

Figure 3.18 Multiple threads working on a single task
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In this instance, a single unit of work is being divided between the threads, so the
time taken for the unit of work to complete should diminish in proportion to the num-
ber of threads working on it. This is a reduction in completion time and would also rep-
resent an increase in throughput. In contrast, the previous examples in this section have
represented increases in the amount of work completed (the throughput), but not a
reduction in the completion time for each unit of work.

This pattern can also be considered a fork-join pattern, where the fork is the division
of work between the threads, and the join is the point at which all the threads synchro-
nize, having completed their individual assignments. 

Another variation on this theme is the divide-and-conquer approach where a prob-
lem is recursively divided as it is divided among multiple threads.

Using a Pipeline of Tasks to Work on a Single Item
A pipeline of tasks is perhaps a less obvious strategy for parallelization. Here, a single unit
of work is split into multiple stages and is passed from one stage to the next rather like
an assembly line.

Figure 3.19 represents this situation. A system has three separate threads; when a unit
of work comes in, the first thread completes task A and passes the work on to task B,
which is performed by the second thread. The work is completed by the third thread
performing task C. As each thread completes its task, it is ready to accept new work.



There are various motivations for using a pipeline approach. A pipeline has some
amount of flexibility, in that the flow of work can be dynamically changed at runtime. It
also has some implicit scalability because an implementation could use multiple copies of
a particular time-consuming stage in the pipeline (combining the pipeline pattern with
the multiple copies of a single task pattern), although the basic pipeline model would
have a single copy of each stage.

This pattern is most critical in situations where it represents the most effective way the
problem can be scaled to multiple threads. Consider a situation where packets come in for
processing, are processed, and then are retransmitted. A single thread can cope only with a
certain limit of packets per second. More threads are needed in order to improve perform-
ance. One way of doing this would be to increase the number of threads doing the receiv-
ing, processing, and forwarding. However, that might introduce additional complexity in
keeping the packets in the same order and synchronizing the multiple processing threads.

In this situation, a pipeline looks attractive because each stage can be working on a
separate packet, which means that the performance gain is proportional to the number
of active threads. The way to view this is to assume that the original processing of a
packet took three seconds. So, every three seconds a new packet could be dealt with.
When the processing is split into three equal pipeline stages, each stage will take a sec-
ond. More specifically, task A will take one second before it passes the packet of work on
to task B, and this will leave the first thread able to take on a new packet of work. So,
every second there will be a packet starting processing. A three-stage pipeline has
improved performance by a factor of three. The issues of ordering and synchronization
can be dealt with by placing the items in a queue between the stages so that order is
maintained.

Notice that the pipeline does not reduce the time taken to process each unit of work.
In fact, the queuing steps may slightly increase it. So, once again, it is a throughput
improvement rather than a reduction in unit processing time.

One disadvantage to pipelines is that the rate that new work can go through the
pipeline is limited by the time that it takes for the work of the slowest stage in the
pipeline to complete. As an example, consider the case where task B takes two seconds.
The second thread can accept work only every other second, so regardless of how much
faster tasks A and C are to complete, task B limits the throughput of the pipeline to one
task every two seconds. Of course, it might be possible to rectify this bottleneck by having
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Figure 3.19 Pipeline of tasks
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two threads performing task B. Here the combination would complete one task every
second, which would match the throughput of tasks A and C. It is also worth consider-
ing that the best throughput occurs when all the stages in the pipeline take the same
amount of time. Otherwise, some stages will be idle waiting for more work.

Division of Work into a Client and a Server
With a client-server configuration, one thread (the client) communicates requests to
another thread (the server), and the other thread responds. The split into client and server
might provide a performance improvement, because while the server is performing some
calculation, the client can be responding to the user; the client might be the visible UI
to the application, and the server might be the compute engine that is performing the
task in the background. There are plenty of examples of this approach, such as having
one thread to manage the redraw of the screen while other threads handle the activities
of the application. Another example is when the client is a thread running on one sys-
tem while the server is a thread running on a remote system; web browsers and web
servers are obvious, everyday examples.

A big advantage of this approach is the sharing of resources between multiple clients.
For example, a machine might have a single Ethernet port but have multiple applications
that need to communicate through that port. The client threads would send requests to a
server thread. The server thread would have exclusive access to the Ethernet device and
would be responsible for sending out the packets from the clients and directing incom-
ing packets to the appropriate client in an orderly fashion.

This client-server relationship can be represented as multiple clients: A, communicat-
ing with a server, B, as shown in Figure 3.20. Server B might also control access to a set
of resources, which are not explicitly included in the diagram.

Figure 3.20 Client-server division of work
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Implicit in the client-server pattern is the notion that there will be multiple clients
seeking the attention of a single server. The single server could, of course, be imple-
mented using multiple threads.

The client-server pattern does not improve responsiveness but represents a way of
sharing the work between multiple threads, especially where the server thread actually does
some work. Alternatively, it represents a way of sharing a common resource between



multiple clients (in which case any gains in throughput are a fortunate by-product rather
than a design goal).

Splitting Responsibility into a Producer and a Consumer
A producer-consumer model is similar to both the pipeline model and the client-server.
Here, the producer is generating units of work, and the consumer is taking those units of
work and performing some kind of process on them.

For example, the movie-rendering problem described earlier might have a set of pro-
ducers generating rendered frames of a movie. The consumer might be the task that has
the work of ordering these frames correctly and then saving them to disk.

This can be represented as multiple copies of task A sending results to a single copy of
task B, as shown in Figure 3.21. Alternatively, there could be multiple producers and a
single consumer or multiple producers and consumers.
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Figure 3.21 Producer-consumer division of work
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Again, this approach does not necessarily reduce the latency of the tasks but provides
an improvement in throughput by allowing multiple tasks to progress simultaneously. In
common with the client-server task, it may also provide a way of reducing the complex-
ity of combining the output from multiple producers of data.

Combining Parallelization Strategies
In many situations, a single parallelization strategy might be all that is required to pro-
duce a parallel solution for a problem. However, in other situations, there is no single
strategy sufficient to solve the problem effectively, and it is necessary to select a combina-
tion of approaches.

The pipeline strategy represents a good starting point for a combination of
approaches. The various stages in the pipeline can be further parallelized. For example,
one stage might use multiple threads to perform a calculation on one item of data. A dif-
ferent stage might have multiple threads working on separate items of data.

When mapping a process to an implementation, it is important to consider all the
ways that it is possible to exploit parallelism and to avoid limiting yourself to the first
approach that comes to mind. Consider a situation where a task takes 100 seconds to



complete. Suppose that it’s possible to take 80 of those seconds and use four threads to
complete the work. Now the runtime for the task is 20 serial seconds, plus 20 seconds
when four threads are active, for a total of 40 seconds. Suppose that it is possible to use a
different strategy to spread the serial 20 seconds over two threads, leading to a perform-
ance gain of 10 seconds, so the total runtime is now 30 seconds: 10 seconds with two
threads and 20 seconds with four threads. The first parallelization made the application
two and a half times faster. The second parallelization made it 1.3x faster, which is not
nearly as great but is still a significant gain. However, if the second optimization had
been the only one performed, it would have resulted in only a 1.1x performance gain,
not nearly as dramatic a pay-off as the 1.3x gain that it obtained when other parts of the
code had already been made parallel.

How Dependencies Influence the Ability Run
Code in Parallel
Dependencies within an application (or the calculation it performs) define whether the
application can possibly run in parallel. There are two types of dependency: loop- or data-
carried dependencies and memory-carried dependencies.

With a loop-carried dependency, the next calculation in a loop cannot be performed
until the results of the previous iteration are known. A good example of this is the loop
to calculate whether a point is in the Mandelbrot set. Listing 3.4 shows this loop.

Listing 3.4 Code to Determine Whether a Point Is in the Mandelbrot Set

int inSet(double ix, double iy)

{

int iterations 0;

double x  ix, y  iy, x2  x*x, y2  y*y;

while ( (x2+y2 < 4) && (iterations < 1000) )

{

y   2 * x * y + iy;

x   x2 - y2 + ix;

x2  x * x;

y2  y * y;

iterations++;

}

return iterations;

}

Each iteration of the loop depends on the results of the previous iteration. The loop
terminates either when 1,000 iterations have been completed or when the point escapes
a circle centered on the origin of radius two. It is not possible to predict how many iter-
ations this loop will complete. There is also insufficient work for each iteration of the
loop to be split over multiple threads. Hence, this loop must be performed serially.
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Memory-carried dependencies are more subtle. These represent the situation where a
memory access must be ordered with respect to another memory access to the same
location. Consider the snippet of code shown in Listing 3.5.

Listing 3.5 Code Demonstrating Ordering Constraints

int val 0;

void g()

{

val  1;

}

void h()

{

val  val + 2;

}

If the routines g() and h() are executed by different threads, then the result depends
on the order in which the two routines are executed. If g() is executed followed by
h(), then the val will hold the result 3. If they are executed in the opposite order, then
val will contain the result 1. This is an example of a memory-carried dependence
because to produce the correct answer, the operations need to be performed in the cor-
rect order.

Antidependencies and Output Dependencies
Suppose one task, A, needs the data produced by another task, B; A depends on B and
cannot start until B completes and releases the data needed by A. This is often referred to
as true dependency. Typically, B writes some data, and A needs to read that data. There are
other combinations of two threads reading and writing data. Table 3.1 illustrates the four
ways that tasks might have a dependency.

Table 3.1 Possible Ordering Constraints

Second task
Read Write

First task Read Read after read (RAR) Write after read (WAR)
No dependency Antidependency

Write Read after write (RAW) Write after write (WAW)
True dependency Output dependency

When both threads perform read operations, there is no dependency between them,
and the same result is produced regardless of the order the threads run in.

111How Dependencies Influence the Ability Run Code in Parallel



With an antidependency, or write after read, one task has to read the data before the
second task can overwrite it. With an output dependency, or write after write, one of the
two tasks has to provide the final result, and the order in which the two tasks write their
results is critical. These two types of dependency can be most clearly illustrated using
serial code.

In the code shown in Listing 3.6, there is an antidependency on the variable data1.
The first statement needs to complete before the second statement because the second
statement reuses the variable data1.

Listing 3.6 An Example of an Antidependency

void anti-dependency()

{

result1  calculation( data1 );  // Needs to complete first

data1  result2 + 1;           // Will overwrite data1

}

If one of the statements was modified to use an alternative or temporary variable, for
example, data1 prime, then both statements could proceed in any order. Listing 3.7
shows this modified code.

Listing 3.7 Fixing an Antidependency

void anti-dependency()

{

data1_prime  data1;      // Local copy of data1

result1  calculation( data1_prime );  

data1  result2 + 1;   // No longer has antidependence

}

The code shown in Listing 3.8 demonstrates an output dependency on the variable
data1. The second statement needs to complete after the first statement only because
they both write to the same variable. 

Listing 3.8 An Output Dependency

void output-dependency()

{

data1  result1 + 2; 

data1  result2 + 2; // Overwrites same variable

}

If the first target variable was renamed data1 prime, then both statements could
proceed in any order. Listing 3.9 shows this fix.
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Listing 3.9 Fixing an Output Dependency

void output-dependency()

{

data1_prime  result1 + 2;

data1  result2 + 2; // No longer has output-dependence

}

What is important about these two situations is that both output and antidependen-
cies can be avoided by renaming the data being written, so the final write operation goes
to a different place. This might involve taking a copy of the object and having each task
work on their own copy, or it might be a matter of duplicating a subset of the active
variables. In the worst case, it could be resolved by both tasks working independently
and then having a short bit of code that sets the variables to the correct state.

Using Speculation to Break Dependencies
In some instances, there is a clear potential dependency between different tasks. This
dependency means it is impossible to use a traditional parallelization approach where the
work is split between the two threads. Even in these situations, it can be possible to
extract some parallelism at the expense of performing some unnecessary work. Consider
the code shown in Listing 3.10.

Listing 3.10 Code with Potential for Speculative Execution

void doWork( int x, int y )

{

int value  longCalculation( x, y );

if (value > threshold)

{

return value + secondLongCalculation( x, y );

}

else

{

return value;

}

}

In this example, it is not known whether the second long calculation will be per-
formed until the first one has completed. However, it would be possible to speculatively
compute the value of the second long calculation at the same time as the first calculation
is performed. Then depending on the return value, either discard the second value or use
it. Listing 3.11 shows the resulting code parallelized using pseudoparallelization directives.
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Listing 3.11 Speculatively Parallelized Code

void doWork(int x, int y)

{

int value1, value2;  

#pragma start parallel region

{

#pragma perform parallel task

{

value1  longCalculation( x, y );

}

#pragma perform parallel task

{ 

value2  secondLongCalculation( x, y );

}

}

#pragma wait for parallel tasks to complete

if (value1 > threshold)

{

return value1 + value2;

}

else

{

return value1;

}

}

The #pragma directives in the previous code are very similar to those that are actu-
ally used in OpenMP, which we will discuss in Chapter 7, “OpenMP and Automatic
Parallelization.” The first directive tells the compiler that the following block of code
contains statements that will be executed in parallel. The two #pragma directives in the
parallel region indicate the two tasks to be performed in parallel. A final directive indi-
cates that the code cannot exit the parallel region until both tasks have completed.

Of course, it is important to consider whether the parallelization will slow perform-
ance down more than it will improve performance. There are two key reasons why the
parallel implementation could be slower than the serial code.

n The overhead from performing the work and synchronizing after the work is close
in magnitude to the time taken by the parallel code.

n The second long calculation takes longer than the first long calculation, and the
results of it are rarely used.

It is possible to put together an approximate model of this situation. Suppose the first
calculation takes T1 seconds and the second calculation takes T2 seconds; also suppose
that the probability that the second calculation is actually needed is P. Then the total
runtime for the serial code would be T1 + P ∗ T2.
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For the parallel code, assume that the calculations take the same time as they do in
the serial case and the probability remains unchanged, but there is also an overhead from
synchronization, S. Then the time taken by the parallel code is S + max (T1,T2).

Figure 3.22 shows the two situations.

Figure 3.22 Parallelization using speculative execution
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We can further deconstruct this to identify the constraints on the two situations
where the parallel version is faster than the serial version:

n If T1 > T2, then for the speculation to be profitable, S+T1 < T1+P∗T2, or 
S < P∗T2. In other words, the synchronization cost needs to be less than the aver-
age amount of time contributed by the second calculation. This makes sense if the
second calculation is rarely performed, because then the additional overhead of
synchronization needed to speculatively calculate it must be very small.

n If T2 > T1 (as shown in Figure 3.21), then for speculation to be profitable, S+T2
< T1+P∗T2 or P > (T2 +S -T1)/T2. This is a more complex result because the
second task takes longer than the first task, so the speculation starts off with a
longer runtime than the original serial code. Because T2 > T1, T2 + S -T1 is
always >0. T2 + S -T1 represents the overhead introduced by parallelization. For
the parallel code to be profitable, this has to be lower than the cost contributed by
executing T2. Hence, the probability of executing T2 has to be greater than the
ratio of the additional cost to the original cost. As the additional cost introduced
by the parallel code gets closer to the cost of executing T2, then T2 needs to be
executed increasingly frequently in order to make the parallelization profitable.

The previous approach is speculative execution, and the results are thrown away if they
are not needed. There is also value speculation where execution is performed, speculating
on the value of the input. Consider the code shown in Listing 3.12.



Listing 3.12 Code with Opportunity for Value Speculation

void doWork(int x, int y)

{

int value  longCalculation( x, y );

return secondLongCalculation( value );

}

In this instance, the second calculation depends on the value of the first calculation. 
If the value of the first calculation was predictable, then it might be profitable to specu-
late on the value of the first calculation and perform the two calculations in parallel.
Listing 3.13 shows the code parallelized using value speculation and pseudoparallelization
directives.

Listing 3.13 Parallelization Using Value Speculations

void doWork(int x, int y)

{

int value1, value2;

static int last_value;

#pragma start parallel region

{

#pragma perform parallel task

{

value1  longCalculation( x, y );

}

#pragma perform parallel task

{

value2  secondLongCalculation( lastValue );

}

}

#pragma wait for parallel tasks to complete

if (value1  lastvalue)

{

return value2;

}

else

{

lastValue  value1;

return secondLongCalculation( value1 );

}

}

The value calculation for this speculation is very similar to the calculation performed
for the speculative execution example. Once again, assume that T1 and T2 represent the
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costs of the two routines. In this instance, P represents the probability that the specula-
tion is incorrect. S represents the synchronization overheads. Figure 3.23 shows the costs
of value speculation.

The original code takes T1+T2 seconds to complete. The parallel code takes
max(T1,T2)+S+P∗T2. For the parallelization to be profitable, one of the following con-
ditions needs to be true:

n If T1 > T2, then for the speculation to be profitable, T1 + S + P∗T2 < T1 +T2.
So, S < (1-P) ∗ T2. If the speculation is mostly correct, the synchronization costs
just need to be less than the costs of performing T2. If the synchronization is often
wrong, then the synchronization costs need to be much smaller than T2 since T2
will be frequently executed to correct the misspeculation.

n If T2 > T1, then for the speculation to be profitable, T2 + S + P∗T2 < T1 +T2.
So, S <T1 – P∗T2. The synchronization costs need to be less than the cost of T1
after the overhead of recomputing T2 is included.

As can be seen from the preceding discussion, speculative computation can lead to a
performance gain but can also lead to a slowdown; hence, care needs to be taken in
using it only where it is appropriate and likely to provide a performance gain.

Critical Paths
One way of looking at parallelization is by examining the critical paths in the application.
A critical path is the set of steps that determine the minimum time that the task can

Figure 3.23 Parallelization using value speculation
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complete in. A serial program might complete tasks A, B, C, and D. Not all of the tasks
need to have dependencies. B might depend on the results of A, and D might depend on
the results of B and C, but C might not depend on any previous results. This kind of
data can be displayed on a graph such as the one in Figure 3.24.

It is relatively straightforward to identify the critical path in a process once the
dependencies and durations have been identified. From this graph, it is apparent that task
C could be performed in parallel with tasks A and B. Given timing data, it would be
possible to estimate the expected performance of this parallelization strategy.

Identifying Parallelization Opportunities
The steps necessary to identify parallelization opportunities in codes are as follows:

1. Gather a representative runtime profile of the application, and identify the regions
of code where the most time is currently being spent. 

2. For these regions, examine the code for dependencies, and determine whether the
dependencies can be broken so that the code can be performed either as multiple
parallel tasks or as a loop over multiple parallel iterations. At this point, it may also
be worth investigating whether a different algorithm or approach would give code
that could be more easily made parallel.

3. Estimate the overheads and likely performance gains from this parallelization strat-
egy. If the approach promises close to linear scaling with the number of threads,
then it is probably a good approach; if the scaling does not look very efficient, it
may be worth broadening the scope of the analysis.

4. Broaden the scope of the analysis by considering the routine that calls the region
of interest. Is it possible to make this routine parallel?

The important point to remember is that parallelization incurs synchronization costs,
so the more work that each thread performs before it needs synchronization, the better
the code will scale. Consequently, it is always worth looking further up the call stack of a
region of code to determine whether there is a more effective parallelization point. For
example, consider the pseudocode shown in Listing 3.14.

Figure 3.24 Critical paths
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Listing 3.14 Opportunities for Parallelization at Different Granularities

void handlePacket(packet_t *packet)

{

doOneTask(packet);

doSecondTask(packet);

}

void handleStream( stream_t* stream )

{

for( int i 0; i < stream->number_of_packets; i++)

{

handlePacket( stream->packets[i] );

}

}

In this example, there are two long-running tasks; each performs some manipulation of
a packet of data. It is quite possible that the two tasks, doOneTask() and doSecondTask(),
could be performed in parallel. However, that would introduce one synchronization
point after every packet that is processed. So, the synchronization cost would be O(N)
where N is the number of packets.

Looking further up the stack, the calling routine, handleStream(), iterates over a
stream of packets. So, it would probably be more appropriate to explore whether this
loop could be made to run in parallel. If this was successful, then there would be a syn-
chronization point only after an entire stream of packets had been handled, which could
represent a significant reduction in the total synchronization costs.

Summary
This chapter has discussed the various strategies that can be used to utilize systems more
efficiently. These range from virtualization, which increases the productivity of the system
through increasing the number of active applications, to the use of parallelization tech-
niques that enable developers to improve the throughput or speed of applications. 

It is important to be aware of how the amount of code that is made to run in parallel
impacts the scaling of the application as the number of threads increases. Consideration
of this will enable you to estimate the possible performance gains that might be attained
from parallelization and determine what constraints need to be met for the paralleliza-
tion to be profitable. 

The chapter introduces various parallelization strategies, and these should provide you
with insights into the appropriate strategy for the situations you encounter. Successful
parallelization of applications requires identification of the dependencies present in code.
This chapter demonstrates ways that the codes can be made parallel even in the presence
of dependencies.

119Summary



This chapter has focused on the strategies that might be employed in producing par-
allel applications. There is another aspect to this, and that is the handling of data in paral-
lel applications. The individual threads need to coordinate work and share information.
The appropriate method of sharing information or synchronizing will depend on the
implementation of the parallelization strategy. The next chapter will discuss the various
mechanisms that are available to support sharing data between threads and the ways that
threads can be synchronized.
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4
Synchronization and 

Data Sharing

For a multithreaded application to do useful work, it is usually necessary for some kind
of common state to be shared between the threads. The degree of sharing that is neces-
sary depends on the task. At one extreme, the only sharing necessary may be a single
number that indicates the task to be performed. For example, a thread in a web server
might be told only the port number to respond to. At the other extreme, a pool of
threads might be passing information constantly among themselves to indicate what tasks
are complete and what work is still to be completed. Beyond sharing to coordinate
work, there is sharing common data. For example, all threads might be updating a data-
base, or all threads might be responsible for updating counters to indicate the amount of
work completed.

This chapter discusses the various methods for sharing data between threads and the
costs of these approaches. It starts with a discussion of data races, which are situations
where multiple threads are updating the same data in an unsafe way. One way to avoid
data races is by utilizing proper synchronization between threads. This chapter provides
an overview of the common approaches to data sharing supported by most operating
systems. This discussion focuses, as much as possible, on the abstract methods of synchro-
nization and coordination. The following chapters will provide implementation-specific
details for the POSIX and Windows environments.

Data Races
Data races are the most common programming error found in parallel code. A data race
occurs when multiple threads use the same data item and one or more of those threads
are updating it. It is best illustrated by an example. Suppose you have the code shown in
Listing 4.1, where a pointer to an integer variable is passed in and the function incre-
ments the value of this variable by 4.



Listing 4.1  Updating the Value at an Address

void update(int * a)

{

*a  *a + 4;

}

The SPARC disassembly for this code would look something like the code shown in
Listing 4.2.

Listing 4.2  SPARC Disassembly for Incrementing a Variable Held in Memory

ld  [%o0], %o1   // Load *a

add  %o1, 4, %o1 // Add 4

st   %o1, [%o0]  // Store *a

Suppose this code occurs in a multithreaded application and two threads try to incre-
ment the same variable at the same time. Table 4.1 shows the resulting instruction stream.

Table 4.1  Two Threads Updating the Same Variable

Value of variable a = 10

Thread 1 Thread 2

ld  [%o0], %o1  // Load %o1 = 10 ld  [%o0], %o1  // Load %o1 = 10

add %01, 4, %o1 // Add  %o1 = 14 add %01, 4, %o1 // Add %o1 = 14

st  %o1, [%o0]  // Store %o1 st  %o1, [%o0]  // Store %o1

Value of variable a = 14

In the example, each thread adds 4 to the variable, but because they do it at exactly
the same time, the value 14 ends up being stored into the variable. If the two threads had
executed the code at different times, then the variable would have ended up with the
value of 18.

This is the situation where both threads are running simultaneously.  This illustrates a
common kind of data race and possibly the easiest one to visualize. 

Another situation might be when one thread is running, but the other thread has
been context switched off of the processor. Imagine that the first thread has loaded the
value of the variable a and then gets context switched off the processor. When it eventu-
ally runs again, the value of the variable a will have changed, and the final store of the
restored thread will cause the value of the variable a to regress to an old value.

Consider the situation where one thread holds the value of a variable in a register and
a second thread comes in and modifies this variable in memory while the first thread is
running through its code. The value held in the register is now out of sync with the
value held in memory.
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The point is that a data race situation is created whenever a variable is loaded and
another thread stores a new value to the same variable: One of the threads is now work-
ing with “old” data.

Data races can be hard to find. Take the previous code example to increment a vari-
able. It might reside in the context of a larger, more complex routine. It can be hard to
identify the sequence of problem instructions just by inspecting the code. The sequence
of instructions causing the data race is only three long, and it could be located within a
whole region of code that could be hundreds of instructions in length. 

Not only is the problem hard to see from inspection, but the problem would occur
only when both threads happen to be executing the same small region of code. So even
if the data race is readily obvious and can potentially happen every time, it is quite possi-
ble that an application with a data race may run for a long time before errors are observed.
In the example, unless you were printing out every value of the variable a and actually
saw the variable take the same value twice, the data race would be hard to detect.

The potential for data races is part of what makes parallel programming hard. It is a
common error to introduce data races into a code, and it is hard to determine, by
inspection, that one exists. Fortunately, there are tools to detect data races.

Using Tools to Detect Data Races
The code shown in Listing 4.3 contains a data race. The code uses POSIX threads,
which will be introduced in Chapter 5, “Using POSIX Threads.” The code creates two
threads, both of which execute the routine func(). The main thread then waits for both
the child threads to complete their work.

Listing 4.3  Code Containing Data Race

#include <pthread.h>

int counter  0;

void * func(void * params)

{

counter++;

}

void main()

{

pthread_t thread1, thread2;

pthread_create( &thread1, 0, func, 0);

pthread_create( &thread2, 0, func, 0);

pthread_join( thread1, 0 );

pthread_join( thread2, 0 );

}
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Both threads will attempt to increment the variable counter. We can compile this
code with GNU gcc and then use Helgrind, which is part of the Valgrind1 suite, to
identify the data race. Valgrind is a tool that enables an application to be instrumented
and its runtime behavior examined. The Helgrind tool uses this instrumentation to
gather data about data races. Listing 4.4 shows the output from Helgrind.

Listing 4.4  Using Helgrind to Detect Data Races

$ gcc -g race.c -lpthread

$ valgrind -–tool=helgrind ./a.out

...

4742  

4742  Possible data race during write of size 4 

at 0x804a020 by thread #3

4742     at 0x8048482: func (race.c:7)

4742     by 0x402A89B: mythread_wrapper (hg_intercepts.c:194)

4742     by 0x40414FE: start_thread 

(in /lib/tls/i686/cmov/libpthread-2.9.so)

4742     by 0x413849D: clone (in /lib/tls/i686/cmov/libc-2.9.so)

4742   This conflicts with a previous write of size 4 by thread #2

4742     at 0x8048482: func (race.c:7)

4742     by 0x402A89B: mythread_wrapper (hg_intercepts.c:194)

4742     by 0x40414FE: start_thread 

(in /lib/tls/i686/cmov/libpthread-2.9.so)

4742     by 0x413849D: clone (in /lib/tls/i686/cmov/libc-2.9.so)

The output from Helgrind shows that there is a potential data race between two threads,
both executing line 7 in the file race.c. This is the anticipated result, but it should be
pointed out that the tools will find some false positives. The programmer may write code
where different threads access the same variable, but the programmer may know that
there is an enforced order that stops an actual data race. The tools, however, may not be
able to detect the enforced order and will report the potential data race.

Another tool that is able to detect potential data races is the Thread Analyzer in
Oracle Solaris Studio. This tool requires an instrumented build of the application, data
collection is done by the collect tool, and the graphical interface is launched with the
command tha. Listing 4.5 shows the steps to do this.

Listing 4.5  Detecting Data Races Using the Sun Studio Thread Analyzer

$ cc -g -xinstrument=datarace race.c

$ collect -r on ./a.out

Recording experiment tha.1.er ...

$ tha tha.1.er&

124 Chapter 4 Synchronization and Data Sharing

1. http://valgrind.org/ 

http://valgrind.org/


The initial screen of the tool displays a list of data races, as shown in Figure 4.1.
Once the user has identified the data race they are interested in, they can view the

source code for the two locations in the code where the problem occurs. In the exam-
ple, shown in Figure 4.2, both threads are executing the same source line.
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Avoiding Data Races
Although it can be hard to identify data races, avoiding them can be very simple: Make
sure that only one thread can update the variable at a time. The easiest way to do this is
to place a synchronization lock around all accesses to that variable and ensure that before
referencing the variable, the thread must acquire the lock. Listing 4.6 shows a modified
version of the code. This version uses a mutex lock, described in more detail in the next
section, to protect accesses to the variable counter. Although this ensures the correct-
ness of the code, it does not necessarily give the best performance, as will be discussed in
later chapters.

Listing 4.6  Code Modified to Avoid Data Races

void * func( void * params )

{

pthread_mutex_lock( &mutex );

counter++;

pthread_mutex_unlock( &mutex );

}

Synchronization Primitives
Synchronization is used to coordinate the activity of multiple threads. There are various
situations where it is necessary; this might be to ensure that shared resources are not
accessed by multiple threads simultaneously or that all work on those resources is com-
plete before new work starts.

Most operating systems provide a rich set of synchronization primitives. It is usually
most appropriate to use these rather than attempting to write custom methods of syn-
chronization. There are two reasons for this. Synchronization primitives provided by the
operating system will usually be recognized by the tools provided with that operating
system. Hence, the tools will be able to do a better job of detecting data races or cor-
rectly labeling synchronization costs. The operating system will often provide support for
sharing the primitives between threads or processes, which can be hard to do efficiently
without operating system support. However, the most critical consideration is that the
code provided by the operating system is unlikely to contain bugs. Discussion of writing
custom synchronization primitives is covered in Chapter 8, “Hand-Coded Synchronization
and Sharing.”

Mutexes and Critical Regions
The simplest form of synchronization is a mutually exclusive (mutex) lock. Only one
thread at a time can acquire a mutex lock, so they can be placed around a data structure
to ensure that the data structure is modified by only one thread at a time. Listing 4.7
shows how a mutex lock could be used to protect access to a variable.
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Listing 4.7  Placing Mutex Locks Around Accesses to Variables

int counter;

mutex_lock mutex;

void Increment()

{

acquire( &mutex );

counter++;

release( &mutex );

}

void Decrement()

{

acquire( &mutex );

counter--;

release( &mutex );

}

In the example, the two routines Increment() and Decrement() will either incre-
ment or decrement the variable counter. To modify the variable, a thread has to first
acquire the mutex lock. Only one thread at a time can do this; all the other threads that
want to acquire the lock need to wait until the thread holding the lock releases it. Both
routines use the same mutex; consequently, only one thread at a time can either incre-
ment or decrement the variable counter.

If multiple threads are attempting to acquire the same mutex at the same time, then
only one thread will succeed, and the other threads will have to wait. This situation is
known as a contended mutex.

The region of code between the acquisition and release of a mutex lock is called a
critical section, or critical region. Code in this region will be executed by only one thread at
a time.

As an example of a critical section, imagine that an operating system does not have
an implementation of malloc() that is thread-safe, or safe for multiple threads to call at
the same time. One way to fix this is to place the call to malloc() in a critical section
by surrounding it with a mutex lock, as shown in Listing 4.8.

Listing 4.8  Placing a Mutex Lock Around a Region of Code

void * threadSafeMalloc( size_t size )

{

acquire( &mallocMutex );

void * memory  malloc( size );

release( &mallocMutex );

return memory;

}
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If all the calls to malloc() are replaced with the threadSafeMalloc() call, then
only one thread at a time can be in the original malloc() code, and the calls to
malloc() become thread-safe. 

Threads block if they attempt to acquire a mutex lock that is already held by another
thread. Blocking means that the threads are sent to sleep either immediately or after a
few unsuccessful attempts to acquire the mutex.

One problem with this approach is that it can serialize a program. If multiple threads
simultaneously call threadSafeMalloc(), only one thread at a time will make progress.
This causes the multithreaded program to have only a single executing thread, which
stops the program from taking advantage of multiple cores.

Spin Locks
Spin locks are essentially mutex locks. The difference between a mutex lock and a spin
lock is that a thread waiting to acquire a spin lock will keep trying to acquire the lock
without sleeping. In comparison, a mutex lock may sleep if it is unable to acquire the
lock. The advantage of using spin locks is that they will acquire the lock as soon as it is
released, whereas a mutex lock will need to be woken by the operating system before it
can get the lock. The disadvantage is that a spin lock will spin on a virtual CPU monop-
olizing that resource. In comparison, a mutex lock will sleep and free the virtual CPU
for another thread to use.

Often mutex locks are implemented to be a hybrid of spin locks and more traditional
mutex locks. The thread attempting to acquire the mutex spins for a short while before
blocking. There is a performance advantage to this. Since most mutex locks are held for
only a short period of time, it is quite likely that the lock will quickly become free for
the waiting thread to acquire. So, spinning for a short period of time makes it more
likely that the waiting thread will acquire the mutex lock as soon as it is released.
However, continuing to spin for a long period of time consumes hardware resources that
could be better used in allowing other software threads to run. 

Semaphores
Semaphores are counters that can be either incremented or decremented. They can be
used in situations where there is a finite limit to a resource and a mechanism is needed
to impose that limit. An example might be a buffer that has a fixed size. Every time an
element is added to a buffer, the number of available positions is decreased. Every time
an element is removed, the number available is increased. 

Semaphores can also be used to mimic mutexes; if there is only one element in the
semaphore, then it can be either acquired or available, exactly as a mutex can be either
locked or unlocked.

Semaphores will also signal or wake up threads that are waiting on them to use available
resources; hence, they can be used for signaling between threads. For example, a thread
might set a semaphore once it has completed some initialization. Other threads could
wait on the semaphore and be signaled to start work once the initialization is complete.
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Depending on the implementation, the method that acquires a semaphore might be
called wait, down, or acquire, and the method to release a semaphore might be called post,
up, signal, or release. When the semaphore no longer has resources available, the threads
requesting resources will block until resources are available.

Readers-Writer Locks
Data races are a concern only when shared data is modified. Multiple threads reading the
shared data do not present a problem. Read-only data does not, therefore, need protec-
tion with some kind of lock.

However, sometimes data that is typically read-only needs to be updated. A readers-
writer lock (or multiple-reader lock) allows many threads to read the shared data but can
then lock the readers threads out to allow one thread to acquire a writer lock to modify
the data.

A writer cannot acquire the write lock until all the readers have released their reader
locks. For this reason, the locks tend to be biased toward writers; as soon as one is
queued, the lock stops allowing further readers to enter. This action causes the number
of readers holding the lock to diminish and will eventually allow the writer to get exclu-
sive access to the lock. 

The code snippet in Listing 4.9 shows how a readers-writer lock might be used. Most
threads will be calling the routine readData() to return the value from a particular pair
of cells. Once a thread has a reader lock, they can read the value of the pair of cells,
before releasing the reader lock.

To modify the data, a thread needs to acquire a writer lock. This will stop any reader
threads from acquiring a reader lock. Eventually all the reader threads will have released
their lock, and only at that point does the writer thread actually acquire the lock and is
allowed to update the data.

Listing 4.9  Using a Readers-Writer Lock

int readData( int cell1, int cell2 )

{

acquireReaderLock( &lock );

int result  data[cell] + data[cell2];

releaseReaderLock( &lock );

return result;

}

void writeData( int cell1, int cell2, int value )

{

acquireWriterLock( &lock );

data[cell1] +  value;

data[cell2] -  value;

releaseWriterLock( &lock );

}
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Barriers
There are situations where a number of threads have to all complete their work before
any of the threads can start on the next task. In these situations, it is useful to have a bar-
rier where the threads will wait until all are present. 

One common example of using a barrier arises when there is a dependence between
different sections of code. For example, suppose a number of threads compute the values
stored in a matrix. The variable total needs to be calculated using the values stored in
the matrix. A barrier can be used to ensure that all the threads complete their computa-
tion of the matrix before the variable total is calculated. Listing 4.10 shows a situation
using a barrier to separate the calculation of a variable from its use.

Listing 4.10  Using a Barrier to Order Computation

Compute_values_held_in_matrix();

Barrier();

total  Calculate_value_from_matrix();

The variable total can be computed only when all threads have reached the barrier.
This avoids the situation where one of the threads is still completing its computations
while the other threads start using the results of the calculations. Notice that another
barrier could well be needed after the computation of the value for total if that value
is then used in further calculations. Listing 4.11 shows this use of multiple barriers.

Listing 4.11  Use of Multiple Barriers

Compute_values_held_in_matrix();

Barrier();

total  Calculate_value_from_matrix();

Barrier();

Perform_next_calculation( total );

Atomic Operations and Lock-Free Code
Using synchronization primitives can add a high overhead cost. This is particularly true if
they are implemented as calls into the operating system rather than calls into a support-
ing library. These overheads lower the performance of the parallel application and can
limit scalability. In some cases, either atomic operations or lock-free code can produce func-
tionally equivalent code without introducing the same amount of overhead.

An atomic operation is one that will either successfully complete or fail; it is not possi-
ble for the operation to either result in a “bad” value or allow other threads on the sys-
tem to observe a transient value. An example of this would be an atomic increment,
which would mean that the calling thread would replace a variable that currently holds
the value N with the value N+1. This might sound trivial, but bear in mind that the
operation of incrementing a variable can involve multiple steps, as shown in Listing 4.12.
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Listing 4.12  Steps Involved in Incrementing a Variable

LOAD   [%o0], %o1  // Load initial value

ADD    %o1, 1, %o1 // Increment value

STORE  %o1, [%o0]  // Store new value back to memory

During the execution of the three steps shown in Listing 4.12, another thread could
have interfered and replaced the value of the variable held in memory with a new value,
creating a data race.

An atomic increment operation would not allow another thread to modify the same
variable and cause an erroneous value to be written to memory. Performing the incre-
ment operation atomically is logically equivalent to implicitly acquiring a mutex before
the increment and releasing it afterward. The difference is that using a mutex relies on
other threads using the same mutex to protect that variable. A thread that did not use the
same mutex could cause an incorrect value to be written back to memory. With atomic
operations, another thread cannot cause an incorrect value to be written to memory. 

Most operating systems or compilers provide support for a range of atomic opera-
tions. However, hardware typically provides support only for a more limited range of
operations; hence, the more complex atomic operations are usually made from the sim-
ple atomic instructions that the hardware provides.

Atomic operations are often used to enable the writing of lock-free code. Using a syn-
chronization device such as a mutex lock solves the correctness problem; only one thread
can access the protected memory location at a single time. However, it is not necessarily
the approach with the best scaling, since threads that are waiting for access are blocked
(sent to sleep). A lock-free implementation would not rely on a mutex lock to protect
access; instead, it would use a sequence of operations that would perform the operation
without having to acquire an explicit lock. This can be higher performance than control-
ling access with a lock. Lock-free does not imply that the other threads would not have
to wait; it only indicates that they do not have to wait on a lock. A wait-free implementa-
tion would allow all the threads to simultaneously make forward progress.

Most of the more complex atomic operations are actually lock-free implementations.
They use a low-level, hardware-provided atomic operation and wrap code around that to
ensure that the required higher-level operation is actually atomic. 

An example of a low-level atomic operation would be compare and swap (CAS), which
atomically swaps the value held in a register with the value held in memory if and only
if the value held in memory matches the expected value. As an example of using this
hardware-provided atomic operation to produce a higher-level atomic operation, the
CAS instruction could be used as the basis for an atomic increment operation. To do
this, the CAS instruction would be executed in a loop. Each iteration, it would attempt
to replace the value held in memory with the incremented value. The loop would exit
when the CAS instruction successfully performed the increment operation.

Lock-free code can be used to achieve more complex operations; this will be dis-
cussed in Chapter 8, “Hand-Coding Synchronization and Sharing.”

131Synchronization Primitives



Deadlocks and Livelocks
So far, we’ve demonstrated some fundamental ways to share access to resources between
threads. We now need to discuss the situations where strategies might go wrong. 

First is the deadlock, where two or more threads cannot make progress because the
resources that they need are held by the other threads. It is easiest to explain this with an
example. Suppose two threads need to acquire mutex locks A and B to complete some
task. If thread 1 has already acquired lock A and thread 2 has already acquired lock B, then
A cannot make forward progress because it is waiting for lock B, and thread 2 cannot
make progress because it is waiting for lock A. The two threads are deadlocked. Listing 4.13
shows this situation.

Listing 4.13  Two Threads in a Deadlock

Thread 1 Thread 2

void update1() void update2()

{ {

acquire(A); acquire(B);

acquire(B); <<< Thread 1 acquire(A); <<< Thread 2 

waits here waits here

variable1++; variable1++;

release(B); release(B);

release(A); release(A);

} }

The best way to avoid deadlocks is to ensure that threads always acquire the locks in
the same order. So if thread 2 acquired the locks in the order A and then B, it would stall
while waiting for lock A without having first acquired lock B. This would enable thread 1
to acquire B and then eventually release both locks, allowing thread 2 to make progress. 

A livelock traps threads in an unending loop releasing and acquiring locks. Livelocks
can be caused by code to back out of deadlocks. In Listing 4.14, the programmer has
tried to implement a mechanism that avoids deadlocks. If the thread cannot obtain the
second lock it requires, it releases the lock that it already holds.

The two routines update1() and update2() each have an outer loop. Routine
update1() acquires lock A and then attempts to acquire lock B, whereas update2()
does this in the opposite order. This is a classic deadlock opportunity, and to avoid it, the
developer has written some code that causes the held lock to be released if it is not pos-
sible to acquire the second lock. The routine canAquire(), in this example, returns
immediately either having acquired the lock or having failed to acquire the lock.

Listing 4.14  Two Threads in a Livelock

Thread 1 Thread 2

void update1() void update2()

{ {
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int done 0; int done 0;

while (!done) while (!done)

{ {

acquire(A); acquire(B); 

if ( canAcquire(B) )  if ( canAcquire(A) )  

{ {

variable1++; variable2++;

release(B); release(A);

release(A); release(B);

done 1; done 1;

} }

else else

{ {

release(A); release(B);

} }

} }

} }

If two threads encounter this code at the same time, they will be trapped in a livelock
of constantly acquiring and releasing mutexes, but it is very unlikely that either will
make progress. Each thread acquires a lock and then attempts to acquire the second lock
that it needs. If it fails to acquire the second lock, it releases the lock it is holding, before
attempting to acquire both locks again. The thread exits the loop when it manages to
successfully acquire both locks, which will eventually happen, but until then, the applica-
tion will make no forward progress.

Communication Between Threads and Processes
All parallel applications require some element of communication between either the
threads or the processes. There is usually an implicit or explicit action of one thread
sending data to another thread. For example, one thread might be signaling to another
that work is ready for them. We have already seen an example of this where a semaphore
might indicate to waiting threads that initialization has completed. The thread signaling
the semaphore does not know whether there are other threads waiting for that signal.
Alternatively, a thread might be placing a message on a queue, and the message would be
received by the thread tasked with handling that queue.

These mechanisms usually require operating system support to mediate the sending of
messages between threads or processes. Programmers can invent their own implementa-
tions, but it can be more efficient to rely on the operating system to put a thread to
sleep until a condition is true or until a message is received. 

The following sections outline various mechanisms to enable processes or threads to
pass messages or share data.
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Memory, Shared Memory, and Memory-Mapped Files
The easiest way for multiple threads to communicate is through memory. If two threads
can access the same memory location, the cost of that access is little more than the
memory latency of the system. Of course, memory accesses still need to be controlled to
ensure that only one thread writes to the same memory location at a time. A multi-
threaded application will share memory between the threads by default, so this can be a
very low-cost approach. The only things that are not shared between threads are variables
on the stack of each thread (local variables) and thread-local variables, which will be dis-
cussed later.

Sharing memory between multiple processes is more complicated. By default, all
processes have independent address spaces, so it is necessary to preconfigure regions of
memory that can be shared between different processes.

To set up shared memory between two processes, one process will make a library call
to create a shared memory region. The call will use a unique descriptor for that shared
memory. This descriptor is usually the name of a file in the file system. The create call
returns a handle identifier that can then be used to map the shared memory region into
the address space of the application. This mapping returns a pointer to the newly mapped
memory. This pointer is exactly like the pointer that would be returned by  malloc()
and can be used to access memory within the shared region.

When each process exits, it detaches from the shared memory region, and then the
last process to exit can delete it. Listing 4.15 shows the rough process of creating and
deleting a region of shared memory.

Listing 4.15  Creating and Deleting a Shared Memory Segment

ID      Open Shared Memory( Descriptor );

Memory  Map Shared Memory( ID );

...

Memory[100]++;

... 

Close Shared Memory( ID );

Delete Shared Memory( Descriptor );

Listing 4.16 shows the process of attaching to an existing shared memory segment. In
this instance, the shared region of memory is already created, so the same descriptor used
to create it can be used to attach to the existing shared memory region. This will provide
the process with an ID that can be used to map the region into the process.

Listing 4.16  Attaching to an Existing Shared Memory Segment

ID      Open Shared Memory( Descriptor );

Memory  Map Shared Memory( ID );

...

Close Shared Memory( ID );
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A shared memory segment may remain on the system until it is removed, so it is
important to plan on which process has responsibility for creating and removing it.

Condition Variables
Condition variables communicate readiness between threads by enabling a thread to be
woken up when a condition becomes true. Without condition variables, the waiting
thread would have to use some form of polling to check whether the condition had
become true.

Condition variables work in conjunction with a mutex. The mutex is there to ensure
that only one thread at a time can access the variable. For example, the producer-
consumer model can be implemented using condition variables. Suppose an application
has one producer thread and one consumer thread. The producer adds data onto a
queue, and the consumer removes data from the queue. If there is no data on the queue,
then the consumer needs to sleep until it is signaled that an item of data has been placed
on the queue. Listing 4.17 shows the pseudocode for a producer thread adding an item
onto the queue.

Listing 4.17  Producer Thread Adding an Item to the Queue

Acquire Mutex();

Add Item to Queue();

If ( Only One Item on Queue )

{

Signal Conditions Met();

}

Release Mutex();

The producer thread needs to signal a waiting consumer thread only if the queue was
empty and it has just added a new item into that queue. If there were multiple items
already on the queue, then the consumer thread must be busy processing those items and
cannot be sleeping. If there were no items in the queue, then it is possible that the con-
sumer thread is sleeping and needs to be woken up.

Listing 4.18 shows the pseudocode for the consumer thread.

Listing 4.18  Code for Consumer Thread Removing Items from Queue

Acquire Mutex();

Repeat

Item  0;

If ( No Items on Queue() )

{

Wait on Condition Variable();

}
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If (Item on Queue())

{

Item  remove from Queue();

}

Until ( Item !  0 );

Release Mutex();

The consumer thread will wait on the condition variable if the queue is empty. When
the producer thread signals it to wake up, it will first check to see whether there is any-
thing on the queue. It is quite possible for the consumer thread to be woken only to
find the queue empty; it is important to realize that the thread waking up does not
imply that the condition is now true, which is why the code is in a repeat loop in the
example. If there is an item on the queue, then the consumer thread can handle that
item; otherwise, it returns to sleep.

The interaction with the mutex is interesting. The producer thread needs to acquire
the mutex before adding an item to the queue. It needs to release the mutex after adding
the item to the queue, but it still holds the mutex when signaling. The consumer thread
cannot be woken until the mutex is released. The producer thread releases the mutex
after the signaling has completed; releasing the mutex is necessary for the consumer
thread to make progress.

The consumer thread acquires the mutex; it will need it to be able to safely modify
the queue. If there are no items on the queue, then the consumer thread will wait for an
item to be added. The call to wait on the condition variable will cause the mutex to be
released, and the consumer thread will wait to be signaled. When the consumer thread
wakes up, it will hold the mutex; either it will release the mutex when it has removed an
item from the queue or, if there is still nothing in the queue, it will release the mutex
with another call to wait on the condition variable.

The producer thread can use two types of wake-up calls: Either it can wake up a sin-
gle thread or it can broadcast to all waiting threads. Which one to use depends on the
context. If there are multiple items of data ready for processing, it makes sense to wake
up multiple threads with a broadcast. On the other hand, if the producer thread has
added only a single item to the queue, it is more appropriate to wake up only a single
thread. If all the threads are woken, it can take some time for all the threads to wake up,
execute, and return to waiting, placing an unnecessary burden on the system. Notice that
because each thread has to own the mutex when it wakes up, the process of waking all
the waiting threads is serial; only a single thread can be woken at a time.

The other point to observe is that when a wake-up call is broadcast to all threads,
some of them may be woken when there is no work for them to do. This is one reason
why it is necessary to place the wait on the condition variable in a loop.

The other problem to be aware of with condition variables is the lost wake-up. This
occurs when the signal to wake up the waiting thread is sent before the thread is ready
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to receive it. Listing 4.19 shows a version of the consumer thread code. This version of
the code can suffer from the lost wake-up problem.

Listing 4.19  Consumer Thread Code with Potential Lost Wake-Up Problem

Repeat

Item  0;

If ( No Items on Queue() )

{

Acquire Mutex();

Wait on Condition Variable();

Release Mutex();

}

Acquire Mutex();

If ( Item on Queue() )

{

Item  remove from Queue();

}

Release Mutex();

Until ( Item! 0 );

The problem with the code is the first if condition. If there are no items on the
queue, then the mutex lock is acquired, and the thread waits on the condition variable.
However, the producer thread could have placed an item and signaled the consumer
thread between the consumer thread executing the if statement and acquiring the
mutex. When this happens, the consumer thread waits on the condition variable indefi-
nitely because the producer thread, in Listing 4.17, signals only when it places the first
item into the queue.

Signals and Events
Signals are a UNIX mechanism where one process can send a signal to another process
and have a handler in the receiving process perform some task upon the receipt of the
message. Many features of UNIX are implemented using signals. Stopping a running
application by pressing ^C causes a SIGKILL signal to be sent to the process.

Windows has a similar mechanism for events. The handling of keyboard presses and
mouse moves are performed through the event mechanism. Pressing one of the buttons
on the mouse will cause a click event to be sent to the target window.

Signals and events are really optimized for sending limited or no data along with the
signal, and as such they are probably not the best mechanism for communication when
compared to other options.

Listing 4.20 shows how a signal handler is typically installed and how a signal can be
sent to that handler. Once the signal handler is installed, sending a signal to that thread
will cause the signal handler to be executed.
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Listing 4.20  Installing and Using a Signal Handler

void signalHandler(void *signal)

{

...

}

int main()

{

installHandler( SIGNAL, signalHandler );

sendSignal( SIGNAL );

}

Message Queues
A message queue is a structure that can be shared between multiple processes. Messages
can be placed into the queue and will be removed in the same order in which they were
added. Constructing a message queue looks rather like constructing a shared memory
segment. The first thing needed is a descriptor, typically the location of a file in the file
system. This descriptor can either be used to create the message queue or be used to
attach to an existing message queue. Once the queue is configured, processes can place
messages into it or remove messages from it. Once the queue is finished, it needs to be
deleted.

Listing 4.21 shows code for creating and placing messages into a queue. This code is
also responsible for removing the queue after use.

Listing 4.21  Creating and Placing Messages into a Queue

ID  Open Message Queue Queue( Descriptor );

Put Message in Queue( ID, Message );

...

Close Message Queue( ID );

Delete Message Queue( Description );

Listing 4.22 shows the process for receiving messages for a queue. Using the descrip-
tor for an existing message queue enables two processes to communicate by sending and
receiving messages through the queue.

Listing 4.22  Opening a Queue and Receiving Messages

ID Open Message Queue ID(Descriptor);

Message Remove Message from Queue(ID);

...

Close Message Queue(ID);
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Named Pipes
UNIX uses pipes to pass data from one process to another. For example, the output from
the command ls, which lists all the files in a directory, could be piped into the wc com-
mand, which counts the number of lines, words, and characters in the input. The combi-
nation of the two commands would be a count of the number of files in the directory.
Named pipes provide a similar mechanism that can be controlled programmatically.

Named pipes are file-like objects that are given a specific name that can be shared
between processes. Any process can write into the pipe or read from the pipe. There is
no concept of a “message”; the data is treated as a stream of bytes. The method for using
a named pipe is much like the method for using a file: The pipe is opened, data is writ-
ten into it or read from it, and then the pipe is closed.

Listing 4.23 shows the steps necessary to set up and write data into a pipe, before
closing and deleting the pipe. One process needs to actually make the pipe, and once it
has been created, it can be opened and used for either reading or writing. Once the
process has completed, the pipe can be closed, and one of the processes using it should
also be responsible for deleting it.

Listing 4.23  Setting Up and Writing into a Pipe

Make Pipe( Descriptor );

ID  Open Pipe( Descriptor );

Write Pipe( ID, Message, sizeof(Message) );

...

Close Pipe( ID );

Delete Pipe( Descriptor );

Listing 4.24 shows the steps necessary to open an existing pipe and read messages from
it. Processes using the same descriptor can open and use the same pipe for communication.

Listing 4.24  Opening an Existing Pipe to Receive Messages

ID Open Pipe( Descriptor );

Read Pipe( ID, buffer, sizeof(buffer) );

...

Close Pipe( ID );

Communication Through the Network Stack
The network stack is a fairly complex set of layers that range from the network card up to
the layer that provides the network packet communication used by applications like web
browsers. Full coverage of it is outside the scope of this book. However, networking is
available on most platforms, and as such it is a possible candidate for communication. An
advantage to using networking to communicate is that applications can communicate
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between processes on a single system or processes on different systems connected by a
network. The only changes necessary would be in the address where the packets of data
were sent. Although communications across a network can be quite high latency, using
networking to communicate between processes on the same machine will typically be
lower cost, but not as low cost as some of the other methods of communication.

Communication across the network usually involves a client-server model. To set up a
server, it is first necessary to open a socket and then bind that socket to the address on
the local host before starting to listen for incoming connections. When a connection
arrives, data can be read from it or written to it, until the connection is closed. Once the
connection is closed, it is possible to close the socket. Listing 4.25 illustrates how the
server thread of a client-server network connection can be set up. 

Listing 4.25  Setting Up Socket to Listen for Connections

ID  Open Socket( Descriptor );

Bind Socket( ID, Address );

Listen( ID )

Conx  Wait for connection( ID );

Read( Conx, buffer, sizeof(buffer) );

...

Close( Conx );

Close Socket( ID );

Listing 4.26 shows the steps necessary to set up a client socket to connect to the
server. Connecting to a remote server also requires initially setting up a socket. Once the
socket is open, it can be used to connect to the server. After the communication is com-
plete, the socket can be closed.

Listing 4.26  Setting Up a Socket to Connect to a Remote Server

ID Open Socket( Descriptor );

Connect( ID, Address );

Write( ID, buffer, sizeof(buffer) );

...

Close( ID );

Other Approaches to Sharing Data Between Threads
There are several other approaches to sharing data. For example, data can be written to a
file to be read by another process at a later point. This might be acceptable if the data
needs to be stored persistently or if the data will be used at some later point. Still, writ-
ing to disk presents a long latency operation, which is not the best mechanism if the
purpose is purely communication.
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There are also operating system–specific approaches to sharing data between
processes. Solaris doors allow one process to pass an item of data to another process and
have the processed result returned. Doors are optimized for the round-trip and hence
can be cheaper than using two different messages.

Storing Thread-Private Data
A single-threaded application might use global data to hold program state. For example, a
single-threaded word processor might have global variables that hold the name of the
document being edited or the current line number. 

In a multithreaded application, it is sometimes necessary for each thread to hold some
state. This state is private to the thread but can be accessed by all the code that the thread
executes. Returning to the word processor example, if it opens multiple documents and
each document is handled by a single thread, then each thread will want to have a sepa-
rate variable to hold the name of the document and the current line number.  This data
would be private to each thread—no other thread could read it. The application may still
have some global state—perhaps it records details of the person using it—and all threads
would have access to this same information. 

There are various approaches that a thread can use to store private data. The obvious
way to do this would be to allocate an array to hold the thread-private data for all
threads and then use the ID of the thread as an index into the array. This is a relatively
straightforward approach that may suffice in a number of situations. Listing 4.27 shows
how an array can be used to store data that is private, or local, to the thread. The array
MyData[] is accessed by the ID of the currently executing thread. This allows each
thread to store data at a unique location in the array. 

Listing 4.27  Using an Array to Store Thread-Local Data

int MyData[20];

void ThreadedCode(int parameter)

{

MyData[ GetMyThreadID() ]  parameter;

...

}

Another approach would be to store local thread data on the stack. Each thread has a
stack that is private to the thread. Consequently, a thread can allocate data on the stack
and have that data remain private to the thread. It is not advisable to pass pointers to that
data across to other threads, since stack-based data is valid only while the thread is alive
and while the stack frame containing the data exists. Listing 4.28 shows an example of
using the stack to hold thread-local data.
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Listing 4.28  Holding Thread-Local Data on the Stack

void ThreadedCode(int parameter)

{

int MyData  parameter;

...

}

Yet another way of allocating data that is private to the thread is to use thread-local storage.
As its name suggests, variables allocated to thread-local storage are private to the thread.
Most compilers support the thread keyword. For example, the code shown in Listing
4.29 would declare an integer variable named count that is local to each thread.

Listing 4.29  Using the thread Specifier to Identify Thread-Local Data

__thread int count;

void ThreadedCode(int parameter)

{

count  parameter;

...

}

Every time a thread referenced the variable count, it would access the value of the
copy local to that thread.

Another approach to thread-local storage is to use support functions to allocate and
deallocate local variables. Listing 4.30 shows the rough outline of the approach. First an
identifier needs to be created to uniquely identify the thread-local variable. Using that
identifier, the thread can then read data from or write data to that variable. When the
thread has finished with the variable, the identifier needs to be deleted.

Listing 4.30  Using an API to Manage Thread-Local Data

ID  Create ID();

Set Thread Local Data ( ID, Value );

Value  Get Thread Local Data ( ID );

Delete ID( ID );

Summary
This chapter discussed the different approaches that can be taken to synchronize threads
and share data between them. Later chapters will discuss the implementation details of
these approaches. You should now have an understanding of atomic operations and lock-
free algorithms and have some knowledge of the various synchronization and data-
sharing primitives offered by most operating systems.
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5
Using POSIX Threads

The POSIX1 standards specify the coding standards for portable UNIX applications.
Most UNIX and UNIX-like operating systems adhere to the key features of these;
hence, an application coded to the standards will be portable between UNIX implemen-
tations and UNIX-like operating systems, such as Linux and FreeBSD, and Mac OS X,
which is also based on a UNIX-like kernel. Microsoft Windows does not implement the
POSIX standards directly, although there are some solutions that enable programs writ-
ten using POSIX interfaces to run on Windows platforms.

This chapter will discuss how to write multithreaded programs using the POSIX
standard interfaces. These enable an application to create new threads and synchronize
and share data between threads and processes.

Creating Threads
An application initially starts with a single thread, which is often referred to as the main
thread or the master thread. Calling pthread create() creates a new thread. It takes the
following parameters:

n A pointer to a pthread t structure. The call will return the handle to the thread
in this structure.

n A pointer to a pthread attributes structure, which can be a null pointer if the
default attributes are to be used. The details of this structure will be discussed later.

n The address of the routine to be executed.
n A value or pointer to be passed into the new thread as a parameter. 

Listing 5.1 shows how this API call can be used.

1. www.unix.org

www.unix.org


Listing 5.1  Creating a New Thread

#include <pthread.h>

#include <stdio.h>

void* thread_code( void * param )

{

printf( "In thread code\n" );

}

int main()

{

pthread_t thread;

pthread_create( &thread, 0, &thread_code, 0 );

printf( "In main thread\n" );

}

In this example, the main thread will create a second thread to execute the routine
thread code(), which will print one message while the main thread prints another.
The call to create the thread has a value of zero for the attributes, which gives the thread
default attributes. The call also passes the address of a pthread t variable for the func-
tion to store a handle to the thread.

The return value from the pthread create() call is zero if the call is successful;
otherwise, it returns an error condition.

Thread Termination
Child threads terminate when they complete the routine they were assigned to run. In
Listing 5.2, the child thread will terminate when it completes the routine
thread code(). The value returned by the routine executed by the child thread can be
made available to the main thread when the main thread calls the routine pthread join().

The pthread join() call takes two parameters. The first parameter is the handle of
the thread that is to be waited for. The second parameter is either zero or the address of
a pointer to a void, which will hold the value returned by the child thread. 

The resources consumed by the thread will be recycled when the main thread calls
pthread join(). If the thread has not yet terminated, this call will wait until the thread
terminates and then free the assigned resources. Listing 5.2 shows an expanded example
where the main thread waits for the child thread to complete.

Listing 5.2  Creating a New Thread and Waiting for It to Complete

#include <pthread.h>

#include <stdio.h>

void* thread_code( void * param )

{
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printf( "In thread code\n" );

}

int main()

{

pthread_t thread;

pthread_create( &thread, 0, &thread_code, 0 );

printf( "In main thread\n" );

pthread_join( thread, 0 );

}

Another way a thread can terminate is to call the routine pthread exit(), which
takes a single parameter—either zero or a pointer—to void. This routine does not return
and instead terminates the thread. The parameter passed in to the pthread exit() call
is returned to the main thread through the pthread join(). The child threads do not
need to explicitly call pthread exit() because it is implicitly called when the thread
exits. Unless the thread is a detached thread, which will be covered later, the resources
used by the thread are not freed until another thread calls pthread join(), passing in
the handle of the exited thread. 

Passing Data to and from Child Threads
In many cases, it is important to pass data into the child thread and have the child thread
return status information when it completes. To pass data into a child thread, it should be
cast as a pointer to void and then passed as a parameter to pthread create(). It is
critical to realize that the child thread can start executing at any point after the call, so the
pointer must point to something that still exists and still retains the same value. This rules
out passing in pointers to changing variables as well as pointers to information held on
the stack (unless the stack is certain to exist until after the child thread has read the value).

Listing 5.3 shows an acceptable way of passing the value of a variable into the child
thread. The value is type cast to a void* and then passed as the parameter to the thread.

Listing 5.3  Passing a Value into a Created Thread

for ( int i 0; i<10; i++ )

pthread_create( &thread, 0, &thread_code, (void *)i );

Listing 5.4 shows an unacceptable way of passing the value of a variable into the child
thread.

Listing 5.4  Erroneous Way of Passing Data to a New Thread

for ( int i 0; i<10; i++ )

pthread_create( &thread, 0, &thread_code, (void *)&i );
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The code in Listing 5.4 code is unacceptable for two reasons: First, the variable i will
almost certainly have changed value before the child thread starts executing, and second,
the variable i is allocated on the stack, and there is no guarantee that the stack space will
even be in scope when the child thread starts executing.

The child thread will receive the value passed by the main thread as a parameter,
which usually will need to be type cast to an appropriate value. Listing 5.5 shows an
example.

Listing 5.5  Reading the Parameter Passed to the New Thread

void* child_thread( void* value )

{

int id = (int)value;

...

}

The return value from a child thread will be made available to the main thread through
the second parameter of the pthread join() function call, as shown in Listing 5.6.

Listing 5.6  Reading the Return Value of an Exiting Child Thread

#include <pthread.h>

#include <stdio.h>

void* child_thread( void * param )

{

int id  (int)param;

printf( "Start thread %i\n", id );

return (void *)id;

}

int main()

{

pthread_t thread[10];

int return_value[10];

for ( int i 0; i<10; i++ )

{

pthread_create( &thread[i], 0, &child_thread, (void*)i );

}

for ( int i 0; i<10; i++ )

{

pthread_join( thread[i], (void**)&return_value[i] );

printf( "End thread %i\n", return_value[i] );

}

}
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This code will pass a unique number into each child thread, and then the child thread
will return this number as its return code. The value is then made available to the main
thread through the pthread join() call.

Detached Threads
The previous discussion focused on joinable threads, threads that terminate and then wait
for the main thread to read their return value before the resources that they consume are
recycled. 

It is also possible to create detached threads that do not wait around for another thread
to call pthread join() before the resources they consume are recycled. One way to do
this is to set the appropriate attribute in the thread attributes structure; this will be dis-
cussed in the next section. Another way is to call pthread detach() on an existing
thread. Calling pthread join() on detached threads is an error; they do not need the
call, and making the call will return an error value.

The handle of the detached thread may be recycled when the thread exits, so any
cached version of the handle may no longer refer to the original thread; hence, care
needs to be taken when writing code that uses detached threads.

Listing 5.7 shows an example of detaching a thread. The child thread calls
pthread self() to get its own handle, which it can then use to convert itself into a
detached thread.

Listing 5.7  Detaching a Thread Using pthread detach() Call

#include <pthread.h>

#include <stdio.h>

void* child_routine( void * param )

{

int id  (int)param;

printf( "Detach thread %i\n", id );

pthread_detach( pthread_self() );

}

int main()

{

pthread_t thread[10];

for ( int i 0; i<10; i++ )

{

pthread_create( &thread[i], 0, child_routine, (void*)i );

}

}

Threads can also be created in the detached state. To do this, it is necessary to pass a
set of attributes into the call to pthread create().
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Setting the Attributes for Pthreads
The attributes for a thread are set when the thread is created. Some attributes, such as
the detached state, can be modified once the thread exists, but others cannot be changed.
To set the initial thread attributes, first create a thread attributes structure, and then set
the appropriate attributes in that structure, before passing the structure into the
pthread create() call. Once the attributes have been used to set up a thread, they 
can be destroyed with pthread attr destroy(). Listing 5.8 shows the basic outline 
of this.

Listing 5.8  Passing Attributes to pthread create

#include <pthread.h>

...

int main()

{

pthread_t thread;

pthread_attr_t attributes;

pthread_attr_init( &attributes );

pthread_create( &thread, &attributes, child_routine, 0 );

pthread_attr_destroy( &attributes );

}

There are various attributes that can be set using API calls. The most useful ones
determine whether the thread is created in the detached or joinable state, as well as the
size of the stack allocated to the new thread.

A thread can be created as either a detached or a joinable thread. The default is to
create a joinable thread. The code in Listing 5.9 sets the attributes to create a detached
thread.

Listing 5.9  Creating a Detached Thread

#include <pthread.h>

#include <stdio.h>

void* child_routine( void * param )

{

int id  (int)param;

printf( "Thread %i\n", id );

}

int main()

{

pthread_t thread;
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pthread_attr_t attributes;

pthread_attr_init( &attributes );

pthread_attr_setdetachstate( &attributes, PTHREAD_CREATE_DETACHED );

pthread_create( &thread, &attributes, child_routine, 0 );

pthread_attr_destroy( &attributes );

}

The default stack size is dependent upon the operating system. The code in Listing 5.10
will print out the default stack size.

Listing 5.10  Reading the Stack Size Attribute for a New Thread

#include <pthread.h>

#include <stdio.h>

int main()

{

size_t stacksize;

pthread_attr_t attributes;

pthread_attr_init( &attributes );

pthread_attr_getstacksize( &attributes, &stacksize );

printf( "Stack Size  %i\n", stacksize);

pthread_attr_destroy( &attributes );

}

Running it on Ubuntu produces the result shown in Listing 5.11, indicating that the
default stack size is 8MB.

Listing 5.11  Compiling and Running Code to Show Default Stack Size on Ubuntu

$ gcc stack.c -lpthread

$ ./a.out

Stack Size  8388608

However, running the same code on Solaris produces the result shown in Listing 5.12.

Listing 5.12  Compiling and Running Code to Show Default Stack Size on Solaris

$ cc stack.c

$ ./a.out

Stack Size  0

Reading the man pages indicates that if zero is set for the stack size, the Solaris
defaults to 1MB for 32-bit code and 2MB for 64-bit code.
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Another command that controls stack size is ulimit s <stacksize>. On Linux,
this command is used to set the default stack size for both the initial thread created and
for subsequent threads. On Solaris, this command controls only the stack size for the ini-
tial thread. Consequently, to write portable codes, it is best to explicitly control the size
of the stack for any child threads, particularly if the code places large objects on the stack
or uses recursion.

The obvious question to ask is, why not set the largest stack possible for all child
threads? The answer to this question leads to a discussion on how stacks are created.

To allow the both the heap (where malloc obtains its memory from) and the stack to
grow, the heap is usually placed after the application at the low end of the addressable
memory, and the stack is usually placed at the upper end of memory, as in Figure 5.1.
The heap grows upward, and the stack can grow downward.

Figure 5.1  Location of heap and stack in memory
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This approach works for a single-threaded application, but each thread in a multi-
threaded application needs its own stack. To do this, the application must have a limit to
the size of the initial stack for the main thread. Each child thread must also have a limit
to its stack size. The resulting layout in memory is rather like Figure 5.2.

Figure 5.2  Memory layout for a multithreaded code
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Each thread receives an adjacent block of memory of fixed size for its stack. There is a
finite address space available, so memory used for stack space is taken from memory that
can be used for the heap. For 64-bit applications, the address space is sufficiently large so
that this is not a problem. For 32-bit applications, it is relatively easy to run out of
address space. If each thread is allocated an 8MB stack, then there can be at most 512
simultaneous threads (512 ∗ 8 MB = entire 4GB address space). Hence, for some appli-
cations, it can be a good idea to assess how much memory is actually required for the
stack of each child thread. The absolute minimum acceptable memory to provide to a
thread is stored in the variable PTHREAD STACK MIN. This size would provide no space
on the stack for local variables or making function calls, so it would rarely be used with-
out also including some additional space.



Compiling Multithreaded Code
Two potential problem areas that might arise when compiling multithreaded code are
header files and libraries. Header files might require adaptations for multithreading, and
multithreaded versions of supporting libraries might need to be linked. In general, the
compiler will make the correct decisions, but it is important to be aware of these issues
by reading the documentation when encountering a new platform for the first time.

One example of how the included header files might change in the presence of mul-
tiple threads is the errno variable on Solaris. Solaris provides different implementations
of this variable for single-threaded and multithreaded applications. In a single-threaded
application, there is only one errno variable, so this can be an integer value. In a multi-
threaded application,  an errno variable needs to be defined for each thread. The com-
piler flag mt passes the compiler flag -D REENTRANT, which makes the errno variable a
multithread-aware macro.

Listing 5.13 shows an example of a code that calls errno in a multithreaded context.
Both the main and child threads call fopen() with invalid parameters; the child thread
attempts to open the current directory for writing, and the main thread attempts to
write to an unspecified file. Both of these actions will result in the value for errno being
set to an error value.

Listing 5.13  Example of Using errno in a Multithreaded Application

#include <stdio.h> 

#include <errno.h> 

#include <pthread.h> 

void * thread1( void* param ) 

{ 

FILE *fhandle  fopen( ".", "w" ); 

if ( !fhandle ) { printf( " thread1 %4i\n", errno ); } 

else { fclose( fhandle ); } 

} 

int main() 

{ 

pthread_t thread_data1; 

int i; 

pthread_create( &thread_data1, 0, thread1, 0 ); 

FILE *fhandle  fopen( "", "r" ); 

if ( !fhandle ) { printf( " main  %4i\n", errno ); } 

else { fclose( fhandle ); } 

pthread_join( thread_data1, 0 ); 

} 
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Using Solaris Studio compilers on Solaris, the mt flag ensures the correct behavior
in multithreaded contexts. Listing 5.14 shows the results of compiling and running the
application both with and without the flag.

Listing 5.14  Running a Multithreaded Code That Depends on errno on Solaris

$ cc errno.c 

$ ./a.out

thread1    2 

main       2 

$ cc -mt errno.c 

$ ./a.out 

thread1   22 

main       2 

When the code is correctly compiled, both of the calls to errno produce a value that
is correct for the calling thread. When the mt flag is omitted, the same value for errno
is printed for both threads.

It is also necessary to ensure that the correct libraries are linked into an application.
Some support libraries include both single-threaded and multithreaded versions, so
selecting the appropriate one is important. Some operating systems will explicitly require
the Pthread library to be linked into the application. For example, Solaris 9 would
require an explicit lpthread compiler flag; however, this changed in Solaris 10, when
the threading library was combined with the C runtime library, and the compiler flag
was no longer necessary.

The same situation is true when building with gcc. The compiler has the flag pthread,
which both passes the flag D REENTRANT and causes linking with the POSIX threading
library. However, not all platforms need to define REENTRANT; it makes no difference to
the Linux header files, so the only benefit is that the compiler will include the POSIX
threading library.

Some libraries are not multithread-safe; they do not guarantee the correct answer
when called by a multithreaded application. For instance, the Solaris Studio compilers
provide libfast, which is not multithread-safe but offers better performance than the
default malloc(). It is easy to produce multithread-safe libraries using mutexes to ensure
that only a single thread can have access at a time. However, this does not produce a
library with performance that scales as the number of threads increases.

The other point to be aware of when compiling code that calls the POSIX API is
that it may be necessary to define particular variables in order to get the correct versions
of functions. These requirements are usually documented under man standards. Linux
does not typically require this; however, Solaris does. For example, use of the define 
D POSIX C SOURCE=199309L will assert that the code is written to the POSIX.1b-
1993 standard. Failure to set the appropriate feature test macro will usually cause
warnings of undefined functions or of incompatible types being passed into  functions.
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Process Termination
When the main thread completes, all the child threads are terminated and their resources
freed. We can see this demonstrated if we build and run the code shown in Listing 5.15.

Listing 5.15  Code to Create a Child Thread

#include <pthread.h>

#include <stdio.h>

void* thread_code( void * param )

{

printf( "In thread code\n" );

}

int main()

{

pthread_t thread;

pthread_create( &thread, 0, &thread_code, 0 );

printf( "In main thread\n" );

}

When the application works, we should see a message printed by both the main and
child threads, as shown in Listing 5.16.

Listing 5.16  Output from Both Original and Child Threads

$ cc -mt t.c

$ ./a.out

In thread code 

In main thread 

However, sometimes the application will produce output only from the main thread,
as shown in Listing 5.17.

Listing 5.17  Output from Only the Original Thread

$ ./a.out

In main thread 

The reason for this behavior is that sometimes the main thread terminates before the
child thread has had time to execute. To avoid this behavior, the main thread needs to
call pthread exit(), which, for the main thread, will wait until all the other threads
have terminated before exiting. This is true, even if the child threads have been detached.
Listing 5.18 shows a version of the code with this change.
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Listing 5.18  Main Thread Calls Waits for Child Threads to Complete

#include <pthread.h> 

#include <stdio.h> 

void* thread_code( void * param ) 

{ 

printf("In thread code\n"); 

} 

int main() 

{ 

pthread_t thread; 

pthread_create( &thread, 0, &thread_code, 0 ); 

pthread_detach( thread ); 

printf( "In main thread\n" ); 

pthread_exit( 0 ); 

} 

After this change, all the child threads will print their output before the main thread
exits.

Sharing Data Between Threads
A key advantage of multithreaded codes is that all threads see the same memory, so data
is already shared between threads. However, it often important to coordinate access to
this data, since failure to coordinate accesses could cause data races that lead to incorrect
results. POSIX provides a large number of synchronization and data-sharing methods.

Protecting Access Using Mutex Locks
A mutex lock is a mechanism supported by the POSIX standard that can be acquired by
only one thread at a time. Other threads that attempt to acquire the same mutex must
wait until it is released by the thread that currently has it.

Before they can be used, mutex locks need to be initialized to the appropriate state
by a call to pthread mutex init() or, for statically defined mutexes, by assignment
with the value PTHREAD MUTEX INITIALIZER.  The call to pthread mutex init()

takes an optional parameter that points to attributes describing the type of mutex
required. Initialization through static assignment uses default parameters, as does passing
in a null pointer in the call to pthread mutex init().

Once a mutex is no longer needed, the resources it consumes can be freed with a call
to pthread mutex destroy(). Listing 5.19 shows examples of initializing and destroy-
ing mutexes.
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Listing 5.19  Creating and Destroying Mutexes

#include <pthread.h>

...

pthread_mutex_t m1 = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t m2;

pthread_mutex_init( &m2, 0 );

...

pthread_mutex_destroy( &m1 );

pthread_mutex_destroy( &m2 );

A thread can lock a mutex by calling pthread mutex lock(). Once it has finished
with the mutex, the thread calls pthread mutex unlock(). If a thread calls pthread

mutex lock() while another thread holds the mutex, the calling thread will wait, or
block, until the other thread releases the mutex, allowing the calling thread to attempt to
acquire the released mutex.

In many situations, it is not desirable for the calling thread to wait for the mutex to
be available. The call pthread mutex trylock() will attempt to acquire the mutex. If
it succeeds, the function will return the value of zero, and the calling thread will now be
the owner of the mutex. If the mutex is already locked by another thread, the function
will immediately return a nonzero value indicating the exact situation.

The code shown in Listing 5.20 shows a mutex lock protecting the variable count
against simultaneous access by multiple threads. The variable count is declared as
volatile to ensure that it is read from memory on each access and written back to
memory after each access. Without the mutex lock, there would be a data race between
the two threads. Hence, it is very unlikely that count would end up with the correct
value.

Listing 5.20  Mutex Lock Avoiding Data Race

#include <pthread.h>

#include <stdio.h>

pthread_mutex_t mutex;

volatile int counter  0;

void * count( void * param )

{ 

for ( int i 0; i<100; i++ )

{

pthread_mutex_lock( &mutex );

counter++;

printf( "Count  %i\n", counter );
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pthread_mutex_unlock( &mutex );

}

} 

int main() 

{ 

pthread_t thread1, thread2; 

pthread_mutex_init( &mutex, 0 );

pthread_create( &thread1, 0, count, 0 ); 

pthread_create( &thread2, 0, count, 0 ); 

pthread_join( thread1, 0 ); 

pthread_join( thread2, 0 ); 

pthread_mutex_destroy( &mutex );

return 0; 

} 

Mutex Attributes
Mutexes can be shared between multiple processes. By default, mutexes are private to a
process. To create a mutex that can be shared between processes, it is necessary to set up
the attributes for pthread mutex init(), as shown in Listing 5.21. 

Listing 5.21  Creating a Mutex That Can Be Shared Between Processes

#include <pthread.h>

int main()

{

pthread_mutexattr_t attributes;

pthread_mutex_t mutex;

pthread_mutexattr_init( &attributes );

pthread_mutexattr_setpshared( &attributes, PTHREAD_PROCESS_SHARED );

pthread_mutex_init( &mutex, &attributes );

pthread_mutexattr_destroy( &attributes );

...

}

The attributes structure pthread mutexattr t is initialized with default values by a
call to pthread mutexattr init(). A call to pthread mutex setpshared() with a
pointer to the attribute structure and the value PTHREAD PROCESS SHARED sets the
attributes to cause a shared mutex to be created. By default, mutexes are not shared
between processes; calling pthread mutex setpshared() with the value PTHREAD
PROCESS PRIVATE restores the attribute to the default. 
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These attributes are passed into the call to pthread mutex init() to set the attrib-
utes of the initialized mutex. Once the attributes have been used, they can be disposed of
by a call to pthread mutex attr destroy().

A mutex can have other attributes set using the same mechanism:
n The type of mutex. This can be a normal mutex, a mutex that detects errors such

as multiple attempts to lock the mutex, or a recursive mutex that can be locked
multiple times and then needs to be unlocked the same number of times.

n The protocol to follow when another thread is waiting for the mutex. This can be
the default of no change to thread priority, that the thread holding the mutex
inherits the priority of any higher-priority thread waiting for the mutex, or that
the thread gets the highest priority associated with the mutexes held by it.

n The priority ceiling of the mutex. This is the priority that any lower-priority
thread will be elevated to while it holds the mutex.

The attributes governing the priority of any thread holding the mutex are designed
to avoid problems of priority inversion where a higher-priority thread is waiting for a
lower-priority thread to release the mutex.

Using Spin Locks
The critical difference between spin locks and mutex locks is that a spin lock will keep
spinning in a tight loop and consuming processor resources until it finally acquires the
lock. Mutex locks will immediately put a thread to sleep when it cannot get the mutex,
or an adaptive mutex lock will spin for a short time waiting for the lock to become free
before going to sleep.

The interface for spin locks is very similar to that of mutex locks. The call
pthread spin init() will initialize a spin lock. The spin lock can be created as share-
able between processes or private to the process creating it. A spin lock that is private to
a process is created by passing the value PTHREAD PROCESS PRIVATE as a parameter to
the call to pthead spin init(), and passing the value PTHREAD PROCESS SHARED

creates a spin lock that can be shared between processes. 
Multiple threads in the process that created the lock will always be able to access it.

However, if the spin lock is created to be private to a process, the behavior of the lock is
not defined if it is used by other processes. The default is for the spin lock to be private
to the creating process.

The call pthread spin lock() will spin until the lock is acquired, the call pthread
spin unlock() will release the lock, and finally the call pthread spin destroy()

will release any resources used by the lock. Listing 5.22 demonstrates the use of a spin
lock. This example places access to a local variable under the control of the spin lock;
however, in this example, the variable is not shared between threads, so it is not actually
necessary to use any locking.
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Listing 5.22  Code Using a Spin Lock to Protect Access to a Variable

#include <pthread.h>

pthread_spinlock_t lock;

void lockandunlock()

{

int i  10000;

while ( i>0 )

{

pthread_spin_lock( &lock );

i--;

pthread_spin_unlock( &lock );

}

}

int main()

{

pthread_spin_init( &lock, PTHREAD_PROCESS_PRIVATE );

lockandunlock();

pthread_spin_destroy( &lock );

}

If the code is modified to create a spin lock that is shared between multiple processes,
only one process should initialize and destroy the spin lock. The modification shown in
Listing 5.23 will create a spin lock that can be shared between processes.

Listing 5.23  Creating a Spin Lock That Can Be Shared Between Processes

int main()

{

pthread_spin_init(&lock,PTHREAD_PROCESS_SHARED);

lockandunlock();

pthread_spin_destroy(&lock);

}

In addition, the call pthread spin trylock() will attempt to acquire the lock but
will immediately return whether or not the lock is successfully acquired. Since a spin-
ning lock will be using processor resources, it might be more useful to attempt to
acquire the lock and, if that fails, to complete some other task before repeating the test.
This utilizes the processor in useful work rather than just spinning. Listing 5.24 shows
the earlier code modified to use pthread spin trylock() and keep a count of the
number of times the thread fails to get the lock.
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Listing 5.24  Counting the Number of Times That the Spin Lock Fails to Be Acquired

void lockandunlock()

{

int i  0;

int count  0;

while ( i  0 )

{

if ( pthread_spin_trylock( &lock ) )

{

i++;

pthread_spin_unlock( &lock );

}

else

{

count++;

}

}

printf( "Failed tries  %i\n", count );

}

Read-Write Locks
Read-write locks allow multiple threads to simultaneously read a resource, but only a single
thread may update that resource at any time. They share a similar initialization and
destruction syntax to mutex locks in that they take a set of attributes and can be initial-
ized either through a call to pthread rwlock init() or statically initialized by assign-
ment of the value PTHREAD RWLOC INITIALIZER. Listing 5.25 shows the two methods.

Listing 5.25  Initializing a Read-Write Lock

pthread_rwlock_t lock1, lock2;

...

pthread_rwlock_init( &lock1, 0 );

lock2 = PTHREAD_RWLOCK_INITIALIZER;

...

If the attributes passed to the initialization routine are zero, then the lock is initialized
with the default attribute of being private to the creating process. To create a read-write
lock that is shared between processes, it is necessary to create and use a set of attributes.
The call pthread rwlockattr init() initializes the attributes, while the call
pthread rwlockattr setpshared() sets the shared attribute to the desired value.
This set of attributes can then be passed into the pthread rwlock init() call to set
the attributes for the read-write lock being created. Listing 5.26 demonstrates this.
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Listing 5.26  Creating a Read-Write Lock That Can Be Shared Between Processes

pthread_rwlockattr_t attributes;

pthread_rwlock_t lock;

...

pthread_rwlockattr_init( &attr );

pthread_rwlockattr_setpshared( &attr, PTHREAD_PROCESS_SHARED );

pthread_rwlock_init( &lock, &attr );

pthread_rwlockattr_destroy( &attr );

...

pthread_rwlock_destroy( &lock );

Once the lock has been created, it no longer references the attributes, so these can be
either reused for a different lock or destroyed. The call to destroy the attributes is
pthread rwlockattr destroy(). The resources consumed by the read-write lock are
freed by the call to pthread rwlock destroy().

Read-write locks have a more complex interface than mutex locks because they 
can be locked and unlocked for either reading or writing. Hence, there are two pairs of
lock and unlock calls. The pairs pthread rwlock rdlock() and pthread rwlock

rdunlock()lock and unlock for reading, and pthread rwlock wrlock() and
pthread rwlock wrunlock()lock and unlock for writing. Listing 5.27 shows how the
read-write lock might be used to protect access to a shared resource.

Listing 5.27  Using a Read-Write Lock to Protect Access to a Shared Resource

int readMatrix( int x,int y )

{

int result;

pthread_rwlock_rdlock( &lock );

result  matrix[x,y];

pthread_rwlock_rdunlock( &lock );

return result;

}

void updateMatrix( int x,int y,int value );

{

pthread_rwlock_wrlock( &lock );

matrix[x,y]  value;

pthread_rwlock_wrunlock( &lock );

}

The read-write lock is unnecessary in this short code snippet because load or store
accesses to aligned integer variables are atomic. The lock would be critical if the updates
and reads were of structures that required multiple writes.
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The behavior of calls to acquire the lock is for the thread to block until the lock is
acquired. However, there are also calls to try to acquire the lock. These calls return
immediately either with or without having acquired the lock. To try to get a reader 
lock, the call is pthread rwlock tryrwlock(), and to try to acquire the lock as a
writer, the call is pthread rwlock trywrlock(). Listing 5.28 shows an example of
using these calls.

Listing 5.28  Updating a Shared Value Only If the Read-Write Lock Is Acquired

void typeUpdate( int value )

{
if ( pthread_rwlock_trywrlock( &lock )  0 )

{

count +  value;

pthread_rwlock_wrunlock( &lock );

}

}

There is a further option of using a timeout when acquiring the lock. The routines
pthread rwlock timedrdlock() and pthread rwlock timedwrlock() return 0 if
the lock is acquired or an error code if the lock has not been acquired by the absolute
time specified. The routines pthread rwlock timedrdlock np() and pthread

rwlock timedwrlock np() return an error code if the lock has not be acquired by 
the relative time specified. 

A timespec structure is used to pass the timing information into the function. For rel-
ative timing, this structure needs to be initialized with the duration of the wait time; for
absolute time, the structure can be initialized with the current time using a call to
clock gettime(). Listing 5.29 demonstrates how the timeout can be set to elapse in
five seconds.

Listing 5.29  Acquiring a Read-Write Lock with a Timeout

#include <time.h>

void timeout_lock()

{

struct timespec now;

clock_gettime( CLOCK_REALTIME, &now );

now.tv_sec += 5;

if ( pthread_rwlock_timedrdlock( &lock, now )  0 )

{

...

pthread_rwlock_rdunlock( &lock );

}

}
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Alternatively, the code could directly call the relative timeout, as shown in Listing 5.30.

Listing 5.30  Setting a Relative Timeout

#include <time.h>

void timeout_lock()

{

struct timespec now;

now.tv_sec = 5;

now.tv_nsec = 0;

if ( pthread_rwlock_timedrdlock_np( &lock, now )  0 )

{

...

pthread_rwlock_rdunlock( &lock );

}

}

Barriers
There are situations where a program needs to wait until an entire group of threads has
completed its work before further progress can be made. This is a barrier.

A barrier is created by a call to pthread barrier init(). The call to initialize the
barrier takes the following:

n A pointer to the barrier to be initialized.
n An optional attributes structure, this structure determines whether the barrier is

private to a process or shared across processes.
n The number of threads that need to reach the barrier before any threads are

released.

The resources consumed by a barrier can be released by a call to pthread barrier

destroy().
Each thread calls pthread barrier wait() when it reaches the barrier. This call

will return when the appropriate number of threads has reached the barrier. The code in
Listing 5.31 demonstrates using a barrier to cause the threads in an application to wait
until all the threads have been created.

Listing 5.31  Creating and Using a Barrier

#include <pthread.h>

#include <stdio.h>

pthread_barrier_t barrier;
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void * work( void* param)

{

int id (int)param;

printf( "Thread arrived %i\n", id );

pthread_barrier_wait( &barrier );

printf( "Thread departed %i\n", id );

}

int main()

{

pthread_t threads[10];

pthread_barrier_init( &barrier, 0, 10 );

for ( int i 0; i<10; i++ )

{

pthread_create( &threads[i], 0, work, (void*)i );

}

for ( int i 0; i<10; i++ )
{

pthread_join( threads[i], 0 );

}

pthread_barrier_destroy( &barrier );

}

The output from the program would show all the threads arriving at the barrier and
then all the threads departing from the barrier. Without the barrier, the arrivals and
departures of all the threads would be mixed.

Semaphores
A semaphore is a counting and signaling mechanism. One use for it is to allow threads
access to a specified number of items. If there is a single item, then a semaphore is essen-
tially the same as a mutex, but it is more commonly useful in a situation where there are
multiple items to be managed. Semaphores can also be used to signal between threads or
processes, for example, to tell another thread that there is data present in a queue. There
are two types of semaphores: named and unnamed semaphores. 

An unnamed semaphore is initialized with a call to sem init(). This function takes
three parameters. The first parameter is a pointer to the semaphore. The next is an inte-
ger to indicate whether the semaphore is shared between multiple processes or private to
a single process. The final parameter is the value with which to initialize the semaphore.
A semaphore created by a call to sem init() is destroyed with a call to sem destroy().

The code shown in Listing 5.32 initializes a semaphore with a count of 10. The mid-
dle parameter of the call to sem init() is zero, and this makes the semaphore private to
the thread; passing the value one rather than zero would enable the semaphore to be
shared between multiple processes.
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Listing 5.32  Creating and Initializing a Semaphore

#include <semaphore.h>

int main()

{

sem_t semaphore;

sem_init( &semaphore, 0, 10 );

...

sem_destroy( &semaphore );

}

A named semaphore is opened rather than initialized. The process for doing this is
similar to opening a file. The call to sem open() returns a pointer to a semaphore. The
first parameter to the call is the name of the semaphore. The name must conform to the
naming conventions for files on the operating system and must start with a single slash
sign and contain no further slash signs. The next parameter is the set of flags. There are
three combinations of flags that can be passed to the sem open() call. If no flags are
passed, the function will return a pointer to the existing named semaphore if it exists
and if the semaphore has the appropriate permissions to be shared with the calling
process. If the O CREAT flag is passed, the semaphore will be created; if it does not exist
or if it does exist, a pointer will be returned to the existing version. The flag O EXCL can
be passed with the O CREAT flag. This will successfully return a semaphore only if that
semaphore does not already exist.

Creating a semaphore requires two additional parameters: the permissions that the
semaphore should be created with and the initial value for the semaphore. Listing 5.33
shows an example of opening a semaphore with an initial value of 10, with read and
write permissions for the user, the group, and all users.

Listing 5.33  Opening a Named Semaphore

#include <semaphore.h>

int main()

{

sem_t * semaphore;

semaphore  sem_open( "/my_semaphore", O_CREAT, 0777, 10 );

...

A named semaphore is closed by a call to sem close(). This closes the connection to
the semaphore but leaves the semaphore present on the machine. A call to sem unlink()

with the name of the semaphore will free the resources consumed by it but only once all
the processes that have the semaphore open have closed their connection to it. The code
shown in Listing 5.34 will close and unlink the previously opened semaphore.

164 Chapter 5 Using POSIX Threads



Listing 5.34  Closing and Unlinking a Named Semaphore

sem_close( semaphore );

sem_unlink( "/my_semaphore" );

}

The semaphore is used through a combination of three methods. The function
sem wait() will attempt to decrement the semaphore. If the semaphore is already zero,
the calling thread will wait until the semaphore becomes nonzero and then return, hav-
ing decremented the semaphore. The call sem trywait() will return immediately
either having decremented the semaphore or if the semaphore is already zero. The call to
sem post() will increment the semaphore. One more call, sem getvalue(), will write
the current value of the semaphore into an integer variable. The code in Listing 5.35
shows a semaphore used in the same way as a mutex might be, to protect the increment
of the variable count. On Solaris, the semaphore functions are defined in the real-time
library, so code needs to be linked with this library using lrt.

Listing 5.35  Using a Semaphore as a Mutex

int main()

{

sem_t semaphore;

int count  0;

sem_init( &semaphore, 0, 1 );

sem_wait( &semaphore );

count++;

sem_post( &semaphore );

sem_destroy( &semaphore );

}

Another property of semaphores that is not fully exploited when using them as
mutex locks is signaling between threads. Semaphores can be used to signal that one task
has been completed or to ensure that two tasks will be executed in a predetermined
order. Consider the code shown in Listing 5.36.

Listing 5.36  Two Threads Executing Two Functions in a Nondeterministic Order

#include <pthread.h>

#include <stdio.h>

void *func1( void * param )

{

printf( "Thread 1\n" );

}
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void *func2( void * param )

{

printf( "Thread 2\n" );

}

int main()

{
pthread_t threads[2];  

pthread_create( &threads[0], 0, func1, 0 );

pthread_create( &threads[1], 0, func2, 0 );

pthread_join( threads[0], 0 );

pthread_join( threads[1], 0 );

}

At runtime, the code can print either "Thread 1" or "Thread 2" first, depending
on which thread gets to the printf() statement first. Semaphores can be used to ensure
that the threads execute in a specific order. Suppose we want to ensure that the output is
always "Thread 1" before "Thread 2"; then we need to make the second thread wait
until the first thread completes before the second thread produces its output. Listing 5.37
shows how a semaphore can be used to ensure this ordering.

Listing 5.37  Using a Semaphore to Enforce a Deterministic Ordering on Two Threads

#include <pthread.h>

#include <stdio.h>

#include <semaphore.h>

sem_t semaphore;

void *func1( void * param )

{

printf( "Thread 1\n" );

sem_post( &semaphore );

}

void *func2( void * param )

{

sem_wait( &semaphore );

printf( "Thread 2\n" );

}

int main()

{
pthread_t threads[2];  

sem_init( &semaphore, 0, 1 );

pthread_create( &threads[0], 0, func1, 0 );

pthread_create( &threads[1], 0, func2, 0 );
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pthread_join( threads[0], 0 );

pthread_join( threads[1], 0 );

sem_destroy( &semaphore );

}

The code creates a semaphore. Once the first thread completes its task, it signals the
semaphore that the second thread can now perform its task. The logic of the second
thread will cause it to wait at the semaphore until the first thread signals it, or if it does
not reach the semaphore before the first thread completes its task, the second will not
even wait at the semaphore. This use of a single semaphore ensures that the second
thread always executes the printf() statement after the first thread has completed its
printf() statement.

An extension of this ordering mechanism is the producer-consumer configuration of
threads, as shown in Listing 5.38. The semaphore in this instance contains the number of
items waiting in the queue to be processed. If there are no items in the queue, the con-
sumer thread can sleep until an item is placed in the queue by the producer. The code
uses the semaphore as a signaling mechanism between the two threads, not as a mecha-
nism that ensures mutual exclusion to accesses to the queue. The code that manipulates
the queue is omitted, but this code would ensure that multiple threads can safely simul-
taneously access the queue data structure.

Listing 5.38  Using a Semaphore in a Producer-Consumer System

#include <pthread.h>

#include <stdio.h>

#include <semaphore.h>

sem_t semaphore;

pthread_mutex_t mutex  PTHREAD_MUTEX_INITIALIZER;

int queue[200];

int queueLength;

void *producer( void * param)

{

for ( int i 0; i<500; i++ )

{

// Add item to queue

pthread_mutex_lock( &mutex );

queue[ queueLength++ ]  i;

pthread_mutex_unlock( &mutex ); 

// Signal semaphore

sem_post( &semaphore );

}

}
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void *consumer(void * param)

{

for ( int i 0; i<500; i++ )

{

int item;

// Wait if nothing in queue

if (queueLength 0) { sem_wait(&semaphore); }

pthread_mutex_lock( &mutex );

item  queue[ --queueLength ];

pthread_mutex_unlock( &mutex );

printf( "Received %i\n", item);

}

}

int main()

{
pthread_t threads[2];  

sem_init( &semaphore, 0, 0 );

pthread_create( &threads[0], 0, producer, 0 );

pthread_create( &threads[1], 0, consumer, 0 );

pthread_join( threads[0], 0 );

pthread_join( threads[1], 0 );

sem_destroy( &semaphore );

}

Controlling access to a finite number of elements is another situation where a sema-
phore is useful. This could be a real physical constraint, such as only sufficient spaces in a
list exist or only a finite amount of memory has been reserved. Or it could be a throt-
tling feature. For example, in the producer-consumer, we might want to limit the queue
length to avoid stacking up too much work for the consumer. Listing 5.39 shows the
modified version of the code.

Listing 5.39  Producer-Consumer Modified So That the Producer Thread Can Be Throttled

#include <pthread.h>

#include <stdio.h>

#include <semaphore.h>

sem_t semaphore;

sem_t limit;

pthread_mutex_t mutex  PTHREAD_MUTEX_INITIALIZER;

int queue[10];

int queueLength;
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void *producer( void * param)

{

for ( int i 0; i<500; i++ )

{

// Wait for space

sem_wait( &limit );

// Add item to queue

pthread_mutex_lock( &mutex );

queue[ queueLength++ ]  i;

pthread_mutex_unlock( &mutex ); 

// Signal semaphore

sem_post( &semaphore );

}

}

void *consumer(void * param)

{

for ( int i 0; i<500; i++ )

{

int item;

// Wait if nothing in queue

if (queueLength 0) { sem_wait(&semaphore); }

pthread_mutex_lock( &mutex );

item  queue[ --queueLength ];

pthread_mutex_unlock( &mutex );

printf( "Received %i\n", item);

sem_post( &limit );

}

}

int main()

{
pthread_t threads[2];  

sem_init( &semaphore, 0, 0 );

sem_init( &limit, 0, 10 );

pthread_create( &threads[0], 0, producer, 0 );

pthread_create( &threads[1], 0, consumer, 0 );

pthread_join( threads[0], 0 );

pthread_join( threads[1], 0 );

sem_destroy( &limit );

sem_destroy( &semaphore );

}
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The modifications introduce a second semaphore, limit. This semaphore is initialized
with a value of 10. Before the producer threads adds an item to the queue, it calls
sem wait(), which will decrement the value of the semaphore. Every time the con-
sumer thread removes an item from the queue, it calls sem post(), which will increase
the value of the semaphore. When the semaphore reaches zero, the producer thread will
call sem wait() and will not return from the call until the consumer thread has
removed an item from the list. This will stop the producer thread from adding more
items to the queue before the consumer thread has had the chance to deal with those
items already there.

Condition Variables
Condition variables enable threads to communicate state changes. Using them requires
both a mutex and a condition variable, together with the additional state that threads
need to check.

A condition variable is initialized with a call to pthread cond init(), which takes
the address of the condition variable together with any attributes. Condition variables are
destroyed with a call to pthread cond destroy(), passing the address of the condition
variable.

The default for condition variables is to be private to a process. Attributes can be used
to produce a condition variable shared between processes. Listing 5.40 demonstrates
using attributes to create a shared condition variable.

Listing 5.40  Creating a Condition Variable That Can Be Shared Between Processes

#include <pthread.h>

pthread_cond_t CV;

int main()

{
pthread_condattr_t CVA;

pthread_condattr_init( &CVA );

pthread_condattr_setpshared( &CVA, PTHREAD_PROCESS_SHARED );

pthread_cond_init( &CV, &CVA );

pthread_condattr_destroy( &CVA );

...

pthread_cond_destroy( &CV );

}

The condition variable requires an actual variable to be monitored. A producer-
consumer is a good scenario to use for an example. We will use the variable length to
denote the length of the queue. The condition variable is used to wake the consumer
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thread when the length of the queue is greater than zero. Listing 5.41 shows the initial-
ization code.

Listing 5.41  Creating Threads and Condition Variable for Producer-Consumer Example

#include <pthread.h>

#include <stdio.h>

pthread_cond_t cv;

pthread_mutex_t mutex;

int length;

int queue[200];

...

int main()

{
pthread_t threads[2];

pthread_cond_init( &cv, 0 );

pthread_mutex_init( &mutex, 0 );

length  0;

pthread_create( &threads[0], 0, producer, 0 );

pthread_create( &threads[1], 0, consumer, 0 );

pthread_join( threads[1], 0 );

pthread_join( threads[0], 0 );

pthread_mutex_destroy( &mutex );

pthread_cond_destroy( &cv );

}

Listing 5.42 shows the code for the producer thread. The producer thread will obtain
the mutex and then increment the length of the queue before using the condition vari-
able to signal to waiting threads that there is an item in the queue.  This signal will wake
one of the waiting threads. After the signal has completed, the mutex can be released.

Listing 5.42  Code for Producer Thread

void * producer( void* param )

{

for (int i 0; i<200; i++)

{

pthread_mutex_lock( &mutex );

queue[ length++ ]  i;

pthread_cond_signal( &cv );

pthread_mutex_unlock( &mutex );

}

}
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If there are no threads waiting on the condition variable, the call to pthread cond

signal() has no effect. Hence, it is really necessary to make the call only if the queue
was empty before the item was added. It is only in this situation where the consumer
thread might have been waiting for items to be placed in the queue. In situations where
there are already items in the queue, the consumer thread will not have stopped.

It is also possible to use a broadcast to signal to all waiting threads that there is an
item in the queue. The function pthread cond broadcast() wakes all the threads
waiting on the condition variable. This is illustrated in the version of the producer thread
shown in Listing 5.43.

Listing 5.43  Broadcasting the Arrival of a New Item to All Waiting Threads

void * producer( void* param )

{

item_t * item;

for( int i 0; i<200; i++ )

{

pthread_mutex_lock( &mutex );

queue[ length++ ]  i ;

pthread_cond_broadcast( &cv );

pthread_mutex_unlock( &mutex );

}

}

There is no advantage to using broadcast in a situation where there is only a single
task to perform, since it will incur the overhead of waking all the threads and then send
all but one of them back to sleep. It is useful in the situation where there are multiple
independent tasks to complete and each woken thread is able to identify an independent
item of work.

Listing 5.44 shows the code for the consumer thread. This is slightly more complex
than the code for the producer thread. The consumer thread is placed in a while(true)
loop. In this loop, the first thing it needs to do is to acquire the mutex in order to get
access to the variable length, which, in this example, is the proxy for the queue. 

Listing 5.44  Code for Consumer Thread

void * consumer( void* param)

{

for( int i 0; i<200; i++ )

{

pthread_mutex_lock(&mutex);

while (length 0)

{

pthread_cond_wait( &cv, &mutex );

}
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int item  queue[ --length ];

pthread_mutex_unlock(&mutex);   

printf( "Received %i\n", item );

}  

}

The consumer thread needs to wait on the condition variable only when there are no
items in the queue. If there are items in the queue, the consumer thread can immediately
remove one and process it. Once the consumer thread has decremented the queue, it can
release the mutex and process the item.

If the queue is empty, the consumer thread will need to wait to be signaled by the
producer thread. It does this by calling pthread cond wait() while still holding the
mutex. This call will release the mutex while the thread is waiting, but when signaled,
the thread will wake up holding the mutex again. The call to pthread cond wait()

needs to be placed in a loop. The thread will be woken when it is signaled that length
is greater than zero, but it may also be signaled when length does not meet these crite-
ria. Therefore, the thread needs to loop calling pthread cond wait() until the condi-
tion, in this instance the value of the variable length, is met.

An example of a thread being woken up when the condition is not true is when
there are multiple threads waiting on the condition variable and all the threads are
woken by a broadcast signal. If there is one item of work and two threads are woken, the
first thread will get the item of work. When the second thread wakes, it will discover
that there is no work for it. Hence, the second thread will appear to have suffered a
spurious wake-up.

There is one problem that should be avoided when coding threads that wait on con-
dition variables: the lost wake-up problem. Listing 5.45 shows an example.

Listing 5.45  Potential “Lost Wake-Up” Issue

void * consumer( void* param )

{

for( int i 0; i<200; i++ )

{

int item;

int go  0;

pthread_mutex_lock( &mutex );

pthread_cond_wait( &cv, &mutex );

if (length > 0) 

{ 

item  queue[ --length ];

go  1; 

}

pthread_mutex_unlock(&mutex);  

if (go) 

{ 
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printf( "Received %i\n", item );

}

}

}

In this version of the code, the consumer threads wait on the condition variable for
each iteration of the loop. If the condition variable is signaled before the consumer
thread reaches the wait call, then the signal is lost, and the consumer variable will wait
until the next signal. If no further work is produced by the producer thread, the con-
sumer thread will wait indefinitely, even though it has work waiting. This problem is
compounded if the producer thread is set to signal only when new work was added to
an empty queue; in this instance, the consumer thread will never get signaled, and the
producer thread will keep adding work to the queue.

Condition variables have a method to provide a timeout when waiting to be signaled
by the condition variable. The call is pthread cond timedwait(), which takes the
timeout period, specified as an absolute time, as well as the condition variable and
mutex. This call will return either holding the mutex lock or with an error code indicat-
ing the reason for the return. The code in Listing 5.46 illustrates using this function call
to count the number of minutes waited until the condition variable was signaled.

Listing 5.46  Using a Timeout to Count Elapsed Minutes

#include <time.h>

#include <errno.h>

void * consumer( void* param )

{

for( int i 0; i<200; i++ )

{

int seconds  0;

pthread_mutex_lock( &mutex );

while ( length  0 )

{

struct timespec now;

now.tv_sec = time( 0 ) + 1;

now.tv_nsec = 0;

if ( pthread_cond_timedwait( &cv, &mutex, &now ) == ETIMEDOUT )

{

seconds++;

}

}

int item  queue[ --length ];

if ( seconds ) { printf( "%i seconds waited\n", seconds ); }

pthread_mutex_unlock( &mutex );   
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printf( "Received %i\n", item );

}  

}

The code uses pthread cond timedwait() to wait in units of one second. Every
time the call fails to acquire the mutex, a count of seconds waited is incremented. If the
producer thread is modified so that it sleeps between producing each item, then it is pos-
sible to see the timeout of the consumer thread.

Variables and Memory
Data can be shared either between threads or private to each thread. Examples of data
that can be shared between threads are global variables and memory allocated on the
heap. Listing 5.47 uses a global variable to hold the address of a region of memory allo-
cated by a malloc()call. All the threads in an application would be able to access the
global variable and therefore the allocated memory.

Listing 5.47  Sharing Memory Using Global Variables

#include <stdlib.h>

char * data;

int main()

{

data  (char*) malloc( 1024*1024 );

...

As previously discussed, care needs to be taken with data shared between threads. 
If the data is modified by other threads, it might be necessary to declare that data as
volatile. For example, the code in Listing 5.48 would become an infinite loop if the
variable done were not declared volatile.

Listing 5.48  Potential Infinite Loop

volatile int done  0;

void wait()

{

while ( !done ) {}

}

Alternative approaches might be to cast the variable done to be a volatile int,
which would mean that the variable would be reloaded in the code only where this
behavior was desirable, as shown in Listing 5.49. However, not all compilers will honor
the cast to volatile.
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Listing 5.49  Casting a Variable to Volatile

int done 0;

void wait()

{

while ( !(volatile int)done ) {}

}

Alternatively, it is possible to use a function call to force the reloading of the variable,
as shown in Listing 5.50. The reloading is necessary because the called function might
modify the global variable.

Listing 5.50  Using a Function Call to Force the Reloading of a Variable

int done  0;

void pause()

{

}

void wait()

{

while ( !done ) { pause(); }

}

Of course, some compiler optimizations such as inlining can cause code that relies on
the side effects of function calls to enforce memory ordering to fail. Compilers often
have directives or intrinsic functions that can be used to produce the desired behavior
without risk of this breaking under inlining optimizations. This topic will be discussed in
more detail in Chapter 8, “Hand-Coded Synchronization and Sharing.”

Much of this chapter has dealt with the methods available through the POSIX stan-
dard that prevent multiple threads accessing the same data. But it is worth emphasizing
that all accesses to shared data represent potential data races.

The other kind of data is thread-private data. Variables held on the stack are an example
of thread-private data. Parameters passed into functions are another example. In the code
shown in Listing 5.51, both variables a and b are private to a thread.

Listing 5.51  Two Thread-Private Variables

double func( double a )

{

double b;

...

176 Chapter 5 Using POSIX Threads



However, it is sometimes useful to have “global” data that is private to a thread—data
that is visible to all the routines that a thread executes but with the restriction that each
thread sees only its own private copy of the data; this is known as thread-local storage.

There are two ways of allocating thread-local data. The first is to declare globally vari-
ables with the thread specifier. This prevents them being global variables and turns
them into thread-local variables. In Listing 5.52, the variable mydata is local to the
thread, so each thread can see a different value for the variable.

Listing 5.52  Thread-Local Data Declared Using the thread Specifier

__thread void * mydata;

void * threadFunction( void * param )

{

mydata  param;

...

POSIX also provides a set of function calls for declaring and using thread-local
variables. These function calls are not as convenient as the thread specifier, because
they use a key to identify each item of shared data. The key is created with a call to
pthread key create(). When the key is no longer needed, it can be deleted by a call
to pthread key delete(). All the threads can now use this key to get and set a
thread-local parameter. The call pthread setspecific() takes the key plus a value for
the thread-local variable. A call to pthread getspecific() will return the previously
set value when the same key is passed in. Listing 5.53 shows the use of the thread-local
storage routines.

Listing 5.53  Using POSIX Routines for Thread-Local Data

#include <pthread.h>

pthread_key_t parameter;

void * threadFunc( void * param )

{

pthread_setspecific( parameter, param );

...

void * param2 = pthread_getspecific( parameter );

}

int main()

{

pthread_t thread;

pthread_key_create( &parameter, 0 );
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pthread_create( &thread, 0, threadFunc, 0 );

pthread_join( thread );

pthread_key_delete( parameter );

}

The pthread key create() call takes an optional destructor function. This func-
tion is called when the thread terminates if the key still holds a value. This can be used
to free any resources held by the thread. Listing 5.54 shows an example of this.

Listing 5.54  Using a Destructor Function with thread-local Storage

#include <pthread.h>

#include <stdlib.h>

#include <stdio.h>

pthread_key_t parameter;

void destructor( void * param )

{

free( param );

printf( "Memory freed\n" );

}

void * threadFunc( void * param )

{

char * mem  malloc( 100 );

pthread_setspecific( parameter, mem );

}

int main()

{

pthread_t thread;  

pthread_key_create( &parameter, destructor );

pthread_create( &thread, 0, threadFunc, 0 );

pthread_join( thread, 0 );

pthread_key_delete( parameter );

}

One disadvantage of thread-local variables is that the global thread is unable to see
them. So, in some cases, it is useful to use arrays to hold values produced by the child
thread.
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Multiprocess Programming
An alternative to multithreaded applications is multiprocess applications, as suggested in
Chapter 1, “Hardware, Processes, and Threads.” The main advantage of multiprocess pro-
gramming is that a failure of one process does not cause all the processes to die, and as a
result, it might be possible to recover from such failures.

It is very easy to start multiple processes and have these processes load common ini-
tialization parameters from a file or from the command line to start communicating.
However, it is often useful to do this programmatically.

The UNIX model of process creation is the Fork-Exec model. The fork() call
makes a child process that receives an exact duplicate of the parent’s memory. The
exec() call replaces the current process with a new executable. The calls often go
together so that one application calls fork() to create a new process; then the child
process immediately calls exec() to replace itself with a new executable. 

The fork() call is interesting because both the child and parent processes will return
from this call. The only difference is the return value of the call. The child process will
return with a value of zero, and the parent process will return with the process ID of the
child process. 

The code in Listing 5.55 uses fork() to create a new child process. The child process
will execute a sleep command with a parameter of 10 so that it will sleep for ten sec-
onds. The parent process will wait for the child to terminate and then report the exit sta-
tus of the child process. The execl() call is used to execute the sleep command. The
execl() call takes the path to the executable plus the arguments to be passed to that
executable, and the first argument should be the name of the executable itself.

Listing 5.55  Using Fork to Create a Child Process

#include <unistd.h>

#include <stdio.h>

#include <sys/wait.h>

int main()

{

int status;

pid_t f = fork();

if ( f  0 )

{ /* Child process */

execl( "/usr/bin/sleep", "/usr/bin/sleep", "10" );

}

else

{

waitpid( f, &status, 0 );

printf( "Status  %i\n", status );

}

}
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If the fork() call is not followed by an exec() call,  we have two copies of the same
process. The process state, up to the point at which the fork call was made, is duplicated
in both processes. We will see how this can be useful in the following sections on setting
up communications between multiple processes.

Sharing Memory Between Processes
Usually different processes share nothing; however, it is possible to set up multiple
processes to share the same memory. The shm open() call creates a shared memory seg-
ment. This call takes a name for the segment, a size, and a set of flags for the created
shared memory, together with the permission bits. The return value from the call is a file
descriptor of the shared memory segment. 

The name is a string with the first character as /, and no subsequent slashes. The flags
used by the call are familiar from creating files. O RDONLY will create a read-only seg-
ment. O RDWR will create a segment that permits reading and writing. O CREAT will
create the segment if it does not exist or return a handle to it if it does exist. O EXCL

will return an error if the segment already exists. The final parameters are the file access
permissions.

The memory segment will be created, if it does not already exist, with a size of 0
bytes. The size of the reserved segment can be set with a call to ftruncate(), passing
the file descriptor of the segment together with the requested size.

Once the segment exists, the process can attach to it with a call to mmap(). Table 5.1
shows the parameters to mmap.

Table 5.1  Parameters Passed to mmap()

Parameter Type Comment

void * The preferred start address of the segment in memory.

size t The size of the segment in bytes.

int The protection flags for the segment. These can be PROT EXEC for
pages that can be executed, PROT READ for pages that can be
read, and PROT WRITE for pages that can be written. The permis-
sions will usually match those set up in the call to shm open().

int The sharing flags for the segment, either MAP SHARED to share
the segment with other processes or MAP PRIVATE to keep the
segment private to the current process.

int The file descriptor of the shared memory.

off t An offset into the shared memory region.

The return value of the call to mmap() is a pointer to the shared memory segment.
Once the process has finished with the shared memory segment, it can unmap it from

its address space using the munmap() call, which takes a pointer to the memory region
together with its size as parameters.
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The shared memory can be removed from the system with a call to shm unlink(),
which takes the name for the shared region originally given to shm open(). This causes
the shared memory to be deleted when the last process detaches from it.

Listing 5.56 shows an example of creating using and deleting shared memory. When
compiling this code on Solaris, it is necessary to define at least POSIX C SOURCE=

199309L in order to get the header files to define shm open() and shm unlink().

Listing 5.56  Creating, Using, and Deleting Shared Memory

#include <sys/mman.h>

#include <fcntl.h>

#include <unistd.h>

int main()

{

int handle = shm_open( "/shm", O_CREAT|O_RDWR, 0777 );

ftruncate( handle, 1024*1024*sizeof(int) );

char * mem  = (char*) mmap( 0, 1024*1024*sizeof(int), 

PROT_READ|PROT_WRITE, MAP_SHARED, handle, 0 );

for( int i 0; i<1024*1024; i++ ) { mem[i]  0; }

munmap( mem, 1024*1024*sizeof(int) );

shm_unlink( "/shm" );

}

One use for shared memory is as a location for placing mutexes shared between
processes. Listing 5.57 illustrates how a process can form a child process and share a
mutex with the child process.

Listing 5.57  Sharing a Mutex Between Processes

#include <sys/mman.h>

#include <sys/wait.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <pthread.h>

int main()

{
pthread_mutex_t * mutex;

pthread_mutexattr_t attributes;

pthread_mutexattr_init( &attributes );

pthread_mutexattr_setpshared( &attributes, PTHREAD_PROCESS_SHARED );
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int handle  shm_open( "/shm", O_CREAT|O_RD_WR, 0777 );

ftruncate( handle, 1024*sizeof(int) );

char * mem  mmap( 0, 1024*sizeof(int), PROT_READ|PROT_WRITE,
MAP_SHARED, handle,0 );

mutex = (pthread_mutex_t*)mem;

pthread_mutex_init( mutex, &attributes );

pthread_mutexattr_destroy( &attributes );

int ret  0;

int * pcount  (int*)( mem + sizeof(pthread_mutex_t) );

*pcount  0;

pid_t pid  fork();

if (pid  0)

{  /* Child process */

pthread_mutex_lock( mutex );

(*pcount)++;

pthread_mutex_unlock( mutex );

ret  57;

}

else

{

int status;

waitpid( pid, &status, 0 );

printf( "Child returned %i\n", WEXITSTATUS(status) );

pthread_mutex_lock( mutex );

(*pcount)++;

pthread_mutex_unlock( mutex );

printf( "Count  %i\n", *pcount );

pthread_mutex_destroy( mutex );

}

munmap( mem, 1024*sizeof(int) );

shm_unlink( "/shm" );

return ret;

}      

The first thing the parent process does is to set up a mutex that is shared between 
the parent and child processes. Once this is complete, the parent process forks a child
process. The parent process then waits for the child to complete. 

When the child process is forked, it receives a copy of the memory of the parent
process. This gives it access to the shared memory segment as well as the mutex and vari-
ables contained in the shared memory segment. The child process acquires the mutex,
increments the shared variable, and releases the mutex before unmapping and unlinking
the shared memory segment and exiting.
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Once the child process has exited, the parent process continues to execute, obtaining
the return value of the child process from the call to waitpid(). The macro WEXITSTATUS
converts the exit status from waitpid() into the return value from the child process. 

The parent process also acquires the mutex and increments the shared variable before
releasing the mutex. It then prints the value of the shared variable, which has the value
two, indicating that both the parent and the child process incremented it. The final
actions of the parent process are to destroy the mutex and then unmap and unlink the
shared memory segment.

One thing to pay attention to is the alignment of objects created in shared memory
segments. Depending on the operating system, there may be constraints on the align-
ment. For example, Solaris requires that mutexes are aligned on 8-byte boundaries.

Sharing Semaphores Between Processes
As discussed in the section on semaphores, it is very easy to create a named semaphore
that is shared between multiple processes. Listing 5.58 shows a parent process creating a
child process. Both the parent and child process open the same semaphore, and this sem-
aphore is used to ensure that the child process completes before the parent process.

Listing 5.58  Sharing a Named Semaphore

#include <unistd.h>

#include <stdio.h>

#include <semaphore.h>

int main()

{

int status;

pid_t f  fork();

sem_t * semaphore;

semaphore = sem_open( "/my_semaphore", O_CREAT, 0777, 1 );

if ( f  0 )

{ /* Child process */

printf( "Child process completed\n" );

sem_post( semaphore );

sem_close( semaphore );

}

else

{

sem_t * semaphore;

sem_wait( semaphore );

printf( "Parent process completed\n" );

sem_close( semaphore );

sem_unlink( "/my_semaphore" );

}

}
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Message Queues
Message queues are a method of passing messages between threads or processes. Messages
can be placed into a queue, and they will be read out of the queue in a prioritized first-
in, first-out order. 

To attach to a message queue, the mq open() function needs to be called, which will
return a handle to the message queue. This takes a minimum of the name of the message
queue and some flags. The name of the message queue should start with a / and then be
up to 13 further characters with no additional / characters. The flags need to be one of
O RDONLY, O WRONLY, or O RDWR to produce a read-only message queue, a write-only
message queue, or a read-write message queue.

The open specified in this way will open an existing message queue or fail if the
message queue does not exist. If the additional flag O CREAT is passed, then the call will
create the message queue if it does not already exist. The additional flag O EXCL can be
passed if the call to open the queue should succeed only if the message queue does not
exist. If the flag O CREAT is passed, the call to mq open() requires two more parameters,
a mode setting that is used to set the access permissions for the message queue and a
pointer to the attributes for the message queue; if this pointer is null, default values are
used for the message queue attributes.

The attributes for a message queue are held in an mq attr structure, which contains
the fields mq maxmsg, which is the maximum number of messages that can be held in
the message queue, and mq msgsize, which is the maximum size of the messages that
can be stored in the message queue.

The other flag that can be passed to mq open() is O NONBLOCK. If this flag is set, any
attempts to write to a full message queue or read from an empty one will fail and return
immediately. The default is for the thread to block until the message queue has space for
sending an additional message, or has a message in it.

The function mq close(), which takes the handle to a message queue as a parame-
ter, will close the connection to the message queue. The message queue will continue to
exist. To remove the message queue from the system, it is necessary to call mq unlink(),
which takes the name of the message queue as a parameter. After a call to mq unlink(),
the message queue will be removed once all current references to the message queue
have been closed.

The code in Listing 5.59 demonstrates creating and deleting a message queue.

Listing 5.59  Opening and Closing a Message Queue

#include <mqueue.h>

int main()

{

mq_attr attr;

mqd_t mqueue;

attr.mq_maxmsg  1000;
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attr.mq_msgsize  500;

mqueue = mq_open( "/messages", O_RDWR+O_CREAT, 0777, &attr );

...

mq_close( mqueue );

mq_unlink( "/messages" );

}

Message queues are prioritized first-in, first-out (FIFO) queues. Messages are added to
the queue using the call mq send() and received from the queue using the call
mq receive(). If the message queue has been created with the O NONBLOCK attribute,
then these functions will return immediately whether or not they were successful. There
are versions of these functions available, which will return after a timeout if they are
unsuccessful; these are mq timedsend() and mq timedreceive(), which take an
absolute time, and mq reltimedsend np() and mq reltimedreceive np(), which
take a relative time.

The parameters to mq send() are the message queue, a pointer to a buffer contain-
ing the message, the size of the message, and a priority. Messages with a higher priority
will be placed before messages with a lower priority and after messages with the same 
or higher priorities. The message is copied from the buffer into the queue. The call to
mq send() will fail if the message size is greater than the mq msgsize attribute for 
the queue.

The call to mq receive() takes the message queue, a pointer to a buffer where the
message can be copied, the size of the buffer, and either a null pointer or a pointer to an
unsigned int where the priority of the message will be written. If the size of the
buffer is smaller than the size of the message, then the call will fail.

Note that sending messages requires at least two copy operations to be performed on
the message—once to copy it into the queue and once to copy it out of the queue.
Hence, it is advantageous to send short messages and perhaps use shared memory to pass
longer items of information.

Listing 5.60 shows an example of sending messages between a parent and child
process. On Solaris, the code will need to be linked with the real-time extensions library
using the compiler flag lrt.

Listing 5.60  Passing Messages Between a Parent Process and a Child Process

#include <unistd.h>

#include <stdio.h>

#include <mqueue.h>

#include <string.h>

int main()

{

int status;

pid_t f  fork();
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if ( f  0 )

{ /* Child process */

mqd_t * queue;

char message[20];

queue = mq_open( "/messages", O_WRONLY+O_CREAT, 0777, 0 );

strncpy( message, "Hello", 6 );

printf( "Send message %s\n", message );

mq_send( queue, message, strlen(message)+1, 0 );

mq_close( queue );

printf( "Child process completed\n" );

}

else

{

mqd_t * queue;

char message[2000];

queue = mq_open( "/messages", O_RDONLY+O_CREAT, 0777, 0 );

mq_receive( queue, message, 2000, 0 );

printf( "Receive message %s\n", message );

mq_close( queue );

mq_unlink( "/messages" );

printf( "Parent process completed\n" );

}

}

Both the child and the parent process open the message queue with the O CREAT

flag, meaning that the queue will be created if it does not already exist. The parent
process then waits for a message from the child. The child sends a message and then
closes its connection to the message queue. The parent receives the message and then
closes the connection to the message queue and deletes the queue.

Pipes and Named Pipes
A pipe is a connection between two processes. It can be either an anonymous pipe between
two processes or a named pipe, which uses an entity in the file system for communication
between processes or threads. The pipe is a streamed first-in, first-out structure.

A named pipe is created by a call to pipe() typically before the child process forks.
The pipe call creates two file descriptors, one for reading from the pipe and a second for
writing into the pipe. After the fork, both the parent and child inherit both file descrip-
tors. Typically one pipe would be used for unidirectional communication between the
parent and the child.

Reading and writing to pipes can use the functions that take file descriptors as
parameters, such as read and write.

Listing 5.61 shows an example of using an anonymous pipe to communicate between
a child and parent process.
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Listing 5.61  Using an Anonymous Pipe to Communicate Between a Parent and 
Child Process

#include <unistd.h>

#include <stdio.h>

int main()

{

int status;

int pipes[2];

pipe( pipes );

pid_t f  fork();

if ( f  0 )

{ /* Child process */

close( pipes[0] );

write( pipes[1], "a", 1 );

printf( "Child sent 'a'\n" );

close( pipes[1] );

}

else

{

char buffer[11];

close( pipes[1] );

int len = read( pipes[0], buffer, 10 );

buffer[len]  0;

printf( "Parent received %s\n", buffer );

close (pipes[0] );

}

return 0;

}

The code creates file descriptors for the two pipes before forking. The parent closes
the descriptor indicted by pipes[1] and then waits to receive data from pipes[0]. The
child process closes the descriptor pipes[0] and then sends a character to pipes[1] to
be read by the parent process. The child process then closes their copy of the write file
descriptor. The parent process prints the character sent by the child before closing the
pipe and exiting. 

Named pipes are created using a call to mknod(), which takes the path to the file that
is to be used as the identifier for the pipe; the mode, which is S IFIFO for a named
pipe; and the access permissions for the file. The two processes can then call open() to
open the file and treat the returned handles in the same way as before. Once the
processes have finished with the named pipe, it can be removed by calling unlink().
The code in Listing 5.62 implements the same parent and child communication as
Listing 5.61, this time using named pipes instead of anonymous pipes.
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Listing 5.62  Parent and Child Process Communicating Using Named Pipes

#include <unistd.h>

#include <stdio.h>

#include <sys/stat.h>

#include <fcntl.h>

int main()

{

int status;

mknod( "/tmp/pipefile", S_IFIFO|S_IRUSR|S_IWUSR, 0 );

pid_t f  fork();

if ( f  0 )

{ /* Child process */

int mypipe = open( "/tmp/pipefile", O_WRONLY );

write( mypipe, "a", 1 );

printf( "Child sent 'a'\n" );

close( mypipe );

}

else

{

int mypipe = open( "/tmp/pipefile", O_RDONLY );

char buffer[11];

int len = read( mypipe, buffer, 10 );

buffer[len]  0;

printf( "Parent received %s\n", buffer );

close( mypipe );

}

unlink( "/tmp/pipefile" );

return 0;

}

The parent process calls mknod() to create the pipe and then forks. Both the child
and parent processes open the pipe—the child for writing and the parent for reading.
The child writes into the pipe, closes the file descriptor, unlinks the pipe, and then exits.
The parent process reads from the pipe before it too closes it, unlinks it, and exits.

Using Signals to Communicate with a Process
Signals are used extensively in UNIX and UNIX-like operating systems. Pressing ^C on
a terminal keyboard to stop an application actually results in the SIGKILL signal being
sent to that process. It is relatively straightforward to set up a signal handler for the vari-
ous signals that might be sent to a process. It is not possible to install a handler for
SIGKILL, but many of the other signals can be intercepted and handled.

A signal handler is installed by calling signal() with the signal number and the rou-
tine that should handle the signal. A signal can be sent by calling kill() with the PID
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of the process that the signal should go to and the signal number. Listing 5.63 shows an
example of this.

Listing 5.63  Sending and Receiving a Signal

#include <signal.h>

#include <stdio.h>

#include <unistd.h>

void hsignal( int signal )

{

}

int main()

{

signal( SIGRTMIN+4, hsignal );

kill( getpid(), SIGRTMIN+4 );

return 0;

}

The example installs a handler for the signal SIGRTMIN+4. The values SIGRTMIN and
SIGRTMAX are system-specific values that represent the range of values that are reserved
for user-defined signals. 

It is tempting to imagine that the code in Listing 5.64 would be appropriate for a sig-
nal handler. The problem with this code is that the function printf() is not guaranteed
to be signal-safe. That is, if the application happened to be performing a printf() call
when the signal arrived, it would not be safe to call the printf() in the signal handler. 

Listing 5.64  Unsafe Signal Handler Code

void hsigseg( int signal )

{

printf( "Got signal\n" );

}

The POSIX guarantees that a set of function calls are async-signal-safe, in particular
that the write() call can be used in a signal handler, so the code in Listing 5.65 can be
used.

Listing 5.65  Printing Output in a Signal Handler

#include <stdio.h>

#include <unistd.h>

void hsignal( int signal )
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{

write( 1, "Got signal\n", 11 );

}

Running this on an Ubuntu system produces the expected output shown in 
Listing 5.66.

Listing 5.66  Output Printed by Signal Handler

$ gcc signal.c

$ ./a.out

Got signal

Sometimes, the code already performs an operation on receiving a particular signal,
but it is desired to add an additional handler. What should be done is to add a signal
handler to the chain and then call the default one. 

The function that allows us to create a chain of signal handlers is sigaction(). This
takes a signal number and two sigaction structures. The first sigaction structure
contains information about the new signal handler, while the second returns information
about the existing signal handler. 

The code in Listing 5.67 installs a new handler for the SIGPROF signal but stores the
details of the old handler. Then, when a signal is received, the new handler does its pro-
cessing and then installs the old handler to perform the default action. The handler
structure has an sa sigaction field, which indicates the routine to be called in the
event of a signal arriving. It also has an sa mask field, which sets the list of signals that
are to be blocked while this signal is handled. The other field of interest is sa flags,
which allows tuning of the behavior of the signal handler.

Listing 5.67  Chaining Signal Handlers

#include <signal.h>

#include <unistd.h>

struct sigaction oldhandler;

void hsignal( int signal, siginfo_t* info, void* other )

{

write( 1, "Got signal\n", 11 );

if (oldhandler.sa_sigaction)

{

oldhandler.sa_sigaction( signal, info, other );

}

}

int main()

190 Chapter 5 Using POSIX Threads



{

struct sigaction newhandler;

newhandler.sa_sigaction = hsignal;

newhandler.sa_flags  0;

sigemptyset( &newhandler.sa_mask );

sigaction( SIGPROF, &newhandler, &oldhandler );

kill( getpid(), SIGPROF );

}

Signals can also be used for communicating between processes. Listing 5.68 demon-
strates a parent process sending a signal to a child process.

Listing 5.68  Parent Process Signaling to a Child Process

#include <unistd.h>

#include <stdio.h>

#include <signal.h>

#include <sys/wait.h>

volatile int go  0;

void handler( int sig )

{

go  1;

write( 1, "Signal arrived\n", 16 );

}

int main()

{

signal( SIGRTMIN+4, handler );

pid_t f  fork();

if ( f  0 )

{ /* Child process */

while ( !go ){}

printf( "Child completed\n" );

}

else

{

kill( f, SIGRTMIN+4 );

waitpid( f, 0, 0 );

printf( "Parent completed\n" );

}

}

Compiling and running the code produces the output shown in Listing 5.69.
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Listing 5.69  Output from Parent Process Communicating with Child Process

$ gcc sigchild.c

$ ./a.out

Signal arrived

Child completed

Parent completed

It might be sufficient to signal another process, but it is more useful to be able to pass
data between the processes. It is possible to do this using sigaction(), as the code in
Listing 5.70 demonstrates. The code also uses sigqueue() to send the signal containing
the data; on Solaris, this is found in the real-time extensions library, and the application
requires linking with lrt.

Listing 5.70  Using Signals to Transfer Information

#include <unistd.h>

#include <stdio.h>

#include <signal.h>

#include <sys/wait.h>

volatile int go  0;

struct sigaction oldhandler;

void handler( int sig, siginfo_t *info, void *context )

{

go = (int)info->si_value.sival_int;

write( 1, "Signal arrived\n", 16 );

}

int main()

{

struct sigaction newhandler;

newhandler.sa_sigaction  handler;

newhandler.sa_flags = SA_SIGINFO;

sigemptyset( &newhandler.sa_mask );

sigaction( SIGRTMIN+4, &newhandler, &oldhandler );  

pid_t f  fork();

if ( f  0 )

{ /* Child process */

while ( !go ){}

printf( "Child completed go %i\n", go );

}

else

{
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union sigval value;

value.sival_int = 7;

sigqueue( f, SIGRTMIN+4, value );

waitpid( f, 0, 0 );

printf( "Parent completed\n" );

}

}

The signal handler is set up with sa flags including SA SIGINFO. This flag causes
the signal handler to receive the siginfo t data. If the flag is not specified, the signal
handler will not receive the data. The signal is sent by the parent process by calling
sigqueue(). This takes a sigval union as a parameter, and the code sets the integer
field of this union to the value seven. When the child process receives the signal, it can
extract the value of this field from the sigval union passed into it.

Compiling and running the code produces the output shown in Listing 5.71.

Listing 5.71  Parent Process Sending Information to the Child Process

$ gcc sigchild2.c

$ ./a.out

Signal arrived

Child completed go 7

Parent completed

The parent process creates a child process and then sends a SIGRTMIN+4 signal to the
child. The child process loops until the variable go becomes nonzero. When the child
process receives the signal, it sets the variable go to be nonzero, and this enables the
process to print a message and exit. In the meantime, the parent process has been waiting
for the child process to exit. When the child process does eventually exit, the parent
process prints a message and also exits.

One significant problem with using signals is that they can disrupt a system call that
the thread is making at the time the signal is received. If this happens, the system call will
set errno to the value EINTR indicating that the call should be retried. However, the
exact behavior is system dependent and should be carefully explored before relying on
signals.

Sockets
A full treatment of socket programming is beyond the scope of this book. However, sock-
ets remain an important way that processes or threads can communicate, so it is worth
examining the use of sockets for communication within the same system. A particular
advantage of using sockets for communication is that scaling beyond a single system
becomes a relatively minor change to the code.
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The use of sockets is different from other communication mechanisms because the
client that opens the socket has different responsibilities than the server connected to 
the socket. So, it is appropriate to tackle the client and server as two entirely separate
applications.

The first thing that any process that uses sockets has to do is request a socket. The
socket is a potential connection to the network. The call to socket() takes three
parameters: the family of socket being requested, the type of socket within that family,
and the protocol. The protocol should usually be set to zero to indicate that the default
protocol should be used. The protocol family should be AF INET or AF INET6, and the
protocol type for these two families is either SOCK STREAM for TCP/IP or SOCK DGRAM

for UDP/IP.
Once a socket has been established, it is necessary to connect it to an address. We can

best illustrate this by initially working through the code necessary to write a server
process that waits for a connection from a client, before discussing the code that would
be found in such a client. This makes sense because the two scenarios have little code in
common.

A server will call bind() with the address of the local host and the port on which it
will listen for connections. The function bind() takes as parameters the previously
established socket, a pointer to a structure containing the details of the address to bind
to, the value INADDR ANY is typically used for this, and the size of the structure. The par-
ticular structure that needs to be used will depend on the protocol, which is why it is
passed by the pointer.

Once a server has been bound to an address, the server can then call listen() on
the socket. The parameters to this call are the socket and the maximum number of
queued connections as a parameter.

After a call to listen, the server can wait for a connection from a client by calling
accept(). The parameters to the accept() call are the socket, an optional pointer to a
socket address structure, and the size of the structure. If the pointer to the socket address
structure is not zero, the call to accept() will write details of the client into the socket
address structure. The call will return a new socket descriptor that is the connection to
the client.

The server can read from or write to the new socket until the connection is termi-
nated by either the client or the server calling close() on the new socket. 

Data can be sent through the socket using either the write() call or the send()
call. The send() call affords some additional flexibility in sending data. Similarly, data
can be received from the socket using either the read() or recv() call. A socket that
has been closed is indicated by a return of an error from the calls.

The code in Listing 5.72 shows the part of the server code that handles echoing data
back.  While there is still data in the socket, the thread will read that data, write it to
stdout, and then echo it back to the socket where it came from. One complexity is that
we do not want the server process to call pthread join() for every thread that it cre-
ates to handle an incoming connection. To avoid the call to pthread join(), each
thread immediately calls pthread detach() once it has been created. This detaches the
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thread and ensures that any resources that the thread uses are returned to the process
when the thread terminates.

Listing 5.72  Code for Echo Server Thread

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

void * handleecho( void * param )

{

char buffer[1024];

int count;

pthread_detach( pthread_self() );

int s  (int)param;

while ( count  read( s, buffer, 1023 ) > 0 )

{

buffer[count]  0;

printf( "Received %s \n", buffer );

write( s, buffer, count );

}

close( s );

}

The more interesting part of the code is the code to set up the server, as shown in
Listing 5.73. The server sets up a socket and binds this to port 7779. It also configures
the socket to hold a queue of up to five connections. The server then listens on the
socket for incoming connections. When a connection arrives, the server creates a new
thread to handle this connection and passes the socket number as a parameter to the new
thread. The resulting application needs to be linked with the socket library ( lsocket)
and the network services library ( lnsl).

Listing 5.73  Code to Set Up the Server

#include <sys/types.h>

#include <sys/socket.h>

#include <strings.h>

#include <arpa/inet.h>

int main()

{

int newsocket;

int s = socket( AF_INET, SOCK_STREAM, 0 ); // TCP/IP socket

struct sockaddr_in server;

bzero( &server, sizeof(server) );          // Clear address structure

server.sin_family  AF_INET;               // TCP/IP family
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server.sin_addr.s_addr  INADDR_ANY;       // Any address

server.sin_port  7779;                    // Port to bind to

bind( s, (struct sockaddr*)&server, sizeof(server) );

listen( s, 5 ); // Queue of five outstanding connections

while ( newsocket = accept( s, 0, 0 ) )

{

pthread_t thread;

pthread_create( &thread, 0, handleecho, (void*) newsocket );

}

}

Listing 5.74 shows the client code. In a similar way to the server, the client sets up 
a socket. However, the client calls connect() with the address and port of the system
that it wants to connect to. Once the call to connect() completes, the client can start
sending data to the server and receiving data back from the server using the socket. In
Listing 5.74, the client sends a string to the server and then prints out the data returned
by the server.

Listing 5.74  Client Code That Sends Data to a Server and Prints Response

#include <sys/types.h>

#include <sys/socket.h>

#include <strings.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <stdio.h>

int main()

{

int s = socket( AF_INET, SOCK_STREAM, 0 ); // TCP/IP socket

struct sockaddr_in server;

bzero( &server, sizeof(server) );          // Clear address structure

server.sin_family  AF_INET;               // TCP/IP family

server.sin_addr.s_addr  inet_addr( "127.0.0.1" );

// Local machine

server.sin_port  7779;                    // Port to bind to

if ( connect( s, (struct sockaddr*)&server, sizeof(server) ) == 0 )

{

printf( "Sending 'abcd' to server\n" );

char buffer[1024];

strncpy( buffer, "abcd", 4 );

write( s, buffer, strlen(buffer) );

int count  read( s, buffer, 1024 );

buffer[count]  0;

printf( "Got %s from server\n", buffer );
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shutdown( s, SHUT_RDWR );

}

}

Sockets represent a convenient way of communicating between a number of inde-
pendent processes that are spread over one or more systems. They are a good approach if
it is expected that the application will end up scaling beyond a single system.

Reentrant Code and Compiler Flags
Depending upon the platform and compiler, it may be necessary to compile with special
flags to indicate that the application is multithreaded. On some platforms, gcc has the
flag pthread, which links in the POSIX threading library and defines REENTRANT.
The Solaris Studio compiler has the flag mt, which performs the same task; only the
flag defined is REENTRANT.

Defining the preprocessor flag includes a set of “reentrant” functions to go with the
usual set. The reentrant versions are denoted by the _r postfix. The reason these func-
tions exist is that many of the C library functions are stateful, meaning that a call to the
function sets up some state that is then used in later function calls. This statefulness
means that multiple threads cannot call the function at the same time without the state
becoming corrupted. The reentrant versions of the functions typically use a structure that
the calling thread provides to hold the state for that calling thread. The code in Listing
5.75 uses the readdir() call to print out the contents of the current directory.

Listing 5.75  Multithread Unsafe Code for Listing a Directory

#include <dirent.h>

#include <stdio.h>

int main()

{

DIR * directory = opendir( "." ); 

while ( 1 )

{

struct dirent * entry = readdir( directory );

if (entry! 0)

{

printf( "%s\n", entry->d_name );

}

else

{

closedir( directory );

break;

}

}

}
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The code works when compiled as a single-threaded application but could, on some
operating systems, fail if multiple threads were to use the readdir() function simultane-
ously. The code can easily be modified to use the reentrant version of readdir(),
readdir r(). Listing 5.76 shows the modified code.

Listing 5.76  Using Multithread-Safe Code to Print Out a Directory Listing

#include <dirent.h>

#include <stdio.h>

#include <stdlib.h>

int main()

{

DIR * directory = opendir( "." );

struct dirent * entry; 

struct dirent * result;

entry  (struct dirent*)malloc( sizeof(struct dirent) +

FILENAME_MAX + 1 );

while ( ( readdir_r( directory, entry, &result ) ==0 ) && result )

{

printf( "%s\n", entry->d_name );

}
closedir( directory );

free( entry );

}

The reentrant version of readdir() places the results into a dirent structure that is
passed into the call. However, not all operating systems declare the dirent structure
with storage for the filename by default. The code shown will compile on Solaris with
POSIX C SOURCE defined to be greater than or equal to 199506L.

Summary
As a result of reading this chapter, you should have a good understanding of creating
threads and processes using the POSIX standard library calls. You will also have knowl-
edge of the various synchronization and communication constructs provided by the
POSIX standard.
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6
Windows Threading

Multithreading support under the Microsoft Windows operating system is broadly
similar to the support provided by POSIX threads. The differences are largely in the
names of the functions in the API rather than any significant differences in the actual
functionality. This chapter compares the Windows threading support with that of POSIX
threads. By the end of the chapter, the reader should be familiar with Windows threading
and will be able to convert code between Windows and POSIX threading conventions.

Creating Native Windows Threads
A basic Windows application will start with a single thread. The function call to request
that Windows create a child thread is CreateThread(). This call takes the parameters
shown in Table 6.1.

Table 6.1  Parameters Passed to CreateThread()

Parameter Type Comment

LPTHREADATTRIBUTES The security attributes of the thread; a discussion of
this is outside the scope of this text. However, passing
zero will suffice for the purposes of creating child
threads.

SIZE T The stack size for the thread.  The default is for each
thread to get 1MB of stack space. A thread created
using a POSIX API would have its stack size provided
by a separate attributes structure.

LPTHREAD START ROUTINE The address of the function that the thread will execute.

LPVOID The parameters that are to be passed to the thread.

DWORD Whether the thread should be created in a suspended
state. A suspended thread needs to be started by a
call to the ResumeThread() function.

LPDWORD A pointer to a variable where the thread ID can be 
written.



The return value from the function call is a handle for the created thread, which is a
different construct than the thread ID. Handles will be discussed in more detail later. A
return value of zero means that the call was unsuccessful.

All of the parameters, with the exception of the address of the function to execute, will
take sensible defaults if they are provided the null value. Listing 6.1 shows code to create
a child thread using the CreateThread() call. The call to GetCurrentThreadId()

will return an integer ID for the calling thread.

Listing 6.1  Creating a Thread Using a Call to CreateThread()

#include <Windows.h>

DWORD WINAPI mythread(__in  LPVOID lpParameter)

{

printf( "Thread %i \n", GetCurrentThreadId() );

return 0;

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE handle;

handle = CreateThread( 0, 0, mythread, 0, 0, 0 );

getchar();
return 0;

}

If it is important to capture the ID of the created thread, the code shown in Listing
6.2 could be used. The thread ID is not very useful, because most functions take the
thread handle as a parameter.

Listing 6.2  Capturing the ID of the Created Thread

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE handle;

DWORD threadid;

handle  CreateThread( 0, 0, mythread, 0, 0, &threadid );

printf( "Thread %i \n", threadid );

getchar();

return 0;

}

Calling CreateThread() tells the operating system to produce a new thread but
does not set that thread up to work with the libraries provided by the developer envi-
ronment. Windows essentially creates the thread and returns a handle to that thread.
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However, the runtime libraries have not had the opportunity to set up the thread-local
data structures that they need. In most instances, the libraries will create any structures
that they need the first time that they are called, but not all library calls are able to do
that. Therefore, it is recommended that instead of calling CreateThread(), the calls pro-
vided by the runtime libraries are used. The two recommended ways of creating a thread
are the calls beginthread() and beginthreadex(). The two functions take different
parameters. Table 6.2 provides the parameters for beginthread().

Table 6.2  Parameters Passed to beginthread()

Parameter Type Comment

void(*)(void*) The address of the function that the thread will execute

unsigned int The stack size for the thread

void* The pointer to the parameters that are to be passed to the thread

Table 6.3 shows the parameters for beginthreadex(). These are the same as the
parameters taken by CreateThread().

Table 6.3  Parameters Passed to beginthreadex()

Parameter Type Comment

void* A pointer to the security attributes of the thread

unsigned int The stack size for the thread

unsigned int(*)(void*) The address of the function that the thread will execute

void* A pointer to the arguments that should be passed to
the thread

unsigned int A flag indicating whether the thread should be created
in a suspended state

unsigned int * An optional pointer to a variable where the thread ID
can be written

There is another difference between these two routines other than the parameters
that they take. A thread created by a call to beginthread() will close the handle to
the thread when the thread exits. The handle returned by beginthreadex() will have
to be explicitly closed by the programmer by calling CloseHandle(). This requirement
is similar to the concept of detached threads in POSIX.

The two functions also differ by the type of function that the thread will execute.
beginthread() is a void function and uses the default calling convention cdecl,

whereas beginthreadex() returns an unsigned int and uses the stdcall calling
convention.

Both the beginthread() and beginthreadex() functions return handles to the
newly created threads. However, the actual return type of the function call is uintptr t,
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which has to be type cast to a HANDLE before it can be used in function calls that expect
an object handle.

Listing 6.3 provides example code for creating threads using the three different
approaches discussed. The call to WaitForSingleObject() waits for an object to signal
its readiness; in this instance, the routine is passed the handle to a thread and waits for
that thread to terminate.

Listing 6.3  Three Different Ways of Creating Threads

#include <windows.h>

#include <process.h>

DWORD WINAPI mywork1( __in  LPVOID lpParameter )

{

printf( "CreateThread thread %i\n", GetCurrentThreadId() );

return 0;

}

unsigned int __stdcall mywork2( void * data )

{

printf( "_beginthreadex thread %i\n", GetCurrentThreadId() );

return 0;

}

void mywork3( void * data )

{

printf( "_beginthread thread %i\n", GetCurrentThreadId() );

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE h1, h2, h3;

h1 = CreateThread( 0, 0, mywork1, 0, 0, 0 );

h2 = (HANDLE)_beginthreadex( 0, 0, &mywork2, 0, 0, 0 );

WaitForSingleObject( h2, INFINITE );

CloseHandle( h2 );

h3 = (HANDLE)_beginthread( &mywork3, 0, 0 );

getchar();

}

Although calling beginthread() looks appealing because it takes fewer parameters
and cleans up the handle after the thread exits, it is better to use beginthreadex().
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The call to beginthreadex() avoids a difficulty with beginthread(). If the thread
terminates, the handle returned by the call to beginthread() will be invalid or even
reused, so it is impossible to query the status of the thread or even be confident that the
handle to the thread is a handle to the same thread to which it originally pointed.
Listing 6.4 shows an example of this problem.

Listing 6.4  Code Where a Thread Handle Could Be Reused

#include <windows.h>

#include <process.h>

void mywork1( void * data )

{

}

void mywork2( void * data )

{

volatile int i;

for (i 0; i<100000; i++) 

{}   // because i is volatile most compilers will not

// eliminate the loop

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE h1, h2;

h1 = (HANDLE)_beginthread( &mywork1, 0, 0 );

h2 = (HANDLE)_beginthread( &mywork2, 0, 0 );

WaitForSingleObject( h1, INFINITE );

WaitForSingleObject( h2, INFINITE );

}

The routine mywork1() in Listing 6.4 terminates quickly and may have already ter-
minated by the time that the main thread reaches the call to create the second thread. If
the first thread has terminated, the handle to the first thread may be reused as the handle
to the second thread. Queries using the handle of the first thread might succeed, but
they will work on the wrong thread. In the code shown in Listing 6.4, the calls to
WaitForSingleObject() may not be using a correct or valid handle for either of the
threads depending on the completion time of the threads.

Listing 6.5 shows an equivalent code that uses beginthreadex(). Threads 
created with beginthreadex() need to be cleaned up with a call to CloseHandle().
Consequently, the calls to WaitForSingleObject() are certain to get the correct
handles.
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Listing 6.5  Creating Threads Using beginthreadex() to Ensure That Handles Are 
Not Reused

#include <windows.h>

#include <process.h>

unsigned int __stdcall mywork1( void * data )

{

return 0;

}

unsigned int __stdcall mywork2( void * data )

{

volatile int i;

for (i 0; i<100000; i++) 

{}   // because i is volatile most compilers will not

// eliminate the loop

return 0;

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE h1, h2;

h1 = (HANDLE)_beginthreadex( 0, 0, &mywork1, 0, 0, 0);

h2 = (HANDLE)_beginthreadex( 0, 0, &mywork2, 0, 0, 0);

WaitForSingleObject( h1, INFINITE );

WaitForSingleObject( h2, INFINITE );

CloseHandle( h1 );

CloseHandle( h2 );

}

Terminating Threads
Although there are multiple ways to cause a thread to terminate, the recommended
approach is for the thread to exit the function that it was instructed to run. In Listing 6.6,
the thread will print out its ID and then exit.

Listing 6.6  Printing Thread ID and Exiting

DWORD WINAPI mythread( __in  LPVOID lpParameter )

{

printf( "Thread %i \n", GetCurrentThreadId() );

return 0;

}
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It is also possible to cause threads to terminate using the call ExitThread() or
TerminateThread(). However, these are not recommended because they may leave the
application in an unspecified state. The thread does not get the opportunity to release
any held mutexes or free any other allocated resources. They also do not give the run-
time libraries the opportunity to clean up any resources that they have allocated on
behalf of the thread.

As long as care is taken to ensure that resources the thread has acquired are appropri-
ately freed, a thread may terminate with a call to endthread() or endthreadex().
This call needs to match the call that was used to create the thread. If the thread exits
with a call to endthreadex(), the handle to the thread still needs to be closed by
another thread calling closeHandle().

In a fork-join type model, there will be a master thread that creates multiple worker
threads and then waits for the worker threads to exit. There are two routines that the
master thread can use to wait for the worker to complete: WaitForSingleObject() or
WaitForMultipleObjects(). As indicated by their names, these two routines will wait
either for the completion of a single thread or for the completion of an array of threads.
The routines take the handle of the thread as a parameter together with a timeout value
that indicates how long the master thread should wait for the worker thread to com-
plete; usually the value INFINITE will be appropriate. Listing 6.7 shows the code neces-
sary to wait for a single thread to complete.

Listing 6.7  Using WaitForSingleObject()

#include <windows.h>

#include <process.h>

unsigned int __stdcall mywork( void * data )

{

printf( "Thread %i\n", GetCurrentThreadId() );

return 0;

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE h[2];

for (int i 0; i<2; i++)

{

h[i]  (HANDLE)_beginthreadex( 0, 0, &mywork, 0, 0, 0 );

}

for (int i 0; i<2; i++)

{

WaitForSingleObject( h[i], INFINITE );

CloseHandle( h[i] );

}
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getchar();

}

Listing 6.8 shows the equivalent code using WaitForMultipleObjects().  The first
parameter to the function call is the number of threads that are to be waited for. The
second parameter is a pointer to the array of handles to these threads. The third parame-
ter is a boolean that, if true, indicates that the function should return when all the
threads are complete or, if false, indicates the function should return on the comple-
tion of the first worker thread. The final parameter is the length of time that the master
thread should wait before returning anyway. Listing 6.8 shows an example of calling this.

Listing 6.8  Using WaitForMultipleObjects()

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE h[2];

for (int i 0; i<2; i++)

{

h[i]  (HANDLE)_beginthreadex( 0, 0, &mywork, 0, 0, 0 );

}

WaitForMultipleObjects( 2, h, true, INFINITE );

for (int i 0; i<2; i++)

{

CloseHandle( h[i] );

}

getchar();

}

Even after a thread created by a call to beginthreadex() has exited, it will con-
tinue to hold resources. These resources need to be freed by calling the CloseHandle()
function on the handle to the thread. Listing 6.9 shows the complete sequence of creat-
ing a thread, waiting for it to complete, and then freeing its resources.

Listing 6.9  Complete Thread Life Cycle

int _tmain( int argc, TCHAR* argv[] )

{

HANDLE handle;

handle = (HANDLE)_beginthreadex( 0, 0, &routine, 0, 0, 0 );

returnvalue = WaitForSingleObject( handle, INFINITE );

CloseHandle( handle );

return 0;

}
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Creating and Resuming Suspended Threads
A suspended thread is one that is not currently running. Threads can be created in the
suspended state and then started at a later time. If a thread is in the suspended state, then
the call to start the thread executing is ResumeThread(), which takes the handle of the
thread as a parameter. There is a SuspendThread() call that will cause a running thread
to be suspended. This call is expected to be used only by tools such as debuggers; sus-
pending a running thread may lead to problems if the thread currently holds resources
such as mutexes. Listing 6.10 shows the creation of a suspended thread and then calling
ResumeThread() on that thread. The code uses a call to getchar(), which waits for
the enter key to be pressed, to separate the creation of the thread from the act of resum-
ing the thread. 

Listing 6.10  Creating and Resuming a Suspended Thread

#include <windows.h>

#include <process.h>

unsigned int __stdcall mywork( void * data )

{

printf( "Thread %i\n", GetCurrentThreadId() );

return 0;

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE handle;

handle = (HANDLE)_beginthreadex(0,0, &mywork, 0, CREATE_SUSPENDED, 0);

getchar();

ResumeThread( handle );

getchar();

WaitForSingleObject( handle, INFINITE );

CloseHandle( handle );

return 0;

}

The suspension state of the thread is handled as a counter, so multiple calls to
SuspendThread() need to be matched with multiple calls to ResumeThread().

Using Handles to Kernel Resources
Many of the Windows API functions return handles. As can be seen from the earlier dis-
cussion of type casting, these are really just unsigned integers. However, they have a par-
ticular purpose. Windows API calls that return handles have actually caused a resource to
be created within the kernel space. The handle is just an index for that resource. When
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the application has finished with the resource, the call to CloseHandle() enables the
kernel to free the associated kernel space resources.

Resources with handles can be shared between processes. Once a resource exists,
other processes can open a handle to that resource or duplicate an existing handle to the
resource. It is important to realize that the handle of a kernel resource makes sense only
within the context of the process that has access to the resource. Passing the value of the
handle to another process does not enable the other process to get access to the resource;
the kernel needs to enable access to the resource and provide a new handle for the exist-
ing resource in the new process.

Some functions do not return a handle. For these functions, there is no associated
kernel resource; hence, it is not necessary to call CloseHandle() once the resource is
no longer needed.

Methods of Synchronization and Resource
Sharing
The range of synchronization objects provided by Windows is very similar to those spec-
ified in POSIX:

n Mutex locks ensure that only one thread has access to a resource at a time. If the
lock is held by another thread, the thread attempting to acquire the lock will sleep
until the lock is released. A timeout can also be specified so that lock acquisition
will fail if the lock does not become available within the specified interval. If mul-
tiple threads are waiting for the lock, the order in which the waiting threads will
acquire the mutex is not guaranteed. Mutexes can be shared between processes.

n Critical sections are similar to mutex locks. The difference is that critical sections
cannot be shared between processes; consequently, their performance overhead is
lower. Critical sections also have a different interface from that provided by mutex
locks. Critical sections do not take a timeout value but do have an interface that
allows the calling thread to try to enter the critical section. If this fails, the call
immediately returns, enabling the thread to continue execution. They also have the
facility of spinning for a number of iterations before the thread goes to sleep in the
situation where the thread is unable to enter the critical section.

n Slim reader/writer locks provide support for the situation where there are multiple
threads that read shared data, but on rare occasions the shared data needs to be
written. Data that is being read can be simultaneously accessed by multiple threads
without concern for problems with corruption of the data being shared. However,
only a single thread can have access to update the data at any one time, and other
threads cannot access that data during the write operation. This is to prevent
threads from reading incomplete or corrupted data that is in the process of being
written. Slim reader/writer locks cannot be shared across processes.

n Semaphores provide a means of restricting access to a finite set of resources or of
signaling that a resource is available. These are essentially the same as the sema-
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phores provided by POSIX. As is the case with mutex locks, semaphores can be
shared across processes.

n Condition variables enable a thread to be woken when a condition becomes true.
Condition variables cannot be shared between processes.

n Events are a method of signaling within or between processes. They provide similar
functionality to the signaling capability of semaphores.

An Example of Requiring Synchronization Between Threads
We’ll start an example where two multiple threads are used to calculate all the prime
numbers in a given range. Listing 6.11 shows one test to indicate whether a number is
prime.

Listing 6.11  Test for Whether a Number Is Prime

#include <math.h>

int isprime( int number )

{

int i;

for ( i=2; i < (int)(sqrt((float)number)+1.0); i++ )

{

if ( number % i == 0 ) { return 0; }

}

return 1;

}

We will create two threads, both of which will keep testing numbers until all the
numbers have been computed. Listing 6.12 shows the code to create the two threads.

Listing 6.12  Code to Create Two Threads and Wait for Them to Complete Their Work

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE h1, h2;

h1 = (HANDLE)_beginthreadex( 0, 0, &test, (void*)0, 0, 0 );

h2 = (HANDLE)_beginthreadex( 0, 0, &test, (void*)1, 0, 0 );

WaitForSingleObject( h1, INFINITE );

WaitForSingleObject( h2, INFINITE );

CloseHandle( h1 );

CloseHandle( h2 );

getchar();

return 0;

}
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The tricky part of the code is where we want each thread to test a different number.
Listing 6.13 shows a serial version of the code to do this.

Listing 6.13  Algorithmic Version of Code to Test Range of Numbers for Primality

volatile int counter  0;

unsigned int __stdcall test( void * )

{

while ( counter<100 )

{

int number = counter++;

printf( "ThreadID %i; value = %i, is prime = %i\n",

GetCurrentThreadId(), number, isprime(number) );

}

return 0;

}

However, using two threads to perform this algorithm would cause a data race if both
threads accessed the variable counter at the same time. If we did choose to select this
particular algorithm, we would need to protect the increment of the variable counter
to avoid data races. The following sections will demonstrate various approaches to solv-
ing this problem.

Protecting Access to Code with Critical Sections
Critical sections are one method of ensuring only a single thread executes a region of
code. They are declared within a process and are not resources provided by the kernel
(they have no handles). Since they are entirely within the process, access to them is
quicker than it would be if access had to be brokered by the kernel. 

The code in Listing 6.14 declares a critical section structure, initializes it with a call to
InitializeCriticalSection(), and, once the program has finished with it, deletes it
with a call to DeleteCriticalSection().

Listing 6.14  Using Initialization and Deletion of Critical Sections

CRITICAL_SECTION critical;

...

InitializeCriticalSection(&critical);

…

DeleteCriticalSection(&critical);

...
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When a thread wants to enter the critical section, it calls EnterCriticalSection().
If no other thread is in the critical section, the calling thread acquires it and continues
execution. If another thread is in the critical section, the calling thread will sleep until the
thread executing the critical section leaves it with the call LeaveCriticalSection().
The thread that calls EnterCriticalSection() will not return until it has obtained
access to the critical section; there is no concept of a timeout.

Listing 6.15 shows an example of using a critical section to protect access to the vari-
able counter.

Listing 6.15  Using a Critical Section to Protect Access to a Variable

volatile int counter  0;

CRITICAL_SECTION critical;

unsigned int __stdcall test( void * )

{

while ( counter<100 )

{

EnterCriticalSection( &critical );

int number  counter++;

LeaveCriticalSection( &critical );

printf( "ThreadID %i; value  %i, is prime  %i\n",

GetCurrentThreadId(), number, isprime(number) );

}

return 0;

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE h1, h2;

InitializeCriticalSection( &critical );

h1  (HANDLE)_beginthreadex( 0, 0, &test, (void*)0, 0, 0);

h2  (HANDLE)_beginthreadex( 0, 0, &test, (void*)1, 0, 0);

WaitForSingleObject( h1, INFINITE );

WaitForSingleObject( h2, INFINITE );

CloseHandle( h1 );

CloseHandle( h2 );

getchar();

DeleteCriticalSection( &critical );

return 0;

}

Putting threads to sleep and waking them up again is time-consuming, because it
involves entering the kernel. All critical sections should be designed to be as short-lived
as possible. With that in mind, it is likely that by the time the thread has been put to
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sleep, the thread that was in the critical section will already have left it. Therefore, mak-
ing the waiting thread sleep and then waking it up again is just a waste of time.

There are two alternatives. The programmer can call TryEnterCriticalSection(),
which will return immediately returning either true, meaning that the thread has
acquired access to the critical section, or false, meaning that another thread is currently
in the critical section. The code that protects access to the counter variable could be
written using TryEnterCriticalSection(), as shown in Listing 6.16.

Listing 6.16  Using TryEnterCriticalSection() to Avoid Putting Calling Threads 
to Sleep

while (counter<100)

{

while ( !TryEnterCriticalSection( &critical ) ) {}

int number  counter++;

LeaveCriticalSection( &critical );

printf( "ThreadID %i; value  %i, is prime  %i\n",

GetCurrentThreadId(), number, isprime(number) );

}

This would cause the process to spin continuously until it got the lock. One of the
problems with having a thread spin is that it is potentially depriving other threads of
processor time. Of particular concern would be the case where the spinning thread stops
the other thread, which is currently in the critical section, from getting back onto the
processor. Consequently, this style of programming is one that should only be under-
taken with care.

The other approach is to have the thread wanting to enter the critical section spin
briefly in the hope that the thread currently in the critical section will soon leave. If the
other thread leaves the critical section, the spinning thread can immediately enter the
critical section. Once the thread has spun for a predetermined count, the thread goes to
sleep until the other thread eventually leaves the critical section. This approach represents
a trade-off between the immediacy of spinning for access to the critical section and the
poor utilization of resources that spinning causes.

Critical sections support this idea of spinning for a short time before sleeping. There
are two ways of setting the number of times that a thread calling
EnterCriticalSection() will spin before it goes to sleep. The critical section can be
initialized with the value through the initialization call
InitializeCriticalSectionAndSpinCount(), which takes the pointer to the 
critical section, and the spin count as parameters. Or, once the critical section has been
created, the spin count can be set through a call to SetCriticalSectionSpinCount().
Listing 6.17 shows calls to these routines.
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Listing 6.17  Methods of Setting the Spin Count for a Critical Section

InitializeCriticalSectionAndSpinCount( &critical, 1000 );

SetCriticalSectionSpinCount( &critical, 1000 );

Protecting Regions of Code with Mutexes
Mutexes are kernel objects, which enables them to be shared between processes. This
also means that mutex-protected sections are heavier weight than critical sections.

Mutexes are created with a call to CreateMutex() or CreateMutexEx(), which was
introduced in Windows Vista. The call will return the handle to the newly created mutex
object. 

The first parameter to the CreateMutex() call is a pointer to the security attributes,
or zero if the default security attributes should be used. The second parameter is a
boolean that indicates if the mutex should be created in the state of being already
acquired by the calling thread.  The final parameter is an optional name for the mutex.

The CreateMutexEx call takes the security attributes; an optional name for the
mutex; a flag that has either the value 0 or the value CREATE MUTEX INITIAL OWNER,
which indicates that the mutex should be created as owned by the calling thread; and a
mask that sets the access permissions for the mutex (this can be left as zero). 

Once the application has finished with the mutex, the kernel resources need to be
freed by a call to CloseHandle(). Listing 6.18 shows the process of creating and releas-
ing a mutex.

Listing 6.18  Creating and Disposing of Mutexes

HANDLE mutex;

...

mutex  CreateMutex( 0, 0, 0 );

...

CloseHandle( mutex );

To acquire the mutex, the application makes a call to WaitForSingleObject(),
which either returns with the mutex acquired or returns after the specified timeout.
Once the thread has completed, the section of code protected by the mutex can be
released with a call to ReleaseMutex(). The code in Listing 6.19 shows how to acquire
and release the mutex.

Listing 6.19  Acquiring and Releasing a Mutex

volatile int counter  0;

HANDLE mutex;
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unsigned int __stdcall test( void * )

{

while ( counter<100 )

{

WaitForSingleObject( mutex, INFINITE );

int number  counter++;

ReleaseMutex( mutex );

printf( "ThreadID %i; value  %i, is prime  %i\n",

GetCurrentThreadId(), number, isprime(number) );

}

return 0;

}

int _tmain(int argc, _TCHAR* argv[])

{

HANDLE h1, h2;

mutex = CreateMutex( 0, 0, 0 );

h1  (HANDLE)_beginthreadex( 0, 0, &test, (void*)0, 0, 0);

h2  (HANDLE)_beginthreadex( 0, 0, &test, (void*)1, 0, 0);

WaitForSingleObject( h1, INFINITE );

WaitForSingleObject( h2, INFINITE );

CloseHandle( h1 );

CloseHandle( h2 );

getchar();

CloseHandle(mutex);

return 0;

}

Slim Reader/Writer Locks
Windows Vista introduced support for the slim reader/writer lock, which is useful in situa-
tions where data needs to be either read or updated. The lock allows multiple threads to
have read access or a single thread to have write access to the data. The lock is initialized
using a call to InitializeSRWLock(). Since the locks are essentially user variables and
use no kernel resource, there is no equivalent function to delete a lock.

The call to acquire a lock as a reader is AcquireSRWLockShared(), and the call for a
reader to release it is ReleaseSRWLockShared(). Multiple readers can share access to
the lock; however, a writer must obtain exclusive access. The call to acquire the lock as a
writer is AcquireSRWLockExclusive(), and the call for a writer to release the lock is
ReleaseSRWLockExclusive().

Listing 6.20 shows an example of using a slim reader/writer lock. The reader/writer
lock is useful in this situation because both the update and the read require access to two
elements. If there were not a lock around the update and read of the array, it would be
likely that an update would cause a read to return inconsistent data from the array.
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Listing 6.20  Creating and Using a Slim Reader/Writer Lock

#include <process.h>

#include <windows.h>

int array[100][100];

SRWLOCK lock;

unsigned int __stdcall  update( void *param )

{

for (int y 0; y<100; y++)

for (int x 0; x<100; x++)

{

AcquireSRWLockExclusive( &lock );

array[x][y]++;

array[y][x]--;

ReleaseSRWLockExclusive( &lock );

}

return 0;

}

unsigned int __stdcall  read( void * param )

{

int value 0;

for (int y 0; y<100; y++)

for (int x 0; x<100; x++)

{

AcquireSRWLockShared( &lock );

value  array[x][y] + array[y][x];

ReleaseSRWLockShared( &lock );

}

printf( "Value  %i\n", value );

return value;

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE h1, h2;

InitializeSRWLock( &lock );

h1  (HANDLE)_beginthreadex( 0, 0, &update, (void*)0, 0, 0);

h2  (HANDLE)_beginthreadex( 0, 0, &read,   (void*)0, 0, 0);

WaitForSingleObject( h1, INFINITE );

WaitForSingleObject( h2, INFINITE );

CloseHandle( h1 );

CloseHandle( h2 );

getchar();

return 0;

}
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Windows 7 introduced two further function calls into the slim reader/writer API. In
the Windows Vista API, function calls to acquire the reader/writer lock will return only
once the lock has been acquired. In some situations, it is better to perform some other
operation in the event that the lock is not available. The two functions that provide this
are TryAcquireSRWLockExclusive() and TryAcquireSRWLockShared(). These two
functions return immediately. If the lock is available, the function call will have acquired
the lock for the thread, and the return value will be nonzero; if the lock is unavailable,
the return value will be zero.

Semaphores
Semaphores are a way of keeping track of a count of numbers, as well as a way of com-
municating resource availability between threads. At the simplest level, they can be used
as an alternative implementation of a mutex, while a more complex use would be to
communicate readiness between multiple threads. 

A semaphore can be created through a call to CreateSemaphore(), which takes four
parameters. The first parameter is the security attributes, or it is null if the default is to be
used. The second parameter is the initial value for the semaphore. The third parameter is
the maximum value for the semaphore. The final parameter is an optional name for the
semaphore. The name can be used when other threads or processes want to attach to the
same semaphore. If a semaphore of the given name exists and it was created with the
SEMAPHORE ALL ACCESS access right, then the function will return a handle to the
existing semaphore.

The second way of creating a semaphore is through the CreateSemaphoreEx() call.
This takes the same first four parameters but adds two more. The fifth parameter is a set
of flags, but it must be passed the value zero. The sixth parameter is for access rights.
Passing SEMAPHORE ALL ACCESS as this parameter will create a semaphore that can be
shared between processes. The name of the shared semaphore also needs to be placed in
the global namespace. Creating shared semaphores will be covered later in this chapter.

The final way of getting a handle to a semaphore is to call OpenSemaphore(), pass-
ing in three parameters. The first parameter gives the desired access rights. The second
parameter is a boolean that indicates whether the handle to the semaphore should be
inherited by child processes. This is one of the options available through the security
attribute used by SemaphoreCreate() and SemaphoreCreateEx(). The third parame-
ter is the name of the semaphore. This function call will not create the semaphore if it
does not already exist.

Semaphores are kernel objects, so the create function will return a handle to the new
semaphore. When the application has finished with the semaphore, it should release it
with a call to CloseHandle. Once there are no outstanding handles to the semaphore,
the kernel object is disposed of.

A semaphore can be decremented through a call to one of the wait functions. The
one that is most likely to be useful is WaitForSingleObject(), which takes the handle
of the semaphore and a timeout. The function will either return having decremented the
semaphore or return when the timeout expires.
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A semaphore can be incremented through a call to ReleaseSemaphore(). This call
takes three parameters: the handle of the semaphore, the amount to increment the sema-
phore by, and an optional pointer to a LONG variable where the previous value will be
written. Attempts to increment the semaphore beyond the maximum value that it can
hold are ignored. It is important to notice that a semaphore has no concept of owner-
ship, so it cannot tell whether a thread attempts to increment the semaphore by a greater
amount than it was decremented.

Listing 6.21 shows an example of a semaphore being used as a replacement for a
mutex. The semaphore is created to hold a maximum value of 1 and an initial value of 1.
Two threads are created, and both threads execute the same code, which increments the
variable value by 200. The end result of this is that the variable value should contain
400 when the application terminates.

Listing 6.21  Using a Semaphore as a Mutex

#include <windows.h>

#include <process.h>

#include <stdio.h>

HANDLE semaphore;

int value;

void addToValue( int increment )

{

WaitForSingleObject( semaphore, INFINITE );

value+ increment;

ReleaseSemaphore( semaphore, 1, 0 );

}

unsigned int __stdcall test( void * )

{

for ( int counter 0; counter<100; counter++ )

{

addToValue( 2 );

}

return 0;

}

int _tmain( int argc, _TCHAR* argv[])

{

HANDLE h1, h2;

value  0;

semaphore = CreateSemaphore( 0, 1, 1, 0 );

h1  (HANDLE)_beginthreadex( 0, 0, &test, (void*)0, 0, 0);

h2  (HANDLE)_beginthreadex( 0, 0, &test, (void*)0, 0, 0);

WaitForSingleObject( h1, INFINITE );
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WaitForSingleObject( h2, INFINITE );

CloseHandle( h1 );

CloseHandle( h2 );

CloseHandle( semaphore );

printf( "Value  %i\n", value );

getchar();

return 0;

}

Condition Variables
Condition variables were introduced in Vista. They work with either a critical section 
or a slim reader/writer lock to allow threads to sleep until a condition becomes true.
They are user constructs, so they cannot be shared across processes. The call
InitializeConditionVariable() initializes the condition variable for use.

A thread uses a condition variable either by acquiring a slim reader/writer lock and
then calling SleepConditionVariableSRW() or by entering a critical section and call-
ing SleepConditionVariableCS(). When the threads are woken from the sleep call,
they will again have acquired either the critical section lock or the reader/writer lock
(depending on how the condition variable is being used). The first thing that the thread
needs to do is test to determine whether the conditions it is waiting on are true, since it
is possible for the thread to be woken when the conditions are not met. If the conditions
have not been met, the thread should return to sleeping on the condition variable.

There are two calls to wake threads sleeping on a condition variable.
WakeConditionVariable() wakes one of the threads waiting on a condition variable.
WakeAllConditionVariable() wakes all the threads sleeping on a condition variable.

Listing 6.22 shows an example of using a condition variable to mediate a producer-
consumer pairing of threads. The producer thread would add items onto a queue. To 
do this, the thread first needs to enter the critical section where it is safe to manipulate
the queue data structure. Once the item has been added to the queue, it is safe to exit
the critical section. The number of items originally in the queue is returned by the
addItemToQueue() function. If there were no items in the queue, then it is possible
that other threads are waiting on the condition variable and need to be woken up by the
producer thread.

Listing 6.22  Producer-Consumer Example Using a Condition Variable

#include <windows.h>

CONDITION_VARIABLE CV;

CRITICAL_SECTION CS;

void addItem( int value )

{
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LONG oldQueueLength;

EnterCriticalSection( &CS );

oldQueueLength  queueLength;

addItemToQueue( value );

LeaveCriticalSection( &CS );

if ( oldQueueLength 0 )         // If the queue was empty

{

WakeConditionVariable( &CV ); // Wake one sleeping thread

}

}

int removeItem()

{

int item;

EnterCriticalSection( &CS );

while ( QueueLength 0 )         // If the queue is empty

{ 

SleepConditionVariableCS( &CV, &CS, INFINITE ); // Sleep

}

item  removeItemFromQueue();

LeaveCriticalSection( &CS );

return item;

}

void _tmain()

{

InitializeCriticalSection( &CS );

InitializeConditionVariable( &CV );

…

DeleteCriticalSection( &CS );

}

The consumer thread enters the critical section to remove an item from the queue. If
there are no items on the queue, it sleeps on the condition variable. When it is woken,
either it is a spurious wake-up or there is an item in the queue. If the wake-up was spu-
rious, the thread will return to sleep. Otherwise, it will remove an item from the queue,
exit the critical section, and return the item from the queue to the calling function.

Signaling Event Completion to Other Threads or Processes
Events are used to signal the fact that an event has happened to one or more threads. It is
possible to use semaphores, mutexes, or condition variables to perform the same task.
The threads waiting for an event to occur will wait on that event object. The thread that
completes the task will set the event into the signaled state and the waiting threads are
then released. Events can be of two types, a manually reset event type, which requires the
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event to be reset before other threads will once again wait on it, or an automatically reset
type, which will reset itself after a single thread has been allowed to pass.

Events are kernel objects, so the call to CreateEvent() will return a handle. The call
requires four parameters. The first parameter is the security attribute that determines
whether the handle will be inherited by child processes. The second parameter is a
boolean that, when true, indicates that the event requires a manual reset or, when false,
indicates that the event will automatically reset after a single thread has been released.
The third parameter indicates whether the event should be created in a signaled state.
The fourth parameter is an optional name for the event. 

Existing events can be opened using a call to OpenEvent(). This call requires three
parameters. The first parameter is the access permissions; if this is zero, default access per-
missions are requested. The second parameter is a boolean that indicates whether the
handle should be inherited by child processes. The third parameter is the name of the event.

Since the event is a kernel object, it should be freed with a call to CloseHandle().
A call to SetEvent() places the event into the signaled state. This allows threads

waiting on the event using WaitForSingleObject to be released. If the event requires a
manual reset to get out of the signaled state, then this can be achieved with a call to
ResetEvent(), which also takes the handle to the event. If the event object resets auto-
matically, then only a single thread will be released before the event is reset.

Listing 6.23 shows an example of using an event object to order two threads. An
event object is created by the call to CreateEvent(). This object requires manual reset
and is created in the unsignaled state. Two threads are then created. The first thread exe-
cutes the routine thread1() and waits on the event. The second thread executes the
routine thread2(), which prints a message and then signals the event object. The signal
allows the first thread to continue execution, and it prints a second message.

Listing 6.23  Using an Event Object to Enforce Execution Order

#include <windows.h>

#include <process.h>

#include <stdio.h>

HANDLE hevent;

unsigned int __stdcall thread1(void *param)

{

WaitForSingleObject(hevent,INFINITE);

printf("Thread 1 done\n");

return 0;

}

unsigned int __stdcall thread2(void *param)

{

printf("Thread 2 done\n");

SetEvent(hevent);
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return 0;

}

int _tmain(int argc, _TCHAR* argv[])

{

HANDLE hthread1, hthread2;

hevent=CreateEvent(0,0,0,0);

hthread1 (HANDLE)_beginthreadex(0,0,&thread1,0,0,0);

hthread2 (HANDLE)_beginthreadex(0,0,&thread2,0,0,0);

WaitForSingleObject(hthread1,INFINITE);

WaitForSingleObject(hthread2,INFINITE);

CloseHandle(hthread2);

CloseHandle(hthread1);

CloseHandle(hevent);

getchar();

return 0;

}

Wide String Handling in Windows
Before we discuss the handling of multiple processes in Windows, it is necessary to have
a short discussion of the handling of strings.

Since Windows NT 4, Windows has used Unicode as its default text encoding format.
Unicode defines support for greater than 8-bit encoding of characters. Windows uses
UTF-16 format, known as wide character encoding, which uses two bytes per character.
Many Windows functions are defined with two entry points: a Unicode version that has
a W appended, for wide character, or an ANSI character entry point that is appended with
an A. For example, the CreateMutex() function call has a supporting CreateMutexW()
and a CreateMutexA(). At compile time, the appropriate function call will be made
depending on whether UNICODE is defined. Since Windows uses wide characters inter-
nally, the ANSI entry points are just wrappers around the wide versions of the function
calls with appropriate string conversion.

The 16-bit character type is wchar t. This can be used as a replacement for the char
type. WCHAR is an equivalent method of specifying a wide string. However, strings of
characters in source code are interpreted as being ANSI 8-bit characters, which is why
they need to be specified as being wide characters. This can be performed using the L
specifier or using the TEXT() macro, as demonstrated in Listing 6.24. We will need to
use these macros in later examples when we specify string constants.

Listing 6.24  Assigning a Compile-Time Value to a Wide Character String

wchar_t mystring1[]  L"Some text";

WCHAR   mystring2[]  TEXT("More text");
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The TEXT() macro is useful in that when UNICODE is defined, it translates a string to
wide character format. When UNICODE is not defined, it leaves the string as ANSI 8-bit
text. The TCHAR type behaves in a similar way, resolving to wchar t when UNICODE is
defined, or char otherwise.

Some functions are defined as macros that resolve differently depending on whether
UNICODE is defined. For example, the main function tmain() resolves either to
wmain() when UNICODE is defined or to main() otherwise. Similarly, tprintf() will
either resolve to wprintf() or printf().

Creating Processes
To create a new process, the first process calls CreateProcess(), which takes a number
of parameters. The three critical parameters are the name (and any parameters) of the
process to be run, together with a pointer to a STARTUPINFO structure and a PROCESS
INFORMATION structure. Table 6.4 shows the full parameters to this function.

Table 6.4  Parameters Passed to CreateProcess()

Parameter Type Comment

LPCWSTR Name of the application.

LPWSTR Command line.

LPSECURITY ATTRIBUTES Pointer to security attributes for the child process.

LPSECURITY ATTRIBUTES Pointer to security attributes for the first thread in the
child process.

BOOL A boolean that indicates whether the created process
should inherit the handles from the calling process.

DWORD An optional set of process creation flags and process
priority flags. These flags control various characteris-
tics of the created process such as whether the
process has a window or whether the main thread is
created in the suspended state. The flags also control
the scheduling priority for the process, which in turn
determines how much share of the CPU the process
is given.

LPVOID An optional pointer to a new set of runtime environ-
ment strings. If this is null, the new process will
inherit the runtime environment of the calling process.

LPCWSTR An optional pointer to a string containing the current
directory for the process. If this parameter is null, the
process inherits the runtime directory of the calling
process.

LPSTARTUPINFOW Pointer to the STARTUPINFO structure.

LPPROCESS INFORMATION Pointer to the PROCESS INFORMATION structure.
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The first parameter is the application name, and the second parameter is the com-
mand line. These two parameters work together. If either is null, the other is used as the
entire command line. Otherwise, the application named by the first argument is executed
but passed the command line given by the second argument. This means that the first
parameter of the command line should be a repeat of the name of the application.

There are two further considerations: The Unicode version of this function,
CreateProcessW(), is called, and the command line can be modified; hence, it should
always be stored in a variable rather than a constant string. Second, if the application
name is null, then the application executed will be the first whitespace-delimited text in
the command line. If the path to the application contains a space, then the entire path
and name should be enclosed in quotes.

The third and fourth parameters are optional pointers to SECURITY ATTRIBUTES.
The first gives the attributes for the created process, and the second of these is attributes
for the first thread of the created process. These attributes principally determine whether
child processes of the created process will inherit any handles owned by the created
process. A null value for these pointers provides the created process with the default
attributes.

Both the STARTUPINFO and PROCESS INFORMATION structures should be zero-filled
before the call. The cb member of the STARTUPINFO structure needs to be set to the size
of the structure. The call to CreateProcess() will record information in these struc-
tures. The most important information will be the handle of the new process that is
recorded in the hProcess member of the PROCESS INFORMATION structure.

Listing 6.25 shows the steps necessary to create a new process. If the application is
started with a command-line parameter, the process will print this out and then create a
child process without any parameters. If the process is started without any parameters, it
prints out a message indicating this and exits.

Listing 6.25  Starting a New Process

#include <Windows.h>

int _tmain( int argc, _TCHAR* argv[] )

{

STARTUPINFO startup_info;

PROCESS_INFORMATION process_info;

if ( argc>1 )

{

wprintf( L"Argument %s\n", argv[1] );

wprintf( L"Starting child process\n" );

ZeroMemory( &process_info, sizeof(process_info) );

ZeroMemory( &startup_info, sizeof(startup_info) );

startup_info.cb  sizeof(startup_info);

223Creating Processes



if (CreateProcess( argv[0], 0, 0, 0, 0, 0, 0, 0,

&startup_info, &process_info ) 0 ) 

{

printf( "ERROR %i\n", GetLastError() );

}

WaitForSingleObject( process_info.hProcess, INFINITE );

}

else

{

printf( "No arguments\n" );

}

getchar();

}

The handle of the created process is returned in process info.hProcess. This
handle is used in the call to WaitForSingleObject(). This call returns when the child
process exits.

The call to getchar() at the end of the code is there to wait for the Enter key to be
pressed before the process exits.

To pass arguments to a child process, it is necessary to repeat the application name as
the first command-line parameter. The entire command line gets passed to the child
process. Listing 6.26 shows the situation where the child process is started with a single
additional argument. 

Listing 6.26  Passing Arguments to a New Process

#include <Windows.h>

int _tmain( int argc, _TCHAR* argv[] )

{

STARTUPINFO startup_info;

PROCESS_INFORMATION process_info;

if ( argc 1 )

{

printf( "No arguments given starting child process\n" );

wchar_t argument[256];

wsprintf( argument, L"\"%s\" Hello", argv[0] );

ZeroMemory( &process_info, sizeof(process_info) );

ZeroMemory( &startup_info, sizeof(startup_info) );

startup_info.cb  sizeof(startup_info);

if (CreateProcess( argv[0], argument, 0, 0, 0, 0, 0, 0,

&startup_info, &process_info ) 0 ) 

{

printf( "ERROR %i\n", GetLastError() );

}

224 Chapter 6 Windows Threading



WaitForSingleObject( process_info.hProcess, INFINITE );

}

else

{

wprintf( L"Argument %s\n", argv[1] );

}

getchar();

}

Sharing Memory Between Processes
It is possible to share memory between processes. Once one process has set up a region
of memory with suitable sharing attributes, another process can open that region of
memory and map it into its address space.

Shared memory uses the file mapping function CreateFileMapping() with param-
eter INVALID HANDLE VALUE to create a handle to a region of shared memory. This can
then be mapped into the process with a call to MapViewOfFile(). The steps for attach-
ing to an existing region of shared memory are similar, except that the function
OpenFileMapping() is used to obtain the handle.

The call to CreateFileMapping() takes six parameters, as shown in Table 6.5.

Table 6.5  Parameters Passed to CreateFileMapping()

Parameter Type Comment

HANDLE INVALID HANDLE VALUE that indicates this call
should create shared memory.

LPSECURITY ATTRIBUTES Optional pointer to security attributes that determine
whether the handle can be inherited by child processes.

DWORD Page protection attributes for the created memory. For
shared memory, this will most likely be some combina-
tion of read or write access.

DWORD High-order DWORD (an unsigned 4-byte integer) of the
size of the region.

DWORD Low-order DWORD of the size.

LPCTSTR Optional name of the mapping object.

An object can be shared between processes either by sharing the object’s handle,
which will be discussed in the section “Inheriting Handles in Child Processes,” or by
using a common name. The name can contain any character except a backslash and must
start with either the global namespace identifier Global\ or the local namespace identi-
fier Local\. The global namespace is shared by all users, whereas the local namespace is
private to each user. 
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The OpenFileMapping() call that opens an existing file mapping object takes three
parameters. The first parameter gives the security attributes for the mapping object,
which usually will be FILE MAP ALL ACCESS to allow both reading and writing to the
shared memory. The second parameter is a boolean that determines whether the handle
can be inherited by child processes. The third parameter is the name of the mapping
object.

Although the CreateFileMapping() call creates the mapping object in the kernel,
it does not actually map the object into user space. The call to MapViewOfFile() causes
the shared object to be mapped into memory. The return value of this call is a pointer to
the base address of the memory. This call takes five parameters, as shown in Table 6.6.

Table 6.6  Parameters Passed to MapViewOfFile()

Parameter Type Comment

HANDLE Handle from either CreateFileMapping() or
OpenFileMapping().

DWORD Access permissions for the memory. This is likely to be
FILE MAP ALL ACCESS for processes that need to both read
and write the shared memory.

DWORD High-order DWORD of an offset into the shared memory.

DWORD Low-order DWORD of an offset into the shared memory.

SIZE T Size of the shared memory region. Passing zero as this parame-
ter makes the size the same as the size allocated in the mapping
object.

The third and fourth parameters are the high-order and low-order DWORDs of an
offset into the shared memory. This will be returned as the base address of the pointer. In
general, the required offset into the shared memory will be zero, so both of these param-
eters will also be zero. 

Once the process has finished with the shared memory, it needs to be unmapped with
a call to UnmapViewOfFile(), which takes the base address of the shared memory as a
parameter, and then the handle can be closed with a call to CloseHandle().

The example in Listing 6.27 shows how a region of memory can be created and then
shared between two processes. If the application is started without any parameters, it will
create a child process. The parent process will also create a region of shared memory and
store a string into the shared memory. The shared memory is given the name shared
memory and is created in the Local\ namespace. Hence, it is visible to all the processes
owned by the user.

Listing 6.27  Creating and Using Shared Memory

#include <Windows.h>

#include <Windows.h>
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int _tmain(int argc, _TCHAR* argv[])

{

STARTUPINFO startup_info;

PROCESS_INFORMATION process_info;

HANDLE filehandle;

TCHAR ID[]  TEXT("Local\\sharedmemory");

char* memory;

if (argc 1)

{

filehandle = CreateFileMapping( INVALID_HANDLE_VALUE,

NULL, PAGE_READWRITE, 0, 1024, ID);

memory = (char*)MapViewOfFile( filehandle, FILE_MAP_ALL_ACCESS, 

0, 0, 0 );

sprintf_s( memory, 1024, "%s", "Data from first process" );

printf( "First process: %s\n", memory );

ZeroMemory( &process_info, sizeof(process_info) );

ZeroMemory( &startup_info, sizeof(startup_info) );

startup_info.cb  sizeof(startup_info);

wchar_t commandline[256];

wsprintf( commandline, L"\"%s\" Child\n", argv[0] );

CreateProcessW( argv[0], commandline, 0, 0, 0, 0, 0, 0, 

&startup_info, &process_info );

WaitForSingleObject(process_info.hProcess,INFINITE);

UnmapViewOfFile( memory );

CloseHandle( filehandle );

}

else

{

filehandle = OpenFileMapping( FILE_MAP_ALL_ACCESS, 0, ID );

memory = (char*)MapViewOfFile( filehandle, FILE_MAP_ALL_ACCESS, 

0, 0, 0 );

printf( "Second process: %s\n", memory ); 

UnmapViewOfFile( memory );

CloseHandle( filehandle ); 

}

getchar();

return 0;

}

227Creating Processes



The child process attaches to the shared memory and can print out the value of the
string stored there by the parent process. One the child process has printed this string, it
unmaps the memory and closes the file handle before exiting. Once the child process has
exited, the parent process is free to unmap the memory, close the file handle, and exit.

Inheriting Handles in Child Processes
Child processes can inherit the handles to resources owned by the parent process. In this
instance, the handles are identical values, but the parent process needs to pass these values
to the child. The simplest way of achieving this is to pass the values through the com-
mand line.

The other constraint on this is that the handles must have been created with the
property of being inherited by the child process, and the child process must be created
with the parameter that enables it to inherit the handles from its parent.

Listing 6.28 shows an example of passing a handle to shared memory to the child
process through the command line. The program is broadly the same as the one shown
in Listing 6.27. However, there are a number of changes indicated in bold.

Listing 6.28  Passing a Handle to Shared Memory to a Child Process

#include <Windows.h>

int _tmain( int argc, _TCHAR* argv[] )

{

STARTUPINFO startup_info;

PROCESS_INFORMATION process_info;

SECURITY_ATTRIBUTES secat;

HANDLE filehandle;

TCHAR ID[]  TEXT("Local\\foo");

wchar_t* memory;

if ( argc 1 )

{  // Parent process

secat.nLength = sizeof(secat);   // Set up security attibutes

secat.bInheritHandle = true;     // So handle can be inherited

secat.lpSecurityDescriptor = NULL;

filehandle  CreateFileMapping( INVALID_HANDLE_VALUE, &secat,

PAGE_READWRITE, 0, 1024, ID );

memory  (wchar_t*)MapViewOfFile( filehandle,

FILE_MAP_ALL_ACCESS, 0, 0, 0);

// Setup command line using shared memory

swprintf( memory, 1024, L"\"%s\" %i", argv[0], filehandle);

printf( "First process memory: %S handle:%i\n", memory, filehandle);
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ZeroMemory( &process_info, sizeof(process_info) );

ZeroMemory( &startup_info, sizeof(startup_info) );

startup_info.cb  sizeof(startup_info);

// Start child process

CreateProcess( NULL, memory, 0, 0, true, 0, 0, 0,

&startup_info, &process_info);

WaitForSingleObject( process_info.hProcess, INFINITE );

UnmapViewOfFile( memory );

CloseHandle( filehandle );

}

else

{

filehandle=(HANDLE)_wtoi( argv[1] );  // Get handle from argv[1]

memory  (wchar_t*)MapViewOfFile( filehandle, 

FILE_MAP_ALL_ACCESS, 0, 0, 0 );

printf( "Second process memory: %S handle: %i\n",

memory, filehandle ); 

UnmapViewOfFile( memory );

CloseHandle( filehandle ); 

}

getchar();

return 0;

}

The first important change is the use of SECURITY ATTRIBUTES when the mapping
object is created. These security attributes have the bInheritHandle property set to
true, which will allow the handle to the mapping object to be inherited by any child
processes.

The command line to the child process is built up out of the process name, which is
argv[0] and the handle of the mapping object. 

The final change in creating the child process is that now the call to CreateProcess()
passes true for the parameter, which determines whether the child process should
inherit the handles of the parent process.

The code for the child process is similar to the previous code with the exception that
the handle to the mapping object is extracted from the command-line parameter argv[1].

Naming Mutexes and Sharing Them Between Processes
The easiest way to share a mutex between processes is for the mutex to be created with
a name. Then other processes can use the OpenMutex() or CreateMutex() function to
obtain a handle to the mutex. There are several complexities involved in this:
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n Only one of the processes can create the mutex. The others can only open the
existing mutex.

n The name of the mutex needs to be unique. If any object of the same name
already exists, then the mutex will fail to be created.

n The name of the mutex needs to be passed to the other processes.

All of these issues are surmountable, but they add some complexity.
The code in Listing 6.29 creates two copies of the same processes and enables them

to share a mutex.

Listing 6.29  Sharing Mutexes Between Processes

#include <Windows.h>

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE sharedmutex;

STARTUPINFO startup_info;

PROCESS_INFORMATION process_info;

ZeroMemory( &process_info, sizeof(process_info) );

ZeroMemory( &startup_info, sizeof(startup_info) );

startup_info.cb  sizeof(startup_info);

sharedmutex=CreateMutex( 0, 0, L"mymutex12234" );

if ( GetLastError() !  ERROR_ALREADY_EXISTS )

{

if ( CreateProcess( argv[0], 0, 0, 0, 0, 0, 0, 0,

&startup_info, &process_info ) 0 ) 

{

printf( "ERROR %i\n", GetLastError() );

}

WaitForInputIdle( process_info.hProcess, INFINITE );

}

WaitForSingleObject( sharedmutex, INFINITE );

for (int i 0; i<1000; i++) 

{

printf( "Process %i Count %i\n", GetCurrentProcessId(), i );

} 

ReleaseMutex( sharedmutex );

CloseHandle( sharedmutex );
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getchar();

return 0;

}

The mutex is created through a call to CreateMutex(). If the mutex already exists,
then a handle to the existing mutex is returned, and the error condition is set to
ERROR ALREADY EXISTS. If this is not the error condition, then it is assumed by the
code that this means that the mutex was created by the calling process and therefore that
the calling process needs to start a second copy of itself.

The call to CreateMutex() takes the name of the mutex. In this case, the name is
mymutex12234. The string is specified with an uppercase L, which tells the compiler to
make it a wide-character string. The same effect could have been achieved by wrapping
the string in TEXT(...).

In this example, the shared mutex is used to ensure that only one of the two processes
counts up to 1,000 at a time. If there was no mutex, then both processes could be active
simultaneously, and the console output would be a mix of the output from both
processes. Using the mutex, the output is from just one of the processes at a time.

Communicating with Pipes
Pipes are a method of streamed communication where data written to a pipe by one
thread can be read from the pipe by a different thread. Pipes on Windows enable com-
munication between threads within a process, between threads in different processes, or
even between threads on different systems.

Pipes are available in two flavors. A named pipe can be used to uniquely identify a
connection by name. An anonymous pipe does not have an explicit name, so processes
wanting to communicate need to obtain its handle. On Windows, anonymous pipes are
implemented using a unique name, but this name is not specified by the application
when the pipe is created.

To create an anonymous pipe, the application should call CreatePipe(). This takes
four parameters. The first and second parameters are pointers to the variables to hold the
read and write handles for the pipe. The third parameter is the security attributes for the
pipe, which, if null, gives the default attributes that do not allow child processes to
inherit the handle of the pipe. Passing a pointer to a security attributes object is neces-
sary if inheritance of the handle is desired. The fourth parameter is a hint as to the
appropriate size of buffer to use for the pipe. A value of zero indicates that the default
value should be used.

To create a named pipe, an application needs to call CreateNamedPipe(). This cre-
ates a pipe and returns a handle to the pipe. The same handle can be used for read or
write operations on the pipe, assuming the pipe was set up to allow the operation. This
function takes eight parameters; these are listed in Table 6.7.
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Table 6.7  Parameters Passed to CreateNamedPipe()

Parameter Type Comment

LPCWSTR The name of the pipe. This needs to be of the format
‘\\.\pipe\name’ where name is replaced by the desired name of
the pipe. Pipes on the local machine are specified using ‘\\.’. The
next part of the name is the ‘pipe\’ declaration, followed by the
actual name of the desired pipe.

DWORD The access mode for the pipe. The typical values of this flag will be
PIPE ACCESS DUPLEX, which creates a pipe that can be read or
written to; PIPE ACCESS INBOUND, which creates a pipe that can
only be read from; or PIPE ACCESS OUTBOUND, which creates a
pipe that can only be written to. PIPE ACCESS OUTBOUND and
PIPE ACCESS INBOUND need to be used as a pair in order to make
a successful connection.

DWORD The mode that the pipe operates. They can enable the pipe to carry
a stream of data or a stream of messages.

DWORD The number of instances allowed for the pipe. The value
PIPE UNLIMITED INSTANCES indicates that the maximum number
of instances is limited only by system resources.

DWORD The size in bytes of the output buffer. 

DWORD The size in bytes of the input buffer.

DWORD The timeout value for reads or writes. A value of zero uses the
default time out of 50ms.

LPSECURITY An optional pointer to security attributes that can be set if the 
ATTRIBUTES handle to the pipe should be inherited by child processes.

Once a pipe has been created, data can be sent through the pipe using the
WriteFile() call and read from the pipe using the ReadFile() call. The parameters
used in both calls are similar and are shown in Table 6.8.

Table 6.8  Parameters Passed to ReadFile() and WriteFile()

Parameter Type Comment

HANDLE The handle of the pipe

LPVOID The address of the buffer where data is to be stored if the call is to
ReadFile() or sent if the call is to WriteFile().

DWORD The size of the buffer for ReadFile() or the amount of data to be
sent for WriteFile().

LPDWORD Pointer to a variable where the amount of data is read or the amount
of data written will be recorded.

LPOVERLAPPED A pointer to an OVERLAPPED structure, the use of which would
enable the function call to return immediately and allow the process-
ing of the read or write to complete later.
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The pipe must be closed with a call to CloseHandle() once the application has fin-
ished using it.

Listing 6.30 shows an example of two threads using an anonymous pipe to communi-
cate. The pipe is created through a call to CreatePipe() that returns both a read and a
write handle for the pipe. 

Listing 6.30  Using an Anonymous Pipe to Communicate Between Two Threads

#include <windows.h>

#include <process.h>

HANDLE readpipe,writepipe;

unsigned int __stdcall stage1( void * param )

{

char buffer[200];

DWORD length;

for ( int i 0; i<10; i++ )

{

sprintf( buffer, "Text %i", i );

WriteFile( writepipe, buffer, strlen(buffer)+1, &length, 0 );

}

CloseHandle( writepipe );

return 0;

}

unsigned int __stdcall stage2( void * param )

{

char buffer[200];

DWORD length;

while ( ReadFile( readpipe, buffer, 200, &length, 0 ) )

{

DWORD offset 0;

while ( offset<length )

{

printf( "%s\n", &buffer[offset] );

offset +  strlen( &buffer[offset] )+1;

}

}

CloseHandle( readpipe );

return 0;

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE thread1,thread2;
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CreatePipe( &readpipe, &writepipe, 0, 0 );

thread1  (HANDLE)_beginthreadex( 0, 0, &stage1, 0, 0, 0 );

thread2  (HANDLE)_beginthreadex( 0, 0, &stage2, 0, 0, 0 );

WaitForSingleObject( thread1, INFINITE );

WaitForSingleObject( thread2, INFINITE );

getchar();

return 0;

}

The application in Listing 6.30 models a pipeline where one thread does the initial
processing before passing the data onto a second thread for more processing. In the code,
the first thread places text messages into the pipe using a call to WriteFile(). The sec-
ond thread receives and prints out these messages.

There is a slight complication in the processing necessary to handle messages placed
in a pipe. The pipe is a stream of bytes, so multiple messages become concatenated. The
thread that handles the incoming messages must have some additional processing to
ensure that all the messages in the buffer are processed before attempting to read the
next set of messages. Notice that in this simplified example, the buffer is large enough to
hold all the messages sent. In a more realistic example, the receiving thread would have
to handle the situation where one message was split between two reads from the pipe.

Communicating Using Sockets
The Windows Sockets API is based on the BSD Sockets API, so many of the calls are
very similar. There are some minor differences in setup. The most obvious differences are
the requirements for header files. Listing 6.31 shows the steps necessary to include the
networking sockets functions. The Windows header automatically includes the 1.1 ver-
sion of the Windows socket library. The #define WIN32 LEAN AND MEAN avoids the
inclusion of this header and allows the application to include the 2.0 version of the
Windows socket library. 

The Microsoft compiler also allows the source to contain a directive indicating which
libraries are to be linked into the executable. In this case, the library is ws2 32.lib; this
is more convenient than having to specify it on the command line. We also allocate a
global variable that will be used to store the handle of an event object. The event object
will be used to ensure that the server thread is ready before the client thread sends any
data.

Listing 6.31  Including the Header Files for Windows Sockets

#ifndef WIN32_LEAN_AND_MEAN

#define WIN32_LEAN_AND_MEAN

#endif

#include <windows.h>

#include <process.h>
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#include <winsock2.h>

#include <stdio.h>

#pragma comment( lib, "ws2_32.lib" )

HANDLE hEvent;

Listing 6.32 shows the code for the main thread. The first action that the main thread
needs to take is to start the Windows sockets library with a call into WSAStartup(); this
takes two parameters. The first parameter is the version number of the library that the
application requires; version 2.2 is current. The second parameter is the address of a 
WSADATA structure where the description of the sockets implementation will be stored.

Listing 6.32  The Main Thread Is Responsible for Starting Both the Client and 
Server Threads

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE serverthread, clientthread;

WSADATA wsaData;

WSAStartup( MAKEWORD(2,2), &wsaData );

hEvent  CreateEvent( 0, true, 0, 0 );

serverthread  (HANDLE)_beginthreadex( 0, 0, &server, 0, 0, 0 );

clientthread  (HANDLE)_beginthreadex( 0, 0, &client, 0, 0, 0 );

WaitForSingleObject( clientthread, INFINITE );

CloseHandle( clientthread );

CloseHandle( hEvent );

getchar();

WSACleanup();

return 0;

}

As previously mentioned, the code uses an event object to ensure that the server
thread starts up before the client thread sends a request. The event is created through a
call to CreateEvent(). The event is created unsignaled so that it can be signaled by the
server thread, and this signaling will enable the client thread to progress. The event is set
up to require a manual reset so that once it has been signaled, it remains in that state.
This ensures that any later client threads will not block on the event.

The main thread then starts the server thread and the client thread using calls to
beginthreadex(). It waits until the client thread completes before exiting. The final

action of the main thread is to call WSACleanup() to close down the sockets library.
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Listing 6.33 shows the code for the client thread. The client thread is going to send
data to the server and then print the response from the server. The client thread first
opens up a socket and then waits for the event object to become signaled, indicating that
the server is ready, before continuing. 

Listing 6.33  Code for the Client Thread

unsigned int __stdcall client( void * data )

{

SOCKET ConnectSocket = socket( AF_INET, SOCK_STREAM, 0 );

WaitForSingleObject( hEvent, INFINITE );

struct sockaddr_in server;

ZeroMemory( &server, sizeof(server) );

server.sin_family  AF_INET;

server.sin_addr.s_addr  inet_addr( "127.0.0.1" );

server.sin_port  7780;

connect( ConnectSocket, (struct sockaddr*)&server, sizeof(server) );

printf( "Sending 'abcd' to server\n" );

char buffer[1024];

ZeroMemory( buffer, sizeof(buffer) );

strncpy_s( buffer, 1024, "abcd", 5 );

send( ConnectSocket, buffer, strlen(buffer)+1, 0 );

ZeroMemory( buffer, sizeof(buffer) );

recv( ConnectSocket, buffer, 1024, 0 );

printf( "Got '%s' from server\n", buffer );

printf( "Close client\n" );

shutdown( ConnectSocket, SD_BOTH );

closesocket( ConnectSocket );

return 0;

}

The code uses the socket to connect to port 7780 on the localhost (localhost is
defined as the IP address 127.0.0.1). Once connected, it sends the string "abcd" to the
server and then waits to receive a string back from the server. Once it receives the
returned string, it shuts down the connection and then closes the socket.

Listing 6.34 shows the code for the server thread. The server thread does not actually
handle the response to any client thread. It exists only to accept incoming connections
and to pass the details of this connection onto a newly created thread that will handle
the response.
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Listing 6.34  Code for the Server Thread

unsigned int __stdcall server( void * data )

{

SOCKET newsocket; 

SOCKET ServerSocket   socket( AF_INET, SOCK_STREAM, 0 ); 

struct sockaddr_in server;

ZeroMemory( &server, sizeof(server) );

server.sin_family  AF_INET; 

server.sin_addr.s_addr  INADDR_ANY; 

server.sin_port  7780; 

bind( ServerSocket,(struct sockaddr*)&server, sizeof(server) );

listen( ServerSocket, SOMAXCONN ); 

SetEvent(hEvent);

while ( (newsocket = accept( ServerSocket, 0, 0) )! INVALID_SOCKET )

{

HANDLE newthread;

newthread (HANDLE)_beginthread( &handleecho, 0, (void*)newsocket);

}

printf( "Close server\n" );

shutdown( ServerSocket, SD_BOTH );

closesocket( ServerSocket );

return 0;

}

Listing 6.35 shows the code for the thread that will actually respond to the client.
This thread will loop around, receiving data from the client thread and sending the same
data back to the client thread until it receives a return value that indicates the socket has
closed or some other error condition. At that point, the thread will shut down and close
the socket.

Listing 6.35  Code for the Echo Thread

void handleecho( void * data )

{

char buffer[1024];

int count;

ZeroMemory( buffer, sizeof(buffer) );

int socket (int)data;

while ( (count = recv( socket, buffer, 1023, 0) ) >0 )

{
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printf( "Received %s from client\n", buffer );

int ret  send( socket, buffer, count, 0 );

}

printf( "Close echo thread\n" );

shutdown( socket, SD_BOTH );

closesocket( socket );

}

The first activity of the server thread is to open a socket. It then binds this socket to
accept any connections to port 7780. The socket also needs to be placed into the listen
state; the value SOMAXCONN contains the maximum number of connections that will be
queued for acceptance. Once these steps have been completed, the server thread signals
the event, which then enables the client thread to attempt to connect.

The main thread then waits in a loop accepting connections until it receives a con-
nection identified as INVALID SOCKET. This will happen when the Windows socket
library is shut down and is how the server thread will exit cleanly when the other thread
exits. 

Every time the server thread accepts a connection, a new thread is created, and the
identification of this new connection is passed into the newly created thread. It is impor-
tant to notice that the call to create the thread that will actually handle the work is
_beginthread(). The beginthread() call will create a new thread that does not
leave resources that need to be cleaned up with a call to CloseHandle() when it exits.
In contrast, the client and server threads were created by the master thread with a call to
beginthreadex(), which means that they will have resources assigned to them until a

call to CloseHandle() is made.
When the loop finally receives an INVALID SOCKET, the server thread shuts down

and then closes the socket.
The code for Windows is sufficiently similar to that for Unix-like operating systems

that it is possible to convert between the two. Although the example program is rela-
tively simple, it illustrates the key steps necessary for communication between two
threads, two processes, or two systems.

Atomic Updates of Variables
The Windows API provides a large number of atomic operations, which are referred to
in Windows terminology as interlocked functions. For the full list of functions, refer to the
Windows documentation. An example of one such function is
InterlockedExchangeAdd(), which atomically adds a value to a variable of type LONG
(in Windows a long variable is 32 bits in size, and a LONGLONG is 64 bits in size; the size
does not change depending on whether the application is 32-bit or 64-bit). Listing 6.36
shows an example of using InterlockedExchangeAdd() to atomically increment a
variable by ten.
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Listing 6.36  Example of Using InterlockedAdd()

#include <windows.h>

void update( LONG* value )

{

InterlockedExchangeAdd( value, 10 );

}

The range of atomic operations available encompasses and, or, xor, add, increment, and
decrement. All the functions are available for long and longlong data types; some of
them are also available for smaller data types like char.

There are also some functions that modify the variable and return the old value.
InterlockedCompareExchange() performs a compare and swap operation where if
the value of the variable matches the expected value, the value of the variable is
exchanged with a new value. InterlockedBitTestAndSet() returns the value of a
specified bit in the variable and sets its new value to one. Similarly,
InterlockedBitTestAndReset() provides the same return value but sets the new
value to zero.

The code in Listing 6.37 creates two threads and uses InterlockedIncrement() to
increment the variable counter shared between the two threads. This approach is lower
latency than using a mutex or some other synchronization mechanism.

Listing 6.37  Using Atomic Operations to Protect a Shared Variable

#include <math.h>

#include <stdio.h>

#include <windows.h>

#include <process.h>

int isprime( int number )

{

int i;

for (i  2; i < (int)( sqrt( (float)number )+1.0 ); i++ )

{

if ( number%i  0) { return 0; }

}

return 1;

}

volatile long counter  0;

unsigned int __stdcall test( void * )

{

while ( counter<100 )

{
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int number = InterlockedIncrement( &counter );

printf( "ThreadID %i; value  %i, is prime  %i\n",

GetCurrentThreadId(), number, isprime(number) );

}

return 0;

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE h1, h2;

h1  (HANDLE)_beginthreadex( 0, 0, &test, (void*)0, 0, 0);

h2  (HANDLE)_beginthreadex( 0, 0, &test, (void*)0, 0, 0);

WaitForSingleObject( h1, INFINITE );

WaitForSingleObject( h2, INFINITE );

CloseHandle( h1 );

CloseHandle( h2 );

getchar();

return 0;

}

Most of these functions enforce full memory ordering, so all memory operations
prior to the call become visible to other processors before the atomic operation com-
pletes and any operations performed after the atomic operation becomes visible to other
processors as happening after the atomic operation.

Allocating Thread-Local Storage
Thread-local storage enables each thread in an application to store private copies of data.
Each thread accesses the data in the same way but cannot see the values held by other
threads. In essence, it is “global” data that has scope limited to the executing thread.

There are two approaches to thread-local storage. The easiest approach is to use the
declspec(thread) specifier to allocate a thread-local variable. Listing 6.38 shows an

example of this. In this code, each thread holds the value passed into it in a thread-local
variable.

Listing 6.38  Using declspec(thread) to Allocate a Thread-Local Variable

#include <windows.h>

#include <process.h>

__declspec(thread) int number=0;

unsigned int __stdcall work( void *param )

{

number  (int)param;
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printf( "Number  %i\n", number );

return 0;

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE hthreads[8]; 

for (int i 0; i<8; i++) 

{ 

hthreads[i] (HANDLE) _beginthreadex(0, 0, &work, (void*)i, 0, 0 ); 

}

WaitForMultipleObjects( 8, hthreads, 1, INFINITE );

for (int i 0; i<8; i++) { CloseHandle( hthreads[i] ); }

getchar();

return 0;

}

An alternative approach is to use the thread-local storage API. A global index needs to
be allocated by a call to TlsAlloc(). This index is shared between all threads, but the
data that each thread stores in the index will be private to the calling thread. The call
TlsFree() can be used to release a global index when the thread-local storage that it
provides is no longer needed.

Each thread can store data at the index with a call to TlsSetValue() and can read
the thread-local data with a call to TlsGetValue().

In Listing 6.39, thread-local storage is used to hold the value passed into each thread.
When each thread is created, it gets passed a unique value. This value is stored in thread-
local storage by the routine setdata(). The routine getdata() retrieves the thread-local
value. Each thread calls setdata() and then sleeps for a second to allow the other
threads to run before retrieving the data with a call to getdata().

Listing 6.39  Using Thread-Local Storage

#include <windows.h>

#include <process.h>

#include <stdio.h>

DWORD TLSIndex;

void setdata( int value )

{

printf( "Thread %i: Set value  %i\n", GetCurrentThreadId(), value );

TlsSetValue( TLSIndex, (void*)value );

}
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void getdata()

{

int value;

value = (int)TlsGetValue( TLSIndex );

printf( "Thread %i: Has value  %i\n", GetCurrentThreadId(), value );

}

unsigned int __stdcall workerthread( void * data )

{

int value  (int)data;

printf( "Thread %i: Got value  %i\n", GetCurrentThreadId(), value );

setdata( value );

Sleep( 1000 );

getdata();

return 0;

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE handles[8];

TLSIndex = TlsAlloc();

for (int i 0; i<8; i++)

{

handles[i]  (HANDLE)_beginthreadex( 0, 0, &workerthread,

(void*)i, 0, 0 );

}

for (int i 0; i<8; i++)

{

WaitForSingleObject( handles[i], INFINITE );

}

TlsFree( TLSIndex );

getchar();

return 0;

}

Setting Thread Priority
Windows uses a priority system to determine which thread gets the next slice of CPU
resources. The higher the priority of a thread, the more CPU time it will get, and con-
versely a thread with a low priority will get fewer CPU resource than other higher-
priority threads. In some instances, it can be useful to adjust the priority of different
threads in an application. The obvious example is when the application is performing a
long-running background task. A background task is best run at a low priority in order
to keep the machine responsive, while a high-priority background task could consume
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all the CPU resources over a long period of time and stop the machine from performing
other short-lived compute-intensive tasks. 

Consider burning a CD or DVD. Here the system needs to keep feeding data to the
burner, and any interruption to the data stream could cause an error resulting in an
unusable disk being written. To avoid this, it might be appropriate to run the burning
application at a higher than usual priority level.

The function that sets the priority of the thread is SetThreadPriority(), which
takes a handle to the thread plus the desired priority level. There is a corresponding
function GetThreadPriority() that takes a handle to a thread and returns the priority
level of that thread.

Listing 6.40 shows code that manipulates the priority levels of two threads to ensure
that one of the threads gets more CPU resources than the other. All threads are created
with a priority level of THREAD PRIORITY NORMAL. The slow thread is created first and
sets its own priority to be below normal. Then the fast thread is created, and it sets its
own priority level to be above normal. The slow thread is created first in order to give it
the chance to complete first. On a system with one core, the slow thread will get less CPU
resources than the fast thread and will therefore complete later. On an idle multicore sys-
tem, both threads will be scheduled simultaneously so they will complete at the same time.

Listing 6.40  Setting Thread Priority

#include <windows.h>

#include <process.h>

unsigned int __stdcall fastthread( void * data )

{

double d 0.0;

printf( "Fast thread started\n" );

SetThreadPriority( GetCurrentThread(), THREAD_PRIORITY_ABOVE_NORMAL );

for (int i 0; i<100000000; i++)

{

d +  d;

}

printf( "Fast thread finished\n" );

return 0;

}

unsigned int __stdcall slowthread( void * data )

{

double d 0.0;

printf( "Slow thread started\n" );

SetThreadPriority( GetCurrentThread(), THREAD_PRIORITY_BELOW_NORMAL );

for (int i 0; i<100000000; i++)

{

d +  d;

}
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printf( "Slow thread finished\n" );

return 0;

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE hfast,hslow;

hslow  (HANDLE)_beginthreadex( 0, 0, &slowthread, 0, 0, 0 );

hfast  (HANDLE)_beginthreadex( 0, 0, &fastthread, 0, 0, 0 );

WaitForSingleObject( hfast, INFINITE );

WaitForSingleObject( hslow, INFINITE );

getchar();

return 0;

}

One of the issues caused by adjusting the priority of threads (or processes) is priority
inversion, which occurs when a higher-priority thread ends up waiting for a lower-priority
thread to complete some task. The classic example of this is when a lower-priority thread
enters a critical region but because of its priority ends up taking a long time to exit the
critical region. While this is happening, a higher-priority thread can be waiting to enter
the critical region. 

Summary
The Windows threading API provides support for threads, shared memory, and synchro-
nization primitives. At the end of this chapter, you should feel comfortable with the
various methods of creating threads and have an appreciation of where they might be
appropriately used. You should also understand the various synchronization methods
supported and be able to see the commonality with the objects provided as part of the
POSIX standard.
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7
Using Automatic Parallelization

and OpenMP

Previous chapters have covered low-level approaches to creating processes or threads
and sharing data between them. Fortunately, many approaches enable the developer to
focus on higher levels of application design and leave the mechanics of managing threads
and sharing data to runtime libraries and the compiler. In an ideal case, the compiler
manages everything, from identifying parts of the code to run in parallel through provid-
ing the mechanisms to support that parallelism. However, without some help from the
developer, current compiler technology will rarely be able to exploit all the parallelism in
an application. The most commonly used and commonly available language extension
for parallelism is the OpenMP API.1

The OpenMP specification defines an API that enables a developer to add directives
to their serial code that will cause the compiler to produce a parallel version of the
application. This chapter describes both automatic parallelism provided by many compil-
ers and how the OpenMP API can produce parallel applications from serial codes.

Using Automatic Parallelization to Produce a
Parallel Application
Most compilers are able to perform some degree of automatic parallelization. In an ideal
world, automatic parallelization would be just another compiler optimization, but cur-
rently there are significant limitations on what can be achieved. This is undoubtedly an
area that will improve in time. However, in many instances, it is possible to assist the
compiler in making the code parallel. 

In this section, we will explore the ability of both the Oracle Solaris Studio and Intel
compilers to perform automatic parallelization. As well as the ability to perform auto-
matic parallelization, it is also important for the compilers to be able to provide feedback

1. www.openmp.org
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on which parts of the code were parallelized and what inhibited parallelization of other
regions of code.

Current compilers can only automatically parallelize loops. Loops are a very good tar-
get for parallelization because they are often iterated, so the block of code will therefore
accumulate significant time. As previously discussed, any parallel region must perform
significant work to overcome any costs that the parallelization incurs. 

Listing 7.1 shows a simple example of a loop that might be automatically parallelized.

Listing 7.1  Code to Set Up a Vector of Double-Precision Values

#include <stdlib.h>

void setup( double *vector, int length )

{

int i;

for ( i=0; i<length; i++ )       // Line 6

{

vector[i] += 1.0;

}

}

int main()

{

double *vector;

vector  (double*)malloc( sizeof(double)*1024*1024 );

for ( int i 0; i<1000; i++ )     // Line 16

{

setup( vector, 1024*1024 );

}

}

The Solaris Studio C compiler uses the flag xautopar to enable automatic paral-
lelization and the flag xloopinfo to report information on the degree of parallelization
obtained. Listing 7.2 shows the results of compiling this code snippet.

Listing 7.2  Compiling Code with Autopar

$ cc -g -xautopar -xloopinfo -O -c omp_vector.c

"setvector.c", line 6: PARALLELIZED, and serial version generated

"setvector.c", line 16: not parallelized, call may be unsafe

There are two loops in the code, and although the compiler has managed to paral-
lelize the first loop, it has not been able to parallelize the second loop. The compiler
reports that the function call in the second loop stopped the parallelization of the loop.
We will discuss avoiding this problem later in the section.
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The Intel compiler uses the option parallel to enable parallelization and the option
par report to report its success. The compiler also has the option par threshold{n},

which controls the threshold at which the compiler will parallelize a loop. The option 
par threshold0 will make the compiler parallelize all candidate loops; the default of
par threshold100 indicates that the compiler should parallelize only those loops that

are certain to benefit. Listing 7.3 shows the output from the Intel compiler on the same
source file. The flag fno inline functions disables function inlining in the compiler
and ensures that the generated code is the same for the two compilers.

Listing 7.3  Automatic Parallelization Using the Intel Compiler

$ icc -std=c99 -O -parallel -par-report1 -par-threshold0 \

-fno-inline-functions omp_vector.c

omp_vector.c(6): (col. 3) remark: LOOP WAS AUTO-PARALLELIZED.

The number of parallel threads used in the loop is controlled by the environment
variable OMP NUM THREADS. Listing 7.4 shows the performance of the code when run
with one and two threads. It is useful to examine the time reported for the serial and
parallel codes. The user time is the same in both instances, which indicates that the two
codes did the same amount of work. However, the real, or wall, time is less for the paral-
lel version. This is to be expected. Spreading a constant amount of work over two
threads would ideally lead to each thread completing half the work. 

Listing 7.4  Performance of the Parallel Code with One and Two Threads

$ export OMP_NUM_THREADS=1

$ timex a.out

real           3.55

user           3.55

sys            0.02

$ export OMP_NUM_THREADS=2

$ timex a.out

real           2.10

user           3.55

sys            0.04

As a more complex example of automatic parallelization, consider the loop in 
Listing 7.5, which multiplies a matrix by a vector and places the result in a second vector.

Listing 7.5  Code to Multiply a Matrix by a Vector

void matVec( double **mat, double *vec, double *out, 

int *row, int *col )

{

int i, j;

for ( i 0; i<*row; i++ )          // Line 5
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{

out[i] 0;

for ( j 0; j<*col; j++ )       // Line 8

{

out[i] +  mat[i][j] * vec[j];

}

}

}

Listing 7.6 shows the results of compiling this code with the Solaris Studio compiler. 

Listing 7.6  Compiling Code with Autopar

$ cc -g -xautopar -xloopinfo -O -c fploop.c

"fploop.c", line 5: not parallelized, not a recognized for loop

"fploop.c", line 8: not parallelized, not a recognized for loop

The compiler does not recognize either of the for loops as loops that can be paral-
lelized. The reason for this is the possibility of aliasing between the store to out[i] and
the values used to determine the loop bound, *row and *col. A requirement for the
compiler to automatically parallelize the loop is that the loop bounds must remain con-
stant. A store to either of the loop boundaries would violate that restriction. Therefore, it
is not a form of loop that can be automatically parallelized. As a programmer, it would
be unusual to write code that relies on stores to elements in the array changing the loop
boundaries, but for the compiler, the only safe assumption is that these might alias. 

The most general-purpose way of correcting this is to place the loop limits into local
temporary variables. This removes the possibility that the loop limit might alias with one
of the stores in the loop. For the code shown in Listing 7.5, it is easy to perform the
equivalent change and pass the loop bounds by value rather than passing them as point-
ers to the values. Listing 7.7 shows the modified loop.

Listing 7.7  Code Modified to Avoid Aliasing with Loop Counter

void matVec( double **mat, double *vec, double *out, 

int row, int col )

{

int i, j;

for ( i 0; i<row; i++ )          // Line 5

{

out[i] 0;

for ( j 0; j<col; j++ )       // Line 8

{

out[i] +  mat[i][j] * vec[j];

}

}

}
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Listing 7.8 shows the output from the compiler when this new variant of the code is
compiled.

Listing 7.8  Compiling Modified Code with Automatic Parallelization

$ cc -g -xautopar -xloopinfo -O -c fploop.c

"fploop.c", line 5: not parallelized, unsafe dependence

"fploop.c", line 8: not parallelized, unsafe dependence

The code modification has enabled the compiler to recognize the loops as candidates
for parallelization, but the compiler has hit a problem because the elements pointed to
by out might alias with the elements pointed to either by the matrix, mat, or by the
vector, vec. One way to resolve this is to use a restrict-qualified pointer to hold the
location of the output array. Listing 7.9 shows the modified code for this.

Listing 7.9  Using Restrict-Qualified Pointer for Address of Output Array

void matVec(double **mat, double *vec, double * restrict out, 

int row, int col)

{

int i,j;

for (i 0; i<row; i++)           // Line 5

{

out[i] 0;

for (j 0; j<col; j++)        // Line 8

{

out[i]+ mat[i][j]*vec[j];

}

}

}

After this adjustment to the source code, the compiler is able to produce a parallel
version of the loop, as shown in Listing 7.10.

Listing 7.10  Compiling Code Containing Restrict-Qualified Pointer

$ cc -g -xautopar -xloopinfo -O -c fploop.c

"fploop.c", line 5: PARALLELIZED, and serial version generated

"fploop.c", line 8: not parallelized, unsafe dependence

The Solaris Studio compiler generates two versions of the loop, a parallel version and
a serial version. At runtime, the compiler will determine whether the trip count of the
loop is high enough for the parallel version to run faster than the serial version. 

The compiler reports that the loop at line 8 in Listing 7.9 has an unsafe dependence;
the reason for this decision will be discussed in the next section, “Identifying and
Parallelizing Reductions.”
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Of the two loops in the code, the compiler parallelizes the outer loop but not the
inner loop. This is the best decision to make for performance. The threads performing
the work in parallel need to synchronize once the parallel work has completed. If the
outer loop is parallelized, then the threads need to synchronize only once the outer loop
has completed. If the inner loop were to be made parallel, then the threads would have
to synchronize every time an iteration of the outer loop completed. The number of syn-
chronization events would equal the number of times that the outer loop was iterated.
Hence, it is much more efficient to make the outer loop parallel.

Identifying and Parallelizing Reductions
When a loop reduces a large amount of data down to a smaller set of values, the opera-
tion is called a reduction. The classic example of a reduction is computing the sum of an
array of numbers, as shown in Listing 7.11.

Listing 7.11  Calculating the Sum of an Array of Numbers

double sum( double* array, int length )

{
double total 0;

int i;

for ( i 0; i<length; i++ )

{

total +  array[i];

}

return total;

}

To create a reduction in parallel, the reduction operator needs to be commutative—
performing the operations in a different order must not cause an incorrect result. The
possible reduction operations are addition, subtraction, multiplication, and the logical
operations, such as AND or OR, as well as the operations MIN and MAX when applied to an
array of numbers.

However, some operations on floating-point numbers cannot be reordered without
causing some potential numeric differences to the output. The addition of floating-point
values is a good example of this. There are situations where adding A and B and then C
will give a different numeric value than adding C and A and then B. The order of the
operations is important. This is not a problem unique to parallel codes; serial codes have
the same ordering constraints. However, for parallel codes, this constraint may stop a
compiler from producing a parallel version of a code construct.

To consider a contrived example, assume you have an array of floating point numbers
sorted from the largest element to the smallest element. When you sum the elements in
this array, the value may reach a point where the sum has become so large that adding
the small elements onto this sum causes no impact, because the increase is less than can
be registered as an increase in the variable holding the total. 
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Suppose you take this same array and use two threads to compute the result. Each
thread computes a partial total over half of the range of numbers. The first thread calcu-
lates the sum of the first half of the array, which contains the list of the large numbers.
The second thread calculates the sum of the second half of the array, which contains the
list of the small numbers. Now the second thread will compute a much smaller value for
its partial total. When two small positive values are added together, it is more likely that
the result is greater than the largest of the two values. In contrast, if a small value is
added to a much larger value, it is likely that the result will be identical to the larger
value. The consequence of this is that the small values will accumulate and be recorded
in the summation computed by the second thread.

At the end of the parallel region, the values from both threads are added to produce
the final result. The value that the second thread computes is potentially large enough to
cause a small change in value when added to the large result from the first thread. The
result in the computation by using two threads is likely to be different from the result
computed using only one thread. The difference might only be in the smallest significant
figure, or it might even be a rounding difference. But, the result could potentially be
different.

Some compilers place the decision of whether to perform reductions under the con-
trol of the user. The Solaris Studio compiler requires that the user specify the flag 
xreduction to parallelize reduction operations. The Intel compiler does not require 

an additional flag to recognize reductions. We can see the results of using this flag on the
code from Listing 7.5 in the output shown in Listing 7.12.

Listing 7.12  Parallelization of Reduction Operations

$ cc -g -xautopar -xloopinfo -xreduction -O -c fploop.c

"fploop.c", line 5: PARALLELIZED, and serial version generated

"fploop.c", line 8: not parallelized, not profitable

The compiler output shows that it recognized the inner loop at line 8 and did not
declare it an unsafe dependency. Instead, the loop is reported as not being profitable to
parallelize. This is the expected behavior; as we have previously discussed, it is much
more effective to parallelize the outer loop and leave the inner loop as serial code.

Reductions are present in many codes, and it is usually appropriate to parallelize them
as long as the developer is aware that this may cause a difference in the generated results.

Automatic Parallelization of Codes Containing Calls
We discussed the impact made on performance by calls to other routines in Chapter 2,
“Coding for Performance.” The basic problem with calling another function is that the
compiler has no idea what that routine might do—it could change global data or per-
haps never return. For this reason, a loop that contains function calls cannot, in general,
be automatically parallelized.
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Obviously, this restriction would preclude a large number of loops that could other-
wise be safely parallelized. The most obvious place where this would be a problem
would be in calling mathematical functions. This limitation can be demonstrated using
the modified version of the matrix-vector code from Listing 7.9. Listing 7.13 shows this
modified code.

Listing 7.13  Modified Matrix-Vector Code That Makes a Function Call

#include <math.h>

void matVec( double **mat, double *vec, double * restrict out, 

int row, int col )

{

int i,j;

for ( i 0; i<row; i++ )     // Line 7

{

out[i] 0;

for ( j 0; j<col; j++ )  // Line 10

{

out[i] +  sin( mat[i][j] * vec[j] );

}

}

}

When compiled, the call to sin() causes automatic parallelization to fail, as shown in
Listing 7.14.

Listing 7.14  Automatic Parallelization Failing in the Presence of a Function Call

$ cc -g -xautopar -xloopinfo -O -c fploops.c

"fploops.c", line  7: not parallelized, call may be unsafe

"fploops.c", line 10: not parallelized, call may be unsafe

The Solaris Studio compiler considers sin() to be a “built-in” function, but because
a developer might provide an alternative implementation or perhaps interpose on the
function calls, it does not recognize these calls unless specifically told to do so. The flag
to enable recognition of built-in functions is xbuiltin. When this flag is provided, the
output from the compiler is shown in Listing 7.15.

Listing 7.15  Automatic Parallelization Recognizing Call to sin() as Safe

$ cc -g -xbuiltin -xautopar -xloopinfo -O -c fploops.c

"fploops.c", line  7: PARALLELIZED, and serial version generated

"fploops.c", line 10: not parallelized, unsafe dependence
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However, calls to mathematical functions represent a small proportion of the calls that
might be encountered in loops. There is no standard way to denote that a call to a par-
ticular function can be safely made in parallel, although individual compilers might
implement mechanisms that could be used. The best way to enable a loop containing a
function call to be parallelized automatically is by inlining the function. Inlining replaces
a call to a function with the actual code for the called function. Function inlining can be
enabled with a general compiler flag or a flag enabling a specific routine to be inlined.
Listing 7.16 shows a variant of the code where part of the calculation is performed by a
routine.

Listing 7.16  Code Where Part of the Calculation Is Performed by Another Function

#include <math.h>

double calc( double a, double b )

{

return a * b;

}

void matVec( double **mat, double *vec, double * restrict out, 

int row, int col )

{

int i,j;

for ( i 0; i<row; i++ )         // Line 12

{

out[i] 0;

for ( j 0; j<col; j++ )      // Line 15

{

out[i] +  calc( mat[i][j], vec[j] );

}

}

}

When this code is compiled, the compiler fails to automatically parallelize the loops
because they contain a call that may be unsafe. However, when the code is compiled at
an optimization level of xO4 or higher, the compiler automatically performs inlining
optimizations, which eliminates the call and allows the loop to be parallelized. This is
shown in Listing 7.17.

Listing 7.17  Inlining Enables the Compiler to Automatically Parallelize Loop

$ cc -g -xautopar -xloopinfo -xO4 -c fploops.c

"fploop.c", line 12: PARALLELIZED, and serial version generated

"fploop.c", line 15: not parallelized, unsafe dependence
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Assisting Compiler in Automatically Parallelizing Code
The code shown in Listing 7.18 has a potential aliasing issue. Changes to the elements in
the array myarray might also change the value pointed to by length if it happens to be
a member of myarray.

Listing 7.18  Incrementing All the Values Held in an Array of Numbers

void sum( double* myarray, int *length )

{
int i;

for ( i 0; i<*length; i++ )

{

myarray[i] +  1;

}

}

It is possible to modify the code so that a compiler can automatically parallelize it.
One way to resolve this would be to specify that length was a restrict-qualified
pointer so that the compiler would know that stores to array would not alter the value
pointed to by length. Another approach would be to place the value pointed to by
length into a temporary variable. This second approach has an advantage in that it does
not rely on support for the restrict keyword.

In many situations, the compiler will be able to parallelize loops if some of the poten-
tial aliasing issues are resolved using temporary variables or type casting using restrict-
qualified pointers. The code shown in Listing 7.19 exhibits a number of potential aliasing
issues.

Listing 7.19  Code That Passes Data Using Structures

typedef struct s

{

int length;

double *array1, *array2;

} S;

void calc( S *data )

{
int i;

for ( i 0; i < data->length; i++ )       // Line 10

{

data->array1[i] +  data->array2[i];    // Line 12

}

}

254 Chapter 7 Using Automatic Parallelization and OpenMP



The first issue that the compiler finds is that it fails to recognize the loop at line 10 as
one that can be parallelized. This is because changes to data >array1 might change the
value of the variable data >length. The problem is that the compiler cannot know
how many iterations of the loop will be performed, so it cannot divide those iterations
between multiple threads. This issue can be resolved by taking a local copy of the vari-
able data >length and using that as the loop iteration limit. 

This converts the loop into one that can be recognized by the compiler, but the com-
piler is still unable to parallelize it because there is potential aliasing between reads from
data >array2 and writes to data >array1. This issue can be resolving by making
local restrict qualified pointers that point to the two arrays. Listing 7.20 shows the
modified source.

Listing 7.20  Modified Code That Passes Data Using Structures

typedef struct s

{

int length;

double * array1, *array2;

} S;

void calc( S *data )

{
int i;

int length = data->length;

double * restrict array1 = data->array1;

double * restrict array2 = data->array2;

for (i 0; i < length; i++)

{

array1[i] +  array2[i];

}

}

In some instances, the compiler may be able to use versioning of the loop to automati-
cally parallelize code similar to that in Listing 7.19. The compiler produces multiple ver-
sions of the loop, and the appropriate version is selected at runtime. A serial version of
the loop is used when there is aliasing between stores to memory in the loop and vari-
ables used by the loop. In the code in Listing 7.19, the stores to data >array1 might
alias with data >array2, data >length, or the structure pointed to by data. A paral-
lel version is generated for use when there is no such aliasing.

The techniques to improve the chance that a compiler can automatically parallelize
an application can be summarized as follows:

n By default, most compilers will assume that all pointers may alias. This can be
resolved by making local copies of invariant data, by specifying a stronger aliasing
assumption, or by declaring pointers with the restrict keyword.
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n The compiler may require additional flags for it to produce parallel versions of all
loops. This may be a flag to give it permission to perform parallelization of reduc-
tions, such as the xreduction flag needed by the Solaris Studio compiler.
Alternatively, it may be a flag that alters the threshold at which the compiler will
consider a loop profitable to parallelize. For example, the Intel compiler has the 
par threshold0 flag. Finally, there may be additional flags for the compiler to

recognize loops containing calls to intrinsic functions as being safe to parallelize;
the Solaris Studio compiler requires the xbuiltin flag for this purpose.

n Compilers cannot parallelize loops containing calls to functions unless they are
certain that the function calls are without side effects. In some cases, there may be
compiler directives that can be placed into the source code of the application to
provide this assertion. In other cases, it may be possible to force the compiler to
inline the function, which would then enable it to parallelize the resulting loop.

From this section, it should be apparent that compilers are able to automatically extract
some parallelism from a subset of applications. The size of the subset can be increased
using the feedback provided by the compiler and some of the techniques described here.
However, the ability of current compilers to perform automatic parallelization is limited,
and some of the source code changes proposed here may reduce the clarity of the source
code.

Alternatively, the OpenMP API provides a way to expose the parallelism in a code by
making minimal changes to the source code. With most compilers, it can be used in
addition to automatic parallelization so that more of the application can be parallelized.

Using OpenMP to Produce a Parallel Application
With OpenMP, directives in the source code are used to express parallel constructs. These
directives start with the phrase #pragma omp.  Under appropriate compilation flags, they
are read by the compiler and used to generate a parallel version of the application. If the
required compiler flags are not provided, the directives are ignored. The OpenMP API
specification details these directives as well as library calls to determine or modify runtime
parameters such as the current number of threads. As we saw in Chapter 3, “Identifying
Opportunities for Parallelization,” a benefit of using OpenMP directives is that it sepa-
rates the parallelism from the algorithm. The code can be read without having to worry
about how the parallelization is implemented. Some other advantages to using OpenMP
are as follows:

n The directives are recognized only when compiled with a particular compiler flag,
so the same source base can be used to generate the serial and parallel versions of
the code. This simplifies debugging since it is relatively easy to determine whether,
for a given problem, the parallel version produces a different answer to the serial
version and therefore whether a bug is because of the parallelization or the origi-
nal algorithm.
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n Each directive is limited in scope to the region of code to which it applies.
Consequently, the developer can focus on making the critical section of the code
parallel without having to be concerned about changing the rest of the code to
support this parallelization. This is often referred to as the ability to perform
incremental parallelization.

n Possibly the biggest advantage is that the compiler and supporting library are
responsible for all the parallelization work and the runtime management of
threads.

It is probably easiest to demonstrate the use of OpenMP directives through the simple
example shown in Listing 7.21. The OpenMP directive is indicated in bold.

Listing 7.21  Loop Parallelized Using OpenMP

void calc( double* array1, double * array2, int length )

{
#pragma omp parallel for

for ( int i 0; i<length; i++ )

{

array1[i] +  array2[i];

}

}

The code in Listing 7.21 shows how the OpenMP directive can be placed above the
loop to which it applies. The OpenMP directive places the burden of ensuring the code
is safe to execute in parallel on the developer, not on the compiler. Although the com-
piler will produce a parallel version of the loop, it is up to the developer to ensure that
this is a safe optimization to make. An instance of where this might be unsafe is if the
two arrays had some degree of overlap, then the parallel version might not produce the
same result as the serial version.

The OpenMP directive has three parts:
n #pragma omp indicates to the compiler that what follows is an OpenMP directive.
n parallel tells the compiler to start a new parallel region. Unless otherwise speci-

fied, all the threads will execute the code in the parallel region.
n for tells the compiler that the next for loop should be executed in parallel.

Multiple threads will work on independent parts of the range of iterations. At the end
of the loop, the threads will wait until all the iterations have completed before the next
part of the code is executed.

The statement given in this code snippet is the simplest possible example, but it illus-
trates exactly what the OpenMP specification aims to achieve.
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Using OpenMP to Parallelize Loops
OpenMP places some restrictions on the types of loops that can be parallelized. The
runtime library needs to be able to determine the start points and end points for the
work assigned to each thread. Consequently, the following constraints are needed:

n The loop has to be a for loop of this form:

for (init expression; test expression; increment expression)

n The loop variable needs to be of one of the following types: a signed or unsigned
integer, a C pointer, or a C++ random access iterator.

n The loop variable needs to be initialized to one end of the range.
n The variable needs to be incremented (or decremented) by a loop invariant

increment.
n The test expression needs to be one of >, >=, <, or <=. The comparison needs to

be with a loop invariant value. 

Under these conditions, it is possible for the runtime to take the loop and partition
the iteration ranges to the threads completing the work. Loops that do not adhere to
these specifications will need to be restructured before they can be parallelized using an
OpenMP parallel for construct.

Runtime Behavior of an OpenMP Application
OpenMP works using a combination of compiler support plus a runtime library. The
compiler uses the directives in the source code to produce appropriate blocks of code
together with the necessary calls into the runtime library.

For example, when the compiler encounters a directive defining a parallel region, the
compiler will produce a new block of code that will be executed by the threads in paral-
lel. The runtime library is responsible for assigning the work to the various threads.

OpenMP follows a fork-join type model. The runtime library will create a team of
threads. When a parallel region is encountered, the work will be divided between mem-
bers of this team of threads. At the end of the region, the original thread, called the mas-
ter thread, will continue executing the code after the region. The other threads, called the
worker threads, will wait until the master thread reaches the next parallel region and new
work is assigned to them. The number of threads that will be used is set by the environ-
ment variable OMP NUM THREADS, but this can be adjusted by the application at runtime
by calls into the runtime support library. For example, consider the code in Listing 7.22. 

Listing 7.22  OpenMP Parallel Region

#include <stdio.h>

void main()

{
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#pragma omp parallel

{

printf( "Thread\n" );

}

}

When compiled and run, each thread of the number of threads specified by
OMP NUM THREADS will execute the parallel region. For the Solaris Studio compiler to
recognize the OpenMP directives, it needs the flag xopenmp. The flag xloopinfo tells
the compiler to provide information about the parallelization it has undertaken. Listing
7.23 shows the output of compiling and running this program. Each of the two threads
executes the parallel region and prints the output Thread.

Listing 7.23  OpenMP Parallel Region

$ cc -O -xopenmp -xloopinfo omptest.c

$ export OMP_NUM_THREADS=2

$ ./a.out

Thread

Thread

Variable Scoping Inside OpenMP Parallel Regions
One of the trickier aspects of parallelization is the scoping of variables used in the paral-
lel region. In Listing 7.24, there are four variables used in the parallel region: i, length,
array1, and array2. The variables can be scoped either as shared, so each thread shares
the same variable, or as private, where each thread gets its own copy of the variable. 

The loop counter i needs to be private to each thread so that each thread gets its
own copy of the variable. The variables array1 and array2 are shared. Each thread
works on a separate range of values, so there is no actual sharing of data. The variable
length is also shared between the threads, but since it is not modified, it does not mat-
ter whether it is scoped as shared or private. It is possible to see how the Solaris Studio
compiler has scoped these variables using the code analysis tool er src on the gener-
ated object file, as shown in Listing 7.24.

Listing 7.24  Using er src to Examine Variable Scoping for Parallel Region

% cc -c -g -O -xopenmp -xloopinfo omploop.c

"omploop.c", line 4: PARALLELIZED, user pragma used

% er_src omploop.o

...

1. void calc( double * array1, double * array2, int length )

2. {

<Function: calc>
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Source OpenMP region below has tag R1

Private variables in R1: i

Shared variables in R1: array2, length, array1

3.   #pragma omp parallel for

Source loop below has tag L1

L1 parallelized by explicit user directive

...

4.   for( int i 0; i<length; i++ )

5.   { 

6.     array1[i] +  array2[i];

7.   }

8. }

The rules governing the default variable scoping in OpenMP are quite complex. The
simplified summary of the rules is that they define the loop induction variable as being
private, variables defined in the parallel code as being private, and variables defined out-
side the parallel region as being shared. This should be appropriate in simple situations
but may not be appropriate in more complex ones. In these situations, it is better to
manually define the variable scoping. The default scoping rules can be disabled using the
clause default(none), which will cause the compiler to issue an error for any variables
whose scoping is not specified. Variables can be scoped as private or shared using the
clause private(variables) or shared(variables), respectively. Listing 7.25 shows
the original source modified to manually specify variable scoping. 

Listing 7.25  Loop Parallelized Using OpenMP with Explicitly Stated Variable Scoping

void calc( double* array1, double * array2, int length )

{

int i;
#pragma omp parallel for private(i) shared(length, array1, array2)

for ( i 0; i<length; i++ )

{

array1[i] +  array2[i];

}

}

Parallelizing Reductions Using OpenMP
Not all variables can be scoped as either shared or private. The most obvious example of
a more complex situation is a reduction. Listing 7.26 shows an example of a reduction.
The variable total is computed by adding all the elements in an array.
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Listing 7.26  Loop Containing a Reduction Operation

double calc( double* array, int length )

{

double total  0.0;
for ( int i 0; i<length; i++ )

{

total +  array[i];

}

return total;

}

The result returned by the variable total will need contributions from every thread.
One way of making this happen would be to serialize access to the variable using a mutex
or an atomic operation, but this would render any parallelization of the loop pointless. 

The OpenMP specification allows for a reduction operation to be applied over a par-
allel region. The reduction gives each thread a private copy of the reduction variable,
which it uses for computation in the parallel region. At the end of the parallel region,
the private copies of the reduction variable are combined to produce the final result. The
syntax for the reduction clause is reduction(operator:variable). Listing 7.27 shows
the loop parallelized using a reduction clause.

Listing 7.27  Loop Containing a Reduction Operation

double calc( double* array, int length )

{

double total  0.0;

#pragma omp parallel for reduction( +: total )
for ( int i 0; i<length; i++ )

{

total +  array[i];

}

return total;

}

The operator to which the reduction applies is not limited to additions. It includes a
number of other operations such as subtraction; multiplication; the bitwise operations
AND, OR, and XOR; and the logical operations AND and OR.

Accessing Private Data Outside the Parallel Region
When a variable is declared as private, each thread gets a private copy of the variable.
However, the variable does not get initialized at the start of the parallel region, and its
value does not get propagated beyond the end of the region. Listing 7.28 shows an
example of code where the value of the variable before the parallel region is important.
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Listing 7.28  Parallel Region That Accesses the Value of a Private Variable

#include <stdio.h>

int main()

{

int data=1;

#pragma omp parallel for private(data)
for ( int i 0; i<100; i++ )

{

printf( "data=%i\n", data );

}

return 0;

}

Although the variable data is initialized to the value one outside the parallel region,
this value is not passed into the private copy that each thread obtains inside the parallel
region. Hence, the value that is printed is undefined. To initialize the value of the vari-
able in the parallel region to the value it held before the region, the variable needs to be
declared using the clause firstprivate(variables). This tells the compiler to include
code that copies the existing value into the private copy held by each thread in the par-
allel region. Listing 7.29 shows the modified code.

Listing 7.29  Declaring a Variable as firstprivate to Pass Its Value into the 
Parallel Region

#include <stdio.h>

int main()

{

int data 1;

#pragma omp parallel for firstprivate(data)
for ( int i 0; i<100; i++ )

{

printf( "data %i\n", data );

}

return 0;

}

Another situation is where the value of a variable is used after a parallel region. In this
case, it is important to retain the value that was written into this variable by the thread
that executed the last iterations of the loop. This preserves the semantics of the serial
program. The clause that enables this to happen is lastprivate(variables). This
clause is also supported on parallel sections, which will be introduced later. Listing
7.30 shows an example of using lastprivate to retain the last value written into the
variable.
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Listing 7.30  Passing the Value of a Variable Out of a Parallel Region Using 
lastprivate

#include <stdio.h>

int main()

{

int data 1;

#pragma omp parallel for lastprivate(data)
for ( int i 0; i<100; i++ )

{

data  i*i;

printf( "data %i\n", data );

}

printf( "Final value %i\n", data );

return 0;

}

Improving Work Distribution Using Scheduling
The default scheduling for a parallel for loop is called static scheduling. The iterations are
divided evenly, in chunks of consecutive iterations, between the threads. If there are two
threads working to complete 100 iterations, the first thread will complete the first 50
iterations, and the second thread will complete the second 50 iterations. This scheme
works well in situations where each iteration takes the same amount of time. However,
in some cases, a different amount of work will be performed in each iteration. Con -
sequently, both threads may complete the same number of iterations, but one may have
more work to do in those iterations. Listing 7.31 shows an example of this. The number
of iterations performed in the routine calc() depends on the value passed into it. The
value passed into the routine largely depends on the value of the loop induction variable
i. With static scheduling, threads that get assigned the higher values of i will take longer
to complete their work.

Listing 7.31  Code Where Each Iteration Has Different Computational Costs

double calc( int count )

{

double d  1.0;

for( int i 0; i < count*count; i++ )

{

d +  d;

}

return d;

}
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int main()

{

double data[200][100];

int i,j;

#pragma omp parallel for private(i,j) shared(data)
for ( int i 0; i<200; i++ )

{

for ( int j 0; j<200; j++ )

{

data[i][j]  calc( i+j );

}

}

return 0;

}

Listing 7.32 shows the results of compiling and running this code using one and two
threads.

Listing 7.32  Compiling and Running Code with One and Two Threads

$ cc -O -xopenmp -xloopinfo schedule.c

"schedule.c", line 4: not parallelized, unsafe dependence

"schedule.c", line 16: PARALLELIZED, user pragma used

"schedule.c", line 18: not parallelized, loop inside OpenMP region   

$ export OMP_NUM_THREADS=1

$ timex a.out

real           4.96

user           4.94

sys            0.01

$ export OMP_NUM_THREADS=2

$ timex a.out

real           3.55

user           4.94

sys            0.01

In this case, going from one to two threads decreases the runtime from about 5 sec-
onds to about 3.5 seconds. This is less than linear scaling. Ideally, doubling the thread
count should halve the runtime. The reason for this poor scaling is that the work is
unevenly distributed between the two threads. The thread that computes the results for
the lower values of i will have fewer iterations to complete in the innermost loop than
the thread that computes the higher values of i.

We can resolve this by changing the scheduling of the loop. Instead of having a static
schedule, we can use a dynamic schedule. A dynamic schedule means that the work is
divided into multiple chunks of work. As each thread completes a chunk of work, it
takes the next chunk of work. This ensures that a thread that completes its work faster
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ends up doing more chunks, whereas a thread that takes a lot of time to complete each
chunk of work will end up completing fewer of them. Dynamic scheduling is selected
using the schedule(dynamic) clause. Listing 7.33 shows the modified code.

Listing 7.33  Code Where Each Iteration Has Different Computational Costs

double calc( int count )

{

double d  1.0;

for( int i 0; i < count*count; i++ )

{

d +  d;

}

return d;

}

int main()

{

double data[200][100];

int i, j;

#pragma omp parallel for private(i,j) shared(data) schedule(dynamic)
for ( int i 0; i<200; i++ )

{

for ( int j 0; j<200; j++ )

{

data[i][j]  calc(i+j);

}

}

return 0;

}

Running this modified code on the same platform results in a runtime of 2.5 seconds—
half the original single-threaded runtime.

Dynamic scheduling avoids the issue of distributing work evenly across the threads.
However, it also incurs greater runtime overheads. This is not so apparent in this small
example. Rather than use another code sequence to demonstrate it, it is relatively simple
to explain the reason for this increase in overhead.

With static scheduling, the threads get their iteration limits when they start, and once
completed, they can wait at a barrier until all other threads have completed. There is no
synchronization between threads in the parallel region. 

In contrast, dynamic scheduling requires that each thread complete a unit of work
that is much shorter than their share of the total iteration count. Every time a thread
completes this short chunk of work, it has to fetch the next chunk. Every fetch of a
chunk of work is a potential serialization point, because all the threads have to cooperate
to determine who gets the next chunk. So, the increase in overhead comes from two
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potential factors: the number of places where a new chunk of work is fetched and the
interthread communication costs when each new chunk of work is fetched.

The default size of the chunks for a dynamic schedule is one. Each thread performs a
single iteration before returning for more work. This can be too low a value, resulting in
significant synchronization overhead. An additional parameter can be given to the sched-
ule clause to govern the chunk size used. This parameter can be a static value or can be
calculated at runtime. Listing 7.34 shows an example of using dynamic scheduling with a
chunk size value calculated at runtime.

Listing 7.34  Dynamic Scheduling with Chunk Size Calculated at Runtime

double sum( double *a, int n )

{

double total  0.0;

#pragma omp parallel for reduction( +: total) schedule( dynamic, n/50)

for ( int i 0; i<n; i++ )

{

total +  a[i];

}

return total;

}

Another scheduling mode is guided. With guided scheduling, the size of the chunk of
work assigned is proportional to the amount of work remaining. So, initially the threads
will get assigned large chunks of work, but then they will get smaller chunks until all the
work is completed. Guided scheduling can also take an optional parameter that deter-
mines the smallest chunk size to be used. The default minimum chunk size is a single
iteration. Listing 7.35 shows an example of guided scheduling.

Listing 7.35  Guided Scheduling with Chunk Size Calculated at Runtime

double sum( double *a, int n )

{

double total  0.0;

#pragma omp parallel for reduction( +: total) schedule( guided, n/50)

for ( int i 0; i<n; i++ )

{

total +  a[i];

}

return total;

}

There are two more scheduling modes: automatic and runtime. The schedule(auto)
clause will leave the scheduling decisions for the runtime system to determine automati-
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cally. The schedule(runtime) clause enables the environment variable OMP SCHEDULE

to determine the type of schedule used.
Static scheduling can also take an optional chunk size parameter. If a chunk size is

specified for static scheduling, the work is split into equal units of the specified chunk
size. These are distributed round-robin to the worker threads. This may mean that some
worker threads have no work assigned to them or that some threads end up with more
chunks of work than others. In the absence of a specified chunk size, the work is divided
evenly over all the threads.

Using Parallel Sections to Perform Independent Work
OpenMP parallel sections provide another way to parallelize a code into multiple inde-
pendent units of work that can be assigned to different threads. Parallel sections allow the
developer to assign different sections of code to different threads. Consider a situation
where in the process of being initialized an application needs to set up two linked lists.
Listing 7.36 shows an example.

Listing 7.36  Using Parallel Sections to Perform Independent Work in Parallel

#include <stdlib.h>

typedef struct s

{

struct s* next;

} S;

void setuplist( S *current )

{

for(int i 0; i<10000; i++)

{

current->next  (S*)malloc( sizeof(S) );

current  current->next;

}

current->next  NULL;

}

int main()

{

S var1, var2;

#pragma omp parallel sections

{

#pragma omp section

{

setuplist( &var1 );   // Set up first linked list

}

#pragma omp section
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{

setuplist( &var2 );   // Set up second linked list

}

}

}

The parallel region is introduced using the #pragma omp parallel directive. In this
example, it is combined with the sections directive to produce a single statement. This
identifies the region of code as containing one or more sections of code that can be exe-
cuted in parallel. Each individual section is identified using the directive #pragma omp
section. It is important to notice the open and close braces that denote the range of
code included in the parallel sections and also denote the code in each parallel section.
In the absence of the braces, the parallel section would apply only to the following line
of code.

All the threads wait at the end of the parallel sections region until all the work
has been completed, before any of the subsequent code is executed.

Although parallel sections increase the range of applications that can be parallelized
using OpenMP, it has the constraint that the parallelism is statically defined in the source
code. This static definition of parallelism limits the degree of scaling that can be expected
from the application. Parallel sections are really effective only in situations where there is
a limited, static opportunity for parallelism. In most other cases, parallel tasks, which we
will discuss later, may be a better solution.

Nested Parallelism
The OpenMP API also supports nested parallelism. Here, a parallel region is encountered
inside another parallel region. This can be a useful way of attaining increased parallelism
by having tasks or parallel sections that provide course-grained parallelism and
then using a parallel for to gain further parallelism within the task or region. Nested
parallelism is also useful in situations where the algorithm is recursive in nature. 

Listing 7.37 shows an example of nested parallelism where two parallel sections con-
tain parallel for directives that initialize two arrays of values. Support for nested par-
allelism can be enabled through the environment variable OMP NESTED or through a call
to the routine omp set nested() with a value other than zero. However, support of
omp set nested() is optional. It can be determined whether nested parallelism is
enabled or not through a call to omp get nested().

Listing 7.37  Using Nested Parallelism to Perform Array Set Up in Parallel

#include <stdlib.h>

#include <omp.h>

int main()

{

double * array1, *array2;
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omp_set_nested( 1 );

#pragma omp parallel sections shared( array1, array2 )

{

#pragma omp section

{

array1  (double*)malloc( sizeof(double)*1024*1024 );

#pragma omp parallel for shared(array1)

for ( int i 0; i<1024*1024; i++ )

{

array1[i]  i;

}

}

#pragma omp section

{

array2  (double*)malloc( sizeof(double)*1024*512 );

#pragma omp parallel for shared(array2)

for ( int i 0; i<1024*512; i++ )

{

array2[i]  i;

}

}

}

}

However, nested parallelism is complex, so detailed discussion is left to specialist texts
on the topic of OpenMP.

Using OpenMP for Dynamically Defined Parallel Tasks
The OpenMP 3.0 specification introduced tasks. A task is a block of code that will be
executed at some point in the future by one of the team of threads. Every time the task
directive is encountered at runtime, a new task is created and added to the list of tasks to
be completed. This facility enables OpenMP to tackle many of the problems that previ-
ously could only be elegantly addressed using threads. As an example, it is possible to
write a version of the echo server from Chapter 5, “Using POSIX Threads,” using
OpenMP tasks. This example combines parallelization across loops, parallel sections, and
nested parallelization, together with parallel tasks.

The application uses parallel sections to start both a client and a driver thread.
Listing 7.38 shows the source code to do this. The code uses nested parallelism, so this
needs to be explicitly enabled by calling omp set nested() with a nonzero value. The
parallel section explicitly requests two threads using the num threads(2) clause. Note
that for correct execution, the code relies on having at least two virtual CPUs. If the
code is run on a system with only a single virtual CPU, the code will not function cor-
rectly because it will stall while executing the echothread() code and will never get to
execute the driverthread().
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Listing 7.38  Using OpenMP Parallel Sections to Start Two Threads

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <arpa/inet.h>

#include <strings.h>

#include <pthread.h>

#include <errno.h>

#include <omp.h>

...

int main()

{

omp_set_nested( 1 );

#pragma omp parallel sections num_threads( 2 )

{

#pragma omp section

{

echothread();

}

#pragma omp section

{

driverthread();

}

}

}

Listing 7.39 shows the code for the driver or client part of the application. This code
uses a parallel for loop in the driver code to launch multiple requests to the server
in parallel. The driver code shares a single sockaddr in structure between all the
threads. Each thread gets a private copy of the variable s, which holds the ID of the
socket that the thread has opened to the server. Each iteration of the loop will send a
string to the server and then wait for its response. 

Listing 7.39  Driver Thread That Generates Multiple Connections to the Server

void driverthread()

{

int s;

struct sockaddr_in addr;

bzero( &addr, sizeof(addr) );
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addr.sin_family  AF_INET;

addr.sin_addr.s_addr  inet_addr( "127.0.0.1" );

addr.sin_port  htons( 5000 );

#pragma omp parallel for shared( addr ) private( s )

for( int count 0; count<10000; count++ )

{

s  socket( PF_INET, SOCK_STREAM, 0 );

printf( "Driver thread %i ready\n", omp_get_thread_num() );

if ( connect( s, (struct sockaddr*)&addr, sizeof(addr) ) 0 )

{

char buffer[1024];

for ( int i 0; i<10; i++ )

{

sprintf( buffer, "Sent %i\n", i );

if ( send( s, buffer, strlen(buffer)+1 ,0 )!  strlen(buffer)+1 )

{ 

printf( "send size mismatch\n" ); 

}

bzero( buffer, sizeof(buffer) );

read(s, buffer, sizeof(buffer) );

}

}

else

{

perror( "Connection refused" );

exit( 0 );

}

shutdown( s, SHUT_RDWR );

close( s );

}

}

Listing 7.40 shows the server code. This takes an incoming connection and launches a
new task to handle that incoming connection.

Listing 7.40  Server Code to Handle Incoming Connections

void echothread()

{

int s;

int true  1;

struct sockaddr_in addr;
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s  socket( PF_INET, SOCK_STREAM, 0 );

if ( s  -1 ) { printf( "Socket error %i\n", errno ); }

if ( setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &true, sizeof(int)) -1 )

{ printf( "setsockopt error %i\n", errno ); }

bzero( &addr, sizeof(addr) );

addr.sin_family  AF_INET;

addr.sin_addr.s_addr  htonl( INADDR_ANY );

addr.sin_port  htons( 5000 );

if ( bind( s, (struct sockaddr*)&addr, sizeof(addr) ) !  0 )

{ printf( "Bind error %i\n", errno ); }

listen( s, 4 );

#pragma omp parallel

{

#pragma omp single

while( 1 )

{

struct sockaddr client;

int size  sizeof(client);

int stream  accept( s, &client, &size );

#pragma omp task

{

char buffer[1024];

if ( stream >  0 ) 

{ printf("Accepted by thread ID %i\n", omp_get_thread_num()); }

else 

{ printf("Accept error %i\n", errno); }

while ( recv( stream, buffer, sizeof(buffer), 0 ) )

{

send( stream, buffer, strlen(buffer)+1, 0 );

}

close( stream );

printf( "Stream closed\n" );

}

}

}

}
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The code uses three OpenMP directives. We have already met the omp parallel
directive, which denotes the start of a parallel region, but not the omp single directive,
which tells the compiler that only one thread is to execute the enclosed code. As dis-
cussed earlier, all the threads will execute the code in the parallel region by default. This
single thread is responsible for accepting incoming connections and then producing the
new tasks that handle the details of the connection. 

Finally, the omp task directive encloses the region of code that is to be executed as
the task. The variable stream is scoped as firstprivate by default, so each task gets a
private copy of the variable. Within the task, this variable is assigned the value that it
holds at the time that the task was created. The new task then handles the echoing back
of data that is sent on that particular socket.

Listing 7.41 shows the results of compiling and running this code on a four-way
machine. The resulting applications needs to be linked with the socket library ( lsocket)
and the network services library ( lnsl). The key thing to observe is that the threads
sending and receiving the sockets change, indicating that the work is being distributed
across all the available threads.

Listing 7.41  Output from Client-Server Code Parallelized Using Nested OpenMP
Directives

% cc -O -xopenmp -xloopinfo omp_sockets.c -lsocket -lnsl

"omp_sockets.c", line 24: PARALLELIZED, user pragma used

"omp_sockets.c", line 33: not parallelized, loop inside OpenMP region 

"omp_sockets.c", line 76: not parallelized, loop has multiple exits

"omp_sockets.c", line 95: not parallelized, not a recognized for loop

% ./a.out

Echo socket setup

Driver thread 0 ready

Driver thread 1 ready

Driver thread 3 ready

Driver thread 2 ready

Accepted by thread ID 1

Accepted by thread ID 3

Accepted by thread ID 2

Driver thread 3 ready

Stream closed

Accepted by thread ID 3

Driver thread 1 ready

Driver thread 0 ready

Stream closed

Accepted by thread ID 2

...
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Keeping Data Private to Threads
It is possible to set up thread-local data using the OpenMP directive threadprivate.
This directive works in a similar way to the thread declaration, described in Chapter
5, in making each thread hold a private copy of some variable. Listing 7.42 shows an
example of declaring a threadprivate variable.

Listing 7.42  Declaring a threadprivate Variable

int i;

#pragma omp threadprivate( i )

int main()

{

...

}

The value of the threadprivate variable can persist between parallel regions. The
rules governing when this will happen are slightly complex but can be summarized as
the requirement that the active thread count is the same for the two parallel regions.

There are other constraints on threadprivate variables. If the code is parallelized
using tasks and the value of the variable depends on the order that the tasks are com-
pleted, then its value will be unpredictable.

During serial portions of the application’s execution, the variable will return the value
held by the master thread. This can be demonstrated using the code shown in Listing 7.43.
The variable i is thread private. In the master thread, it is set to hold the value -1, but in
the parallel region, it is set to hold the thread ID. Each thread will set the value of i to
its thread ID. The ID of the master thread is zero. Outside the parallel region, the refer-
ence to the variable i resolves to the value held by the master thread. So, the final version
of the variable i will be zero.

Listing 7.43  Printing the Value of a threadprivate Variable

#include<stdio.h>

#include<omp.h>

int i;

#pragma omp threadprivate( i )

int main()

{

i  -1;

#pragma omp parallel

{

i  omp_get_thread_num();

274 Chapter 7 Using Automatic Parallelization and OpenMP



printf( "Parallel value %i\n", i );  

}

printf( "Serial value %i\n", i );

}

The main reason for using threadprivate variables is to hold a value within a par-
allel region, not necessarily across parallel regions. Consequently, there may be require-
ments to copy a value into a region. The copyin clause copies the value from the master
thread into the threadprivate values held by the worker threads. This clause can be
placed on parallel regions. Listing 7.44 shows an example of using the copyin clause.
The value of the variable i within the parallel region will be -1 for all threads.

Listing 7.44  Using copyin to Copy Data from the Master Thread 

#include<stdio.h>

#include<omp.h>

int i;

#pragma omp threadprivate( i )

void main()

{

i  -1;

#pragma omp parallel copyin( i )

{

printf( "Parallel value %i\n", i );  

}

}

The copyprivate directive can be used to propagate the value of a threadprivate
variable calculated in a single region to all threads. Although this applies to the single
directive, the impact of the clause is at the end of the single region where the value is
copied from the single thread to all the other threads. This can be used for the initializa-
tion of the threadprivate variables or dissemination of a new value to all threads.
Listing 7.45 shows an example of using copyprivate. In this example, all threads will
receive the value 2 for their private copy of the variable i.

Listing 7.45  Using copyprivate to Copy Data a Single Thread to All Other Threads

#include<stdio.h>

#include<omp.h>

int i;

#pragma omp threadprivate( i )
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int main()

{

i  -1;

#pragma omp parallel

{

#pragma omp single copyprivate( i )

{

i  2;

}

printf( "Parallel value %i\n", i );  

}

}

Controlling the OpenMP Runtime Environment
The OpenMP runtime environment can be controlled in up to three different ways. We
have already encountered the environment variable OMP NUM THREADS to set the num-
ber of threads that the program uses. However, it is also possible to set this through pro-
grammatic calls to the runtime library or even as clauses placed onto the directives in the
source code. Clauses will override the settings from calls to API functions, and these will
override any environment settings. This section discusses the various settings that can be
configured and the options available for configuring them.

Setting the Number of Threads
As previously seen, the number of threads used by an OpenMP application can be set
through the environment variable OMP NUM THREADS. It is also possible to set the number
of threads using the function call omp set num threads(), as shown in Listing 7.46.
Calls to omp set num threads() change the default value for all subsequent parallel
regions. It is possible to determine the number of threads using the function call
omp get max threads(). The function call omp get thread num() will return a
unique ID for each thread.

Listing 7.46  Setting the Number of Threads

#include <omp.h>

#include <stdio.h>

int main()

{

double total  0.0;

double array[1000];

omp_set_num_threads( 2 );

#pragma omp parallel for reduction( +: total )
for ( int i 0; i<1000; i++ )
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{

total +  array[i];

}

printf( "Total %f\n", total );

printf( "Threads %i\n", omp_get_max_threads() );

}

The number of threads for a parallel region can be specified in the source code using
the num threads(threads) clause. The value for the number of threads can be fixed,
or it can be an integer calculated based on some other factors. Listing 7.47 shows an
example of using a fixed value for this.

Listing 7.47  Setting the Number of Threads

#include <omp.h>

#include <stdio.h>

int main()

{

double total  0.0;

double array[1000];

#pragma omp parallel for reduction( +: total ) num_threads( 2 )
for ( int i 0; i<1000; i++ )

{

total +  array[i];

}

printf( "Total %f\n", total);

printf( "Threads %i\n", omp_get_max_threads() );

}

The num threads clause will override the default value just for this single parallel
region. The next parallel region will again take the default value for the number of
threads, unless this too has a num threads clause.

There is one other environment variable that can set the number of threads.
OMP THREAD LIMIT sets the maximum number of threads that are allowed. It is an
implementation defined as to whether this limit will be imposed on all attempts to use
more threads than this limit. The value for this limit can be obtained through the func-
tion call omp get thread limit().

An OpenMP implementation can honor the environment variable OMP DYNAMIC.
This environment variable can be set to either true or false. If it is set to true, then
the OpenMP implementation can react to runtime conditions and use fewer threads
than requested for any parallel region. This variable can be set at runtime with a call to
omp set dynamic(), and its value can be read by a call to omp get dynamic().
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Setting Runtime Loop Scheduling
The scheduling for loops with the runtime scheduling clause is controlled with the envi-
ronment variable OMP SCHEDULE. The schedule can also be set at runtime through a call
to omp set schedule(), and the current schedule can be obtained through a call to
omp get schedule(). The function calls to get and set the schedule take two parame-
ters. The first is an integer that indicates the scheduling requested. The second is the
chunk size (the second parameter will be ignored for schedules that do not require a
chunk size). The available schedules are omp sched static, omp sched dynamic,
omp sched guided, and omp sched auto. Listing 7.48 demonstrates using the calls to
get and set the schedule.

Listing 7.48  Getting and Setting the Schedule

#include <omp.h>

#include <stdio.h>

int main()

{

omp_sched_t schedule;

int chunksize;

omp_get_schedule( &schedule, &chunksize );

printf( "Schedule  %i, chunksize  %i\n", schedule, chunksize );

omp_set_schedule( omp_sched_guided, 10 );

}

Specifying the Stack Size for Worker Threads
The stack size of the master thread is set through the normal operating system environ-
ment. This can be changed using the ulimit command on UNIX-like platforms. On
Windows, the default stack size is set at link time.

The default stack size for each worker thread created by the OpenMP runtime library
is implementation specific. Depending on the requirements for stack space, this default
may not be sufficient. The environment variable OMP STACKSIZE determines the stack
space for the worker threads. There is no call into the runtime library that sets this size. 

The environment variable takes a number with an optional suffix. A number with 
no suffix is interpreted as kilobytes, the suffix B indicates that the number is in bytes, the
suffix K indicates that it is in kilobytes, the suffix M is interpreted as megabytes, and 
the suffix G indicates gigabytes.

Waiting for Work to Complete
For most parallel constructs, there is an implicit barrier at the end to ensure that all
threads complete their work before the next block of code is started. This section
describes the options in OpenMP for changing the default barrier behavior.
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Allowing Threads to Continue Execution Beyond a Parallel Region
The nowait clause applies to parallel for, parallel sections, and single direc-
tives. All of these directives have an implied wait at the end of the parallel region. Use of
the directive means that the threads in the parallel region will continue into the next
code region once they have completed the current one without waiting for the other
worker threads to complete their work. Listing 7.49 contains an example of two for
loops that iterate over two different ranges on two different sets of variables. Once the
threads have completed the first loop, there is no reason why they should not start work
on the second loop. This preference can be denoted by labeling the first loop with the
nowait clause. The second loop keeps the implicit wait clause, so execution will not
continue until all the threads complete their work on the second loop.

Listing 7.49  Using the nowait Clause

double calc( double *a, int lena, double *b, int lenb )

{

double totala  0.0, totalb  0.0;

#pragma omp parallel

{

#pragma omp for nowait reduction( +: totala )

for ( int i 0; i<lena; i++ )

{

totala +  a[i];

}

#pragma omp for reduction( +:totalb )

for ( int i 0; i<lenb; i++ )

{

totalb +  b[i];

}

}

return totala + totalb;

}

Causing Threads to Wait Until All the Threads Have Completed Their Work
The barrier directive places an explicit barrier in a parallel region. In Listing 7.50, the
barrier directive is used with the master directive to ensure that all threads wait while
the master thread completes its task. The  master directive does not have an implicit
wait clause, so without the barrier directive, the single thread may print its output before
the master thread. With this barrier in place, the code will always print out the string
"Master thread" before it prints the string "Single thread".
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Listing 7.50  Using the barrier Directive to Cause Other Threads to Wait for 
Master Thread

#include <stdio.h>

int main()

{

#pragma omp parallel 

{

#pragma omp master

{

printf( "Master thread\n" );

}

#pragma omp barrier

#pragma omp single

{

printf( "Single thread\n" );

}

}

}

Waiting for All Child Tasks to Complete
When an application has been parallelized using tasks, it can be useful to wait for all the
current child tasks from a parallel region to complete before continuing execution. The
taskwait directive ensures that this condition is met. Consider the code shown in
Listing 7.51.

Listing 7.51  Using the taskwait Directive Wait for Child Tasks to Complete

#include <stdio.h>

int work( int i )

{

if ( i > 0 )

{

#pragma omp parallel

{

#pragma omp task

{

work( i-1 );

}

#pragma omp task

{

work( i-1 );

}

#pragma omp taskwait
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printf( "Completed %i\n", i );

}

}

}

void main()

{

work( 3 );

}

In this example, the taskwait directive is used to ensure that the child tasks com-
plete before the parent task performs its work, which is printing the value of the variable
i. In the absence of the taskwait directive, it would be possible for the parent task to
print its output before the child tasks printed theirs. Listing 7.52 shows the output from
this application. 

Listing 7.52  Output Showing Effect of Task Wait on Ordering of Task Execution

% cc -O -xopenmp -xloopinfo taskwait.c

% ./a.out

Completed 1

Completed 1

Completed 2

Completed 1

Completed 1

Completed 2

...

Restricting the Threads That Execute a Region of Code
There are situations where it is necessary to restrict the number of threads that can exe-
cute a block of code. For example, there might be algorithmic reasons where only a sin-
gle thread should execute a region of code. Alternatively, for correctness, it may be
necessary to ensure that only a single thread at a time executes a region of code. It may
also be necessary to restrict the number of threads executing a parallel region if there is
insufficient work for more threads to complete. This section describes multiple ways that
the number of threads can be restricted.

Executing a Region of Code Using a Single Thread
We met the single directive in the section “Using OpenMP for Dynamically Defined
Parallel Tasks.” The single directive specifies that only one thread will execute the code
in the region. All the other threads will wait for this code to be executed before contin-
uing. The nowait clause can be used if the other threads should continue execution
before the single thread completes execution. For an example of the single directive,
see Listing 7.40.
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Allowing Only the Master Thread to Execute a Region of Code
The master directive is similar to the single directive in that it specifies only one
thread should execute the enclosed region. There are two differences between the direc-
tives. The first is that it identifies that the master thread is the one that will do the work;
the single directive does not specify which thread will perform the work. The second
difference is that the master directive does not cause the other threads to wait for the
work in the region to be completed before they continue.

The master directive is useful in situations where only one thread needs to complete
the work. It ensures that the same thread always executes the region of code, so any
thread-local variables will carry over from previous executions. This can be useful for
broadcasting and sharing the value of variables between threads. An example of the
master directive can be seen in Listing 7.50.

Restricting Execution of a Region of Code to a Single Thread
For correctness, it is sometimes necessary to restrict a region of code so that it is executed
only by a single thread at a time. This can be achieved using the critical directive.
Listing 7.53 shows a very inefficient way of performing a reduction using a critical
directive to ensure that only one thread changes the reduction variable at any time.

Listing 7.53  Reduction Operation Implemented Using a critical Directive

double calc( double* array, int length )

{

double total  0.0;

#pragma omp parallel for 
for ( int i 0; i<length; i++ )

{

#pragma omp critical

{

total +  array[i];

}

}

return total;

}

The critical directive takes an optional name. This enables the same critical section
to protect multiple regions of code. For example, all accesses to the variable total could
be protected by a critical section of the name total critical section, as shown
in Listing 7.54.

Listing 7.54  Named Critical Section

#pragma omp critical( total_critical_section )

{

total +  array[i];

}
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Performing Operations Atomically
Sometimes, all that is necessary is the atomic modification of a variable. OpenMP sup-
ports this through the atomic directive that applies only to the following modification
of a variable. Listing 7.55 shows how the reduction could be coded using an atomic
directive. The atomic directive ensures correct behavior but may not be any faster than
using a critical section.

Listing 7.55  Reduction Implemented Using an Atomic Directive

double calc( double* array, int length )

{

double total  0.0;

#pragma omp parallel for 
for ( int i 0; i<length; i++ )

{

#pragma omp atomic

total +  array[i];

}

return total;

}

Using Mutex Locks
OpenMP also supports the flexibility offered by mutex locks, which are supported through
OpenMP locks. A lock is declared to be of the type omp lock t and initialized through
a call to omp init lock(). The lock is destroyed with a call to omp destroy lock().

To acquire the lock, the code calls omp set lock(), and to release the lock, the
code calls omp unset lock(). The code can test whether the lock is available by calling
omp test lock(). It is possible to rewrite the reduction code to use OpenMP locks, as
shown in Listing 7.56.

Listing 7.56  Reduction Implemented Using an OpenMP Lock

#include <omp.h>

omp_lock_t lock;

double calc( double* array, int length )

{

double total  0.0;

#pragma omp parallel for 
for ( int i 0; i<length; i++ )

{

omp_set_lock( &lock );

total +  array[i];

omp_unset_lock( &lock );

}
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return total;

}

int main()

{

double array[1024];

omp_init_lock( &lock );

calc( array, 1024 );

omp_destroy_lock( &lock );

}

Conditional Serial Execution of Parallel Regions
In some instances, it can be useful to identify conditions when a parallel region should
be executed by a single thread. This saves having to place both a serial version and a par-
allel version of the block of code in the source of the application. 

The most obvious occasion for doing this would be when there is insufficient work
to justify using more than one thread. The if() clause can be applied to a parallel
directive to determine the conditions when the region should be executed in parallel.
Listing 7.57 shows an example of using this directive. The code will execute the region
using multiple threads only if the variable length has a value greater than 1,000. 

Listing 7.57  Conditional Parallel Execution Using the if Clause

double calc( double * array, int length )

{

double total  0.0;

#pragma omp parallel for reduction( +: total ) if( length > 1000 )

for ( int i 0; i<length; i++ )

{

total +  array[i];

}

return total;

}

Another use for the if() clause would be in situations where using multiple threads
to execute a region of code would cause correctness issues. For example, if a loop calcu-
lates some function of two vectors, the code is sometimes called with vectors that alias.
The if() clause can be used to check whether the vectors alias and execute the code in
parallel only if no aliasing is present.
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Ensuring That Code in a Parallel Region Is
Executed in Order
In some cases, it may be necessary to ensure that a section of code is executed in the
same order as the serial code would execute it. Unfortunately, such an ordering is
unlikely to allow the code to get the full benefit of using multiple threads, but it should
enable some gains to be attained from parallelization. 

OpenMP supports the ordered directive, which ensures that the order of parallel
execution is the same as the serial ordering. The directive needs to be applied to the par-
allel region, and the loop also needs to be identified as an ordered loop using the
ordered clause on the parallel for directive.

Listing 7.58 shows how the ordered directive can be used to ensure that the loop
iterations are printed in the correct order.

Listing 7.58  Using the Ordered Directive to Ensure Code Executes in the Serial Order

#include <stdio.h>

#include <omp.h>

int main()

{

#pragma omp parallel for ordered

for ( int i 0; i<100; i++ )

{

#pragma omp ordered

{

printf(" Iteration %i, thread ID %i\n", i, omp_get_thread_num() );

}

}

}

The ordered directive is most useful when applied to loops that do not use static
scheduling. With the default static scheduling used in the example, the first thread will
execute the first portion of the iterations, the second thread the second portion, and so
on. Since the ordered region needs to be executed in the serial order, the second thread
ends up waiting at the ordered code block until the first thread has completed all of its
assigned work. This means that the work is serialized, but each serial chunk of work has
been performed by a different thread.

The ordered directive is a useful way of exploring the impact of the scheduling on
the order in which iterations are assigned to threads. Listing 7.59 shows the code modi-
fied to use dynamic scheduling.
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Listing 7.59  Using the Ordered Directive to Explore the Scheduling Directive

#include <stdio.h>

#include <omp.h>

int main()

{

#pragma omp parallel for ordered schedule( dynamic )

for ( int i 0; i<100; i++ )

{

#pragma omp ordered

{

printf( "Iteration %i, thread ID %i\n", i, omp_get_thread_num() );

}

}

}

Listing 7.60 shows the effect of this change in scheduling. Dynamic scheduling causes
the two threads to work with the default chunk size of a single iteration, so the two
threads alternate performing iterations.

Listing 7.60  Exploring the Impact of Dynamic Scheduling

$ cc -O -xopenmp ordered.c

$ export OMP_NUM_THREADS=2

$ ./a.out

Iteration 0 Thread 0

Iteration 1 Thread 1

Iteration 2 Thread 0

Iteration 3 Thread 1

...

Collapsing Loops to Improve Workload Balance
The parallel for directive applies only to the next loop. As always, it is best to apply
parallelization at the outermost loop, because this reduces the number of synchroniza-
tions necessary. However, a low trip count for the outer loop will limit the maximum
number of threads that can be used in parallel. In these cases, it might be appropriate to
parallelize the inner loop, since this could have a higher iteration count. Without know-
ing the trip counts for the two loops, it is not possible to decide which strategy is more
appropriate.

However, OpenMP provides a way of avoiding issues with the outermost loop having
a low trip count, which is to collapse the inner and outer loops into a single loop. The
clause to do this is collapse, which takes the number of loops to collapse as a parame-

286 Chapter 7 Using Automatic Parallelization and OpenMP



ter. Listing 7.61 shows an example of a code where the outer loop has a low trip count,
and using the collapse clause enables scaling to higher numbers of threads.

Listing 7.61  Using the collapse Clause to Improve Scaling

#include <math.h>

void main()

{

double array[2][10000];

#pragma omp parallel for collapse( 2 )

for( int i 0; i<2; i++ )

for( int j 0; j<10000; j++ )

array[i][j]  sin( i+j );

}

Without the collapse clause, the outermost loop will only ever scale to two threads.
With the collapse clause, the combined loop can be up to a theoretical 20,000 threads
(although the synchronization overheads would cause the code to run slowly far before
that count was reached). Using the collapse clause may introduce additional overhead
into the parallel region, so it is worth evaluating whether the clause will improve per-
formance or cause a performance loss.

Enforcing Memory Consistency
Memory consistency is when the values held in registers by a thread match those held in
memory. If another thread modifies a variable held in a register by this thread, the value
has become inconsistent and needs to be refetched from memory. OpenMP directives
already enforce appropriate memory consistency, so it is rare for it to be a concern for
codes parallelized using OpenMP. However, there could be situations where it is neces-
sary to manually enforce consistency.

OpenMP allows the developer to explicitly specify the places in the code where vari-
ables need to be saved to memory or loaded from memory using the flush directive.
Unless the directive specifies a list of variables, it applies to all the thread visible state. If a
list of variables is specified, these variables will either be stored to memory or be reloaded
from memory depending on which action is necessary. 

The example shown in Listing 7.62 uses the flush directive to produce a synchro-
nization barrier between a pair of threads. 

Listing 7.62  Using the flush Directive to Produce a Barrier

#include <stdio.h>

#include <omp.h>

#include <stdlib.h>
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void main()

{

int *ready  calloc( sizeof(int), 2 );

#pragma omp parallel num_threads( 2 )

{

printf( "Thread %i is ready\n", omp_get_thread_num() );

ready[ omp_get_thread_num() ]  1;

int neighbour  ( omp_get_thread_num()+1 ) % omp_get_num_threads();

while( ready[neighbour]  0 )

{

#pragma omp flush

}

printf( "Thread %i is done\n", omp_get_thread_num() );

}

free( ready );

}

The master thread allocates an array with a single element per thread. In the parallel
region, each thread sets their index in the array to be one and then waits for their neigh-
boring thread to set their index to be nonzero. Each thread is released from the barrier
when its neighboring thread arrives. The flush directive is used to ensure that the cur-
rent thread stores its value into the array and that the current thread constantly reloads
its neighbor’s value until the neighboring thread sets it to one.

An Example of Parallelization
As an example of automatic parallelization and parallelization using OpenMP, we will
consider a short code that determines whether each point in a matrix is in or out of the
Mandelbrot set. Listing 7.63 shows the code.

Listing 7.63  Code to Determine Whether a Point Is in the Mandelbrot Set

int inSet( double ix, double iy )

{

int    iterations  0;

double x  ix, y  iy;

double x2  x*x, y2  y*y;

while ( (x2 + y2 < 4) && (iterations < 1000) )  /* Line 9 */

{

y  2*x*y + iy;

x  x2 – y2 + ix;

x2  x*x;

y2  y*y;

288 Chapter 7 Using Automatic Parallelization and OpenMP



iterations++;

}

return iterations;

}

The code in Listing 7.63 contains a single loop. This loop is not suitable for automatic
parallelization for two reasons:

n Each iteration of the loop depends on the previous iteration. It is not possible for
the calculation of the next iteration to start until the previous iteration has com-
pleted. This fact means that the loop can be calculated only in serial.

n The loop iterates until the point either escapes a circle of radius 2 centered around
the origin or the maximum iteration count is exceeded. Since the trip count is
unknown until the loop is executed, it is not possible to assign the work to multi-
ple threads because it is not known how much work there is to perform. 

Listing 7.64 shows the main code, including OpenMP parallelization directives. This
allocates a large matrix to hold the results of the calculations and then computes for
every point in the matrix whether it is in or out of the Mandelbrot set. The final loop in
the code is purely there to ensure that the compiler does not eliminate the main loops
because the values are not used.

Listing 7.64  Main Loop for Mandelbrot Code

#define SIZE 4000

int main()

{

int *matrix[SIZE];

for ( int i 0; i<SIZE; i++ )   /* Line 24 */

{

matrix[i]  (int*)malloc( SIZE*sizeof(int) );

}

#pragma omp parallel for

for ( int x 0; x<SIZE; x++ )   /* Line 30 */

for ( int y 0; y<SIZE; y++ )  /* Line 31 */

{

double xv  ( (double)x - (SIZE/2) ) / (SIZE/4);

double yv  ( (double)y - (SIZE/2) ) / (SIZE/4);

matrix[x][y]  inSet(xv,yv);

}

for ( int x 0; x<SIZE; x++ )   /* Line 38 */

for ( int y 0; y<SIZE; y++ )  /* Line 39 */

if ( matrix[x][y]  -7 ) { printf(""); }

}
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To get automatic parallelization to work, the routine inSet must be inlined so that
the compiler can determine that parallelization is safe. Solaris Studio compilers require
an optimization level of at least xO4. Listing 7.65 shows the result of compiling the
code. The compiler has parallelized the inlined call to inSet, but it has only been able to
parallelize the innermost loop. The outermost loop iterates over an array of pointers, and
multiples of those pointers could point to the same memory address; hence, the compiler
cannot parallelize the outer loop because of aliasing issues.

Listing 7.65  Results of Using Automatic Parallelization on the Mandelbrot Example

$ cc -xO4 -xautopar -xloopinfo mandle.c

"mandle.c", line 9: not parallelized, loop has multiple exits

"mandle.c", line 9: not parallelized, loop has multiple exits (inlined loop)

"mandle.c", line 24: not parallelized, call may be unsafe

"mandle.c", line 30: not parallelized, unsafe dependence

"mandle.c", line 31: PARALLELIZED

"mandle.c", line 38: not parallelized, call may be unsafe

"mandle.c", line 39: not parallelized, call may be unsafe

The source code in Listing 7.64 already includes an OpenMP directive to make the
outermost loop parallel. Listing 7.66 shows the result of compiling and running the
OpenMP code with various numbers of threads. 

Listing 7.66  Performance of Code Parallelized with OpenMP

% export OMP_NUM_THREADS=1

% timex ./a.out

real          28.83

user          28.69

sys            0.07

% export OMP_NUM_THREADS=2

% timex ./a.out

real          20.92

user          28.69

sys            0.07

% export OMP_NUM_THREADS=3

% timex ./a.out

real          23.35

user          28.69

sys            0.06

The code takes about 29 seconds of wall time to run with a single thread, roughly 21
seconds with two threads and just over 23 seconds with three threads. This is far from
ideal scaling, which would be that the runtime decreased in proportion to the number of
running threads. Notice that the user time for the code remains constant. This means
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that the same amount of work is performed, regardless of the number of threads used.
This indicates that the poor scaling is not the result of the threads having to perform an
increasing amount of work. If the amount of work is not increasing, it suggests that the
scaling problems are the result of that work being poorly distributed between the threads.

Figure 7.1 shows the timeline view from the Solaris Studio Performance Analyzer
running the code with two threads. This view shows the activity of the two threads over
the entire duration of the run. There are three lines shown. The top line shows the activ-
ity of all the threads in the application. This shows that initially both threads were run-
ning entirely in user mode, and around 8 seconds into the run, only one of the two
threads was in user mode while the other thread was idle.
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The other two lines indicate the activity of the two threads. The top one shows that
the master thread was active over the entire duration of the run, as is to be expected by
the OpenMP execution model. The second thread was active only during the first 8.5
seconds of the run. This confirms that the poor scaling is because of an unequal distribu-
tion of work between the two threads.

It is easy to understand where this workload imbalance comes from when the actual
image being computed is viewed. Figure 7.2 shows the image that is being computed.
One thread is computing the left half, the other the right half. For a large number of the
points, colored black in the image, it takes only a few iterations to determine that the
point is not in the set. However, it takes the maximum limit on the iteration count to
determine that a point is, or might be, in the set; these points are colored white. 

The areas that are shaded black in the figure take relatively few iterations and are
computed quickly. The areas that are shaded white take many iterations and therefore
take some time to compute. Comparing the left and right halves of the image, it is
apparent that the right half contains more black pixels than the left half. This means that
the thread computing the right half will take less time than the thread computing the
left half. This is the source of the workload imbalance between the two threads.

Fixing the workload imbalance is relatively easy since it is just a matter of changing
the scheduling clause for the parallel code. Either dynamic or guided scheduling could
be used. Listing 7.67 shows the code modified to use dynamic scheduling.



Listing 7.67  Mandelbrot Code Modified to Use Dynamic Scheduling

#define SIZE 4000

int main()

{

int *matrix[SIZE];

for (int i 0; i<SIZE; i++)

{

matrix[i] (int*)malloc(SIZE*sizeof(int));

}

#pragma omp parallel for schedule( dynamic )

for (int x 0; x<SIZE; x++)

for (int y 0; y<SIZE; y++)

{

double xv  ((double)x-(SIZE/2))/(SIZE/4);

double yv  ((double)y-(SIZE/2))/(SIZE/4);

matrix[x][y] inSet(xv,yv);

}

for (int x 0; x<SIZE; x++)

for (int y 0; y<SIZE; y++)

if (matrix[x][y] -7){printf("");}

}
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Listing 7.68 shows the resulting scaling from this code. With dynamic scheduling, the
work is evenly distributed across the threads, leading to nearly linear performance gains
as the number of threads increases.

Listing 7.68  Scaling of Dynamically Scheduled Code

% setenv OMP_NUM_THREADS 1

% timex ./a.out

real          28.84

user          28.69

sys            0.07

% setenv OMP_NUM_THREADS 2

% timex ./a.out

real          15.42

user          28.69

sys            0.07

% setenv OMP_NUM_THREADS 3

% timex ./a.out

real          10.49

user          28.70

sys            0.08

Summary
This chapter has discussed how the compiler can enable parallelization either automati-
cally or by adding OpenMP directives to the source code. You should now be familiar
with the limitations of automatic parallelization and the typical issues in the source code
that reduce the ability of the compiler to automatically parallelize code. You should also
be able to identify and fix these issues, leading to code with improved scaling.

You should also understand how OpenMP directives can be used to produce parallel
applications. You will know the various synchronization directives and objects that are
provided by the OpenMP specification. You will also know how to apply or modify
OpenMP directives to improve the scaling of an application.
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8
Hand-Coded Synchronization

and Sharing

The synchronization mechanisms provided by the operating system are typically
designed to be fully featured, fast, and correct. In most cases, these will be the appropri-
ate mechanism to use. However, there will be situations where it is desirable to have a
different mechanism for synchronization and sharing, and often the motivation for this is
one of improved efficiency.

Many pitfalls are associated with coding synchronization primitives. The objective of
this chapter is to describe the issues that need to be faced when writing synchronization
and communication primitives, both to provide information when doing this and to
explain why the operating system–provided mechanisms are coded the way that they are.

This chapter starts with a discussion of atomic operations and the atomic operations
that are provided by the operating system. This is a useful warm-up for a discussion of
how atomic operations can be hand-coded. The final section of the chapter discusses the
issues around writing synchronization primitives. 

Atomic Operations
Atomic memory operations appear to the rest of the system as operations that either
succeed or fail; there’s no partial state or state where the operation completes but the
result is incorrect. Loads and stores, in most instances, are atomic. A load instruction will
not fetch half the data from the most recent store to that cache line and half from what
was previously held in the cache line. Similarly, a store will not perform a partial update
of a memory address. 

More complex operations are not atomic. For example, incrementing a value held in
memory is usually implemented as a load of the value, the increment, and then a store of
the new value back to memory. Unfortunately, in a multithreaded environment, another
thread could interrupt this sequence and replace the original value held in memory with
a new value. The final store would store the calculated value back to memory, but the
entire operation would not reflect an increment of the new value held in memory. This
is an example of a data race, as we have previously discussed.



In this situation, it would be useful to have an atomic increment instruction. This
would take the value in memory, increment it, and replace it back to memory as a single
operation without the possibility of other threads updating the value between the load
and store parts of the operation. On x86 processors, the xadd instruction can be com-
bined with the lock prefix to produce an atomic add, or the inc instruction can be
combined with the lock prefix to produce an atomic increment. Listing 8.1 shows the
code snippets to do this. 

Listing 8.1  x86 Assembly Language Atomic Addition Variants

int atomic_add_int( volatile int *address, int value )

{

asm volatile( "lock xadd %0,%1":

"+r"(value):

"+m"(*address): 

"memory" );

return value;

}

int atomic_inc_int( int *address )

{

asm volatile ( "lock inc %0": : 

"+m"(*address): 

"memory" );

return (*address);

}

The routines are coded using gcc inline assembly language. Although it is not the
intention of this book to dwell at this low level, it is appropriate to describe how the
statements are put together. The keyword asm identifies the following text as an assembly
language statement that will be inlined directly into the code. The keyword volatile
tells the compiler not to move the statement from where it has been placed, because
such movement could cause a difference to the statement’s semantics. 

The assembly language code is enclosed in the parentheses. There are multiple parts
to the code. The first item in the parentheses, surrounded by quotes, is the instruction.
The instruction uses virtual registers %0 and %1 as parameters. The compiler will allocate
real registers later and will be responsible for populating these registers with the appro-
priate values. 

After the assembly language instruction, there are up to three colon-delimited lists.
These are optional extended syntax. The first list is of output variables and whether these
are accesses to registers or memory. In the example, the expression "+r"(value) means
that the output parameter is a register that should be used to update the variable value.
The plus sign means that the register will be both read and written by the instruction.

The second list contains the input values and where these are located. Both routines
take the pointer address as an input value, and the expression  "+m"(*address) indi-
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cates that this pointer is used as a memory access. The plus sign indicates that the
instruction will both read and write the location in memory. 

The third list is the “clobber” list indicating what the instruction will modify. In both
instances, the instruction will modify memory.

The virtual registers are numbered from the input registers, so register %0 is assigned
the value of the variable address. The output registers are the next set of virtual regis-
ters, so the variable value gets assigned to register %1.

It is also useful to look at the actual assembly language instructions. The xadd instruc-
tion is an exchange add, so it adds the variable value to the value held at the memory
address, but it also returns the value held at the address before the add operation was
performed; this is the exchange operation. The inc instruction just adds one to the value
held in memory but does not return a value in any register. Both instructions are pre-
fixed with the lock operation. The lock operation locks the system bus so that no other
processors can touch the memory location that is being updated; hence, it is the lock
prefix that actually makes these instructions atomic. Without it, the result of the operations
would be undefined if there were multiple threads acting on the same memory location.

The routine atomic add int() adds the specified amount to the value held at the
memory location and returns the value held in memory before the atomic operation. 

The routine atomic inc int() increments the value held at the memory location
and returns the value currently held in memory.  Since the inc instruction does not
return the new value, the return value is a load of the value held in memory. This need
not be the true result of the operation; the value could have been modified between the
atomic operation and the final load.

Using Compare and Swap Instructions to Form More Complex
Atomic Operations
Not all processors implement atomic add or increment instructions. However, most
processors do implement a variant of the compare and swap instruction. This instruction
can form the basis of most atomic operations.

An atomic compare and swap (CAS) operation compares the value held at a memory
location with the value held in a register. If the value at that location matches the desired
value passed to the instruction, then the value held in memory will be atomically
updated with a second value passed into the instruction. The return value from CAS is
the original value that was held in memory. If the operation was successful, the return
value will be the same as the desired value. If the operation did not succeed, the return
value will be some other value. This enables the code to determine whether the opera-
tion succeeded.

This operation can be useful in a number of situations. For example, assume a mutex
lock is implemented using a variable that holds one when the lock is held or zero when
the lock is available. The CAS operation can be used to transition the lock from free to
taken. To acquire the lock, the variable lock must hold the value zero, and the instruc-
tion needs to atomically replace the zero with a one. Listing 8.2 shows the code for a
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simple spinlock. The volatile keyword ensures that the compiler repeats the CAS
operation on every iteration.

Listing 8.2  A Simple Spinlock Implemented Using CAS

#ifdef __sparc

int CAS( volatile int* addr, int ov, int nv )

{

asm volatile( "cas %1, %2, %0":

" r"(nv):

"m"(*addr), "r"(ov), "0"(nv):

"memory" );

return nv;

}

#else

int CAS( volatile int* addr, int ov, int nv )

{

asm volatile( "lock; cmpxchg %2, %1":

" a"(ov):

"m"(*addr), "r"(nv), "a"(ov):

"memory" );

return ov;

}

#endif

void lock_spinlock( volatile int * lock )

{

while ( CAS(lock, 0, 1) !  0 ) {} // Spin until lock acquired

}

void free_spinlock( volatile int * lock )

{

*lock  0;

}

It is tempting to imagine that a spinlock could be implemented without using atomic
operations, as shown in Listing 8.3. The problem with the code is that it does not guar-
antee that only a single thread will acquire the lock. If a thread observes that the lock is
free, it will then assume that it has acquired it. The atomic operation used in Listing 8.2
ensures that the only way the thread can exit is if it actually has acquired the lock.

Listing 8.3  An Incorrect Implementation of a Spinlock

void lock_spinlock( volatile int * lock )

{

while ( *lock  1 ) {}  // Spin while lock busy
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*lock  1 ;

}

void free_spinlock( volatile int * lock )

{

*lock  0;

}

The CAS instruction can also be used in situations where atomic modification of an
unusual variable type is required. Consider the situation where atomic increment of a
floating-point value is required. Listing 8.4 shows code to perform this.

Listing 8.4  Code to Atomically Increment a Floating-Point Value

void atomic_add_float( volatile float * variable, float increment )

{

union

{

int asint; 

float asfp;

} oldvalue, newvalue;

do

{

oldvalue.asfp  *variable;                  // Line 11

newvalue.asfp  oldvalue.asfp + increment;  // Line 12

}

while ( CAS( variable, oldvalue.asint, newvalue.asint )

!  oldvalue.asint );

}

The code to perform the atomic update of a floating-point variable appears rather
complex. A fair amount of the complexity is because the CAS operation takes integer
parameters; hence, the floating-point values need to be converted into integers. This is
the function of the union in the code.

The code reads the value of the variable to be modified and then prepares the modi-
fied version of this variable. In the code, the variable is read only once, at line 11, and
then held in the local variable oldvalue. This is to avoid a data race where the value
changes between the first read of the variable and its use as one operand in the addition,
at line 12. The race is subtle. Suppose that the first time the variable is read, at line 11, it
has the value 20; this is recorded as the original value of the variable. At this point,
another thread changes the value of the variable, so the second time it is read, at line 12,
it has the value 21. The value 21 is incremented to 22, and this will become the new
value of the variable if the operation is successful. Suppose now that the other thread has
returned the value of the variable to 20 by the time the CAS operation is tried. Since
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the variable contains 20 and this is the expected value, the CAS operation will store the
value 22 into the variable, rather than the correct value of 21.

We can explore this problem of reloading values with another example. Listing 8.5
shows code that adds an element to the top of a list. The code creates a new element and
stores the appropriate value in this. The loop keeps attempting to add this new element
to the front of the list until it succeeds. Each iteration of the loop sets the next field of
the new element to be the next element in the list and then attempts to atomically com-
pare and swap the head of the list with a pointer to the new element. If the compare and
swap succeeded, the return value will be the pointer to the element that used to be the
top of the list. If this happens, the code has succeeded, and the loop can exit.

Listing 8.5  Code to Add an Element to t he Top of a List

void addelement( element_t ** head, int value )

{

element_t * element  (element_t*)malloc(sizeof(element_t));

element->value  value;

while (element! 0)

{

element->next  *head;

if ( CAS( head, element->next, element )  element->next)

{

element  0;

}

}

The problem with this code is that the CAS() function call causes the compiler to
reload the value of element >next. There is a short window of opportunity for another
thread to take the top element from the list between the CAS() function call and the
load of element >next. If this other thread takes the element off the list and modifies
the value of element >next, then the compare and swap will not match with the new
value of element >next, and the loop will assume that it failed to add the element to
the queue, even though it actually succeeded. So, the code will attempt to add the ele-
ment a second time, causing an error. The solution is to hold the original value of *head
in a local variable and use this in the comparison to determine whether the compare
and swap was successful.

The opportunity for this data corruption to occur is only a few cycles in duration.
However, for a sufficiently long-running program, this will eventually occur. In common
with all data-race type errors, the result of this data corruption will be detected arbitrar-
ily far from when the corruption occurred.

Returning to the atomic add operation, notice that the operation is actually a loop.
Although the observable effect is that the value in the variable is incremented atomically,
this operation can take an arbitrary number of iterations around the loop to complete.
This is actually a lock-free algorithm for updating the variable. This is really to contrast
with the obvious implementation using mutex locks shown in Listing 8.6.
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Listing 8.6  Addition of Values Using Mutex Locks

void atomic_add_float( pthread_mutex_t * lock, float * var, float inc )

{

pthread_mutex_lock( lock );

*var +  inc;

pthread_mutex_unlock( lock );

}

As mutex locks can be implemented using CAS operations, the resulting code for the
two situations is structurally not too dissimilar—both codes have a single loop. The dif-
ference is that the mutex lock loops on the CAS of the lock, whereas the lock-free vari-
ant loops on the CAS of the variable.

Enforcing Memory Ordering to Ensure Correct Operation
In the previous section, we looked at the implementation of a simple spinlock. Unfortu -
nately, there is the potential for more implementation complexity. When writing any
multithreaded code, it is important to consider the memory-ordering characteristics of
the system. When a thread running on a multithread system performs a memory opera-
tion, that operation may or may not become visible to the rest of the system in the order
in which it occurred.

For example, an application might perform two store operations. On some processors,
the second store operation could become visible to other processors before the first store
operation becomes visible. This is called weak memory ordering. 

Consider this in the context of a mutex lock. The application updates a variable and
stores it back to memory. It then frees the lock by writing a zero into the lock. If the
system implements a weak memory ordering, the store to free the lock might become
visible to other processors in the system before the store to update the data. Another
processor that was waiting on the lock might see that the lock is free and read the value
of the variable protected by the lock before the update of that variable is visible.

To stop this kind of error, it may be necessary to include instructions that enforce the
desired memory ordering. Determining whether a particular processor requires these
instructions typically requires a careful read of the documentation. However, code that
assumes that these instructions are necessary will run correctly on hardware that does not
need the instructions, whereas the converse is not true.

First, we’ll consider the release of a mutex lock in more detail. The release operation is
performed by storing a zero to the lock variable. The code executed while the mutex lock
is held will update memory. It must be ensured that all the memory updates performed
while the mutex is held are completed before the mutex is released. In the context of
this discussion, the memory updates performed while the mutex was held must become
visible to the rest of the system before the freeing of the mutex lock becomes visible. 

To ensure that the correct order of operations is observed, it is sometimes necessary
to use a memory barrier or memory fence. These stop the processor from executing further
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memory operations until the previous memory operations have completed. These
instructions usually have different variants to enforce an order on different types of
memory operations. In the case of the mutex lock release after a store operation, the
memory barrier needs to enforce store ordering—no future store operations should
become visible to the system until all proceeding stores have completed. Store ordering
is the default for SPARC and x86 processors, so neither processor requires a memory
barrier between two adjacent stores to enforce the order of the store operations.

It is less immediately obvious why loads have a similar constraint. Imagine that we
have a reader-writer lock where a reader thread will only read data protected by the
mutex and a writer thread can update those values. If a reader thread acquires the mutex,
it wants to read those values while it still holds the mutex. The act of acquiring the
mutex must complete before the load of the data protected by the mutex can start. A
similar ordering constraint occurs when the mutex is freed. It is critical that the value of
the variable protected by the mutex is read before the release of the mutex becomes visi-
ble to the system.

Loads and stores that occur after the mutex has been released can be speculated so
that they occur before the barrier. This is safe because access to these variables is not
protected by the mutex and can be completed by either holding or not holding the
mutex. This kind of barrier is called a release barrier.

A similar process must take place when a mutex is acquired. Memory operations that
occur after the mutex has been acquired must not be visible to the system until after the
mutex has been safely acquired. Again, memory operations that occur before the mutex
is acquired can still be ongoing after the mutex has been acquired. This is referred to as
an acquire barrier.

Returning to the spinlock that we implemented in Listing 8.2, we can now update
this in Listing 8.7 to include the appropriate barrier calls.

Listing 8.7  Spinlock with Appropriate Memory Barriers

void lock_spinlock( volatile int* lock )

{

while ( CAS(lock, 0, 1) !  0 ) {}

acquire_memory_barrier();  // Ensure that the CAS operation

// has become visible to the system

// before memory operations in the

// critical region start

}

void free_spinlock( volatile int * lock )

{

release_memory_barrier();  // Ensure that all past memory operations

// have become visible to the system 

// before the following store starts

*lock  0;

}
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The kinds of memory barriers available are defined by the architecture. The x86
architecture defines the following:

n mfence. Ensures that all previous loads and stores are visible to the system before
any future loads and stores become visible

n sfence. Ensures that all previous stores are visible to the system before any future
stores become visible

n lfence. Ensures that all previous loads are visible to the system before any future
loads become visible

The SPARC architecture defines a slightly finer set of memory barrier semantics. The
instruction membar takes a combination of options to indicate the particular type of bar-
rier required. The following types of memory barrier can be combined:

n membar #StoreStore. Ensures that all stores complete before the following stores
n membar #StoreLoad. Ensures that all stores complete before the following loads
n membar #LoadStore. Ensures that all loads complete before the following stores
n membar #LoadLoad. Ensures that all loads complete before the following loads

Modern SPARC and x86 processors implement a strong memory-ordering model.
This means that memory-ordering operations are rarely needed. However, writing soft-
ware that is safe for future processors where the memory-ordering constraints may have
changed and older processors that implemented a weaker memory ordering requires that
these instructions are included in the code. Processors that do not need the operations
will typically ignore them and therefore get only minimal performance penalty.

On x86, the mfence instruction provides sufficient constraints on memory ordering
for it to be used as both an acquire and a release barrier. On SPARC, it is sufficient to
use membar #LoadLoad|#LoadStore to provide acquire barrier semantics to ensure
that all previous loads have completed before any following memory operations. Release
semantics are provided by membar #LoadStore|#StoreStore to ensure that all previ-
ous memory operations have completed before the following store instruction. 

On both SPARC and x86 processors, atomic operations enforce total memory order-
ing; the atomic operation enforces an ordering between loads and older stores and loads
and stores that are to be issued. Hence, in general, no memory barrier is required before
or after an atomic operation.

Compiler Support of Memory-Ordering Directives
Windows provides the MemoryBarrier() macro, which causes the compiler to emit
memory-ordering instructions. OS X provides OSMemoryBarrier(), which provides the
same functionality. 

gcc and Solaris Studio support using inline assembly to generate memory-ordering
instructions. For example, asm volatile ("mfence":::"memory") would insert an
mfence instruction at the desired location in the code.
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Reordering of Operations by the Compiler
Although the hardware can reorder operations, it is also possible for the compiler to do
the same. Although the compiler will try to do the “right thing,” there will be situations
where it needs hints in order to produce code that runs correctly.

It is often thought that the volatile keyword provides a safety net that stops the
compiler from optimizing code. Unfortunately, this is not true. The volatile keyword
determines that the compiler needs to reload data from memory when it needs to use it
and should store it back to memory as soon as it is modified. It does not stop the com-
piler from performing optimizations around the data nor does it form any kind of pro-
tection against data races.

However, the volatile keyword is necessary to avoid the compiler optimizing away
accesses to a variable. Consider the code in Listing 8.8. The variable start is declared as
volatile. If this were not the case, then the compiler would determine that the loop
was either not entered or entered and infinite.

Listing 8.8  Code Where volatile Keyword Is Necessary to Ensure Reloading of 
Variable start

volatile int start;

void waitforstart()

{
while( start  0 ) {}

}

A very similar situation exists with the code in Listing 8.9. In this case, the code con-
tains a function call. Function calls, generally, cause the compiler to reload global data.
However, if the variable count is not declared to be volatile, it is still possible for the
compiler to generate an infinite loop. The reason for this is that if count does equal zero
and it is not a volatile variable, then the call to getElementFromList() will not be
made, and the variable will remain zero. An optimizing compiler may identify this situa-
tion and replace the else branch of the if statement with an infinite loop.

Listing 8.9  Function Calls Do Not Always Enforce Reloading of All Variables

volatile int count;

int* getnextelement()

{

int element  0;
while( element  0 ) 

{

if (count>0)

{

element  getElementFromList();
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}

}

return element;

}

The code shown in Listing 8.10 demonstrates a situation where the compiler can
merge two loops, resulting in a change of behavior. The code creates four threads. Each
thread runs the same routine that prints out a statement that the thread is ready and then
waits on the volatile variable start. When the thread is started, it prints out a mes-
sage before completing a short amount of work, printing a message indicating that it has
completed its work and exiting.

The main code creates the threads and, once all the threads are created, signals to the
threads that they can start working. Once this has been done, it waits for all the threads
to complete their work, before calling pthread join() on each of the threads.

Listing 8.10  Code Where the Compiler May Reorder Operations

#include <stdio.h>

#include <pthread.h>

volatile int start[4];

volatile int done[4];

void * work( void* param )

{

int id  (int)param;

while ( start[id]  0 ) {}

printf( "Thread %i started\n", id );

double total 0;

for ( int i 0; i<100000000; i++ ) { total +  i; }

printf( "Thread %i done\n", id );

done[id]  1;

}

int main()

{

pthread_t thread[4];

for ( int i 0; i<4; i++ )

{

pthread_create( &thread[i], 0, work, (void*)i );

done[i] 0;

}

for ( int i=0; i<4; i++ )

{

start[i] = 1;

}
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for ( int i=0; i<4; i++ )

{

while( done[i] == 0 ){}

}

for ( int i 0; i<4; i++ )

{

pthread_join( thread[i], 0 );

}

}

Listing 8.11 shows the output from the code with and without optimization. There is
a pronounced difference between the codes. When compiled without optimization, all
the threads proceed at the same time, so the output from the application shows all the
threads starting and then all the threads completing. When compiled with optimization,
the threads are serialized, so each thread prints the message that it has started followed by
the message that it has completed.

Listing 8.11  Output Without and with Optimization

$ cc loop_merge.c

$ ./a.out

Thread 1 started

Thread 2 started

Thread 0 started

Thread 3 started

Thread 1 done

Thread 0 done

Thread 2 done

Thread 3 done

$ cc -O loop_merge.c

$ ./a.out

Thread 0 started

Thread 0 done

Thread 1 started

Thread 1 done

Thread 2 started

Thread 2 done

Thread 3 started

Thread 3 done

With optimization, the compiler has merged the code in the two loops that set the
start variable and read the end variable. This produces code similar to that shown in
Listing 8.12. The two loops contain no function calls, and the compiler considers the
accesses to the volatile variables to be without side effects. Hence, the compiler considers
it safe to merge the two loops.
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Listing 8.12  Compiler-Optimized Code

int main()

{

pthread_t thread[4];

for( int i 0; i<4; i++ )

{

pthread_create( &thread[i], 0, work, (void*)i );

done[i]  0;

}

for ( int i=0; i<4; i++ )

{

start[i] = 1;

while( done[i] == 0 ){}

}

for ( int i 0; i<4;i++ )

{

pthread_join( thread[i], 0 );

}

}

To correct this situation, we need to modify the code so that the compiler is unable
to merge the two loops. The easiest way to do this is to place a function call either in
one of the loops or between the two loops. An alternative approach would be to separate
the two loops with serial code that is unable to be moved because of some dependency
or potential aliasing issue. However, both of these approaches will add some unnecessary
instructions into the code, and both approaches run the risk that a “smart” compiler
might identify the instructions as unnecessary and remove them.

There is a gcc asm("":::"memory") construct, supported by multiple compilers,
that can be used to cause the compiler to correctly order the loops. Listing 8.13 shows
the code modified to use this statement. This statement stops the loops from merging
and adds no additional instructions into the code.

Listing 8.13  Using gcc asm() Statement to Cause Correct Operation Ordering

int main()

{

pthread_t thread[4];

for ( int i 0; i<4; i++ )

{

pthread_create( &thread[i], 0, work, (void*)i );

done[i]  0;

}

for ( int i 0; i<4; i++ )

{

start[i]  1;

}
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asm volatile( "": : : "memory" );

for ( int i 0; i<4; i++ )

{

while( done[i]  0 ){}

}

for ( int i 0; i<4;i++ )

{

pthread_join( thread[i], 0 );

}

}

Windows provides intrinsics for this purpose. The functions ReadBarrier(),
WriteBarrier(), and ReadWriteBarrier() are defined in <intrin.h>. These

intrinsics tell the compiler not to reorder the operations. A ReadBarrier() call
ensures that all reads will have completed at that point, while a WriteBarrier() call
ensures that all writes have completed. These instructions only enforce the compiler
ordering and do not generate any instructions.

Volatile Variables
It should be apparent from the previous discussions that the volatile keyword is useful
in the context of multithreaded code but does not stop the compiler from reordering
operations. The volatile keyword just tells the compiler to reload variables from mem-
ory before using them and store them back to memory after they have been modified.
This behavior imposes an overhead on the access of any volatile variables. They must be
held in memory and cannot be cached in a variable.

Using the volatile keyword is necessary to avoid undesirable caching, in registers,
of the values held in memory locations. However, the keyword also stops desirable
caching of the variable, so any use of the variable can be expensive.

It may be possible to reduce this cost by typecasting the variable to be volatile or
using function calls that would cause the compiler to believe that the variable might
have been modified.

However, it should be observed that judicious use of compiler memory barriers can
be low cost and a more accurate way of ensuring that variables are stored back to mem-
ory and reloaded from memory at the desired point in the code. Listing 8.14 modifies
the code shown in Listing 8.6 to avoid having to declare the variable start as volatile and
instead uses a compiler barrier to ensure that the value is reloaded from memory.

Listing 8.14  Code Where Compiler Barrier Ensures Reloading of Variable start

extern int start;

void waitforstart()

{
while(start 0) { asm volatile( "": : : "memory" ); }

}
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Operating System–Provided Atomics
Using the information in this chapter, it should be possible for you to write some funda-
mental atomic operations such as an atomic add. However, these operations may already
be provided by the operating system. The key advantage of using the operating
system–provided code is that it should be correct, although the cost is typically a slight
increase in call overhead. Hence, it is recommended that this code be taken advantage of
whenever possible.

gcc provides the operations such as sync fetch and add(), which fetches a
value from memory and adds an increment to it. The return value is the value of the
variable before the increment. Windows defines InterlockedExchangeAdd(), which
provides the same operation, and Solaris has a number of atomic add() functions to
handle different variable types. Table 8.1 on page 311 provides a mapping between the
atomic operations provided by gcc, Windows, OS X, and Solaris. An asterisk in the func-
tion name indicates that it is available for multiple different types.

The code in Listing 8.15 uses the gcc atomic operations to enable multiple threads to
increment a counter. The program creates ten threads, each of which completes the
function work(). The original program thread also executes the same code. Each thread
increments the variable counter 10 million times so that at the end of the program, the
variable holds the value 110 million. If the atomic add operation is replaced with a nor-
mal unprotected increment operation, the output of the program is unpredictable
because of the data race that this introduces.

Listing 8.15  Using Atomic Operations to Increment a Counter

#include <stdio.h>

#include <pthread.h>

volatile int counter 0;

void *work( void* param )

{

int i;

for( i 0; i<1000000; i++ )

{

__sync_fetch_and_add( &counter, 1 );

}

}

int main()

{

int i;

pthread_t threads[10];

for( i 0; i<10; i++ )

{
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pthread_create( &threads[i], 0, work, 0 );

}

work( 0 );

for( i 0; i<10; i++ )

{

pthread_join( threads[i], 0 );

}

printf( "Counter %i\n", counter );

}

The main advantage of using these atomic operations is that they avoid the overhead
of using a mutex lock to protect the variable. Although the mutex locks usually also have
a compare and swap operation included in their implementation, they also have overhead
around that core operation. The other difference is that the mutex lock operates at a dif-
ferent location in memory from the variable that needs to be updated. If both the lock
and variable are shared between threads, there would typically be cache misses incurred
for obtaining the lock and performing an operation on the variable. These two factors
combine to make the atomic operation more efficient.

Atomic operations are very effective for situations where a single variable needs to be
updated. They will not work in situations where a coordinated update of variables is
required. Suppose an application needs to transfer money from one bank account to
another. Each account could be modified using an atomic operation, but there would be
a point during the entire transaction where the money had been removed from one
account and had not yet been added to the other. At this point, the total value of all
accounts would be reduced by the amount of money in transition. Depending on the
rules, this might be acceptable, but it would result in the total amount of money held in
the bank being impossible to know exactly while transactions were occurring.

The alternative approach would be to lock both accounts using mutex locks and then
perform the transaction. The act of locking the accounts would stop anyone else from
reading the value of the money in those accounts until the transaction had resolved.

Notice that there is the potential for a deadlock situation when multiple transactions
of this kind exist. Suppose an application needs to move x pounds from account A to
account B and at the same time another thread in the application needs to move y
pounds from account B to account A. If the first thread acquires the lock account A and
the second thread acquires the lock on account B, then neither thread will be able to
make progress. The simplest way around this is to enforce an ordering (perhaps order of
memory addresses, low to high) on the acquisition of locks. In this instance, if all threads
had to acquire lock A before they would attempt to get the lock on B, only one of the
two threads would have succeeded in getting the lock on A, and consequently the dead-
lock would be avoided.
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1

1

Table 8.1 Atomic Operations Provided by gcc, Windows, OS X, and Solaris

gcc Windows Solaris Mac OS X

__sync_fetch_and_add() InterlockedExchangeAdd() atomic_add*() OSAtomicAdd*()

__sync_fetch_and_or() InterlockedOr() atomic_or*() OSAtomicOr32()

__sync_fetch_and_and() InterlockedAnd() atomic_and*() OSAtomicAnd32()

__sync_fetch_and_xor() InterlockedXor() - OSAtomicXor32()

__sync_val_compare_and_swap() InterlockedCompareExchange() atomic_cas*() OSAtomicCompareAndSwap*()

InterlockedExchange() atomic_swap*() -

InterlockedIncrement() atomic_inc*() OSAtomicIncrement*()

InterlockedDecrement() atomic_dec*() OSAtomicDecrement*()

InterlockedBitTestAndSet() atomic_set_long_excl() OSAtomicTestAndSet()

InterlockedBitTestAndReset() atomic_clear_long_excl() OSAtomicTestAndClear()

__sync_lock_test_and_set()

__sync_lock_release()

__sync_fetch_and_sub()

__sync_fetch_and_nand()

__sync_add_and_fetch()

__sync_sub_and_fetch()

__sync_or_and_fetch()

__sync_and_and_fetch()

__sync_xor_and_fetch()

__sync_nand_and_fetch()

No equivalent

No equivalent

 Download at www.wowebook.com



Lockless Algorithms
The other approach to lockless algorithms is to code the algorithms so that they do not
require locks. This can be complicated to achieve because it requires consideration of the
state of the data and the transitions between data states to ensure that the system remains
in legal states all the time.

Dekker’s Algorithm
One of the first lockless algorithms was Dekker’s algorithm for mutual exclusion.
Without using any atomic operations, the algorithm ensures that only one thread at a
time out of a pair of threads can enter a critical region. Listing 8.16 shows an implemen-
tation of Dekker’s algorithm. To increment the counter a thread would call the function
increment() with its thread ID.

Listing 8.16  Implementation of Dekker’s Algorithm for Mutual Exclusion

volatile int priority  0;

volatile int counter  0;

volatile int waiting[2];

void increment( int id )

{

waiting[id]  1;

while( waiting[1-id]  1 )

{

if ( priority !  id )

{

waiting[id]  0;

while ( priority !  id ){}

waiting[id]  1;

}

}

/* Critical section */

counter++;

/* Exit critical section */

priority  1-id;

waiting[id]  0;

}

The algorithm works because each thread signals that it is waiting to get into the
critical section. If the other thread has not signaled that it is waiting for or has already
entered the critical section, then the current thread can enter it. If both threads are wait-
ing, then one of the threads gets priority, and the other thread waits until it gets priority.
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The variables priority and counter, together with the array waiting, are shared
between the two threads and as such need to be declared as being volatile. This
ensures that the compiler stores these variables immediately after modification and loads
them immediately before use. To test the correctness of this implementation, we can
place the code in a harness. Listing 8.17 shows the harness. This harness creates the two
threads. Each thread increments the variable counter 1 million times, so at the end of the
program, the variable should contain the value 2 million. The program reports the differ-
ence between this value and what the counter actually contains.

Listing 8.17  Test Harness for Dekker’s Algorithm

#include <stdio.h>

#include <pthread.h>

void * worker( void * param )

{

for ( int i 0; i<1000000; i++ )

{

increment( (int)param );

}

}

int main()

{

pthread_t threads[2];

pthread_create( &threads[0], 0, worker, (void*)0 );

pthread_create( &threads[1], 0, worker, (void*)1 );

pthread_join( threads[1], 0 );

pthread_join( threads[0], 0 );

printf( "Errors  %i\n", 2*1000000 - counter );

}

Listing 8.18 shows the results of compiling and running the program. Unfortunately,
the program reports that the variable did not get incremented the correct number of
times, and this means that there were some situations when the two threads managed to
enter the critical region at the same time.

Listing 8.18  Results of Compiling and Running Test Harness

$ cc -O -mt dekker.c

$ ./a.out

Errors  14

The problem with the code is one of memory ordering. The two threads can simulta-
neously indicate that they are waiting to enter the critical section by storing to their
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index in the waiting array. In the very next cycle, they load the other thread’s waiting
status. Since the other thread has only just issued the store, the store has not yet made its
way through the pipeline to be visible to the rest of the system. So, the load instruction
picks up a zero, indicating that the other thread is not waiting for the critical section.
Both threads fail to see the other thread waiting, and both threads enter the critical
region.

The way to fix this is to put memory barriers into the code. The memory barriers
ensure that previous memory operations have completed before the next memory oper-
ation issues. In this case, we want to ensure that the store to indicate a thread is waiting
is completed before the load to check whether the other thread is also waiting. Now
consider the sequence of operations. Both threads hit the store at the same time; both
threads now wait until the stores are visible to the other processor before issuing their
load. So, both threads will get the data that was stored by the other thread.

On SPARC processors, the appropriate memory barrier to use is membar #StoreLoad,
which ensures that all previous stores have completed before the following load is issued.
On x86 processors, it is necessary to use an mfence operation that ensures that all previ-
ous memory operations complete before the next memory operation is issued.

Listing 8.19 shows the modified code for Dekker’s algorithm. The code requires two
memory barriers, once before the loop is entered and a second barrier inside the loop.
With this modification, the code produces the correct result when run in the test harness.

Listing 8.19  Dekker’s Algorithm with Memory Barriers

#include <stdio.h>

#include <pthread.h>

volatile int priority  0;

volatile int counter  0;

volatile int waiting[2];

void increment( int i )

{

waiting[i]  1;

#ifdef __sparc

asm( "membar #StoreLoad": : : "memory" );

#else

asm( "mfence": : : "memory" );

#endif

while( waiting[1-i]  1 )

{

if ( priority !  i )

{

waiting[i]  0;

while ( priority !  i ){}

waiting[i]  1;
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#ifdef __sparc

asm( "membar #StoreLoad": : : "memory" );

#else

asm( "mfence": : :"memory" );

#endif

}

}

counter++;

priority  1-i;

waiting[i]  0;

}

Producer-Consumer with a Circular Buffer
Consider the case where there is a producer-consumer pair of threads that communicate
through a circular buffer. It is possible to write code that does not require locks or
atomic operations to handle this situation. The code shown in Listing 8.20 defines two
functions: one to add an item to a circular buffer and one to remove an item.

Listing 8.20  Adding and Removing Elements from a Circular List

#include <stdio.h>

#include <pthread.h>

#include <stdlib.h>

volatile int volatile buffer[16];

volatile int addhere;

volatile int removehere;

void clearbuffer()

{

addhere  0;

removehere  0;

for( int i 0; i<16; i++ ) { buffer[i]  0; }

}

int next( int current )

{

return ( current+1 ) & 15;

}

void addtobuffer( int value )

{

while( next(addhere) == removehere ) {} // Spin waiting for room

if ( buffer[addhere] !  0 ) 

{ printf( "Circular buffer error\n" ); exit(1); }
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buffer[addhere] = value; // Add item to buffer

addhere = next(addhere); // Move to next entry

}

int removefrombuffer()

{

int value;

while( ( value = buffer[removehere] ) == 0 ){} // Spin until 

// something in buffer

buffer[removehere] = 0; // Zero out element

removehere = next(removehere);                 // Move to next entry

return value;

}

The code works without memory barriers because one thread is responsible for
adding elements to the array and the other thread is responsible for removing elements
for the array.

There are actually two implicit constraints that ensure that the code works. One con-
straint is that stores and loads are themselves atomic. The other constraint is that stores do
not become reordered.

Hardware ensures that a correctly aligned load cannot get half of its data from the old
value at the address and half from the new value stored at that address. If this were to
happen, there would be a problem when returning the value stored in the array. Imagine
that either the store or the load was nonatomic. If an element was transitioning from
holding the value zero to holding a nonzero value, then a nonatomic load might get the
old upper half of the value (which would be zero) and the new lower half of the value
(which would be nonzero). The resulting value would be incorrect.

The requirement for ordering stores comes from the code that removes elements
from the array. The location containing the element to be removed is zeroed out, then
the pointer to the end element to be removed is advanced to the next location in the
array. If these actions became visible to the producer thread in the wrong order, the pro-
ducer thread would see that the end pointer had been advanced. This would allow it to
enter the code that adds a new element. However, the first test this code performs is to
check that the new location is really empty. If the store of zero to the released array
position was delayed, this location would still contain the old value, and the code would
exit with an error. The check is “logically” unnecessary but validates that the code is
behaving correctly.

Several characteristics of the algorithm enable it to work correctly. There are two point-
ers that point to locations in the array. Only one thread is responsible for updating each
of these variables. The other thread only reads the variable. As long as the reading thread
sees the updates to memory in the correct order and each variable is updated atomically,
the thread will continue to wait until the data is ready and only then read that data.

A subtle characteristic of the code is that the updates of the pointers into the array
are carried out by a function call. The function call acts as a compiler memory barrier
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and forces the compiler to store variables back to memory. Otherwise, there would be
the risk that the compiler might reorder the store operations.

The handling of the array that forms the basis for communication between the two
threads is also of concern. There is only one thread responsible for reading from the array
and one thread responsible for writing to it. In fact, the code could be simplified so that
the act of reading and writing the array was the synchronization mechanism. Listing 8.21
shows this modification. In the modified code, the application adds an entry into the
buffer only if there is a space. The two pointers are entirely independent.

Listing 8.21  Using Reads and Writes to Coordinate Thread Activity

#include <stdio.h>

#include <pthread.h>

#include <stdlib.h>

volatile int volatile buffer[16];

volatile int addhere;

volatile int removehere;

void clearbuffer()

{

addhere  0;

removehere  0;

for ( int i 0; i<16;i++ ) { buffer[i]  0; }

}

int next( int current )

{

return ( current + 1 ) & 15;

}

void addtobuffer( int value )

{

while( buffer[ next(addhere) ] != 0 ) {}

buffer[addhere]  value;

addhere  next(addhere);

}

int removefrombuffer()

{

int value;

while( ( value = buffer[removehere] ) == 0 ) {}

buffer[removehere]  0;

removehere  next(removehere);

return value;

}
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The code in Listing 8.22 provides the remainder of the test program. It creates two
threads and sets one up as the producer and the other as the consumer. Both threads run
until 10 million elements have been passed from the producer to the consumer.

Listing 8.22  Code to Set Up Producer and Consumer Thread

void * producer( void *param )

{

for( int i 1; i<10000000; i++ )

{

addtobuffer( i );

}

}

void * consumer ( void *param )

{

while ( removefrombuffer() !  9999999 ) {}

}

int main()

{

clearbuffer();

pthread_t threads[2];

pthread_create( &threads[0], 0, producer, 0 );

pthread_create( &threads[1], 0, consumer, 0 );

pthread_join( threads[1], 0 );

pthread_join( threads[0], 0 );

}

Scaling to Multiple Consumers or Producers
The code in Listing 8.21 works for a single producer and consumer without synchro-
nization because one thread is responsible for adding items to the circular buffer and one
thread is responsible for removing items. If the code were to be scaled to multiple con-
sumers or producers, this would no longer be true, and in general, the code would
require some kind of locking. 

There are some cases where the use of synchronization could be avoided. If the code
scales to either multiple consumers or multiple producers, but not both, then the number
of circular buffers could also be scaled. This would maintain the one-to-one relationship
between producers and circular buffers and between circular buffers and consumers. If
there were multiple producers and multiple consumers, then synchronization could be
avoided if each of these were paired. So, one producer can feed only a single consumer,
and that consumer can take work from only a single producer. Finally, if there was a sin-
gle circular buffer for every producer-consumer pair, then synchronization could again
be avoided.
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All of the previous scenarios reflect different trade-offs, memory footprints, and run-
time behaviors. Assuming that the amount of work does indeed need to scale, it is most
likely that some kind of “many producer to many consumer” mapping will be necessary.
It would be possible to code an NxM system of queues that would provide a circular
buffer for every producer-consumer pair, but this approach would likely be less efficient
than using some amount of either atomic operations or mutex locks.

Scaling the Producer-Consumer to Multiple Threads
The simplest way to share the circular buffer between threads would be to use some
kind of mutual exclusion that would ensure that only a single thread at a time could
modify the structure. We previously encountered spinlocks in Listing 8.7, and these
would be appropriate to ensure that only a single thread manipulates the circular list at a
single time. Listing 8.23 shows the code modified so that access to the circular buffer is
protected with a spinlock.

Listing 8.23  Using Mutual Exclusion to Ensure Exclusive Access to the Circular Buffer

#include <stdio.h>

#include <pthread.h>

volatile int volatile buffer[16];

volatile int addhere;

volatile int removehere;

volatile int lock = 0;

void lock_spinlock( volatile int* lock )

{

while ( CAS( lock, 0, 1 ) != 0 ) {}

acquire_memory_barrier();

}

void free_spinlock( volatile int *lock )

{

release_memory_barrier();

*lock = 0;

}

void clearbuffer()

{

addhere  0;

removehere  0;

for( int i 0; i<16; i++ ) { buffer[i]  0; }

}

int next( int current )
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{

return ( current + 1 ) & 15;

}

void addtobuffer( int value )

{

lock_spinlock( &lock );

while( buffer[ next(addhere) ] !  0 ) {}

buffer[addhere]  value;

addhere  next(addhere);

free_spinlock( &lock );

}

int removefrombuffer()

{

int value;

lock_spinlock( &lock );

while( ( value  buffer[removehere] )  0 ){}

buffer[removehere]  0;

removehere  next(removehere);

free_spinlock( &lock );

return value;

}

There are several points to make about the code as it stands. The first is that the cir-
cular buffer has 16 entries, and although this might be adequate for a single producer-
consumer pair, it is unlikely to remain so as the number of threads increases. 

The second, more important, point is that the code now contains a deadlock. Imagine
that the circular buffer is empty and a consumer thread acquires the lock and starts wait-
ing for something to appear in the buffer. A producer thread eventually arrives but now
has to acquire the lock before it can add anything into the buffer. Both threads end up
spinning, waiting for an event that can never happen.

There are two solutions to this particular instance of the problem. The first solution is
perhaps the most trivial, and that is to provide two locks—one for threads waiting to add
elements to the buffer and the second for threads waiting to remove an item from the
list. This solution works in this situation because it reduces the problem down to the one
described earlier where there are only two threads present in the system. One lock
ensures that only one producer thread can access the circular buffer at a time. The other
lock ensures that only one consumer thread can access the circular buffer at a time. The
other producer and consumer threads cannot interfere and cause correctness problems.

This solution relies on the original semantics of the code to provide a thread-safe ver-
sion in the presence of two threads. For illustrative purposes, consider how we could
modify the code so that only a single lock was necessary.

One way of doing this is to place the critical section inside another loop, which
repeats the loop until the critical section is successfully executed. This requires modifica-
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tion to the addtobuffer() and removefrombuffer() routines so that they no longer
loop inside the critical section and instead quickly return success or failure. Listing 8.24
shows code modified to remove the loops inside the critical section.

Listing 8.24  Using Mutual Exclusion to Ensure Exclusive Access to the Circular Buffer

void addtobuffer( int value )

{

int success = 0;

while( !success )

{

lock_spinlock( &lock );

if( buffer[ next(addhere) ]  0 )

{

buffer[addhere]  value;

addhere  next(addhere);

success = 1;

}

free_spinlock( &lock );

}

}

int removefrombuffer()

{

int value;

int success = 0;

while ( !success )

{

lock_spinlock( &lock );

if ( ( value  buffer[removehere] ) !  0 )

{

buffer[removehere]  0;

removehere  next(removehere);

success = 1;

}

free_spinlock( &lock );

}

return value;

}

The code uses a variable success to determine whether the critical region was suc-
cessful. Although this change results in the desired behavior for the code, it is not the
best code to run on the system. The problem with the code is that while threads are unable
to add or remove items from the queue, the spinlock is constantly being acquired and
released. This results in significant traffic between the cores invalidating and fetching the
cache line containing the lock variable. Both the acquisition and release of the variable
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lock result in a store operation, which causes all the other caches to invalidate the cache
line containing the lock. When the next thread acquires the spinlock, it has to fetch it
from the cache of the processor that last updated the lock. This activity causes the cache
line containing the variable lock to be constantly being passed between the caches of
different virtual CPUs and may have an impact on the performance of the system.

For this code, a thread can easily determine whether it is likely to be successful in
accessing the buffer. This test for success is to load the next element in the buffer array
and see whether it is zero. The advantage of using load instructions is that the cache line
fetched by a load remains resident in cache until it is invalidated by a store operation. In
practical terms, each thread will spin on the appropriate variable waiting for it to be
modified. This causes no invalidation of the values held in other caches until the variable
is actually updated. Consequently, there is little risk of there being a performance impact
from this scheme.

When the next element in the buffer array becomes zero, it indicates that the thread
may be successful if it enters the critical region. Only at that point will the thread
attempt to enter the critical region, and only at that point will there be any invalidation
of data in cache lines. Listing 8.25 shows a modified version of the source code.

Listing 8.25  Avoiding Unnecessary Invalidations of Cache Lines

void addtobuffer( int value )

{

int success  0;

while ( !success )

{

if ( buffer[ next(addhere) ] == 0 ) // Wait for an empty space

{

lock_spinlock( &lock );

if( buffer[ next(addhere) ]  0 )

{

buffer[addhere]  value;

addhere  next(addhere);

success = 1;

}

free_spinlock( &lock );

}

}

}

int removefrombuffer()

{

int value;

int success  0;

while ( !success )
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{

if ( buffer[removehere] != 0 ) // Wait for an item to be added

{

lock_spinlock( &lock );

if ( ( value  buffer[removehere] ) !  0 )

{

buffer[removehere]  0;

removehere  next(removehere);

success  1;

}

free_spinlock( &lock );

}

}

return value;

}

The modified code contains the same mechanism that keeps the thread spinning until
it is successful. Within that loop, the thread tests to see whether it might be successful
before actually obtaining the lock. Although this reduces the number of invalidations of
the shared data and reduces the memory traffic, it is still not an optimal solution.

The problem with this code is that every time a new item is added to the circular
buffer or every time a space becomes free, all the waiting threads recognize this and
attempt to acquire the lock, even though only one thread can actually succeed. This is an
example of the thundering herd problem where a number of threads are waiting for a con-
dition to become true and only one thread can successfully proceed, so all the other
threads end up using unnecessary resources. This problem can be resolved by ordering
the list of threads such that only one thread is allowed to proceed.

However, the problem is worse than this. All the threads that identify the opportunity
to access the circular buffer will enter the if statement and can exit only after they have
acquired and released the spinlock. So, these threads will end up spinning on the spin-
lock, which was not the intention of the code.

To remove this problem, we should change the code so that instead of spinning on
the spinlock, the threads try to acquire it, and if they do not, then they should return to
the outer loop and wait for the next opportunity to access the circular buffer. Listing
8.26 shows the modified code. It introduces a function called try spinlock() that
will either acquire the spinlock and return true or fail to acquire the lock and return
false. With this modification, the threads spin on the variable, indicating the state of the
circular buffer. This variable is shared so it does not produce much memory traffic. If the
state changes, the threads attempt to get the spinlock. Only one thread will succeed, and
this thread gets to access the buffer while the other threads go back to spinning on the
shared variable. With this change, the spinlock has ceased to be used as a spinlock since
the threads spin before attempting to acquire the lock. 
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Listing 8.26  Avoiding Unnecessary Invalidations of Cache Lines Using try spinlock()

int try_spinlock( volatile int* lock )

{

if ( CAS( lock, 0, 1 ) == 1 ) { return 0; }

else

{

acquire_memory_barrier();

return 1;

}

}

void addtobuffer( int value )

{

int success  0;

while ( !success )

{

if ( buffer[ next(addhere) ]  0 )

{

if (try_spinlock( &lock ) )

{

if ( buffer[ next(addhere) ]  0 )

{

buffer[addhere]  value;

addhere  next(addhere);

success = 1;

}

free_spinlock( &lock );

}

}

}

}

int removefrombuffer()

{

int value;

int success  0;

while ( !success )

{

if ( buffer[removehere] !  0 )

{

if ( try_spinlock( &lock ) )

{

if ( ( value  buffer[removehere] ) ! 0 )

{

buffer[removehere]  0;

removehere  next(removehere);
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success  1;

}

free_spinlock( &lock );

}

}

}

return value;

}

A further improvement to the code would be to rewrite the spinlock so that it has
these semantics. Listing 8.27 shows this improvement to the spinlock code. This code
spins until the lock has been acquired by the calling thread. Every iteration, the loop
tests whether the lock is available. If the lock is available, the code attempts to acquire
the lock atomically. If successful, the code exits the loop having acquired the spinlock. 
If unsuccessful, the loop continues to spin.

Listing 8.27  Reducing Number of CAS Operations When Spinning

void lock_spinlock( volatile int* lock )

{

int acquired  0;

while ( !acquired ) 

{ 

if ( ( *lock  0 ) && ( CAS( lock, 0, 1 )  0) ) 

{

acquired  1;

}

}

acquire_memory_barrier();

}

void addtobuffer( int value )

{

int success  0;

while ( !success )

{

if ( buffer[ next(addhere) ]  0 )

{

lock_spinlock( &lock );

if ( buffer[ next(addhere) ]  0 )

{

buffer[addhere]  value;

addhere  next(addhere);

success  1;

}

free_spinlock( &lock );
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}

}

}

int removefrombuffer()

{

int value;

int success  0;

while ( !success )

{

if ( buffer[removehere] !  0 )

{

lock_spinlock( &lock );

if ( ( value  buffer[removehere] ) ! 0 )

{

buffer[removehere]  0;

removehere  next(removehere);

success  1;

}

free_spinlock( &lock );

}

}

return value;

}

Modifying the Producer-Consumer Code to Use Atomics
Since adding an item into the circular list and removing an item from the list look like
single operations, it is tempting to imagine that they could be implemented using atomic
operations. We will explore this scenario using the modified code shown in Listing 8.28.
In this code, each producer thread waits until the next entry in the buffer is free and
then attempts to atomically add an item into that buffer location. If successful, it incre-
ments the pointer to the next entry in the list. Similarly, all the consumer threads wait
until an item is placed into the list and then try to atomically remove the new item. The
thread that succeeds increments the pointer to the next entry in the list.

Listing 8.28  Using Atomic Operations to Handle a Circular List

void addtobuffer( int value )

{

int success  0;

while ( !success )

{

if ( buffer[ next(addhere) ]  0 )

{
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if ( CAS( &buffer[ next(addhere) ], 0, value ) == 0 )

{

addhere  next(addhere);

success  1;

}

}

}

}

int removefrombuffer()

{

int value;

int success  0;

while ( !success )

{

if ( ( value  buffer[removehere] ) !  0 )

{

if ( CAS( &buffer[removehere], value, 0 ) == value )

{

removehere  next(removehere);

success  1;

}

}

}

return value;

}

At first, it appears that this should work. Only one thread at a time can successfully
add or remove an element. Only that thread will alter the pointer so that it points to the
next entry.

However, this is not the case. It is critical to realize that although instructions will
execute in the expected order, the gaps between the execution of adjacent instructions
are random. A pair of instructions could be executed on the same cycle or with a separa-
tion of only a few cycles. However, a thread may be context switched off the virtual
CPU between the two instructions, and this would cause a gap of thousands of cycles to
occur between the two operations.

Consider the situation shown in Figure 8.1 where multiple producer and consumer
threads exist. At step A, two producer threads are attempting to add an item into the cir-
cular buffer. They both reach the CAS instruction at nearly the same time, but one of the
threads gets context switched off the CPU at that very moment. At step B, the other thread
successfully enters its value into the circular list and is just about to move the addhere
pointer onto the next element when it too is context switched off the virtual CPU.

While the first thread is off-processor, one of the consumer threads come along and
removes the recently inserted element, as shown in step C. At that point, the first thread
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is switched back onto the CPU, and it sees that the slot it was planning to use is now
empty. It atomically inserts its item of data into the circular buffer and then increments
the pointer to the next place to insert an element.

This is rapidly followed by the second producer thread being brought back onto a
virtual CPU. It completes the operation it was performing when it was context switched
off the virtual CPU, and it too increments the addhere pointer to the next place to insert
an element. This causes the addhere pointer to skip a location, but the removehere
pointer, which indicates where to remove elements from, is now pointing at the skipped
location, as shown in step D. The skipped location is empty, so the consumer threads are
left waiting for an element to be inserted there. This cannot happen until the producer
threads have filled up the entire circular buffer. However, before the producer threads can
fill the entire buffer, they hit a filled element in the buffer and cannot make progress
until this element has been removed, which will never happen because of the stalled
consumer threads.

Consequently, the application deadlocks with both the producer and consumer
threads unable to make forward progress.

Figure 8.1 Example of stepping through a data race
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addhere

removehere
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addhere

removehere

Step C

addhere
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The ABA Problem
This example is an instance of a general problem called the ABA problem. The ABA
problem is the situation where a thread is context switched off the virtual CPU when
the program is in state A. While it is off-CPU, the system changes into a second state, B,
before returning to state A. This state is different from the original state but looks identi-
cal to the thread that is now switched back onto a virtual CPU. When the first thread
returns to the CPU, it continues to act as if the program state had not changed, and this
causes an error.

In the circular buffer problem described in the previous section, the first thread is
taken off the virtual CPU while believing it has a pointer to a free slot. When it returns
to CPU, it has a pointer to what it believes is the free slot, but it has no indication that
the state of the rest of the system has changed.

A general solution to the ABA problem is to encode a version number with any
stored data. In this example of the circular buffer, the data would be accompanied by this
version number, and the version number would be incremented every time the circular
buffer was traversed. 

With this version number, the thread that was taken off-CPU would have to match
both the version number and the data for it to successfully add or remove an element
from the buffer.

Adding the version number has reduced but not eliminated the possibility that a
thread might return to the CPU to find a match of both version number and data.
However, the probability can be made so small as to be practically impossible. 

For example, if the version number is held as a 4-byte integer, then there are more
than 4 billion possible values. If the code traverses the circular buffer 1,000 times a sec-
ond, then it would take about one and a half months before the version number was
repeated. The race condition can occur only if the version number when a thread is
context switched off the virtual CPU matches the version number when the thread is
switched back onto the CPU. No thread would be context switched off the CPU for a
month and a half, so the race condition will not occur.

The code in Listing 8.29 is a modified version of the circular buffer code that
includes a version number for each element of the buffer. The version is incremented in
the routine nextupdate() every time the counter wraps around the buffer. 

This code uses a structure of two integers to hold the value to be stored and the ver-
sion number. It is necessary to use an atomic operation to perform the store. Most hard-
ware supports an 8-byte atomic operation, but a 16-byte atomic is rarely supported, so
the code will work only for 32-bit values.

Listing 8.29  Using Version Numbers to Avoid the ABA Problem

union ABAvalue

{

long long llvalue;

struct element
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{

int version;

int value;

} nested;

};

union ABAvalue buffer[16];

int counter  0;

void clearbuffer()

{

addhere  0;

removehere  0;

for ( int i 0; i<16;i++ ) 

{

buffer[i].llvalue  0;

}

}

int next( int current )

{

return ( current + 1 ) & 15;

}

int nextupdate( int current )

{

if ( current  15 ) { counter++; }  

return ( current + 1 ) & 15 ;

}

The code shown in Listing 8.30 is the modified version of the routines to add and
remove elements from the circular buffer. The compare and swap operation needs to
work on 8-byte values; hence, the assembly for the compare and swap needs to be modi-
fied, and the x86 code will work only when compiled to use 64-bit instruction set
extensions.

Listing 8.30  Adding and Removing Elements from Buffer

#ifdef __sparc

long long CAS( volatile long long* addr, long long ov, long long nv)

{

asm volatile( "casx %1, %2, %0": 

" r"(nv): 

"m"(*addr),"r"(ov),"0"(nv):

"memory" );
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return nv;

}

#else

long long CAS( volatile long long * addr, long long ov, long long nv )

{

asm volatile( "lock; cmpxchg %2, %1":

" a"(ov):

"m"(*addr),"r"(nv),"a"(ov):

"memory" );

return ov;

}

#endif

void addtobuffer( int value )

{

int success  0;

union ABAvalue current;

while ( !success )

{

current  buffer[ next(addhere) ];

if ( current.nested.value  0 )

{

union ABAvalue nextvalue;

nextvalue.nested.version  counter;

nextvalue.nested.value  value;

if ( CAS( &buffer[ next(addhere) ].llvalue, 

current.llvalue, 

nextvalue.llvalue )

== current.llvalue )

{

addhere  nextupdate(addhere);

success  1;

}

}

}

}

int removefrombuffer()

{

union ABAvalue current;

int success  0;

int value;

while ( !success )

{

current  buffer[ next(removehere) ];

if ( current.nested.value !  0 )

{
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value  current.nested.value;

union ABAvalue nextvalue;

nextvalue.nested.version  counter;

nextvalue.nested.value  0;

if ( CAS( &buffer[ next(removehere)].llvalue,

current.llvalue,

nextvalue.llvalue )  

== current.llvalue )

{

removehere  next(removehere);

success  1;

}

}

}

return value;

}

It should be apparent from the previous discussion that it is not trivial to use atomic
operations to manage the addition and removal of elements from a circular buffer. The
basic problem is that the atomic operation allows the atomic modification of the circular
list but is a separate operation to update the shared pointer to the next element. These
two operations would need to be somehow combined into a single atomic operation for
the code to work correctly.

Summary
Having completed this chapter, you should have an appreciation of some of the issues
that need to be considered when writing synchronization code. It is important to con-
sider both the memory ordering observed by other threads and the possibility that a
thread might be descheduled at any point.

Correct memory ordering needs to be enforced to ensure that memory operations
become visible to other threads in the appropriate order. Failure to do this will result in
other threads picking up stale or invalid values.

When threads become descheduled, they give other threads the opportunity to mod-
ify program state. However, rescheduled threads may not be able to observe the fact that
it has missed some changes in program state. The risk with this is that a rescheduled
thread may overwrite program state on the assumption that the state has not changed.

It is clearly possible to write safe synchronization mechanisms. However, it is usually
best to look for primitives provided by the compiler or operating system because these
will have been validated for correct operation. It is only when these prove to be high
cost and the alternatives have been exhausted that it is worth investigating custom cod-
ing synchronization primitives.
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9
Scaling with Multicore

Processors

The key advantage of a multicore processor is that it is able to allocate more cores to
solving a compute problem. Hence, to get the best out of a multicore processor, each
thread of an application needs to be efficient, and the application needs to be able to
effectively utilize multiple threads. An ideal application will double in performance when
run with two hardware threads and will quadruple in performance with four.

This chapter discusses the issues surrounding application scaling. By the end of the
chapter, you will have an understanding of the common ways that hardware and software
limit the scaling of applications. You will also know how to recognize these issues and
potentially solve them. You will also appreciate the difference between using multiple
threads on a multicore processor and using multiple single-core processors.

Constraints to Application Scaling
Most applications, when run in parallel over multiple cores, will get less than linear
speedup. We discussed this in Chapter 3, “Identifying Opportunities for Parallelism.”
Amdahl’s law indicates that a section of serial code will limit the scalability of the appli-
cation over multiple cores. If the application spends half of its runtime in a section of
code that has been made parallel and half in a section of code that has not, then the best
that can be achieved with two threads is that the application will run in three-quarters of
the original time. The best that could ever be achieved would be for the code to run in
about half the original time, given enough threads.

However, there will be other limitations that stop an application from scaling per-
fectly. These limitations could be hardware bottlenecks where some part of the system
has reached a maximum capacity. Adding more threads divides this total amount of
resources between more consumers but does not increase the amount available. Scaling
can also be limited by hardware interactions where the presence of multiple threads
causes the hardware to become less effective. Software limitations can also constrain scal-
ing where synchronization overheads become a significant part of the runtime. 



Performance Limited by Serial Code
As previously discussed, the serial sections of code will limit how fast an application can
execute given unlimited numbers of threads. Consider the code shown in Listing 9.1.
This application has two sections of code; one section is serial code, and the other sec-
tion is parallel code.

Listing 9.1  Application with Serial and Parallel Sections

#include <math.h>

#include <stdlib.h>

void func1( double*array, int n )

{

for( int i 1; i<n; i++ )

{

array[i] +  array[i-1];

}

}

void func2( double *array,int n )

{

#pragma omp parallel for

for( int i 0; i<n; i++ )

{

array[i]  sin(array[i]);

}

}

int main()

{

double * array  calloc( sizeof(double), 1024*1024 );

for ( int i 0; i<100; i++ )

{

func1( array, 1024*1024 );

func2( array, 1024*1024 );

}

return 0;

}

Listing 9.2 shows the profile from the application when it is parallelized using
OpenMP and run with a single thread. The application runs for nearly 16 seconds; this is
the wall time. The user time is the time spent by all threads executing user code. More
than half of the wall time is spent in the sin() function, about five seconds is spent in
func2(), and about two seconds is spent in func1(). So, 14 of the 16 seconds of run-
time are spent in code that can be executed in parallel.
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Listing 9.2  Profile of Code Run with a Single Thread

Excl.     Excl.    Name  

User CPU  Wall           

sec.      sec.    

15.431    15.701   <Total>

8.616     8.756   sin

4.963     5.034   func2

1.821     1.831   func1

0.020     0.030   memset

0.010     0.010   <OMP-overhead>

If two threads were to run this application, we would expect each thread to take about
seven seconds to complete the parallel code and one thread to spend about two seconds
completing the serial code. The total wall time for the application should be about nine
seconds. The actual profile, when run with two threads, can be seen in Listing 9.3.

Listing 9.3  Profile of Code Run with Two Threads

Excl.     Excl.   Name  

User CPU  Wall          

sec.     sec.    

15.421    8.956   <Total>

8.526    4.413   sin

4.973    2.432   func2

1.831    1.851   func1

0.030    0.030   memset

0.030    0.140   <OMP-implicit_barrier>

0.030    0.040   <OMP-overhead>

The first thing that is important to notice is that the total amount of user time
remained the same. This is the anticipated result; the same amount of work is being per-
formed, so the time taken to complete it should remain the same.

The second observation is that the wall time reduces to about nine seconds. This is
the amount of time that we calculated it would take.

The third observation is that the synthetic routines <OMP implicit barrier> and
<OMP overhead> accumulate a small amount of time. These represent the costs of the
OpenMP implementation. The time attributed to the routines is very small, so they are
not a cause for concern.

For a sufficiently large number of threads, we would hope that the runtime for the
code could get reduced down to the time it takes for the serial region to complete, plus
a small amount of time for the parallel code and any necessary synchronization. Listing
9.4 shows the same code run with 32 threads.
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Listing 9.4  Profile of Code Run with 32 Threads

Excl.     Excl.   Name  

User CPU  Wall          

sec.     sec.    

17.162    3.192   <Total>

9.527    0.410   sin

5.594    0.190   func2

1.911    1.991   func1

0.090    0.520   <OMP-implicit_barrier>

0.030    0.040   memset

0.010    0.      <OMP-idle>

With perfect scaling, we would expect the runtime of the application with 32 threads
to be 2 seconds of serial time plus 14 seconds divided by 32 threads, making a total of
just under 3 seconds. The actual wall time is not that far from this ideal number.
However, notice that the total user time has increased.

This code is actually running on a single multicore processor, so the increase in user
time probably indicates that the processor is hitting some scaling limits at this degree of
utilization. The rest of the chapter will discuss what those limits could be. 

The other thing to observe is that although the user time has increased by two sec-
onds, this increase does not have a significant impact on the total wall time. This should
not be a surprising result. A 2-second increase in user time spread over 32 threads repre-
sents a 1/16th of a second increase in per thread, which is unlikely to be noticeable in
the elapsed time, or wall time, of the application’s run.

This code has scaled very well. There remains two seconds of serial time and no
amount of threads will reduce that, but the time for the parallel region has scaled very
well as the number of threads has increased.

Superlinear Scaling
Imagine that you hurt your hand and were no long able to use both hands to type but
you still had a report to finish. For most people, it would take more than twice as long
to produce the report using one hand as using two. When your hand recovers, the rate at
which you can type will more than double. This is an example of superlinear speedup. You
double the resources yet get more than double the performance as a result. It’s easy to
explain for this particular situation. With two hands, all the keys on the keyboard are
within easy reach, but with only one hand, it is not possible to reach all the keys without
having to move your hand. 

In most instances, going from one thread to two will result in, at most, a doubling of
performance. However, there will be applications that do see superlinear scaling—the
application ends up running more than twice as fast. This is typically because the data
that the application uses becomes cache resident at some point. Imagine an application
that uses 4MB of data. On a processor with a 2MB cache, only half the data will be resi-
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dent in the cache. Adding a second processor adds an additional 2MB of cache; then all
the data becomes cache resident, and the time spent waiting on memory becomes sub-
stantially lower.

Listing 9.5 shows a modification of the program in Listing 9.1 that uses 64MB of
memory.

Listing 9.5  Program with 64MB Memory Footprint

#include <stdlib.h>

double func1( double*array, int n )

{

double total  0.0;

#pragma omp parallel for reduction(+:total)

for( int i 1; i<n; i++ )

{

total +  array[i^29450];

}

return total;

}

int main()

{

double * array  calloc( sizeof(double), 8192*1024 );

for( int i 0; i<100; i++ )

{

func1( array, 8192*1024 );

}

}

When the program is run on a single processor with 32MB of second-level cache, the
program takes about 25 seconds to complete. When run using two threads on the same
processor, the code completes in about 12 seconds and takes 25 seconds of user time.
This is the anticipated performance gain from using multiple threads. The code takes half
the time but does the same amount of work. However, when run using two threads,
with each thread bound to a separate processor, the program runs in just over four sec-
onds of wall time, taking only eight seconds of user time.

Adding the second processor has increased the amount of cache available to the pro-
gram, causing it to become cache resident. The data in cache has a lower access latency,
so the program runs significantly faster. 

It is a different situation on a multicore processor. Adding an additional thread, partic-
ularly if it resides on the same core, does not substantially increase the amount of cache
available to the program. So, a multicore processor is unlikely to see superlinear speedup.
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Workload Imbalance
Another common software issue is workload imbalance, when the work is not evenly dis-
tributed over the threads. We have already seen an example of this in the Mandelbrot
example in Chapter 7. The code in Listing 9.6 has a very deliberate workload imbalance.
The number of iterations in the compute() function is proportional to the square of the
value passed into it; the larger the number passed into the function, the more time it will
take to complete. 

A parallel loop iterates over a range from small values up to large values, passing each
value into the function. If the work is statically distributed, the threads that get the initial
iterations will spend less time computing the result than the threads that get the later
iterations.

Listing 9.6  Code Exhibiting Workload Imbalance

#include <stdlib.h>

int compute( int value )

{

value  value*value;

while ( value > 0 ) 

{

value  value - 12.0;

}

return value;

}

int main()

{

#pragma omp parallel for

for( int i 0; i<3000; i++ )

{

compute( i );

}

}

Figure 9.1 shows the timeline view of running the code with eight threads. Each
horizontal bar represents a thread actively running user code. The duration of the run is
governed by the time taken by the longest thread. The longest threads completed in just
over nine seconds. In those 9 seconds, the eight threads accumulated 27 seconds of user
time. The user time represents the amount of work that the threads actually completed. If
those 27 seconds of user time had been spread evenly across the eight threads, then the
application would have completed in about 3.5 seconds.

Changing the scheduling of the parallel loop to guided scheduling results in the time-
line shown in Figure 9.2. After this change, the work is evenly distributed across the
threads, and the application runs in just over 3.5 seconds.
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Figure 9.1  Timeline of code with eight threads

Figure 9.2  Timeline of code with eight threads and guided scheduling



Hot Locks
Contended (or hot) mutex locks are one of the common causes of poor application scal-
ing. This comes about when there are too many threads contending for a single resource
protected by a mutex. There are two attributes of the program conspiring to produce the
hot lock. 

n The first attribute is the number of threads needed to lock a single mutex. This is
the usual reason for poor scaling; there are just too many threads trying to access
this one resource.

n The second, more subtle, issue is that the interval between a single thread’s accesses
of the resource is too short. For example, imagine that each thread in an applica-
tion needs to access a resource for one second and then does not access that
resource again for nine seconds. In those nine seconds, another nine threads could
access the resource without a conflict. The application would be able to scale very
well to ten threads, but if an eleventh thread was added, the application would not
scale as well, since this additional thread would delay the other threads from access
to the resource.

These two factors result in the more complex behavior of an application with multi-
ple threads. The application may scale to a particular number of threads but start scaling
poorly because there is a contended lock that limits scaling. There are a number of
potential fixes for this issue.

The most obvious fix is to “break up” the mutex or find some way of converting the
single mutex into multiple mutexes. If each thread requires a different mutex, these
mutex accesses are less likely to contend until the thread count has increased further.

Another approach is to increase the amount of time between each access to the criti-
cal resource. If the resource is required less frequently, then the chance of two threads
requiring the resource simultaneously is reduced. An equivalent change is to reduce the
time spent holding the lock. This change alters the ratio between the time spent holding
the lock and the time spent not holding the lock, with the consequence that it becomes
less likely that multiple threads will require the lock at the same time.

There are other approaches that can improve the situation, such as using atomic oper-
ations to reduce the cost of the critical section of code.

The code in Listing 9.7 simulates a bank that has many branch offices. Each branch
holds a number of accounts and customers can move money between different accounts
at the same branch. To ensure that the amounts held in each account are kept consistent,
there is a single mutex lock that allows a single transfer to occur at any one time.

Listing 9.7  Code Simulating a Bank with Multiple Branches

#include <stdlib.h>

#include <strings.h>

#include <pthread.h>
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#define ACCOUNTS 256

#define BRANCHES 128

int account[BRANCHES][ACCOUNTS];

pthread_mutex_t mutex;

void move( int branch, int from, int to, int value )

{

pthread_mutex_lock( &mutex );

account[branch][from] -  value;

account[branch][to] +  value;

pthread_mutex_unlock( &mutex );

}

void *customers( void *param )

{

unsigned int seed  0;

int count  10000000 / (int)param;

for( int i 0; i<count; i++ )

{

int  row  rand_r(&seed) & (BRANCHES-1);

int from  rand_r(&seed) & (ACCOUNTS-1);

int   to  rand_r(&seed) & (ACCOUNTS-1);

move( row, from, to, 1 );

}

}

int main( int argc, char* argv[] )

{

pthread_t threads[64];

memset( account, 0, sizeof(account) );

int nthreads  8;

if ( argc > 1 ) { nthreads  atoi( argv[1] ); }

pthread_mutex_init( &mutex, 0 );

for( int i 0; i<nthreads; i++ )

{

pthread_create( &threads[i], 0, customers, (void*)nthreads );

}

for( int i 0; i<nthreads; i++ )

{

pthread_join( threads[i], 0 );

}

pthread_mutex_destroy( &mutex );

return 0;

}
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When run with a single thread, the program completes in about nine seconds. When
run with eight threads on the same platform, it takes about five seconds to complete. The
timeline view of the run of the application, shown in Figure 9.3, indicates the problem.
The figure shows two seconds from the five-second run. Although all the threads are
active some of the time, they are inactive for significant portions of the time. The inac-
tivity is represented in the timeline view as gaps.

Figure 9.3  Timeline view of two seconds of the run of bank application

Looking at the profile, from the run of the application with eight threads, the user
time is not significantly different from when it is run with a single thread. This indicates
that the amount of work performed is roughly the same. The one place where the pro-
files differ is in the amount of time spent in user locks. Listing 9.8 shows the profile from
the eight-way run. This shows that the eight threads accumulate about 10 seconds of
time spent, in lwp park(), parked waiting for user locks.

Listing 9.8  Profile of Bank Application Run with Eight Threads

Excl.     Excl.       Name  

User CPU  User Lock         

sec.       sec.       

8.136     10.187      <Total>

1.811      0.         rand_mt

1.041      0.         atomic_cas_32



0.991      0.         mutex_lock_impl

0.951      0.         move

0.881      0.         mutex_unlock

0.841      0.         experiment

0.520      0.         mutex_trylock_adaptive

0.490      0.         rand_r

0.350      0.         sigon

0.160      0.         mutex_unlock_queue

0.070      0.         mutex_lock

0.020     10.187      __lwp_park

On Solaris, the tool plockstat can be used to identify which locks are hot. Listing
9.9 shows the output from plockstat. This output indicates the contended locks. In
this case, it is the lock named mutex in the routine move().

Listing 9.9  Output from plockstat Indicating Hot Lock

% plockstat ./a.out 8

plockstat: pid 13970 has exited

Mutex block

Count     nsec Lock                         Caller

----------------------------------------------------------------------

428 781859525 a.out`mutex a.out`move+0x14

Alternatively, the call stack can be examined to identify the routine contributing to
this time. Using either method, it is relatively quick to identify that particular contended
lock.

In this banking example, there are multiple branches, and all account activity is restricted
to occurring within a single branch. An obvious solution is to provide a single mutex
lock per branch. This will enable one thread to lock up a transaction on a single branch,
while other threads continue to process transactions at other branches. Listing 9.10
shows the modified code.

Listing 9.10  Bank Example Modified So That Each Branch Has a Private Mutex Lock

#include <stdlib.h>

#include <strings.h>

#include <pthread.h>

#define ACCOUNTS 256

#define BRANCHES 128

int account[BRANCHES][ACCOUNTS];

pthread_mutex_t mutex[BRANCHES];
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void move( int branch, int from, int to, int value )

{

pthread_mutex_lock( &mutex[branch] );

account[branch][from] -  value;

account[branch][to] +  value;

pthread_mutex_unlock( &mutex[branch] );

}

void *experiment( void *param )

{

unsigned int seed  0;

int count  10000000 / (int)param;

for( int i 0; i<count; i++ )

{

int  row  rand_r(&seed) & (BRANCHES-1);

int from  rand_r(&seed) & (ACCOUNTS-1);

int   to  rand_r(&seed) & (ACCOUNTS-1);

move( row, from, to, 1 );

}

}

int main( int argc, char* argv[] )

{

pthread_t threads[64];

memset( account, 0, sizeof(account) );

int nthreads  8;

if ( argc > 1 ) { nthreads  atoi( argv[1] ); }

for( int i=0; i<BRANCHES; i++ )

pthread_mutex_init( &mutex[i], 0 );

for( int i 0; i<nthreads; i++ )

{

pthread_create( &threads[i], 0, experiment, (void*)nthreads );

}

for( int i 0; i<nthreads; i++ )

{

pthread_join( threads[i], 0 );

}

for( int i=0; i<BRANCHES; i++ )

pthread_mutex_destroy( &mutex[i] );

return 0;

}

With this change in the application, the original runtime remains at about nine sec-
onds, but the runtime with eight threads drops to just over one second. This is the
expected degree of scaling.
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It is interesting to compare the scaling of three different configurations of the bank
example. Figure 9.4 shows the scaling of the original code, with 128 branches and a sin-
gle mutex, from one to eight threads; the scaling of the code with 128 branches, each
with its own mutex; and the code that shows the scaling if there were only four
branches, each with a single mutex.
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Figure 9.4  Scaling of three different configurations of the bank example
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One point worth noting is that even the original code shows some limited degree of
scaling going from one to three threads. This indicates that it is relatively easy to get
some amount of scaling from most applications. However, the scaling rapidly degrades
when run with more than three threads. Perhaps surprisingly, there is little difference in
scaling between provided 128 mutex locks or providing four. This is perhaps not as sur-
prising when considered in the context of the original mutex lock that provides the
ability to scale to three times the original thread count. It might, therefore, be expected
that four mutex locks might be sufficient to scale the code to eight to twelve threads,
which is in fact what is revealed if the data collection is extended beyond eight threads.

Scaling of Library Code
Issues with scaling are not restricted to just the application. It is not surprising to find
scaling issues in code provided in libraries. One of the most fundamental library 
routines is the memory allocation provided by malloc() and free(). The code shown
in Listing 9.11 represents a very simple benchmark of malloc() performance as the
number of threads increases. The benchmark creates a number of threads, and each
thread repeatedly allocates and frees a chunk of 1KB memory. The application completes
after a fixed number of malloc() and free() calls have been completed by the team of
threads.



Listing 9.11  Code to Testing Scaling of malloc() and free()

#include <stdlib.h>

#include <pthread.h>

int nthreads;

void *work( void * param )

{

int count  1000000 / nthreads;

for( int i 0; i<count; i++ )

{

void *mem = malloc(1024);

free( mem );

}

}

int main( int argc, char*argv[] )

{

pthread_t thread[50];

nthreads  8;

if ( argc > 1 ) { nthreads  atoi( argv[1] ); }

for( int i 0; i<nthreads; i++ )

{

pthread_create( &thread[i], 0, work, 0 );

}

for( int i 0; i<nthreads; i++ )

{

pthread_join( thread[i], 0 );

}

return 0;

}

Suppose a default implementation of malloc() and free() uses a single mutex lock
to ensure that only a single thread can ever allocate or deallocate memory at any one
time. This implementation will limit the scaling of the test code. The code is serialized, so
performance will not improve with multiple threads. Consider an alternative malloc()
that uses a different algorithm. Each thread has its own heap of memory, so it does not
require a mutex lock. This alternative malloc() scales as the number of threads increases.
Figure 9.5 shows the runtime of the application in seconds using the two malloc()
implementations as a function of the number of threads.

As expected, the default implementation does not scale, so the runtime does not
improve. The increase in runtime is because of more threads contending for the single
mutex lock. The alternative implementation shows very good scaling. As the number of
threads increases, the runtime of the application decreases.
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There is an interesting, though perhaps not surprising, observation to be made from
the performance of the two implementations of malloc() and free(). For the single-
threaded case, the default malloc() provides better performance than the alternative
implementation. The algorithm that provides improved scaling also adds a cost to the
single-threaded situation; it can be hard to produce an algorithm that is fast for the sin-
gle-threaded case and scales well with multiple threads.

Insufficient Work
If we return to the Mandelbrot example used in Chapter 7, “Using Automatic Parallel -
ization and OpenMP,” we made the work run in parallel by having each thread compute
a different range of iterations. A grid of 4,000 by 4,000 pixels was used, so there was
plenty of work to be performed by each thread. On the other hand, if we were comput-
ing a grid of 64 by 64 pixels, then using the same scheme we would not get scaling
beyond 64 threads; each thread would be able to compute a single row of the image.

Of course, the parallelization scheme could be modified so that there was a single
outer loop that iterated over the range 0 to 64 ∗ 64 = 4096. Listing 9.12 shows the
modified outer loop nest. With this modification, the maximum theoretical thread count
reaches 4,096. It is likely that, for this example on standard hardware, the synchronization
costs would dwarf the cost of the computation long before 4,096 threads were reached.

Listing 9.12  Merging Two Outer Loops to Provide More Parallelism

#pragma omp parallel for

for( int i 0; i<64*64; i++ )

{

y  i % SIZE;

x  i / SIZE;

Figure 9.5  Scaling of two different implementations of malloc() 
and free()
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double xv  ( (double)x - (SIZE/2) ) / (SIZE/4);

double yv  ( (double)y - (SIZE/2) ) / (SIZE/4);

matrix[x][y]  inSet( xv, yv );

}

Of course, it is not uncommon to find that scalability is limited by the number of
iterations performed by the outer loop. We have already met the OpenMP collapse
clause, which tells the compiler to perform this loop merge, as shown in Listing 9.13.

Listing 9.13  Using the OpenMP collapse Directive

#pragma omp parallel for collapse(2)

for( int x 0; x<64; x++ )

for( int y 0; y<64; y++ )

{

double xv  ( (double)x – (SIZE/2) ) / (SIZE/4);

double yv  ( (double)y – (SIZE/2) ) / (SIZE/4);

matrix[x][y]  inSet( xv, yv );

}

However, if this code were to run with perfect scaling on 4,096 processors, then there
would be no further opportunities for parallelization. If you recall, the routine inSet()
has an iteration-carried dependence, so it cannot be parallelized, and we have exhausted
all the parallelism available at the call site.

The only options to extract further parallelism in this particular instance would be to
search for opportunities outside of this part of the problem. The easiest thing to do
would be to increase the size of the problem; if there are spare threads, this might com-
plete in the same amount of time and end up being more useful. 

The problem size can also be considered as equivalent to the precision of the calcula-
tion. It may be possible to use a larger number of processors to provide a result with
more precision. Consider the example of numerical integration using the trapezium rule
shown in Listing 9.14.

Listing 9.14  Numerical Integration Using the Trapezium Rule

#include <math.h>

#include <stdio.h>

double function( double value )

{

return sqrt( value );

}

double integrate( double start, double end, int intervals )

{

348 Chapter 9 Scaling with Multicore Processors



double area  0;

double range  ( end – start ) / intervals;

for( int i 1; i<intervals; i++ )

{

double pos  i*range + start;

area +  function( pos );

}

area +  ( function(start) + function(end) ) / 2;

return range * area;

}

int main()

{

for( int i 1; i<500; i++ )

{

printf( "%i intervals %8.5f value\n", i, integrate( 0, 1, i ) );

}

return 0;

}

The code calculates the integral of sqrt(x) over the range 0 to 1. The result of this
calculation is the value two-thirds. The time that the calculation takes depends on the
number of steps used; the smaller the step, the more accurate the result. 

The example illustrates this very nicely when it is run. When one step is used, the
function calculates a value of 0.5 for the integral. Once a few more steps are being used,
it calculates a value of 0.66665. The more steps used, the greater the precision. As the
number of steps increases, there becomes more opportunity to spread the work over
multiple threads.

The actual computation time is minimal, so from that perspective, the operation is
not one that naturally needs to be sped up. However, the calculation of the interval is
clearly a good candidate for parallelization. The only complication is the reduction
implicit in calculating the value of the variable area. It is straightforward to parallelize
the integration code using OpenMP, as shown in Listing 9.15.

Listing 9.15  Numerical Integration Code Parallelized Using OpenMP

double integrate( double start, double end, int intervals )

{

double area  0;

double range  ( end – start ) / intervals;

#pragma omp parallel for reduction( +: area )

for( int i 1; i<intervals; i++ )

{

double pos  i*range + start;

area +  function( pos );

}
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area +  ( function(start) + function(end) ) / 2;

return range * area ;

}

The other way of uncovering further opportunities for parallelization, in the event of
insufficient work, is to look at how the results of the parallel computation are being
used. Returning to the Mandelbrot example, it may be the case that the computation is
providing a single frame in an animation. If this were the case, then the code could be
parallelized at the frame level, which may provide much more concurrent work.

Algorithmic Limit
Algorithms have different abilities to scale to multiple processors. If we return to dis-
cussing sorting algorithms, bubble sort is an inherently serial process. Each iteration
through the list of elements that require sorting essentially picks a single element and
bubbles that element to the top. 

It is possible to generalize this algorithm to a parallel version called the odd-even sort.
This sort uses two alternate phases of sorting. In the first phase, all the even elements are
compared with the adjacent odd element. If they are in the wrong order, then the two
elements are swapped. In the second phase, this is repeated with each odd element com-
pared to the adjacent even element. This can be considered as in the first phase compar-
ing the pair of elements (0,1), (2,3), and so on, and performing a swap between the
elements as necessary. In the second phase, the pairs are the elements (1,2), (3,4), and so
on. In both phases, each element is part of a single pair, so all the pairs can be computed
in parallel, using multiple threads, and the two elements in each pair can be reordered
without requiring any locks.

Obviously, better sorting algorithms are available. The most obvious next step is the
quicksort. The usual implementation of this algorithm is serial, but it actually lends itself
to a parallel implementation because it recursively sorts shorter independent lists of val-
ues. When parallelized using tasks, each task performs computation on a distinct range of
elements, so there is no requirement for synchronization between the tasks. The code
shown in Listing 9.16 demonstrates how a parallel version of quicksort could be imple-
mented using OpenMP. The code is called through the quick sort() routine. This
code starts off the parallel region that contains the entire algorithm but uses only a single
thread to perform the initial pass. The initial thread is responsible for creating additional
tasks that will be undertaken by other available threads.

Listing 9.16  Quicksort Parallelized Using OpenMP

#include <stdio.h>

#include <stdlib.h>

void setup( int * array,int len )

{

for ( int i 0; i<len; i++ )
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{

array[i]  (i*7 - 3224) ^ 20435;

}

}

void quick_sort_range( int * array, int lower, int upper )

{

int tmp;

int mid  ( upper + lower ) / 2;

int pivot  array[mid];

int tlower  lower, tupper  upper;

while ( tlower <  tupper )

{

while ( array[tlower] < pivot ) { tlower++; }

while ( array[tupper] > pivot ) { tupper--; }

if ( tlower <  tupper )

{

tmp            array[tlower];

array[tlower]  array[tupper];

array[tupper]  tmp;

tupper--;

tlower++;

}

} 

#pragma omp task shared(array) firstprivate(lower,tupper)

if ( lower < tupper ) { quick_sort_range( array, lower, tupper ); }

#pragma omp task shared(array) firstprivate(tlower,upper)

if ( tlower < upper ) { quick_sort_range( array, tlower, upper ); }

}

void quick_sort( int *array, int elements )

{

#pragma omp parallel 

{

#pragma omp single nowait

quick_sort_range( array, 0, elements );

}

}

void main()

{

int size  10*1024*1024;

int * array  (int*)malloc( sizeof(int) * size );

setup( array, size);

quick_sort( array, size-1 );

}
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To summarize this discussion, some algorithms are serial in nature, so to parallelize an
application, the algorithm may need to change. Not all parallel algorithms will be equally
effective. Critical characteristics are the number of threads an algorithm scales to and the
amount of overhead that the algorithm introduces. 

In the context of the previous discussion, bubble sort is serial but can be generalized
to an odd-even sort. This makes better use of multiple threads but is still not a very effi-
cient algorithm. Changing the algorithm to a quick sort provides a more efficient algo-
rithm that still manages to scale to many threads.

In this particular instance, we have been fortunate in that our parallel algorithm also
happened to be more efficient than the serial version. This need not always be the case.
It will sometimes be the case that the parallel algorithm scales well, but at the cost of
lower serial performance. In these instances, it is worth considering whether both algo-
rithms need to be implemented and a runtime selection made as to which is the more
efficient.

There is another approach to algorithms that is not uncommon in some application
domains, particularly those where the computation is performed across clusters with
significant internode communication costs. This is to use an algorithm that iteratively
converges. The number of iterations required depends on the accuracy requirements for
the calculation. This provides an interesting tuning mechanism for parallelizing the
algorithm.

It is probably easiest to describe this with an example. Suppose the problem is to
model the flow of a fluid along an obstructed pipe. It is easy to split the pipe into
multiple sections and allocate a set of threads to perform the computation for each sec-
tion. However, the results for one section will depend on the results for the adjacent
sections. So, the true calculation requires a large volume of data to be exchanged at the
intersections.

This exchange of data would serialize the application and limit the amount of scaling
that could be achieved. One way around this is to approximate the values from the adja-
cent sections and refine those approximations as the adjacent sections refine their results.
In this way, it is possible to make the computations nearly independent of each other.
The cost of this approximation is that it will take more iterations of the solver for it to
converge on the correct answer. 

This kind of approach is often taken with programs run on clusters where there is
significant cost associated with exchanging data between two nodes. The approximations
enable each node to continue processing in parallel. Despite the increased number of
iterations, this approach can lead to faster solution times.

Hardware Constraints to Scaling
The design and implementation of the hardware will have a substantial impact on the
scaling of applications run on it. There are three critical areas that can make a large dif-
ference to scaling. The amount of bandwidth to cache and the memory will be divided
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among the active threads on the system. The design of the caches will determine how
much time is lost because of capacity and conflict-induced cache misses. The way that
the processor core pipelines are shared between active software threads will determine
how instruction issue rates change as the number of active threads increases.

Bandwidth Sharing Between Cores
Bandwidth is another resource shared between threads. The bandwidth capacity of a sys-
tem depends on the design of the processor and the memory system as well as the mem-
ory chips and their location in the system. A consequence of this is that two systems can
contain the same processor and same motherboard yet have two different measurements
for bandwidth. Typically, a system configuring a system for best possible performance
requires expensive memory chips.

The bandwidth a processor can consume is a function of the number of outstanding
memory requests and the rate at which these can be returned. These memory requests
can come from either hardware or software prefetches, as well as from load or store
operations. Since each thread can issue memory requests, the more threads that a proces-
sor can run, the more bandwidth the processor can consume.

Many of the string-handling library routines such as strlen() or memset() can be
large consumers of memory bandwidth. Since these routines are provided as part of the
operating system, they are often optimized to give the best performance for a given
system. The code in Listing 9.17 uses multiple threads calling memset() on disjoint
regions of memory in order to estimate the available memory bandwidth on a system.
Bandwidth can be measured by dividing the amount of memory accessed by the time
taken to complete the accesses.

Listing 9.17  Using memset to Measure Memory Bandwidth

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include <pthread.h>

#include <sys/time.h>

#define BLOCKSIZE 1024*1025

int nthreads  8;

char * memory;

double now()

{

struct timeval time;

gettimeofday( &time, 0 );

return (double)time.tv_sec + (double)time.tv_usec / 1000000.0;

}

353Hardware Constraints to Scaling



void *experiment( void *id )

{

unsigned int seed  0;

int count  20000;

for( int i 0; i<count; i++ )

{

memset( &memory[BLOCKSIZE * (int)id], 0, BLOCKSIZE );

}

if ( seed  1 ){ printf( "" ); }

}

int main( int argc, char* argv[] )

{

pthread_t threads[64];

memory  (char*)malloc( 64*BLOCKSIZE );

if ( argc > 1 ) { nthreads  atoi( argv[1] ); }

double start  now();

for( int i 0; i<nthreads; i++ )

{

pthread_create( &threads[i], 0, experiment, (void*)i );

}

for ( int i 0; i<nthreads; i++ )

{

pthread_join( threads[i], 0 );

}

double end  now();

printf( "%i Threads Time %f s Bandwidth %f GB/s\n", nthreads,

(end – start) ,

( (double)nthreads * BLOCKSIZE * 20000.0 ) /

( end – start) / 1000000000.0 );

return 0;

}

The results in Listing 9.18 show the bandwidth measured by the test code for one to
eight virtual CPUs on a system with 64 virtual CPUs. For this particular system, the
bandwidth scales nearly linearly with the number of threads until about six threads. After
six threads, the bandwidth reduces. This might seem like a surprising result, but there are
several effects that can cause this.

Listing 9.18  Memory Bandwidth Measured on a System with 64 Virtual CPUs

1 Threads Time  7.082376 s Bandwidth  2.76 GB/s

2 Threads Time  7.082576 s Bandwidth  5.52 GB/s

3 Threads Time  7.059594 s Bandwidth  8.31 GB/s

4 Threads Time  7.181156 s Bandwidth 10.89 GB/s

5 Threads Time  7.640440 s Bandwidth 12.79 GB/s
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6 Threads Time 11.252412 s Bandwidth 10.42 GB/s

7 Threads Time 14.723671 s Bandwidth  9.29 GB/s

8 Threads Time 17.267288 s Bandwidth  9.06 GB/s

One possibility is that the threads are interfering on the processor. If multiple threads
are sharing a core, the combined set of threads might be fully utilizing the instruction
issue capacity of the core. We will discuss the sharing of cores between multiple threads
in the section “Pipeline Resource Starvation.” A second interaction effect is if the 
threads start interfering in the caches, such as multiple threads attempting to load data 
to the same set of cache lines.

One other effect is the behavior of memory chips when they become saturated. At
this point, the chips start experiencing queuing latencies where the response time for
each request increases. Memory chips are arranged in banks. Accessing a particular
address will lead to a request to a particular bank of memory. Each bank needs a gap
between returning two responses. If multiple threads happen to hit the same bank, then
the response time becomes governed by the rate at which the bank can return memory.

The consequence of all this interaction is that a saturated memory subsystem may end
up returning data at less than the peak memory bandwidth. This is clearly seen in the
example where the bandwidth peaks at five threads.

Listing 9.19 shows memory bandwidth measured on system with four virtual CPUs.
This is a very different scenario. In this case, adding a second thread does not increase
the memory bandwidth consumed. The system is already running at peak bandwidth
consumption. Adding additional threads causes the system memory subsystem to show
reduced bandwidth consumption for the reasons previously discussed.

Listing 9.19  Memory Bandwidth Measured on a System with Four Virtual CPUs

1 Threads Time  7.437563 s Bandwidth  2.63 GB/s

2 Threads Time 15.238317 s Bandwidth  2.57 GB/s

3 Threads Time 24.580981 s Bandwidth  2.39 GB/s

4 Threads Time 37.457352 s Bandwidth  2.09 GB/s

False Sharing
False sharing is the situation where multiple threads are accessing items of data held on a
single cache line. Although the threads are all using separate items of data, the cache line
itself is shared between them so only a single thread can write to it at any one time. This
is purely a performance issue because there is no correctness issue. It would be a correct-
ness issue if it were a single variable on the cache line being shared between the threads.

The performance impact comes from the fact that each thread requires the cache line
to be present and writable in the cache of the processor where the thread is executing. If
another thread recently wrote to the cache line, then the modified data needs to be
written back to memory and then sent to the next processor that wants to write to it.
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This can cause accesses to the cache line to take a similar length of time as a miss to
memory. In the case of false sharing, the line is constantly being bounced between
processors, so most accesses to it end up requiring another processor to write the line
back to memory—so the line does not ever get the benefit of being cache resident.

It is easy to demonstrate the cost of false sharing using the code in Listing 9.20. The
code assigns each thread a volatile variable to use as a counter. The fact that the variable
is volatile ensures that the code must store and reload it with every iteration. It also
ensures that the compiler cannot eliminate the loop, even though the work it performs is
redundant. The code creates multiple threads and then times how long it takes the first
thread to complete the same amount of work as the other threads. 

Listing 9.20  Example of False Sharing

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <sys/time.h>

double now()

{

struct timeval time;

gettimeofday( &time, 0 );

return (double)time.tv_sec + (double)time.tv_usec / 1000000.0;

}

#define COUNT 100000000

volatile int go  0;

volatile int counters[20];

void *spin( void *id )

{

int myid  (int)id + 1;

while( !go ) {}

counters[myid]  0;

while ( counters[myid]++ < COUNT ) {}

}

int main( int argc, char* argv[] )

{

pthread_t threads[256];

int nthreads  1;

if ( argc > 1 ) { nthreads  atoi( argv[1] ); }

for( int i 1; i<nthreads; i++ )

{

pthread_create( &threads[i], 0, spin, (void*)i );

}
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double start  now();

go  1;

spin( 0 );

double end  now();

printf("Time %f ns\n", ( end – start ) );

for( int i 0; i<nthreads; i++ )

{

pthread_join( threads[i], 0 );

}

return 0;

}

If we take the code from Listing 9.20 and run a single thread, the thread completes its
work in about nine seconds on a system with two dual-core processors. Using four threads
on the same system results in a runtime for the code of about 100 seconds—a slowdown
of about 10 times.

It is very easy to solve false sharing by padding the accessed structures so that the
variable used by each thread resides on a separate cache line. The cache line can then
reside in the cache of the processor where the thread is running, and consequently, all
accesses to that cache line are low cost, and the code runs much faster.

Listing 9.21 shows a modified version of the code where accesses to the counter
structure have been padded so that each counter is located at 64-byte intervals. This will
ensure that the variables are located on separate cache lines on machines with cache line
sizes of 64 bytes or less.

Listing 9.21  Data Padded to Avoid False Sharing

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <sys/time.h>

double now()

{

struct timeval time;

gettimeofday( &time, 0 );

return (double)time.tv_sec + (double)time.tv_usec / 1000000.0;

}

#define COUNT 100000000

volatile int go  0;

volatile int counters[320];

void *spin( void *id )

{
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int myid = ( (int)id + 1) * 16;

while( !go ) {}

counters[myid]  0;

while ( counters[myid]++ < COUNT ) {}

}

int main( int argc, char* argv[] )

{

pthread_t threads[256];

int nthreads  1;

if ( argc > 1 ) { nthreads  atoi( argv[1] ); }

nthreads--;

for( int i 1; i<nthreads+1; i++ )

{

pthread_create( &threads[i], 0, spin, (void*)i );

}

double start  now();

go 1;

spin( 0 );

double end  now();

printf( "Time %f s\n", ( end – start ) );

for( int i 0; i<nthreads; i++ )

{

pthread_join( threads[i], 0 );

}

return 0;

}

The modified code takes about nine seconds to run with four threads on the same
machine.

Although fixing false sharing is easy to do in most cases, detecting performance loss
from it is much harder. In general, false sharing will turn up as an elevated number of
cache misses on a particular memory operation, and it is hard to distinguish this from the
normal cache misses that occur in all applications. However, the important thing to real-
ize from the previous description is that when significant time is lost to false sharing,
there will be significant numbers of cache misses, indicating the points at which the false
sharing occurs. Hence, tracking down false sharing can be as simple as locating the places
in the code where there are unexpectedly high numbers of cache misses on variables
that should be local to one thread.

One important thing to note is that false sharing is a significant issue for multiproces-
sor systems but is not nearly as critical for multicore systems. For example, if we take the
code from Listing 9.20 that has the false sharing issue and run it on a CMT system, it
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takes 24 seconds with one thread and 26 seconds with four; the runtime is not signifi-
cantly changed by the presence of false sharing. The data is shared through the on-chip
caches, and this sharing has little impact on performance. This is a useful feature of mul-
ticore processors.

Cache Conflict and Capacity
One of the notable features of multicore processors is that threads will share a single
cache at some level. There are two issues that can occur with shared caches: capacity
misses and conflict misses. 

A conflict cache miss is where one thread has caused data needed by another thread
to be evicted from the cache. The worst example of this is thrashing where multiple
threads each require an item of data and that item of data maps to the same cache line
for all the threads. Shared caches usually have sufficient associativity to avoid this being a
significant issue. However, there are certain attributes of computer systems that tend to
make this likely to occur.

Data structures such as stacks tend to be aligned on cache line boundaries, which
increases the likelihood that structures from different processes will map onto the same
address. Consider the code shown in Listing 9.22. This code creates a number of threads.
Each thread prints the address of the first item on its stack and then waits at a barrier for
all the threads to complete before exiting.

Listing 9.22  Code to Print the Stack Address for Different Threads

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

pthread_barrier_t barrier;

void* threadcode( void* param )

{

int stack;

printf("Stack base address = %x for thread %i\n", &stack, (int)param);

pthread_barrier_wait( &barrier );

}

int main( int argc, char*argv[] )

{

pthread_t threads[20];

int nthreads  8;

if ( argc > 1 ) { nthreads  atoi( argv[1] ); }

pthread_barrier_init( &barrier, 0, nthreads );

for( int i 0; i<nthreads; i++ ) 
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{ 

pthread_create( &threads[i], 0, threadcode, (void*)i ); 

}

for( int i 0; i<nthreads; i++ ) 

{ 

pthread_join( threads[i], 0 ); 

}

pthread_barrier_destroy( &barrier );

return 0;

}

The expected output when this code is run on 32-bit Solaris indicates that threads
are created with a 1MB offset between the start of each stack. For a processor with a
cache size that is a power of two and smaller than 1MB, a stride of 1MB would ensure
the base of the stack for all threads is in the same set of cache lines. The associativity of
the cache will reduce the chance that this would be a problem. A cache with an associa-
tivity greater than the number of threads sharing  is less likely to have a problem with
conflict misses.

It is tempting to imagine that this is a theoretical problem, rather than one that can
actually be encountered. However, suppose an application has multiple threads, and they
all execute common code, spending the majority of the time performing calculations in
the same routine. If that routine performs a lot of stack accesses, there is a good chance
that the threads will conflict, causing thrashing and poor application performance. This is
because all stacks start at some multiple of the stack size. The same variable, under the
same call stack, will appear at the same offset from the base of the stack for all threads. It
is quite possible that the cache line will be mapped onto the same cache line set for all
threads. If all threads make heavy use of this stack location, it will cause thrashing within
the set of cache lines.

It is for this reason that processors usually implement some kind of hashing in hard-
ware, which will cause addresses with a strided access pattern to map onto different sets
of cache lines. If this is done, the variables will map onto different cache lines, and the
threads should not cause thrashing in the cache. Even under this kind of hardware fea-
ture, it is still possible to cause thrashing, but it is much less likely to happen because the
obvious causes of thrashing have been eliminated.

The other issue with shared caches is capacity misses. This is the situation where the
data set that a single thread uses fits into the cache, but adding a second thread causes the
total data footprint to exceed the capacity of the cache. 

Consider the code shown in Listing 9.23. In this code, each thread allocates an 8KB
array of integers. When the code is run with a single thread on a core with at least 8KB
of cache, the data the thread uses becomes cache resident, and the code runs quickly. If a
second thread is started on the same core, the two threads would require a total 16KB of
cache for the data required by both threads to remain resident in cache.

360 Chapter 9 Scaling with Multicore Processors



Listing 9.23  Code Where Each Thread Uses an 8KB Chunk of Data

#include <pthread.h>

#include <stdio.h>

#include <sys/time.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/processor.h>

#include <sys/procset.h>

void * threadcode( void*id )

{

int *stack  calloc( sizeof(int), 2048 );

processor_bind( P_LWPID, P_MYID, ((int)id*4) & 63, 0 );

for( int i 0; i<1000; i++ )

{  

hrtime_t start  gethrtime();

double total  0.0;

for( int h=0; h<100; h++ )

for( int k=0; k<256*1024; k++ )

total += stack[ ( (h*k) ^ 20393 ) & 2047 ] 

*stack[ ( (h*k) ^ 12834 ) & 2047 ];

hrtime_t end  gethrtime();

if ( total  0 ){ printf( "" ); }

printf( "Time %f ns %i\n", (double)end – (double)start, (int)id );

} 

}

int main( int argc, char*argv[] )

{

pthread_t threads[20];

int nthreads  8;

if ( argc > 1 ) { nthreads  atoi( argv[1] ); }

for( int i 0; i<nthreads; i++ ) 

{ 

pthread_create( &threads[i], 0, threadcode, (void*)i ); 

}

for( int i 0; i<nthreads; i++) { pthread_join( threads[i], 0 ); }

return 0;

}

Running this code on an UltraSPARC T2 processor with one thread reports a time
of about 0.7 seconds per iteration of the outermost loop. The 8KB data structure fits
into the 8KB cache. When run with two threads, this time nearly doubles to 1.2 seconds
per iteration, as might be expected, because the required data exceeds the size of the
first-level cache and needs to be fetched from the shared second-level cache.
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Note that this code contains a call to the Solaris function processor bind(), which
binds a thread to a particular CPU. This is used in the code to ensure that two threads
are placed on the same core. Binding will be discussed in the section “Using Processor
Binding to Improve Memory Locality.”

Obviously, when multiple threads are bound to the same processor core, there are
other reasons why the performance might not scale. To prove that the problem we are
observing is a cache capacity issue, we need to eliminate the other options. 

In this particular instance, the only other applicable reason is that of instruction issue
capacity. This would be the situation where the processor was unable to issue the instruc-
tions from both streams as fast as it could issue the instructions from a single stream. 

There are two ways to determine whether this was the problem. The first way is to
perform the experiment where the size of the data used by each thread is reduced so
that the combined footprint is much less than the size of the cache. If this is done and
there is no impact performance from adding a second thread, it indicates that the prob-
lem is a cache capacity issue and not because of the two threads sharing instruction 
issue width.

However, modifying the data structures of an application is practical only on test
codes. It is much harder to perform the same experiments on real programs. An alterna-
tive way to identify the same issue is to look at cache miss rates using the hardware per-
formance counters available on most processors. 

One tool to access the hardware performance counters on Solaris is cputrack. This
tool reports the number of hardware performance counter events triggered by a single
process. Listing 9.24 shows the results of using cputrack to count the cache misses from
a single-threaded version of the example code. The tool reports that for the active thread
there are about 450,000 L1 data cache misses per second and a few hundred L2 cache
miss events per second.

Listing 9.24  Cache Misses Reported Hardware Performance Counters from a 
Single-Threaded Run

% cputrack -c  DC_miss,L2_dmiss_ld ./a.out 1

time lwp      event      pic0      pic1 

0.034   2 lwp_create         0         0 

Time 698595172.000000 ns 0

1.017   1       tick      4984       362 

1.127   2       tick    445576 138 

Time 712353418.000000 ns 0

2.017   1       tick         0         0 

2.127   2       tick    390764 107 

Time 705177694.000000 ns 0

Time 700679442.000000 ns 0

3.017   1       tick         0         0 

3.127   2       tick    402203 97 
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This can be compared to the cache misses encountered when two threads are run on
the same core, as shown in Listing 9.25. In this instance, the L1 data cache miss rate
increases to 26 million per second for each of the two active threads. The L2 cache miss
rate remains near to zero.

Listing 9.25  Cache Misses Reported When Two Threads Run on the Same Core

% cputrack -c  DC_miss,L2_dmiss_ld ./a.out 2

time lwp      event      pic0      pic1 

0.032   2 lwp_create         0         0 

0.046   3 lwp_create         0         0 

1.021   1       tick      5022       580 

1.181   2       tick  26332010 18 

1.211   3       tick  27171551 0 

Time 1228276726.000000 ns 1

Time 1261119600.000000 ns 0

2.021   1       tick         0         0 

2.181   2       tick  18846208 9 

2.031   3       tick  19188273 54 

This indicates that when a single thread is running on the core, it is cache resident
and has few L1 cache misses. When a second thread joins this one on the same core, the
combined memory footprint of the two threads exceeds the size of the L1 cache and
causes both threads to have L1 cache misses. However, the combined memory footprint
is still smaller than the size of the L2 cache, so there is no increase in L2 cache misses.

Therefore, it is important to minimize the memory footprint of the codes running on
the system. Most memory footprint optimizations will tend to appear to be common
good programming practice and are often automatically implemented by the compiler.
For example, if there are unused local variables within a function, then the compiler will
not allocate stack space to hold them. 

Other issues might be less apparent. Consider an application that manages its own
memory. It would be better for this application to return recently deallocated memory
to the thread that deallocated it rather than return memory that had not been used in a
while. The reason is that the recently deallocated memory might still be cache resident.
Reusing the same memory avoids the cache misses that would occur if the memory
manager returned an address that had not been recently used and the thread had to fetch
the cache line from memory.

Pipeline Resource Starvation
If a single thread is running on a core, its performance is limited by the rate at which the
core can issue instructions and the number of stalls that the thread encounters. For
example, a core might be able to sustain only a single load every cycle, so a code that
contained only load instructions could at most issue a single instruction per cycle.
Similarly, a code that consisted of a stream of dependent load instructions would only be
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able to issue the next instruction once the previous load had completed, and the time
the load would take would represent the latency of the memory system. 

When multiple threads share a core, the rate at which the threads can issue instruc-
tions is limited by two constraints. The first constraint is the maximum rate at which the
hardware can issue instructions. For example, if there is only one load pipeline, then only
one load instruction can be issued per cycle. The second constraint is that all the threads
have to share the available hardware resources. If there is one load pipeline and two
threads, then only one thread can issue a load instruction at a time.

It is instructive to think of this in terms of cache misses. When one thread is stalled
waiting for data to be returned from memory, then all the other threads on that core can
take instruction issue slots from the stalled thread. If all threads are stalled waiting for
data from memory, then the issue width of the processor is not the dominating con-
straint on performance. This is the ideal situation for a CMT processor. If the threads are
stalled waiting for memory, then it is more effective to have a large number of these
threads all making forward process. Although individual threads might run slowly, the
aggregate throughput of the system is impressive because of the number of threads.

When threads are not stalled on memory, such as when the data is cache resident or
the code is compute intensive, the threads can become limited on instruction issue
width. A single core supporting multiple threads relies on gaps where each thread is
stalled to find cycles where an instruction from a different thread can be executed. If
there are too many compute-intensive threads running on the core, then instruction
issue width becomes a limiting factor in performance. 

Consider the code shown in Listing 9.26, which runs a number of threads, and each
thread is performing a simple set of integer operations on an item of data. Integer opera-
tions are typically single-cycle instructions, so one thread will desire to execute a single
instruction every cycle. This is achievable when there is a single thread running on the
core, but it can be limited on some processors when multiple threads are assigned to the
same core.

Listing 9.26  Worker Threads That Perform Sequences of Single-Cycle Integer Operations

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include <pthread.h>

#include <sys/types.h>

#include <sys/processor.h>

#include <sys/procset.h>

int nthreads  8;

void *experiment( void *id )

{

unsigned int seed  0;
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processor_bind( P_LWPID, P_MYID, ((int)id*2), 0 );

int count  100000000;

for( int i 0; i<count; i++ )

{

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

}

if ( seed  1 ) { printf( "" ); }

}

int main( int argc, char* argv[] )

{

pthread_t threads[64];

if ( argc > 1 ) { nthreads  atoi( argv[1] ); }

for( int i 0; i<nthreads; i++ )

{

pthread_create( &threads[i], 0, experiment, (void*)i );

}

for( int i 0; i<nthreads; i++ )

{

pthread_join( threads[i], 0 );

}

return 0;

}

The code shown in Listing 9.26 uses the Solaris processor bind call to bind threads
to particular virtual CPUs. This is necessary because the operating system will typically
try to locate threads so that each thread gets the maximal resources. In this instance, we
do not want that to happen because we want to investigate what happens when threads
are scheduled on the same core. Doing this correctly requires knowledge of how the vir-
tual CPU number maps to cores. This mapping often falls into one of two types.

The one common mapping is that virtual CPU numbers are assigned to cores in
groups. If a core supports four threads, then virtual CPUs 0 to 3 would correspond to
the four threads on the the first core.

The other common mapping scheme is to interleave cores. In this case, if there were
two cores, then all the odd-numbered virtual CPUs would map to one core and all the
even-numbered virtual CPUs would map to the other core.
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The code as shown is for a machine where the virtual CPUs are interleaved. The par-
ticular Intel machine this was run on had two hyperthreading-enabled cores, making a
total of four virtual CPUs. Virtual CPUs 0 and 2 are located on core 0, and virtual
CPUs 1 and 3 are located on core 1. 

When the bit manipulation code is run with one thread, it takes about two seconds.
When run with two threads on the same core, it runs in two and a half seconds. If the
runtime had remained the same, then twice as much work would have been achieved in
the same time. However, this was not the case—twice as much work was achieved in
25% more time. To put it another way, this represents a 60% gain in throughput.

The same code was also run on an UltraSPARC T2 machine, with the binding suit-
ably modified. The topology of this machine is interesting because each core can support
eight threads, and these threads are arranged into two groups of four. Each group of four
can issue one integer operation per cycle, but the two groups share a single load/store
pipeline and a single floating-point pipeline. When run on this machine, using a single
thread, the code took four seconds. When two threads were assigned to the same group
on the same core, the threads completed in seven seconds, achieving only slightly more
work per unit time than a single thread. When the two threads are assigned to different
groups on the same core, the threads complete their work in four seconds. With this dis-
tribution of threads, the amount of work achieved per unit time is doubled. 

As more threads become active, the scaling of a processor depends on the architecture
of the core. The more available capacity, the more the throughput of the core will
increase as the number of threads increases. An alternative view is that cores that work
very hard to extract every bit of performance from a single-threaded code will end up
with fewer spare cycles for a second thread to use. Once a core becomes fully utilized,
additional threads will steal cycles from those that are already running and will cause all
the active threads to run slightly slower.

If all the threads are busy performing useful work, then to a large extent it does not
matter how well the processor scales—as long as it is completing more work than it was
when running with a single thread. 

Where performance is potentially lost is when one of the threads is spinning, waiting
for some signal. The spinning thread will be taking instruction issue opportunities from
the other threads running on the core. The code in Listing 9.27 demonstrates how a
spinning thread can detract from the performance of the worker thread. This code
creates multiple spinning threads and then attempts to complete a predefined amount 
of work.

Listing 9.27  Spinning Threads That Take Instruction Issue Width from the Thread
Performing the Work

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include <pthread.h>

366 Chapter 9 Scaling with Multicore Processors



#include <sys/types.h>

#include <sys/processor.h>

#include <sys/procset.h>

int nthreads  8;

volatile int busy  1;

void * spin( void *id )

{

processor_bind( P_LWPID, P_MYID, (int)id, 0 );

while ( busy ) {}

}

void experiment( int id )

{

unsigned int seed  0;

processor_bind( P_LWPID, P_MYID, id, 0 );

int count  100000000;

for( int i 0; i<count; i++ )

{

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

seed +  (seed<<2) ^ (seed|33556);

}

if ( seed  1 ) { printf( "" ); }

}

int main( int argc, char* argv[] )

{

pthread_t threads[64];

if ( argc > 1 ) { nthreads  atoi( argv[1] ); }

for( int i 0; i<nthreads; i++ )

{

pthread_create( &threads[i], 0, spin, (void*)(i+1) );

}

experiment( 0 );

busy  0;

for( int i 0; i<nthreads; i++ )

{

pthread_join( threads[i], 0 );
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}

return 0;

}

On a test machine, the code takes four seconds to complete when there are no other
threads scheduled to the same core. With one spinning thread scheduled to the same
core, the code takes five and a half seconds to complete. With two threads it takes 8 sec-
onds, and with three spinning threads it takes 12 seconds. 

The progression of runtimes is interesting. The first spinning thread slows the original
thread by only about 25% because the spinning thread mainly performs load and branch
instructions, both of which have a latency of a few cycles before the thread is again ready
to execute a new instruction. The net result is that the first spinning thread wants to
issue an instruction every four cycles, which leaves three cycles for the original thread to
execute instructions. The second spinning thread follows the same pattern, so now there
are two threads that want to issue an instruction every four cycles. This leaves the origi-
nal thread able to issue an instruction every other cycle, so it runs twice as slowly. When
the third spinning thread is added, the core is already fully occupied by running the
original thread and the two spinning threads, so adding an additional thread takes the sit-
uation from one where the three threads are getting to issue about one instruction every
three cycles to a situation where they get to issue an instruction every four cycles. This is
a 33% slowdown, which takes the runtime from 8 to 12 seconds.

One way of reducing the impact of spinning threads is to cause the thread to pause
and consume no instruction issue resources. Most processors have a long latency instruc-
tion that can be used for this purpose even if they do not have an explicit instruction for
delaying. 

For example, on SPARC processors the operation to read the tick register takes a few
cycles. The modified spin function shown in Listing 9.28 uses this to insert pauses into
the spin cycle.

Listing 9.28  Reading the Tick Register to Insert Delays into the Spin Code

void * spin( void *id )

{

processor_bind( P_LWPID, P_MYID, (int)id, 0 );

while( busy )

{

asm( "rd %tick,%o0": : :"" );

}

}

Inserting this delay takes the runtime of the code from 12 seconds with three spin-
ning threads down to 7 seconds. Repeating the same instruction a couple of times or
identifying a longer latency operation could be used to further reduce the impact of
spinning threads.
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Recent x86 processors have implemented a pause instruction, which causes the
thread to pause for a number of cycles before issuing the next instruction. On older
processors, the pause instruction maps onto a no op instruction; therefore, the use of
the instruction is fine on older hardware, but the old hardware will not actually pause.
Windows implements a yieldprocessor() macro for pause/delay to provide an easy
way of accessing this operation.

Operating System Constraints to Scaling
Most limitations to scaling are caused by either limitations of the hardware or inefficien-
cies in the implementation of the actual application. However, as the number of cores
increases, it is not uncommon to uncover problems in the operating system or the
libraries provided with it.

Oversubscription
Oversubscription is when there are too many active threads on a system. This is not a con-
straint on the absolute number of threads on the system, only on the number of active
threads. If there are continuously more threads requesting CPU time than there are vir-
tual CPUs, then the system may be considered to be oversubscribed.

Although quiescent threads take resources such as memory, they do not tend to con-
sume much processor time, so a system can sustain a high count of idle threads. A system
can sustain more active threads than there are virtual CPUs, but each active thread will
only get a share of the available CPU resources. On a system where there are twice as
many active software threads as there are hardware threads to sustain them, each active
software thread will end up with 50% of the time of one of the virtual CPUs.

Having multiple threads share the same virtual CPU will typically lead to a greater
than linear reduction in performance because of a number of factors such as overheads
due to the cost of switching context between the active threads, the eviction of useful
data from the cache, and the costs associated with the migration of threads between vir-
tual CPUs. It is also worth considering that each thread requires some memory foot-
print, and a proliferation of threads is one way of causing a shortage of memory.

A key point to observe is that having more active threads than there are virtual CPUs
can only decrease the rate at which each thread completes work. There is one situation
where there is likely to be a benefit from having more threads than virtual CPUs.
Threads that are sleeping or blocked waiting for a resource do not consume CPU and
should not impact the performance of the active threads. An example of this is where
there are many threads waiting for disk or network activity to complete.

It may be useful to have many threads waiting for the results of network requests or
to have threads waiting for disk I/O to complete. In fact, this is a critical way of improv-
ing the performance of applications that have significant I/O—the main thread can con-
tinue computation, while a child thread waits for the completion of an I/O request.

The code in Listing 9.29 can be used to demonstrate how the performance of a sin-
gle thread can suffer in the presence of other active threads. The code measures how
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long it takes the main thread to complete its work. However, before the main thread
starts the timed section, it spawns multiple child threads that spin on a lock until the
main thread completes its work.

Listing 9.29  Code to Demonstrate the Costs Associated with Oversubscription

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <sys/time.h>

double now()

{

struct timeval time;

gettimeofday( &time, 0 );

return (double)time.tv_sec + (double)time.tv_usec / 1000000.0;

}

#define COUNT 100000000

volatile int stop  0;

void *spin( void *id )

{

while( !stop ) {}

}

int main( int argc, char* argv[] )

{

pthread_t threads[256];

int nthreads  1;

if ( argc > 1 ) { nthreads  atoi( argv[1] ); }

nthreads—-;

for( int i 0; i<nthreads; i++ )

{

pthread_create( &threads[i], 0, spin, (void*)0 );

}

double start now();

int total  0;

for( int h 0; h<COUNT; h++ )

total +  ( total << 2 ) ^ ( total | 33556 );

if ( total  0 ) { printf( "total 0\n" ); }

double end now();

printf( "Time %f s\n", ( end – start ) );

stop  1;

for( int i 0; i<nthreads; i++ )
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{

pthread_join( threads[i], 0 );

}

return 0;

}

The chart in Figure 9.6 shows the runtime of the code on a system with four virtual
CPUs. The runtime of this code will depend on the number of software threads per vir-
tual CPU. If there are eight or more software threads, then the runtime will be at least
twice what it was for four or fewer threads. There are two lines in the chart: a line indi-
cating how long the code would have taken to run if the runtime scaled linearly with
the number of threads and a line that shows the actual runtime of the code. After about
64 threads, it is apparent that the oversubscription causes the runtime to be greater than
might be expected from linear scaling. In other words, after about 64 threads, the per-
formance of the system suffers because of oversubscription.

Figure 9.6  Scaling of oversubscribed system
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Using Processor Binding to Improve Memory Locality
Thread migration is the situation where a thread starts running on one virtual processor
but ends up migrated to a different virtual processor. If the new virtual processor shares
the same core or if it shares cache with the original virtual processor, then the cost of
this migration is low. For a multicore processor, the effect of thread migration tends to
be minor since the new location of the thread shares a close level of cache with the old
location of the thread. However, if the migration is from one physical chip to another,
the cost can be quite high.



One cost of thread migration is related to the fact that the data the thread was using
now resides in the cache of the old virtual processor. The data will need to be fetched
into the cache of the new process. It is important to notice that this is likely to be a
cache to cache transfer, rather like the situation with false sharing. For some systems,
fetching data from another processor’s cache may be lower cost than fetching that data
from memory. However, on some systems the cost of fetching data from another cache
may be higher than fetching the data from memory. The typical reason for this is that the
data needs to be stored to memory before the new processor can fetch it.

However, there is an additional potential cost to thread migration in a multiprocessor
system. Modern operating systems typically have some idea of the topology of the mem-
ory subsystem. Hence, the operating system can provide a thread with memory that has
the lowest access latency. Unfortunately, if a thread is migrated, it can be located on a
different processor with a much higher memory latency. This issue causes operating sys-
tems to attempt to keep threads, if not exactly where they were originally running, at
least within the group of virtual CPUs that share the same memory access latencies.

This gives rise to the idea of locality groups, groups of threads that share the same
memory access latencies. If a thread is moved within a locality group, there will be no
change in memory latency costs; the only migration cost is a small cost due to the thread
moving to a potentially cold cache. 

Linux provides the tool numactl both to query the topology of the hardware and to
allow the user to specify the virtual processor where the application will be run. Listing
9.30 shows the output from numactl that indicates that the system has two nodes, phys-
ical processors, and the amount of memory associated with each node.

Listing 9.30  NUMA Characteristics from Linux

$ numactl --hardware

available: 2 nodes (0-1)

node 0 size: 2047 MB

node 0 free: 88 MB

node 1 size: 1983 MB

node 1 free: 136 MB

Solaris provides the tool lgrpinfo, which reports on the locality groups on the sys-
tem. The output shown in Listing 9.31 is from a system with two locality groups. Solaris
provides the separate tool pbind to specify the binding of a process to virtual CPUs.

Listing 9.31  Locality Group Information from Solaris

$ lgrpinfo

lgroup 0 (root):

Children: 1 2

CPUs: 0-3

Memory: installed 18G, allocated 2.7G, free 15G
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Lgroup resources: 1 2 (CPU); 1 2 (memory)

Latency: 20

lgroup 1 (leaf):

Children: none, Parent: 0

CPUs: 0-1

Memory: installed 9.0G, allocated 1.0G, free 8.0G

Lgroup resources: 1 (CPU); 1 (memory)

Load: 0.139

Latency: 10

lgroup 2 (leaf):

Children: none, Parent: 0

CPUs: 2-3

Memory: installed 9.0G, allocated 1.7G, free 7.3G

Lgroup resources: 2 (CPU); 2 (memory)

Load: 0.0575

Latency: 10

In most instances, the developer should be able to trust that the operating system per-
forms the optimal placement of the threads of the application. There are instances where
this may not be optimal.

Memory is typically allocated with some policy that attempts to place the memory
used by the thread close to the processor where the thread will be run. In many
instances, this will be first-touch placement, which locates memory close to the thread
that first accesses the memory. 

There is a subtle point to be made. The act of allocating memory is often considered
as the call that the application makes to malloc(). Although this is the call that causes
an address range of memory to be reserved for the use of the process, physical memory
is often only mapped into the process when a thread touches the memory. First touch
works well in situations where the memory is used only by the thread that first touches
it. If the memory is initialized by one thread and then utilized by another, this is less
optimal, because the memory will be located close to the thread that initialized it and
not close to the thread that is using it.

To demonstrate the effect of memory placement on performance, consider the code
shown in Listing 9.32. This example estimates memory latency by pointer chasing
through memory. This setup allows us to measure the impact of memory placement by
allocating memory close to one chip and then using it with a thread on a different chip.
The routine setup() sets up a circular linked list of pointers that will be used in timing
memory latency. The code includes a call to the routine threadbind(), which will be
defined shortly. This routine binds the particular thread to virtual CPU 0.

The routine use() is executed multiple times by the main thread. Each execution
calls threadbind() to bind the thread to the desired virtual CPU. This enables the code
to measure the memory latency from the virtual CPU where the code is running to the
memory where the data is held. This routine uses two calls to the routine now() to
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calculate the elapsed time for the critical pointer chasing loop. The routine now() will
be defined shortly. The end result of this activity is an estimate of the latency of every
memory access for the timed pointer chasing loop.

Listing 9.32  Code to Measure Memory Latency

#include <pthread.h>

#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/time.h>

#include <unistd.h>

#define SIZE 128*1024*1024

int** memory;

void setup()

{

int i, j;

threadbind( 0 );

memory  (int**)calloc( sizeof(int*), SIZE+1 );

for( j 0; j<16; j++ ) 

{

for( i 16+j; i< SIZE; i++) 

{ 

memory[i]  (int*)&memory[ i-16 ]; 

}

memory[j]  (int*)&memory[ SIZE-16+j+1 ];

}

}

void *use( void* param )

{

if ( threadbind( (int)param )  0 ) 

{

int* next;

int i;

double start  now();

next  memory[0];

for( i 0; i<SIZE; i++ ) 

{ 

next  (int*)*next; 

}

if ( (int)next  1 ) { printf( "a" ); }

double end  now();
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printf( "Time %14.2f ns Binding %i/s\n",

(end - start) * 1000000000.0 / ((double)SIZE), (int)param );

} else { perror( "Error" ); }

}

int main( int argc, char* argv[] )

{

pthread_t thread;

int nthreads  1;

int i;

if ( argc > 1 ) { nthreads  atoi( argv[1] ); }

setup();

for( i 0; i<nthreads; i++ ) 

{

pthread_create( &thread, 0, use, (void*)i );

pthread_join( thread, 0 );

}

return 0;

}

Before the code can be run, two critical routines need to be provided. The easiest one
to provide is the timing routine now(), which returns the current time in seconds as a
double. The system function call gettimeofday() provides a very portable way on
*NIX systems of getting seconds and microseconds since the system was booted. Listing
9.33 shows the code for wrapping this as returning a double.

Listing 9.33  Code for Returning Current Time in Seconds

double now()

{

struct timeval time;

gettimeofday( &time, 0 );

return (double)time.tv_sec + (double)time.tv_usec / 1000000.0;

}

Controlling the location where the thread is run is not portable. The code in Listing
9.34 shows how the Solaris call processor bind() can be used to control the binding
of a thread to a virtual processor. The variables P LWPID and P MYID bind the calling
thread to the particular virtual processor.

Listing 9.34  Controlling Processor Binding on Solaris

#ifdef __sun

#include <sys/processor.h>

#include <sys/procset.h>
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int threadbind( int proc )

{

return processor_bind( P_LWPID, P_MYID, proc, 0 );

}

#endif

Linux provides the same functionality through the sched setaffinity() call. This
call sets the affinity of a thread so that it will run on any of a group of virtual CPUs. The
call requires a CPU set that indicates which virtual CPUs the thread can run on. The
macro CPU ZERO() clears a CPU set, and the macro CPU SET() adds a virtual CPU to
a CPU set. However, there are a couple of complexities. First, the macros CPU ZERO()

and CPU SET() are defined only if the #define GNU SOURCE is set. To ensure the macros
are available, this should be set as the first thing in the source file or on the compile line.
The second issue is that gettid(), which returns the ID of the calling thread, may not
be defined in the system header files. To rectify this, gettid() needs to be explicitly coded.
Listing 9.35 shows the complete code to bind a thread to a particular virtual CPU.

Listing 9.35  Binding a Thread to a Virtual CPU on Linux

#ifdef linux

#include <sched.h>

#include <sys/syscall.h>

pid_t gettid()

{

return syscall( __NR_gettid );

}

int threadbind( int proc )

{

cpu_set_t cpuset;

CPU_ZERO( &cpuset );

CPU_SET( proc, &cpuset );

return sched_setaffinity( gettid(), sizeof(cpu_set_t), &cpuset );

}

#endif

Listing 9.36 shows the equivalent Windows code for these two routines. The call to
GetTickCount() returns a value in milliseconds rather than the microseconds returned
by gettimeofday(). However, the code runs for sufficiently long enough that this
reduction in accuracy does not cause a problem. The call to bind a thread to a virtual
CPU is SetThreadAffinityMask(), and this call takes a mask where a bit is set for
every virtual CPU where the thread is allowed to run.
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Listing 9.36  Windows Code for Getting Current Time and Binding to a Virtual CPU

#include <stdio.h>

#include <windows.h>

#include <process.h>

double now()

{

return GetTickCount() / 1000.0;

}

int threadbind( int proc )

{

DWORD_PTR mask;

mask  1<<proc ;

return SetThreadAffinityMask( GetCurrentThread(), mask );

}

Listing 9.37 shows the remainder of the code modified to compile and run on Windows.

Listing 9.37  Latency Code for Windows

#include <stdio.h>

#include <windows.h>

#include <process.h>

#define SIZE 128*1024*1024

int** memory;

void setup()

{

int i, j;

threadbind( 0 );

memory  (int**)calloc( sizeof(int*), SIZE+1 );

for( j 0; j<16; j++ ) 

{

for( i 16+j; i< SIZE; i++ ) 

{ 
memory[i]  (int*)&memory[ i-16 ]; 

}

memory[j]  (int*)&memory[ SIZE-16+j+1 ];

}

}

unsigned int __stdcall use( void* param )

{

if ( threadbind( (int)param ) !  0 ) 
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{

int* next;

int i;

double start  now();

next  memory[0];

for( i 0; i<SIZE;i++ ) 

{ 

next  (int*)*next; 

}

if ( (int)next  1 ) { printf( "a" ); }

double end  now();

printf( "Time %14.2f ns Binding %i/s\n",

(end-start)*1000000000.0 / ((double)SIZE), (int)param );

} else { printf( "Error" ); }

return 0;

}

int _tmain( int argc, _TCHAR* argv[] )

{

HANDLE thread;

int nthreads  8;

int i;

if ( argc > 1 ) { nthreads  _wtoi( argv[1] ); }

setup();

for( i 0; i<nthreads; i++ ) 

{

thread  (HANDLE)_beginthreadex( 0, 0, &use, (void*)i, 0, 0 );

WaitForSingleObject( thread, INFINITE );

CloseHandle( thread );

}

getchar();

return 0;

}

Listing 9.38 shows the results of running the latency test code on a Solaris system
where there are two chips each with associated local memory. In this instance, the
remote memory latency is 50% greater than the local memory latency.

Listing 9.38  Latency on Solaris System with Two Memory Locality Groups

$ ./a.out 4

Time          98.24 ns Binding 0/s

Time         145.69 ns Binding 1/s

Although it is tempting to use processor binding to get the best possible performance
from an application, it is not a general-purpose solution. On a shared system, it is rela-
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tively easy to end up with multiple applications bound to the same group of virtual
CPUs. This would result in reduced performance for all the threads bound to shared vir-
tual CPUs and an inefficient use of the system’s resources. This is why it is usually best to
let the operating system manage resources. For situations where some kind of static allo-
cation of threads to virtual CPUs is desirable, it may be worth investigating some of the
virtualization or resource allocation facilities provided by the operating system. There
may be a way to divide the resources between applications without running the risk that
some of the resources might be oversubscribed and some undersubscribed.

There is a potentially interesting situation when binding threads to virtual CPUs on a
processor. If threads work on the memory regions with close proximity, then best per-
formance will be obtained when these threads are bound to cores with close proximity.
This binding would ensure that data that is shared between the threads ends up in caches
that are also shared. As an example, thread 0 and thread 1 might access a set of overlap-
ping array elements. If thread 0 happens to fetch all the elements into cache, then thread
1 may be able to access them from there, rather than also having to fetch them from
memory.

However, consider the situation where work is unevenly distributed between the
threads. Suppose the amount of work done by each thread diminishes such that thread 0
does the most work and thread 15 does the least work. If threads 0 and 1 are bound to
virtual CPUs on the same core, then both threads will be competing for pipeline
resources and will consequently run slowly. On the other hand, if thread 0 were paired
with thread 15, then thread 15 would rapidly complete its work leaving all the resources
of the core available for use by thread 0.

Processor binding is not something that should be undertaken without some careful
consideration of the situation. Although it has the potential to improve performance, it
also restricts the freedom of the operating system to dynamically schedule for best per-
formance, and this can lead to the bound application taking many times longer than its
unbound runtime.

Priority Inversion
All processes and threads can have some associated priority. The operating system uses
this to determine how much CPU time to assign to the thread. So, a thread with a
higher priority will get more CPU time than a thread with a lower priority. This enables
the developer to determine how time is distributed between the threads that comprise
an application.

For example, the threads that handle the user interface of an application are often
assigned a high priority. It is important for these threads to accept user input and refresh
the screen. These activities make the application feel responsive to the user. However, the
application might also need to be doing some background processing. This background
processing could be quite compute intensive. Run at a low priority, the background task
gets scheduled into the gaps where the interface does not need attention. If it were
scheduled with a high priority, then it would be competing with the user interface
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threads for compute resources, and there would be a noticeable lag between the user
performing an action and the application responding.

One problem with priority is that of priority inversion, where one thread is waiting
for the resources held by another thread. If the thread holding the resources is of lower
priority, then the priority is said to be inverted. 

A potential issue in this situation is when a low-priority thread holds a mutex. A
thread with a higher priority wakes up and causes the low-priority thread to be
descheduled from the CPU. The thread waiting for the mutex could be of an even
higher priority, but it will now have to wait for both the lower-priority threads to com-
plete before it can acquire the mutex.

A common solution for this problem is for the thread holding the resources to tem-
porarily acquire the max priority of the waiting threads, ideally reducing the time that it
holds the resources. Once the thread releases the resources, it resumes its original lower
priority, and the higher-priority thread continues execution with its original higher
priority.

An alternative solution is to boost the priority of any thread that acquires a particular
resource so that the thread is unlikely to be preempted while it is holding the resource.

Multicore Processors and Scaling
The two big advantages of multicore processors are their ability to run multiple threads
and the low synchronization costs between those threads. Synchronization costs govern
scaling in two important ways. Low synchronization costs mean that the code will scale
more effectively to higher thread counts. A similar reasoning leads to the enticing possi-
bility that low synchronization costs enable developers to produce parallel versions of
routines that were previously too small to parallelize. Consequently, there is a fortuitous
convergence that processors with low synchronization costs that enable scaling to high
thread counts also provide the threads that will perform that scaling.

The low synchronization costs lead to one further advantage for multicore processors.
This section has discussed a number of reasons that scaling could be limited, and a num-
ber of these are implicitly functions of the communication costs between cores. The
most obvious example of this is false sharing.

The cost of false sharing is that updates to a cache line depend on the cache to cache
communication latency between the cores where the threads are running. This cost is
typically of the order of memory latency. On a multicore processor, the communication
cost between two threads is the latency of the closest shared level of cache between the
two processors. Since this cache is usually on chip, the latency is often an order of mag-
nitude less than memory latency. If we take the code demonstrating false sharing from
Listing 9.20 and run it on a multicore system, the increase in runtime due to false shar-
ing is minimal.

However, these benefits from multicore processors are likely to disappear if the system
is a multiprocessor system. If the system has multiple processors, then it becomes more
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important to consider the memory locality of the data that a thread is using. The migra-
tion of a thread between processors will cause local data to become remote. If data is
shared between threads, some of those threads might see local, and some might see
remote access costs. For optimal performance, it may be appropriate to consider binding
threads to virtual CPUs.

With a multicore, multiprocessor system, there is the question of whether it is better
to spread the work across all the chips or whether it is better to constrain it to within a
single chip. Using multiple chips may provide more instruction issue bandwidth, and it
may also provide more memory bandwidth, but the cost will be increased communica-
tion latency between threads. Constraining all the threads to reside on a single chip will
provide the best communication latency but may not provide optimal instruction issue
width and memory bandwidth.

Although multicore processors present great opportunities for running parallel work-
loads, they also have constraints. Most critical is the sharing of resources between the vir-
tual CPUs. These resources might be processor bandwidth, instruction pipeline, or cache.
These constraints will have an impact on the scaling of a single process as the number of
threads increases. Scaling to low numbers of threads will often be close to linear, but
scaling to higher numbers of threads may demonstrate limitations of both the hardware
and software.

Even within a single multicore chip, it may be worth considering binding threads to
virtual processors. The optimal assignment for work will probably be achieved by placing
as few threads as possible on each core. This is a task that operating systems should per-
form automatically, but there may be situations where this does not happen. One exam-
ple might be when there are multiple processes active on the machine, making it hard
for the OS. The OS may make the decision to place the threads where there is spare
compute resource rather than placing threads optimally for the process.

Summary
This chapter described the common reasons why an application may not reach ideal
scaling. The discussions should provide you with the ability to identify the particular
hardware- or software-related reasons for restricted scaling and understand the limiting
factors. You should be able to determine ways of solving those problems that have solu-
tions.

An important discussion in this chapter has been the comparison between multicore
processors and multiprocessors systems. Multicore processors avoid or reduce some of the
scaling limitations of multiprocessors systems. Understanding the differences will enable
you to write code that works well on both kinds of systems. This is an important consid-
eration because applications need to perform well regardless of the underlying hardware.
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10
Other Parallelization

Technologies

Previous chapters have dealt with some of the mainstream approaches to developing
parallel applications. There are many alternative ways of producing applications that take
advantage of multicore processors. This chapter introduces a number of alternative
approaches ranging from the use of GPU hardware by OpenCL and CUDA to the C++
library provided by Intel’s Threading Building Blocks.

This chapter also covers some cluster technologies such as MPI. Although running a
cluster of machines is outside the scope of this text, it is interesting to realize that a sin-
gle machine can now offer an equivalent number of processors as might have been
found in a cluster a few years ago. Although most users may not experience using an
actual cluster, some of the technologies that are appropriate for clusters are now also
appropriate for single systems.

By the end of the chapter, you should have a good appreciation for some other
approaches to parallelization. You will also have some understanding of what the
strengths and weaknesses are for the various approaches and also have some knowledge
of how to write code to exploit the different methods.

GPU-Based Computing
An approach to parallelism that has recently evolved is the use of graphics co-processors
as accelerators for computation. This came about because as the requirements for fast and
detailed graphical representations evolved, the hardware to implement them began to
increasingly resemble hardware that could perform fast parallel floating-point or integer
computation. Recently, there have been multiple efforts to export the ability to perform
computation on graphics processing units (GPUs) to common programming languages.
The most well-known of these are Compute Unified Device Architecture (CUDA) and
Open Computing Language (OpenCL). CUDA is specific to Nvidia, whereas OpenCL
is supported on GPUs from both Nvidia and ATI.



Although this approach utilizes many cores to perform computations in parallel, the
details of the approach are quite different from all the other approaches discussed in this
book. The most important consideration is that GPUs represent compute co-processors,
and there are several constraints with co-processors. 

The first is that they need not, and in the case of GPUs do not, share the instruction
set of the host processor. This means that producing code that runs on the GPU requires
a more complex tool chain. This has to produce code for the host processor, together
with code for the GPU, and then bind the two different sets of code together into a
single executable. 

The second problem is that GPUs do not share the same address space as the host
processor. Data needs to be copied across to the GPU. The act of copying is time-
consuming and forces the problem being tackled to have to be large enough to justify
the cost of the copy operation.

These problems can be, if not hidden, at least reduced by the language used to pro-
gram the GPU. Listing 10.1 shows a simple program written using CUDA. The program
written in OpenCL would look broadly similar.

Listing 10.1  Simple CUDA Program

#include "cuda.h"

#define LEN 100000

// GPU code

__global__ void square( float *data, int length )

{

int index  blockIdx.x * blockDim.x + threadIdx.x;

if ( index < length )

{
data[index]  data[index] * data[index];

}

}

//Host code

int main()

{

float *host_data, *gpu_data;

int ThreadsPerBlock, Blocks;

// Allocate memory

host_data  (float*)malloc( LEN * sizeof(float) );

cudaMalloc( &gpu_data, LEN*sizeof(float) );

// Initialize data on host

for( int i 0; i<LEN; i++ )
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{

host_data[i]  2*i;  

}

// Copy host data to GPU

cudaMemcpy( gpu_data, host_data, LEN*sizeof(int),

cudaMemcpyHostToDevice );

// Perform computation on GPU

ThreadsPerBlock  128;

Blocks  (int)( (LEN-1) / ThreadsPerBlock ) + 1;

square <<<Blocks, ThreadsPerBlock>>>( gpu_data, LEN );

// Copy GPU data back to host

cudaMemcpy( gpu_data, host_data, LEN*sizeof(int),

cudaMemcpyDeviceToHost);

// Free allocated memory

cudaFree( gpu_data );

free( host_data );

}

The code is in two routines. The routine square() contains the code that is actually
executed by the GPU. The routine main() is executed by the host processor.

It is best to describe the routine main() first because this code performs the prepara-
tion for the parallel work. This routine needs to allocate memory both on the host system,
using malloc(), and on the GPU, using the call cudaMalloc(). The method of passing
data between the host system and the GPU is to copy the data from the host system to
the GPU. Hence, it is necessary to reserve space for the data in both places.

The host data array is initialized and then copied over to the GPU by calling
cudaMemcpy(). The cudaMemcpy() call is used for transferring data in both directions,
and the direction of the copy is determined by the last parameter passed into the function.

Copying data to and from the GPU requires the data to be sent across the bus that
connects the processor to the GPU. This bus provides relatively low bandwidth, perhaps
8GB/s to 16GB/s. Once the data is transferred, the GPU is able to sustain much higher
aggregate bandwidths on the order of 100GB/s. Therefore, transferring data to and from
the GPU is to be avoided as much as possible.

Each GPU supports a large number of software threads. These threads are arranged in
groups called blocks. The main program assigns work to a block of threads, and each
thread in the block executes the same routine. The number of threads in a block can be
set by the code. It should be a multiple of 32 and can be as large as 512 threads. 

The code takes the number of threads per block and uses this to calculate how many
blocks are needed to complete the work. The function call syntax has been extended so
that the call to square() takes both the normal parameters and the details of the number
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of blocks and the number of threads per block. This function call causes the GPU to
execute the code using the specified number of blocks and threads per block.

Once the call to square() completes, the host copies the resulting data back from
the device into host memory using a second cudaMemcpy() call. The last actions allow
the host machine to free up the memory allocated on the host and on the GPU.

The function square() is declared with the global keyword to indicate that it
is a function that executes on the GPU but can be called by the host code. Each hard-
ware thread on the GPU will execute the routine. The first thing the hardware thread
needs to do is determine the index of the element that it needs to compute. Information
about the topology of the block of threads is passed into the thread in the structures
blockIdx, blockDim, and threadIdx. These three structures allow the CUDA framework
the flexibility to specify that the thread performs computation in some three-dimensional
space. However, in this example we are working on only a single, x, dimension. The
index that a particular thread should compute can be derived by multiplying the index
of the block that is currently being computed by the size of each block and then adding
the index of the current thread. The thread will then work on the element at that index.

In the Listing 10.1, the computation performed is trivial, but much more complex
work can be performed on the GPU. The theoretical performance can reach teraflops of
floating-point computations per second. This can make for a compelling solution for
codes that require large amounts of computation.

There is another important point to make. The current trend is to see increasing
numbers of general-purpose CPUs on the same chip. It is quite likely that in the future
we will see processors that resemble today’s GPUs. Consequently, understanding how
codes can be scaled to this level of threading is likely to be a useful skill in the future.

Language Extensions
Perhaps the most obvious place to add support for parallelism is through extensions to
existing languages. The language C++ because of its expressive power is a good vehicle
for extensions such as Intel’s Threading Building Blocks. Cilk++, again from Intel, pro-
vides a set of language extensions that can be preprocessed to generate the appropriate
code. This section explores a number of ways that language extensions can be used to
enable the development of parallel applications.

Threading Building Blocks
Intel’s Threading Building Blocks (TBB) is a C++ library that uses templates to provide
common parallelization functionality and supporting objects. For example, the library
provides fundamental objects such as containers and synchronization objects. It also pro-
vides supporting functionality such as access to timers and memory management rou-
tines. The TBB library is open source and ported to multiple platforms.

Some of the functionality provided by the library could be used as objects in conven-
tional code. The code in Listing 10.2 uses the concurrent queue template to manage
communication between a producer and consumer thread.
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Listing 10.2  Using a Concurrent Queue in a Pthread Producer-Consumer Model

#include "tbb/concurrent_queue.h"

#include <stdio.h>

#include <pthread.h>

using namespace tbb;

using namespace std;

concurrent_queue<int> queue;

extern "C"

{

void * producer( void* )

{

for( int i 0; i<100; i++ ) { queue.push( i ); }

return 0;

}

void * consumer( void* )

{

int value  0;

while ( value !  99 )

{

queue.pop( value );

printf( "Value %i\n", value );

}

return 0;

}

}

int main()

{
pthread_t threads[2];

pthread_create( &threads[0], 0, producer, 0 );

pthread_create( &threads[1], 0, consumer, 0 );

pthread_join( threads[1], 0 );

pthread_join( threads[0], 0 );

return 0;

}

The two POSIX threads in the Listing 10.2 use the concurrent queue to pass integer
values from the producer to the consumer. Although providing a large set of building
block functionality is very useful, the more important features are those that manage per-
forming parallel work. The use of TBB allows the developer to abstract away from
POSIX threads and concentrate on the algorithm.
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The code in Listing 10.3 uses TBB to parallelize the code to compute points in the
Mandelbrot set. The code declares a Mandle object that contains all the methods that
compute whether a given point is in the set. The operator() is overloaded to perform
the computations over a 2D range. The computation is executed by a call to the
parallel for function, which takes the range over which the computation is to be
performed as parameters and the object receiving that range.

Listing 10.3  Using TBB to Parallelize Mandelbrot Set Generation

#include "tbb/parallel_for.h"

#include "tbb/blocked_range2d.h"

using namespace tbb;

const int SIZE  500;

int data[SIZE][SIZE];

class Mandle

{

int inset( double ix, double iy ) const

{

int iterations  0;

double x  ix, y  iy, x2  x*x, y2  y*y;

double x3  0,y3  0;

while (( x3 + y3 < 4 ) && ( x2 + y2 < 4 ) && ( iterations < 1000 ) )

{

y   2 * x * y + iy;

x   x2 - y2 + ix;

x2  x * x; x3  x2;

y2  y * y; y3  y2;

iterations++;

}

return iterations;

}

public:

void operator()( const blocked_range2d<int,int>&range ) const

{

for( int y  range.rows().begin(); y !  range.rows().end(); y++ )

{

for( int x  range.cols().begin(); x !  range.cols().end(); x++ )

{

double xv  0.75 * ( (double)(x - SIZE/2) ) / (double)(SIZE/4);

double yv  0.75 * ( (double)(y - SIZE/2) ) / (double)(SIZE/4);

data[x][y]  inset(xv,yv);

}
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}

}

Mandle(){}

};

int main()

{

parallel_for( blocked_range2d<int,int>(0,500,10,0,500,10), Mandle() );

return 0;

}

The code does not know what range it will be assigned until runtime. This enables
the runtime library to decide how many threads are available and divide the work
among the threads appropriately. The runtime will take the original range object and
break it down into an appropriate number of smaller ranges. It will be these range
objects that are actually passed into the Mandle object.

Cilk++
The Cilk++ language extensions from Intel provide parallel functionality for applications
using a relatively small set of new keywords. Support is currently limited to x86 proces-
sors running either Windows or Linux. The language is very close to OpenMP in terms
of what it provides. Listing 10.4 shows a Cilk++ version of the Mandelbrot example. To
convert the C language code to Cilk++ code, it was necessary to replace the main()
function with cilk main(). This change ensures that the Cilk runtime environment is
initialized. The other necessary change was to convert the outermost for loop into a
cilk for loop.

The program is built using the Cilk++ preprocessor cilkpp, which then invokes the
C++ compiler on the resulting code.

Listing 10.4  Mandelbrot Example Using cilk for

#define SIZE 300

int inset( double ix, double iy )

{

int iterations  0;

double x  ix, y  iy, x2  x*x, y2  y*y;

double x3  0,y3  0;

while ( ( x3 + y3 < 4) && ( x2 + y2 < 4 ) && ( iterations < 1000 ) )

{

y   2 * x * y + iy;

x   x2 - y2 + ix;

x2  x * x; x3  x2;

y2  y * y; y3  y2;

iterations++;
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}

return iterations;

}

int cilk_main(int argc, _TCHAR* argv[])

{

int data[SIZE][SIZE];

cilk_for( int y=0; y<SIZE; y++ )

{

for( int x 0; x<SIZE; x++ )

{

double xv  0.75 * ( (double)(x – SIZE/2) ) / (double)(SIZE/4);

double yv  0.75 * ( (double)(y – SIZE/2) ) / (double)(SIZE/4);

data[x][y]  inset(xv,yv);

}

}

getchar();

return 0;

}

Cilk++ offers more than just a parallel for construct. A more important feature is
cilk spawn/cilk sync. This allows the application to spawn worker threads and then
wait for them to complete. This is close to the concept of OpenMP tasks.

We can take the OpenMP quicksort example from Listing 9.15 from the previous
chapter and convert it into equivalent Cilk++ code shown in Listing 10.5. The
cilk spawn statement causes the following code to be, potentially, executed by another
thread. Every function ends with an implicit clik sync statement, so the function can
spawn multiple threads but will not complete until those threads have also completed.

Listing 10.5  Quicksort Written in Cilk++

#include <stdio.h>

#include <stdlib.h>

void setup( int * array, int len )

{ 

for( int i 0; i<len; i++ ) { array[i]  ( i*7 – 3224 ) ^ 20435; }

}

void output( int * array, int len )

{

for( int i 0; i<len; i++ ) { printf( "%8i", array[i] ); }

}

void quick_sort_range( int * array, int lower, int upper )

{
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int tmp;

int mid  ( upper + lower ) / 2;

int pivot  array[mid];

int tlower  lower, tupper  upper;

while ( tlower <  tupper )

{

while ( array[tlower] < pivot ) { tlower++; }

while ( array[tupper] > pivot ) { tupper--; }

if ( tlower <  tupper )

{

tmp  array[tlower];

array[tlower]  array[tupper];

array[tupper]  tmp;

tupper--;

tlower++;

}

} 

if ( lower < tupper ) 

{

cilk_spawn quick_sort_range( array, lower, tupper );

}

if ( tlower < upper ) 

{

cilk_spawn quick_sort_range( array, tlower, upper );

}

}

void quick_sort( int *array, int elements )

{

quick_sort_range( array, 0, elements );

}

int cilk_main()

{

int size  10*1024*1024;

int * array  (int*)malloc( sizeof(int)*size );

setup( array, size );

quick_sort( array, size-1 );

output( array, size );

return 0;

}

The Cilk++ environment also provides two tools that are useful for developers of
parallel applications: a data race detection tool called cilkscreen and a performance
prediction tool called cilkview. The data race tool cilkscreen provides functionality
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that is common to most similar tools. The performance tool cilkview provides some-
thing different—a high-level report on the scalability of the application. This is of less
use than a line-by-line profile but does provide an interesting insight into how the appli-
cation may scale as the number of threads increases. The output in Listing 10.6 shows
cilkview run on the quicksort code (modified so as not to print out the list of the
sorted values).

Listing 10.6  Scalability Estimates from cilkview

$ cilkview cilkquicksort

cilkview: generating scalability data

Whole Program Statistics:

Cilkview Scalability Analyzer V1.1.0, Build 8504

1) Parallelism Profile

Work :                                     5,216,903,917 instructions

Span :                                       338,025,076 instructions

Burdened span :                              339,522,925 instructions

Parallelism :                                      15.43

Burdened parallelism :                             15.37

Number of spawns/syncs:                        9,106,354

Average instructions / strand :                      190

Strands along span :                                 119

Average instructions / strand on span :        2,840,546

Total number of atomic instructions :          9,106,371

Frame count :                                 18,212,713

2) Speedup Estimate

2 processors:         1.80 - 2.00

4 processors:         3.00 - 4.00

8 processors:         4.51 - 8.00

16 processors:        6.02 - 15.43

32 processors:        7.22 – 15.43

The tool reports a number of statistics about the run of the program. The more inter-
esting result is in the section showing estimates of speedup for various numbers of
threads. The tool reports that the best-case estimate for scaling is just over 15 times faster
at 16 threads. A lower bound for scaling is that the code will never get much more than
eight times faster regardless of the number of threads used.

Grand Central Dispatch
Grand Central Dispatch (GCD) from Apple is an approach to task-based parallelism. It is
very similar to the concept of an OpenMP task or a cilk spawn call. The core func-
tionality of GCD is that a block of work can be placed onto a dispatch queue. When
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hardware resource is available, the work is removed from the queue and completed.
There are various ways that work can be dispatched to a queue. For example, the
dispatch async() function dispatches work to a queue and immediately returns to
the calling code, having placed the work on the queue for later completion. In contrast,
the dispatch apply() function places work on a queue but does not return until all
the work is completed. Listing 10.7 shows an example of using the dispatch apply()

function to parallelize the calculation of the Mandelbrot set.

Listing 10.7  Mandelbrot Example Using dispatch apply

#define SIZE 300

int inset( double ix, double iy )

{

int iterations  0;

double x  ix, y  iy, x2  x*x, y2  y*y;

double x3  0,y3  0;

while ( ( x3 + y3 < 4 ) && ( x2 + y2 < 4 ) && ( iterations < 1000 ) )

{

y   2 * x * y + iy;

x   x2 - y2 + ix;

x2  x * x; x3  x2;

y2  y * y; y3  y2;

iterations++;

}

return iterations;

}

int main( int argc, _TCHAR* argv[] )

{

int data[SIZE][SIZE];

dispatch_apply( SIZE, dispatch_get_global_queue( 0, 0 ),

^( size_t y ) 

{

for( int x 0; x<SIZE; x++ )

{

double xv  0.75 * ( (double)(x – SIZE/2) ) / (double)(SIZE/4);

double yv  0.75 * ( (double)(y – SIZE/2) ) / (double)(SIZE/4);

data[x][y]  inset( xv, yv );

}

} 

);

getchar();

return 0;

}
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The dispatch apply() call takes three parameters. The first parameter is the num-
ber of iterations. The second parameter is the queue to which the work is to be dis-
patched. An application may create and manage multiple queues; the global queue used
in the example is the queue representing all available processors. The final parameter is a
block variable. This contains a block literal containing the code that each iteration of the
loop needs to execute. The block literal is denoted with a caret (^). This block of code is
actually passed as a parameter into the routine; hence, the closing bracket of the function
call is after the closing bracket for the block of code.

Features Proposed for the Next C and C++ Standards
The next revisions of both the C and C++ standards contain some features that will help
in the development of multithreaded codes. In previous chapters, we looked at the differ-
ences between POSIX threads and Windows threads. The functionality provided by the
two implementations is very similar, but there are many differences in how that function-
ality is exported to the developer. Incorporating some of this support into the language
standards will be a huge improvement in the ability to write portable parallel code.

At the time of writing, it is not certain whether these features will be accepted or
modified in the final version. Consequently, it is not possible to write compilable code
that demonstrates these new features, both because the features may change in the final
version and because there are no compilers that implement these features. However,
there seems to be three areas that the languages are standardizing.

The first area is that of creating and managing threads. In C, there are likely to be a
set of function calls, reminiscent of the POSIX function calls for creating and managing
threads. The example in Listing 10.8 shows the current approach for creating and run-
ning a new thread. The resulting code looks very similar to both the Windows and
POSIX code.

Listing 10.8  Creating a New Thread in the Proposed Next C Standard

#include <threads.h>

#include <stdio.h>

int * work( void * )

{

printf( "Child thread\n" );

return 0;

}

int main()

{

thrd_t thread;

thrd_create( &thread, work, 0 );

thrd_join( &thread, 0 );

}
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In C++ it is natural for threads to be objects. The code in Listing 10.9 is an equiva-
lent code that creates and manages a child thread. The work that is to be performed is
passed in as a function to the created thread object.

Listing 10.9  Creating a New Thread in the Proposed Next C++ Standard

#include <thread>

#include <iostream>

work()

{

std::cout << "Child thread\n";

}

int main()

{

std::thread mythread( work );

mythread.join();

}

Both standards also propose support for atomic operations and memory ordering. In
C, atomic operations are supported through providing atomic types and operations that
can be performed on those types. The code in Listing 10.10 demonstrates how an
atomic variable can be incremented.

Listing 10.10  Atomic Increment in C Proposal

#include <stdatomic.h>

int count()

{

static struct atomic_int value = 0;

atomic_fetch_add( &value, 1 );

printf( "Counter %i\n", value );

}

C++ defines the atomic types as structs and provides methods for accessing them.
Listing 10.11 shows equivalent C++ code.

Listing 10.11  Atomic Increment in C++ Proposal

#include <atomic>

#include <iostream>

int count()

{
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static atomic_int value = 0;

value += 1;

printf( "Counter %i\n", value );

}

The final area of standardization treats mutexes and condition variables. The code in
Listing 10.12 demonstrates how, with the proposed C standard, a mutex could be created
and used to provide atomic access to a shared variable. The call to mtx init() takes a
parameter to describe the type of mutex that is required, which provides the facility for
the mutex to have different runtime behaviors, such as having a timeout.

Listing 10.12  Protecting a Shared Variable with a Mutex in C

#include <threads.h>

#include <stdio.h>

int counter  0;

mtx_t mutex; 

int * work( void * )

{

mtx_lock( &mutex );

counter++;

printf( "Counter  %i\n", counter );

mtx_unlock( &mutex );

return 0;

}

int main()

{

thrd_t thread;

mtx_init( &mutex, mtx_plain );

thrd_create( &thread, work, 0 );

thrd_join( &thread, 0 );

mtx_destroy( &mutex );

}

The C++ proposed standard implements a class hierarchy of different kinds of mutex.
Listing 10.13 shows the equivalent code to protect a shared variable.

Listing 10.13  Protecting a Shared Variable with a Mutex Object in C++

#include <thread>

#include <iostream>

int counter  0;
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std::mutex mymutex;

struct work operator()

{

mymutex.lock();

std::cout<< "Counter " << counter << "\n";

mymutex.unlock();

}

int main()

{

std::thread mythread{ work() };

mthread.join();

}

Microsoft's C++/CLI
Visual Studio supports a C++/Common Language Infrastructure (CLI), which is a
C++-derived language that runs on the .NET Common Language Runtime (CLR). 
As with all managed languages, it compiles to bytecode, which is then run on a virtual
machine. The language provides a set of objects for synchronization and threads.

The code in Listing 10.14 illustrates how a main thread can create a child thread. The
main thread prints one set of output, and the child thread prints another. The main
thread waits for a key press before exiting.

Listing 10.14  Creating a Child Thread in C++/CLI

using namespace System;

using namespace System::Threading;

void work()

{

Console::WriteLine( L"Work Thread" );

}

int main( array< System::String ^> ^args )

{

Thread^ mythread = gcnew Thread( gcnew ThreadStart( &work ) );

mythread->Start();

Console::WriteLine( L"Main Thread" );

Console::ReadKey();

return 0;

}
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The Thread object is the abstraction for a thread. To produce a running thread, an
object needs to be created and then started by calling its Start() method. The gcnew()
function creates a managed object on the garbage-collected heap and returns a handle to
it. A variable that holds a handle to a particular type is indicated with a carat (^) charac-
ter. The thread requires the address of a routine to execute. This is provided through a
ThreadStart object, and this object is created with the address of the desired routine.

As previously mentioned, the language provides the familiar synchronization primi-
tives. For example, we can use a mutex to ensure that the main thread prints its output
before the child thread.

The code then becomes more complex because it is not possible to use managed
global variables. One way around this is to convert the code that the child thread exe-
cutes into a method in an object. Listing 10.15 defines a ThreadWork object that con-
tains the handle of a Mutex object; this is set when the object is created.

Listing 10.15  Using a Mutex to Enforce Ordering

using namespace System;

using namespace System::Threading;

public ref class ThreadWork

{

private:

Mutex^ mymutex;

public:

ThreadWork( Mutex^ m )

{

mymutex = m;

}

void work()

{

mymutex->WaitOne();

Console::WriteLine( L"Child thread" );

mymutex->ReleaseMutex();

}

};

int main( array<System::String ^> ^args )

{

Mutex^ mymutex = gcnew Mutex();

ThreadWork^ T = gcnew ThreadWork( mymutex );

mymutex->WaitOne();

Thread^ mythread = gcnew Thread( gcnew

ThreadStart( T, &ThreadWork::work ) );

mythread->Start();

Console::WriteLine( L"Main Thread" );
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mymutex->ReleaseMutex();

mythread->Join();

Console::ReadKey();

return 0;

}

The Mutex object is acquired through a call to the method WaitOne() and released
through a call to the method ReleaseMutex().

The first thing the code does is to create the Mutex object, and the handle of this is
passed into the ThreadWork object. The main thread acquires the mutex by calling
WaitOne(). This will stop the child thread from executing until after the main thread
has printed its output.

The ThreadStart object now needs to be initialized with two parameters. The first
parameter is the instantiation, T, of a ThreadWork object, and the second parameter is
the method to be run by the thread.

Once the main thread has printed its output to the console, it releases the mutex and then
calls the Join() method of the Thread object to wait for the child thread to  complete.

Alternative Languages
The languages described so far in this chapter have been extensions to what might be
called standard C/C++. In some ways, C and C++ are not ideal languages for paral-
lelization. One particular issue is the extensive use of pointers, which makes it hard to
prove that memory accesses do not alias.

As a consequence of this, other programming languages have been devised that either
target developing parallel applications or do not suffer from some of the issues that hit
C/C++. For example, Fortress, initially developed by Sun Microsystems, has a model
where loops are parallel by default unless otherwise specified. The Go language from
Google includes the concept of go routines that, rather like OpenMP tasks, can be exe-
cuted in parallel with the main thread.

One area of interest is functional programming. With pure functional programming,
the evaluation of an expression depends only on the parameters passed into that expres-
sion. Hence, functions can be evaluated in parallel, or in any order, and will produce the
same result. We will consider Haskell as one example of a functional language. 

The code in Listing 10.16 evaluates the Nth Fibonacci number in Haskell. The lan-
guage allows the return values for functions to be defined for particular input values. So,
in this instance, we are setting the return values for 0 and 1 as well as the general return
value for any other numbers.

Listing 10.16  Evaluating the Nth Fibonacci Number in Haskell

fib 0  0

fib 1  1

fib n  fib (n-1) + fib (n-2)
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Listing 10.17 shows the result of using this function interactively. The command
:load requests that the module fib.hs be loaded, and then the command fib is
invoked with the parameter 10, and the runtime returns the value 55.

Listing 10.17  Asking Haskell to Provide the Tenth Fibonacci Number

GHCi, version 6.10.4: http://www.haskell.org/ghc/  :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer ... linking ... done.

Loading package base ... linking ... done.

Prelude> :load fib.hs

[1 of 1] Compiling Main             ( fib.hs, interpreted )

Ok, modules loaded: Main.

*Main> fib 10

55

Listing 10.18 defines a second function, bif, a variant of the Fibonacci function.
Suppose that we want to return the sum of the two functions. The code defines a serial
version of this function and provides a main routine that prints the result of calling this
function.

Listing 10.18  Stand-Alone Serial Program

main  print ( serial 10 10)

fib 0  0

fib 1  1

fib n  fib (n-1) + fib (n-2)

bif 0  -1

bif 1  0

bif n  bif (n-1) + bif (n-2)

serial a b  fib a + bif b

Rather than interpreting this program, we can compile and run it as shown in 
Listing 10.19.

Listing 10.19  Compiling and Running Serial Code

C:\> ghc -O --make test.hs

[1 of 1] Compiling Main             ( test.hs, test.o )

Linking test.exe ...

C:\> test

21
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The two functions should take about the same amount of time to execute, so it
would make sense to execute them in parallel. Listing 10.20 shows the code to do this.

Listing 10.20  Stand-Alone Parallel Program

import Control.Parallel

main  print ( parallel 20 20)

fib 0  0

fib 1  1

fib n  fib (n-1) + fib (n-2)

bif 0  -1

bif 1  0

bif n  bif (n-1) + bif (n-2)

parallel a b

 let x  fib a

y  bif b

in x `par` (y `pseq` (x+y))

In the code, the let expressions are not assignments of values but declarations of
local variables. The local variables will be evaluated only if they are needed; this is lazy
evaluation. These local variables are used in the in expression, which performs the com-
putation.  The import statement at the start of the code imports the
Control.Parallel module. This module defines the `par` and `pseq` operators.
These two operators are used so that the computation of x=fib a and y=bif b is per-
formed in parallel, and this ensures that the result (x+y) is computed after the calcula-
tion of y has completed. Without these elaborate preparations, it is possible that both
parallel threads might choose to compute the value of the function x first.

The example given here exposes parallelism using low-level primitives. The preferred
way of coding parallelism in Haskell is to use strategies. This approach separates the com-
putation from the parallelization. 

Haskell highlights the key advantage of pure functional programming languages that is
helpful for writing parallel code. This is that the result of a function call depends only on
the parameters passed into it. From this point, the compiler knows that a function call
can be scheduled in any arbitrary order, and the results of the function call do not
depend on the time at which the call is made. The advantage that this provides is that
adding the `par` operator to produce a parallel version of an application is guaranteed
not to change the result of the application. Hence, parallelization is a solution for
improving performance and not a source of bugs.
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Clustering Technologies
Historically, one of the ways of gathering large numbers of processors together was to
use a cluster of machines. An advantage of doing this was that it increased the available
disk space, memory, and memory bandwidth as well as the number of CPUs. The capac-
ity of a single multicore processor has increased such that work that previously required a
small cluster will now fit onto a single system. It is therefore interesting to consider tech-
nologies that might be used in this domain.

MPI
Message Passing Interface (MPI) is a parallelization model that allows a single application
to span over multiple nodes. Each node is one or more software threads on a system, so it
is quite permissible to host multiple nodes on the same system. Hence, a multicore sys-
tem can host multiple MPI nodes.

Communication between the nodes is, as the name suggests, accomplished by passing
messages between the nodes. The messages can be broadcast to all nodes or directed to a
particular node. Since there is no addressable shared memory between the nodes, the
communication costs depend on the size and frequency of the messages. Hence, the best
scaling will be achieved if the application does minimal communication. A consequence
of this is that MPI codes have to scale well by design. This means that they can often run
well on a multicore or multiprocessor system so long as no other system resources, such
as bandwidth or memory capacity, are exhausted.

Each node executes the same application. The first action the application needs to
take is to initialize the MPI library with a call to MPI Init(); the final action it needs
to take is to shut down the library with a call to MPI Finalize(). Each individual MPI
process will need to know both the total number of processes in the application and its
own rank in that group of processes. The call to MPI Comm size() returns the total
number of processes, and the call to MPI Comm rank() provides each process with its
identifier. Listing 10.21 shows the basic framework for a typical MPI program.

Listing 10.21  A Bare-Bones MPI Program

#include "mpi.h"

int main( int argc, char *argv[] ) 

{

int numproc, myid;

MPI_Init( &argc, &argv );

MPI_Comm_size( MPI_COMM_WORLD, &numproc );

MPI_Comm_rank( MPI_COMM_WORLD, &myid );

...

MPI_Finalize();

return 0;

} 
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MPI provides a very rich API for communicating between processes. The simplest
level of this is the ability to pass an array of data to another MPI process using a call to
MPI Send() and for that process to receive the data using a call to MPI Recv(). Other
calls exist to provide more intrinsic functionality such as reductions.

Since the communication overhead is often quite large, it makes most sense to use
MPI to solve problems that are too large for a single system. With multicore processors,
the size of the problem that can be tackled has become less dependent on the number of
threads and more dependent on considerations such as the memory footprint of the data
set or the amount of bandwidth of the system. This highlights an important motivator
for MPI programs—system characteristics such as amount of bandwidth or amount of
available memory scale with the number of systems. For a problem that is limited by the
time it takes to stream through a large amount of data, two systems will provide twice as
much bandwidth, potentially solving the problem twice as fast. Using two threads on a
single system does not necessarily provide the same doubling of bandwidth and certainly
does not double the memory capacity of the system.

High communication costs also cause a change in the approach taken to using MPI
to solve problems. As we have previously discussed, the best scalability will result from
codes that have the fewest and smallest amounts of communication. Tuning algorithms to
remove or reduce the need for communication will result in better performance. It may
be more efficient for an algorithm to use approximations to estimate the return values
from other processes rather than waiting for those processes to return the exact answers,
even if this approximation causes the algorithm to iterate longer before terminating.

To illustrate the use of MPI, we’ll use it to produce a larger image of the Mandelbrot
set. The algorithm that we are going to use is a single master process and a number of
worker processes. The worker processes compute a line of the Mandelbrot set at a time
and pass this to the master process. Listing 10.22 shows the code necessary to compute a
line of the Mandelbrot set.

Listing 10.22  Computing a Row of the Mandelbrot Set

#include "mpi.h"

#include <stdlib.h>

#define COLS 1000

#define ROWS 1000

int inset( double ix, double iy )

{

int iterations  0;

double x  ix, y  iy, x2  x*x, y2  y*y;

while ( ( x2 + y2 < 4 ) && ( iterations < 1000 ) )

{

y   2 * x * y + iy;

x   x2 - y2 + ix;

x2  x * x;
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y2  y * y;

iterations++;

}

return iterations; 

}

void computerow( int index, int * data )

{

double y  -1.5 + (double)index / ROWS;

for( int c 0; c<COLS; c++ )

{

double x  -1.5 + (double)c / COLS;

data[c]  inset( x, y );

}

}

Listing 10.23 shows the code for the master process. The master process needs to set
up an array large enough to store all the results from the worker processes. The master
process computes the zeroth row of the output and then waits for all subsequent rows to
be calculated by the other processes. The MPI Recv() call takes parameters that indicate
the expected type of data and an array where the data is to be stored. The call also takes
parameters that identify the process where the data is to come from and takes a tag—in
this case the line number—that identifies the data being sent. The final parameters are
the set of nodes that should be included in the communication and a variable to hold
the status.

Listing 10.23  The Master Thread Accumulates All the Results from the Worker Threads

int numproc, myid, rows, cols;

void masterprocess()

{

int ** data;

MPI_Status status;

data  malloc( sizeof(int*) * ROWS ); // Allocate memory to store data

data[0]  malloc( sizeof(int) * COLS ); 

computerow( 0, data[0] );             // Compute row zero

for( int currentrow  1; currentrow < rows; currentrow++ )

{ 

data[currentrow]  malloc( sizeof(int) * cols ); 

int process  currentrow % ( numproc – 1 ) + 1;

MPI_Recv( data[currentrow], COLS, MPI_INT, process, currentrow, 

MPI_COMM_WORLD, &status );

}

}
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The worker processes run the code shown in Listing 10.24. Each process computes
every Nth row of the matrix and then passes this row to the master process. The main
routine is also shown in this listing. This routine needs to do the normal setup and tear-
down of the MPI library and then decide whether the process is the master or one of
the workers.

Listing 10.24  MPI Worker Thread and Setup Code

void workerprocess()

{

int * data, row;

data  malloc( sizeof(int) * COLS );

row  myid;

while ( row <  ROWS )

{

computerow( row, data );

MPI_Send( data, COLS, MPI_INT, 0, row, MPI_COMM_WORLD );

row +  numproc-1;

}

free( data );
}

int main( int argc, char *argv[] ) 

{

MPI_Init( &argc, &argv );

MPI_Comm_size( MPI_COMM_WORLD, &numproc );

MPI_Comm_rank( MPI_COMM_WORLD, &myid );

if ( myid  0 ) { masterprocess(); } else { workerprocess(); }

MPI_Finalize();

return 0;

} 

The program as written achieves little parallelism. This is for a couple of reasons. The
first is that the send and receive operations are blocking. The sending processes cannot
make progress until the receiving process receives the data. The receiving process com-
pounds this by looking for the data in order.

The code could be modified to use a nonblocking send operation so that the worker
processes could overlap communication with computation. Another improvement to the
code would be for the master process to accept data from the workers in any order,
rather than requiring the data to be received in order.

With the increase in the number of available cores, it has become appropriate to
combine MPI for parallelization across nodes with OpenMP for parallelization within a
node. This allows an application to use coarse-grained parallelism to scale to large num-
bers of nodes and then a finer degree of parallelism to scale to large numbers of cores.
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MapReduce as a Strategy for Scaling
MapReduce is an algorithm that is well suited to clusters because it requires little commu-
nication and it is a relatively flexible approach so long as there are multiple parallel queries
to be completed. Implementations are available in various programming languages

The MapReduce algorithm has two steps. The map step takes a problem and distrib-
utes that problem across multiple nodes. The reduce step takes the results from those
nodes and combines them to provide a final result.

MapReduce works best when there is an operation to be performed on multiple sets
of input data. For example, consider computing the frequency of the use of all words
over a range of documents. A single thread would compute this task by reading each
document and then using a map to increment the value of a counter for each word
encountered in the document.

The MapReduce version of the code would perform the following two steps. In the
map phase, the master thread would assign each worker thread to perform the word count
on a particular document. In the reduce step, each worker thread would return the list of
word frequencies for its particular document, and the master thread would combine all
these into a single set of results.

From the description, it should be obvious that the algorithm could be implemented
using MPI. In fact, the only difference between this and the code to compute the
Mandelbrot set is that the MPI master thread did not need to tell the worker threads
what to compute since this information was provided in the source code.

What makes MapReduce different from an algorithm implemented in MPI? There
are two major differences. 

First, MPI is a general-purpose framework for the composition of parallel problems,
whereas MapReduce is an approach for a specific kind of problem. So, it may be possible
to implement MapReduce-type problems in MPI, but it is not generally possible to
implement all MPI problems using a MapReduce framework.

The second difference is that MPI is designed to work on a known grid of computers.
MPI relies on the fact that there is a known node performing the work and that this node
will at some point return the results of the computation. MapReduce is built on the basis
that the nodes performing the work may not be reliable. If a node does not provide the
result within a suitable time period, the master node can restart the query on a different
node.

There are two characteristics of the MapReduce work that enables this restart to hap-
pen. The first is that the master node explicitly requests work from the worker nodes. So
if the worker node fails, the master node can make the same request of another worker
node. The second characteristic is that the nodes do not contain state. So if a worker
node fails, the master node can restart from a known point and not have the problem
that one of the other nodes is already using partial answers from the failed node.

MapReduce is usually implemented as a library, such as the Hadoop implementation.
This library provides the functionality for distributing the work across multiple systems,
restarting the work if one of the nodes fails, and so on. The advantage of providing this
as a library is that improvements to the library code will be felt by all users of the library.
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Grids
Possibly the simplest approach to utilizing multiple compute threads is to use a grid. A
grid is a collection of nodes. A task can be dispatched to the grid, and at some point the
results of that task will be returned to the user.

Conceptually, a grid is the task management aspect of MapReduce without the “map”
and “reduce” algorithms for performing computation. A grid will typically provide much
greater node management functionality than a MapReduce implementation. Node man-
agement might extend to powering down idle nodes or allocating clusters of work to
co-located nodes. So, the two approaches will be broadly complementary in nature.

Transactional Memory
We have already talked about some of the complexities of implementing a functionally
correct parallel application. One particular problem is that of data races. In a large pro-
gram, it can be quite hard to truly eliminate all possible races. Even using data race
detection tools does not guarantee that there are no further races hidden in the code.

The safe software solution is to place mutex locks around all potentially critical sec-
tions of code. The mutex locks ensure that only a single thread can access the critical
variables and hence that the application will work correctly. However, mutex locks both
impose a performance penalty on access to the shared variables and also work only if all
accesses to the variables are protected by a common lock.

The idea of transactional memory is to attempt to address both issues. Transactional
memory is really aimed at the correctness issue. If it can also make a difference to per-
formance, that is an additional benefit rather than a critical benefit.

Transactional memory enables the developer to protect accesses to variables within a
transaction. A transaction is a block of code that either completes successfully or fails and
does not then result in any change in system state.

A common syntax for transactions has not yet been developed. One possibility is the
use of the keyword atomic to wrap the entire transaction. Listing 10.25 shows an exam-
ple of this. The transaction moves a value from one location in an array to another. The
keyword atomic indicates that the specified amount must be moved atomically between
the two locations in the array. Since transactions can fail, the atomic keyword must
implicitly retry the transaction until it successfully completes. The critical points here are
first that the transaction cannot leave the data in an unknown partially completed state
and second that no other process can see a partially completed transaction. This makes
the use of the keyword atomic appropriate.

Listing 10.25  Accessing Multiple Accounts in a Single Transaction

void move( int from, int to, int value )

{

atomic

{

accounts[ from ] -  value;
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accounts[ to ] +  value;

}

}

Transactions will fail if any of the variables used in the transaction are modified (or
potentially read) by another thread. This is where transactions can improve the safety of
parallel code. If there is another modification of a variable used in a transaction outside
of that transaction, the transaction will fail. It is not possible for the transaction to com-
plete in the presence of data races. This does not stop situations where multiple threads
access a variable outside of a transaction, but it does eliminate problems with the granu-
larity of locks or potential deadlock situations.

Transactional memory can be provided either in software using a library or at the
hardware level. Hardware transactional memory is the ideal. This is where during a trans-
action, hardware tracks any other accesses to variables used by the transaction and aborts
the transaction if necessary.

Software transactional memory is provided by a library that ensures that the variables
used in the transaction are accessed atomically only. As such, it tends to have a much higher
implementation cost compared to hardware transactional memory. Providing transactions
in software can help address the correctness issue; however, it is unlikely to do so in a
way that also leads to performance gains over using any other approach.

Vectorization
Vectorization is the software optimization of using single instruction multiple data
(SIMD) instructions to perform computation in parallel. Since the instructions act on
multiple items of data at the same time, this is really an example of parallelism at the
level of the instruction and data. As such, it can result in a significant gain in perform-
ance without the overhead associated with synchronizing and managing multiple threads.

Listing 10.26 shows that the simplest example of this is the loop. This loop adds two
vectors and places the result into a third.

Listing 10.26  Loop Amenable to SIMD Vectorization

void sum( double *in1, double *in2, double *out, int length )

{

for ( int i 0; i<length; i++ )

{

out[i]  in1[i] + in2[i];

}

}

Using normal instructions, referred to as single instruction single data (SISD) instruc-
tions, each iteration of the loop would require two loads: one addition and one store
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operation. However, SIMD instructions act on a vector of values. A vector might hold
two double-precision values or four single-precision values, and so on.

For a SIMD instruction set that handles two double-precision values in parallel, each
iteration through the SIMD version of the loop performs two loads of a pair of elements
each, an addition operation on that pair of elements, and a store that writes the resulting
pair of elements back to memory. Consequently, the trip count around the loop will
have reduced by a factor of two. Assuming the latencies of the operations remain the
same, the resulting code will run twice as fast.

Most modern compilers have the facility to identify and utilize SIMD instructions,
either by default or under a combination of flags. The generated code will work only on
hardware that supports the instructions.

SIMD instructions complement other parallelization strategies. If the loop shown in
Listing 10.26 acted on large arrays of data, multiple threads could handle the computa-
tion efficiently. However, if the arrays were small in size, the synchronization overheads
may dwarf the gains from parallelization. SIMD instructions would be effective in both
situations, perhaps providing a doubling of performance. However, they could potentially
provide that doubling of performance even when the length of the arrays is too short for
efficient parallelization.

Summary
In this chapter, we met many other approaches to parallelization. These included library-
based approaches such as Threading Building Blocks, which seek to provide infrastruc-
ture for parallel applications and preprocessors such as Cilk++ that hide some of the
complexity of the underlying libraries. A particularly interesting domain is how the
future C and C++ language standards may include standardized support for parallelism,
which would go a large way toward enabling portable code at the language-standard
level. Another approach to providing parallelism is using different programming paradigms,
such as functional programming languages like Haskell. This approach could potentially
avoid some of the problems that make coding parallel code in C/C++ difficult.

Parallelism should not just be considered a problem to be solved within a machine.
One of the more complex problems is using parallelism to compute the solutions to
problems that are too large to be solved by a single system. Technologies such as MPI
enable a single application to span arbitrarily many systems. The approach of using multi-
ple systems enables other hardware features, such as bandwidth or disk, to scale with the
number of processors. Algorithms such as MapReduce are an approach that allows prob-
lems to be broken down into chunks that can then be solved in parallel using many
systems.

Finally, we looked at how hardware can provide more opportunities for parallelism.
The CUDA approach of providing many simple cores enables a block of simple code to
be executed by hundreds of threads in parallel. Transactional memory presents a possible
solution for the problem of producing correct multithreaded code. SIMD instructions
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provide greater opportunities for instruction-level parallelism that increase performance
without the requirement for multiple threads.

It would take an entire book to cover any one of these topics in depth. The objective
of this chapter was to provide exposure to alternative ways of parallelizing applications.
Some of these approaches might represent the ideal solution for a particular problem you
are facing. The more important outcome should be a realization that it is possible to
produce a parallel version of a program by changing the rules, perhaps by changing pro-
gramming language or perhaps by changing the hardware used.
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11
Concluding Remarks

This book has covered a large range of parallelization approaches and topics. The next
steps are to take this knowledge and apply it to an existing or a new application. This
final chapter acts as a summary of the steps necessary to successfully develop correct and
scalable multithreaded applications.

Writing Parallel Applications
The key part of writing parallel applications is identifying where the parallelization will
provide the most benefit for the least cost. If the application has not yet been written,
then analysis is necessary to determine what work can be completed in parallel. This
analysis needs to take the critical performance metrics for the application into account—
is the application more concerned with throughput, or is response time more important?
Both are usually important, and the question can be interpreted as whether the expected
response time is sufficiently fast, in which case the threads can be assigned to providing
throughput, or the response time is insufficient, in which case the threads should be
assigned to reducing this.

Making an existing application run in parallel is a harder task. The first step is to pro-
file the application to determine where the time is currently spent. The art of perform-
ance tuning is to determine a region of code where sufficient time is spent so that any
improvement in that region would result in an observable performance gain for the
entire application.

Identifying Tasks
The basic building block of parallelism might be called a task. A task can be passed to a
single virtual CPU for completion. Identifying these tasks is a matter of carefully exam-
ining the profile of the application and locating the largest possible chunk of independ-
ent work.

There are two potentially conflicting constraints. The most efficient scaling will come
from identifying the largest chunk of work that can be completed independently. Doing
this will keep the synchronization costs to a minimum. However, the greatest scaling will



be achieved by identifying the largest number of independent tasks. Consequently, the
best overall scaling will result from meeting both of these criteria—identifying a large
number of tasks, each of which takes a significant amount of time before it requires syn-
chronization with other threads.

Profiles will help in discovering these tasks. There are multiple ways that the profile
can be “sliced.” The traditional slice is to look at the top functions, identify the function
that is taking the time, and attempt to make this function parallel. Doing this might
identify sections of the functions that are independent or perhaps a loop that can be
executed in parallel.

However, when considering parallelizing an application, this slice of the profile may
not be sufficient. The time spent in the top function could be only a small percentage of
the total runtime. Therefore, it might be necessary to look at the time spent both in a
function and in all the functions that it calls; this might be referred to as a function’s
callee tree, or its inclusive time. This should represent a larger amount of time, which
could therefore be divided between more tasks, or provide a small set of threads with
more work before they require synchronization.

Parallelization is not just about parallel computation. It is also appropriate to consider
time that the code spends waiting for some external event. Take a web server as an
example. It will wait until it receives a request from a remote client, and it will then send
an appropriate response to the client. We have already looked at a parallel version of this
where one thread waits for incoming requests while other threads service the requests
that have already arrived. The performance and utilization gains come from enabling
multiple threads to wait in parallel.

An application might employ multiple parallelization strategies in order to utilize the
most CPU resources. Taking the web server, we already have some fundamental paral-
lelism in responding to the incoming requests, and a further level of parallelism might be
found using multiple threads to formulate each individual response.

Estimating Performance Gains
One critical aspect of parallelization is knowing the expected performance gains, usually
estimated using a variant of Amdahl’s law. Knowing how much work will be performed
in parallel indicates how much impact it will have on the runtime. An application where
half of the work could be performed in parallel has an expectation of getting at most
twice as fast when parallelized. Knowing the degree of parallelism that the code can sup-
port provides a realistic expectation for the scaling of the code. If the same code scales to
only eight threads, then the code can at most get about 1.8x faster when parallelized.

Understanding this scaling helps in determining which parts of the code should be
targeted for parallelization. After a first parallel region has been identified and coded, the
remaining serial code will probably contain further opportunities for parallelization, and
these opportunities will be a more significant proportion of the remaining runtime.
Hence, it is likely that parallelizing an application will be an iterative process, with each
stage causing further opportunities to become more attractive.
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Determining Dependencies
The largest barrier to parallelization is dependencies within the algorithm. These can be
true dependencies where a result is required before the application can use that result or
false dependencies where the dependency is a result of the implementation rather than
the algorithm.

False dependencies are easiest to resolve. A change to the implementation will remove
the dependence enabling the application to run in parallel. For example, a dependence
might be broken using two arrays—one to hold the original value and the second to
hold the modified value.

True dependencies come in two forms. Data-carried dependencies are where the
result of a previous operation is needed before the next operation can start. Memory-
carried dependencies are where the next operation relies on the results of a previous
computation being available in memory.

Even if the problem is a true dependence, it need not stop all parallelism. Sometimes
it is possible to use speculation to enable computation to continue even when the exact
result is not yet known. At other times there may be independent work that can be
completed while one thread works on a serial section.

Data Races and the Scaling Limitations of Mutex Locks
Bugs because of data races are the most obvious manifestation of a parallelization prob-
lem. These relate to updates of variables without ensuring exclusive access to the vari-
ables. These are usually resolved by adding synchronization primitives (such as mutex
locks) into the code to ensure exclusive access to the variables.

Although mutex locks can be used to ensure that only a single thread has access to a
resource at a time, they cannot enforce the ordering of accesses to data. An alternative
approach is required if there is an ordering constraint on the accesses to shared resources.
For example, if two threads need to update a variable, a mutex can ensure that they do
not update the variable at the same time. However, a mutex cannot force one of the two
threads to be the last to perform the update.

The problem with adding mutex locks into the code is that they serialize the access
to the variables. Only a single thread can hold the lock, so if there are multiple threads
that need to access the data, the application effectively runs serially because only one
thread can make progress at a time. Even if requiring the mutex lock is a rare event, it
can become a bottleneck if the lock is held for a long time or if there are many threads
requiring access to the lock.

Locking Granularity
The granularity of a lock is how much data it protects. A lock with coarse granularity
will protect a large amount of data, and a lock with fine granularity will protect a small
amount of data. Although it is tempting to place locks at the finest level of granularity
possible, it is not usually the best strategy. Having many locks with fine granularity tends
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to introduce overhead. The overhead comes from the increased amount of memory
needed to hold these locks and the decreased likelihood that the locks will be cache resi-
dent when they are needed.

However, having few locks usually results in those locks becoming contended by
multiple threads, which limits the scaling of the application. Therefore, the granularity of
the locks is usually some kind of trade-off between a few contended locks and many
uncontended locks. The appropriate balancing point will depend on the number of
threads, so it may actually change if the application is run with different workloads or
with different numbers of threads. Hence, it is important to test an application with both
representative workloads and on a representative system with sufficient virtual CPUs.

The key to picking the optimal locking strategy is often a good grasp of the theoreti-
cal performance of the application, in comparison with the actual profile of the applica-
tion. It is also important to examine the actual scaling of the application as the number
of threads increases.

Parallel Code on Multicore Processors
For serial codes, there are few differences between running on a single thread of a multi-
core processor and running on a single CPU of a multiprocessor system. The real differ-
ences occur when running a parallel application on a multicore processor compared to
running the same application on a multiprocessor system.

One of the largest problems for a multiprocessor system is that of nonuniform mem-
ory latency. An application will get the best performance if it is close to the memory
where its data is held. Unfortunately, it is all too easy for an application to be migrated
away from its ideal location, resulting in the application experiencing an increase in the
memory latency and a corresponding drop in performance. 

Although it is possible to get multicore systems that are also multiprocessor, it is com-
mon to have only a single multicore processor in the system. A single multicore proces-
sor can provide sufficient threads for many parallel tasks. A single processor system also
experiences a uniform memory latency, often lower than the latency of a multiprocessor
system. Migration of threads between cores of a single multicore processor has a much
smaller impact than migration between processors.

However, the migration of threads between virtual CPUs on the same processor is
not totally free of cost; there will be some cost if a thread migrates from a virtual CPU
where it has some data held in the first-level cache to one where it does not. 

Threads on the same multicore processor can communicate through shared memory,
typically either the first or second level of cache. Most synchronization relies on memory
operations to communicate between threads, and using memory that is resident in the
on-chip caches means that the communication costs between threads are the cost of the
latency to the shared cache. The latency of on-chip cache is measured in tens of cycles;
memory latency is usually measured in hundreds of cycles. This low latency enables low-
cost synchronization.
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Many of the other issues encountered with parallel programs relate to the communi-
cation costs between the threads. For example, the cost of false sharing where multiple
threads update separate items of data residing on the same cache line is the cost of
migrating a cache line between caches on different processors. On a multiprocessor sys-
tem, the cost of false sharing is some multiplier of memory latency. On a multicore
processor, the shared cache line becomes resident in the cache, and the communication
costs are substantially reduced. This means that the performance costs of false sharing can
become insignificant. Similarly, the costs of true sharing are reduced; shared data becomes
cache resident, and even mutex locks can become resident in the cache.

Low communication latency leads to better scaling because the overheads associated
with synchronization are substantially reduced. Hence, multicore processors have a better
scaling potential than multiprocessor systems.

Optimizing Programs for Multicore Processors
In some senses, the process of optimizing programs for multicore processors is no differ-
ent from the process of optimizing them for single-core processors. An improvement in
the performance of the serial code will still lead to a performance gain on a multicore
processor. Therefore, traditional program optimization skills are still very relevant.

What has changed are the potential benefits from parallelization versus those from
optimization. Suppose an application spends half of its time in a particular routine.
Traditional optimizations applied to that routine might lead to a 10% gain in perform-
ance, and perhaps it might even be possible to double the performance of that particular
part of the code. Ideally, the gains would come from algorithmic improvements, but they
often also come from tuning to take advantage of the features of the hardware. Hardware-
specific tuning tends to be high cost because there is no guarantee that it will be as
effective on a different processor and, consequently, runs the risk of requiring further
tuning in the future.

The other option is to parallelize the code. If this is successful, the performance of the
routine with two threads could be twice that of one thread, and it may be possible to
scale to four or eight threads, yielding even more impressive gains over the serial code.
The potential gains from parallelization are far greater than the gains from traditional
performance tuning. Although the traditional approaches are still relevant, it is best to
consider parallelization for performance as early as possible.

The best approach is a probably a hybrid. It is still important to profile the serial code
to ensure that there are no obvious problems with it. There is no point in using multiple
threads inefficiently through either a poor choice of algorithm or a poor implementa-
tion. Once any major issues with the serial algorithm have been resolved, the work can
move on to improving the scaling and performance of the parallel implementation. The
final choice of where to spend developer time depends on the potential gain from the
work. Could a developer get more performance through optimizing the serial code or
through parallelizing the serial code?

There is one other aspect of multicore processors that causes parallelization to be 
a more attractive approach than serial performance tuning. The way that threads on
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multicore processors share the cores resources may make it more effective to use multiple
threads than to try to improve the performance of a single thread.

A single thread running on an otherwise idle multicore machine may get more than
its fair share of resources. Adding a second thread will reduce the available resources.
However, while one of those threads is stalled, the other will again have access to the full
resources of the core.

Hence, for a multicore processor, the time that a thread spends stalled actually repre-
sents time when other threads can make forward progress. The practical result of this is
that there may be no benefit in throughput from eliminating all the stall cycles from
every thread.

An alternative way of thinking about this is that once a multicore processor is issuing
an instruction at every opportunity, there is no further benefit to be had from removing
stall cycles from the threads running on the processor. Each thread will spend the same
amount of time waiting to issue another instruction regardless of whether it spends that
time waiting for a stall condition to resolve or just waiting while other threads issue
instructions.

The end result is that multicore processors do three things that simplify the develop-
ment of parallel applications:

n They provide the necessary hardware threads to run parallel applications.
n They reduce the synchronization costs of parallel applications.
n They reduce the impact of instruction stream stalls, so it becomes less critical to

produce optimal code.

The Future
This book has covered a number of approaches to producing parallel applications. We
have discussed the classic approaches of POSIX threads, Windows native threads, and
OpenMP. We have also covered some of the emerging alternatives such as Intel’s
Threading Building Blocks and CUDA from Nvidia.

What is certain is that it is now critical to be familiar with writing parallel programs.
Parallelism is pervasive; it is no longer possible, or desirable, to assume that increasing
single-threaded performance will solve the performance issues of an application. The oppor-
tunity is there to double or quadruple application performance using multiple threads.

As a result of reading this book, you should be able to identify and use the tools that
you need to write parallel programs that are functionally correct and scale well to many
cores.

Multicore processors represent the perfect storm for parallel programming. They pro-
vide the developer with plenty of threads, and they reduce the impact of the traditional
limitations to scaling. The low synchronization costs and costs of data sharing of multi-
core processors make it possible to produce applications that potentially scale to greater
numbers of threads or perhaps scale on parts of the code that previously were too short
to parallelize profitably.
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Atomic operations

hand-coded synchronization. See
Hand-coded synchronization

increments in C and C++ proposals,
395–396

OpenMP, 283
producer-consumer systems, 326–328
synchronization, 130–131
transactional memory, 407
variable updates, 238–240

Attributes

mutex, 156–157
POSIX threads, 148–150

Automatic parallelization

codes containing calls, 251–253
compiler assistance, 254–256
overview, 245–250
reductions, 250–251

Availability, 32

B
Bandwidth

memory, 20–21, 354–355
MPI, 403
sharing between cores, 353–355

Bank with multiple branches, 340–345

barrier directive, 279–280

Barriers, 130

atomic operations, 301–303
memory, 25–26
POSIX threads, 162–163

_beginthread routine, 201–203, 238

_beginthreadex routine, 201–204, 206, 
235, 238

Binary searches, 59

bind routine, 194

Binding

processors, 371–379
sockets, 194
threads, 362, 365–366, 373

Block literals, 394

blockDim structure, 386

blockIdx structure, 386

Blocking operations in MPI, 405

Blocking, threads, 128, 155

Blocks

GPU, 385
TBB, 386–389

Breaking dependencies, 113–117
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BSD Sockets API, 234

Bubble sort, 35–37, 350

Buffers, circular

atomic operations, 326–328
overview, 315–318
scaling, 318–326

Build structures, 39–42

Bypass stage in pipelines, 10–11

C
C and C++ feature proposals, 394–397

C++/CLI, 397–399

Cache coherence, 18

Cache coherent nonuniform memory archi-
tecture (ccNUMA), 19

Caches, 5–6, 9

alignment, 12, 56
cache line invalidations, 322–325
conflicts and capacity, 359–363
data structures, 53–56
superlinear scaling, 336–337
working with, 12–15

Callee trees, 412

Calls and calling convention, 22

and automatic parallelization, 251–253
library code, 45, 49–51
stack-based, 23

Calls, wake-up, 136–137, 173–174

Capacity of caches, 359–363

Carets (^)

block literals, 394
handle variables, 398

CAS (compare and swap) operations

atomic operations, 131, 297–301
spin locks, 325–326

CAS routine, 298, 330–331

ccNUMA (cache coherent nonuniform mem-
ory architecture), 19

Chaining signal handlers, 190–191

Child threads

C++/CLI, 397–398
passing data to and from, 145–147

Chip multithreading (CMT), 6–8

latency costs, 55
memory bandwidth, 21

Chips. See Processors

Chrome browser, 29

Chunks in OpenMP schedules, 266

cilk_for routine, 389

Cilk++ language extensions, 389–392

cilk_main routine, 389

cilk_spawn routine, 390, 392

cilk_sync routine, 390

cilkscreen tool, 391

cilkview tool, 391–392

Circular buffers

atomic operations, 326–328
overview, 315–318
scaling, 318–326

CISCs (complex instruction set 
computers), 22

CLI (Common Language Infrastructure), 397

Client/server systems

communication, 140
division of work in, 108–109
OpenMP example, 270–273
sockets, 194–197, 235–237

clock_gettime routine, 161

Clock speed

historical increases, 3
pipelines, 10

close socket routine, 194
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closeHandle routine

events, 220
memory, 226
mutex locks, 213
pipes, 233
semaphores, 216
Windows sockets, 238
Windows threads, 201–208

Cloud computing, 92, 103

CLR (Common Language Runtime), 397

Clustering technologies, 103, 402

grids, 407
MapReduce algorithm, 406
MPI, 402–405

CMT (chip multithreading), 6–8

latency costs, 55
memory bandwidth, 21

CodeAnalyst tool, 75–77

Coherence, cache, 18

collapse clause, 286–287, 348

Column-major array order, 58

Common execution paths, 61

Common Language Infrastructure (CLI), 397

Common Language Runtime (CLR), 397

Communicating costs in MPI, 403

Communication between threads and
processes, 133

condition variables, 135–137
latency, 99
memory, 134–135
message queues, 138
named pipes, 139
network stack, 139–140
signals and events, 137–138

Compare and swap (CAS) operations

atomic operations, 131, 297–301
spin locks, 325–326

Compilation of source code

32-bit vs. 64-bit code, 23–24
memory operation order, 24–26
overview, 21–23
processes vs. threads, 26–29

Compiler role in performance, 60–62

cross-file optimization, 65–68
optimization types, 62–64
options, 64–65
pointer aliasing, 70–74
profile feedback, 68–70
profiling, 74–80

Compilers and compiling

automatically parallelizing code, 254
lazy loading, 52–53
libraries, 44–45
memory-ordering directives, 303
multithreaded code, 151–152
operation ordering, 304–308
POSIX threads flags, 197–198

Complex instruction set computers 
(CISCs), 22

Complexity, algorithmic, 33

considerations, 38–39
examples, 33–37
importance, 37–38

Computational costs in OpenMP, 263–265

Compute Unified Device Architecture (CUDA),
383–384

Computer components, 1–2

Concurrent queues, 387–388

Condition variables, 135–137

POSIX threads, 170–175
Windows threads, 209, 218–219

Conditional code, 63–64

Conditional execution in OpenMP, 284

Configuration isolation, 91
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Conflicts, cache, 359–363

connect socket routine, 196

Consolidation

efficiency through, 88–92
virtualization for, 92

Consumers. See Producer-consumer systems

Containers for isolating applications, 89

Contended mutexes, 127, 340–345

Context switches, 4

copyin clause, 275

copyprivate directive, 275–276

Cores

bandwidth sharing between, 353–355
interleaving, 365–366
multicore. See Multicore processors
pipelined, 9–12
processor, 3

Costs

development, 39
libraries, 43–44, 47
MPI, 403
OpenMP, 263–265
scaling, 98–100

Counters

increment operations, 309–310
for semaphores, 128

CPU_SET macro, 376

CPU_ZERO macro, 376

CPUs. See Processors

cputrack tool, 362

CreateEvent routine, 220, 235

CreateFileMapping routine, 225–226

CreateMutex routine, 213, 221, 229–231

CreateMutexA routine, 221

CreateMutexEx routine, 213

CreateMutexW routine, 221

CreateNamedPipe routine, 231–232

CreatePipe routine, 231, 233

CreateProcess routine, 222–223, 229

CreateProcessW routine, 223

CreateSemaphore routine, 216

CreateSemaphoreEx routine, 216

CreateThread routine, 199–201

critical directive, 282

Critical paths, 117–118

Critical sections

mutex locks, 126–128
OpenMP, 282–283
Windows threads, 208, 210–213

Cross-file optimization, 40–42, 62, 65–68

CUDA (Compute Unified Device Architecture),
383–384

cudaMalloc routine, 385

cudaMemcpy routine, 385–386

D
-D_REENTRANT flag, 151–152

Data-carried dependencies, 413

Data padding

caches, 56
for false sharing, 357

Data races, 295

avoiding, 126
CAS operations, 299
detecting, 123–125
mutex locks for, 154–155, 413
overview, 121–123
transactional memory, 407–408

Data sharing

storing thread-private data, 141–142
synchronization. See Synchronization

Data structures

array access patterns, 58–59
choosing, 59–60
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Data structures (continued )

density and locality, 55–57
performance, 53–60

Data TLB (DTLB), 16

Deadlocks

circular buffers, 320
overview, 132–133

Debug level optimization, 64–65

__declspec specifier, 240–241

Decode stage in pipelines, 9

decrement atomic operations, 239

Decrement routine, 127

Default size

pages, 17
stack, 149

Dekker’s algorithm, 312–315

Delays in spin code, 368–369

DeleteCriticalSection routine, 210

Deleting POSIX thread shared memory, 181

Density, data, 55–57

Dependencies

antidependencies and output, 111–113
breaking, 113–117
compiling for, 52–53
critical paths, 117–118
determining, 413
parallelism, 110–111

Design, performance by, 82–83

destructor function, 178

Detached threads, 147–148

Detecting data races, 123–125

Developer time and cost in algorithm com-
plexities, 39

Device drivers in libraries, 51

Direct mapped caches, 13

Directives, 74, 256–257

dirent structure, 198

dispatch_apply routine, 393–394

dispatch_async routine, 393

Divide-and-conquer approach, 106

Division of work in client-server configura-
tion, 108–109

Division with reductions, 250, 261

Domains, logical, 90

Doors, 141

down method, 129

Downtime, 32

DTLB (data TLB), 16

Dual-core processors, 5

Dynamic scheduling in OpenMP, 264–266

example, 291–293
impact, 286

Dynamically defined parallel tasks, 269–273

E
Echo threads

POSIX, 194–195
Windows sockets, 237–238

Efficiency through consolidation, 88–92

Empty loops, 62

EMT64 instruction set, 23

_endthread routine, 205

_endthreadex routine, 205

EnterCriticalSection routine, 211–212

er_src tool, 259–260

errno variable, 151–152, 193

Error-handling code, time spent in, 75

Events

automatically reset, 220
and signals, 137–138
Windows sockets, 235
Windows synchronization, 209,

219–221
Exceptional conditions, time spent in, 75

exec routine, 179–180

execl routine, 179
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Execute stage in pipelines, 10

Execution duration in algorithm complexi-
ties, 37–38

Execution order in OpenMP, 285–286

Execution paths, common, 61

ExitThread routine, 205

Experimentation, virtualization for, 91

F
Factorial sums, 34–35

False dependencies, 413

False sharing, 355–359, 380

-fansi_alias flag, 73

Feedback-directed optimization, 69

Fences, memory, 25–26, 393

Fetch stage in pipelines, 9–10

Fibonacci numbers, 399–401

FIFO (first-in, first-out) queues, 185

Filling, register, 23

Firefox, 86

First-in, first-out (FIFO) queues, 185

First-touch placement, 373

firstprivate clause, 262, 273

Flags, compiler, 64–65

Floating-point values

incrementing, 299
loops, 62–63
pipelines, 11
reductions, 250

flush directive, 287–288

-fno-inline-functions flag, 247

for loops in OpenMP, 258

Fork-Exec model, 179–180

Fork-join pattern

OpenMP, 258
task splitting, 106

fork routine, 179–180

Fortress language, 399

free routine, 345–347

free_spinlock routine, 302–303, 319

FreeBSD jails, 89

Freeing locks, 25

ftruncate routine, 180

Fully associative caches, 14

Function address tables, 44

Function calls in loops, 62

Future of parallelization, 416

G
gcc asm statement, 307–308

GCD (Grand Central Dispatch), 392–394

gcnew routine, 398

General-purpose registers, 23

getchar routine, 207, 224

GetCurrentThreadId routine, 200

GetThreadPriority routine, 243

GetTickCount routine, 376- 377

gettid routine, 376

gettimeofday routine, 375–376

Global indexes, 241

__global__ keyword, 386

Global variables in POSIX threads, 175–178

Go language, 399

GPU-based computing, 383–386

GPUs (graphics processing units), 383–384

Grand Central Dispatch (GCD), 392–394

Granularity, locking, 413–414

Graphics processing units (GPUs), 383–384

Grid computing, 103

Grid sorting method, 94

Grids for tasks, 407

Groups, locality, 8, 372–373

Guided schedules, 266
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H
Hadoop, 406

Hand-coded synchronization, 295

atomic memory operations, 295–297
compare and swap, 297–301
memory ordering, 301–303
operating system-provided, 309–311
operation ordering, 304–308
overview, 295–297
volatile variables, 308

lockless. See Lockless algorithms
Handles

kernel resources, 207–208
processes, 224, 228–229
Windows threads, 200–204

Hardware constraints to scaling, 352–353

bandwidth sharing between cores,
353–355

cache conflict and capacity, 359–363
false sharing, 355–359
pipeline resource starvation, 363–369

Hardware isolation, 91

Hardware prefetching, 55

Hardware threads, 4

Hardware transactional memory, 408

Hashing in hardware, 360

Haskell language, 399–401

Header files

multithreaded code, 151–152
Windows sockets, 234–235

Heap

data sharing through, 175
POSIX threads, 150

Helgrind tool, 124

Hierarchy, memory, 13

Hot mutex locks, 340–345

Hypervisors, 89–92

I
Identifying

reductions, 250–251
tasks, 411–412

IDs for Windows threads, 200

inc instruction, 296

Inclusive time, 412

Increment operations

array values, 254
atomic operations, 239
C and C++ proposals, 395–396
Dekker’s algorithm, 312–313
floating-point values, 299
mutex locks, 127
variables, 21–22, 25

Incremental parallelization, 257

Independent tasks, 102–103

Infinite loops, 175

Inheriting handles in child processes, 228–229

InitializeConditionVariable routine, 218

InitializeCriticalSection routine, 210

InitializeCriticalSectionAndSpinCount routine,
212–213

Inlining

accessor functions, 40
compiler role, 62, 176
cross-file optimization, 41, 66–69
disabling, 247
loops, 253

Instruction issue rate, pipelining for, 9–12

Instruction TLB (ITLB), 16

Instruments tool, 80

Insufficient work constraints, 347–350

Integer pipelines, 11

Integration

OpenMP, 349–350
trapezium rule, 348–349
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Interleaving cores, 365–366

Interlocked functions, 238

InterlockedBitTestAndReset routine, 239

InterlockedBitTestAndSet routine, 239

InterlockedCompareExchange routine, 239

InterlockedExchangeAdd routine, 238–239,
309

InterlockedIncrement routine, 239

Inversion, priority, 244, 379–380

Isolating applications, 89

Items per unit time metric, 31

ITLB (instruction TLB), 16

J
Jails, 89

Joinable threads, 147–148

K
Kernel resources, handles to, 207–208

kill routine, 188

L
Language extensions, 386

C and C++ feature proposals,
394–397

Cilk++, 389–392
GCD, 392–394
Microsoft C++/CLI, 397–399
TBB, 386–389

lastprivate clause, 262–263

Latency

caches, 13
CMT processors, 55
memory, 18–21, 54, 373–379, 415
metrics, 32
page access, 18
producer-consumer model, 109

queuing, 355
between threads, 99

Lazy loading, 47, 51–52

LD_DEBUG environment variable, 46–47

LeaveCriticalSection routine, 211

Levels, caches, 13–14

lfence, 303

lgrpinfo tool, 372

libfast library, 152

Libraries

application structure, 42–53
benefits, 42–43
build process, 41–42
calling code, 45, 51
compiling, 44–45
costs, 43–44, 47
defining, 44
guidelines, 50
lazy loading, 47, 51–52
linking, 47
memory maps, 45–46
multithreaded code, 151
scaling code, 345–347
stepping through calls, 49–50
TBB, 386–389

Linkers, 47

listen socket routine, 194

Lists, circular

atomic operations, 326–328
overview, 315–318
scaling, 318–326

Literals, block, 394

Livelocks, 132–133

Loading, lazy, 47, 51–52

Locality

data, 55–57
memory, 371–379
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Locality groups, 8, 372–373

Lockless algorithms, 312

ABA problem, 329–332
atomic operations, 130–131, 300
circular buffers. See Circular buffers
Dekker’s algorithm, 312–315

Locks

freeing, 25
granularity, 413–414
mutex. See Mutexes and mutex locks
read-write, 159–162
readers-writer, 129
spin. See Spin locks
synchronization, 126

Logical domains, 90

Logical operations

for conditional code, 63–64
for reductions, 250, 261

Loops

algorithmic complexity, 34
arrays, 58
automatic parallelization, 246
collapsing, 286–287
empty, 62
floating-point arithmetic, 62–63
function calls, 62, 251–253
infinite, 175
merging, 347–348
OpenMP, 258, 278
potential compiler aliasing, 71
with reductions, 250–251
vector addition, 101–102
versioning, 255

Loosely coupled tasks, 103–105

Lost wake-up calls, 136–137, 173–174

-lpthread flag, 152

M
Main threads, 143

malloc routine

critical regions, 127–128
library code, 345–347
memory placement, 373

Mandelbrot set

cilk_for, 389–390
dependencies, 110
determining if a point is in the, 348
GCD, 393
loop-carried dependencies, 110
MPI, 403–404
OpenMP, 288–292
TBB, 388–390

Manually reset events, 219

MapReduce algorithm, 406

Maps, 134–135

memory to applications and libraries,
45–46, 49–50

memory to caches, 13–14
virtual CPU numbers to cores, 365
virtual memory to physical memory, 15

MapViewOfFile routine, 225–226

master directive, 279, 282

Master threads, 143

MPI, 404–405
OpenMP, 258
in regions of code, 282

Matrices, multiplying by vectors, 247–248

MAX operations, 250, 261

Maximum practical threads, 97–98

membar instructions, 25–26, 303, 314

Memory, 1–3

atomic operations, 295–308
bandwidth, 20–21, 354–355
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caches. See Caches
communication through, 134–135
consistency, 287–288
hierarchy, 13
latency, 18–21, 54, 373–379, 415
locality, 8, 371–379
maps, 45–46, 49–50, 134–135
multiprocessor systems, 18–20
ordering, 24–26, 301–303
POSIX threads, 175–178, 180–183
sharing, 134–135, 180–183, 225–228
in superlinear scaling, 337
transactional, 407
virtual, 9, 15–18
Windows threads, 225–228

Memory barriers, 25–26

atomic operations, 301–303
circular buffers, 316
Dekker’s algorithm, 314–315

Memory-carried dependencies, 111, 413

MemoryBarrier macro, 303

memset routine, 353

Merging loops, 347–348

Message Passing Interface (MPI), 402–405

Messages

POSIX threads, 184–186
queues, 138
signals and events, 137–138

Metrics, performance, 31–32

mfence operations, 25–26, 303, 314

Microsoft C++/CLI, 397–399

Microsoft Windows threads. See Windows
threads

Migration of threads, 371–372

MIN operations, 250, 261

Mispredicted branches, 10–11

Miss rates in TLB, 17

mknod routine, 187–188

mmap routine, 180

Motherboards, 1

Mozilla Firefox, 86

MPI (Message Passing Interface), 402–405

MPI_Comm_rank routine, 402

MPI_Comm_size routine, 402

MPI_Finalize routine, 402

MPI_Init routine, 402

MPI_Recv routine, 403–404

MPI_Send routine, 403

mq_attr structure, 184

mq_close routine, 184

mq_open routine, 184

mq_receive routine, 185

mq_reltimedreceive_np routine, 185

mq_reltimedsend_np routine, 185

mq_send routine, 185

mq_timedreceive routine, 185

mq_timedsend routine, 185

mq_unlink routine, 184

mtx_init routine, 396

Multicore processors, 414–415

caches, 12–15
instruction issue rate, 9–12
motivation, 3–4
multiple thread support, 4–9
optimizing programs, 415–416
scaling, 380–381
virtual addresses, 16–18
virtual memory, 15–16

Multiple barriers, 130

Multiple-reader locks, 129

Multiple tasks

copies, 105–106
independent, 102–103
loosely coupled, 103–105
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Multiple users on single systems, 87–88

Multiplication

matrices by vectors, 247–248
with reductions, 250, 261

Multiprocessor systems

characteristics, 18–20
latency and bandwidth, 20–21
POSIX threads, 179–193
for productivity, 85–87

Multithreaded code, compiling, 151–152

munmap routine, 180

Mutexes and mutex locks

addition of values, 301
atomic operations, 301–303, 310
attributes, 156–157
in C and C++, 396–397
condition variables, 135–137
contended, 340–345
critical regions, 126–128
data races, 126
OpenMP, 283–284
for ordering, 398–399
POSIX threads, 154–157
scaling limitations, 413
semaphores as, 165
vs. spin locks, 128
Windows threads, 208, 213–214,

229–231
Mutual exclusion

circular buffers, 319–322
Dekker’s algorithm for, 312–313
queue access, 167

N
Named critical sections, 282

Named mutexes, 229–231

Named pipes, 139

POSIX threads, 186–188
Windows threads, 231–232

Named semaphores, 164–165

Native Windows threads, 199–204

Nested loops

algorithmic complexity, 34
memory access, 58

Nested parallelism, 268–269, 273

Network stack, 139–140

no-op instruction, 369

Nodes in MPI, 402

Noncontiguous memory access patterns, 58

Noncritical code, time spent in, 75

now routine, 353, 356–357, 370, 373–375,
377

nowait clause, 279

num_threads clause, 277

numactl tool, 372

Number of threads in OpenMP, 276–277

Numerical integration

OpenMP, 349–350
trapezium rule, 348–349

O
O_CREAT flag, 164, 180, 184, 186

O_EXCL flag, 164, 180, 184

O_NONBLOCK flag, 185

O_RDONLY flag, 180, 184

O_RDWR flag, 180, 184

Odd-even sort, 350–352

omp_destroy_lock routine, 283

OMP_DYNAMIC environment variable, 277

omp_get_dynamic routine, 277

omp_get_max_threads routine, 276

omp_get_nested routine, 268
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omp_get_schedule routine, 278

omp_get_thread_limit routine, 277

omp_get_thread_num routine, 276

omp_init_lock routine, 283

omp_lock_t type, 283

OMP_NUM_THREADS environment variable,
247, 258–259, 276

omp parallel directive, 273

omp_sched_auto routine, 278

omp_sched_dynamic routine, 278

omp_sched_guided routine, 278

omp_sched_static routine, 278

OMP_SCHEDULE environment variable, 278

omp_set_dynamic routine, 277

omp_set_lock routine, 283

omp_set_nested routine, 268–270

omp_set_num_threads routine, 276

omp_set_schedule routine, 278

omp single directive, 273

OMP_STACKSIZE environment variable, 278

omp task directive, 273

omp_test_lock routine, 283

OMP_THREAD_LIMIT environment variable,
277

omp_unset_lock routine, 283

OoO (out-of-order) execution, 20

Open Computing Language (OpenCL),
383–384

open routine, 187

OpenEvent routine, 220

OpenMP API, 245, 256–257

collapse clause, 348
collapsing loops, 286–287, 348
dynamically defined parallel tasks,

269–273
example, 288–293
execution order, 285–286
memory consistency, 287–288

nested parallelism, 268–269
numerical integration, 349–350
parallel sections, 267–268
parallelizing loops, 258
parallelizing reductions, 260–261
private data, 274–276
Quicksort using, 350–352
restricting threads, 281–282
runtime behavior, 258
runtime environment, 276–278
thread restriction in, 281–284
waiting for work to complete, 278–281
work distribution scheduling, 263–267

OpenMP scheduling modes, 266–267

OpenMutex routine, 229

OpenSemaphore routine, 216

Operating system constraints to scaling

oversubscription, 369–371
priority inversion, 379–380
processor binding, 371–379

Operating system-provided atomics,
309–311

Operating systems, hypervisors for, 89–92

Operation count in algorithm complexities,
39

Operation ordering, 304–308

operator routine, 388–389, 397

oprofile tool, 75

OR operations for reductions, 250, 261

Order of N computations (O(N)), 34

ordered directive, 285–286

Ordering

execution, 285–286
memory, 24–26, 301–303
mutexes for, 398–399
operations, 304–308
POSIX threads, 165–166
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OSMemoryBarrier macro, 303

Out-of-order (OoO) execution, 20, 54–55

Output dependencies, 111–113

output routine, 390

output-dependency routine, 112–113

OverFileMapping routine, 225–226

Oversubscription, 369–371

P
Padding

caches, 56
for false sharing, 357

Paging from disk, 15–18

-par-report flag, 247

-par-threshold flag, 247, 256

parallel directive, 284

-parallel flag, 247

parallel for directive, 279, 286

parallel_for routine, 388

Parallel sections, 267–268

parallel sections directive, 268, 279

Parallelism

and algorithm choice, 93–94
Amdahl’s law, 94–96
automatic. See Automatic parallelization
through consolidation, 88–92
dependencies, 110–118
in Haskell, 401
maximum practical threads, 97–98
multiple processes, 85–87
multiple users on single system, 87–88
opportunities, 118–119
patterns. See Patterns in parallelization
for single task performance, 92–100
synchronization costs, 98–100
visualizing, 92–93

Parallels software, 90

Passing

data to and from POSIX child
threads, 145–147

values by pointer, 254–255
Patterns in parallelization, 100–101

client-server configuration, 108–109
combining strategies, 109–110
data parallelism using SIMD instruc-

tions, 101–102
multiple copies of same task, 105–106
multiple independent tasks, 102–103
multiple loosely coupled tasks, 103–105
pipelines, 106–108
processes and threads, 102
producer-consumer model, 109
split tasks, 106

pause instruction, 369

Performance

algorithmic complexity, 33–39
application structure. See Applications
compiler role. See Compiler role in

performance
defining, 31–33
by design, 82–83
gain estimates, 412
optimization guidelines, 80–82

Peripherals, 3

Physical addresses, translating virtual
addresses to, 16–18

pipe routine, 186

Pipelines

disadvantages, 107–108
resource starvation, 363–369
tasks, 106–108

Pipes

named, 139
POSIX threads, 186–188
Windows threads, 231–234
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plockstat tool, 343

PLTs (procedure linkage tables), 48–49

pmap utility, 45

Pointers

64-bit, 24
aliasing, 61, 70–74
restrict-qualified, 249, 254–255

POSIX threads, 123, 143

attributes, 148–150
barriers, 162–163
compiling multithreaded code,

151–152
concurrent queues, 387–388
condition variables, 170–175
creating, 143–144
detached, 147
memory, 175–178, 180–183
message queues, 184–186
multiprocess programming, 179–193
mutex attributes, 156–157
mutex locks, 154–156
passing data to and from child threads,

145–147
pipes, 186–188
process termination, 153–154
read-write locks, 159–162
reentrant code and compiler flags,

197–198
semaphores, 163–170, 183
signals, 188–193
sockets, 193–197
spin locks, 157–159
termination, 144–145
variables, 175–178

post method, 129

#pragma directives, 114

#pragma omp directive, 256–257

#pragma omp critical directive, 282

#pragma omp parallel directive, 268

#pragma omp section directive, 268

Pragmas, 74

Prefetching, 55

Prime number testing, 209–210, 239–240

printf routine

safety of, 189
wide strings, 222

Printing

signals for, 189–190
stack addresses, 359–360
Windows threads for, 204–205

Priorities

inversion, 244, 379–380
Windows threads, 242–244

Private data in OpenMP, 259–263, 274–276

Procedure linkage tables (PLTs), 48–49

PROCESS_INFORMATION structure, 222–223

Processes

communication with threads. See
Communication between threads
and processes

creating, 179-180, 222–225
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Windows threads. See Windows

threads
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Processors, 1–3
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multicore. See Multicore processors
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with circular buffers, 315–318
concurrent queues, 387–388
condition variables, 135–137
overview, 109
scaling, 318–326
semaphores, 168–169
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feedback, 68–70
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pthread_detach routine, 147, 194
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pthread_mutex_destroy routine, 154
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pthread_mutex_lock routine, 155

pthread_mutex_setpshared routine, 156

pthread_mutex_trylock routine, 155

pthread_mutex_unlock routine, 155

pthread_mutexattr_init routine, 156–157
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pthread_rwlock_rdunlock routine, 160
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pthread_spin_init routine, 157

pthread_spin_lock routine, 157

pthread_spin_trylock routine, 158

pthread_spin_unlock routine, 157
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pthread_t structure, 143–144
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read routine, 194

Read task dependencies, 111

Read-write locks, 159–162

_ReadBarrier routine, 308

readdir routine, 197–198

readdir_r routine, 198

Readers-writer locks

overview, 129
Windows threads, 214–216

ReadFile routine, 232

_ReadWriteBarrier routine, 308

recv routine, 194

Reduced instruction set computers 
(RISCs), 22

reduction clause, 261

Reductions

identifying and parallelizing, 250–251
MapReduce for, 406
OpenMP, 282–283

_REENTRANT flag, 197

Reentrant code

POSIX threads, 197–198
strength, 63

References, 417–418

Regions, critical. See Critical sections
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Relative timeouts, 162

Release barriers, 302

release method, 129

ReleaseMutex routine, 213, 399

ReleaseSemaphore routine, 217

ReleaseSRWLockExclusive routine, 214

ReleaseSRWLockShared routine, 214

Reloading variables, 176, 304–305, 308

Replication, virtualization for, 91

ResetEvent routine, 220

Resources

handles, 207–208
sharing. See Synchronization
starvation in pipelines, 363–369

Response time metrics, 32

restrict keyword, 74, 254–255

Restrict-qualified pointers, 249, 254–255

Restrictions

regions of code threads, 281–284
virtualization for, 91

ResumeThread routine, 207
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Robustness, hypervisors for, 90

Row-major array order, 58

Runtime environment in OpenMP, 276–278

behavior, 258
scheduling modes, 266–267

S
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Scaling (continued )

mutex locks, 413
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Operating system constraints to
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sockets for, 193
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virtualization for, 91–92

sched_setaffinity routine, 376
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impact, 286
runtime loops, 278
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Security, hypervisors for, 90
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sem_destroy routine, 163
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sem_init routine, 163

sem_open routine, 164

sem_post routine, 165

sem_trywait routine, 165
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semaphores, 128, 165
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sockaddr_in structure, 269

socket routine, 194

Sockets, 

POSIX threads, 193–197
setting up, 140
Windows threads, 234–238
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Stack-based calling convention, 23
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SuspendThread routine, 207
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data races, 121–126
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Termination

POSIX threads, 144–145
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TEXT macro, 221–222
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thread_code routine, 144, 153–154
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Windows. See Windows threads
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Thundering herd problem, 323
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174–175
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UnmapViewOfFile routine, 226

Unnamed semaphores, 163
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W
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synchronizing, 208–209
condition variables, 218–219
critical regions, 210–213
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mutex locks, 213–214
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