

Grid and Cloud Database Management

•

Sandro Fiore � Giovanni Aloisio
Editors

Grid and Cloud
Database
Management

123

Editors
Sandro Fiore, Ph.D.
Faculty of Engineering
Department of Innovation Engineering
University of Salento
Via per Monteroni
73100 Lecce, Italy

and

Euro Mediterranean Center
for Climate Change (CMCC)
Via Augusto Imperatore 16
73100 Lecce, Italy
sandro.fiore@unisalento.it

Prof. Giovanni Aloisio
Faculty of Engineering
Department of Innovation Engineering
University of Salento
Via per Monteroni
73100 Lecce, Italy

and

Euro Mediterranean Center
for Climate Change (CMCC)
Via Augusto Imperatore 16
73100 Lecce, Italy
giovanni.aloisio@unisalento.it

ISBN 978-3-642-20044-1 e-ISBN 978-3-642-20045-8
DOI 10.1007/978-3-642-20045-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011929352

ACM Computing Classification (1998): C.2, H.2, H.3, J.2, J.3

c� Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: deblik, Berlin

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Since the 1960s, database systems have been playing a relevant role in the
information technology field. By the mid-1960s, several systems were also available
for commercial purposes. Hierarchical and network database systems provided
two different perspectives and data models to organize data collections. In 1970,
E. Codd wrote a paper called A Relational Model of Data for Large Shared
Data Banks, proposing a model relying on relational table structures. Relational
databases became appealing for industries in the 1980s, and their wide adoption
fostered new research and development activities toward advanced data models
like object oriented or the extended relational. The online transaction processing
(OLTP) support provided by the relational database systems was fundamental to
make this data model successful. Even though the traditional operational systems
were the best solution to manage transactions, new needs related to data analysis and
decision support tasks led in the late 1980s to a new architectural model called data
warehouse. It includes extraction transformation and loading (ETL) primitives and
online analytical processing (OLAP) support to analyze data. From OLTP to OLAP,
from transaction to analysis, from data to information, from the entity-relationship
data model to a star/snowflake one, and from a customer-oriented perspective to
a market-oriented one, data warehouses emerged as data repository architecture to
perform data analysis and mining tasks. Relational, object-oriented, transactional,
spatiotemporal, and multimedia data warehouses are some examples of database
sources. Yet, the World Wide Web can be considered another fundamental and
distributed data source (in the Web2.0 era it stores crucial information – from a
market perspective – about user preferences, navigation, and access patterns).

Accessing and processing large amount of data distributed across several coun-
tries require a huge amount of computational power, storage, middleware services,
specifications, and standards.

Since the 1990s, thanks to Ian Foster and Carl Kesselman, grid computing has
emerged as a revolutionary paradigm to access and manage distributed, heteroge-
neous, and geographically spread resources, promising computer power as easy to
access as an electric power grid. The term “resources” also includes the database,

v

vi Preface

yet successful attempts of grid database management research efforts started only
after 2000. Later on, around 2007, a new paradigm named Cloud Computing
brought the promise of providing easy and inexpensive access to remote hardware
and storage resources. Exploiting pay per use models, virtualization for resource
provisioning, cloud computing has been rapidly accepted and used by researchers,
scientists, and industries.

Grid and cloud computing are exciting paradigms and how they deal with
database management is the key topic of this book. By exploring current and future
developments in this area, the book tries to provide a thorough understanding of the
principles and techniques involved in these fields.

The idea of writing this book dates back to a tutorial on Grid Database
Management that was organized at the 4th International Conference on Grid and
Pervasive Computing (GPC 2009) held in Geneva (4–8 May 2009). Following up
an initial idea from Ralf Gerstner (Springer Senior Editor Computer Science), we
decided to act as editors of the book.

We invited internationally recognized experts asking them to contribute on
challenging topics related to grid and cloud database management. After two review
steps, 16 chapters have been accepted for publication.

Ultimately, the book provides the reader with a collection of chapters dealing
with Open standards and specifications (Sect. 1), Research efforts on grid database
management (Sect. 2), Cloud data management (Sect. 3), and some Scientific case
studies (Sect. 4). The presented topics are well balanced, complementary, and
range from well-known research projects and real case studies to standards and
specifications as well as to nonfunctional aspects such as security, performance,
and scalability, showing up how they can be effectively addressed in grid- and cloud-
based environments.

Section 1 discusses the open standards and specifications related to grid and
cloud data management. In particular, Chap. 1 presents an overview of the WS-DAI
family of specifications, the motivation for defining them, and their relationships
with other OGF and non-OGF standards. Conversely, Chap. 2 outlines the OCCI
specifications and demonstrates (by presenting three interesting use cases) how they
can be used in data management-related setups.

Section 2 presents three relevant research efforts on grid-database management
systems. Chapter 3 provides a complete overview on the Grid Relational Catalog
(GRelC) Project, a grid database research effort started in 2001. The project’s main
features, its interoperability with gLite-based production grids, and a relevant show-
case in the environmental domain are also presented. Chapter 4 provides a complete
overview about the OGSA-DAI framework, the main components for the distributed
data management via workflows, the distributed query processing, and the most
relevant security and performance aspects. Chapter 5 gives a detailed overview of
the architecture and implementation of DASCOSA-DB. A complete description of
novel features, developed to support typical data-intensive applications running on
a grid system, is also presented.

Preface vii

Section 3 provides a wide overview on several cloud data management topics.
Some of them (from Chaps. 6 to 8) specifically focus only on database aspects,
whereas the remaining ones (from Chaps. 9 to 12) are wider in scope and address
more general cloud data management issues. In this second case, the way these
concepts apply to the database world is clarified through some practical examples
or comments provided by the authors. In particular, Chap. 6 proposes a new security
technique to measure the trustiness of the cloud resources. Through the use of
the metadata of resources and access policies, the technique builds the privilege
chains and binds authorization policies to compute the trustiness of cloud database
management. Chapter 7 presents a method to manage the data with dirty data and
obtain the query results with quality assurance in the dirty data. A dirty database
storage structure for cloud databases is presented along with a multilevel index
structure for query processing on dirty data. Chapter 8 examines column-oriented
databases in virtual environments and provides evidence that they can benefit
from virtualization in cloud and grid computing scenarios. Chapter 9 introduces
a Windows Azure case study demonstrating the advantages of cloud computing and
how the generic resources offered by cloud providers can be integrated to produce a
large dynamic data store. Chapter 10 presents CloudMiner, which offers a cloud of
data services running on a cloud service provider infrastructure. An example related
to database management exploiting OGSA-DAI is also discussed. Chapter 11
defines the requirements of e-Science provenance systems and presents a novel
solution (addressing these requirements) named the Vienna e-Science Provenance
System (VePS). Chapter 12 examines the state of the art of workload management
for data-intensive computing in clouds. A taxonomy is presented for workload
management of data-intensive computing in the cloud and the use of the taxonomy
to classify and evaluate current workload management mechanisms.

Section 4 presents a set of scientific use cases connected with Genomic,
Health, Disaster monitoring, and Earth Science. In particular, Chap. 13 explores
the implementation of an algorithm, often used to analyze microarray data, on
top of an intelligent runtime that abstracts away the hard parts of file tracking
and scheduling in a distributed system. This novel formulation is compared with
a traditional method of expressing data parallel computations in a distributed
environment using explicit message passing. Chapter 14 describes the use of Grid
technologies for satellite data processing and management within the international
disaster monitoring projects carried out by the Space Research Institute NASU-
NSAU, Ukraine (SRI NASU-NSAU). Chapter 15 presents the CDM ActiveStorage
infrastructure, a scalable and inexpensive transparent data cube for interactive
analysis and high-resolution mapping of environmental and remote sensing data.
Finally, Chap. 16 presents a mechanism for distributed storage of multidimensional
EEG time series obtained from epilepsy patients on a cloud computing infrastructure
(Hadoop cluster) using a column-oriented database (HBase).

The bibliography of the book covers the essential reference material. The aim
is to convey any useful information to the interested readers, including researchers
actively involved in the research field, students (both undergraduate and graduate),
system designers, and programmers.

viii Preface

The book may serve as both an introduction and a technical reference for grid
and cloud database management topics. Our desire and hope is that it will prove
useful while exploring the main subject, as well as the research and industries efforts
involved, and that it will contribute to new advances in this scientific field.

Lecce Sandro Fiore
February 2010 Giovanni Aloisio

Contents

Part I Open Standards and Specifications

1 Open Standards for Service-Based Database
Access and Integration . 3
Steven Lynden, Oscar Corcho, Isao Kojima,
Mario Antonioletti, and Carlos Buil-Aranda

2 Open Cloud Computing Interface in Data
Management-Related Setups . 23
Andrew Edmonds, Thijs Metsch, and Alexander Papaspyrou

Part II Research Efforts on Grid Database Management

3 The GRelC Project: From 2001 to 2011, 10 Years Working
on Grid-DBMSs . 51
Sandro Fiore, Alessandro Negro, and Giovanni Aloisio

4 Distributed Data Management with OGSA–DAI . 63
Michael J. Jackson, Mario Antonioletti, Bartosz Dobrzelecki,
and Neil Chue Hong

5 The DASCOSA-DB Grid Database System . 87
Jon Olav Hauglid, Norvald H. Ryeng, and Kjetil Nørvåg

Part III Cloud Data Management

6 Access Control and Trustiness for Resource Management
in Cloud Databases . 109
Jong P. Yoon

7 Dirty Data Management in Cloud Database. 133
Hongzhi Wang, Jianzhong Li, Jinbao Wang, and Hong Gao

ix

x Contents

8 Virtualization and Column-Oriented Database Systems 151
Ilia Petrov, Vyacheslav Polonskyy, and Alejandro Buchmann

9 Scientific Computation and Data Management Using
Microsoft Windows Azure . 169
Steven Johnston, Simon Cox, and Kenji Takeda

10 The CloudMiner . 193
Andrzej Goscinski, Ivan Janciak, Yuzhang Han,
and Peter Brezany

11 Provenance Support for Data-Intensive Scientific Workflows 215
Fakhri Alam Khan and Peter Brezany

12 Managing Data-Intensive Workloads in a Cloud . 235
R. Mian, P. Martin, A. Brown, and M. Zhang

Part IV Scientific Case Studies

13 Managing and Analysing Genomic Data Using HPC and Clouds 261
Bartosz Dobrzelecki, Amrey Krause, Michal Piotrowski,
and Neil Chue Hong

14 Grid Technologies for Satellite Data Processing and
Management Within International Disaster
Monitoring Projects . 279
Nataliia Kussul, Andrii Shelestov, and Sergii Skakun

15 Transparent Data Cube for Spatiotemporal Data Mining
and Visualization . 307
Mikhail Zhizhin, Dmitry Medvedev, Dmitry Mishin,
Alexei Poyda, and Alexander Novikov

16 Distributed Storage of Large-Scale Multidimensional
Electroencephalogram Data Using Hadoop and HBase 331
Haimonti Dutta, Alex Kamil, Manoj Pooleery,
Simha Sethumadhavan, and John Demme

Index . 349

Part I
Open Standards and Specifications

•

Chapter 1
Open Standards for Service-Based Database
Access and Integration

Steven Lynden, Oscar Corcho, Isao Kojima, Mario Antonioletti,
and Carlos Buil-Aranda

Abstract The Database Access and Integration Services (DAIS) Working Group,
working within the Open Grid Forum (OGF), has developed a set of data access
and integration standards for distributed environments. These standards provide a
set of uniform web service-based interfaces for data access. A core specification,
WS-DAI, exposes and, in part, manages data resources exposed by DAIS-based
services. The WS-DAI document defines a core set of access patterns, messages
and properties that form a collection of generic high-level data access interfaces.
WS-DAI is then extended by other specifications that specialize access for specific
types of data. For example, WS-DAIR extends the WS-DAI specification with
interfaces targeting relational data. Similar extensions exist for RDF and XML data.
This chapter presents an overview of the specifications, the motivation for defining
them and their relationships with other OGF and non-OGF standards. Current
implementations of the specifications are described in addition to some existing

S. Lynden
AIST, Information Technology Research Institute, National Institute of Advanced Industrial
Science and Technology (AIST), Tsukuba 305-8568, Japan
e-mail: steven.lynden@aist.go.jp

O. Corcho � C. Buil-Aranda
Ontology Engineering Group, Departamento de Inteligencia Artificial, Facultad de Informática,
Universidad Politécnica de Madrid, Boadilla del Monte, 28660, Madrid, Spain
e-mail: ocorcho@fi.upm.es; cbuil@fi.upm.es

I. Kojima (�)
Information Technology Research Institute, National Institute of Advanced Industrial Science and
Technology (AIST), Tsukuba 305-8568, Japan
e-mail: kojima@ni.aist.go.jp

M. Antonioletti
EPCC, The University of Edinburgh, JCMB, The Kings Buildings, Mayfield Road, Edinburgh
EH9 3JZ, UK
e-mail: Mario.Antonioletti@ed.ac.uk

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 1, © Springer-Verlag Berlin Heidelberg 2011

3

4 S. Lynden et al.

and potential applications to highlight how this work can benefit web service-based
architectures used in Grid and Cloud computing.

1.1 Introduction and Background

Standards play a central role in achieving interoperability within distributed envi-
ronments. By having a set of standardized interfaces to access and integrate
geographically distributed data, possibly managed by different organizations that
use different database systems, the work that has to be undertaken to manage and
integrate this data becomes easier. Thus, providing standards to facilitate the access
and integration of database systems on a large scale distributed scale is important.

The Open Grid Forum (OGF)1 is a community-led standards body formed to
promote the open standards required for applied distributed environments such as
Grids and Clouds. The OGF is composed of a number of Working Groups that con-
centrate on producing documents that standardise particular aspects of distributed
environments as OGF recommendations, which are complemented by informational
documents that inform the community about interesting and useful aspects of
distributed computing, experimental documents are more practically based and are
required for the recommendation process and finally community documents inform
and influence the community on practices anticipated to become common in the dis-
tributed computing community. A process has been established [1] that takes these
documents through to publication at the OGF web site. An important aspect of the
OGF recommendation process is that there must be at least two interoperable imple-
mentations of a proposed standard before it can achieve recommendation status.
The interoperability testing is a mandatory step required to finalise the process and
provide evidence of functional, interoperable implementations of a specification.

The Database Access and Integration Services (DAIS) Working Group was estab-
lished relatively early within the lifetime of the OGF, which was at that time entitled
the Global Grid Forum. The focus on Grids had up, to that point, predominantly been
on the sharing of computational resources. DAIS was established to extend the focus
to take data into account in the first instance to incorporate databases into Grids. The
initial development of the DAIS work was guided by an early requirements capture
for data in Grids in GFD.13 [2] as well as the early vision for Grids described by
the Open Grid Services Architecture (OGSA) [3]. The first versions of the DAIS
specification attempted to use this model only, however, much of the focus of the
Grid community changed to the Web Services Resource Framework (WSRF) [4],
and DAIS attempted to accommodate this new family of standards whilst still being
able to use a non-WSRF solution – a requirement coming from the UK e-Science
community [5] – the impact of which is clearly visible in the DAIS specification
documents. The rest of this chapter describes the specifications in more detail.

1http://www.ogf.org.

1 Open Standards for Service-Based Database Access and Integration 5

1.2 The WS-DAI Family of Specification

1.2.1 Overview

The relationship between the WS-DAI (Web Services Database Access and Integra-
tion Services) family of specifications is schematically illustrated in Fig. 1.1. These
provide a set of message patterns and properties for accessing various types of data.
A core specification, the WS-DAI document [6], defines a generic set of interfaces
and patterns which are extended by specifications dealing with particular data
models: WS-DAIR for relational databases [7], WS-DAIX for XML databases [8]
and WS-DAI-RDF(S) for Resource Description Framework (RDF) databases [9].

In WS-DAI, a database is referred to as a data resource. A data resource
represents any system that can act as a source or sink of data. It has an abstract
name which is represented by a URI and an address which shows the location of a
resource. A data access service provides properties and interfaces for describing and
accessing data resources. The address of a resource is a web service endpoint such
as an EndPointReference (EPR) provided by the WS-Addressing [10] specification.
A WSRF data resource provides compatibility with the WS-Resource (WSRF) [4]
specifications. A consumer refers to the application or client that interacts with the
interfaces provided by a data resource.

An important feature introduced by WS-DAI is the support for indirect access
patterns. Typically, web services have a request-response access pattern – this is
referred to as direct data access – where the consumer will receive the requested
data in the response to a request, typically a query, made to a data access service. For
example, passing an XPathQuery message to an XML data access service will result
in a response message containing a set of XML fragments. An operation that directly
inserts, updates or deletes data through a data access service also constitutes a direct
data access. For example, passing an SQL insert statement to a data access service

WS-DAI
Message patterns
Core Interfaces

WS-DAIX
XML Access

WS-DAI-RDF(S)
RDF Access

WS-DAI-RDF(S)-Ontology
Ontology Access

WS-DAI-RDF(S)-Query
Query Access

WS-DAIR
Relational Access

Fig. 1.1 The WS-DAI family of specifications

6 S. Lynden et al.

will result in a response message indicating how many tuples have been inserted.
For indirect data access, a consumer will not receive the results in the response
to the request made to a data access service. Instead, the request to access data is
processed with the results being made available to the consumer indirectly as a new
data resource, possibly through a different data service that supports a different set of
interfaces. This is useful, for instance, to hold results at the service side minimising
any unnecessary data movement. The type and behaviour of the new data resource
are determined by the data access service and the configuration parameters passed
in with the original request. This indirect access behaviour is different from the
request-response style of behaviour found in typical web service interactions.

1.2.2 The Core Specification (WS-DAI)

The WS-DAI specification, also referred to as the core specification, groups
interfaces into the following functional categories:

• Data description: Metadata about service and data resource capabilities.
• Data access: Direct access interfaces.
• Data factory: Indirect access interfaces.

It is important to note that data access and data factory operations wrap existing
query languages to specify what data is to be retrieved, inserted or modified in the
underlying data resources. The DAIS specifications do not define new query lan-
guages nor do they do any processing on the incoming queries nor do they provide
a complete abstraction of the underlying data resource – for instance, you have to
know that the data service you are interacting with wraps a relational database to
send SQL queries to it. The benefit of DAIS is that it provides a set of operations
that will function on an underlying data resource without requiring knowledge of the
native connection mechanisms for that type of database. This makes it easier to build
client interfaces that will use DAIS services to talk to different types of databases.

These interface groupings provide a framework for the data service interfaces
and the properties that describe, or modify, the behaviour of these interfaces that
can then be extended to define interfaces to access particular types of data, as is
done by the WS-DAIR, WS-DAIX and WS-DAI-RDF(S) documents.

1.2.2.1 Data Description

Data Description provides the metadata that represents the characteristics of the
database and the service that wraps it. The metadata are available as properties that
can be read and sometimes modified. If WSRF is used, the WSRF mechanisms can
be used to access and modify properties otherwise operations are available to do this
for non-WSRF versions of WS-DAI. For instance, the message GetDataResource-
PropertyDocument will retrieve metadata that includes the following information:

1 Open Standards for Service-Based Database Access and Integration 7

1. AbstractNames: A set of abstract names for the data resources that are available
through that data services. Abstract names are unique and persistent name for a
data resource represented as URIs.

2. ConcurrentAccess: A flag indicating whether the data service provides concur-
rent access or not.

3. DataSetMap: Can be used to retrieve XML Schema representing the data formats
that the data service can return the results in.

4. LanguageMap: Shows the query languages that are supported by the data service.
Note that DAIS does not require the service to validate the query language that is
being used; improper languages will be detected by the underlying data resource.

5. Readable/Writable: A flag indicating whether the data service provides read and
write capabilities to the resource. For instance, if the service were providing
access to a digital archive it would clearly only have read-only access. This
property is meant to describe the underlying characteristics of the data resource
rather than authorization to access the resource.

6. TransactionInitiaton: Information about the transactional capabilities of the
underlying data resource.

Using this information, a user can understand the database and service capabili-
ties provided by that data service. The property set can be extended to accommodate
particular properties pertaining to access to specific types of data, for example,
relational, XML and RDF.

1.2.2.2 Data Access

Data access collects together messages that can directly access or modify the data
represented by a data access service along with the properties that describe the
behaviour of these access messages, as illustrated in Fig. 1.2, which depicts a use
case where the WS-DAIR interfaces are used.

Consumer

Database
Data Access Service

SQLAccess

Relational
Database

SQLResponse

SQLExecute (Data
ResourceAbstractName,
DatasetFormatURI,
SQLExpression)

SQLDescription:
Readable
Writeable
ConcurrentAccess
TransactionInitiation
TransactionIsolation
Etc.

Fig. 1.2 Data access example

8 S. Lynden et al.

In this example, the data access service implements the SQLAccess messages
and exposes the SQLDescription properties; more details about the interface and
corresponding properties can be found in [7]. A consumer uses the SQLExecute
message to submit an SQL expression. The associated response message will
contain the results of the SQL execute request. When the SQL expression used is a
SELECT statement, the SQL response will contain the data in a RowSet message
serialized using an implementation-specific data format, for example the XML
WebRowSet [11].

1.2.2.3 Data Factory

Factory messages create a new relationship between a data resource and a data
access service. In this way, a data resource may be used to represent the results of a
query or act as a place holder where data can be inserted. A data factory describes
properties that dictate how a data access service must behave on receiving factory
messages. The factory pattern may involve the creation of a new data resource and
possibly the deployment of a web service to provide access to it (though existing
web services can be re-used for this purpose – DAIS does not specify how this
should be implemented). The WS-DAI specification only sets the patterns that
should be used for extensions to particular types of data.

This ability to derive one data resource from another, or to provide alternative
views of the same data resources, leads to a collection of notionally related data
resources, as illustrated in Fig. 1.3, which again takes an example from the WS-
DAIR specification. The database data access service in this example presents an
SQLFactory interface. The SQLExecuteFactory operation is used to construct a new
derived data resource from the SQL query contained in it. These results are then
made available through an SQLResponseAccess interface which may be available
through the original service or as part of a new data service. Access to the RowSet
resulting from the SQL expression executed by the underlying data resource is made
available through a suitable interface, assuming that the original expression contains
a SELECT statement.

The RowSet could be stored as a table in a relational database or in a form decou-
pled from the database. DAIS does not specify how this should be implemented but
the implementation does have a bearing on the properties of ChildSensitiveToParent
and ParentSensitiveToChild which indicate whether changes in the child data affect
the parent data or changes in the parent data affect the child data, respectively. The
RowSet results are represented as a collection of rows via a data access service
supporting the SQLResponseAccess collection of operations that allow the RowSet
to be retrieved but does not provide facilities for submitting SQL expressions via
the SQLAccess portType.

The Factory interfaces provide a means of minimising data movement when it is
not required in addition to an indirect form of third party data delivery: consumer A
creates a derived data resource available through some specified data service whose
reference can be passed on to consumer B to access.

1 Open Standards for Service-Based Database Access and Integration 9

Consumer

Database
Data Access Service

SQLFactory

Relational
Database

Reference to
SQLResponse Data Service

SQLExecuteFactory (Data
ResourceAbstractName,
PortTypeQName
ConfigurationDocument
SQLExpression)

SQLDescription:
Readable
Writeable
ConcurrentAccess
TransactionInitiation
TransactionIsolation
Etc.

SQL Response
Data Access Service

SQLResponseAccess

SQLResponseDescr-
iption:
..

Rowset

GetRowset (Data
ResourceAbstractName,
RowsetNumber)

Row Set

Fig. 1.3 Data factory example

The data resources derived by means of the Factory-type interfaces are referred to
as data service managed resources as opposed to the externally managed resources
which are database management systems exposed by the data services. Clearly,
the creation of these derived data resources will consume resources, thus resulting
in operations such as DestroyDataResource being provided. Soft state lifetime
management of data resources is not supported by WS-DAI unless WSRF is used.

1.3 The Relational Extension (WS-DAIR)

Relational database management systems offer well-understood, widely used tools
embodied by the ubiquitous SQL language for expressing database queries. As a
natural result of this, the DAIS working group focused on producing the WS-DAIR
extensions which defines properties and operations defined to deal with relational
data. A brief overview of these extensions is given here, starting with the properties

10 S. Lynden et al.

defined by WS-DAIR to extend the basic set of data resource properties defined by
WS-DAI:

• SQLAccessDescription: Defines properties required to describe the capabilities
of a relational resource in terms of its ability to provide access to data via the
SQL query language.

• SQLResponseDescription: Defines a set of properties to describe the result of an
interaction with a relational data resource using SQL. For example, the number
of rows updated, the number of result sets returned and – or any error messages
generated when the SQL expression was executed.

• SQLRowSetDescription: Defines properties describing the results returned by an
SQL SELECT statement against a relational database, including the schema used
to represent the query result and the number of rows that exist.

The following direct access interfaces are defined by WS-DAIR:

• SQLAccess: Provides operations for retrieving SQLAccessDescription proper-
ties (although for implementations that use WSRF should be able to employ
the methods defined there as well) and executing SQL statements (via a
SQLExecuteRequest message).

• SQLResponseAccess: Provides operations for processing the responses from
SQL statements, for example, retrieval of SQLRowsets, SQL return values and
output parameters.

• SQLRowSetAccess: Provides access to a set of rows through a GetTuples
operation.

• SQLResponseFactory: Provides access to the results returned by an SQL state-
ment. For example, the SQLRowsetFactory operation can be used to create a new
data resource supporting the SQLRowset interface.

Example XML representations of an SQLExecuteRequest and a corresponding
response message are shown in Fig. 1.4.

1.4 The XML Extension (WS-DAIX)

The growing popularity of XML databases and the availability of expressive query
languages such as XQuery means that the provision of an extension to WS-DAI to
cater for XML databases. Work on WS-DAIX was undertaken in addition to the
WS-DAIR effort from the start. A key difference to the relational specification is
that XML databases may support a number of different query languages that need
to be catered for: XQuery, XUpdate and XPath, although XQuery can, in effect,
encompass the capabilities of XUpdate and XPath. The following property sets are
defined by WS-DAIX:

• XMLCollectionDescription: Provides properties describing an XML collection,
such as the number of documents and the presence of an XML schema against
which documents are validated.

1 Open Standards for Service-Based Database Access and Integration 11

<wsdair: SQLExecuteRequest
xmlns:wsdai="http://www.ggf.org/namespaces/2005/12/WS-DAI"
xmlns:wsdair="http://www.ggf.org/namespaces/2005/12/WS-DAIR">

<wsdai:DataResourceAbstractName>wsdai:EmployeeDB</wsdai:DataResourceAbstractName>
<wsdai:DatasetFormatURI>http://java.sun.com/xml/ns/jdbc</wsdai:DatasetFormatURI>

<wsdair:SQLExpression>
<wsdair:Expression>SELECT name,age FROM persons</wsdair:Expression>

</wsdair:SQLExpression>

</wsdair:SQLExecuteRequest>

SQLExecuteRequest Message

SQLExecuteResponse Message

SQL Query Expression

<wsdair:SQLExecuteResponse
xmlns:wsdai="http://www.ggf.org/namespaces/2005/12/WS-DAI"
xmlns:wsdair="http://www.ggf.org/namespaces/2005/12/WS-DAIR”
xmlns:wrs=http://java.sun.com/xml/ns/jdbc>
<wsdai:DatasetFormatURI> http://java.sun.com/xml/ns/jdbc </wsdai:DatasetFormatURI>
<wsdai:DatasetData>
<wrs:webRowSet>
<properties>

<command>select name, age from persons</command>
...

</properties>
<metadata>
...

</metadata>

<data>
<currentRow>

<columnValue>Jenkins</columnValue><columnValue>26</columnValue>
</currentRow>
<currentRow>

<columnValue>Rogers</columnValue><columnValue>35</columnValue>
</currentRow>
<currentRow>

<columnValue>Walsh</columnValue><columnValue>42</columnValue>
</currentRow>
</data>

</wrs:webRowSet>

</wsdai:DatasetData>
</SQLExcuteResponse>

WebRowSet-encoded Dataset

Data (tuples)

WS-DAI core
Properties

Fig. 1.4 An SQLExecuteRequest/response example (direct access)

• XMLSequenceDescription: Describes an XML sequence, usually created as the
result of an XPath or XQuery expression. Specifically, a property to define the
length of the sequence is provided. It should be noted that no extra properties are
defined to describe data resources with XPath, XUpdate or XQuery capabilities
as the WS-DAI-defined properties such as LanguageURI, DatasetFormatURI,
etc. are adequate for this purpose.

The following direct data access interfaces are supported:

• XMLCollectionAccess: Provides access to an XML collection via operations
supporting addition/removal or documents and sub-collections.

• XQueryAccess: Allows the evaluation of XQuery expressions across collections
of XML documents represented by an XML resource.

12 S. Lynden et al.

• XUpdateAccess: Allows an XUpdate expression to be executed against an XML
resource, returning the number of updated nodes.

• XPathAccess: Allows the evaluation of XPath expressions across collections of
XML documents represented by an XML resource.

• XMLSequenceAccess: Provides access to an XML sequence created as a result
of an XPath/XQuery query. The GetItems operation of this interface allows the
client to obtain specific subsequences of the overall result.

The following indirect access interfaces are supported:

• XMLCollectionFactory: Provides access to collections and documents in collec-
tions.

• XPathFactory: Provides the XPathQueryFactory that allows new data resources
(supporting the XMLSequenceAccess interface) to be created as the result of an
XPath query.

• XQueryFactory: Provides the XQueryExecuteFactory operation to create new
XMLSequenceAccess data resources as the result of an XQuery query.

1.5 The RDF Extension (WS-DAI-RDF(S))

The RDF is a World Wide Web Consortium (W3C) set of recommendations [12]
focused on the representation and management of metadata. It includes two data
models, RDF and RDF Schema, whose combination is known as RDF(S). The
WS-DAI-RDF(S) extension to this domain provides data access mechanisms for
RDF(S) data, divided into two types based on the style of access: declarative
or programmatic. Hence, the following specifications are in the process of being
defined within DAIS to access RDF(S) data.

1. WS-DAI RDF(S) Querying: This specification provides a query language inter-
face to RDF data based on the W3C SPARQL query language [13] for RDF.

2. WS-DAI RDF(S) Ontology: This specification provides an API style of access
based on ontology handling primitives conforming to the RDF(S) model. These
primitives provide various operations including the possibility of performing
updates to the ontology.

1.5.1 The WS-DAI RDF(S) Querying Specification

The objective of the querying specification is to provide an SPARQL interface to
RDF data. The W3C has defined several related specifications based on SPARQL,
including an XML-based query results format [14] and a protocol for accessing
RDF resources [15]. The WS-DAI-RDF(S) Querying specification, the interaction
patterns of which are illustrated in Fig. 1.5, is defined to be compatible with the

1 Open Standards for Service-Based Database Access and Integration 13

Consumer

RDF(S) Database
Data Access Service

SPARQLAccess

SPARQLExecuteResponse

SPARQLExecute (Data
ResourceAbstractName,
DatasetFormatURI
SPARQLQueryRequest)

SPARQLAccess
Description

Direct Access

RDF(S) Database
Data Access Service

SPARQLFactory

SPARQLAccess
Description

Indirect Access

ResultsSet
Data Access

Service

TriplesSet
Data Access

Service

SPARQLItems
Description

SPARQL
ResultsSetAccess

SPARQL
TriplesSetAccess

Construct/
Describe

Select/
AskConsumer

Results

GetResults (Start
Position
ResultsCount)

GetTriples (Start
Position, ResultsCount)

Results

Reference to data
access service

SPARQLExecuteFactory (Data
ResourceAbstractName
PortTypeQName
ConfigurationDocument
SPARQLQueryRequest)

Fig. 1.5 Overview of WS-DAI RDF(S) querying specification

W3C standards (e.g. by supporting the SPARQL query language and the XML
results format) while also benefitting from the WS-DAI approach. For example,
indirect access is not supported by the W3C SPARQL protocol, meaning that when
using the SPARQL protocol all query results are returned directly to the consumer

14 S. Lynden et al.

accessing the service. In contrast, WS-DAI-RDF(S) allows the consumer to control
the retrieval of query results, a feature that can be extremely useful in certain
scenarios, such as when retrieving large result sets.

1.5.1.1 Indirect Access Using TriplesSetAccess and ResultsSetAccess

SPARQL has four query forms: CONSTRUCT, DESCRIBE, SELECT and ASK.
The first and second forms return an RDF graph as a query result (CONSTRUCT
returns an RDF graph constructed by substituting variables in query patterns,
while DESCRIBE returns an RDF graph that describes the resources found). Other
representations also exist but the important thing is that they are modeled as triples.
For this purpose, the WS-DAI-RDF(S) specification introduces a TriplesSetAccess
interface to provide access to the results.

In contrast to these two forms, the results of the other two forms are not RDF
graphs: SELECT returns variables bound during the matching of an RDF graph
against a basic graph pattern specified in the query; ASK returns a boolean value
indicating whether there is a match for a query pattern. The WS-DAI-RDF(S)
specification introduces a ResultsSetAccess interface to access the results of these
query forms, based on the SPARQL Result Set XML Format specification.

1.5.2 The WS-DAI RDF(S) Ontology Specification

The object of the WS-DAI-RDF(S) Ontology access specification is to provide
an integral access mechanism for RDF(S) sources that goes beyond the retrieval
capabilities offered by the querying specification, whilst providing a simple but
complete set of functionalities that abstract the most general necessities a consumer
may have when accessing with RDF(S) data sources. To achieve this objective,
the specification proposes a model-based access mechanism for accessing RDF(S)
sources at the conceptual level, that is, an access mechanism that revolves around
the concepts and semantics defined by the RDF(S) model. Thus, the specification
details a set of ontology handling primitives for dealing with such models, hiding
the syntactic aspects of RDF(S) and transparently exploiting its semantics.

1.5.2.1 Data Resources

The WS-DAI-RDF(S) Ontology specification differentiates several types of RDF(S)
data resources, each of them provided to allow access to, and manage elements
of RDF(S) sources at different levels of granularity. They can be divided into two
groups:

• Placeholders for built-in RDF(S) classes (Resource, Class, Property, Statement,
Container and List data resources): These data resources provide class-oriented
views of an RDF(S) resource.

1 Open Standards for Service-Based Database Access and Integration 15

• Convenience abstractions (RepositoryCollection and Repository data resources),
for RDF(S) sources that contain more than a resource.

1.5.2.2 Interfaces for Direct and Indirect Access

To interact with the data resources described above, several interfaces are provided
in the WS-DAI-RDF(S) Ontology specification. The first group is for the direct
access interfaces:

• RepositoryCollectionAccess: Provides access to the repositories of a collection.
• RepositoryAccess: Provides access to the repository content, offering function-

ality for managing the repository at RDF(S) resource level.
• ResourceAccess: Provides access to a particular RDF(S) resource, concentrating

in those aspects common to every resource: property value management, resource
description, etc.

• ClassAccess: Provides access to particular RDF(S) resources that are an RDF(S)
class, focusing on the data that is specific to RDF(S) classes: class hierarchy
traversal, instance retrieval, etc.

• PropertyAccess: Provides access to particular RDF(S) resources that are RDF(S)
properties, focusing on the data that is specific to RDF(S) properties: range and
domain management, property hierarchy traversal, etc.

• StatementAccess: Provides access to particular RDF(S) resources that are
RDF(S) statements reified triples, not the triples themselves focusing on the
management of the components that set up the reification.

• ListAccess and ListIteratorAccess: Provides access to particular RDF(S)
resources that are RDF collections (List), focusing on the management of the
members of a collection, as well as, the structure of the collection.

• ContainerAccess and ContainerIteratorAccess: Provides access to particular
RDF(S) resources that are RDF(S) containers, focusing on the management of
the members of the container, as well as the structure of the container, regardless
the its specific type.

• AltAccess: Provides access to particular RDF(S) containers that are of the
particular alt type.

There are also indirect access interfaces:

• RepositoryCollectionFactory: Provides access to the repositories in a collection.
• RepositoryFactory: Provides access to the repository content.
• ListFactory: Provides access to the contents of an RDF collection.
• ContainerFactory: Provides access to the contents of a container.

Finally, due to the large number of operations the aim will be to incrementally
introduce the different levels of functionality described previously through three
different profiles documents, schematically illustrated in Fig. 1.6. These will provide
support for the different types of use case, of increasing complexity, with basic RDF
support, RDF Schema support and, finally, full RDF support. It is envisaged that,

16 S. Lynden et al.

WS-DAI-RDF(S) Ontology Specification

StatementAccess
ContainerAccess
ContainerFactory
ContainerIterator
AltAccess
ListAccess
ListFactory
ListIterator

Profile 2: Full RDF(S) Support

Profile 1: RDF
Schema Support

Profile 0:
Basic RDF Support

Statement Data Resource
Container Data Resource
List Data Resource

ClassAccess
PropertyAccess

Class Data Resource
Property Data Resource

RepositoryCollectionAccess
RepositoryCollectionFactory
RepositoryAccess
RepositoryFactory
ResourceAccess

RepositoryCollection
Data Resource

Repository Data Resource
Resource Data Resource

Fig. 1.6 Profile documents for the WS-DAI-RDF(S) ontology specification

like a Russian doll, implementation of a given level of profile will also require the
previous levels to also be implemented.

1.6 Implementations

Implementations of the specifications are important for a number of reasons –
first, they serve to debug and test the specifications during their development.
Second, they provide examples to potential adopters of the specifications in use,
allowing easier implementations to be constructed by developers. Third and most
importantly, implementations are necessary to promote the specifications, allow
them to become widely recognised, and foster adoption, a factor by which the
success of specifications will ultimately by judged.

Several implementations of the DAIS specifications have been developed to
serve as experimental platforms during the specification development process
and following that, implementations have also been produced as part of research
projects developing applications of the specifications. The following is a list of the
implementations that have been made public to date.

1.6.1 WS-DAIR Implementations

• AMGA2 is a metadata catalogue compliant with the EGEE grid environment. The
implementation of the metadata catalogue provides various interfaces, including
a SOAP WS-DAIR compliant implementation.

2http://amga.web.cern.ch/amga/.

1 Open Standards for Service-Based Database Access and Integration 17

• OGSA-DAI3 is an open-source distributed data access and management system
supporting Web service-based access to data. OGSA-DAI WS-DAIR, an imple-
mentation of the WS-DAIR interfaces using the OGSA-DAI middleware that can
be obtained from the OGSA-DAI SourceForge site.4

1.6.2 WS-DAIX Implementations

• An implementation of WS-DAIX is also available from the OGSA-DAI source
SourceForge site.

1.6.3 WS-DAI-RDF Implementations

• The EC funded ADMIRE (Advanced Data Mining and Integration for Eu-rope)
[www.admire-project.eu/] project has developed an implementation of the WS-
DAI-RDF Querying Specification.

• AIST’s OGSA-DAI-RDF project has developed an implementation of the WS-
DAI-RDF Querying Specification, which can be obtained from.5

The OGF process requires that two independent interoperable implementations
exist before a proposed recommendation can become a full OGF recommendation.
To date, two of the above implementations (WS-DAIR implementations from the
OGSA-DAI and AMGA projects) have been utilised to validate the WS-DAI and
WS-DAIR specifications as reported in [16]. A comparison of the functionality
of these implementations is made in Table 1.1. The performance of the imple-
mentations is dependent on the underlying DBMS being utilised; however, the
overhead incurred by the WS-DAI(R) Web service-based interfaces is similar for
both implementations.6

1.7 Applications

The set of potential areas of application for the DAIS specifications is wide ranging
and some research projects have already become early adopters of them. This
section provides two examples of the application of the WS-DAI-RDF specification.

3http://ogsadai.org.uk.
4http://ogsa-dai.sourceforge.net/.
5http://dbgrid.org.
6A brief analysis of the performance of the AMGA WS-DAIR implementation and some compar-
isons with the OGSA-DAI implementation can be found under “Design and Implementation of
WS-DAIR for AMGA” available at http://event.twgrid.org/isgc2009/program.htm.

18 S. Lynden et al.

Table 1.1 A comparison of the OGSA-DAI and AMGA implementations of WS-DAI and WS-
DAIR

OGSA-DAI AMGA

Apache Axis gSoap
Infrastructure Java 1.4 CCC
SOAP binding rpc/literal Document/literal

Any JDBC-enabled Supports MySQL, SQLLite
Underlying DBMS relational database PostgreSQL, Oracle

SQL (dependent on SQL-92
Supported languages underlying DBMS) AMGA Metadata Language

Yes
Stored procedures (if supported by DBMS) No

WebRowSet
Datasets comma-separated values WebRowSet

SSL, GSI, VOMS
Security features None permission, ACL

ServiceBusyFault
ServiceBusyFault SQL CommunicationArea

Un-supported features GenericQuery (for fault messages)

One of them is the ADMIRE registry, which uses the WS-DAI-RDF specifications
to provide support in a data mining and integration (DMI) context. The second
presents a scenario in which the specifications can be applied to distributed SPARQL
query processing. Other applications that make use of the other specifications have
already been pointed out above, such as the AMGA and OGSA-DAI projects. These
provide additional examples where the WS-DAI and WS-DAIR specifications have
been implemented for the convenience and benefit of their users.

1.7.1 ADMIRE

The ADMIRE7 registry allows a range of DMI components, called processing
elements (PE), to be registered and discovered, together with the set of types, in
the context of their inputs and outputs, that can be handled by those processing
elements. The descriptions used in the registrations contain the data types of the
input and output parameters for each PE and any restrictions associated with these,
such as: the relationships between the inputs and outputs, termination conditions,
are error conditions and all these information are available at the registry in an RDF
format.

In ADMIRE, users create these PEs and register their descriptions in a registry
by means of a register operation as defined in the DISPEL language [17]. Users can

7EU FP7 ICT 215024 www.admire-project.eu.

1 Open Standards for Service-Based Database Access and Integration 19

then retrieve PE descriptions by using SPARQL. By adding a web service layer, the
registry may be accessed by different users at different times in different contexts
(binding the states to the users). The WS-DAI-RDF(S) specification thus provides a
convenient way of providing standardised access to this RDF-based data repository,
and this is what has been achieved by ADMIRE.

1.7.2 Distributed Query Processing

The WS-DAI-RDF(S) specifications allow data integration applications to be
constructed on top of the consistent interfaces provided by WS-DAI-RDF(S) data
resources. When integrating data from distributed data sources, it is necessary to
deal with syntactic heterogeneities that may be present between the interfaces used
to interact with data resources. Furthermore, data retrieval mechanisms must support
delivery mechanisms that allow clients some form of control over the rate at which
data is delivered, especially when scalability is desired.

This is important for grid-based distributed databases, where data is federated
and accessible via service-based interfaces. The standardised interfaces provided
by the WS-DAI-RDF(S) specifications mean that many heterogeneities present
amongst the individual data sources are resolved when performing these tasks. Data
integration may be performed by multiple computational resources, and the WS-
DAI indirect data access pattern can be used to execute sub-queries which result in
the creation of a new data resource for each set of query results. The various data
integration tasks (e.g., joins, unions) that need to be performed can then delegated
to appropriate nodes in a set of computational resources, which are given references
to the created data resources that need to be accessed to perform their allocated
tasks. This therefore allows parallel and distributed query processing to take place
following the approach used by the OGSA-DQP [18] distributed query processor,
which uses OGSA-DAI data resources. The DAIS specification’s operations allow
similar applications to be developed accessing data resource using open standards.

1.8 Conclusions

This chapter has given an overview of the WS-DAI family of specifications that
have been the focus of the DAIS Working Group of the OGF. A core specification
provides a framework which can then be extended to deal with specific types of data.
This process has already been realised for relational, XML and RDF data, and some
initial proposals have been also made for other types of databases. Generally, the
DAIS approach provides a core specification and a flexible framework that allows
extensions if further requirements are specified of the core specification, which may
in turn impact on the other extension specified.

20 S. Lynden et al.

This chapter’s review of the interfaces provided by the specifications has focused,
in particular, on the novel use of indirect data access to provide a means of
minimising data movement, allowing derived data resources to be deployed and
exposed at the server side.

These specifications provide a means of abstracting out some of the variability
in the data resources used in distributed environments and presenting uniform
interfaces to specific types of data – for now: relational, XML and RDF data – to
clients. The use of web services to do this ensures a certain degree of programming
language neutrality and portability across different computer systems. For these
reasons, it is expected that the adoption of these specifications will facilitate the
management and integration of data across the distributed environments presented
by Grids and Clouds.

Acknowledgements The authors thank all those people who have participated in the process of
developing and ratifying the DAIS specification documents and OGF for hosting the process.

References

1. Catlett, C., de Laat, C., Martin, D., Newby, G., Skow, D.: Open Grid Forum Document Process
and Requirements [Obsoletes GFD.1] GFD.152. Open Grid Forum, 2009. http://www.ogf.org/
documents/GFD.152.pdf

2. Atkinson, M.P., Dialani, V., Guy, L., Narang, I., Paton, N.W., Pearson, P., Storey, T., Watson
P.: Grid Database Access and Integration: Requirements and Functionalities. GFD-I-13. Open
Grid Forum, 2003. http://www.ogf.org/documents/GFD.13.pdf

3. Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn, B., Maciel, F.,
Subramaniam, R., Treadwell, J., Von Reich, J.: The Open Grid Services Architecture, Version
1.0. OGF GFD-I.030. Open Grid Forum, 2005. http://www.ogf.org/documents/GFD.30.pdf

4. Web Service Resource Framework (WSRF) Specifications. OASIS.
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrf. Accessed 9 Oct 2010

5. Atkinson, M., De Roure, D., Dunlop, A., Fox, G., Henderson, P., Hey, T., Paton, N., Newhouse,
S., Parastatidis, S., Trefethen, A., Watson, P., Webber, J.: Web Service Grids: An Evolutionary
Approach. Technical report, UK e-Science Institute. http://www.nesc.ac.uk/technical papers/
UKeS-2004-05.pdf. Accessed 9 Oct 2010

6. Antonioletti, M., Atkinson, M., Laws, S., Malaika, S., Paton, N.W., Pearson, D., Riccardi, G.:
Web Services Data Access and Integration (WS-DAI) Specification Version 1.0. OGF GFD.74.
Open Grid Forum, 2006. http://www.ogf.org/documents/GFD.74.pdf

7. Antonioletti, M., Collins, B., Krause, A., Laws, S., Magowan, J., Malaika, S., Paton,
N.W.: Web Services Data Access and Integration The Relational Realisation (WS-DAIR)
Specification Version 1.0. OGF GFD.76. Open Grid Forum, 2006. http://www.ogf.org/
documents/GFD.76.pdf

8. Antonioletti, M., Hastings, S., Krause, A., Langella, S., Laws, S., Malaika, S., Paton, N.W.:
Web Services Data Access and Integration. The XML Realisation (WS-DAIX) Specification
Version 1.0. OGF GFD.75. Open Grid Forum, 2006. http://www.ogf.org/documents/GFD.75.
pdf

9. Antonioletti, M., Aranda, C.B., Corcho, O., Esteban-Gutirrez, M., Gmez-Prez, A., Kojima,
I., Lynden, S., Pahlevi. S.M.: WS-DAI RDF(S) Realization: Introduction, Motivational Use
Cases and Terminologies GFD-I 163. Open Grid Forum, 2009. http://www.ogf.org/documents/
GFD.163.pdf

1 Open Standards for Service-Based Database Access and Integration 21

10. Gudgin, M., Hadley, M., Rogers, T.: Web Services Addressing 1.0 – Core. W3C
Recommendation. World Wide Web Consortium, 2006. http://www.w3.org/TR/ws-addr-core

11. Bruce, J.: JSR-000114 JDBC RowSet Implementations, 07 April 2004. http://jcp.org/
aboutJava/communityprocess/final/jsr114

12. The Resource Description Framework (RDF) Specifications, (last visited on 10/10/10). http://
www.w3.org/standards/techs/rdf#w3c all

13. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommenda-
tion. World Wide Web Consortium, 2008. http://www.w3.org/TR/rdf-sparql-query

14. Beckett, D., Broekstra, J.: SPARQL Query Results XML Format – W3C Recommendation.
World Wide Web Consortium, 15 January 2008. http://www.w3.org/TR/rdf-sparql-XMLres

15. Grant Clark, K., Feigenbaum, L., Torres, E.: SPARQL Protocol for RDF. W3C
Recommendation. World Wide Web Consortium, 15 January 2008. http://www.w3.org/
TR/rdf-sparql-protocol

16. Lynden, S., Antonioletti, M., Jackson, M., Ahn, S.: WS-DAI and WS-DAIR Implementations –
Experimental Document GFD.160. Open Grid Forum, 2009. http://www.ogf.org/documents/
GFD.160.pdf

17. Atkinson, M., Brezany, P., Krause, A., van Hemert, J., Janciak, I., Yaikhom, G.: DISPEL:
Grammar and Concrete Syntax, version 1.0. Deliverable report D1.7, the ADMIRE Project,
February 2010. http://www.admire-project.eu/docs/ADMIRE-D1.7-research-prototypes.pdf

18. Dobrzelecki, B., Krause, A., Hume, A., Grant, A., Antonioletti, M., Alemu, T., Atkinson, M.,
Jackson, M., Theocharopoulos, E.: Integrating distributed data sources with OGSADAI DQP
and Views. Phil. Trans. Roy. Soc. A 368, 4133–4145 (2010)

•

Chapter 2
Open Cloud Computing Interface
in Data Management-Related Setups

Andrew Edmonds, Thijs Metsch, and Alexander Papaspyrou

Abstract The Cloud community is a vivid group of people who drive the ideas of
Cloud computing into different fields of Information Technology. This demands
for standards to ensure interoperability and avoid vendor lock-in. Since such
standards need to satisfy many requirements, use cases, and applications, they
need to be extremely flexible and adaptive. The Open Cloud Computing Interface
(OCCI) family of specifications aims to achieve this goal: originally developed for
the deployment of infrastructure Clouds, it can also be used in different service
and deployment models. This article will outline the OCCI specifications and
demonstrate how they can be used in data management-related setups. Not only
can OCCI be easily integrated but it can also be used to deploy data-centric
applications (which are secured by SLAs), support data-awareness in scheduling,
as well as directly interface with data management tools in a PaaS-based manner.
To demonstrate this, three use cases are discussed in this article.

2.1 Introduction

Next to traditional HPC and Grid computing, Cloud computing has become a new
driver for the global IT market. The overall idea is to deliver a service to the
customer. Instead of traditionally boxing and shipping of software products,

A. Edmonds (�)
Intel Ireland Branch, Collinstown Industrial Park, Leixlip, County Kildare, Ireland
e-mail: andrewx.edmonds@intel.com

T. Metsch
Platform Computing GmbH, Europaring 60, 40878 Ratingen, Germany
e-mail: tmetsch@platform.com

A. Papaspyrou
Technische Universität Dortmund, Institut für Roboterforschung, 44221 Dortmund, Germany
e-mail: alexander.papaspyrou@tu-dortmund.de

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 2, © Springer-Verlag Berlin Heidelberg 2011

23

24 A. Edmonds et al.

software is now delivered as a service to the customer directly. This change in
use of computing services changes the IT landscape drastically – not only will data
centers most probably transform into service providers but also the way service
providers and customers interact will change.

One example is billing in all businesses where a Pay-per-Use model can be
easily established. The next major change in this area will be the management of
data: starting with the idea of moving compute resources to the data (data-aware
scheduling) as an obvious step also the way how data is treated in the Cloud
(manipulation of data – NoSQL vs. Relational Databases vs. Virtual Disc Images)
will evolve. Countless other opportunities such as signing, tracing changes and
movement of data are still ahead of us.

Since many customers move into the cloud the deployment of their data and
the applications becomes very important to them. Still, most Cloud computing
providers currently focus on providing Infrastructure-as-a-Service (IaaS)1 but this
might change as the industry moves its focus into the idea of providing Platform-as-
a-Service (PaaS) where services are constructed on a higher (non-OS, but rich API)
level to provide services surrounding the data.

Still, the underlying technology is evolving: standards are being developed and
technologies emerge (like virtualisation). As such, there is a demand for ensuring
clean interfaces and protocols which are easy to use and can be used for multiple
kinds of service offerings to prevent a vendor lock-in.

In the context of these developments, the Open Cloud Computing Interface
(OCCI) working group works towards forming such a standard. The OCCI family
of specifications can be used for IaaS and PaaS offerings. In this paper, it is
demonstrated how OCCI can be used in data-centric setups for IaaS and PaaS
offerings. To this end, a setup is described in which Virtual Machines (containing
Databases etc.) can be deployed in a Cloud environment while ensuring certain
Service Level Agreements (SLAs). Another use case demoes the ability of OCCI
for moving compute resource towards large datasets. The last scenario works (in
contrast to the former two) towards a PaaS scenario: it shows a Key-Value store
implementation over OCCI.

The purpose of these use cases is to show the need for an interoperable Cloud
interface/protocol which can be used in all layers of the Cloud stack. Furthermore,
it demonstrates that OCCI provides flexible usage models for a very heterogeneous
field of scenarios in the broader field of data management in the Cloud.

The rest of the paper is organised as follows: in Sect. 2.2, the OCCI family
of specification is introduced. Next, three use cases for the application of OCCI
are exemplified in Sects. 2.3–2.5. Finally, the paper concludes with a summary of
achievements and shows future work.

1Usually in the form of virtual machines.

2 OCCI for Data Management 25

Service Provider
 Domain

Resource
Management
Framework

Resources

OCCI

Service
Consumer

most
interoperable

least
 interoperable

Proprietary
API

HTTP

Fig. 2.1 OCCI and its position in the service provider context

2.2 Open Cloud Computing Interface

OCCI is an effort driven by a working group in the standards track of the Open Grid
Forum.2 It strives to create an open, interoperable protocol and API for the Cloud.

The group started with a clear focus on provisioning IaaS but later extended the
focus to include other layers in the Cloud stack as well. The following diagram
(Fig. 2.1) shows where OCCI fits in the service provider context.

The OCCI protocol can be used for integration, ensuring interoperability and
portability between service providers. Proprietary APIs can be used alongside OCCI
in the case that other features than those of OCCI are maintained.

The specification strives to be very easy, flexible and extensible. Therefore, it is
broken into different modules. It starts with a module describing the core models.
Another module describes how this model can be mapped and rendered using a
HTTP/REST approach. The third module describes the infrastructure entities and
how they related to the core model.

2.2.1 Motivation for Standards

Main driver for standards in the past has been interoperability. This is still a
fundamental part of what standards want to achieve. Still there are nuances in the
term interoperability which are important and need to be looked upon separately:

2http://www.ogf.org/.

26 A. Edmonds et al.

Interoperability. Describes how two services can inter-operate on the fly. This
demands a standardised API and protocol (e.g. live migrating a virtual machine
from one host to another, which are in different management domains).
Integration. Describes how a service provider can bring together different tech-
nologies and interconnect them within his domain (e.g. integrate a virtual machine
management tool with an identity management system).
Portability. This is mostly about the porting between service providers. In com-
parison with interoperability, there is no direct connection between the service
provider. This demands that there are standardised data formats which providers
can understand (e.g. porting a virtual machine from one hypervisor to another).
Innovation. Standards have always been started when a field in the IT community
gains popularity, is widely adopted and begins on a path of commoditisation. Next to
interoperability, standards can be a driver for innovation as well as widely adopted
innovations can demand standards.
Reusability. This can be seen on two levels. First the reuse of (legacy) codes through
basic standardised APIs and the reuse of the standard itself in different fields.

2.2.2 The Core Model

The core meta-model [10] for OCCI imposes a general means of handling general
resources, providing semantics for defining the type of a given entity, describing
interdependencies in between different entities, and defining operating character-
istics on them. Although the meta-model aims to ease the implementation burden
by setting a common ground for other OCCI-related specifications, it can be used
as a standalone component in other contexts (e.g. Resource Oriented Architectures
(ROAs)) as well.

The UML class diagram shown (Fig. 2.2) gives an overview of the OCCI core
meta-model. At its heart lies the Resource type. Any resource exposed through
OCCI is a Resource or sub-type thereof. A resource can be for example a virtual
machine, a job in a job submission system, a user, etc. The Resource type
contains a number of common attributes that domain-specific Resource types
inherit. The Resource type is complemented by the Link type which associates
one Resource instance with another. The Link type also contains a number of
common attributes that domain-specific Link types inherit.
Entity is an abstract type which both Resource and Link inherit. Each sub-

type of Entity is identified by a unique Kind instance. The Kind type comprise
the classification system built into the OCCI model. Kind is a specialisation of
Category and introduces additional capabilities in terms of Action types.

2.2.2.1 Classification and Identification

The OCCI model provides a built-in classification system allowing for safe exten-
sion towards domain-specific usage. This system is like a “type system” but with
the possibility of being easily exposed over a text-based protocol.

2 OCCI for Data Management 27

MixinKind Action

Entity

−id :URI
−title :String [0..1]

Resource

−summary:String[0..1]

Link

Category

−scheme :URI
−term :String
−title :String [0..1]
−attributes : Set<String>

cd: Core

target

+ source

*

links

*

actions

kind

*

*

mixins

*

actions *

*

related

*

*

related

Fig. 2.2 UML class diagram of the OCCI model. The diagram provides an overview of the OCCI
model but is not a standalone definition thereof

The classification system can be summarised with the following key features:

• Each OCCI base type and extension thereof is assigned a unique identifier, a
structural Kind, which allows for dynamic discovery of available types.

• The relationship of structuralKinds is part of the system and thus the inheritance
model is also discoverable.

• The classification system allows non-structural Kinds to be assigned to resource
instances adding new capabilities using a mix-in-like model.

• Tagging of resource instances is supported through mix-in of non-structural
Kinds which have no additional capabilities defined.

• A collection of associated resources is implicitly defined for each structural and
non-structural Kind. That is all resource instances associated with a particular
Kind instance form a collection.

28 A. Edmonds et al.

2.2.2.2 Categorisation

The Category type comprises the basis of the identification mechanism used by
the OCCI classification system. Instances of the Category type are only used
to identify Action types. All other uses of Category properties are managed
through its sub-type Kind.

A Category is uniquely identified by concatenating the categorisation scheme
with the category term, for example http://example.com/category/scheme#term.
This is done to enable discovery of Category definitions in text-based renderings
such as HTTP. Sub-types of Category such as Kind inherit this property.

2.2.2.3 Kind Relationships

The OCCI base types Resource and Link extend Entity. This together with
any further sub-typing implies a hierarchy of related structural Kind instances. The
Kind relationships thus mirror the type inheritance structure of the OCCI model
and any extension thereof.

In an example where a domain-specific “Custom Compute Resource” is a sub-
type, the OCCI infrastructure type Compute, which in turn is a sub-type of the
Resource type, four related structural Kinds would be involved.

One or more Entity instances associated with the same Kind, automatically
form a collection, and each Kind identifies a collection consisting of all Entity
instances of it. For example, an instance of the Resource type will always be
associated with the structural Kind (http://scheme.ogf.org/occi/core#resource) and
thus part of the collection implied by the Kind.

Collections are, by definition of the core model, navigable and support the
following operations:

• Retrieve the whole collection.
• Retrieve a specific item in a collection.
• Retrieve a subset of a collection.

2.2.2.4 Discovery

In addition to that, Kinds and Category instances a particular service provider
support can be discovered. By examining these instances a client is enabled to
deduce the following information:

• The Entity sub-types available from a service provider, including domain-
specific extensions.

• The attributes associated with each Entity sub-type.
• The invocable operations, that is Actions, defined for each Entity sub-type.
• Additional mix-ins or tags, that is non-structural Kinds, applicable to Entity

sub-type instances.

2 OCCI for Data Management 29

Overall, the OCCI core meta-model provides a solid foundation for the remote
management of resources offered in an as-a-Service manner, allowing for the devel-
opment of interoperable tools for common tasks including deployment, automatic
scaling and monitoring. The explicit split-out of it allows the leverage of the
developed models, protocols, and APIs in manners not anticipated and to foster
modularity and extensibility for future usage paradigms.

2.2.3 RESTful HTTP Rendering of the OCCI Model

The OCCI Core model which is described in the previous Sect. 2.2.2 is free of any
rendering and forms the base of OCCI. Based upon this model, OCCI describes a
serialisation rendering. This rendering – or serialisation format – is passed on the
wire between client and service, see [11].

OCCI has a default rendering which is text based and uses the HTTP protocol
and implements a ROA, see [14]. In this architecture, a system is modelled as a
set of related resources. ROA’s use Representation State Transfer (REST), see [6],
to cater for client and service interactions. In these interactions, clients request to
perform operations on the state of an individual or set of resources managed by the
service.

HTTP is commonly used in most ROA systems. It provides means to uniquely
identify resources through URIs as well as operating upon them with a set of
general-purpose operations called verbs. These HTTP verbs map loosely to the
resource-related operations of create (POST), retrieve (GET), update (POST, PUT)
and delete (DELETE).

2.2.3.1 Rendering of Resources

Each Resource in the OCCI core model will be rendered as a unique URI (for
example http://example.com/foo). Each resource can be identified uniquely by an
URI and has at least one Category assigned, which defines the type and the
operations that can be performed. This means that from this standpoint a resource
can be almost anything like a Database entry, a Virtual Machine, an Image, etc.

Resources can be linked and actions can be performed upon them. Resource of
the same type (as in have the same Category assigned) can be found under a
certain path relative to the root of the service provider (e.g. all storage devices will
appear under the path /storage – still the path name “storage” is freely defined by
the Service Provider and can do discovered through the Query interface).

Since Categories cannot only be used to define the type of the resource, but
also to tag or group resources, resource can show up under multiple paths. The
following URL hierarchy demonstrates this feature:

30 A. Edmonds et al.

/compute/123
/storage/discABC
/database/tableXYZ
/nosql/entry_1
/my-linux-vms/123 // links to /compute/123
/my-datasets/discABC // links to /storage/discABC
/my-datasets/tableXYZ // links to /database/tableXYZ
/my-datasets/entry_1 // links to /nosql/entry_1

This very flexible system allows that the OCCI model can be used for several use
cases including for Data Management operations.

2.2.3.2 Discovery of Capabilities Through a Query Interface

One of the main features of OCCI is that clients can discover the capabilities of
the service provider through a standardised query interface. This is important since
OCCI is designed for extensibility. To query the capabilities of a Service provider
implementing OCCI, the Client needs to do a HTTP GET on the URI /-/.

This Category management URL allows the client to get a listing of all
categories supported by the provider. Should the provider allow and support client-
created categories, then this URL endpoint must support the creation of user
categories as well.

2.2.3.3 Linking and Performing Actions on Resources

Each of these resources can be linked with other resources. Links again are RESTful
resources and have a source and a target attribute. Each link resource is bound to a
category identifying it as a link.

Next to linking, some type specific actions can be performed. The set of possible
actions is defined by the Category of the resource. Actions are triggered by
adding a fragment to the URI of the resource indicating which action should be
triggered (e.g. http://example.com/foo;actionDshutdown). Parameters of the action
are described in the HTTP message.

2.2.3.4 Use of HTTP Features

The HTTP rendering of OCCI makes use of many HTTP features. This includes for
example HTTP headers for Versioning and all Authentication features. OCCI does
not explicitly define those but makes use of those features.

Next to these basic features, OCCI also makes use of the Content-Type defini-
tions. At a minimum, all information for OCCI resources is transferred in the HTTP

2 OCCI for Data Management 31

Body. This is defined as the basic text/plain content type. Other content types also
exist. For example, the information can also be rendered in the HTTP Header or as
HTML (e.g. for browsing the OCCI interface using a Web Browser) by supplying
the appropriate content-type header as specified in the specification.

Rendering of data is done through simple key value associations. Also, more
structural data representations such as JSON of RDFa can easily be added to OCCI.

2.2.4 OCCI for Virtual Machine (Infrastructure) Provisioning

Having described the core model and a way of rendering it on the wire, a concrete
compliment to the core model is now explored [12].

The infrastructure specification extends the core model at two key points:

1. To represent various infrastructure-related resources, it extends Resource
using inheritance.

2. To represent concrete relationships between infrastructural resources, it extends
Link using inheritance.

To represent the main elemental resources found in infrastructure-type services,
OCCI has three specialisations of Resource:

1. Compute: Information processing resources.
2. Network: Interconnection resources.
3. Storage: Information recording resources.

Complimenting these, to allow linkage are:

• NetworkInterface: Represents an L2 client device (e.g. network adapter).
• StorageLink: Represents a link from a Resource to a target Storage Resource.

The relations of these infrastructure resources are shown in the UML diagram
(Fig. 2.3).

When modeling elements, it was found that OCCI needed to support not only
generic cases but also specific cases. This issue was exemplified by Network. It
might be immediately attractive to model all functionalities within this Resource,
including aspects of IP configuration, however, then the model would force certain
technology choices upon implementers. To avoid this, the working group chose to
utilise the OCCI mix-in capabilities to avoid such a situation. Where an implementer
wishes to offer TCP/IP functionality on top of the Network resource, they
can do so by implementing the IPNetworking mix-in. The IPNetworking
mix-in allows to supplement the Network Resource with the necessary TCP/IP
features. Should an implementer wish to offer another type of L3/L4 technology
for example AppleTalk or IPX, then they only need implement a custom network
mix-in.

32 A. Edmonds et al.

IPNetworking IPNetworkInterface

Link
(from occi :: core)

Resource
(from occi :: core)

-summary :String[0..1]

StorageLinkStorage NetworkInterfaceNetworkCompute

cd: Infrastructure

target + source

*links

Fig. 2.3 Extended OCCI core model showing infrastructure elements

It was the infrastructure model, along with the OCCI core and HTTP rendering
specifications, that aided a successful collaboration that investigated the integration
of two large European Union FP7 research projects, SLA@SOI3 and RESERVOIR.4

The proposed integration was detailed in a subsequent technical paper [13].

2.2.5 Related Standards and Specifications

A guiding principle in OCCI is to make use of existing standards and specifications
where appropriate.

OCCI and the Storage Networking Industry Association’s (SNIA)5 Cloud Data
Management Interface (CDMI) working groups have collaborated together so that
both specifications are interoperable with each other. It states that

“The SNIA Cloud Data Management Interface (CDMI) is the functional interface that
applications will use to create, retrieve, update and delete data elements from the cloud. As
part of this interface the client will be able to discover the capabilities of the cloud storage
offering and use this interface to manage containers and the data that is placed in them. In
addition, meta-data can be set on containers and their contained data elements through this
interface” [16].

3http://www.sla-at-soi.eu/.
4http://www.reservoir-fp7.eu/.
5http://www.snia.org/.

2 OCCI for Data Management 33

OCCI and the Distributed Management Task Force’s (DMTF)6 Open Virtual-
ization Format (OVF), see [4], can be easily integrated through the use of the
resource-type Link. Where a provider wishes to supply an OVF representation of
a client’s resource instance(s), they can do so by associating the instance(s) with a
mirror representation, only the serialisation format is OVF.

Other than this, the OCCI working group is closely working together with other
groups inside of the Open Grid Forum. The Distributed Computing Infrastucture
Federation (DCI-fed7) working group focuses on the creation of models and APIs
for setting up distributed federated computing environments. Other than this, the
OCCI working group uses Standards like those developed by the Distributed
Resource Management Application API (DRMAA8) working group for common
Job operations on Clusters via the OCCI protocol.

2.3 SLA Assured Provisioning of Database Services
Using OCCI

In today’s service marketplaces including cloud-based ones, there exist basic
limitations in service offerings. Typically, the customer has little say in what is
offered by a service provider and is left with a “take it or leave it” situation. Not
only is the customer faced with such a dilemma, with little possibility of negotiation
but if they do accept the service offering there is little in the way of service
transparency and so detections of service violations are impossible unless that
customer implements custom violation detection systems. The SLA@SOI project
seeks to address these challenges by providing three major benefits:

Predictability and Dependability: The quality characteristics of service can be
predicted and enforced at run-time.
Transparent SLA Management: SLAs defining the exact conditions under which
services are provided/consumed can be transparently managed across the whole
business and IT stack.
Automation: The whole process of negotiating SLAs and provisioning, delivery and
monitoring of services will be automated allowing for highly dynamic and scalable
service consumption.

In this section, a use-case that combines the OCCI model and API with an SLA
management framework to provide an SLA assured database service is described.
In today’s service marketplace, there exists a number of service providers who
offer database services, for example, the Amazon Relational Database Service,9

6http://www.dmtf.org.
7http://forge.gridforum.org/sf/projects/dcifed-wg.
8http://www.drmaa.org.
9http://aws.amazon.com/rds.

34 A. Edmonds et al.

Microsoft SQL Azure10 and Longjump Platform as a Service.11 Other than offering
a basic, non-negotiable, non-machine readable SLA, these service providers do not
offer certain guarantees that particular consumers will require. A case in point is
where a third party service provider wishes to process personal and identifying
information. Many law jurisdictions will require that user-supplied data and the
processed resultant data remain within the protection of that jurisdiction, which
may mean that the physical location of that data must always remain in the country
or region where that jurisdiction has powers to protect. If that data at any one
time falls outside of those defined physical locations due to actions taken by the
service provider that the third party uses, then regardless of knowing or not knowing
about such actions, the third party can be liable under the relevant laws set out by
the jurisdiction. In the use case presented here, an SLA management framework
provides the means to:

1. Customise a service offering.
2. Negotiate on that service offering to the satisfaction of the third party and their

legal responsibilities.
3. Be notified when terms of the agreed service offering deviate and have deviations

logged as an audit trail.

The use case is realised by the third party provisioning the offered database ser-
vice using the OCCI API through the facilities of the SLA manager. OCCI provides
the standard and interoperable means of provisioning the required database service
and the SLA manager provides the means as outlined above. That database service is
realised as a pre-built virtual machine with all the requisite database software
installed and configured, which once provisioned is accessible by the consumer.
The service provider offers means to monitor the agreed terms in the SLA and, in
particular for this use case, allows for the physical location of the virtual machine to
be monitored. This allows the SLA management framework to monitor constantly
the physical location of the virtual machine and in the case that the virtual machine
is migrated to an inappropriate physical location the third party will instantly receive
notification of that event and logs will provide an audit trail.

2.3.1 SLA@SOI SLA Management Framework

SLA@SOI defines a holistic view for the management of SLAs and implements an
SLA management framework that can be easily integrated into a service-oriented
infrastructure (SOI), see [17]. The main innovative features of the project are:

• An automated e-contracting framework
• Systematic grounding of SLAs from the business level down to the infrastructure

10http://www.microsoft.com/en-us/sqlazure.
11http://www.longjump.com.

2 OCCI for Data Management 35

• Exploitation of virtualisation technologies at infrastructure level for SLA
enforcement

• Advanced engineering methodologies for creation of predictable and manageable
services

The accompanying diagram (Fig. 2.4) illustrates the anticipated SLA manage-
ment activities throughout the business/IT stack.

Customer Service Provider

Business
Use

Procurement

Business
Assessment

SLA (Re-)Negotiation

Monitoring /
Arbritration

Business
Assessment

SLA Orchestration /
Transformation /

Aggregation

Resource
Consumption
Forecasting

Monitoring
Adjustment

Alerting

Service Demand SLA

Service
Demand

Forecasting

Infrastructure Provider

Provisioning

Mapping

Software Provider

Virtual

Physical

SOI

Contracting
/ Sales

SOA

Fig. 2.4 SLA@SOI overview

36 A. Edmonds et al.

2.3.2 SLA@SOI and OCCI

In this use case, there are two main components that are required for realisation. The
first and most fundamental is a Service Manager that offers a database service.

The Service Manager is the entity that is responsible for providing the client’s
service. Relevant to this use case is that the Service Manager provides database
services as preconfigured virtual machines and that the location of those virtual
machines can be monitored. The SLA@SOI framework makes no assumption on
this Service Manager only that it has an interface:

1. That can create, retrieve, update and delete its managed services.
2. Through which service instance metrics can be listed and retrieved.

The second entity required is the SLA@SOI framework’s SLA Manager. This
is a set of both generic and domain-specific components. What is generic relates
to the management of SLA templates (what a provider offers) and SLA instances
(what a provider runs on their clients behalf and guarantees). The domain-specific
components are those that interact with the particular service manager that provides
the client services. Further details of the SLA@SOI framework and its architecture
can be found, see [18].

The SLA Manager offers to clients one or more SLA Templates, which is
expressed using the SLA@SOI SLA model. Through either a UI or API, the client
can select, customise, negotiate and provision an SLA-guaranteed service. In the
use case scenario, this would entail the third party specifying what physical location
(e.g. region, country) is required for their regulatory compliance.

Once the SLA Manager is acting on the client’s behalf, it first negotiates with the
service manager using the OCCI query interface. The OCCI query interface allows
for the various Resource types to be queried for and interrogated and in particular to
this use case, the locations that a provider can provision their virtual machines. As
an extension to the query interface, SLA@SOI will also allow for per-user quotas to
be queried. Using this extension, an SLA Manager can tell whether a client’s request
will be fully satisfied or not by the current service provider. Having established that
the client’s quota is sufficient, the next step can either take two paths. The first is
that the provisioning of the requested service is done automatically or, second, the
provisioning must be explicitly executed by the client. Where a provisioning request
is executed in one or the other manner, the next responsibility of the SLA Manager
will be to call the provisioning functionality of the Service Manager (relationship
and interaction is shown in Fig. 2.5). This again is looked after by the OCCI API
and an OCCI request from the SLA manager’s domain specific components is sent
to the Service Manager. As soon as the provisioning request is successful, the SLA
manager then begins to monitor the provisioned service, including the location of
the service’s virtual machine. It does this by monitoring the various terms of the
agreed SLA (e.g. QoS metrics).

For the SLA Manager, the major advantage of choosing to implement OCCI
as a means to talk with Service Managers is that in the case where a particular

2 OCCI for Data Management 37

Client

SLA Manager Service Manger

UI

API

negotiate

provision

manage

Fig. 2.5 Relationship between SLA manager and service manager

Service Manager cannot satisfy the provisioning of the requested service resources
due to insufficient client quotas or unsuitable virtual machine deployment locations,
the SLA Manager can, with the necessary logic implemented, look up the next
registered service provider and seek to have the remaining service resources
provisioned there, without any need for Service Manager protocol or API changes.
Such functionality makes an excellent case for SLA-mediated cloud brokerage use
cases.

2.4 On-Demand Data-Aware Provisioning of Services

A different application area for OCCI appears in the context of traditional
community-based Distributed Computing Infrastructures (DCIs): modern research
more and more relies on cross-institutional, cross-project data processing. In
many communities, scientists quickly state the requirement to enable exchange
of information beyond traditional boundaries such as project collaborations or long-
term Virtual Organisations. Rather than that, a more flexible, more agile approach
is expected.

This development poses a major challenge not only for the management of
data itself (i.e. ensuring authentication and authorisation, planning distribution
and replication, and tracking provenance), but also for the management of its
computation: workload needs to run close to the data in most cases (since data is
usually large), but the compute infrastructure available in the direct proximity of
the data may not necessarily provide the correct environment. That is, applications
to process the data might be missing, the operating system does not match the
application requirements, or – on a higher level – certain services needed for data
analysis and manipulation have not been deployed on-site.

Beside, many communities run their own, proprietary workload management
software, tailored to the specific needs of their users. As such, it is usually not
an option to require a central system, often referred to as a meta scheduler12 for
all users of all communities. Rather than that, additional technology needs to be
incorporated, which allows dynamic federation of planning domains depending on
the current demand.

12Mostly found in the context of traditional Grid Computing.

38 A. Edmonds et al.

The D-Grid Scheduler Interoperability project (DGSI) in the context of the
German D-Grid Initiative13 aims to provide a solution both issues through the devel-
opment of a standards-based protocol between Meta schedulers. DGSI approaches
interoperability DCIs from two sides, namely Activity Delegation (taking care of
the handover of workload from one domain to the other), and Resource Delegation
(taking care of the leasing of resources from one domain to another). Assuming the
DGSI protocols and services in place, the notion of delegation can help to avoid
traditional data management techniques such as decoupled copying, prefetching,
and replication at all.

2.4.1 The Climate Community Use Case

The effects of climate change are one of the major challenges of mankind:
stakeholders of many areas strive for strategies to deal with the consequences of
pollution and man-made changes to the environment. The basis of all decision
making are models of climate processes and the understanding of interplay of the
enormous amount of parameters in them. Since the beginning of industrialisation in
the nineteenth century, Earth System Science, one of the data sciences, investigates
these processes, their chemical formation in the diverse subsystems such as oceans,
atmosphere or biosphere, and their long-term influence on climate.

From those investigations, researchers nowadays possess very detailed insight
into climate development. This rests on the permanent acquisition, cataloging, and
processing of very large (Peta scale) volumes of experimental and model data, as
well as the continuous re-evaluation of scientific results using refined models.

Current information technology provides potent means to accelerate these
processes of data evaluation and simulation. High Performance Computing (HPC)
infrastructure, high speed networks, and modern storage architectures support
archival, preprocessing, selection, and transportation of large data amounts as well
as the computation of highly demanding simulations (e.g. short term weather
forecast or storm track analysis).

For the latter scientific analysis, researchers filter and examine geopotential
heights to track and predict the movement of low-pressure areas over time with
regard to a given climate model. This is essential as storms and cyclones typically
cross such areas [3]. This analysis and simulation is based on long-term acquired
global climate data.

Usually, scientists are only interested in a restricted area for a Stormtrack analysis
and have to reduce the amount of available base data to the region of interest.
Besides a complex combination of several steps, this resorts to either access to a
specific amount of climate data (Fig. 2.6a) or execute simple visualisation workflows
on selected and preprocessed data (Fig. 2.6b).

13http://www.d-grid.de.

2 OCCI for Data Management 39

Staging

a

b

c

Staging Visualization

Staging Preproc.

Staging Preproc.

Simulation

Fig. 2.6 Three simple workflow examples from C3Grid: (a) selective data download; (b) simple
simulation on input data; (c) simulation on a set of preprocessed input data

Today, they generally have two possibilities to retrieve the desired data: they
either get access to the storage and download the full amount of data (i.e. full
replication is performed) or use proprietary programs to reduce the amount of data
at the storage site and download the desired data set afterwards. In the first case,
the required local storage may simply not be available to the single scientist, or the
providing institution may not be willing to provide an external party with access to
the full archive due to strategical considerations. In the second case, the user needs
to cooperate directly with the data provider, basically via two mechanisms:

1. Having to use tools that are installed, but potentially not known to him,14 or
2. Having to roll out the software on her own, either doing this as part of the batch

processing job or in cooperation with the resource provider.

Obviously, the former is not acceptable from a user’s perspective. The latter
in turn requires extensive manual intervention and additionally necessitates the
acquisition of user rights to retrieve or even locally process the requested data. As
most of the climate data is stored in a distributed way, the procedure often has to
be repeated for several data sites. Furthermore, it leaves intelligent, automatic load
balancing totally to the user, which is generally not desirable. In addition to that, this
traditional approach of application deployment massively hinders cross-community
collaboration, if they rely on different infrastructure technologies: if the user takes
care by himself to deploy the application as part of his computational workload, the
number of resources compatible will usually be very restricted.

14With the exception of widely accepted and distributed tools such as the Climate Data Operators
[15].

40 A. Edmonds et al.

2.4.2 An Approach for Dynamic, Cross-Community
Resource Allocation

Most DCI environments share the ability to efficiently distribute user workload
to the resources available within their community. This issue, usually generalised
under the term Meta Scheduling, is already very diverse within a community:
both submitted jobs and available resources differ considerably, to the extent
that coordination has to handle specialised knowledge about usage scenarios and
infrastructure. This leads to very different, community-specific approaches for the
development of Grid scheduling services [9].

The DGSI provides a standards-based interoperability layer for scheduling and
resource management services in DCI ecosystems. By allowing the users of a
community to distribute the workload among resources within the management
domain of another community while keeping the individual, specialised scheduling
solutions being run by the communities, it offers new perspectives for community
collaboration, resource federation, and efficient utilisation. The general architecture
is depicted in Fig. 2.7.

2.4.2.1 Delegation Models

The DGSI protocols foresee two scenarios to be considered: the delegation of
activities and the delegation of resources:

Delegating
Community
Scheduler

Community
scheduler

Middleware

Agreement

Middleware

LRMS

Proxy

LRMS

Delegate Activity

Resources free Need for additional
resources

Resource Delegation

Fig. 2.7 Overall delegation architecture using the DGSI protocols. Meta schedulers from different
domains (architectural, organisational, and technological) cooperate using activity and resource
delegation

2 OCCI for Data Management 41

Delegation of activities. By means of DGSI, one meta-scheduler is able to delegate
activities, that is single or parallel jobs or workflows, to another meta-scheduler
from a different management domain (i.e. another community). By use of WS-
Agreement [1], JSDL [2], and OGSA-BES [8], DGSI provides a standardised way of
handing over workload to the other domain: a set of jobs that cannot be executed in
the local scheduling domain can be channeled to another one (assuming the resource
requirements of the jobs match the provided environment) to minimise waiting time
induced by a high load on the originating side of the delegation. Via the mechanisms
of SLA negotiation and agreement (as provided by the WS-Agreement protocol),
it is ensured that both requirements and fulfilment can be negotiated in a reliable
manner.

While the initial use case for activity delegation assumes an environment that
requires cross-domain load balancing for workload to amplify user experience in a
federated DCI environment, it is obvious that, with respect to data management,
the very same mechanisms enable Meta Scheduling systems to easily move the
workload close to the data: even if the data is assumed in a different community
domain, proximity-based approaches for data-aware scheduling systems are easy to
implement over the federated nature of the DGSI protocols.
Delegation of resources. To complement the handover of workload between DCIs
in a more “as-a-Service”-related manner, the DGSI protocols also support the
delegation of resources from one domain to another. This allows one meta-scheduler
to effectively “lease” resources from another one over a given period of time and
use them in the same way as managed resources within the own domain. Again, by
use of WS-Agreement, GLUE, and middleware provisioning, a standardised means
for requesting, negotiating, agreeing, monitoring, and provisioning those resources
is available: after successfully agreeing on the “lease” contract, the scheduler that
requests resources can effectively incorporate them into his planning algorithms for
management over the time of lease.

The original use case was tailored to the specific needs of cross-community
collaboration: the provisioning mechanisms were merely used to dynamically
provide a management endpoint (i.e. a specific Grid middleware) that the requesting
scheduler is able to cope with. For example, an environment that is generally
managed by UNICORE [5] can provide a resource lease to a scheduler that manages
its resources through Globus Toolkit [7] just by provisioning a Globus GRAM
endpoint for the leased resources while – at the same time – ensuring the fulfillment
of the negotiated SLAs through injected monitoring and enforcement mechanisms.
From the perspective of data management, especially in the context of proximity-
aware deployment of applications close to their data, much more can be done: by
leveraging the provisioning interface to the deployment of the user’s application
rather than the middleware only, the user is provided with a unified view on the
lower-level infrastructure and thus can run his application on a much larger resource
space than given in traditional approaches. On the other hand, the meta-scheduler
enjoys much more freedom in deploying the application close to the data, without
having to give up its planning mandate (as in activity delegation).

42 A. Edmonds et al.

2.4.3 The Role of OCCI for a Data-Aware Delegation Scenarios

The OCCI family of specifications, especially the infrastructure rendering, is the
key enabler for introducing data-awareness into the different delegation scenarios.

Figure 2.8 depicts the role of OCCI in the overall process.

Enabling activity delegation. While OCCI is not strictly necessary for the activity
delegation scenario, it makes the dynamic provisioning of a delegation channel (in
case of the initial usage scenario of DGSI a service such as OGSA-BES) much
easier. That is, the meta-scheduler that accepts workload delegation can dynamically

Requesting Scheduler Providing Scheduler

1. GetTemplates

AT (JSDL)

O (JSDL)

5a. Accept

6. GetState
(Agreement Monitoring)

2.

3.

Agreement
Store

GLUE
2.0

8. Submit
(JSDL,...)

7. StageIn

10. StageOut

9. Monitoring
(Service

Monitoring)
4a. Setup/Reservation

Delegation-Access

Store OCCI Mon

ConsumeService

SLA
5b. Store

4b. Create/
Include

WS-Agreement
(SLA Creation)

Fig. 2.8 Ten steps for negotiating a delegation within the DGSI protocol stack. While activity
delegation only requires six steps (up to the GetState call for agreement monitoring), resource
delegation runs to completion of the tenth step. Note, however, that – from step six and forth –
each step is specific to the concrete usage of the delegated resource (e.g. a single job submission)

2 OCCI for Data Management 43

create instances of a submission and monitoring interface on its own infrastructure
without having to provide own resources for the purpose. OCCI ensures in this
context a unified view on underlying resources that can run demand-based, lifecycle-
managed middleware services to the DCI ecosystem.
Enabling resource delegation. Here, OCCI is a strong requirement for allowing the
user to deploy her own applications in the context of a virtualised environment
over a unified interface. With OCCI in place, description, status management, and
provisioning of virtual machines can be not only unified within the community
itself, thus even there providing strong benefit, but rather beyond the boundaries of
domains, allowing easy deployment of applications on the resources of a different
community.

As such, OCCI fulfills two major requirements to enable this technology:
interoperability and portability of the applications, and dynamic provisioning of
infrastructure. The packaging paradigm of Virtual Machines additionally allows
easy movement and infrastructure-agnostic capacity planning with data require-
ments in mind. Speaking of such, OCCI is the enabling technology for making data
aware, proximity-based scheduling and resource management happen in federated
DCI environments.

2.5 Use of OCCI for a Simple Key-Value Store

The previous Sects. 2.3 and 2.4 showed the usage of OCCI in virtualised envi-
ronments (but data-centric setups). This last use case shows how the exact same
standard can be used to give a database application a RESTful standard OCCI
compliant interface.

A very simple use case is taken to demonstrate the abilities of OCCI as a
data management front-end interface. Many NoSQL databases such as CouchDB15

are deployed with a built-in RESTful interface. With the proliferation of NoSQL
databases and their various RESTful APIs, there is a perceivable need for a
standardised interface through which a client could discover the abilities and
functionalities of the service provider (and in this use case the NoSQL Database).

Clients can then decide which service provider to use. This is essentially
important since Cloud computing is all about delivering services experience to the
customer. The customer should decide which service to use based on the experience,
the functionalities and the price the service provider offers.

The discovery interface described in the OCCI section of this paper describes
these self-discovery features. Section 2.3 on SLA@SOI describes how the OCCI
core model can be extended for provisioning virtual machines.

15http://couchdb.apache.org/.

44 A. Edmonds et al.

In this use case, the Core model is only extended by the one class which derives
from Resource. It is called a Key-Value resource and has two attributes: key
and value. A simple flip actions is defined. When the client queries the discovery
interface, it will see the Category definition of this resource type:

> GET /-/ HTTP/1.1
> User-Agent: curl/7.21.0 (x86_64-pc-linux-gnu) [...]
> Host: localhost:8888
> Accept: */*
> Cookie: [...]
>
< HTTP/1.1 200 OK
< Content-Length: 517
< Etag: "89c0aeace4f7209b57d38cb0c4877bb9b22ad7a4"
< Content-Type: text/plain
< Server: pyocci OCCI/1.1
<
Category: keyvalue;

scheme=http://example.com/occi/keyvalue;
title=A Resource which holds a Key and a Value;
location=/keyvalues/;
rel=http://schemas.ogf.org/occi/core#resource;
attributes=key value;
actions=flip

Category: flip;
scheme=http://example.com/occi/keyvalue;
title=Flips the key and the value;
attributes=foo bar

Category: keyvaluelink;
scheme=http://example.com/occi/keyvalue;
title=A link between two Key Value Resources;
location=/keyvalues/links/;
rel=http://schemas.ogf.org/occi/core#link;
attributes=source target

The GET on the path /-/ indicates that one wants to discover what the service
provider offers. It returns a Category definition showing the scheme of the
category and which attributes it supports. As there will be no actions, this is all
the Category features.

Now Key-Value resources can easily be created using this Category and
retrieved through the OCCI interface:

> POST / HTTP/1.1
> User-Agent: curl/7.21.0 (x86_64-pc-linux-gnu) [...]
> Host: localhost:8888
> Cookie: [...]
> Content-Type: text/occi
> Category: keyvalue;

scheme=http://example.com/occi/keyvalue;

2 OCCI for Data Management 45

> X-OCCI-Attribute: key=foo, value=bar
>
< HTTP/1.1 200 OK
< Content-Length: 2
< Content-Type: text/html; charset=UTF-8
< Location: /users/foo/keyvalues/dba17696-[...]
< Server: pyocci OCCI/1.1
<

The request indicates the type (via Category), a Key-Value resource, that
the new resource should be. Also, two attributes are delivered alongside providing
values to the key and value attributes of this new resource instance. The service
will return a location of the new resource. This location can be used to retrieve the
resource instance:

> GET /users/foo/keyvalues/dba17696-[...] HTTP/1.1
> User-Agent: curl/7.21.0 (x86_64-pc-linux-gnu) [...]
> Host: localhost:8888
> Accept: */*
> Cookie: [...]
>
< HTTP/1.1 200 OK
< Content-Length: 191
< Etag: "6bad49cb7785101006593a9fe79d5b54a4a19516"
< Content-Type: text/plain
< Server: pyocci OCCI/1.1
<
Category: keyvalue;

scheme=http://example.com/occi/keyvalue
Link: </users/foo/keyvalues/dba17696-[...]?action=flip>
X-OCCI-Attribute: value=bar
X-OCCI-Attribute: key=foo

The response tells what type the REST resource is (via the Category header).
It also returns us the two attributes which where defined during the creation of the
resource.

Updating the attributes can be done using the HTTP PUT verb and it provides
a new set of attributes. Deletion of the resource can be done through the HTTP
DELETE verb.

Next to these HTTP basic renderings, the implementation16 used for this example
can also render OCCI using HTML by specifying the text/html content-type. This
allows the user on client side to use the browser to discover the Query interface and
the resources using a web browser (Fig. 2.9).

16http://pyssf.sf.net/.

46 A. Edmonds et al.

Fig. 2.9 Screen-shot of an HTML rendering of the OCCI query interface

This is a very generic interface and shows that OCCI can be used for provisioning
infrastructure as well as PaaS based offerings.

Regardless of the type (OCCI Kind), a REST-Resource (represented through
an URI) represents the interface will not change. This even means that the GUI
(Fig. 2.9) is also generic and it would look and work the same for different types
of Resources. The implementation of the OCCI interface demoed here can
therefore be used for Infrastructure provisioning or other Platform offerings (like
Job submission for Clusters).

2.6 Conclusions

With the last use case, the authors of this paper want to demonstrate the flexibility
and extensibility of the OCCI interface. OCCI can be used using different setups
especially the discovery functionalities and the extensible Core model support this.
This demonstrates that OCCI can be used in IaaS and PaaS setups which relate to
Data management.

This paper strives not to give a complete overview of all possible setups
regarding OCCI and Data management. Still it demoed how some setups can be

2 OCCI for Data Management 47

implemented using OCCI. Most often OCCI plays the role of ensuring and safe-
guarding Interoperability as described in Sect. 2.2.1.

Several implementations of the OCCI specification exist notworthly does in
research projects and currently ongoing working in commercial applications. Most
notable is the currently in development effort which tries to incorporate the OCCI
standard in the OpenStack17 Cloud framework. Research Projects like the previously
noted RESERVOIR and SLA@SOI (see Sect. 2.2.4) have adopted OCCI as well.

Next to this interoperability aspect, it is important to state that OCCI does not try
to replace existing proprietary interfaces. It is defined for interoperability means as
described before. Service Providers can still use their proprietary API/Interface to
deliver higher-level functionalities, which is very specific to their offerings.

This idea of brokerage could either be realised in an automated fashion or with
the user’s interaction. Still OCCI makes this idea possible. Without an interoperable
interface, a Cloud Broker of querying different cloud providers using one client
would be impossible. Indeed, there is a current trend to enable interoperability
through the use of facade/proxy service intermediaries. This is but a temporary
solution as this approach leads to additional overhead in terms of inefficiencies,
additional maintenance, configuration and management. This is something that
OCCI seeks to remove and solve by doing so.

Next to driving adoption, the OCCI working group will focus on standardized
interfaces for advanced reservation, monitoring and billing techniques. Also seman-
tic enabled renderings will be added to the specification. Currently, the group is
looking into JSON, XML or RDF/RDFa renderings.

What this paper demonstrated is that OCCI can be used on many layers of
the Cloud Stack (IaaS and PaaS) and is possibly one of the small but important
contributions to realise Cloud offerings. Even when narrowing the field to Data
Management in Cloud and Grids, the OCCI interface can and must play a roll as
an enabler.

Acknowledgements The authors acknowledge the contributions of all members of the OCCI
working group. This work is partially supported by the German Ministry of Education and
Research under project grant #01IG09009, and is partially supported by the European Community
Seventh Framework Programme (FP7/2001-2013) under grant agreement no.216556.

References

1. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-Agreement). In:
Standards Track, no. GFD-R.107 in The Open Grid Forum Document Series, Grid Resource
Allocation Agreement Protocol (GRAAP) Working Group, Muncie (IN) (2007)

2. Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, S., Pulsipher,
D., Savva, A.: Job Submission Description Language (JSDL) Specification, Version 1.0. In:
Standards Track, no. GFD-R.56 in The Open Grid Forum Document Series, Job Submission
Description Language (JSDL) Working Group, Muncie (IN) (2005)

17http://www.openstack.org.

48 A. Edmonds et al.

3. Blackmon, M.L.: A climatological spectral study of the 500 mb geopotential height of the
northern hemisphere. J. Atmos. Sci. 33, 1607–1623 (1976)

4. Crosby, S., Doyle, R., Gering, M., Gionfriddo, M., Hand, S., Hapner, M., Hiltgen, D.,
Johanssen, M., Leung, J., Machida, F., Maier, A., Mellor, E., Parchem, J., Pardikar, S., Schmidt,
S.J., Warfield, A., Weitzel, M.D., Wilson, J.: Open virtualization format specification. In:
Grarup, S., Lamers, L.J., Schmidt, R.W. (eds.) Standards and Technology, no. DSP0243 in
DMTF Specifications, Distributed Management Task Force (2009)

5. Erwin, D.W., Snelling, D.F.: UNICORE: A grid computing environment. In: Sakellariou,
R., Gurd, J., Freeman, L., Keane, J. (eds.) Proceedings of the 7th International Euro-Par
Conference, Lecture Notes in Computer Science (LNCS), vol. 2150, pp. 825–834. Springer,
Heidelberg (2001)

6. Fielding, R.T.: Architectural styles and the design of network-based software architectures.
PhD thesis, University of California, Irvine (2000)

7. Foster, I., Kesselman, C.: Globus: A toolkit-based grid architecture. In: The grid: Blueprint for
a future computing infrastructure, pp. 259–278, 1st edn. Morgan Kaufman, San Mateo (1998)

8. Foster, I., Grimshaw, A., Lane, P., Lee, W., Morgan, M., Newhouse, S., Pickles, S., Pulsipher,
D., Smith, C., Theimer, M.: OGSA Basic Execution Service Version 1.0. In: Standards Track,
no. GFD-R.108 in The Open Grid Forum Document Series, Open Grid Services Architecture
Basic Execution Services (OGSA-BES) Working Group, Muncie (IN) (2006)

9. Grimme, C., Papaspyrou, A.: Cooperative negotiation and scheduling of scientific workflows in
the collaborative climate community data and processing grid. Future Generat. Comput. Syst.
25, 301–307 (2009)

10. Metsch, T., Edmonds. A., et al.: Open Cloud Computing Interface – Core and Models.
In: Standards Track, no. GFD-R in The Open Grid Forum Document Series, Open Cloud
Computing Interface (OCCI) Working Group, Muncie (IN) (2010)

11. Metsch, T., Edmonds, A., et al.: Open Cloud Computing Interface – HTTP Rendering.
In: Standards Track, no. GFD-R in The Open Grid Forum Document Series, Open Cloud
Computing Interface (OCCI) Working Group (2010)

12. Metsch, T., Edmonds, A., et al.: Open Cloud Computing Interface – Infrastructure. In:
Standards Track, no. GFD-R in The Open Grid Forum Document Series, Open Cloud
Computing Interface (OCCI) Working Group, Muncie (IN) (2010)

13. Metsch, T., Edmonds, A., Bayon, V.: Using cloud standards for interoperability of cloud
frameworks. Tech. rep., SLA@SOI project (FP7 ICT-2007.1.2-216556. http://sla-at-soi.eu/wp-
content/uploads/2010/04/RESERVOIR-SLA@SOI-interop-techReport.pdf(2010)

14. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Sebastopol (CA) (2007)
15. Schulzweida, U., Kornblueh, L.: CDO User’s Guide, Climate Data Operators, Version 1.0.6

(2006)
16. Slik, D., Siefer, M., Hibbard, E., Schwarzer, C., Yoder, A., Bairavasundaram, L.N., Baker, S.,

Carlson, M., Nguyen, H., Ramos, R.: Cloud data management interface. In: SNIA Technical
Position Series, 1st edn. Storage Network Industry Association, San Francisco (2010)

17. Theilmann, W., Yahyapour, R., Butler, J.: Multi-level SLA management for service-oriented
infrastructures. In: Mähonen, P., Pohl, K., Priol, T. (eds.) Towards a Service-Based Internet,
Lecture Notes in Computer Science (LNCS), vol. 5377, pp, 324–335. Springer, Heidelberg
(2008)

18. Theilmann, W., Happe, J., Ellahi, T., Torelli, F., Kearney, K., Lambea, J., Fuentes,
B., Vuk, M., Guinea, S., Edmonds, A., Nolan, M., Brosch, F., Kotsokalis, K.:
Deliverable D.A1a: Framework Architecture (full lifecycle). Tech. rep., SLA@SOI
project (FP7 ICT-2007.1.2-216556, http://sla-at-soi.eu/wp-content/uploads/2009/07/D.A1a-
M26-FrameworkArchitecture.pdf(2010)

Part II
Research Efforts on Grid Database

Management

•

Chapter 3
The GRelC Project: From 2001 to 2011,
10 Years Working on Grid-DBMSs

Sandro Fiore, Alessandro Negro, and Giovanni Aloisio

Abstract This chapter provides a complete overview on the Grid Relational
Catalog (GRelC) Project, a grid database research effort started in 2001 at the
University of Salento. The project’s main features, its interoperability with gLite-
based production grids, and a relevant show-case in the environmental domain are
presented.

3.1 Introduction

The management of large volume of data is a big challenge for several scientific
domains such as Bioinformatics, Earth Science, High Energy Physics, and Astron-
omy. Computational and Data grids [1] provide the proper foundations to store,
access, and analyze such a huge amount of data taking advantage of the large
number of available distributed computational cores.

Over the last two decades, several data grid research efforts, such as the European
DataGrid [2], the Storage Resource Broker [3], and the Globus GridFTP [4] tried to
address several issues concerning file management in a grid environment, distributed
file systems, grid storage services, data replication, efficient transfer protocols, etc.
Yet, it was only in the last 10 years that the interest in grid-database systems
distributed query processing, grid-database replication, concurrency management
in a grid environment has significantly increased. A research effort started in 2001

S. Fiore (�) � G. Aloisio
Euro-Mediterranean Centre for Climate Change (CMCC), via Augusto Imperatore 16, 73013
Lecce, Italy
and
University of Salento, via per Monteroni, 73100, Lecce, Italy
e-mail: sandro.fiore@unisalento.it; giovanni.aloisio@unisalento.it

A. Negro
University of Salento, via per Monteroni, 73100, Lecce, Italy
e-mail: alessandro.negro@unisalento.it

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 3, © Springer-Verlag Berlin Heidelberg 2011

51

52 S. Fiore et al.

at the University of Salento and falling in this second category is the GRelC project
[5], which is the main topic of this chapter.

The outline is as follows: Section 3.2 presents the 10-year history of the GRelC
project. Section 3.3 provides a complete overview about the most relevant work in
this area. Section 3.4 presents the grid database management system vision from
the GRelC project perspective. Section 3.5 summarizes the key points related to the
GRelC service, whereas Sect. 3.6 highlights the most important gLite-based features
of this middleware. Section 3.7 presents a GRelC service showcase in the climate
change domain. Section 3.8 concludes this chapter highlighting some future work.

3.2 The GRelC Project: A Decade of Research Efforts
on Grid-DBMS

The GRelC project started in 2001 as a research effort at the University of Salento
with a Ph.D. thesis. The initial goal was both simple and ambitious: to provide a
set of data grid services to transparently, securely and efficiently manage relational
databases in a grid environment. Such a piece of software was completely missing in
the existing middleware (Globus [6]). The first use case was a relational information
system named dynamic grid catalog (DGC) [7]. At that time, the most relevant grid
information system was the MDS of Globus and it exploited a hierarchical data
model. Conversely, the DGC service exploited a relational data model in the back-
end. The same MDS information, but with a relational schema, was managed by
the DGC service. A super-peer model was also proposed in 2003 to implement
distributed scenarios. Preliminary performance results were successful and proved
that such an approach could be suitable to manage relational information systems
and more in general relational back-ends.

The GRelC service was an evolution of the DGC one. While the DGC service
managed a relational database with a specific schema (for information system
purposes), the GRelC service was able to manage whatever database regardless of
its schema. New scenarios related to data access, integration, analysis, federation of
grid-enabled databases were then possible. The scope and the number of potential
use cases became wider making the GRelC service as general as the existing
middleware services (e.g., GRAM, GridFTP, MDS).

Before its release, many tests were carried out to check the performance, the
security framework (in terms of both authentication and authorization), the server
robustness, etc. The EU GridLab project was an important test-case for several
GRelC libraries and internal components of this service [8].

Until 2004, the GRelC releases exploited aclient–server architecture, a propri-
etary communication protocol and the Grid Security Infrastructure [9]. Moreover,
an integration service (named GRelC Gather Service [10]) was also developed to
integrate relational databases geographically spread and adopting the same schema.
A relevant use case was a health grid information system [11]. Supported DBMS
were basically PostgreSQL and MySQL.

3 The GRelC Project: From 2001 to 2011, 10 Years Working on Grid-DBMSs 53

In the same period, there was a community migration toward open grid ser-
vice architecture (OGSA) [12] and WebService (WS)-based implementations. The
GRelC service was completely re-engineered to address interoperability through
a WS-based approach. Instead of moving toward OGSI (which seemed to be too
heavy), the GRelC service was implemented as a web service WS-I compliant and
GSI enabled that is a very light implementation.

For a couple of years (until 2006), a lot of features were added to the GRelC
service.

Most of them addressed:

– Performance (in particular grid-enabled queries in a geographical environment),
through new and advanced query delivery mechanisms relying on compression,
streaming, chunking, and prefetching. National and international performance
tests [13,14] were carried out to prove the efficiency of grid-enabled queries with
regard to the well-known direct database connection approaches (ODBC/JDBC).

– Database schema: Dump, restore, and automatic registration of existing data-
bases were successfully implemented to further extend the available set of
functionalities.

– DBMS support, extending the back-end libraries to access to Oracle and IBM
DB2 systems [15].

In 2006, the GRelC team started two important activities: the GRelC Portal [16]
and a gLite-based release (see Sect. 3.6). The GRelC Portal was the first general-
purpose web application able to access to grid-databases via Internet, and it was
really effective to provide a transparent and ubiquitous access to data.

On the contrary, the gLite-based release (2007) was a crucial step to meet
the EGEE community, their use cases and needs. This community provided new
important requirements, particularly in the Earth Science context (EGEE NA4).
That release was also available for training and dissemination purposes through the
GILDA t-infrastructure [17].

From 2007, the GRelC service has also been adopted at the Euro Mediterranean
Center for Climate Change (CMCC) [18] to address and solve challenging data and
metadata issues in the Environmental domain. New releases were customized for
CMCC users according to new requirements and needs coming from this scientific
domain (the XML support to access to ISO19139-compliant metadata documents is
a relevant example).

From 2008, the GRelC software has been included into the Italian grid release
(gLite-based) and distributed into the Worker nodes and User Interfaces components
across the Italian country. This way, several performance tests based on the gLite
middleware were also carried out to stress the system and prove its stability. In the
same year, GRelC was included into the EGEE RESPECT Program [19] due to its
compatibility with the gLite middleware and its added value with regard to new
database-oriented functionalities that were not available in the gLite release at that
time.

54 S. Fiore et al.

At the end of 2008, the GRelC service was adopted into the Climate-G testbed
(see Sect. 3.7) to provide distributed data access to climate change datasets. This
testbed currently represents the most valuable use case for this software.

From 2009 to 2010, new GRelC releases (server and portal) addressing stability,
management, and monitoring were made available to the user community.

In 2011, the GRelC team will face new challenges. The most relevant one will
be related to the EGI Database of Databases (a global registry hosting the list
of DB resources available in the EGI context). The registry will complement the
EGI Application Database allowing scientists to know more about existing DBs,
their location, main purpose, available data, etc. This will help the co-operation
and interaction among research groups, promoting a more effective publishing and
sharing of grid-enabled data sources.

3.3 Related Work

Over the last decade, several projects have addressed the main goal of managing
databases in a grid environment. This section presents the most relevant ones, along
with the main differences with the GRelC project.

The Spitfire Project [20] was part of the Work Package 2 of the European Data
Grid Project and provided a means to access relational databases from the grid. Both
GRelC and Spitfire started in 2001 and can be considered as the first efforts in this
area.

The Open Grid Services Architecture Data Access and Integration (2002) [21]
is a project concerning the development of middleware to assist with access
and integration of data from separate data sources via the grid. OGSA-DAI is
also strongly connected with OGF [22] standardization bodies and activities,
and it is/was exploited in several international projects and in different scientific
domains. With regard to GRelC, which is able to handle data integration among
databases with the same schema, OGSA-DAI provides a more general distributed
query processor (DQP) [23]. A technical difference relates to the programming
language (C for GRelC, Java for OGSA-DAI). Finally, while GRelC has a stronger
support on the client side (GRelC Portal, command line interface for end-users
and administrators and the XGRelC GUI) and a better integration with the gLite
middleware (support for BDII is also available), OGSAI-DAI provides WS-DAI�
[24] compliant interfaces and dataflow support (through the activity concept).

The Grid Miner Project [25] focuses its effort on data mining and on-line
analytical processing (OLAP), two complementary technologies able to provide a
highly efficient and powerful data analysis and knowledge discovery solution on the
Grid when applied in conjunction with each other. With regard to Grid Miner, both
OGSA-DAI and GRelC focus more on low-level access and integration layers and
services.

The Mobius Project [26] aims at developing an array of tools and middleware
components to coherently share and manage data and metadata in a Grid and/or
distributed computing environment.

3 The GRelC Project: From 2001 to 2011, 10 Years Working on Grid-DBMSs 55

AMGA [27] is the gLite Metadata Catalogue, designed to meet the requirements
of the EGEE applications. The main features are connected with a hierarchical
organization of metadata (organized internally in a tree-like structure), dynamic
schema creation, and replication of metadata collections. VOMS [28] support is
also available. Even though AMGA is today able to access relational databases,
its initial focus was mainly on metadata. With regard to GRelC, AMGA does not
provide support for XML resources, but it already implements the OGF WS-DAIR
specification.

3.4 Grid Database Management System: The GRelC
Perspective

The GRelC service represents a (partial) implementation of a grid database manage-
ment system (GDMS). In our vision, a GDMS is an architectural stack consisting
of several layers (fabric, data access, management, and collective) addressing in
particular access, integration, management, monitoring, harvesting, and replication
(see Fig. 3.1). From 2004 [29] to 2011 [30], this stack has been refined by
considering and including all of the needed building blocks for this kind of system.
Yet, it is important to point out that the final picture has not been revolutionized after
approximately 10 years, due to its initial far-sighted design.

A complete overview of the four layers is presented as follows to have a complete
understanding of our GDMS vision.

The Fabric layer represents the typical fabric layer that can be found in most
of the grid-oriented architectures. Obviously, it refers to the database resources,

Fig. 3.1 The GDMS stack

56 S. Fiore et al.

and it is characterized by a high level of heterogeneity with regard to the DBMS
servers, the data models, the supported data formats, the available APIs, the security
frameworks, the supported platforms, etc.

The Data Access refers to the grid database access interface. According to the
hourglass model, such an interface must provide a uniform and grid-enabled entry
point to the underlying and heterogeneous database resources. From a security point
of view, a data access service must basically provide support for the Grid Security
Infrastructure, the de-facto standard for security in a grid environment.

The Management layer relates to a user-transparent level devoted to monitoring,
management, and control functionalities. At this level, several metrics can be
collected to check the status of the underlying data access services. ECA rules
mechanisms can also be implemented at this layer along with global, advanced,
and automatic detection tools or completely/semiautomatic diagnosis tools.

The Collective layer consists of a set of services to carry out data integration,
data harvesting, data replication, query distribution, etc. Collective services base
their decisions on statistics collected by and available from the Management layer.
There is also a direct interaction between these services and the underlying layers
(Management and Data Access) to carry out different activities.

In the context of the GRelC Project, the Data Access layer has been completely
implemented. However, the Management and Collective layers have been only
partially addressed.

3.5 The GRelC Service in a Nutshell

The GRelC service architecture and infrastructure have been already discussed in
detail in several works [31, 32]. A brief description of this service is presented as
follows focusing on few, simple but relevant concepts. This section actually provides
a concise and complete summary (the GRelC service in a nutshell) by highlighting
the ten most important concepts related to this service.

1. The GRelC service is a WS-I compliant, GSI, and VOMS enabled web service.
These are three fundamental aspects related to the access interface (WS-based),
the security infrastructure (GSI), and the authorization support (VOMS).

2. This software provides a complete command line interface able to support the
user in terms of access and administration needs.

3. The same can be done through the GRelC Portal, which provides a web-based
ubiquitous, transparent, and seamless access to the GRelC service.

4. As regards interoperability, the GRelC service runs both on gLite- and Globus-
based environments. Since the software only depends on the GSI as far as grid
middleware is concerned, it could basically run on any GSI-based middleware.

5. Support is provided for relational (MySQL, PostgreSQL, SQLite, IBM DB2
and Oracle) and XML-based (Xindice, eXist, XML flat-files) back-ends.

3 The GRelC Project: From 2001 to 2011, 10 Years Working on Grid-DBMSs 57

6. The service does not change the SQL query submitted by the user (SQL
tunnelling), allowing the users to take advantage of proprietary SQL extensions
available in the back-end system. Anyway, it performs some checks on it
to avoid query injection and to prevent malicious users from carrying out
disruptive actions on the target data sources.

7. The application programming interfaces (APIs) and the SDK are available for
C and Java developers.

8. The available grid-enabled queries exploit compression, chunking and stream-
ing to enhance performance. Performance comparisons are available in [13] and
[14].

9. The asynchronous query support is available to implement distributed and
gLite-based scenarios. Additional details can be found in [33].

10. A complete authorization framework and a rich set of policies support different
authorization schemas and scenarios as stated in [34].

3.6 A Crucial Step: Moving Toward EGEE and gLite

The GRelC service was ported on the gLite platform in 2007 for preliminary tests;
yet, the GRelC roadmap on how to move toward EGEE and gLite was a bit more
articulated [35].

The first release was GSI enabled but not VOMS compliant, allowing just the
implementation of local authorization schemas. The VOMS support was added
to the GRelC service in few weeks, to fully address the security framework
compatibility with the other gLite components.

The second action was at the architectural level. The EGEE middleware consisted
of several components to manage data and computational resources, schedule jobs
on the grid, manage authorization at VO level, etc. In particular, the EGEE farm
model relied only on few components: a storage element to manage files and a
computing element and worker nodes to run computational jobs. Owing to the fact
that a grid-database support was completely missing in that model, an extended
farm model was proposed to include database oriented support and functionalities
(see Fig. 3.2). The proposed farm model extension improved the user/VO support
adding to the EGEE farm new capabilities concerning the grid-DB management,
without changing or limiting those already existing.

To have the GRelC service completely integrated into the farm structure, a BDII
support was also added. This means that the GRelC service was able to publish on
the BDII (like the computing element or the storage element) information about
the available database resources. This was the first research effort in this area (the
provided extensions were completely proprietary). The opportunity to publish data
on the information systems enabled gLite broker components to discover the grid-
database resources available on the grid.

58 S. Fiore et al.

Query
submission

Job
submission

Data Transfer
(files)

BDII query

GRelC
DAS

Computing
Element

Storage
Element

Files

Worker Nodes

Databases

BDII

Fig. 3.2 The EGEE extended farm model

Finally, the asynchronous support [31] was added to the GRelC service to enable
it to act, with regard to the database queries, as the computing element dealing with
the computational jobs.

All these activities were carried out in about a year, allowing the GRelC service
to be included into the EGEE RESPECT Program in mid-2008.

An important activity in the EGEE context was related to training. Thanks to
the GILDA team, a training environment for the GRelC service was quickly set up,
enabling EGEE users to carry out training activities, submit queries, and exploit the
GRelC command line interface and portal. In the EGEE context, GILDA acted as a
crucial component of the project’s t-infrastructure (training infrastructure) program,
helping to pass on knowledge and experience, as well as computing resources, to
the scientific community and Industry.

3.7 An International and Multidisciplinary Use Case:
Climate-G

This section presents the most relevant use case exploiting the GRelC service,
namely the Climate-G testbed [30]. It is an interdisciplinary research effort devoted
to the Environmental domain and involving both computer science and climate
change researchers and scientists. It acts as a virtual laboratory, across Europe and
USA, addressing data and metadata management issues at a very large scale.

3 The GRelC Project: From 2001 to 2011, 10 Years Working on Grid-DBMSs 59

The main goal of Climate-G is to allow scientists to carry out geographical and
cross-institutional data discovery, access, visualization and sharing of climate data.

Such a testbed has been conceived in the context of the EGEE Earth Science
Cluster Community. The main partners are: Centro Euro-Mediterraneo per i Cam-
biamenti Climatici (CMCC, Italy), Institut Pierre-Simon Laplace (IPSL/CNRS,
France), Fraunhofer Institut für Algorithmen und Wissenschaftliches Rechnen
(SCAI, Germany), National Center for Atmospheric Research (NCAR, USA) and
Rensselaer Polytechnic Institute (RPI, USA), University of Reading (Reading, UK),
University of Cantabria (UC, Spain), and University of Salento (UniSalento, Italy).

Distributed data and metadata management (hundreds of Petabytes of climate
datasets) represents the key challenge related to the GRelC service that will
be presented in this section. Data distribution comes from the need of sharing
data among centers without moving it to a central repository, whereas metadata
distribution is strongly needed to address local autonomy, scalability, and fault
tolerance.

Each site participating in the Climate-G testbed hosts an OPeNDAP/THREDDS
[36] server (domain-oriented service) to manage some climate change datasets
and makes them available to the users. Furthermore, some of the sites host a
GRelC server (grid-oriented service) to manage the metadata experiments about
the available datasets. The co-existence of grid and domain-related services is an
important user requirements addressed by the testbed.

Figure 3.3 depicts the Climate-G network of metadata services. A grid-enabled
harvester (basically, a GRelC client) is also part of the infrastructure to collect and
gather the relevant metadata from each GRelC service.

While the OPeNDAP services provide access, subsetting and download func-
tionalities, the GRelC services enable search and discovery functionalities, making
distributed data effectively accessible and shareable by the scientific community.

In the Climate-G testbed, metadata are stored both in relational and in XML
databases, and they are available through the same grid-enabled GRelC interface.
Although the relational databases (even including the harvester DB) contain just
key information about the available experiments, the XML databases store the full
experiments descriptions (ISO 19115/19139 and INSPIRE [37] compliant).

The entry point of the testbed is the Climate-G Portal. It exploits the GRelC client
Java package to implement the search and discovery functionalities, as well as the
XML metadata access, the web-based proxy creation and the access to the list of
datasets, experiments and projects. It is worth mentioning that monitoring facilities
are also available in the Climate-G Portal. They give the administrators full control
of the underlying metadata systems with real-time monitoring capabilities, reports,
and statistics about the involved resources.

This testbed represents the most valuable showcase for GRelC. In June 2009, dur-
ing the first year review of the EGEE-III Project, a demonstration of the Climate-G
testbed was presented to a European Commission appointed panel. The work was
evaluated by the EGEE NA4 Steering Committee, EGEE Activity Management
Board and the European Commission “as indicative of the excellent scientific work
being done on the grid and of the advancement of grid services/tools”.

60 S. Fiore et al.

Fig. 3.3 The grid metadata system in the Climate-G testbed

3.8 Conclusions and Future Work

This chapter provided an overview of the GRelC project, its history, the grid
database management vision, the main features of the GRelC service, the path
toward EGEE and gLite, and finally a real showcase (the Climate-G testbed) related
to the Earth Science and the Environmental domains. Due to the huge amount of
scientific work that has been done in the context of this research project, it was
not easy to single out the most relevant milestones achieved in approximately 10
years of history. The authors tried to highlight the key points of this research effort,
leaving out many technicalities, implementation aspects, and low level details.

Future work will address the major issues at the management and collective
layers, to complete and improve what has been done so far. The OGF WS-DAI�
specifications will also be implemented and tested to address interoperability and
to enable new challenging scenarios involving different, yet interoperable, grid
database access and integration services.

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, CA (1998)

2. Cameron, D., et al.: Replica management in the European DataGrid Project. J. Grid Comput.
2(4), 341–351 (2004). doi:10.1007/s10723-004-5745-x

3. Rajasekar, A., Wan, M., Moore, R., Schroeder, W., Kremenek, W., Jagatheesan, A., Cowart,
C., Zhu, B., Chen, S.-Y., Olschanowsky, R.: Storage resource broker – managing distributed
data in a grid. Comp. Soc. India J. Special Issue on SAN 33(4), 42–54 (2003)

3 The GRelC Project: From 2001 to 2011, 10 Years Working on Grid-DBMSs 61

4. Bresnahan, J., Link, M., Khanna, G., Imani, Z., Kettimuthu, R., Foster, I.: Globus GridFTP:
What’s new in 2007. In: Proceedings of the First International Conference on Networks for
Grid Applications (GridNets 2007), pp. 1–5 (2007)

5. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M.: The grid relational catalog project, advances
in parallel computing. In: Grandinetti, L. (ed.) Grid Computing: The New Frontiers of High
Performance Computing, pp. 129–155. Elsevier, Amsterdam (2005)

6. Foster, I.: Globus toolkit version 4: Software for service-oriented systems. In: IFIP Interna-
tional Conference on Network and Parallel Computing, LNCS, vol. 3779, pp. 2–13. Springer,
Heidelberg (2006)

7. Aloisio, G., Cafaro, M., Blasi, E., Epicoco, I., Fiore, S., Mirto, M.: Dynamic grid cata-
log information service. In: Proceedings of the First European Across Grids Conference,
13–14 Feb 2003. Santiago de Compostela (Spain), LNCS, vol. 2970, pp. 198–205. Springer,
Heidelberg (2003)

8. Aloisio, G., Cafaro, M., Epicoco, I., Fiore, S., Lezzi, D., Mirto, M., Mocavero, S.: Resource
and service discovery in the iGrid information service. In: Gervasi, O., et al. (eds.) ICCSA
2005: International Conference – Grid Computing and Peer-to-Peer Systems, Lecture Notes in
Computing Science, Singapore, 9–12 May 2005, vol. 3482, pp. 1–9. ISBN 3-540-25862-0

9. Foster, I., Kesselmann, C., Tsudik, G., Tuecke, S.: A security architecture for computational
grids. In: Proceedings of 5th ACM Conference on Computer and Communications Security
Conference, pp. 83–92 (1998)

10. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M., Vadacca, S.: GRelC data gather service:
A step towards P2P production grids. In: Proceedings of 22nd ACM Symposium on Applied
Computing (SAC 2007), pp. 561–565

11. Mirto, M., Aloisio, G., Cafaro, M., Fiore, S.: A gather service in a health grid environment.
In: CD-Rom of Medicon and Health Telematics 2004, IFMBE Proceedings, vol. 6, 31 July–05
August, Island of Ischia, Naples, Italy

12. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open grid services
architecture for distributed system integration. www.globus.org/research/papers/ogsa.pdf

13. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M.: Advanced delivery mechanisms in the GRelC
project. In: ACM Proceeding of 2nd International Workshop on Middleware for Grid Comput-
ing (MGC 2004), 18 Oct 2004, Toronto, ON, Canada, pp. 69–74

14. Fiore, S., Negro, A., Vadacca, S., Cafaro, M., Aloisio, G., Barbera, R., Giorgio, E.: Advances
in the GRelC data access service. In: Proceedings of ISPA 2008, 10–12 Dec 2008, Sydney,
Australia, pp. 849–854

15. Mirto, M., Epicoco, I., Fiore, S., et al.: The LIBI grid platform for bioinformatics. In:
Cannataro, M. (ed.) Handbook of Research on Computational Grid Technologies for Life
Sciences, Biomedicine and Healthcare, pp. 577–613. ISBN: 978-1-60566-374-6, May 2009.
Published under Medical Information Science Reference, IGI Global. University Magna
Graecia of Catanzaro, Italy. http://www.igi-global.com/reference/details.asp?id=34292

16. Fiore, S., Negro, A., Vadacca, S., Verdesca, E., Leone, A., Aloisio, G.: The GRelC portal: A
seamless and ubiquitous way to manage grid databases. In: Proceedings of PDCAT 2008 –
01–04 Dec 2008, Dunedin, New Zealand, pp. 413–418

17. Andronico, G., Ardizzone, V., Barbera, R., Catania, R., Carrieri, A., Falzone, A., Giorgio, E.,
La Rocca, G., Monforte, S., Pappalardo, M., Passaro, G., Platania, G.: GILDA: The grid INFN
virtual laboratory for dissemination activities. TRIDENTCOM, pp. 304–305 (2005)

18. Fiore, S., Vadacca, S., Negro, A., Aloisio, G.: Data issues at the Euro-mediterranean Centre for
Climate Change. J. Earth Sci. Inform. 2(1–2), 23–35 (2009). doi:10.1007/s12145-009-0023-x

19. EGEE RESPECT Program. http://technical.eu-egee.org/index.php?id=290
20. Hoschek, W., McCance, G.: Grid enabled relational database middleware. Informational

Document Global Grid Forum, Frascati, Italy, 7–10 October 2001

62 S. Fiore et al.

21. Antonioletti, M., Atkinson, M.P., Baxter, R., Borley, A., Chue Hong, N.P., Collins, B.,
Hardman, N., Hume, A., Knox, A., Jackson, M., Krause, A., Laws, S., Magowan, J., Paton,
N.W., Pearson, D., Sugden, T., Watson, P., Westhead, M.: The design and implementation
of grid database services in OGSA-DAI. Concurrency Comput. Pract. Ex. 17(2–4), 357–376
(2005)

22. Antonioletti, M., Krause, A., Paton, N.W.: An outline of the global grid forum data access and
integration service specifications, VLDB DMG 2005. Lect. Notes Comput. Sci. 3836, 71–84
(2005)

23. Dobrzelecki, B., Krause, A., Hume, A., Grant, A., Antonioletti, M., Alemu, Y., Atkinson, M.,
Jackson, M., Theocharopoulos, E.: Integrating distributed data sources with OGSA–DAI DQP
and Views. Phil. Trans. R. Soc. A 368(1926), 4133–4145 (2010). doi: http://dx.doi.org/10.
1098/rsta.2010.0166

24. Antonioletti, M., Krause, A., Paton, N.W., Eisenberg, A., Laws, S., Malaika, S., Melton, J.,
Pearson, D.: The WS-DAI family of specifications for web service data access and integration.
ACM SIGMOD Rec. 35(1), 48–55 (2006)

25. Brezany, P., Janciak, I., Min Tjoa, A.: Data mining on the grid: Perspective from the GridMiner
experience. In: 5th Cracow Grid Workshop, Poland, 21–23 Nov 2005

26. Hastings, S., Langella, S., Oster, S., Saltz, J.: Distributed data management and integration
framework: The Mobius project. In: Proceedings of the Global Grid Forum 11 (GGF11)
Semantic Grid Applications Workshop, pp. 20–38 June 2004

27. Santos, N., Koblitz, B., Distributed metadata with the AMGA metadata catalog. In: The
Proceedings of the Workshop on Next-Generation Distributed Data Management HPDC-15,
Paris, France, June 2006

28. Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L., Frohner, A., Gianoli, A., Lorentey,
K., Spataro, F.: VOMS, an Authorization System for Virtual Organizations. LNCS, vol. 2970,
pp 33–40. Springer, Heidelberg (2004)

29. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M.: The GRelC project: Towards GRID-DBMS.
In: Proceedings of Parallel and Distributed Computing and Networks (PDCN) – IASTED,
Innsbruck, Austria, pp. 1–6, 17–19 February 2004

30. Fiore, S., Negro, A., Aloisio, G.: The data access layer in the GRelC system architecture. Future
Generat. Comput. Syst. 27(3), 334–340 (2011)

31. Fiore, S., Negro, A., Vadacca, S., Cafaro, M., Aloisio, G., Barbera, R., Giorgio, E.: An
architectural overview of the GRelC data access service. In: Udoh, E., Wang, F. (ed.) Handbook
of Research on Grid Technologies and Utility Computing: Concepts for Managing Large-Scale
Applications, pp. 98–108. IGI Global, PA (2009)

32. Fiore, S., Cafaro, M., Mirto, M., Vadacca, S., Negro, A., Aloisio, G.: The GRelC project: State
of the art and future directions. In: Grandinetti, L. (ed.) High Performance Computing and
Grids in Action, vol. 16, pp. 331–344. IOS Press, VA (2008)

33. Fiore, S., Cafaro, M., Vadacca, S., Negro, A., Verdesca, E., Mirto, M., Aloisio, G.: Asyn-
chronous query mechanisms within the GRelC data access service. In: Proceedings of
the IASTED International Conference, Parallel and Distributed Computing and Networks,
pp. 49–54. Innsbruck, Austria, 12–14 Feb 2008

34. Fiore, S., Negro, A., Aloisio, G.: Data virtualization in grid environments through the GRelC
data access and integration service. In: Proceedings 4th International Conference for Internet
Technology and Secured Transactions, IEEE, (ICITST 2009), pp. 817–822. London, UK, 9–12
Nov 2009

35. Fiore, S., Cafaro, M., Negro, A., Vadacca, S., Aloisio, G., Barbera, R., Giorgio, E.: GRelC
DAS: A Grid-DB access service for gLite based production grids. In: IEEE Proceedings
of the Fourth International Workshop on Emerging Technologies for Next-generation GRID
(ETNGRID 2007), pp. 261–266. Paris, France, 18–20 June 2007

36. Cornillon, P., Gallagher, J., Sgouros, T.: OPeNDAP: accessing data in a distributed, heteroge-
neous environment. Data Sci. J. 2, 164–174 (2003)

37. INSPIRE Directive: Directive 2007/2/EC of the European Parliament and of the Council
of 14 March 2007 establishing an Infrastructure for Spatial Information in the European
Community (INSPIRE)

Chapter 4
Distributed Data Management with OGSA–DAI

Michael J. Jackson, Mario Antonioletti, Bartosz Dobrzelecki,
and Neil Chue Hong

Abstract OGSA–DAI provides a framework for sharing and managing distributed
data. OGSA–DAI is highly customizable and can be used to manage, share and
process distributed data (e.g. relational, XML, files and RDF triples). It does this
by executing workflows that can encapsulate complex distributed data management
scenarios in which data from one or more sources can be accessed, updated,
combined and transformed. Moreover, the data processing capabilities provided
by OGSA–DAI are further augmented by a powerful distributed query processor
and relational views component that allow distributed data sources to be viewed
and queried as if they were a single resource. OGSA–DAI allows researchers and
business users to move away from logistical and technical concerns such as data
locations, data models, data transfers and optimization strategies for data integration
and instead focus on application-specific data analysis and processing.

4.1 Introduction

The Open Grid Services Architecture–Data Access and Integration Services
(OGSA–DAI) framework has, since its inception in 2002, been designed to serve
as a solution for complex distributed data management challenges in academia,
industry and commerce. OGSA–DAI provides an environment for the execution
of complex distributed data management scenarios in which data from multiple
sources and of multiple types (e.g. relational, XML, files, RDF triple stores, web
services) can be accessed, updated, combined, filtered, transformed and delivered.

M.J. Jackson (�) � M. Antonioletti � B. Dobrzelecki � N.C. Hong
EPCC, The University of Edinburgh, James Clark Maxwell Building, The King’s Buildings,
Mayfield Road, Edinburgh EH9 3JZ, UK
e-mail: Mike.Jackson@ed.ac.uk; Mario.Antonioletti@ed.ac.uk;
bartosz.dobrzelecki@googlemail.com; N.P.ChueHong@ed.ac.uk

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 4, © Springer-Verlag Berlin Heidelberg 2011

63

64 M.J. Jackson et al.

Instead of being tailored as a solution to a specific distributed data management
problem, OGSA–DAI has been designed to be extensible. It allows customizations
to be made for individual application-specific requirements, whether this is in terms
of the data resources supported, the data processing operations executed or the way
in which the framework is accessed or exposed. Data streaming is fundamental to
OGSA–DAI enabling the processing of large data sets and the implicit exploitation
of any parallelism available on the machines on which it runs.

OGSA–DAI includes a distributed query processor for relational data sources
[1], which has its origin in the OGSA–DQP distributed query processor [2, 3]
developed by the Universities of Manchester and Newcastle. This distributed query
processor allows complex queries involving distributed data sources to be expressed
declaratively.

Features such as these have facilitated OGSA–DAI’s adoption in the solution of
distributed data management challenges in a range of projects, organizations and
communities in different domains including: astronomy [4], earth sciences [5], geo-
spatial information systems [6, 7], chemistry [8], biochemistry [9], medicine [10–
12], social sciences [13], transportation [14], environment [15], classics [16] and
many more [17].

OGSA–DAI is free and available as a 100% Java open source product released
under an Apache 2.0 license. In October 2009, OGSA–DAI moved to being an
open source project employing open development processes, hosted at SourceForge
[18] and currently has project members from the University of Edinburgh and
the Universidad Politécnica de Madrid as well as other individual world-wide
contributors.

4.1.1 Overview

The remainder of this chapter motivates and illustrates the use of OGSA–DAI
through a worked example. In Sect. 4.2, the need for distributed data management
is illustrated via an example from health informatics. Section 4.3 introduces the
OGSA–DAI framework, its main components and how OGSA–DAI represents
and executes distributed data management scenarios via workflows. OGSA–DAI’s
distributed query processor is described in Sect. 4.4 and its SQL views components
in Sect. 4.5. How OGSA–DAI supports interoperability with computational or data
analysis tools is shown in Sect. 4.6. Performance issues are discussed in Sect. 4.7.
Section 4.8 reviews related work. The chapter concludes with a discussion of the
strengths and weaknesses of OGSA–DAI and examines possible future directions.

4.2 A Distributed Data Use Case: Health Informatics

Every time a patient visits a health centre or hospital, or a doctor performs a
home visit, information is recorded in the patient’s medical records. This includes
personal details, for example name, address, medical details, symptoms. This data,

4 Distributed Data Management with OGSA–DAI 65

Fig. 4.1 Three regions are shown with two surgeries (not shown) whose catchment areas may
span the regions. Illness incidents are shown by dots. (a) (top left) Shows a global view where a
cluster of patients with symptoms between regions may give cause for concern; (b) (top right) and
(c) (bottom left) show the data available at each surgery; (d) (bottom right) shows the combined
data from both surgeries reconstituting the global view

if analysed, can provide important information, for example, whether an outbreak
of a contagious disease, such as swine flu, is imminent. One way to extract this
information would be to aggregate the patient numbers across surgeries within a
given region, as depicted in Fig. 4.1a. If the number of patients exhibiting particular
symptoms exceeds some critical threshold this might then give cause for concern
and set off an alarm. This would not be difficult to implement but it does assume
that all the patient data is readily available and can be easily accessed and analysed.
In reality, access to the data will typically not be so straightforward.

For instance, the region of interest may be covered by two surgeries with
overlapping catchment areas. Visualizing patients with symptoms in one surgery
might yield Fig. 4.1b, where the cluster does not exceed a critical threshold of
10. For the other surgery, shown in Fig. 4.1c, there is, likewise, no cluster greater
than the threshold because the cluster is within an area where the catchment areas
overlap. Only when the data from both surgeries is combined is the fact that there is
a cluster of patients with symptoms that exceed the threshold revealed, see Fig. 4.1d.

So, if the data is held across multiple sources, or databases, to identify clusters
of patients, there are a number of activities that need to be done:

• Need to obtain the numbers of patients exhibiting the symptoms of concern
together with the patient’s post codes from each surgery. For example, an
SQL query could be executed if the data is held in a relational database. An
example query, in SQL, might then be SELECT COUNT(�) AS count,
postcode FROM patients WHERE symptom D "FLU" GROUP BY
postcode;

• Combine, or union, this data together.
• Determine the final total counts of occurrences for each post code.

66 M.J. Jackson et al.

A dedicated application could be written to do this, which would have to handle
geographically distributed data, stored in different database products, which use
different data formats and use different authentication mechanisms. Keeping the
clients operational with all the surgery databases would be a nontrivial task.

To address this issue, a proxy server can be introduced. The server can be used to
manage the connections with the databases. If a surgery then changed its database,
only the server would need updating. A client only needs to connect to the server and
so is protected from changes that take place behind its interfaces. As a consequence,
clients can be more lightweight.

To further increase efficiency and flexibility, the server could also manage
execution of the data processing activities on a client’s behalf. A client then needs to
do is to tell the server what activities it wants to run. To do this, three activities can be
envisaged: one to query the first surgery’s database, one to query the second and one
to combine and summarize the results. Furthermore, if the data could be streamed
through the server, and the server execute these activities concurrently, for example,
combining and summarizing data as additional data is still being retrieved from the
databases, then this could yield a reduced load on the server and, potentially, a faster
response time for the client.

Furthermore, if the databases could be made to appear as a single database to a
client, then the activities the client needs to request would be simpler: a client would
only need to request the execution of a single query activity. Given the expressive
power of query languages, the client could specify how the data is to be combined
and summarized through a single query rather than having a separate activity to do
this. In other words, it would be easier if the client could specify the whole task
through a single query. For example:

SELECT SUM(count) AS total, postcode
FROM
((SELECT * FROM HealthCentreOne.patients
UNION ALL
(SELECT * FROM HealthCentreTwo.patients))

WHERE symptom="FLU" GROUP BY postcode ORDER BY total;

The server can take care of determining which queries need to be sent to which
database and what additional activities need to be run to execute the client’s query.
This is called distributed query processing (DQP). With DQP, the activities that
the client needs to tell the server to execute become much simpler: just run the SQL
query above. The processing complexity is transferred to the server. DQP also opens
up the possibility of optimizing queries to ensure that as much work is driven down
to the databases as possible and so spares the server from pulling in unnecessary
data. For example, it could transform the user’s query above into:

SELECT SUM(count) AS total, postcode
FROM
((SELECT COUNT(*) AS count, postcode

4 Distributed Data Management with OGSA–DAI 67

FROM HealthCentreOne.patients
WHERE symptom="FLU" GROUP BY postcode)
UNION ALL
(SELECT COUNT(*) AS count, postcode
FROM HealthCentreTwo.patients
WHERE symptom="FLU" GROUP BY postcode))

GROUP BY postcode ORDER BY total;

Note that the WHERE clause has been pushed to the databases themselves. Going
one stage further, it would be useful if it could make the patient data appear to be
as if in one single table, for example allpatients, and then the user could just
submit a very simple query like:

SELECT SUM(count) AS total, postcode
FROM allpatients
WHERE symptom="FLU" GROUP BY postcode ORDER BY total;

The server can then replace allpatients with the following and run the
rewritten query using DQP:

((SELECT * FROM HealthCentreOne.patients
UNION ALL
(SELECT * FROM HealthCentreTwo.patients))

Finally, if a client needs to visualise the data it can transform it into a suitable format,
for example, a JPG image file or a document written in the geographical markup
language KML [19]. As this is just a data transformation, it is again desirable to
let the server handle this. Also, instead of delivering the visualization data to the
client, the server can hold the image until the client is ready for it. The server could
return a URL telling the client from where it can retrieve the data. This would let the
client do other things while the server is processing and allow the server to cache
the result for other clients. The results can then just be obtained from the same
URL. In such a scenario, the set of activities that a client requests the server execute
becomes:

• Run a query to get the total counts of occurrences of patients with the symptoms
of concern distributed by post code.

• Map the post codes to latitudes and longitudes.
• Convert the counts, latitudes and longitudes to a visualisation format, for exampe

a JPG image or KML document.
• Cache the format on the server and return the URL to the client.

How such a server might work in practice is examined in the next section.

68 M.J. Jackson et al.

4.3 OGSA–DAI

OGSA–DAI provides a framework for the execution of distributed data management
scenarios such as the one presented in the previous section. OGSA–DAI’s primary
design goals are to:

• Support the execution of collections of discrete data-related operations including
data access, updates transformation, integration and delivery.

• Allow concurrent processing of different parts of a stream of data and so provide
implicit parallelism and reduce the processing memory footprint required.

• Not restrict users to specific data source types or data-related operations.

In the remainder of this section, the main components of the framework and how
the framework operates are described.

4.3.1 Data Representation

In OGSA–DAI, data is represented by Java objects. These objects can include
elementary types such as strings, integers, floats, booleans and arrays. For binary
and character data, byte and character arrays as well as binary and character large
objects (blobs and clobs) are often used. The framework does not mandate or
preclude the use of any Java object – application-specific objects can also be used
within OGSA–DAI. A number of special objects are also provided which developers
may find useful. These are:

• A MetadataWrapper object which can be used as a generic container for metadata
about the data being passed within OGSA–DAI. If present, this typically occurs
at start of the data stream which it describes. The contents of a MetadataWrapper
are determined by the resources or activities that created it and the activities that
consume it. The framework itself makes no assumptions as to the content of this
wrapper.

• A Tuple object can be used to represent a row of relational data. This consists
of the values for each field in a row. In what follows, these are denoted as: (“Joe
Bloggs”, “flu”, 35, “EH9 5Z”).

• A TupleMetaData object represents metadata about Tuples such as column names
and their SQL and Java types. This is an example of a concrete metadata object
that can be wrapped in a MetadataWrapper.

• ListBegin and ListEnd objects can be used to delimit data that is related in some
way. For example, a group of tuples corresponding to the results of an SQL query
or a group of character arrays that, when combined, form a valid XML document.
Lists allow data to be broken into smaller chunks and contribute to the framework
by allowing different operations on different parts of the data to be executed
concurrently as the data is streamed.

4 Distributed Data Management with OGSA–DAI 69

4.3.2 Resources

Resources manage the state and behaviour of OGSA–DAI. All interactions with the
framework are done via a resource. There are six types of resource in OGSA–DAI
which can be partitioned into three groups:

• Data resources. An OGSA–DAI data resource is how a database, or other source
of data, is represented in OGSA–DAI. It manages the data transfer between a
source of data and OGSA–DAI. A source of data can be: a relational database,
an XML database, a file system, an RDF triple store or a SPARQL endpoint.
OGSA–DAI data resources are an extensibility point so new implementations can
be developed to access other sources of data, for example web services, Microsoft
Excel spreadsheets or application-specific sources of data.

• Data cache resources. These may be divided into two types:

– A data source allows data to be cached locally for later retrieval by a client.
Data sources support data pull operations; data is pulled by the client from an
OGSA–DAI server.

– A data sink allows a client to push data into a cache local to an OGSA–DAI
server to be retrieved later by the framework. Data sinks support data push
operations; data is pushed by a client to the OGSA–DAI server.

• Request execution and management resources of which there are three types:

– A data request execution resource, or DRER, executes workflows submitted
by clients.

– Session resources, or sessions, allow state information to be held between
workflow executions. State information can be stored during the execution of
a workflow and then retrieved during execution of a subsequent one.

– Request resources allow clients to monitor the execution of workflows and
manage their lifetime.

4.3.3 Activities

Activities are the fundamental building blocks of an OGSA–DAI workflow. Each
activity implements a data-resource related operation or acts on the data being
streamed through the framework. An activity, depending on its implementation, can:
read data in from a data resource, stream in data from another activity, manipulate
the data in some way, create a new OGSA–DAI resource, output data to another
activity or update a data resource.

OGSA–DAI 4.1 currently ships with more than 80 activities that implement a
range of operations including: querying or updating relational or XML databases,
listing directories and getting files; transforming data in various ways, for example
to WebRowSet XML or comma-separated values; project tuples’ columns or do
an XSL transform. It includes activities to deliver data by: FTP, e-mail, HTTP
or GridFTP [20]. It also includes activities related to OGSA–DAI itself, for

70 M.J. Jackson et al.

example for creating data sources and sinks. Activities are an extensibility point
and developers can write application-specific data-related operations to use within
the OGSA–DAI framework.

Each activity has zero or more inputs, which are either mandatory or optional (if
no value is given for an optional input, then the activity uses an internally defined
default value). For example, the SQLQuery activity has one mandatory input: an
SQL query; DeliverToFTP has three mandatory inputs: the FTP server URL, a file
name and the data to be delivered and one optional input – a boolean to indicate the
use of passive mode (defaults to false when no value is given). Inputs are typed and
the expected types are declared to the framework by the activities. The framework
validates the outputs and connects these to inputs on behalf of the activity at run-
time. More specific checks on the nature of the input data are the responsibility of
the activity implementations themselves. Equally, activities also have zero or more
outputs. For example, SQLQuery has one output: a list of tuples; DeliverToFTP has
no outputs.

Activities may target one or zero OGSA–DAI resources. An activity declares
whether it needs a resource and what its type should be to the framework. For
example, SQLQuery expects a relational data resource, DeliverToFTP expects no
resource and WriteToDataSource expects a data source. Finally, activities also
declare to the framework any other information they expect. For example, the URLs
of any web services through which the framework is accessed, the current security
configuration or a factory component with which to create new resources.

4.3.4 Workflows

A workflow is a specification of one or more activities connected together to form a
directed graph. Each mandatory activity input must either be connected to the output
of another activity or have a value provided by an input literal. An input literal
is a container for values provided by the client when they submit a workflow, for
example an SQL query, an FTP server URL, a column index or an output filename.
Activities then use these instead of the output from another activity. Activities
themselves have no knowledge of other activities or input literals – the connections
are managed by the framework. All activity outputs must be connected to another
input. Figure 4.2 depicts an example workflow to query a relational database, project
onto a column and convert the results to comma-separated values.

4.3.5 How Workflows Are Executed

A workflow is executed as follows:

• Instances of each activity in the workflow are created.
• Input and output pipes are created. These are buffers which represent the

connections between inputs and outputs. The default buffer size is configurable.

4 Distributed Data Management with OGSA–DAI 71

SQLQuery
data

:tuple list

Tuple
Projection

data
:tuple list

result
:tuple list

TupleTo
CSV

expression
:String

result
:tuple list

data
:tuple list

Fig. 4.2 An example workflow consisting of three activities: input and output names as well as
types are shown

• Where applicable, each activity is given its target resource and any other
information they have requested from the framework. The framework checks
whether the type of resource matches that expected by the activity and raises
an error if this is not the case.

• The workflow is validated to ensure that all activity outputs are connected and all
mandatory inputs are connected either to an activity output or an input literal. An
error is raised if this validation fails.

• All activities start executing concurrently. Each activity:

– Attempts to pull data from its inputs.
– Checks the data is of the type expected. Typically, any activity can accept

objects of the same Java class or sub-classes thereof.
– Blocks until some data is extracted either from an input literal or from the

output of another activity.
– Executes its data-related operation.
– Pushes data onto its outputs if it has any.

• Activities terminate when:

– They encounter an error which may be: a generic error, for example the input
data is not of the expected type; or an activity-specific error, for example a
query is syntactically incorrect; a database connection disappears; a parameter
value is illegal or an internal problem arises.

– They receive no more data from their inputs.

72 M.J. Jackson et al.

SELECT * FROM patients

(Joe Bloggs, flu, EH9 3JZ)

SQLQuery

Tuple
Projection

TupleToCSV

(Katy Max, flu, EH9 4PQ)

(EH9 3JZ)

SQLQuery

Tuple
Projection

TupleToCSV

SQLQuery

Tuple
Projection

TupleToCSV

a b c

(Stan Leman, flu, EH3 6LZ)

SQLQuery

(EH3 6LZ)

TupleToCSV

”,EH9 4PQ”

SQLQuery

TupleToCSV

SQLQuery

Tuple
Projection

Tuple
Projection

Tuple
Projection

TupleToCSV

”EH3 6LZ”

d fe

”,EH9 3JZ”

(EH9 4PQ)

Fig. 4.3 An example workflow execution. Initially, all activities block, waiting for inputs
(a). SQLQuery receives an input literal with an SQL query, this unblocks it, and it runs the query
and outputs the first row of data as a tuple (b). This unblocks TupleProjection which projects on
to the postcode column and outputs a new tuple. Meanwhile SQLQuery outputs the next row as
a tuple (c). TupleProjection’s output unblocks TupleToCSV which converts the tuple to comma-
separated values and outputs these as a character array. SQLQuery has no more inputs so sets its
state to completed (d). Other activities continue execution to completion until they too have no
inputs (e, f) and set their states to: completed. The workflow completes when all activities have
completed

As an example, consider the following data:

Name Illness Postcode

Joe Bloggs Flu EH9 3JZ
Katy Max Flu EH9 4PQ
Stan Leman Flu EH3 6LZ

Now, imagine the workflow of Fig. 4.2 is executed where SQLQuery queries the
table, TupleProjection projects each row onto the postcode column and TupleToCSV
converts the projected columns into a list of comma-separated values. The execution
might proceed as shown in Fig. 4.3.

4 Distributed Data Management with OGSA–DAI 73

4.3.5.1 Using List Markers to Logically Group Outputs

Since activities process inputs one after the other, there is a risk that the outputs
corresponding to one input are confused with the outputs arising from the next
input. For example, if SQLQuery received two SQL query statements as an input, it
would output the tuples for the first query then the tuples for the second. How can
subsequent activities tell which results were from the first query and which from
the second? This is where the ListBegin and ListEnd blocks are used. By grouping
the tuples from a query’s execution between these list blocks, the correspondence
between inputs and outputs is preserved. For each query input, the activity outputs
an OGSA–DAI list – a sequence of data blocks delimited by ListBegin and ListEnd.
By using list delimiters, rather than a single list object, the ability for different
activities to work on different parts of the data stream is preserved.

4.3.5.2 Concurrent Execution

All activities execute concurrently by which we mean that their operation is
threaded, but in theory explicit parallelism would be possible. This can lead to
more efficient processing as activities can work on different parts of the data
stream concurrently as shown in the previous example. Streaming potentially gives
a reduced memory footprint on the server, as the entire data set does not have to be
read in prior to processing starting as well as the reduced execution time due to the
implicit parallelism. This allows efficient processing of large data volumes to take
place though it does require one to have care with activity implementations and how
they are composed into workflows to reduce or avoid the risk of deadlocks.

4.3.6 Clients and Requests

OGSA–DAI is typically deployed as a client–server architecture. A server hosts
the OGSA–DAI framework. Clients submit workflows to this framework. The
submission of a workflow by a client is termed a request. When the framework
receives a request, it creates a request resource, which holds a request status. The
framework can execute a number of requests concurrently and queue a number
more, the exact numbers being configurable.

The request status contains information about the status of each activity in the
workflow (i.e. it has started execution, it has completed, it encountered an error and
what it was). It also contains the status of the workflow as a whole. A request status
can also contain data. A DeliverToRequestStatus activity can be used to stream data
into the request status. How the request resource and request status are used by the
client depends on the type of request. This is selected by the client when they submit
their request and specifies how they want the workflow to be executed. There are two
types of request:

74 M.J. Jackson et al.

• Synchronous requests: If the request is synchronous, then the framework will not
return a request status to the client until the workflow has completed execution
or it has encountered an error. A client has to block and wait for the workflow to
complete.

• Asynchronous requests: if the request is asynchronous, then the framework
returns a request status immediately on receiving the workflow together with
a name for the new request resource. The client can then monitor the status of
the request by querying this request resource. This allows the client to do other
things and only get the data when it is ready, which is useful if the workflow will
take a long time to complete (e.g. if it is going to process a million rows of data).
It also allows a client to submit a workflow and then another to get the request
status.

Asynchronous requests in conjunction with data sources or data sinks, support
scalable data movement. If a synchronous request is sent to get million rows of
data, then all this data would be returned to the client in the request status which
may cause problems (web services can experience problems when returning large
amounts of data in one go, for example). In OGSA–DAI, a client can submit a
request to create a data source and then submit an asynchronous request to query a
database for the one million rows and populate the data source with these. The client
can then use the data source to get the data back in smaller chunks, for example a
1,000 or a 100 rows at a time. Conversely, if the client wishes to push large amounts
of data to OGSA–DAI, they can request creation of a data sink on the server and
then push data to it in chunks. However, in any such scenario there is a trade-off –
the more data that is to be transported in chunks implies a greater number of client–
server interactions.

4.3.7 Accessing the OGSA–DAI Framework

By default, the OGSA–DAI framework is exposed and accessed through web
services. There are six classes of OGSA–DAI web service corresponding to the
six resource types previously described.

• The data request execution service (DRES) accepts workflows from clients.
• The request management service (RMS) allows access to the request status of a

request resource and management of its lifetime.
• The data source service allows a client to pull data from a data source on a server.
• The data sink service allows a client to push data to a data sink on a server.
• The data resource information service allows a client to find information about a

data resource, for example the underlying product type and version of a database
product.

• The session management service allows a client to manage a session’s lifetime.

4 Distributed Data Management with OGSA–DAI 75

Each service allows information about each of the associated resources to be
accessed, for example the activities that can be executed in conjunction with that
resource. The web services conform to the Web Services Resource Framework
(WSRF) [21, 22] OASIS standards providing access to underlying OGSA–DAI
resources.

OGSA–DAI services can support the transport of strings, numbers, booleans and
binary data (byte arrays and character arrays) between clients and servers. Activities
on the server can be used to convert data into one of these formats (e.g. XML data
is usually converted into an OGSA–DAI list of character arrays).

4.3.7.1 Data Delivery and Web Services

Delivering data, especially binary data, through web services, over SOAP/HTTP,
will be slower than direct methods, such as FTP or GridFTP, especially for
large data volumes. Data sources and data sinks provide one way to offset this,
transporting data in smaller chunks. However, OGSA–DAI is distributed with a
range of activities that support non-web service-based delivery methods to obtain
more efficient data movement. For example, data could be delivered:

• To an e-mail address.
• From a URL via an HTTP GET directed at an OGSA–DAI servlet.
• To or from FTP servers.
• To or from GridFTP servers. GridFTP is specifically designed for the efficient

movement of large amounts of data.

Other delivery mechanisms can be implemented and supported, via application-
specific activity implementations.

4.3.7.2 Security

Rather than enforce a specific security protocol or infrastructure, the OGSA–DAI
framework treats this as a quality of the presentation layer through which the
framework is exposed. The framework only has the notion of a security context
which serves as a generic container for any security-related information which it
passes around. Specific components, for example data resources or activities can
query this security context for the information they need. For example, OGSA–
DAI’s Globus Toolkit version uses Globus Toolkit security [23] at the presentation
layer, adding a client’s credentials to the security context when a request arrives
at the presentation layer. To exploit these credentials, for example to map them
to a database username and password, an OGSA–DAI data resource can use a
login provider component to map the security context to the appropriate database
credentials. OGSA–DAI provides an example login provider that maps security
contexts containing Globus Toolkit credentials to usernames and passwords, though,
other implementations (e.g. from VOMS [24] attributes) are also possible.

76 M.J. Jackson et al.

4.4 Distributed Query Processing

OGSA–DAI’s distributed query processor (DQP) [1] is a set of OGSA–DAI
data resources, activities and other components that runs within the OGSA–DAI
framework to support distributed query processing across relational data sources.
The framework has no special awareness of DQP; DQP has been developed
using the framework’s standard extensibility points. However, from the client’s
perspective, the DQP extension allows creation of a single database view of
many distributed databases exposed as OGSA–DAI resources, which can then be
orchestrated declaratively.

The DQP resource, a type of OGSA–DAI data resource, is a central component
of DQP. From the client’s perspective, it is a read-only relational resource that is
able to answer declarative queries expressed in SQL. It exposes a global schema,
which is constructed by concatenating individual schemas obtained from all of the
federated relational resources. A federation of resources can be created statically
using a server-side configuration document or dynamically using a factory activity.
This not only allows OGSA–DAI deployers to expose predefined federations, which
can be tightly controlled in terms of access rights but also affords the possibility of
creating highly dynamic ad-hoc federations that can, for example, take into account
up-to-date information about the state of a distributed system. This configuration
document is a simple list of OGSA–DAI services and resource names.

The DQP resource encapsulates a query parser, query plan optimizer and
execution coordinator. Query plans are evaluated by the OGSA–DAI framework
using OGSA–DAI’s relational, transformation and delivery activities and a set of
activities implementing various relational operators and control structures.

A client interacts with a DQP resource by submitting a workflow that contains
an SQLQuery activity, which takes an SQL expression as its input, targeted at this
resource. This query is translated into an abstract syntax tree and converted to a
logical query plan (LQP). An LQP represents the internal representation of the
client’s query and has the form of a tree of relational operators. The initial LQP
is validated to check whether the client’s query can be satisfied using information
about the schemas of the federated resources. Once validated, the query plan goes
through a chain of optimizers, which modify the plan using heuristic- and cost-based
rules. The most important heuristic rule used in the optimization phase makes sure
that as much processing as possible is pushed down to the underlying resources.
This not only lets underlying databases make use of their indexes but also limits
the amount of data transferred by filtering tuples at each local source. If a query
plan scans distributed resources, it is split into several partitions, each assigned to
an evaluation node (an OGSA–DAI service and associated DRER).

The optimized and partitioned query plan is translated into a set of OGSA–DAI
workflows. Some relational operators like SELECT or PROJECT have one-to-one
mapping to activities, some map to complex sub-workflows. Data is transferred
between partitions via data sinks or data sources (depending on the choice of either

4 Distributed Data Management with OGSA–DAI 77

push or pull data transfer modes). A special Coordinator component creates all the
required data sinks/sources and submits the workflows for execution. The query
results are pipelined to through to the client’s original workflow as soon as they
start arriving.

To illustrate how queries are translated into query plans and then into workflows,
let us consider the health use case and assume that one health centre (h1) exposes
a database with two tables: patient records – patients(zip, reason) – and
locations – locations(zip, lat, long) – and that another health centre
(h2) exposes a table with patient records only – patients(postcode, disease). Our
goal is to count all occurrences of flu at each postcode and link these numbers with
spatial information. The global schema exposed by a DQP resource federation over
the above resources will have three tables: h1 patients, h1 locations and
h2 patients. A possible query may be as follows:

SELECT lat, long, COUNT(�) FROM
(SELECT lat, long, zip
FROM h1 locations l, h1 patients p
WHERE p.reason LIKE ‘%FLU%’ AND l.zip D p.zip)
UNION ALL
(SELECT lat, long, postcode AS zip
FROM h1 locations l, h2 patients p
WHERE p.disease LIKE ‘%FLU’ AND l.zip D p.postcode) t
GROUP BY zip, lat, long

Figure 4.4 presents a possible query plan generated for the above query. This plan is
translated into a set of OGSA–DAI workflows and submitted for execution.

4.4.1 DQP and Extensibility Points

DQP is highly extensible. It is possible to provide alternative implementations of
optimizers and use them in conjunction with the default optimizers or replace the
default optimization chain altogether. The mapping between relational operators and
their equivalent executable workflows is also configurable. This allows provision of
alternative physical implementations for relational operators. It is possible to assign
several implementations for a given operator. An optimizer can use annotations to
tag which implementation should be used at translation time. User defined functions
(UDFs) can also be defined; both scalar and aggregate UDFs are supported.
Other extensibility points include cardinality estimation module and pluggable pre-
and post-execution code. An example extension that exploits this high flexibility
federates SPARQL queries over multiple endpoints [25].

78 M.J. Jackson et al.

Fig. 4.4 A logical query plan (LQP). The exchange operator marks partition boundaries

4.4.2 DQP and Non-relational Resources

Although the resources over which DQP can federate queries must expose a
relational interface, the underlying data source does not have to be relational. It is
possible to develop an OGSA–DAI data resource that provides a relational interface,
or wrapper, for non-relational resources. This is often used to model web services
as relational resources, so they can be used as members within a DQP federation.

4.5 Relational Views

A database view is a well-known relational tool. In essence, it is a named, virtual
table composed of the result set of a stored query. An OGSA–DAI views resource [1]
allows for a relational view to be created on top of any resource exposed by OGSA–
DAI and is able to execute an SQL query. A view resource looks like a read-only
relational resource providing table schema and executing queries. A view in OGSA–
DAI can be defined without requiring write access to an underlying database,
meaning that views can be defined over remotely located read-only databases.

4 Distributed Data Management with OGSA–DAI 79

There are many uses of views. A view can be used to join and simplify multiple
tables into a single virtual table. This is often applied to simplify the writing of
queries from the client’s perspective. In our health use case, a view could be used
to encapsulate the union of patient records tables. Another use of views is to limit
the exposure of tables to the world outside the organization. For example, it may be
acceptable to expose postcode and disease information but keep private a patient’s
name. Views can also be used to smooth out differences between table schemas.
These mappings exploit the expressiveness of the SQL language and can range from
simple column renaming to complex, value-replacing joins. In our use case, we
could define a view that renames column names in one of the patient’s tables, so
they use identical schema.

Note that OGSA–DAI’s views and DQP components are distinct and comple-
mentary. They both expose a relational interface and can be mixed to build complex
data integration scenarios. It is possible to build federation of views as well as define
a view on top of a DQP resource.

4.6 Interoperability

It is important for OGSA–DAI be able to work with other applications, or
middleware, within distributed computing, grid and cloud contexts. This facilitates
OGSA–DAI’s adoption into existing infrastructures and allows OGSA–DAI to be
used with other products to construct solutions to complex distributed computing
problems. Although OGSA–DAI’s workflows form a de facto standard, various
activities have been undertaken to make OGSA–DAI accessible via other means.
For example, the open grid forum (OGF) database access and integration services
(DAIS) family of specifications [26–28] provide a common set of interfaces for
accessing data. These interfaces provide operations with tighter semantics than that
of OGSA–DAI workflows. These interfaces allow OGSA–DAI to be used within
service orchestration workflow environments such as Taverna [29] or ActiveBPEL
[30] while providing access to distributed databases underneath. Another example
is the implementation of a JDBC driver to access OGSA–DAI [31]. This allows
legacy applications that access databases via JDBC to access OGSA–DAI without
any change. The application gains as it can be used to access any federation of
databases exposed through DQP, for example. OGSA–DAI may also be used as
a basis for implementing other standards. For instance, the SEE-GEO [7] project
implemented OGC-compliant web services [32] based on OGSA–DAI to integrate
census data with geographical data relating to the boundaries of UK regions.

Interoperability can be facilitated either through the use of mediators or through
alternative presentation layers. A mediator component sits between an application
and OGSA–DAI. The mediator converts requests from the application into invo-
cations of OGSA–DAI. For example, submitting workflows and responses from
OGSA–DAI back into responses to be consumed by other application. For example,
the JDBC driver for OGSA–DAI translates Java JDBC API calls, typically SQL

80 M.J. Jackson et al.

queries and requests for database meta-data, into OGSA–DAI workflows and the
results, query results and meta-data, back into JDBC API responses. A similar
design can be envisaged for an ODBC database API [33].

Another approach is to use an alternative OGSA–DAI presentation layer.
Although OGSA–DAI ships with a web services presentation layer, OGSA–DAI
has been designed so that the underlying framework does not rely upon web services
and so it can be replaced. The SEE-GEO project replaced OGSA–DAI services with
OGC-compliant geo-linking services. These services map requests to OGSA–DAI
workflows, where the operation invoked together with its arguments determines the
workflow that is selected, its input literals and the data resources it targets. When
the workflow is completed, the request status is parsed and the appropriate response
from the operation constructed. Another example is provided by the OGSA–DAI
implementations of the OGF DAIS specifications for relational and XML web
services. Again, this involved replacing the OGSA–DAI web services with those
compliant with the DAIS specifications and mapping between the operations of
these specifications and suitable workflows.

Using servlets, allows OGSA–DAI to expose data that can be accessed via HTTP
rather than a web service. This, too, can facilitate interoperability. For example, the
Google Map API [34] allows a Google Map rendered in an internet browser to
be overlaid with features specified in a KML document. The KML document is
specified by a URL. An OGSA–DAI server can query data and convert it into a
KML document and then return the URL of a servlet that provides access to this
document. The URL can be passed to the Google Map API for rendering. The use
of servlets and URLs that provide access to data when dereferenced also allows
OGSA–DAI to be used in the context of web service orchestration engines such as
Taverna. These typically pass round references to data. The use of a URL means that
such engines do not have to be extended with OGSA–DAI-specific components.

4.7 Performance

OGSA–DAI components mediate between data producers and data consumers. As
a consequence, performance is an important consideration – does the benefit of
being able to execute complex distributed data management operations mitigate the
increased time incurred when accessing and updating data. Throughout the lifetime
of OGSA–DAI, both the OGSA–DAI development team and other researchers have
undertaken performance evaluations to understand a number of issues including:

• How OGSA–DAI performs compared to using a direct JDBC connection to
access relational data [1, 35–37].

• The pros and cons of alternative delivery mechanisms and presentation layers
[1, 35, 38, 39].

• How an OGSA–DAI server behaves when confronted with concurrent access by
a large number of clients or when manipulating large volumes of data [40].

4 Distributed Data Management with OGSA–DAI 81

• Which OGSA–DAI components give rise to bottlenecks and how these could be
resolved [35, 38, 39].

These evaluations have yielded a number of findings:

• OGSA–DAI uses JDBC so will inevitably be slower than JDBC. However,
OGSA–DAI’s overhead increases more sharply than JDBC as the number of rows
in a result increases.

• WebRowSet XML should only be used as a delivery format for small data sets.
Unless a client specifically needs data as XML, alternative representations, for
example comma-separated values or custom binary formats, yield both faster
delivery times and increases in the volume of data a server can return to a client
within a single web service invocation.

• Web services are not optimal for delivering large amounts of data, especially
binary data. Alternative delivery methods (e.g. SOAP attachments, FTP or
GridFTP) can yield improved performance in terms of both delivery time and
data volume.

• For a specific deployment, and depending upon the specific qualities of an
OGSA–DAI server’s host machine, there is a critical number of concurrent
clients that the server can manage, beyond which OGSA–DAI’s performance
will degrade markedly both in terms of CPU consumption and memory usage.

• Using Globus Toolkit security adds an overhead but this is generally constant
and forms a negligible part of the round-trip time for an OGSA–DAI invocation
when large amounts of data are being processed.

Ultimately, OGSA–DAI users need to decide whether the additional overhead
introduced by OGSA–DAI is acceptable based upon their application-specific
requirements. However, OGSA–DAI has been designed to allow users as much
flexibility as possible to improve performance along a number of dimensions,
for example by providing activities that support non-web service-based delivery,
by allowing the number of concurrent requests that a DRER can execute to be
configured or by allowing its web services presentation layer to be replaced by
alternatives, for example by REST endpoints or a direct Java connection.

4.8 Related Work

A number of tools have been developed to solve problems in distributed data
management. These tools differ in subtle or significant ways depending on the
specific distributed data management challenges they have been designed to solve.
AMGA [41] is a metadata catalogue primarily targeted at dealing with metadata
within grid environments. In particular, the environment that has been developed
for processing outputs from the Large Hadron Collider. AMGA implements its own
query language which is similar to SQL although, from version 1.9, there is some
SQL-92 support. AMGA has a web services front-end, which conforms to the OGF
WS-DAIR standard [26], as well as a proprietary client API. Although AMGA

82 M.J. Jackson et al.

can serve as a generic wrapper for databases, it is primarily intended to serve as
a metadata catalogue.

The Grid Relational Catalog (GRelC) [42,43], such as OGSA–DAI, can provide
a web services wrapper for relational, XML and file-based resources. This allows a
level of abstraction to be made from the specifics of how connections are made to
each of these types of resource but not from the underlying type of data resource
being accessed, that is the type of queries that are composed by users. GRelC also
supports data integration through the use of their GRelC Data Gather Service, which
allows an SQL query to be propagated over various other GRelC-mediated services
and the results to be merged back at the original submission node [44]. This is
similar to, though less sophisticated than, OGSA–DAI’s distributed query processor.
GRelC, like AMGA, is a component of the gLite middleware [45].

The Integrated Rule-Oriented Data System (iRODS) [46], the open source
successor to SRB [47], provides a virtualization layer that federates and replicates
many different types of data but primarily in the file space domain. They have a
service mode of operation where micro-services can be composed together to form
rules which effectively act as server-side workflows, which are triggered by an event,
for example a file is placed in an iRODS repository, which is then replicated to
other servers by a rule. iRODS, like SRB, has been widely adopted in a number of
communities and, although it can access databases, its strength lies in file access so
its application space overlaps with OGSA–DAI.

There have been various products developed to support distributed query pro-
cessing (DQP) capabilities, an example was demonstrated by SkyQuery [48].
SkyQuery implements a mediator-wrapper architecture for integration of astronomy
data archives. Similar data federation functionality is delivered by the MOBIUS
Project [49], a distributed query processor where individual data resources are
exposed as XML services able to answer XPath queries. Mediation based on XML
processing is also used by the XAware [50] data integration system. Commercial
products providing similar data federation functionality include, among others,
the IBM WebSphere Information Integrator [51] and the Virtuoso Virtual Data-
base [52].

Many of the DQP solutions mentioned above adopt a centralised query process-
ing approach. This means that what can be computed remotely is constrained by
the capabilities of the data source. For example, for XML-based solutions, this is
limited to what can be expressed in XPath or XQuery. In contrast, OGSA-DAI not
only delegates as much processing as possible to the underlying data source but also
it can perform arbitrary data processing operations on a remote OGSA-DAI server.
This can be exploited in queries with user-defined functions or extended through
bespoke relational operators. Fully distributed query evaluation provides a means
for improved utilization of resources by exploiting parallelism implicit in many data
processing workflows. There is current work to extend the DQP capabilities, already
available to the relational domain, to the RDF domain [25].

4 Distributed Data Management with OGSA–DAI 83

4.9 Conclusions and Future Directions

This chapter has given an overview of OGSA–DAI and its approach to distributed
data management. Workflows provide a simple yet powerful way of representing
complex scenarios that involve data-related operations and which can involve mul-
tiple distributed heterogeneous data sources. OGSA–DAI provides an abstraction
layer between a client and the data of interest. At the simplest level, OGSA–
DAI provides an abstraction of underlying data resources, removing native access
connection complexities, hiding the physical location of the data and providing a
common interface to access many different types of data. Various forms of security
policies can be enforced within this layer controlling who can access the data, what
they can access and how they can manipulate it.

A complete data abstraction is not possible in that clients remain aware of
the type of data resource, for example relational, XML, exposed by OGSA–DAI.
Also, it will be noted that an additional layer means one more set of components
between data producers and data consumers with the consequent implications upon
performance.

However, the level of abstraction is sufficient for OGSA–DAI to be used to
build powerful higher level capabilities, and the performance implications are
offset by the enhanced distributed data management capabilities that are delivered
in compensation. Exemplars of this are the DQP and SQL views components.
Ultimately, of course, the benefit of OGSA–DAI is very much determined on a case-
by-case basis dependent on specific problems to be addressed and the requirements
of any sought solution. However, as the introduction demonstrated, OGSA–DAI has
been, and continues to be used to deliver innovative data management solutions in a
whole range of areas.

Acknowledgements We acknowledge our past and present collaborators including the National
eScience Centre at The University of Edinburgh, the eScience Centre of the North West of England
at The University of Manchester, the North East of England eScience Centre at The University of
Newcastle, IBM UK and Oracle UK. The project has been funded by the UK Department of Trade
and Industry (under the Grid Core Programme I and II), the UK Engineering and Physical Sciences
Research Council (under OGSA–DAI: an OMII-UK node, EP/D043956/1), by the European Union
as part of the Framework Program 6 project BEinGRID (reference 034702) and by The University
of Edinburgh.

References

1. Dobrzelecki, B., Krause, A., Hume, A., Grant, A., Antonioletti, M., Alemu, Y., Atkinson, M.,
Jackson, M., Theocharopoulos, E.: Integrating distributed data sources with OGSA–DAI DQP
and Views. Phil. Trans. R. Soc. A 368(1926), 4133–4145 (2010). doi: http://dx.doi.org/10.
1098/rsta.2010.0166

2. Lynden, S., Pahlevi, S., Kojima, I.: Service-based data integration using OGSA-DQP and
OGSA-WebDB. In: Proceedings of the 2008 9th IEEE/ACM International Conference on Grid
Computing, 29 Sept–01 Oct 2008. IEEE Computer Society, Washington, DC, pp. 160–167
(2008). doi:10.1109/GRID.2008.4662795

84 M.J. Jackson et al.

3. Lynden, S., Mukherjee, A., Hume, A., Fernandes, A., Paton, N., Sakellariou, R., Watson, P.:
The design and implementation of OGSA-DQP: a service-based distributed query processor.
Future Gen. Comput. Syst. 25, 224–236 (2009). doi:10.1016/j.future.2008.08.003

4. Xiang, H.X.: Experiences running OGSA-DQP queries against a heterogeneous distributed
scientific database. In: Proceedings of the 2009 15th International Conference on Parallel and
Distributed Systems, pp. 706–710 (2009)

5. Tanimura, Y., Yamamoto, N., Tanaka, Y., Iwao, K., Kojima, I., Nakamura, R., Tsuchida, S.,
Sekiguchi, S.: Evaluation of large-scale storage systems for satellite data in GEO GRID. In:
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, XXXVII, Part B4. pp. 1567–1574. Beijing (2008)

6. Groeper, R., Kunz, C., Grimm, C.: Connecting OGC web services and the Grid using Globus
Toolkit 4 and OGSA–DAI. Conference on Grid Computing. In: 10th IEEE/ACM International,
pp. 66–73, October 2009. doi: 10.1109/GRID.2009.5353080

7. Higgins, C., Koutroumpas, M., Sinnott, R.O., Watt, J., Doherty, T., Hume, A.C., Turner,
A.G., Rawnsley, D.: Spatial data e-infrastructure, GLAS-PPE/2009-23 Preprint, 2009. http://
ppewww.physics.gla.ac.uk/preprints/2009/23/2009--23.pdf. Accessed 5 Aug 2010

8. Koehler, M., Ruckenbauer, M., Janciak, I., Benkner, S., Lischka, H., Gansterer, W.N.: Support-
ing molecular modeling workflows within a grid services cloud. Computational Science and Its
Applications – ICCSA 2010, Lecture Notes in Computer Science, 2010, vol. 6019/2010, pp.
13–28. doi: 10.1007/978–3–642–12189–0 2

9. Swain, M., Silva, C.G., Loureiro-Ferreira, N., Ostropytskyy, V., Brito, J., Riche, O., Stahl, F.,
Dubitzky, W., Brito R.M.M.: P-found: Grid-enabling distributed repositories of protein folding
and unfolding simulations for data mining. Future Gen. Comp. Syst. 26(3), 424–433 (2010)

10. Brochhausen, M., Weiler, G., Martı́n, L., Cocos, C., Stenzhorn, H., Graf, N., Dörr, M.,
Tsiknakis, M., Smith, B.: Applications of the ACGT Master Ontology on Cancer. On the Move
to Meaningful Internet Systems: OTM 2008 Workshops Lecture Notes in Computer Science,
vol. 5333/2010, pp. 1046–1055 (2010). doi: 10.1007/978-3-540-88875-8 132

11. Garcia Ruiz, M., Garcia Chaves, A., Ruiz Ibañez, C., Gutierrez Mazo, J.M., Ramirez Giraldo,
J.C., Pelaez Echavarria, A., Valencia Diaz, E., Pelaez Restrepo, G., Montoya Munera, E.N.,
Garcia Loaiza, B., Gomez Gonzalez, S.: mantisGRID: a grid platform for DICOM medical
images management in Colombia and Latin America. J. Digit. Imaging 24(2), 271–283 (2010).
doi:10.1007/s10278-009-9265-x

12. Espino, J., Hall, K., Washington, D., White, P., Grant, A., Hume, A., Antonioletti, M.,
Krause, A., Jackson, M., Heinbaugh, W., Fu-Chiang, T.: Open-source collaboration in practice
between the real-time outbreak and disease surveillance laboratory. Public Health Information
Network (PHIN) Conference 2008, pp. 24–28, Atlanta. The National Center for Public Health
Informatics Research Lab, The University of Edinburgh and Tarrant County Public Health
(2008)

13. Tan, K.L.L., Gayle, V., Lambert, P.S., Sinnott, R.O., Turner, K.J.: GEODE – Sharing
occupational data through the grid. In: Proceedings of the UK e-Science All Hands Meeting
2006 (2006)

14. Graham, P.J., Sloan, T.M., Carter, A.C., Gregory, I.: FirstDIG: Data investigations using
OGSA–DAI. In: Proceedings of the UK e-Science All Hands Meeting 2004 (2004)

15. MESSAGE (Mobile Environmental Sensing System Across Grid Environments) Project. http://
bioinf.ncl.ac.uk/message/ (2010). Accessed 5 Aug 2010

16. Antonioletti, M., Blanke, T., Bodard, G., Hedges, M., Hume, A., Jackson, M., Rajbhandari, S.:
Building bridges between islands of data – an investigation into distributed data management
in the humanities. In: 5th IEEE International Conference on e-Science, pp 33–39, Oxford, 7–9
Dec 2009. (2009). ISBN 978-0-7695-3877-8

17. OGSA–DAI open source project publications. http://sourceforge.net/apps/trac/OGSA--DAI/
wiki/Publications (2010). Accessed 7 Oct 2010

18. OGSA–DAI open source project. http://sourceforge.net/projects/OGSA--DAI (2010).
Accessed 7 Oct 2010

19. KML. http://code.google.com/apis/kml/documentation/ (2010). Accessed 5 Aug 2010

4 Distributed Data Management with OGSA–DAI 85

20. Globus Project GridFTP. http://globus.org/toolkit/docs/3.2/gridftp/ (2010). Accessed 5 Aug
2010

21. Banks, T.: Web Services Resource Framework (WSRF) – Primer v1.2, OASIS, 23 May
2006. http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf (2006). Accessed 5
Aug 2010

22. Graham, S., Karmarkar, A., Mischkinsky, J., Robinson, I., Sedukhin, I.: Web Services Resource
1.2 (WS-Resource), OASIS, 1 April 2006. http://docs.oasis-open.org/wsrf/wsrf-ws resource-
1.2-spec-os.pdf (2006). Accessed 5 Aug 2010

23. Globus Toolkit Security information. http://www.globus.org/toolkit/docs/4.0/security (2010).
Accessed 12 Oct 2010

24. Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L., Frohner, A., Gianoli, A., Lõrentey,
K., Spataro, F.: VOMS, an authorization system for virtual organizations. Lecture Notes in
Computer Science, vol. 2970/2004, pp. 33–40 (2004)

25. Aranda, C., Corcho, O.: Federating queries to RDF repositories. Monografia (Technical
Report). Computer Faculty (UPM), Madrid, Spain. http://oa.upm.es/3302/ (2010). Accessed
7 Oct 2010

26. Antonioletti, M., Collins, B., Krause, A., Malaika, S., Magowan, J., Laws, S., Paton, N.W.: Web
Services Data Access and Integration – The Relational Realization (WS-DAIR) Specification
Version 1.0, Global Grid Forum (2006)

27. Antonioletti, M., Atkinson, M., Krause, A., Laws, S., Malaika, S., Paton, N.W., Pearson, D.,
Riccardi, G.: Web Services Data Access and Integration – The Core (WS-DAI) Specification,
Version 1.0. http://www.ogf.org/documents/GFD.74.pdf (2006). Accessed 5 Aug 2010

28. Antonioletti, M., Hastings, S., Krause, A., Langella, S., Lynden, S., Laws, S., Malaika, S.,
Paton, N.W.: Web Services Data Access and Integration – The XML Realisation (WS-DAIX)
Specification, Version 1.0. http://www.ogf.org/documents/GFD.75.pdf (2006). Accessed 5
Aug 2010

29. Taverna. http://www.taverna.org.uk/ (2010). Accessed 5 Aug 2010
30. ActiveBPEL. https://sourceforge.net/projects/activebpel/ (2010). Accessed 5 Aug 2010
31. Brito, M., Sato, L.: Extending OGSA–DAI Possibilities with a JDBC Driver, Computa-

tional Science and Engineering. In: 11th IEEE International Conference on Computational
Science and Engineering, pp. 155–162 (2008). ISBN: 978-0-7695-3193-9. doi:http://doi.
ieeecomputersociety.org/10.1109/CSE.2008.55

32. OGC Standards and Specifications. The Open Geospatial Consortium. http://www.
opengeospatial.org/standards (2010). Accessed 5 Aug 2010

33. Jackson, M.J., Lloyd, A.D., Sloan, T.M.: Enabling access to federated grid databases: An
OGSA–DAI ODBC driver. In: Proceedings of the UK e-Science All Hands Meeting, 2005

34. Google Maps API. http://code.google.com/apis/maps/index.html (2010). Accessed 5 Aug 2010
35. Jackson, M., Antonioletti, M., Chue Hong, N.P., Hume, A.C., Krause, A., Sugden, T.,

Westhead, M.: Performance analysis of the OGSA–DAI software. In: Proceedings of the UK
e-Science All Hands Meeting, September 2004

36. Kottha, S., Abhinav, K., Muller-Pfefferkorn, R., Mix, H.: Accessing bio-databases with
OGSA–DAI – A performance analysis, distributed, high-performance and grid computing in
computational biology, Lecture Notes in Computer Science, vol. 4360, pp. 141–156 (2007)

37. Adamski, M., Kulczewski, M., Kurowski, K., Nabrzyski, J., Hume, A.: Security and perfor-
mance enhancements to OGSA–DAI for Grid data virtualization: Research Articles, Selection
of Best Papers of the VLDB Data Management in Grids Workshop (VLDB DMG 2006).
Concurrency Comp. Pract. Ex. 19(16), 2171–2182 (2007). doi: 10.1002/cpe.1165

38. Alpdemir, M.N., Gounaris, A., Mukherjee, A., Fitzgerald, D., Paton, N.W., Watson, P.,
Sakellariou, R., Fernandes, A.A.A., Smith, J.: Experience on performance evaluation with
OGSA-DQP. In: Proceedings of the UK e-Science All Hands Meeting, September 2005

39. Dobrzelecki, B., Antonioletti, M., Schopf, J.M., Hume, A.C., Atkinson, M., Chue Hong,
N.P., Jackson, M., Karasavvas, K., Krause, A., Parsons, M., Sugden, T., Theocharopoulos,
E.: Profiling OGSA–DAI performance for common use patterns. In: Proceedings of the UK
e-Science All Hands Meeting, September 2006

86 M.J. Jackson et al.

40. Wang, K., Xie, Y., Li, S., Wang, X.: Performance analysis of the OGSA–DAI 3.0 Software. In:
5th International Conference on Information Technology: New Generations, pp. 15–20, April
2008. ISBN: 0-7695-3099-0. doi: 10.1109/ITNG.2008.91

41. Santos, N., Koblitz, B., Distributed metadata with the AMGA metadata catalog. In: Proceed-
ings of the Workshop on Next-Generation Distributed Data Management HPDC-15, Paris,
France, June 2006

42. Fiore, S., Negro, A., Aloisio, G.: Data virtualization in grid environments through the
GRelC data access and integration service. In: Proceedings 4th ICITST, IEEE, London, UK,
pp. 817–822 (2009)

43. Fiore, S., Negro, A., Aloisio, G., The data access layer in the GRelC system architecture, Future
Generation Computer Systems (2010). doi: 10.1016/j.future.2010.07.006

44. Aloisio, G., Cafaro, M., Fiore, S., Mirto, M., Vadacca, S., Grelc data gather service: a step
towards P2P production grids. In: SAC, pp. 561–565 (2007)

45. gLite. http://glite.web.cern.ch/glite/ (2010). Accessed 7 Oct 2010
46. Moore, R., Rajasekar, A.: White Paper: IRODS: Integrated Rule-Oriented Data System. https://

www.irods.org/pubs/DICE iRODS White Paper-08.pdf (2008). Accessed Sept 2008
47. Storage Resource Broker (SRB). http://www.sdsc.edu/srb/index.php/Main Page (2010).

Accessed 7 Oct 2010
48. Malik, T., Szalay, A.S., Budavari, T., Thakar, A.: Skyquery: a web service approach to federate

databases. In: Proceedings of the First Biennial Conference on Innovative Data Systems
Research (CIDR 2003) Asilomar, USA, VLDB Endowment, pp. 188–196, January 2003. http://
www.cidrdb.org/cidr2003/program/p17.pdf

49. Hastings, S., Langella, S., Oster, S., Saltz, J.: Distributed data management and integration
framework: The Mobius project. In: Proceedings of Global Grid Forum 11 (GGF11) semantic
grid applications workshop, pp. 20–38 (2004)

50. XAware. http://www.xaware.org (2010). Accessed 7 Oct 2010
51. IBM Information Integration. http://www-01.ibm.com/software/data/integration (2010).

Accessed 7 Oct 2010
52. Virtuoso Universal Server, OpenLink Software. http://virtuoso.openlinksw.com (2010).

Accessed 7 Oct 2010

Chapter 5
The DASCOSA-DB Grid Database System

Jon Olav Hauglid, Norvald H. Ryeng, and Kjetil Nørvåg

Abstract Computational science applications performing distributed computations
using grid networks are now emerging. These applications have new and demand-
ing requirements for efficient query processing. To meet these requirements, we
have developed the DASCOSA-DB distributed database system. In this chapter,
a detailed overview of the architecture and implementation of DASCOSA-DB
is given, as well as a description of novel features developed to better support
typical data-intensive applications running on a grid system: fault-tolerant query
processing, dynamic refragmentation, allocation and replication of data fragments,
and distributed semantic caching.

5.1 Introduction

During the recent years, there has been a trend toward applications deployed on
increasingly larger distributed systems with need for advanced data management.
A prime example of such applications is computational science applications that
uses advanced computing capabilities to understand and solve complex problems.
Such applications frequently requires powerful computing resources, for example,
delivered through grid computing services.

While grid computing has gained maturity through the recent years, management
of data in grid systems is less mature. Data storage and access is still mostly file
oriented, and it is mostly left to users to manage files and their locations as needed.
Although some support has emerged for metadata management, more advanced
database features are not widely supported.

J.O. Hauglid (�) � N.H. Ryeng � K. Nørvåg
Department of Computer and Information Science, Norwegian University of Science
and Technology (NTNU), 7491 Trondheim, Norway
e-mail: joh@idi.ntnu.no; ryeng@idi.ntnu.no; noervaag@idi.ntnu.no
http://research.idi.ntnu.no/dascosa/

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 5, © Springer-Verlag Berlin Heidelberg 2011

87

88 J.O. Hauglid et al.

The goal of our research is a reliable database grid with location-transparent
storage, that is, users/applications do not have to care about where data is stored
and where queries are processed. The aim is sites cooperating on data storage and
processing while retaining autonomy, that is, a grid-wide database system. It is
important to note how our context differs from more traditional approaches. The
focus is on applications where large amounts of data is created and used on the
same site, and where parts of the data, in particular summary data, are accessed by
other grid participants.

An example of such applications is weather forecasting, where the national
weather forecasting institutions have large amounts of locally collected data, do
forecast, and make the resulting data available. They also store historical data. Both
the summary data and historical data will be of interest to, and used by, other weather
forecasting institutions and environmental researchers.

In this chapter, we describe DASCOSA-DB, a distributed database system, which,
in addition to providing location-transparent storage and querying, also includes
novel features such as efficient partial restart of queries and redistribution of
query operators in the context of failure, dynamic refragmentation, allocation and
replication of data fragments, and distributed semantic caching. A detailed overview
of the architecture and the implementation of DASCOSA-DB is given, as well as a
description of some of the features developed to better support typical data-intensive
applications running on a grid.

The rest of this chapter is organized as follows: In Sect. 7.6, we give a short
overview of other similar systems. In Sect. 5.3, we present the system architecture
of DASCOSA-DB. Section 7.3.2.2 describes how data and metadata management
is handled, and Sect. 7.4 explains query processing, including semantic caching and
partial restart of failed queries. Our distributed monitoring and management tool
is described in Sect. 5.6. An experimental evaluation of the system is provided in
Sect. 5.7. Finally, we summarize our work and describe future research directions in
Sect. 5.8.

5.2 Overview of Related Systems

Distributed databases and query processing is not a new field. For an introduction to
distributed databases, we refer to [15]. A survey of distributed query processing is
given in [12]. In this section, we will give an overview of systems that are similar to
DASCOSA-DB. This includes both storage systems without query capabilities and
query systems without storage capabilities, as well as complete database systems.

Much of the more recent work is based on peer-to-peer (P2P) networks,
both unstructured and structured. Especially, distributed hash tables (DHTs) have
received much attention. A number of papers deal with focused issues such as query
processing in DHT networks, including [2, 7].

OceanStore [13] is one of the storage systems without query capabilities. It
provides an infrastructure for permanent storage and replication of objects, but no

5 The DASCOSA-DB Grid Database System 89

query system. Objects are accessed based only on their globally unique ID, and this
ID has to be known to retrieve or update the object.

BigTable [5] is a large-scale distributed storage system with a model closer to
relational databases. The storage model is similar to the relational model, but tuples
are not stored or accessed as one unit. Instead, a row key and column key is used for
both read and write operations. It does not provide more advanced query languages.

DASCOSA-DB does not provide its own storage infrastructure, but relies on an
existing relational DBMS to store data. In that way, it is somewhat similar to the
pure query engines that only provide a query processing service and no persistent
storage.

Astrolabe [16] is one such system. Astrolabe is a distributed, hierarchical
aggregation system designed for system monitoring. Astrolabe provides an interface
that is similar to a database system, that is, it provides SQL queries and standard
database programming interfaces such as ODBC and JDBC. To achieve scalability,
updates are spread using a gossip protocol that guarantees eventual consistency.
There is no guarantee that a client reads the most recent data, but if updates stop, all
clients will eventually agree on the most recent value.

PIER [11] is a middleware query engine built on top of a DHT. PIER does
not permanently store its data. Data sources publish their data in the DHT and
update them regularly, and data that are not refreshed are removed. Typically, a
PIER network will contain only object metadata (e.g., filenames, sizes, and tags)
and a reference to the original data object. Clients will query the network to get the
references to the objects of interest and retrieve the objects separately.

The difference between these query engines and DASCOSA-DB is that, although
DASCOSA-DB has a middleware architecture like PIER, it provides persistent
storage by using a local database on each site. It is not necessary to constantly
republish data, as is the case with PIER.

Among the systems that provide a full DBMS, with both query processing
and storage, are Hyperion [17], Orchestra [22], and Piazza [6]. All these systems
allow each site to have its own schema, and use schema mediation techniques to
allow cross-site querying. PeerDB [14] also falls into this category of systems with
heterogeneous schemas, but the approach to schema mediation is different. Instead
of relying on schema mediators, information retrieval techniques are used to find
matching relations.

DASCOSA-DB does not use schema mediation. The systems mentioned above
are meant to connect existing databases and provide a common query interface.
Although DASCOSA-DB is a distributed database system with a high degree of site
autonomy, it still behaves as one system, not many different systems with a common
interface.

Other systems based on a common schema include APPA [1], Mariposa [21],
and ObjectGlobe [4]. APPA provides a multilayered solution on top of a structured
or super-peer P2P network, where the bottom layer is a simple key/value-store and
the top level provides advanced services such as schema management, replication,
and query processing.

90 J.O. Hauglid et al.

Mariposa is a distributed database system that uses economic models to solve
optimization problems. Mariposa sites buy and sell fragments and bid for the
execution of queries. The trading and bidding makes sure queries are answered
efficiently and that data are moved closer to where they are needed.

ObjectGlobe is a distributed query processing infrastructure that allows users
to combine data sources and query operators from different providers at different
sites to perform queries. Sites can sell data, query operators, computing power or a
combination of these. The client combines these resources to a full query pipeline.

AmbientDB [3] is probably the system that bears the closest resemblance to
DASCOSA-DB. AmbientDB is a system designed to provide full relational database
functionality for standalone operation in autonomous devices that may be mobile
and disconnected for long periods of time, while enabling them to cooperate in an
ad hoc way with (many) other AmbientDB devices. A DHT is used both as a means
for connection peers in a resilient way as well as supporting indexing of data.

Like AmbientDB, DASCOSA-DB is also constructed as a combination of
middleware and federated databases, connecting the local databases of each site. The
key difference is that AmbientDB is a system for mobile devices, which have low
computational power and may frequently be disconnected from the network, while
DASCOSA-DB is designed for sites that have the computational power necessary to
do query processing and more stable network connections. DASCOSA-DB is also
based on a DHT, like AmbientDB and PIER. However, the DHT is only used as
a metadata catalog. Query processing uses point-to-point links following the query
tree, more like Mariposa and ObjectGlobe. This is different from PIER, where the
DHT is used extensively in query processing.

In terms of query capabilities, all sites of DASCOSA-DB are equal. There is
no buying or selling of query operators or data. Data is fragmented, allocated, and
replicated according to the needs of the combined load of all sites, trying to keep
the costs of network communication low. Query operators are shipped out to sites to
minimize network costs by trying to perform most query operations on local data.

Many of the systems mentioned above support SQL-like querying and presents
data similar to a normal relational database system. DASCOSA-DB is fully a
relational database system that supports standard SQL.

A brief description of a DASCOSA-DB demonstration is given in [9].

5.3 System Architecture

In this section, the architecture of DASCOSA-DB is described. DASCOSA-DB
consists of a number of autonomous sites connected to form a distributed database
system. First is described how sites are connected, how data is distributed, and how
sites cooperate to execute queries and updates, and then the internal architecture of
a single site is presented in more detail.

5 The DASCOSA-DB Grid Database System 91

Fig. 5.1 Distributed architecture of DASCOSA-DB

5.3.1 Distributed Architecture

DASCOSA-DB is designed as a middleware layer that binds together local DBMSs
running on different sites to make a distributed DBMS providing location trans-
parency. Figure 5.1 shows the distributed architecture of DASCOSA-DB, as a
middleware connecting local databases and applications to provide access to a large,
distributed database. All sites are autonomous. There is no single site that controls
the distributed DBMS. In this way, the sites act together as a P2P network.

All sites connect to form a DHT. This DHT is used to store the distributed catalog,
which contains information on all tables, table fragments, replicas, and cache entries
in the system. Currently, FreePastry1 is used, but any other DHT may be used.

A new site wishing to join a running DASCOSA-DB system only needs to know
the address of one connected site to join the DHT and thus be a part of the distributed
database. When it has joined, it publishes information about its local metadata in the
distributed catalog to make its local tables available to the rest of the system.

Sites communicate using messages. These messages can either be sent directly
to a site if the address is known, or be routed to the target site using the DHT routing
mechanism. The latter method is used for catalog lookups and updates.

DASCOSA-DB supports the relational model and bases its storage on a local
relational database management system. The current implementation uses JavaDB,2

but any relational database management system may be used. The back-end
database system can be chosen freely at each site.

1http://freepastry.org/.
2http://www.oracle.com/technetwork/java/javadb/overview/.

92 J.O. Hauglid et al.

The relational tables can be horizontally fragmented over a subset of the sites
in the system. Each fragment can also be replicated. The distributed catalog
maintains information about tables, fragments, and their replicas. Creation and
removal of fragments and replicas can be done using DASCOSA-DB’s automated
refragmentation method. Based on logging of read and write accesses, fragments
can be split or joined, or replicas can be created and removed. This is done to reduce
overall communication costs by making more data available locally where it is used
and scale the number of replicas by the amount of writes. For example, a site doing
heavy reads on a table fragment will get a local replica once this pattern is detected.

When executing queries, DASCOSA-DB utilizes query shipping. After query
optimization, different query operators are allocated and distributed to sites in the
system. This allows different operators to be executed by different sites in parallel.
DASCOSA-DB also includes support for distributed semantic caching to speed up
query execution. During updates, replicas are kept up to date using synchronous
replication and transactions are handled using the two-phase commit protocol.

5.3.2 Site Architecture

The overall architecture of a DASCOSA-DB site is illustrated in Fig. 5.2. As
described above, sites communicate using direct messages or using the DHT.
Together with modules handling broadcasting of messages to the network and
request-response pairs of messages, these constitute the communication subsystem
in DASCOSA-DB.

Fig. 5.2 High-level overview of the architecture of a DASCOSA-DB site

5 The DASCOSA-DB Grid Database System 93

Local storage on a site consists of three parts. First, there is the relational data.
Relational tables can have one or more fragments and each fragment has one or more
replicas. Therefore, the unit of local storage is a table fragment replica. The second
part of local storage is the indices for these replicas. Finally, each site stores a part
of the distributed metadata catalog. Which part of the catalog a given site stores, is
determined by the distributed hashing algorithm and the site’s position in the DHT.

Which replicas a site stores locally can change at runtime. Based on an analysis of
logged reads and writes, the local Table Fragment Handler can dynamically decide
to change the fragmentation and allocation of replicas in one of four ways:

• Coalesce two fragments into one fragment. This means that all replicas of both
fragments will have to be altered.

• Split a fragment into two fragments. As with coalesce, this will have global effect
for all replicas of the fragment.

• Send a copy of a local replica to another site so that this site can get its own local
replica to speed up local accesses.

• Delete a local replica. This will reduce the effort needed to keep all replicas of a
fragment up to date and will therefore make sense in periods with many updates.

The Fault Detector and Fault Handler are used to implement partial restart of
failed queries. If a site detects that another site designated to execute a subquery
has failed, it can handle this fault transparently from the rest of the query execution.
This is done by relocating the failed subquery to other sites. In many cases, this can
be done efficiently by not having the new sites restart the subquery completely, but
rather continue where the failed site stopped.

Each site in the system can receive SQL queries and updates, for example, using
the provided user interface or using API calls. A received SQL statement is first
parsed and transformed into relational algebra. If it is a query, a lookup in the
distributed catalog is done to find location information about all involved tables.
This information is then used by the Planner and Optimizer modules to generate
a distributed query plan, including allocating the individual query operators to
individual sites in the system. The operators are distributed to the involved site
where the Query Execution module is responsible for the actual execution.

To facilitate easy interactive access to the system, as well as study configuration,
distribution of data and query execution, DASCOSA-DB includes a monitoring
tool that gives a live view of table fragments, replicas, catalog entries, and cache
entries. It also provides a live view of query execution, including network traffic
and currently running query operators.

5.4 Distributed Data and Metadata Management

Tables in DASCOSA-DB may be horizontally fragmented based on the primary
key, and DASCOSA-DB provides an adaptive fragmentation and replication sys-
tem [10] that automatically moves data between sites as needed. In this section,

94 J.O. Hauglid et al.

the fragmentation process and the replication of the fragments are described. Then
it is described how metadata about fragments and replicas are retrieved from the
local database when a site connects to the system and how it is published and
subsequently retrieved from the global distributed catalog.

5.4.1 Fragmentation

A table may be stored in its entirety on one site, or it can be fragmented over
a number of sites. An unfragmented table is treated as a table having a single
fragment. Tables are fragmented horizontally based on the primary key. Each
fragment of a table is given a fragment value domain (FVD) that defines which range
of the primary key domain has been allocated to the fragment. The fragments are
nonoverlapping, and the FVDs of all fragments of a table cover the whole primary
key domain.

The FVD of a fragment may cover a much larger range than the range of actual
tuples in the fragment. For example, a newly created table consists of one fragment
with the whole primary key domain as its FVD, even though it does not store any
tuples yet. As tuples are inserted, updated, read, and deleted, a larger part of the
FVD is actually used, and the table may split into more fragments.

The traditional way of fragmenting and replicating tables in distributed database
systems has been to use fixed value ranges or rules defined by database admin-
istrators. In DASCOSA-DB, fragments and replicas are created and migrated
automatically by the system to accommodate the current query load. Based on
access pattern monitoring, DASCOSA-DB will try to keep the number of accesses
to remote sites as low as possible. The FVDs and fragment placements are not
fixed, so fragments can be split, coalesced, and migrated automatically to adapt
to changing workloads. Figure 5.3a shows a simple example of how two sites with
different access patterns access the same table. Site S2 has a few hotspots, while site
S1 accesses the whole table uniformly and infrequently. In this case, DASCOSA-
DB will split (or merge if the table is already split) the table into six fragments,
F1; F2; : : : ; F6. F1, F3 and F5 will be allocated to site S2, while F2, F4 and F6 will
be allocated to site S1.

To make informed decisions about useful fragmentation and replica changes,
future accesses have to be predicted. As with most online algorithms, predicting
the future is based on knowledge of the past. In our approach, this means detecting
access patterns, that is, which sites are accessing which parts of which fragment.
This is done by recording accesses to discover access patterns. Recording of
accesses is a continuous process. Old data is periodically discarded so that statistics
only include recent accesses. In this way, the system can adapt to changes in access
patterns.

Given the available statistics, our algorithm examines accesses for each replica
and evaluates possible refragmentations and reallocations based on recent history.
The algorithm runs at given intervals, individually for each replica. Each site bases

5 The DASCOSA-DB Grid Database System 95

a b

Fig. 5.3 (a) Access pattern and desired fragmentation. (b) Reduction in communication costs
relative to static fragmentation

its decisions only on information available at that site, requiring no synchronization
with other sites. With master-copy-based replication, all writes are made to the
master replica before read replicas are updated. Therefore, write statistics are
available at all sites with a replica of a given fragment. On the other hand, reads
are only logged at the site where the accessed replica is located. This means that
read statistics are spread throughout the system. To detect if a specific site has a
read pattern that indicates that it should be given a replica, it is required that each
site reads from a specific replica so that each site’s read pattern is not distributed
among several replicas.

There is a great potential for cost savings by improving fragmentation.
Figure 5.3b shows the reduction in number of tuples transferred over the network
in DASCOSA-DB for two different workloads. In the general workload, all sites
access tuples uniformly across a selected range of the whole table. Approximately
80% of the accesses are read accesses and 20% are write accesses. The reduction
in tuple transfers is more than 40%. In the grid application workload, each site
alternates between read phases and write phases, changing hotspots for each phase.
The grid application workload has more clearly separated phases, and the savings
are more than 50%. The results clearly show that the cost of splitting, migrating,
and replicating fragments pays off.

5.4.2 Replica Management

A table fragment is considered to be a logical entity. The physical entities stored in
the local DBMSs are table fragment replicas. All fragments must therefore have at
least one replica.

Replicas are kept up to date using synchronous replication. Every statement that
changes the state of a fragment is sent to all sites with replicas. All replicas must
be updated in order for a transaction to commit, and a two-phase commit protocol

96 J.O. Hauglid et al.

is used to ensure that all replicas agree on the decision to abort or commit the
transaction.

Similar to the way fragments can be split or coalesced, replicas can be automat-
ically created and deleted. Each site logs reads and updates to the locally stored
replicas. A new replica is created at a given site if this site does a lot of reads.
The idea is that the cost of transferring the replica to the site is less than having
a constant stream of remote read requests. A local replica is deleted if there are
few local accesses compared to the number of updates received. For both these
mechanisms, the idea is to reduce the overall network traffic.

Not all replicas are treated equally. One replica is designated as the master
replica. To ensure that automatic replica deletion does not delete all replicas, this
replica is not eligible for deletion. The site containing the master replica has two
special functions. First, it is the site where refragmentation decisions are made.
This prevents two sites from independently and simultaneously deciding to, for
example, split the same fragment. Only the site with the master replica is able to
do this. Second, the site with the master replica acts as a lock manager for the
table fragment. This allows us not to have a centralized lock manager, which could
become a bottleneck in a large system. When the system first boots, the catalog site
storing the catalog entry for a table decides for each fragment of the table which
replica becomes the master replica, and thus also which site becomes the master
replica site. A new master replica site can be selected if the current master replica
site crashes. It is also possible for the current master replica site to transfer this status
in case of refragmentation.

5.4.3 Metadata Management

DASCOSA-DB uses a DHT to store and access the metadata catalog. The DHT
provides a reliable and robust routing and lookup mechanism. Due to the DHT
routing, catalog lookups are fault tolerant. The DHTs hashing function also
distributes responsibility for metadata storage. All sites in the system participate
in the DHT, and when a metadata object is published in the DHT, the DHT places
it on one of the sites according to a hash of the object. Using a uniform hashing
function, metadata objects are uniformly distributed among the catalog sites.

When a site joins the DHT, it scans its local database and inserts information on
local objects into the DHT. Catalog objects will time out if they are not renewed,
and sites periodically republish their information before the objects time out and are
removed. This is done to ensure that erroneous information that may appear due to
sites crashing after publishing their metadata is cleaned up regularly.

The catalog keeps track of tables and their schemas. For each table, it stores
information about the primary key and the name and data type of all attributes. The
catalog also keeps track of how tables are fragmented and replicated, that is, how
many fragments there are, the FVD of each fragment, and the number of replicas and

5 The DASCOSA-DB Grid Database System 97

their locations. Also, one replica of each fragment is designated the master replica,
and the catalog stores this information.

The existence of caches of intermediate query results is also regularly published
to the catalog in the same manner as table, fragment, and replica information. For
each cached query result, the catalog stores a semantic descriptor, location, and
timestamp. Information about cache entries is not looked up directly, but rather
discovered as a side effect of table lookups. The cache lookup is included in
table lookup requests and replies. This mechanism is described in more detail in
Sect. 5.5.1.

5.5 Distributed Query Processing in DASCOSA-DB

DASCOSA-DB is a query shipping system where all sites store data and process
queries. Queries may arrive from any site of the system, and the site that introduces
a query to the system becomes the initiator site for that query. It is assumed that
queries are written in some language that can be transformed into relational algebra
operators, for example, SQL.

5.5.1 Query Pipeline

A query enters the system at one site. This site, called the initiator site, becomes
the coordinating site for this query. The initiator site transforms the query into an
algebra tree. During query planning, the different algebra nodes are assigned to
sites. This requires catalog lookups to transform logical table accesses into physical
localization programs, for example, a set of accesses to table fragment replicas. Sites
can be assigned more than one algebra node so that one site can be assigned a whole
subquery. As all sites have the capability to execute operators, sites storing table
fragments used in the query are typically also assigned query operations on these
fragments during planning. This tends to reduce network traffic as tuples can be
processed locally. An example of an algebra tree with site assignment is shown in
Fig. 5.4a. The initiator site plays the role of coordinator for this query and executes
an initiator algebra node that is the endpoint of the query result.

DASCOSA-DB can cache the intermediate and final results of queries. Each
site autonomously caches results of locally executed queries and subqueries and
registers these in the distributed catalog so that the caches can be found by other
sites. These catalog entries contain a semantic description of the cached query result,
the address of the site that stores the cache entry, and a timestamp used to check
cache entry validity.

As Fig. 5.4a indicates, the complexity of a query increases with the height of
the query tree. The query T � U � V is more complex than T � U . If some of
the intermediate results, like T � U , are cached, the more complex queries may be

98 J.O. Hauglid et al.

a b

Fig. 5.4 (a) Example query plan. (b) Query dissemination with a cache hit

answered partly from these caches, saving both execution time and computational
cost. More complex results in cache means larger savings when these caches are
used. However, as the other arrow in Fig. 5.4a shows, the reusability of a result is
higher for the less complex queries.

When a table is looked up in the catalog, the initiator site piggybacks a
representation of the query to the lookup message. The catalog site that handles the
lookup request sees this query representation and responds by piggybacking onto
the response a list of suitable cache entries that might speed up query processing.
Information about a cache entry is stored at the same site as one of the tables
involved in the query that produced it. This means that after looking up all tables,
the initiator site has been told about all caches involving the combination of these
tables. During localization, the initiator site looks at these cache entries. If a relevant
cache entry is found, the initiator site can rewrite the query to use the cache entry.
This is done by including the query that produced the cached result as a subquery
of current query and assigning the subquery to the site where it is cached.

After planning and possibly rewriting the query to use cached intermediate
results, query dissemination begins by transmitting the algebra tree stepwise from
the initiator site to the different sites involved. The root algebra node always stays at
the initiator site. For each child of the root node, the initiator site sends out the
subtree rooted at that child node to the child’s assigned site. These sites, upon
receiving query subtrees where the roots are assigned to them, loop through the
children of the roots and ship them off to the sites to which they are allocated. This
continues until all nodes have reached their destination. The result of this stepwise
transmission is that each site knows the complete subquery for which it is the root.

However, if a site receives a subtree for a query it has in its cache, and if that
cache entry is still valid, further dissemination of that subtree stops. Instead, the

5 The DASCOSA-DB Grid Database System 99

site prepares a special algebra node to produce the result from cache. To the sites
higher up in the hierarchy, there is no way to tell if the result is served from cache or
produced from scratch. This transparency allows the sites to make cache decisions
without relying on central coordination. Figure 5.4b shows query T � U � V with
a cache hit on subquery T � U . Site S0 checks the timestamp of the cache entry
against the timestamps of T and U to see whether the cache is up to date. If it is,
T � U is delivered from cache, and the only query operator actually executed is the
join of T � U and V at site S0. Site S1 is never involved in the query processing,
except when replying to the request for the timestamp of U .

Results of query operators are transferred between sites in tuple packets. The
system supports stream-based processing of tuples, for example, joins performed
by pipelined hash-join [23]. This means that an algebra node usually can start
producing tuples before all the tuples are available from its operand nodes. This
makes it possible for nodes downstream to start processing as soon as possible and
therefore lets more nodes execute in parallel. This requires each site to be able to
accept and buffer yet unprocessed packets, but it allows data transfers to be made
without explicit requests, thereby improving response time. In case of limited buffer
availability, flow control is used to temporarily halt packet transmissions.

The result of any algebra operator is a candidate for caching at the site where it
is produced. Sites are allowed to use any cache replacement algorithm they want.
A cache entry is usable as soon as it is created, but to enable the query planners to
plan on using cached results, the cache entries must be registered in the distributed
catalog. A site that has cached a result reports its existence to the same site that
handles lookup request for one of the tables used to produce the result. For example,
if the cache entry is the result of T � U , the catalog stores the information about
this entry at either the site that stores the catalog entry for T or the catalog entry for
U . Any site that later looks up both T and U to perform a join is guaranteed to find
this entry.

5.5.2 Standard Query Operators

DASCOSA-DB supports the typical query operators. At the lowest level, the scan
operator accesses the local DBMS and delivers tuples of a table fragment. To speed
up execution, special scan nodes exist that push selection and projection down into
the local DBMS.

Selection and projection operators also exist to be inserted into the query tree
when the operations cannot be pushed down into the local DBMSs. The selection
operators also support set operators, that is, IN and EXISTS, to compare against the
result of subqueries.

The join operators include natural join, equijoin, and outer join. These are
implemented as pipelined hash joins. An operator also exists to produce the
Cartesian product. Other operators include sorting, limiting, aggregation (including
grouping), duplicate removal (UNIQUE), and a skyline operator.

100 J.O. Hauglid et al.

All operators, except the scan operators, have flow controlled input and output
streams with a general interface. This makes it possible to connect them in any
meaningful way to represent a query. This generalized interface also makes it easy
to ship queries around, since the input and output streams are network transparent.

For most normal cases in-memory operators suffice, but for large operand sizes
there are also variants of these operators that will use disk to avoid excessive
memory consumption.

5.5.3 Fault-Tolerant Distributed Query Processing

The more sites that are involved in a query, the higher the probability of a site failing
during query processing. Long queries and high churn rates in the system also
increases the probability of site failures. The traditional way of handling failures
focuses on update transactions, and the typical failure recovery is to do a complete
restart of the failed transaction. Query failures have largely been overlooked.
Complete query restart is an appropriate technique for small and medium-sized
queries; however, it can be expensive for very large queries, and in some application
areas there can also be deadlines on results so that complete restarts should be
avoided. In some cases, various checkpoint-restart techniques have been employed
to avoid complete restarts of operations, but these techniques have been geared
toward update/load operations, and in many cases implies that a query will be
delayed until the failed site is back online.

As an alternative to local checkpointing and complete restart, DASCOSA-DB
supports partial restart of queries [8]. With partial restart, unfinished subqueries
from failed sites can be resumed on new sites after failures. These restarted
subqueries may also utilize partial results already produced before the failure – both
results generated at nonfailing sites and results from failing sites that have already
been communicated to nonfailing sites. The technique integrated in DASCOSA-
DB can be compared to previous approaches like [20]. DASCOSA-DB’s fault
tolerant query processing (1) reduces query execution time compared to complete
restart, (2) incurs minimal extra network traffic during recovery from query failure,
(3) employs decentralized failure detection, (4) supports nonblocking operators,
(5) handles recovery from multi-site failures, and (6) avoids duplicate tuples by
deterministic delivery of tuples from base relations and operators. The query restart
techniques can also be used to provide distributed suspend and restart of queries.

Figure 5.5a shows a system executing the query T � U � V . Originally, only
sites S1; S2; S4; S5, and S6 are involved, but sometimes during query processing S4

fails. This is detected by site S6, which is the recipient of the result of the failed
algebra node. Site S6 chooses S3 to replace S4, and reissues the query T � U to this
site. Site S3 follows the normal query dissemination strategy and forwards the scan
operators to sites S1 and S2. The particular challenges that have been solved in our
approach relate to failure detection, selection of replacement site, and restart of the
various relational algebra operators.

5 The DASCOSA-DB Grid Database System 101

a b

Fig. 5.5 (a) Example of query failure and restart. (b) Relative cost of restarted TPC-H queries

Failures during query processing are detected by using timeouts. There is no
central failure detector. Instead, a site monitors all sites that produce the operands
for query operators executing at that site. If a site failure is detected, a new site
is selected for each of the failed operators. The impact of a failure is therefore
localized – it only affects the sites receiving the results of the failed query operators.
Other queries and subqueries executing at other sites continue as normal.

The replacement site selected to execute a failed query operator tries to pick
off where the operator first failed. How this is done, depends on the operator. Two
classes of operators can be identified: stateless and stateful. Stateless operators
process tuples independently. Examples include projection and selection. For these
operators, the number of operand tuples an operator has used to produce a given
number of result tuples is stored. This number is transmitted with each packet of
tuples sent in the network. Using this number, a replacement site knows where to
start when resuming a failed operator. For example, assume that a failed site Sf was
executing a selection. This selection was done on tuples received from another site
So. The target site St for the selection, has received 500 result tuples when Sf fails.
Assume that 800 tuples from So had been processed to produce those 500 result
tuples. This fact will be known by St and transmitted to the replacement site Sr .
Sr will then know that it should request So to resume sending tuples, skipping the
first 800.

For stateful operators, on the other hand, each result tuple can be dependent
on more than one operand tuple. Such operators include join and aggregation.
When such operators are restarted, they must request operands to be replayed
in full. However, they can still use the number of received operands before the
failure to prevent sending duplicates. For example, a join must get its two operands
completely, but it can skip sending the first result tuples up to and including the
number of tuples received from the failed site.

For this partial restart technique to work correctly, tuples must be produced by
an operator in a deterministic order. Note that this does not mean that this has to be

102 J.O. Hauglid et al.

a sorted order. For scan operators, it is required that tuples are retrieved from the
local DBMSs in a deterministic order. Further, it is required that other operators are
deterministic so that they produce tuples in a deterministic order given the same
ordering of operand tuples. Thus, this requirement reduces to having operators
consuming tuples in a deterministic order. This is achieved by having operators
consume packets of operand tuples in a round-robin order sorted on the ID of the
source site of an operand tuple packet.

The results in Fig. 5.5b show the cost of a restart for a representative collection
of ten TPC-H queries. The average restart cost is 50%. The two queries with the
least gain (query 2 and 13) were also the two shortest queries. There is a constant
overhead in detecting site failure and restarting queries. For the longer queries, this
constant overhead is relatively small, so these queries have a lower restart cost.

5.6 Distributed Monitoring and System Management

DASCOSA-DB includes an integrated distributed monitoring and management tool.
Figure 5.6 shows the user interface which allows the user to issue SQL statements
and monitor the state of the system in real time. It has proven very useful for the
different research projects employing or extending DASCOSA-DB.

DASCOSA-DB supports running more than one site on the same physical
computer. All these sites will still communicate as if distributed and have separate
local DBMSs. Running more than one site locally allows the user to easily examine
the execution of distributed queries as the monitoring tool can observe all these sites.

The available views show which table fragments are stored at each site and the
schema for each of these. The catalog view for a site shows catalog entries stored
at that site. Tables are listed with the number of fragments and replicas, and each
fragment entry shows the FVD, the actual used ranged and the number of tuples in
the fragment. The catalog view also shows cached query results.

Network traffic monitoring is made easy by using the network log, which will
list all messages received and sent by a selected site. This allows the user to, for
example, easily track the distributed execution of a query. Both query processing
messages, catalog messages and other maintenance messages can be inspected.

The monitoring tool also allows the user to inspect running queries and follow
the execution of algebra nodes as flow control changes the state of algebra nodes
between processing and paused states. A complete view of all running queries and
algebra nodes is provided.

Cache inspection is also provided. DASCOSA-DB has two caches: a restart
cache that is used to provide fault tolerant query processing, and a semantic cache of
intermediate query results. Each of these may be inspected through the management
interface.

Finally, the management interface allows the user to simulate network failures
and site crashes by toggling on or off message delivery to each site. When a site is
disconnected, the rest of the system will notice its disappearance and adjust to the

5 The DASCOSA-DB Grid Database System 103

Fig. 5.6 Screenshot from the DASCOSA-DB system monitoring tool

new situation. Queries involving the failed site will restart, and new master replicas
will be appointed.

5.7 Experimental Evaluation

The individual features of DASCOSA-DB have been evaluated experimentally
in earlier papers [8, 10, 19]. In this section, it is showed how the system, as a
whole, scales. Evaluation of additional DASCOSA-DB features not described in
this chapter can be found in [18].

5.7.1 Experimental Setup

The system consists of ten interconnected sites running DASCOSA-DB. A TPC-H
dataset is horizontally fragmented into five fragments. Each site stores one fragment,
meaning that there are two replicas of each fragment. A set of 1,000 random
TPC-H queries with random values for substitution parameters is used. An 80/20
distribution is used both for query and parameter selection.

104 J.O. Hauglid et al.

Fig. 5.7 Execution time relative to baseline

The number of sites that issue queries, and thereby the number of coordinator
sites, is varied between 1, 5 and 10 to show how system performance increases with
increased parallelism. Each querying site executes its queries in series, waiting for
one to complete before issuing the next. The system is tested both with and without
semantic caching enabled.

5.7.2 Results

The execution time of each experiment relative to a baseline is measured, where
all queries were issued in sequence from a single site, without caching any query
results. The results shown in Fig. 5.7 show that by increasing parallelism so that
all sites issue queries, execution times are reduced by 25%. Since DASCOSA-DB
allows queries to be issued from any site, the risk of the coordinator site becoming
a bottleneck is reduced, and higher throughput can be achieved.

Further, semantic caching reduces the run time with up to 73%. This considerable
improvement is possible because parts of the algebra tree for a query is similar to
some parts of other queries. These parts are reused to provide a quicker response to
the query, freeing up resources that otherwise would be used to process each query
from scratch.

The execution time does not decrease as much with increasing number of
querying sites as was the case without caching. The reason for this is that there
is not much more time to save after the reduction in execution time caused by
semantic caching. Also, caching is a means to improve execution time of a series
of queries, not parallel queries. The result has to be cached before it is used. Still,
our semantic caching method makes it possible to reduce execution time of multiple
parallel querying sites since cache entries are shared with all other sites.

5 The DASCOSA-DB Grid Database System 105

5.8 Summary and Future Challenges

The central point of the grid is to present the user with readily available computa-
tional power without the need to know where this power comes from. This should
also be the central point for data storage used by the grid, and our DASCOSA-DB
is designed with this in mind.

We have presented a middleware system that transparently provides access to
data distributed throughout the grid. Based on the relational model, our query
shipping database system efficiently queries data in situ, while constantly adapting
to the shifting workload by moving table fragment replicas closer to where they are
used and by replicating data that has to be read by many sites. Semantic caching
reduces the need to compute everything from scratch and allows new queries to
take advantage of the intermediate results of queries that have already finished,
even if they came from different sites. In case of failures during query processing,
DASCOSA-DB will restart only the failed subquery. DASCOSA-DB also provides
a distributed monitoring and management system.

Although we now have a working distributed database system, there is no lack of
remaining challenges. More advanced optimization in the presence of cached data
is needed. We will also study rank-aware operators which are important for many of
the intended application areas.

Acknowledgements The development of the DASCOSA-DB has been supported by grant
#176894/V30 from the Norwegian Research Council.

References

1. Akbarinia, R., Martins, V., Pacitti, E., Valduriez, P.: Design and Implementation of Atlas P2P
Architecture. In: Global Data Management, 1st edn. IOS Press, VA (2006)

2. Bauer, D., Hurley, P., Pletka, R., Waldvogel, M.: Bringing efficient advanced queries to
distributed hash tables. In: Proceedings of LCN (2004)

3. Boncz, P., Treijtel, C.: AmbientDB: relational query processing in a P2P network. In:
Proceedings of DBISP2P (2003)

4. Braumandl, R., Keidl, M., Kemper, A., Kossmann, D., Kreutz, A., Seltzsam, S., Stocker, K.:
ObjectGlobe: ubiquitous query processing on the Internet. VLDB J. 10(1), 48–71 (2001)

5. Chang, F., et al.: Bigtable: A distributed storage system for structured data. In: Proceedings of
OSDI (2006)

6. Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The Piazza peer data
management system. IEEE Tran. Knowl. Data Eng. 16(7), 787–798 (2004)

7. Harren, M., Hellerstein, J.M., Huebsch, R., Loo, B.T., Shenker, S., Stoica, I.: Complex queries
in DHT-based peer-to-peer networks. In: Proceedings of IPTPS (2002)

8. Hauglid, J.O., Nørvåg, K.: PROQID: Partial restarts of queries in distributed databases. In:
Proceedings of CIKM (2008)

9. Hauglid, J.O., Nørvåg, K., Ryeng, N.H.: Efficient and robust database support for data-
intensive applications in dynamic environments. In: Proceedings of ICDE (2009)

10. Hauglid, J.O., Ryeng, N.H., Nørvåg, K.: DYFRAM: Dynamic fragmentation and replica
management in distributed databasesystems. Distributed and Parallel Databases 28(2–3),
157–185 (2010)

106 J.O. Hauglid et al.

11. Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.: Querying the
internet with PIER. In: Proceedings of VLDB (2003)

12. Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32(4),
422–469 (2000)

13. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R.,
Rhea, S., Weatherspoon, H., Wells, C., Zhao, B.: OceanStore: An architecture for global-scale
persistent storage. In: Proceedings of ASPLOS (2000)

14. Ng, W.S., Ooi, B.C., Tan, K.L., Zhou, A.: PeerDB: A P2P-based system for distributed data
sharing. In: Proceedings of ICDE (2003)

15. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice-Hall, NJ (1991)
16. van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable technology for

distributed system monitoring, management, and data mining. ACM Trans. Comput. Syst.
21(2), 164–206 (2003)

17. Rodrı́guez-Gianolli, P., et al.: Data sharing in the Hyperion peer database system. In:
Proceedings of VLDB’2005 (2005)

18. Ryeng, N.H., Vlachou, A., Doulkeridis, C., Nørvåg, K.: Efficient distributed top-k query
processing with caching. Proceedings of DASFAA, pp. 280–295 (2011)

19. Ryeng, N.H., Hauglid, J.O., Nørvåg, K.: Site-autonomous distributed semantic caching. In:
Proceedings of SAC (2011)

20. Smith, J., Watson, P.: Fault-tolerance in distributed query processing. In: Proceedings of
IDEAS (2005)

21. Stonebraker, M., et al.: Mariposa: A wide-area distributed database system. VLDB J. 5(1),
48–63 (1996)

22. Taylor, N.E., Ives, Z.G.: Reliable storage and querying for collaborative data sharing systems.
In: Proceedings of ICDE (2010)

23. Wilschut, A.N., Apers, P.M.G.: Dataflow query execution in a parallel main-memory environ-
ment. Distributed and Parallel Databases 1(1), 103–128 (1993)

Part III
Cloud Data Management

•

Chapter 6
Access Control and Trustiness for Resource
Management in Cloud Databases

Jong P. Yoon

Abstract Cloud computing is emerging as a virtual model in support of
“everything-as-a-service” (XaaS). Service providers post XaaS of resources in a
cloud database. There are numerous service providers such as feeders, owners,
and creators, who are less likely the same agent. Consequently, resources in a
cloud database cannot be securely managed by traditional access control models,
and therefore cloud database services may be trustless. This chapter proposes a
new security technique to measure the trustiness of the cloud resources. Using
the metadata of resources and access policies, the technique builds the privilege
chains and binds authorization policies to compute the trustiness of cloud database
management. The contribution of this chapter includes a mechanism of the privilege
chains that can be used to verify the legitimacy of cloud resources and to measure
the trustiness of cloud database management.

6.1 Introduction

Cloud computing models consist of subjects and objects, the objects that can
be created by or provided for the subjects. Subjects, as agent, can be a service
provider (SP) or a service user (SU), where SPs provide objects to a cloud and
SUs request objects from a cloud. The services provided by SPs can be everything,
from the infrastructure, platform, or software resources. Each such service is called
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), or Software as
a Service (SaaS). For example, Google Apps Engine (http://www.google.com/
apps) or Microsoft Azure platform (http://www.microsoft.com/windowsazure/) is a
PaaS, while Google Docs (http://docs.google.com) is a SaaS, and DropBox (http://

J.P. Yoon (�)
Department of Mathematics and CIS, Mercy College, 555 Broadway, Dobbs Ferry,
NY 10522, USA
e-mail: jyoon@mercy.edu

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 6, © Springer-Verlag Berlin Heidelberg 2011

109

110 J.P. Yoon

Creator SP

OwnerAgent

1

2

3

4
5 6

7

SU

VM1 VM2 VM3

Fig. 6.1 Resource life cycle in cloud databases

www.dropbox.com) is an IaaS. A database deployed and virtualized in such an
environment is called cloud database.

Cloud databases considered in this chapter assumes that SPs provide SUs with
resources such as JPEG image files and crypto programs as fIjPjSgaaS. There are
numerous SPs such as feeders, owners, granters, and creators. As illustrated in
Fig. 6.1, a resource is created by a creator, who may then grant (1� and 2� in Fig. 6.1)
the ownership to a new owner (3� and 4� in Fig. 6.1). A resource owner may grant
the feedership to a cloud database and further to a resource (SP) feeder (5� and 6� in
Fig. 6.1). While a resource is available in a cloud database server, a (SU) user may
request for a usership of a resource from a server (7� in Fig. 6.1). Of course, it is also
possible that a resource in one virtual machine (VM) is deployed to another VM (3�
and 4� in Fig. 6.1) within the same cloud computing environment. Numerous agents
with different roles [1, 2], such as creatorship, ownership, feedership, and usership,
are involved to handle the same resource, which is available to be accessed.

Since in support of everything-as-a-service (XaaS), there are various operating
systems such as Unix, Linux, or Windows, software packages such as DBMS, SAP,
ERP, and CMS, and cloud resources available in one or more of those platforms.
Each such platform has different mechanisms of authentication and authorization,
from typical password-based or LDAP-based authentication [3] to RBAC [4, 5].
In the variety of cloud infrastructures, software packages, and platforms, a cloud
resource previously accessed in one platform cannot be accessed by the same user
in another platform, and vice versa.

Cloud databases facilitated with the features stated above authenticate who the
SP or the feeder of a resource is in the cloud servers. Although a cloud authenticates
a feeder, it does not ensure that a resource posted by the feeder is free from
authentication spoofing, plagiarism, or virus attacks. In addition to that, it is also
common that an information gap exists in between the creator and the feeder of
a cloud resource [6, 7]. In the case of JPEG files, most likely in these days and
absolutely in the future, the cloud resources contain the information about a creator
or the owner. Currently, JPEG files from most digital cameras contain the creator

6 Access Control and Trustiness for Resource Management in Cloud Databases 111

information. It is likely that the creator of a resource is unnecessarily the same as
the feeder of that resource. Since they are not the same, cloud databases exemplified
below do not have some reasonable degree of trustiness:

• Databases that do not contain enough resources for a complete chain from the
creator to the feeder (privilege chain will be defined later), or

• Databases that do contain resources fed by an insufficiently authorized feeder
(insufficiently authorized feeder will be defined later).

One of the reasons being such information gaps are caused by the following. The
possible cause and consequence are as follows:

• Although a feeder is properly signed up and in, the resources that the feeder posts
may be not legally credited to it.

• It is likely that a digital asset as a cloud resource may not have the complete
information of all agents, from the creator to the feeder.

• Although exists, authorization policies may not specify nor imply the complete
information of all privilege permissions needed from creators to feeders.

• If a feeder of a resource does not have a legal feedership or relevant privilege
granted nor implied all the way from the creator, there exists the legitimacy issue.
Services with such resources are trustless.

• If anyone who is not certified is involved in a privilege chain (which will
be discussed Sect. 6.4), the privilege chain is less likely trustworthy for the
legitimacy of a cloud resource and the trustiness of services.

This chapter has contributions to security management of the cloud resources in
general and to access control models for cloud database management in more
specific. The contributions include:

• Chains of privileges, a graph, are constructed for authorization policies in a
virtual machine memory (VMM) and for JPEG files of cloud database resources.
The chain of privileges of JPEG files can be used for trustiness and security
(access control) management of cloud resources.

• Reachability analysis is to reach any agent in the privilege chains (or together
with a cloud social network), who is certified and may be the one the trustiness
can be placed on. This reachability analysis can be used to trace for some
reasonable degree of the legitimacy of cloud resources.

This chapter is organized as follows: Sect. 6.2 describes the formats of metadata
of file resources available in cloud databases. Section 6.3 introduces the basic
elements of the cloud memory, which can hold the user session information and
the metadata of resources. Section 6.4 proposes the privilege chain for authorization
policies, which will then be extended to the privilege graph. Another information
chain to be used is for resource agents that are available in the metadata of cloud
resources. The chain of metadata will be further extended to the resource metadata
graph. Section 6.5 describes the notion of trustiness for cloud resources. If a cloud
resource is trustless, external credentials and relationships among themselves, which
is widely available in social networking domains, are used. Section 6.6 concludes
this work.

112 J.P. Yoon

6.2 Metadata of Files

Photographic images can be compressed by the Joint Photographic Expert Group
(JPEG, http://www.jpeg.org) compression algorithm. JPEG compression is used in a
number of image file formats, such as JPEG/Exif (Exchangeable Image File Format)
and JPEG/JFIF (JPEG File Interchange Format), and widely used for storing and
transmitting images on the Internet.

JPEG files contain metadata [8, 9], which consists of the data contained in
marker segments in a JPEG file. The image metadata object in the marker segments
between the start of image (SOI, #FFD8 in hex) marker and the end of image (EOI)
marker for the image, contains information about make and model of digital camera,
time and date the picture was taken, distance the camera was focused at, location
information (GPS) where the picture was taken, small preview image (thumbnail)
of the picture, firmware version, serial numbers, name and version of the image
manipulation program, name of the owner, etc.

Such metadata can be added by a user, software, or a digital camera. Some
of the software that can edit in the metadata segment includes EXIFcare, EXIF
Writer, EXIF Tool, MetaDataMiner, etc. For example, Fig. 6.2 illustrates metadata
information displayed in EXIF Viewer in (a) and EXIF Reader in (b), where there is
the column for “Owner Name,” which is of our interest. It is also possible that any
attributes can be edited using software. For example, using EXIF Tool command,

exiftool -P -overwrite oritinal -creator=’Chris’

wedding1.jpg (6.1)

the original file creation date, ownership, permissions, type, creator, icon, and
resource fork can be overwritten. For security reason, this overwriting function can
be done one time only and read many. However, addition of new tags is always
possible. Therefore, if the file, wedding1.jpg, is granted to a feeder, say Steve,
then the following command is used:

exiftool -P -overwrite oritinal -feeder=’Steve’

wedding1.jpg (6.2)

Consequently, the file, wedding1.jpg, has the metadata that contains the follow-
ing:

Creator: Chris
DateTimeCreated: 2009:06:28 10:03:42
Owner: Owen
DateTimeOwned: 2009:06:30 13:12:32
Feeder: Steve
DateTimeDeployed1: 2010:01:28 09:10:11

6 Access Control and Trustiness for Resource Management in Cloud Databases 113

(a) EXIF Viewer

(b) EXIF Reader

Fig. 6.2 Metadata of JPEG

114 J.P. Yoon

As illustrated above, the metadata contains a set of (attribute, value) pairs. The
picture in the file, wedding1.jpg, is taken by Chris on 28 June 2009, owned
by Owen on 30 June, then granted to the feeder, Steve, on 28 January 2010, and
thereafter, the picture is up and available for user accesses. Each such agent is an
important factor that this chapter can use for access control in cloud databases. Note
that the metadata can be obtained and held in a VMM.

6.3 System-Context Information in Virtual Machines

In cloud computing architecture, the service provider (SP) implements the service
logic and presents it to clients over the Internet (cloud). The service logic itself
is typically composed of multiple components. The SP uses some virtualization
abstraction, for example, a virtual machine, for service deployment. Several of
these VMs, belonging to various independent SPs, can then be deployed on the
infrastructure.

For simplicity, assume that a SP will deploy all resources on a single cloud
infrastructure. An example is shown in Fig. 6.1, where the SP provides a VM for
customers or service users (SUs). An SU may access the VM from another PC
or possibly from a dumb terminal. The SP adds value by allowing reaming access
to the infrastructure and possibly providing centralized management. There may be
several architectures with various infrastructures possible [10,11], more specifically,
a cloud database with the memory components of VMs [1, 12].

As illustrated in Fig. 6.3, consider the memory for cloud computing in two-tiered
architecture. Each SP provides its VMM which may serve one or more available
cloud resources to SUs. There is a centralized management, where each VMM is
addressed and monitored for namespaces bookkeeping by the cloud global memory
(CGM). The CGM has the register set, stacks, and private storage area, which are

Fig. 6.3 Virtual machine memories and cloud global memory

6 Access Control and Trustiness for Resource Management in Cloud Databases 115

known as the context of the memory. This chapter describes the VMM and CGM
with their relationships with respect to trustiness management for cloud resources
and its services.

6.3.1 Context for Cloud Resources

As an SP places a JPEG file in a VM for service, the metadata of the JPEG file
is loaded in the CGM. Therefore, whichever VM holds a resource, the metadata
of the resource can be posted in the CGM. For any cloud resources available in a
local virtual machine, their metadata should be available in the CGM. To make the
CGM simple, any metadata that are related to the trustiness are loaded in the CGM,
while all other information is loaded in a VMM. (Note that JPEG metadata can be
extracted from files as discussed in Sect. 6.2.)

For example, a JPEG file has the creator information, possibly together with
the information about additional agents such as owners. The CGM context has the
following memory context:

cgm context(‘fileEnv’, ‘creator’)

cgm context(‘fileEnv’, ‘owner’) (6.3)

What (6.3) means is that the CGM holds the value creator’s name “Chris”
bound to parameter “creator” in the context namespace “fileEnv.” Therefore,
when it comes to an invocation of the creator of a JPEG file, the function
“cgm context(<context>,<parameter>/” returns the value. For exam-
ple, cgm context(‘JPG1 Env’, ‘creator’)will return “Chris.”

6.3.2 Context for Service Providers and Service Users

The information about not only cloud resources but also service providers and ser-
vice users will be available in the CGM. As an SP signs in, the session information
about the SP’s login and SP’s certificates will be posted and loaded in the CGM.

cgm context(‘userEnv’,‘session user’)

cgm context(‘userEnv’,‘network user’) (6.4)

The CGM context namespace “userEnv” holds the parameter session user
of a logging in user in the parameter “session user”. For example, when John
is logged in to post a resource in a VMM, then cgm context(‘userEnv’,
‘session user’) will contain session user “John” in the namespace
userEnv. When cgm context(‘userEnv’, ‘session user’)is invoked,

116 J.P. Yoon

“John” will be returned. In addition to session user and network user, more
parameters will be loaded into the CGM, such as authenticated identity,
client identifier, and host, ip address.

In the same manner, as an SU is signed in a VM, the credential-related
information is loaded in the CGM, while all other user and session information
loaded in a VMM. The context namespaces and parameters for SU’s log-ins are
very similar to (6.4).

6.3.3 Context for Authorization Policies

The security manager, if not the policy manager, creates and manages the policies
that can be used to make access decisions. Such policies are called authorization
policy. Typical authorization policies are defined over three elements (subject,
object, and signed action), which means that subject is allowed to do action on
object. Depending on the sign of actions, subject is permitted to do the action if plus
sign, or denied otherwise. The format of such policies is .s; o; ˙a/, where s, o, and
˙a, respectively, are denoted as subject, object, and signed action [4, 5].

The authorization policies are loaded in the CGM as shown in Fig. 6.3. This
format of the typical authorization policies will be extended in the following section.

Why the CGM is needed in a cloud computing environment although there
are multiple VMMs are available? [13–15]. The reason for that is not because of
provisioning for insufficient memory space, but aims at avoiding the propagation
of subjects and privileges. In Fig. 6.3, VMMs without CGM, the metadata about
JPEG files and user information should be propagated from one VMM, where the
user is logged in or a JPEG file is provided in, to another VMM, where the user has
access to JPEG files. Such propagation may cause to modify or temper the metadata
information.

6.3.4 Interoperability of VMM and CGM

Since a cloud computing environment consists of multiple VMMs and a CGM,
their interoperability is important and the control for interoperation may lie on each
VMM or the CGM. As one of XaaS posted in a cloud database, its metadata (e.g.,
the feeder and creator information) should be extracted and properly located. Also,
as a requester (or SU) is logged in, the session information of user’s login will
be recognized and the access policy for users and XaaS will be correspondingly
located. To avoid inconsistency of using access policies, as mentioned in Sect. 6.1,
assume that there will be one repository of access policies in the CGM. Depending
on the control, in this subsection, three possible approaches are discussed.

• Local control for interoperability. Each VMM has its own control on sharing
and managing system-context information about file metadata, and the CGM has
the access control policies. As a file is posted, its metadata such as the feeder

6 Access Control and Trustiness for Resource Management in Cloud Databases 117

Fig. 6.4 Local control for interoperability

and creator information is extracted as long as available in the file, and stored
in a local VMM. As a requester is logged in, context data for the user session
information is extracted and stored in the CGM. For users and the requested file,
the access policy will be matched and finally stored in the VMM.

For example, in Fig. 6.4, as the file wedding1.jpg is posted, it is stored in a
VMM (see 1�). For the file, the feeder information is stored in the VMM. From the
file, the creator information is extracted and stored in the VMM (see 1�0). When user
john is logged in a (may be in a different) VM, the context data for his login session
will be stored in both VMM and CGM (see 2�). Based on the session availability,
John can pose a request (see f 3 and 3f 0). In the CGM, for the session context data,
a corresponding access policy is matched and shipped back to the VMM. According
to the policy shipped in, the VMM returns wedding1.jpg to john (see 4�).

• Global control for interoperability. As a file is posted, its metadata such as the
feeder and creator information is extracted as long as available in the file, and
stored in a local VMM and the CGM. As a requester is logged in, context data
for the user session information is extracted and stored in the CGM. For users
and the requested file, the access policy will be matched and stored in the CGM.
Therefore, the CGM holds the user session information, metadata of the resource,
and the matched policy.

For example, in Fig. 6.5, the CGM has the feeder Steve and creator Chris for
the file wedding1.jpg (see 1� and 2�), the session information for john (see 3�
and 4�), and the matched access policy (Steve, John, wedding1.jpg,+r,

118 J.P. Yoon

Fig. 6.5 Global control for interoperability

none) (see 5�). With the information being available, the CGM will return the file
to the requester (see 6�), which is physically stored in a local VMM.

• Federal control for interoperability. As a file is posted, its metadata such as the
feeder and creator information is extracted as long as available in the file, and
stored in a local VMM only. As a requester is logged in, context data for the
user session information is extracted and stored in the CGM. For users and the
requested file, the access policy will be matched and stored in the CGM as well.

For example, in Fig. 6.6, a VMM has the feeder Steve and creator Chris
information for the file wedding1.jpg (see 1�), while the CGM has the session
information for john (see 2� and 3�), and the matched access policy (Steve,
John, wedding1.jpg,+r, none) (see 4� and 5�). With the information
available, the CGM will determine the authorization to request, and in response
to the CGM’s determination (see 6� and 7�), the VMM returns the stored file to
john.

6.4 Access Control Models

Why the CGM is needed in a cloud computing environment although multiple
VMMs are available? The reason for that is not because of provisioning for
insufficient memory space, but aims at avoiding the propagation of subjects and
privileges. In Fig. 6.3, VMMs without CGM, the metadata about JPEG files and
user information should be propagated from one VMM, where the user is logged in
or a JPEG file is provided in, to another VMM, where the user has access to JPEG
files. Such propagation may cause to modify or temper the metadata information.

6 Access Control and Trustiness for Resource Management in Cloud Databases 119

Fig. 6.6 Federated control for interoperability

Having the CGM with the VMMs of virtual machines available in a cloud
database, this chapter proposes the chain of privileges and the chain of metadata.
The former will be constructed based on the authorization policies, while the latter
constructed based on the metadata of cloud resources.

Recall SP and SU introduced in Sect. 6.1. A resource is created by a creator,
owned by an owner which may be the same as the creator, granted privileges to
another by the owner, and finally placed for service in a cloud database. They are
all SPs. A cloud resource then will be used by an SU, who accesses the cloud
computing. Both SPs and SUs enter into a VMM. An SP posts a cloud resource
in a VMM. As a cloud resource is posted, the metadata of the resource is extracted
in a VMM and copied to the CGM. An SU requests a cloud resource from a VMM,
the credential of an SU is extracted and held by the system context of the CGM as
illustrated in Fig. 6.3. Here, assume that access policies are available in the CGM.
With the metadata of a resource and the system-context information about users, an
appropriate access policy will be enforced.

6.4.1 Access Policy Specification

The policy manager creates and manages the policies that can be used to make
access decisions. Typical authorization policies are defined over three elements
(subject, object, and signed action), which means that subject is allowed to do action

120 J.P. Yoon

on object. Depending on the sign of actions, subject is permitted to do the action if
plus sign, or denied otherwise. The format of such policies is .s; o; ˙a/, where s, o;

and ˙a, respectively, are denoted as subject, object, and signed action [4, 5].
The signed action specified for typical authorization policies is a privilege that

can be applied to an object. This type of privileges is called object privilege. In
addition to this, this chapter proposes to use another type of privileges, which can
be applied to a system. This type is called system privilege. Some examples of the
system privileges are “grant” or “admin.”

Having these all together, the policies are specified over four elements:

.s; 0; ˙a; m/; (6.5)

where m denotes a system privilege, such as “grant” that the subject s is permitted
to grant the privileges (the same object and system privileges) further to other
subjects, or “none” that implies no further privileges but only the given object
privilege ˙a.

For example, the policy (‘‘john’’, ‘‘wedding1.jpg’’,+r,
‘‘grant’’) implies that a request from jyoon is permitted to read the
wedding1. jpg file and also permitted to grant the privileges to other
subjects as well. On the other hand, the policy (‘‘@cysecure.org’’,
‘‘wedding1.jpg’’,+r, ‘‘none’’) means that requests from the host
(‘‘@cysecure.org) has no privilege of further granting to others but is
permitted to read the file only.

Now, consider the delegation mechanism in access control. The delegation
mechanism has been used to support decentralized administration of access policies
[5, 15, 16]. It allows an authority (delegator) to delegate all or parts of its own
authority or someone else’s authority to another user (delegatee) without any need
to involve modification of the root policy. In this context, there are two types of the
subject (or agent) of actions: subject as an actor and as a target. An actor subject
.sa/ permits a target subject .st/ to do an action .a/ on object .o/, which is in the
same context of delegation. The policy format in (6.5) is improved to the following:

.sa; st; 0; ˙a; m/; (6.6)

where

• sa denotes delegator (or actor subject). The creator (or the first agent) of a file
will be of sa. This actor subject may appear in the metadata of JPEG files.

• st denotes delegatee (or target subject). This target subject may appear in the
metadata of JPEG files. The end user, the user who requests to access, of files
will be of st.

• o denotes the target subject is called “direct object.” One type of examples is
JPEG files.

• ˙a denotes a signed action. It can be “read,” “write,” “download,” etc. that sa

and st may request.
• m, respectively, object, signed action, and privilege mode.

6 Access Control and Trustiness for Resource Management in Cloud Databases 121

For example, the policy (‘‘Steve’’, ‘‘john’’, ‘‘wedding1.jpg’’,
+r, ‘‘grant’’) implies that Steve grants john to read the wedding1.jpg
with the grant system privilege.

6.4.2 Chains of Privileges and Metadata

Recall the metadata discussed in Sect. 6.2, such as creator, owner, feeder, requester,
and user. From the creation of (e.g., JPEG file) resources to the service in a cloud
database, there is one or more actor subjects (or SPs) involved. As an example of the
case of resource wedding1.jpg, creator Chris delegates (sells) to owner Owen
(in Fig. 6.7).

Along the sequence of SPs in the metadata of a cloud resource, there will be
a chain from the creator to the feeder. Such a chain is called chain for metadata
(CM). CMi denotes the chain of the metadata for a resource i . As such, a chain
can be constructed in a (linked) list. A node of the linked list represents an SP, any
agents from creator to feeder. The head of a linked list is usually the creator of a
resource, and the tail node is the feeder to a cloud. In the example of the JPEG file
wedding1.jpg above, the head node is Chris and the tail is Steve, and the
privilege chain is:

CMwedding1.jpg W Chris ! Owen ! Charlie ! Denny ! Steve (6.7)

The chain of this metadata is depicted in (a chain of the dotted boxes and lines)
Fig. 6.7:

CMw2.jpg W Paul ! Peter (6.8)

CMw3.jpg W Chris ! Stew (6.9)

CMw4.jpg W Charlie ! Denny (6.10)

Fig. 6.7 Metadata graph (MG) and privilege graph (PG)

122 J.P. Yoon

According to CM in (6.9) and Fig. 6.7, the resource w3.jpg has the feeder Stew
who Chris agents to. In (6.8), w2.jpg has the feeder information but nothing for
the creator’s. Equation 6.10 shows that there is no information about the creator and
the feeder of w4.jpg.

Similarly, consider access policies. An actor subject .sa/ in an access policy
.sa; st; o; ˙a; m/ is represented in a head node, while target subject .st/ in a tail
node. That is, sa ! st. Furthermore, consider two access policies, pi and pj ,
.sai ; sti ; oi ; ˙ai ; mi / and .saj ; stj ; oj ; ˙aj ; mj /, respectively. If saj D sti , then the
node of pi is linked to the node of pj . That is, the privilege chain is sai ! sti (or
saj / ! stj . It means that pi is the head node, while pj is the tail node. Such a chain
is called privilege chain for access policy, denoted by CPj .

For example, consider the following access policies:

(‘‘Denny’’, ‘‘Steve’’, ‘‘wedding1.jpg’’,+fr,w,xg,
‘‘grant’’) (6.11)

(‘‘Steve’’, ‘‘John’’, ‘‘wedding1.jpg’’,+r, ‘‘none’’)

(6.12)

The privilege chain for the above policies is:

CPc2j W Denny ! Steve ! John (6.13)

This is depicted in (a chain of the solid boxes and lines) Fig. 6.7. In Fig. 6.4, there
are more CPs:

CPc2j2 W Charlie ! John (6.14)

CPc2j3 W Usher ! John (6.15)

Note that PG for John is constructed only while John is logged in the cloud.
In what follows the chains of privileges and metadata will be extended and such

extension is called the privilege graph and the metadata graph.

6.4.3 Graphs of Privileges and Metadata

As an extension, this section models a set of privileges and a set of resource metadata
as a directed graph. The privilege graph PG D .V; E; L/, where V is a set of
vertices, each such vertex is from PCi , E � V � V is a set of edges, and L is a
set of weights. A value, known as weight, is associated with an edge.

Similarly, a directed graph for metadata of cloud resources, MG D .V; E; L/. It
turns out that MG D fCMj g and PG D fCPig for all i ’s and all j ’s. In Fig. 6.4, the
chains of dotted boxes and lines are in MG, while those solid chains are in PG.

6 Access Control and Trustiness for Resource Management in Cloud Databases 123

For PG and MG, some specific nodes are defined:

Definition 6.1. (Creator Head and Feeder Tail) In any chain of the graph, PG and
MG, the head node of a chain is called creator head node, if the node is the creator
of that resource. The tail node is called feeder tail node, if the node is the feeder of
that resource.

Corollary 6.1. (Complete or Broken CMi / CMi is complete if it contains both
creator head node and feeder tail node. Otherwise, it is of the following:

• Rootless resource: Chain with feeder tail node but no creator not owner
• Unauthorized posting: Chain with no feeder tail node

For example, in Fig. 6.7, CMwedding1:jpg is complete, while CMw2:jpg is a rootless
resource and CMw3.jpg is unauthorized posting. CMw4:jpg is both unauthorized and
rootless.

Corollary 6.2. (Complete or Broken CPj / CPj is complete if it contains both
feeder head node and user tail node. Otherwise, it is broken. The following is of
broken chain:

• Less-authorized-granter: where there is no creator granter
• Old-granter: the granter which is anyone but a feeder
• Unknown-granter: where there is no known granter

For example, in Fig. 6.7, all CPs are not complete. CPc2j is a privilege chain with
less-authorized granter. Pc2j 2 is an old granter chain because it has the user tail
node, that is, other than the feeder head node. By old granter, what is implied is that
the head node is not a feeder but any agent that appears earlier than the feeder in
CMi . CPc2j 3 is an unknown granter chain. By unknown granter, it is likely that it is
not found in any privilege chains for metadata.

The difference between old granter chain and unknown granter chain is that both
have the user tail node but the unknown granter chain has the head node which is
not found in MG.

6.4.4 Authorization Decision

Having both CMi and CPj available, as (1) ensured the trustiness of resources in
Sect. 6.4.3, and this section (2) makes the authorization decision. Some cases are
illustrated in Fig. 6.8, where each case has both CM and CP in dotted boxes and in
solid, respectively. The authorization process can be made differently:

• Case (a) in Fig. 6.8 has both chains of subject. Since both chains are available,
the subjects listed in one chain can be cross-checked with those in another. For
example, the subjects, Chris, Owen, Charlie, Denny, and Steve in
both CMi and CPj are the same. This is called “cross-verification.” The two
linked lists are back-tracking as far as they are identical. If no more nodes are to

124 J.P. Yoon

be tested, the verification is done. If they are not identical, further legitimacy
verification is performed from the nodes that are not identical. This will be
discussed in the following section.

• Case (b) illustrates a complete CM and a less-authorized CP. It means that there
exists a full linked list for the metadata of the JFEP file, but a liked list for an
access policy which has the granter Steve with no grant permitted from the
creator. Although no perfect agent set is involved, the authorization decision is
made as provided from the CGM.

• Case (c) illustrates a complete CM (note that it is still complete) and an old-
granter CP. It means the granter Owen is not the feeder of the file but yet a
possible agent who appears in CM. This is the case such that in CP permission
is grated to st by sa, where sa is not the same as the tail node of CM. If there
exists any node, in the privileged subject chain of metadata that is identical to sa

of access policies, then the authorization decision should be further negotiated
[17] to see whether the feeder agrees on the permission. A scheme of negotiation
is discussed in the next chapter.

• Case (d) illustrates a rootless resource that may be determined based on an access
policy of less-authorized granter. Since there is no creator as the first granter in
the chain of the file metadata, the resources (e.g., files in this chapter) are not fully
trustful from the creator to the feeder. Also, the grantors of the access policies
are not fully addressed from the creator to the feeder. This case sees whether the
resource creator still can grant the permission of this resource to any agent in
the chain, who will then may have the privilege to grant further all the way to the
requester. How to do this from the resource creator will be discussed on the next
section.

• Case (e) is similar to (d), except that the access policy states the grantor who is
not the feeder but one of the old agents in the chain. The resolution is also very
similar to the one proposed in (d).

• Case (f) is similar to (d), except that the access policy states the grantor who
is not known nor available in the corresponding CM. In this case, the unknown
grantor should be found externally or the permission is simply denied.

• Case (g) illustrates an unauthorized posting of resources and an access policy of
a less-authorized granter. The difference between the cases (f) and (g) in Fig. 6.8
is that the granter agent User is unknown while Steve is known but now
appearing in CM. In this case, the resolution is to negotiate between the tail node
of CM and the header node of CP to authorize the permission. The negotiation
process will be discussed in the next chapter.

• Case (h) illustrates the untrusted resource and illegal service. The resource posted
in a cloud has lack of agent information found in their metadata. In addition to
that, the granter of an access policy is unknown.

As discussed above, using both chains of privileged subjects from JPEG files and
VMM can not only make authorization decisions but also control the legitimacy and
quality issues of resources. If a resource is posted in one or more VMs, and multiple
access policies for the same resource may be available in zero or more VMMs, then

6 Access Control and Trustiness for Resource Management in Cloud Databases 125

conflicts among the policies may exist. Such conflicts can be resolved in the CGM,
but the details will not be discussed in this chapter.

6.5 Trustiness of Cloud Computing

Using both PG and MG, this section discusses how to verify the trustiness of cloud
resources available in and their services from cloud databases.

6.5.1 Legitimacy of Cloud Resources

As described in Sect. 6.4.3, a chain of metadata can be complete, broken, or missing,
while a chain of privileges can be complete, old granter, or unknown granter. With
this in mind, the trustiness of cloud resources is defined as follows:

Definition 6.2. (Traceability of Cloud Resources) A resource i is traceable if any
one below holds:

1. CMi for the resource i is not unauthorized-posting, or
2. There exists a CPj that has a node identical to any node of CMi .

For example, in Fig. 6.7, there are four resources as shown in (6.7)–(6.10):
wedding1.jpg, w2.jpg, w3.jpg and w4.jpg. The resources
CMwedding.jpg and CMw2.jpg are traceable due to authorized-posting. CMw4:jpg

is also traceable because although it is unauthorized-posting, one of its nodes (say
Denny) is identical to a node in CPc2j . Finally, CMw3:jpg is not traceable because it
is unauthorized-posting and there is no node identical to the node in any CM.

Definition 6.3. (Legitimacy of Cloud Resources) If a resource is traceable, then it
is legitimate with respect to PG and MG.

For example, in Fig. 6.7, wedding1.jpg, w2.jpg and w4.jpg are legiti-
mate.

6.5.2 Trustiness of Services

Having both PG and MG available, as (1) verified the legitimacy of resources in
Sect. 6.5.1, and this section (2) measures the trustiness of cloud services. For that,
define the following:

Definition 6.4. (Trustiness of Cloud Services) If a legitimate resource is served, its
service is trusted.

126 J.P. Yoon

As discussed above, the legitimacy of resources and trustiness of their services
are dependent on session logins, meaning that they are dynamically changing by
those who are logged in. It is reasonable because if there are more authorization
policies available due to more log-ins, more chains of privileges are available and
so are more privileges granted. Depending on authorization policies, resources
are traceable, so their legitimacy issues are technically verifiable. In the dynamic
environment of cloud computing, over the course of time, a different set of VMs is
involved, and so is different set of authorization privileges.

With this in mind, formulate the trustiness of service T to request j with
resource i .

T .j; i/ D
ˇ �

�P
j E.CPj / C P

i

E.CMi /

�

2 � MAX.jV.CPi /j; jV.CMi j/ ; (6.16)

where E.C/ and V.C/ denote the edges and the vertices of a chain C, and jV j
denotes the size (or the number) of vertices V . ˇ is an integration factor that can
be determined based on the number of VMs, the coverage of authorization policies,
the number of common nodes of the chains, the number of certificates signed by a
Certificate Authority (CA), etc. As an example, ˇ D 1 if .V .CPj / \ V.CMi // ¤ ;;
ˇ D 0:5, if there exists any " 2 V.CPj / or V.CMi / is certified by the CA;
otherwise, ˇ D 0.

For example, in Fig. 6.7, T .c2j,wedding1.jpg/ D .2C4/=2�MAX.3; 5/ D
6=10 D 0:6. Similarly, T .c2j, w2.jpg/ D 0 � .2 C 1/=2 � MAX.3; 2/ D 0 due
to no common node, and T .c2j, w3.jpg/ D 0:5 � .2 C 2/=2 � MAX.3; 3/ D
2=6 D 0:33 under the assumption that Stew is CA-certified. T .c2j, w4.jpg/ D
.2 C 2/=2 � MAX.3; 3/ D 0:67 due to the common node ‘‘Denny,’’ while
T .c2j3, w4.jpg/ D 0. It turns out that the cloud service with the resource
wedding1.jpg to John is reasonably (60%) trusted.

6.5.3 Feeding Social Network Information for Trustiness
Management

Recall that a cloud consists of one or more VMs. As XaaS, files are posted in a
VM, and access policies are defined in a cloud database which contains the VM.
The proposed technique is to assure that the missing gap between MG and PG can
be bridged from external sources. Having both MG and PG built as discussed in
Sect. 6.4.4, there may exist CMi and CPj such that a resource i is not traceable.
For example, in Fig. 6.8, cases (d)–(h) are not traceable, meaning that there is no
common node in CM and CP. This section uses a social network [18] to acquire
possible information that can bridge the missing common node(s) in the linked list
of CM and CP. Note that a social network is a social structure made up of individuals
(or organizations) called “nodes,” which are connected by one or more specific types

6 Access Control and Trustiness for Resource Management in Cloud Databases 127

Fig. 6.8 Example of privilege and metadata chains

128 J.P. Yoon

Fig. 6.9 Negotiation with
social network

of interdependency. In Fig. 6.9, the upper plane represents a social network and the
lower a cloud database.

Consider the linked list in Fig. 6.9. CMi and CPj are not complete and the
resource is not traceable according to Definition 6.2. Assume that a social network
provides the nodes that are matched with any nodes in CMi and CPj . Also, the
social network information is “securely” fed to assure the trustiness of services.

For example, in Fig. 6.9, by feeding the linked list, si ! siC1 ! : : : ! sj �1 !
sj , where si is identical to any node in CMi and sj is identical to any node in
CPj as well, according to Definition 6.2, it is possible to assure the traceability of
the resource i in CM. It is likely that in a social networking, si ! siC1 exists if
si follows siC1, in the Twitter scheme (www.twitter.com), and in reputation-based
trust analysis [19] or linked data [20], si knows siC1 and siC1 is the author of siC2,
and so on.

Using the PKI [21, 22], social network information can be fed into the resource
trustiness assurance process securely. Since information in social network is
privacy-sensitive, secure transmission of social network information is needed.
Consider the scenario such that a resource is in one VM, a request in another VM.
A java program is to receive a social network linked list to verify the trustiness of a
resource. In Fig. 6.10, M.jpg is in VMM1. A request A.class of B.jar package
in VMM3 is a java program to take a linked list of social network information and
bridges it between the CM and CP. One simple segment of A.java is the following:

import java.io.*;
public class A
{
public void bridge(LinkedList lL) throws
IOException {
// binding with CM and CP - code omitted
}
public static void main(String[] args)
throws IOException {
A myA= new A();
myA.bridge(args[0]);
}
}

6 Access Control and Trustiness for Resource Management in Cloud Databases 129

Fig. 6.10 Certificate-based negotiation

To receive a linked list of social network information, in this scenario, the
following can generate private and public keys and store them in VMM2.

keytool -genkey -alias CA1 -keystore myOnly.ks

-storepass MercyCollege–keypass cysecure.org

–dname “CN D John Yoon, OU D CS; O D Mercy;

L D Dobbs Ferry, ST D NY,C D US”I (6.17)

Now, request the certificate authority CA1 to sign on the request jar file B.jar and
generate the signed jar file Bs.jar.

jarsigner -keystore myOnly.ks

–storepass MercyCollege –signedjar Bs.jar B.jar CA1I (6.18)

In the CGM, the access policy is defined to grant the write permission to the jar
code Bs.jar to a linked list, mySocial.link as shown in Fig. 6.10. In the
environment set as above, the following java is securely executed:

java -Djava.security.manager -Djava.security.policy

= CGM.policy -cp Bs.jar A mySocialNet (6.19)

Hence, a linked list, mySocialNet, matched in a social network is securely transmit-
ted into a cloud database.

130 J.P. Yoon

6.6 Conclusion

To address the growing concern of security issues in cloud computing, this chapter
has investigated a new approach to measure the legitimacy of cloud resources and
the trustiness in cloud database management using the metadata- and privilege-
based access control. Using metadata of files or XaaS and system-context user
information, gained are numerous benefits including assurance of cloud resources
for trust services. This chapter, although as an example JPEG files are only
discussed, can extend the concept of using JPEG metadata to any types of resources
and to any degree of trustiness in cloud databases as long as such resources have a
header file which can contain metadata. This chapter contributed with the concept
of using resource metadata and authorization policies to measure the trustiness of
cloud services.

References

1. Christodorescu, M., Sailer, R., Schales, D.L., Sgandurra, D., Zamboni, D.: Cloud security is
not (just) virtualization security. ACM Workshop on Cloud Computing Security (2009)

2. Vaquero, L., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a
cloud definition. ACM SIGCOMM Comp Commun Rev 39(1) (2008)

3. Blezard, D., Marceau, J.: One user, one password: Integrating Unix accounts and active
directory. In: ACM Conference on SIGUCCS (2002)

4. Ferraiolo, D., Kuhn, D., Sandhu, R.: RBAC Standard rationale: comments on “A Critique of
the ANSI Standard on Role-Based Access Control”. IEEE Secur. Priv. 5 (2007)

5. Joshi, J., Bertino, E.: Fine-grained role-based delegation in presence of the hybrid role
hierarchy. In: ACM Symposium on Access Control Models and Technologies, 2006

6. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina, J.: Controlling
data in the cloud: Outsourcing computation without outsourcing control. In: ACM Workshop
on Cloud Computing Security (2009)

7. Raj, H., Nathuji, R., Singh, A., England, P.: Resource management for isolation enhanced
Cloud services. In: ACM CCSW (2009)

8. Haslhofer, B., Klas, W.: A survey of techniques for achieving metadata interoperability. ACM
Comp. Surv. 42 (2010)

9. Pereira, F.: MPEG multimedia standards: evolution and future developments. In: ACM
Conference on Multimedia, 2007

10. Security Guidance for Critical Areas of Focus in Cloud Computing, v.2.1, Cloud Security
Alliance, 2009. http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf

11. Lenk, A., Klems, M., Nimis, J., Tai, S., Sandholm, T.: What’s inside the cloud? An architectural
map of the cloud landscape. In: IEEE Conference on Software Engineering Challenges of
Cloud Computing, 2009

12. Hao, F., Lakshman, T., Mukherjee, S., Song, H.: Enhancing dynamic cloud-based services
using network virtualization. ACM SIGCOMM Comp. Commun. Rev. 40 (2010)

13. Cudre-Mauroux, P., Budura, A., Hauswirth, M., Aberer, K.: PicShark: mitigating metadata
scarcity through large-scale P2P collaboration. Int. J. Very Large Data Base 17 (2008)

14. Ferraiolo, D., Atluri, V.: A meta model for access control: why is it needed and is it even
possible to achieve? In: ACM Symposium on Access Control Models and Technologies, 2008

15. Kulkarni, D., Tripathi, A.: Context-aware role-based access control in pervasive computing
systems. In: ACM Symposium on Access Control Models and Technologies, 2008

6 Access Control and Trustiness for Resource Management in Cloud Databases 131

16. Ben Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N., Bouhoula, A.: Managing del-
egation in access control models. In: IEEE Conference on Advanced Computing and
Communications, 2007

17. Lee, A., Winslett, M., Basney, J., Welch, V.: Traust: A trust negotiation-based authorization
service for open systems. ACM SACMAT (2006)

18. Song, H., Cho, T., Dave, V., Zhang, Y., Qiu, L.: Scalable proximity estimation and link
prediction in online social networks. ACM SIGCOMM Conference on Internet measurement
conference (2009)

19. Srivaramangai, P., Srinivasan, R.: Reputation based two way trust model for reliable transac-
tions in grid computing. Int. J. Comp. Sci. Issues 7(5), 33–39 (2010)

20. Bizer, C., Heath, T., Berners-Lee, T.: Linked data – the story so far. Int. J. Semantic Web Inf.
Syst. 5(3), 1–22 (2009)

21. Huang, J., Nicol, D.: A calculus of trust and its application to PKI and identity management.
In: ACM Symposium on Identity and Trust on the Internet, 2009

22. Zeng, W., Zhao, Y., Ou, K., Song, W.: Research on cloud storage architecture and key
technologies. In: Conference on Interaction Sciences: Information Technology, Culture, 2009

•

Chapter 7
Dirty Data Management in Cloud Database

Hongzhi Wang, Jianzhong Li, Jinbao Wang, and Hong Gao

Abstract Data quality problem is caused by dirty data. Massive data sets contain
dirty data in higher probability. As an important platform for massive data man-
agement, it is necessary to manage dirty data in cloud databases. Since traditional
data-cleaning-based methods cannot clean dirty data entirely and are costly for
massive datasets, a massive dirty data management method is presented in this
chapter to obtain query result with quality assurance. To achieve this goal, a
dirty database storage structure for cloud databases as well as a multi-level index
structure for query processing is presented. Exploiting this index for a query on
dirty data, candidates nodes in the cloud are selected to run and process the
query efficiently. This chapter discusses the index structure and index-based query
processing techniques. Experimental results show the efficiency and effectiveness
of the presented techniques.

7.1 Introduction

Data quality plays an important role in modern information systems. From the
reports sponsored by SAS and Merrill Lynch [1], enterprises in USA lose over 600
billion dollars due to data quality problems. For most enterprises, the collection and
cleaning occupy the 50–80% budget of information integration.

Data quality problem is caused by dirty data, which refers to inconsistent, inaccu-
rate, erroneous, redundant, and outdate data. Dirty data widely exists in data-centric
systems. All of the steps of data processing may result in dirty data. For example,
in the data collection step, errors will be resulted in by the noise of collection
devices or typos of users; in the information integration step, inconsistency is led
by the heterogeneity in the schema and by the integrity constraints of data sources;

H. Wang (�) � J. Li � J. Wang � H. Gao
Harbin Institute of Technology, Harbin, China
e-mail: wangzh@hit.edu.cn; lijzh@hit.edu.cn; wangjinbao@hit.edu.cn; honggao@hit.edu.cn

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 7, © Springer-Verlag Berlin Heidelberg 2011

133

134 H. Wang et al.

in the information transmission step, incorrect data may be caused by network
unreliability.

In massive data sets, dirty data exist with larger probability. There are two
reasons. The first reason is that the difficulty of maintaining massive data and errors
in large storage devices will lead to more errors in data. The second reason is that
with massive data, the probability of inconsistent data becomes large.

Dirty data do harm to data utility. For example, as highlighted in [2], inaccurate
data exist in 65% of the database of stock and results in around 10% loss in profit; the
inconsistency existing in financial software will lead to the confusion in finance; the
data duplication in a survey will lead to inaccurate results. Therefore, it is necessary
to manage dirty data to reduce its harm and make effective use of data.

One traditional method for dirty data management is to clean data [3]. For
massive data sets, data cleaning is not suitable in many cases. On one hand, data
cleaning operation is often costly. When the massive data is updated frequently, the
efficiency of the system will be affected by data cleaning. On the other hand, data
cleaning techniques will not clean the dirty data exhaustively, and the cleaning of
dirty data will result in the loss of information. Therefore, the techniques for dirty
data management without cleaning data are in demand. Such techniques perform
queries on dirty data directly and obtain query results with quality assurance. The
query processing techniques on dirty data include [4–6]. However, they do not
consider dirty data in massive data sets.

Building cloud databases is a feasible way to manage massive data sets. In
a cloud database, there are three types of compute nodes: master, router, and
slave. The master node is responsible for managing slave nodes. Router nodes are
responsible to store index in cloud database. Slave nodes store data and process
query locally. When a query is injected, it is sent to a router, and the router searches
the index to find the set of slaves containing the query results. After index searching,
the query is sent to a set of slave nodes. Slave nodes return local results, and these
results are merged as final query results. Figure 7.1 shows a cloud database with one
master node, two router nodes, and six slave nodes. Slave nodes store representatives
and data index. The router stores node index to locate slave nodes which possibly
contain query results.

1 2 3 4 5 6

Node Index

Dirty Data

Representative

Data Index

211 Router

Slave

Master

Fig. 7.1 Cloud database with one master, two routers, and six slaves

7 Dirty Data Management in Cloud Database 135

Table 7.1 Example relation T

id Name Address Age Gender

P1 Celine Dion My heart will go on 42 F
P2 Celine Dian My heart will go on 40 M
P3 Celine Don My heart will go on 41 F
P4 Mariah Carey Hero 40 F
P5 Enrique Iglesias Ring my bells 35 M
P6 Enrique Iglesias Ring my bells 35 M
P7 Enrique Iglesias Ring my bells 35 M
P8 John Lennon Imagine 70 M

An assumption for current data management in cloud systems is that the data
are clean. Dirty data in such systems is never considered. This chapter presents
efficient and effective dirty cloud database management techniques. Dirty data are
distributed in cloud for efficient query processing. A 3-level index is constructed to
efficiently locate nodes in cloud for a query and process queries on such nodes. For
the efficiency of index-based query processing, a data partition strategy is designed.
With indices, a query processing strategy is proposed to obtain query results with
quality assurance on dirty data.

The remaining part of this chapter is organized as follows. Section 7.2 defines
the query on dirty data and the measurements of the query result quality on dirty
data. Data storage strategies and the index structure for dirty data are presented
in Sect. 7.3. Query processing algorithms based on the indices are proposed in
Sect. 7.4. Experimental results are shown in Sect. 7.5. Section 7.6 summarizes
related work and Sect. 7.7 concludes the chapter.

7.1.1 Motivating Example

In this chapter, an example of some popular singers is used to illustrate the proposed
techniques. The Table 7.1 contains some errors and inaccurate tuples.

7.2 Preliminaries

7.2.1 Metrics of the Quality of Query Results

The factors of data quality problems include errors, incompleteness, inconsistency,
and inaccuracy. These factors have two aspects on query results. On one hand,
since a tuple may have error or inaccuracy, a query may retrieve results which do
not actually satisfy query constraints. Here, the term satisfy is used to indicate that
a tuple’s clean version matches the query. For example, the query “select name
from T where age D 40” with semantics “retrieve names of singers with age 40,”
retrieves P2 and P6, but they are not the results. On the other hand, even though

136 H. Wang et al.

a tuple satisfies a query, it still possibly does not strictly match the constraint. For
example, for the query “select name from T where gender D M” with semantics
“retrieve names of male singers,” the tuple P2 is retrieved. However, it is obviously
not the result of the query.

Therefore, the quality of query results is measured by two metrics: accuracy and
recall. These metrics are defined as follows:

Suppose there is a dirty database D, whose corresponding clean database is DC .
Given a query q, the query result on D is denoted by Dq and the corresponding
result set on DC is denoted by DC;q . 8t 2 DC , the set of tuples in D corresponding
to t is denoted by St .

Based on the above notations, the precision and recall of query q’s result on
database D are defined as:

Precisionq;D D
j S

t2DC;q
St \ Dq j

jDq j

Recallq;D D
j S

t2DC;q
St \ Dq j

j S
t2DC;q

St j

7.2.2 Queries on Dirty Data

Using the metrics defined above, a query on dirty data is defined as (q, �) with q as
the query and � as the threshold, which represents the difference between the tuple
and the constraint.

Many methods have been designed based on the definition of the similarity or the
difference between the tuples or values. These methods can be used to identify data
objects referring to the same entity over inconsistent, inaccurate, duplicated data, or
data with errors, so they can be applied in this system for matching tuples and query
constraints. In this chapter, the linear function is chosen to measure the difference
between two tuples as well as the difference between a tuple and a constraint.

For two tuples t1 and t2 with attribute set A, the difference between them is
defined as:

diff.t1; t2/ D
X
a2A

diffa.t1Œa�; t2Œa�/;

where diffa is a difference function based on the type of attribute a. For example,
if the type of a is string, diffa is the edit distance; if the type of a is numeric type,
diffa is the absolute difference, otherwise if a is in category type, diffa is a boolean
function returning whether the two values are the same. For example, the difference
between P2 and P3 in T is 7 with the difference in attribute name, title, age, and
gender equals to 2, 1, 3, 1, respectively.

For a tuple t and a constraint C , with the consideration that C may be a complex
constraint, the difference is defined as it follows:

7 Dirty Data Management in Cloud Database 137

diff.t; C / D

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂:

diff.t Œa�; c/ C D ‘t Œa� D c0
mint Œa�¤c diff.t Œa�; c/ C D ‘t Œa� ¤ c0
mint Œa�>cfdiff.t Œa�; c/g C D ‘t Œa� > c0
mint Œa�<cfdiff.t Œa�; c/g C D ‘t Œa� < c0
diff.t; c1/ C diff.t; c2/ c D c1

T
c2

minfdiff.t; c1/; diff.t; c2/g c D c1

S
c2

;

where a is the corresponding attribute in the atom constraint C . Note that for the
constraint C D :C 0, the negative operator is pushed to the subclauses in C 0. For
example, the difference between tuple P1 in T and C D“(age > 45 and age D M)
or (age < 40 and age D F)” is 1 where diff(P1, “age > 45 and age D M”) D 4 and
diff(P1, “age < 40 and age D M”) D 1.

� can be obtained from the learning methods or defined by users. By tuning �,
the values of precision and recall are changed. Two extreme cases are that with � �
maxf�ig, the recall equals to 1, and that with � � minf�ig, the precision equals to 1.

In this chapter, only conjunction queries with equal constraints are considered.
An example of query on dirty data is q D .cq ,3), where cq D(“Celine Dien”, ,

40,M). The query q on T will return P2.

7.3 Data Accessing Structure for Dirty Data
in a Cloud Database

7.3.1 Storage Model for Dirty Data

Based on the inconsistency in dirty data, a cluster-based strategy is used to store the
data. That is, entity identification is performed on the dirty data and the data objects
possibly referring to the same real-world entity are clustered. For example, the tuples
in table T is partitioned into fC1:fP1, P2, P3g, C2:P4, C3:fP5, P6, P7g, C4: P8g.

In a cloud database, dirty data are distributed on multiple slave nodes and
partitioned based on the differences among tuples. During data partition, load
balance is taken into consideration, since dirty data are divided into clusters with
different size. The router node records data partition information and keeps a set of
index hp; id i, where p is the partition and id is the node id which keeps data in p.
With the consideration of the effectiveness of index, the data should be partitioned
reasonably. The data partition strategy will be discussed in Sect. 7.3.2.3.

7.3.2 Indexing Structures for Dirty Data in a Cloud Database

To perform query processing on dirty data in the cloud, indexing structures are
designed in this subsection. The indexing structures have three tiers as it follows.

138 H. Wang et al.

1. Representatives: The tuples in the same cluster are identified by a representative
tuple. The query processing is performed on the representative directly greatly
reducing scanning cost on real data.

2. Data index: For the columns in representatives, data indices are constructed to
find proper representative for a query.

3. Node index: It is designed for efficiently locating all relative compute nodes
which possibly contain query results.

In this section, the structures of the three indices are discussed, respectively.
Query processing based on the indices will be discussed in Sect. 7.4.

7.3.2.1 Representative Construction

The operations on dirty data are mainly similarity operations and such operations
are costly. To accelerate the processing of these operations, with the proposition
that entity identification is performed on the similarity between tuples, in each
cluster, a representative of all the tuples is constructed. For a query, the operations
are performed on the representatives instead of all the tuples. For each cluster, the
representative is the “center” such that its average similarity to all the tuples in
the cluster is maximal. Since different types have different similarity definitions,
columns representatives are constructed respectively depending on their tuples. The
construction methods of columns with different types are as follows:

• Numerous types: For a set S of numbers in numerous types such as integer, float
and double, the goal is to find a number n that satisfies minfPn02S jn � n0jg.
Obviously, n D 1

jS j
P

n02S n0.
• Category types: Since the result of the comparison between two values in

category types can only be same or different but not the quantitative similarity,
the determination of representative value of a category type column is performed
by voting and the majority is selected as the value.

• String types: Edit distance is often used to measure the similarity between two
strings. The representative of a string set S is the string s 2 S , which satisfies
that

P
s02S diff.s; s0/ is minimal.

In the example, the center of C1 in table T is f“Celine Dion,” “My Heart Will
Go On,” 41.6, Fg, where 41.6 is the average of 42, 43, and 40. The center of C2 is
f“Enrique Iglesias,” “Ring My Bells,” 36.67, Mg.

7.3.2.2 Data Index

Data Index is used to efficiently retrieve the entities satisfying the constraint.
Different from traditional index for clean data, the index for the dirty data on each
computer node should be suitable for the query processing with quality assurance.

7 Dirty Data Management in Cloud Database 139

Therefore, for dirty data processing, the indices supporting queries with error bound
are applied. In this section, two indices are introduced.

For numerous types, B-tree [7] is modified for approximate selections. Given a
numerous value v and a threshold �, the approximate selection is performed on it
by converting the selection constraint [a1,a2] to the constraint [a1 � �, a2 C �] and
performing it on the index.

For the string type, n-gram [8] is applied for similarity search on strings to
estimate the upper bound of the difference between queried value. For example,
with n D 3, the n-gram data index corresponding to the attribute “Representative
works” in the representatives of the tuples in T is f Ca: C2, Di: C1, Le: C4, ah :
C2, are: C2, ari: C2, Car: C2, Cel: C1, Dio: C1, e d: C1, e I: C3, eli: C1, enn: C4,
Enr: C3, esi: C3, gle: C3, h C: C2, hn : C4, iah: C2, ias: C3,Igl: C3, ine:C1, ion:
C1, iqu: C3, Joh: C4, Len: C4, les: C3, lin: C1, Mar: C2n L: C4, ne : C1, nno: C4,
non: C4, nri: C3, ohn: C4, que: C3, rey: C2, ria: C2, riq: C3, sia: C3, ue : C3g.

For category types, bitmaps are applied. For the type with a few categories, one
bit represents one category, while for the type with many categories, one bit may
also represent multiple categories. For example, for the type gender, a bitmap with
two bits are used with each bit representing a gender.

7.3.2.3 Node Index

The node index is designed to select suitable nodes for processing a query. The
basic idea is to disseminate similar entities into the same compute node and index
the representatives of these entities.

The merging of the representatives should be compatible with the data indices
in compute nodes, and such merging also depends on the type of columns. When
the type is numerous, the merged value is the interval containing all the values of
the column. If the type is category, the merged value is the set containing all the
values in the column. For the string type, the merged value is the set as the union of
q-grams index corresponding to the strings in the columns.

For example, suppose that there are two nodes with N1 containing C1 and C 2,
and N2 containing C 3 and C 4. The merged representatives of C1 is ff Cel, Di, Dio,
e d, eli, ine, ion, lin, ne , Ca, ah , are, ari, Car, h C, iah, Mar, rey, riag,f Go, On,
wi, art, ear, ero, Go , Hea, Her, ill, l G, ll , My , o O, rt , t w, wil, y Hg, [40,41.6],

fM,Fg g, and the merged representatives of C2 is ff Le, e I, enn, Enr, esi, gle, hn ,
ias, Igl, iqu, Joh, Len, les, n L, nno, non, nri, ohn, que, riq, sia, ue g, f Be, My, agi,
Bel, ell, g M, gin, Ima, ine, ing, lls, mag, My , ng , Rin, y Bg, [36.67,70], fMg g.

To find proper nodes for a query, the structure of the node index is similar as
inverted index [9]. For each column c with value set Sc, a partial index indc is
built with each entry (v, Lv), where v is the value and Lv is the list of nodes with
the representative containing v. A secondary index is built to efficiently retrieve
the lists associated with a query. For numerous type, an interval tree [10] is used
to manage corresponding intervals and support both equal and range queries. For

140 H. Wang et al.

category types, the hashing index is used as the secondary index and for string types,
trie [11] is used as the index for grams.

For the effective use of index and locating the query results on as few nodes as
possible, similar tuples should be placed in the same node. Therefore, by modeling
representatives for the clusters as a weighted clique with each representative rv as
a vertex v and the weight on each edge (u, v) as the 1

diff.ru;rv/
, the data partition

problem is converted to the clustering problem on graph. It can be solved by various
algorithms [12].

The differences of above merged representatives are defined in the similar way
as those of tuples. That is, a linear sum of the difference of each attribute. Note that
if the type of an attribute is string, since the corresponding gram set is used as the
index, the difference of corresponding gram sets is used to measure the difference
of two strings. For two gram sets S1 and S2, 1 � jS1

T
S2j

jS1

S
S2j is used to measure the

difference between them.

7.4 Query Processing Techniques on Dirty Data
in a Cloud Database

In this section, query processing algorithms on dirty data in a cloud database are
presented. This chapter focuses on selection based on index. Join operation can be
performed using techniques in [13, 14].

7.4.1 Algorithms for Locating Relative Compute Nodes

To process a query Q D .V , �) on dirty data, the first step is to find the nodes
possible to answer it. For a nodeset N and a constraint C , the goal is to find the
nodes possibly with tuples satisfying C . The method is to estimate the upper and
lower bounds of the difference of the values in column c in n and the atom constraint
Tc in C on both the index and computed difference. Then the computed bounds are
used to prune search space among compute nodes.

The interval computation method for atom constraint is based on the type of
corresponding column. Some computation methods for major data types are shown
as it follows.

N -gram is used to estimate the upper bound of strings. A property of edit distance
estimation between strings [8] is that for two strings s1 and s2, if edit distance(s1,
s2) < r , then their corresponding n-gram sets G1 and G2 satisfy jG1

T
G2j � .js1j�

nC1/C r �n. Based on this property, the upper and lower bounds of the edit distance
between a constraint string s and any value in the column c in a node N is jsj and
jsj�nC1�jGs

T
GN j

n
, respectively, where Gs is the n-gram set of s and GN is the n-gram

set in the node index of N .
For numerate types, the constraint is converted to Œa1; a2� or .a1; a2/. For the

constraint t D a, the interval is Œa; a�. Without generality, the case Œa1; a2� is

7 Dirty Data Management in Cloud Database 141

considered. For a node N with interval [l,u] for the column c in the node index
and the interval Œa1; a2� as the constraint on column c, the lower and upper bounds
of the values in column c and the constraints is defined as:

ŒLB; UB� D

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂:

Œl � a2; u � a2� a2 � l

Œ0; 0� a1 � l � u � a2

Œ0; a1 � l� l � a1 � u � a2

Œa1 � u; a1 � l� u � a1

Œ0; u � a2� a1 � l � a2 � u
Œ0; maxfa1 � l; u � a2g� l � a1 � a2 � u

For category types, if the constraint is “c D a” where c is the name of a column
and a is the name of a category and in the node index, the set corresponding to the
column c of a node N is SN , then the lower and upper bound is as in the following:

ŒLB; UB� D
�

Œ0; 1� a 2 SN

Œ0; 0� a … Sn

For a negative atom constraint C D c ¤ a, the upper and lower bounds for the
constraint c = a are estimated. For a node N with the difference to C 0 in the interval
[l ,u], the difference between N and C is computed as:

ŒLC;N ; UC;N � D
8<
:

ŒVa; Va� l D 0 ^ u D 0

Œ0; Va� l D 0 ^ u ¤ 0

Œ0; 0� l ¤ 0 ^ u ¤ 0

;

where

Va D
8<
:

1 a is a category
a a is a number
jaj a is a string

According to the definition of difference in Sect. 7.4, the difference between
a complex constraint C and a merged representative of a node N is computed
recursively as it follows:

ŒLC;N ; UC;N � D
�

ŒLC1;N C LC2;N ; UC1;N C UC2;N � C D C1 ^ C2

ŒminfLC1;N ; LC2;N g; minfUC1;N ; UC2;N g� C D C1 _ C2

For example, for the constraint (age < 40 _ gender D F)^ name D ‘Celine Dien’
with threshold � D 2, the upper and lower bounds of the difference between this
constraint and the representative r1 of N1 is [1

3
,12] with � larger than the lower

bound, where the difference interval of r1 to the clauses of ‘age < 40’, ‘gender D F’,
and name D ‘Celine Dien’ are [0,3], [0,1], and [1

3
,11], respectively. Therefore, N1

should be selected to process the query.

142 H. Wang et al.

The node selection algorithm is shown in Algorithm 1. It is assumed that CQ, the
constraint of Q, is in conjunctive normal form.

Algorithm 1 Node selection
input: a query Q=(V , �)
output: the node set S

for each atom constraint C 2 V do
SC D get range(C)

end for
SI D Ø
for each clause C 2 CQ do

S 0 D Ø
for each clause C 0 2 C do

S 0 D merge(S 0, SC 0)
end for
SI D intersection(SI , S 0)
SI D filter(SI , �)

end for
S=extract node(SI ,�)
return S

In Algorithm 1, the function get range computes the intervals with upper and
lower bounds of the atom constraint with each node, the function filter filters
the intervals with lower bounds larger than �, the function merge computes
intervals corresponding to the same node for the conjunctive constraint, the function
intersection computes intervals corresponding to the same node for the disjunctive
constraint, and the function extract node(SI ,�) extracts the nodes corresponding to
some interval in SI with the lower bound in the interval smaller than �.

7.4.2 Query Processing on Dirty Data in a Cloud Database

The query on a node is processed by data indices based on columns and correspond-
ing representatives. Then with consideration of �, tuples are retrieved as results.

As the first step, each single constraint c is processed separately on the
corresponding data index. The tuples with difference smaller than � are retrieved.
The estimation method of the upper and lower bound of the difference is the same
as Sect. 7.4.1. When the representatives are obtained, the tuples in the cluster are
filtered based on the constraint.

An example is used to illustrate the query processing on a node. To perform the
selection query with constraint (age < 40 _ gender D F)^ name D ‘Celine Dien’
and � D 2 on N1 with C1 and C2, with the data index, the difference between the
constraint and C1 is estimated to be [1

3
, 1
3
], while that between the constraint and C2

is [3,11]. Therefore, only the tuples in C1 are considered. Based on the computation
of the distance, P2 is selected as the final result.

7 Dirty Data Management in Cloud Database 143

7.5 Experimental Results

To test the efficiency and effectiveness of the techniques proposed in this chapter,
experimental results are shown in this section. The test is written in Java 1.6.0.13
and all the experiments run on an IBM Server with 8 virtual machines set up. One
virtual machine (node 0) has 3 cores and 1,300M memory while the other 7 (node
1–7) are equipped with 1 core and 380M memory each. In the test, node 0 is the
router node, and node 1 is the master node. The other are slave nodes, so 6 slave
nodes are used. 100,000 tuples are loaded for per slave node, and the node index is
built in router node while data index and representatives are stored in slave nodes.

The algorithms are tested on both real data set and synthetic data set. Information
of publications are extracted from different web sites of ACM, Citeseer and DBLP
as the real data set. The schema of the data is (author, title, year, conference). The
data set has total 1,531,299 tuples, and up to 600,000 tuples from the real data set
are used.

For the synthetic data set, a data generator is designed. The generator generates
a relation with string, integer, and category as the types of columns. The data
in schema (s1, s2, i, c) are generated, where s1 and s2 are in string type, i is in
integer type and c is in category type. The generator generates some tuples with
random integer numbers, fixed-length strings and categories as seeds at first. For
each seed, some tuples are generated by editing each value several times randomly
with operators of character insertion, deletion or conversion or revision. To simulate
the situation in real world, the times of changing is in power distribution with a
upper bound. The tuples generated from the same seed are considered as referring
to the same entity. The data generator has five parameters: the number of seeds
(#seed), the number of tuples generated from each seed (#tuple), the upper bound
of the times of edit for the generation of s1 and s2 in each tuple (#edit), the max
difference of the values of integer type (#diff). The default setting of the generator
is #seed D 500, #tuple D 4,096, #col D 10, #edit D 4 and #diff D 5.

All indices and algorithms presented in this chapter are implemented. Recall and
precision are used to measure the effectiveness of the algorithms and throughput is
the metric to test the efficiency of the algorithms.

7.5.1 Experimental Results on Real Data

Experiments are performed on real data to test the effectiveness and efficiency of
the proposed algorithms. Queries of different types are performed on the data set,
including selection on string, number, and category attributes. The experiments on
efficiency for the queries with string, number, and category constraints are shown in
Figs. 7.2–7.4, respectively.

In this test, 1 router, 1 master, and 2,3,4,5,6 slave nodes are used. Index files and
data files are generated offline and loaded into corresponding nodes when the system

144 H. Wang et al.

Fig. 7.2 Performance of
query processing over string
column

0

100

200

300

400

500

2 3 4 5 6

Q
ue

ry
 T

hr
ou

gh
pu

t

Number of Compute Nodes

Performance of Query Processing on String Attribute

Fig. 7.3 Performance of
query processing over
number column

0

100

200

300

400

500

600

700

800

2 3 4 5 6

Q
ue

ry
 T

hr
ou

gh
pu

t

Number of Compute Nodes

Performance of Query Processing on Number Attribute

starts. After all nodes are ready, a query is injected into each slave node and query
processing starts running. After a slave node finishes to process a query, it fetches
another query to process from the master node, and the master node records the
number of processed queries. Query processing is tested for 150s and the average
value of throughput is used as the final result.

The results show that the throughput grows when the number of slave nodes
increases. Among the tests, the string query achieves the best scalability. The
throughput of the number query and the category query grow slower with the
number of nodes. The reason is that the string query processing is cpu-intensive.
It means that the computation on the q-gram index dominates the total running
time. The number and the category query processing cost much less during
searching index and local data; so network communication takes up more time.
In the experiment environment, all virtual nodes share one message on the same
network interface of the server. This makes network communication slower than

7 Dirty Data Management in Cloud Database 145

Fig. 7.4 Performance of
query processing over
category column

0

200

400

600

800

1000

2 3 4 5 6

Q
ue

ry
 T

hr
ou

gh
pu

t

Number of Compute Nodes

Performance of Query Processing on Category Attribute

communications among individual machines. Hence, the number query and the
category query processing do not scale very well. On the other hand, string query
processing scales very well because cpu computation takes up more time, and
communication is not the bottleneck.

The precision and recall are always 100%. The reason is that the tuples in the
three data sources referring to the same entity are similar. Based on the index
structure, all possible clusters are always found. Therefore, the recall is assured.
By the filtering in the cluster, the precise results can be found.

7.5.2 Experimental Results on Synthetic Data

To test the algorithms with more flexible setting, experiments are performed on
synthetic data. Since for the efficiency the trends are the same as those of real data,
this section focuses on the effectiveness.

To test the impact of data variance on the effectiveness and efficiency, the
maximal edit distances of strings are varied from 0 to 20, and edit distance threshold
is set to be 2. The precision is kept 1.0 and the recall is shown in Fig. 7.6. From the
experimental results, it is observed that with the increase in maximal edit distance,
the recall decreases slightly. It is because that the larger the difference in values is,
the more difficult it is to distinguish the tuples referring to the same clean tuple.

To test the efficiency, data with 60,000 clean tuples and ten dirty tuples for
each clean tuple are generated. The same experiment setting as that of real data
is used. Each slave node loads 100,000 dirty tuples. Figures 7.5–7.7, number query
and category query processing have quite similar throughput with test on real data.
The only difference is that string query processing has greater throughput than that
of real data. The reason is that each clean data has ten dirty tuples in synthetic data,
so the router node stores less node indices. This makes index searching in the router
node faster, thus increasing the throughput.

146 H. Wang et al.

Fig. 7.5 Performance of
query processing over string
column

0

100

200

300

400

500

2 3 4 5 6

Q
ue

ry
 T

hr
ou

gh
pu

t

Number of Compute Nodes

Performance of Query Processing on String Attribute

Fig. 7.6 Recall vs. max edit
distance

0

100

200

300

400

500

600

700

800

2 3 4 5 6

Q
ue

ry
 T

hr
ou

gh
pu

t

Number of Compute Nodes

Performance of Query Processing on Number Attribute

Fig. 7.7 Performance of
query processing over
number column

0

100

200

300

400

500

600

700

800

2 3 4 5 6

Q
ue

ry
 T

hr
ou

gh
pu

t

Number of Compute Nodes

Performance of Query Processing on Number Attribute

7 Dirty Data Management in Cloud Database 147

Fig. 7.8 Performance of
query processing over
category column

0

200

400

600

800

1000

2 3 4 5 6

Q
ue

ry
 T

hr
ou

gh
pu

t

Number of Compute Nodes

Performance of Query Processing on Category Attribute

Fig. 7.9 Recall vs. edit
distance threshold

0

20

40

60

80

100

1 2 3 4 5

R
ec

al
l

Edit Distance Threshold

Recall

To test the effect of the difference threshold, the thresholds are varied from 1 to 5
and the maximal edit distance of string is set to be 5. The results of recall is shown
in Fig. 7.9. It is observed from the results that the recalls increase with the threshold.
It is because that when the threshold is smaller, the constraint becomes tighter and
some tuples with large distance from the clean tuple will be neglected.

7.6 Related Work

Internet companies have developed distributed storage systems to manage large
amounts of data, such as Google’s GFS [15], which supports Google’s applications.
BigTable [16] is a distributed storage model for managing Google’s structured data.
While such systems are not available for researchers, there are some open source

148 H. Wang et al.

implementations of GFS and BigTable such as HDFS [17], HBase and HyperTable,
which are good platforms for research and development. Yahoo proposed PNUTS
[18], a hosted, centrally controlled parallel and distributed database system for
Yahoo’s applications. In these systems, data are organized into chunks, and then
randomly disseminated among clusters to improve data access parallelism. Some
central master servers are responsible for guiding queries to nodes which hold
query results. Amazon’s Dynamo [19] is a readily available key-value store based
on geographical replication, and it can provide eventual consistency. Each cluster
in Dynamo organizes nodes into a ring structure, which uses consistent hashing
to retrieve data items. Consistent hashing is designed to support key-based data
retrieval. Commercial distributed storage systems such as Amazon’s S3 (Simple
Storage System) and Microsoft’s CloudDB tend to have little implementation
details published. Some other systems such as Ceph [20], Sinfonia [21], etc. are
designed to store objects, and they aim to provide high performance in object-based
retrievals instead of set-based database retrieval. MapReduce [22] was proposed to
process large datasets disseminated among clusters. MapReduce assigns mappers
and reducers to process tasks, where mappers produce intermediate results in
parallel and reducers pull the intermediate results from mappers to do aggregations.
Recent work, such as [23] and [24], attempt to integrate MapReduce into database
systems.

In another aspect, because of its importance, data quality becomes one of the
hot spots in database research. However, most of the techniques focus on data
cleaning [3], which is to remove the dirty part from the data. However, for massive
and frequently updating data, data cleaning is not feasible because of its inefficiency
and the loss of information. The authors of [4–6] process queries directly on
inconsistent data and eliminate inconsistent part in the final results. These methods
are only designed for single computer and not suitable for massive dirty data
management in cloud environments.

Existing systems do not provide functionality to manage dirty data in cloud
environments, thus building dirty data management system in cloud platform is a
necessary complementary work. The work in this chapter stands on this point.

7.7 Conclusions

In many applications, data quality problem results in severe fails and loss. Data
quality problems are caused by dirty data. Massive data sets have larger probability
to contain dirty data. In cloud database as a promising system for massive
data management, dirty data management brings technical challenges. Traditional
methods to process dirty data by cleaning cannot clean dirty data entirely and often
results in decreasing the efficiency. Therefore, in this chapter, dirty data techniques
are designed for cloud databases to keep dirty data in the database and obtain
the query results with quality assurance on the dirty data. To manage dirty data
in cloud databases efficiently and effectively, a data storage structure for dirty

7 Dirty Data Management in Cloud Database 149

data management in cloud database is presented. Based on the storage structure, a
three-level index for the query processing is proposed. Based on the index, efficient
query processing techniques of finding the proper nodes for query processing and
query processing techniques on single nodes are presented. Experimental results
show that the presented methods provide effectiveness and efficiency, and thus they
are practical in cloud databases.

Acknowledgements This research is partially supported by National Science Foundation of
China (No. 61003046), the NSFC-RGC of China (No. 60831160525), National Grant of High
Technology 863 Program of China (No. 2009AA01Z149), Key Program of the National Natural
Science Foundation of China (No. 60933001), National Postdoctoral Foundation of China
(No. 20090450126, No. 201003447), Doctoral Fund of Ministry of Education of China (No.
20102302120054), Postdoctoral Foundation of Heilongjiang Province (No. LBH-Z09109), and
Development Program for Outstanding Young Teachers in Harbin Institute of Technology (No.
HITQNJS.2009.052).

References

1. Eckerson, W.W.: Xml for analysis specification. Technical Report, The Data Warehousing
Institute. http://www.tdwi.org/research/display.aspx?IDD6064, 2002

2. Raman, A., DeHoratius, N., Ton, Z.: Execution: The missing link in retail operations. Calif.
Manag. Rev. 43(3), 136–152 (2001)

3. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull.
23(4), 3–13 (2000)

4. Fuxman, A., Miller, R.J.: First-order query rewriting for inconsistent databases. In: ICDT,
pp. 337–351 (2005)

5. Fuxman, A., Fazli, E., Miller, R.J.: Conquer: Efficient management of inconsistent databases.
In: SIGMOD Conference, pp. 155–166 (2005)

6. Andritsos, P., Fuxman, A., Miller, R.J.: Clean answers over dirty databases: A probabilistic
approach. In: ICDE, p. 30 (2006)

7. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database system implementation. Prentice-Hall,
NJ (2000)

8. Li, C., Wang, B., Yang, X.: Vgram: Improving performance of approximate queries on string
collections using variable-length grams. In: VLDB, pp. 303–314 (2007)

9. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern information retrieval. ACM, NY (1999)
10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn.

MIT, MA (2001)
11. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)
12. Schaeffer, S.E.: Graph clustering. Comp. Sci. Rev. 1(1), 27–64 (2007)
13. Sarawagi, S. , Kirpal, A.: Efficient set joins on similarity predicates. In: SIGMOD Conference,

pp. 743–754 (2004)
14. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate detection. In:

WWW, pp. 131–140 (2008)
15. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: SOSP 2003, pp. 29–43
16. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,

Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans.
Comput. Syst. 26(2) (2008)

17. Apache Hadoop http://hadoop.apache.org/

150 H. Wang et al.

18. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H.A.:
PNUTS: Yahoo!’s hosted data serving platform. PVLDB 1(2), 1277–1288 (2008)

19. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels,W.: Dynamo: Amazon’s highly available key-value
store. In: SIGOPS, pp. 205–220 (2007)

20. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E.: Ceph: a scalable, high-performance
distributed file system. In: SODI, pp. 307–320 (2006)

21. Aguilera, M.K., Merchant, A., Shah, M., Veitch, A., Karamanolis, C.: Sinfonia: A new
paradigm for building scalable distributed systems. In: SOSP 2007

22. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In:
OSDI 2004

23. Yang, H.-C., Dasdan, A., Hsiao, R.-L., Parker, D.S.: Map-reduce-merge: Simplified relational
data processing on large clusters. In: SIGMOD, pp. 1029–1040 (2007)

24. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., Rasin, A., Silberschatz, A.: Hadoopdb: An
architectural hybrid of mapreduce and dbms technologies for analytical workloads. PVLDB
2(1), 922–933 (2009)

Chapter 8
Virtualization and Column-Oriented
Database Systems

Ilia Petrov, Vyacheslav Polonskyy, and Alejandro Buchmann

Abstract Cloud and grid computing requires new data management paradigms,
new data models, systems, and capabilities. Data-intensive systems such as column-
oriented database systems will play an important role in cloud data management
besides traditional databases. This chapter examines column-oriented databases in
virtual environments and provides evidence that they can benefit from virtualization
in cloud and grid computing scenarios. The major contributions involve: (1) the
experimental results show that column-oriented databases are a good fit for cloud
and grid computing; (2) it is demonstrated that they offer acceptable performance
and response times, as well as better usage of virtual resources. Especially for
high selectivity, CPU- and memory-intensive join queries virtual performance is
better than nonvirtualized performance; (3) the performance data shows that in
virtual environments they make good use of parallelism and have better support
for clustering (parallel execution on multiple clustered VMs is faster than on a
single VM with equal resources) due to data model, read-mostly data optimizations
and hypervisor-level optimizations; and (4) analysis of the architectural and system
underpinning contributing to these results.

8.1 Introduction

Cloud applications need semantic metadata for the purposes of composition,
analysis, discovery, and correlation. Such applications comprise a self-describing set
of services or are themselves appearing as a service. To allow easy composition and
reuse, cloud applications and their interfaces should be exposed as well-described
entities. Cloud applications, on the contrary, operate on large heterogeneous data

I. Petrov (�) � V. Polonskyy � A. Buchmann
Databases and Distributed Systems Group, TU-Darmstadt, Germany
e-mail: ilia.petrov@dvs.tu-darmstadt.de; polonskyy@dvs.tu-darmstadt.de;
buchman@dvs.tu-darmstadt.de

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 8, © Springer-Verlag Berlin Heidelberg 2011

151

152 I. Petrov et al.

sets, comprising a wide range of data types (e.g., semistructured data, documents,
or multimedia data) and loose typing. Analyzing these data properly (especially
in the user context), discovering related data and correlating it as a major task
that is very metadata intensive. The Semantic Web initiative from W3C [36] is
therefore indispensable. In addition, progressively more Semantic Web data is being
published on the Web. Some very prominent examples are: Princeton University’s
WordNet (a lexical database for the English language) [35]; and the online Semantic
Web search tool Swoogle [32] that contains 3,316,943 Semantic Web documents
and over 1 � 1010 triples at the time of the submission of this paper. In addition,
there are several Semantic Web Query language proposals [27, 30].

The database community has investigated different approaches to handle and
query semantic data. Some examples are: XML stores, relational databases, and
column-oriented databases. Several promising approaches have been developed
to store and process RDF data in relational systems [10, 12, 16, 34]. Recently,
the influence of partitioning and different schemata on relational RDF stores is
investigated [2,29]. They also proposed using native column-oriented databases for
RDF data and investigated their performance advantages. In this paper, the approach
proposed by [2, 29] is assumed to investigate the influence of virtualization on the
original assumptions in terms of benchmark, dataset, read-mostly behavior, and
system selection. Conclusions are drawn and the applicability on such scenarios
on the elastic cloud model is investigated.

There are also multiple research proposals to use RDF semantic data together
with cloud technologies such as MapReduce [14] or Hadoop [18, 20]. However,
these mainly focus on braking up the RDF set of triples into smaller chunks to
minimize expensive processing of large tables. Column stores due to mechanisms
such as compression and late materialization (Sect. 8.2) can provide very good
performance for a significantly wider range of query types. The approach under
investigation is semantic data management in cluster environments or in cloud
scenarios based on the Amazon EC2 model (which offers virtual computing
facilities placed on the Amazon Cloud infrastructure). Interestingly enough, it can
also be realized in clustered virtualized environments, where the user installs its
virtual machines and the cluster infrastructure takes care of distributing them. The
users book virtual resources and pay for their use, and a certain quality of service
level.

The goal of this chapter is to examine the behavior of column stores storing
semantic data and running semantic queries in virtual environments and prove that
they can benefit from virtualization in cloud and grid computing scenarios. The
major contributions involve:

1. The performance data shows that column-oriented databases are good fit for
cloud and grid computing due to their data model and support for clustering;

2. It is demonstrated that column-oriented databases offer acceptable performance
and response times, as well as better usage of virtual resources. Especially for
high selectivity, CPU-intensive join queries virtual performance is better than
nonvirtualized performance;

8 Virtualization and Column-Oriented Database Systems 153

3. The experimental results show that in virtual environments they make good use of
parallelism and support better clustering (parallel execution on multiple clustered
VMs is faster than on a single VM with equal resources) due to data model, read-
mostly data optimizations, and hypervisor layer optimizations;

4. An analysis of the architectural and system underpinning contributing to these
results.

8.1.1 Data-Model, Requirements

The Semantic Web data model, called “Resource Description Framework” [25],
views the data as a set of statements containing related information about resources.
The complete set of statements can be formally represented as a graph, in which the
nodes are resources or simple literals/values, and the edges are the so-called proper-
ties or predicates. Every statement is a triple of <“subject”,“predicate/property”,
“object”>. (Possible ways of storing them in a database system are described
in Sect. 6.3.1). The information stored in the RDF graph can be structured in
many different ways. To promote expressing strict schemas that will standardize
descriptions within certain domains, W3C introduced a set of widespread standards
such as RDFS [26] and OWL [24]. These abstract descriptions have to be processed
by tools. Concretely, most of the semantic data is represented in XML using a
standardized RDF/XML binding. The present data model, although being very
general and allowing for flexibility, can potentially cause significant performance
degradation.

8.1.2 Usecases and Scenarios

The authors believe that semantic metadata will be used for tasks such as: (1)
exploration of a set (quite possibly graphically), (2) as an entry point into data
exploration – discovery; (3) for inference and data set correlation. The list of
scenarios is not exhaustive and quite possibly scenarios that may become relevant
in the near future are missing. The listed ones, however, have many features in
common. These execute multiple concurrent queries are mostly interactive. Many
queries – especially the discovery ones – are property-centered, requiring heavy
metadata usage as well as association navigation. Interestingly enough, most of
those queries are reflected by the benchmark introduced in [2] and summarized in
Sect. 6.3.1.

On the contrary, a direct consequence of the chosen cloud computing model is
that the semantic data set will be spread across multiple virtual machines. A central
question to be answered in this paper is how are these to be configured.

154 I. Petrov et al.

8.2 Column-Oriented Database Systems

Column-oriented database systems (or shortly “column stores”) are data storage
systems that store information column-wise in contrast to traditional row stores that
store information row-wise in tuples. The column-wise storage of data leans upon
the fully decomposed data model that has been first introduced in [13]. Column
stores are said to perform an order of magnitude better on analytical loads.

At present, there are several column store products available from industry
(MonetDB/X100 [9] Sybase IQ, SAP BI Accelerator, Vertica, etc.) and academia
(C-Store [31], MonetDB [6, 23].

Figure 8.1 presents an example of how data is stored in column stores. The table
Triples contains semantic triples in their relational representation. In column stores,
every column is stored separately as separate binary table. These “column” tables
are called Binary Association Tables (BAT) in MonetDB terminology. Therefore,
separate BATs are present for each column (one for the Subject column, another
one for the Predicate column of the Triples table and so on).

The structure of every BAT is simple and strictly defined. BATs contain two
columns (called Head (H) and Tail (T) in MonetDB). The first column (the Head)
contains artificial keys. The second column (the Tail) contains the respective value.
To preserve the correspondence of the respective values in the different BATs, the
artificial key in all entries belonging together are identical. For example, the attribute
values of triple <s2, p1, o1> from the Triples table all have the same artificial key
(002) in the respective BATs. This mechanism allows for seamless reconstruction of
the original rows.

Several authors, among others Abadi et al. and Harizopoulos et al. [1, 15], have
compared the advantages of column stores over traditional row-wise storage, for

Subject Predicate Object

Triples

s1 p1 o1
s2 p1 o1
s3 p3 o3
...

Head Tail

Subject BAT

001 s1
002 s2
003 s3
... ...

Head Tail

Property BAT

001 p1
002 p1
003 p3
... ...

Head Tail

Subject BAT

001 o1
002 o1
003 o3
... ...

Fig. 8.1 Binary table decomposition in column stores

8 Virtualization and Column-Oriented Database Systems 155

example, relational database systems. Abadi et al. [1] summarizes the advantages
column-stores offer for data warehousing and analytical workloads:

1. Compression – compression on the column values (e.g., RLE) is a key strength
of column stores. It is extensively used to minimize the IO and memory
consumption increasing the performance by a factor of 10 [1]. In Fig. 8.1, RLE
can be seen in the Object and Predicate BATs: the entries for artificial IDs 001
and 002 can be encoded by the respective value and the number of occurrences,
for example, p1, 2x, instead of p1, p1.

2. Projection – is performed at no cost; in addition, only the relevant columns are
read thus minimizing the IO costs;

3. Aggregation performance is better on column stores;
4. Higher IO through column partitioning – column data can be stored in different

files decreasing contention and increasing IO parallelism;
5. Late materialization – column data is federated in row-form as late as possible in

the query execution plan yielding performance increase of a factor of 3;
6. Block iteration – multiple column values are passed as a block yielding perfor-

mance increase of a factor of 1.5.

Harizopoulos et al. and Holloway and DeWitt [15, 17] in addition investigate a
series of optimizations that can be performed in read-mostly database systems such
as column-stores. These range from the operator structure and efficient methods
for processing intermediate results to the physical page format. In addition, [19]
proposes adaptive segmentation and adaptive replication mechanisms to partition
data or reuse query results. The bottom line is that using column store appropriately
can provide up to 10� better performance. The fact that they are appropriate for
handling semantic data has already been proven by [2, 29].

Even though column stores offer best performance with read-only loads, they
need to handle updates. The best way to update column store data is in bulk mode.
The scenarios presented in Sect. 6.1.2 fit well since Semantic Web data are first
crawled, indexed, and prepared for the column store update. Next, the bulk update
can be performed simultaneously, which is a comparatively fast operation. It can be
performed at predefined time slots.

8.3 Performance Influence of Virtualization
on Column-Oriented Databases

This chapter introduces the proposed experimental approach, the benchmark, and
the system used. The experimental search space and experimental design are
described together with the attained results and their analysis.

156 I. Petrov et al.

8.3.1 Benchmark

The performance of column-oriented database systems depends strongly on the
chosen schema and the type of partitioning. Column-stores support different ways
of organizing the data into tables, which are then represented in the column
format. As mentioned earlier, two alternative schema designs are comparatively
examined: a single triples table and a vertically partitioned schema. Since the data
has a read-mostly character sorting/partitioning it according to different criteria can
significantly increase the performance. The benchmark and dataset used in [29]
are reused; the experimental analysis is partially based on the findings provided in
that paper. Three partitioning types (PSO, SPO, and Vertical (Vert) partitioning)
are examined further below. As the name implies, PSO yields sorting the table
first according to the Properties/Predicates, next according to the Subjects, and
finally according to the Objects (Fig. 8.2). Alternatively, SPO implies: Subjects first,
Properties second, and Objects third (Fig. 8.2).

Vertical partitioning (Fig. 8.3) creates a single table for each distinct property
value. The table contains the respective values for the subjects and objects of all
triples containing the respective property.

The benchmark as proposed by [2] and implemented by [29] comprises eight
queries (all of which are listed in Table 8.1). The sequence of queries is designed
to assist the graphical exploration of RDF datasets based on the Logwell tool [21].
The benchmark is fully described in [2], here a brief summary is provided.

The user entry point is a list of all values of the type property (such as Text or
Notated Music) – Query 1 (Q1). Upon a selection, a query is executed to retrieve all
subject values associated with that subject together with the popularity/frequency of

Raw Data PSO SPO
Subj. Prop. Obj. Subj. Prop. Obj. Subj. Prop. Obj.
ID5 type CDType ID2 artist “Orr, Tim” ID1 author “Fox, Joe”
ID5 title “GHI” ID1 author “Fox, Joe” ID1 copyright “2001”
ID5 copyright “1995” ID1 copyright “2001” ID1 title “XYZ”
ID1 copyright “2001” ID2 copyright “1985” ID1 type BookType
ID2 type CDType ID5 copyright “1995” ID2 artist “Orr, Tim”
ID2 title “ABC” ID6 copyright “2004” ID2 copyright “1985”
ID3 language “English” ID2 language “French” ID2 language “French”
ID4 type DVDType ID3 language “English” ID2 title “ABC”
ID4 title “DEF” ID1 title “XYZ” ID2 type CDType
ID6 type BookType ID2 title “ABC” ID3 language “English”
ID6 copyright “2004” ID3 title “MNO” ID3 title “MNO”
ID1 type BookType ID4 title “DEF” ID3 type BookType
ID1 title “XYZ” ID5 title “GHI” ID4 title “DEF”
ID1 author “Fox, Joe” ID1 type BookType ID4 type DVDType
ID2 artist “Orr, Tim” ID2 type CDType ID5 copyright “1995”
ID2 copyright “1985” ID3 type BookType ID5 title “GHI”
ID2 language “French” ID4 type DVDType ID5 type CDType
ID3 type BookType ID5 type CDType ID6 copyright “2004”
ID3 title “MNO” ID6 type BookType ID6 type BookType

Fig. 8.2 PSO and SPO partitioning and nonpartitioned Triples table

8 Virtualization and Column-Oriented Database Systems 157

Triples Vertical Partitioning
Subj. Prop. Obj. ARTIST AUTHOR
ID5 type CDType Subj. Obj. Subj. Obj.
ID5 title “GHI” ID2 “Orr, Tim” ID1 “Fox, Joe”
ID5 copyright “1995”
ID1 copyright “2001” COPYRIGHT LANGUAGE
ID2 type CDType Subj. Obj. Subj. Obj.
ID2 title “ABC” ID1 “2001” ID2 “French”
ID3 language “English” ID2 “1985” ID3 “English”
ID4 type DVDType ID5 “1995”
ID4 title “DEF” ID6 “2004”
ID6 type BookType TYPE
ID6 copyright “2004” TITLE Subj. Obj.
ID1 type BookType Subj. Obj. ID1 BookType
ID1 title “XYZ” ID1 “XYZ” ID2 CDType
ID1 author “Fox, Joe” ID2 “ABC” ID3 BookType
ID2 artist “Orr, Tim” ID3 “MNO” ID4 DVDType
ID2 copyright “1985” ID4 “DEF” ID5 CDType
ID2 language “French” ID5 “GHI” ID6 BookType
ID3 type BookType
ID3 title “MNO”

Fig. 8.3 Vertical partitioning of the unpartitioned table Triples

that property– Query 2 (Q2). A list of Object filters for each property is also shown.
The user can then select a filter producing list of popular frequent objects with high
counts – Query 3 (Q3). The user can then select a specific object associated with
that property, thus narrowing the selectivity – Query 4 (Q4) is thus similar to Q3.
The system then retrieves all corresponding subjects by inference considering the
selected property object pairs – Query 5 (Q5) – and updating all other graphical
displays with the newly selected information – Query 6 (Q6).

Query 7 (Q7) finally displays more information about a property knowing a
subject (termed “end”) and a set of related properties. Last but not least [29] extends
the benchmark by adding an eighth query allowing to “join” triples on a common
subject by knowing a start object and having a nonintersecting subject list. The SQL
text of the queries is provided below:

Clearly, queries 1 through 8 are formulated for the single table solutions
(unpartitioned triples table or SPO, PSO partitioned triples table). The queries for
the vertically partitioned schema will have a UNION form. What all queries have in
common is the significant amount of joins. Mostly, self-joins and equi-joins on the
Triples table but also joins on the Triples and Properties table. The majority of the
queries use aggregation. It should also be noted that Q8 uses negation (B.subj Š D
‘conferences’) in the section condition, which makes it very IO intensive.

The authors of [29] have performed a complete analysis of the query space
reaching the conclusion that the proposed queries offer good coverage: the query
types (point, range, aggregation, and join) and alternatives (entry, inference, and
discovery) can be considered representative.

158 I. Petrov et al.

Table 8.1 Description of the semantic benchmark queries

Q1 SELECT A.obj, count(*) FROM triples AS A WHERE A.prop =’<type>’

GROUP BY A.obj;

Q2 SELECT B.prop, count(*) FROM triples AS A, triples AS B, properties P

WHERE A.subj = B.subj AND A.prop = ‘<type>’

AND A.obj = ‘<Text>’ AND P.prop = B.prop GROUP BY B.prop;

Q3 SELECT B.prop, B.obj, count(*) FROM triples AS A, triples AS B,
properties P WHERE A.subj = B.subj AND A.prop = ‘<type>’ AND A.obj =
‘<Text>’

AND P.prop = B.prop GROUP BY B.prop, B.obj HAVING count(*) > 1;

Q4 SELECT B.prop, B.obj, count(*) FROM triples AS A, triples AS B, triples
AS C, properties P WHERE A.subj = B.subj AND A.prop = ‘<type>’

AND A.obj = ‘<Text>’ AND P.prop = B.prop AND C.subj = B.subj

AND C.prop = ‘<language>’ AND C.obj = ‘<language/iso639--2b/fre>’

GROUP BY B.prop, B.obj HAVING count(*) > 1;

Q5 SELECT B.subj, C.obj FROM triples AS A, triples AS B, triples AS C

WHERE A.subj = B.subj AND A.prop = ‘<origin>’

AND A.obj = ‘<info:marcorg/DLC>’ AND B.prop = ‘<records>’

AND B.obj = C.subj AND C.prop =’<type>’ AND C.obj !=’<Text>’;

Q6 SELECT A.prop, count(*) FROM triples AS A, properties P, (

(SELECT B.subj FROM triples AS B

WHERE B.prop = ‘<type>’ AND B.obj = ‘<Text>’

)UNION (

SELECT C.subj FROM triples AS C, triples AS D

WHERE C.prop = ‘<records>’ AND C.obj = D.subj AND

D.prop = ‘<type>’ AND D.obj = ‘<Text>’

)) AS uniontable

WHERE A.subj = uniontable.subj AND P.prop = A.prop

GROUP BY A.prop;

Q7 SELECT A.subj, B.obj, C.obj FROM triples AS A, triples AS B, triples AS C

WHERE A.prop = ‘<Point>’ AND A.obj = ‘‘‘end’’’ AND A.subj = B.subj

AND B.prop = ‘<Encoding>’ AND A.subj = C.subj AND C.prop =’<type>’;

Q8 SELECT B.subj FROM triples AS A, triples AS B WHERE A.subj =

‘conferences’ AND B.subj != ‘conferences’ AND A.obj = B.obj;

8.3.2 Dataset

The publicly available Barton Libraries dataset [7] serves as experimental basis in
[2, 29] and is used as experimental dataset in this paper to ensure comparability
and repeatability. Key characteristics of the data set are summarized in Table 8.2.
It comprises approximately 50 million tuples and approximately 18 million classes
and literals. An analysis performed by [29] shows that the most frequent property is
type, occurring in 24% of all triples and that 13% of the properties account for 99%
of all tuples. No indices are created.

8.3.3 Testbed and Experimental Design

The experimental testbed used is depicted in Fig. 8.4. All experiments have been
performed on a Sun Fire � 4;440 server, with 64 GB RAM and four quad-core

8 Virtualization and Column-Oriented Database Systems 159

Table 8.2 Barton dataset characteristics
Characteristic Value

Total triples 50,255,599
Distinct properties 222
Distinct subjects 12,304,739
Distinct objects 15,817,921
Distinct subjects that are also objects (and vice versa) 9,654,007
Strings in dictionary 18,468,875
Data set size [MB] 1,253

• Ubuntu 64 Bit Server
• MonetDB/SQL Server

v5.8.4 64bit

V
M

 1

V
M

 8

B
ar

e
Ir

on

C
lient

Q1

Q8

C
lient

Q1

Q8
Q

1

M
on

et
D

B
 S

er
ve

r

A. Single Virtual Server
Configuration

B. Multiple, Parallel Virtual Servers –Configuration

C. Bare Iron - Configuration

Legend

Virtualization Server
VMWare ESX 3.5

Client
Q

8
Client

Fig. 8.4 Experimental testbed and experimental configurations

Opteron 8356 2.3 GHz processors. The server uses as host-based storage a RAID
10 array over eight 10,000 RPM SAS drives. As virtualization solution VMWare
ESX server 3.5, update 4 is used. In addition, the server has an installation of
Ubuntu Server 64-bit to measure the performance of the nonvirtualized system (this
configuration is termed “bare iron”).

To compare the performance of virtualized column stores the performance on the
Bare Iron (BI) configuration (configuration C, BI) is measured first. The bare iron
measurements serve as baseline for comparison to other configurations.

The next step is to configure a virtual machine to measure the performance
of the virtualized MonetDB. The leading principle is that the virtual machine
should have a configuration identical to bare iron, that is that the virtual resources
(SUM(CPU), SUM(Memory)) should be equal to the physical resources. The
resulting configuration is termed “single virtual server” (configuration A (1VM),
Fig. 8.4).

There is at least another possible virtualized configuration. Consider Config-
uration B (Multiple Virtual Servers (8VM), Fig. 8.4). Multiple identical virtual
machines (one for each benchmark query) are created, under the resource equality
principle.

The benchmark is executed in two modes on all three configurations: sequential
and parallel. In the sequential mode, every benchmark query is executed alone
against the MonetDB database. In the parallel mode, all eight queries are executed

160 I. Petrov et al.

together against the benchmark dataset. In Configuration B (multiple virtual
servers), all queries execute alone in their own VM; however, they are issued in
parallel to the respective VMs, and hence run in parallel. While the sequential
execution times give us exact information about the execution time of a query, the
parallel execution gives us indirect information about the resource contention and
the degree of parallelism.

8.3.4 Experimental Results

The average query execution times are shown in Tables 8.3 and 8.4. Each query
is run three times to ensure stable average values through acceptable standard
deviation. For every experiment, these tests are performed under “cold” and
“hot” conditions. In cold experiments, the virtual machine is restarted after every
execution to avoid caching effects, whereas in hot experiments each of the three
experimental runs is performed directly after the previous one, thus accounting for
caching effects (there is an initial test run to warm up the system; its results are
discarded).

Table 8.3 contains the results of the sequential experiments; it illustrates the
execution times for each query for the different virtualization and partitioning
alternatives. The goal of this experiment is to: (a) study the query behavior in

Table 8.3 Sequential execution times (s) for different queries, hot and cold runs

Hot runs Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Sum

BI 0:64 3:95 4:90 3:63 1:42 8:95 0:31 15:22 23:79

1VM 0:69 4:02 5:01 3:74 1:81 11:30 0:45 25:17 27:02

PSO 8VM 0:70 4:10 5:07 4:19 2:24 17:86 0:41 36:09 34:58

BI 1:80 2:76 3:86 1:78 3:22 8:95 1:49 13:80 23:86

1VM 2:00 2:78 3:95 1:88 3:58 11:05 1:87 20:27 27:10

SPO 8VM 2:30 2:88 4:19 2:38 4:81 20:67 12:66 19:05 49:90

BI 0:64 0:58 0:85 0:62 1:32 2:91 0:26 32:73 7:17

1VM 0:68 0:58 0:87 0:66 1:65 3:34 0:39 41:73 8:18

Vert 8VM 1:90 2:32 2:64 2:12 2:37 6:87 0:36 39:78 18:58

Cold Runs

BI 1:08 9:04 4:93 3:63 1:45 9:43 0:32 15:79 29:87

1VM 1:13 14:19 5:16 3:74 1:80 12:17 0:50 25:54 38:68

PSO 8VM 40:01 42:35 43:27 29:77 55:70 26:54 66:16 66:16 303:8

BI 3:22 4:60 3:81 2:35 4:04 8:86 1:46 13:66 28:35

1VM 4:76 4:67 4:14 3:36 5:34 11:12 1:91 21:07 35:30

SPO 8VM 4:42 19:45 20:48 28:53 48:85 50:21 58:41 35:82 230:4

BI 0:94 2:60 1:54 0:65 1:37 2:94 0:32 35:51 10:36

1VM 1:02 2:61 1:58 0:67 1:65 3:56 0:46 45:02 11:55

Vert 8VM 1:22 10:00 12:61 12:73 9:28 17:04 4:64 61:24 67:51

8 Virtualization and Column-Oriented Database Systems 161

Table 8.4 Parallel execution times (s) for different queries, hot and cold runs

Hot runs Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

BI 1:05 4:63 9:97 9:94 7:99 15:54 5:23 21:23

1VM 0:90 7:98 8:32 10:57 11:93 26:35 6:04 46:40

PSO 8VM 0:69 4:05 5:21 4:28 3:15 26:40 0:37 41:60

BI 2:41 3:36 5:17 7:86 8:02 14:07 3:88 16:53

1VM 3:75 7:40 9:32 10:36 17:36 23:75 6:24 26:55

SPO 8VM 1:97 2:97 4:26 2:40 7:42 24:32 5:90 18:17

BI 0:74 2:93 2:74 2:05 3:80 6:25 1:63 35:60

1VM 1:11 3:86 5:55 5:67 4:60 8:75 0:79 48:57

Vert 8VM 0:69 2:06 2:68 2:19 1:87 6:93 0:30 39:12

Cold runs

BI 5:26 12:70 14:24 13:48 5:73 20:10 9:25 18:44

1VM 13:52 22:37 28:30 27:11 26:34 36:25 22:93 33:94

PSO 8VM 6:49 172:21 168:4 175:1 138:7 161:2 259:0 185:5

BI 9:79 11:68 10:96 9:87 10:38 19:90 8:78 15:37

1VM 15:15 16:32 18:30 17:56 14:49 29:41 19:78 25:47

SPO 8VM 16:43 81:81 70:82 81:03 127:3 129:7 162:8 76:11

BI 1:99 6:56 7:09 6:73 3:76 10:06 5:74 39:70

1VM 2:11 7:33 8:18 7:35 5:67 12:54 5:83 51:83

Vert 8VM 2:23 23:52 33:21 27:31 13:65 31:54 30:96 79:03

isolation; (b) study the effect of partitioning; (c) estimate the overhead incurred
through virtualization; and (d) be able to compare all those. The bare iron results
for all data partitioning alternatives are already described and examined in detail
in [2, 29]. Here, these are reported since they serve as baseline for comparison and
because the numbers from [2,29] cannot be used directly since those were obtained
on different testbeds (hardware, OS). The performance differences especially to
[29] are due to different hardware. The Bare Iron configuration is instrumented
with significantly more memory and CPU resources than [29] to keep the resource
equality conditions (and be able to compare to virtualized configurations).

By considering the hot runs, it becomes evident that the vertically partitioned
schema yields best results except for the extremely IO-intensive Q8. Comparing the
Bare Iron (BI) results for the different partitioning schemes, the influence of data
partitioning on the query execution can be clearly seen. The authors of [29] provide
detailed analysis, but the major reason is that the different join, and sort algorithms
used are faster depending on the used columns and the way they are presorted.

Based on the experimental data in Table 8.3, the difference between the execution
times of BI and the single virtual machine for queries Q1 through Q7 is not as
significant. The column Sum indicates the sum of these execution times, that is
SUM(Q1..Q7). Clearly, vertical partitioning not only provides the best performance,
but also the smallest difference between bare iron and configuration A (single virtual
machine). In conclusion, virtualization is a very viable option for column stores.

162 I. Petrov et al.

As already mentioned, Q8 represents a special, very IO-intensive case due
to the negation, which requires special attention since IO is a major bottleneck
in virtualization scenarios. The hot experiments offer such a good performance
because they make intensive use of caching. Once the data are not cached along
the IO chain, the significance of IO as bottleneck becomes evident. This is why all
experiments are repeated in cold state: before a query is executed, the server or the
whole virtual machine is restarted to eliminate the influence of caching completely.
In all virtualized scenarios, the performance decrease is significant. Furthermore,
it should also be mentioned that cold runs represent a fairly exotic case, since
production systems are running with high levels of availability; hence, absence of
cached data is considered infrequent.

The results of the parallel query execution experiment are shown in Table 8.4.
In this experiment, all eight queries are executed together. In the BI and 1VM
configurations, all queries are executed against a single MonetDB database. In the
8VM configuration, each of the eight queries is executed against its own column
database, running in a separate virtual machine; all virtual machines are running
simultaneously.

The query execution times from the hot runs show an interesting general trend:
most of the queries execute faster in the 8VM configuration than on Bare Iron. This
statement forms one of the central conclusions of this paper.

The main cause for this result is that hardware resources cannot compensate for
the concurrency on database level. Since these are hot runs, it can be assumed
that the majority of the required data is cached in memory (however, not all –
a point proven by Q8). In the 8VM, therefore, with high probability, a repeated
execution consumes data already in the MonetDB cache. Given the present type
of read-only load and the dedicated execution (one query per VM), the buffer is
reused for the next run. In the other two configurations BI and 1VM, all queries
execute together against the database. Even though these configurations have the
same hardware resources as the 8VM configuration, the results differ. Some of
the factors contributing to this result are: processing of intermediate results, buffer
management, multi-threading, and IO-management.

Most of the queries rely on aggregation and self-joins. These operations produce
significant amount of intermediate results, which cannot be handled efficiently
altogether by MonetDB.

The buffer manager implements a replacement strategy holding certain pages in
the memory and replacing them for others when needed. Least-recently used (LRU)
is widely spread and used by MonetDB Server. There is natural variance among
the query execution times of the eight queries. Due to parallel execution, the LRU
strategy replaces pages needed by already executed queries by pages required by the
current queries. Therefore, effect of page locality cannot be utilized as efficiently
as in the 8VM configuration. The reader should also consider the fact that the
experiments are designed in such a way that in all configurations there is enough
buffer space to cache the whole database. Therefore, there is essentially no need to
replace cached pages.

8 Virtualization and Column-Oriented Database Systems 163

The parallel execution of all queries in the 1VM and BI configurations relies on
multi-threading. Most queries are CPU intensive. Even with the hypervisor CPU
overhead, the 8VM execution is faster than the BI execution. This effect can only be
attributed to latching (thread synchronization) causing threads to wait and use CPU
inefficiently.

Last but not least, the IO-management on hypervisor level offers some interesting
optimizations, which speed up the parallel VM execution, but do not affect the single
VM scenarios. [28,33] describe hypervisor level optimizations based on efficient IO
command queuing on hypervisor level. These only engage when there are multiple
concurrent VMs. These contribute to the better 8VM configuration performance.

Since the IO is a major bottleneck in virtualized scenarios, the cold runs
(Table 8.4) of the parallel execution show execution time that are significantly
worse than the bare iron. Clearly, IO is the dominant factor. In production systems,
however, cold execution is a rare case.

8.3.5 Influence of Data Partitioning

As described in the previous section, the choice of data partitioning has a significant
influence on the query execution times. Partitioning the dataset with respect to
different criteria is plausible from a performance point of view due to the read-
only nature of the data-set reported among others by [2, 29]. The evaluation of
some queries is heavily property-based, of other queries subject- or object-based.
Partitioning the data with respect to subjects, object or predicates favors different
types of queries. Hence, this is a very important design-time decision.

Query 7 is a very good example in this respect. Its execution times vary highly
depending on the chosen type of data partitioning and the type of virtualization
configuration. A detailed investigation is provided by examining the query execution
plan and the costs for the different operators in different configurations.

Query 7 (Q7) is a triple selection self join query without aggregation. It retrieves
information about a particular property (e.g., Point) by selecting subjects and objects
of triples associated with Point through related properties. Associated means: to
retrieve subject, Encoding, and Type of all resources with a Point value of “end.”
The result set indicates that all such resources are of the type Date, which is why
they can have “start” and “end” values: each of these resources represents a start or
end date, depending on the value of Point.

A condensed version of Q7’s execution plan is shown in Table 8.5. The column
“operation” describes the operators and the operator tree. The number, for example
“ 1” indicate intermediate results defined as BAT [8]. MonetDB defines operator
tree in terms of the MIL language [8]. While the semantics of operators such as join
and semijoin is intuitive, an operator such as uselect requires a short explanation.
The uselect operator selects values from the respective BAT. For example, the result
of the operation uselect(property D “Encoding”) will be the BAT 5 containing all
triples with a property value Encoding.

164 I. Petrov et al.

Table 8.5 Query execution plan and operator run-times (ms) for different configurations

Operation SPO SPO VM PSO PSO VM

1: uselect(object="End") 24:2 34:4 3:4 3:6

2: semijoin(property, 1) 11:2 12:1 3:3 3:4

3: uselect(2="Point") 3:3 3:3 3:1 3:3

4: join(3, subject) 4:1 4:5 1 1

5: uselect(property="Encoding") 488:1 492:8 0:02 0:03

6: join(5, subject) 65:9 61:4 13:1 14:5

7: join(4, 6) 112:1 115 17:1 17:5

8: join(4, 7) 1:1 1:1 0:02 0:02

9: uselect(property="type") 931:1 1; 109:1 0:02 0:02

10: join(9, subject) 135:1 167:2 54:8 56:9

11: join(8, 10) 42:9 44:8 39:5 41:1

12: join(11, 8) 0:5 0:5 0:02 0:03

13: join(5, object) 57:9 61:3 0:01 0:02

14: join(7, 13) 1:9 2 1:9 2

15: join(11, 14) 0:02 0:03 0:02 0:02

16: join(9, object) 143:2 146:9 0:01 0:01

17: join(11, 16) 3:4 3:7 2:7 2:9

The influence of data partitioning is clearly visible comparing the execution times
for the uselect operators, for example, the ones computing intermediate results 5
and 9 but also on some of the join and semijoin operators, for example, 2, 10,
13, 16, all those operators rely heavily on property data. SPO partitioning sorts

the triples with respect to the subjects; hence, the evaluation requires significant IO
resulting in higher times. PSO sorts the triples data with respect to (1) properties and
(2) subjects, yielding significantly higher performance. The creation of intermediate
BATs 5 and 9 results in a large sequential read on PSO and in multiple small
reads on SPO. In addition, internal column store optimizations such as run-
length encoding on the property values are inefficient in SPO, but have significant
performance influence on PSO.

Here, the plan for vertical partitioning is left out because it is very different
due to the different schema. It relies on many union operations. The execution is
very fast since MonetDB can select from the tables for the respective properties
(e.g., End, Point, Encoding, Type see Sect. 6.3.1). Even though it shows very
high performance, some scalability issues may arise when the number of unique
properties increases.

Since column-stores are commonly viewed as read-mostly data stores, the data
partitioning decision is a viable one; it has no negative implications due to the
absence of modification operations. Since most of the queries are also known
at design-time, such an optimization can be performed statically and increase
performance.

8 Virtualization and Column-Oriented Database Systems 165

8.4 Conclusions: Column-Oriented Databases’ Parallelism
in Virtual Environments

Cloud computing and semantic data represent an important combination [22]. Some
existing semantic applications rely on cloud approaches (Google MapReduce [14],
BigTable [11] or open source analogs, for example, Hadoop [3] or extensions
such as Pig [5] or HBase [4]). The authors believe that column stores in virtual
environments are an important addition. Assuming that the complete dataset is
replicated at each node, its scale out can be improved to meet that of cloud models
such as Amazon EC2.

As already concluded in Sect. 6.3.3, parallelism is very advantageous with
column-stores in virtual environments. Running on multiple virtual machines in
parallel increases significantly the overall performance. This is due to several factors
ranging from column store properties through hypervisor level optimizations. Those
were described in Sect. 6.3.

Due to the flexibility of virtual resources, the hypervisor can even offer the
possibility of dynamically migrating virtual machines for one host to another
whenever there are not enough physical resources to ensure certain quality of
service. Such scenarios are very relevant in the realm of grid, cluster, and cloud
computing.

In the elastic cloud or cluster computing scenario, parallelism is naturally given
and required. The present experiments prove that virtual computers with less virtual
resources can achieve better performance running in parallel. Such machines are
easy to handle and migrate. They are also easy to cluster depending on the type of
load.

Acknowledgements The authors thank Martin Karsten and Romulo Gonzalez for providing us
with the semantic benchmark and for their kind assistance with setting it up and configuring
MonetDB.

References

1. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores: How different are they
really?. In: Proceedings of the 2008 ACM SIGMOD international Conference on Management
of Data. SIGMOD. ACM, pp. 967–980 (2008)

2. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data manage-
ment using vertical partitioning. In: Proceedings of VLDB 2007, Vienna, Austria, 23–27 Sept
2007, pp. 411–422 (2007)

3. Apache Hadoop. http://hadoop.apache.org/core (2010)
4. Apache HBase. http://hadoop.apache.org/hbase (2010)
5. Apache Pig. http://incubator.apache.org/pig (2010)
6. Architecture of MonetDB. http://monetdb.cwi.nl/projects/monetdb/MonetDB/Version4/

Documentation/monet/index.html (2010)
7. Barton Library Catalog Data. http://simile.mit.edu/rdf-test-data/barton/ (2010)

166 I. Petrov et al.

8. Boncz, P.: Monet, a next-generation DBMS kernel for query-intensive applications, Doctoral
Dissertation. CWI, 2002

9. Boncz, P.A., Zukowski, M., Nes, N.: MonetDB/X100: Hyper-Pipelining query execution.
In: Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR),
pp. 225–237, Asilomar, CA, USA, January 2005

10. Broekstra, J., A. Kampman, F. van Harmelen.: Sesame: A generic architecture for storing and
querying RDF and RDF Schema. In: ISWC, pp. 54–68 (2002)

11. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D. A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. In: Proceed-
ings of the 7th USENIX Symposium on Operating Systems Design and Implementation, vol. 7,
Seattle, WA, 06–08 Nov 2006

12. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL-based RDF querying scheme.
In: VLDB, pp. 1216–1227 (2005)

13. Copeland, G.P., Khoshafian, S.N.: A decomposition storage model. In: Proceedings of the
1985 ACM SIGMOD international Conference on Management of Data, Austin, Texas, USA.
SIGMOD ‘85, pp. 268–279 (1985)

14. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Proceed-
ings of the 6th Conference on Symposium on Operating Systems Design & Implementation,
vol. 6, San Francisco, CA, 06–08 Dec 2004

15. Harizopoulos, S., Liang, V., Abadi, D.J., Madden, S.: Performance tradeoffs in read-optimized
databases. In: Dayal, U., Whang, K., Lomet, D., Alonso, G., Lohman, G., Kersten, M.,
Cha, S.K., Kim, Y. (eds.) Proceedings of the 32nd international Conference on Very Large
Data Bases, Seoul, Korea, 12–15 Sept 2006. Very Large Data Bases, VLDB Endowment, pp.
487–498 (2006)

16. Harris, S., Gibbins, N.: 3store: Efficient bulk RDF storage. In: Proceedings of PSSS’03, pp. 1–
15 (2003)

17. Holloway, A.L., DeWitt, D.J.: Read-optimized databases, in depth. In: Proceedings of VLDB
Endow, vol. 1, issue 1, pp. 502–513. Aug 2008

18. Husain, F.M., Doshi, P., Khan, L., Thuraisingham, B.: Storage and retrieval of large RDF
graph using Hadoop and MapReduce. In: Proceedings of International Conference on Cloud
Computing, Beijing, China, 01–04 Dec 2009. LNCS, vol. 5931, pp. 680–686. Springer, Berlin
(2009)

19. Ivanova, M., Kersten, M., Nes, N.: Self-organizing strategies for a column-store database. In:
Proceedings of the 11th International Conference on Extending Database Technology (EDBT
2008), Nantes, France, 25–30 Mar 2008

20. Liu, J.F.: Distributed storage and query of large RDF graphs. Technical Report. The University
of Texas at Austin, Austin, TX, USA (2010). http://userweb.cs.utexas.edu/�jayliu/reports/
Query of Large RDF Graphs.pdf

21. Longwell website. http://simile.mit.edu/longwell/
22. Mika, P., Tummarello, G.: Web semantics in the clouds. IEEE Intell. Syst. 23(5), 82–87 (2008)
23. MonetDB. http://monetdb.cwi.nl/
24. OWL Web Ontology Language. Overview. W3C Recommendation. http://www.w3.org/TR/

owl-features/ (2004)
25. RDF Primer. W3C Recommendation. http://www.w3.org/TR/rdf-primer (2004)
26. RDF Schema. W3C Specification Candidate. http://www.w3.org/TR/2000/CR-rdf-schema-

20000327/ (2000)
27. RDQL – A Query Language for RDF. W3C Member Submission 9 January 2004. http://www.

w3.org/Submission/RDQL/ (2004)
28. Scalable Storage Performance. VMWare Corp. White Paper. http://www.vmware.com/files/

pdf/scalable storage performance.pdf (2008)
29. Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., Manegold, S.: Column-store support for

RDF data management: not all swans are white. In: Proceedings of VLDB Endowment, vol. 1,
issue 2, Aug 2008, pp. 1553–1563 (2008)

8 Virtualization and Column-Oriented Database Systems 167

30. SPARQL Query Language for RDF. W3C Working Draft 4 October 2006. http://www.w3.org/
TR/rdf-sparql-query/ (2006)

31. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin,
A., Madden, S., ONeil, E., ONeil, P., Rasin, A., Tran, N., Zdonik S.: C-store: A column-
oriented DBMS. In: Proceedings of the 31st VLDB Conference (2005)

32. Swoogle. http://swoogle.umbc.edu/
33. VMware vSphere 4 Performance with Extreme I/O Workloads. VMWare Corp. White Paper.

http://www.vmware.com/pdf/vsp 4 extreme io.pdf (2010)
34. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and retrieval in Jena2.

In: SWDB, pp. 131–150 (2003)
35. Wordnet rdf dataset. http://www.cogsci.princeton.edu/wn/
36. World Wide Web Consortium (W3C). http://www.w3.org/

•

Chapter 9
Scientific Computation and Data Management
Using Microsoft Windows Azure

Steven Johnston, Simon Cox, and Kenji Takeda

Abstract Cloud computing is the next stage in the evolution of computational
and data handling infrastructure, establishing scale out from clients, to clusters to
clouds. With the use of a case study, Microsoft Windows Azure has been applied to
Space Situational Awareness (SSA) creating a system that is robust and scalable,
demonstrating how to harness the capabilities of cloud computing. The generic
aspects of cloud computing are discussed throughout.

9.1 Introduction

Cloud computing offerings come in many variations and mean different things to
different people. In general, cloud computing is defined as a dynamic, scalable,
on-demand resource [6]; a utility computing resource which can be purchased
and consumed much the way electricity is purchased (utility computing [40, 41]).
Generally, cloud providers offer computation and storage facilities as part of their
offering, in addition to other proprietary capabilities. This chapter focuses mainly
on the data and computational resources since both are fundamental across different
cloud architectures.

Two key benefits of a cloud-based architecture are high availability (24/7)
and super-scalability. Scalability is an inherent design from the underlying cloud
architecture, and it is this capability that provides a mechanism to scale, for example,
a web base application, from hundreds of users to millions without changing the
codebase [1].

Cloud or utility computing is not a new concept; it has evolved from work in
areas such as Grid computing and other large distributed applications, in areas such
as engineering [18, 23, 53] and biology [35, 49].

S. Johnston (�) � S. Cox � K. Takeda
Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
e-mail: sjj698@zepler.org; s.j.cox@soton.ac.uk; ktakeda@soton.ac.uk

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 9, © Springer-Verlag Berlin Heidelberg 2011

169

170 S. Johnston et al.

In this chapter, cloud capabilities are discussed in general terms, listing provider
specific examples where appropriate. Companies/organisations are referred to as
cloud providers (Microsoft, Amazon) supplying a cloud offering (Microsoft Win-
dows Azure [16,37,42], Amazon EC2 [3,46]), consisting of cloud resources (Azure
tables, Amazon SimpleDB).

The advantages of a cloud-based architecture can be categorised into a number of
key areas: burst capability (predictable and unpredictable); scalability; development
life cycle reduction of, e.g., algorithms; disparate data aggregation or dissemination.
The rest of this chapter introduces a Windows Azure case study demonstrating the
advantages of cloud computing (Sect. 9.2), and the following section describes the
generic resources that are offered by cloud providers and how they can be integrated
to produce a large dynamic data store (Sect. 9.3). The economics of cloud offerings
are discussed in Sect. 9.3.7, and Sect. 9.4 concludes with a critique of today’s cloud
computing ecosystem.

A key principle of cloud providers is that building large data centres benefits
from economies of scale to reduce the overall cost; more so if the cloud data centre
is highly used. Cloud computing is one business model which sells or rents parts
of large data centres, resulting in cost savings. Often, this implies shared-resources
(multi-tenanted) and machine virtualisation, but is not a requirement.

The level of interaction with cloud data centres defines the type of cloud offering,
and can be divided into the following categories:

• Infrastructure as a Service (IaaS).
Cloud IaaS sells/rents out infrastructure such as servers, virtual machines
and networking and is an alternative to physically owning infrastructure. For
example, renting a virtual machine on Amazon EC2 [46].

• Platform as a Service (PaaS).
Often build upon IaaS, cloud PaaS offerings include an Operating System (OS)
and perhaps a software stack (.Net, Java). For example, Microsoft Windows
Azure Workers [37].

• Software as a Service (SaaS).
SaaS offers an end-user application and can be built upon IaaS and PaaS. For
example, SalesForce CRM [8, 55].

As you progress from IaaS to SaaS, the cloud provider assumes more respon-
sibility, e.g., OS software and virusguard updates. This helps reduce maintenance
costs and also reduces flexibility, for example upgrading from one SaaS application
version to the next has to be done on the cloud providers schedule.

9.2 Cloud Computing Case Study

This section demonstrates how a cloud-based computing architecture can be used
for planetary defence and Space Situational Awareness (SSA) [34], by showing
how utility compute can facilitate both a financially economical and highly scalable

9 Scientific Computation and Data Management Using Microsoft Windows Azure 171

solution for space debris and near-earth object impact analysis. As our ability to
track smaller space objects improves, and satellite collisions occur, the volume of
objects being tracked vastly increases, increasing computational demands. Propa-
gating trajectories and calculating conjunctions becomes increasingly time critical,
thus requiring an architecture which can scale with demand. The extension of this to
tackle the problem of a future near-earth object impact, and how cloud computing
can play a key role, is also described.

9.2.1 Background

Space situational awareness includes scientific and operational aspects of space
weather, near-earth objects and space debris [38, 39]. This work is part of an
international effort to provide a global response strategy to the threat of a Near
Earth Object (NEO) impacting the earth [7], led by the United Nations Committee
for the Peaceful Use of Space (UN-COPUOS). The impact of a NEO (an asteroid
or comet) is a severe natural hazard but is unique in that technology exists to predict
and to prevent it, given sufficient warning. The International Spaceguard survey
has identified nearly 1,000 potentially hazardous asteroids greater than 1km in
size, although NEOs smaller than 1 km remain predominantly undetected and exist
in far greater numbers; impacting the Earth more frequently. Impacts by objects
larger than 100 m (twice the size of the asteroid that caused the Barringer crater in
Arizona) could be devastating (see Fig. 9.1). The tracking and prediction of potential
NEO impacts are of international importance, particularly with regard to disaster
management.

Space debris poses a serious risk to satellites and space missions. Currently,
Space Track [58] publishes the locations of about 15,000 objects, these include
satellites, operational and defunct, space debris from missions and space junk.
It is believed that there are about 19,000 objects with a diameter over 10 cm.
Even the smallest space junk travelling at about 17,000 miles per hour can cause
serious damage; the Space Shuttle has undergone 92 window changes due to debris
impact. There are over 500,000 objects over 1 cm in diameter and there is a desire
to track most, if not all of these. By improving ground sensors and introducing
sensors on satellites, the Space Track database will increase in size. Tracking and
predicting space debris behaviour in more detail can reduce collisions as the orbital
environment becomes ever more crowded. Cloud computing provides the ability to
trade computation time against costs. It also favours an architecture which inherently
scales, providing burst capability. By treating compute as a utility, compute cycles
are only paid for when they are used. This case study demonstrates the benefits of a
cloud-based architecture, the key scenarios are outlined below and further discussed
in Sect. 9.3.

• Predictable Burst.
Data must be processed in a timely manner twice per day.

172 S. Johnston et al.

Fig. 9.1 Map showing the relative consequences of the impact of a 100 m diameter asteroid at
12 km s�1 into global grid cells with shading denoting (top) casualty generation and (bottom)
infrastructure damage [7]

• Scalable demand.
In the event of a collision event or future launch, additional load must be handled
flexibly and scalable.

• Algorithm Development.
New algorithms are required to understand propagation of space debris and
collision events and to cope with scaling from tracking 20,000 objects (at 10 cm
resolution) to 500,000C (at 1 cm resolution).

• Data sets in the cloud.
Whilst the original source data are obtained from published sources, the resulting
output data could be made available as a cloud data set for aggregation from
multiple sources and better dissemination to multiple consumers.

9.2.2 Satellite Propagation and Collision

The following cloud application framework is designed to tackle space debris
tracking and analysis and is being extended for NEO impact analysis. In this
application, propagation and conjunction analysis produces in peak compute loads

9 Scientific Computation and Data Management Using Microsoft Windows Azure 173

Fig. 9.2 Iridium-33 collision with Cosmos-2251

for only 20% of the day with burst capability required in the event of a collision
when the number of objects increases dramatically; the Iridium-33 Cosmos-2251
collision in 2009 resulted in an additional 1,131 trackable objects (see Fig. 9.2).
Utility computation can quickly adapt to these situations consuming more compute,
incurring a monetary cost but keeping computation wall clock time to a constant.
In the event of a conjunction event being predicted, satellite operators would have
to be quickly alerted so they could decide what mitigating action to take. This
work migrates a series of discrete manual computing processes to the Azure cloud
platform to improve capability and scalability. The workflow involves the following
steps: obtain satellite position data, validate data, run propagation simulation, store
results, perform conjunction analysis, query and visualise satellite object.

Satellite locations are published twice a day by Space Track, resulting in bi-daily
high workloads. Every time the locations are published, all previous propagation
calculations are halted, and the propagator starts recalculating the expected future
orbits. Every orbit can be different, albeit only slightly from a previous estimate,
but this means that all conjunction analysis has to be recomputed. The quicker
this workflow is completed the quicker possible conjunction alerts can be triggered,
providing more time for mitigation.

The concept project uses Windows Azure as a cloud provider and is architected
as a data-driven workflow consuming satellite locations and resulting in conjunction
alerts, as shown in Fig. 9.3. Satellite locations are published in a standard format

174 S. Johnston et al.

Raw file
parser/validator

TLE object
queue

Raw file
queue

Space Track TLE
importer

TLE object
importer

TLE update
notifications
queue

Conjunction
table

Conjunction
worker

TLE propagator
Propagation
update notifications
queue

TLE conjunction
enumerator

Out of date
conjunctions
queue

1

2

3

4

5

6
Azure data

storage

Azure satellite
tracker client

Fig. 9.3 Workers consume jobs from queues and post results onto queues, chaining workers
together forms data-driven workflows. This provides a simple plug-in framework where workers
can be substituted for example to test newer algorithms or to compare with different algorithms

known as a two-line element (TLE) that fully describes a spacecraft and its orbit.
Any TLE publisher can be consumed, in this case the Space Track website, but also
ground observation station data.

In Fig. 9.3, the workflow starts by importing a list of TLEs from Space Track
(step 1); the list of TLEs are first separated into individual TLE Objects, validated
and inserted into a queue (step 2). TLE queue objects are consumed by workers
which check to see whether the TLE exists; new TLEs are added to an Azure
Table and an update notification added to the Update Queue (step 3). TLEs in
the update notification queue are new and each requires propagation (step 4);
this is an embarrassingly parallel computation that scales well across the cloud.
Any propagator can be used. Currently, only the NORAD SGP4 propagator and a
custom Southampton simulation (CCC) code [38] are supported. Each propagated
object has to be compared with all other propagations by calculating all possible
conjunction pairs (step 5); an all-on-all process which can be optimised with filtering
out obviously independent orbits. A conjunction analysis is performed on each pair
to see whether there is a conjunction or predicted close approach (step 6). Any
conjunction source or code can be used, currently a basic implementation; plans
are to incorporate more complicated filtering and conjunction analysis routines as

9 Scientific Computation and Data Management Using Microsoft Windows Azure 175

they become available. Conjunctions result in alerts which are visible in the Azure
Satellite tracker client. The client uses Microsoft Bing Maps to display the orbits.
Each step in the workflow is an independent worker. The number of workers can be
increased to speed up the process or to cope with burst demands.

Ongoing work includes expanding the Bing Maps client as well as adding
support for custom clients by exposing the data through a REST interface. This
pluggable architecture ensures that additional propagators and conjunction codes
can be incorporated. The framework demonstrated here is being extended as a
generic space situational service bus to include NEO impact predictions. This will
exploit the pluggable simulation code architecture and the cloud’s burst computing
capability to allow refinement of predictions for disaster management simulations
and potential emergency scenarios anywhere on the globe.

9.2.3 Summary

It has been shown how a new architecture can be applied to space situational
awareness to provide a scalable robust data-driven architecture which can enhance
the ability of existing disparate analysis codes by integrating them together in a
common framework. By automating the ability to alert satellite owners to potential
conjunction scenarios, it reduces the potential of conjunction oversight and decrease
the response time, thus making space safer. This framework is being extended to
NEO trajectory and impact analysis to help improve planetary defences capability.

9.3 Cloud Architecture

Cloud offerings provide resources to perform computation and store data, both
relational and non-relational, on a pay as you use basis (see Fig. 9.4). The benefits
of a cloud-based architecture may be divided into the following scenarios:

Burst capability. This includes tasks that have load peaks, either predictable (e.g.,
those related to Christmas or end of tax year) or unpredictable (e.g., the Slashdot
effect [22]). When sizing a data centre for such a scenario, it has to be able to
cope with the peak load; for the majority of the time this hardware remains unused,
resulting in poor utilisation hence increased costs. Moving such an application
to a cloud provider ensures that you only incur costs for the resources used. An
alternative is to run a data centre at or near maximum load and offload any peaks to
a cloud resource; a cloud-hybrid approach (see Sect. 9.3.6.1).

Scalability. It is difficult to judge how popular an application will become so there
is an inherent need to make all applications scalable. In addition to the application
scaling the underlying resources need to scale. As with the burst capability, cloud
computing offers instant scalability (quicker than purchasing physical machines

176 S. Johnston et al.

Cloud providerInternet

On-site
software

Private
cloud

Cloud API / Software /Infrastructure

Fig. 9.4 Local or enterprise applications access cloud resources (compute and storage) across the
internet. Applications can be hosted locally, partially (hybrid cloud) or completely by a cloud
provider

[40]) allowing an application to operate throughout the hype cycle, failure to scale in
such a scenario often results in the failure of useful applications. More importantly,
as an application declines or plateaus in popularity, cloud computing permits the
scaling back of resources; currently, this is very difficult to accomplish with physical
hardware.

Reducing the development life cycle. For tasks where the development cycle is
large and compute intensive such as algorithm development, cloud offerings can be
used to reduce the development cycle, thus reducing the overall time to completion.

Disparate data aggregation or dissemination. Cloud offerings are inherently
global, highly available and have large bandwidth capabilities, making them ideal
for data aggregation and dissemination. Using multiple cloud data centres reduces
the load, and moving data physically closer to where it is consumed reduces
latency; for example, by copying data to multiple data centres or using a cloud
caching technology [29, 54]. Once a dataset resides in a globally accessible cloud
resource, it too becomes a resource. This infrastructure facilitates the publication
and consumption of data by third parties providing mashup capabilities previously
impossible or difficult to achieve using conventional architectures [30, 44, 51].

9 Scientific Computation and Data Management Using Microsoft Windows Azure 177

This section describes the capabilities of key cloud resources, detailing how they
can combine to produce a logical robust architecture, including pricing strategies
and their influence on architectural decisions.

9.3.1 Computational Workers

All cloud computing vendors offer users the ability to perform computation, either
by running code [26] or by supporting applications; a unit of computational activity
is referred to a worker.

One of the advantages of cloud computing is that it is super-scalable, which
is achieved by having large numbers of workers; scaling-out. This is in contrast
to traditional scaling-up where the number of workers is constant but where the
workers are made more powerful.

It is not always easy to scale-out workloads, large volumes of simple jobs which
can be run in parallel are easy to convert, but tightly interconnected or serial jobs
may not be appropriate for cloud scale-out scenarios. To achieve super-scalability of
cloud-based applications, a solution will inevitability involve some re-architecting.
An alternative may include running an application, in parallel multiple times
with different input parameters (parameter sweep) to achieve throughput. Hence,
consider scaling-out workers rather than scaling-up workers.

Some cloud providers facilitate scale-up solutions by providing different sized
workers [16, 46]; this helps with scalability issues but will not result in super-
scalability. By offering to host workers on more powerful machines (more RAM,
more cores), user applications will perform better. Cloud pricing is geared towards
utility pricing and so a worker which is twice as powerful will cost twice as much.
Consider the case where a large worker is eight times as powerful as a small worker;
will the application have eight times the throughput? In utility computing, it is often
beneficial to achieve throughput by having a larger number of slower workers where
the hardware is 100% used, than to have a single powerful worker which may
under-utilise the hardware; processes tend to be CPU, I/O or memory bound. For
example, a CPU-bound application which is moved to a large worker will contain
proportionally more RAM. If the application cannot make use of this RAM, the
resource will be underutilised, and therefore more costly.

The more the components you add to a system, the higher the probability of a
failure, Cloud computing guarantees failure; always handle failure/retry scenarios
gracefully, particularly for 24/7 applications. It is insufficient to rely on SLAs since
breaches often result in refunds or bill reductions that do not cover the full cost of
an application failure [59].

One mechanism to overcome worker failures is to ensure that workers are
idempotent [52]. For example, consider a worker which consumes tasks from
message queues (see Sect. 9.3.5) and processes the message. The result should
remain the same regardless of how many times the message is executed.

178 S. Johnston et al.

Idempotency can be achieved using storage tables (see Sect. 9.3.3) to log which
messages are in progress or completed; hence, halting the repeated execution of a
message. Alternatively, an eventual consistency method can be adopted whereby
repeated tasks are eventually cancelled out; for example, using compensating
transactions [50].

Idempotency can assist in scenarios where it is critical to process messages
reliably within a fixed time period. If workers are idempotent and a single worker
can process the message within the time period, executing the same message with
multiple workers will mitigate cloud infrastructure failures. This will result in
additional costs but provides a mechanism to directly trade reliability against cost.

9.3.2 Blob Storage

To facilitate the storage of large volumes of unstructured data, cloud providers offer
a variety of blob storage capabilities. Blob storage effectively allows users access to
unlimited storage capabilities. As conventional filesystems cannot scale to cope with
the data volumes that cloud providers are capable of storing, most cloud blob storage
is accessed using REST or custom, proprietary APIs. Since these differ between
providers, it makes cloud mobility more difficult.

By abstracting blob storage away from the underlying hardware, cloud providers
can offer data redundancy and high availability. For example, Microsoft Windows
Azure and Amazon S3 guarantee that data are replicated a minimum of three
times [14].

For regulatory reasons, some data cannot exist outside geographical regions.
This is partially catered for by offering users different geographical locations
for data to reside; for example, North America, Europe and Asia. These address
some regulatory issues, but it is unclear how country-specific data can be handled.
Location-specific data centres can improve performance by ensuring that data are
close to consuming applications.

Transferring data into and out from the cloud storage is expensive, both in terms
of cost and time. Once data are in the cloud, it is efficient to access using workers,
but inefficient to access from remote or corporate sites. Consider carefully which
data ase transferred to the cloud. It could be more efficient to generate the data
in the cloud using a worker. In cases of hybrid cloud solutions (see Sect. 9.3.6.1),
storing a large datasets both onsite and in the cloud can reduce transfer costs and
improve performance.

9.3.2.1 Sparse Files, Virtual Disks and Versioning

Using blob storage, APIs can be limiting as it requires application code changes
to use the storage API, which is not standard across cloud providers. There are
various mechanisms which facilitate mounting blob storage as if it were a physical

9 Scientific Computation and Data Management Using Microsoft Windows Azure 179

device, therefore permitting the use of existing I/O libraries. This greatly assists with
cloud application portability and cloud mobility. Cloud workers can run existing
applications in the cloud without having to make changes to the applications.

Virtual disks. In virtual infrastructures, it is common for HDD partitions to be
represented using virtual harddisks [57]. The virtual disk is just a large file which
usually lives in the virtual infrastructure’s underlying filesystem. For example, a
100 GiB file can be mounted as a harddrive device, formatted with a file system
(NTFS, Reiser, Ext3) and used as if it were a physical disk; the I/O performance
may be reduced slightly [57]. Some cloud providers support the mounting of virtual
disks inside workers [12]. By attaching virtual disks to a workers, non-cloud aware
application can store data to blob storage via the virtual disk.

When creating a virtual disk, it can be difficult to calculate a reasonable starting
size. Expanding the disk after it has been created is possible (up to the maximum
single blob size), but the virtual disk filesystem must support expansion. To use
virtual disks on blob storage efficiently, the cloud provider has to support sparse
files. A sparse file only stores data for the parts of the file which contain data.
For example, an empty 100Gib virtual disk will not incur any storage costs, but
will still appear as a 100GiB partition. As the partition is filled, blob storage
charges will apply. If the virtual disk is mounted from a destination where billing
applies, consider the number of I/O transactions in addition to the data volumes, as
transaction costs can be considerable, especially if a cache is not used [12].

Storing data in virtual disks opens opportunities to leverage some blob storage
features, such as snapshotting to maintain different versions of the same virtual hard
disk (VHD). A virtual disk can be mounted as read–write by one worker but read-
only by many workers; handy for sharing a common codebase.

Mounting. Using virtual disks on blob storage adds another level of indirection,
which has resizing, maximum size and performance implications. A different
method is to mount cloud blob storage as if it was a physical disk which improves
cloud application portability and migration. This does not limit the total volume
size and eliminates resizing issues. This method is not identical to physical disk or
VHD, for example in Amazon EC2, the user mode filesystem for S3 is not Posix
[10] compliant, and may not perform as expected for all cloud applications.

Scratch disk. Where performance is important, there is no substitute for physical
disk or locally attached virtual disk. Cloud workers have scratch disk space which
is a fast local disk and can be used by applications. This storage is not permanent
and needs to be synced to persistent storage. As workers fail or disappear, dealing
with failed workers and non-persisted data becomes an additional responsibility of
the cloud application.

Local tools. Alternatively, if an application supports the blob storage API, access-
ing the generated data by mounting it locally assists users with importing and
exporting data. In addition to the tools methods listed above, there are tools that
allow users to drag and drop files into cloud storage locations [13, 60].

180 S. Johnston et al.

9.3.3 Non-Relational Data Stores

Cloud-based non-relational databases offer super-scalability but are different from
relational databases; for cloud-based RDBs, see Sect. 9.3.4. Relational databases are
scalable, but they potentially become a bottleneck for super-scalable applications,
in-part because of features such as transactions and row/table locking. Non-
relational cloud data stores take the form of large tables, which have a fixed
or limited number of indices [28]. The table is divided across multiple sets of
hardware, and as the table grows more hardware can be added, either automatically
(Azure table) or by configuration (Amazon tables). Be sure to select data index
keys carefully as the non-relational table efficiency relies on index keys for load
distribution.

The features supported vary from vendor to vendor, and there are no standard
interfaces, thus reducing cloud mobility and portability [11]. As the market matures,
cloud consumers can expect to see more standards emerge between vendors.

Azure table storage [15, 28] indexes a single row using two keys, a partition and
a row key. Transactions are supported across rows which are in the same partition.
A row is identified by the partition and row key, a partition contains many rows.
As the data volume expand the Azure fabric increases the hardware, reducing the
number of partitions that a single machine has to manage; Amazon SimpleDB is
spread across domains which can be manually increased [14].

Super-scalability raises data consistency issues across very large tables. Often
applications rely on data consistency, but this need not be a requirement. For
example, an online shop displaying the number of items in stock only gets
interesting when stock gets low. Providing the stock levels are high, displaying
out of date stock levels is not important. As the stock level approaches zero, data
consistency can be enforced but may take longer to calculate the stock levels. This
approach speeds up page queries without affecting end users. Amazon SimpleDB
supports eventual consistency, in which row data that is out of date will become
consistent over time, usually under a second [61].

9.3.4 Cloud-Relational Database Storage

Relational databases will never scale to the data volumes that non-relational
table storage can manage; however, they have a much richer feature set and are
fundamental to the software ecosystem [19].

Most cloud providers offer a relational database which will work seamlessly with
existing RDB code, applications and tools. Amazon RDS [46] and SQL Azure [42]
are both cloud-hosted relational database offerings. Since they are compliant with
existing SQL platforms, they do not require changes to existing applications. SQL
applications often require frequent, low latency I/O. Moving a database to a cloud

9 Scientific Computation and Data Management Using Microsoft Windows Azure 181

provider and keeping the applications onsite can have performance costs as well as
monetary implications.

The cloud database offerings vary but in general are managed, upgraded and
backed up automatically, drastically reducing TCO. For example, SQL Azure
ensures that data are committed to three Microsoft SQL database instances to
guarantee high availability.

Many relational databases support processing inside the database, ranging from
simple calculations (standard mathematical operations) to complete code execution
(Microsoft CLR integrations [2]). If your application requires these advanced
features, ensure that your cloud provider fully supports code execution. Current
pricing models do not acknowledge that the database can be used to perform
processing, others actively restrict it, for example Microsoft SQL Azure reserves
the right to terminate long running or CPU intensive database transactions [42].

Cloud Database Sharding. In keeping with the cloud philosophy of commodity
hardware and super scalablability, a single database instance will quickly prove to
be a bottleneck. Scaling up the database hardware will result in better performance
but is limited by hardware capabilities, another approach is to scale out the database
data this is known as database sharding [17].

Database sharding involves taking a large database and breaking it into a number
of smaller database instances, ideally with no shared data. Sharding the data results
in smaller databases which are easier to backup and manage. The load is distributed
which results in better scalability, availability and larger bandwidth, although
partitioning data involves extra work. This is different from more traditional scaling
approaches, such as replication [19] (master–slave), in which each shard is loosely
coupled with minimal dependencies and all instances support read–write.

Deciding how to shard a database schema is domain specific. The overall concept
is to look at high transaction or high update areas and break them into multiple
shards. This is currently a manual process and requires custom implementations,
as this approach becomes more popular the tooling and support will increase [33].
Despite the sharding process adopted, it is important to remember that as a shard
becomes overloaded (or underutilised) there is a requirement to rebalance the shards
so that each has a similar workload. Although this may appear a complex task,
consider the case where scalability is only required for short periods throughout the
year. One approach may be to split a master database across many shards during a
peak period and then consolidate the shards back into a master database as traffic
subsides. This method leverages the cloud scalability features and does not require
shard re-balancing; this only works for predictable workloads such as ticket sales
[32, 48].

9.3.5 Message Queues

As described in Sect. 9.3.1, workers are units of processing which can occur in
large numbers for super scalability but are also potentially unreliable; they can fail.

182 S. Johnston et al.

Passing data into and out of these workers reliably is accomplished using message
queues. A message queue is a FIFO queue which is accessible by worker processes,
messages are guaranteed to be delivered to workers. Eliminating the need to address
workers by port and IP address, or managing file/data locks which are potential
bottlenecks.

Messages do incur a cost (data charges and I/O charges) and time overhead,
in some cases it is acceptable to bunch messages. For example, messages can be
collected into groups of ten and stored as a single message. This method reduces I/O
costs and speeds up workers where queue performance is an issue. It is particularly
useful for large volumes of messages. Care must be taken to ensure that the message
groups do not exceed the maximum message size. Grouping messages results in
a worker having to processes all messages in a single group, which can lead to
inefficient usage of worker processes, particularly when the queue is nearly empty.

In a production application, it is easy to foresee a situation where a queue is
full of messages but there is a need to upgrade the processing worker which uses a
newer message protocol version. Waiting for the queue to empty, then upgrading the
workers is not always possible, especially in a 24/7 application. It is for this reason
that all messages must include the protocol version. This allows workers of different
versions to run side-by-side during an upgrade.

Removing messages from queues can be problematic and requires careful
consideration, for which there are several patterns.

In general, when a worker pops a message from the queue it becomes invisible to
other queue consumers. Once the worker has processed a message, it is then deleted
from the queue, however, there is a need to deal with the case that the worker fails,
often silently. Worker failure can be divided into two categories. Those that fail
due to underlying cloud fabric issues and those that fail due to message content
issues. Cloud fabric issues can be overcome by restarting the worker or sending the
message to another worker. Message issues, often referred to as poison messages
[9], can crash workers and need to be removed from the queue.

A poison message can be detected by counting the number of times the message
has been popped from the queue, and setting the maximum number of times a
message can be popped before it is declared poisonous. It is good practice to move
poison messages to a separate queue where they can be dealt with either manually
or by another worker. If a pop counter is not provided by the cloud infrastructure,
then it has to be implemented separately taking care not to add extensive overhead
or computation bottlenecks.

Managing messages timeouts is specific to the message contents and worker task.
For example, if each message contains a task for the worker to perform, frequent
short running tasks must be handled differently to long running in-frequent tasks.

Let us consider the following patterns for message timeouts:

Fixed message timeout. Windows Azure and Amazon SQS provide mechanisms
to set a message queue timeout. Once the message timeout expires and the message
has not been deleted, it automatically becomes visible to other workers. If a message
timeouts whilst a worker is still processing, the message will become visible to

9 Scientific Computation and Data Management Using Microsoft Windows Azure 183

another worker, resulting in a single message being processed more than once. It
is for this reason that idempotent workers should be considered (see Sect. 9.3.1).
Frequent short running tasks with idempotent workers can easily be managed by
having a fixed message timeout. Long running tasks become problematic as workers
have to wait for the message timeout to expire before failures are detected, this is
often too long.

Variable message timeout. Some cloud offerings permit updates to message time-
outs on a per message basis [46]. In this case, long running tasks can continuously
update the message timeout, for example a task that normally takes 8 h to complete
can consume a message which has a timeout of 5 min. Before the timeout expires,
the worker can update the message timeout period extending it for a further 5 min.
This method ensures that failed workers are discovered more rapidly; however,
this requires that the worker can safely detect ongoing tasks. Often this requires
the worker to have knowledge of the task being preformed, for example it can
be difficult to distinguish an infinite loop from a large loop. Receiving messages
multiple times should be infrequent, and idempotent workers will result in data
consistency but for long running tasks repetition of work should be avoided as it
can increase the costs.

Custom queue timeout. By extending cloud queue implementations, it is possible
to monitor for both timeouts and poison messages. Every time a message is popped
from the queue, it is then logged to permanent storage (table or blob storage) and
then deleted from the queue. The permanent storage can record the number of times
the message has been popped as well as a timestamp. There are two methods for
detecting failed workers, (1) as with the variable message timeout method, the
worker can update the message last active timestamp, (2) if all the tasks in a message
queue are similar, then tasks can be restarted if the processing time exceeds, say four
standard deviations.

This method requires that the message queue can detect failed tasks, which
increases processing and storage requirements of queues. This may not be suitable
for queues with high volumes of traffic.

Unlike most cloud offerings which add timed-out messages to the head of the
queue, this method has the ability to add message timeouts to the head or tail of the
queue; useful if the queue is experiencing starvation due to continually failing jobs
(i.e., poison messages). Multiple poison messages that are continually added to the
head of the queue will eventually block all messages, resulting in starvation.

9.3.6 Integrating Blobs, Tables and SQL Databases

Selecting an appropriate storage mechanism for cloud resident data is very impor-
tant. When poor choices are made, it can result in higher data costs, e.g., storing
blob data in a relational database, or it can result in difficult changes in the future,

184 S. Johnston et al.

e.g., selecting table storage for highly relational data and then having to migrate to
a relational database.

As the pricing and capabilities of cloud storage offerings are constantly changing,
it is difficult to produce a definitive storage guide; however, there are some generic
issues worth considering. As with a conventional relational database, it is advisable
to store large blobs outside the database; databases are good with relational data,
file systems are good with large blobs (database filestreams blur this divide [56]).
With cloud offerings there are multiple storage offerings, each with benefits and
limitations. Where possible look at the strengths of each storage resource and divide
up the dataset into those pieces better suited to the storage resource (be aware of
possible synchronisation and locking issues).

Blob storage behaves like a file system and is the most cost-effective mechanism
for storing binary data. It is highly available and fault tolerant, suitable for extremely
large data (see Sect. 9.3.2 for variants).

Cloud table storage (not relational database tables, see Sect. 9.3.3) is super
scalable without the performance degradation that is seen in a relational database
as it is scaled across multiple machines (in some cases automatically). It does not
have the full relational database feature set, but will support limited transactions and
row locking, blob storage and one/two keys. This makes it suitable for data that are
not very relational and where large transactions are not important; table joins tend
to be difficult. The benefits are usually scalability and pricing.

Relational database storage is for all intents and purposes a SQL database. As
this tends to be the most expensive storage, consider carefully if all the features are
required. By dividing up a dataset, it may be possible to store a small volume of
relational data in a relational database and the bulk of the data in cloud tables or
blob storage. When migrating an application, consider which storage capabilities
are required for the dataset and carefully choose the most appropriate cloud storage
resources; even if this involves splitting the dataset.

9.3.6.1 Hybrid Approach: Bridging the On-Premise, Cloud Divide

When cloud offerings are discussed it is often to replace, rather than to complement
existing systems. However, there are very few cases where a single cloud provider
will meet all your needs and ever fewer cases where your application will migrate
in its entirety to the cloud.

It is for these reasons that many cloud applications will be a hybrid of both
onsite and cloud resources. Moving an application in pieces also provides a good
opportunity to explore the cloud offerings and decide whether they are beneficial to
the application without having to migrate the entire application.

A good approach to building a hybrid application is to start by migrating simple
standalone features such as backups and data storage, then progress to replicating
capability onsite and in the cloud, e.g., offloading peak demand. This ensures that
the application runs onsite but offloads some of the computation intensive work to a
cloud offering, providing an insight into performance and expenditure. Where onsite

9 Scientific Computation and Data Management Using Microsoft Windows Azure 185

and cloud workers operate on a single dataset consider replicating the dataset at both
locations to reduce I/O charges and latency (be aware of synchronisation issues). If
the dataset is large, it may be quicker and less costly to regenerate the dataset using
a cloud worker rather than copying.

Finally, consider any standalone computation that can be fully migrated to a
cloud offering; this may just mean turning off onsite capability that is replicated
in the cloud.

Depending on which cloud provider is chosen, there are several technologies
that assist with hybrid cloud architectures. Cloud offerings which provide a virtual
machine (in the general term) often result in security difficulties, e.g., joining a cloud
virtual machine with an onsite domain, and authenticating users. Some solutions
include fully managing the virtual machines as if they were onsite using a virtual
private network (VPN) [5] or using federated security solutions such as Active
Directory Federated Services v2 (ADFS v2) [31].

For data security concerns, performance issues and data ownership legal reasons,
some applications are not suited to the cloud offerings available today; public
clouds. There is an emergence of private cloud offerings which run a cloud providers
software stack on a local (onsite) data centre; private clouds [43]. Private clouds may
not benefit from a completely managed stack (including hardware), and therefore
have the potential to be more costly. They will offer a greater level of control over
where data resides and reduced I/O latency. At the time of writing private clouds
only look beneficial where data location, I/O performance [24] or specific hardware
is paramount; for medium to large data centres.

9.3.7 Economics

Cloud resource pricing is still in its infancy and as the market matures pricing
strategies will change [20, 27]. Cloud offerings contain a variety of pay-as-you-go
options, bulk purchasing and spot-based pricing.

In general, users pay for specific cloud services (e.g., message queues), com-
putational resources (e.g., virtual machines) and data transfer into and out of
data centres; often internal data transfers are not billable. Purchasing resources on
this basis removes initial start up capital expenditure and makes the total cost of
ownership more transparent. Applications which are cyclic or have unpredictable
peak workload can benefit from this pricing model as it supports rapid dynamic
resource allocation and more importantly caters for resource reductions.

Cloud providers are bulk buying hardware, electricity and network bandwidth,
and in some cases custom-specifying (in conjunction with third parties/OEMs) to
produce data centres which have minimal energy and staffing requirements [36]. On
this basis, cloud offerings can compete with in-house data centre costs incurred by
most small to medium businesses.

186 S. Johnston et al.

Paying for resources from an unlimited pool must be managed closely to prevent
Economic denial-of-service (EDoS) attacks. Denial-of-service (DoS) [47] attacks
overwhelm resources making them unavailable to intended users, whereas an EDoS
attack abnormally increases service usage burdening the cloud user with high cloud
resource bills.

As pricing strategies mature, finer grained pricing models will emerge, such
as spot pricing [4, 11], whereby users buy resources on a live auction or stock
market. Users can prioritise processing demands to meet budget requirements. If
all providers offer live pricing, it is easy to foresee the need to dynamically move
computation from one provider to another. Currently, moving computation between
providers requires multiple application implementations, although there are calls to
standardise APIs [21]. Since the cloud computational market is still in its infancy, to
assist with future cloud feature adoption and cloud mobility, it is advisable to keep
cloud specific features separate from core applications or custom code.

The introduction (Sect. 9.1) discusses burst and scalability features of a cloud-
based architecture and shows how these features relate to the economics of cloud
computing.

In the case where workloads are cyclic or have predictable/unpredictable bursts,
a conventional data centre has to be sized to cope with peak demand. In between
high peak loads, the data centre is underutilised; hence, each CPU hour becomes
more expensive (Fig. 9.5). Using a utility compute model hardware can be scaled
up or down on demand, this ensures that the utilisation of hardware remains high,
hence reducing the cost of a CPU hour.

Data centre maximum capability

R
es

ou
rc

es

Time

Idle resources
Application
workload

Fig. 9.5 A data centre designed to handle a predictable cyclic load. In between peak load, the
data centre utilisation drops as hardware remains unused. The shaded area shows underutilised
resources

9 Scientific Computation and Data Management Using Microsoft Windows Azure 187

Data centre maximum capability

R
es

ou
rc

es

Time

Idle
resources

Under resourced demand

Application
workload

Fig. 9.6 The load characteristics of an application as it goes through the hype cycle. An optimally
sized data centre cannot meet peak demand

Conventionally, a new Internet-based service would require hardware, and as it
became heavily consumed, more hardware would have to be procured and added.
Selecting the initial volume of hardware can prove difficult and projects which
fail still incur the initial hardware capital expenditure. Adding hardware is time
consuming and results in steps of data centre capacity. Since peak loads have to fall
within the data centre’s capacity, there is an incentive to over purchase hardware.
In addition, the popularity of many applications follows the hype curve [25], which
has a peak in demand before the usage plateaus. Designing a data centre to cope
with the peak in hype is often impossible (and a financially bad decision), users
then experience a poor service and become disgruntled (see Fig. 9.6). The ability
of utility computing to expand and contract ensures that an application can ride
the hype curve to success. If the application is a failure, it can fail fast, incurring
minimal expenditure and providing an opportunity to try more application ideas.

Applications can be too successful, resulting in over demand (see Fig. 9.7). Scal-
ing a data centre to cope with popular applications can become difficult especially
where the application exceeds the hardware procurement cycle. Ultimately, a very
popular application can outstrip the data centre’s upgrade capability. Using a cloud-
based architecture provides that ability too add resources on demand thus ensuring
smooth, cost-effective scalability.

Whichever way cloud providers decide to price resources, architects should resist
the temptation to base key architectural decisions on pricing models. Consider
pricing, calculate costs and use good architecture practices to produce flexible
systems; remember cloud providers can change prices overnight, re-architecting an
application takes considerably longer.

188 S. Johnston et al.

Data centre maximum capability

R
es

ou
rc

es

Time

Idle resources

Under resourced demandData centre upgrade

Data centre upgrade

Data centre maximum upgrade

Application
workload

Fig. 9.7 Scaling an application to cope with widespread popularity. There are limits to the upgrade
capacity of a given data centre, limiting the expansion of an application. Application growth can
out perform hardware procurement resulting in under resourced demand

9.4 Discussion

A cloud-based solution provides a good opportunity to consider scale-out options,
providing a better than Moore’s law performance improvement [45], although not
all applications are suitable cloud candidates. Local laws can prohibit the storage
of data outside the country of origin, and there are issues of ownership and access
to data stored in a location with a different jurisdiction. Critical applications can
operate in the cloud but are at the mercy of the public network in between, for both
reliability and security. In the event of a cloud provider failing to meet an SLA, the
compensation may not reflect the true cost of the failure.

Sharing resources with other users (multi-tenanted) can result in security and
performance issues. There is a need to ensure that data are secure and performance
cannot be compromised by erroneous or malicious users using a combination of
standards, QoS agreements and SLAs. Security is even more important for cloud
providers as they are attractive targets for hackers since they are a single source of
large volumes of valuable data.

Although cloud pricing models are yet to evolve, it is difficult to predict costs
either on a monthly basis or per application/job. There is a requirement to offer a
greater range of pricing options ranging from spot pricing to monthly invoicing with
maximum limits or fixed price options.

Total cost of ownership calculations are too complex. As data centres are
upgraded, some providers increase the size of a base unit of processing power.

9 Scientific Computation and Data Management Using Microsoft Windows Azure 189

This ensures that the cloud computation cost reflects the true cost of computation.
Cloud providers do not publish pricing roadmaps, leaving users at the mercy of the
cloud providers pricing strategy with no insight to future pricing. Self hosting cloud
infrastructure (private clouds) may address some pricing issues as they offer a base
capability for a fixed price and are perceived to overcome some of the security and
privacy issues.

Licensing issues remain unaddressed for both applications and the operating
system. For example, it can be difficult to use bulk operating system licenses on
a cloud infrastructure. Some licenses of third party applications may be sold on a
per core basis making burst applications prohibitively expensive.

Only a few providers support automatically scaling of cloud resources as demand
increases, currently it is manual (web or interface driven), which has to be carefully
managed to control costs.

Cloud computing provides a unique opportunity to co-locate compute and data
addressing co-ownership issues whilst supporting global collaborations. Data centre
consolidation and the drive to make them more efficient fits well with the need for
organisation to become accountable for their energy demands.

9.5 Conclusions

This chapter looks at the generic capabilities of cloud computing, describing the
advantages and disadvantages of a cloud-based architecture, using a case study to
demonstrate how Microsoft Windows Azure can be used to create a scalable and
extensible Space Situational Awareness solution. Capability across the key cloud
scenarios has been demonstrated with a super-scalable plug-in framework, which
supports public data access and reduces the algorithm development cycle.

Cloud computing will continue to evolve and establish a position in the market
addressing some of today’s concerns. It is because of the dynamic nature of
cloud computing that the application architecture becomes evermore important.
An application has to be fault tolerant, to cope with worker failure, modular to
assist with parallelising a task and dynamic enough to take advantage of pricing
promotions and eliminate vendor lock-in. As the volumes of data stored in a cloud
application increase, vendor lock-in affects the data as well at the codebase, so
consider the cost of retrieving data from a provider (the cost and time to copy data
can be large).

Not withstanding concerns about vendor lock-in and security/privacy, there is
great potential for cloud-based architectures to revolutionise our ability to deliver
cost-effective solutions and tackle large-scale problems in science, engineering and
business.

Acknowledgements Much of this work has been made possible because of contributions from
Hugh Lewis and Graham Swinerd at the University of Southampton. We gratefully acknowledge
support from Microsoft and Microsoft Research.

190 S. Johnston et al.

References

1. Abbott, M.L., Fisher, M.T.: The art of scalability: Scalable web architecture, processes, and
organizations for the modern enterprise, 1st edn. Addison-Wesley, MA (2009)

2. Acheson, A., Bendixen, M., Blakeley, J.A., Carlin, P., Ersan, E., Fang, J., Jiang, X., Kleiner-
man, C., Rathakrishnan, B., Schaller, G., et al.: Hosting the .NET Runtime in Microsoft SQL
server. In: Proceedings of the 2004 ACM SIGMOD international conference on Management
of data, p. 865. ACM, NY (2004)

3. Amazon. Amazon web services, 2010. http://aws.amazon.com Accessed 23 Aug 2010
4. Amazon. Amazon EC2 Spot Instances, 2010. http://aws.amazon.com/ec2/spot-instances

Accessed 23 Aug 2010
5. Amazon. Amazon Virtual Private Cloud AmazonVP C , 2010. http://aws.amazon.com/vpc

Accessed 23 Aug 2010
6. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A Berkeley view of cloud computing.
Technical report, February 2009. UCB/EECS-2009-28

7. Bailey, N.J., Swinerd, G.G., Lewis, H.G., Crowther, R.: Global vulnerability to near-earth
object impact. Risk Manag., 12, 31–53 (2010). http://eprints.soton.ac.uk/68976/

8. Benioff, M.: Behind the Cloud: The Untold Story of How salesforce.com Went from Idea to
Billion-Dollar Company and Revolutionized an Industry. Jossey Bass, October 2009

9. Bustamante, M.: Learning WCF: A Hands-on Guide, 1st edn. O’Reilly Media, Cambridge
(2007)

10. Butenhof, D.R.: Programming with POSIX threads. Addison-Wesley, MA (1997)
11. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: Vision, hype, and

reality for delivering it services as computing utilities. In: 10th IEEE International Conference
on High Performance Computing and Communications, 2008. HPCC ’08, pp. 5–13, 25–27
Sept 2008. doi: 10.1109/HPCC.2008.172

12. Calder, B., Edwards, A.: Windows azure drive. Windows Azure Platform: Whitepapers,
February 2010. microsoft.com/windowsazure/whitepapers Accessed 23 Aug 2010

13. Cerebrata. Cloud storage studio, 2010. www.cerebrata.com/products/cloudstoragestudio
Accessed 23 Aug 2010

14. Chaganti, P., Helms, R.: Amazon SimpleDB Developer Guide, 1st edn. Packt Publishing (2010)
15. Chang, F., Jeffrey, D., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T., Fikes,

A., Gruber, R.: Bigtable: A distributed storage system for structured data. ACM Trans. Comput.
Syst. 26(2), 1–26 (2008). ISSN 0734-2071. doi: doi.acm.org/10.1145/1365815.1365816

16. Chappell, D.: Introducing Windows Azure, 2009. David Chappell and Associates. www.
davidchappell.com

17. CodeFutures. Database sharding white paper: Cost-effective database scalability using
database sharding. CodeFutures Corporation, July 2008. www.codefutures.com/database-
sharding Accessed 23 Aug 2010

18. Cox, S., Chen, L., Campobasso, S., Duta, M.C., Eres, M.H., Giles, M.B., Goble, C., Jiao,
Z., Keane, A.J., Pound, G.E., Roberts, A., Shadbolt, N.R., Tao, F., Wason, J.L., Xu, F.: Grid
Enabled Optimisation and Design Search (GEODISE). e-Science All Hands, Sheffield (2002)

19. Date, C.J.: An Introduction to Database Systems, chapter Further Normalisation I:1NF, 2NF,
3NF, BCNF, pp. 348–379, 7th edn. Addison-Wesley, MA (2000)

20. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on the
cloud: The montage example. In: SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pp. 1–12, Piscataway, NJ, USA, 2008. IEEE, NY. ISBN 978-1-4244-2835-9

21. DMTF: interoperable clouds: a white paper from the open cloud standards incubator, 2009.
DSP-ISO101

22. Elson, J., Howell, J.: Handling flash crowds from your garage. Proceedings of the 2008
USENIX Annual Technical Conference, February 2008. Microsoft Research

9 Scientific Computation and Data Management Using Microsoft Windows Azure 191

23. Eres, M.H., Pound, G.E., Jiao, Z., Wason, J.L., Xu, F., Keane, A.J., Cox, S.J.: Implementation
and utilisation of a grid-enabled problem solving environment in Matlab. Future Generat.
Comp. Syst. 21(6), 920–929 (2005). URL http://eprints.soton.ac.uk/35492/

24. Evangelinos, C., Hill, C.N.: Cloud Computing for parallel Scientific HPC Applications:
Feasibility of running Coupled Atmosphere-Ocean Climate Models on Amazons EC2. Ratio
2(2.40), 2–34 (2008)

25. Fenn, J., Raskino, M.: Mastering the Hype Cycle: How to Choose the Right Innovation at the
Right Time. Harvard Business School Press, Harvard (2008)

26. Google: Google app engine, 2010. code.google.com/appengine Accessed 23 Aug 2010
27. Greenberg, A., Hamilton, J., Maltz, D., Patel, P.: The cost of a cloud: research problems in data

center networks. SIGCOMM Comput. Commun. Rev. 39(1), 68–73 (2009). ISSN 0146-4833.
doi: http://doi.acm.org/10.1145/1496091.1496103

28. Hay, C., Prince, B.: Azure in Action. Manning Publications, Greenwich (2010)
29. Held, G.: A Practical Guide to Content Delivery Networks. Auerbach Publications (2005)
30. Hinchcliffe, D.: An executive guide to mashups in the enterprise. Executive white paper, July

2008. jackbe.com. Accessed 23 Aug 2010
31. Huang, H.Y., Wang, B., Liu, X.X., Xu, J.M.: Identity federation broker for service cloud. In:

2010 International Conference on Service Sciences, pp. 115–120. IEEE, NY (2010)
32. Intergen and TicketDirect: Ticket seller finds ideal business solution in hosted computing

platform. Microsoft Case Studies, November 2009. http://www.microsoft.com/casestudies.
Accessed 23 Aug 2010

33. JBoss: Hibernate shards. hibernate.org/subprojects/shards/docs.html. Accessed 23 Aug 2010
34. Johnston, S., Takeda, K., Lewis, H., Cox, S., Swinerd, G.: Cloud computing for planetary

defense. Microsoft eScience Workshop, Pittsburgh, USA, 15–17 Oct 2009
35. Johnston, S.J., Fangohr, H., Cox, S.J.: Managing large volumes of distributed scientific data.

Lect. Note. Comput. Sci. 1(5103), 339–348 (2008)
36. Josefsberg, A., Belady, C., Bhandarkar, D., Costello, D., Ekram, J.: Microsofts Top 10

Business Practices for Environmentally Sustainable Data Centers, 2010. www.microsoft.com/
environment. Accessed 23 Aug 2010

37. Krishnan, S.: Programming Windows Azure: Programming the Microsoft Cloud, 1st edn.
O’Reilly Media (2010)

38. Lewis, H.G., Newland, R.J., Swinerd, G.G., Saunders, A.: A new analysis of debris mitigation
and removal using networks. In: 59th International Astronautical Congress, September 2008.
http://eprints.soton.ac.uk/68974/

39. Lewis, H.G., Swinerd, G.G., Newland, R.J.: The space debris environment: future evolution.
In: CEAS 2009 European Air and Space Conference. Royal Aeronautical Society, October
2009

40. Lin, G., Fu, D., Zhu, J., Dasmalchi, G.: Cloud computing: It as a service. IT Professional 11(2),
10 –13 (2009). ISSN 1520-9202. doi: 10.1109/MITP.2009.22

41. Mendoza, A.: Guide to Utility Computing Strategies and Technologies. Artech House, March
2007

42. Microsoft: Windows Azure platform, 2010. www.microsoft.com/windowsazure. Accessed 23
Aug 2010

43. Microsoft: Windows Azure Platform Appliance , 2010. www.microsoft.com/windowsazure/
appliance. Accessed 23 Aug 2010

44. Microsoft: Pinpoint homepage, 2010. pinpoint.microsoft.com. Accessed 23 Aug 2010
45. Moore, G.: Cramming more components onto integrated circuits. Electronics 38(8), 114–117

(1965)
46. Murty, J.: Programming Amazon Web Services: S3, EC2, SQS, FPS, and SimpleDB, 1st edn.

O’Reilly Media, Cambridge (2008)
47. Needham, R.: Denial of service. In: CCS ’93: Proceedings of the 1st ACM conference on

Computer and communications security, pp. 151–153, NY, USA, 1993. ACM, NY. ISBN
0-89791-629-8. doi: http://doi.acm.org/10.1145/168588.168607

192 S. Johnston et al.

48. Nethi, D.: Scaling out with SQL Azure. Windows Azure Platform: Whitepapers, June 2010.
microsoft.com/windowsazure/whitepapers. Accessed 23 Aug 2010

49. Ng, M., Johnston, S., Wu, B., Murdock, S., Tai, K., Fangohr, H., Cox, S.J., Essex, J.W.,
Sansom, M.S.P., Jeffreys, P.: BioSimGrid: Grid-enabled biomolecular simulation data storage
and analysis. Future Generat. Comp. Syst. 22, 657–664 (2006)

50. Paluska, J., Saff, D., Yeh, T., K. Chen, K.: Footloose: A case for physical eventual consis-
tency and selective conflict resolution. IEEE Workshop on Mobile Computing Systems and
Applications, p. 170, 2003. ISBN 0-7695-1995-4

51. Peenikal, S.: Mashups and the enterprise. Strategic white paper, Sept 2009. Mphasis white
paper

52. Peirce, B.: Linear Associative Algebra. D. Van Nostrand, Princeton (1882)
53. Price, A.R., Xue, G., Yool, A., Lunt, D.J., Valdes, P.J., Lenton, T.M., Wason, J.L., Pound,

G.E., Cox, S.J., The GENIE team: Optimisation of integrated earth system model components
using grid-enabled data management and computation. Concurrency Comput. Pract. Ex. 19(2),
153–165 (2007). URL http://eprints.soton.ac.uk/23514/

54. Redkar, T.: Windows Azure Platform, 1st edn, p. 193. Apress, New York (2010)
55. Salesforce: Salesforce homepage, 2010. www.salesforce.com. Accessed 23 Aug 2010
56. SQL Server: New T-SQL Features. Pro T-SQL 2008 Programmers Guide, pp. 525–551 (2008)
57. Smith, J.E., Nair, R.: The architecture of virtual machines. Computer 38(5), 32–38 (2005).

ISSN 0018-9162. 10.1109/MC.2005.173
58. SpaceTrack: The Source For Space Surveillance. www.space-track.org. Accessed 23 Aug 2010
59. Stantchev, V., Schröpfer, C.: Negotiating and enforcing QoS and SLAs in Grid and Cloud

computing. In: Advances in Grid and Pervasive Computing, vol. 5529 of Lecture Notes in
Computer Science, pp. 25–35. Springer, Heidelberg (2009). 10.1007/978-3-642-01671-4 3

60. Suchi: S3Fox organizer, 2010. www.s3fox.net. Accessed 23 Aug 2010
61. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44 (2009)

Chapter 10
The CloudMiner

Moving Data Mining into Computational Clouds

Andrzej Goscinski, Ivan Janciak, Yuzhang Han, and Peter Brezany

Abstract Business, scientific and engineering experiments, medical studies, and
governments generate huge amount of information. The problem is how to extract
knowledge from all this information. Data mining provides means for at least a
partial solution to this problem. However, it would be too expensive to all these
areas of human activity and companies to develop their own data mining solutions,
develop software, and deploy it on their private infrastructure. This chapter presents
the CloudMiner that offers a cloud of data mining services (Software as a Service)
running on a cloud service provider infrastructure. The architecture of the Cloud-
Miner is shown and its main components are discussed: MiningCloud that contains
all published data mining services, BrokerCloud which mining service providers
publish services to, DataCloud that contains the collected data, and Access Point
which allows users to access the Service Broker to discover mining services and
supports mining service selection and their invocation. The chapter finishes with a
short presentation of two use cases.

10.1 Introduction

Most of the modern scientific applications are strongly data driven [31]. Through a
large number of business transactions, through sensors, experiments, and computer
simulations, scientific data are growing in volume and complexity at a staggering

A. Goscinski (�)
School of Information Technology, Deakin University, Pigdons Road, Waurn Ponds 3217,
Australia
e-mail: andrzej.goscinski@deakin.edu.au

I. Janciak � Y. Han � P. Brezany
Department of Scientific Computing, University of Vienna, Nordbergstrasse 15/C/3, Vienna,
Austria
e-mail: janciak@par.univie.ac.at; han@par.univie.ac.at; brezany@par.univie.ac.at

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 10, © Springer-Verlag Berlin Heidelberg 2011

193

194 A. Goscinski et al.

rate. The cost of the data producing and its persistent storage is very high:
satellites, particle accelerators, genome sequencing, and supercomputer centers
represent data generators that collectively cost billions. The situation is complicated
even further by the distribution of these data; data sources, storage devices, and
computation resources are located around the whole world. Without effective ways
to retrieve vital information from this large mass of data that great financial
expense will not yield the benefits to society that might be expected. Typically, to
extract appropriate knowledge requires data mining over combinations of data from
multiple data resources using different analytical tools utilizing high performance
computational resources. Today, designers, diagnosticians, decision makers, and
researchers who need such knowledge face difficult hurdles. To extract information
from heterogeneous and distributed sites, they have to specify in much detail
the sources of data, the mechanisms for integrating them, and the data mining
strategies for exposing the hidden gems of information. They also have to deal
with limited computational resources, which can be a bottleneck in the real time
data processing. Consequently, with the current state of the art, most of that hidden
knowledge remains undiscovered. Therefore, knowledge discovery in databases
is still challenging research and development issue. Some attempts to tackle the
problems have been made by applying grid computing. However, grid research
promised but not delivered fast, interoperable, scalable, resilient, and available
systems. Grids have been used mainly in research environment; grids have not been
accepted by business and industry [17]. It is expected, and the expectations have
been confirmed, that cloud computing would be able to address the problems of
distributed and of huge amount data [10]. Cloud computing is a style of computing,
strongly supported by major vendors and many IT service consumers, in which
massively scalable high-throughput/performance IT-related services are provided
on demand from the Internet to multiple customers. Cloud computing brings
together distributed computing concepts and development outcomes, and business
models. The infrastructures based on cloud computing concepts enable conducting
development and use of tasks addressing large-scale data integration, preprocessing,
and data mining in this challenging context. A cloud, a basis of cloud computing,
exploits the concepts of services and service oriented architecture (SOA), virtualiza-
tion, Web technology and standards, and computer clusters [9], although even small
developers can offer specialized cloud services on small computation systems. In
this chapter, the key aspects associated with efficient realization of data mining,
in particular, the distributed data mining in a computational cloud based on a
service-oriented environment are investigated. The overall infrastructure aiming to
support on demand data processing is described in this chapter and is referred to
as CloudMiner. The main objectives of the CloudMiner project are summarized as
follows:

• Design a powerful, flexible, and easy to use on demand computation environment
for execution of data mining tasks;

• Simplify the task of data mining service providers regarding data mining service
development, deployment, and publishing;

10 The CloudMiner 195

• Support service consumers, in discovery, selection, execution, and monitoring of
services that satisfy their requirements.

This chapter makes the following original contributions. First, it offers a new
vision of distributed data mining by employing cloud computing. Second, it
enhances the SOA by direct inclusion of data, leading toward a Data and SOA.
Third, it proposes the CloudMiner, a new cloud-based distributed data mining
environment. The rest of this chapter is structured as follows. Section 10.2 presents
basic concepts of distributed data mining and its requirements, introduces cloud
computing and clouds, and identifies cloud category that matches the requirements
of distributed data mining. Section 10.3 discusses the architecture of the proposed
CloudMiner and specifies its basic components: the MiningCloud, the DataCloud,
the BrokerCloud, and the Access Point. Section 10.4 presents the concrete use
cases and discusses some implementation issues of the CloudMiner. Section 10.5
concludes the chapter.

10.2 Data Mining and Cloud Computing

Data mining, in particular distributed data mining, allows user to extract knowledge
from huge amount of data, which are very often stored in many places [14]. Cloud
computing is a form of computing based on services provided in the Internet. This
section presents basic concepts of distributed data mining and its requirements,
introduces cloud computing and clouds, and identifies cloud category that matches
the requirements of distributed data mining.

10.2.1 Distributed Data Mining

Data mining is the automated or convenient extraction of patterns representing
knowledge implicitly stored in large volumes of data [20]. Typically, data mining
has two high-level goals of prediction and description, which can be achieved
using a variety of data mining methods, e.g., association rules, sequential patterns,
classification, regression, clustering, change and deviation detection, and so forth.
From the user’s point of view, the execution of a data mining process and the
discovery of a set of patterns can be considered either as an answer to a sophisticated
database query or the result produced upon performing a set of data mining tasks.
The first is called the descriptive approach, while the second is the procedural
approach. To support the former approach, several data mining query languages
have been developed. In the latter approach, data mining applications are viewed
as complex knowledge discovery processes composed of different data processing
tasks. Data mining in large amounts of data can significantly benefit from the use of
parallel and distributed computational environments to improve both performance

196 A. Goscinski et al.

and accuracy of discovered patterns. These environments allow the compute-
intensive data mining of distributed data, which is referred to as distributed data
mining. In contrast to the centralized model, the distributed data mining model
assumes that the data sources are distributed across multiple sites. Algorithms
developed within this field address the problem of efficiently getting the mining
results from all the data across these distributed sources. The application of the
classical knowledge discovery process in distributed environments requires the
collection of distributed data in a data warehouse for central processing. However,
this is usually either ineffective or infeasible because of the storage, communication
and computational costs, as well as the privacy issues involved in such an approach.
Distributed data mining offers algorithms, methods, and systems that deal with
the above issues to discover knowledge from distributed data in an effective and
efficient way.

10.2.2 Cloud Computing

Cloud computing is a style of computing in which massively scalable high-
throughput/performance IT-related services are provided on demand from the
Internet to multiple customers. This means that computing is done in a remote
unknown location (out in the Internet clouds) rather than on a local desktop. A cloud
is an inexpensive Internet accessible on demand environment where clients use
virtualized computing resources on a pay-as-you-go basis [11] as a utility and are
freed from hardware and software provisioning issues. Companies and users are
attracted to cloud computing because:

(a) Clients only pay for what they consume.
(b) Rather than spending money on buying, managing, and upgrading servers,

business administrators concentrate on the management of their applications.
(c) The required service is always there – availability is very high that leads to short

times from submission to the completion of execution.
(d) Cloud computing provides opportunities to small businesses by giving them

access to world class systems otherwise unaffordable. On the other hand, even
small companies can export their specialized services to clients.

Applications could be deployed on public, private, and hybrid clouds [9]. The
decision with regard to which cloud model should be selected depends on many
factors, among them cost, trust, control over data, security, and quality of service
(QoS). Cloud computing means using IT infrastructure as a service over the
network. The question is how different infrastructures form a basis of these services.
Virtualization lays the foundation for sharable on demand infrastructure, on which
three basic cloud categories [9] are offered on demand:

• Infrastructure as a Service (IaaS) – IaaS makes basic computational resources
(e.g., storage, servers) available as a service over the network on demand.

10 The CloudMiner 197

• Platform as a Service (PaaS) – The PaaS platform is formed by integrating
an operating system, middleware, development environment, and application
software, and encapsulated such that is provided to clients, human users or
another services as a service.

• Software as a Service (SaaS) – SaaS allows complete end-user applications to be
deployed, managed, and delivered as a service usually through a browser over the
Internet. SaaS clouds only support provider’s applications on their infrastructure.

The CloudMiner primarily belongs to the category of SaaS clouds; however, it
includes some features of PaaS. This implies that data mining algorithms imple-
mented and deployed using a variety of languages and application development tools
will be exposed as Data Mining Services.

10.2.3 Data Mining Services

Web services enable to achieve interoperability between heterogeneous data mining
applications through platform and language-independent interfaces. As the number
of available data mining services increases, it becomes more difficult to find a
service that can perform a specific task at hand. Moreover, there may also be no such
single data mining service capable of performing the specific task, but a combination
of other existing services may provide this capability. Hence, a standardized set of
interfaces and data interchange formats between services is necessary to discover
suitable services as well as to enable composition of the services into complex
workflows. The data mining service performs analytical tasks with certain QoS guar-
antees. The service wraps and exposes its functionality to the external applications
or to other cooperating services through a well-defined interface. Quality of Web
services has been already explored in various contexts [1,4]. In general, there are two
types of QoS parameters that specify quantitative and qualitative characteristics of
services. For a data mining service, the qualitative parameters may be, for example,
an accuracy of a data mining model, and quantitative, for example, time it takes
to train the model. In our approach, only the quantitative characteristics such as
price or processing time. Semantic description of Web services aims to tackle the
problem of discovering of demanded functionality by grounding the Web services
to particular port types or by an extension of the interface description. In both cases,
it requires semantically annotated interfaces with well-described input parameters
and results produced by the services. Hence, a well described semantics is required
to describe data mining tasks performed by data mining Web services. Data mining
applications contain a number of generic components which interact in well-defined
ways. These applications typically exhibit different levels of capability within each
of these generic components. To achieve interoperability between data mining
applications, a standardized set of interfaces and data interchange formats between
such components is necessary. A set of requirements for data mining services arising
from different application domains has been identified. These requirements are

198 A. Goscinski et al.

driven mainly from different user points of views such as application domain users,
data mining experts, application developers, and system administrators. These kinds
of users are concerned with different requirements for the data mining services
presented in what follows:

• Ease of use – End users should be able to use the services without a need to know
any technological details about the implementation of the service. The interfaces
and the way how to interact with the service must be clearly defined.

• Scope of mining techniques – The service should be capable of accommodating
a widely differing set of application domains like, for example, business, bioin-
formatics, health management, text mining, Web mining, spatial data mining,
etc., and should support tasks on different levels of abstraction as defined by the
CRISP-DM reference model [12].

• Seamless collaboration – Well-defined cooperation scenarios are needed to create
processes aiming to realize more generic tasks in the hierarchy of data mining
project. For example, a user should be able to define a data preprocessing task
consisting of two services where the first is a data cleansing service and the
second data formatting service.

• Control and monitoring – A user must have the possibility to interact with the
whole process as well as with a particular service. Therefore, the user should be
able to monitor the progress of the overall workflow execution and actual state
of the involved services. The ability of the service such as starting, stopping, and
resuming execution is required.

• Extensibility – The service’s interface should be independent of any particular
data mining technique or algorithm. The requirement here is that the service must
be able to accept via its interfaces any parameters needed for mining algorithms.
Moreover, the design of the service must be flexible enough to permit entirely
new data mining functionality.

• QoS awareness – The service providers may offer either equivalent or similar
services, so the services should expose the QoS guarantees. This allows a user to
select the most suitable service on the basis of his personal QoS requirements.

• Manageability – System administrators should be able to easily deploy a new
service as well as port the service to a different location without its modification
or limiting its functionality.

• Security and privacy – The service must ensure secure communication with the
clients and its peers. The security should be provided on the message as well as
on transport level. Data privacy must be strongly respected and the service must
not allow access to the data for the nonauthorized users.

• Fault tolerance – Support for fault tolerance should be considered a necessity
for services, rather than as an additional feature. The full recovery of the failed
process should be also supported.

In our previous work on the GridMiner project [5], several data mining Web
services that form the initial set of CloudMiner services have been developed. Most
of the above considerations were used during reimplementation of the services
toward the Web Service Resource Framework. The architectural design of the data

10 The CloudMiner 199

mining services is described in Reference Model for Data Mining Web Services
[23]. The initial set of services includes: DecisionTreeServise, NeuralNetwork-
Service, AssociationRulesService, SequenceRulesService, ClusteringService, and
OLAPService.

10.2.4 Related Work

Many data mining processes feature high data intensity and high computational
load. In such cases, cloud computing can provide a low-cost solution. The IBM
Smart Analytics [22], like the CloudMiner, supports standard data mining algo-
rithms, which can be applied on data resources in a cloud. This system supports
real-time scoring of data records on mined data. Besides, a set of rich presentation
components is offered to enable visual analysis of data mining results. In compar-
ison, the CloudMiner presents two major differences: first, it exposes all its data
mining programs as Web services; second, it allows users to develop and deploy
customized mining algorithms. Another data mining oriented cloud implementation
comparable to CloudMiner is the Sphere/Sector cloud [19], established on a cloud
infrastructure which provides resources and/or services via the Internet, this cloud
is used to archive, analyze, and mine large size distributed data sets. Analogous
to the CloudMiner, it also possesses two major elements: a storage cloud providing
storage services, along with a compute cloud providing compute services. The major
difference resides in that, while Sphere/Sector cloud requires its applications to
be programmed in a special parallel computing language, CloudMiner does not
require its services to obey any special programming model. Data mining services
on the CloudMiner belong to the SaaS category. Another cloud service which can be
identified as in the same category is the Cloud Service for Mathematica [32]. This is
a service supporting cloud-based execution of Mathematica application. Using this
batch submission service, the user can upload a script file along with any input data
files onto the preconfigured Amazon EC2 [2] or R Systems cloud [27]. During the
job execution, the status of the job can be monitored in real time on Web pages.
In comparison, CloudMiner is not constrained in using a particular calculation tool,
like Mathematica. On the contrary, it allows users to develop and deploy any kind of
mining tools. Although falling into a different cloud category, the PaaS category, the
Distributed Computational Service Cloud (DCSC) [21] has some analogous features
as CloudMiner. First, both cloud systems allow for the deployment of cloud services
by the user. Second, both support the execution of service workflows. The primary
distinction is that DCSC is not purely data mining oriented and can be used for
any SaaS clouds. A distinctive feature of the CloudMiner is that it is based on the
Resources Via Web Services (RVWS) framework [8]. This allows for the attributes
of services, the exposed (cloud) resources and providers to be published to a registry
by Web service WSDL documents directly. In the Cluster as a Service paradigm [9],
RVWS is used to monitor and publish the state of clusters in cloud. In comparison,
CloudMiner uses it for state monitoring and publishing of the data mining services.

200 A. Goscinski et al.

10.3 Architecture

The basic architecture of the CloudMiner follows the SOA, and as such contains
three basic components. First, services developed by service providers and pub-
lished to a registry. Second, the registry that stores and manages all information
about published services. The third component of the architecture is a client (end
user). Normally, a SaaS cloud offers hundreds of services offered by one single
service provider [29]. However, we propose here that many research institutions,
companies, and even individual users could offer their mining services. Thus,
it is possible that many service providers will contribute their products to the
CloudMiner. The SOA architecture does not contain data that will be processed by
services. Data mining is about data, huge amount of data stored in files and databases
managed by file and database management systems. Therefore, the architecture
of the CloudMiner contains data, the data mining service carry out computation
services on. The registry contains information about published services. A cloud
may have one registry to store that information or could use a number of registries
for reliability and performance reasons. We also assume that with the increase of
amount of data being collected around the world and different areas of applications
of those data, there could be more than one cloud each supported by its registry.
These two cases lead to a solution of multi-registry infrastructure. Usually, a registry
contains basic information about service location and service provider. We propose
to contain more information about each individual published service. The additional
information contains semantics of a mining service. This implies a need for the use
of the concept of a broker, which offer intelligence, which is not provided by simple
registries. The user, the third basic component of the SOA architecture, should be
able to learn about data mining services offered by the cloud. We propose that the
CloudMiner offers through a portal a possibility to carry out operations on data and
to learn about all services offered by service provider. The user accesses a registry to
learn about data mining services and select a service that could solve her problem.
The management of computation using the selected data mining service on specified
data is be carried out directly by the end user. The registry, made more intelligent,
also could carry out this task. The CloudMiner architecture offers both options.
Figure 10.1 illustrates the components of CloudMiner. The SOA-based architecture
involves: MiningCloud, DataCloud, BrokerCloud; and two actors, end user and
service provider.

A client is a major component of the SOA architecture. In CloudMiner, the client
learns about data mining services via the Access Point, which is Web-based portal.
The end user as a consumer of the results provided by the services in MiningCloud
uses the Access Point to select a service that satisfies her requirements, parameter-
izes data mining tasks, invokes mining service on specified data, and manages the
overall mining process. The end user communicates with the Service Broker via
Access Point so in general it simplifies interaction between a Service Broker and
end-user. Via the Access Point also the third party applications and services can

10 The CloudMiner 201

Fig. 10.1 Overview of the CloudMiner architecture

access the MiningCloud. As shown in Fig. 10.1, the service provider deploys data
mining services directly to the MiningCloud and registers them to the BrokerCloud.

10.3.1 The MiningCloud

Implementations of data mining tasks are exposed as Web services deployed into the
MiningCloud. A service provider, who developed the data mining service, publishes
it to the Service Broker. In other words, the service provider deploys a data mining
service to the MiningCloud and publishes its description in the BrokerCloud. In
summary, by the MiningCloud it is meant an infrastructure that provides a set
of data mining services over the Internet. Since the best known and frequently
used implementation of SOA-based infrastructures is Web services, the CloudMiner
exploits Web services.

10.3.1.1 Handling Service State

By their nature, Web services are stateless. This is a satisfactory solution for some
users and businesses. However, in the domain of distributed data mining there is
a need for stateful Web services for two main reasons: first, to manage resources

202 A. Goscinski et al.

they expose effectively, and second, to allow users to make a “good” selection of a
service that satisfies user’s requirements. For example, the user should be advised by
the Service Broker whether the service the user is after is running on a single-tenant
virtual computer or multi-tenant virtual computer. The former implies that the cost
of consuming this service could be cheaper, but the waiting time is longer because
other users are in the waiting queue. The position in the queue describes the state
of the Web services as it reflects the resource exposed by the services. The latter
means that the user can consume the service very quickly but the cost is higher. In
this case, the state of a service reflects the level of multi-tenancy and availability of
virtual machines that provides the service. Here, the services of the MiningCloud are
stateful Web services which expose their state either as a part of its description using
RVWS [7] or as a state of a stateful resource representing an instance of the Web
service. The problem is how to make services stateful and publish this information
to the Service Broker to be accessed and taken advantage of by users. We propose
to use one or a combination of the following approaches.

• The first approach has been proposed by the Web Services Resource Framework
(WSRF) [16]. This framework offers a set of Web service specifications that
provide means to model and manage state in the context of the stateless service
context. However, this approach requires additional steps and operations to
publish the state, in particular when it changes dynamically.

• The second approach is based on the RVWS framework. This approach does not
suffer from the publishing difficulty of the WSRF-based approach. According to
the RVWS framework, the state of a resource and service itself are provided in
the service WSDL document. (The framework allows also passing to the WSDL
document information such as price, QoS parameters, etc.) Any changes to the
state are passed on procedure that updates WSDL and provides this information
to the Service Broker on line. The updates performed are triggered by events or
are time driven.

The MiningCloud infrastructure is implemented with a network of compute
nodes, on each of which a certain number of Mining Services are deployed and
maintained. The Mining Services are allowed to communicate among themselves
by performing intra-services communications, in the case of multi-tenant clouds,
or inter-services communications, in the case when services run on different
computers, during their life cycles.

10.3.1.2 Mining Services

As can be seen in Fig. 10.1, two types of services are proposed, single mining
services and composite mining services. Although both types are stand-alone and
evocable Web services, they have distinct functions and uses:

• Single mining service: It is developed and deployed by a service provider to
implement a data mining algorithm. During the execution, it can store and

10 The CloudMiner 203

retrieve data resources to and from the DataCloud. Either users or other services
can invoke a single mining service. We denote the set of single mining services
existing in the MiningCloud as hSSii; i 2 1; : : : ; I ; SS represents a single
mining service.

• Composite mining service: The major task of this type of services is to carry out
service invocations in a manner required by the service provider. By doing this,
a composite mining service represents a service workflow. We denote the set of
composite mining services hosted in the MiningCloud as hCSj i; j 2 1; : : : ; J ,
with CSj D hSSm; : : : ; SSni; CS stands for a composite service, and m; n are
integers, where m; n � I .

10.3.2 The DataCloud

The DataCloud is a platform that allows for the deployment and management
of Web-based Data Services. The platform is mainly focused on data access and
integration of the distributed data, which are the indispensable aspects of a cloud-
based delivery model. The DataCloud hosts Data Services that are managed by end
users due to the data privacy and security. It means that end users can deploy and
configure their own data services and enable controlled access to the data resources
which might be any kind of digital data. Physically, these resources may span across
multiple servers.

10.3.2.1 Virtualization in the DataCloud

The DataCloud, as depicted in Fig. 10.1, hosts and virtualizes a collection of data
sources. Exposed by Data Services, these data sources can be accessed and used by
the Mining Services as well as by the remote users. However, some aspects of the
data resources, such as their physical implementation, data formats, and locations,
should be hidden from the users by data services. Also, data services need to tackle
the heterogeneity in different resources and enable the user to concentrate on the
data itself. Therefore, the Data Service provides a standard interface such as the one
specified by WS-DAI [18].

10.3.2.2 Data Services

Data services support access and integration of data from separate data sources
which are typically distributed. This allows different types of data resources includ-
ing relational databases, XML, CSV files, or multimedia content to be exposed
to the third-party applications. The services provide a way of querying, updating,
transforming, and delivering data through a consistent, data resource independent
way. This is achieved via Web services that can be combined to provide higher-level

204 A. Goscinski et al.

services supporting data federation and distributed query processing. Hence, the
major strength of the services lies in supporting the integration of data from various
data resources. Furthermore, it allows querying metadata about the data as well as
resources in which this data is stored. Additionally, the Data Services might make
use of data available in other “Storage Cloud.” There are two types of data requests
which are supported by the DataCloud, internal requests, and external request.

• Internal requests: These refer to the data requests issued by the services hosted
in the MiningCloud. Every mining service is allowed to possess and use its data
resource in the DataCloud. There are interfaces established between the Mining-
Cloud and DataCloud to carry out the data requests from the MiningCloud.

• External requests: These are the data requests sent directly by the end-user. Users
might be interested in monitoring the state of her data resource or, rather than
via mining services, directly storing data to and retrieving data from the cloud.
Therefore, the direct access is provided by the DataCloud.

As an example, we can use the OGSA-DAI [18] to satisfy the requirements raised
above. The OGSA-DAI supports the federating and access of data resources (e.g.,
relational or XML databases, or files) via Web services inside or outside cloud.
Typically, OGSA-DAI is accessed through a Web service presentation layer. These
Web services expose data resources managed by OGSA-DAI. Clients only need to
specify the resource of interest during interaction with the services. The services
address the aspects, among other, such as data request execution, data resource
information, and establishment of data sink and data source. To enable the utilization
of OGSA-DAI in the DataCloud, two issues should be addressed:

• Adapters should be developed and attached to each service in the MiningCloud
in order that requests of data resource access issued by mining services can be
forwarded to the OGSA-DAI services and processed by the OGSA-DAI then.

• Proper tools and mechanism, which are similar to those used in the Service
Monitor of the MiningCloud, should be setup on the DataCloud to enable the
OGSA-DAI services to publish the state information of the data resources.
Modules and methods need to be designed and planted into the Web service based
Cloud Access Point to support direct access to the data resources via OGSA-DAI
services.

10.3.3 The BrokerCloud

A registry is a basic element of any SOA-based infrastructure. Currently, simple
registries (e.g., UDDI) satisfy basic requirements in the world of business [3]. How-
ever, such registries are unsatisfactory for clouds supporting scientific applications.
There is a need for intelligence to support service discovery and selection. They
are in particular unsatisfactory when services offered and published are stateful.
Therefore, we propose to use Service Brokers in the CloudMiner. The Service

10 The CloudMiner 205

Broker is an intermediary between a service provider and the end-users mainly for
locating the mining service and obtaining its description. The role of the Service
Broker is to transform functional and nonfunctional requirements provided by the
end-users to search for proper services in the MiningCloud. In summary, by the
BrokerCloud, we mean: an infrastructure that provides information about the Web
services in the MiningCloud via a set of Service Brokers.

10.3.3.1 Service Brokers

Service providers publish information about mining services to the Service Broker.
In the case of stateless Web service, only a basic WSDL document, which provides
methods to invoke services, and service URL, which provides its location in the
Internet, are published. In this case, it is the responsibility of users to learn about
published Web services. In the case of stateful Web services, the Service Brokers
store information about the state, as presented in the description of the approaches
(discussed in Sect. 10.3.1.1) to making Web service stateful. Thus, in the case of
the first approach, the service providers must include additional resource properties
that reflect the semantic of the published service. If the second approach to making
Web services stateful was used, the information passed in the WSDL document,
which contains state and additional parameters (e.g., price, QoS), is passed in the
WSDL document. The information stored in the Service Broker is accessed by
users. As we stated earlier, there could be more than one Service Broker that serve
the MiningCloud for reliability and performance reasons or there are other Service
Brokers that support other MiningClouds. There are different forms of cooperation
among these Service Brokers. For example, if there is no service that satisfies user
requirements in the normally served MiningCloud, the local Service Broker can
transparently access one by one, or concurrently other Service Brokers, and make
enquires on behalf of the end user. The local Service Broker can even make a
decision to access a service that belongs to another MiningCloud. This means that a
BrokerCloud is in use. Service Broker monitors and potentially limits the usage of
exposed services, based on the end user’s requirements and system resource usage.
Figure 10.2 shows the internal components of the Service Broker.

The Service Broker tries to satisfy requirements of users in the tasks described in
the following sections.

10.3.3.2 Registering a New Mining Service

Service providers are responsible for publishing newly deployed services to the
Service Broker. The only mandatory information they generate automatically is
a WSDL document and service’s URL. The WSDL document contains enough
information for invocation of the service but typically it lacks semantic description
of the service functionality. Extension of WSDL, such as SAWSDL [26] or RVWS
[8], might be used to provide the semantics, which can significantly help during the
process of service discovery and its selection by end users. The service providers

206 A. Goscinski et al.

Fig. 10.2 Components of the service broker

register the service to the Service Broker, which is attached to the MiningCloud
and is accessible via the Access Point. The Service Broker stores the location of
the registered service in a local data store together with values of parameters being
monitored by ServiceMonitor component of the Service Broker. Since each service
provides a different set of parameters that can be monitored, it is up to the service
provider to identify these parameters and to configure the ServiceMonitor to listen to
their changes. A typical example is the monitoring of service properties attached to
the stateful Web services confirming WS-Resource or resources exposed through the
application of the RVWS framework in the WSDL stateful document specification.

10.3.3.3 Acquiring State of a Mining Service

The actual state of a mining service is obtained by the Service Monitoring
component of the Service Broker. When a new service is registered by the service
provider, the Monitoring component starts to listen to the changes in the specified
parameters of the service. Each time an update is detected the Service Monitor
updates the local data store of the Service Broker. The update can be detected by
regular querying of the service parameters typical for RVWS approach or by Web
service notification mechanism. The Web service notification mechanism requires
implementation of WS-Notification and WS-BrokerNotification specifications
which are companion of WSRF.

10.3.3.4 Service Discovery

The service discovery is an essential feature of any distributed system based on
SOA. From the end-user point of view, it is not important if a single or composite
service is selected during the discovery process; the important are the functional

10 The CloudMiner 207

and QoS parameters of the service, based on which the user makes selection of the
service. Therefore, a ranking of the discovered services should be also supported by
the Service Broker.

10.3.3.5 Service Composition

CloudMiner allows the user to create composite mining services on demand. Let
hSii represent the services located in the discussed MiningCloud (Sect. 10.3.1.2)
with i 2 1 : : : I , and let hSj i represent the services hosted in other clouds where
j 2 M : : : J with M being an integer and I < M < J . Here, S represents a
single or composite mining service. Then, a composite mining service composed of
hSp; : : : Sq; Sx : : : Syi can be created, p, q, x, y are integers, where p < q � I

and M � x < y � J . By creating and using an on-demand composite mining
service, the user can execute a service workflow defined by her. Such a workflow
consists of multiple service invocations, which are organized in a user-customized
manner, e.g., they are arranged in a sequence or a loop. Given the functionalities
of composite mining services required by the service provider, we propose to
implement composite mining services based on the workflow engine from Workflow
Enactment Engine Project (WEEP) [24]. The WEEP Engine is a Web service
workflow engine, which supports dynamic invocation of Web services based on
workflow description in WS-BPEL [30]. It can be easily encapsulated into a Web
service and started by service invocation.

10.3.3.6 Gathering Information About State of a Mining Service

Given that the mining services implement different data mining tasks, it is useful
to let the user acquire information regarding the data mining tasks it provides,
progress of the tasks during execution, and resources they consume. The acquiring
and publishing of the state information are done using the RVWS, which extends
the WSDL document by inserting optional XML elements containing information
about the monitored parameters. We propose that Service Broker exposes these three
types of information about the mining services as follows:

• Information about data mining tasks includes parameters, which describe the
nature of an implemented algorithm, nevertheless, are unrelated to the algorithm
execution. Such parameter can be, for example, a description of data mining
algorithm, indicating whether a decision tree algorithm uses pruning or whether
a neural network algorithm supports momentum, etc. Such information can assist
an end user in selecting the requested services.

• Progress monitoring of data mining tasks gives information about the state of the
tasks being executed. Here, we assume that a mining service exposes the state of
the task progress based on its life cycle. A typical data mining task comprises
multiple phases, each of which the user becomes aware of the progress. For
example, the phases of a decision tree-based algorithm can be: preprocessing
input data, training model, pruning tree, evaluating model, etc. Accordingly, the

208 A. Goscinski et al.

user can decide to terminate or restart the service if it has been trapped in one of
the stages for an unacceptably long period of time.

• Information about consumed resources during execution of the service is impor-
tant for billing of the cloud usage. The RVWS framework enables to expose the
information about resources such as disk, memory, and CPU usage. The Service
Broker monitors also these parameters and offers users only the mining services
that have enough available resources.

The publishing of the above information is carried out by the Service Broker,
to be used in the service discovery. Also, user can easily attain the published
information and let it facilitate state monitoring and visualization.

10.3.4 The Access Point

The Access Point exposes the functionality of CloudMiner components to the outer
world. Hence, it is a kind of a gateway to the underlying cloud infrastructure. All the
communication between the end users and the Web services is done via the interface
of the Access Point. Note that it is not the case for the Service Providers, who
have direct access to the MiningCloud and deploy their services there. The Access
Point plays an important role in the usability of the cloud since it simplifies the
interaction with the CloudMiner components and hides its complexity. The Access
Point navigates the end-user in the process of selecting appropriate data, data mining
services, their execution, and monitoring. To prepare and configure data mining
tasks, the Access Point provides an easy to use step-by-step configuration wizard.
Figures 10.3 and 10.4 show examples of the configuration pages of the wizard.

Fig. 10.3 Access point – service discovery

10 The CloudMiner 209

Fig. 10.4 Access point – service invocation

The first step in the wizard is data selection where the end user selects
DataService, which provides input data for the data mining task. Here, the end user
specifies a query and resource managed by the DataService hosted in the DataCloud.
The second step deals with discovery of an appropriate mining service providing
required task (see Fig. 10.3). Here, the end user selects a data mining algorithms the
service should support. Based on the input parameters, the Service Broker returns a
list of available mining services supporting the specified algorithm. In the next step,
the end user configures and invokes the selected mining service (see Fig. 10.4). This
means that the end user specifies values of the input parameters and selects input
data set specified in the first step. After the parameterization of the execution task,
the user can invoke the service and observe its state in the monitoring panel.

10.4 Use Cases

Our first attempt to evaluate the proposed architecture has been done by extending
the implementation of the Distributed Computational Services Cloud (DCSC) [21],
built up on top of the NIMBUS Toolkit [25]. In our approach, the MiningCloud
deploys the scalable distributed service computing models using SPRINT algorithm
[28] for building classification models. It is a decision-tree-based classification
algorithm, which eliminates memory restrictions, thus it is scalable enough to
evaluate our system. Furthermore, SPRINT has been designed to be easily par-
allelized. “Parallel” here refers to the working model where multiple processors
work together to build one consistent model. This feature ensures the possibil-
ity of distributing the computation over services deployed in the computational
cloud. Thus, the service is suitable for evaluation of the proposed CloudMiner

210 A. Goscinski et al.

n0.cloudminer.org

n1.cloudminer.org

ds.cloudminer.org

n2.cloudminer.org

n0.cloudminer.org

n0.cloudminer.org n1.cloudminer.org

n0.cloudminer.org

Fig. 10.5 CloudMiner test infrastructure

architecture. In SPRINT algorithm, a decision tree is constructed by recursively
binary-partitioning the set of data objects until each single partition is either pure,
that is all members have the same value of the class attribute, or sufficiently small,
that is the size of the partition has reached a value set by the user. The implemented
Web service adopts the master-slave paradigm where the master service controls
the slave services processing subset of the input data. The service obtains input
data from DataCloud, which hosts one DataService provided by the OGSA-DAI
middleware. In our experiment, we used data taken from the NIGM Project [6].
Figure 10.5 shows the distribution of the Web services used for two use cases
deployed into the CloudMiner’s infrastructure.

There are two mining services deployed in the MiningCloud. The first one is
the SPRINTService and the second one is the CompositeSPRINTService, which
represents a composite Web service supported by a workflow engine. Both services
are published to the Service Broker. In the following sections, we describe them in
more details.

10.4.1 Use Case A: Single Classification Service

In this use case, there are installed three GlobusToolkit 4 (GT4) [15] containers each
on a different node. Each of the containers is hosting one SPRINTService. The first
one (node n0.cloudminer.org) plays role of a master service delegating the actual
building of the decision tree to two other slave services. The master SPRINTService

10 The CloudMiner 211

represents a mining service in the MiningCloud and is published to a Service Broker,
which is installed on the same node. The service implements notification mechanism
of the WSRF framework and notifies the service monitoring component of the
Service Broker about changes in the resource properties being monitored, that is,
CPU usage and memory usage. The input parameters of the service provided by the
end user are: (1) a SQL query expression selecting training data from a DataService;
(2) specification of a target attribute; (3) binary split applicability; and (4) tree
pruning applicability. On the output, the SPRINTService returns decision tree model
in the PMML format [13].

10.4.2 Use Case B: Composite Classification Service

This use case adds two additional Web services to the MiningCloud. The first
one is VisualisationService, which transforms the decision tree model in PMML
format produced by SPRINTService into a graphical representation in scalable
vector graphics format. The second is CompositeSPRINTService, which invokes
the SPRINTService and passes the PMML to the VisualisationService for transfor-
mation. The composite service is implemented by the WEEP Engine [24] deployed
in the GT4 container. Upon its invocation, the SPRINTService and Visualisation-
Service are executed in a sequence. This sequence of the services execution is
described using WS-BPEL and deployed as composite service using capabilities of
the enactment engine, which allows redirecting of incoming requests and outcoming
responses of the CompositeSPRINTService to an instance of the engine, which
controls the execution as specified in the deployed WS-BPEL document.

10.5 Summary

In this chapter, we presented our approach for building a SOA-based cloud data
mining environment, the CloudMiner. The environment consists of three different
clouds, namely MiningCloud, DataCloud, and BrokerCloud, each hosting Web
services aiming to satisfy requirements for on-demand Cloud Computing. The
environment also contains the Access Point, a Web-based interface, that allows
users to access the Service Broker to discover mining services and supports their
selection and invocation. This chapter makes the following contributions to cloud
and data mining. First, it offers the architecture of a novel infrastructure for
distributed data mining called CloudMiner. Second, it allows both vendors and
individual programmers/users to develop, deploy, and publish dynamically changing
data mining services. Third, the whole cloud data mining environment allows
for the provision by vendors composite data mining services as well and makes
possible for users to create composite data mining services on demand. Fourth, every
broker of the BrokerCloud supports publishing and discovery and selection of data

212 A. Goscinski et al.

mining services based on their state and attributes (e.g., execution requirements,
price). The presented use cases deployed into the presented test infrastructure
show that the approach, architecture, and its components are feasible for building
distributed cloud environments. In the future, we will concentrate our research on
the performance study of the whole system, its security, and reliability.

References

1. Al-Ali, R., von Laszewski, G., Amin, K., Hategan, M., Rana, O., Walker, D., Zaluzec, N.: QoS
support for high-performance scientific Grid applications. In: Proceedings of the 2004 IEEE
International Symposium on Cluster Computing and the Grid, CCGRID ’04, pp. 134–143.
IEEE Computer Society, Washington, DC, USA (2004)

2. Amazon: Amazon Elastic Compute Cloud (2010). URL http://aws.amazon.com/ec2
3. Banerjee, S., Basu, S., Garg, S., Garg, S., Lee, S.J., Mullan, P., Sharma, P.: Scalable Grid

Service Discovery based on UDDI. In: Proceedings of the 3rd international workshop on
Middleware for grid computing, MGC ’05, pp. 1–6. ACM, NY, USA (2005)

4. Benkner, S., Engelbrecht, G.: A Generic QoS Infrastructure for Grid Web Services. In:
Proceedings of the Advanced Int’l Conference on Telecommunications and Int’l Conference on
Internet and Web Applications and Services, AICT-ICIW ’06, p. 141. IEEE Computer Society,
Washington, DC, USA (2006)

5. Brezany, P., Janciak, I., Tjoa, A.M.: GridMiner: An advanced support for e-science analytics.
In: Dubitzky, W. (ed.) Data Mining Techniques in Grid Computing Environments, pp. 37–55.
Wiley, NY (2008)

6. Brezany, P., Elsayed, I., Han, Y., Janciak, I., Wöhrer, A., Novakova, L., Stepankova, O., Zakova,
M., Han, J., Liu, T.: Inside the NIGM Grid Service: Implementation, Evaluation and Extension.
In: Proceedings of the 2008 4th International Conference on Semantics, Knowledge and Grid,
pp. 314–321. IEEE Computer Society, Washington, DC, USA (2008)

7. Brock, M., Goscinski, A.: State aware WSDL. In: Proceedings of the sixth Australasian
workshop on Grid computing and e-research – vol. 82, AusGrid ’08, pp. 35–44. Australian
Computer Society, Darlinghurst, Australia (2008)

8. Brock, M., Goscinski, A.: Attributed publication and selection for web service-based dis-
tributed systems. In: Proceedings of the 2009 Congress on Services – I, pp. 732–739. IEEE
Computer Society, Washington, DC, USA (2009)

9. Brock, M., Goscinski, A.: A technology to expose a cluster as a service in a cloud. In:
Proceedings of the Eighth Australasian Symposium on Parallel and Distributed Computing –
vol. 107, AusPDC ’10, pp. 3–12. Australian Computer Society, Darlinghurst, Australia (2010)

10. Brock, M., Goscinski, A.: Toward a Framework for Cloud Security. In: ICA3PP (2),
pp. 254–263 (2010)

11. Brock, M., Goscinski, A.: Toward ease of discovery, selection and use of clusters within a
cloud. In: IEEE International Conference on Cloud Computing, pp. 289–296 (2010)

12. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: CRISP-
DM 1.0 Step-by-step data mining guide. Tech. rep., The CRISP-DM consortium (2000)

13. Data Mining Group: Predictive Model Markup Language, version 4.0 (2010)
14. Demers, A., Gehrke, J.E., Riedewald, M.: Research issues in distributed mining and monitor-

ing. In: Proceedings of the National Science Foundation Workshop on Next Generation Data
Mining. Baltimore, MD (2002)

15. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In: IFIP Interna-
tional Conference on Network and Parallel Computing, no. 3779 in LNCS, pp. 2–13. Springer,
Berlin (2005)

10 The CloudMiner 213

16. Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D., Leymann, F., Nally,
M., Sedukhin, I., Snelling, D., Storey, T., Vambenepe, W., Weerawarana, S.: Modeling stateful
resources with web services v.1.1. Tech. rep., Globus Alliance (2004)

17. Goscinski, A., Brock, M.: Toward dynamic and attribute based publication, discovery and
selection for cloud computing. Future Gener. Comput. Syst. 26, 947–970 (2010)

18. Grant, A., Antonioletti, M., Hume, A., Krause, A., Dobrzelecki, B., Jackson, M., Parsons, M.,
Atkinson, M., Theocharopoulos, E.: OGSA-DAI: Middleware for Data Integration: Selected
Applications. In: IEEE Fourth International Conference on eScience ’08, p. 343 (2008)

19. Grossman, R., Gu, Y.: Data mining using high performance data clouds: Experimental studies
using sector and sphere. In: Proceeding of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’08, pp. 920–927. ACM, NY, USA (2008)

20. Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann, CA (2005)
21. Han, Y., Brezany, P., Janciak, I.: Cloud-Enabled Scalable Decision Tree Construction. In:

International Conference on Semantics, Knowledge and Grid, pp. 128–135. IEEE Computer
Society, Los Alamitos, CA, USA (2009)

22. IBM: IBM Smart Analytics System (2010).
URL http://www-01.ibm.com/software/data/infosphere/smart-analytics-system/data.html

23. Janciak, I., Brezany, P.: A Reference Model for Data Mining Web Services. In: International
Conference on Semantics, Knowledge and Grid, pp. 251–258. IEEE Computer Society, Los
Alamitos, CA, USA (2010)

24. Janciak, I., Kloner, C., Brezany, P.: Workflow enactment engine for WSRF-compliant services
orchestration. In: Proceedings of the 2008 9th IEEE/ACM International Conference on Grid
Computing, GRID ’08, pp. 1–8. IEEE Computer Society, Washington, DC, USA (2008)

25. Keahey, K., Freeman, T.: Science Clouds: Early Experiences in Cloud Computing for Scientific
Applications. In: Cloud Computing and its Applications (CCA) (2008)

26. Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: SAWSDL: Semantic Annotations for WSDL
and XML Schema. IEEE Internet Comput. 11, 60–67 (2007)

27. R Systems: (2010). URL http://www.rsystems.com/index.asp
28. Shafer, J.C., Agrawal, R., Mehta, M.: SPRINT: A Scalable Parallel Classifier for Data Mining.

In: Proceedings of the 22th International Conference on Very Large Data Bases, VLDB ’96,
pp. 544–555. Morgan Kaufmann, CA (1996)

29. Hoch, F., Kerr, M., Griffith, A.: Software as a service: strategic backgrounder. Tech. Rep.,
Software Inform. Indus. Assoc. (2001)

30. Alves, A., Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Sterling, Konig,
D., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services Business Process
Execution Language Version 2.0. OASIS Committee Draft (2006)

31. Wang, G.: Domain-oriented data-driven data mining (3DM): Simulation of human knowledge
understanding. In: Proceedings of the 1st WICI International Conference on Web Intelligence
Meets Brain Informatics, WImBI’06, pp. 278–290. Springer, Heidelberg (2007)

32. Wolfram Research: Cloud services for mathematica (2010). URL http://www.nimbisservices.
com/page/what-cloud-services-mathematica

•

Chapter 11
Provenance Support for Data-Intensive
Scientific Workflows

Fakhri Alam Khan and Peter Brezany

Abstract Data-intensive workflows process and produce large volumes of data.
The volume of data, number of workflow participants and activities may range from
small to large numbers. The traditional way of logging experimental process is no
longer valid. This has resulted in a need for techniques to automatically collect
information on workflows known as provenance. Several solutions for e-Science
provenance have been proposed but these are predominantly domain and application
specific. In this chapter, the requirements of e-Science provenance systems are first
clearly defined, and then a novel solution named the Vienna e-Science Provenance
System (VePS) that satisfies these requirements is proposed. The VePS not only
promises to be light weight, workflow enactment engine, domain and application
independent, but it also measures the significance of workflow parameters using the
Ant Colony Optimization meta-heuristic technique. Major contributions include: (1)
interoperable provenance system, (2) quantification of parameters significance, and
(3) generation of executable workflow documents.

11.1 Introduction

e-Science [26] is defined as computational intensive science that processes huge
amount of data over large distributed network. The main theme of e-Science is
to promote collaboration among researchers across their organizational boundaries
and disciplines – to reduce coupleness and dependencies and encourage modular,
distributed, and independent systems. This has resulted in dry lab experiments also
known as in silico experiments. Workflows are designed and executed by scientists
to make full use of the e-Science. Workflow [33] combines tasks (activities) and
specifies their execution order. A task may be an autonomous activity offering a

F.A. Khan (�) � P. Brezany
Department of Scientific Computing, University of Vienna, Nordbergstrasse 15/C/3, Austria
e-mail: khan@par.univie.ac.at; brezany@par.univie.ac.at

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 11, © Springer-Verlag Berlin Heidelberg 2011

215

216 F.A. Khan and P. Brezany

specific functionality while residing at some remote location and may take a data
input, process it and produce a data output. Workflows may contain several hundreds
of activities.

The data produced and consumed by a workflow vary both in terms of volume
and variance [7]. The data variance is defined as the rate at which the structure
of data changes. A typical example of data variance are the applications that
collect data from a variety of distributed resources and transform it into a specific
format according to participant requirements. A data-intensive workflow can be
defined as A business process logic that processes large volumes of data with
highly variable characteristics [22]. The data processed by a workflow may range
from few Megabytes to Gigabytes. Furthermore, data-intensive workflows may
allow fixed or unforeseen number of workflow participants (users). Data-intensive
workflows have raised new issues (such as, annotation of experiments and collecting
data about experiments), to make experiments reusable and reproducible. The
information about workflow activities, data, and resources is known as workflow
provenance [15,28]. To help keep track of workflow activities, workflow provenance
describes the service invocations during its execution, information about services,
input data, and data produced [27].

Moreover, workflows in scientific domains usually have exploratory nature.
A scientific workflow is executed multiple times using different value combina-
tion of workflow parameters to study a scientific phenomenon. This process is
best described as hit and trial process. This approach becomes infeasible and
time consuming for real-world complex workflows, which may contain numerous
parameters. It is critical to find through provenance information resolving the
questions: (1) Which parameters are critical to the final result? and (2) What
value combination produces optimal results? This issue is addressed via workflow
parameters significance measurement using Ant Colony Optimization (ACO) [10]
based approach.

In recent years, many e-Science provenance systems have been proposed, but in
one way or the other they are bound to a specific domain or Scientific Workflow
Management System (SWfMS). The SWfMS can be defined as an application,
which interprets the process definition and interacts with workflow participants.
This dependence of provenance systems is aberration from the e-Science vision,
which is realized by modular, independent, and distributed infrastructures such as
Grid. Keeping this in mind, in this chapter, the focus is on a domain-independent,
portable and light weight e-Science provenance system. This chapter addresses
not only the workflow and domain independence but also the reproducibility of
experiments. A provenance system named Vienna e-Science Provenance System
(VePS) having these required features is proposed. The workflow execution engine
is the core component in enacting e-Science workflows and the ability of the
VePS provenance framework to be independent of workflow execution engine
makes it inter-operable and domain independent. The core functionalities of the
VePS include: (1) provenance collection, (2) measurement of workflow parameters
significance via meta-heuristic guided approach, and (3) generation of an executable

11 Provenance Support for Data-Intensive Scientific Workflows 217

workflow process from provenance information. Major contributions of the research
presented in this chapter include:

• Portable provenance system: The VePS provenance framework is independent of
workflow, workflow activities, and workflow enactment engine. This decoupling
means that now the provenance system can work across multiple domains and
hence be more portable.

• Interoperable provenance information: Along with provenance system portabil-
ity, it is critical for provenance information to be usable across heterogeneous
platforms as well. An XML-based approach for storing provenance information
to be used by multiple users across different heterogeneous platforms is proposed
and adapted.

• Quantify parameters significance: The information on workflow parameters
significance is of paramount importance for researchers to fine tune their results
and make the process of come to optimized results significantly faster. This
contributes to higher productivity of the workflow developers. For this purpose,
a methodology to quantify the impact significance of workflow parameters and
integrate this information into provenance for any future use is proposed and
implemented.

• Reproducibility: The VePS provenance framework supports reproducibility and
generates an executable Business Process Execution Langauge (BPEL) [23]
document describing the workflow that was executed. This results in enhanced
trust and allows users to modify and compare the results of the experiments.

The rest of this chapter is organized as follows. In Sect. 11.2, introduction to
the provenance in general and e-Science provenance in particular is presented.
Moreover, it also describes the requirements of e-Science provenance systems.
Section 11.3 details the VePS provenance framework and its main components.
The provenance interceptor, parser, and transformer components of the VePS are
introduced in Sect. 11.4. The ACO-based approach for estimating the workflows
parameters significance is detailed in Sect. 11.5. The VePS approach to data curation
and visualization is described in Sect. 11.6. The related work is discussed in
Sect. 11.7. The chapter summary is provided in Sect. 11.8.

11.2 Provenance Definition and Requirements

In the following two subsections, a brief introduction to provenance from the
computing and workflow perspectives is provided first. Then, e-Science provenance
system requirements are detailed.

11.2.1 Provenance Definition

Workflows typically order the tasks associated with e-Science, e.g., which services
will be executed and how they will be coupled together. In the Grid context,

218 F.A. Khan and P. Brezany

Fox defines a workflow as the automation of the processes, which involves the
orchestration of a set of Grid services, agents and actors that must be combined
together to solve a problem or to define a new service [11]. Computational problems
are complex and scientists need to collect information on workflow components
and data. The information about components (activities) and data is known as
provenance.

There are numerous definitions of provenance: (1) The fact of coming from some
particular source or quarter (Oxford English Dictionary) and (2) The history of
ownership of a valued object or work of art or literature (Merriam-Webster Online
Dictionary). Provenance has been defined by computer scientists in different ways
depending upon the domain, in which it is applied [34]. Buneman et al. [5] defined
data provenance as the description of the origin of data and the process by which it
arrived at the database. Lanter [27] defines provenance in the context of geographic
information systems as information that describes materials and transformations
applied to derive the data. Yogesh et al. [27] define data provenance as information
that helps to determine the derivation history of a data product, starting from its
original sources.

Greenwood et al. [12] have expanded Lanter’s definition in the context of
scientific workflows as metadata recording the process of experiment workflows,
annotations, and notes about the experiments. The information about workflow
activities, data, and resources is known as workflow provenance. Workflow prove-
nance describes the workflow services invocation during its execution, information
about services, input data, and data produced to help keep track of workflow
activities. More fine grained workflow provenance includes information about the
underlying infrastructure (processors, nodes, etc.), input and output of workflow
activities, their transformations and context used.

11.2.2 e-Science Provenance System Requirements

There is a strong need to propose and build a provenance system that is in-line with
e-Science core theme of modularity and de-coupleness. Characteristics of general
(trivial) provenance systems are collection, storage, and dissemination. However, for
a provenance system to satisfy e-Science goals, the requirements are as follows:

• Provenance system interoperability. The provenance system should be able to
work across different workflow execution engines. An e-Science provenance
system should be intelligent and independent and should collect information
across multiple domains. Trivial provenance systems mainly focus on provenance
data collection, whereas e-Science provenance systems need to focus on interop-
erability as well.

• Provenance information interoperability. Since e-Science encourages collabora-
tion and dry lab experiments. The provenance information collected should be
stored in a manner that it can be used by users across heterogeneous platforms.

11 Provenance Support for Data-Intensive Scientific Workflows 219

This raises the requirement for provenance data interoperability. Compared to
the trivial provenance systems collection requirements, e-Science provenance
systems need to address information interoperability as well.

• Support for parameter significance measurement. e-Science workflows are usu-
ally complex and exploratory. To facilitate the e-Science exploratory workflow
scientists, it should collect provenance information about workflow parameters
and measure their significance.

• Reproducibility. Exploratory and scientific workflows results are questioned until
they are not reproduced and re-executed by peer scientists. It is necessary to
collect provenance information on workflow execution and produce executable
workflow documents.

• Visualization and report generation (dissemination). The provenance system
should have a visualization and report generation component. This will help
researchers to analyze data and get an insight into the data and workflow with
less effort.

• Light weight. The provenance collection is an ad hoc functionality. The compu-
tational overhead it exerts on workflow execution should be minimal.

One of the fundamental research issue in e-Science provenance systems is
interoperability. It is the ability of the provenance system to readily work across
different domains, applications, and workflow execution engines. Domain and
application independence form the main criteria of our provenance research.

11.3 VePS: The Vienna e-Science Provenance System

The open provenance model (OPM) [21] has tried to standardize the provenance
collection, but despite their efforts, most provenance systems for e-Science revolve
around workflow enactment engine. The fundamental design of e-Science prove-
nance system needs to be changed. It has to come out of the passive mode
(passively listening to SWfMS notifications) and has to adapt a more active and
intelligent mode. Keeping in mind these characteristics, a workflow execution
engine independent provenance system named VePS is designed and proposed. Core
functionalities of the VePS include: (1) workflow execution engine independent
provenance collection, (2) measuring workflow parameters significance via a
heuristic guided approach and (3) generation of executable workflow document.

The VePS shares the middleware (Apache Axis2 [14]) with the engine (i.e., both
the VePS and engine are deployed onto the same middleware). The VePS records the
workflow activities, whereas multiple users and clients can submit and execute their
workflows. Apache Axis2 was chosen as the middleware because of its stability,
popularity, maturity, healthy user community and its ability to keep evolving to cater
changes in the technology and user requirements [2]. Provenance information such
as service name(s), method(s) invoked, input data name(s), input data type, input
data value, output data names, and values are collected by the VePS provenance
framework.

220 F.A. Khan and P. Brezany

P
ar

am
et

er
 S

ig
ni

fic
an

ce
 E

st
im

at
or

W
or

kf
lo

w
 O

pt
im

iz
at

io
n

C
om

po
ne

nt

D
at

a
P

re
pa

ra
tio

n
La

ye
r

Provenance Parser

Provenance Interceptor

Middleware

e-
In

fr
as

tr
uc

tu
re

La
ye

r

ServicesUsers
Workflow

Management
System

D
at

a
P

re
se

rv
at

io
n

La
ye

r Provenance Transformer

Provenance
XML

W
orkflow

V
isualizer

D
ata C

uration &
 V

isualization C
om

ponent

Users
R

eport
G

enerator
B

P
E

L
G

enerator

Fig. 11.1 The VePS provenance framework depicting the e-Infrastructure Layer, Data Prepara-
tion Layer, Data Preservation Layer, Workflow Optimization Component, and Data Curation and
Visualization Component

The VePS framework consists of three layers, namely e-Infrastructure Layer,
Data Preparation Layer, and Data Preservation Layer, and two components,
namely Workflow Optimization Component and Data Curation and Visualization
Component as shown in Fig. 11.1. Apart from the e-Infrastructure Layer, the
remaining layers work outside of the underlying infrastructure, and hence put less
performance burden on workflow execution. The e-Infrastructure Layer consists of
Provenance Interceptor component. Its role is to catch messages passing through
the middleware and asynchronously pass these intercepted messages to the Data
Preparation Layer. This layer contains the Provenance Parser component, which
extracts and collects the provenance information from the received messages. The
collected provenance information is passed to the Data Preservation Layer, that
transforms it into a well-defined XML structure and stores it. The Data Curation
and Visualization Component of the VePS is used to visualize the provenance
information and produce a BPEL workflow document. The Workflow Optimization

11 Provenance Support for Data-Intensive Scientific Workflows 221

User SWfMS Extended Axis2 Service-I WL parser SL parser DL parser

submit WfD

invoke message

MessageContext

MessageContext

invoke

response

MessageContext

MessageContext

response message

result

Provenance transformer

MessageContext

MessageContext

Legend:
SWfMS –Scientific Workflow Management System, WL parser – Workflow Level parser
SL parser –Service Level parser, DL parser – Data Level parser, WfD – Workflow Document

Fig. 11.2 Sequence diagram of the VePS depicting provenance collection activities when a user
executes a workflow over e-Infrastructure

Component addresses the issue of complex exploratory workflows and is based on
Ant Colony Optimization for Parameter Significance (ACO4PS) [17].

From the sequence diagram shown in Fig. 11.2, it can be seen that on submission
of a workflow document to the SWfMS, it parses the document and generates an
invoke message. Upon reception of a message by Axis2, it transforms it into SOAP
message and sends an invoke request to the desired service. Before the delivery
of invoke message, provenance handlers intercept this message and asynchronously
deliver it to the Provenance Parser. This component parses workflow, activities, and
data relevant provenance information from the intercepted messages. These data are
then sent to the Provenance Transformer component, which properly structures the
data and stores it in an XML document. From the VePS framework (as shown in
Fig. 11.1), it is clear that it no longer depends on the workflow enactment engine,
as it lies at the middleware level to intercept communication messages between
the client and components (services). This ability makes it possible to collect
provenance not only for one workflow enactment engine but also for any engine.
This makes VePS portable and domain independent. More fine-grained details of
the e-Infrastructure Layer, Data Preparation Layer, and Data Preservation Layer
are discussed in Sect. 11.4, whereas the Workflow Optimization Component is
introduced in detail in Sect. 11.5. The Data Curation and Visualization Component
is described in Sect. 11.6.

11.4 Provenance Collection, Preparation, and Preservation

The provenance data collection is performed at the e-Infrastructure Layer level. It
mainly consists of the Provenance Interceptor component and four subcomponents
namely Inflow, Outflow, Infaultflow, and Outfaultflow provenance handlers as shown

222 F.A. Khan and P. Brezany

Provenance Interceptor

Middleware

Inflow Provenance Handler

Outflow Provenance Handler

Infaultflow Provenance Handler

Outfaultflow Provenance Handler

Middleware
component

Middleware
component

Message in
invoke

response
Message out

Provenance data

Fig. 11.3 Detailed view of e-Infrastructure Layer components and information flow

in Fig. 11.3. The collected data are prepared and meaningful information is collected
from it at Data Preparation Layer, which is composed of the Provenance Parser
component. Then, this information is properly structured, transformed, and stored at
Data Preservation Layer, which contains the Provenance Transformer component.
The Provenance Interceptor, Provenance Parser, and Provenance Transformer
components of the VePS provenance framework are detailed in the following
subsections.

11.4.1 Provenance Interceptor

The Apache’s Axis2 architecture has defined four flows, namely InFlow, outFlow,
InFaultFlow and OutFaultFlow. All communication (incoming SOAP messages,
outgoing messages, incoming faulty messages, and outgoing faulty SOAP mes-
sages) pass through it. Each flow is composed of two types of phases, pre-defined
and user-defined, which in turn consist of handlers. A handler is the smallest
component in the Axis2 and is defined as the message interceptor. The Prove-
nance Interceptor component, which lies at the e-Infrastructure Layer consists
of four provenance handlers InFlowProvenanceHandler, OutFlowProvenanceHan-
dler, InFaultFlowProvenanceHandler, and OutFaultFlowProvenanceHandler. The
provenance handlers are integrated into Axis2 with the functionality to intercept the
underlying communication between the workflow enactment engine and services
passing through Axis2 as shown in Fig. 11.3.

The handlers work like “T” pipes. They catch the underlying SOAP communi-
cation messages and forward them to the Data Preparation Layer and leaving the
Aixs2 and workflow enactment engine from dealing with the provenance collection

11 Provenance Support for Data-Intensive Scientific Workflows 223

overhead. The VePS provenance framework continuously monitors the engine as
well as the workflow through the middleware. The ability of Provenance Interceptor
to function independently of the workflow execution engine, clients, and activities
makes it domain and application independent. It also means that the VePS is no
longer coupled tightly to SWfMS, and hence can work across multiple engines.

11.4.2 Provenance Parser

The Data Preparation Layer resides outside of the Axis2 core and is composed
of the Provenance Parser component. The provenance data parsing is performed
off-line to the middleware system. This keeps the overhead to minimum and
enables the VePS to exert less computational burden on the workflow enactment
engine, middleware and services. Provenance Parser is the “go to” component for
a provenance handler. The intercepted requests, responses, or faulty messages are
forwarded to the provenance parsers by provenance handlers. After receiving these
SOAP message objects and WSDL documents, they are parsed. The relevant prove-
nance information such as sender, receiver, time, operation name, input, and output
data type are collected. This filtered provenance data are sent to the Provenance
Transformer component of the Data Preservation Layer. The Provenance Parser
component has three sub-parsers: Workflow Level Parser, Service Level Parser, and
Data Level Parser as shown in Fig. 11.4. These three sub-parsers collect information
about workflow, services, and data exchanged, respectively:

• Workflow level parser: It collects workflow level provenance information such as
workflow input(s), output(s), activities names, start time, and termination time of
workflow. This provenance information is useful in determining the invocation
sequence of workflow services (activities).

Provenance Parser

Workflow Level Parser

Service Level Parser

Data Level Parser

Provenance data Provenance
Information

Fig. 11.4 The Provenance Parser component of the Data Preparation Layer and its sub-
components

224 F.A. Khan and P. Brezany

• Service level parser: It gathers information about individual activities. Prove-
nance information such as description of service parameters, input(s)/output(s)
data to the activity, and invocation interface are included.

• Data level parser: For each workflow, multiple Data Level Parsers are designed.
Each single data file used by a service is associated with one of them. It collects
detailed provenance information on data used, such as number of rows, mean,
variance, unit, and size.

11.4.3 Provenance Transformer

Data without proper structure and storage are useless. For this reason, the Prove-
nance Transformer component of the Data Preservation Layer has been developed.
XML is chosen to store and share provenance information because of its portability,
platform independence, vendor independence, and system independence [4]. The
main role of the Provenance Transformer is to identify the provenance category,
transform the data into a well-designed XML format, and write it into its exact
hierarchy. The Data Preservation Layer also lies outside the Axis2 architecture
and performs all of its computation off-line to the underlying infrastructure. The
provenance XML document generated is shown in Fig. 11.5.

The root element “Provenance” has an attribute “numberOfFields,” which con-
tains information about the total number of services executed by a workflow. Each
activity (a service call) in a workflow document is represented by an element named

<?xmlversion="1.0" encoding="UTF 8"?>

<Provenance numberOfFields="5">

<! Provenance XML document >

<Service name="SIServiceNew" parallel="false" parallelTo="none" success="true">

<invocation methodName="executeSI" source="127.0.0.1" target="http://localhost:8080/axis2/services/SIServiceNew" time="1277392647250">

<InputData name="Input_Output" type="string" value="http://www.par.univie.ac.at/~khan/test data/si/si data.xml"/>

<InputData name="StandardInput" type="string" value="http://www.par.univie.ac.at/~khan/test data/si/si input.xml"/>

</invocation>

<response methodName="executeSI" time="1277392649484">

<OutputData name="return" type="string" value="Z:/public_html/test data/si generated/StandardOutput1.xml"/>

</response>

</Service>

<Service name="KFServiceNew" parallel="false" parallelTo="none" success="true">

<invocation methodName="executeKF" source="127.0.0.1" target="http://localhost:8080/axis2/services/KFServiceNew" time="1277392649781">

<InputData name="StandardOutput" type="string" value="http://www.par.univie.ac.at/~khan/data/kf/StndOutput1.xml"/>

</invocation>

<response methodName="executeKF" time="1277392650437">

<OutputData name="return" type="string" value="file://Z:/public_html/test data/kf generated/After KF.xml"/>

</response>

</Service>

</Provenance>

Fig. 11.5 Provenance XML document generated by the VePS

11 Provenance Support for Data-Intensive Scientific Workflows 225

“Service” in the provenance XML document. Data about service name, execution
(successful/failed) are stored as attributes “name” and “success” of the Service
element. The Service element has two child elements: “invocation” and “response.”
The invocation element contains provenance data about service execution. The
time of service invocation and the name of the method invoked are represented by
attributes “method-Name” and “time”, respectively. Every invocation element has
child element(s) named “InputData.” The number of InputData elements depends
on the number of parameters passed to the service. For every corresponding
parameter, an “InputData” element is created. It contains information on parameter
name, type, and value, while, the response element contains data about activities
results and responses. Every response element has “OutputData” child element.
The “OutputData” element represents result data type and value. For details of the
provenance XML, refer to Fig. 11.5.

11.5 Workflow Parameters Significance Estimation

Workflows prototype a scientist experiments. In Directed Acyclic Graph (DAG)
terms, a workflow is represented as G D .N; E/. From this representation,
workflow can be defined as Set of nodes (N) and directed edges (E), where nodes
represent workflow computational tasks and edges indicate the sequence of activ-
ities. This definition stresses that (1) a workflow can be composed of any number
of computational tasks (activities); and (2) the outcome of a workflow is dependent
on the order of execution of the included activities. Workflows are usually used for
exploratory purposes. This means that workflows are executed multiple times in
an attempt to understand a scientific phenomena or to find answers to scientific
questions. Workflow and the activities in a workflow have parameters. These
parameters have strong impact on the workflow outcome. Furthermore, different
value combination of workflow parameters results in different final outcome. The
usual practice for a scientist to come to the optimized result is a brute force method.
This means that different or all possible combinations of parameters are tested
empirically.

Consider the scenario that a workflow has N tasks. The number of tasks in a
workflow may vary from small numbers to a very large number. Moreover, suppose
that the workflow has n number of parameters (p). To put it mathematically,
Pn D fp1; p2; p3; : : : ; png. Each parameter has an allowed range of values (R).
The allowed range may be either discrete or continuous. The number of times the
workflow need to be executed, if one wants to come to the optimized output via a
brute force technique will be:

.
ˇ̌
R.p1/

ˇ̌ � ˇ̌
R.p2/

ˇ̌ � ˇ̌
R.p3/

ˇ̌ � :::
ˇ̌
R.pn/

ˇ̌
/ D

nY
iD1

ˇ̌
R.pi /

ˇ̌
; (11.1)

226 F.A. Khan and P. Brezany

where, R.pi / represents the value range of the ith parameter. From 11.1, for
achieving an optimized result, the execution pattern of the experiment increases
exponentially with the increase in parameters and their ranges. In such complex
exploratory workflows scenario, it is interesting and necessary to know, which
parameters have significant impact on the final outcome and which have the least
significance. Parameter significance can be defined as The amount of effect a certain
parameter exerts on the final outcome of a computational model [16]. For a user
of scientific workflow, it is important to know: (1) what parameter of workflow
have strong effect on the final product and what have the least effect (parameter
significance)? and (2) what combination of parameter values result in optimized or
desired product?

Such problems, where the solution time increases significantly with the problem
size are known as NP-hard problems [1]. To solve these problems with reasonable
amount of time and by reaching near optimal results, they are tackled by meta-
heuristic algorithms [31]. The Workflow Optimization Component addresses the
issue of complex exploratory workflows via parameter significant estimator (PSE)
module. It is based on ACO4PS [17]. The PSE uses information from the prove-
nance XML to enable scientists to find near optimal solutions.

The PSE retrieves information such as parameter names, types, and their total
number from the provenance XML and gets the data on the value range of individual
parameters from the user. First, the workflow parameters are represented in the form
of nodes and transitions. For each parameter, two new parameters cost and profit are
defined, which are critical in guiding the Parameter Significance Estimator. The
cost of a workflow parameter is defined as The computation time and resources it
requires. There are numerous factors which effect the cost of a parameter. But to be
able to numerically quantify cost of parameter, it is associated with the parameters
allowed value range. The cost of parameter i is calculated as follows:

costi D rangeiPn
kD1 rangek

� 100; (11.2)

where rangei represents the allowed discrete value range of parameter i . Profit of
a parameter can defined as The impact of a change in a parameter value on the
known output. Profit of a parameter is determined by knowing to which activities it
is associated and how much impact it has on the workflow final product. Profit of a
workflow parameter is calculated as:

profiti D PoP.i/Pn
kD1 PoP.k/

� 100

�
PoP.i/ D PC.i/

NF
; PC.i/ D ri

pi

; NF D
Pn

iD1 PC.i/

n

�
; (11.3)

where ri and pi represent percent change in result and parameter, respectively, and
NF is the normalization factor. The ACO4PS is applied on the workflow after it has

11 Provenance Support for Data-Intensive Scientific Workflows 227

been represented in the form of nodes (each node having � , ˛, ˇ, cost, and profit),
the ACO parameters (such as number of ant, iterations, etc.) are setup, and the cost
and profit are determined successfully. At the start, the ants are assigned randomly
to different nodes. Then, each ant starts the transition process iteratively until the
significance of all parameters has not been determined. Each transition from node i

to j is made probabilistically according to following definition:

pk
j D .�j C profitj /˛ C costˇjP

c…mem.�c C profitc/˛ C costˇc
8 c … mem (11.4)

From (11.4), it can be seen that the transition of node j being selected by an ant k

depends on the pheromone trial (�j), profitj and cost of parameter j . Furthermore,
pheromone trial (�j) and profitj have direct effect on the probabilistic selection of
parameter j , while the selection probability of node j is inversely proportional to
the cost associated with parameter j . The mem represents the list of nodes to be
visited by ant.

After each transition the local pheromone trial update process takes place. This
means that after node j is selected as the next node, the ant moves to the selected
node and the pheromone trial value on this node is updated. The local pheromone
trial update criteria is defined as below:

�j D .1 � �/�j C ��0 (11.5)

The pheromone trial is volatile substance and it evaporates at constant value. In
(11.5), the evaporation constant is represented by �, whereas the initial and actual
pheromone trial is represented by �0 and �j , respectively. After each transition
process, ant updates its memory (mem) and removes the selected node from the
list of nodes to be visited. The transition process (next node selection process) is
repeated and takes place until the desired number of parameters significance is not
determined. On completion of a tour by an ant k, the cost of the trip is computed.
This cost is compared to the existing best tour, and if it is found lower than the
existing solution, then this trip is set as best tour. Furthermore, more pheromone
trial is deposited on the new best tour (global pheromone trial update) according to
the following criteria:

�j D .1 � �/�j C ���j : : : : : : f��j D 1

Lbest
g; (11.6)

where, �, �j , and Lbest mean evaporation constant, pheromone trial, and cost of
best tour, respectively. When each ant of ACO4PS (working independently and
communicating via pheromone trial) completes its solution, a list of parameter
significance is achieved. The resultant final best tour is a sorted list of parameters
significance. The list and results of ACO4PS on estimating parameters significance
are helpful for users and researchers to know:

228 F.A. Khan and P. Brezany

• Out of numerous workflow parameters, which has the strongest effect on the final
product of workflow? The answer to this question is satisfied by fetching the most
significant parameter (first parameter from the final best tour) from the ACO4PS
list.

• What parameter(s) should I consider, modifications on which will optimize the
workflow product? The answer is to select a subset of most significant parameters
from the list. This enable researchers to concentrate on subset of parameters,
hence, considerably reducing the time and efforts.

• What parameter(s) should I ignore, modifications on which do not have high
impact on the workflow result? The answer to this question lies by concentrating
on the bottom half of the final sorted list.

11.6 Data Curation and Visualization

Data curation is a concept that involves data management activities like refining
data through reading journal articles, finding relevant information through searching
databases, and preserving data to make it usable in the future [20]. A wide
range of scholarly research and scientific data resources exists including digital
libraries, clinical data sets, geo-spatial data sets, and biological genes extraction
data resources, to social science data resources such as census data sets, UK Border
data archive to mention a few. Long-term access to such data resources is essential
to enable the verification and validation of scientific discovery and provide a data
platform for future research [25]. Many analytical tools and applications are used to
access, manage, and visualize these data resources. However, with the rapid growth
in ICT hardware and software resources, keeping data up to date and preserved
to be valid and correct for future use is a challenge. The need of digital curation
of data and particularly e-Research data in the scientific domain was highlighted
in [6, 18, 20, 25]. Data curation can be summarized as, communication across time
with the ultimate goal to make data refined and usable in future and present [25].
Data curation of large scientific workflows can be divided into two major types
described below:

1. Curation of workflow and scientific processes: Workflow curation can be defined
as making the experiments available to future scientists and users. Workflows
are designed by scientists to access distributed resources, process large volumes
of data sets, and are executed to derive scientific knowledge. Data-intensive
scientific workflows are usually built upon earlier works by other scientists. Thus,
for collaborative scientists to be able to execute, extend, and derive knowledge
from these workflows, they need to know information about past workflows. The
information such as what resources or activities were used in the workflow, data
sets used, order of activities, etc. is needed for workflow curation. An interesting
aspect of the workflow curation is to trace the workflow creation process (such
as what activities were used, their relationships, order, and type of resources)
to re-produce a workflow [7]. The reproducibility, which is defined as, making

11 Provenance Support for Data-Intensive Scientific Workflows 229

possible the future execution is an important part of workflow curation. Workflow
reproducibility is only possible if detailed information on workflow models,
activities, input(s), output(s), resources, and parameters is available.

2. Curation of data used and generated during workflow execution: Scientific
workflows often involve consumption and dissemination of a huge amount of
data. Data-intensive workflows orchestrating data resources from different dis-
ciplines to support interdisciplinary research have challenges ranging from data
format, semantic description of data storage methods, and future preservation of
data. The data-intensive workflows highlight a number of issues related to data
curation: (1) long-term preservation of data resources, (2) locating data sets that
matches user requirements, and (3) collecting and preserving information about
intermediate data products.

The Data Curation and Visualization Component of the VePS provenance
framework addresses the core issue of workflow curation. It consists of three
modules, namely Workflow Visualizer, Report Generator, and BPEL Generator.
These modules are explained in the following subsections.

11.6.1 Workflow Visualizer and Report Generator

A provenance system is incomplete and ineffective without proper visualization,
dissemination, and presentation. Currently, though the querying capabilities are
not yet addressed, as the main focus was on collection of provenance information
independent of workflow enactment engine. However, for presenting the collected
provenance data, a simple validation application is developed. The Report Gen-
erator takes as input the provenance XML document, parses it and produces
a provenance information report on workflow. The report contains information
such as the total number of services in workflow, successfully invoked services,
unsuccessful services, name of the least efficient service, name of the most efficient
service, and names of the services having maximum and minimum parameters. The
Workflow Visualizer module visualizes the workflow with help of boxes and lines.
The rectangular boxes represent services of the workflow, and the lines show their
sequence of execution.

11.6.2 Workflows Reproducibility

The ability of e-Science workflows to manage distributed complex computations
has resulted in accelerating the scientific discovery process [8, 19]. To manage and
automate the execution of computational tasks, workflows are provided with the
specific details of resources and model locations (URI) and parameters settings.
Once workflows are properly represented as an abstract process, they are executed
and realized via SWfMS. The results of a workflow, if notable, are shared with peer

230 F.A. Khan and P. Brezany

scientists and the research community. But for reviewers and researchers to trust
these results, they need to prototype and execute the experiment. This raises the
requirement of scientific workflows reproducibility.

Reproducibility not only results in validation and enhanced trust but it also
helps in establishing known phenomena. Workflow reproducibility can be defined
as documenting workflow activities, data, resources and parameters used so that the
same results are reproduced by an independent person [9]. To be able to reproduce
experiments, rich set of provenance information is required (such as URIs of
resources, data used, sequence of computational tasks, parameters used, interface of
resources, etc.). For reproducibility, a provenance system must capture information
on workflow intermediate inputs, outputs, and their relationship. For these reasons,
the VePS provenance framework supports reproducibility. The workflows that are
executed are transformed into BPEL executable processes. The BPEL is chosen
as a workflow representation language because it is increasingly becoming a de
facto standard for defining workflows and is widely used. The ability of BPEL to
be executed on any platform (such as Java and .NET platforms) makes it attractive
and suitable for e-Science infrastructures, where different users may use different
platforms.

The BPEL Generator module of the VePS takes as input the workflow prove-
nance XML document and parses the information (such as workflow activities
names, count and URIs of WSDLs). Upon reception of provenance information, it
checks the WSDL of the activities for partnerLinkType. For creating a communica-
tion link with the activities, the partnerLinkType is used by the partnerLink element
of the BPEL. If the original target WSDL file does not contain partnerLinkType,
then the WSDL is extended. This process is repeated for each activity and once it is
completed, the header, import, and partnerLink elements of the resultant BPEL are
created as shown in Fig. 11.6. The reproducibility component extracts data about

Provenance
XML

WSDL Extender

BPEL Generator

PIP Creator*

Variable
Creator

Invoke Creator

BPEL Workflow

<Process>
<Import>

<PartnerLink>

<Variables>

<Invoke>

Extend WSDL

Extend WSDL

Extend WSDL

Create

WSDL

WSDL

WSDL

Check PartnerLinkType
Workflow Reproducer

*PIP Creator: It creates
Process, Import, and
PartnerLink element

Fig. 11.6 BPEL Generator module of the Data Curation and Visualization Component

11 Provenance Support for Data-Intensive Scientific Workflows 231

variables (such as request and response variable of an activity), and the variables
element is created with variables declared and initialized. Finally, the invoke call
elements are created and the BPEL is finalized.

11.7 Related Work

There are numerous existing techniques and surveys [3, 27, 32] conducted on the
provenance collection and some are coming up with promising results. But all
of them describe the provenance from a different perspective. The survey and
taxonomy presented by Simmhan et al. [27] is a more interesting survey, but even
this survey is too generic as its authors try to cover provenance issues from several
different areas of computer science. The goal of this chapter is to enhance the
understanding of e-Science provenance, while considering the real requirements
of e-Science; that is a fully modular, portable and considering the autonomity of
resource providers.

Zhao et al. [35] outline the provenance log produced in the myGrid environment
by the Freefluo workflow enactment engine. In this provenance documents are
linked together to browse and annotate using a Conceptual Open Hypermedia Agent
(COHSE) agent. Provenance documents are exported to the COHSE environment
and ontologies are prepared for annotating the documents and related web pages and
finally the documents can be annotated with the concepts drawn from the myGrid
ontology. Clicking on an annotation navigates to other workflow records associated
semantically. Groth et al. [13] articulate the limitations of provenance generation
in myGrid, e.g., it does not address general architectures or protocols for recording
provenance but is more domain and project specific.

An infrastructure level recording of provenance in service-oriented architectures
has been proposed in [30]. Provenance can be recorded either along-side the data
as metadata or it can be stored in a separate repository made accessible as a Grid
or Web service. However, the first solution required maintaining integrity of the
provenance record as transformations take place and significant changes may need
to be made in the existing data storage structure.

Rajbhandari and Walker [24] have presented a provenance collection and query-
ing model in a service-oriented architecture environment. Here, the provenance
can be collected synchronously or asynchronously through a provenance collection
service from the workflow enactment engine. This is based on a centralized
approach. It collects messages between the enactment engine and associated
workflow services. However, not all interactions of services pass through an
enactment engine. For example, in some workflow, service call other services
directly for some of their computations, leaving the enactment engine unaware of
such interactions. Moreau [29] presents a technology-independent logical archi-
tecture for a provenance system. The architecture consists of provenance store
and its interfaces, libraries, application services, processing services, and different
policies. In a service-oriented architecture, provenance can be categorized into actor

232 F.A. Khan and P. Brezany

provenance and interaction provenance. Actor provenance architecture is proposed
which records provenance of the actors and their interactions with the enactment
engine through provenance handlers. Since an enactment engine may invoke
services from multiple domains, it may use multiple provenance handlers. However,
given that the services and resources in the remote domain will unlikely be under
the control of this single enactment engine, the deployment of remote provenance
handlers may not be possible.

11.8 Conclusions

With the emergence of e-Science and associated data-intensive workflows, keep-
ing log of the experimental activities during workflow execution has become a
challenge. In this chapter, the VePS provenance framework is proposed, which
is capable of provenance data collection, storage, reproducibility, visualization,
and parameters significance measurement for e-Science applications. The VePS is
workflow enactment engine independent and its framework consists of three layers,
namely e-Infrastructure Layer, Data Preparation Layer, Data Preservation Layer
and two components called Workflow Optimization Component and Data Curation
and Visualization Component.

The ability of the Provenance Interceptor component to run independently of the
workflow execution engine, clients, and activities makes it domain and application
independent. It also means that the VePS is no longer coupled tightly to SWfMS and
hence can work across multiple engines. The Provenance Parser and Provenance
Transformer components lay outside the underlying infrastructure. This keeps the
overhead to minimum and enables the VePS provenance framework to exert less
computational burden on the workflow enactment engine, middleware, client(s),
activities, and services. To enable proper use of provenance data and store in
interoperable format, the Provenance Transformer is designed and implemented.
It structures and stores the provenance data in the XML format.

The PSE is based on the ACO meta-heuristic algorithm and generates a sorted
list of workflow parameters by their significance. An advantage of having sorted
significance list is that it enhances users knowledge on parameters and guide them
in choosing which parameters to consider and which to ignore. Furthermore, the
PSE is capable of working with parameters of both discrete and continuous value
ranges types and works well when the expected or desired results of workflows are
known.

To enable the users of real-world complex workflows to re-execute and reproduce
their experiments, the Data Curation and Visualization Component is proposed.
It produces an executable workflow document specified in the BPEL language.
The benefits of reproducibility include enhanced trust, comparison of results, and
authentication. It also visualizes the workflow and produces an information report
to give an insight into the workflow.

11 Provenance Support for Data-Intensive Scientific Workflows 233

The VePS promises to be light weight, domain, and SWfMS-independent
(portable) provenance framework in-line with the core theme of e-Science
(modularity and de-coupleness). The issues identified include differentiation of
workflow activities in multiple workflow execution scenario, dependence on the
middleware and the limitation of PSE to work only when expected outcome is
known. We believe that the VePS provenance framework is one step forward, and
the future lies in fully independent provenance systems.

References

1. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. Course Technology,
Florence (1996). ISBN: 978-0534949686

2. Azeez, A.: Axis2 popularity exponentially increasing. http://afkham.org/2008/08/axis2-
popularity-exponentially.html (URL)

3. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey, pp. 1–28 (2005)
4. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J.: Extensible

markup language (XML) 1.1 (2004)
5. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data provenance,

pp. 316–330. LNCS, London (2001)
6. Carole, G., Robert, S., et al.: Data curation C process curation=data integration C science.

Brief Bioinform. 6, 506–517 (2008)
7. Deelman, E., Chervenak, A.: Data management challenges of data-intensive scientific work-

flows (2008)
8. Deelman, E., Taylor, I.: Special issue on scientific workflows. J. Grid Comput. 3–4, 151–151

(2005)
9. Donoho, D.L., Maleki, A., et al.: Reproducible research in computational harmonic analysis,

pp. 8–18 (2009)
10. Dorigo, M., Sttzle, T.: Ant colony optimization. MIT, MA (2004)
11. Fox, G., Gannon, D.: Workflow in grid systems. pp. 1009–1019 (2006)
12. Greenwood, M., Goble, C., et al.: Provenance of e-Science Experiments – Experience from

Bioinformatics, pp. 223–226 (2003)
13. Groth, P., Luck, M., Moreau, L.: Formalising a protocol for recording provenance in grids,

pp. 147–154 (2004)
14. Jayasinghe, D.: Quickstart Apache Axis2: A practical guide to creating quality web services.

Packt Publishing (2008)
15. Khan, F.A., Han, Y., Pllana, S., Brezany, P.: Provenance support for grid-enabled scientific

workflows, pp. 173–180. IEEE, Beijing, (2008)
16. Khan, F.A., Han, Y., Pllana, S., Brezany, P.: Estimation of parameters sensitivity for scientific

workflows. In: Proceedings of International Conference on ICPP, Vienna, Austria. IEEE
Computer Society (2009)

17. Khan, F.A., Han, Y., Pllana, S., Brezany, P.: An ant-colony-optimization based approach for
determination of parameter significance of scientific workflows, pp. 1241–1248 (2010)

18. Lord, P., Macdonald, A., Lyon, L., Giaretta, D.: From data deluge to data curation, pp. 371–375
(2004)

19. Ludaescher, B., Goble, C.: Special section on scientific workflows. SIGMOD Rec. 3, 1–2
(2005)

20. Moreau, L., Foster, I.: Provenance and annotation of data. In: International Provenance and
Annotation Workshop, LNCS. Springer, Berlin (2006)

234 F.A. Khan and P. Brezany

21. Moreau, L., Clifford, B., et. al. The Open Provenance Model Core Specification (v1.1). Future
Generation Computer Systems, New York (2010)

22. Muehlen, M.Z.: Volume versus variance: Implications of data-intensive workflows (2009)
23. OASIS: The WS-BPEL 2.0 specification. http://www.oasis-open.org/committees/download.

php/23964/wsbpel-v2.0-primer.htm(2007)
24. Rajbhandari, S., Walker, D.W.: Incorporating provenance in service oriented architecture,

pp. 33–40. IEEE Computer Society, USA (2006)
25. Rusbridge, C., Burnhill, P., Ross, S. et al.: The digital curation centre: A vision for digital cura-

tion, pp. 31–41 (2005). doi: http://doi.ieeecomputersociety.org/10.1109/LGDI.2005.1612461
26. Schroeder, R.: e-Sciences as research technologies: reconfiguring disciplines, globaliz-

ing knowledge. Soc. Sci. Inf. Surles Sci. Sociales 2, 131–157 (2008). doi: 10.1177/
0539018408089075

27. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-Science, pp. 31–36
(2005)

28. Simmhan, Y.L., Plale, B., Gannon, D.: Karma2: Provenance management for data-driven
workflows. Int. J. Web Service Res. 2, 1–22 (2008)

29. Stevens, R.D., Tipney, H.J., Wroe, C.J., et al.: Exploring Williams-Beuren syndrome using
myGrid. In: In Proceedings of 12th International Conference on Intelligent Systems in
Molecular Biology (2003)

30. Szomszor, M., Moreau, L.: Recording and reasoning over data provenance in web and grid
services, pp. 603–620 (2003)

31. Talbi, E.G.: Metaheuristics: From design to implementation (Wiley Series on Parallel and
Distributed Computing). Wiley, NY (2009). http://www.amazon.com/Metaheuristics-Design-
Implementation-El-Ghazali-Talbi/dp/0470278587

32. Tan, W.C.: Research problems in data provenance, pp. 45–52 (2004)
33. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.): Workflows for e-Science: Scientific

workflows for grid. Springer, Berlin (2006)
34. Uri, B., Avraham, S., Margo, S.: Securing provenance, pp. 1–5. USENIX Association, CA,

(2008)
35. Zhao, J., Goble, C., Greenwood, M., Wroe, C., Stevens, R.: Annotating, linking and browsing

provenance logs for e-Science, pp. 158–176 (2003)

Chapter 12
Managing Data-Intensive Workloads in a Cloud

R. Mian, P. Martin, A. Brown, and M. Zhang

Abstract The amount of data available for many areas is increasing faster than
our ability to process it. The promise of “infinite” resources given by the cloud
computing paradigm has led to recent interest in exploiting clouds for large-scale
data intensive computing. Data-intensive computing presents new challenges for
systems management in the cloud including new processing frameworks, such as
MapReduce, and costs inherent with large data sets in distributed environments.
Workload management, an important component of systems management, is the
discipline of effectively managing, controlling and monitoring “workflow” across
computing systems. This chapter examines the state-of-the-art of workload manage-
ment for data-intensive computing in clouds. A taxonomy is presented for workload
management of data-intensive computing in the cloud and use the taxonomy to
classify and evaluate current workload management mechanisms.

12.1 Introduction

Economic and technological factors have motivated a resurgence in shared comput-
ing infrastructure with companies such as Amazon, IBM, Microsoft, and Google
providing software and computing resources as services. This approach, known
as cloud computing, gives customers the illusion of infinite resources available on
demand while providing efficiencies for application providers by limiting up-front
capital expenses and by reducing the cost of ownership over time [1, 2].

Cloud computing is, in turn, helping to realize the potential of large-scale data-
intensive computing by providing effective scaling of resources. A growing number
of companies, for example, Amazon [3] and Google [4], rely on their ability to

R. Mian (�) � P. Martin � A. Brown � M. Zhang
School of Computing, Queen’s University, Kingston, ON, K7L 3N6, Canada
e-mail: mian@cs.queensu.ca; martin@cs.queensu.ca; brown@cs.queensu.ca;
myzhang@cs.queensu.ca

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 12, © Springer-Verlag Berlin Heidelberg 2011

235

236 R. Mian et al.

process large amounts of data to drive their core business. The scientific community
is also benefiting in application areas such as astronomy [5] and life sciences [6]
that have very large datasets to store and process.

Data-intensive computing presents new challenges for systems management in
the cloud. One challenge is that data-intensive applications may be built upon
conventional frameworks, such as shared-nothing database management systems
(DBMSs), or new frameworks, such as MapReduce [7], and so have very different
resource requirements. A second challenge is that the parallel nature of large-scale
data-intensive applications requires that scheduling and resource allocation be done
so as to avoid data transfer bottlenecks. A third challenge is to support effective
scaling of resources when large amounts of data are involved.

Workload management is an important component of systems management. One
may define a workload to be a set of requests that each access and process data under
some constraints. The data access performed by a request can vary from retrieval of
a single record to the scan of an entire file or table. The requests in a workload
share a common property, or set of properties, such as the same source application
or client, type of request, priority, or performance objectives [8].

Workloads executing on the same data service compete for system resources such
as processors, main memory, disk I/O, network bandwidth and various queues. If
workloads are allowed to compete without any control, then some workloads may
consume a large amount of the shared system resources resulting in other workloads
missing their performance objectives.

Workload management is the discipline of effectively managing, controlling
and monitoring “workflow” across computing systems [9]. In a cloud, the two
main mechanisms used for workload management are scheduling requests and
provisioning resources. Since the load on a data service in the cloud can fluctuate
rapidly among its multiple workloads, it is impossible for system administrators
to manually adjust the system configurations to maintain the workloads’ objectives
during their execution. It is therefore necessary to be able to automatically manage
the workloads on a data service.

The primary objective of this chapter is to provide a systematic study of workload
management of data-intensive workloads in clouds. The contributions of this chapter
are the following:

• Taxonomy of workload management techniques used in clouds.
• A classification of existing mechanisms for workload management based on the

taxonomy.
• An analysis of the current state-of-the-art for workload management in clouds.
• A discussion of possible directions for future research in the area.

The remainder of this chapter is structured as follows. Section 12.2 gives an
overview of workload management in traditional DBMSs as background for the
remainder of this chapter. Section 12.3 describes the taxonomy for workload man-
agement in clouds. Section 12.4 uses the taxonomy to survey existing systems and
techniques to manage data-intensive workloads in clouds. Section 12.5 summarizes
the paper and presents directions for future research.

12 Managing Data-Intensive Workloads in a Cloud 237

12.2 Background

First, an overview of workload management in traditional DBMSs is provided
to highlight the main concepts in workload management. Next, the different
architectures that have been proposed to support data-intensive computing in the
cloud are identified and their impact on workload management is discussed.

12.2.1 Workload Management in DBMSs

Workload management, as defined earlier, is the discipline of effectively managing,
controlling and monitoring “workflow” across computing systems [9]. The trend
of consolidating multiple individual databases onto a single shared data resource
means that multiple types of workloads are simultaneously present on a single
data resource. These workloads may include on-line transaction processing (OLTP)
workloads, which consists of short and efficient transactions that may require only
milliseconds of CPU time and very small amounts of disk I/O to complete, as well
as on-line analytical processing (OLAP) workloads, which typically are longer,
more complex and resource-intensive queries that can require hours to complete.
Workloads submitted by different applications or initiated from distinct users may
also have performance objectives that need to be satisfied. Workload management
is necessary to ensure that different workloads meet their performance objectives,
while the DBMS maintains high utilization of its resources.

Workload management in DBMSs involves three common types of control
mechanisms, namely admission, scheduling and execution controls [10]. Admission
control determines whether or not newly arriving queries can be admitted into the
system. It is intended to avoid increasing the load on an already busy system.
The admission decision is based on admission control policies, the current load
on the system and estimated metrics such as the arriving query’s cost, resource
usage, or execution time. Query scheduling determines when admitted queries are
given to the database engine for execution. Its primary goal is to decide how many
queries from different types of workloads with different business priorities can be
sent to the database engine for execution at the same time. Execution control, in
contrast with admission control and scheduling that are applied to queries before
their execution, is imposed while the query is executing. It involves either slowing
down or suspending a query’s execution to free up shared system resources for
use by higher priority queries. As query costs estimated by the database query
optimizer may be inaccurate, some long-running and resource-intensive queries
might get the chance to enter a system when the system is experiencing a heavy load.
These problematic queries compete with others for the limited available resources
and may result in high priority queries getting insufficient resources and missing
their performance goals. Execution control manages the running of problematic
queries based on execution control policies and determines what queries should be
controlled as well as to what degree.

238 R. Mian et al.

12.2.2 Data-Intensive Computing Architectures

Data-intensive computing in the cloud involves diverse architectures and work-
loads, which adds complexity for workload management compared with traditional
DBMSs. Workloads in the cloud can range from ones consisting of relational queries
with complex data accesses to others involving highly parallel MapReduce tasks
with simple data accesses. The workloads in clouds can also differ from DBMS
workloads with respect to granularity of requests, that is the amount of data accessed
and processed by a request. Cloud workloads are typically coarse-grained to localize
data access and limit the amount of data movement. This chapter considers the
following four different architectures for data-intensive computing in the cloud:

• MapReduce is a popular architecture to support parallel processing of large
amounts of data on clusters of commodity PCs [7], [11]. MapReduce enables
expression of simple computations while hiding the details of parallelization,
fault-tolerance, data distribution, and load balancing from the application devel-
oper. A MapReduce computation is composed of two phases, namely Map and
Reduce phases. Each phase accepts a set of input key/value pairs and produces
a set of output key/value pairs. A Map task takes a set of input pairs and
produces sets of key/value pairs grouped by intermediate key values. All pairs
with the same intermediate key are passed to the same Reduce task, which
combines these values to form a possibly smaller set of values. Examples of
MapReduce systems include Google’s implementation [11] and the open-source
implementation Hadoop [12].

• Dataflow-Processing models parallel computations in a two-dimensional graph-
ical form [13]. Data dependencies between individual tasks are indicated by
directed arcs. The edges represent data moving between tasks. Dataflow systems
implement this abstract graphical model of computation. Tasks encapsulate data
processing algorithms. Tasks may be custom-made by users or adhere to some
formal semantics such as relational queries. Examples of dataflow processing
systems in a cluster include Condor [14], Dryad [15], Clustera [16], and Cosmos
[17]. Arguably, these systems can be extended to clouds with little effort.

• Hybrid DBMS architectures try to move relational DBMSs to the cloud. Large-
scale database processing is traditionally done with shared-nothing parallel
DBMSs. Queries are expressed as a dataflow graph, where the vertices are
subqueries executed on individual DBMSs [18]. While shared-nothing parallel
DBMSs exploit relational DBMS technology, they suffer from several limitations
including poor fault tolerance, poor scaling, and a need for homogeneous plat-
forms. There are a number of recent proposals for a hybrid approach for clouds
that combines the fault tolerance, heterogeneity, and ease-of-use of MapReduce
with the efficiency and performance of shared-nothing parallel DBMSs. Exam-
ples of hybrid DBMSs include Greenplum [19] and HadoopDB [20]

• Stream-processing is one of the most common ways in which graphics processing
units and multi-core hosts are programmed [21]. In the stream-processing
technique, each member of the input data array is processed independently

12 Managing Data-Intensive Workloads in a Cloud 239

by the same processing function using multiple computational resources. This
technique is also called Single Program, Multiple Data, a term derived from
Flynn’s taxonomy of CPU design [22]. Sphere is an example of a stream-
processing system for data-intensive applications [21].

12.3 Workload Management Taxonomy

The taxonomy proposed for the management of data-intensive workloads in Cloud
Computing provides a breakdown of techniques based on functionality. The taxon-
omy is used in the next section of this chapter to classify and evaluate existing
workload management mechanisms. The top layer of the taxonomy, which is
shown in Fig. 12.1, contains four main functions performed as part of workload
management.

Workload characterization is essential for workload management as it provides
the fundamental information about a workload to the management function. Work-
load characterization can be described as the process of identifying characteristic
classes of a workload in the context of workloads’ properties such as costs, resource
demands, business priorities, and/or performance requirements.

Provisioning is the process of allocating resources to workloads. The ability
of clouds to dynamically allocate and remove resources means that provisioning
should be viewed as a workload management mechanism. Provisioning of data-
intensive workloads needs to balance workload-specific concerns such as service
level objectives (SLOs) and cost with system-wide concerns such as load balancing,
data placement, and resource utilization.

Scheduling controls the order of execution of individual requests in the workloads
according to specified objectives. The scheduling of data-intensive workloads is
impacted by the presence of multiple replicas of required datasets placed at different
geographical locations, which makes it different from scheduling compute-intensive
workloads.

Fig. 12.1 Workload
management taxonomy – top
layer

Workload
Management

Provisioning

Characterization

Monitoring

Scheduling

240 R. Mian et al.

Monitoring is essential to provide feedback to the scheduling and provision-
ing processes and can be integrated into these processes or exist as a separate
autonomous process. It tracks the performance of cloud components and makes
the data available to the other processes. CloudWatch [23] for Amazon’s EC2 is
an example of a monitoring service. It is used by the AutoScaling provisioning
service [24] and provides users with information on resource utilization, operational
utilization, and overall demand patterns.

The remainder of this chapter focuses on the scheduling and provisioning
functions of workload management in the cloud. The categories used are explained
within each of the functions and then used to categorize existing systems and
work from the research literature. The workload characterization and monitoring
functions are left for future work.

12.3.1 Scheduling

Figure 12.2 depicts the scheduling portion of the taxonomy. A number of key
features of a scheduling approach is presented that can be used to differentiate
among the approaches. Clouds are viewed as similar to Grids in a number of ways
[25] and the taxonomy builds on previous studies of scheduling in Grids [26, 27].

12.3.1.1 Work Units

Scheduling policies can be classified according to the job abstraction (work unit)
exposed to the scheduler for execution. The work units can range from simple
queries (fine-grained data-intensive tasks) to coarser levels such as workflows of
tasks. The taxonomy identifies two subclasses of work units, namely tasks and
workflows.

A data-intensive task is defined as an arbitrary computation on data from a single
node where data access is a significant portion of task execution time and so affects
the scheduling decision. Examples of tasks include a relational query on a single
database and a Map or Reduce task on a node.

A workflow represents a set of tasks involving multiple nodes that must be
executed in a certain order because there are computational and/or data dependen-
cies among the tasks. Scheduling individual tasks in a workflow therefore requires
knowledge of the dependencies. Examples of a workflow are a distributed query on
a set of shared-nothing DBMSs and a MapReduce program.

12.3.1.2 Objective Functions

A scheduling algorithm tries to minimize or maximize some objective function.
The objective function can vary depending on the requirements of the users and
the architecture of the specific cloud. Users are concerned with the performance

12 Managing Data-Intensive Workloads in a Cloud 241

Scheduling
Mapping
Scheme

Static

Dynamic

Prediction-
revision

Just-in-Time

Objective
Function

Cloud-
centric

User-
centric

Makespan

QoS

Load Balancing

Workunit

Task

Workflow

Locality

Data

Process

Scheduling/
Replication
Coupling

Decoupled

Combined

Fig. 12.2 Scheduling portion of workload management taxonomy

of their workloads, and the total cost to run their work, while cloud providers, on
the contrary, care about the utilization of their resources and revenue. Objective
functions can therefore be categorized as user-centric and cloud-centric.

242 R. Mian et al.

User-centric objective functions aim to optimize the performance of each work
unit. An objective function based on the makespan aims to minimize the average
total completion time of a work unit. An objective function based on Quality-of-
Service (QoS) aims to meet performance requirements specified for a work unit
or workload such as a maximum cost, an average response time, or a completion
deadline.

Cloud-centric objective functions are primarily concerned with maximizing
revenue or resource utilization. To maximize revenue in a competitive cloud market,
providers typically offer multiple levels of performance and reliability with different
pricing. The aim of scheduling policies with a cloud-centric objective function is to
provide predictable and reliable behavior. Load-balancing, which distributes load in
the data center so that maximum work can be obtained out of the physical resources,
is a commonly used cloud-centric objective function.

12.3.1.3 Mapping Scheme

There are two basic types of methods to map work units to resources in workload
scheduling, namely static and dynamic methods. In static mapping schemes, it is
assumed that all information about the resources and the workloads are available
a priori and the complete execution schedule is determined prior to the actual
execution of the work units. The mapping decisions are based on predictions of
the behavior of the work units. In the case of unanticipated events such as failures,
the execution schedule is recalculated and the work units are re-executed ignoring
any previous progress.

Dynamic mapping schemes, however, are aware of the status of execution and
adapt the schedule accordingly. Dynamic mapping schemes are further classified
into prediction-revision and just-in-time schemes. Prediction-revision schemes
create an initial execution schedule based on estimates and then dynamically
revise that schedule during the execution as necessary. Just-in-time schemes do not
make an initial schedule and delay scheduling decisions for a work unit until it
is to be executed [28]. These schemes assume that planning ahead in large-scale
heterogeneous environments made up of commodity resources may produce a poor
schedule since it is not easy to accurately predict execution time of all workload
components or account for failures in advance.

12.3.1.4 Locality

Locality is a key issue for scheduling and load-balancing in parallel programs
[29, 30] and for query processing in databases [31]. It has similar importance for
scheduling of data-intensive workloads in the cloud. The type of locality exploited
is identified as either data or process locality. Data locality involves placing a work
unit in the cloud such that the data it requires is available on or near the local host,
whereas process locality involves placing data near the work units. In other words,

12 Managing Data-Intensive Workloads in a Cloud 243

data locality can be viewed as moving computation to data, and process locality as
moving data to computation.

12.3.1.5 Scheduling/Replication Coupling

In a cloud environment, the location where the computation takes place may be
separated from the location where the input data is stored, and the same input data
may have multiple replicas at different locations. The differentiating criteria for
scheduling policies here is whether they combine the management of scheduling
and replication or keep them separate.

In each case, the policy exploits locality differently. Decoupled scheduling
manages scheduling and replication separately. In exploiting data locality, the
scheduler takes the data requirements of work units into account and schedules them
close to a data source. In exploiting process locality, the scheduler brings input data
to the work unit and then takes output data away. Data replicas may be created to
facilitate data locality or for independent reasons such as general load balancing or
fault-tolerance.

Combined scheduling manages scheduling and replication together. In exploiting
data locality, the scheduler creates replicas of data, either proactively or reactively,
and schedules work units to be executed on nodes with the replicas. In exploiting
process locality, if the scheduler creates a replica for one work unit, then subsequent
work units requiring the same data can be scheduled on that host or in its
neighborhood.

12.3.2 Provisioning

Provisioning is the process of allocating resources for the execution of a task.
Clouds’ support for elastic resources means that provisioning should be viewed as
a workload management technique since resources can be dynamically allocated or
deallocated to match the demands of a workload. Provisioning for data-intensive
workloads is further complicated by the need to move or copy data when the
resource allocation changes. The provisioning portion of the taxonomy, which is
depicted in Fig. 12.3, identifies key features of provisioning that can be used to
categorize approaches.

12.3.2.1 Resource Type

Clouds currently provision two types of resources, namely virtual and physical
resources. Virtual resources emulate the hardware with a virtual machine (VM).
A VM can be packaged together with applications, libraries, and other configuration
settings into a machine image that gives the illusion of a particular platform while

244 R. Mian et al.

Fig. 12.3 Provisioining
portion of taxonomy

Provisioning

Trigger

Predictive

Reactive

Scope

Processing

Storage

Resource
Type

Physical

Virtual

External

hiding the underlying hardware. In case of physical resources, a user either sees
underlying hardware directly, or has knowledge of the hardware supporting the
virtual resources.

12.3.2.2 Scope

The scope of provisioning is the kind of resources that are varied, that is processing
resources or storage resources. It is clear to see how the key properties of clouds,
namely short-term usage, no upfront cost, and infinite capacity on demand, apply
for processing resources; it is less obvious for storage resources [1]. In fact, it is still
an open research problem to create a storage system that has the ability to combine
management of data with the clouds to scale on demand. Processing resources are
typically provisioned in terms of acquiring or relinquishing images. For example,
when an application’s demand for computation increases, then more images can be
acquired and the workload multiplexed across the increased set. Similarly, when
the demand tails off then some images can be released. Storage resources require
more complicated provisioning actions such as migrating a database [32] or varying
the number of data nodes [33].

12.3.2.3 Trigger

The trigger is the method used to initiate provisioning. Two kinds of internal triggers
are identified here, namely predictive and reactive triggers, which are part of the
controller managing provisioning in the cloud. External triggers that can initiate the

12 Managing Data-Intensive Workloads in a Cloud 245

provisioning from outside the controller are also identified. Predictive triggers use
models to forecast the need for variation in resources. They anticipate the need to
provision new resources and so minimize the impact of the provisioning process on
workload execution. Reactive triggers initiate provisioning when certain conditions
are met; for example, a workload’s SLOs are violated. External triggers are driven
by decisions outside the provisioning controller; for example, from the user or from
the scheduler. These conditions are set by the user. SLOs are mutual agreement on
QoS between the user and the cloud provider.

The predictive and reactive approaches have well-known advantages and disad-
vantages. Simple predictive models are quick and inexpensive but may result in
poor estimates of resource requirements. Accurate predictive models take longer to
produce estimates and may not be timely enough in practice. Reactive methods, on
the contrary, know when provisioning is required but may result in more disruption
to workload execution while the provisioning adjusts.

12.4 Workload Management Systems

This chapter now examines workload management systems for data-intensive
workloads in the cloud presented in the current research literature. The taxonomy
described above is used to categorize and evaluate this work. The scheduling and
provisioning aspects of the systems are explored in detail.

12.4.1 Scheduling Techniques

Scheduling, as noted earlier, has been examined with respect to other areas such
as grids. This chapter focuses on strategies that explicitly deal with data during
processing and on features such as adapting to environments with varied data
sources and scheduling work units to minimize the movement of data. In presenting
the survey of scheduling the systems are organized according to the four data-
intensive computing architectures discussed in the background section of this
chapter.

12.4.1.1 MapReduce

In the Google MapReduce implementation (GoogleMR) [7], Map and Reduce
functions are encapsulated as tasks that perform some computation on data sets.
Tasks are grouped into a workflow (MR-workflow) in which Map tasks are executed
to produce intermediate data sets for Reduce tasks. Data is managed by the Google
File System (GFS) [34]. GFS uses replication to provide resiliency, and these
replicas are exploited by GoogleMR to perform decoupled-scheduling.

246 R. Mian et al.

The scheduler exploits data locality by taking the location information of the
input files into account and scheduling Map tasks on or near a host that contains a
replica of its input data. The scheduler uses a dynamic mapping scheme to address
execution skew and failures, and is likely to be just-in-time mapping. The objective
function of the scheduler is to reduce the makespan of the MR-workflow.

Hadoop [35] is an open source implementation of MapReduce that closely
follows the GoogleMR model. Hadoop consists of two layers, namely the Hadoop
Distributed File System (HDFS) [36] and a data processing layer based on MapRe-
duce Framework [20]. The MapReduce Framework follows a simple master–slave
architecture.

The master is a single JobTracker and the slaves are TaskTrackers. The Job-
Tracker handles the runtime scheduling of an MR-workflow and maintains infor-
mation on each TaskTracker’s load and available data hosts. The JobTracker exploits
data locality by matching a TaskTracker to Map tasks that process data local to the
TaskTracker. It load balances by ensuring all available TaskTrackers are assigned
tasks. TaskTrackers regularly update the JobTracker with their status through
heartbeat messages. Hadoop’s built-in scheduler runs tasks in FIFO order with five
priority levels [37] and has a just-in-time mapping. When a task slot becomes free,
the scheduler scans through MR-workflows in order of priority and submit time to
find a task of the required type.

12.4.1.2 Dataflow-Processing

Condor is a high-throughput distributed batch computing system that provides a task
management mechanism, scheduling policy, priority scheme, resource monitoring
and resource management [14]. Directed Acyclic Graph Manager (DAGMan) is
a service built on top of Condor for executing multiple tasks with dependencies.
Condor uses combined scheduling since coordination among data components and
tasks can be achieved at a high level using DAGMan to dispatch both ready tasks and
data placement requests. It also provides a hybrid of data and process locality since
both tasks and data are being dispatched. DAGMan ensures that tasks are executed
in the right order and presents the tasks to the Condor scheduler, which maps tasks
to hosts at execution time employing a dynamic just-in-time mapping scheme. With
a workflow of tasks, a user is probably interested in reducing the makespan of his or
her workflow rather than throughput of individual tasks in the workflow.

Dryad, which draws from cluster management systems such as Condor, MapRe-
duce implementations, and parallel database systems, is a general-purpose frame-
work for developing and executing coarse-grain data parallel applications [15].
Dryad applications consist of a dataflow graph (which is really a workflow of
tasks) where each vertex is a program or a task and edges represent data channels
implemented via sockets, shared-memory message queues, or files. It is a logical
computation graph that is automatically mapped onto data hosts by the runtime
assuming dynamic mapping. Dryad provides support for scheduling the vertices

12 Managing Data-Intensive Workloads in a Cloud 247

on the data hosts of a cluster, establishing communication channels between
computations, and dealing with software and hardware failures.

Dryad uses a distributed storage system in which, like GFS, large files can
be broken into small pieces that are replicated and distributed across the local
disks of the cluster computers. The computer on which a graph vertex or task is
scheduled is therefore, in general, nondeterministic and the amount of data written
in intermediate computation stages is typically not known before a computation
begins. A dynamic just-in-time decoupled scheduling approach exploiting data
locality is thus used for scheduling and a makespan objective function is used.

Clustera [16] shares many of the same goals as Dryad and is similarly categorized
with the taxonomy. Both are targeted toward handling a wide range of work
units from fine-grained data-intensive tasks (SQL queries) to coarse-grained data-
intensive tasks and workflows. The two systems, however, use radically different
implementation methods. Dryad uses techniques similar to those first pioneered by
the Condor project based on the use of daemon processes running on each host in the
cluster to which the scheduler pushes tasks for execution. In contrast, Clustera uses
a pull model where a data host is implemented as a web-service client that requests
work from the server. If a suitable data host cannot be found, then the scheduler will
try to minimize the amount of data to transfer.

Cosmos is a distributed computing platform for storing and analyzing massive
data sets [17]. The Cosmos Storage System, like GFS, supports data distribution
and replication. It is optimized for large sequential I/O and all writes are append-
only. SCOPE is a declarative language that allows users to focus on the data
transformations required to solve the problem while hiding the complexity of the
underlying platform.

The SCOPE compiler and optimizer generate an efficient workflow and the
Cosmos runtime engine executes the workflow so SCOPE/Cosmos provide a
prediction-revision mapping. The Cosmos runtime scheduler uses a decoupled
scheduling approach and tries to schedule tasks to execute on the same data host
as their input data or at least within the same rack as the data in an attempt to exploit
data locality. Cosmos schedules a workflow onto the hosts when all the inputs
are ready, monitors progress, and, on failure, re-executes parts of the workflow.
SCOPE/Cosmos also uses a makespan objective function.

12.4.1.3 Stream-Processing

Sector [21] is a distributed storage system that can be deployed over a wide area. It
allows users to obtain large datasets from any location but assumes a high-speed
network connection. In addition, Sector automatically replicates files for better
reliability, availability and access throughout the WAN.

Sphere [21] is a compute service built on top of Sector that allows users to
write distributed data-intensive applications using a stream abstraction. A Sphere
stream consists of multiple data segments and the segments are processed by
Sphere Processing Engines (SPEs). An SPE can process a single data record from

248 R. Mian et al.

a segment, a group of data records or the complete segment. User-defined functions
(UDFs) are supported by the Sphere Cloud over data both within and across data
centers.

Parallelism is achieved in two ways. First, a Sector dataset consists of one or more
physical files and these files can be processed in parallel. Second, Sector is typically
configured to create replicas of files for archival purposes, and these replicas can
be processed in parallel. Sphere achieves data locality because often data can be
processed in place without moving it.

The SPE is the major Sphere service or task. Each SPE is based on a user-
defined function. Usually, there are many more segments than SPEs, which provides
a simple mechanism for load balancing. SPEs periodically report the progress
of the processing to the user. If an SPE does not report any progress before a
timeout occurs, then the user abandons the SPE. The segment being handled by
the abandoned SPE is assigned to another SPE and processing of that segment is
started again. Sphere therefore provides a just-in-time mapping.

Unlike the systems discussed so far, the user is responsible for orchestrating
the complete running of each Sphere task. One of the design principles of the
Sector/Sphere system is to leave most of the decision making to the user, so that
the Sector master can be quite simple. The objective function is therefore user-
centric and makespan is used as an example [21]. Sector independently replicates for
parallelism, which conforms to decoupled scheduling. Gu and Grossman argue that
both stream-processing and MapReduce are ways to simplify parallel programming
and that MapReduce-style programming can be implemented in Sphere by using a
Map UDF followed by a Reduce UDF.

12.4.1.4 Hybrid DBMS

The Pig project at Yahoo [38] and the open source Hive project [39] integrate declar-
ative query constructs from the database community into MapReduce software to
allow greater data independence, code reusability, and automatic query optimiza-
tion. Pig and Hive both use Hadoop as the underlying MapReduce framework and
so their workload management is the same as Hadoop.

HadoopDB provides such a hybrid structure at the systems-level [20]. It uses
MapReduce as the communication layer above multiple data nodes running single-
node DBMS instances. Queries are expressed in SQL, translated into MapReduce
(Hadoop) tasks by extending existing tools (Hive), and as much work as possible is
pushed into the DBMSs at the nodes. HadoopDB inherits the workload management
characteristics of Hadoop. The objective function is to minimize the makespan,
which is accomplished by pushing as much of the work as possible into the DBMSs.
Scheduling and replication are managed separately, which conforms to decoupled
scheduling and scheduling exploits data locality by dispatching tasks to DBMSs
containing the required data.

12 Managing Data-Intensive Workloads in a Cloud 249

12.4.1.5 Discussion

A summary of the evaluation using the scheduling taxonomy is given in Table 12.1.
Moving large amounts of data is expensive and causes significant delays in
processing. As a result, almost all of the surveyed systems exploit data locality
by bringing computations to the data source or near it. Arguably, this is the right
direction for data-intensive workload management.

Note that all the schedulers use a decoupled approach and try to place tasks close
to data. They do not, however, consider the need to create replicas in the face of
increased workload demand and so may overload data resources [40]. Therefore,
there appears to be a need for research to explore different replication strategies that
are independent (decoupled scheduling) and that work in concert with the scheduler
(combined scheduling).

Most of the systems surveyed use workflow as a unit of execution and employ
just-in-time mapping. This mapping approach is scalable and adapts to resource
heterogeneity and failures. Nevertheless, systems can still benefit from prediction-
revision mapping techniques that incorporate some pre-execution planning, work-
flow optimization, heuristics or history analysis. The additional analysis can help in
creating the appropriate number of replicas or determining the appropriate amount
of resources required for a computation.

Makespan is the prevalent objective function in the survey. Clouds, however,
are competitive and dynamic market systems in which users and providers have
their own objectives. Therefore, objective functions related to cost and revenue,
or participants’ utilities, are appropriate and require further study. Because the
economic cost and revenue are considered by cloud users and cloud providers,
respectively, objective functions and scheduling policies based on them need to be
developed.

12.4.2 Provisioning Techniques

Let us consider provisioning at the infrastructure level and identify three provision-
ing techniques currently in use, namely scaling, migration and surge computing.
The presentation of provisioning in clouds for data-intensive workloads is organized
based on the technique used.

12.4.2.1 Scaling

Scaling involves increasing or decreasing the amount of resources allocated depend-
ing on demand. Scaling is presently the most prevalent mechanism for dealing with
variations in the workload. Commercial clouds typically offer customers the choice
of a small number of fixed configuration VM types that differ in their computational
or data capacity [41].

250 R. Mian et al.

T
ab

le
12

.1
Su

m
m

ar
y

of
th

e
sc

he
du

li
ng

in
la

rg
e-

sc
al

e
da

ta
pr

oc
es

si
ng

sy
st

em
s

Sc
he

du
li

ng
/r

ep
li

ca
ti

on
W

or
k

Sy
st

em
A

rc
hi

te
ct

ur
e

O
bj

ec
tiv

e
fu

nc
ti

on
M

ap
pi

ng
co

up
li

ng
L

oc
al

it
y

un
it

G
oo

gl
eM

R
M

ap
R

ed
uc

e
U

se
r!

M
ak

es
pa

n;
C

lo
ud

!
L

oa
dB

al
an

ci
ng

Ju
st

-i
n-

ti
m

e
D

ec
ou

pl
ed

D
at

a
W

or
kfl

ow
H

ad
oo

p
M

ap
R

ed
uc

e
U

se
r!

M
ak

es
pa

n;
C

lo
ud

!
L

oa
dB

al
an

ci
ng

Ju
st

-i
n-

ti
m

e
D

ec
ou

pl
ed

D
at

a
W

or
kfl

ow
D

A
G

M
an

/c
on

do
r

D
at

afl
ow

pr
oc

es
si

ng
U

se
r!

M
ak

es
pa

n
Ju

st
-i

n-
ti

m
e

C
om

bi
ne

d
H

yb
ri

d
Ta

sk
D

ry
ad

D
at

afl
ow

pr
oc

es
si

ng
U

se
r!

M
ak

es
pa

n
Ju

st
-i

n-
ti

m
e

D
ec

ou
pl

ed
D

at
a

W
or

kfl
ow

C
lu

st
er

a
D

at
afl

ow
pr

oc
es

si
ng

U
se

r!
M

ak
es

pa
n

Ju
st

-i
n-

ti
m

e
D

ec
ou

pl
ed

D
at

a
W

or
kfl

ow
SC

O
PE

/c
os

m
os

D
at

afl
ow

pr
oc

es
si

ng
U

se
r!

M
ak

es
pa

n
Pr

ed
ic

ti
on

-r
ev

is
io

n
D

ec
ou

pl
ed

D
at

a
W

or
kfl

ow
Se

ct
or

/s
ph

er
e

St
re

am
pr

oc
es

si
ng

U
se

r!
M

ak
es

pa
n;

C
lo

ud
!

L
oa

dB
al

an
ci

ng
Ju

st
-i

n-
ti

m
e

D
ec

ou
pl

ed
D

at
a

Ta
sk

Pi
g/

hi
ve

H
yb

ri
d

D
B

M
S

U
se

r!
M

ak
es

pa
n;

C
lo

ud
!

L
oa

dB
al

an
ci

ng
Ju

st
-i

n-
ti

m
e

D
ec

ou
pl

ed
D

at
a

W
or

kfl
ow

H
ad

oo
pD

B
H

yb
ri

d
D

B
M

S
U

se
r!

M
ak

es
pa

n
Ju

st
-i

n-
ti

m
e

D
ec

ou
pl

ed
D

at
a

W
or

kfl
ow

12 Managing Data-Intensive Workloads in a Cloud 251

Amazon EC2 provides scaling of virtual processing resources called instances.
AutoScaling [24] uses a reactive trigger mechanism and allows a user to automat-
ically scale instances up or down according to user-defined conditions based on
CloudWatch metrics.

Elastic storage addresses elastic control for multi-tier application services that
acquire and release resources in discrete units, such as VMs of predetermined
configuration [33]. It focuses on elastic control of the storage tier where adding
or removing a data node (which consists of VMs) requires rebalancing stored
data across the data nodes. The storage tier presents new challenges for elastic
control, namely delays due to data rebalancing, interference with applications and
sensor measurements, and the need to synchronize variation in resources with data
rebalancing. They use a reactive trigger mechanism and use an integral control
technique called proportional thresholding to regulate the number of discrete data
nodes in a cluster.

Google AppEngine scales a user’s applications automatically for both processing
resources and storage. The scaling is completely transparent to the user. The
system simply replicates the application enough times to meet the current workload
demand. A reactive trigger is likely used to initiate the scaling. The amount
of scaling is capped in that resource usage of the application is monitored and
cannot exceed its quota. There is a base level of usage available for free with a
payment system available to pay for higher quotas. The monitored resources include
incoming and outgoing bandwidth, CPU time, stored data and e-mail recipients. [4]

Microsoft Windows Azure does not offer automatic scaling but it is the primary
tool for provisioning. Users can provision how many instances they wish to have
available for their application. Like Amazon, the instances are virtual processing
resources [42].

12.4.2.2 Migration

Migration is a workload management technique used in clouds where an application
execution is moved to a more appropriate host. Live migration of virtual machines
has been shown to have performance advantages in the case of computation-
intensive workloads [43] as well as fault tolerance benefits [44]. Migration with
data-intensive workloads, however, faces problems with high overhead and long
delays because large data sets may have to be moved [32].

Elmore et al. [32] analyze various database multi-tenancy models and relate
them to the different cloud abstractions to determine the tradeoffs in supporting
multi-tenancy. So, the scope is the storage tier. At one end of the spectrum is the
shared hardware model, which uses virtualization to multiplex multiple data nodes
on the same host with strong isolation. In this case, each data node has only a
single database process with the database of a single tenant. At the other end of
the spectrum is the shared table model, which stores multiple tenants’ data in shared
tables providing the finest level of granularity.

252 R. Mian et al.

They provide a preliminary investigation and experimental results for various
multi-tenancy models and forms of migration. For shared hardware migration,
using a VM abstracts the complexity of managing memory state, file migration
and networking configuration. Live migration only requires Xen be configured to
accept migrations from a specified host. Using Xen and a 1 Gbps network switch, the
authors were able to migrate an Ubuntu image running MySQL with a 1 GB TPC-C
database between hosts on average in only 20 s. Running the TPC-C benchmark in
a standard OS vs. a virtual OS, the authors observed an average increase of response
times by 5–10%. In this case, the resource type is virtual.

On the contrary, shared table migration is extremely challenging and any
potential method is coupled to the implementation. Isolation constructs must be
available to prevent demanding tenants from degrading system wide performance
in systems without elastic migration. Some shared table models utilize tenant
identifiers or entity keys as a natural partition to manage physical data placement
[45]. Finally, using a “single” heap storage for all tenants [46] makes isolating a cell
for migration extremely difficult. Without the ability to isolate a cell leaves efficient
migration of shared tables an open problem.

12.4.2.3 Surge Computing

Surge computing is a provisioning technique applicable in Hybrid (private/public)
clouds. The resources of the private cloud are augmented on-demand with resources
from the public cloud [47]. In these scenarios, the clouds are typically connected by
a WAN so that there are latency implications with moving data to the public cloud.

Zhang et al. present a comprehensive workload management framework for web
applications called resilient workload manager (ROM) [47]. ROM includes compo-
nents for load balancing and dispatching, offline capacity planning for resources,
and enforcing desired QoS (e.g., response time). It features a fast workload
classification algorithm for classifying incoming workload between a base workload
(executing on a private cloud) and trespassing workload (executing on a public
cloud). So, the scope of ROM is to vary processing resources. Resource planning
and sophisticated request dispatching schemes for efficient resource utilization are
only performed for base workload. The private cloud runs a small number of
dedicated hosts for the base workload, while images (VMs C applications etc.) in
the public cloud are used for servicing the trespassing workload. So, the resource
type is hybrid. The data storage in the private cloud is decoupled from that in the
public cloud so shared or replicated data is not needed.

In the ROM architecture, there are two load balancers, one for each type of
workload. The base load balancer makes predictions on the base workload and
uses integrated offline planning and online dispatching schemes to deliver the
guaranteed QoS. The prediction may also trigger an overflow alarm. Then, workload
classification algorithm sends some workload to the public cloud for processing.
ROM operates an integrated controller and load balancer in the public cloud. The

12 Managing Data-Intensive Workloads in a Cloud 253

controller reacts to the external alarm and provisions images and the load balancer
services trespassing workload on the provisioned images using round-robin policy.

Moreno-Vozmediano et al. [48] analyze the deployment of generic clustered
services on top of a virtualized infrastructure layer that combines the OpenNebula
[49] VM manager and Amazon EC2. The separation of resource provisioning,
managed by OpenNebula, from workload management, provides elastic cluster
capacity. The capacity can be varied by deploying (or shutting down) VMs on
demand, either in local hosts or in remote EC2 instances. So, the resource type
is virtual.

The variation in the number VMs in OpenNebula is requested by an external
provisioning module. For example, a provisioning policy limits the number of VMs
per host to a given threshold.

Two experiments operating over the Hybrid cloud are reported by Moreno-
Vozmediano et al. [48]. One shares insights in executing a typical High Throughput
Computing application, and the other at latencies in a clustered web server. For the
experiments, the scope is variation in processing resources.

12.4.2.4 Discussion

A summary of the classification of provisioning techniques is given in Table 12.2. It
can be observed that most of the current work on provisioning in clouds involves
scaling and is applied to web applications that do not involve large-scale data
processing, so scaling data storage is not an issue. In the ROM system, the data
storage in the private cloud is decoupled from that in the public cloud so that the
latter is not tied to the former through shared or replicated data resources. This
seems a reasonable approach for large read-only data.

Note that the reactive techniques examined involve the user defining (condition,
action) pairs to control the reaction. With multiple rules, many questions arise
such as: can multiple rules be defined on the same metrics, can rules (conditions,

Table 12.2 Summary of provisioning for large-scale data processing

Technique System Scope Trigger Resource type

Scaling Amazon
AutoScaling Processing Reactive Virtual
Elastic storage Storage Reactive Virtual
Google
AppEngine Processing/storage Reactive Physical
Microsoft windows azure Processing External Virtual

Migration Multi-tenant
DB migration Storage External Virtual

Surge computing Resilient workload
manager (ROM) Processing External Hybrid

OpenNebula Processing External Virtual

254 R. Mian et al.

actions) overlap and can rules contradict. Armbrust et al. point out that there is a
need to create a storage system that can harness the cloud’s advantage of elastic
resources while still meeting existing expectations on storage systems in terms of
data consistency, data persistence and performance [1].

Systems that jointly use Scheduling and Provisioning have been explored
in Grids. The Falkon [50] scheduler triggers a provisioner component for host
increase/decrease. This host variation has also been explored during the execution
of a workload hence providing dynamic provisioning. Presently, tasks stage data
from a shared data repository. Since this can become a bottleneck as data scales,
scheduling exploiting data locality is suggested as a solution. The MyCluster project
[51] similarly allows Condor or SGE clusters to be overlaid on top of TeraGrid
resources to provide users with personal clusters. Various provisioning policies with
different trade-offs are explored including dynamic provisioning. The underlying
motivation is to minimize the wastage of resources. However, MyCluster is aimed
at compute-intensive tasks. Given the similarities between Grids and Clouds, the
joint techniques for Scheduling and Provisioning in these systems and related work
are worth exploring for their relevance in clouds.

12.5 Conclusions and Future Research

The amount of data available for many areas is increasing faster than our ability
to process it. The promise of “infinite” resources given by the cloud computing
paradigm has led to recent interest in exploiting clouds for large-scale data-intensive
computing. Data-intensive computing presents new challenges for systems man-
agement in the cloud including new processing frameworks, such as MapReduce,
and costs inherent with large data sets in distributed environments. Workload
management, an important component of systems management, is the discipline
of effectively managing, controlling and monitoring “workflow” across computing
systems. This chapter examines the state-of-the-art of workload management for
data-intensive computing in clouds.

A taxonomy is presented for workload management of data-intensive computing
in the cloud. The top level of the taxonomy identifies four main functions: workload
characterization, provisioning, scheduling and monitoring. The focus is on the
scheduling and provisioning functions in this chapter. The scheduling portion of
the taxonomy categorizes scheduling methods in terms of several key properties: the
work unit scheduled; the objective function optimized by the scheduling; the scheme
used to map work units to resources; the type of locality exploited in the scheduling,
if any, and whether data replica management is integrated with scheduling or not. In
examining current scheduling approaches, note that most consider entire workflows,
optimize a user-centric objective like the makespan of a workflow, use simple
dynamic mapping and exploit knowledge of replicas in placing tasks. Arguably,
there is a need to better integrate scheduling and replica management and to balance
global metrics such as cost with user metrics in scheduling.

12 Managing Data-Intensive Workloads in a Cloud 255

The provisioning portion of the taxonomy categorizes provisioning methods in
terms of the kind of resource provisioned (physical or virtual), the kind of trigger
used to initiate provisioning (Predictive, Reactive or Trigger) and the scope of
the provisioning (processing or storage). Note that systems use three methods to
provision resources, namely scaling, migration, and surge computing. Scaling is
the primary method used in public clouds such as Amazon’s EC2 where virtual
processing images are automatically scaled using a reactive trigger based on user-
defined conditions. Surge computing is used in the case of a hybrid private–public
cloud combination. There is little work so far on provisioning storage resources.

There are numerous opportunities for research into workload management of
large-scale data computing in the cloud. First, provisioning of storage resources in a
dynamic manner involves a number of problems including effective partitioning and
replication of data, minimizing the impact of dynamic reallocation of resources on
executing work, and finding new definitions of consistency appropriate for the cloud
environment. Second, workload management methods that integrate scheduling and
provisioning should be explored. Third, data-intensive workloads can be diverse
ranging from coarse-grained MapReduce workflows to fine-grained dataflow graphs
of distributed queries. It is unclear what techniques are appropriate and should be
chosen and applied to be most effective for a particular workload executing on the
clouds under certain particular circumstances, or how the multiple techniques can
be coordinated to ensure that all running workloads meet their required performance
goals. Fourth, predictive models are valuable tool for workload management;
however, in many instances they rely on being able to estimate system capacity. The
models will need to be dynamic to fit into the elastic resource model of the cloud.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4),
50–58 (2010). doi:10.1145/1721654.1721672

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G.,
Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley view of cloud
computing. Technical Report No. UCB/EECS-2009–28. University of California at Berkeley
(2009)

3. Amazon Elastic Compute Cloud (amazon ec2). http://aws.amazon.com/ec2/ (2010). Accessed
19 May 2010

4. Google App engine. http://code.google.com/intl/de-DE/appengine/ (2010). Accessed 19 May
2010

5. Raicu, I., Foster, I., Szalay, A., Turcu, G.: Astroportal: A science gateway for large-scale
astronomy data analysis. In: TeraGrid Conference, 12–15 June 2006

6. Desprez, F., Vernois, A.: Simultaneous scheduling of replication and computation for data-
intensive applications on the grid. J. Grid Comput. 4(1), 19–31 (2006)

7. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

8. Ahmad, M., Aboulnaga, A., Babu, S., Munagala, K.: Modeling and exploiting query interac-
tions in database systems. Paper presented at the proceeding of the 17th ACM conference on
information and knowledge management, Napa Valley, CA, USA (2008)

256 R. Mian et al.

9. Niu, B., Martin, P., Powley, W.: Towards autonomic workload management in DBMSs.
J. Database Manag. 20(3), 1–17 (2009)

10. Krompass, S., Kuno, H., Wiene, J.L., Wilkinson, K., Dayal, U., Kemper, A.: Managing long-
running queries. In: Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, EDBT’09, Saint Petersburg, Russia, 2009.
Association for Computing Machinery, pp. 132–143

11. Dean, J., Sanjay, G.: Mapreduce: Simplified data processing on large clusters. In: Proceedings
of the Sixth Symposium on Operating Systems Design and Implementation (OSDI’04),
Berkeley, CA, USA, 2004. USENIX Assoc, pp. 137–149

12. Apache Hadoop. http://hadoop.apache.org/ (2010). Accessed 19 Aug 2010
13. Gurd, J.R., Kirkham, C.C., Watson, I.: The manchester prototype dataflow computer. Commun.

ACM 28(1), 34–52 (1985)
14. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The condor

experience. Concurr. Comput-Pract. Exp. 17(2–4), 323–356 (2005)
15. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel

programs from sequential building blocks. Paper presented at the Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, Lisbon, Portugal, 2007

16. DeWitt, D.J., Paulson, E., Robinson, E., Naughton, J., Royalty, J., Shankar, S., Krioukov, A.
Clustera: An integrated computation and data management system. Proc. VLDB Endow. 1(1),
28–41 (2008). doi:10.1145/1453856.1453865

17. Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.: Scope: Easy
and efficient parallel processing of massive data sets. Proc. VLDB Endow. 1(2), 1265–1276
(2008). doi:10.1145/1454159.1454166

18. Dewitt, D., Gray, J.: Parallel database systems. The future of high performance database
systems. Commun. ACM 35(6), 85–98 (1992)

19. GreenPlum. Greenplum database architecture. http://www.greenplum.com/technology/
architecture/ (2010). Accessed 19 Aug 2010

20. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, S.A.: Hadoopdb:
An architectural hybrid of mapreduce and dbms technologies for analytical workloads. Proc.
VLDB Endow. 2(1), 922–933 (2009)

21. Gu, Y., Grossman, R.L. Sector and sphere: The design and implementation of a high-
performance data cloud. Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 367(1897), 2429–2445
(2009). doi:10.1098/rsta.2009.0053

22. Duncan, R.: Survey of parallel computer architectures. Computer 23(2), 5–16 (1990)
23. Amazon Cloudwatch. http://aws.amazon.com/cloudwatch/ (2010). Accessed 18 May 2010
24. Amazon Auto scaling. http://aws.amazon.com/autoscaling/ (2010). Accessed 18 May 2010
25. Foster, I., Yong, Z., Raicu, I., Lu, S., Cloud computing and grid computing 360-degree

compared. In: Grid Computing Environments Workshop, 2008. GCE ’08, 2008, pp. 1–10
26. Dong, F.: Workflow scheduling algorithms in the grid. PhD, Queen’s University, Kingston

(2009)
27. Venugopal, S., Buyya, R., Ramamohanarao, K. A taxonomy of data grids for distributed data

sharing, management, and processing. ACM Comput. Surv. 38(1), 123–175 (2006). doi:http://
doi.acm.org/10.1145/1132952.1132955

28. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing. Sigmod.
Rec. 34(3), 44–49 (2005)

29. Hockauf, R., Karl, W., Leberecht, M., Oberhuber, M., Wagner, M.: Exploiting spatial and
temporal locality of accesses: A new hardware-based monitoring approach for dsm systems.
In: Euro-par’98 parallel processing, pp. 206–215 (1998)

30. McKinley, K.S., Carr, S., Tseng, C.-W. Improving data locality with loop transformations.
ACM Trans. Program Lang. Syst. 18(4), 424–453 (1996). doi:http://doi.acm.org/10.1145/
233561.233564

31. Shatdal, A., Kant, C., Naughton, J.F.: Cache conscious algorithms for relational query
processing. In: International Conference Proceedings on Very Large Data Bases, Santiago,
Chile, pp. 510–521. Morgan Kaufmann, CA (1994)

12 Managing Data-Intensive Workloads in a Cloud 257

32. Elmore, A., Das, S., Agrawal, D., Abbadi, A.E.: Who’s driving this cloud? Towards efficient
migration for elastic and autonomic multitenant databases. Tecnical Report 2010–05. UCSB
CS (2010)

33. Lim, H.C., Babu, S., Chase, J.S. Automated control for elastic storage. Paper presented at the
Proceeding of the 7th International Conference on Autonomic Computing, Washington, DC,
USA, pp. 1–10 (2010)

34. Sanjay, G., Howard, G., Shun-Tak, L.: The google file system. SIGOPS Oper. Syst. Rev. 37(5),
29–43 (2003). doi:10.1145/1165389.945450

35. Apache Hadoop. http://hadoop.apache.org/ (2010). Accessed 3 Jun 2010
36. Apache Hadoop distribtued file system. http://hadoop.apache.org/common/docs/current/hdfs

design.html (2010). Accessed 3 Jun 2010
37. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.: Job scheduling

for multi-user mapreduce clusters. Technical Report No. UCB/EECS-2009–28. University of
California at Berkeley (2009)

38. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A. Pig latin: A not-so-foreign
language for data processing. Paper presented at the Proceedings of the 2008 ACM SIGMOD
International Conference on Management of data, Vancouver, Canada (2008)

39. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P.,
Murthy, R. Hive: A warehousing solution over a map-reduce framework. Proc. VLDB Endow.
2(2), 1626–1629 (2009)

40. Ranganathan, K., Foster, I.: Decoupling computation and data scheduling in distributed
data-intensive applications. In: Proceedings 11th IEEE International Symposium on High
Performance Distributed Computing, Piscataway, NJ, USA, 2002. IEEE Comput. Soc., pp.
352–358

41. Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N., Sharma, N.: Towards autonomic
workload provisioning for enterprise grids and clouds. In: 2009 10th IEEE/ACM International
Conference on Grid Computing (GRID), Banff, AB, Canada, 2009. IEEE Computer Society,
pp. 50–57

42. Chappell, D.: Introducing windows azure. David Chappell & Associates. http://
download.microsoft.com/documents/uk/mediumbusiness/products/cloudonlinesoftware/
IntroducingWindowsAzure.pdf (2009). Accessed 24 Aug 2010

43. Voorsluys, W., Broberg, J., Venugopal, S., Buyya, R.: Cost of virtual machine live migration
in clouds: A performance evaluation. In: 1st International Conference on Cloud Computing,
Beijing, China, 2009. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, Berlin, pp. 254–265

44. Prodan, R., Ostermann, S.: A survey and taxonomy of infrastructure as a service and
web hosting cloud providers. In: 2009 10th IEEE/ACM International Conference on Grid
Computing, 13–15 Oct 2009, pp. 17–25

45. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans.
Comput. Syst. 26(2), 1–26 (2008). doi:10.1145/1365815.1365816

46. Weissman, C.D., Bobrowski, S. The design of the force.Com multitenant internet application
development platform. Paper presented at the proceedings of the 35th SIGMOD international
conference on Management of data, Providence, RI, USA (2009)

47. Zhang, H., Jiang, G., Yoshihira, K., Chen, H., Saxena, A.: Resilient workload manager:
Taming bursty workload of scaling internet applications. In: 6th International Conference on
Autonomic Computing, ICAC’09, Barcelona, Spain, 2009. Proceedings of the 6th Interna-
tional Conference Industry Session on Autonomic Computing and Communications Industry
Session, ICAC-INDST’09. Association for Computing Machinery, pp. 19–28

48. Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Elastic management of cluster-based
services in the cloud. Paper presented at the proceedings of the 1st workshop on Automated
control for datacenters and clouds, Barcelona, Spain (2009)

49. Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I. Virtual infrastructure management in
private and hybrid clouds. IEEE Internet Comput. 13(5), 14–22 (2009)

258 R. Mian et al.

50. Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I., Wilde, M.: Falkon: A fast and light-weight task
execution framework. Paper presented at the proceedings of the 2007 ACM/IEEE conference
on Supercomputing, Reno, Nevada (2007)

51. Walker, E., Gardner, J.P., Litvin, V., Turner, E.L.: Creating personal adaptive clusters for
managing scientific jobs in a distributed computing environment. In: Challenges of Large
Applications in Distributed Environments, 2006 IEEE, 2006, pp. 95–103

Part IV
Scientific Case Studies

•

Chapter 13
Managing and Analysing Genomic Data
Using HPC and Clouds

Bartosz Dobrzelecki, Amrey Krause, Michal Piotrowski,
and Neil Chue Hong

13.1 Background

Database management techniques using distributed processing services have evol-
ved to address the issues of distributed, heterogeneous data collections held across
dynamic, virtual organisations [1–3]. These techniques, originally developed for
data grids in domains such as high-energy particle physics [4], have been adapted to
make use of the emerging cloud infrastructures [5].

In parallel, a new database management movement, NoSQL, has emerged which
attempts to address the difficulties with scaling out relational database systems. In
contrast to relational databases, these data stores often do not require fixed table
schemas, avoid the use of join operations, have relaxed transactional properties and
are designed to scale horizontally. Such data stores suit the distributed nature of
cloud computing infrastructures well and a number of systems have been developed,
often on top of cloud distributed file systems.

One example of a NoSQL system which falls into the class of Wide Column
Store systems is HBase, a part of the Apache Software Foundation’s Hadoop project
[6] which runs on top of the Hadoop Distributed File System (HDFS). These new
massively parallel databases often support expression of data processing tasks using
MapReduce [7], a programming model which simplifies development of parallel
data processing programs.

However, in the field of genome biology, most experimental data are managed
using structured folder hierarchies on the file system or in spreadsheets. Experimen-
tal setup is captured in free form files. Therefore, “database management” is being
done at the file system level. One of the reasons for not using databases to manage

B. Dobrzelecki (�) � A. Krause � M. Piotrowski � N.C. Hong
EPCC, The University of Edinburgh, James Clark Maxwell Building, The Kings Buildings,
Mayfield Road, Edinburgh EH9 3JZ, UK
e-mail: bartosz.dobrzelecki@googlemail.com; a.krause@epcc.ed.ac.uk; m.piotrowski@epcc.ed.
ac.uk; N.ChueHong@epcc.ed.ac.uk

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 13, © Springer-Verlag Berlin Heidelberg 2011

261

262 B. Dobrzelecki et al.

raw experimental data is the lack of database support for distributed storage of large
arrays and difficulty in expressing algorithms that process arrays. The database
community is aware of this and recent efforts of the SciDB [8] community may
change the state of affairs.

Cloud infrastructures bring new possibilities for storing, sharing and parallel
processing in file-based databases. One of the technologies enabling large scale
data management is a distributed file system. Processing data in such system is
non-trivial as it requires tracking file parts and taking care that computation is done
close to the data. This chapter explores an implementation of an algorithm, often
used to analyse microarray data, on top of an intelligent runtime which abstracts
away the hard parts of file tracking and scheduling in a distributed system. This
novel formulation is compared with a traditional method of expressing data parallel
computations in a distributed environment which uses explicit message passing.

13.2 Analysis of Microarray Data

Microarray analysis allows the simultaneous processing of thousands to millions
of genes or sequences across tens to thousands of different samples. Expression
profiles of genes or samples are compared using various data processing methods to
identify patterns.

Microarray experiments include many stages. There are a variety of microarray
platforms using the same basic method: usually, a glass slide or membrane is spotted
or “arrayed” with DNA fragments that represent specific gene coding regions.
Purified RNA is then radioactively labelled and hybridised to the array. During
hybridisation, complementary nucleic acid sequences pair specifically with each
other. After thorough washing, only strongly paired strands remain hybridised and
the raw data is obtained by laser scanning.

In the image analysis, the light intensity on the laser scans of a sample is
converted to an array of real numbers. The resulting data is represented by a
real matrix containing the genes and samples as rows and columns. The obtained
numerical data is pre-processed by applying background correction, normalisation
and various filters in preparation for subsequent data mining analysis.

There are many data processing packages available for analysing genomic data.
They provide methods that include clustering, classification, network analysis or
per gene analysis. Such analyses are often computationally very expensive, and
because of this, scientists are forced to sacrifice the robustness of the results to
be able to extract information in reasonable time. The size of the data sets may also
become a limiting factor. Many large-scale analyses are too taxing even for powerful
workstations.

The most popular software packages not only provide microarray data-specific
algorithms like MAS5 [9] or RMA [10] but also allow expression of arbitrary
statistical processing. Microarray data are usually analysed in a series of steps
forming a pipeline. The R Project for Statistical Computing [11] develops an open
source solution used widely by the scientific community. It provides a general

13 Managing and Analysing Genomic Data Using HPC and Clouds 263

purpose, scriptable runtime system and a rich repository of third party libraries
which includes the Bioconductor package [12] – an aggregation of extensions dedi-
cated to bioinformatics, with strong support for microarray data-related algorithms.

As previously mentioned, the scale of some analyses is often too large for indi-
vidual workstations. The SPRINT project [13], which aims to tackle this problem,
carried out a user requirements survey across the bioinformatics community using
R, to identify, which analysis functions are causing bottlenecks when processing
genomic data. Among the most frequently mentioned functions were data clustering
algorithms. The following chapters describe two parallelisation techniques which
enable large-scale data clustering.

13.3 Parallel Data Processing Architectures and Approaches

The multicore revolution brought increased interest in parallel computation. Solving
problems in parallel is usually based on some kind of divide and conquer approach,
where a large dataset is split into small chunks processed independently in parallel
with occasional collective communication between processing elements that con-
tribute to a global result.

When attempting to solve a problem in parallel, one needs to make a choice
of which programming model to use. This choice is often limited by external
factors. For example, there may be an existing serial code implemented within
some constrained runtime environment, or the target machine architecture may
be specialised and fixed. Implementation strategies used for a shared memory
machine will be different from strategies used when targeting a shared-nothing
compute cluster. Additionally, distributed memory systems are diverse. They can
be highly reliable and tightly coupled, as found in high performance computing
(HPC) systems, or decoupled, susceptible to frequent failures and heterogeneous.

However, in data processing problems, the first decision needs to be made
on a slightly higher level of abstraction. One needs to decide if a computation
will be code-driven or data-driven. The imperative, code-driven approach defines
computation as a sequence of statements that manipulate data. The data-driven
approach, or dataflow programming, models a program as a directed graph of
transformational operations applied to a flow of data. Another way of looking at
it is to realise that in code-driven data processing a statement triggers a request for
data and in the data-driven approach it is the availability of data that triggers the
processing code.

The solutions to the problem of microarray data clustering discussed in this
chapter explore different parallel implementations of the same algorithm within
two distinct sets of constraints. The first set constrains the problem to a specific
runtime environment – the R runtime and tightly coupled high performance compute
clusters. The second set puts no constraints on the programming environment, but
assumes the execution environment to be distributed and with limited reliability
(a compute cloud).

264 B. Dobrzelecki et al.

part 0 map
sort

part 1 map
sort

part 2 map
sort

merge
reduce part 0

input
HDFS

output
HDFS

HDFS
replication

copy

Fig. 13.1 MapReduce data flow in Hadoop. HDFS stands for Hadoop distributed file system

The solution targeting HPC systems uses an imperative approach based on
explicit message passing. To exploit such systems, the R runtime must be able
to utilise the multiple processors available on these systems. There are existing
modules that enable R to use multiple processors, but these are either difficult to
use for the HPC novice or cannot be used to solve certain classes of problems.
A method of exploiting HPC systems, using R, but without recourse to mastering
parallel programming paradigms is, therefore, necessary to analyse genomic data
to its fullest. The SPRINT library simplifies employment of HPC resources by
providing parallel implementations of commonly used analysis functions.

The second set of constraints is met by refactoring the data analysis workflow
using the data centric approach. This is achieved by implementing the analysis
within the MapReduce [7] framework. The MapReduce dataflow as implemented
by Apache Hadoop [6] is presented in Fig. 13.1.

The Hadoop MapReduce framework relies on the HDFS. When data are put into
HDFS, it is automatically split into blocks (size 64MB by default) and distributed
among data nodes. File blocks are also being replicated to ensure robustness
(3 replicas by default). To process the data, a programmer needs to define Map
and Reduce operations. The Map operator receives input data from a partial dataset
as (key, value)-pairs from one domain and maps these to a possibly empty list of
(key, value)-pairs from another domain. The framework executes mappers in parallel
taking into account data locality and takes care of sorting map output by key-value
and grouping. The Reduce operator receives (key, value)-pairs where value is a list
of values, produced in the map stage with the same key. The result of the reduce
phase is put to HDFS.

Parallel processing in a MapReduce framework is simplified as the programmer
code is automatically parallelised and scheduled in a distributed cluster of compute
nodes. This approach trades off some performance aspects with the ability to scale
the number of analyses as required. Many MapReduce frameworks automatically
deal with computations on datasets that exceed the collective memory of the
compute nodes.

13 Managing and Analysing Genomic Data Using HPC and Clouds 265

Ability to deal with large datasets is important as emerging whole genome
associative studies and clinical projects will require from several hundreds to
several thousands of microarray experiments. The complexity increases even further
when considering the meta-analysis of combined data from several experiments.
Microarray experiment repositories such as ArrayExpress are constantly growing in
size, and this trend is set to continue as advances in technology and reduction in cost
are constantly contributing to an increase in the amount of data to be analysed.

The choice of runtime systems requires some explanation. Both of our target
machines, i.e., a tightly coupled HPC machine programmed with MPI and loosely
coupled virtual instances spawned on a cloud running a MapReduce framework,
are clusters of some sort. It is important to remember that both of these execution
environments are general purpose, and it is equally possible to run MPI programs
on cloud resources as it is possible to use a MapReduce framework to harness a
supercomputer. In a similar fashion, both of these approaches can be successfully
applied to program a shared memory machine.

The most important operational difference between the MPI and MapReduce
runtimes is their fault tolerance. Systems like Hadoop assume an unreliable envi-
ronment and have mechanisms that deal efficiently with node failures, whereas a
failure of a single node while executing an MPI program will cause an unrecoverable
error. Still, if the execution environment is reasonably reliable, then the choice
of paradigm should be made based on other factors, like ease of programming,
maintainability or performance.

13.4 Related Work

There are several projects that introduce parallel computing to the R environment.
These libraries are either low level wrappers to the MPI library or frameworks that
allow expression of decoupled many-task computations. The main difference of
these approaches compared to the SPRINT library is that they do not provide actual
parallel implementations of R functions leaving the burden of finding and expressing
parallelism with the user. The SPRINT framework allows a parallel programmer to
make use of the full power of MPI to develop scalable implementations of common
functions that can be used transparently by the end user. A survey of parallel R
projects is presented in [14]. A more detailed comparison of these projects to the
SPRINT framework is available in [13].

Examples of projects, where cloud infrastructure has been successfully applied
to solve bioinformatics problems, include the Cloudburst parallel sequence mapping
algorithm [15] and the Crossbow software pipeline for whole genome resequencing
analysis [16]. The MapReduce paradigm has been applied to develop multicore phy-
logenic applications for analysing large scale collections of evolutionary trees [17].

MapReduce formulations of machine learning algorithms are discussed in [18].
It has been demonstrated that a large class of algorithms that fit the Statistical Query

266 B. Dobrzelecki et al.

Model may be mapped to some “summation form” which represents the exact
alternative implementation of a given algorithm. A summation form can then be
easily expressed in the MapReduce framework. Among the discussed algorithms are
the k-means clustering algorithm, locally weighted linear regression and a support
vector machine. All of these have applications in microarray analysis.

As far as we know, there have been no previous attempts to apply MapReduce
specifically to analyse microarray data. However, some algorithms that can be used
for this purpose have been implemented in the Mahout project [19].

Although we are discussing MapReduce formulations outside the R environment,
readers should be aware that the two technologies can easily be integrated as
exemplified by the RHIPE package [20].

13.5 Identifying Gene Expression Patterns

Once microarray data have been transformed into a gene expression matrix and
preprocessed, it can be analysed to identify gene expression patterns. The matrix
encodes genes as well as experiments (samples), hence the data can be analysed in
two ways:

• Gene expression profiles can be compared by analysing the rows of the matrix
• Sample expression profiles can be compared by analysing the columns of the

matrix

Clustering is a popular analysis method that groups together objects – genes
or samples – with similar properties. It is typically used to detect groups of co-
regulated genes in a dataset.

Many clustering algorithms have been proposed. They differ in computational
complexity and robustness. One of the best known partitional clustering methods is
the k-means algorithm [21]. In practice, biostatisticans often make use of a more
robust clustering method called Partitioning Around Medoids (PAM) [22].

PAM groups objects into clusters by means of identifying a characteristic object
(called medoid) for each cluster. The medoid is the object which has minimal
dissimilarities – measured by a cost function, for example the euclidean distance
or a correlation coefficient – to all other objects in the cluster. The use of a sum of
dissimilarities as the objective function makes the PAM algorithm more robust to
noise and outliers as compared to k-means.

The PAM algorithm has two stages: build and swap. During the build phase, the
initial set of clusters, represented by their medoids, is computed along with the total
cost of this clustering. In the swap phase, other objects are swapped with the existing
medoids with the goal of minimising the value of the total cost function. The swap
phase terminates when the value of the total cost function cannot be improved.

13 Managing and Analysing Genomic Data Using HPC and Clouds 267

13.6 HPC Approach: SPRINT Framework

In this section, we describe a parallelisation of the PAM algorithm inside the R
programming environment. As it was previously mentioned, core R does not provide
any support for parallel execution. The algorithm is parallelised within the SPRINT
framework.

13.6.1 The SPRINT Architecture

The architecture of the SPRINT runtime is presented in Fig. 13.2. It distinguishes
between the master and worker nodes, which follow different execution paths. All
nodes start from instantiating the R runtime and loading the SPRINT library. During
this phase, the MPI subsystem is initialised. If this step is successful, worker nodes
enter a waiting loop expecting coordination messages from the master node. The
master node starts evaluating the user’s R program. At some point in the script, a
parallel function provided by the SPRINT library is invoked. Here, the execution is
handed over to the SPRINT framework, which notifies all the worker nodes about
the function that is going to be evaluated in parallel. After distributing the data,
all of the nodes start to collectively evaluate a function. The local evaluation can
happen inside the C runtime or may be delegated to the R runtime. On completion,
the accumulated result is returned back to the R runtime on the master node. The
worker nodes go back to the wait loop ready for the next function. The user script
on the master node is responsible for shutting down the SPRINT framework before
exiting the R runtime.

C/MPI Runtime

Load SPRINT Init

C/MPI Runtime

Load SPRINTInit

R script invokes
parallel function

SPRINT takes
over the execution

Broadcast function signature

Compute function in parallelResults return to R

Shutdown SPRINT Broadcast shutdown

Finalize
Exit R

Wait for function
command

Optionally
evaluate in R

Exit R

Master Node Worker Node

R Runtime R Runtime

Invoke SPRINT
function

Fig. 13.2 The SPRINT framework architecture

268 B. Dobrzelecki et al.

The goal of the SPRINT library is to shield the R user from any details of
the parallel implementation. The signatures of parallelised functions are as close
as possible to their serial counterparts. For example, a call to a serial correlation
function cor(distMtx) becomes simply pcor(distMtx).

13.6.2 Parallelisation

The SPRINT library aims to deliver parallel versions of functions currently used by
the R community. A serial version of the PAM algorithm is included in the CLUSTER

package (Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M.: Cluster analysis
basics and extensions. Unpublished (2005)) and can be obtained from CRAN [23].
The SPRINT implementation of the pam() function provides a parallelised kernel
of the serial algorithm and introduces a few serial optimisations.

An important enhancement was achieved by storing the distance matrix in a
more expensive, full representation which is optimised for the contiguous row-
wise access that the algorithm requires. Storing a symmetric distance matrix in its
full square form uses more memory, but greatly improves cache efficiency. On a
single processor, the optimised serial version performs up to 20 times faster than the
original implementation.

A parallel implementation of the PAM algorithm is straightforward and relies on
the fact that the calculations performed inside the ForEach loop are independent
of each other (see pseudo code in Fig. 13.3). In a C programming language, such
a loop is implemented as interchangeable nested for loops and one could either
parallelise over the set of medoids or over the set of non-medoids. To achieve better
scalability, the SPRINT implementation parallelises the outer non-medoid loop.

Splitting the iteration space across the nodes results in a block distribution of the
distance matrix. Each row of the distance matrix contains all the information needed
to compute the cost of a swap for a single data point. Worker nodes calculate swap
costs for a subset of data points, and then the best swap is selected by comparing
results from all the nodes. As there is no need to redistribute data after each iteration
and because the collective communication is minimal, the parallelised algorithm is
very efficient.

Input: Distance matrix, Initial set of medoids
Output: Optimised set of medoids

Repeat until no change in medoids
Calculate the current value of the objective function

ForEach pair of medoid and non-medoid
If swapping medoid with non-medoid reduces the objective

Save as possible swap
Apply the best swap

Fig. 13.3 Pseudo code for the swap phase of the PAM algorithm

13 Managing and Analysing Genomic Data Using HPC and Clouds 269

The SPRINT implementation of PAM not only reduces the execution time but
also enables analyses of large data sets. A sample data set that we use in the
performance experiments contains 22,347 genes and yields a distance matrix of
size 22;347 � 22;347 which uses about 3.7GB of memory. This size is beyond the
capabilities of many workstations (especially since R is eager to create copies of
this matrix). The solution to this problem is to store the distance matrix as a binary
file on disk if it exceeds the available memory. This file is then memory mapped and
the data are accessed as if it were resident in the memory. This increases the size
limit of the distance matrix to the available file sizes on the underlying file system,
enabling users to process datasets that are significantly larger than the available
physical memory.

13.7 Cloud Approach: MapReduce

A parallel implementation described in the previous section used explicit message
passing. Data distribution, splitting of the iteration space, collective communication
all had to be managed by the programmer. The result was a highly efficient parallel
implementation targeted at reliable parallel systems.

In a distributed environment node, failures are common. One way of achieving
fault tolerance is to define computation in terms of independent functions with no
side effects. In such a setup, it is possible to resubmit the failed partial calculation.
Of course, the data that the failed function operated on still need to be accessible.
MapReduce frameworks deal with this by relying on a distributed file system which
provides some level of replication. The first step, however, is to find a MapReduce
formulation of the PAM algorithm.

13.7.1 Algorithm

Both stages of the PAM algorithm are iterative. The original MapReduce framework
and its Hadoop implementation do not provide support for iterations. It is possible
to chain mappers and reducers but only in a static manner at compile time. This
is not sufficient for iterative algorithms where a termination criteria is evaluated
during runtime. Therefore, one is forced to express iterations as a loop over separate
MapReduce jobs. A possible formulation of the PAM algorithm in terms of map and
reduce operations follows. The input to the MapReduce PAM is the distance matrix
d.i; j / and the number of final clusters k.

13.7.1.1 The Build Stage

The initial set of medoids M is empty. Repeat the following steps k times where k

is the number of clusters:

270 B. Dobrzelecki et al.

1. The map function receives a row .di .j // of the distance matrix as input and the
current set of medoids M .

2. For each j find the medoid m in M [fj g representing the cluster to which i

belongs. Note the cost (distance to the medoid m) as costj .i/ and output key j

and value costj .i/ for all j .
3. The reduce function receives parameters j and a list of costj .i/ for all i . It

outputs j as a key, and the total cost
P

i costj .i/ as a value. This value is the
total cost for medoid set M [fj g.

4. Find j with the minimum total cost c D P
i costj .i/ and define the new set of

medoids as M [fj g.

At the end of the build stage, a set of k medoids has been built.

13.7.1.2 The Swap Stage

Start from the set of cluster medoids M with a total cost of c.

1. The map function receives the i th row .di .j // of the distance matrix as input and
the current set of medoids M .

2. For each j and for each m 2 M swap j with medoid m, i.e., consider the set
of medoids M 0 D M � fmg [fj g. Find the new medoid n 2 M 0 representing
the cluster to which i now belongs. Note the cost (distance to the medoid n) as
costj m.i/ and output key j and value .costj m.i//.

3. The reduce function receives parameters j and a list of costj m.i/ for all i and
all m 2 M . It sums up the list of values, therefore, computing the total cost for
medoid set M 0 D M � fmg [fj g as

P
i costj m.i/. The reduce output is the key

j and the total cost as value.
4. Find j and m with minimum value c0 D P

i costj m.i/ and swap j and m, i.e.,
the new medoid set is M � fmg [fj g.

5. Repeat these steps until the total cost cannot be improved, that is c0 >D c.

13.7.2 Runtime

The MapReduce implementation of the PAM algorithm is built on top of Apache
Hadoop. A Hadoop cluster has a master node running the main job tracker and a
set of client nodes each of which is running a task tracker. All nodes are data nodes
and part of the HDFS. Files stored in HDFS are automatically split and distributed
across the data nodes, with a certain degree of replication. The split size and the
replication factor are configurable.

When a MapReduce job is submitted, the master node’s job tracker retrieves a
list of input data splits and creates a map task for each split. The number of reduce
tasks can be configured. The job tracker submits each map task to a task tracker that
is close to the input splits’s network location. The output produced by the map tasks

13 Managing and Analysing Genomic Data Using HPC and Clouds 271

is transferred to the reducer tasks. Map output is written to disk when it reaches a
threshold size.

The input to MapReduce PAM is the distance matrix d.i; j / and the number k of
clusters to construct. The distance matrix is stored on the HDFS and distributed
across the available data nodes. The size of the distance matrix determines the
number of input splits and therefore the number of map tasks that are created.

Hadoop defines an operation called Combine, which is a local Reduce operation
performed on the output of the mappers from a single data node prior to global
reduction. Using a combiner usually results in increased efficiency. The Reduce
functions in both stages of the MapReduce PAM algorithm are distributive and
therefore our implementation makes use of a Combiner.

13.8 Testing and Scaling Results

Implementations of the PAM algorithms were tested on their target platforms.
Testing of the MapReduce implementation was carried out on the Amazon Elastic
Compute Cloud (Amazon EC2) with varying numbers of Amazon EC2 Small
Instances. The MPI based implementation was tested on the HECToR supercom-
puter. The comparison of machine specifications is presented in Table 13.1.

The experiment clustered points using a distance matrix generated from a series
of microarray experiments with 22,347 genes and 25 samples. The resulting distance
matrix is of size 22;347 � 22;347 and occupies about 3.7GB of memory.

The Hadoop runtime used the default settings. The input distance matrix is resi-
dent in the HDFS filesystem. The time taken to calculate and store the input matrix
is not taken into consideration.

Both approaches showed excellent speedup as illustrated in Fig. 13.4. The scaling
degradation seen for the MPI implementation is caused by the fact that the per node
problem size decreases with increasing number of cores put to the task. This affects
the compute to communication time ratio putting more pressure on the interconnect.
Similar behaviour can be observed for the MapReduce implementation. However,
the increased communication has more dramatic influence as the performance of

Table 13.1 Hardware details of machines used for the performance experiments

HECToR Cluster of EC2 small instances

CPU Quad core 2.3GHz Opteron

1 EC2 compute unit (single core
equivalent to 1.0–1.2 GHz 2007
Opteron or 2007 Xeon processor)

Memory 2GB per core 1.7 GB

I/O
High performance I/O nodes with

Lustre parallel filesystem Moderate performance (virtualised)

Interconnect
High performance Cray SeaStar2

interconnect Moderate performance (virtualised)

272 B. Dobrzelecki et al.

(b) Amazon EC2

(a) HECToR

Fig. 13.4 Scaling plots for: (a) MPI PAM relative to 8 core run and (b) MapReduce PAM relative
to 5 core run

the virtualised I/O system provided by the Amazon cloud is only moderate with
no performance guarantees. In addition, the message exchange in Hadoop is much
more expensive than in MPI mainly due to serialisation.

The actual execution times are plotted in Fig. 13.5. Comparing the actual execu-
tion times, the MPI implementation performs 300 times faster than the MapReduce
implementation (MPI on 8 cores takes 53 s and MapReduce on 9 cores takes

13 Managing and Analysing Genomic Data Using HPC and Clouds 273

Fig. 13.5 Comparison of the total execution time for the same PAM experiment and MPI and
MapReduce implementations

269 min). Even if we take into consideration the differences in architecture of
the compute nodes, the MapReduce implementation is two orders of magnitude
slower than the MPI implementation. In fact, even a single core run of the MPI
implementation which uses external memory is faster then any of the Hadoop
results. The next section includes a more in-depth discussion of this behaviour. The
same experiment was run as on the Amazon Elastic MapReduce environment with
20 Amazon Elastic MapReduce Small Instances. This uses the Hadoop framework
so that the same implementation could be used. The test run was cancelled when
the build phase of the PAM algorithm had not completed after five hours of runtime,
therefore, being very slow in comparison to the tests executed on 20 Amazon EC2
instances. Hence, Amazon Elastic MapReduce was not explored any further.

13.9 Comparison of Approaches

The most important difference of the two approaches is their total execution time.
There are several reasons why the Hadoop MapReduce approach performs badly
compared to the MPI approach. The lack of support for iterative computations in
Hadoop is one of them. Each iteration of MapReduce PAM is a separate job, and
it is impossible for mappers to store state between iterations. The lack of state
and side effects allows MapReduce to automatically paralellise computation and
freely reschedule map and reduce tasks. However, this feature in iterative algorithms
forces the framework to reread static input data at each iteration. In case of the MPI

274 B. Dobrzelecki et al.

reduce
part P1

part Pn

find the nearest
centroid

find the nearest
centroid

compute the new cluster
centers

<pt, centroid>

<pt, centrioid>

map

improved centrodis

initial
centroids

<pt, coord>

<pt, coord>

Fig. 13.6 MapReduce formulation of the k-means clustering algorithm (pt – point, coord –
coordinates)

implementation once the data are read before the first iteration, it stays in memory
until the algorithm terminates.

Another feature of Hadoop is its ability to seamlessly deal with out-of-core data
processing. As a result of this, output from the mappers is often spilt to disk.
This, together with repeated reading of the entire dataset, quickly turns a clustering
calculation into an I/O intensive problem. This obviously incurs huge overhead in
comparison to the MPI implementation.

Similarly, high overheads have been reported for the Hadoop MapReduce imple-
mentation of k-means clustering algorithm in [24]. The k-means algorithm (see
Fig. 13.6) is different from PAM as it takes a set of point and a set of centroids as
inputs and associates each point with the nearest centroid in the map phase. The
reduce phase calculates new center for each cluster and the iterative map-reduce
process continues until the error is sufficiently small. Each point only needs to know
the set of current centroids and does not require any knowledge about other points
in the dataset. This makes calculations more independent as compared to PAM and
makes the overall calculation more suitable to the MapReduce approach.

The main runtime overhead for k-means algorithm is caused, as for PAM, by
its iterative character. An alternative, iterative MapReduce framework proposed
in [24] distinguishes between fixed and variable data in map-reduce iterations and
achieves performance comparable with MPI implementations. This framework has
been further extended and is now available as Twister [25].

Hadoop implementations of both PAM and k-means are very cache inefficient.
Input and output data represented as (key, value) pairs will often be fragmented in
memory, and therefore it will be impossible to achieve cache friendly memory reads
enjoyed by the MPI implementations. On top of this, values that are represented
as efficient primitive types in C language become wrapped in objects in Java
implementations.

The MapReduce implementation based on the Hadoop framework requires very
little knowledge of distributed systems and parallel programming. Hadoop comes
with sensible default settings that allow the user to set up a test environment with
minimal effort. Input data is automatically split and assigned to tasks on available
nodes, taking data locality into account. The programmer works on a higher level of
abstraction, and this usually shortens the development time.

13 Managing and Analysing Genomic Data Using HPC and Clouds 275

Predicting the performance for MapReduce formulations is problematic. As yet,
there is no explicit model of communication for the MapReduce framework, also the
mixture of local and HDFS filesystem makes it hard to predict the load on the I/O
subsystem. One needs to rely on the profiling capabilities provided by the runtime.
Explicit messages used in the MPI implementation allow for exact performance
modelling if exchange patterns are regular (as it is the case for the PAM algorithm).
A high number of configurable runtime parameters may also be held against the
Hadoop runtime. It is very hard for the user to reason about optimal settings for a
specific problem.

13.10 Conclusions and Future Work

The main conclusion is that whilst programmers are usually willing to sacrifice some
performance in return for a simplified programming model which enhances their
productivity, the overheads of the runtime system must not be overwhelming. Our
experiments show that the overheads introduced by Hadoop are prohibitive when
it comes to iterative clustering algorithms. Of course, this does not mean that one
should discard the Hadoop approach all together. As it has been mentioned in the
related work section, several projects demonstrated benefits of using the MapReduce
framework to tackle different classes of bioinformatics problems. Hadoop may be
more suitable for larger datasets in the size of terabytes whilst the dataset analysed
in this study did not exceed a few gigabytes.

The fact that efficient MapReduce formulations can be found only for a subset of
problems raises the question of maintainability of solutions. A typical microarray
workflow will use many different algorithms. The most convenient approach would
be a methodology that is generic enough to provide for scalable implementations
within a single framework. Given the diversity of possible microarray data analyses,
investing in MPI implementations would probably lead to more sustainable libraries.

Although the MPI runtime can be deployed on cloud infrastructures, its lack
of fault tolerance may become problematic. Investigating MapReduce runtime sys-
tems supporting iterative computations is an important future direction for the
community.

The character of the overheads incurred by the Hadoop framework could be
better understod by implementing the same PAM algorithm in other non-Java
MapReduce frameworks. A shared memory MapReduce framework like [26], whilst
not being applicable for very large datasets and distributed clusters, might shed light
on the issues caused by serialising and transferring large datasets between nodes that
are produced in the map step.

Another option to investigate is to write map and reduce operations using non-
Java languages and coordinate their parallel execution using Hadoop Streams.
The Malstone benchmark [27] reports significant reduction of runtime when using
mappers and reducers implemented in Python.

276 B. Dobrzelecki et al.

Acknowledgements The authors of this chapter would like to thank Kostas Kavoussanakis and
Radek Ostrowski of EPCC for their support and valuable comments and the SPRINT Project Team:
Terry Sloan (EPCC), and Thorsten Forster and Muriel Mewissen (Division of Pathway Medicine).
This work was supported by the Wellcome Trust and The Centre for Numerical Algorithms and
Intelligent Software.

References

1. Finkelstein, A., Gryce, C., Lewis-Bowen, J.: Relating requirements and architectures: A study
of data-grids. J. Grid Comput. 2(3), 207–222 (2004) doi: 10.1007/s10723-004-6745-6

2. Dobrzelecki, B., Krause, A., Hume, A., Grant, A., Antonioletti, M., Alemu, T., Atkinson, M.,
Jackson, M., Theocharopoulos, E.: Integrating distributed data sources with ogsa-dai dqp and
views. Phil. Trans. Roy. Soc. A, 368(1926), 4133–4145 (2010) doi: 10.1098/rsta.2010.0166

3. Taniar, D., Leung, C.H.C., Rahayu, W., Goel, S.: High Performance Parallel Database
Processing and Grid Databases. Wiley, NY (2008). ISBN 978-0-470-10762-1

4. Laure, E., Stockinger, H., Stockinger, K.: Performance engineering in data grids. Concurrency
Comput. Pract. Ex. 17, 171–191 (2005) doi: 10.1002/cpe.923

5. Special issue on data management on cloud computing platforms. Technical Report 1, March
2009

6. The Apache Software Foundation. The apache hadoop project. http://hadoop.apache.org
(2011). Accessed 22 June 2011

7. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: Sympo-
sium on Operating System Design and Implementation (OSDI), pp. 137–150 (2004)

8. Stonebraker, M., Becla, J., Dewitt, D., Lim, K.-T., Maier, D., Ratzesberger, O., Zdonik, S.:
Requirements for science data bases and scidb. In: Conference on Innovative Data Systems
Research (CIDR), January 2009

9. Hubbell, E., Liu, W.-M., Mei, R.: Robust estimators for expression analysis. Bioinformatics
18(12), 1585–1592 (2002). doi:10.1093/bioinformatics/18.12.1585

10. Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., Speed, T.P.: Summaries
of affymetrix GeneChip probe level data. Nucl. Acids Res. 31(4), e15 (2003). doi:10.1093/
nar/gng015

11. R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2010. URL http://www.R-
project.org.

12. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,
Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R.,
Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney,
L., Yang, J.Y., Zhang, J.: Bioconductor: open software development for computational biology
and bioinformatics. Genome Biol. 5(10), R80 (2004). doi: 10.1186/gb-2004-5-10-r80

13. Hill, J., Hambley, M., Forster, T., Mewissen, M., Sloan, T.M., Scharinger, F., Trew, A.,
Ghazal, P.: SPRINT: a new parallel framework for R. BMC Bioinform. 9(1), 558 (2008).
doi:10.1186/1471-2105-9-558

14. Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., Mansmann, U.: State of
the art in parallel computing with R. J. Stat. Software 31(1), 1–27 (2009)

15. Schatz, M.C.: CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics
25(11), 1363–1369 (2009). doi:10.1093/bioinformatics/btp236

16. Langmead, B., Schatz, M., Lin, J., Pop, M., Salzberg, S.: Searching for snps with cloud
computing. Genome Biol. 10(11) (2009) doi: 10.1186/gb-2009-10-11-r134

17. Matthews, S., Williams, T.: Mrsrf: An efficient mapreduce algorithm for analyzing large
collections of evolutionary trees. BMC Bioinformatics 11(Suppl 1) (2010) doi: 10.1186/1471-
2105-11-S1-S15

13 Managing and Analysing Genomic Data Using HPC and Clouds 277

18. Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.: Map-reduce for
machine learning on multicore. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) NIPS. MIT,
MA (2006)

19. The apache mahout project. http://mahout.apache.org
20. Guha, S.: Rhipe – R and hadoop integrated processing environment. http://www.stat.purdue.

edu/�sguha/rhipe
21. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, CA (1988)
22. van der Laan, M., Pollard, K., Bryan, J.: A new partitioning around medoids algorithm. J. Stat.

Comput. Simul. 73(8), 575–584 (2003). doi:10.1080/0094965031000136012
23. Cran: The comprehensive r archive network. URL http://cran.r-project.org
24. Ekanayake, J., Pallickara, S., Fox, G.: MapReduce for data intensive scientific analyses. In:

eScience, 2008. eScience ’08. IEEE Computer Society, Los Alamitos, CA, USA, 2008, pp.
277–284. doi:10.1109/eScience.2008.59

25. Twister: A runtime for iterative mapreduce. URL http://www.iterativemapreduce.org
26. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating mapreduce

for multi-core and multiprocessor systems. In: HPCA ’07: Proceedings of the 2007 IEEE
13th International Symposium on High Performance Computer Architecture. IEEE Computer
Society, February 2007. ISBN 1-4244-0804-0. doi: 10.1109/HPCA.2007.346181

27. Malstone: A stylized benchmark for data intensive computing. URL http://code.google.com/p/
malgen/wiki/Malstone

•

Chapter 14
Grid Technologies for Satellite Data Processing
and Management Within International Disaster
Monitoring Projects

Nataliia Kussul, Andrii Shelestov, and Sergii Skakun

Abstract This chapter describes the use of Grid technologies for satellite data pro-
cessing and management within international disaster monitoring projects carried
out by the Space Research Institute NASU-NSAU, Ukraine (SRI NASU-NSAU).
This includes the integration of the Ukrainian and Russian satellite monitoring
systems at the data level, and the development of the InterGrid infrastructure that
integrates several regional and national Grid systems. A problem of Grid and Sensor
Web integration is discussed with several solutions and case-studies given. This
study also focuses on workflow automation and management in Grid environment,
and provides an example of workflow automation for generating flood maps from
images acquired by the Advanced Synthetic Aperture Radar (ASAR) instrument
aboard the Envisat satellite.

14.1 Introduction

Nowadays, satellite monitoring systems are widely used for the solution of complex
applied problems such as climate change monitoring, rational land use, environ-
mental, and natural disasters monitoring. To provide solutions to these problems not
only on a regional scale but also on a global scale, a “system of systems” approach
that is already being implemented within the Global Earth Observation System
of Systems1 (GEOSS) and Global Monitoring for Environment and Security2

1http://www.earthobservations.org.
2http://www.gmes.info.

N. Kussul (�) � A. Shelestov � S. Skakun
Space Research Institute NASU-NSAU, Glushkov Prospekt 40, building 4/1, Kyiv 03680,
Ukraine
e-mail: inform@ikd.kiev.ua; andrii.shelestov@gmail.com; serhiy.skakun@ikd.kiev.ua

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 14, © Springer-Verlag Berlin Heidelberg 2011

279

280 N. Kussul et al.

(GMES) is required. This approach envisages the integrated use of satellite data
and corresponding products and services, and integration of existing regional and
international satellite monitoring systems.

In this chapter, existing approaches and solutions to satellite monitoring systems
integration with an emphasis on practical issues in this area are discussed. The
following levels of system integration are considered: data integration level and task
management level. Two examples of system integration that use these approaches
are discussed in detail. The first one refers to the integration of the Ukrainian (SRI
NASU-NSAU) and Russian (Space Research Institute RAN, IKI RAN) systems at
the data level. The second example refers to the development of an InterGrid infras-
tructure that integrates several regional and national Grid systems: the Ukrainian
Academician Grid (with satellite data processing Grid segment, UASpaceGrid) and
the Center for Earth Observation and Digital Earth of the Chinese Academy of
Sciences (CEODE-CAS) Grid segment.

Different practical issues regarding the integration of the emerging Sensor Web
technology with Grids are discussed in the study. We show how the Sensor Web can
benefit from using Grids and vice versa. A flood application example is given to
demonstrate the benefits of such integration.

A problem of workflow automation and management in Grid environment is
reviewed in this chapter, and a practical example of workflow automation of
Envisat/Advanced Synthetic Aperture Radar (ASAR) data processing to support
flood mapping is given.

14.2 Levels of Integration: Main Problems
and Possible Solutions

At present, there is a strong trend for globalization of monitoring systems with
a purpose of solving complex problems on global and regional scale. Earth
observation (EO) data from space are naturally distributed over many organizations
involved in data acquisition, processing, and delivery of dedicated applied services.
The GEOSS system is aimed at working with and building upon existing national,
regional, and international systems to provide comprehensive, coordinated Earth
observations from thousands of instruments worldwide, transforming the data
collected into vital information for society. Therefore, a considerable need exists
to support integration of existing systems for solving applied domain problems on a
global and coordinated basis.

With the regard to satellite monitoring systems, integration can be done at
the following levels: data integration level and task management level. The data
integration approach aims to provide an infrastructure for sharing data and products.
Such an infrastructure allows data integration where different entities provide
various kinds of data to enable joint problem solving (Fig. 14.1). The integration at
data integration level could be done using common standards for EO data exchange,
user interfaces, application programming interfaces (APIs), and data and metadata
catalogues.

14 Grid Technologies for Satellite Data Processing 281

Task management
(metascheduler)

Data
storage

Data
Access
Service

Processing
facilities

Front-end
nodes

Data
storage

Data
Access
Service

Processing
facilities

Front-end
nodes

Fig. 14.1 The integration of monitoring systems at data level and at task management level

The task management level approach aims at running applications on distributed
computing resources provided by different entities (Fig. 14.1). Since many of the
existing satellite monitoring systems heavily rely on the use of Grid technologies,
appropriate approaches and technologies should be evaluated and developed to
enable the Grid system integration (we define it as InterGrid). In such a case, the
following problems should be tackled: the use of shared computational infrastruc-
ture, development of algorithms for efficient jobs submission and scheduling, load
monitoring enabling, and security policy enforcement.

14.2.1 Data Integration Level

At present, the most appropriate standards for data integration are the Open
Geospatial Consortium3 (OGC) standards. The following set of standards could be
used to address data visualization issues: Web Map Service (WMS), Style Layer
Descriptors (SLD), and Web Map Context (WMC). The OGC Web Feature Service
(WFS) and Web Coverage Service (WCS) standards provide a uniform way to data
delivery. To provide interoperability at the level of catalogues, a Catalogue Service
for Web (CSW) standard can be used.

Since the data are usually stored at geographically distributed sites, there are
issues regarding optimization of different visualization schemes. In general, there

3http://www.opengeospatial.org.

282 N. Kussul et al.

are two possible ways to do visualization of distributed data: a centralized visualiza-
tion scheme and a distributed visualization scheme. Advantages and shortcomings
of each of the schemes and experimental results are discussed in detail in [1].

14.2.2 Task Management Level

In this section, the main issues and possible solutions to Grid systems integration
are given. The main prerequisite of such integration is enabling certificates trust.
This can be done, for example, through the EGEE infrastructure that at present
brings together the resources of different organizations from more than 50 countries.
Other problems that should be addressed within the integration are as follows: data
transfer, high-level access to geospatial data, development of common catalogues,
enabling jobs submission and monitoring, and information exchange.

14.2.2.1 Security Issues

To enable security trust between different parties in the Grid system, a Public Key
Infrastructure (PKI) is traditionally applied. X.509 is the most widely used format
which is supported by most of the existing software.

To get access to resources of the Grid system, a user should make a request to a
Certificate Authority (CA) which is always a known third party. The CA validates
the information about the user and then signs the user certificate by the CA’s private
key. The certificate can thus be used to authenticate the user to grant access to the
system. To provide a single sign on and delegation capabilities, the user can use the
certificate and his private key to create a proxy certificate. This certificate is signed
not by CA but rather the user himself. The proxy certificate contains information
about the user’s identity and a special time stamp after which the certificate will no
longer be accepted.

To enable Grid system integration with different middleware installed and
security mechanisms and policies used, the following solutions were tested:

1. To create our own CAs and to enable the trust between them
2. To obtain certificates from a well-known CA, for example, the European Policy

Management Authority for Grid Authentication4 (EUGridPMA)
3. To use a combined approach in which some of the Grid nodes accept only

certificates from the local CA and others accept certificates from a well-known
third party CAs.

Within the integration of the UASpaceGrid and the CEODE-CAS Grid, the second
and the third approaches were verified. In such a case, the UASpaceGrid accepted

4http://www.eugridpma.org.

14 Grid Technologies for Satellite Data Processing 283

the certificates issued by the local CA that was established using the TinyCA, and
certificates issued by the UGRID CA.5

It is worth mentioning that Globus Toolkit v.46 and gLite v.37 middleware imple-
ment the same standard for the certificates, but different standards for describing
the certificate policies. That is why it is necessary to use two different standards for
describing the CA’s identity in a policy description file.

14.2.2.2 Enabling Data Transfer Between Grid Platforms

GridFTP is recognized as a standard protocol for transferring data between Grid
resources [2]. GridFTP is an extension of the standard File Transfer Protocol (FTP)
with the following additional capabilities:

• Integration with the Grid Security Infrastructure (GSI) [3] enabling the support
of various security mechanisms

• Improved performance of data transfer using parallel streams to minimize
bottlenecks

• Multicasting by doing one-source-to-many-destinations transfers

The Globus Toolkit 4 also provides the OGSI-compliant Reliable Transfer Service
(RFT) to enable reliable transfer of data between the GridFTP servers. In this
context, reliability means that problems arisen during the transfer are managed
automatically to some extent defined by the user.

Some difficulties in using GridFTP exist in networks with a complex architecture.
The bunch of these problems originates from the use of the Network Address
Translation (NAT) mechanism. To overcome these problems, the appropriate con-
figurations to the network routers and GridFTP servers should be made.

The gLite 3 middleware provides two GridFTP servers with different authoriza-
tion mechanisms:

1. The GridFTP server with the Virtual Organization Membership System (VOMS)
[4] authorization

2. GridFTP server with the Grid Mapfile authorization mechanism

These two servers can work simultaneously under the condition they will use
different TCP ports. To transfer files between gLite and GT platforms, both versions
of GridFTP servers can be applied. But the server with the VOMS authorization
requires all clients to be authorized using the VOMS server. In such a case, this
may pose some limitations. In contrast, the GridFTP server with the Grid Mapfile
authorization mechanism does not pose such a limitation, and thus can be used with
any other authorization system.

5https://ca.ugrid.org.
6http://www.globus.org/toolkit/.
7http://glite.web.cern.ch/.

284 N. Kussul et al.

To test file transfers between different platforms used at the UASpaceGrid and
the CEODE-CAS Grid, the GridFTP version with the Grid Mapfile authorization
was used. File transfers were successfully completed in both directions between
two Grids with configured client and server roles.

14.2.2.3 Enabling Access to Geospatial Data

In a Grid system that is used for satellite data processing, corresponding services
should be developed to enable access to geospatial data. In such a case, the data
may be of different nature, and different formats may be used for storing them.

Two solutions can be used to enable a high-level access to geospatial data in
Grids: the Web Services Resource Framework (WSRF) services or the Open Grid
Services Architecture–Database Access and Integration8 (OGSA–DAI) container.
Each of these two approaches has its own advantages and shortcomings. A basic
functionality for the WSRF-based services can be easily implemented, packed,
and deployed using proper software tools, but enabling advanced functionality
such as security delegation, third-party transfers, and indexing becomes much
more complicated. The difficulties also arise if the WSRF-based services are to
be integrated with other data-oriented software. A basic architecture for enabling
access to geospatial data in Grids via the WSRF-based services is shown in
Fig. 14.2.

The OGSA–DAI framework provides uniform interfaces to heterogeneous data.
This framework allows the creation of high-level interfaces to data abstraction
layer hiding the details of data formats and representation schemas. Most of the
problems such as delegation, reliable file transfer, and data flow between different
sources are handled automatically in the OGSA–DAI framework. The OGSA–
DAI containers are easily extendable and embeddable. But comparing to the
WSRF basic functionality, the implementation of an OGSA–DAI extension is much
more complicated. Moreover, the OGSA–DAI framework requires a preliminary
deployment of additional software components. A basic architecture for enabling
access to geospatial data in Grids via the OGSA–DAI container is shown in
Fig. 14.2.

14.2.2.4 Job Submission and Monitoring

Different approaches were evaluated to enable job submission and monitoring in the
InterGrid composed of Grid systems that use different middleware. In particular:

1. To use a Grid portal that supports job submission mechanism for different
middleware (Fig. 14.3). The GridSphere and P-GRADE are among possible
solutions.

8http://www.ogsadai.org.uk.

14 Grid Technologies for Satellite Data Processing 285

Administrative Domain

Internet

User

WMS
Grid Service

Service
Container

Intranet

WMS Server

Data
Archive

Standard
Grid ServicesHPC

GIS

Web Presentation

OGSA-DAI
Container

Standard
Components

WMS
Components

Grid Server

Fig. 14.2 High-level access to geospatial data via the WSRF-based services and the OGSA–DAI
container

CE CE SE

gLite frontend
nodes

CE CE SE

GT4 frontend
nodes

Grid Portal
gLite Grid
Segment GT4 Grid Segment

Fig. 14.3 Portal approach to Grid system integration

286 N. Kussul et al.

CE CE SE

gLite frontend
nodes

CE CE SE

GT4 frontend
nodes

Grid Portal

gLite Grid
Segment GT4 Grid Segment

Gridway
Metascheduler

GRAM4 Interface

Fig. 14.4 Metascheduler approach

2. To develop a high-level Grid scheduler – metascheduler – that will support
different middleware by providing standard interfaces (Fig. 14.4).

The Grid portal is an integrated platform to end users that enables access to Grid
services and resources via a standard Web browser. The Grid portal solution is easy
to deploy and maintain, but it does not provide APIs and scheduling capabilities.

On the contrary, a metascheduler interacts with low-level schedulers used
in different Grid systems enabling system interoperability. The metascheduler
approach is much more difficult to maintain comparing to the portal; however, it
provides necessary APIs with advanced scheduling and load-balancing capabilities.
At present, the most comprehensive implementation for the metascheduler is a
GridWay system. The GridWay metascheduler is compatibility with both Globus
and gLite middleware. Beginning from Globus Toolkit v4.0.5, GridWay becomes a
standard part of its distribution. The GridWay system provides comprehensive docu-
mentation for both users and developers that is an important point for implementing
new features.

A combination of these two approaches will provide advanced capabilities for
the implementation of interfaces to get access to the resources of the Grid system,
while a Grid portal will provide a suitable user interface.

14 Grid Technologies for Satellite Data Processing 287

To integrate the resources of the UASpaceGrid and the CEODE-CAS Grid, a
GridSphere-based Grid-portal was deployed.9 The portal allows the submission and
monitoring of jobs on the computing resources of the Grid systems and provides
access to the data available at the storage elements of both systems.

14.3 Implementation Issues: Lessons Learned

In this section, two real-world examples of system integration at the data level and
task management level are given. The first example describes the integration of the
Ukrainian satellite monitoring system operated at the SRI NASU-NSAU and the
Russian satellite monitoring system operated at the IKI RAN at the data level.
The second example refers to the development of the InterGrid infrastructure that
integrates several regional and national Grid systems: the Ukrainian Academician
Grid and Chinese CEODE-CAS Grid.

14.3.1 Integration of Satellite Monitoring Systems at Data Level

Figure 14.5 shows the overall architecture for integrating the satellite monitoring
systems at data level. The satellite data and corresponding products, modeling data,
and in situ observations are provided in a distributive way by applying the OGC
standards. In particular, the SRI NSAU-NSAU provides OGC/WMS-compliant
interfaces to the following data sets:

• Meteorological forecasts derived from the Weather Research and Forecast
(WRF) numerical weather prediction (NWP) model [5]

• In situ observations from a network of weather stations in Ukraine
• Earth land parameters such as temperature, vegetation indices, and soil mois-

ture derived from NASA’s Moderate resolution Imaging Spectro-radiometer
(MODIS) instrument onboard Terra and Aqua satellites

The IKI RAN provides OGC/WMS-compliant interfaces to the following satellite-
derived products:

• Land parameters that are primarily used for agriculture applications
• Fire risk and burnt area estimation for disaster monitoring applications

The products provided by the IKI RAN cover both Russia and Ukraine countries.
Coupling these products with modeling data and in situ observations provided
by the SRI NASU-NSAU allows information of a new quality to be acquired in
almost near-real time. Such integration would never be possible without the use
of standardize OGC interfaces. The proposed approach is used for the solution of
applied problems of agriculture resources monitoring and crop yield prediction.

9http://gridportal.ikd.kiev.ua:8080/gridsphere.

288 N. Kussul et al.

SRI NASU-NSAU Domain IKI RAN Domain

Data Archive

Web interface
JavaScript/AJAX

(OpenLayers)

Desktop GIS Web Portal

WMS Server
Extension “date”

UK Metoffice

NDVI, fires,
basic maps

- Layer caching
- Tiling for load optimization

MODIS LST

WMS Server
(MapServer)

Data Archive

WMS-Time Server

In-situ meteo

PostgreSQL/PostGIS

Fig. 14.5 Architecture of satellite monitoring systems integration

To provide a user interface that will enable integration of data coming from
multiple sources an open-source OpenLayers10 framework is used. OpenLayers is
a thick client software based on JavaScript/AJAX technology and fully operational
on a client side. Main OpenLayers features also include:

• Support of several WMS servers
• Support of different OGC standards (WMS, WFS)
• Caching and tiling support to optimize visualization
• Support of both raster and vector data

The data and satellite-based products provided by the SRI NASU-NSAU and IKI
RAN are available at http://land.ikd.kiev.ua. Figure 14.6 shows a screenshot of
OpenLayers interface in which data from multiple sources are being integrated.

10http://www.openlayers.org.

14 Grid Technologies for Satellite Data Processing 289

Fig. 14.6 OpenLayers interface to heterogeneous data integration from multiple distributed
sources

14.3.2 The InterGrid Testbed Development

The second case study refers to the development of the InterGrid aimed at
solving applications of environment and natural disasters monitoring. The InterGrid
integrates the Ukrainian Academician Grid with a satellite data processing Grid
segment UASpaceGrid and the CEODE-CAS Grid. This InterGrid is considered
as a testbed for the Wide Area Grid (WAG) – a project initiated within the CEOS
Working Group on Information Systems and Services11 (WGISS).

An important application that is being solved within the InterGrid environment
is flood monitoring and prediction. This task requires the adaptation and tuning
of existing meteorological, hydrological and hydraulic models for corresponding
territories [5], and the use of heterogeneous data stored at multiple sites. The
following data sets are used within the flood application:

• NWP modelling data provided within the UASpaceGrid
• Satellite data: synthetic aperture radar (SAR) imagery acquired by ESA’s

Envisat/ASAR and ERS-2/SAR satellites, optical imagery acquired by Terra,
Aqua and EO-1 satellites

• Products derived from optical and microwave satellite data such as surface
temperature, vegetation indices, soil moisture, and precipitation

11http://www.ceos.org/wgiss.

290 N. Kussul et al.

Satellite data
archive

Glite Storage
Element

Glite Computing
Element

Computing cluster

Eumetcast
receiving station

Aurora cluster

Satellite data archive

GT4 Grid Server

Space Research Institute
Grid node

SKIT-3 cluster

GT4 Grid Server

Institute of Cybernetics
Grid Node

Grid Portal

Center for Earth Observation and Digital Earth
Grid Node

InterGrid

GT2 Grid Servers

Ukrainian Academic
Grid segment

Fig. 14.7 Architecture of InterGrid

• In situ observations from weather stations
• Topographical data such as digital elevation model (DEM)

The process of model adaptation can be viewed as a complex workflow and
requires the solution of optimization problems (so-called parametric study) [5].
The processing of satellite data and generation of corresponding products is also
a complex workflow and requires intensive computations [6, 7]. All these factors
lead to the need of using computing and storage resources of different organizations
and their integration into a common InterGrid infrastructure. Figure 14.7 shows the
architecture of the proposed InterGrid.

Currently, the InterGrid infrastructure integrates the resources of several geo-
graphically distributed organisations, in particular:

• SRI NASU-NSAU (Ukraine) with deployed computing and storage nodes based
on the Globus Toolkit 4 and gLite 3 middleware, access to geospatial data and a
Grid portal

• Institute of Cybernetics of NASU (IC NASU, Ukraine) with deployed computing
and storage nodes based on Globus Toolkit 4 middleware and access to comput-
ing resources (SCIT-1/2/3 clusters,12 more than 650 processors)

• CEODE-CAS (China) with deployed computing nodes based on gLite 3 middle-
ware and access to geospatial data (approximately 16 processors)

In all cases, the Grid Resource Allocation and Management (GRAM) service [8] is
used to execute jobs on the Grid resources.

It is also worth mentioning that satellite data are distributed over the Grid
environment. For example, the Envisat/ASAR data (that are used within the flood

12http://icybcluster.org.ua.

14 Grid Technologies for Satellite Data Processing 291

application) are stored on the ESA’s rolling archive and routinely downloaded for
the Ukrainian territory. Then, they are stored at the SRI NASU-NSAU archive that is
accessible via the Grid. MODIS data from Terra and Aqua satellites that are used in
flood and agriculture applications are routinely downloaded from the USGS archives
and stored at the SRI NASU-NSAU and IC NASU.

The GridFTP protocol was chosen to provide data transfer between the Grid
systems. Access to the resources of the InterGrid is organized via a high-level Grid
portal that has been deployed using a GridSphere framework.13 Through the portal,
a user can access the required data and submit jobs to the computing resources of
the InterGrid. The portal also provides facilities to monitor the resources state such
as CPU load and memory usage. The workflow of the data processing steps in the
InterGrid is managed by a Karajan engine.14

14.4 Integration of Grid and Sensor Web

Decision makers in an emergency response situation (e.g., floods, droughts) need
rapid access to the existing data, the ability to request and process data specific to
the emergency, and tools to rapidly integrate the various information services into a
basis for decisions. The flood prediction and monitoring scenario presented here is
being implemented within the GEOSS Architecture Implementation Pilot15 (AIP).
It uses precipitation data from the Global Forecasting System (GFS) model and
NASA’s Tropical Rainfall Measuring Mission16 (TRMM) to identify the potential
flood areas. Once the areas have been identified, we can request satellite imagery
for the specific territory for flood assessment. These data can be both optical (like
EO-1, MODIS, SPOT) and microwave (Envisat, ERS-2, ALOS, RADARSAT-1/2).

This scenario is implemented using the Sensor Web [9,10] and Grid [6,7,11,12]
technologies. The integration of sensor networks with Grid computing brings out
dual benefits [13]:

• Sensor networks can off-load heavy processing activities to the Grid.
• Grid-based sensor applications can provide advance services for smart-sensing

by deploying scenario-specific operators at runtime.

14.4.1 Sensor Web Paradigm

Sensor Web is an emerging paradigm and technology stack for integration of
heterogeneous sensors into a common informational infrastructure. The basic

13http://www.gridsphere.org.
14http://www.gridworkflow.org/snips/gridworkflow/space/Karajan.
15http://www.ogcnetwork.net/AIpilot.
16http://trmm.gsfc.nasa.gov.

292 N. Kussul et al.

functionality required from such infrastructure is remote data access with filtering
capabilities, sensors discovery, and triggering of events by sensors conditions.

Sensor Web is governed by the set of standards developed by OGC [14]. At
present, the following standards are available and approved by consortium:

• OGC Observations and Measurements17 – common terms and definition for
Sensor Web domain

• Sensor Model Language18 – XML-based language for describing different kinds
of sensors

• Transducer Model Language19 – XML-based language for describing the
response characteristics of a transducer

• Sensor Observations Service20 (SOS) – an interface for providing remote access
to sensors data

• Sensor Planning Service21 (SPS) – an interface for submitting tasks to sensors

There are also standards drafts that are available from the Sensor Web working
group but not yet approved as official OpenGIS standards:

• Sensor Alert Service – service for triggering different kinds of events basing of
sensors data

• Web Notification Services – notification framework for sensor events

The Sensor Web paradigm assumes that sensors could belong to different organiza-
tions with different access policies or, in a broader sense, to different administrative
domains. However, existing standards does not provide any means for enforcing data
access policies leaving it to underlying technologies. One possible way for handling
informational security issues in Sensor Web is presented in the next sections.

14.4.2 Sensor Web Flood Use Case

One of the most challenging problems for Sensor Web technology implementation
is global ecological monitoring in the framework of GEOSS. In this section, we
consider the problem of flood monitoring using satellite remote sensing data, in situ
data, and results of simulations.

Flood monitoring requires the integrated analysis of data from multiple hetero-
geneous sources such as remote sensing satellites and in situ observations. Flood
prediction is adding the complexity of physical simulation to the task. Figure 14.8
shows the Sensor Web architecture for this case-study. It presents the integrated use

17http://www.opengeospatial.org/standards/om.
18http://www.opengeospatial.org/standards/sensorml.
19http://www.opengeospatial.org/standards/tml.
20http://www.opengeospatial.org/standards/sos.
21http://www.opengeospatial.org/standards/sps.

14 Grid Technologies for Satellite Data Processing 293

Weather
model

S
O
S

SOS

S
P
S

Hydrological
model

S
O
S

S
im

ul
at

io
n

da
ta

S
im

ul
at

io
n

da
ta

Order

S
O
S

Weather
station

S
O
S

Hydrological
station

M
ea

su
re

m
en

ts

M
ea

su
re

m
en

ts

S
A
S

Fig. 14.8 The sensor web architecture of the flooding test case

of different OpenGIS R� specifications for the Sensor Web. The data from multiple
sources (numerical models, remote sensing, in situ observations) are accessed
through the Sensor Observation Service (SOS). An aggregator site is running the
Sensor Alert Service to notify interested organization about potential flood event
using different communication means. The aggregator site is also sending orders to
satellite receiving facilities using the SPS service to acquire new satellite imagery.

14.4.3 Sensor Web SOS Gridification

The Sensor Web services such as SOS, SPS, and SAS can benefit from the
integration with the Grid platform like Globus Toolkit. Many Sensor Web features
can take advantage of the Grid services, namely:

• Sensor discovery could be performed through the combination of the Index
Service and Trigger Service.

294 N. Kussul et al.

• High-level access to XML description of the sensors and services could be made
through queries to the Index Service.

• Grid platform provides a convenient way for the implementation of notifications
and event triggering using corresponding platform components [15].

• The RFT service [2] provides reliable data transfer for large volumes of data.
• The GSI infrastructure provides enforcement of data and services access policies

in a very flexible way allowing implementation of desired security policy.

To exploit these benefits, an SOS testbed service using Globus Toolkit as a platform
has been developed. Currently, this service works as a proxy translating and
redirecting user requests to the standard HTTP SOS server. The current version uses
client-side libraries for interacting with the SOS server provided by the 52North in
their OX-Framework. The next version will also include in-service implementation
of the SOS server functionality.

The Grid service implementing SOS provides an interface specified in the SOS
reference document. The key difference between the standard interfaces and the
Grid-based implementations of the SOS lies in the encoding of service requests. The
standard implementation uses custom serialization for the requests and responses,
and the Grid-based implementation uses the Simple Object Access Protocol (SOAP)
encoding.

To get advantage of Globus features, the SOS service should export service
capabilities and sensor descriptions as WSRF resource property [16]. Traditionally,
the implementation of such a property requires the translation between XML
Schema and Java code. However, the XML Schema of the SOS service and
related standards, in particular GML [15], is a very complex one, and there are
no available program tools able to generate Java classes from it. This problem was
solved by storing service capabilities and sensor description data as the Document
Object Model (DOM) element object and using a custom serialization for this
class provided by the Axis framework that is used by the Globus Toolkit. Within
this approach, particular elements of the XML document cannot be accessed in
an object-oriented style. However, the SOS Grid service is acting as a proxy
between the user and the SOS implementation, so it does not have to modify the
XML document directly. With resource properties defined in this way, they can be
accessed by using a standard Globus Toolkit API or command line utilities.

14.5 Grid Workflow Management for Satellite Data Processing
Within UN-SPIDER Program

One of the most important problems associated with satellite data processing for
disaster management is a timely delivery of information to end users. To enable
such capabilities, an appropriate infrastructure is required to allow for rapid and
efficient access to processing and delivery of geospatial information that is further
used for damage assessment and risk management. In this section, the use of Grid

14 Grid Technologies for Satellite Data Processing 295

User VOMS

validateCert()

Portal

enters

Server

Navigate, select

SearchData()

Catalog Sevice

searchMetadata()

List of data

createDataLayersvizualizeDataShapes

selectData generateWorkflow

CPU

executeWorkflow

links to KML, WMS, shape filesvisualization of data

Fig. 14.9 UML sequence diagram

technologies for automated acquisition, processing and visualization of satellite
SAR, and optical data for rapid flood mapping is presented. The developed services
are used within the United Nations Platform for Space-based Information for
Disaster Management and Emergency Response22 (UN-SPIDER) Regional Support
Office (RSO) in Ukraine that was established in February 2010.

14.5.1 Overall Architecture

Within the infrastructure, an automated workflow of satellite SAR data acquisition,
processing and visualization, and corresponding geospatial services for flood
mapping from satellite SAR imagery were developed. The data are automatically
downloaded from the ESA rolling archives where satellite images are available
within 2–4 h after their acquisition. Both programming and graphical interfaces
were developed to enable search, discovery, and acquisition of data. Through the
portal, a user can perform a search for the SAR image file based on geographical
region and a time range. A list of available SAR imagery is returned and the user
can select a file to generate a flood map. The file is transferred to the resources of the
Grid system at the SRI NASU-NSAU, and a workflow is automatically generated
and executed on the resources of the Grid infrastructure. The corresponding UML
sequence diagram is shown in Fig. 14.9.

To enable execution of the workflow in the Grid system, a set of services has
been implemented (Fig. 14.10). We followed the approach used in the Earth System
Grid [17]. The four major components of the system are as follows:

22http://www.un-spider.org.

296 N. Kussul et al.

WEB PORTAL
Search browse process download

aggregate subset

AUTOMATIC
WORKFLOW

GENERATION

CATALOG
SERVICES

DESCRIPTION
& ACCESS
METADATA

DATA
AGGREGATION,
SUBSETTING &
VIZUALISATION

GSI GridFTP GRAM MYPROXY RLS OGSA-DAI

ONLINE
STORAGE

DBCPUREMOTE
STORAGE

CLIENT APPLICATIONS

HIGHER LEVEL SPECIFIC SERVICES

GLOBUS/GRID INFRASTRUCTURE

DATABASES AND APPLICATION SERVERS

SECURITY
(CERTIFICATE
VALIDATION)

Fig. 14.10 System architecture

1. Client applications. Web portal is a main entry point, and provides interfaces to
communicate with system services.

2. High-level services. This level includes security subsystem, catalogue services,
metadata services (description and access), automatic workflow generation ser-
vices, and data aggregation, subsetting and visualization services. These services
are connected to the Grid services at the lower level.

3. Grid services. These services provide access to the shared resources of the Grid
system, access to credentials, file transfer, job submission, and management.

4. Database and application services. This level provides physical data and com-
putational resources of the system.

14.5.2 Workflow of Flood Extent Extraction from Satellite
SAR Imagery

A neural network approach to SAR image segmentation and classification was
developed [6]. The workflow of data processing is as follows (Fig. 14.11):

1. Data calibration. Transformation of pixel values (in digital numbers) to
backscatter coefficient (in dB).

2. Orthorectification and geocoding. This step is intended for a geometrical and
radiometric correction associated with the SAR imaging technology, and to
provide a precise georeferencing of data.

14 Grid Technologies for Satellite Data Processing 297

SAR image Image calibration

Orthorectification
and geocoding

Image processing

Topographic
effects removal

Transformation to
lat/long projection

DEM

Neural
network
model

Shadow map

Cartographic
system

Radiometrically
corrected image

Radiometrically and
geometrically corrected

image

Preliminary
classified image

Classified into two:
“water”, “no water”

KML WMS

Fig. 14.11 Workflow of flood extent extraction from SAR satellite imagery

3. Image processing. Segmentation and classification of the image using a neural
network.

4. Topographic effects removal. Using digital elevation model (DEM), such effects
as shadows are removed from the image. The output of this step is a binary image
classified into two classes: “Water” and “No water.”

5. Transformation to geographic projection. The image is transformed to the
projection for further visualization via Internet using the OGC-compliant stan-
dards (KML or WMS) or desktop Geographic Information Systems (GIS) using
shape file.

14.5.3 China–Ukrainian Service-Oriented System for Disaster
Management

To benefit from data of different nature (e.g., optical and radar) and provide
integration of different products in case of emergency, our flood mapping service
was integrated with the flood mapping services provided by the CEODE-CAS.

298 N. Kussul et al.

CEODE
BrokerSRI Broker

Flood monitoring
algorithm (SAR)

Metadata

ENVISAT
SAR

dataset

Metadata

MODIS
dataset

Flood
monitoring
algorithm
(Optical)

CAGrid MiddleWare(GT4) Grid Middleware(GT4)

Operating system
(CentOS)

Operating system
(CentOS)

Karajan
workflow

Karajan
workflow

User Management
(Order management,

User security)

User
level

security

Data
and exe
security

Grid
Security

SRI Portal
CEODE
Portal

Information
Sharing layer

User Management
(Order management,

User security)

Fig. 14.12 Architecture of China–Ukrainian service-oriented system for disaster management

This service is based on the use of optical data acquired by MODIS instrument
onboard Terra and Aqua satellites. Figure 14.12 shows the architecture of the China–
Ukrainian service-oriented system for disaster management.

The integration of the Ukrainian and Chinese systems is done at the level of
services. The portals of SRI NASU-NSAU and CEODE are operated independently
and communicate with corresponding brokers that provide interfaces to the flood
mapping services. These brokers process requests from both local and trusted
remote sites. For example, to provide a flood mapping product using SAR data,
the CEODE portal generates a corresponding search request to the broker at the
SRI NASU-NSAU side based on user search parameters. This request is processed
by the broker and the search results are displayed at the CEODE portal. The user
selects the SAR image file to be processed, and the request is submitted to the SRI
NASU-NSAU broker which generates and executes workflow, and delivers the flood
maps to the CEODE portal. The same applies to the broker operated at the CEODE

14 Grid Technologies for Satellite Data Processing 299

side that provides flood mapping services using optical satellite data. To get access
to the portal, the user should have a valid certificate. The SRI NASU-NSAU runs
the VOMS server to manage with this issue.

14.6 Experimental Results

14.6.1 Numerical Weather Modeling in Grid

The forecasts of meteorological parameters derived from numerical weather model-
ing are vital for a number of applications including floods, droughts, and agriculture.
Currently, we run the WRF model in operational mode for the territory of Ukraine.
The meteorological forecasts for the next 72 h are generated every 6 h with a
spatial resolution of 10 km. The size of horizontal grid is 200 � 200 points with 31
vertical levels. The forecasts derived from the National Centers for Environmental
Prediction Global Forecasting System (NCEP GFS) are used as boundary conditions
for the WRF model. These data are acquired via Internet through the National
Operational Model Archive and Distribution System (NOMADS).

The WRF model workflow to produce forecasts is composed of the following
steps [18]: data acquisition, data preprocessing, generation of forecasts using WRF
application, data postprocessing, and visualization of the results through a portal.

Experiments were run to evaluate the performance of the WRF model with
respect to the number of computating nodes of the Grid system resources. For this
purpose, we used a parallel version of the WRF model (version 2.2) with a model
domain identical to those used in operational NWP service (200 � 200 � 31 grid
points with a horizontal spatial resolution of 10 km). The model parallelization was
implemented using the Message Passing Interface (MPI). We observed almost a
linear productivity growth against the increasing number of computation nodes. For
example, the use of eight nodes of the SCIT-3 cluster of the Grid infrastructure gave
the performance increase 7.09 times (of 8.0 theoretically possible) comparing to a
single node. The use of 64 nodes of the SCIT-3 cluster increased the performance
43.6 times. Since a single iteration of the WRF model run corresponds to the forecast
of meteorological parameters for the next 1 min, the completion of 4,320 iterations
is required for a 3 day forecast. That is, it takes approximately 5.16 h to generate
a 3-day forecast on a single node of the SCIT-3 cluster of the Grid infrastructure.
In turn, the use of 64 nodes of the SCIT-3 cluster allowed us to reduce the overall
computing time to approximately 7.1 min.

14.6.2 Implementation of SOS Service for Meteorological
Observations: Database Issues

To provide access to meteorological data, we implemented the Sensor Web SOS
service (see Sect. 14.4.1). As a case study, we implemented an SOS service for

300 N. Kussul et al.

retrieving surface temperature measured at the weather stations distributed over
Ukraine.

The SOS service output is an XML document in a special scheme specified by the
SOS reference document. The standard describes two possible ways for retrieving
results, namely “Measurement” and “Observation.” The first form is more suitable
to situations when the service returns a small amount of heterogeneous data. The
second form is more suitable for a long time-series of homogeneous data. Table 14.1
gives an example of the SOS service output for both cases.

The 52North software was used for the implementation of the SOS service. Since
the 52North has a complex relational database scheme, we had to adapt the existing
database structure using a number of SQL views and synthetic tables. From 2005
through 2008 there were nearly two million records with observations derived at the
weather stations. The PostgreSQL database with the PostGIS spatial extension was
used to store the data. Most of the data records were contained within a single table
“observations” with indices built over fields with observation time and a station
identifier. The tables of such a volume require a special handling; so the index for
a time field was clusterized thus reordering data on the disks and reducing the need
for I/O operations. The clusterization of the time index reduced a typical query time
from 8,000 to 250 ms.

To adapt this database to the requirements of the 52North server, a number of
auxiliary tables with reference values related to the SOS service such as phenomena
names, sensor names, and region parameters, and a set of views that transform
the underlying database structure into the 52North scheme were created. The most
important view that binds all the values of synthetic tables together with observation
data has the following definition:

SELECT observations.‘‘time’’ AS time stamp, ‘‘procedure’’.
procedure id, feature of interest. feature of interest id,
phenomenon.phenomenon id, offering.offering id,
‘‘ AS text value, observations.t AS numeric value,’’
AS mime type, observations.oid AS observation id
FROM observations, ‘‘procedure’’, proc foi, feature of interest,
proc off, offering strings offering, foi off, phenomenon,
proc phen, phen off
WHERE ‘‘procedure’’.procedure id::text = proc foi.
procedure id::text AND proc foi.feature of interest id::text =
feature of interest.feature of interest id AND ‘‘procedure’’.
procedure id::text = proc off.procedure id::text AND proc off.
offering id::text = offering.offering id::text AND foi off.
offering id::text = offering.offering id::text AND foi off.
feature of interest id::text = feature of interest.
feature of interest id AND proc phen.procedure id::text =
‘‘procedure’’.procedure id::text AND proc phen.phenomenon id::
text = phenomenon.phenomenon id::text AND phen off.
phenomenon id::text = phenomenon.phenomenon id::text AND
phen off.offering id::text = offering.offering id::text AND
observations.wmoid::text = feature of interest.
feature of interest id;

14 Grid Technologies for Satellite Data Processing 301

T
ab

le
14

.1
T

he
tw

o
di

ff
er

en
t

fo
rm

s
of

th
e

SO
S

se
rv

ic
e

ou
tp

ut

M
ea

su
re

m
en

t
O

bs
er

va
ti

on

<
o
m
:
M
e
a
s
u
r
e
m
e
n
t

g
m
l
:
i
d
=
"
o
2
5
5
1
3
6
"

>
<
o
m
:
r
e
s
u
l
t

>

<
o
m
:
s
a
m
p
l
i
n
g
T
i
m
e

>
2
0
0
5
-
0
3
-
1
4
T
2
1
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
-
5
@
@

<
T
i
m
e
I
n
s
t
a
n
t

x
s
i
:
t
y
p
e
=
‘
‘
g
m
l
:
T
i
m
e
I
n
s
t
a
n
t
T
y
p
e
’
’

>
2
0
0
5
-
0
3
-
1
5
T
0
0
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
-
5
.
2
@
@

<
t
i
m
e
P
o
s
i
t
i
o
n

>
2
0
0
5
-
0
3
-
1
5
T
0
3
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
-
5
.
5
@
@

2
0
0
5
-
0
4
-
1
4
T
0
4
:
0
0
:
0
0
+
0
4

2
0
0
5
-
0
3
-
1
5
T
0
6
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
-
4
.
6
@
@

<
=
t
i
m
e
P
o
s
i
t
i
o
n

>
2
0
0
5
-
0
3
-
1
5
T
0
9
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
-
2
.
2
@
@

<
=
T
i
m
e
I
n
s
t
a
n
t

>
2
0
0
5
-
0
3
-
1
5
T
1
2
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
1
.
7
@
@

<
=
o
m
:
s
a
m
p
l
i
n
g
T
i
m
e

>
2
0
0
5
-
0
3
-
1
5
T
1
5
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
1
.
7
@
@

<
o
m
:
p
r
o
c
e
d
u
r
e

x
l
i
n
k
:
h
r
e
f
=

2
0
0
5
-
0
3
-
1
5
T
1
8
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
2
.
4
@
@

‘
‘
u
r
n
:
o
g
c
:
o
b
j
e
c
t
:
f
e
a
t
u
r
e
:
S
e
n
s
o
r
:
W
M
O
:
3
3
5
0
6
’
’
/

>
2
0
0
5
-
0
3
-
1
5
T
2
1
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
-
0
.
7
@
@

<
o
m
:
o
b
s
e
r
v
e
d
P
r
o
p
e
r
t
y

x
l
i
n
k
:
h
r
e
f
=

2
0
0
5
-
0
3
-
1
6
T
0
0
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
-
1
.
4
@
@

‘
‘
u
r
n
:
o
g
c
:
d
e
f
:
p
h
e
n
o
m
e
n
o
n
:
O
G
C
:
t
e
m
p
e
r
a
t
u
r
e
’
’
/

>
2
0
0
5
-
0
3
-
1
6
T
0
3
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
-
1
.
1
@
@

<
o
m
:
f
e
a
t
u
r
e
O
f
I
n
t
e
r
e
s
t

>
2
0
0
5
-
0
3
-
1
6
T
0
6
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
-
1
.
1
@
@

<
s
a
:
S
t
a
t
i
o
n

g
m
l
:
i
d
=
‘
‘
3
3
5
0
6
’
’

>
2
0
0
5
-
0
3
-
1
6
T
0
9
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
-
1
.
3
@
@

<
n
a
m
e

>
W
M
O
3
3
5
0
6

<
/
n
a
m
e

>
2
0
0
5
-
0
3
-
1
6
T
1
2
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
0
.
5
@
@

<
s
a
:
s
a
m
p
l
e
d
F
e
a
t
u
r
e

x
l
i
n
k
:
h
r
e
f
=
’
’
’
’
/

>
2
0
0
5
-
0
3
-
1
6
T
1
5
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
1
.
7
@
@

<
s
a
:
p
o
s
i
t
i
o
n

>
2
0
0
5
-
0
3
-
1
6
T
1
8
:
0
0
:
0
0
+
0
3
,
3
3
5
0
6
,
1
.
5
@
@

<
P
o
i
n
t

>
<

=
o
m
:
r
e
s
u
l
t

>

<
p
o
s

s
r
s
N
a
m
e
=
‘
‘
u
r
n
:
c
r
s
:
e
p
s
g
:
4
3
2
6
’
’

>

3
4
.
5
5

4
9
.
6

<
=
p
o
s

>

<
=
P
o
i
n
t

>

<
=
s
a
:
p
o
s
i
t
i
o
n

>

<
=
s
a
:
S
t
a
t
i
o
n

>

<
=
o
m
:
f
e
a
t
u
r
e
O
f
I
n
t
e
r
e
s
t

>

<
o
m
:
r
e
s
u
l
t

u
o
m
=
‘
‘
c
e
l
s
i
u
s
’
’

>
1
0
.
9

<
/
o
m
:
r
e
s
u
l
t

>

<
=
o
m
:
M
e
a
s
u
r
e
m
e
n
t

>

302 N. Kussul et al.

The 52North’s database scheme uses a string as a primary key for auxiliary tables
instead of a synthetic numerical one, and is far from being optimal in the sense of
performance. It might cause problems in a large-scale SOS-enabled data warehouse.
A typical SQL query from the 52North service is quite complex. Here is an example:

SELECT observation.time stamp, observation.text value,
observation.observation id, observation.numeric value,
observation.mime type, observation.offering id, phenomenon.
phenomenon id, phenomenon.phenomenon description,
phenomenon.unit,phenomenon.valuetype,observation.procedure id,
feature of interest.feature of interest name, feature of interest.
feature of interest id, feature of interest.feature type,
SRID(feature of interest.geom), AsText(feature of interest.geom)
AS geom FROM phenomenon NATURAL INNER JOIN observation NATURAL
INNER JOIN feature of interest WHERE (feature of interest.
feature of interest id = ‘33506’) AND (observation.phenomenon id
=‘urn:ogc:def:phenomenon:OGC:1.0.30:temperature’) AND
(observation.procedure id = ‘urn:ogc:object:feature:Sensor:
WMO:33506’) AND (observation.time stamp >= ‘2006-01-01 02:00:00
+0300’AND observation.time stamp <= ‘2006-02-26 01:00:00+0300’)

An average response time for such a query (assuming a 1-month time period)
is about 250 ms with the PostgreSQL server running in a virtual environment on
a 4 CPUs server with 8GB of RAM and 5 SCSI 10k rpm disks in RAID5 array.
The increase in a query depth results in a linear increase of response time with an
estimate of 50 ms per month (see Fig. 14.13).

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Months

m
s

Fig. 14.13 The dependence of query response time against the depth of query

14 Grid Technologies for Satellite Data Processing 303

14.6.3 Rapid Flood Mapping from Satellite Imagery in Grid

Within the developed Grid infrastructure, a set of services for rapid flood mapping
from satellite imagery is delivered. The use of the Sensor Web services enables
automated planning and tasking of satellite (where available) and data delivery,
while the Grid services are used for workflow orchestration, data processing, and
geospatial services delivery to end users through the portal.

To benefit from the use of the Grid, a parallel version of the method for flood
mapping from satellite SAR imagery has been developed (see Sect. 14.5.2). The
parallelization of the image processing was implemented in the following way: an
SAR image is split into the uniform parts that are processed on different nodes
using the OpenMP Application Program Interface (www.openmp.org). The use of
the Grids allowed us to considerably reduce the time required for image processing
and service delivery. In particular, it took approximately more than 1.5 h (depending
on image size) to execute the whole workflow on a single workstation. The use of
Grid computing resources allowed us to reduce the computational time to less than
20 min.

Another case study refers to the use of the Sensor Web for tasking the EO-1
satellite through the SPS service [19]. Through the UN-SPIDER RSO in Ukraine,
a request was made from local authorities to acquire satellite images over the Kyiv
city area due to a high risk of a flood in spring 2010. The use of the Sensor Web and
the Grid ensured a timely delivery of products to end users. In particular, Table 14.2
gives a sequence of events starting from the notification of satellite tasking and
ending with generation of final products.

It took less than 12 h after image acquisition to generate geospatial products that
were delivered to the Ukrainian Ministry of Emergency Situations, the Council of
National Security and Defence, and the Ukrainian Hydrometeorological Centre.
The information on river extent that was derived from the EO-1 image was used
to calibrate and validate hydrological models to produce various scenarios of water
extent for flood risk assessment.

Table 14.2 The timeline of tasking the EO-1 satellite and generating the final geospatial product
during the potential flood in Ukraine in spring 2010

Date and timea Event

Mon Apr 12 2010 @ 10:33 PM Notification on EO-1 tasking through SPS
Tue Apr 13 2010 @ 11:33 AM Image taken

Tue Apr 13 2010 @ 04:30 PM
Image available at the NASA ftp server and automatically

transferred to the Grid system resources

Tue Apr 13 2010 @ 11:30 PM
Generation of geospatial products using Grid computing

resources
aTime is local Ukrainian.

304 N. Kussul et al.

14.6.4 Discussion

Summarizing, we may point out the following benefits of using Grid technologies
and Sensor Web for the case studies described in this section. Within the meteoro-
logical modeling application, the use of the Grid system resources made it possible
to considerably reduce the time required to run the WRF model (up to 43.6 times). It
is especially important for the cases when it is necessary to tune the model and adapt
it to a specific region and thus to run the model multiple times to find an optimal
configuration and parameterization [5]. For the flood application, Grids also allowed
us to reduce the overall computing time required for satellite image processing, and
made possible the fast response within international programs and initiatives related
to disaster management. The Sensor Web standards ensured automated tasking of
remote-sensing satellite and a timely delivery of information and corresponding
products in case of emergency. Although a successful use case of using the Sensor
Web was demonstrated in this section, it is not always the case. Moreover, the case
study of the SOS service for surface temperature retrieval from weather stations
showed that a lot of database issues still exist that should be properly addressed
within the future implementations.

14.7 Conclusions

This chapter was devoted to the description of different approaches to integration
of satellite monitoring systems using such technologies as Grid and Sensor Web.
We considered integration at the following levels: data integration level and task
management level. Several real-world examples were given to demonstrate such
integration. The first example referred to the integration of the Ukrainian satellite
monitoring system operated at the SRI NASU-NSAU and the Russian satellite
monitoring system operated at the IK RAN at the data level. The second example
referred to the development of the InterGrid infrastructure that integrates several
regional and national Grid systems: the Ukrainian Academician Grid with a satellite
data processing Grid segment UASpaceGrid and the CEODE-CAS Grid. Different
issues regarding the integration of the emerging Sensor Web technology with Grids
were discussed in the study. We showed how the Sensor Web can benefit from
using Grids and vice versa. A flood monitoring and prediction application was used
as an example to demonstrate the advantages of integration of these technologies.
An important problem of Grid workflow management for satellite data processing
was discussed, and automation of the workflow for flood mapping from satellite
SAR imagery was described. To benefit from using data from multiple sources,
integration of the Ukrainian and Chinese flood mapping services that use radar and
optical satellite data was carried out.

14 Grid Technologies for Satellite Data Processing 305

References

1. Shelestov, A., Kravchenko, O., Ilin, M.: Distributed visualization systems in remote sensing
data processing GRID. Int. J. Inf. Tech. Knowl. 2(1), 76–82 (2008)

2. Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M.: The Globus Striped GridFTP Framework
and Server. In: Proceedings of ACM/IEEE SC 2005 Conf on Supercomputing. (2005). doi:
10.1109/SC.2005.72

3. Butler, R., Engert, D., Foster, I., Kesselman, C., Tuecke, S., Volmer, J., Welch, V.: A national-
scale authentication infrastructure. IEEE Comp. 33(12), 60–66 (2000)

4. Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L., Frohner, Á., Gianoli, A., Lõrentey, K.,
Spataro, F.: VOMS, an authorization system for virtual organizations. Lect. Notes Comp. Sci.
2970, 33–40 (2004)

5. Kussul, N., Shelestov, A., Skakun, S., Kravchenko, O.: Data assimilation technique for flood
monitoring and prediction. Int. J. Inf. Theor. Appl. 15(1), 76–84 (2008)

6. Kussul, N., Shelestov, A., Skakun, S.: Grid system for flood extent extraction from satellite
images. Earth Sci. Informatics 1(3–4), 105–117 (2008)

7. Fusco, L., Cossu, R., Retscher, C.: Open grid services for Envisat and Earth observation
applications. In: Plaza, A.J., Chang, C.-I. (eds.) High Performance Computing in Remote
Sensing, pp 237–280, 1st edn. Taylor & Francis, New York (2007)

8. Feller, M., Foster, I., Martin, S.: GT4 GRAM: A functionality and performance Study. http://
www.globus.org/alliance/publications/papers/TG07-GRAM-comparison-final.pdf (2007).
Accessed 30 Aug 2010

9. Moe, K., Smith, S., Prescott, G., Sherwood, R.: Sensor web technologies for NASA
Earth science. In: Proceedings of 2008 IEEE Aerospace Conference, pp. 1–7 (2008).
doi:10.1109/AERO.2008.4526458

10. Mandl, D., Frye, S.W., Goldberg, M.D., Habib, S., Talabac, S.: Sensor webs: Where they
are today and what are the future needs? In: Proceedings of Second IEEE Workshop on
Dependability and Security in Sensor Networks and Systems (DSSNS 2006), pp. 65–70 (2006).
doi: 10.1109/DSSNS.2006.16

11. Foster, I.: The Grid: A new infrastructure for 21st century science. Phys. Today 55(2), 42–47
(2002)

12. Shelestov, A., Kussul, N., Skakun, S: Grid technologies in monitoring systems based on
satellite data. J. Automation Inf. Sci. 38(3), 69–80 (2006)

13. Chu, X., Kobialka, T., Durnota, B., Buyya, R.: Open sensor web architecture: Core services.
In: Proceedings of the 4th International Conference on Intelligent Sensing and Information
Processing (ICISIP), pp. 98–103. IEEE, New Jersey (2006)

14. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC sensor web enablement: Overview and
high level architecture (OGC 07–165) Accessible via http://portal.opengeospatial.org/files/?
artifact id=25562 (2007) Accessed 30 Aug 2010

15. Humphrey, M., Wasson, G., Jackson, K., Boverhof, J., Rodriguez, M., Bester, J., Gawor,
J., Lang, S., Foster, I., Meder, S., Pickles, S., McKeown, M.: State and events for web
services: A comparison of five WS-resource framework and WS-notification implementations.
In: Proceedings of 4th IEEE International Symposium on High Performance Distributed
Computing (HPDC-14), Research Triangle Park, NC (2005)

16. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In: IFIP Interna-
tional Conference on Network and Parallel Computing, LNCS, vol. 3779, pp. 2–13. Springer,
Heidelberg (2005)

17. Williams, D.N., et al.: Data management and analysis for the Earth System Grid. J. Phys. Conf.
Ser. 125, 012072 (2008). doi: 10.1088/1742–6596/125/1/012072

18. Kussul, N., Shelestov, A., Skakun, S.: Grid and sensor web technologies for environmental
monitoring. Earth Sci. Informatics 2(1–2), 37–51 (2009)

19. Mandl, D.: Experimenting with sensor webs using Earth observing 1. IEEE Aerospace
Conference, Big Sky, MT (2004)

15 Transparent Data Cube for Spatiotemporal Data Mining and Visualization 309

with the Big Table database [7] and the Map-Reduce data processing pattern [8]
which provides a framework for programming and running atomic processing jobs
on a CPU attached to a hard drive with some input data. Hadoop is an alternative
open-source Java implementation of the distributed file system and Map-Reduce
framework used by Yahoo [9]. A similar Dryad technology is being developed by
Microsoft [10].

Very large database (VLDB) community uses database clusters for the similar
task of distributed parallel querying of large databases [11]. The difference between
the “active storage” and the “database cluster” approaches reflects mainly the
difference in the object data models: files or relational tables. Instead of running
“arbitrary” user-mode binary data processing code in the active storage or by the
Map-Reduce steps, VLDB relies on very efficient interpretation of a limited number
(20C according to Jim Gray) of SQL programs and stored procedures by a parallel
cluster of database servers [12]. The database paradigm results in a “classical”
multi-tier software architecture, which includes a web client, a web and application
server, a database server, and a disk storage. To achieve horizontal scalability
and to overcome potential bottlenecks at the database tier, distributed databases
can be designed in several ways, including partitioning, replication, or distributed
control [13].

Several relatively large data management and mining projects for Earth Sciences
including seismology [14], climatology [15], remote sensing [16], and space physics
[17] have resulted in the same conclusions as mentioned by the authors of The
Fourth Paradigm [12]:

1. Efficient management of very large scientific datasets requires the data to be
organized in a distributed database;

2. Distributed collections of data files do not scale well enough to be an alternative
for the database approach.

However, the typical Earth Science data model as a multidimensional numeric array
is not directly supported by the “classical” relational database management systems.
In many cases, the data array dimensions correspond to spatial coordinates and time,
with possible addition of altitude, etc. Let us call this type of numeric arrays simply
as spatiotemporal data.

Spatiotemporal data can be of different kinds, such as time series recorded
at a fixed or moving observatory (ground station or satellite orbit), time varying
latitude/longitude grid (e.g., temperature field in weather forecast), or geolocated
images (e.g., mosaic of satellite observations). Storing these objects in relational
tables is not efficient because it produces very large indices. A reusable solution
is an active storage specifically designed for spatiotemporal data model. It can in
parallel read–write, subset, and aggregate chunks of multidimensional data arrays,
which are indexed and stored as large binary objects (BLOBs) inside a relational
database. In fact, this active storage can be viewed as a specialized parallel file
system for large and reasonably diverse scientific data arrays with metadata and a
simple web service interface for data mining and visualization tools.

The spatiotemporal data model fits well into the common data model (CDM)
designed by UNIDATA [18]. This data model is used for data exchange between

•

Chapter 15
Transparent Data Cube for Spatiotemporal
Data Mining and Visualization

Mikhail Zhizhin, Dmitry Medvedev, Dmitry Mishin, Alexei Poyda,
and Alexander Novikov

Abstract Data mining and visualization in very large spatiotemporal databases
requires three kinds of computing parallelism: file system, data processor, and
visualization or rendering farm. Transparent data cube combines on the same
hardware a database cluster for active storage of spatiotemporal data with an MPI
compute cluster for data processing and rendering on a tiled-display video wall. This
approach results in a scalable and inexpensive architecture for interactive analysis
and high-resolution mapping of environmental and remote sensing data which we
use for comparative study of the climate and vegetation change.

15.1 Introduction

Data mining and visualization in very large spatiotemporal databases requires three
kinds of computing parallelism: parallel file system, distributed data processor, and
rendering farm for visualization. In high-performance computing, these tasks are
usually solved by different types of hardware, such as a network-attached storage,
a diskless computational cluster with low-latency interconnect, and a tiled-display
video wall attached to a rendering farm. This architecture requires high bandwidth
interconnection between the specialized hardware, which is mainly used to move
data to computation nodes.

Transparent data cube is a new technology which reduces both the number
of CPUs and the network load for data intensive applications by performing
computations at the distributed data storage nodes. The idea is to send parallel
data processing and visualization tasks to the CPUs which are located at the same

M. Zhizhin (�) � D. Medvedev � D. Mishin � A. Poyda � A. Novikov
Space Research Institute and Geophysical Center, Russian Academy of Sciences, Moscow,
Russia
e-mail: mikhail.zhizhin@gmail.com; dmedv@wdcb.ru; dmitry.mishin@gmail.com;
poyda@wdcb.ru; novikov@wdcb.ru

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 15, © Springer-Verlag Berlin Heidelberg 2011

307

308 M. Zhizhin et al.

Fig. 15.1 Transparent data cube concept

cluster nodes as the hard drives with the chunks of data needed for the processing.
Such transparent data cube combines several software layers on the same hardware
platform: (1) a database cluster for active storage of multidimensional data arrays;
(2) a computing cluster for data processing, and (3) a tiled-display video wall
for data visualization. The software implementations of the storage, processor
and display components communicate with each other using web or grid services
(Fig. 15.1).

This “general purpose” hardware in the data cube cluster can be a commodity
desktop computer or a virtual machine running in a private or public cloud, such
as Eucalyptus or Amazon. In the cloud, the number of virtual machine instances in
the data cube can be instantly increased to scale according to the storage and data
processing tasks.

In the following sections, we describe CDM ActiveStorage architecture, provide
its performance specs and API, describe environmental event data mining algo-
rithms based on fuzzy logic and parallel video wall visualization clients.

15.2 Background

The term “active storage” was coined in the late 1990s by Riedel et al. [1] to take
advantage of the processing power on individual disk drives to run application-level
code. This idea was later transformed into the “object-based storage device” (OSD)
concept [2] implemented in the distributed parallel file system Luster [3]. Recently,
Felix et al. [4, 5] presented an implementation of active storage for the Luster file
system which provides a kernel-space solution with the processing component parts
implemented in the user space.

There is a lot of ongoing research and software development in this area. For
web search and log analysis, Google combines distributed file system GFS [6]

310 M. Zhizhin et al.

Application
Server:

tile server,
data mining

service

DB Server

Chunk
Storage

Put/Get

SQL+
Stored

Procedures

REST SOAP

Map Tiles

Fig. 15.2 Data cube tiers

the storage, mining, and visualization services in the data cube. To distinguish our
solution from other parallel data storage and localized processing methods, we
call it “CDM ActiveStorage.” The CDM ActiveStorage can be used in numerical
modeling, data mining, and interactive visualization of spatiotemporal data. It
was successfully used for querying input arrays and storing output of the parallel
mesoscale weather model MM5 [19] and space weather model AMIE [20], as well
as for the historical climate data mining using environmental scenario search engine
(ESSE) [17].

There are two file-based solutions to store CDM, NetCDF-4 [21], and HDF5
[22], but maintaining a large collection of data files can be cumbersome, including
problems with remote and multiuser access. Parallel NetCDF [23] combines
NetCDF API library with the Luster parallel file system. This parallelization is
efficient for the IO operations, but it does not allow parallel execution of data
processing functions such as aggregation or convolution.

Data cube adds two more tiers to the “classical” database web application:
service layer and visualization farm (Fig. 15.2). The service layer includes (1)
SOAP Grid data mining service based on the OGSA-DAI technology [24] and (2)
RESTful web service layer for data extraction and image data plots and tile server
for visualization.

15 Transparent Data Cube for Spatiotemporal Data Mining and Visualization 311

15.3 Active Storage for Multidimensional Arrays

ActiveStorage is designed to facilitate fast access to multidimensional numeric data,
particularly for scientific applications. It consists of a database server and a client
library used to access the server from a remote machine. It is horizontally scalable
because the data can be distributed between several database servers working in
parallel for better performance.

The main idea behind this storage design is data chunking. Multidimensional
data array is split into relatively small chunks to avoid addressing the whole array
for the query which needs only a small number of chunks. Using a database
management system automatically solves the problems with remote and multiuser
access. It is true that relational data model is not particularly well suited for scientific
data in multidimensional numeric arrays. However, the possibility to write stored
procedures in virtually any language makes up for the drawbacks of the data model.

Our design of the active storage is similar to a well-known multidimensional
raster server RasDaMan [25]. It also uses a relational database to store large data
arrays divided into small blocks. But unlike RasDaMan, which is a middleware
server for processing data queries, in ActiveStorage the data processing functions
are executed directly by the database server using stored procedures.

On a higher level, the active storage is based on the CDM derived from the
NetCDF-4 and HDF5. The actual data model used in ActiveStorage is given in
Fig. 15.3:

• A group is a container for other objects. It contains variables, dimensions,
attributes, and other groups.

-name

Group

-name
-dataType
-value

Attribute

-name
-shape
-dataType

Variable

-name
-length

Dimension

-byte
-short
-int
-long
-float
-double
-char
-String

DataType

Fig. 15.3 Common data model

312 M. Zhizhin et al.

• A variable represents a multidimensional data array of specified type indexed by
one or more dimensions. A variable may have 0 or more attributes, which contain
additional metadata.

• A dimension is a named index used to describe the shape of the data array stored
in a variable.

• An attribute is a name–value pair used to store additional metadata for groups
and variables.

The classes of the CDM can be directly mapped into relational database tables. The
database diagram is given in Fig. 15.4.

Each variable has two additional associated tables, shown in Fig. 15.5. One
is a data table; another is an index table. The data are stored in the data table
in binary columns. For better performance, each multidimensional array is split
into rectangular chunks of arbitrary size and shape. Each chunk occupies one
record in a data table. A multidimensional chunk is stored in row-major order
(rightmost indices vary faster). Each chunk starts with a small header which contains
information about the chunk’s boundaries along each dimension. These boundaries
are also stored in the index table, allowing for fast selection of chunks inside a given
bounding box.

The workflow describing the retrieval of data from the database is shown in
Fig. 15.6. Data selection and processing are performed by the database server. The
client library joins the pieces of data together and provides an abstraction layer
(API) for data access.

Server-side subsetting of data chunks is in itself a time-consuming process.
We can speed up data queries by processing chunks simultaneously on several
database servers. To do this, we need to create several databases that would contain
nonoverlapping subsets of the global data array. As shown in Fig. 15.7, the client
library collects subsets of data from multiple databases and merges them as if they
came from a single database.

We have tested access performance to the data cube for a large climatological
database resulting from the NCEP/NCAR Reanalysis project [26]. It has about 80
different variables (including geopotential height, temperature, relative humidity,
cloud cover, etc.), available from 1 January 1948 till present with output every 6 h in
coordinate system with 17 height levels or at the surface of the Earth on the regular
2:5 � 2:5ı grids. The total size of the NCEP/NCAR Reanalysis database in CDM
ActiveStorage is around 500 GB.

Before moving to CDM ActiveStorage, we have used MySQL databases opti-
mized for two different shapes of spatiotemporal queries: time series at a given
location or spatial grid at a given time [15]. The results below show performance
comparison between the two MySQL databases and the CDM ActiveStorage dataset
configured for all-round performance with data chunk shape f1500, 10, 10g (time,
lat, lon). The queries produce result sets with the same size but different shape. The
time length of the queries changes from 8 to 32,768 in geometric progression, while
the length of space dimensions (lat, lon) declines accordingly to keep the size of
the result array constant. Test machines configuration was 2� AMD Opteron dual

15 Transparent Data Cube for Spatiotemporal Data Mining and Visualization 313

dimensions
dim_id

dim_group

dim_name

dim_length

servers
var_id

host

port

db_name

login

passwd

shapes
var_id

dim_index

dim_id

types
type_id

type_name

type_length

variables
var_id

var_group

var_name

var_type

data_table

index_table

grp_attributes
group_id

att_name

att_type

att_value

var_attributes
var_id

att_name

att_type

att_value

groups
group_id

group_name

parent_id

Fig. 15.4 CDM mapping to relational database

core 2.2 GHz with 4 Gb DDR2-667 RAM and a SATA-II 750 Gb hard drive. We also
tested two configurations for ActiveStorage: single server and four parallel servers.

Figure 15.8 shows the results for 4D arrays (air temperature on multiple height
levels at 6 h time step, 34 GB data array). As expected, space-optimized and time-
optimized MySQL databases show excellent performance on their specific queries
but their results steadily decline as queries become more diverse. Note that the

314 M. Zhizhin et al.

air_data

PK chunk_key

chunk

air_index

PK,FK1 chunk_key
PK dim_index

I1 key_min
I1 key_max

Fig. 15.5 Data chunks and index tables

SQL Server
database

xmax, ymax

xmin, ymin

Client library

1.Call the client library with array
coordinates as call parameters

2. Issue commands to the
database server

3. Select the requested
data parts from the
appropriate chunks

4. Return the data parts to
the client library

5.Merge the data parts and
return the whole array to the user

Fig. 15.6 Retrieving data from the database

SQL Server
database

SQL Server
database

Client library

.
.

.

Fig. 15.7 Distributed queries over multiple database servers

horizontal axis corresponds to logarithmic change of time dimension length, so
the curves for space-optimized and time-optimized curves, appearing as exponents,
actually correspond to linear change. The CDM ActiveStorage provides better all-
round performance, though in certain cases it is not as efficient as the MySQL
databases.

15 Transparent Data Cube for Spatiotemporal Data Mining and Visualization 315

Fig. 15.8 Query performance on a 4D array of NCEP/NCAR reanalysis dataset (air temperature
at multiple pressure levels)

15.4 Data Cube API

Transparent Data Cube provides several interface layers for data access (Fig. 15.9).
The low-level interface is simply the CDM ActiveStorage client. It provides a rich
set of methods for data manipulation, but it cannot be used directly for remote
method invocation. The middle level interface is implemented as a SOAP web
service, capable of executing remote synchronous and asynchronous data requests.
The SOAP web service is used as a wrapper for the active storage client with XML
serialization of the client’s function calls and the returned data. At this level, several
Data Cubes connected via network can be used for distributed data processing. At
the top level of the data access interface, there are RESTful web services, which can
map basic data extraction and visualization tasks into URLs.

The most straightforward way is to connect to the CDM ActiveStorage using
its client library. The client library is available for Java and .NET platforms. The
Java client library is integrated with MATLAB. It is compatible with and extends
the NetCDF MATLAB library [27] with CDM ActiveStorage functions for parallel
data processing, such as aggregation.

15.4.1 SOAP Web Services

Another option is to use the open grid service architecture data access interface
(OGSA-DAI) [24] to expose the CDM ActiveStorage to grid-aware applications.
The basic abstraction introduced in OGSA-DAI is a virtual data resource capable
of performing a standard set of data access and transformation activities using

316 M. Zhizhin et al.

Fig. 15.9 Data cube API
layers

SOAP web service protocol. The SOAP protocol defines the XML format of
messages sent between clients and servers and how a message can be interpreted
as a remote procedure call consisting of the procedure to be called, the arguments
and the results. An OGSA-DAI resource can represent a relational database, an
XML database, or a collection of files. Typically, each database is represented as a
separate data resource, but the concept is general enough to represent heterogeneous
databases. Using these web services, data can be queried, updated, transformed, and
aggregated.

OGSA-DAI data resources may differ in a set of activities they are able to
perform. For example, a data resource representing a relational database may
execute SQL queries while xPath queries may be submitted to a data resource
representing an XML database. The advantage of OGSA-DAI is that clients use
standard self-describing web service protocols with grid-aware authentication to
submit queries and obtain results. OGSA-DAI allows data resources to be federated
and accessed via web services on the web or within grids or clouds. The data
resources may be orchestrated in such a way that result set from one of it goes
as input data directly to another data resource.

The interface to multidimensional data arrays cannot easily and efficiently use
standard query languages like SQL or XQuery due to the fact that these languages do
not directly support the Common Data Model. Thus, OGSA-DAI had to be extended
to implement a CDM data resource with a set of corresponding activities. The data
stream from the OGSA-DAI service with the CDM data resource may come to a
user in different formats: NetCDF binary format [21], NcML XML format [28],
image representation of a time series plot or a gridded dataset map.

The web service wrappers to the data cube API allow distributed execution of the
independent data processing steps in the remote data cubes. To test the performance
of the distributed data processing, a gigabit network in Moscow was used between
the Geophysical Center and the Space Research Institute of the Russian Academy
of Sciences. In both institutions, parallel database clusters for CDM ActiveStorage
and OGSA-DAI servers were installed.

Consider the following three scenarios for the case when the data volume is
equally split between the two data cubes:

1. Each half of the data volume is extracted and parallelly processed locally in the
data cube where it is stored. Then, the partial results are streamed from the data
cubes for the final merge on the client.

15 Transparent Data Cube for Spatiotemporal Data Mining and Visualization 317

Fig. 15.10 Distributed data
processing performance test.
Case 1 – distributed
processing, Case 2 –
distributed select, Case 3 –
sequential select and
processing

2. Each half of the data volume is extracted and parallelly streamed across the
network for the sequential merge and processing on the client.

3. Sequential local data extraction and processing in the same data cube.

A typical data processing request in agroclimatology for the regional climate
trends study may be to calculate monthly average temperature (first data cube) and
precipitation (second data cube) from the 6�h time step data on the regular latitude–
longitude grid with 2:5ı step in the latitude range from 40 to 75ı North and the
longitude range from 25 to 177:5ı East (approximate rectangle boundary region for
Russia). The size of the time window varies to show how the data processing scales
with the size of the input data: 16 years D 2 � 25 MB, 24 years D 2 � 38 MB,
32 years D 2�50 MB. In all cases, there is a 120-fold decrease in the data size after
the averaging. Wide area network data transfer rate between the two data cubes
was 57 Mb s�1. Each data cube was used as a client for sequential data processing
and symmetrical data requests for distributed cases to account for the difference in
the data cube hardware. Each test was performed three times and the results are
presented in Fig. 15.10.

Distributed processing with OGSA-DAI linearly scales with data volume and is
significantly faster because of the 120-fold compression of the resulting data size
as well as the doubling of the sectional processing time by one server compared
to the parallel processing of partial data by two servers. If the size of the resulting
data decreases after a processing step (say after averaging and downsampling), then
moving of the partial data processing tasks to the remote data cubes (Map) followed
by the local merge of the partial results on the client (Reduce) is much faster than
the parallel streaming of the extracted data from all remote sources for the local data
processing on the client.

15.4.2 RESTful Web Services

At the top of the data cube, there is an API implemented as a RESTful web service.
REpresentational State Transfer (REST) is a lightweight HTTP-based protocol
for client communication with data resources. It uses the concepts of resources
identified by URIs, resources states expressed in XML or JSON, client statelessness
and a uniform interface using the standard HTTP request methods GET, PUT, POST,
DELETE to retrieve, create, update, delete, and describe resources.

318 M. Zhizhin et al.

The data cube RESTful web service is implemented as a servlet communicating
with the SOAP-based OGSA-DAI web service. The REST common query language
(CQL) was developed to simplify the environmental data source queries for the end
users. The CQL can be considered as a mapping from parameter–value pairs in
the web service query to the OGSA-DAI service request XML message (perform
document). The servlet has to parse the query parameters and build a corresponding
SOAP request document. The resulting REST service supports synchronous and
asynchronous calls, as both are supported by OGSA-DAI.

The lightweight, easy-portable, and having few dependencies RESTful servlet
can be easily integrated into any remote Java application or independent Java
application server to be a proxy between the client and the heavier SOAP data
access engine residing, for example, at a protected network space server. Multiple
REST services can be used for the load balancing purposes using its stateless and
replaceable nature by having a balancing broker redirecting the user request to a
random REST service.

The lightweight REST services are useful for rapidly changing Cloud envi-
ronments. By registering the newly created service in a metadata repository and
periodically checking its state, a developer can have a pool of REST services that
are ready to serve the user’s data queries. Dynamically adjusting the number of
running web service virtual instances according to the current requests load enables
the automatic interactive load balancing inside the Cloud cluster.

Using the SOAP services registry and database-specific metadata containing
information about the database content, time and spatial coverage allows inte-
grating the location-dependent SOAP data processing service into the global
location-independent network of REST services accumulating the data from various
distributed data sources.

Currently, the Virtual Observatory metadata management system VxOWare [29]
is used as a registry for the running REST data services. It provides the REST service
for pushing information about the newly started data service into the metadata
registry, such as the service endpoint URL, the list of parameters, current state
(enabled or off). Using the VO “outersearch” functionality, an application can
receive a server-generated list of selected data services complying with specific
requirements, such as data parameters containing a keyword, networking nearest
location, specific data topic (Space physics, Earth physics, solid Earth data).
This requires the REST data cube services to provide information collected from
underlying services layers. The CQL is still in active development. Data query
options supported by the current CQL version are listed in Table 15.1.

For example, a GET query string for the RESTful web service call to the NCEP
dataset in ActiveStorage can look like:

http://<server.name>/servlet/GetData?format=xml&
datefrom=2010-03-01T00:00:00UTC&
dateto=2010-03-03T00:00:00UTC&
dataset=SkinTemperature.Surface@Weather&location=(57.5,37.5)

15 Transparent Data Cube for Spatiotemporal Data Mining and Visualization 319

Table 15.1 Data query options supported by common query language

Parameter Description Values

Command
Command to be queried at the data

service

Get (default) – queries the
OGSA-DAI getData activity;
provides the main functionality
for getting data from service
describe – queries the
OGSA-DAI resource metadata
in XML format and transforms
it into an HTML page

Dataset
Specifies parameter name to query

in a resource specific format

parameter.vertical level
[.#]]@resource, e.g., SkinTem-
perature.Surface@NCEP

datefrom
Date–time before or equal to the

first data sample yyyy-mm-ddThh:mm:ssUTC

dateto
Date–time after or equal to the last

data sample yyyy-mm-ddThh:mm:ssUTC

Location Data query spatial constraints
Point: (39.0,27.5), or station:

BOULDER
Format Data export format xml, ncml, jpg, png, . . .

async
Enables request asynchronous

mode True enables the async requests

asyncorder
ID of the asynchronous data order

to check its status or get result

The web service reply to this call would be an NcML format XML document:

<?xml version="1.0" encoding="UTF-8"?>
<netcdf xmlns="http://www.unidata.ucar.edu/namespaces

/netcdf/ncml-2.2">
<dimension name="time" length="20"/>
<dimension name="lat" length="1"/>
<dimension name="lon" length="1"/>
<variable name="time" shape="time" type="double">
<attribute name="units" value="days since 1970-01-01 00:00:00"/>
<attribute name="long_name" value="time"/>
<attribute name="standard_name" value="time"/>
<values>14426.0 14426.25 14426.5 14426.75 14427.0 14427.25
14427.5 14427.75 14428.0 14428.25 14428.5 14428.75 14429.0
14429.25 14429.5 14429.75 14430.0 14430.25 14430.5 14430.75
</values>
</variable>
<variable name="lat" shape="lat" type="float">
<attribute name="units" value="degrees_north"/>
<attribute name="long_name" value="latitude"/>
<attribute name="standard_name" value="latitude"/>
<values>57.5</values>
</variable>
<variable name="lon" shape="lon" type="float">
<attribute name="units" value="degrees_east"/>
<attribute name="long_name" value="longitude"/>

320 M. Zhizhin et al.

<attribute name="standard_name" value="longitude"/>
<values>37.5</values>
</variable>
<variable name="TMP_SFC" shape="lat lon time" type="float">
<attribute name="standard_name" value="SkinTemperature"/>
<attribute name="long_name" value="Ground or water surface
Temperature"/>
<attribute name="units" value="C"/>
<values>....</values>
</variable>
</netcdf>

Environmental data scientists have developed several RESTful data access
protocols which can be compared to the CQL. Open Geospatial Consortium [30]
supports a stack of web services for interactive visualization of digital maps in GIS
applications. The functionality of OGC web map service (WMS) and web feature
services (WFS) is similar to the CQL get and describe commands. The WMS is used
for subsetting and reprojection of digital raster maps. The WFS provides a service
for querying and modification of vector features by geographical location (e.g., city
population or road length). The main difference between the OGC and the data cube
CQL services is in the data model: the OGC model is flat because there is no need
in time change for the most of the mapping applications. Thus, the OGC services
are not well suited for working with time series data.

OPeNDAP or the open-source project for a network data access protocol, is
another example of the HTTP data transport architecture and RESTful web service
protocol widely used by environmental scientists [31]. OPeNDAP is based on the
same Common Data Model, which is used by active storage and the CQL, and it
can perform selection and serialization of the CDM objects from a remote data
source. An OPeNDAP client could be a web browser, a graphical desktop program
or a web application linked with the OPeNDAP library. The client sends requests
to an OPeNDAP server and receives various types of documents or binary data as
a response. A dataset description structure (DDS) document describes syntax of
a multidimensional dataset. A data attribute structure (DAS) document provides
semantics of the dataset variables. A binary subset of data is sent to a client
in a DODS type document. Data on the OPeNDAP server can be stored in file
collections in HDF, NetCDF, or user-defined format. Compared to ordinary file
transfer protocols (e.g., FTP), a major advantage using OPeNDAP is the ability to
retrieve subsets of files, and also the ability to aggregate data from several files in
one transfer operation.

Although based on the same data model, the CQL and OPeNDAP protocols are
different in several aspects. To extract a data object from server, an OPeNDAP client
has to call the web service three times: for the DDS, DAS, and DODS documents.
In contrast, using the CQL language, a client can call data server once to receive
an object in either XML or binary NetCDF self-describing format. The CQL syntax
uses data value ranges to subset the data, where the OPeNDAP request for the DODS
binary data uses index ranges for the multidimensional data array.

15 Transparent Data Cube for Spatiotemporal Data Mining and Visualization 321

Support of the asynchronous calls by the data cube RESTful web service is
important to work with a large data queries, which requires long execution time and
cannot be done in highly interactive applications (response time – several seconds).
Currently, neither OGC nor OPeNDAP web services support asynchronous calls.

15.5 Data Cube Search Engine

People often use qualitative notions to describe variables such as temperature,
pressure, and wind speed. In reality, it is difficult to put a single threshold between
what is called “warm” and “hot weather.” In this section, we describe the ESSE
that allows for parallel evaluating such qualitative queries in several distributed data
cubes [15].

Fuzzy set theory serves as a translator from vague linguistic terms into strict
mathematical objects. Fuzzy logic was introduced by Lotfi Zadeh [32] in the 1960s
as a superset of conventional (Boolean) logic that has been extended to handle the
concept of partial truth to model the uncertainty of natural language. Currently,
ESSE supports fuzzy linguistic (large, small), numerical (less than, in the range
between), and causal (before, after) terms to query for events described as sequences
of states of environment at some locations such as grid point or stations, or along a
spatial trajectory. Spatial (near, far in space) and temporal (close, far apart in time)
reasoning, as well as inverse path of knowledge discovery to learn an event scenario
from data are in our plans.

The base data model for ESSE search engine is a vector-valued time series which
can be seen as a trajectory in the M-dimensional phase space.

X D fx.ti /g; i D 1 : : : N; x.ti / D .x1.ti /; : : : ; xM.ti //

For example, Fig. 15.11 shows a two-dimensional trajectory in the air pressure–
temperature (P –T) space. Using the dualism between set theory and logic, we call
the “state” S any subregion of the phase space which can be described by a fuzzy
logic expression on predicates describing the parameter values in each dimension in
numerical or linguistic terms [33]. In Fig. 15.11, the state S1 corresponding to the
upper right region can be described by the fuzzy expression:

S1 D .Very Large .P /AND.Very small.T //;

where the fuzzy linguistic term Very Large() is a predicate, and the operator AND
stands for the fuzzy logic conjunction. In the same way, the state S2 corresponding
to the lower left region is:

S2 D .Very Small.P // AND.Very Small .T //:

322 M. Zhizhin et al.

TmaxTmin

P min

P max

tmin

tmax

t1

t2
t3

t4
Very
Small

Very
Small

Very
Large

Very
Large

T

P

Fig. 15.11 Time series as a trajectory in the two-dimensional phase space (P pressure, T

temperature)

Now, combining the fuzzy set descriptions of the states with the “time shift”
operator Shift(dT ,) to describe transitions between the states, we can write a
symbolic expression for the environmental scenario “a day with very low after a
day with very high temperature and pressure”:

Scenario D .Shift.dT D 1 day;S1//AND.S2/:

The only pair of observations in Fig. 15.11 which fit the above scenario is the pair
(t1; t2).

Simple climatology analysis gives normalization limits xmin � x.t/ � xmax

used in calculations of linguistic predicates like “very large.” The limits are set to
the minimum and maximum parameter values observed within the continuous or
seasonal intervals given by the time constraints of the fuzzy search.

The concept of event duration k�t for any multiple k D 1; 2; : : : of the time
step �t of the input is used when searching for events like a “cold day” or a “cold
week.” We do a moving average of the input parameters with the time window of
the event duration before calculation of predicates in the fuzzy logic expression:

Nx.ti / D 1

k

iCk�1X

j Di

x.tj /; ti D t0 C i�t:

15 Transparent Data Cube for Spatiotemporal Data Mining and Visualization 323

For example, searching for a “very cold day” in the NCEP/NCAR Reanalysis
involves smoothing of the air temperature at a given location with the time window
of 1 day (k D 4), then calculation of the linguistic predicate Very Smal l. Nx.ti //

over the smoothed time series, sort of the fuzzy scores in descending order, and
finally selection of the several days with the highest scores as the candidate events.

The ESSE is designed to mine for the phase space transitions like that in very
large scientific data cubes. It is implemented as a special data mining activity
fuzzySearchActivity added to the OGSA-DAI data cube API. The new
activity input is a combination of fuzzy conditions on environmental parameters’
values localized in space and time; in fact it is an XML-formatted environmental
scenario description. The activity output is a time series with values between 0 and
1 for the fuzzy likeliness of the occurrence of the scenario at every moment in time.
fuzzySearchActivity is the OGSA-DAI data transformation activity

which is not linked to a specific type of data resource. This makes the whole data
mining system extremely flexible. One can search the environmental scenario
over several parameters stored in a local data cube. This is accomplished
by combining several data query and processing steps together with the
fuzzySearchActivity in a single transaction. In a more advanced scenario,
it is possible to combine data mining results from several OGSA-DAI resources.
In addition, the ESSE search engine provides a user interface implemented as an
interactive web application. In the web application, it is possible:

• To discover data sources by keyword-based metadata search in the Virtual
Observatory

• To use predefined weather events (e.g., “magnetic storm” or “heat wave”) as well
as to define the searching event as a combination of fuzzy conditions on a set of
environmental parameters (e.g., “high temperature and low relative humidity”)
for data mining

• To download the data for selected event in self-describing format (NetCDF or
NcML) to the user’s workstation

• To visualize the selected event as a time series plot or as a surface map

15.6 Transparent Data Cube

The data cube is called “transparent” because it can be used not only for storage
and processing but also for high-resolution interactive visualization of large datasets
[34]. In the real-world installation in Moscow, we have combined parallel subsetting
of the data array by storage engine with the parallel rendering of the selected
data for a 100 Mpixel tiled-display video wall, which can be driven by the same
computer cluster or receive visualization streams for the display tiles via network.
The visualization API library was provided by the Scalable Adaptive Graphics
Environment (SAGE) [35], developed by the Electronic Visualization Lab at UIC.
The visualization client for the CDM active storage was developed as a special

324 M. Zhizhin et al.

plugin for the NASA WorldWind 3D virtual globe [36]. To be coherent with the
current trend of using 2D tile servers (Google Maps, Bing Maps, or Openstreet
Maps [37]) and KML [38] language for visualization of the geospatial data, a tile
server service for the data cube was developed, as well as the parallel tile server
visualization software for video walls called MultiViewer [39, 40].

A common method of displaying large multi-resolution imagery is building
a pyramid of tiles. This method is used in many web-mapping “neogeography”
applications such as Google Maps and Bing Maps. In our case, it is convenient
for displaying detailed data grids and georeferenced data from CDM ActiveStorage
on top of the existing satellite or road maps.

A Tile-server is a web service which produces a requested fragment of the full
image (a tile). Tile addressing in Google Maps uses three coordinates: zoom level
(Z), row (Y), and column (X). The tile size is fixed at 256 � 256 pixels. At zoom
level 0 (lowest possible resolution), the whole image is covered by a single tile with
coordinates (0,0,0). At each subsequent zoom level, the number of tiles is multiplied
by 4.

For example, a tile server for mapping the weather forecast is basically a REST
service which takes three request parameters: tile coordinates, weather parameter
name, and forecast time. The variable part of the tile server URL is given below:

GetTile?zxy={Z_X_Y}&layer={paramete}&time={ISO8601_time}

A single tile request for the Skin Temperature map might look like:

GetTile?zxy=
1_1_0&layer=SkinTemperature.Surface@NCEP&time=2010-08-
20T00:00:00UTC

The actual web application uses the tile server output to display a data layer in
the Google Maps window as a semi-transparent map overlay (Fig. 15.12).

Our tiled-display visualization system uses the same computer cluster as the
CDM Active Storage and OGSA-DAI services and it is based on the SAGE [35].
The network-centered architecture of SAGE allows collaborators to run various
applications simultaneously (such as 3D rendering, remote desktop, video streams,
and 2D maps) on local or remote clusters, and share them by streaming the pixels
of each application window over ultra-high-speed networks to large tiled displays.

The open-source SAGE framework consists of free space manager (FSM), SAGE
application interface library (SAIL), SAGE Receiver, and User Interface (UI client)
as shown in Fig. 15.13. The FSM gets user commands from UI clients and controls
pixel streams between SAIL and SAGE Receivers. SAIL captures output pixels
from applications, and streams them to appropriate SAGE Receivers. A SAGE
Receiver can get multiple pixel streams from different applications on the network,
and displays streamed pixels on multiple tiles. A UI Client sends user commands
to control the FSM and receives messages that inform users of the current SAGE
status.

The SAIL interface library was developed for OpenGL graphics on the Linux
platform. We have bridged the SAGE OpenGL input with the DirectX output from

15 Transparent Data Cube for Spatiotemporal Data Mining and Visualization 325

Fig. 15.12 Google maps overlay with CDM ActiveStorage data

the MS Windows applications using a virtual frame buffer. After that a SAGE video
wall can be used for 3 D visualization of environmental data with the open-source
NASA WorldWind viewer [36]. WorldWind collects images, digital elevation, and
other geotagged data from various network sources and creates an interactive
zoomable mashup over a 3 D globe.

A 12-display video wall at the Space Research Institute in Russia, in Fig. 15.13,
displays a WorldWind application with air temperature color map. The data for the
color map are transferred from the CDM ActiveStorage through the OGSA-DAI
connector. For the virtual frame buffer size of 1; 920 � 1; 280 pixels, the refresh rate
of 15 frames per second was reached on the SAGE video wall.

The total resolution of the video wall is 7; 680 � 3; 840 pixels. This resolution
exceeds the maximum frame buffer size available for a WorldWind application. To
fully utilize the potential of the video wall, we use 2D Earth surface images provided
by Microsoft Virtual Earth as background when displaying the data. The Virtual
Earth imagery as well as Google Maps is a hierarchical quad tree of 256 � 256

pixel tiles. These tiles are requested by HTTP GET operation and stored in the local
disk cache. It appears that the throughput of storage system of one computer is
not enough for fully interactive navigation including map zooming on the entire
video wall. This approach was implemented in the Multiviewer application for
videocluster [40].

326 M. Zhizhin et al.

Fig. 15.13 SAGE framework architecture and a 12-display video wall running NASA WorldWind
with SAGE

In Multiviewer, each video wall computer performs data fetching and basic
processing, like a web browser for a small fraction of the total map. When working
with ultrahigh-resolution image, each of the six client nodes has its own cache and
the total throughput of storage system increases six times (Fig. 15.14). This allows
implementing a magnifying glass tool that shows a selected region with higher

15 Transparent Data Cube for Spatiotemporal Data Mining and Visualization 327

Fig. 15.14 Multiviewer
architecture and temperature
color map over Microsoft
Bing maps at the 12-display
video wall

detail. The master computer receives user input and provides shared mouse cursor
for the entire video wall. Additional increase in performance can be achieved using
some kind of distributed cache such as Microsoft Velocity project [41].

15.7 Conclusion

We have designed and tested a scalable and inexpensive transparent data cube
for interactive analysis and high-resolution mapping of environmental and remote
sensing data which we use for comparative study of the climate and vegetation
change. On a modest computer cluster with 6–12 nodes each with several terabytes
of disk space we can deploy parallel active storage for scientific data arrays which
can be used by the same cluster for parallel numerical modeling and visualization.

The question of scalability of that solution to clusters with hundreds or even
thousands of nodes is still open. The answer depends on scalability of the database
cluster (in our case MS SQL or PostgeSQL Server) and on the scalability of the
video wall (above 100 Mpixels).

To make our data storage really “active,” we have implemented inside the data
base engine stored procedures for parallel subsampling and aggregation of data

328 M. Zhizhin et al.

chunks. Spatial convolution, which is frequently used for image processing and data
filtering, still needs to be implemented.

Acknowledgements This research was supported by the Russian Foundation for Basic Research
Grant “Parallel scalable Grid-center for data mining,” Russian-Belorussian “SKIF-Grid” Project,
CRDF Grant “Space Physics Interactive Data Resource,” and the Microsoft Research Grants
“Environmental Scenario Search Engine.”

References

1. Riedel, E., Gibson, G., Faloutsos, C.: Active storage for large-scale data mining and multime-
dia. In: Proceedings of 24th International Conference on Very Large Data Bases (VLDB), pp.
62–73 (1998)

2. Mesnier, M., Ganger, G., Riedel, E.: Object-based storage. IEEE Commun. Mag. 41, 84–90
(2005)

3. Wang, F., Oral, S., Shipman, G., Drokin, O., Wang, T., Huang, I.: Understanding Lus-
tre File System Internals, Technical Report, National Center for Computational Sci-
ences, ORNL/TM-2009/117 (2009). http://wiki.lustre.org/images/d/da/Understanding Lustre
Filesystem Internals.pdf. Accessed 9 Jan 2011

4. Felix, E.J., Fox, K., Regimbal, K., Nieplocha, J.: Active Storage processing in a parallel file
system. In: Proceedings of the 6th LCI International Conference on Linux Clusters: The HPC
Revolution (2006)

5. Piernas, J., Nieplocha, J., Felix, E.J.: http://sc07.supercomputing.org/schedule/pdf/pap287.pdf
(2007). Accessed 9 Jan 2011

6. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google File System, SOSP’03, Bolton Landing.
http://labs.google.com/papers/gfs-sosp2003.pdf (2003). Accessed 9 Jan 2011

7. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D. A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data, OSDI’06:
Seventh Symposium on Operating System Design and Implementation, Seattle (2006). http://
labs.google.com/papers/bigtable.html. Accessed 9 Jan 2011

8. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters, OSDI’04:
Sixth Symposium on Operating System Design and Implementation, San Francisco. http://labs.
google.com/papers/mapreduce.html (2004). Accessed 9 Jan 2011

9. Lam, C.: Hadoop in Action, p. 325, 1st edn. Manning Publications, CT. ISBN 1935182196
(2010)

10. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks, European Conference on Computer Systems
(EuroSys), Lisbon, Portugal. http://research.microsoft.com/research/sv/Dryad/eurosys07.pdf.
(2007). Accessed 9 Jan 2011

11. Szalay, A.S., Bell, G., Vandenberg, J., Wonders, A., Burns, R., Fay, D., Heasley, J., Hey, T.,
Nieto-SantiSteban, M., Thakar, A., van Ingen, C., Wilton, R.: GrayWulf: Scalable Clustered
Architecture for Data Intensive Computing. In: Proceedings of 42nd Hawaii International Con-
ference System Sciences, pp. 1–10. http://hssl.cs.jhu.edu/papers/szalay hicss09.pdf (2009).
Accessed 9 Jan 2011

12. Hey, T., Tansley, S., Tolle, K.: The Fourth Paradigm: Data-Intensive Scientific Discovery.
Microsoft Research, p. 287 http://research.microsoft.com/en-us/collaboration/fourthparadigm/
4th paradigm book complete lr.pdf (2009). Accessed 9 Jan 2011

13. Kossmann, D., Kraska, T., Loesing, S.: An Evaluation of Alternative Architectures for
Transaction Processing in the Cloud, SIGMOD’10, Indianapolis, pp. 579–590. http://systems.
ethz.pubzone.org/pages/publications/showPublication.do?pos=0&publicationId=1363428
(2010). Accessed 9 Jan 2011

15 Transparent Data Cube for Spatiotemporal Data Mining and Visualization 329

14. Zhizhin, M.N., Rouland, D., Bonnin, J., Gvishiani, A.D., Burtsev, A.: Rapid estimation
of earthquake source parameters from pattern analysis of waveforms recorded at a sin-
gle three-component broadband station. Bull. Seism. Soc. Am. 96, 2329–2347 (2006).
doi:10.1029/2005SW000199

15. Zhizhin, M., Poyda, A., Mishin, D., Medvedev, D., Kihn, E., Lyutsarev, V.: Grid data mining
with environmental scenario search engine (ESSE). In: Dubitsky, W. (ed.) Data Mining
Techniques in Grid Computing Environments, pp. 281–306. Wiley, NY (2008)

16. Elvidge, C.D., Ziskin, D., Baugh, K.E., Tuttle, B.T., Ghosh, T., Pack, D.W., Erwin, E.H.,
Zhizhin, M.: A fifteen year record of global natural gas flaring derived from satellite data.
Energies 2, 595–622 (2009). doi:10.3390/en20300595

17. Zhizhin, ., Kihn, E., Redmon, R., Medvedev, D., Mishin, D.: Space physics interactive data
resource – SPIDR. Earth Sci. Informat. 1, 79–91 (2008). doi: 10.1007/s12145–008–0012–5

18. Common Data Model (CDM) by UNIDATA. http://www.unidata.ucar.edu/software/netcdf/
CDM/(2011). Accessed 9 Jan 2011

19. Michalakes, J.: The same-source parallel MM5. Sci. Program. 8, 5–12 (2000)
20. Kihn, E.A., Zhizhin, M., Kamide, Y.: An analog forecast model for the high-latitude iono-

spheric potential based on assimilative mapping of ionospheric electrodynamics archives.
Space Weather 4, S05001 (2006)

21. NetCDF file format and API by UNIDATA. http://www.unidata.ucar.edu/software/netcdf/
(2011). Accessed 9 Jan 2011

22. National Center for Supercomputing Applications Introduction to HDF5. University of Illinois
at Urbana Champaign. http://hdf2.ncsa.uiuc.edu/HDF5/doc/H5.intro.html (1998). Accessed 9
Jan 2011

23. Jianwei, L., Liao, W., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham, R., Siegel,
A., Gallagher, B., Zingale, M.: Parallel netCDF: A high-performance scientific I/O interface,
Supercomputing ACM/IEEE Conference, p. 39 (2003)

24. Antonioletti, M., Atkinson, M.P., Baxter, R., Borley, A., Chue Hong, N.P., Collins, B.,
Hardman, N., Hume, A., Knox, A., Jackson, M., Krause, A., Laws, S., Magowan, J., Paton,
N.W., Pearson, D., Sugden, T., Watson, P., Westhead, M.: The design and implementation of
grid database services in OGSA-DAI. Concurrency Comput. Pract. Ex. 17, 357–376 (2005)

25. http://www.ogsadai.org.uk/(2011). Accessed 9 Jan 2011
26. Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., Widmann, N.: The multidimensional

database system RasDaMan. In: Proceedings of ACM SIGMOD International Conference on
Management of data, Seattle WA, 575–577. http://www.rasdaman.com(1998). Accessed 9 Jan
2011

27. Kalnay, E., et al.: The NCEP/NCAR 40-year reanalysis project. Bull Am. Meteorol. Soc. 77,
437–471. http://www.cdc.noaa.gov/cdc/reanalysis/(1996). Accessed 9 Jan 2011

28. Matlab NetCDF Toolbox. http://mexcdf.sourceforge.net/index.php(2011). Accessed 9 Jan
2011

29. NetCDF XML Markaup Langauge. http://www.unidata.ucar.edu/software/netcdf/ncml/(2011).
Accessed 9 Jan 2011

30. Weigel, R.S., Zhizhin, M., Mishin, D., Kokovin, D., Kihn, E., Faden, J.: VxOware: Software
for managing virtual observatory metadata. Earth Sci. Informat. 3, 19–28 (2010). doi:
10.1007/s12145–010–0048–1

31. Open Geospatial Consortium standards and specifications for Web Map Services. http://www.
opengeospatial.org/standards(2011). Accessed 9 Jan 2011

32. Open-source Project for a Network Data Access Protocol (OPeNDAP). http://www.opendap.
org(2011). Accessed 9 Jan 2011

33. Zadeh, L.: Fuzzy sets. Inf. Contr. 8, 338–353 (1965)
34. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice Hall, NJ

(1997)
35. Berezin, S.B., Voitsekhovsky, D.V., Zhizhin, M.N., Mishin, D.Y., Novikov, A.M.: Video walls

for Multiresolution Visualization of Natural Environment, Scientific Visualization 1:100–107
(in Russian). http://sv-journal.com/2009--1/04.php?lang=en(2009). Accessed 9 Jan 2011

330 M. Zhizhin et al.

36. Renambot, L., Rao, A., Singh, R., Byungil, J., Krishnaprasad, N., Vishwanath, V.,
Chandrasekhar, V., Schwarz, N., Spale, A., Zhang, C., Goldman, G., Leigh, J., Johnson, A.:
SAGE: The Scalable Adaptive Graphics Environment. Electronic Visualization Laboratory,
Dept. of Computer Science, University of Illinois at Chicago. http://www.optiputer.net/
publications/articles/RENAMBOT-WACE2004-SAGE.pdf(2004). Accessed 9 Jan 2011

37. NASA WorldWind virtual 3D globe. http://worldwind.arc.nasa.gov/(2011). Accessed 9 Jan
2011

38. OpenStreetMap tile-server project http://www.openstreetmap.org(2011). Accessed 9 Jan 2011
39. KML documentation. http://code.google.com/apis/kml/documentation/(2011). Accessed 9 Jan

2011
40. Zhizhin, M., Kihn, E., Lyutsarev, V., Berezin, S., Poyda, A., Mishin, D., Medvedev, D.,

Voitsekhovsky, D.: Environmental scenario search and visualization. In: Proceedings of 15th
ACM symposium on advances in geographic information systems (2007)

41. Multiviewer source code. http://www.codeplex.com/multiviewer(2011). Accessed 9 Jan 2011

Chapter 16
Distributed Storage of Large-Scale
Multidimensional Electroencephalogram
Data Using Hadoop and HBase

Haimonti Dutta, Alex Kamil, Manoj Pooleery, Simha Sethumadhavan,
and John Demme

Abstract Huge volumes of data are being accumulated from a variety of sources
in engineering and scientific disciplines; this has been referred to as the “Data
Avalanche”. Cloud computing infrastructures (such as Amazon Elastic Compute
Cloud (EC2)) are specifically designed to combine high compute performance with
high performance network capability to meet the needs of data-intensive science.
Reliable, scalable, and distributed computing is used extensively on the cloud.
Apache Hadoop is one such open-source project that provides a distributed file
system to create multiple replicas of data blocks and distribute them on compute
nodes throughout a cluster to enable reliable and rapid computations. Column-
oriented databases built on Hadoop (such as HBase) along with MapReduce
programming paradigm allows development of large-scale distributed computing
applications with ease. In this chapter, benchmarking results on a small in-house
Hadoop cluster composed of 29 nodes each with 8-core processors is presented
along with a case-study on distributed storage of electroencephalogram (EEG) data.
Our results indicate that the Hadoop / HBase projects are still in their nascent
stages but provide promising performance characteristics with regard to latency

H. Dutta (�) � M. Pooleery
Center for Computational Learning Systems (CCLS), Columbia University, NY 10115, USA
e-mail: haimonti@ccls.columbia.edu; manoj@ccls.columbia.edu

A. Kamil
School of General Studies, Columbia University, NY 10027, USA
e-mail: alex.kamil@gmail.com

S. Sethumadhavan
Computer Architecture Laboratory, Department of Computer Science, Columbia University,
NY 10115, USA
e-mail: simha@cs.columbia.edu

J. Demme
Department of Computer Science, Columbia University, NY 10115, USA
e-mail: jdd@cs.columbia.edu

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8 16, © Springer-Verlag Berlin Heidelberg 2011

331

332 H. Dutta et al.

and throughput. In future work, we will explore the development of novel machine
learning algorithms on this infrastructure.

16.1 Introduction

The science of the twenty-first century requires large amounts of computation
power, storage capacity, and high speed communication. These requirements are
increasing at an exponential rate and scientists are demanding much more than is
available today. Several astronomy and physical science projects such as CERN’s1

Large Hadron Collider [21], Sloan Digital Sky Survey [31], The Two Micron
All Sky Survey [1], bioinformatics projects including the Human Genome Project
[32], gene and protein archives [33, 34], meteorological and environmental surveys
[15, 35] are already producing peta- and tera-bytes of data which requires to be
stored, analyzed, queried, and transferred to other sites. To work with collaborators
at different geographical locations on peta scale data sets, researchers require
communication of the order of Gigabits/s. Thus, computing resources are failing
to keep up with the challenges they face.

Traditionally, supercomputers [18, 24, 25] are used for highly compute-intensive
tasks such as problems involving quantum mechanical physics, weather forecasting,
climate research, and molecular modeling. They use custom-made CPUs with
innovative designs that allow them to perform many tasks in parallel and hence
can gain substantial speed over conventional computers. However, the data has to be
stored in a separate repository which has to be brought in each time for computation.
This is time consuming and limits interactivity; furthermore, the programs are
written at very low level language and rely on a small number of specific packages
written by experts. Also, in a super-computer, users submit jobs in a batch mode;
the job is done when resources are available – so it does not support flexible
programming and runtime environment.

Cloud computing paradigms are being considered for data intensive science
in recent years. The concept of the “cloud” has been envisioned to provide a
solution to the increasing data demands and offer a shared, distributed computing
infrastructure. The sharing of distributed computing resources including software,
hardware, data, etc. is an important aspect of cloud computing. Sharing can be
dynamic depending on the current need, may not be limited to client server
architectures, and the same resources can be used in different ways depending on
the objective of sharing. Systems such as the Amazon Simple Storage Service [17]
and Amazon Elastic Compute Cloud [16] are good examples of the Storage and
Compute Clusters which provide cloud computing infrastructures.

In this chapter, we present a mechanism for distributed storage of multidimen-
sional electroencephalogram (EEG) time series obtained from epilepsy patients on a

1Conseil Europen pour la Recherche Nuclaire – European Organization for Nuclear Research.

16 Distributed Storage of Large-Scale Multidimensional Electroencephalogram Data 333

cloud computing infrastructure (Hadoop cluster) using a column-oriented database
(HBase). It is organized as follows: Section 16.2 presents prior research in storing
large time series databases; Section 16.3 describes preliminaries on Hadoop; and
Sect. 16.4 discusses the basic structure of a column-oriented database HBase. We
present a case study on large-scale storage of intracranial EEG data on HBase
in Sect. 16.5. Finally, Sect. 16.7 concludes the chapter and presents directions for
future work.

16.2 Related Work

To the best of our knowledge, there is very little work that addresses the problem
of time series data storage on large distributed environments. The Harvard Time
Series Center2) is known to be one of the largest data centers hosting approximately
a billion time series mainly from the field of astronomy but also expanding to
economics, health, and real-estate data.

There is a relatively large body of literature pertaining to analysis and extraction
of patterns from time series data [26, 27]; however, very few are known to scale
to large datasets [10, 11, 28–30, 36] stored in distributed environments. Reeves
et al. [29] describe Cypress, a framework to archive and query massive time series
streams by sparse (frequency and time domain) representations of the data. The
sparsity enables archiving of data in a reduced storage space. Trends such as
histograms and correlations can be answered directly from the compressed data.
Das et al. [10] consider the problem of distributed eigen monitoring algorithms
in petascale astronomy pipelines. They propose an asynchronous algorithm for
monitoring principal components of dynamic data streams. Again, the problem of
large scale data storage is largely ignored in this work. The Zohmg [2] system is
probably closest in spirit to the current chapter, in which they describe a large-scale
data store for aggregated time series data. The goal is to model multidimensional
time series as data cubes on top of a distributed, column-oriented database (HBase)
to reap the scalability benefits of such databases. To import data to Zohmg, the
user writes a custom map function and uses Dumbo3 (a platform that enables usage
of streaming Hadoop instances), to execute it on an Apache Hadoop instance. The
Zohmg user map function emits triples, which consist of a time-stamp, a hash table
of dimensions and their respective values, and a hash table with units and their
respective values. A reducer function that is specific to Zohmg is used to perform
aggregation on the output from the map phase. The reducer sums the measurements
for each point in an n-dimensional space for each unit. The output from the reducer
is interpreted by a custom output reader.

Since our case study deals with storage of large-scale EEG data, we discuss
related literature in this research area also. A collaboration between the University

2http://timemachine.iic.harvard.edu/publications/.
3http://www.audioscrobbler.net/development/dumbo/.

334 H. Dutta et al.

of Pennsylvania and the Mayo Clinic (which is currently funded by National
Institutes of Health) deals with large volumes of intracranial electroencephalogram
(iEEG) data from epileptic patients. As part of research done in this collaboration,
Brinkman et al. [6] describe a platform for acquisition, compression, encryption,
and storage of large-scale EEG data. Continuous, long-term electrophysiological
recordings in human subjects undergoing evaluation for epilepsy surgery using
intracranial electrodes and clinical macroelectrode arrays generates approximately
3 terabytes of data per day (at 4 bytes per sample). Their work studies real-time data
compression techniques enabling random access to data segments of varying sizes.
Yet another database that provides invasive EEG recordings for patients suffering
from intractable focal epilepsy is hosted at the Epilepsy Center of the University
Hospital of Freiburg,4 Germany [4]. Recordings from 21 patients are acquired using
128 channels, 256 Hz sampling rate, and a 16-bit analogue-to-digital converter.
A relatively small EEG data set with sampling rate of 173.61 Hz is hosted at the
University of Bonn [3].

16.3 Preliminaries on Hadoop

Apache Hadoop [19] inspired by Google Map-Reduce [12, 13] and Google File
System [14] is a framework for supporting data intensive applications on a cluster.
It has a free open source MapReduce implementation and was first used on a com-
mercial level for the Nutch [7] search engine project. Since then, both the industry
and academia have been working together to develop tools and architectures for
supporting Data Intensive Scalable Computing [23] using Hadoop.

MapReduce is a distributed computing framework for large datasets and has
two computation phases – map and reduce. In the map phase, a dataset is
partitioned into disjoint parts and distributed to workers called mappers. The
mappers implement compute-intensive tasks (such as clustering) on local data. The
power of MapReduce stems from the fact that many map tasks can run in parallel.
The output of the map phase is of the form hkey; valuei pairs which are passed
to the second phase of MapReduce called the reduce phase. The workers in
reduce phase (called reducers) then partition, process, and sort the hkey; valuei
pairs received from the Map phase according to the key value and make final output.
For a complex computation task, several MapReduce phase pairs may be involved.
The architecture comprises of two main parts: (1) Data Storage, using the Hadoop
Distributed File System (HDFS). (2) Computation, using MapReduce programming
paradigm to meet the computation needs of the clustering algorithm. Figure 16.1
shows the above components in our cluster. Specifically, these include:

1. The HDFS Namespace: The Namenode maintains the file system namespace and
records any changes made to it. It also keeps track of the number of replicas of a
file that should be maintained in the HDFS typically called the replication factor.

4https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database.

16 Distributed Storage of Large-Scale Multidimensional Electroencephalogram Data 335

HADOOP
NAME NODE

CLIENT INTERFACE

MACHINE 3

INTERMEDIATE
PROCESSING

MAP
ASSIGN

REDUCE
ASSIGN

MAP REDUCE
MASTER

MACHINE 4

INTERMEDIATE
PROCESSING

MACHINE 1

MAP TASK

MACHINE 2

MAP TASK

MACHINE 5

REDUCE TASK

MACHINE 6

HDFS
DISTRIBUTED

FILE
SYSTEM

HDFS
SLAVE

HDFS
SLAVE

HDFS
SLAVE REDUCE TASK HDFS

SLAVE

D
A

T
A

 A
C

C
E

S
S HDFS

SLAVE
HDFS
SLAVE

7

1

2
3

5

6

4

The Output1

2

3

The Hadoop Distributed File
System (HDFS) Name Node

The Master / Slaves of HDFS

Data Access to Map-Reduce
Master

The Map Assigner on Map-
Reduce Master

The Intermediate processor

The Reduce Assigner on Map-
Reduce Master

4 7

5

6

HDFS
MASTER

Fig. 16.1 The architecture of a cluster illustrating the Map, Reduce, and Intermediate operations
along with the Hadoop distributed file system (HDFS)

2. The master/slaves of HDFS: A master server manages the file system namespace
and regulates access to files by clients. In addition, there are a number of HDFS
Slaves, usually one per node, which manage the data associated with that node.
They serve read and write requests from the users and are also responsible for
block creation, deletion, and replication upon instruction from the NameNode.

3. Data access to MapReduce master: The HDFS file system will be accessed by a
MapReduce (MR) master. The input files to the MR Master can be processed in
parallel by different machines in cluster.

4. The Map assigner on MapReduce master: It stores data structures such as the
current state (idle, in-progress or completed) of each map task in the cluster. It
is also responsible for pinging the map-workers occasionally. If no response is
received from the worker, it assumes that the process has failed and re-schedules
the job.

5. The intermediate processor: The intermediate hkey; valuei pairs produced by
map function are buffered in the local memory of machines. This information is
sent to the MR Master which then informs the Reduce Assigner.

336 H. Dutta et al.

Table 16.1 Execution times for read and write operations in the HDFS for a small cluster of 29
nodes

HDFS bytes
Test No of files File Size (MB) read or written No. of Map tasks Execution time (s)

Write 10 1,000 10485760000 19 219:095

Write 30 1,000 31457280079 53 403:295

Write 60 1,000 62914560082 101 651:326

Write 100 1,000 104857600084 150 1013:916

Read 10 1,000 10446515887 17 157:752

Read 30 1,000 30415428946 51 259:864

Read 60 1,000 60844599982 98 387:055

Read 100 1,000 100933188734 140 506:269

6. The reduce assigner on MapReduce master: This takes in the location of the
intermediate files produced from a Map operation and assigns reduce jobs to the
respective machines.

7. The Output: The output of a Reduce function is appended to a final output file.
When all the map and reduce tasks are over, the MR Master wakes up the user
program.

16.3.1 Read/Write Benchmarks on a Small Scale Cluster

The in-house cluster available to us for experimentation had 29, 8-core processors
each with 24 GB RAM, 1 TB RAID connected via a fiber channel. Apache Hadoop
(version 0.20.2) was set-up on this cluster and the IO throughput of the distributed
file system was tested. Table 16.1 summarizes the results and Figs. 16.2 and 16.3
present the read and write throughputs for varying number of files, keeping the total
file size constant at 1,000 MB.

Having described the MapReduce and Hadoop frameworks, we proceed in the
next section to provide a brief review of HBase.

16.4 Preliminaries on HBase

HBase [20, 22] is an Apache open source project whose goal is to provide
Bigtable-like [8] storage (designed to scale to very large databases) for the HDFS.
Applications store rows of data in labeled tables. A data row has a sortable row key
and an arbitrary number of columns (illustrated in Table 16.2). Physically, the table
is stored sparsely, so that rows in the same table can have widely varying numbers of
columns as illustrated in Tables 16.3–16.5. The empty cells shown in the conceptual
view are not stored and hence when queried they will return no value.

16 Distributed Storage of Large-Scale Multidimensional Electroencephalogram Data 337

Fig. 16.2 Throughput vs. number of files read on the Hadoop cluster (29 nodes)

Fig. 16.3 Throughput vs. number of files written on the Hadoop cluster (29 nodes)

The row keys are arbitrary strings of up to 64 KB in size and sorted in
lexicographical order. Every read or write under a single row key is atomic, which
simplifies the handling of concurrent read/writes. Tables are broken up into row
ranges called regions (equivalent Bigtable term is tablet). Each row range
contains rows from start-key to end-key. A set of regions, sorted appropriately, forms
an entire table. As a result, reads of short row ranges are efficient and typically
require communication with only a small number of machines. Clients can exploit

338 H. Dutta et al.

Table 16.2 Conceptual view of the entire table

Row key Time stamp Column00 Column01 Column02

Row0 t0 Value D String00 t0 Value D String01 t0 Value D String02 t0
Row0 t1 Value D String00 t1 Value D String01 t2
Row0 t3 Value D String00 t3 Value D String01 t3 Value D String02 t3
Row0 t5 Value D String00 t5 Value D String01 t5

Table 16.3 Physical storage
of column00 for Table 16.2

Row key Time stamp Column00

Row0 t0 Value D String00 t0
Row0 t1 Value D String00 t1
Row0 t3 Value D String00 t3
Row0 t5 Value D String00 t5

Table 16.4 Physical storage
of column01 for Table 16.2

Row key Time stamp Column01

Row0 t0 Value D String00 t0
Row0 t3 Value D String00 t3
Row0 t5 Value D String00 t5

Table 16.5 Physical storage
of column02 for Table 16.2

Row key Time stamp Column02

Row0 t0 Value D String00 t0
Row0 t3 Value D String00 t3

this property by selecting their row keys so that they get good locality for their data
accesses.

Column keys are grouped into sets called column families, which form the
basic unit of access control. A column family must be created before data can be
stored under any column key in that family. A column key has the following syntax:
hfamily:qualifieri where hfamilyi and hqualifieri can be byte arrays of arbitrary
lengths. HBase stores column families physically close on disk, so that items in
a given column family have roughly the same read/write characteristics.

Each cell in a table can contain multiple versions of the same data – these ver-
sions are indexed by timestamp. HBase timestamps are 64-bit integers. Applications
that need to avoid collisions must generate unique timestamps themselves. Different
versions of a cell are stored in decreasing timestamp order, so that the most recent
versions can be read first.

16.4.1 Architecture

The three major components of HBase are:

• The HBase master: The HBase Master is responsible for assigning regions to
HRegion Servers and monitoring their health. The first region to be assigned is

16 Distributed Storage of Large-Scale Multidimensional Electroencephalogram Data 339

the ROOT5 region which locates all the META6 regions to be assigned. Each
META region maps a number of user regions which comprise the multiple tables
that a particular HBase instance serves. In addition, the HBase Master handles
table administrative functions such as on/off-lining of tables, changes to the table
schema (adding and removing column families), etc.

• The HRegion server: The HRegion Server is responsible for handling client read
and write requests. It communicates with the HBase Master to get a list of regions
to serve and to tell the master that it is alive. When a write request is received,
it is first written to a Write-Ahead Log (WAL) called a HLog and is stored in an
in-memory cache called the Memcache. Reads are handled by first checking the
Memcache, and if the requested data are not found, the MapFiles are searched
for results. The HRegion Server is also responsible for region splits.

• The HBase client: The HBase client is responsible for finding the HRegion
Servers that are serving the particular row range of interest. On instantiation,
the HBase client communicates with the HBase Master to find the location of the
ROOT region. Once located, the client contacts the region server of interest and
scans the ROOT region to find the META region that will contain the location of
the user region that contains the desired row range.

Figure 16.4 provides the architecture7 of HBase. In the following section, we
present a case study on storing multidimensional time series data obtained from
epilepsy patients.

16.5 Case Study: Large-Scale Storage and Indexing
of EEG Data

A large-scale EEG database obtained from the University Hospital of Freiburg
Germany was used for benchmarking experiments and testing the design of the
multidimensional time series index using Apache Hadoop and HBase.

16.5.1 Data Set Description

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked
seizures that manifest in a variety of ways, including emotional or behavioral

5The ROOT table is confined to a single region and maps all the regions in the META table. Each
row in the ROOT and META tables is approximately 1 KB in size. At the default region size of
256 MB, this means that the ROOT region can map 2:6 � 105 META regions, which in turn map a
total 6:9 � 1;010 user regions, meaning that approximately 1:8 � 1;019 (264) bytes of user data.
6The META table stores information about every user region in HBase such as start and end row
keys, whether region is on or off-line and address that is currently serving the region.
7This figure is obtained from http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.
html.

340 H. Dutta et al.

F
ig

.1
6.

4
T

he
H

B
as

e
ar

ch
it

ec
tu

re

16 Distributed Storage of Large-Scale Multidimensional Electroencephalogram Data 341

Fig. 16.5 A snippet of EEG time series data. The x-axis plots the time (in seconds) and the y-axis
plots the amplitude of the signal

disturbances, convulsive movements, and loss of awareness. EEG has been used
in the evaluation of epilepsy and related brain disorders since the 1930s [5].
Interpretation of EEG has traditionally been carried out by visually scanning for
recognizable patterns.

The EEG database we use for benchmarking and experimentation contains
invasive EEG recordings of 21 patients suffering from medically intractable focal
epilepsy. The data were recorded during an invasive presurgical epilepsy monitoring
at the Epilepsy Center of the University Hospital of Freiburg, Germany8 and was
recorded using a Neurofile NT digital video EEG system with 128 channels, 256 Hz
sampling rate, and a 16-bit analogue-to-digital converter. No prior signal processing
(such as application of notch or band pass filters) has been done on the data. For
each of the patients, there are datasets called “ictal” and “interictal,” the former
containing files with epileptic seizures and at least 50 min pre-ictal data and the
latter containing approximately 24 h of EEG recordings without seizure activity.
Figure 16.5 shows a snippet of EEG time series data obtained from a patient
suffering from epilepsy. For each point in time, the amplitude of the signal is
recorded. Thus, the conceptual view of the EEG data can be thought of as shown in
Table 16.6. For each time point, there are recordings for all the 128 channels. This
representation corresponds to a row-oriented database. Using a column-oriented
representation, the data can be stored as shown in Table 16.7.

8http://www.uniklinik-freiburg.de/epilepsie/live/index$ $en.html.

342 H. Dutta et al.

Table 16.6 The conceptual table storing the iEEG data

Row key Time Channel 1 Channel 2 � � � Channel 128

R0 200602190201237000 Value:[123] Value:[345] � � � Value:[0]
R0 200602190201237001 Value:[876] Value:[123] � � � Value:[123]
R0 200602190201237002 Value:[56] Value:[348] � � � Value:[121]

Table 16.7 Physical storage
of Channel1 for Table 16.6

Row key Time stamp Channel1

Row0 20060219020123700 123
Row0 200602190201237001 876
Row0 200602190201237002 56

16.6 Benchmarking Workloads Using the Yahoo! Cloud
Serving Benchmark

The Yahoo! Cloud Serving Benchmark (YCSB) [9] helps to create a standard
benchmarking framework to assist in the development of cloud computing systems.
The YCSB client is a java program for generating data to be loaded to the database
and operations to be made on the workload. The workload executor manages
multiple threads; each thread executes a sequential series of operations by which
load, read, and write commands are executed on the workload. We use YCSB to
test the performance of the EEG dataset stored in HBase running on a HDFS in a
small in-house cluster using different workload compositions (read and write access
to the database). The Hadoop/HBase combination allows us to scale horizontally by
simply adding more nodes; this framework also helps to deal with fault tolerance,
data partitioning, and provide an elaborate API, so that the client code can be
implemented on a high level of abstraction without the users worrying about low
level details such as distributed file system implementation, scheduling, and task
coordination. HBase allows random access reads and writes with minimum disk IO
overhead. Our in-house cluster is configured in a student laboratory, and there were
frequent workstation restarts and shutdowns which resulted in loss of nodes, but
Hadoop (HDFS) was able to recover since the data were replicated with replication
factor of 3. Thus, there were no outages in HDFS availability.

To LOAD one million records of EEG data into the column-oriented database
HBase, the throughput was found to be 1511.46 operations/s with an average latency
of 0.6469 ms. The YCSB client allows to benchmark new database systems by
implementing the read, insert, update, delete, or scan methods to represent the
standard “CRUD” operations (Create, Read, Update, and Delete operations). The
workload executor is created and shared among worker nodes. The first workload
we tested consisted of 50% read and 50% write operations on 10,000 records in the
database of size one million loaded as discussed above. Figures 16.6–16.8 illustrate
the statistics obtained over four different runs of the same workload. It is important
to note that our usage of HBase and Hadoop will be mostly write once, read many
times so the read latency and throughput are more important than write latency and

16 Distributed Storage of Large-Scale Multidimensional Electroencephalogram Data 343

Fig. 16.6 Runtime over four different runs of workload comprising of 50% read and write
operations on 10,000 records (6 nodes)

Fig. 16.7 Throughput over four different runs of workload comprising of 50% read and write
operations on 10,000 records (6 nodes)

throughput. Read latency was found to be less than a millisecond on average under
controlled load which satisfies our initial performance criteria.

The next experiment demonstrated the effect of the number of threads on the run-
time, throughput, and average latency of the read and update commands. Table 16.8

344 H. Dutta et al.

Fig. 16.8 Average latency over four different runs of workload comprising of 50% read and write
operations on 10,000 records(6 nodes)

Table 16.8 Average latency with varying number of HBase client threads

Avg UPDATE
No. of threads Runtime (ms) Throughput (ops/s) Avg READ latency (ms) latency (ms)

10 200;310 49:92 7:93 0:372

30 3;071 3256:26 3:11 2:46

50 2;690 3717:47 5:09 4:28

100 2;466 4055:15 11:46 11:17

150 2;217 4510:6 19:24 19:81

200 2;622 3813:88 33:47 28:27

demonstrates the results. If the maximum number of threads is set at 25, for one
million records, the throughput achievable is approximately 7;000 operations/s. The
throughput generally increases with number of threads used for experimentation;
however, this is limited by the number of database accesses made. For example,
empirical results revealed that if the number of threads is increased from 25 to
100, performance eventually drops as there is a trade-off between the number of
database accesses made and parallelization of jobs run.9 This indirectly establishes
a limit on how many clients the system can serve concurrently. It must also
be noted that there are some inconsistencies across runs in terms of throughput
since HBase at the time of the experiments was under active development and
relatively unstable. Its performance and stability have been significantly improved in

9We ascertained that this is not a limitation on the client and it was not overloaded in terms of
either cpu or bandwidth utilization.

16 Distributed Storage of Large-Scale Multidimensional Electroencephalogram Data 345

subsequent versions.10 Finally, the capacity of our system is limited by the hardware
and networking configuration of the cluster used. To avoid this dependency, we plan
to experiment in future with Amazon AWS (http://aws.amazon.com/) as a
cloud hosting platform where the inter-cluster network bandwidth is much higher
(1-Gbps Ethernet on Amazon EC2 vs. 100 Mbps in our stand-alone setup) than the
cluster setup we used for experiments here – large clusters such as Amazon’s EC2
also provide more powerful server grade nodes which provide more compute power
than workstations typically used in small clusters.

16.7 Conclusion and Future Work

In many scientific domains such as astronomy, social science, and medicine,
researchers are faced with a data avalanche. Cloud computing paradigms are being
used in these domains for data-intensive science. A popular distributed file system
that has been used for large-scale data storage is the Apache Hadoop framework.
Column-oriented databases built on the Hadoop, such as HBase, are known to have
several advantages over traditional row-oriented databases. MapReduce enables
development of large-scale computational tasks on the Hadoop framework. In this
chapter, we first provide a brief overview of the Hadoop and HBase infrastructures
and then present benchmarking results on a small in-house cluster composed of
29 nodes with 8-core processors each. We present a case study on distributed storage
of multidimensional EEG data using Hadoop and HBase and present extensive
scalability results using the YCSB. Our results indicate that the Hadoop and
HBase ecosystem including the dependencies (services like zookeeper) are still
quite immature in terms of stability but promising in terms of the performance
characteristics with regard to latency and throughput. The issues pertaining to
stability of Hadoop and HBase are being investigated by the project developers in
more recent releases. Future work involves design and benchmarking of machine
learning algorithms on this infrastructure and pattern matching from large scale EEG
data.

Acknowledgements Funding for this work is provided by National Science Foundation award,
IIS–0916186. Data for this project were provided by the Freiburg Seizure Prediction EEG
Database (FSPEEG). The authors would like to thank administrators of the CLIC Lab Cluster
at the Department of Computer Science, Columbia University for help with cluster set-up and
experimentation; Dr. David Waltz, Dr. Catherine A Schevon, Dr. Ronald Emerson, Phil Gross, and
Shen Wang provided their insightful comments during different phases of the project.

10HBase 0.20.6 and the more recent development releases which specifically addressed and fixed
many bugs which affected performance and stability.

346 H. Dutta et al.

References

1. 2-Micron All Sky Survey. http://pegasus.phast.umass.edu
2. Andersson, P., Mollerstrand, F.: Zohmg – a large scale data store for aggregated time-series-

based data. Master’s thesis, Chalmers University of Technology (2009)
3. Andrzejak, R.G., Lehnertz, K., Rieke, C., Mormann, F., David, P., Elger, C.E.: Indications

of nonlinear deterministic and finite dimensional structures in time series of brain electrical
activity: Dependence on recording region and brain state. Phys. Rev. E 64, 061907 (2001)

4. Aschenbrenner-Scheibe, R., Maiwald, T., Winterhalder, M., Voss, H.U., Timmer, J., Schulze-
Bonhage, A.: How well can epileptic seizures be predicted, an evaluation of a nonlinear
method. Brain 126, 2616–2626 (2003)

5. Berger, H.: Uber das elektroencephalogramm des menschen (on the electroencephalogram of
man). Archiv fiir Psychiatrie und Nervenkrankheiten 87, 527–570 (1929)

6. Brinkmann, B.H., Bower, M.R., Stengel, K.A., Worrell, G.A., Stead. M.: Large-scale electro-
physiology: Acquisition, compression, encryption, and storage of big data. J. Neurosci. Meth.
180(1), 185–192 (2009)

7. Cafarella, M., Cutting, D.: Building nutch: Open source search. In: ACM Queue, April 2004
8. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,

Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. ACM Trans.
Comput. Syst. 26(2), 1–26 (2008)

9. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud
serving systems with ycsb. ACM Symposium on Cloud Computing. ACM, IN, USA (2010)

10. Das, K., Bhaduri, K., Arora, S., Griffin, W., Borne, K., Giannella, C., Kargupta, H.: Scalable
distributed change detection from astronomy data streams using local, asynchronous eigen
monitoring algorithms. In: Proceedings of the SIAM International Conference on Data Mining,
Sparks, Nevada, 2009

11. Dave, R.: Scaling Astronomy. Oreilly Ignite 4, Boston, MA, September 2008. http://
timemachine.iic.harvard.edu/publications/#scaling-astronomy

12. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In:
Proceedings of the Sixth Symposium on Operating System Design and Implementation, San
Francisco, CA, December 2004, pp. 137–150

13. Dean, J., Ghemawat, S.: Mapreduce: A flexible data processing tool. Commun. ACM 53(1),
72–77 (2010)

14. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: The 19th ACM Symposium
on Operating Systems Principles, lake George, NY (2003)

15. Graves, S.J., Conover, H., Keiser, K., Ramachandran, R., Redman, S., Rushing, J., Tanner, S.:
Mining and Modeling in the Linked Environments for Atmospheric Discovery (LEAD). In:
Huntsville Simulation Conference, Huntsville, AL, 19 Oct 2004

16. Amazon Elastic Compute Cloud, Amazon EC2. http://aws.amazon.com/ec2/
17. Amazon Simple Storage Service, Amazon S3. http://aws.amazon.com/s3/
18. Grape 6. http://grape.mtk.nao.ac.jp/grape/news/ABC/ABC-cuttingedge000602.html
19. Apache Hadoop. http://hadoop.apache.org/core/
20. Apache Hbase. http://hbase.apache.org/
21. Large Hadron Collider, European Organization for Nuclear Research. http://lhc.web.cern.ch/

lhc/
22. Hbase Architecture. http://wiki.apache.org/hadoop/Hbase/HbaseArchitecture
23. Randy Bryant’s Home Page. http://www.cs.cmu.edu/�bryant/
24. San Diego Supercomputer Center, SDSC. http://www.sdsc.edu/
25. Hsu, F.H.: Behind Deep Blue: Building the Computer that Defeated the World Chess

Champion. Princeton University Press, NJ (2002)
26. Keogh, E.J.: Recent advances in mining time series data. In: PKDD, p. 6 (2005)
27. Keogh, E.J.: A decade of progress in indexing and mining large time series databases. In:

VLDB, p. 1268 (2006)

16 Distributed Storage of Large-Scale Multidimensional Electroencephalogram Data 347

28. Lin, J., Vlachos, M., Keogh, E., Gunopulos, D.: Iterative incremental clustering of time series.
In: Proceedings of the IX Conference on Extending Database Technology (2004)

29. Reeves, G., Liu, J., Nath, S., Zhao, F.: Managing massive time series streams with multi-scale
compressed trickles. In Proceedings of the 35th Conference on Very Large Data Bases, Lyon,
France, 2009

30. Shieh, J., Keogh, E.J.: isax: indexing and mining terabyte sized time series. In: KDD, pp. 623–
631 (2008)

31. Sloan Digital Sky Survey. http://www.sdss.org
32. The human genome project. http://www.ornl.gov/sci/techresources/Human$ $Genome/home.

shtml
33. The protein data bank (pdb). http://www.rcsb.org/pdb/Welcome.do
34. The swiss-prot protein knowledge base. http://www.expasy.org/sprot/
35. World data center for meterology. http://www.ncdc.noaa.gov/oa/wmo/wdcamet.html
36. Yankov, D., Keogh, E.J., Rebbapragada, U.: Disk aware discord discovery: Finding unusual

time series in terabyte sized datasets. In: ICDM, pp. 381–390 (2007)

•

Index

Algorithm
cache replacement, 99
classification, 252
clustering, 263, 266, 334
compression, 112
data mining, 196
data processing, 238
decision tree, 207
development, 172
hashing, 93
iterative, 273
join, 161
machine learning, 265, 332, 345
meta-heuristic, 226
microarray, 262
PAM, 267
query processing, 135
scheduling, 240
sort, 161
SPRINT, 209

Authentication
LDAP-based, 110
password-based, 110
RBAC, 110

Cloud
computing, 23, 194
database, 109, 133, 181
environments, 318
infrastructures, 261, 262, 331
service, 185, 193

Cloud computing
IaaS, 24, 109, 170, 196
PaaS, 24, 109, 170, 197
Software as a Service (Saas), 109, 170,

193, 197

XaaS, 109
Cloud offering

Amazon EC2, 170
Microsoft Windows Azure, 170

Cloud providers
Amazon, 170
Microsoft, 170

Computing utility, 187

Data, 215
access, 188, 203
acquisition, 280
aggregation, 176
caching, 162
calibration, 296
collections, 261
consistency, 180, 183
cube, 308
curation, 228
delivery, 280
distribution, 269
environmental, 320
federation, 204
formats, 203
geospatial, 284
integration, 203, 280
locality, 242, 274
meteorological, 299
mining, 193, 307
multidimensional, 312
ownership, 188
partitioning, 140, 160, 342
postprocessing, 299
preprocessing, 299
processing, 261, 280, 317
provenance, 215

S. Fiore and G. Aloisio (eds.), Grid and Cloud Database Management,
DOI 10.1007/978-3-642-20045-8, © Springer-Verlag Berlin Heidelberg 2011

349

350 Index

real-time, 334
satellite, 290
subsetting, 296, 312
throughput, 343
transformation, 67, 247, 323
visualization, 229, 295, 307
WMS, 320

Data access, distributed, 54
Database

access service, 8
cloud-based, 180
column-oriented, 151, 333
EEG, 339
fragment, 94
knowledge discovery, 194
management, 261
multimedia, 152, 203
non-relational, 175
NoSQL, 24, 43, 261
objects, 157
parallel, 261
partition, 137
query processing, 142
RDF, 5, 7
read-mostly, 155
relational, 6, 7, 24, 152, 175, 180, 203, 300,

309
replication, 181
row-oriented, 341
semistructured, 152
sharding, 181
spatiotemporal, 307
systems, 4
table, 94, 156
tuples, 94, 138
XML, 5, 7, 10, 203, 316

DBMS
IBM DB2, 53
MySQL, 52
Oracle, 53
PostgreSQL, 52
relational, 238
SQLite, 56

Deliver data protocol
FTP, 69
GridFTP, 69
HTTP, 69

Distributed
applications, 169
computational environments, 195
computing resources, 281
data management, 63
data mining, 194
data processing, 315

databases, 19, 148
database system, 89
environments, 3, 235, 262, 333
File System (HDFS), 246, 261
file systems, 51, 308
hash tables, 88
infrastructure, 216
query, 240
query processing, 19, 66
query processor, 54
storage, 331
storage model, 147
systems, 215

Domain
astronomy, 64
biochemistry, 64
biology, 169
chemistry, 64
earth sciences, 64
engineering, 169, 331
environment, 64
genome biology, 261
geo-spatial information systems, 64
medicine, 64
social sciences, 64
transportation, 64

EGEE
grid, 16
infrastructure, 252
middleware, 57
RESPECT Program, 53

Format
NcML XML, 316
NetCDF, 316

Framework, 235
authorization, 57
Cypress, 333
Google File System, 334
GridSphere, 291
Hadoop, 273, 336
MapReduce, 235, 264, 309
notification, 292
OGSA–DAI, 284, 310
OpenLayers, 288
provenance, 216
Resource Description, 153
security, 56
SLA management, 34
SPRINT, 267
Web Service Resource, 4, 198, 202, 284
workload management, 252

Index 351

Globus Toolkit
GRAM, 41, 290
GridFTP, 51, 283
GridWay metascheduler, 286
GSI, 56, 283
MDS, 52

Google Map
API, 80
KML, 80

GRelC
GDMS, 55
GRelC Portal, 53
GRelC service, 53

Grid
computing, 23, 87, 151, 152, 169,

194, 291
database, 51, 87
EGEE infrastructure, 16, 282
environments, 16, 51, 81, 279
portal, 284
services, 52, 218, 293, 308
technologies, 279

Grid middleware
gLite, 56
Globus, 56
Globus Toolkit, 41, 210
UNICORE, 41

ISO Standards
ISO19115, 59
ISO19139, 59

Management
cluster, 246
workload, 236

Metadata
AmbientDB, 90
catalogues, 16, 81, 90, 280
chains, 127
documents, 53
management, 12, 54, 87, 318
object, 68, 89
querying, 204
registry, 318
repository, 318
semantic, 151, 153
services, 296

Middleware
gLite, 53, 283
Globus Toolkit, 75, 283

Object metadata, 112
OCCI linkage

NetworkInterface, 31
StorageLink, 31

OCCI resource
Compute, 31
Network, 31
Storage, 31

OGSA–DAI
framework, 63
OGSA–DQP, 64

Open Grid Forum (OGF)
DAIS, 3
DCI-fed, 33
DRMAA, 33
OCCI, 25

Operating systems
Linux, 110
Unix, 110
Windows, 110

Operator
aggregation, 99, 157
cartesian product, 99
duplicate removal, 99
equijoin, 99
join, 99, 157, 163
limiting, 99
map, 264, 317, 334
natural join, 99
outer join, 99
reduce, 264, 317, 334
scan, 100
semijoin, 163
set operators, 99
skyline, 99
sorting, 99
uselect, 163

Parallel, 148, 195
computation, 174
computing language, 199
data processing, 263, 307
data storage, 310
database systems, 246
DBMSs, 238
execution, 160
file system, 308
implementation, 268
jobs, 41
NetCDF, 310
processing, 238

352 Index

query execution, 162
query processing, 19
querying of large databases,

309
streams, 283

Parallelism
degree of, 160
explicit, 73
implicit, 73

Partitioning
PSO, 156
SPO, 156
Vertical, 156

Programming model, 261
MapReduce, 238, 331

Project
ADMIRE, 17
AMGA, 17, 55
CloudMiner, 193
DASCOSA-DB, 88
GRelC, 51, 54
Grid Miner, 54, 198
Hadoop, 331
HBase, 336
iRODS, 82
Mobius, 54
MyCluster, 254
OGSA-DAI, 17, 54, 204
OPeNDAP, 320
RESERVOIR, 47
SEE-GEO, 79
SOI, 47
Spitfire, 54
SRB, 82

Protocols
FTP, 283
gossip, 89
GridFTP, 283, 291
HTTP, 29, 317
OCCI, 25
security, 75
SOAP, 294, 316
SPARQL, 13
transfer, 51
two-phase commit, 92

Provenance
definitions, 218
system, 218
taxonomy, 231

Query
execution plan, 163
forms, 14

Query languages
SPARQL, 13, 77
SQL, 76, 97, 180
XPath, 10, 316
XQuery, 10, 316
XUpdate, 10

Query processing
multi-level index, 133

Requirements, 198
extensibility, 198
fault tolerance, 198
performance, 242

Resources
allocation, 40, 185, 236
management, 33, 109, 246
planning, 252
provisioning, 239, 253

Security
CA, 282
certificate, 282
delegation, 284
EUGridPMA, 282
Grid Mapfile, 283
proxy certificate, 282
Public Key Infrastructure, 282
VOMS, 283

Security management
access policy, 124
authorization, 111
authorization policies, 111
delegation mechanism, 120
object privilege, 120
privilege chain, 122
system privilege, 120

Services
cloud, 125
monitoring, 240
provisioning, 240

Specifications
WS-BPEL, 207
WS-BrokerNotification, 206
WS-Notification, 206

Standards
Catalogue Service for Web,

281
Style Layer Descriptors, 281
Web Coverage Service, 281
Web Feature Service, 281
Web Map Context, 281
Web Map Service, 281

Index 353

Storage systems
Amazon’s S3, 148
BigTable, 89, 147
column stores, 154
Dryad, 247
Google’s GFS, 147
HBase, 148
HDFS, 148
HyperTable, 148
Microsoft’s CloudDB, 148
OceanStore, 88
sector, 247

Workflow
activities, 216
automation, 279
computational tasks, 225
data-driven, 173
data-intensive, 215, 216

definition, 70, 240
document, 224
engine, 207, 216
execution, 69, 198
management, 197, 216, 279, 304
OGSA–DAI, 69
reproducibility, 230
service, 203
visualisation, 38

WS-DAI
WS-DAI-RDF, 5
WS-DAI-RDF(S), 12
WS-DAIR, 5
WS-DAIX, 5

XML Database
eXist, 56
XIndice, 56
XML flat files, 56

	Cover
	Grid and Cloud Database Management
	ISBN 9783642200441
	Preface
	Contents
	Part I:Open Standards and Specifications
	Chapter 1: Open Standards for Service-Based Database Access and Integration
	1.1 Introduction and Background
	1.2 The WS-DAI Family of Specification
	1.2.1 Overview
	1.2.2 The Core Specification (WS-DAI)
	1.2.2.1 Data Description
	1.2.2.2 Data Access
	1.2.2.3 Data Factory

	1.3 The Relational Extension (WS-DAIR)
	1.4 The XML Extension (WS-DAIX)
	1.5 The RDF Extension (WS-DAI-RDF(S))
	1.5.1 The WS-DAI RDF(S) Querying Specification
	1.5.1.1 Indirect Access Using TriplesSetAccess and ResultsSetAccess

	1.5.2 The WS-DAI RDF(S) Ontology Specification
	1.5.2.1 Data Resources
	1.5.2.2 Interfaces for Direct and Indirect Access

	1.6 Implementations
	1.6.1 WS-DAIR Implementations
	1.6.2 WS-DAIX Implementations
	1.6.3 WS-DAI-RDF Implementations

	1.7 Applications
	1.7.1 ADMIRE
	1.7.2 Distributed Query Processing

	1.8 Conclusions
	References

	Chapter 2: Open Cloud Computing Interfacein Data Management-Related Setups
	2.1 Introduction
	2.2 Open Cloud Computing Interface
	2.2.1 Motivation for Standards
	2.2.2 The Core Model
	2.2.2.1 Classification and Identification
	2.2.2.2 Categorisation
	2.2.2.3 Kind Relationships
	2.2.2.4 Discovery

	2.2.3 RESTful HTTP Rendering of the OCCI Model
	2.2.3.1 Rendering of Resources
	2.2.3.2 Discovery of Capabilities Through a Query Interface
	2.2.3.3 Linking and Performing Actions on Resources
	2.2.3.4 Use of HTTP Features

	2.2.4 OCCI for Virtual Machine (Infrastructure) Provisioning
	2.2.5 Related Standards and Specifications

	2.3 SLA Assured Provisioning of Database Services Using OCCI
	2.3.1 SLA@SOI SLA Management Framework
	2.3.2 SLA@SOI and OCCI

	2.4 On-Demand Data-Aware Provisioning of Services
	2.4.1 The Climate Community Use Case
	2.4.2 An Approach for Dynamic, Cross-Community Resource Allocation
	2.4.2.1 Delegation Models

	2.4.3 The Role of OCCI for a Data-Aware Delegation Scenarios

	2.5 Use of OCCI for a Simple Key-Value Store
	2.6 Conclusions
	References

	Part II:Research Efforts on Grid DatabaseManagement
	Chapter 3: The GRelC Project: From 2001 to 2011, 10 Years Working on Grid-DBMSs
	3.1 Introduction
	3.2 The GRelC Project: A Decade of Research Efforts on Grid-DBMS
	3.3 Related Work
	3.4 Grid Database Management System: The GRelC Perspective
	3.5 The GRelC Service in a Nutshell
	3.6 A Crucial Step: Moving Toward EGEE and gLite
	3.7 An International and Multidisciplinary Use Case: Climate-G
	3.8 Conclusions and Future Work
	References

	Chapter 4: Distributed Data Management with OGSA–DAI
	4.1 Introduction
	4.1.1 Overview

	4.2 A Distributed Data Use Case: Health Informatics
	4.3 OGSA–DAI
	4.3.1 Data Representation
	4.3.2 Resources
	4.3.3 Activities
	4.3.4 Workflows
	4.3.5 How Workflows Are Executed
	4.3.5.1 Using List Markers to Logically Group Outputs
	4.3.5.2 Concurrent Execution

	4.3.6 Clients and Requests
	4.3.7 Accessing the OGSA–DAI Framework
	4.3.7.1 Data Delivery and Web Services
	4.3.7.2 Security

	4.4 Distributed Query Processing
	4.4.1 DQP and Extensibility Points
	4.4.2 DQP and Non-relational Resources

	4.5 Relational Views
	4.6 Interoperability
	4.7 Performance
	4.8 Related Work
	4.9 Conclusions and Future Directions
	References

	Chapter 5: The DASCOSA-DB Grid Database System
	5.1 Introduction
	5.2 Overview of Related Systems
	5.3 System Architecture
	5.3.1 Distributed Architecture
	5.3.2 Site Architecture

	5.4 Distributed Data and Metadata Management
	5.4.1 Fragmentation
	5.4.2 Replica Management
	5.4.3 Metadata Management

	5.5 Distributed Query Processing in DASCOSA-DB
	5.5.1 Query Pipeline
	5.5.2 Standard Query Operators
	5.5.3 Fault-Tolerant Distributed Query Processing

	5.6 Distributed Monitoring and System Management
	5.7 Experimental Evaluation
	5.7.1 Experimental Setup
	5.7.2 Results

	5.8 Summary and Future Challenges
	References

	Part III:Cloud Data Management
	Chapter 6: Access Control and Trustiness for Resource Management in Cloud Databases
	6.1 Introduction
	6.2 Metadata of Files
	6.3 System-Context Information in Virtual Machines
	6.3.1 Context for Cloud Resources
	6.3.2 Context for Service Providers and Service Users
	6.3.3 Context for Authorization Policies
	6.3.4 Interoperability of VMM and CGM

	6.4 Access Control Models
	6.4.1 Access Policy Specification
	6.4.2 Chains of Privileges and Metadata
	6.4.3 Graphs of Privileges and Metadata
	6.4.4 Authorization Decision

	6.5 Trustiness of Cloud Computing
	6.5.1 Legitimacy of Cloud Resources
	6.5.2 Trustiness of Services
	6.5.3 Feeding Social Network Information for Trustiness Management

	6.6 Conclusion
	References

	Chapter 7: Dirty Data Management in Cloud Database
	7.1 Introduction
	7.1.1 Motivating Example

	7.2 Preliminaries
	7.2.1 Metrics of the Quality of Query Results
	7.2.2 Queries on Dirty Data

	7.3 Data Accessing Structure for Dirty Data in a Cloud Database
	7.3.1 Storage Model for Dirty Data
	7.3.2 Indexing Structures for Dirty Data in a Cloud Database
	7.3.2.1 Representative Construction
	7.3.2.2 Data Index
	7.3.2.3 Node Index

	7.4 Query Processing Techniques on Dirty Data in a Cloud Database
	7.4.1 Algorithms for Locating Relative Compute Nodes
	7.4.2 Query Processing on Dirty Data in a Cloud Database

	7.5 Experimental Results
	7.5.1 Experimental Results on Real Data
	7.5.2 Experimental Results on Synthetic Data

	7.6 Related Work
	7.7 Conclusions
	References

	Chapter 8: Virtualization and Column-Oriented Database Systems
	8.1 Introduction
	8.1.1 Data-Model, Requirements
	8.1.2 Usecases and Scenarios

	8.2 Column-Oriented Database Systems
	8.3 Performance Influence of Virtualization on Column-Oriented Databases
	8.3.1 Benchmark
	8.3.2 Dataset
	8.3.3 Testbed and Experimental Design
	8.3.4 Experimental Results
	8.3.5 Influence of Data Partitioning

	8.4 Conclusions: Column-Oriented Databases' Parallelism in Virtual Environments
	References

	Chapter 9: Scientific Computation and Data Management Using Microsoft Windows Azure
	9.1 Introduction
	9.2 Cloud Computing Case Study
	9.2.1 Background
	9.2.2 Satellite Propagation and Collision
	9.2.3 Summary

	9.3 Cloud Architecture
	9.3.1 Computational Workers
	9.3.2 Blob Storage
	9.3.2.1 Sparse Files, Virtual Disks and Versioning

	9.3.3 Non-Relational Data Stores
	9.3.4 Cloud-Relational Database Storage
	9.3.5 Message Queues
	9.3.6 Integrating Blobs, Tables and SQL Databases
	9.3.6.1 Hybrid Approach: Bridging the On-Premise, Cloud Divide

	9.3.7 Economics

	9.4 Discussion
	9.5 Conclusions
	References

	Chapter 10: The CloudMiner
	10.1 Introduction
	10.2 Data Mining and Cloud Computing
	10.2.1 Distributed Data Mining
	10.2.2 Cloud Computing
	10.2.3 Data Mining Services
	10.2.4 Related Work

	10.3 Architecture
	10.3.1 The MiningCloud
	10.3.1.1 Handling Service State
	10.3.1.2 Mining Services

	10.3.2 The DataCloud
	10.3.2.1 Virtualization in the DataCloud
	10.3.2.2 Data Services

	10.3.3 The BrokerCloud
	10.3.3.1 Service Brokers
	10.3.3.2 Registering a New Mining Service
	10.3.3.3 Acquiring State of a Mining Service
	10.3.3.4 Service Discovery
	10.3.3.5 Service Composition
	10.3.3.6 Gathering Information About State of a Mining Service

	10.3.4 The Access Point

	10.4 Use Cases
	10.4.1 Use Case A: Single Classification Service
	10.4.2 Use Case B: Composite Classification Service

	10.5 Summary
	References

	Chapter 11: Provenance Support for Data-Intensive Scientific Workflows
	11.1 Introduction
	11.2 Provenance Definition and Requirements
	11.2.1 Provenance Definition
	11.2.2 e-Science Provenance System Requirements

	11.3 VePS: The Vienna e-Science Provenance System
	11.4 Provenance Collection, Preparation, and Preservation
	11.4.1 Provenance Interceptor
	11.4.2 Provenance Parser
	11.4.3 Provenance Transformer

	11.5 Workflow Parameters Significance Estimation
	11.6 Data Curation and Visualization
	11.6.1 Workflow Visualizer and Report Generator
	11.6.2 Workflows Reproducibility

	11.7 Related Work
	11.8 Conclusions
	References

	Chapter 12: Managing Data-Intensive Workloads in a Cloud
	12.1 Introduction
	12.2 Background
	12.2.1 Workload Management in DBMSs
	12.2.2 Data-Intensive Computing Architectures

	12.3 Workload Management Taxonomy
	12.3.1 Scheduling
	12.3.1.1 Work Units
	12.3.1.2 Objective Functions
	12.3.1.3 Mapping Scheme
	12.3.1.4 Locality
	12.3.1.5 Scheduling/Replication Coupling

	12.3.2 Provisioning
	12.3.2.1 Resource Type
	12.3.2.2 Scope
	12.3.2.3 Trigger

	12.4 Workload Management Systems
	12.4.1 Scheduling Techniques
	12.4.1.1 MapReduce
	12.4.1.2 Dataflow-Processing
	12.4.1.3 Stream-Processing
	12.4.1.4 Hybrid DBMS
	12.4.1.5 Discussion

	12.4.2 Provisioning Techniques
	12.4.2.1 Scaling
	12.4.2.2 Migration
	12.4.2.3 Surge Computing
	12.4.2.4 Discussion

	12.5 Conclusions and Future Research
	References

	Part IV:Scientific Case Studies
	Chapter 13: Managing and Analysing Genomic Data Using HPC and Clouds
	13.1 Background
	13.2 Analysis of Microarray Data
	13.3 Parallel Data Processing Architectures and Approaches
	13.4 Related Work
	13.5 Identifying Gene Expression Patterns
	13.6 HPC Approach: SPRINT Framework
	13.6.1 The SPRINT Architecture
	13.6.2 Parallelisation

	13.7 Cloud Approach: MapReduce
	13.7.1 Algorithm
	13.7.1.1 The Build Stage
	13.7.1.2 The Swap Stage

	13.7.2 Runtime

	13.8 Testing and Scaling Results
	13.9 Comparison of Approaches
	13.10 Conclusions and Future Work
	References

	Chapter 14: Grid Technologies for Satellite Data Processing and Management Within International Disaster Monitoring Projects
	14.1 Introduction
	14.2 Levels of Integration: Main Problems and Possible Solutions
	14.2.1 Data Integration Level
	14.2.2 Task Management Level
	14.2.2.1 Security Issues
	14.2.2.2 Enabling Data Transfer Between Grid Platforms
	14.2.2.3 Enabling Access to Geospatial Data
	14.2.2.4 Job Submission and Monitoring

	14.3 Implementation Issues: Lessons Learned
	14.3.1 Integration of Satellite Monitoring Systems at Data Level
	14.3.2 The InterGrid Testbed Development

	14.4 Integration of Grid and Sensor Web
	14.4.1 Sensor Web Paradigm
	14.4.2 Sensor Web Flood Use Case
	14.4.3 Sensor Web SOS Gridification

	14.5 Grid Workflow Management for Satellite Data Processing Within UN-SPIDER Program
	14.5.1 Overall Architecture
	14.5.2 Workflow of Flood Extent Extraction from Satellite SAR Imagery
	14.5.3 China–Ukrainian Service-Oriented System for Disaster Management

	14.6 Experimental Results
	14.6.1 Numerical Weather Modeling in Grid
	14.6.2 Implementation of SOS Service for Meteorological Observations: Database Issues
	14.6.3 Rapid Flood Mapping from Satellite Imagery in Grid
	14.6.4 Discussion

	14.7 Conclusions
	References

	Chapter 15: Transparent Data Cube for Spatiotemporal Data Mining and Visualization
	15.1 Introduction
	15.2 Background
	15.3 Active Storage for Multidimensional Arrays
	15.4 Data Cube API
	15.4.1 SOAP Web Services
	15.4.2 RESTful Web Services

	15.5 Data Cube Search Engine
	15.6 Transparent Data Cube
	15.7 Conclusion
	References

	Chapter 16: Distributed Storage of Large-Scale Multidimensional Electroencephalogram Data Using Hadoop and HBase
	16.1 Introduction
	16.2 Related Work
	16.3 Preliminaries on Hadoop
	16.3.1 Read/Write Benchmarks on a Small Scale Cluster

	16.4 Preliminaries on HBase
	16.4.1 Architecture

	16.5 Case Study: Large-Scale Storage and Indexing of EEG Data
	16.5.1 Data Set Description

	16.6 Benchmarking Workloads Using the Yahoo! Cloud Serving Benchmark
	16.7 Conclusion and Future Work
	References

	Index

