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312 Foundations of computational mathematics, Minneapolis 2002, F. CUCKER et al (eds)
313 Transcendental aspects of algebraic cycles, S. MÜLLER-STACH & C. PETERS (eds)
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372 Moonshine: The first quarter century and beyond, J. LEPOWSKY, J. MCKAY & M.P. TUITE (eds)
373 Smoothness, regularity and complete intersection, J. MAJADAS & A. G. RODICIO
374 Geometric analysis of hyperbolic differential equations: An introduction, S. ALINHAC
375 Triangulated categories, T. HOLM, P. JØRGENSEN & R. ROUQUIER (eds)
376 Permutation patterns, S. LINTON, N. RUŠKUC & V. VATTER (eds)
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Preface

This volume is based on the satellite workshop on Finite and Algorithmic Model
Theory that took place at the University of Durham, January 9–13, 2006, to
inaugurate the scientific program Logic and Algorithms held at the Isaac Newton
Institute for Mathematical Sciences during the first six months of 2006. The
goal of the workshop was to explore the emerging and potential connections
between finite and infinite model theory, and their applications to theoretical
computer science. The primarily tutorial format introduced researchers and
graduate students to a number of fundamental topics. The excellent quality
of the tutorials suggested to the program organizers, Anuj Dawar and Moshe
Vardi, that a volume based on the workshop presentations could serve as a
valuable and lasting reference. They proposed this to the workshop scientific
committee; this volume is the outcome.

The Logic and Algorithms program focused on the connection between
two chief concerns of theoretical computer science: (i) how to ensure and
verify the correctness of computing systems; and (ii) how to measure the
resources required for computations and ensure their efficiency. The two areas
historically have interacted little with each other, partly because of the divergent
mathematical techniques they have employed. More recently, areas of research
in which model-theoretic methods play a central role have reached across both
sides of this divide. Results and techniques that have been developed have
found applications to fields such as database theory, complexity theory, and
verification.

Some brief historical remarks help situate the context for this volume. The
study of the model-theoretic properties of finite structures emerged initially as
a branch of classical model theory, with its focus primarily on first-order logic.
Beginning in the late 1980s, however, research concerning logics on finite struc-
tures diverged sharply from work in classical model theory. Classical model
theory, with its emphasis on infinite structures, had made dramatic advances

vii



viii Preface

both theoretically and in applications to other areas of mathematics. Work on
finite structures focused on connections with discrete complexity theory and
verification. Indeed, the connections between finite model theory, descriptive
complexity theory, parameterized complexity, and state machine verification
are now so strong that boundaries between them are hard to distinguish.

The methods employed in these two facets of model theory also grew apart
during this period. Probabilistic techniques and machine simulations have
played a prominent role in the study of finite structures, and stand in con-
trast to the geometric, algebraic, and analytic methods that pervade classical
(infinite) model theory. Although both classical and finite model theory deal
with restricted classes of structures, the conditions by which such classes are
delimited also have been quite different. Finite model theory and verification
typically concentrate on classes linked to particular computing formalisms, or
to which decomposition methods from finite graph theory can be applied. In
contrast, infinitary model theory usually places restrictions on combinatorial
or geometric properties of the definable sets of a structure.

Yet, there are recent indications of a re-convergence of classical model
theory and logical aspects of computer science. This has resulted both from the
interest of computer scientists in new computing and specification models
that make use of infinitary structures, and from the development of powerful
model-theoretic techniques that provide insight into finite structures. If there is
an overarching theme, it is how various “tameness” hypotheses used to delimit
classes of structures and logics have deeply impacted the study of those aspects
of theoretical computer science in which model-theory naturally comes into
play. The chapters that comprise this volume survey many of the common
themes that have emerged and gained attention, and point to the significant
potential for wider interaction.

The chapter of Bárány, Grädel, and Rubin, Automata-based presentations of
infinite structures develops what the authors call algorithmic model theory. The
authors direct their attention to the “tame” class of automatic structures, that is
structures that have a presentation in a precise sense by automata operating on
finite or infinite words or trees. The goal of this work, to extend algorithmic and
logical methods from finite structures to finitely presented infinite structures,
has been a focal point for research in computer science, combinatorics, and
mathematical logic. This point of view allows structures to be viewed alternately
from both a finite and infinite model theoretic perspective. The theory that
has emerged makes use of techniques both from classical model theory and
theoretical computer science, and has found appealing applications to several
areas, including database theory, complexity theory and verification.
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Classical model theory by and large concentrates on the analysis of the
first-order definable sets over a structure, that is, those sets of n-tuples of the
universe whose definition is given by a first-order formula. This analysis has
predominantly taken two forms. The first is based on the “structural complex-
ity” of the formula, e.g., the number of alternations of blocks of existential and
universal quantifiers appearing in its prenex normal form. This theme is best
illustrated by quantifier elimination, in which definable sets over a structure
are shown to have quantifier-free definitions. The second involves assigning a
dimension (with a corresponding notion of independence) to the definable sets
that is combinatorially, algebraically, or geometrically motivated. Stability the-
ory, with its combinatorial/algebraic account of dimension and independence,
is perhaps the most widely known and longest-studied exemplar, its develop-
ment traceable to Morley’s seminal work in the 1960’s and to Shelah’s deep
and extensive work in the 1970’s. More recently, o-minimality, and in partic-
ular its focus on o-minimal expansions of the ordered field of real numbers,
provides another important class of examples. The imposition of “tameness”
assumptions in classical model theory such as stability and o-minimality –
often verified in examples by quantifier elimination – make the analysis of the
structures satisfying these hypotheses not only tractable but also amenable to
applications in mathematics outside of logic.

Tarski’s quantifier-elimination for real-closed fields which thereby (effec-
tively) equates the first-order definable sets over the field of real numbers
with the semialgebraic sets, has long proved a fertile ground for framing and
addressing computational issues. Kuijpers and Van den Bussche, in their chap-
ter, Logical aspects of spatial databases, model spatial data via semialgebraic
subsets of n-dimensional Euclidean space, and investigate the expressive power
of several logic-based languages to query these databases. They first charac-
terize the topological properties of planar spatial databases that are first-order
expressible over the usual language for the ordered field of real numbers –
of interest from the point of view of geographical information systems, for
example – in terms of the query language “cone logic”. The second half of
their chapter deals with query languages that extend first-order logic over the
real field by some form of recursion, including spatial Datalog, and first-order
logic extended with a while loop or with a transitive closure operator.

Koponen, in her chapter, Some connections between finite and infinite model
theory, discusses how stability theoretic considerations, as well as other proper-
ties and techniques from classical model theory such as smooth approximation,
can be imported successfully into the study of finite structures by restricting to
bounded variable logic, that is, first-order logic under the restriction that there is
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a fixed value k such that only formulas in which no more than k variables occur.
In particular, Koponen investigates when a theory in bounded variable logic
with an infinite model has arbitrarily large finite models and isolates conditions
for effectively determining least upper bounds for the size of the smallest such
finite model.

The chapter of Macpherson and Steinhorn, Definability in classes of finite
structures, contains two distinct threads that draw their motivation from clas-
sical model theory. The first, inspired by the model theory of finite and
pseudofinite fields, concerns asymptotic classes of finite structures. These are
non-elementary classes of finite structures whose first-order definable sets
asymptotically satisfy cardinality constraints that permit the assignation of
a dimension and measure, and have an intimate connection in classical model
theory to so-called simple theories. The second theme concerns so-called robust
classes of finite structures, whose origin lies in attempting to “finitize” classical
model-theoretic tameness conditions, such as o-minimality, that are provably
excluded in asymptotic classes. Robust classes consist of directed systems of
finite structures in which the truth value of a formula requires “looking ahead”
into a larger structure in the system.

For the model theory of finite structures that has been developed with great
success within theoretical computer science, “tameness” assumptions do not
apply only to isolate classes of structures that are well-behaved with respect to
a preferred logic, such as first-order logic. Research has prospered by striking
a balance between appropriate logics or fragments thereof and classes of finite
structures: that is, tame logics matched with tame classes. This theme appears
already in Koponen’s chapter, with its emphasis on bounded variable logic
combined with classical tameness assumptions, and strongly emerges in the
chapters of Otto and Kreutzer. As these chapters furthermore show, this point
of view can furnish significant computational insights.

Kreutzer’s chapter, Algorithmic meta-theorems, discusses how constraining
both classes of (finite) structures and logics yields a wealth of algorithmic
results. An algorithmic meta-theorem has the form that every computational
problem that can be expressed in some logic can be solved efficiently on every
class of structures that satisfy certain constraints. This is usually accomplished
by showing that the model-checking problem for formulas in some logic –
typically first-order or monadic second-order – is what is called fixed-parameter
tractable for a class of structures, typically based on graphs with well-behaved
tree decompositions. This point of view goes back to well-known work of
Courcelle and his collaborators.

Otto takes as the focus of his chapter the application of game-oriented meth-
ods and explicit model constructions in the analysis of fragments of first-order
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logic restricted to well-behaved (non-elementary) classes of structures, particu-
larly finite structures. Whereas the model-theoretic compactness theorem plays
an essential role in the classical setting, paradigmatically in proving expres-
sive completeness results such as the Łos-Tarski theorem characterizing those
formulas preserved under extensions as the existential formulas, its failure for
restricted classes of structures, e.g., classes of finite structures, motivates the
introduction of the methods and techniques that Otto places at the center of
the chapter. The chapter also surveys how by restricting to classes of finite
structures defined by tree-width and locality considerations, expressive com-
pleteness results that fail for the class of finite structures can be regained.

The workshop organizer was Professor Iain Stewart (Durham). The mem-
bers of the Scientific Committee for the workshop included : Michael Benedikt
(Oxford), Javier Esparza (Munich), Bradd Hart (McMaster), Christian Michaux
(Mons-Hainaut), Charles Steinhorn (Vassar), and Katrin Tent (Münster). Finan-
cial support from the Newton Institute and EPSRC is gratefully acknowledged.
We also wish to express our appreciation to the staff at Cambridge Univer-
sity Press, in particular Clare Dennison, our maths/computer science editor,
and Sabine Koch, our production editor, for their remarkable thoughtfulness,
patience, and efficiency throughout the process of bringing this volume into
print.

Javier Esparza
Christian Michaux
Charles Steinhorn





1

Automata-based presentations of
infinite structures

vince bárány1, erich grädel2 and sasha rubin3

1.1 Finite presentations of infinite structures

The model theory of finite structures is intimately connected to various fields
in computer science, including complexity theory, databases, and verification.
In particular, there is a close relationship between complexity classes and
the expressive power of logical languages, as witnessed by the fundamental
theorems of descriptive complexity theory, such as Fagin’s Theorem and the
Immerman-Vardi Theorem (see [78, Chapter 3] for a survey).

However, for many applications, the strict limitation to finite structures
has turned out to be too restrictive, and there have been considerable efforts to
extend the relevant logical and algorithmic methodologies from finite structures
to suitable classes of infinite ones. In particular this is the case for databases
and verification where infinite structures are of crucial importance [130]. Algo-
rithmic model theory aims to extend in a systematic fashion the approach and
methods of finite model theory, and its interactions with computer science,
from finite structures to finitely-presentable infinite ones.

There are many possibilities to present infinite structures in a finite manner. A
classical approach in model theory concerns the class of computable structures;
these are countable structures, on the domain of natural numbers, say, with a
finite collection of computable functions and relations. Such structures can be
finitely presented by a collection of algorithms, and they have been intensively

1 Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
vbarany@logic.rwth-aachen.de

2 Mathematical Foundations of Computer Science
RWTH Aachen, D-52056 Aachen, Germany
graedel@logic.rwth-aachen.de

3 Department of Mathematics and Applied Mathematics
University of Cape Town, Private Bag, Rondebosch 7701, South Africa
srubin@math.cornell.edu
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2 Vince Bárány, Erich Grädel and Sasha Rubin

studied in model theory since the 1960s. However, from the point of view of
algorithmic model theory the class of computable structures is problematic.
Indeed, one of the central issues in algorithmic model theory is the effective
evaluation of logical formulae, from a suitable logic such as first-order logic
(FO), monadic second-order logic (MSO), or a fixed point logic like LFP
or the modal µ-calculus. But on computable structures, only the quantifier-
free formulae generally admit effective evaluation, and already the existential
fragment of first-order logic is undecidable, for instance on the computable
structure (N,+, · ).

This leads us to the central requirement that for a suitable logicL (depending
on the intended application) the model-checking problem for the class C of
finitely presented structures should be algorithmically solvable. At the very
least, this means that the L-theory of individual structures in C should be
decidable. But for most applications somewhat more is required:

Effective semantics: There should be an algorithm that, given a finite pre-
sentation of a structure A ∈ C and a formulaψ(x̄) ∈ L, expands the given
presentation to include the relation ψA defined by ψ on A.

This also implies that the class C should be closed under some basic oper-
ations (such as logical interpretations). Thus we should be careful to restrict
the model of computation. Typically, this means using some model of finite
automata or a very restricted form of rewriting.

In general, the finite means for presenting infinite structures may involve
different approaches: logical interpretations; finite axiomatisations; rewriting
of terms, trees, or graphs; equational specifications; the use of synchronous or
asynchronous automata, etc. The various possibilities can be classified along
the following lines:

Internal: a set of finite or infinite words or trees/terms is used to represent
the domain of (an isomorphic copy of) the structure. Finite automata/
rewriting-rules compute the domain and atomic relations (eg. prefix-
recognisable graphs, automatic structures).

Algebraic: a structure is represented as the least solution of a finite set
of recursive equations in an appropriately chosen algebra of finite and
countable structures (eg. VR-equational structures).

Logical: structures are described by interpreting them, using a finite col-
lection of formulae, in a fixed structure (eg. tree-interpretable structures).
A different approach consists in (recursively) axiomatising the isomor-
phism class of the structure to be represented.

Transformational: structures are defined by sequences of prescribed trans-
formations, such as graph-unraveling, or Muchnik’s iterations applied
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to certain fixed initial structures (which are already known to have a
decidable theory). Transformations can also be transductions, logical
interpretations, etc. [23]

The last two approaches overlap somewhat. Also, the algebraic approach can
be viewed generatively: convert the equational system into an appropriate
deterministic grammar generating the solution of the original equations [44].
The grammar is thus the finite presentation of the graph. One may also say
that internal presentations and generating grammars provide descriptions of
the local structure from which the whole arises, as opposed to descriptions
based on global symmetries typical of algebraic specifications.

Prerequisites and notation
We assume rudimentary knowledge of finite automata on finite and infinite
words and trees, their languages and their correspondence to monadic second-
order logic (MSO) [133, 79]. Undefined notions from logic and algebra (con-
gruence on structures, definability, isomorphism) can be found in any standard
textbook. We mainly consider the following logics L: first-order (FO), monadic
second order (MSO), and weak monadic second-order (wMSO) which has
the same syntax as MSO, but the intended interpretation of the set variables
is that they range over finite subsets of the domain of the structure under
consideration.

We mention the following to fix notation: infinite words are called ω-words
and infinite trees are called ω-trees (to distinguish them from finite ones);
relations computable by automata will be called regular; the domain of a
structure B is usually written B and its relations are written RB. An MSO-
formula φ(X1, . . . , Xj , x1, . . . , xk) interpreted in B defines the set φB :=
{(B1, . . . , Bj , b1, . . . , bk) | Bi ⊂ B, bi ∈ B,B |= φ(B1, . . . , Bj , b1, . . . , bk)}.
A wMSO-formula is similar except that the Bi range over finite subsets of B.
The full binary tree T2 is defined as the structure({0, 1}∗,suc0,suc1

)
where the successor relation suci consists of all pairs (x, xi). Tree automata
operate on �-labelled trees T : {0, 1}∗ → �. Such a tree is identified with the
structure ({0, 1}∗,suc0,suc1, {T −1(σ )}σ∈�

)
.

Rabin proved the decidability of the MSO-theory of T2 and the following
fundamental correspondence between MSO and tree automata (see [132] for
an overview):
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For every monadic second-order formula ϕ(X) in the signature of T2 there is a
tree automaton A (and vice versa) such that

L(A) = {TX | T2 |= ϕ(X)} (1.1)

where TX denotes the tree with labels for each Xi .

Similar definitions and results hold for r-ary trees, in which case the domain
is [r]∗ where [r] := {0, . . . , r − 1}, and finite trees.

In section 1.2.2 and elsewhere we do not distinguish between a term and
its natural representation as a tree. Thus we may speak of infinite terms. We
consider countable, vertex- and edge-labelled graphs possibly having distin-
guished vertices (called sources), and no parallel edges of the same label. A
graph is deterministic if each of its vertices is the source of at most one edge
of each edge label.

Interpretations
Interpretations allow one to define an isomorphic copy of one structure in
another. Fix a logic L. A d-dimensional L-interpretation I of structure
B = (B; (RB

i )i) in structure A, denoted B ≤I
L A, consists of the following

L-formulas in the signature of A,

– a domain formula �(x),
– a relation formula �Ri (x1, . . . , xri ) for each relation symbol Ri , and
– an equality formula ε(x1, x2),

where each �A
Ri

is a relation on �A, each of the tuples xi, x contain the same
number of variables, d, and εA is a congruence on the structure (�A, (�A

Ri
)i),

so that B is isomorphic to

(�A, (�A
Ri

)i) / ε
A .

If L is FO then the free x are FO and we speak of a FO interpretation. If
L is MSO (wMSO) but the free variables are FO, then we speak of a (weak)
monadic second-order interpretation.

We associate with I a transformation of formulas ψ �→ ψI . For illustration
we define it in the first-order case: the variable xi is replaced by the d-tuple
yi , (ψ ∨ φ)I by ψI ∨ φI , (¬ψ)I by ¬ψI , (∃xiψ)I by ∃yi�(yi) ∧ ψI , and
(xi = xj )I is replaced by ε(yi, yj ). Thus one can translate L formulas from
the signature of B into the signature of A.

Proposition 1.1.1 If B ≤I
L A, say the isomorphism is f , then for every

formula ψ(x1, . . . , xk) in the signature of B and all k-tuples b of elements of
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B it holds that

B |= ψ(b1, . . . , bk) ⇐⇒ A |= ψI(f (b1), . . . , f (bk))

In particular, if A has decidable L-theory, then so does B.

Set interpretations
WhenL is MSO (wMSO) and the free variables are MSO (wMSO) the interpre-
tation is called a (finite) set interpretation. In this last case, we use the notation
B ≤I

set A or B ≤I
fset A. We will only consider (finite) set interpretations of

dimension 1.
If finiteness of sets is MSO-definable in some structure A (as for linear

orders or for finitely branching trees) then every structure B having a finite-set
interpretation in A can also be set interpreted in A.

Example 1.1.2 An interpretation (N,+) ≤I
fset (N, 0,suc) based on the binary

representation is given by I = (ϕ(X), ϕ+(X, Y,Z), ϕ=(X, Y )) with ϕ(X)
always true, ϕ= the identity, and ϕ+(X, Y,Z) is

∃C ∀n [(Zn↔ Xn⊕ Yn⊕ Cn) ∧ (C(sucn) ↔ µ(Xn, Yn,Cn)) ∧ ¬C0]

where C stands for carry, ⊕ is exclusive or, and µ(x0, x1, x2) is the majority
function, in this case definable as

∨
i �=j xi ∧ xj .

To every (finite) subset interpretation I we associate, as usual, a transforma-
tion of formulas ψ �→ ψI , in this case mapping first-order formulas to (weak)
monadic second-order formulas.

Proposition 1.1.3 Let B ≤I
(f)set A be a (finite) subset interpretation with iso-

morphism f . Then to every first-order formula ψ(x1, . . . , xk) in the signature
of B one can effectively associate a (weak) monadic second-order formula
ψI(X1, . . . , Xk) in the signature of A such that for all k-tuples b of elements
of B it holds that

B |= ψ(b1, . . . , bk) ⇐⇒ A |= ψI(f (b1), . . . , f (bk)).

Consequently, if the (weak) monadic-second order theory of A is decidable
then so is the first-order theory of B.

For more on subset interpretations we refer to [23].
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Figure 1.1 Relationship of graph classes and logical decidability boundaries.

1.2 A hierarchy of finitely presentable structures

This section provides an overview of some of the prominent classes of graphs
and their various finite presentations.

These developments are the product of over two decades of research in
diverse fields. We begin our exposition with the seminal work of Muller and
Schupp on context-free graphs, we mention prefix-recognisable structures, sur-
vey hyperedge-replacement and vertex-replacement grammars and their cor-
responding algebraic frameworks leading up to equational graphs in algebras
with asynchronous or synchronous product operation. These latter structures
are better known in the literature by their automatic presentations, and constitute
the topic of the rest of this survey.

As a unifying approach we discuss how graphs belonging to individual
classes can be characterised as least fixed-point solutions of finite systems of
equations in a corresponding algebra of graphs. We illustrate on examples how
to go from graph grammars through equational presentations and interpretations
to internal presentations and vice versa.

We briefly summarise key results on Caucal’s pushdown hierarchy and
more recent developments on simply-typed recursion schemes and collapsible
pushdown automata.

Figure 1.1 provides a summary of some of the graph classes discussed in
this section together with the boundaries of decidability for relevant logics.
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Rational graphs and automatic graphs featured on this diagram are described
in detail in Section 1.3.

1.2.1 From context-free graphs to prefix-recognisable structures

Context-free graphs were introduced in the seminal papers [110, 111, 112]
of Muller and Schupp. There are several equivalent definitions. The objects
of study are countable directed edge-labelled, finitely branching graphs. An
end is a maximal connected4 component of the induced subgraph obtained
by removing, for some n, the n-neighbourhood of a fixed vertex v0. A vertex
of an end is on the boundary if it is connected to a vertex in the removed
neighbourhood. Two ends are end-isomorphic if there is a graph isomor-
phism (preserving labels as well) between them that is also a bijection of
their boundaries. A graph is context-free if it is connected and has only
finitely many ends up to end-isomorphism. This notion is independent of the v0

chosen.
A graph is context-free if and only if it is isomorphic to the connected

component of the configuration graph of a pushdown automaton (without ε-
transitions) induced by the set of configurations that are reachable from the
initial configuration [112].

A context-free group is a finitely generated group G such that, for some
set S of semigroup generators of G, the set of words w ∈ S∗ representing the
identity element ofG forms a context-free language. This is independent of the
choice of S. Moreover, a group is context-free if and only if its Cayley graph
for some (and hence all) sets S of semigroup generators is a context-free graph.
Finally, a finitely generated group is context-free if and only if it is virtually
free, that is, if it has a free subgroup of finite index [111].5

Muller and Schupp have further shown that context-free graphs have a decid-
able MSO-theory. Indeed, every context-free graph can be MSO-interpreted in
the full binary tree.

Example 1.2.1 Consider the group G given by the finite presentation
〈 a, b, c | ab, cc, acac, bcbc 〉. The Cayley graph 
(G, S) of G with respect

4 connectedness is taken with respect to the underlying undirected graph.
5 Originally [111] proved this under the assumption of accessibility, a notion related to group

decompositions introduced by Wall who conjectured that all finitely generated groups would
have this property. Muller and Schupp conjectured every context-free group to be accessible,
but it was not until Dunwoody [64] proved that all finitely presentable groups are accessible
that this auxiliary condition could be dropped from the characterisation of [111]. Unfortunately,
many sources forget to note this fact. Later Dunwoody also gave a counterexample refuting
Wall’s conjecture.
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to the set of semigroup generators S = {a, b, c} is depicted below.
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Notice that 
(G, S) has two ends, for any n-neighbourhood of the identity
with n > 1. These are
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A word w ∈ {a, b, c}∗ represents the identity of G if, and only if, w has an
even number of c’s and the number of a’s equals the number of b’s. We present
a pushdown automaton A which recognises this set of words and, moreover,
has a configuration graph that is isomorphic to 
(G, S). The states of A are
Q = {1, c} with q0 = 1 as the initial state, the stack alphabet is 
 = {a, b}, the
input alphabet is {a, b, c} and A has the following transitions:

internal: 1 θ
c→ c θ

internal: c θ
c→ 1 θ

push: q σθ
σ→ q σσθ for q = 1, c and σ = a, b

push: q ⊥ σ→ q σ⊥ for q = 1, c and σ = a, b

pop: q σθ
σ→ q θ for q = 1, c and {σ, σ̄ } = {a, b}

Here θ is the stack content written with its top element on the left and always
ending in the special symbol ⊥ marking the bottom of the stack.

In every deterministic edge-labelled connected graph and for any ordering
of the edge labels one obtains a spanning tree by taking the shortest path
with the lexicographically least labeling leading to each node from a fixed
source. Take such a spanning tree T for the example graph 
(G, S) with root
1G. Observe that T is regular, having only finitely many subtrees (ends) up
to isomorphism. The ordering a < b < c induces the spanning tree depicted
below. The Cayley graph
(G, S) is MSO-interpretable in this regular spanning
tree by defining the missing edges using the relators from the presentation of the
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group.
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In particular 
(G, S) is MSO-interpretable in the full binary tree, and hence
has decidable MSO.

A mild generalisation of pushdown transitions, prefix-rewriting rules, take
the form uz �→ vz where u and v are fixed words and z is a variable ranging
over words. As in the previous example, pushdown transitions are naturally
perceived as prefix-rewriting rules affecting the state and the top stack symbols.
Conversely, Caucal [40] has shown that connected components of configuration
graphs of prefix-rewriting systems given by finitely many prefix-rewriting rules
are effectively isomorphic to connected components of pushdown graphs. Later,
Caucal introduced prefix-recognisable graphs as a generalisation of context-
free graphs and showed that these are MSO-interpretable in the full binary tree
and hence have a decidable MSO-theory [42].

Definition 1.2.2 (Prefix-recognisable relations) Let � be a finite alphabet.
The set PR(�) of prefix-recognisable relations over �∗ is the smallest set of
relations such that

– every regular language L ⊆ �∗ is a prefix-recognisable unary relation;
– if R, S ∈ PR (arities r and s) and L is regular then L · (R × S) =
{(uv1, . . . , uvr , uw1, . . . , uws) | u ∈ L, v ∈ R,w ∈ S} ∈ PR;

– if R ∈ PR of arity m > 1 and {i1, . . . , im} = {1, . . . , m},
then R(i) = {(ui1 , . . . , uim ) | (u1, . . . , um) ∈ R} ∈ PR;

– if R, S ∈ PR are of the same arity, then R ∪ S ∈ PR.

Example 1.2.3 Consider the lexicographic ordering<lex on an ordered alpha-
bet �. It is prefix-recognisable being the union of

�∗ · ({ε} ×�+) and �∗ · (a�∗ × b�∗) for all a < b ∈ �.
Following [22] we say that a structure A = (A, {Ri}i) is prefix-recogniz-

able if A is a regular set of words over some finite alphabet � and each of
the relations Ri is in PR(�). Prefix-recognisable structures can be character-
ized in terms of interpretations. On the basis of tree automata, it is relatively
straightforward to show that the prefix-recognisable structures coincide with
the structures that are MSO-interpretable in the binary tree T2 [97, 42, 22]. This
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result has been strengthened by Colcombet [51] to first-order interpretability in
the expanded structure (T2,≺) (note that the prefix relation≺ is MSO-definable
but not FO definable in T2). Colcombet proved that MSO-interpretations and
FO-interpretations in (T2,≺) have the same power, which gives a new char-
acterisation of prefix-recognisable structures. We summarize these results as
follows.

Theorem 1.2.4 For every structure A, the following are equivalent.

(1) A is isomorphic to a prefix-recognisable structure;
(2) A is MSO-interpretable in the full binary tree T2;
(3) A is FO-interpretable in (T2,≺).

In particular, every prefix-recognisable structure has a decidable MSO-theory.

Below we discuss further characterisations of prefix-recognisable structures
in terms of vertex-replacement grammars, or as least solutions of VR-equational
systems.

1.2.2 Graph grammars and graph algebras

In this section we consider vertex- and edge-labelled graphs. In formal lan-
guage theory grammars generate sets of finite words. Similarly, context-free
graph grammars produce sets of finite graphs – start from an initial nonterminal
and rewrite nonterminal vertices and edges according to the derivation rules.
Just as for languages, the set of valid derivation trees, or parse trees, forms a
regular set of trees labelled by derivation rules of the graph grammar. Con-
versely, consider a collection  of graph operations – such as disjoint union,
recolourings, etc. – as primitives. Every closed -term t evaluates to a finite
graph [[t]], and similarly every -term t(x) evaluates to a finite graph [[t(x)]]
with non-terminal (hyper)-edges and/or vertices. Formally, evaluation is the
unique homomorphism from the initial algebra of -terms to the -algebra of
finite graphs with non-terminals. Each regular tree language L of closed terms
thus represents a family of finite graphs {[[t]] | t ∈ L}. For a concise treatment
of graph grammars and finite graphs we refer to the surveys [69, 59] and the
book [53].

Our focus here is on individual countable graphs generated by deterministic
grammars via ‘complete rewriting’. A suitable framework for formalising com-
plete rewriting, in the context of term rewriting, is convergence in complete
partial orders (cpo’s). Since no classical order- or metric-theoretic notion of
limit seems to exist for graphs, we use the more general categorical notion of
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colimit [11]. We outline this framework in which an infinite term (over the graph
operations ) yields a countable graph; details may be found in [55, 11, 53].

In the category G of graphs and their homomorphisms every diagram of the
form

G0
f0−→ G1

f1−→ G2
f2−→ · · · fn−1−→ Gn

fn−→ Gn+1
fn+1−→ · · ·

has a colimitG, i.e. a kind of least common extensionG of theGns with homo-
morphisms gn : Gn → G such that gn = gn+1fn for all n.6 We assume that the
graph operations in  determine endofunctors of G that are cocontinuous i.e.
colimit preserving.

On the other side, take the cpo of finite and infinite terms over the signature
 ∪ {⊥}, with the empty term ⊥ and the extension ordering s � t . We may
turn it into a category T with each relation s � t inducing a unique arrow
s → t . Moreover, in this category, colimits (of diagrams as above) exist and
an infinite term t is the colimit of approximations t0 → t1 → · · · (think that
ti is the restriction of t to the first i levels). The evaluation mapping [[·]] has
a unique cocontinuous extension, also denoted [[·]], mapping infinite terms to
colimits of graphs.

This completes the basic description. Now consider a grammar G whose
derivation rules 〈Xi �→ ti(X)〉 can be expressed by-terms. These terms deter-
mine cocontinuous endofunctors in the category of terms T. By the Knaster-
Tarski theorem the functors have a least fixed-point G, which by Kleene’s
Theorem is attained as the colimit of the chain 〈γ n(∅)〉n with the natural homo-
morphisms. The graph generated by the grammar from the corresponding
non-terminal Xi is defined to be the component Gi of the colimit G.

Equivalently, given the system of equations EG = 〈Xi = ti(X)〉 one can con-
struct a syntactic (uninterpreted) solution of EG by ‘unraveling’ these equations
from the initial non-terminal X0 of the grammar. This results in a possibly
infinite regular term tG , which is precisely the least fixed-point solution for X0

in T. By cocontinuity of the evaluation mapping [[tG]] is isomorphic to the
least fixed-point solution of EG in G, that is to the graph generated by G.

In what follows we focus on different sets of graph operations  (namely,
HR, VR and some extensions). It has been observed that for suitable choices
of operations, most notably avoiding products, the evaluation mapping can
be realised as a monadic second-order interpretation or transduction [11, 60].
Consequently every interpretation [[t]] ≤I

MSO t naturally translates to an internal

6 There are examples of ascending chains G0
f0→G1

f1→· · · and G0
g0→G1

g1→· · · with identical
graphs but different embeddings yielding different colimits, whence there is no apparent
canonical way of defining a limit knowing only that each Gn is embeddable into Gn+1.
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presentation of [[t]] using tree automata. Moreover, for a regular term t the
MSO-theory of [[t]] is decidable by Rabin’s Theorem.

Finally we mention that all this smoothly extends to solutions of infinite
sets of equations [33]. Although unraveling might not result in a regular solu-
tion term, as long as it has a decidable MSO-theory so does the solution
graph.

Equational graphs and hyperedge-replacement grammars
Hyperedge-replacement (HR) grammars are a very natural generalisation of
context-free grammars from formal language theory. Every HR-grammar
defines a ‘language’ of finite graphs just as context-free grammars define lan-
guages of finite words. The class of graph languages defined by HR-grammars
possesses many structural properties akin to those well-known for context-free
languages. The interested reader is referred to the monograph [80].

An HR-grammar is given as a finite collection of rules that allow the replace-
ment of any hyperedge of a hypergraph bearing a non-terminal label by the
right hand side of a matching rule, which is a given finite hypergraph with
a number of distinguished vertices equal to the arity of the hyperedge to be
replaced. A copy of the right-hand side of a matching rule is then glued to the
original hypergraph precisely at these distinguished vertices and correspond-
ing end vertices of the hyperedge being replaced. Derivation begins with a
distinguished non-terminal.

As outlined at the start of section 1.2.2, each deterministic HR-grammar
determines a unique countable graph constructed from the initial graph by
complete rewriting in the course of which every non-terminal hyperedge is
eventually replaced by the right-hand side of the unique matching rule. A
countable graph is HR-equational, or simply equational, if it is generated
by a deterministic HR grammar [55]. The class of equational graphs will be
denoted by HR. Equational graphs constitute a proper extension of the class of
context-free graphs [41].

Proposition 1.2.5 A connected graph is context-free if, and only if, it is
equational and of finite degree.

Example 1.2.6 To generate the context-free graph of Example 1.2.1 with a
deterministic HR grammar we take as our initial graph the 1-neighbourhood of
the root node (labelled with 1 above) and attach to it non-terminal hyperedges
labelled withX and with Y , respectively, whose vertices enumerate the bound-
aries of either ends. Similarly, the 1-neighbourhood of the boundary of each
end, that is the vertices of the corresponding non-terminal hyperedge, consti-
tutes the right-hand side of the matching rule. Again, non-terminal hyperedges
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are attached to mark the new boundary. The initial graph and the rule for the
non-terminal X obtained this way are pictured below.
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Notice how the linearity of the generated graph is reflected in the linearity
of the replacement rules each having only a single non-terminal hyperedge on
the right. In the next example a non-linear rule is used to generate a tree, which
is not context-free.

Example 1.2.7 The complete bipartite graph K1,ω and the full ω-branching
tree Tω (in the signature of graphs) are not context-free, but can be generated

by the following rules from the initial graph • X���•.
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The HR-algebra of finite and countable graphs corresponding to hyperedge-

replacement grammars is a many-sorted algebra defined as follows. For each
n there is a separate sort Gn of graphs with n sources. These are distinguished
vertices, though not necessarily distinct, named v1, . . . , vn. There are constants
of each sort Gn: these are hypergraphs having at most one hyperedge, exactly n
vertices, each vertex a distinct source. The HR-algebra is built on the following
operations: disjoint union ⊕, renaming of sources renamec �→c′ , and fusion of
sources fuse≈ according to an equivalence≈ on source names. By convention
⊕ is understood to automatically shift the source names of its second argument
by the maximum of the source names used in the first to avoid naming conflict.
Also fuse assigns the least source name of a class to each fused node while
dropping the others.

It is intuitively clear how a hyperedge-replacement step can be expressed
using disjoint union with the right-hand side of the rule followed by a fusion
and renaming of sources. Formally, one transforms an HR-grammar G into a
system of finitely many equations Xi = ti(X) where variables play the role
of non-terminals of the grammar and the terms ti are chosen such that, when
variables are interpreted as individual hyperedges, [[ti(X)]] is the right hand
side of the matching rule for a hyperedge labelled Xi .
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Example 1.2.8 The equation corresponding to the single rule of the HR
grammar of Example 1.2.7 generating Tω is

X = rename0�→0,1�→1(fuse{0,2},{1,4}(
0• → 1• ⊕X ⊕X ) ) .

Note that the source names of the first and second occurrences of X are shifted
by 2 and by 4, respectively, while forming their disjoint union. Thus, after
fusion we obtain precisely the right hand side of the HR-rule generating Tω,
however, with additional source names. The renaming operation in this term
has the effect of forgetting the source names 2 and above. So the least solution
of this equation is indeed Tω with its root labelled 0 and one of its children
with 1.

The generating power of HR-grammars is limited by the fact that edges can
only be ‘created’ via fusion of sources (after having taken the disjoint union of
two graphs). Because there are only a fixed number of source names available
in a finite HR-equational system there is a bound on the size of complete
bipartite subgraphs Kn,n that can be created [12], cf. Theorem 1.2.12. The
infinite bipartite graph Kω,ω is thus an example of a prefix-recognisable graph
which is not HR-equational.

It is a key observation that in case of HR-terms the evaluation mapping
t �→ [[t]] is expressible as an MSO-interpretation. In fact, since edges cannot
be created by any of the HR operations, the vertex-edge-adjacency graph of
[[t]] is MSO-interpretable in the tree representation of t , whether t is finite or
infinite.

Theorem 1.2.9 For a countable graph G the following are equivalent.

(1) G is generated by a deterministic HR grammar;
(2) G is HR-equational, i.e. the evaluation of a regular HR-term, i.e. the least

solution of a finite system of HR-equations;
(3) The two-sorted incidence graph Ĝ of G is monadic second-order inter-

pretable in the full binary tree, i.e. Ĝ ≤MSO T2.

For a detailed presentation of these and other algebraic frameworks and their
connections to the generative approach based on graph grammars we advise
consulting [55, 12, 21]. In [54] Courcelle considered an extension of monadic
second-order logic, denoted CMSO2, in which one can quantify over sets of
edges as well as over sets of vertices and, additionally, make use of modulo
counting quantifiers. Notice that the last item of the previous theorem implies
that the CMSO2-theory of equational graphs is interpretable in S2S and is thus
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decidable. Further, Courcelle proved that CMSO2 is able to axiomatise each
and every equational graph up to isomorphism.

Theorem 1.2.10 Each HR-equational graph is axiomatisable in CMSO2.
Consequently the isomorphism problem of equational graphs is decidable.

Sénizergues considered HR-equational graphs of finite out-degree and
proved that they are, up to isomorphism, identical with the ε-closures of con-
figuration graphs of normalised7 pushdown automata restricted to the set of
reachable configurations. Further, he proved that bisimulation equivalence of
HR-equational graphs of finite out-degree is decidable [128]. This last result
is an improvement on the decidability of bisimulation equivalence for deter-
ministic context-free processes, which is a consequence of the celebrated result
of Sénizergues establishing decidability of the DPDA language equivalence
problem.

Vertex-replacement grammars
Vertex replacement systems are a finite collection of graph rewriting rules that
allow one to substitute given finite graphs in place of single vertices while
keeping all the connections. This form of graph rewriting emerged as the most
robust and manageable from among a host of different notions within a very
general framework [55, 69, 59, 58]. The corresponding VR-algebra of graphs is
built on the following operations: constant graphs of a single c-coloured vertex
a•, disjoint union ⊕, recolouring of vertices recolc �→c′ and introduction of
a-coloured edges edge

c
a→d

from every c-coloured vertex to every d-coloured
vertex.

The evaluation of VR-terms, whether finite or infinite, is realisable as a
monadic second-order interpretation. More precisely, as VR-equational graphs
are interpretations of regular terms obtained by unfolding a finite system of VR
equations, they can be MSO-interpreted in a regular tree, hence also in the full
binary tree T2, and thus are prefix-recognisable. These and other characterisa-
tions, together with our previous discussion of prefix-recognisable structures
are summarised in the next theorem.

Theorem 1.2.11 For a countable graph G the following are equivalent.

(1) G is isomorphic to a prefix-recognisable structure;
(2) G is generated by a deterministic VR grammar;

7 Here a PDA is said to be normalised, if in addition to being in a familiar normal-form its
ε-transitions may not push anything on the stack. Hence the finiteness bound on the out-degree
of configurations. For precise definitions see [128].
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(3) G is VR-equational, i.e. the evaluation of a regular VR-term, i.e. the least
solution of a finite system of equations of the form Xi = ti(X) with finite
VR-terms ti(X);

(4) G ≤MSO T2;
(5) G = h−1(T2)|C , i.e. the vertices ofG are obtained by restricting the nodes

of T2 to a regular set C, and its edges are obtained by taking the inverse
of a rational substitution h to T2;

(6) G is isomorphic to the ε-closure of the configuration graph of a pushdown
automaton.

Further, the HR-equational graphs can be characterised as the class of VR-
equational graphs of finite tree width [11].

Theorem 1.2.12 VR-equational graphs of finite tree width are HR-
equational.

Example 1.2.13 The complete bipartite graph Kω,ω is a prominent example
of a VR-equational graph that is not HR-equational. A VR grammar and the
corresponding system of VR equations generating Kω,ω are given below.

X• ⇒ A•←→A•
A• ⇒ • A•

X = edgea↔b( A ⊕ recola �→b(A ) )

A = a• ⊕ A
The expressive power of this formalism (for describing families of finite

graphs) is not increased by extending the VR operations by graph transforma-
tions that are definable using quantifier-free formulas (of whichrecolc �→c′ and
edge

c
a→d

are particular examples), nor by the fusion operations fusec identify-
ing all nodes bearing a certain colour c [60]. Care has to be taken when defining
countable graphs as evaluations of infinite terms, for it is unclear how to deal
with infinite terms built with non-monotonic operations. Nonetheless, infinite
terms built with operations definable by positive quantifier-free formulas can
be evaluated unambiguously [11].

In this setting Theorem 1.2.11 can be generalised to infinite systems of
equations (whose unfoldings are typically non-regular terms) using infinite
deterministic automata [33], leading us to the following families of transition
graphs.

1.2.3 Higher-order data structures

Tree-constructible graphs and Caucal’s pushdown hierarchy
Courcelle introduced MSO-compatible transductions in the investigation of
structures with decidable monadic theories. Let C and C′ be classes of structures



Automata-based presentations of infinite structures 17

on signatures σ and σ ′, respectively. Following [57] we say that a functional
transduction T : C → C′ is MSO-compatible if there is an algorithm mapping
each monadic formula ϕ of signature σ ′ to a monadic formula ϕT in the
signature σ such that

A |= ϕT ⇐⇒ T (A) |= ϕ .

MSO-interpretations are the most natural examples of MSO-compatible
transductions. Slightly more generally, the MSO-definable transductions of
Courcelle are MSO-compatible. Recall that these are given by a k-copying
operation (for some k) followed by an MSO-interpretation and in particular the
resulting structure may have k times the cardinality of the original one.

The more difficult result that the unfolding operation, mapping graphs (G, v)
to trees T(G,v), is also MSO-compatible appeared in [61] (see also [57] for an
exposition and a treatment of the simpler case of deterministic graphs). We
note that this result also follows from Muchnik’s Theorem [126, 138, 17] and
that it generalises Rabin’s theorem.

A rich class of graphs, each with decidable monadic theory, can now be
constructed. Caucal [43] proposed the hierarchies of graphs and trees obtained
by alternately applying unfoldings and MSO-interpretations starting with finite
graphs:

Definition 1.2.14

Graphs0 = {finite edge- and vertex-labelled graphs}
Treesn+1 = {TG,v | (G, v) ∈ Graphsn}

Graphsn+1 = {I(T) | T ∈ Treesn+1, I is an MSO interpretation}
By the results above, we have

Theorem 1.2.15 For every n ∈ N every graph G from Graphsn has a decid-
able MSO-theory.

Fratani [72, 73] provided an alternative proof of the above theorem, among
a host of other results on higher-order pushdown graphs, using a different kind
of MSO-compatible operation. Indeed, she established that if a homomorphism
of words maps the branches of a tree T to those of T ′ surjectively while also
preserving the node-labeling then definability and decidability results for MSO
over T ′ can be transferred to T .

The Caucal hierarchy is very robust. Various weakenings and strengthenings
of the definition yield exactly the same classes [37]. In fact, in place of MSO-
interpretations, Caucal originally used inverse rational mappings in the style of
item (5) of Theorem 1.2.11. Recently Colcombet [51] proved that every graph
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of Graphsn+1 can in fact be obtained via a first-order interpretation in some
tree belonging to Treesn+1. The next theorem provides internal presentations
of graphs of each level as a generalisation of Theorem 1.2.11 item (6) thereby
justifying the name pushdown hierarchy.

Theorem 1.2.16 ([37]) For every n a graph G is in Graphsn if, and only if,
it is isomorphic to the ε-closure of the configuration graph of a higher-order
pushdown automaton at level n.

The strictness of the hierarchy was also shown in [37]. The level-zero graphs
are the finite graphs, trees at level one are the regular trees, and as we have seen
in Theorem 1.2.11 the level-one graphs are the prefix-recognisable ones. The
deterministic level-two trees are known as algebraic trees. From the second
level onwards we have no clear structural understanding of the kind of graphs
that inhabit the individual levels. We recommend [134] for an exposition.

Term-trees defined by recursion schemes
Caucal also gave a kind of algebraic characterisation of term-trees at level n as
fixed points of safe higher-order recursion schemes.

Theorem 1.2.17 ([43]) For every n, the class of term-trees Treesn coincides
with that of term-trees generated by safe higher-order recursion schemes of
level at most n.

The notion of higher-order schemes is a classical one [62, 56]. Safety is a
technical restriction (implicit in [62]) ensuring that no renaming of variables (α-
conversion) is needed during the generative substitutive reduction (β-reduction)
process constructing the solution-term [1, 117]. Safe schemes are intimately
related to the pushdown hierarchy. This connection is well explained in [1]
showing that while on the one hand order-n schemes can define the behaviour
and hence (the unfolding of) the configuration graphs of level-n deterministic
pushdown automata, on the other hand, deterministic pushdown automata of
level n can evaluate safe order-n schemes. Safety is hereto essential.

In order to evaluate arbitrary schemes [81] introduced higher-order collapsi-
ble pushdown automata (CPDA), a kind of generalisation of panic automata
[92], and gave in essence the following characterisation in the spirit of
Theorem 1.2.16.

Theorem 1.2.18 The term-trees defined by order-n recursion schemes are
up to isomorphism identical with the unfoldings of ε-closures of configuration
graphs of level-n collapsible higher-order pushdown automata.
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As shown in [117, 81], it is not necessary to assume safety for establishing
decidability of the MSO-theories of term-trees that are solutions of higher-order
schemes.

Theorem 1.2.19 The MSO-theory of a term-tree defined by an arbitrary
higher-order recursion scheme is decidable.

Consequently, configuration graphs of higher-order collapsible pushdown
automata can be model-checked against modal µ-calculus formulas. However,
there is a second-order CPDA whose configuration graph interprets the infinite
grid and whose MSO-theory is thus undecidable [81]. This shows that higher-
order CPDA configuration graphs constitute a proper extension of Caucal’s
pushdown hierarchy.

1.2.4 Introducing products

There is a connection between the internal presentations of graphs seen so
far and the graph operations used in the corresponding equational framework.
Pushdown stacks are naturally represented as strings. The set of strings over
some alphabet can in turn be modelled as an algebra of terms built with unary
functions, one for each letter of the alphabet. Strings thus correspond to terms
and letters to unary functions. In functional programming terminology the
abstract data type of, say, binary strings has the recursive type definition

T = ⊥ ⊕ 0(T ) ⊕ 1(T ) (1.2)

Here the letters 0 and 1 are seen as type constructors and the empty string ⊥
is a constant type constructor. The set of finite strings is the least fixed-point
solution of this equation.

Automata operating on terms of type T can be viewed as functions mapping
terms to states. Moreover these functions are defined according to structural
recursion. Analogously, recursion schemes (fix-point equations) in an algebra
of graph operations transform automata-based internal presentations of a graph
into equational specifications. We can use the recursion scheme associated to
the type definition (1.2) to define any PR-graph by a VR equation extending
the type definition. For instance, the graph of the lexicographic order from
Example 1.2.3 satisfies the following equation

L = edge0→1,ε→0,ε→1(•ε ⊕ recol0,1,ε �→0(L)⊕ recol0,1,ε �→1(L)).

We briefly explain how to go from automata presenting a PR-graph to a VR-
equation. For a language V ⊂ {0, 1}∗ recognised by an automaton with tran-
sition table � ⊂ Q×� ×Q and final states F the following VR-equation
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colours each word w ∈ {0, 1}∗ by those states q such that the automaton start-
ing from q accepts w. (N.B. in accordance with (1.2) the simulation proceeds
right-to-left.)

X = •F ⊕ recol{q ′ �→q:�(q,0,q ′)}(X)⊕ recol{q ′ �→q:�(q,1,q ′)}(X)

In general, every PR-graph
⋃
i Ui · (Vi ×Wi) is the recolouring of a graph

satisfying a VR-equation of the form

X = ϑ(ϑε(•)⊕ ϑ0(X)⊕ ϑ1(X)) . (1.3)

Here, the states of the automata recognising Vi or Wi are encoded as vertex
colours (just as above) and ϑε colours • by the final states of the Vi’s andWi’s.
Edge colours are used to represent states of automata for each Ui . For every
v ∈ Vi and w ∈ Wi , and z accepted by the automaton for Ui from state q there
is a q-coloured edge (zv, zw). To this end, ϑ0 and ϑ1 recolour the vertices and
edges, and ϑ adds an edge between all x ∈ Vi and y ∈ Wi coloured by the final
states of Ui .

In passing we mention that higher-order stacks can also be represented as
strings: either as well-bracketed sequences of stack symbols, or as strings of
stack operations yielding the particular stack configuration. The former comes
at the cost of losing regularity of the domain and has no apparent algebraic
counterpart. The latter gives rise to a unary algebra of higher-order stacks
that is not, except for level 1 pushdown stacks, freely generated by the stack
operations. Thus there is no unique term representing a general stack. The
work of Fratani, Carayol and others [72, 73, 33, 32] has shown that both of
these deficiencies can be turned into features.

We now turn to graphs internally presented by finite trees. A type definition
for {0, 1}-labelled binary branching trees is

T = ⊥ ⊕ 0(T ⊗ T ) ⊕ 1(T ⊗ T ) (1.4)

where ⊗ denotes direct product. Later we will compare this with another
type definition (1.6). Colcombet observed that this schema can be used to
define graphs with internal presentations involving tree automata operating on
finite trees. He proposed extensions of the VR-algebraic framework by the
asynchronous product ⊗A [48] and by the synchronous product ⊗S [50, 49]
which we shall denote here by VRA and VRS, respectively.

Definition 1.2.20 (Synchronous and asynchronous product) The products are
defined for vertex and edge-coloured graphs G and H as follows. In the syn-
chronous product there is a d-coloured edge from (g, h) to (g′, h′) if, and only if,
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both (g, g′) and (h, h′) are connected by a d-edge in G and H, respectively. The
edge relationEd of the asynchronous product G ⊗A H is defined as the union of
{((g, h), (g′, h)) | EG

d (g, g′), h ∈ H } and {((g, h), (g, h′)) | EH
d (h, h′), g ∈ G}.

The definition of vertex colours requires a little care. In both cases a vertex
(g, h) of the product has colour δ(c, c′) whenever g has colour c and h has
colour c′. Here the function δ : C2 → C is a parameter of the product opera-
tion. However, it is really only relevant that δ acts as a pairing function on some
sufficiently large subsets of the colours. For instance, Colcombet identifies C
with {0, 1, . . . , N − 1} and defines δ as addition modulo N [48].

As before, VRA-equational and VRS-equational graphs are defined as least
fixed-point solutions of a finite system of equations in the respective algebra.
Both product operations are cocontinuous with respect to graph embeddings.
Therefore the evaluation mapping of both VRA and VRS terms uniquely
extends from finite terms to infinite terms. Hence, just as for HR- and VR-
equational graphs, the solution of a system of VRA or VRS equations is the
evaluation of the regular term obtained by unraveling the system of equations.

Example 1.2.21 The infinite two-dimensional grid (N× N,Up,Right) is
easily constructed as the asynchronous product of the VR-equational, even
context-free, graphs (N,Up) and (N,Right):

G = ⊗A(Nu,Nr )

Nu = edge
a
Up→b

(
a• ⊕ recola �→b,b �→c(Nu)

)
Nr = edge

a
Right→ b

(
a• ⊕ recola �→b,b �→c(Nr )

)
The unfolding of this system of equations is, schematically, an infinite term
consisting of two periodic branches joined at the root. Elements of the grid G,
by definition of asynchronous product, are represented as pairs of nodes of this
term-tree with one node on either branch, corresponding to the respective co-
ordinates. The example of the grid, whose MSO theory is undecidable, shows
that the evaluation mapping of VRA terms (also of VRS terms) can not be
realised by an MSO-interpretation.

For any VRA or VRS-term t , vertices of [[t]] can be identified with maximal
subsets of nodes of t belonging to sub-terms joined by a product operator. It is
thus easily expressible in MSO whether a set X of nodes (finite or infinite8) is
actually well-formed in this sense, i.e. whether it represents an element of [[t]].

8 In least fixed-point semantics only finite sets are considered, whereas in greatest fixed-point
semantics both finite and infinite sets can represent elements of the solution, provided that there
is an infinite nesting of product operators in t .
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VR with asynchronous product and ground term rewriting
Ground term rewrite systems (GTRSs) are a natural generalisation of prefix-
rewriting to trees. They are term rewrite systems given by rewriting rules
in which no variables occur. Tree automata are a special case of GTRSs
(see [52]).

Example 1.2.22 The rewrite rule a→ f (a) confined to terms of the form
d(f n(a), f m(a)) is a GTRS whose configuration graph is isomorphic to the
infinite square grid.

We have noted that prefix-recognisable graphs are identical to ε-closures of
pushdown graphs. This correspondence is achieved by generalising the simple
prefix-rewriting rules of pushdown systems of the form v→ w where v and w
are strings to replacement rules V → W for given regular languages V,W . The
latter rule allows one to rewrite any prefix v ∈ V of a given string by any word
fromW . Regular Ground Term Rewrite Systems (RGTRS) generalise GTRS in
the exact same manner: simple ground rewrite rules s → t with ground terms
s, t are replaced by ‘rule schemes’ S → T with regular sets of terms on both
left and right-hand side.

Löding [99, 100] and Colcombet [48] studied transition graphs of GTRSs
and RGTRSs from a model-checking point of view. In Löding’s work vertices
of the transition graph are those terms reachable from an initial term, whereas
Colcombet considers all terms of a given type as vertices.

The VR-equations defining PR graphs (1.3) easily generalise to VRA-
equations defining graphs of RGTRSs using the recursion scheme (1.4):

X = ϑ(ϑε(•)⊕ ϑ0(X ⊗A X)⊕ ϑ1(X ⊗A X)) (1.5)

For each ruleSi → Ti of the RGTRS we simulate (frontier to root) tree automata
recognising Si and Ti . Vertices of X represent terms, so we call these vertex-
terms. A vertex-term is coloured by those states q occurring at the root of the
term after being processed by the automata. The simulation is initialised as
follows: ϑε labels • by initial states, and ϑ adds edges between all vertex-terms
coloured by accepting states of automata for Si and Ti . Updates occur in ϑj s
according to the transition rules, similarly to (1.3). To this end assume that two
vertex-terms v′, v′′ are coloured by states q ′ and q ′′ respectively. After taking
the product the paired vertex-term j (v′, v′′) is initialised with colour (q ′, q ′′)
(cf. Def. 1.2.20). This pair is then recoloured to q by ϑj whenever (q, j, q ′, q ′′)
is a transition.

Notice how naturally the asynchronous product captures closure of RGTR
rewriting under contexts: if there was an edge between v and v′ then there is
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an edge between j (v, v′′) and j (v′, v′′), and, symmetrically, between j (v′′, v)
and j (v′′, v′). One obtains along these lines the following generalisations of
Theorem 1.2.11 (cf. examples 1.2.22 and 1.2.21).

Theorem 1.2.23 (Colcombet [48])

(i) A countable graph is VRA-equational if, and only if, it is (after removal
of certain colours) isomorphic to an RGTRS graph9.

(ii) Each VRA-equational graph is finite-subset interpretable in a regular
term-tree, hence also in the full binary tree.

Theorem 1.2.12 also extends to VRA-equational graphs [48, 100].

Theorem 1.2.24 VRA-equational graphs of finite tree-width are HR-
equational.

An immediate consequence of Theorem 1.2.23 is that the FO-theory of every
VRA-equational structure is decidable via interpretation in S2S. In fact, for any
VRA-equational graph G = (V, {Ea}a) the subset interpretation, hence also
first-order decidability, extends to G with additional reachability predicates
RC = {(v,w) | w can be reached from v using edges of colours from C } for
arbitrary subsets C of edge colours [48].

Theorem 1.2.25 VRA-equational graphs have a decidable first-order theory
with reachability.

This result cannot be improved much further. Examples of [139] show
that ‘regular reachability’, i.e. the problem whether there exists a path in a
given VRA-equational graph between two given nodes and such that the label-
ing of the path belongs to a given regular language over the set of colours,
is undecidable. In [100] Löding identified a maximal fragment of CTL that
is decidable on every GTRS graph (with vertices restricted to terms reach-
able from an initial one) that can express, besides reachability, recurring
reachability.

VR with synchronous product and tree-automatic structures
We have remarked that in the subset interpretation of VRA terms the subsets
are used in a special form. Indeed, in the evaluating interpretation they merely
serve the purpose of outlining the shape of a finite term. General finite-subset
interpretations are more powerful and are capable of expressing the evaluation
of VRS terms. In fact, these two formalism are equally expressive.

9 Here RGTRS graphs are taken in the sense of [48] as being restricted to the set of terms of a
given type.
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This is best explained by tree-automatic presentations. These are internal
presentations of VRS-structures which will be formally introduced in the next
section. For now it suffices to use the characterisation (Theorem 1.3.18) that
tree-automatic graphs are those that are wMSO-interpretable in a regular tree
(reflected in the equivalence of (1) and (2) below).

Theorem 1.2.26 (Colcombet [50])
For every countable graph G the following are equivalent

(1) G is isomorphic to a tree-automatic graph.
(2) G is interpretable in a regular tree (wlog. the full binary tree) via a finite-

subset interpretation.
(3) G is the restriction of a VRS-equational vertex-labelled graph G′ to its

set of vertices of a given colour;

We have noted that the evaluation mapping of VRS-terms can be naturally
defined as a finite subset interpretation – this justifies (3) → (2). Continu-
ing our discussion of translations from automata-based internal presentations
into equational specifications using graph products we illustrate the remaining
translation (2) → (3) from finite-tree automatic to VRS-equational presenta-
tions on graphs as we did for PR and RGTRS. That is, we build the terms
of the presentation from the bottom up while also simulating the automata
constituting the tree-automatic presentation by VRS-operations.

Start with a graph (V,E) that is definable via finite-subset interpretation in
the full binary tree. By the fundamental correspondence that wMSO-definable
relations in a regular tree are exactly those that are recognised by tree automata
operating on finite trees, we see that V may be taken to be a regular set of finite
�-labelled binary trees, andE is recognised by an automaton A accepting pairs
of such trees.

The tree automaton A has transition rules (here we read them from left-to-
right, i.e in top-down fashion, but that is a matter of choice and the simulation
will actually proceed from bottom up) of the form

r : (q, 〈a, b〉, q0, q1) with a, b ∈ {0, 1,�}
where the symbol � is necessary for padding either component of a pair of
trees so that they have the same shape. It indicates the fact that no node is
defined in the current position, i.e. that the automaton finds itself below a leaf
of the respective tree (while still reading the other). We may assume that the
transition rules enforce a proper usage of the padding symbols.

We introduce edge relations Eq and Er for each state q and each rule r
of the automaton. The simulation of transitions of the synchronous automaton
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on pairs of labelled trees necessitates a more sophisticated recursion scheme
associated to the following type definition of {0, 1}-labelled binary branching
trees.

T = ⊥ ⊕ ({0, 1} ⊗ T ⊗ T ) (1.6)

There is a natural identification of terms of this type and of those of the more
natural type definition (1.4). As far as unary predicates are concerned the
current type definition does not provide any advantage. However, compared
with (1.4) the current type definition has a more powerful associated recursion
scheme allowing for defining non-trivial binary relations between terms with
different root labels. This will allow us to specify tree-automatic graphs via
VRS-equations of the following form analogous to (1.6)

X = ϑ
(•⊥ ⊕ (ϑ0 ⊗S ϑ1(X)⊗S ϑ2(X))

)
(1.7)

Here too, as in (1.3) and in (1.5) the ϑ’s are VR-expressions facilitat-
ing the simulation of the automaton. The expression ϑ0 specifies the graph
with vertex set {0, 1} and having an r-labelled edge from a to b for each
rule r such that r = (·, 〈a, b〉, ·, ·) and with VR operations (here equiva-
lently expressed as positive quantifier-free definable operations) responsible for
updating the edge relations to simulate the transitions of A. This is done in two
phases.

– First, in preparation, state-labelled edges are used to ‘enable’ compati-
ble rule-labelled edges in either copy of the graph: for each rule r =
(·, 〈·, ·〉, q1, q2) and i ∈ {1, 2} the expression ϑi adds an Er -edge from x

to y for every Eqi -edge from x to y in the graph.
– Then, after the synchronous product of rule-labelled edges has been taken,

edges labelled by rules are renamed to their resulting states: ϑ adds for each
state q an Eq -edge from x to y for every Er -edge from x to y such that
r = (q, 〈·, ·〉, ·, ·). In addition, ϑ deals with the case when either x or y is the
singleton tree ⊥. For this we may assume that all necessary information is
coded in vertex labels implemented as reflexive edges and maintained along
with the rest of the edge labels as explained here.

Finally, to obtain the graphG′ as required in item (3) of Theorem 1.2.26 we also
use vertex colours to keep track of the states of the tree automaton recognising
V . The generalisation of this construction to arbitrary relational structures is
straightforward.
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1.3 Automatic Structures

1.3.1 Fundamentals

This section concerns structures with internal presentations consisting of
automata operating synchronously on their inputs. The starting point of this
investigation is the robust nature of finite automata. In particular, synchronous
automata are effectively closed under certain operations that can be viewed in
logical terms, i.e. Boolean operations, projection, cylindrification and permu-
tation of arguments. Thus a structure whose domain and atomic operations are
computable by such automata has decidable first-order theory (Definition 1.3.2
and Theorem 1.3.4).

Example 1.3.1 (i) The domain and relations of the following structure are
regular.

S� = (�∗, {suca}a∈�,≺prefix,el)

where �∗ is the set of finite words over alphabet �, the binary relation
suca is the successor relation (x, xa) for x ∈ �∗, the binary relation
≺prefix is the prefix relation and the binary relation el is the equal-length
relation.

(ii) The following structure can be coded (eg. in base k least significant digit
first) so that the domain and atomic operations are regular.

Nk = (N,+, |k)
where+ is the usual addition on natural numbers and x |k y holds precisely
when x is a power of k and x divides y.

Actually the link between synchronous automata and logic goes both ways.
It was first expressed in terms of weak monadic second-order logic: a set of
tuples (A1, . . . , An) of finite sets of natural numbers is weak monadic second-
order definable in (N,S) if and only if the corresponding n-ary relation of
characteristic strings (a subset of ({0, 1}∗)n) is synchronous rational. This was
proved by [27] and [68], and is implicit in [135].

A first-order characterisation was provided by [65]: a relation R ⊂ (�∗)n is
synchronous rational if and only if R is first-order definable in S� for |�| ≥ 2.
Similarly, the Büchi-Bruyère Theorem states that a relation R ⊂ Nn (coded in
base k ≥ 2 least significant digit first) is synchronous rational if and only if it is
first-order definable in Nk (proofs of which can be found in [104] and [137]).

These results were generalised to full MSO on the line (N, S) and weak
MSO and full MSO on the tree ({0, 1}∗,suc0,suc1) and form the basis of the
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logical characterisation of automatic structures (Section 1.3.4). However, we
start with the more common internal definition.

Recall that the four basic types of automata operate on finite or infinite
words or trees. So, let � be one of word,ω-word,tree,ω-tree.

We consider a structure B = (B, {Ri}) comprising relations Ri over the
domain dom(B) = B. Thus constants and operations are implicitly replaced
by their graphs.

Definition 1.3.2 (Automatic presentation) A �-automatic presentation of B

consists of a tuple d = (A,A≈, {Ai}) of finite synchronous �-automata and a
naming function f : L(A) → B such that

– Each L(Ai) is a relation on the set L(A).
– L(A≈) is a congruence relation on the structure (L(A), {L(Ai)}i).
– The quotient structure is isomorphic to B via f .

Moreover, the quotient structure is called an automatic copy of B. We say that
the presentation is injective whenever f is, in which case A≈ can be omitted.

Definition 1.3.3 (Automatic structure10) A structure B is �-automatic if it
has an �-automatic presentation. If B is �-automatic for some � then B is
simply called automatic. The classes of automatic structures are respectively
denoted by S-AutStr, ωS-AutStr, T-AutStr and ωT-AutStr.

The following theorem motivates the study of automatic structures and so
may be called the Fundamental Theorem of automatic structures/presentations.

Theorem 1.3.4 (Definability) There is an algorithm that given a �-automatic
presentation (d, f ) of a structure A and a FO-formula ϕ(x) in the signature
of A defining a k-ary relation R over A, effectively constructs a synchronous
�-automaton recognising f −1(R).

Immediate corollaries are

(i) Decidability: The FO-theory of every automatic structure is decidable.
(ii) Interpretations: The class of �-automatic structures is closed under FO-

interpretations.

We point out that the Fundamental Theorem implies that every relation
first-order definable from �-regular relations is itself �-regular.

Remark 1.3.5 One may allow finitely many parameters ϕ(a, x) under the fol-
lowing conditions. For finite-word and finite-tree presentations any parameters

10 Some authors write automatically presentable.
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can be used. However, for ω-tree (and ω-word) presentations a parameter a can
be used if f −1(a) contains a regular ω-tree (ultimately periodic ω-word).

Consequently �-automatic structures (on a given signature) are closed
with respect to operations such as disjoint union, ordered sum and direct
product – each a special case of generalised products treated in [20, 23].
However AutStr and ωS-AutStr are not closed under weak direct-power.
For instance, (N,+) is in S-AutStr but its weak direct-power is isomor-
phic to (N,×), which is not in S-AutStr (see [20]). On the other hand, it is
straightforward to see thatT-AutStr andωT-AutStr are closed under weak
direct-power.

1.3.2 Examples

Obviously every finite structure is automatic. Here are a some examples of
structures with automatic presentations.

Example 1.3.6 (Ordinals) (i) (ω,<) ∈ S-AutStr: The simplest auto-
matic copy is the unary one: (0∗, {(0k, 0l) | k < l}).

(ii) Every ordinal below ωω is in S-AutStr: An automatic copy of ωk

is ((0∗1)k,<lex) where <lex denotes the lexicographic order11 which is
clearly regular. In this presentation the naming function is

0nk−1 1 . . . 0n0 1 �→ nk−1ω
k−1 + · · · + n1ω

1 + n0.

(iii) Every ordinal below ωω
ω

is in T-AutStr: recall that the ordinal ωα has
a representation as the set of functions f : α→ ω with f equal to 0 in all
but finitely many places. These functions are ordered as follows: f < g if
the largest β with f (β) �= g(β) has that f (β) < g(β). Then for fixed k, a
function f : ωk → ω is coded by the tree Tf with domain a finite subset
of 0∗1∗2∗ · · · k∗ so that for every β, expressed in Cantor-normal-form as
ωk−1c0 + ωk−2c1 · · · + ω0ck−1, 0 ≤ ci < ω, we have Tf (0c0 1c1 · · · (k −
1)ck−1kf (β)) = 1.

Example 1.3.7 (Orderings) (i) (Q,<) ∈ S-AutStr: The countable linear
order ({0, 1}∗1,<lex) is dense without endpoints.

(ii) (R,<) ∈ ωS-AutStr.

11 Given an ordering on the symbols of the alphabet a word u is lexicographically smaller than w
if either u is a proper prefix of w or if in the first position where u and w differ there is a
smaller symbol in u than in w.
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Example 1.3.8 (Groups) (i) Every finitely-generated group with an
Abelian group of finite index is in S-AutStr. And these are the only
finitely generated word-automatic groups [116].

(ii) The direct sum of countably many copies of Z/mZ is in S-AutStr.
(iii) The subgroup Z[1/k] of rationals of the form {zk−i | z ∈ Z, i ∈ N} for

fixed k ∈ N is in S-AutStr.
(iv) The Prüfer p-group Z(p∞) = Z[1/p]/Z (prime p) is in S-AutStr

[114].
(v) Real addition (R,+) is in ωS-AutStr.

However, the additive group of the rationals (Q,+) is not automatic [136].
In fact, Tsankov shows that no torsion free Abelian group that is p-divisible
for infinitely many primes p is automatic.

Example 1.3.9 (Arithmetics) (i) (N,+) is in S-AutStr: For every natural
k > 1, the base k least-significant-digit-first presentation of naturals (with
or without leading zeros) constitutes a naming function of an automatic
presentation. A finite automaton can perform the schoolbook addition
method while keeping track of the carry in its state. Such a presentation is
injective when leading zeros are suppressed.

(ii) (N, ·) is in T-AutStr: The presentation is based on the unique factorisa-
tion of every natural number n into prime powers 2n2 3n3 · · ·pnp . Each nk
is written, say in binary notation, on a single branch of a tree with domain
0∗1∗. Multiplication is reduced to the addition of corresponding expo-
nents. This construction can naturally be generalised to give tree-automatic
presentations of weak direct powers of word-automatic structures
[20, 25].

Example 1.3.10 (Equivalence relations) The following have finite-word auto-
matic presentations.

(i) There is one class of size n for every n ∈ N.
(ii) There are d(n) classes of size n ∈ N where d(n) is the number of divisors

of n. (This is the direct product of the previous equivalence relation with
itself).

Example 1.3.11 (Free algebras) (i) The free algebra with n unary opera-
tions and at most ω many constants is in S-AutStr.

(ii) The free monoid generated by a single constant is in S-AutStr. How-
ever, no non-unary free or even free-associative algebra on two or more
constants is in S-AutStr.
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(iii) The free algebra generated by countably many constants and any finite
number of operations is in T-AutStr.12 For instance suppose there
is one binary operation F . The domain of the presentation consists of
all {F, c,⊥}-labelled binary trees. The operation (representing F ) takes
trees S and T as input and returns the tree with domain the prefix-closure
of (dom(S) ∪ dom(T )){0, 1} and taking the following values: the root
position is labelled F ; position α0 is labelled by the label of S at position
α; position α1 by the label of T at position α (if either of these latter
positions does not exist, the label is ⊥). It is not known whether finitely
generated (non-unary) term algebras are in T-AutStr.

Example 1.3.12 (Boolean Algebras) The signature we work in consists of
the symbols for boolean operations ∩,∪, ·c and constants ⊥, .

(i) Every finite power of the algebra of finite and co-finite subsets of N is in
S-AutStr.

(ii) The countable atomless Boolean algebra is inT-AutStr: It is isomorphic
to the algebra of sets consisting of the clopen sets in Cantor space. Each
clopen set has a natural representation as a finite tree.

(iii) The algebra of all subsets of N is in ωS-AutStr.
(iv) The algebra of all subsets of N factored by the congruence of having

finite symmetric difference is in ωS-AutStr. It is unknown whether
this structure can be injectively presented in ωS-AutStr.

(v) The interval algebra of the real interval [0, 1) is in ωT-AutStr.
(vi) The algebra of all subsets of {0, 1}∗ with a distinguished set F consisting

of those X ⊂ {0, 1}∗ such that for every path π ∈ {0, 1}ω only finitely
many prefixes of π are in X.

Example 1.3.13 (Graphs) (i) The infinite upright grid is in S-AutStr:
Here the structure is (N× N,Up,Right) with the functions Right :
(n,m) �→ (n+ 1,m) and Up : (n,m) �→ (n,m+ 1). It can be automati-
cally presented on the domain a∗b∗ with relations

R =
(
a

a

)∗(
b

a

)(
b

b

)∗(�
b

)
and U defined by a similar regular expression.

(ii) The transition graphs of pushdown automata are in S-AutStr:13 Given
a pushdown automaton A with states Q, stack alphabet 
, input alphabet

12 Communicated by Damian Niwinski.
13 For visibly pushdown automata the same representation of configurations also allows for the

trace equivalence relation to be recognised by a finite automaton. In [10] this presentation was
utilised to obtain a decidability result.
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� and transition relation�we can construct an automatic presentation of
the transition graph of its configurations as follows. We takeQ
∗ to be the
domain of the presentation in which qγ represents the configuration of
state q and stack γ ∈ 
∗. For each a ∈ � there is an a-transition from qγ

to q ′γ ′ if, and only if, γ = zα, γ ′ = wα and (q, z, q ′, w) ∈ � for some
z ∈ 
 and w ∈ 
∗. Since � is finite, this relation is obviously regular for
each a. Notice that in these presentations the transition relations are not
only regular but in fact defined by prefix-rewriting rules (cf. Section 1.2.1
on context-free graphs).

(iii) The transition graphs of Turing machines are in S-AutStr [87]. We
can give an automatic presentation of each TM M similar to those of
pushdown automata. Configurations are encoded as stringsαqβ ∈ 
∗Q
∗
where α and β are the tape contents to the left, respectively, to the right
of the head of M, and q is the current state. Observe that, as opposed
to presentations of pushdown graphs, the state is now positioned not
at the left of the string but at the location of the head. Consequently,
rewriting is not confined to prefixes, but rather occurs around the state
symbol: transitions are of the form αuqwβ �→ αu′q ′w′β for adequate
u,w, u′, w′ and q, q ′ as determined by the transition function of M. The
fact that TM graphs are presentable using infix rewriting has the profound
consequence that reachability questions in infix-rewriting systems are
generally undecidable, as opposed to graphs of prefix-rewriting systems,
whose monadic second-order theory is decidable (cf. Theorem 1.2.4).

Example 1.3.14 (Automata-theoretic structures) The following structures
turn out to be universal for their respective classes (see Theorem 1.3.17).

(i) Let

S� = (�∗, {suca}a∈�,≺prefix,el)

and

Sω� = (�≤ω, {suca}a∈�,≺prefix,el)

be the structures defined on finite, respectively on finite and ω-words,
comprising the successor relationssuca = {(w,wa) | w ∈ �∗}; the prefix
relation u ≺prefix w (where u is finite and w is finite or infinite); and
the equal-length relation: uelw if, and only if, |u| = |w|. Clearly S� ∈
S-AutStr and Sω� ∈ ωS-AutStr. Note that if � is unary, then S�
reduces to (N,+1,<,=).
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(ii) The structure T� ∈ T-AutStr has domain consisting of all finite binary
�-labelled trees and has operations

(!ext,≡dom, (sucda )d∈{l,r},a∈�, (εa)a∈�)

where T !ext S if dom(T ) ⊂ dom(S) and S(α) = T (α) for α ∈ dom(T );
T ≡dom S if dom(T ) = dom(S); sucda (T ) = S if S is formed from T by
extending its leaves in direction d and labeling each new such node by a;
and εa is the tree with a single node labelled a.

Similarly the structure T ω
� ∈ ωT-AutStr has domain consisting of

all finite and infinite trees and operations

(!ext,≡dom, (sucda )d∈{l,r},a∈�, (εa)a∈�).

that are restricted to finite trees, except that T !ext S is defined as above
but allows S to be an infinite tree.

1.3.3 Injectivity

Recall that an automatic presentation is injective if the naming function is
injective. The problem of injectivity is this:

Does every �-automatic structure have an injective �-automatic presentation?

An injective presentation has the advantage that it is easier to express certain
cardinality-properties of sets of elements (Theorem 1.4.6). We consider the four
cases.

Finite words
From a finite-word automatic presentation of A one defines an injective pre-
sentation of A by restricting to a regular setD of unique representatives. These
can be chosen using a regular well-ordering of the set of all finite words. For
instance, defineD ⊂ L(A) to be the length-lexicographically least words from
each L(A≈) equivalence class.

Finite trees
Except in the finite word case, there is no regular well ordering of the set
of all finite trees [39]. However one can still convert a finite-tree automatic
presentation into an injective one [47]. The idea is to associate with each tree t
a new tree t̂ of the following form: the domain is the intersection of the prefix-
closures of the domains of all trees that are L(A≈)-equivalent to t ; a node is
labelled σ if t had label σ in that position; a leaf x is additionally labelled by
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those states q from which the automaton A≈ accepts the pair consisting of the
subtree of t rooted at x and the tree with empty domain.14 Using transitivity
and symmetry of L(A≈), if t̂ = ŝ then t is L(A≈)-equivalent to s. Moreover
each equivalence class is associated with finitely many new trees, and so a
representative may be chosen using any fixed regular linear ordering of the set
of all finite trees.

ω-words
There is a structure in ωS-AutStr that does not have an injective ω-word
automatic presentation [82]. The proof actually shows that the structure has no
injective presentation in which the domain and atomic relations are Borel.

However, every countable structure in ωS-AutStr does have an injective
ω-word automatic presentation [85] (and consequently is also in S-AutStr).
This follows from the more general result that everyω-word regular equivalence
relation with countable index has a regular set of representatives [85].

ω-trees
It has not yet been settled whether injective presentations suffice, even for the
countable structures.

1.3.4 Alternative characterisations

Automatic structures were defined internally. We now present equivalent char-
acterisations: logical (FO and MSO) and equational.

First-order characterisations
In order to capture regularity in the binary representation of N using first-order
logic Büchi suggested the expansion (N,+, {2n | n ∈ N}) of Presburger arith-
metic, which is, however, insufficient (see [26]). Boffa and Bruyère considered
expressively complete expansions of (N,+) by relations of the form x |k y
(defined to hold precisely when x is a power of k and x divides y).

Theorem 1.3.15 (Büchi-Bruyère, cf. [26]) A relation R ⊆ Nr is regular in
the least-significant-digit-first base k presentation of N if, and only if, R is
first-order definable in the structure Nk = (N,+, |k).

Closer to automata, the structures S� on words (see example 1.3.14) allow
one to define every regular relation on alphabet �.

14 The construction given in [47] is slightly more general and allows one to effectively factor
finite-subset interpretations in any tree.
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Theorem 1.3.16 ([65]) Let� be a finite, non-unary alphabet. A relation over
�∗ is regular if, and only if, it is first-order definable in S� .

The proofs of these theorems are by now standard. From left to write one
writes a formula φA(x) that expresses the existence of a successful run in
automaton A on input x. For the other direction the atomic operations of the
structures are regular forms the base case for structural induction on the formula.
Both theorems transfer to automatic structures by replacing definability with
interpretability [24, 25].

Theorem 1.3.17 (First-order characterisation of S-AutStr) The following
conditions are equivalent.

– A ∈ S-AutStr.
– A is first-order interpretable in S� (for some/all � with |�| ≥ 2).
– A is first-order interpretable in Nk (for some/all k ≥ 2).

These structures have been called universal or complete (with respect to
FO-interpretations) for the class of finite-word automatic structures. There are
similar universal structures for the other classes of automatic structures. These
are the structures Sω� , T� and T ω

� from Example 1.3.14 [20, 14].

Finite set interpretations
The four notions of automatic presentation have straightforward reformulations
in terms of subset interpretations either in the line�1 = (N,suc) or in the tree
�2 = ({0, 1}∗,suc0,suc1).

Theorem 1.3.18 (Automatic presentations as subset interpretations) There
are effective transformations establishing the following equivalences.

(i) A ∈ S-AutStr if, and only if, A ≤fset �1

(ii) A ∈ ωS-AutStr if, and only if, A ≤set �1

(iii) A ∈ T-AutStr if, and only if, A ≤fset �2

(iv) A ∈ ωT-AutStr if, and only if, A ≤set �2

Equivalently, one may formulate universality with respect to FO interpre-
tations. Following [47] we define the (finite) subset envelope P(f )(A) of a
structure A by adjoining to A its (finite) subsets as new elements ordered by
set inclusion.

Definition 1.3.19 Given A = (A, {Ri}) write P (A) for the set of all subsets of
A. The subset envelope P(A) is the structure with domain P (A) and relations
R′i := {({a1}, . . . , {an}) | (a1, . . . , an) ∈ Ri} and the subset relation ⊆ defined
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on P (A). The finite-subset envelope Pf (A) is the substructure of P(A) whose
domain is the set of finite subsets of A.

It is immediately clear that

B ≤(f)set A ⇐⇒ B ≤FO P(f )(A)

In particular, this yields natural universal structures, with respect to FO-
interpretations, for each of the four classes of automatic structures.

Corollary 1.3.20 (i) Pf (�1) is universal for S-AutStr.
(ii) P(�1) is universal for ωS-AutStr.

(iii) Pf (�2) is universal for T-AutStr.
(iv) P(�2) is universal for ωT-AutStr.

VRS-Equational structures
Recall that the VRS-algebra of graphs extends the VR-algebra with the syn-
chronous product operation and that VRS-equational systems define exactly
the finite-tree automatic graphs (see Section 1.2.4 and Theorem 1.2.26).

A finite VRS-equational system whose unfolding is a linear VRS-term
specifies a structure in S-AutStr. This happens if in the defining equations
one of the arguments of each occurrence of⊕ and of⊗S is a finite graph (and so
these act like unary operations). Conversely, for word-automatic presentations
Equation (1.7) reduces to the following form:

X = ϑ
(•⊥ ⊕ (ϑ0 ⊗ ϑ1(X) )

)
(1.8)

This scheme matches the following type definition obtained by restricting (1.6)
to words:

T = ⊥ ⊕ ( {0, 1} ⊗ T ) (1.9)

This recursive definition of the set of words has the same advantage over (1.2)
as (1.6) has over (1.4) when it comes to defining binary relations over words via
structural induction, e.g. via finite automata. Over words we have the following
special case of Theorem 1.2.26.

Theorem 1.3.21 (Colcombet [50])
For every countable structure A the following are equivalent

(1) A is isomorphic to a word-automatic graph.
(2) A is the restriction of some B to its elements of a certain colour, where

B can be specified by a VR-equation Z = π (X), where π simply forgets
some of the structure of X, together with a VRS-equation for X of the
form (1.8);

(3) A is finite-subset interpretable in (N,suc).
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The equivalence of the first and the third item is a direct consequence of the
classical correspondence of automata on words and monadic second-order logic
of one successor and was already stated in Theorem 1.3.18. Nonetheless, this
can also be inferred from the fact that the solution term obtained by unfolding
(1.8) is (essentially) a periodic linear VRS-term that evaluates, via a finite-
subset interpretation, to the word-automatic structure specified by equation
(1.8).

More generally, let VRS− denote the extension of VR with unary opera-
tionsX �→ G0 ⊗S X whereG0 is any finite graph. Moreover let us call a chain
interpretation a subset interpretation in a tree where each of the subsets repre-
senting an element is linearly ordered by the ancestor relation of the tree. It is
not hard to see that solutions of finite systems of VRS−-equations are finite-
chain interpretable in a regular tree and that these in turn are word automatic
[50].

1.3.5 Rational graphs

If we allow the more general asynchronous automata in the definition of an
automatic presentation of a graph we get the notion of a rational graph. Thus
vertices are labelled with finite words of a rational language over some finite
alphabet �, and the edge relations are required to be rational subsets of �∗ ×
�∗.

With no aim for completeness we list below some results on rational graphs
(asynchronous) in comparison with automatic graphs (synchronous). For a
comprehensive treatment the reader is referred to [105].

The class of rational graphs strictly includes that of finite-word automatic
graphs. In their seminal paper [87] Khoussainov and Nerode also introduced
asynchronous automatic structures. As an example they gave an asynchronous
automatic presentation ofωω, which is not inS-AutStr (see Theorem 1.4.12).
Asynchronous automatic presentations of Cayley-graphs of finitely generated
groups have also been considered as generalisations of ‘automatic groups’ [31].

The price of increasing expressiveness is a loss of tractability: in general,
rational graphs do not have a decidable first-order theory. This renders rational
graphs useless for representing data, let alone programs. However, in the context
of formal language theory rational graphs seem to fill a gap. Considering
rational graphs as infinite automata, i.e. as acceptors of languages, Morvan
and Stirling have shown that they trace exactly the context-sensitive languages
[108, 107] (see also [34] for a simplified approach). Rispal and others [123,
107, 34] have subsequently observed that this holds true for automatic graphs
as well.



Automata-based presentations of infinite structures 37

Although first-order queries on rational graphs are in general intractable
there are some interesting decidable subclasses.

Morvan observed that by a result of Eilenberg and Schützenberger, graphs
defined by rational relations over a commutative monoid have a decidable first-
order theory. In particular, over the unary alphabet the monoid structure is
isomorphic to (N,+) whence the unary rational graphs are those first-order
definable in (N,+) [105]. Similarly, rational graphs over (N,+)d are those
having a d-dimensional first-order interpretation in (N,+).

Carayol and Morvan showed that on rational graphs that also happen to be
trees (this is an undecidable property) first-order logic is decidable [36, 106].
The decision method is based on locality of FO as formulated by Gaifman and
uses a compositional technique. The authors also exhibit a rational graph that
is a finitely branching tree but is not finite-word automatic.

1.3.6 Generalisations

Automata with oracles
Consider an expansion�O

i of�i := ([i]∗,suc0, . . . ,suci−1) by a unary pred-
icateO ⊂ [i]∗. Every MSO formula (with free MSO variables) of the expanded
structure corresponds to a tree automaton with oracle O. An automaton with
oracle is one that, while in position u ∈ [i]∗, can decide on its next state using
the additional information of whether or not u ∈ O. Thus for automata working
on infinite words/trees the oracle O is simply read as part of the input. In the
case of automata working on finite words/trees, the entire oracle is scanned, and
so the acceptance condition should be taken appropriately (eg. Muller/Rabin).

Call a set O decidable if MSO(�O
i ) is decidable, and weakly decidable if

wMSO(�O
i ) is decidable. Early work on decidable oracles used the contraction

method to show that certain oracles on the line, such as {n! | n ∈ N}, are
decidable [67]. This was extended to the effectively profinitely ultimately peri-
odic words [38], which it turns out capture all the decidable unary predicates
on the line [119, 120]. Nonetheless, it is still of interest to produce explicit
examples of decidable oracles, see for instance [38, 74, 75, 7].

Definition 1.3.22 If in the definition of automatic presentation (1.3.2) we
replace �-automata with �-automata with oracle O, we get a notion of �-
automatic presentation with oracle O. A structure is called automatic with
oracle if it has a �-automatic presentation with some oracle.

Example 1.3.23 The group of rationals (Q,+) has recently been shown to
have no word-automatic presentation [136]. However it is finite-word automatic
with oracle #2#3#4 · · · . This is based on the idea, independently found by Frank
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Stephan and Joe Miller and reported in [114], that there is a presentation of
([0, 1) ∩Q,+) by finite words in which + is regular, but the domain is not:
every rational in [0, 1) can be expressed as

∑n
i=2

ai
i! for a unique sequence of

natural numbers ai satisfying 0 ≤ ai < i. The presentation codes this rational
as #a2#a3#a4 · · · where ai is written in decimal notation (and hence has length
less than the length of i written in decimal notation). Addition is performed
with the least significant digit first, based on the fact that

ai + bi + c
i!

= 1

(i − 1)!
+ ai + bi + c − i

i!

where c ∈ {0, 1} is the carry in.

We immediately have that a structure is (finite-)word/tree automatic with
oracleO if and only if it is (finite) set interpretable in�O

1 /�
O
2 . Hence we have

the following generalisation of the Fundamental Theorem and its corollaries
(1.3.4).

Theorem 1.3.24 (i) Definability: Say (d, f ) is a �-automatic presentation
with oracle O of a structure A and ϕ(x) is a FO-formula in the signature
of A defining a k-ary relation R over A. Then the relation f −1(R) is
recognised by an �-automaton with oracle O.

(ii) Interpretations: The class of �-automatic structures with oracle O is
closed under FO-interpretations.

(iii) Decidability: The previous statements can be made effective under the
following conditions.
1 For � ∈ {word, tree} we require that wMSO(�O

i ) be decidable.
2 For � ∈ {ω-word, ω-tree} we require that MSO(�O

i ) be
decidable.

In particular, under these conditions, every A that is �-automatic with
oracle O has decidable FO-theory.

Of course �O
i can be viewed as a coloured tree. As in Corollary 1.3.20 we

have universal structures with respect to FO-definability. For instance P(�O
2 )

is universal for ωT-AutStr with oracle O. The following result concerns
finite-set interpretations in arbitrary trees.

Theorem 1.3.25 ([47]) To every finite set interpretation I one can effectively
associate a wMSO interpretation J such that for every tree t and structure A

if Pf (A) ∼= I(t) then A ∼= J (t).

This can be used to show that certain structures, such as the random graph,
are not finite-tree automatic in the presence of any oracle [47].
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1.3.7 Subclasses

In this section we restrict the complexity of the regular domains in automatic
presentations to yield some of the more robust subclasses of S-AutStr and
T-AutStr.

Polynomial domain
The most natural restriction is to consider presentations where the words and
trees take labels from a unary alphabet |�| = 1. Word-automatic presentations
over a unary alphabet were introduced and studied by Blumensath [20] and
Rubin [89, 124].

The density of a language L ⊂ �∗ is the function n �→ |L ∩�n|.
Definition 1.3.26 A structure is unary automatic if it has an injective word-
automatic presentation in which the domain consists of words from a unary
alphabet. A structure is p-automatic if it has an injective word-automatic pre-
sentation in which the domain has polynomial density. Let 1-AutStr and
P-AutStr denote these respective classes of structures.

Regular sets of polynomial density were characterised by Szilard et al. [131]
as being a finite union of the form

D =
⋃
i<N

ui,1v
∗
i,1ui,2 . . . ui,ni v

∗
i,ni
ui,ni+1 (1.10)

where the degree of the polynomial of the density function is equal to the max-
imum of the ni’s. In [6] it was demonstrated that every finite-word-automatic
presentation over a domain as in (1.10) can be transformed into an equivalent
one (cf. Section 1.4.4) over a domain that is a regular subset of

a∗1a
∗
2 . . . a

∗
n

where n is equal to the maximum of the ni’s. In particular, word-automatic
presentations over a domain of linear density are unary automatic. This trans-
formation yields a kind of normal-form of word-automatic presentations over
a polynomially growing domain.

Theorem 1.3.27 ([6]) A structure A has an automatic presentation over a
domain of density O(nd ) if, and only if, it has a d-dimensional interpretation
in M := (N,<, {≡(modm)}m>1) if, and only if, it is finite-subset interpretable in
�1 := (N,suc) with subsets of size at most d.

Corollary 1.3.28 ([113],[20]) A structure A is unary automatic if, and only
if, it is first-order definable in M if, and only if, it is MSO-interpretable in �1.
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Unary automatic structures form a very restricted subclass of VR-equational
structures and have a decidable MSO-theory. Using pumping arguments one
can show that Presburger arithmetic (N,+) has no p-automatic presentation
[20, 121]. On the other hand, the infinite grid is p-automatic but not unary
automatic. Thus we have

1-AutStr � P-AutStr � S-AutStr .

The expansion of M with the successor function suc and a constant for
0 admits quantifier elimination. Hence, every p-automatic structure can be
interpreted in (N, 0,suc,<, {≡(modm)}m>1) using quantifier-free formulas.

Every p-automatic structure inherits the Pspace upper-bound on the com-
plexity of its first-order theory from M. This is as low as possible since FO
model-checking is Pspace-hard for any structure with at least two elements.
Adding even the simplest form of iteration to FO leads to undecidability. For
every k-counter machine it is straightforward to construct a p-automatic pre-
sentation of its configuration graph where each configuration (q, n1, . . . , nk) is
represented by the word qcn1

1 · · · cnkk . It follows that the first-order theory with
reachability FO[R] of a p-automatic structure is undecidable in general. In
comparison, while unary automatic structures have a decidable MSO-theory,
the FO(DTC) theory of (N, succ) interprets full first-order arithmetic and is
therefore highly undecidable [20].

Observe, that graphs having rational presentation over a finitely gener-
ated commutative monoid (cf. Section 1.3.5) can be seen as analogues of
p-automatic graphs. Indeed, every monoid element is represented by some
word gr11 g

r2
2 . . . g

rn
n over the generators.

Finite-rank tree-automatic presentations
The analogue of p-automatic to tree-automatic structures is restricting to pre-
sentations involving trees of bounded rank. Intuitively the rank of a tree cor-
responds to its branching degree (which can be measured in terms of the
Cantor-Bendixson rank).

Recall a �-labelled n-ary tree T is a function from a prefix-closed subset
of [n]∗ to �. We say that T has rank k if its domain has polynomial density of
degree at most k.

A finite-tree automatic presentation is called of rank k if for some regular
languageD of polynomial density of degree at most k the domain of every tree
in the presentation is a subset of D. Collectively we speak of bounded-rank
tree-automatic presentations. The class of structures with rank k presentations
is denoted k-T-AutStr.

Example 1.3.29 The ordinalωω
k

has a rank k + 1 tree-automatic presentation.
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ωS-AutStr

countable

ωT-AutStr

injωS-AutStr

countable

injωT-AutStr

countable

S-AutStr

inj

T-AutStr

inj

Figure 1.2 Relationship of classes of automatic structures

Let Tk denote the structure corresponding to the unlabelled k-ary tree with
domain 0∗1∗ · · · (k − 1)∗. Note that Tk is wMSO-interpretable in the ordinal ωk

(in the signature of order), and vice-versa.

Proposition 1.3.30 The following are equivalent.

– A is in k-T-AutStr,
– A is finite-set interpretable in Tk (or equivalently in the ordinal ωk),
– A is the solution of a finite system of VRS-equations whose unfolding is a

term-tree of rank k.

The hierarchy is strict:

S-AutStr = 1-T-AutStr � 2-T-AutStr � · · · � T-AutStr.

Indeed, if k+1-T-AutStr = k-T-AutStr for some k then the finite-
subset envelope Pf (ωk+1) would be finite-set interpretable in ωk . But by The-
orem 1.3.25 then ωk+1 is wMSO interpretable in ωk , which is known not to be
possible [98, Lemma 4.5].15

1.3.8 Comparison of classes

Since words are special cases of trees, and finite ones special cases of infi-
nite ones, one immediately sees the inclusions indicated by the arrows in
the figure. All the arrows except for the dotted one are known to be strict
inclusions. We now discuss the separating examples as well as the double
lines indicating equality of the classes when restricted to countable struc-
tures. Since ωS-AutStr and ωT-AutStr contain uncountable structures
while S-AutStr and T-AutStr do not, we split our discussion along these
lines.

15 We thank Łukasz Kaiser for discussions on the notions of this section and Alex Rabinovich for
providing the latter reference.
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Countable structures
The structure (N,×) separates T-AutStr from S-AutStr (see [20], or [88]
for an alternative proof).

Every injective ωS-AutStr presentation of a countable structure can be
effectively transformed into aS-AutStr presentation. This is because a count-
able ω-regular set X ⊆ {0, 1}ω only contains ultimately periodic words, and
moreover there is a bound on the size of the periods (which can be computed
from an automaton for X). Similar facts hold for countable regular sets of
infinite trees [115].

The next theorem generalises this in the word case:

Theorem 1.3.31 ([85]) (i) The countable structures in ωS-AutStr are
precisely those in S-AutStr.

(ii) Given a (not necessarily injective) automatic presentation of some A ∈
ωS-AutStr it is decidable whether A is countable or not, and if it is, an
automatic presentation of A over finite words can be constructed.

On the other hand, we do not know whether every countable structure in
ωT-AutStr is in T-AutStr.

Uncountable structures
The only known non-trivial methods dealing with uncountable structures appear
in [82]:

(i) The algebra (P({0, 1}∗),∩,∪, ·c,F) from example 1.3.12(vi) is an
uncountable structure separating ωT-AutStr from ωS-AutStr.

(ii) Recall Example 1.3.12(iv) consisting of the algebra of subsets of N (call it
A) quotiented by having finite symmetric difference (call it ≈). Construct
a variant structure as the disjoint union of A and A/≈, with a unary
predicate U identifying the elements of A and a binary relation R relating
a ∈ A to its representative in A/≈. This uncountable structure separates
ωS-AutStr from injωS-AutStr.

1.4 More on word-automatic presentations

1.4.1 Beyond first-order logic

The Fundamental Theorem can be strengthened to include order-invariant defin-
able formulas as well as certain additional quantifiers.
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Generalised quantifiers
We briefly recall the definition of generalised quantifiers as introduced by
Lindström.

Definition 1.4.1 Fix a finite signature τ = (Ri)i≤k , where Ri has associated
arity ri . A quantifierQ is a class of τ -structures closed under isomorphism. Let
σ be another signature. Given σ -formulas �i(xi, z) with |xi | = ri (i ≤ k), the
syntax Qx1, . . . , xn(�1, . . . , �k) has the following meaning on a σ -structure
A:

(A, a) |= Qx1, . . . , xk(�1, . . . , �k) iff (A;�A
1 (·, a), . . . , �A

k (·, a)) ∈ Q,

where �A(·, a) is the relation defined in A by � with parameters a. The arity
of a quantifier is the maximum of the ris. A quantifier is n-ary if its arity is at
most n.

The extension of first-order logic by a collection Q of generalised quantifiers
will be denoted FO[Q].

Examples 1.4.2 (i) The unary quantifier {(A;X) | ∅ �= X ⊂ A} is ‘there
exists’.

(ii) The unary quantifier ‘there exist infinitely many’, written ∃∞, is the
class of structures (A;X) where X is an infinite subset of A.

(iii) The unary modulo quantifier ‘there are k modulo m many’ (here 0 ≤
k < m), written ∃(k,m), is the class of structures (A;X) where X contains
k modulo m many elements. Write ∃mod for the collection of modulo
quantifiers.

(iv) The unary Härtig quantifier is the class of structures (A;P,Q) where
P,Q ⊂ A and |P | = |Q|.

(v) Every setC ⊂ (N ∪ {∞})n induces the unary cardinality quantifierQC =
{(A;P1, . . . , Pn) | (|P1|, . . . , |Pn|) ∈ C}. In fact, a given unary quantifier
over signature (Ri)i≤k is identical to some cardinality quantifiers with
n = 2k .

(vi) The binary reachability quantifier is the class of structures of the form
(A;E, {cs}, {cf }) where E ⊂ A2, cs, cf ∈ A, and there is a path in the
directed graph (A;E) from cs to cf .

(vii) The k-ary Ramsey quantifier ∃k-ram is the class of structures (A;E), E ⊂
Ak , for which there is an infiniteX ⊂ A such that for all pairwise distinct
x1, . . . , xk ∈ X, E(x1, . . . , xk).

The following general definition will allow us to compare the expressive
strength of quantifiers.
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Definition 1.4.3 LetQ be a quantifier, Q a collection of quantifiers, and τ the
signature of Q. Say that Q is definable in Q if there is a sentence θ over the
signature τ in the logic FO[Q] with Q = {A | A |= θ}.

For instance, a structure (A;X) satisfies ∃(0,2)zX(z) ∨ ∃(1,2)zX(z) if and
only if X is finite. Hence ∃∞ is definable in {∃(0,2), ∃(1,2)}.

Of course the generalised quantifiers that interest us most are the ones, like
∀ and ∃, that preserve regularity.

Definition 1.4.4 Fix class C as one of S-AutStr, T-AutStr,
ωS-AutStr, orT-AutStr. LetQ be a quantifier with signature τ = (Ri)i≤k,
where Ri has associated arity ri . Say that quantifier Q preserves regularity for
the class C if for every n ∈ N, and every automatic presentation µ of a structure
A ∈ C, every formula

Qx1, . . . , xk(�
A
1 (x1, z), . . . , �

A
k (xk, z))

defines a relation R in A with µ−1(R) regular (here z = (z1, . . . , zn) and the
�i are first-order A-formulas).

Say that Q preserves regularity effectively if an automaton for µ−1(R)
can effectively be constructed from the automata of the presentation and the
formulas �i .

Since not every structure is injectively presentable, we may restrict this
definition to the class C of injectively presentable structures from ωS-AutStr
(or ωT-AutStr). For this, replace ‘automatic presentation’ with ‘injective
automatic presentation’ in the above definition.

Example 1.4.5 The reachability quantifier is not regularity preserving (for
any of the classes). For otherwise, by Example 1.3.13, the set of starting
configurations that drive a given Turing Machine to a halting state would be
regular, and hence computable.

The first steps have been taken in exploring those quantifiers that preserve
regularity.

Theorem 1.4.6 Let C be any of the following classes of structures
inj-ωT-AutStr, ωS-AutStr, T-AutStr, S-AutStr.

(i) The following unary quantifiers preserve regularity effectively for C: ∃∞,
∃mod, ∃≤ℵ0 , ∃>ℵ0 [20, 90, 94, 85, 9].

(ii) Every unary quantifier that preserves regularity for the class S-AutStr
is already definable from ∃mod, ∃∞ [125].
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The second item also implies that every unary quantifier that preserves
regularity for the class inj-ωS-AutStr is already definable from ∃mod, ∃∞,
∃≤ℵ0 , ∃>ℵ0 . This is because for an ω-regular relation R(x, z) the cardinality
of the set R(−, c) (for any fixed parameter c) is finite, countable or has size
continuum [94].

Theorem 1.4.7 (see [125]) Each k-ary Ramsey quantifier preserves regularity
effectively for the class S-AutStr.

Kuske and Lohrey observed that the proof of this theorem can be generalised
to quantifiers of the form ‘there exists an infinite setX satisfying θ ’, where θ is
a property of sets closed under taking subsets. They use this to show that certain
problems, while �1

1-complete for recursive graphs, are decidable on automatic
graphs [96].

Order-invariance
Definition 1.4.8 Fix a signature τ and a new symbol≤. A formula φ(x) in the
signature τ ∪ {≤} is called order invariant on a τ -structure A if for all tuples
a from A and all linear orders ≤1 and ≤2 on A, we have that (A,≤1) |= φ(a)
if and only if (A,≤2) |= φ(a). The relation defined by the order invariant φ in
A is the set of tuples a from A such that (A,≤) |= φ(a) for some (and hence
all) linear orders ≤ on A.

The Fundamental Theorem can be extended on injective presentations to
include order-invariant formulas in those cases where there is a regular linear
ordering of the set f−1(A). On finite-words, finite-trees and ω-words there
are regular linear orderings. However, we do not know if there is a regular
linear ordering on the set of all ω-trees. On the other hand, certain separating
examples from finite model theory are adaptable to the automatic world.

Proposition 1.4.9 ([5]) There exists a structure B ∈ S-AutStr and an
order-invariant definable relation S∗ in B that is not definable in B using any
extension of FO with only unary quantifiers.

1.4.2 Complexity of some problems

First-order theories
By Theorem 1.3.4 query-evaluation and model-checking for first-order formu-
las are effective on automatic structures. However, the complexity of these
problems is in general non-elementary, i.e. it exceeds any fixed number of iter-
ations of the exponential function. For instance the first-order theories of the
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Structure-Complexitya Expression-Complexity
Model-Checking

�0 Logspace-complete Alogtime-complete
�0 + func Nlogspace in quadratic time16

and Ptime-complete
�1 Ptime17 Pspace-complete

(ExpTime-c. for T-AutStr)
�2 Pspace-complete17 ExpSpace-complete

(2ExpTime-c. for T-AutStr)
Query-Evaluation

�0 Logspace Pspace
�1 Pspace Expspace

Figure 1.3 Complexity of fragments of FO on automatic structures
a Structure complexity is measured in terms of the size of the largest deterministic
automaton in the input presentation.

universal structures Nk and S[k] (k ≥ 2) have non-elementary complexity [77]
(cf. also the remark after Example 1.4.39).

There are various sensible ways of measuring model-checking complexity.
First, one may fix a formula and ask how the complexity depends on the
input structure. This measure is called structure complexity. On the other hand,
expression complexity is defined relative to a fixed structure in terms of the
length of the formula. Finally, one can look at the combined complexity where
both parts may vary.

In [25] Blumensath and Grädel studied the expression and structure com-
plexity of model-checking and query evaluation for quantifier-free and exis-
tential first-order formulas both in a relational signature and allowing terms in
quantifier-free formulas. Their results are complemented by those of Kuske and
Lohrey [95] on the expression complexity of �1 (existential) and �2 formulas
of a relational signature over arbitrary word- and tree-automatic structures.
Figure 1.3 provides a summary.

On certain subclasses of automatic structures there is better complexity. In
section 1.3.7 above we have mentioned that the first-order theory of each
structure allowing a word-automatic presentation of polynomial density is

16 This is a generalisation of the quadratic solution of the word problem in automatic groups [31]
(see Section 1.4.5).

17 Model checking with a fixed �1 formula reduces to a membership or non-emptiness test for an
NFA. For fixed �2 formulas the problem is polynomially equivalent to the universality
problem of NFAs, and thus Pspace-complete. (We thank Anthony To for pointing out the error
in [25].)
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decidable in Pspace. Kuske and Lohrey [101, 95] studied automatic struc-
tures whose Gaifman graphs are of bounded degree. Relying on locality of
first-order logic they have identified the expression complexity of FO model
checking on word-automatic and tree-automatic structures of bounded degree
to be 2ExpSpace-complete and 3ExpTime-complete, respectively. The com-
bined complexity remains 2ExpSpace for word-automatic presentations and
is in 4ExpTime for tree-automatic presentations. For finer results we refer
to [95].

Beyond first-order
A fundamental problem in verification is deciding reachability: whether there is
a path between specified source and target nodes. Since the configuration space
of an arbitrary Turing machine is finite-word automatic, the halting problem
can be reduced to the reachability problem on the configuration graph of a
universal Turing-machine. Similar reductions show the undecidability, over
(finite-word) automatic structures, of connectivity, isomorphism, bisimulation
and hamiltonicity [25, 96].

On the other hand there are natural classes of automatic structures for
which these problems become decidable (see Figure 1.1). For instance, VRA-
equational graphs have a decidable FO-theory with reachability and are
finite-tree automatic. Reachability and connectivity in locally-finite unary-
automatic graphs are in fact decidable in Ptime. Bisimulation equiva-
lence of HR-equational graphs of finite out-degree is decidable [128] (see
section 1.2.2).

Finally we mention some cases where full MSO is decidable. Prefix recog-
nisable structures (which include the unary automatic structures) are finite-
word automatic. A structure of the form (N,<,C1, . . . , Ck) is called a colour-
ing of the line. Every known finite-word automatic colouring of the line, and
this includes every morphic sequence, has decidable MSO-theory (cf. The-
orem 1.4.38 and see [7]). Furthermore, every word-automatic equivalence
relation has a decidable MSO-theory. This follows from the above and the
observation (Proposition 1.4.40) that if there are only finitely many infinite
classes then the equivalence relation is FO-definable in some word-automatic
colouring of the line [7].

Isomorphism problem
A measure of the complexity of a class of structures is the isomorphism problem,
namely the problem of deciding, given two �-automatic presentations d and
d′, whether or not the structures they present are isomorphic.
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The characterisations of the finite-word automatic Boolean algebras and
ordinals [88, 63] imply that the isomorphism problem for each of these classes
is decidable. Also, as noted, the isomorphism problem for equational graphs is
decidable 1.2.10.

Configuration spaces of Turing machines are locally finite and the com-
plexity of the isomorphism problem for locally-finite directed graphs in
S-AutStr is �0

3-complete [124]. However, by massaging the configuration
spaces we get that the isomorphism problem for automatic graphs is as hard
as possible: �1

1-complete. This is done by reducing the isomorphism prob-
lem for computable structures, known to be �1

1-complete, to that of automatic
structures.

Theorem 1.4.10 ([124]) The complexity of the isomorphism problem for each
of the following classes ofS-AutStr structures is�1

1 -complete: (i) undirected
graphs, (ii) directed graphs, (iii) successor trees, and (iv) lattices of height 4.

Problem 1.4.11 What is the exact complexity of the isomorphism problem
for the following classes:18

(i) Automatic equivalence structures (easily seen to be �0
1).

(ii) Automatic linear orders.

Traces
Infinite edge-labelled graphs, when viewed as infinite automata, can accept non-
regular languages. Naturally, context-free graphs accept precisely the context-
free languages. Though prefix-recognisable graphs form a structurally much
richer class they have the same language accepting power as context-free
graphs (cf. Theorem 1.2.11 items (1) and (6)). Graphs in the Caucal hier-
archy have the same accepting power as higher-order pushdown automata
(see Theorem 1.2.16) tracing languages on the corresponding levels of the OI-
hierarchy of [62]. The traces of GTRS-graphs form a language class in between
the context-free and context-sensitive classes of the Chomsky hierarchy [99].
Rational graphs accept precisely the context-sensitive languages [108]. All
context-sensitive languages can in fact be accepted by word-automatic graphs
[123], cf. also [35] for a more accessible proof and finer analysis. Meyer proved
that the traces of tree-automatic graphs are those languages recognisable in
Etime, i.e. in 2O(n) time [103].

18 While this work has been in print, Kuske, Liu and Lohrey have greatly contributed to settling
these and related questions. We refer to their forthcoming paper.
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1.4.3 Non-automaticity via pumping and counting

It is usually quite simple to show that a structure has an automatic presentation
(if indeed it does have one!). On the other hand, there are only a handful of ele-
mentary techniques for showing that a structure has no automatic presentation.
Most rely on the pumping lemma of automata theory.

Sometimes we can provide a full characterisation of classes of automatic
structures. The first non-trivial characterisation was for the word-automatic
ordinals (in the signature of order).

Theorem 1.4.12 (Delhommé [63])

(i) An ordinal α is in S-AutStr if, and only if, α < ωω.
(ii) An ordinal α is in T-AutStr if, and only if, α < ωω

ω

.

A relation R is (n+m) locally finite if for every (x1, . . . , xn) there are only
finitely many (y1, . . . , ym) such thatR(x, y) holds. Obviously, every functional
relation f (x) = y is locally finite. Other examples of locally finite relations are
equal-lengthel, length comparison |y| < |x|, and the prefix relation y ≺prefix

x. Note that local finiteness depends on the partitioning of the variables, e.g.
x ≺prefix y is not locally finite.

A simple pumping argument gives the following important tool.

Proposition 1.4.13 (Elgot and Mezei [66]) Let R ⊆ (�∗)n+m be a regular
and locally finite relation. Then there is a constant k such that for all x, y
satisfying R,maxj |yj | ≤ maxi |xi | + k. In particular, if f is a regular function
then there is a constant k such that for every x in its domain we have |f (x)| ≤
maxi |xi | + k.

Growth of generations
Consider a structure A with functions F = {f1, . . . , fs} and a sequence E =
{e0, e1, e2, . . .} of elements of A. The generations of E with respect to F are
defined recursively as follows.

G0
F (E) = {e0}

Gn+1
F (E) = Gn

F (E)
⋃ {en+1}⋃ {f (a) | f ∈ F , ai ∈ Gn

F (E) for each i ≤ |a|}
We are interested in how fast |Gn

F (E)| grows as a function of n.

Example 1.4.14 (i) Free semigroup onm generators: hereF = {·} andE =
{e1, . . . , em}. For m ≥ 2, since Gm

F (E) ⊃ E, the set Gm+n
F (E) includes all

strings over E of length at most 2n; thus the cardinality of Gm+n
F (E) is at

least a double exponential in n.
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(ii) Ifp : D ×D→ D is injective then forF = {p} andE = {e1, e2} (distinct
elements of D) |Gn

F (E)| is at least a double exponential.

We now iterate Proposition 1.4.13.

Proposition 1.4.15 ([87], [20, 25]) Let A ∈ S-AutStr and consider an
injective presentation d with naming function f . LetF be a finite set of functions
FO-definable in A and E = {e0, e1, . . .} a definable set of elements ordered
according to length in d, i.e. |f −1(e0)| ≤ |f −1(e1)| ≤ · · · . Then there is a
constant k such that for every n and for every a ∈ Gn

F |f −1(a)| ≤ kn. In
particular, |Gn

F | = 2O(n).

In other words, the number of elements that can be generated using functions
is at most a single exponential in the number of iterations. Continuing the
previous examples, neither the free semigroup nor any bijection f : D ×D→
D (also called a pairing function) is word-automatic. It is trickier to apply the
proposition to show that Skolem arithmetic (N,×) is not word-automatic (see
[20, 25]). It is nevertheless tree-automatic, cf. Example 1.3.9.

The application of propositions 1.4.13 and 1.4.15 has been pushed to their
limits:

Proposition 1.4.16 (i) If a group (G, ·) is word-automatic then every
finitely generated subgroup is virtually Abelian (has an Abelian subgroup
of finite index). In particular, a finitely generated group is in S-AutStr
if, and only if, it is virtually Abelian [116, 114].

(ii) A Boolean Algebra (in the signature (∪,∩, ·c,⊥, )) is in S-AutStr if,
and only if, it is finite or a finite power of the Boolean Algebra of finite or
co-finite subsets of N [88]. In particular, the countable atomless Boolean
Algebra is not in S-AutStr.

(iii) There is no infinite integral domain in S-AutStr [88].
(iv) No word-automatic structure (D,R) has a subsetN ⊂ D such that (N,R)

is isomorphic to (N, ·), cf. [114].

The proof of the first item starts with the observation that every finitely-
generated group G ∈ S-AutStr has polynomial density - that is, for every
finite set A = {a1, . . . , ak} the function

γ (n) = |{
∏
i<n

c
σi
i | ∀i < n : ci ∈ A, σi ∈ {1,−1}}|

is bounded by a polynomial (this exploits associativity of the group operation).
The rest of the proof uses powerful theorems of Gromov and Ershov (see [114]
for a survey of word-automatic groups).
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Number of definable subsets
Various countable random structures, such as the random graph, do not have
word- or tree-automatic presentations [88, 63]. The approach to proving these
facts has a model-theoretic flavour: for a purported automatic presentation, it
involves counting the number of definable subsets of elements represented by
words of bounded length.

Consider the usual definition of a set defined by ϕ with parameter b that
remains fixed:

ϕ(−, b)A = {a ∈ A | A |= ϕ(a, b)} .
A finite set X ⊂ A is fully shattered by ϕ if the cardinality of the family

{ϕ(−, b)A ∩X | b ∈ A}
is as large as possible, namely 2|X|. For instance, Benedikt et al. [16] observe
that in S[2] each of the sets {0, 00, . . . , 0n} can be fully shattered by the formula
ϕ(x, b) = ∃z(suc1z ≺prefix b ∧ el(z, x)).

By contrast, in every automatic presentation with naming function f and
domain D ⊆ �∗, the image under f of each D≤n := D ∩�≤n can only be
linearly shattered by definable families.

Proposition 1.4.17 ([88, 63]) In every automatic presentation of a structure
A with naming function f and for every formula ϕ:

|{ϕ(−, b)A ∩ f (D≤n) | b ∈ A}| = O(|f (D≤n)|) .
As an application recall that the random graph is characterised by the prop-

erty that for every partition of a finite setX of vertices into sets U and V , there
is a vertex b connected to all elements of U and to no element of V . In other
words, every finite set X of vertices is fully shattered by the edge relation as
the parameter b is varied. So by Proposition 1.4.17 the random graph has no
word-automatic presentation. Similar reasoning yields the following.

Proposition 1.4.18 ([88, 63]) The following are not in S-AutStr: the ran-
dom graph, the random partial order, the random Kn-free graph.

Using Theorem 1.3.25 one can established non-automaticity of the random
graph in a far more general sense.

Theorem 1.4.19 ([47]) Neither the random graph nor the the free monoid on
two generators is finite-tree automatic with any oracle.

In fact neither is ω-word automatic with any oracle, as witnessed by the
following theorem which follows from the proof of Theorem 1.3.31.
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Theorem 1.4.20 If a countable structure is ω-word automatic with oracle,
then it is also finite-word automatic with (the same) oracle.

1.4.4 Comparing presentations

When we think of an automatic structure we frequently have a particular
automatic presentation in mind. Some structures have canonical presenta-
tions. For instance, (a∗,<len) is arguably the canonical presentation of (N,<)
and ({0, 1}∗,suc0,suc1,≺prefix,el) is the canonical presentation of itself.
Some well-known structures have natural presentations, none of which can
be indisputably called canonical. The base k ∈ N (k > 1) presentations of
(N,+) can be considered equally natural; but then what about the Fibonacci
numeration system? The field of regular numeration systems, though using a
somewhat different terminology, investigates automatic presentations of (N,+)
and ω-word automatic presentations of (R,+). Finally, there are pathological
presentations that are used to pin down the relationship between definability in
a structure and regularity in its presentations [90].

How are we to compare different automatic presentations of the same struc-
ture? What are the crucial aspects of a presentation that distinguish it from
others?

Canonical representations of context-free graphs were investigated by
Sénizergues. In [127] a p-structure for a graph G is a PDA A (having no
ε-transitions) together with an isomorphism between the configuration graph
of A and G. Furthermore, a p-structure for G is P-canonical if the distance
in G between a vertex v and the root is equal to the stack height of the con-
figuration representing v (cf. [112]’s notion of a canonical automaton for a
context-free graph; and [41, 44]). For a fixed graph G Sénizergues considers
two p-structures equivalent if there is a rational isomorphism between them,
and shows that every equivalence class of p-structures contains a P-canonical
one [127].

An example from the theory of numeration systems is provided by the
celebrated result of Cobham and Semenov. Recall that naturals p and q are
called multiplicatively independent if they have no common power (ie. pk �= ql

for all k, l ≥ 1) and multiplicatively dependent otherwise.

Theorem 1.4.21 (Cobham-Semenov19, cf. [26, 19, 109])
The following dichotomy holds for p, q ≥ 2.

19 Cobham proved it for sets; Semenov later extended it to arbitrary relations.
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(i) If p and q are multiplicatively dependent then a relationR ⊆ Nr is regular
when coded in base p iff it is regular when coded in base q.

(ii) If p and q are multiplicatively independent then a relation R ⊆ Nr is
regular in both base p and base q iff R is FO-definable in (N,+).

The meaning of (i) is that, for instance, bases 2l and 2k are expressively
equivalent. There is a very simple coding translating numerals between these
bases, which bijectively maps blocks of k digits in the first system to blocks
of l digits in the second system. Every pair of multiplicatively dependent
numeration systems are linked by similar translations.

According to (ii) the base 2k presentation is as different as it can be from,
say, the base 3 presentation. This point is further stressed by the following
result of Bés based on the work of Michaux and Villemaire.

Theorem 1.4.22 ([18]) Let p and q be multiplicatively independent, and
R ⊆ Nr regular when coded in base q, but not first-order definable in (N,+).
Then the first-order theory of (N,+, |p, R) is undecidable.

On a similar note we introduce the following general notions.

Definition 1.4.23 (Subsumption and equivalence)
Consider two �-automatic presentations of some structure A with naming
functions f and g, respectively. We say that f subsumes g (g � f ) if for
every relation R over the domain of A, if g−1(R) is �-regular then f −1(R) is
�-regular. If both f � g and g � f then we say that the two presentations are
equivalent and write f ∼ g. Moreover, we say that a �-automatic presentation
of A is prime if it is subsumed by all other �-automatic presentations of A.

Word-automatic presentations
The definition of equivalence of automatic presentations is modelled on case
(i) of Theorem 1.4.21. In [5] it has been shown that two finite-word auto-
matic presentations are equivalent if and only if the transduction translating
names of elements from one presentation to the other is computable by a semi-
synchronous transducer: a two-tape finite automaton processing its first tape
in blocks of k letters and its second tape in blocks of l letters for some fixed
positive k and l. (Note that, except in trivial cases, k/l is uniquely determined
[5].)

Theorem 1.4.24 ([5]) Two finite-word automatic presentations of some
A ∈ S-AutStr with naming functions fi : Di → A, i ∈ {1, 2}, are equiva-
lent if, and only if, the transduction T = {(x, y) ∈ D1 ×D2 | f1(x) = f2(y)}
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translating names of elements from one presentation to the other is semi-
synchronous rational.

Corollary 1.4.25 Let f1 and f2 be naming functions of equivalent automatic
presentations of A. Then there is a constantC such that for every n-ary relation
R over dom(A) and for every automaton A1 recognising f −1

1 (R) there is an
automaton A2 of size |A2| ≤ Cn · |A1| recognising f −1

2 (R), and vice versa.

Let U be one of the universal finite-word automatic structures S� (for |�| >
1), Pf (�1), or (N,+, |k) (for k > 1). Using semi-synchronous translations one
can establish the following.

Theorem 1.4.26 ([5, 6]) The universal structure U has only a single word-
automatic presentation up to equivalence.

The assertion of the theorem can be reformulated as follows.

Corollary 1.4.27 For a relation R, the expansion (U, R) is in S-AutStr if,
and only if, R is FO-definable in U.

The prime presentation of a structure, if one exists, is unique up to equiva-
lence, hence may as well be called canonical. The unary presentation of (N,<)
is a prime word-automatic presentation. It is, however, not a prime presentation
of (N,suc), which allows, for every m > 1 a word-automatic presentation in
which divisibility by m is not regular [90]. It can be inferred that (N,suc) has
no prime presentation.

Recall Theorem 1.3.27 stating that each word-automatic presentation, of
structure A, over a domain of polynomial density of degree d directly cor-
responds to a d-dimensional interpretation of A in the structure M = (N,<,
{≡(modm)}m>1), and hence also in (N,+). So every p-automatic structure has
infinitely many pairwise incomparable word-automatic presentations ‘inher-
ited’ from (N,+), namely, based on different numeration systems.

In fact, M allows a non-trivial 2-dimensional interpretation in itself. Simply
consider the lexicographic ordering of all pairs (n1, n2) such that n1 ≥ n2 as
an interpretation of (N,<) and observe that moduli of positions within the
lexicographic ordering of tuples can be expressed in terms of moduli of their
components. Thus, by composing interpretations, every p-automatic presen-
tation of M is properly subsumed by other p-automatic presentations with
domains of asymptotically greater polynomial densities. This carries over to
all p-automatic structures.

In contrast, from results of [5, 8] it follows that g � f implies g ∼ f for
any two word-automatic presentations of a given structure, provided that either
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both f and g have domains of exponential density, or both have a domain of
polynomial density of the same degree.

Therefore, the height of the partial order of word-automatic presentations of
A under subsumption and modulo equivalence isω if A is p-automatic and 1 if A

is not p-automatic. It is not known whether the width of the subsumption order
modulo equivalence is always one or infinite for word-automatic structures that
are not p-automatic.

Tree-automatic presentations
Colcombet and Löding [47] investigated the power of finite-subset interpre-
tations applied to arbitrary trees. In our terminology these are tree-automatic
presentations with arbitrary oracles.

In the tree-automatic model the analogue of Theorem 1.4.26 does not hold.
A tree-automatic presentation ofPf (�2) incomparable with the natural one can
be forged simply by ‘folding each tree in half about the vertical axis’, i.e. taking
the mirror image of the subtree below the right child of the root and smoothly
combing it together with the untouched left half, e.g. as in Example 1.3.11(iii).
Despite this, the fact concerning primality of the natural presentation of the
universal structure holds in an even stronger sense.

Proposition 1.4.28 ([47, Lemma 5.6]) The natural tree-automatic presenta-
tion with oracle O and with the identity naming function of the finite-subset
envelope Pf (TO) of the oracle tree TO is a prime presentation with respect to
tree-automatic presentations with arbitrary oracle.

In particular, ‘the’ word-automatic presentation of Pf (�1) and the natu-
ral tree-automatic presentation of Pf (�2) are both prime even among tree-
automatic presentations with arbitrary oracles. This is complemented by the
following result of [47].

Theorem 1.4.29 All tree-automatic presentations of Pf (�1) are equivalent.

Therefore, the same holds true for all of the universal structures from The-
orem 1.4.26.

1.4.5 Other notions of automaticity

Specific automatic presentations have been employed in other mathematical
fields: computational group theory [31], symbolic dynamics [13], numeration
systems (of integers or reals) [76], and infinite sequences represented in natural
numeration systems [2, 26, 4]. In this section we survey natural presentations
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k
1

Figure 1.4 k-fellow traveler property.

of certain structures that have mostly been considered independently of the
general theory of automatic structures.

Automatic groups
Thurston (1986) motivated by work of Cannon on hyperbolic groups introduced
the notion of automatic groups. A finitely generated group G is automatic in
this sense if for some set of semigroup generators S and associated canonical
homomorphism f : S∗ → G

(i) there is a regular language W ⊂ S∗ so that f restricted to W is surjective,
(ii) for every s a generator from S or the group identity, the following binary

relation over W is regular:

{(u, v) | f (u) = f (v)s} .

This is in fact an algebraic notion: it does not depend on the particular choice
of generators. From the automata presenting the group one can extract a finite
presentation of the group, and a quadratic-time algorithm deciding the word
problem.

Proposition 1.4.30 (k-fellow traveler property) A group G with semigroup
generators S = {s1, . . . , sr} is automatic if, and only if, there exists a regular
setW ⊆ S∗ and k ∈ N such that f |W is surjective andW satisfies the k-fellow
traveler property:

∀u, v ∈ W with d(u, v) ≤ 1 ∀i ≤ max{|u|, |v|} : d(u1 . . . ui, v1 . . . vi) ≤ k

where d(u, v) denotes the length of the shortest path between u and v in the
Cayley graph of G with generators S.

Virtually Abelian groups and Gromov’s word hyperbolic groups constitute
important examples of automatic groups in this sense. Major results of this
programme are presented in [31] (see also the introductions by Farb [71] and
by Choffrut [46]).
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More recently, this notion has been extended to semigroups [29, 30, 84, 28]
and monoids [83, 129, 102].

Let us compare the following three notions: (i) groups whose multiplication
function admits a word-automatic presentation, (ii) finitely generated automatic
groups, and (iii) finitely generated groups with a Cayley graph admitting a word-
automatic presentation. It is known [116] that a finitely generated group allows
a word-automatic presentation of type (i) iff it is virtually Abelian. All virtually
Abelian finitely generated groups are automatic in the sense of this subsection.
Hence (i) implies (ii) for finitely generated groups. Furthermore, by definition,
the Cayley graph of every automatic group has a word-automatic presentation.
Hence (ii) implies (iii), but the converse fails. As Sénizergues has pointed out
the Heisenberg group is not automatic even though its Cayley graph has an
automatic presentation. For further reading we recommend the survey by Nies
[114].

Generalised numeration systems
The theory of generalised numeration systems [76] is concerned with repre-
sentations of N and R in various bases and using different (possibly negative)
digits. In general, the basisU0 < U1 < U2 < . . . of the system does not have to
be the sequence of powers of a natural. One considers bases satisfying appro-
priate linear recursions, or alternatively powers of a base β which is the greatest
root of a polynomial of a certain type. The study of generalised numeration
systems goes back to Rényi who in 1957 introduced β-expansions.

Without going into the particulars of this very rich field we point out that a
number may have more than one representation in a given numeration system.
Thus from a practical perspective one is interested in normalised numerals
obtained via the greedy algorithm. Normalised numerals are ordered according
to<llex (length and then lexicographically, most significant digit first). A regular
set of (normalised) numerals N ⊆ [d]∗ over the set of digits 0, . . . , d − 1 is
simply an automatic copy of (N,<) of the form (N,<llex).

A fundamental question in this context asks under which circumstances
addition can be computed by a synchronous finite automaton. When this is the
case one speaks of a regular numeration system. On this matter we refer to [76]
and the references therein.

Example 1.4.31 The Fibonacci numeration system is a prominent example
of a regular numeration system. It has the Fibonacci numbers 1, 2, 3, 5, 8, . . .
as its basis, and the binary digit set. The normalised numerals delivered by the
greedy algorithm are ε, 1, 10, 100, 101, 1000, 1001, 1010, 10000, 10001, . . .
in the length-lexicographic ordering. They are the binary strings avoiding 11 as
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a factor since greedy normalisation prefers 100 to 11. Naturally, 10n represents
the nth Fibonacci number.

More generally we ask how can one classify the word-automatic presen-
tations of (N,+)? Or those of (N,<)? Below we survey known classes of
automatic presentations of expansions of (N,<) by unary predicates, i.e. infi-
nite sequences.

Automatic sequences
The theory of automatic sequences [2] studies ω-words representable in more-
or-less standard numeration systems. Presentations of primary concern are
those of base k ∈ N, or of base −k, and possibly involving negative digits.

Definition 1.4.32 A sequence s : N → � is k-automatic if for every a ∈ �
the set Na of numerals in the standard base k numeration system representing
all positions n such that s(n) = a constitutes a regular language.

These k-automatic sequences have been characterised in both algebraic and
logical terms. In order to formulate another characterisation some notions are
required. A morphism ϕ : 
∗ → �∗ is said to be k-uniform if |ϕ(a)| = k for
each a ∈ 
. Codings are 1-uniform morphisms. A morphism ϕ : 
∗ → 
∗ is
prolongable on some a ∈ 
 if a is the first symbol of ϕ(a). In this case the
sequence (ϕn(a))n∈N converges to either a finite or infinite word, which is a
fixed point of ϕ, denoted ϕω(a).

Theorem 1.4.33 ([26, 2]) For any sequence s : N → � the following are
equivalent:

(1) s is k-automatic;
(2) the k-kernel of s: {(snkm+r )n | r,m ∈ N, r < km} is finite;
(3) the sets s−1(a) are FO-definable in (N,+, |k) for each a ∈ �;
(4) s = σ (τω(a)) for some k-uniform morphism τ on some 
∗ and a coding

σ : 
→ �;
(5) (assuming k is a prime and � ⊆ {0, . . . , k − 1}): the formal power series

S(x) =∑
n snx

n ∈ Fk[[x]] is algebraic over Fk[x].

For example, consider the morphism τ : 0 �→ 01, 1 �→ 10. Its fixed point
τω(0) is the Thue-Morse sequence t = 01101001100101101001 . . .. This is a
truly remarkable sequence bearing a number of characterisations and combi-
natorial properties [3]. For instance, its nth digit is 1 if, and only if, the binary
numeral of n contains an odd number of 1’s. The 2-kernel of t is {t, t}, where
t is obtained from t by flipping every bit.
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Morphic words
One obtains a definition of morphic words by relaxing characterisation (4) of
the above theorem. Morphic words thus constitute a generalisation of auto-
matic sequences. They and their relatives have been extensively studied in the
context of formal language theory, Lindenmayer systems and combinatorics on
words.

Definition 1.4.34 Morphic words are those of the form σ (τω(a)) for arbitrary
homomorphism τ prolongable on a and arbitrary homomorphism σ : 
∗ → �∗

extended to ω-words in the obvious way.

Example 1.4.35 Consider τ : a �→ ab, b �→ ccb, c �→ c and σ : a, b �→
1, c �→ 0 both homomorphically extended to {a, b, c}∗. The fixed point of
τ starting with a is the word abccbccccbc6b . . ., and its image under σ ,
11001041061081 . . ., is the characteristic sequence of the set of squares. In
general, for every strictly positive N-rational sequence (sk) the characteristic
sequence of the set {∑n

k=0 sk | n ∈ N} is morphic [38]. This result also follows
from Proposition 1.4.37.

While k-automatic sequences allow automatic presentations over the set of
standard base k numerals, the above example suggests that morphic words
may need generalised numeration systems. Indeed, every morphic word is
automatically presentable in the following sense.

Consider a finite ordered alphabet
 = {a1 < a2 < . . . < ar}. In the induced
length-lexicographic order, denoted <llex, words over 
 are ordered according
to their length first, while words of the same length are ordered lexicograph-
ically. Thus (D,<llex) provides an automatic presentation of (N,<) for every
infinite regular language D over 
. Base k as well as so called generalised
numeration systems are special cases of this scheme. The following notion thus
generalises Definition 1.4.32.

Definition 1.4.36 We say that an ω-word w : N → � is length-lexico-
graphically presentable if there is an automatic presentation (D,<llex) of (N,<)
with naming function f : D→ N such that the sets f −1(w−1(a)) are regular
for each a ∈ �.

It is not hard to see that an ω-word is length-lexicographically presentable if
and only if it is morphic. There is a perfectly natural correspondence between
the morphisms generating a word and the automaton recognising the set of
‘numerals’, which, when length-lexicographically ordered, give an automatic
presentation of the morphic word.
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Proposition 1.4.37 ([122]) An ω-word w is length-lexicographically pre-
sentable if, and only if, w is morphic.

We illustrate the transformation from one formalism to the other on the char-
acteristic sequence of squares from Example 1.4.35. Recall that it is generated
by the following morphism τ and final substitution σ

τ : a �→ ab b �→ ccb c �→ c

σ : a �→ 1 b �→ 1 c �→ 0

The idea is to interpret symbols {a, b, c, 0, 1} as states. Without loss of gener-
ality, the alphabets of the ranges of σ and τ are disjoint. The alphabet 
 of the
automatic presentation consists of digits ranging from 0 to |τ | + |σ | − 1, where
|τ | is the maximum of |τ (x)| with x ∈ {a, b, c} and |σ | is defined similarly.
Letters of the alphabet, ordered as usual, are used to index positions within the
right-hand side of a τ -rule, or, when larger, positions inside the right-hand side
of a substitution via σ .

 a

0

�� 1 

3

��

b

2

�� 0,1 

3����
��

��
��

c

0

��

3
��

1 0

The domain D of the presentation is recognised by the above automaton with
both 1 and 0 as final states. With only 1 as a terminal state, the automaton recog-
nises the numerals representing a square relative to the length-lexicographic
enumeration of D. Starting with a deterministic automaton this transformation
can be reversed producing a morphism τ representing the transition function
linearised according to the ordering on the alphabet and with σ identified by
the terminal states.

The MSO-theory of the structure (N,<, (w−1(a))a) for morphic w is decid-
able [38]. Moreover, the class of morphic words is closed under MSO-definable
recolourings, i.e. under deterministic generalised sequential mappings [118].
These results are generalised by the following one, which can be seen as an
extension of the Fundamental Theorem 1.3.4.

Theorem 1.4.38 ([7]) Let d = (D,<llex, P ) be a length-lexicographic pre-
sentation of a morphic word w and let ϕ(x) be an MSO[<,P ]-formula having
only first-order variables free. Then there is an automaton A, computable from
d and ϕ and such that (d,A) is a word-automatic presentation of w expanded
by the relation defined by ϕ.
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Caucal has shown that morphic sequences can be constructed as graphs
on the second level of the pushdown hierarchy (cf. Definition 1.2.14) [43].
However, there are automatically presentable ω-words on higher levels as well.

Higher-order morphic words
Higher-order morphic words were introduced in [4, 7]. Morphic words of
order k can be defined either in the style of Definition 1.4.34 based on a notion
of ‘morphisms of order-k stacks’ or similar rules, or as in Definition 1.4.36
as those having an automatic presentation using the ‘k-fold nested length-
lexicographic order’ induced by an ordered alphabet. Theorem 1.4.38 extends
to these automatic presentations of higher-order morphic words. The classes of
order k morphic words form an infinite hierarchy, and are constructible on the
2k-th level of the pushdown hierarchy [7].

Example 1.4.39 As an example we mention the Champernowne word (cf.
Example 1.3.23) obtained by concatenating decimal numerals in their usual
order:

C = 1234567891011121314 . . .

It is on the second level of this hierarchy (and on the fourth level of the
pushdown hierarchy). Consider the level 2 morphism� given by the following
intuitive production rules

Sx → SxAτ1(x) . . . Aτ9(x)

Ax → Aτ0(x)Aτ1(x) . . . Aτ9(x)

where each τi is a (level 1) morphism of words in the usual sense mapping each
digit d ∈ {0, . . . , 9} to d and # to i#. Applying � repeatedly to the initial level
2 stack S# yields the following converging sequence

S# → S#A1#A2# . . . A9#

→ S#A1#A2# . . . A9#A10# . . . A19# · · · · · ·A90# . . . A99#

→ · · ·
Hence C can be specified as C = σ (�ω(S#)) with the morphism σ erasing all
#’s while preserving the other (level 1) symbols.

To give a word-automatic presentation we take the domainD to be comprised
of all words of the form d1m1d2m2 . . . dsms with d1d2 . . . ds a conventional dec-
imal numeral and m1m2 . . . ms = oixos−i−1 a marker indexing the ith digit of
this numeral. Elements of the domain are ordered using the length-lexicographic
ordering in a nested fashion: comparing numerals (i.e. odd positions) first, and
then according to the position of the marker x.
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The Champernowne word contains every finite word over {0, 1, . . . , 9} as a
factor. The satisfiability problem of first-order logic on finite words, known to
be non-elementary [79], is thus expressible in the FO theory of the Champer-
nowne word, which is therefore also non-elementary. For the same reason the
Champernowne word is not morphic. Every morphic word is MSO-definable
in the Champernowne word, and every word-automatic equivalence structure
having only finitely many infinite equivalence classes is interpretable in a
second-order morphic word [7].

Proposition 1.4.40 Consider A = (A,E) with E an equivalence relation
having, for each n > 0, f (n) ∈ N many equivalence classes of size n, and no
infinite classes. Then A ∈ S-AutStr if, and only if, there is a second-order
morphic word w = 0m0 10m1 10m2 1 . . . such that f (n) = |{i | mi = n}|.

It remains open whether the decidability and definability results for MSO
hold for all word-automatic infinite sequences. We are intrigued whether the
isomorphism problem of automatic ω-words, or more broadly for automatic
scattered linear orders, is decidable. Already for morphic words this is a noto-
rious long-standing open problem.

1.5 Automatic Model Theory

We may reformulate the original problem – we seek a class of finitely-
presentable structures C that has an interesting model theory and lies somewhere
between the finite structures (finite model theory) and all structures (classical
model theory).

The richest and oldest class consists of the computable structures – these
are structures whose domain and atomic relations are computable by Turing
machines [70]. In computable model theory, a common theme is to take classical
results from mathematics and model theory and to see to what extent they can
be made effective. Here are two illustrative observations:

(i) A computable (consistent) first-order theory has a computable model.
Indeed, Henkin’s construction can be seen as an algorithm computing the
domain and atomic relations.

(ii) Every two computable presentations of the rational ordering (Q,<) are
computably isomorphic. Again, the standard back-and-forth argument can
be seen as an algorithm building the isomorphism.

The program of feasible mathematics in the 1980’s included the development
of polynomial-time model theory [45]. However, every relational computable
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structure is isomorphic (in fact computably isomorphic) to a polynomial-time
structure. Automatic structures can be seen as a further restriction of this class,
and in fact this is the motivation in [87]. In this section we discuss some aspects
of the model theory of automatic structures, a subject still in its infancy.

We split our discussion along two lines: model theory of the class
S-AutStr, and model theory of the particular universal structure S[2] (cf.
Theorem 1.3.17).

1.5.1 Model theory restricted to the class of
word-automatic structures

Blumensath shows that, as expected, certain notions of model theory fail when
restricted to the class of automatic structures.

Proposition 1.5.1 (i) It is undecidable whether an FO-formula has a word-
automatic model.

(ii) The following properties fail on the class of word automatic structures:
compactness, Beth, Interpolation, and Łos-Tarski.

The proofs are based on the observation that there is a FO formula which has
automatic models of every finite cardinality but no infinite automatic models.

Löwenheim-Skolem
An automatic version of the Downward Löwenheim-Skolem Theorem would
say that every uncountable ω-automatic structure has a countable elementary
substructure that is also ω-automatic. Unfortunately this is false since there is
a first-order theory with an ω-automatic model but no countable ω-automatic
model. Indeed, consider the first-order theory of atomless Boolean Algebras.
Kuske and Lohrey [94] have observed that it has an uncountable ω-automatic
model (namely the algebra from Example 1.3.12.iv). However, Khoussainov
et al. [88] show that the countable atomless Boolean algebra is not automatic
and so, by Theorem 1.4.20, not ω-automatic either.

Here is the closest we can get to an automatic Downward Löwenheim-
Skolem Theorem for ω-automatic structures.

Proposition 1.5.2 ([85]) Let (D,≈, {Ri}i≤ω) be an omega-automatic presen-
tation of A and let Aup be its restriction to the ultimately periodic words of D.
Then Aup is a countable elementary substructure of A.

Proof. Relying on the Tarski-Vaught criterion for elementary substructures
we only need to show that for all first-order formulas ϕ(x, y) and elements
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b of Aup

A |= ∃yϕ(b, y) ⇒ Aup |= ∃yϕ(b, y) .

By Theorem 1.3.4 ϕ(x, y) defines an omega-regular relation and, similarly,
since the parameters b are all ultimately periodic the set defined by ϕ(b, y) is
omega-regular. Therefore, if it is non-empty, then it also contains an ultimately
periodic word, which is precisely what we needed. �

An identical proposition, also independently noted by Khoussainov and
Nies, holds for A ∈ ωT-AutStr with regular trees in place of ultimately
periodic words.

Consider the natural, say, binary ω-automatic presentation of (R,+). Its
restriction to the set of elements represented by ultimately periodic ω-words
is isomorphic to the additive group of the rationals (Q,+). Tsankov [136] has
shown that there is no automatic divisible torsion-free Abelian group (DTAG).
Hence the theory of DTAGs is another example of a first-order theory having
an uncountable ω-automatic model but no countable (ω-)automatic models.

Automatic theorems
Kőnig’s Lemma

Kőnig’s Lemma says that an infinite finitely-branching tree has an infinite path.
We split our discussion of automatic analogues along two lines, depending on
whether the signature is that of partial order (T ,!) or successor (T , S).

Theorem 1.5.3 ([91]) If T = (T ,!) is an automatic copy of an infinite
finitely-branching tree, then T has a regular infinite path. That is, there exists
a regular set P ⊆ T where P is an infinite path of T .

Proof. Define a setP as those elements x such that ∃∞w[x ≺ w] and for which
every y ≺ x satisfies that

∀z, z′ ∈ S(y)[z ! x ⇒ z ≤llex z′].
Then P is the length-lexicographically least infinite path of T (in the ordering
induced by the finite strings presenting the tree). �

However, using the 2-Ramsey quantifier we can do more.

Theorem 1.5.4 ([91]) If T = (T ,!) is an automatic copy of a tree with
countably many infinite paths, then every infinite path is regular.

Proof. Denote by E(T ) ⊆ T the set of elements of a tree T that are on infinite
paths. It is definable in T using the 2-Ramsey quantifier, so Theorem 1.4.7
gives that E(T ) is regular. Then every isolated path of T is regular, since it is
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definable as {x ∈ E(T ) | p ! x} ∪ {x ∈ E(T ) | x ≺ p}, for suitable p ∈ E(T ).
Replace T by its derivative d(T ), which is also automatically presentable. Since
the CB-rank of T is finite [91] and dCB(T )(T ) is the empty tree, every infinite
path is defined in this way. �

However, automatic successor trees behave more like computable trees:

Theorem 1.5.5 ([96]) The problem of deciding, given automata presenting a
successor tree (T , S), whether or not it has an infinite path, is �1

1 -complete.

The proof consists of a reduction from the problem of whether a non-
deterministic Turing machine visits a designated state infinitely often.

We compare with the computable case.20 Fix the computable presentation
of the full binary tree as consisting of the finite binary sequences with the
immediate successor relation (so in fact the prefix relation is also computable).
To stress this presentation, we refer to the tree as 2ω. Similarly fix a natural
computable presentation ωω of the ω-branching tree. A computable subtree of
either of these trees is a computable prefix-closed subset.

(i) There is an infinite computable subtree of 2ω with no computable infinite
path.

(ii) There is a computable subtree of ωω with exactly one infinite path, and
this path is not computable.

(iii) The set of indices of computable subtrees of the binary tree 2ω with at
least one infinite path is �0

2-complete.
(iv) The set of indices of computable subtrees of ωω with at least one infinite

path �1
1-complete.

Cantor’s Theorems
One of Cantor’s theorems says that every countable linear ordering embeds in
the rational ordering Q. The standard proof is easily seen to be effective given
a computable presentation of (Q,<).

There are potentially a variety of automatic versions. The following propo-
sition is the best known.

Proposition 1.5.6 [93] Every automatic copy M of a linear order can be
embedded into some automatic copy of Q by a function f : M→ Q with the
following properties:

(i) The function f is continuous with respect to the order topology.
(ii) The graph of f is regular.

20 Thanks to Frank Stephan for discussions concerning this case.
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It is not known whether there is a single automatic copy of Q that embeds,
in the sense above, all automatic copies of all automatically presentable linear
orders M.

Cantor also proved that Q is homogeneous: For every two tuples x1 < · · · <
xm and y1 < · · · < ym there is an automorphism f : Q → Q with f (xi) = yi

for i ≤ m. Again there might be a number of automatic variations. Call an
automatic copy of Q automatically homogeneous if for every two tuples there
is an automorphism as above that is also regular.

Proposition 1.5.7 [93] There is an automatic copy of Q that is automati-
cally homogeneous. There is an automatic copy of Q that is not automatically
homogeneous.

Scott ranks
Every countable structure A has a sentence of the infinitary logic Lω1,ω (it
allows, in addition to FO, countable disjuncts but still only finitely many free
variables) that characterises A up to isomorphism. The Scott rank of A is the
minimal quantifier rank amongst all such sentences.

Theorem 1.5.8 ([86]) For every computable ordinal there is an automatic
structure of Scott Rank at least α.

The idea is to massage the configuration space of Turing machines presenting
a computable structure (having Scott Rank α) to get an automatic structure of
similar rank.

1.5.2 On the universal word-automatic structure

We conclude by highlighting some model-theoretic properties of the universal
structure S[2].

(i) S[2] has infinite VC-dimension [15]. That is, there is a formula φ(x, z) that
defines a family of sets of the form φ(−, z)S[2] as one varies the parameter
z, and this family fully shatters arbitrarily large finite sets.

(ii) S[2] admits quantifier elimination (QE) in the expansion of all definable
unary predicates and binary functions. In fact, no expansion with definable
unary functions (and arbitrary predicates) admits QE [15].

Blumensath [20, p. 67] raised the question of whether there are non-standard
models of the theory of the universal structure S[2] in S-AutStr. Here we
sketch an argument resting on Theorem 1.4.26 that shows that there are no
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word-automatic non-standard models. This result was obtained in discussions
with Bakhadyr Khoussainov.

Theorem 1.5.9 S[2] is the only word-automatic model of its theory.

Proof. Assume, for a contradiction, an automatic presentation of a non-
standard elementary extension of S[2]. By ‘component’ we mean a maximal
set of elements connected by successor relations. Every elementary extension
of S[2] consists of the standard component isomorphic to S[2] (containing the
root), and any number of non-standard components, that are, as unlabelled
graphs, all isomorphic to one-another. The non-standard components are
distinguished by the infinite sequences of 0-1 successors ascending towards
the root.

(0) The set of representatives of elements of each component is regular.

Indeed, the equivalence relation of belonging to the same component is
FO+ ∃∞-definable in the model (by saying that there is a common ancestor
having finite distance from both elements), hence regular in the representation.

(1) There is a non-standard element below every standard node.

This follows from the fact that the formula

∀x, x ′, y : el(x, x ′) ∧ x ≺ y → ∃y ′ : el(y, y ′) ∧ x ′ ≺ y′

being true in S[2] must also hold in every non-standard model.
Combining observation (0) and Theorem 1.4.26 we may assume that the

presentation restricted to the standard component is the natural one having
the identity as naming function. The binary ω-sequence naturally associated
with an infinite branch of the standard component provides a representation of
the set of nodes along that branch consistent with the assumed presentation
of the model. Denote by � the set of paths with a non-standard element below
them.

(2) The set � is ω-regular.

Indeed, a Büchi-automaton is built to guess a finite word representing a non-
standard element and to check, using the automata of the assumed presentation,
that it is a descendant of all finite prefixes of the input path. Given that our
model is countable, hence so is �, we have the following consequence of
claim (2).
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(3) Every path in � is ultimately periodic with a period of bounded length.

To close the circle, consider for each n ∈ N the sentence

∀x∃y |y|> |x| ∧0n1!prefix y ∧ (∀z ≺prefix y)[end1(z)→ z0n1 !prefix y]

where end1(z) is shorthand for saying that the last letter of z is 1. This sentence
expresses that for every length |x| there is a longer word y with as many initial
prefixes in (0n1)∗ as possible. In particular this sentence holds for non-standard
elements x. Consequently,

(4) for every n ∈ N there is an infinite branch of the standard component with
label (0n1)ω and having non-standard elements below it.

This contradicts observation (3). �
Therefore, by Theorem 1.4.20, there are no countable ω-word automatic

non-standard models either. Furthermore, using Theorem 1.4.29 in place of
Theorem 1.4.26 in the argument shows there are no non-standard finite-tree
automatic models of S[2]. To prove that there are no uncountable ω-word
automatic non-standard models of S[2] one tightens (4) and exploits that all
automatic presentations of non-standard components are equivalent.



References

[1] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level
2 for string languages. In FoSSaCS, pages 490–504, 2005.

[2] J.-P. Allouche and J. Shallit. Automatic Sequences, Theory, Applications, Gener-
alizations. Cambridge University Press, 2003.

[3] J.-P. Allouche and J. O. Shallit. The Ubiquitous Prouhet-Thue-Morse Sequence.
In C. Ding, T. Helleseth, and H. Niederreiter, editors, Sequences and
Their Applications: Proceedings of SETA ’98, pages 1–16. Springer-Verlag,
1999.
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[10] V. Bárány, Ch. Löding, and O. Serre. Regularity problems for visibly pushdown
languages. In STACS ’06, volume 3884 of LNCS, pages 420–431, 2006.

[11] K. Barthelmann. On equational simple graphs. Tech. Rep. 9, Universität Mainz,
Institute für Informatik, 1997.

[12] K. Barthelmann. When can an equational simple graph be generated by hyperedge
replacement? In MFCS, pages 543–552, 1998.
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Université Paris 7, 2005.

[74] S. Fratani. The theory of successor extended by several predicates. Journées
Montoises ’06, Rennes, 2006.



Automata-based presentations of infinite structures 73

[75] S. Fratani and G. Sénizergues. Iterated pushdown automata and sequences of
rational numbers. Ann. Pure Appl. Logic, 141(3):363–411, 2006.

[76] Ch. Frougny. Numeration systems. In M. Lothaire, editor, Algebraic Combina-
torics on Words. Cambridge University Press, 2002.
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[96] D. Kuske and M. Lohrey. Hamiltonicity of automatic graphs. In FIP TCS 2008,
2008.

[97] H. Lauchli and Ch. Savioz. Monadic Second Order Definable Relations on the
Binary Tree. J. of Symbolic Logic, 52(1):219–226, 1987.

[98] S. Lifsches and S. Shelah. Uniformization and skolem functions in the class of
trees. Journal of Symbolic Logic, 63:103–127, 1998.
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Logical aspects of spatial databases

bart kuijpersa and jan van den busscheb

2.1 Introduction

In this chapter, we consider spatial databases that are modeled as semi-algebraic
sets and we present some logic-based languages to query them. We discuss
various properties of these query languages, mainly concerning their expressive
power.

The basic query language in this context is first-order logic over the real
numbers extended with predicates to address the spatial database relations
(Section 2.2). We discuss geometric properties that are expressible in this logic
(Section 2.3) and then focus on first-order expressible topological properties of
2-dimensional spatial datasets. A property is called topological if it is invariant
under homeomorphisms of the ambient space. We give a characterization of
topological elementary equivalence and present a point-based language, called
cone logic that captures exactly the topological queries expressible in first-order
logic over the reals (Section 2.4 and 2.7). Next, we present another point-based
language that captures the first-order queries that are invariant under affinities
(Section 2.6).

The second half of this chapter is devoted to extensions of first-order logic
over the reals with some form of recursion. We briefly discuss two such
extensions: spatial Datalog and first-order logic extended with a while-loop
(Section 2.8). We discuss in more detail extensions of first-order logic with
different types of transitive-closure operators, with or without stop-conditions
(Section 2.9) and investigate their expressive power (Section 2.10). The eval-
uation of queries expressed in transitive-closure logic with or without stop
conditions may be non-terminating. In general, termination is an undecidable
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property, but we give examples of classes of transitive-closure queries where
termination is decidable (Section 2.11).

2.2 Spatial data and first-order logic

In most general terms, a spatial dataset is any set S ⊂ Rn for some n. Equiv-
alently, we can view such a set as an n-ary relation S over R (using Cartesian
coordinates). Viewing R as a structure R̄ = (R, 0, 1,+, ·,<) over the language
of ordered fields, we can then use first-order logic to express properties of spatial
datasets.

For example, the sentence

∃a∃b∀x∀y(S(x, y) → y = a · x + b)

expresses that S ⊂ R2 lies on a straight line.
Since the structure on R in this paper remains the same, we abbreviate

(R̄, S) |= φ as S |= φ.

2.3 Capturing first-order geometric properties

According to Felix Klein’s Erlangen Programm, a geometric theory can be
characterized by the group of transformations that preserve the fundamental
geometric properties of the theory. Some examples:

geometry group of transformations

Euclidean similarity
affine affinity
topology continuous

Fix such a group G of transformations of Rn, and consider some property
φ of datasets in Rn. We naturally define φ to be G-geometric if it is invariant
under G, or formally:

∀S ∀g ∈ G : S |= φ ⇔ g(S) |= φ

Let us see some examples:

� “S lies on a circle” is Euclidean, but not affine.
� “S lies on a straight line” is affine, but not topological.
� “S has dimension two” is topological.
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A general question, for any fixedG, is: What are theG-geometric properties
expressible in first-order logic? Can we enumerate or characterise them in some
effective way?

This can easily be done when G is first-order parameterisable. By this we
mean that there exists an injection p : G→ R� for some � such that the set

{(p(g), x̄, ȳ) | g ∈ G and ȳ = g(x̄)}
is first-order definable in R̄.

For example, the affinities in R2 are first-order parameterised. Indeed, each
affinity g corresponds to some 6-tuple p(g) = (a, b, c, d, e, f ) with∣∣∣∣a b

c d

∣∣∣∣ �= 0

and we have (y1, y2) = g(x1, x2) iff(
y1

y2

)
=
(
a b

c d

)
·
(
x1

x2

)
+
(
e

f

)
so that is all first-order definable.

The following theorem (Gyssens et al., 1999) provides an effective char-
acterisation of the G-geometric first-order properties, in case G is first-order
parameterisable (by the injection p):

Theorem 2.1 A property � of sets S ⊆ Rn, for some fixed n, is first-order
expressible and G-geometric if and only if �(S) can be expressed by a first-
order sentence of the form

φ ∧ ∀p(g) ∈ p(G)[φ(S) ↔ φ(g(S))]

with φ an arbitrary sentence over (R̄, S).

Note that the first-order parameterisability of G guarantees that the special
form of sentence in the above theorem is indeed a first-order sentence.

2.4 First-order topological properties of plain sets

When doing topology, we are only interested in properties that are invariant
under “continuous transformations”. More precisely, in this paper we define a
property of sets in Rn to be topological if it is invariant under all isotopies of Rn.

Clearly, the isotopies are not first-order parameterisable, so the easy tech-
nique from the previous section does not apply.
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Figure 2.1 This set in the plane is closed, and is semi-algebraic, being defined
by the real formula x2/25+ y2/16 = 1 ∨ x2 + 4x + y2 − 2y �−4 ∨ x2 − 4x +
y2 − 2y �−4 ∨ (x2 + y2 − 2y = 8 ∧ y �−1).

We are still able to capture the first-order topological properties, provided
we restrict our setting to the following:

1. We work in R2 only, i.e., sets in the real plane.
2. We consider only semi-algebraic sets: sets that are themselves definable in

R.
3. Moreover, we consider only closed sets (in the standard topological sense).

Let us call such sets “plain”. Figure 2.1 shows an example of a plain set
(Bochnak et al., 1998).

Let us see some examples of topological properties of plain sets, expressible
in first-order logic:

� “The dimension is 0 (or 1, or 2)”.
� “There is a point where three lines intersect”.
� “There is a point where two 2-dimensional regions touch”.

We remark that the expressibility of the third property is not obvious and
uses the local conical structure of semi-algebraic sets (see later).

The following topological properties of plain sets are not expressible in
first-order logic:

� “There is a point where an even number of lines intersect”.
� “The number of points where two 2-dimensional regions touch is even”.
� “The set is topologically connected”.

The inexpressibility of the third property above follows from Theorem 2.3
below, but was first established in (Grumbach and Su, 1997).

So, the question is, what are the first-order expressible topological properties
of plain sets? In order to formulate our answer to this question, we use the notion
of a cone (Coste, 1982).
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R

R

L
L

L

Figure 2.2 The cone of the central point of the figure is (LLRLR).

Around any point on the boundary of any plain set, we always see a circular
list of lines (L’s) and regions (R’s): this list is called the cone of the point. An
illustration is given in Figure 2.2.

In any plain set, there may be infinitely many boundary points with cone
(LL) (these are the points that lie on a line), or with cone (R) (these are the
points on the boundary of a region). With the exception of these, however,
there are only finitely many boundary points; this is because semi-algebraic
sets have a very simple topology (Bochnak et al., 1998). In particular, there are
only finitely many points with a cone different from (LL) and (R); these points
are called the singular points of the set. It can be argued (Benedikt et al., 2006)
that, without loss of generality, we can focus on the singular points, and we
will do so from now on.

We are now ready to introduce a propositional logic, called Cone Logic or
CL for short, designed to express properties of plain sets.

� Atomic formulas are of the form

|e| � n

with n some natural number and e a star-free regular expression over � =
{L,R}.

The meaning of such a formula is that there are at least n singular points
whose cone satisfies e. (For background on star-free regular expressions and
their connection to first-order definability on strings, see (McNaughton and
Papert, 1971) and (Thomas, 1997).)

� A CL-sentence is a boolean combination of atomic formulas.

Let us see some examples of properties expressed by CL formulas:

� “The dimension is 0”:

|L�∗| = 0 ∧ |R�∗| = 0
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� “There is a point where three lines intersect”:

|LLLLLL| � 1.

� “There is a point where two regions touch”:

|RR| � 1

We can now state the following theorem (Benedikt et al., 2006):

Theorem 2.2 The first-order topological properties of plain sets are precisely
those expressible in CL.

This theorem can be proven in six steps:

1. Characterize when plain sets A and B are topologically elementary equiv-
alent in terms of cones;

2. Define flower datasets as a normal form with respect to topological elemen-
tary equivalence;

3. Apply collapse theorems over finite structures over the reals;
4. Encode the topological content of flower datasets by abstract finite struc-

tures, called codes;
5. Translate topological sentences about spatial datasets into sentences about

codes;
6. Establish invariance arguments over codes.

Let us go into these six steps in some more detail. For the full proof, we
refer to the paper (Benedikt et al., 2006).

Topological elementary equivalence For plain sets A and B, write A ≡ B

if A and B are indistinguishable by topological first-order sentences.
We have the following theorem (Kuijpers et al., 2000), which plays a crucial

role in the proof of Theorem 2.2:

Theorem 2.3 A ≡ B if and only if A and B have precisely the same cones,
with the same multiplicities.

An illustration of this theorem is given in Figure 2.3.
For the full proof of this theorem we refer to the paper (Kuijpers et al., 2000),

but we give an idea of the proof here. The proof is based on a transformation
of plain sets into a normal form called flower normal form. An illustration of
this transformation is given in Figure 2.4.

This transformation proceeds by the use of transformation rules, such as the
“cut and paste” rule illustrated in Figure 2.5 for a 2-dimensional strip. This
rule allows us to cut a 2-dimensional strip in two pieces, of which one has a
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≡

Figure 2.3 These two plain sets are topologically elementary equivalent, accord-
ing to Theorem 2.3.

hole. The inverse transformation allows us to paste two strips together. There
is also a stronger cut-and-paste rule that does not leave a hole as a side effect.
For details we refer to (Kuijpers et al., 2000).

For both datasets at the top of Figure 2.4, first, the (strong) strip-cut trans-
formation is used on the full strips near all the singular points of these sets. As
a result these singular points have disconnected full petals. There are also some
isolated 2-dimensional regions that result from the cutting.

One can show that the application of a transformation rule is indistinguish-
able by topological first-order sentences, using a reduction to first-order inex-
pressibility of queries on finite structures over the reals.

Finite structures over the reals These are structures of the form (R̄,
R1, . . . , Rk) with Ri finite relations. An example of a query to such struc-
tures is Majority: given finite unary relations R1 and R2, is #R1 � #R2?

Let us illustrate the above-mentioned reduction for the cut-and-paste trans-
formation. This reduction is done by writing a first-order formula ψ(x, y) such
that for each finite structure D = (R̄, R1, R2):

� ψ(D) is homeomorphic to the left-hand side of the cut-and-paste transfor-
mation if #R1 � #R2 in D;

� ψ(D) is homeomorphic to the right-hand side of the cut-and-paste transfor-
mation if #R1 < #R2 in D.

We do not give this formula ψ , but illustrate it in Figure 2.6. This reduction
idea is due to (Grumbach and Su, 1997).

As a consequence, if the cut-and-paste transformation were distinguish-
able by a topological first-order sentence, then the Majority query would be
first-order expressible on finite structure over the reals. We can show the latter
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Figure 2.4 Two plain sets transformed into one and the same flower dataset.



Figure 2.5 Cut and paste transformations: any local part of a spatial dataset that
looks like a strip can be cut, with a hole in one of the pieces as a side effect, resulting
in a topologically elementarily equivalent dataset. The converse transformation is
also possible.

R1 = {a1, a2, a3, a4}, R2 = {b1, b2, b3, b4}:

a4

a1

b1 b2 b3 b4

a2

a3

R1 = {a1, a2, a3, a4}, R2 = {b1, b2, b3, b4, b5}:

b5

a1

b1 b2 b3 b4

a2

a3

a4

Figure 2.6 Reducing Majority to distinguishing the cut-and-paste transformation:
the set R1 is placed on the y-axis and the set R2 on the x-axis. In the rectangles
of the irregular raster thus formed, all diagonals from bottom left to top right are
drawn with thickness. Some auxiliary lines (in darker shade) are added outside the
raster. The figure thus obtained can be defined from R1 and R2 by a first-order
formula.
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Figure 2.7 A single flower and a paired flower.

to be false, however, using the so-called collapse theorems from “Embedded
Finite Model Theory” (E. Grädel, 2007, Chapter 5).

Theorem 2.4 (Natural–active collapse) Every first-order query on finite struc-
tures over the reals is already expressible by a sentence in which all quantifiers
are relativised to the finite relations.

Theorem 2.5 (Generic collapse) Every first-order query on finite structures
over the reals, expressible in the language (0, 1,+, ·,<,R1, . . . , Rk), that is
order-generic (that is, invariant under all monotone permutations of R) is
already expressible by a sentence in the language (<,R1, . . . , Rk).

So, order-generic first-order sentences view finite structures over the reals
just as abstract, ordered, finite structures. Note that the reductionψ from above
is order-generic. And the Majority query on abstract, ordered, finite structures
is indeed not first-order expressible, as can be shown using standard arguments
from finite model theory (Ebbinghaus and Flum, 1999; Libkin, 2004).

Flower datasets Using the transformation rules, we can transform any plain
dataset into a normal form (as far as topological first-order properties are
concerned). This normal form is that of a disjoint union of single or paired
flowers. A single flower has a single singular point, around which there are
one-dimensional or two-dimensional “petals” (the one-dimensional petals can
loop over other petals). In a paired flower, two single flowers are paired by an
even number of lines that can cross over. An illustration is in Figure 2.7.

A flower dataset can be represented by an abstract finite structure called a
code: this is a disjoint union of single or paired cycles. A single cycle is a word
structure over the alphabet {L,R} equipped with a planar matching. In a paired
cycle, there are two words, and there is again a planar matching now on all the
L’s, so the matching can again cross over. An illustration is in Figure 2.8.

Translation argument By a translation argument, we can now reduce the
proof of Theorem 2.2 to an invariance question about first-order logic over
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<L L L L L L L LR R< < < < < < < <

<L L L L L L L LR R< < < < < < < < < L L L LR < < <

Figure 2.8 Cycle codings of the flowers of Figure 2.7.

codes. This translation argument is based on the following (Benedikt et al.,
2006):

Lemma 2.6 (Drawing Lemma) We can write an FO-formula δ(x, y) such that
for any codeC embedded in the reals, δ(C) is a flower dataset that is a drawing
of C.

The presence of the planar matching in codes was obviously meant to
facilitate such a drawing lemma.

The lemma allows us to translate a topological sentence φ about flower
datasets into a sentence ψ := φ ◦ δ about codes, called an implementation of
φ. Using the collapse theorems, we may assume that ψ sees only an ordered
version of the abstract code. This ordering< is not the≺ of the word structures,
but without loss of generality, we can actually assume that < does agree with
≺, so all < does is shuffle the separate cycles in some order. Note, however,
that ψ is invariant under the way this shuffling is done!

Now such <-invariant first-order sentences on ordered codes can be seen
to be already expressible by plain first-order sentences on codes. So, we are
closing in on our goal, as first-order logic on codes comes already quite close to
Cone Logic. The “only” difference is that codes still contain a planar matching,
which Cone Logic lacks. Crucially, however, a rather technical argument shows
that ψ is also invariant under the particular choice of planar matching in
a code. We are thus faced with one final hurdle, which is removed by the
following.

Planar-matching-invariant FO on word structures Our general result con-
cerning word structures over a finite alphabet �, additionally equipped with a
planar matching G, is the following:

Lemma 2.7 (Main Invariance Lemma) G-invariant first-order logic collapses
to plain first-order logic on the class of word structures with a planar matching.
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a a a ab c b c
ac bb’ a’ c’ a’a

Figure 2.9 Chain matching represented as a word with alternating markers.

a a a ab c b c
ab c
bcaa

a

Figure 2.10 Parenthetical matching represented as a folded word.

The lemma is formulated for standard word structures, but can be adapted
to cycles and cycle pairs.

The proof of the lemma focuses on two particular kinds of planar matchings:
chain matchings and parenthetical matchings. A chain matching, as illustrated
in Figure 2.9, can be simulated by relabeling every other position in the word
with a marked letter (using a second alphabet�′ with marked letters). A paren-
thetical matching, as illustrated in Figure 2.10, can be simulated by “folding”
the word, moving to the alphabet �2.

We can now translate first-order logic over words with chain matchings
to first-order logic over words with alternating markers; and we can likewise
translate first-order logic over words with parenthetical matchings to first-order
logic over folded words. Both translations imply that set W of words accepted
by a planar-matching-invariant sentence is surely regular, and can have only
very limited kind of counters in the sense of (McNaughton and Papert, 1971).
A final, complicated, argument then shows that W = W ′ ∩ (��)∗ with W ′ a
counter-free regular language; since counter-free regular languages are first-
order axiomatisable, the Lemma is proved.

2.5 Conclusion on first-order topological properties

A corollary of Theorem 2.2 is what can be considered a topological version,
for (typically infinite) real datasets, of the earlier-mentioned collapse theorems
for finite structures over the reals:

Corollary 1 (Topological Collapse) Every topological first-order property of
plain sets S is already expressible by a sentence using only < and S.

This corollary follows because Cone Logic can already be expressed in
first-order logic over (R̄, S) using only < and S.
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= −

= −

Figure 2.11 Every set is a boolean combination of closed sets.

A natural open problem is to go beyond plain sets. What about non-closed
sets? We can always decompose a set in Rn in n+ 1 closed sets, as illustrated
in Figure 2.11. Hence, the more general question is, what about the first-order
topological properties of ensembles of plain sets, as opposed to single plain
sets? Grohe and Segoufin have shown that the situation there is considerably
more complex (Grohe and Segoufin, 2002). In particular, just looking at cones
is not enough anymore, and certain global properties such as “inside” and
“outside” are expressible.

Another very natural open question is to move to higher dimensions: cap-
turing the first-order topological properties of semi-algebraic sets in R3.

And, what about non-semi-algebraic sets? Consider, for example, the prop-
erty “every point in the set has cone (LL)” (i.e., the dataset consists of a number
of disjoint curves either closed or going to infinity). This is first-order express-
ible, and it is topological over semi-algebraic sets, but it is not topological
over all sets (semi-algebraic sets have a very tame topology). Can one also
find an example of a topological property that is first-order expressible over
semi-algebraic sets, but not over all sets?

Last but not least, an obvious question is how much of our results can be gen-
eralized from semi-algebraic sets to definable sets inO-minimal structures (van
den Dries, 1998).

2.6 Point-based logics for geometric queries

First-order logic over R̄ is clearly a coordinate-based logic. Cone Logic, on
the other hand, is a point-based logic, as it deals directly with the (singular)
points in a dataset. Can we find point-based logics for other kinds of geometric
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Figure 2.12 Geometric constructions of addition and multiplication: for addition,
we construct straight lines in the indicated order. The construction for multiplica-
tion also involves finding the mirror image of a point with respect to o, which is
indicated by circles, but can be accomplished using a parallelogram construction.

queries? The answer is affirmative, thanks to an observation made by Tarski
(Schwabhäuser et al., 1983) to the effect that the geometric constructions of
addition and multiplication are first-order expressible using a single ternary
predicate β (“betweenness”) on points. These constructions are illustrated in
Figure 2.12.

Let us see how we can use this to obtain a point-based logic for the first-order
affine queries. In this logic, we view a dataset S ⊂ R2 as a unary relation over
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the structure (R2, β), and we use ordinary first-order logic over the universe R2,
with ternary β (betweenness) and unary S as the only predicates (as always,
β is fixed and belongs to the background, while S is variable and represents
the input to the query). Note how this setup differs from the coordinate-based
approach, where we view S as a binary relation over (R, 0, 1,+, ·,<). Let us
denote the point-based logic by FO(β), and let us denote the coordinate-based
logic by FO(R̄). Both are first-order logics.

It now turns out that we can simulate FO(R̄) by FO(β) in the following
sense. Call a triple (o, e1, e2) of non-collinear points, a basis. Then for each
FO(R̄)-sentence φ there exists an FO(β)-formula ψ(o, e1, e2) such that for
every dataset S and for every basis (o, e1, e2):

S |= ψ(o, e1, e2) ⇔ α(S) |= φ

where α is the unique affinity that maps (o, e1, e2) to ((0, 0), (1, 0), (0, 1)).
As a corollary, we obtain (Gyssens et al., 1999):

Theorem 2.8 For each FO(R̄)-sentence φ expressing an affine geometric
query there exists an equivalent FO(β)-sentence ψ (and vice versa).

Adding the 4-ary equidistance predicate, we can likewise capture the first-
order Euclidean queries (Gyssens et al., 1999).

2.7 Plane graphs

To conclude this survey we must mention a very nice result from (Segoufin
and Vianu, 2000). The topology of a semi-algebraic set in the plane can be
represented by a finite data structure called a plane graph. (A plane graph is
a data structure representing a planar graph embedding.) This is illustrated in
Figure 2.13.

We have (Segoufin and Vianu, 2000):

Theorem 2.9 Every topological first-order sentence about semi-algebraic
sets in the plane, using only< and S, can be translated to a first-order sentence
about the corresponding plane graphs.

By topological collapse (see Section 2.5), we know that (for a single plain
set at least) the restriction in the above statement that 0, 1, + and · cannot be
used, is harmless.
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Figure 2.13 Plane graph data structure representing the topology of a semi-
algebraic set.

2.8 Spatial datalog and first-order logic extended
with a while-loop

Topological connectivity is a property that is important in many applications, in
particular in geographical information systems (GIS) (Worboys and Duckham,
2004). As we remarked in Section 2.4, topological connectivity is not express-
ible in first-order logic, and several more expressive extensions of first-order
logic over the reals have been proposed that do allow the expression of topolog-
ical connectivity of spatial datasets. In this section, we briefly discuss two such
extensions: spatial Datalog and first-order logic extended with a while-loop. In
the next section, we will discuss in more detail extensions of first-order logic
with different types of transitive-closure operators.

Spatial Datalog Essentially, the query language spatial Datalog is Dat-
alog extended with polynomial inequalities in the body of rules, with the
understanding that: the underlying domain is R; the only extended database
predicate is S (the input spatial dataset); and relations can be infinite
(to represent spatial datasets as binary relations, and auxiliary relations)
(Kuijpers et al., 1996).

The following spatial Datalog program expresses linear-path connectivity
of a two-dimensional spatial dataset. In the relation Obstr(x, y, x′, y ′) cou-
ples of points of S are stored that cannot be connected by a straight line
segment that is entirely in S. Couples of points that are not obstructed are
collected in the Path relation (see Figure 2.14) and next the transitive closure
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Figure 2.14 Linear path connectivity of a spatial dataset in the plane.

of Path is computed. Only if all pairs of points in S end up in Path, S is
connected.

Obstr(x, y, x′, y ′) ←− ¬S(x̄, ȳ), S(x, y), S(x′, y ′),
x̄ = a1t + b1,

ȳ = a2t + b2, 0 � t, t � 1,
b1 = x, b2 = y,

a1 + b1 = x ′,
a2 + b2 = y ′

Path(x, y, x ′, y ′) ←− ¬Obstr(x, y, x′, y ′)
Path(x, y, x ′, y ′) ←− Path(x, y, x′′, y ′′),

Path(x ′′, y ′′, x ′, y ′)
Disconnected ←− S(x, y), S(x′, y ′),

¬Path(x, y, x ′, y ′)
Connected ←− ¬Disconnected.

To show that this spatial Datalog program correctly tests topological con-
nectivity on a class C of spatial datasets, we have to show that for any set S
in C, that two points in S are in the same connected component of S if and
only if they can be connected by a piecewise linear curve lying entirely in S
(soundness); and that the number of line segments needed to connect any such
pair of points in S is bounded (termination). Termination guarantees that the
transitive closure will terminate. Soundness then establishes the correctness of
the test for connectivity performed by the program after the transitive closure
is completed.

We have the following result (Kuijpers et al., 1996).
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Theorem 2.10 The above spatial Datalog program correctly tests connectivity
of semi-linear spatial datasets (i.e., spatial datasets that can be described using
addition only).

In fact, this program correctly tests topological connectivity for a wider class
of spatial datasets, called border-visible (Kuijpers et al., 1996). The program
does not work for arbitrary semi-algebraic figures in R2, however. For example,
when the input set is the area between the parabola given by y = x2 and
y = 2x2, then soundness is satisfied for all points except the origin. Even when
the origin is left out, termination is violated since there is no uniform bound
on the number of line segments needed to connect two points. The closer one
point gets to the origin, the more segments are needed.

First-order logic extended with a while-loop Another extension is first-
order logic with a while-loop. Basically, in this language first-order definable
relations can be created using the input spatial dataset and previously created
relations. Also, a while-loop with a first-order expressible stop-condition is
allowed. These two constructs are illustrated in the following program to test
linear-path connectivity.
Seg := {(x, y, x ′, y ′) | ∀λ(0 � λ � 1 ∧ ∀u∀v((u, v) = λ(x, y)+ (1−

λ)(x ′, y ′) → S(u, v)))};
Path1 := Seg;
Path2 := {(x, y, x′, y ′) | ∃u∃v(Path1(x, y, u, v) ∧ Seg(u, v, x ′, y ′))};
while Path1 �= Path2

do
Path1 := Path2;
Path2 := {(x, y, x′, y ′) | ∃u∃v(Path1(x, y, u, v)∧Seg(u, v, x ′, y ′))};
od

Rout := {() | ∀x∀y∀x ′∀y ′((S(x, y) ∧ S(x′, y ′)) ↔ Path2(x, y, x′x, y ′)))};

In the Seg relation, couples of points are collected that can be connected by
a line segment that is completely in S. Next, in the while-loop, the transitive
closure of this relation is computed and the output relationRout reflects whether
all pairs of points of S are in this transitive closure.

This example shows that topological connectivity of linear spatial datasets
can be expressed in this language, but in fact we have the following more
powerful result (Gyssens et al., 1999).

Theorem 2.11 First-order logic extended with a while-loop is a computa-
tionally complete language on spatial (semi-algebraic) datasets.
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By a computationally complete query language we mean that every map-
ping from dataset to dataset, that is effectively computable by an algorithm
(working on representations of datasets by defining formulas), is expressible
by a program in the language.

2.9 First-order logic extended with
transitive-closure operators

In the previous section, we have seen that, at least for linear datasets, the ability
to express the transitive closure (TC) suffices to express connectivity. In this
section, we describe the extension of first-order logic with various transitive-
closure operators more extensively.

We cannot add TC with its standard mathematical semantics, indeed
TC({(x, y) | y = 2x}) is not a semi-algebraic set. We look at the TC-operator
as a programming construct with a purely operational semantics and therefore
TC({(x, y) | y = 2x}) is regarded as a non-terminating computation.

Transitive-closure logic More precisely, first-order logic over the reals is
extended with expressions of the form

[TC(x;(y ψ((x, (y)]((s, (t)

where (x, (y are k-tuples of real variables bound by the TC-operator and (s and
(t are k-tuples of variables serving as the parameters of the TC-formula. The
evaluation on a input dataset A is then obtained as follows. We set X1 :=
ψ(A), and Xi+1 := Xi ∪ {((x, (y) ∈ R2k | (∃(z) (Xi((x, (z) ∧X1((z, (y))}, and stop
the computation as soon as Xi+1 = Xi . The semantics of [TC(x;(y ψ((x, (y)]((s, (t)
is then defined as the 2k-ary relation Xi((s, (t).

For example, [TCx;y S(x, y)](s, t) evaluated on A = {(x, y) | y = 2x}
gives X1 = {(s, t) | t = 2s}; X2 = X1 ∪ {(s, t) | t = 4s} = {(s, t) | t = 2s ∨
t = 4s};X3 = X2 ∪ {(s, t) | t = 8s} = {(s, t) | t = 2s ∨ t = 4s ∨ t = 8s}; . . .
which is a non-terminating computation (illustrated in Figure 2.15).

On the other hand, the connectivity of linear spatial datasets in the plane can
be expressed by the formula

∀(x∀(y(S((x) ∧ S((y) → [TC(r,(s(Seg((r, (s)]((x, (y))

with Seg = {((r, (s) | (∃λ)(0 � λ � 1 ∧ (∀(t)(((t = λ · (r + (1− λ) · (s) → S((t)))}.
On linear sets this expression gives rise to a terminating computation. The
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Figure 2.15 A non-terminating transitive-closure computation.

number of iterations is bounded by the number of triangles needed to triangu-
late the input (or the number of line segments in a piecewise linear line).

Transitive-closure logic with stop conditions A variant of the above
transitive-closure logic is first-order logic with expressions of the form

[TC(x;(y ψ((x, (y) | σ ]((s, (t)
where additionally σ is an first-order definable stop condition. The evaluation
of this expression on input database A is again the computation of X1, X2,
X3, . . . as above but with the additional stop condition (A,Xi+1) |= σ . Remark
that we do not allow parameters inside TC-expressions, i.e., (s and (t are the only
free variables of the entire TC-subformula.

For example, if [TCx;y S(x, y) | X(1, 8)](s, t) is evaluated on A =
{(x, y) | y = 2x}, then X1 = {(s, t) | t = 2s}; X2 = X1 ∪ {(s, t) | t = 4s} =
{(s, t) | t = 2s ∨ t = 4s}; X3 = X2 ∪ {(s, t) | t = 8s} = {(s, t) | t = 2s ∨ t =
4s ∨ t = 8s}; and the computation terminates because (1, 8) ∈ X3.

The above two languages were introduced in (Geerts and Kuijpers, 2005).

K-transitive-closure logic Another variant of transitive-closure logic was
proposed in (Kreutzer, 2001) and we call it K-transitive-closure logic. In
K-transitive-closure logic the transitive-closure operator may be applied to
parameterized sets and the evaluation of a transitive-closure expression may be
controlled by the termination of particular paths in its computation rather than
by the termination of the transitive closure of the complete set.

More formally, it is first-order logic over the reals extended with expressions
of the form

[TC(x;(y ψ((x, (y, (u)]((s, (t),
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where (u is an �-tuple, thus allowing a parameter inside the TC-formula. The
evaluation on an input dataset A is obtained in stages as follows. First, we
set X1 := ψ(A) ∧∧i∈I (si = xi); and then continue Xi+1 := Xi ∪ {((x, (y, (u) ∈
R2k+� | (∃(z) (Xi((x, (z, (u) ∧ ψ((z, (y, (u))}; and we stop the computation as soon
as Xi = Xi+1. The semantics of [TC(x;(y ψ((x, (y, (u)]((s, (t), is then defined to be
Xi . An example follows in Section 2.11.

We remark that the initial transitive-closure logic is a subset of K-transitive-
closure logic.

2.10 Expressiveness properties of transitive-closure logics

The results in this section can be found in (Geerts and Kuijpers, 2000; Geerts
et al., 2006). For the transitive-closure logic with stop condition we have the
following expressiveness result.

Theorem 2.12 All computable queries on linear spatial datasets, definable
by linear polynomials with coefficients in Z, are expressible in the transitive-
closure logic with stop conditions.

The previous result even holds when we disallow the use of multiplication
in the query expression.

The proof of Theorem 2.12 can be sketched as follows. Let Q be a com-
putable query on linear spatial datasets. Then we will write Q as a composi-
tion Q5 ◦Q4 ◦Q3 ◦Q2 ◦Q1 of five queries that are expressible in transitive-
closure logic with stop conditions. To start with,Q1 produces on input a spatial
dataset S in Rn a triangulation of S. Since S can described by linear polynomials
with coefficients in Z, these corner points of the triangulation will be rational
numbers. This encoding (and the corresponding decoding Q5) can actually be
done in first-order logic over the reals.

The queries Q2 and Q4 are the encoding/decoding of finite relations over
the rational numbers into single natural numbers. Finally Q3 is the query that
simulatesQ on the natural number encodings of spatial datasets. The existence
of a formula for Q3 is guaranteed by the following powerful lemma.

Lemma 2.13 For every partial computable function f : Nk → N there exists
a formula ϕf (y) in transitive-closure logic with stop conditions over the schema
S = {S(k)}, such that for any database D over S with SD = {(n1, ..., nk)}, we
have that ϕf (D) is defined if and only if f (n1, . . . , nk) is defined, and in this
case ϕf (D) = {f (n1, . . . , nk)}.
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This can be shown by simulating the run of a non-deterministic p-counter
machine Mf = (Q, δ, q0, qf ) which computes f .

We remark that the above theorem is limited to linear spatial datasets; it is
not known whether a finite encoding of an arbitrary semi-algebraic set can be
expressed in transitive-closure logic with stop conditions. But for queries on
arbitrary spatial datasets we have completeness if we restrict our attention to
topological properties.

Theorem 2.14 All computable Boolean topological queries on arbitrary
spatial datasets in Rn are expressible in transitive-closure logic with stop
conditions.

This theorem can be proven by showing that we can approximate a spatial
dataset by a Z-linear spatial database that is toplogically equivalent to it in
transitive-closure logic with stop conditions and by using the first expresiveness
(Theorem 2.12) result.

To be more precise about the approximation, we now describe how a rational
ε-approximation of a spatial dataset can be expressed in transitive-closure logic
with stop conditions. The task here is, given a spatial dataset S and a real number
ε > 0, to find a Z-linear spatial dataset that is homeomorphic to S (topological
condition) and that ε-approximates S (metric condition).

It is not difficult to show that ε-approximations cannot be expressed in first-
order logic over the reals (Geerts and Kuijpers, 2000). We now sketch, for
the case of R2, how a rational ε-approximation of a spatial dataset S can be
expressed in transitive-closure logic with stop conditions.

First, we find all points where the boundary of S is not smooth and border
points with a vertical tangent line. For these points, we compute their local cone
radius (conicity around points was discussed in Section 2.4) and within these
radii we locally rectify the database. This is all expressible in first-order logic
over the reals (Geerts and Kuijpers, 1999; Geerts et al., 2006) and illustrated in
Figure 2.16.

Next, we consider the border of S outside the cone radii determined in the
first step. What remains of the border are simple curves. We then compute the
maximal cone radius r of all points on these curves in first-order logic. Let Step
be the relation of pairs of points (p, q) on these curves such that d(p, q) = r .
In transitive-closure logic, we can compute TC(Step) and the termination of
this computation is guaranteed. Once this is done, we walk over these curves
starting from the endpoints and locally rectify them. This is illustrated in
Figure 2.17. We can also do this when the curves are bordering curves of the
interior.
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Figure 2.16 Local rectification around non-smooth border points and points with
a vertical tangent line.

Figure 2.17 Rectification of the border away from non-smooth border points.

Finally, we glue the result of the first step onto the result of the second
step. The final result is a Z-linear database homeomorphic to the original semi-
algebraic set (illustrated in Figure 2.18).

In dimensions higher than 2, the description of rational ε-approximation in
first-order logic with transitive closure with stop condition technically more
complicated. It follows a recursive procedure on the dimension and boxes are
used instead of spheres to describe the cones of points.

We end this section with a corollary of Theorem 2.14 that concerns con-
nectivity, a property that is important in applications such as geographical
information systems.

Corollary 2 Topological connectivity of (even non-linear!) spatial datasets
is expressible in transitive-closure logic with stop conditions.
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Figure 2.18 Glueing the result of the two steps together.

y = 2x

y = 1

y = 0

0 1
2

Figure 2.19 A second example of a non-terminating evaluation of transitive
closure.

2.11 Deciding termination of transitive-closure
logic expressions

The results in this section can be found in (Geerts and Kuijpers, 2005).
From the definition in Section 2.8, it is clear that the evaluation of queries

expressed in transitive-closure logic with or without stop conditions may be
non-terminating.

Some examples As we have seen before, when we evaluate the tran-
sitive closure, that is, the expression [TCx;y S(x, y)](s, t), on the spatial
dataset A = {(x, y) | y = 2x}, we get a growing number of lines (which
is illustrated in Figure 2.15). In other words, this is a non-terminating
computation.

Even if we modify the function y = 2x, as shown by the thick line in
Figure 2.19, that is, even if we bound its image, the computation of the transitive
closure remains non-terminating (as illustrated in Figure 2.19).
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Figure 2.20 An example of a terminating evaluation of transitive closure.

But there are function graphs on which the computation of the transitive
closure terminates. The function shown by the thick line in Figure 2.20, is
an example. Here we have a terminating computation because X4 = X5 =
X6 = · · · (illustrated by the thinner lines in Figure 2.20).

Obviously, adding stop-conditions may make non-terminating computations
terminating, as is illustrated by the example we gave earlier: if we apply the
query expressed by [TCx;y S(x, y) | X(1, 8)](s, t) to the dataset A = {(x, y) |
y = 2x} given in Figure 2.15, the computation terminates because, (1, 8) ∈ X3.

Also, when [TCx;y S(x, y) | ∃x∃yX(x, y) ∧ y = 1 ∧ 10x < 1](s, t) is ap-
plied to the function graph given in Figure 2.19, we get a terminating compu-
tation because the fourth set we compute satisfies the stop condition, that is,
∃x∃yX4(x, y) ∧ y = 1 ∧ 10x < 1.

Obviously, K-transitive closure logic also has the problem of non-
terminating evaluations, since it contains transitive-closure logic. We give
an example of a terminating evaluation. Consider the evaluation of
[TCx;y S(x, y)]( 1

4 , t) on the graph of the function given in Figure 2.19. This
gives X1 = {( 1

4 ,
1
2 )}, X2 = {( 1

4 ,
1
2 ), ( 1

2 , 1)} and X3 = X2.

Deciding termination and undecidability results We can ask whether there
is a procedure to decide, for given an expression ϕ in some transitive-closure
logic and a dataset A whether ϕ has terminating evaluation on A?

It is fairly easy to obtain the following undecidability results (Geerts and
Kuijpers, 2005).

Theorem 2.15 It is undecidable whether a given formula in transitive-closure
logic, that uses transitive closure on relations of at most arity 4, terminates on
a given input database.
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The proof of this fact is by reduction of undecidability of nilpotency of
a piecewise affine function f : R2 → R2 to this problem (Blondel et al.,
2001a,b). A function f : Rn → Rn is called nilpotent if there is a k � 1 such
that for all (x ∈ Rn: f k((x) = (0.

The following is an immediate consequence.

Corollary 3 It is undecidable whether a given formula in K-transitive-closure
logic, that uses transitive closure on relations of at most arity 4, terminates on
a given input database.

The following theorem can be proven using the undecidability of Hilbert’s
10th problem.

Theorem 2.16 It is undecidable whether a given formula in transitive-closure
logic with stop conditions, that uses transitive closure on at most binary rela-
tions, terminates on a given input database.

These results are complete for the languages all three types of transitive-
closure logics that we have considered, apart from the cases of (K-)transitive-
closure restricted to work on binary relations.

We have the following open problem: Is it decidable whether a given formula
in K-transitive-closure logic restricted to binary relations terminates on a given
input database? This problem is related to an open problem in dynamical
systems theory, namely the point-to-fixed-point problem which asks whehther
for a given algebraic number x0 and a given piecewise affine function f :
R → R, the sequence x0, f (x0), f 2(x0), f 3(x0), . . . reaches a fixed point? This
decision problem is open, even for piecewise f consisting of just two line
segments.

We have a second open problem: Is it decidable whether a given formula
in transitive-closure logic restricted to binary relations terminates on a given
input database? In this case, this problem is related to deciding nilpotency of
functions f : Rn → Rn. That is, deciding termination of

[TC(x;(y S((x, (y)]((s, (t)
applied to graph(f ) adds up to deciding nilpotency of f . But nilpotency of (pos-
sibly discontinuous) functions f : Rn → Rn is not known to be undecidable
for n = 1, whereas it is for n > 1.

Terminating functions We say that a set A ⊆ R2 has terminating transitive
closure if the formula [TCx;y S(x, y)](s, t) terminates on input A and we call
a function f : R → R terminating if graph(f ) has a terminating transitive
closure.
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The function of Figure 2.15 is not terminating, but the one of Figure 2.20 is.
We have the following, for what follows, important result.

Theorem 2.17 There is a procedure that on input a continuous semi-algebraic
function f : R → R decides whether it is terminating. Furthermore, this deci-
sion procedure is expressible in first-order logic over the reals.

To get to this result, we need some terminology and lemmas. Let f : R → R

be a continuous function. We call x ∈ R is a periodic point of f if f d (x) = x

for some d � 1 and the smallest such d is the period of x. Let Per(f ) denote
the set of periodic points of f .

We have the following properties.

Lemma 2.18 If f is continuous and terminating, then Per(f ) = f k(R) (for
some k) is non-empty, closed and connected. Furthermore, Per(f ) = {x ∈ R |
f 2(x) = x}.

A result by Sharkovskiı̆’s from 1964 implies that if f is continuous and
terminating, then only periods 1, 2, 4, . . . , 2d can appear for some integer value
d � 1. The last part of the lemma is more specific.

So, we can conclude the following.

Corollary 4 If f is continuous and terminating, then f can only have periodic
points with periods 1 and 2.

We give the following crucial lemma without proof (see (Geerts and Kui-
jpers, 2005) for details).

Lemma 2.19 There is an first-order sentence that expresses whether a con-
tinuous semi-algebraic function f : R → R is nilpotent.

We remark that the proof of the correctness of the first-order sentence of
Lemma 2.19, given in (Geerts and Kuijpers, 2005), relies on the Bolzano-
Weierstrass theorem and therefore does not generalize to arbitrary real closed
fields.

Using the above results, we obtain the following procedure to decide termi-
nation of a function f : R → R.

In the following algorithm, f̃ is obtained from f by contracting the part of
f that consists of of points of period 1 or 2, to one point. This is illustrated in
Figure 2.21.
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Figure 2.21 The contraction f̃ of a function f .

Algorithm terminate(input f ):
Step 1. Compute the sets C1 = {x | f (x) = x} and C2 = {x | f 2(x) = x}. If
C2 is a closed and connected subset of R and if C1 is a point with C2 \ C1

around it or if C2 \ C1 is empty, then continue with Step 2, else answer no.

Step 2. If C2 is R, answer yes, else compute the function f̃ and decide whether
f̃ is nilpotent and return the answer.

We remark that f k(R) = C1 ∪ C2 if and only if f̃ k(R) = {0}.
We now illustrate the working of the algorithm terminate.
First, consider the a non-terminating function of Figure 2.19. Here, we have

C1 = {(0, 0), (1, 1)} and C2 = ∅ and the algorithm answers no since C1 ∪ C2

is disconnected.
Next, consider the terminating function of Figure 2.20. Here we have C1 =

{(0, 0)} andC2 = ∅, and thusC1 ∪ C2 is closed and connected and since f̃ = f

is nilpotent the algorithm answers yes.

Small extensions of first-order logic with transitive closure The above
decidability result concerning termination of functions inspires the following
extension of first-order logic with transitive closure restricted to be applied to
the graphs of continuous functions Rk → Rk . More precisely, let ψ((x, (y) be a
formula in transitive-closure logic (with or without stop condition). Consider
the sentence

γψ = γ 1
ψ ∧ γ 2

ψ,

where γ 1
ψ expresses that ψ((x, (y) defines the graph of a function from Rk to Rk

and γ 2
ψ expresses that ψ((x, (y) defines a continuous function graph. We note

that γ 1
ψ and γ 2

ψ are first-order related to γ .
Then it is easy to see that ψ((x, (y) terminates on input A if and only if γψ

terminates on A.
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Now, we define CF-transitive-closure logic, an extension of first-order logic
with a transitive-closure operator that is restricted to graphs of continuous
functions Rk → Rk .

More formally, CF-transitive-closure logic is the fragment of transitive-
closure logic (respectively with stop condition) where expressions of the form

[TC(x;(y ψ((x, (y) ∧ γψ ]((s, (t)
(respectively [TC(x;(y ψ((x, (y) ∧ γψ | σ ]((s, (t)) are allowed, with γψ a sentence
that expresses thatψ((x, (y) defines the graph of a continuous function Rk → Rk .

From earlier undecidability results we immediately get

Corollary 5 It is undecidable whether a given formula in CF-transitive-
closure logic with stop condition, where the transitive closure is restricted to
work on binary relations, terminates on a given input database.

Without stop conditions, we have decidability, however.

Theorem 2.20 It is decidable whether a given formula in CF-transitive-
closure logic (without stop conditions), restricted to binary relations, terminates
on a given input database. Moreover, this decision procedure is expressible in
this language.

So, for every formula [TCx;y ψ(x, y)](s, t) in CF-transitive-closure logic
(without stop conditions), restricted to binary relations, there is a a formula τψ
in the same language that expresses that the formula terminates on a given input
database (also τψ depends on the input!). We call τψ the termination guard of
the formula [TCx;y ψ(x, y)](s, t).

Now, we can define GCF-transitive-closure logic, the guarded fragment
of CF-transitive-closure logic (without stop conditions), restricted to binary
relations, in which only transitive-closure expressions of the form

[TCx;y ψ(x, y) ∧ τψ ](s, t)

are allowed.
By definition, we now have that in GCF-transitive-closure logic every query

terminates on all possible input datasets and all terminating queries of CF-
transitive-closure logic are expressible in GCF-transitive-closure logic.

We end this section, with an expressibility result concerning these last two
languages.

Theorem 2.21 GCF-transitive-closure logic is more expressive than first-
order logic on finite spatial datasets.
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For the last part of the theorem, we remark that the query Qint on 1-
dimensional datasets S that expresses “Is S a singleton that contains a natural
number?” is expressible in GCF-transitive-closure logic but not in first-order
logic.

2.12 Some concluding remarks on transitive-closure logics

One of the motivations to study these different transitive-closure logics, is to
compare their expressive power and to establish which languages are compu-
tationally complete on linear or arbitrary (semi-algebraic) datasets.

It is not clear whether transitive-closure logic with stop conditions is more
expressive than transitive-closure logic without stop conditions. In particular,
it is not clear whether transitive-closure logic without stop conditions is also
computationally complete on linear spatial datasets.

We also remark that for CF-transitive-closure logic without stop condition,
termination is decidable and for CF-transitive-closure logic with stop condition
termination is not decidable. This does not separate these languages, however
(because equivalence is undecidable).

We also remark that many results on semi-algebraic functions also hold for
arbitrary real closed fields. But termination of continuous semi-algebraic func-
tions f : R→ R for arbitrary real closed fields R is not first-order expressible
(for R the proof relies on Bolzano-Weierstrass).
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Some connections between finite and
infinite model theory

vera koponena

3.1 Introduction

Most of the work in model theory has, so far, considered infinite structures and
the methods and results that have been worked out in this context cannot usually
be transferred to the study of finite structures in an obvious way. In addition,
some basic results from infinite model theory fail within the context of finite
models. The theory about finite structures has largely developed in connection
with theoretical computer science, in particular complexity theory [12]. The
question arises whether these two “worlds”, the study of infinite structures and
the study of finite structures, can be woven together in some way and enrich
each other. In particular, one may ask if it is possible to adapt notions and
methods which have played an important role in infinite model theory to the
context of finite structures, and in this way get a better understanding of fairly
large and sufficiently well-behaved classes of finite structures.

If we are to study structures in relation to some formal language, then the
question arises which one to choose. Most of infinite model theory considers
first-order logic. Within finite model theory various restrictions and extensions
of first-order logic have been considered, since first-order logic may be con-
sidered as being both too strong and too weak (in different senses) for the
study of finite structures. A reasonable candidate for studying finite structures,
with a viewpoint from infinite model theory, is the language Ln, first-order
logic L restricted to formulas in which at most n variables occur, whether
free or bound. Theories consisting of only Ln-formulas, even those which are
“complete” within Ln, may have both finite and infinite models, or only finite
models, or only infinite models. The language Ln has the nice properties of
being closed under subformulas, quantification and negation. Also, there is a
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pebble game which distinguishes whether two structures satisfy exactly the
same Ln-sentences or not ([23] and implicitly in [29]).

The notion of a type plays an important role in infinite model theory. In finite
model theory the notion of an Ln-type, i.e. a type restricted to Ln-formulas,
has been used; the number of different Ln-types of an Ln-theory can be seen as
a measure of the complexity of the theory. Dawar observed [5] that for every
Ln-theory T with finite models there is an upper bound, depending only on
the number of Ln-types (in n free variables) of T , of the size of the smallest
model of T . Later Grohe proved that this upper bound is not recursive [17]. The
languageLn has also been considered in the context of (only) infinite models in
the work of Hedman [19] where complete theories (within full first-order logic)
which are axiomatizable by Ln-sentences are studied. For a general overview
about interactions (and differences) between finite and infinite model theory,
see [30]. For a survey about the use of finite variable logics in finite model
theory, see [16].

Within infinite model theory the area of stability theory has had great influ-
ence. It studies quite a large class of “manageable” (infinite) structures and
their complete first-order theories. Work in the direction of developing the
basics of a similar theory for finite structures was first carried out by Hytti-
nen [21]. Then, from a different viewpoint, the author developed some results,
inspired by stability theory, aimed at understanding when an Ln-theory with
infinite models must also have arbitrarily large finite models [9, 8]. Further
developments in this direction were made by Baldwin and Lessmann [2] and
by Hyttinen [22]. For an overview, with a historical perspective, of finite and
infinite model theory and recent interactions between them, see [1].

Another approach to understanding certain finite and countably infinite
structures culminates with the work about smoothly approximable structures
in [3]. This line of research started with Lachlan’s work on stable finitely
homogeneous structures (surveyed in [27]) and Zilber’s work on uncountably
categorical structures [33]. It continued with joint work by Cherlin, Harrington
and Lachlan on ω-categorical ω-stable structures [4] and then with the work of
Kantor, Liebeck and Macpherson [24], to reach its current state in [3]. Smoothly
approximable structures are infinite but can be approximated by “nicely embed-
ded” finite structures which, intuitively speaking, are quite “homogeneous” or
“regular”. The theory of smoothly approximable structures can also be seen as
a study of finite structures with few types.

More recently, a direction of research initiated by Macpherson and Stein-
horn [28] and continued by Elwes [13, 14] and Ryten studies classes of finite
structures in which definable sets have a uniform asymptotic behaviour, as the
cardinalities of the universes increase. The complete theory T of a non-principal
ultraproduct of such a class of finite structures (called an ‘asymptotic class’) is
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simple with finite SU-rank and there is a notion of measure on the definable
subsets of models of T , but T is not necessarily smoothly approximable. See
[15] for a survey of the topic.

In this article an overview is given of a line of research which considers Ln-
theories with infinite models and tries to isolate conditions for when these have
arbitrarily large finite models and when least upper bounds for the smallest
model is recursive in terms of the number of Ln-types in n free variables.
Although some results are stated within a more general context, considering
some arbitrary fraction of first-order logic which is closed under subformulas,
and some results could be stated in a somewhat more general way, we mostly
stick to the languageLn for the sake of simplicity. Moreover, when working with
Ln we usually consider an Ln-theory T such that T is finitely axiomatizable
in Ln and complete (within Ln) in the sense that for every ϕ ∈ Ln, T |= ϕ or
T |= ¬ϕ. The motivation is that we like to find conditions for T which imply
that T has a finite model, and facts 3.2.6 and 3.2.7 below imply the following:
if T is an Ln-theory and no complete Ln-theory T ′ ⊇ T exists such that T ′ is
finitely axiomatizable, then T has no finite model.

The basic idea is to isolate conditions for a finitely axiomatizable complete
Ln-theory T which guarantee the existence of a model M of T which is
smoothly approximable, since such an M has the property that every sentence
which is true inM is true in arbitrarily large finite substructures ofM . Moreover,
in this situation the theory of smoothly approximable structures implies that a
recursive upper bound, in terms of the number ofLn-types in n free variables, of
the smallest model exists (in contrary to the general situation, as proved in [17]).

Sections 1 – 7 of this article try to unify, as much as possible, the approaches
of [9], [8] and [2]. Hyttinen’s paper [22] on canonical finite diagrams and
quantifier elimination is highly recommended since it develops, in a more
general context, part of the theory and several of the results. Here I have
chosen to expose the subject via a more “down-to-earth”-approach focused on
Ln-theories, although some generality is lost.

Sections 3.6 and 3.7 discuss infinite structures which have the finite model
property but which are not necessarily smoothly approximable (the random
bipartite graph is an example [24]). This may be useful for understanding other
classes of Ln-theories than those treated in earlier sections. The last section
contains a list of questions and problems.

3.2 Preliminaries

3.2.1 Finite variable logic

In this section we introduce the language Ln, the subset of L containing all
formulas in which at most n distinct variables occur.
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Definition 3.2.1 (i) Let V = {v1, v2, v3, . . .} be the set of variables which are
used in formulas of L.
(ii) By x, y, z, x̄, ȳ, z̄, sometimes with indices, we denote variables and finite
sequences of variables. Similarly, a, b, c, ā, b̄, c̄ denote elements and finite
sequences of elements from structures. When writing ā ∈ Awe mean that every
element of the sequence ā belongs to A. If, in addition, we like to stress that ā
has length n, then we may write ā ∈ An.
(iii) L always denotes the set of all first-order formulas over some vocabulary
(or signature). We always assume that L is countable.
(iv) If a formula in L is denoted by ϕ(x̄) then we mean that every free variable
in that formula belongs to the sequence x̄.
(v) For any n < ω, Ln denotes the set of all formulas ϕ(x̄) ∈ L such that at
most n distinct variables occur in ϕ(x̄) (whether bound or free). We allow x̄ to
contain “dummy variables” (not occuring in the formula denoted by ϕ(x̄)). For
example, the formula v1 = v2 ∨ v2 = v3 may be denoted by ϕ(v1, v2, v3, v4)
and consequently ϕ(v1, v2, v3, v4) ∈ L3, because only three variables actually
occur in the formula ϕ(v1, v2, v3, v4).
(vi) An Ln-theory is a set of sentences from Ln.
(vii) An Ln-theory T is called a complete Ln-theory if for every sentence
ϕ ∈ Ln, T |= ϕ or T |= ¬ϕ. Of course, a ‘complete Ln-theory’ need not be
complete with respect to L.
(viii) If M is an L-structure let

T hLn(M) = {
ϕ ∈ Ln : ϕ is a sentence and M |= ϕ

}
.

So T hLn(M) is always a complete Ln-theory.

Remark 3.2.2 We have not fixed n special variables to be used in formulas
of Ln, but we only say that at most n distinct variables may occur in a formula
of Ln. For instance, a formula of Ln may contain variables among v1, . . . , vn

or variables among vn+1, . . . , v2n. For example, both v1 = v2 ∨ v2 = v3 and
v2 = v3 ∨ v3 = v4 belong to L3.

We are interested in finding conditions under which an Ln-theory with infinite
models also has (arbitrarily large) finite models. So we first give some easy
examples showing that Ln-theories may have only infinite models, only finite
models or both infinite and finite models

Examples 3.2.3 (a) Let M = (N, S), where S is the successor function (or
relation). Then T hL3 (M) has no finite model.
(b) If M = (Q,<) then T hL3 (M) has no finite model.
(c) LetM be a finite graph such that v1, . . . , vm lists all vertices ofM and there
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is an edge between vi and vj if and only if j = i + 1 or i = j + 1. Then every
model of T hL3 (M) is isomorphic to M .
(d) LetM be an infinite tree such that for somem < ω, no path inM has length
m. Then T hLn(M) has arbitrarily large finite models, for any n.
(e) Let K be a finite field. Let T be a set of sentences which expresses the
axioms of a K-vector space. With scalar multiplication and vector addition
represented by function symbols we may assume that T is an L3-theory. With
scalar multiplication and vector addition represented by relation symbols we
may assume that T is an L7-theory. T has arbitrarily large finite models and
hence infinite models.

3.2.2 Types

The notion of a ‘type’ plays an important role in model theory. Here we will
in particular be interested in certain types which are restricted to formulas of
some sublanguage of the first-order language L. We first give some definitions
with associated notation and then state a few well-known results concerning
types.

Definition 3.2.4 (i) Let � ⊆ L, let M be an L-structure and let A ⊆ M .
(ii) Define

T h�(M,A) = {
ϕ(ā) : ϕ(x̄) ∈ �, ā ∈ A, M |= ϕ(ā)

}
,

and let T h�(M) = T h�(M,∅). So T h�(M) is the set of sentences in � that
are true in M .
(iii) For a sequence of variables x̄ we define

�x̄(A) = {
ϕ(x̄, ā) : ϕ(x̄, ȳ) ∈ �, ā ∈ A},

and �x̄ = �x̄(∅).
(iv) A �-type over A (with respect to T h�(M,A)) in the free variables x̄ is a
set p(x̄) ⊆ �x̄(A) such that p(x̄) ∪ T h�(M,A) is consistent.
(v) A �-type p(x̄) over A is called a complete �-type over A if whenever
ϕ(x̄, ā) ∈ �x̄(A) then ϕ(x̄, ā) ∈ p(x̄) or ¬ϕ(x̄, ā) ∈ p(x̄).
(vi) S�m (A,M) is the set of all complete �-types over A (with respect to
T h�(M,A)) in the free variables v1, . . . , vm. If � = L then we may omit it.
(vii) We write Snm(A,M) instead of SL

n

m (A,M).
(viii) For a complete Ln-theory T we define Snm(T ) = Snm(∅,M), where M is
any model of T (so T hLn(M,∅) = T ). By Lemma 1.2 in [9] this definition
does not depend on the choice of the model M of T .

Below are a few facts about Ln-types.
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Fact 3.2.5 For any completeLn-theory T , Snn (T ) is finite if and only if there are
only finitely manyLn-formulas in the free variables v1, . . . , vn up to equivalence
modulo T .

The previous fact is a consequence of the “Stone duality theorem for boolean
algebras” [20], but it can also be derived in a straightforward way from the
definitions.

The next fact can be extracted from the proof of a similar result in [6], and
it is also mentioned in [29] (in Exercise 4).

Fact 3.2.6 (Dawar, Lindell, Weinstein; Poizat) Suppose that the vocabulary
of L is finite and contains no function symbols. If T is a complete Ln-theory
and Snn (T ) is finite then there is ϕ ∈ Ln that axiomatizes T (i.e. ϕ |= T and
T |= ϕ). Moreover, we can choose ϕ so that its quantifier rank is at most
|Snn (T )| + n.

The next fact is easy to prove, but a proof can also be found in [9].

Fact 3.2.7 (i) If a complete Ln-theory T has a finite modelM then |Snn (T )| ≤
|M|n.
(ii) If T is a complete Ln-theory and Snn (T ) is infinite then T has no finite
model.

Using Fact 3.2.7, when looking for finite models of a complete Ln-theory T
we can rule out the case when Snn (T ) is infinite.

3.2.3 Closure maps

Definition 3.2.8 Let M be an L-structure.
(i) We call a function cl : P(M) → P(M) a closure map (or closure function) if
whenever A ⊆ B ⊆ M then A ⊆ cl(A), cl(cl(A)) = cl(A) and cl(A) ⊆ cl(B).
(ii) If cl(A) = A then we say that A is closed. A sequence is closed if the set
of elements occurring in the sequence is closed.

A few examples of closure maps are given below:

Examples 3.2.9 (a) If cl(A) = A for every A ⊆ M then cl is a closure map;
we say that such a closure map is trivial.
(b) If, for every A ⊆ M , cl(A) is the substructure of M which is generated by
A, then cl is a closure map.
(c) If, for every A ⊆ M , cl(A) is the algebraic closure of A, in the model
theoretic sense, then cl is a closure map. See [20] for a definition of ‘algebraic
closure’ in the model theoretic sense.



Some connections between finite and infinite model theory 115

(d) IfM is an algebraically closed field and cl(A) is the algebraic closure of A,
in the sense of field theory, then cl is a closure map.
(e) If M is a vector space and cl(A) is the linear span of A, then cl is a closure
map.

3.3 Amalgamation classes

In order to prove that arbitrarily large finite models of a finitely axiomatizable
theory T exist we prove that a particularly nice model M of T exists. This
M will have the property that every sentence which is true in M is true in a
finite substructure of it. Such an M exists if there is an “amalgamation class”
of models of T and all models in the amalgamation class are “stable”. The
definition of an amalgamation class is given in this section (Definition 3.3.5)
and the notion of ‘stability’ is treated in Section 3.4.

Definition 3.3.1 Let � ⊆ L and let M and N be L-structures.
(i) If ai ∈ M, bi ∈ N , for i < λ, then we write

(M, (ai : i < λ)) ≡� (N, (bi : i < λ))

if for every m < ω, every ϕ(x1, . . . xm) ∈ � and every {i1, . . . , im} ⊆ λ,

M |= ϕ(ai1 , . . . , aim ) if and only if N |= ϕ(bi1 , . . . , bim ).

(ii) A function f : A→ N , whereA ⊆ M , is called a�-elementary embedding
if for every ϕ(x̄) ∈ � and ā ∈ A with |ā| = |x̄|, we have

M |= ϕ(ā) if and only if N |= ϕ(f (ā)).

(iii) If M is a substructure of N and for every ϕ(x̄) ∈ � and every ā ∈ M
with |ā| = |x̄|, M |= ϕ(ā) if and only if N |= ϕ(ā), then we say that M is a
�-elementary substructure ofN and thatN is a�-elementary extension ofM ,
denoted M �� N . As usual we may write � instead of �L.

In the next section we will use the following result which is proved in the same
way as the well-known Tarski-Vaught test [20]; for the proof we only need to
observe that Ln is closed under subformulas.

Fact 3.3.2 (Tarski-Vaught test for Ln) Suppose that n is greater than the arity
of every function symbol in the vocabulary of L and let M be an L-structure.
For any subsetN ofM , we haveN �Ln M if and only if for every ϕ(y, x̄) ∈ Ln
and every ā ∈ N (with |ā| = |x̄|), if M |= ∃yϕ(y, ā) then there is b ∈ N such
that M |= ϕ(b, ā).
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Assumption 3.3.3 For the rest of this section we assume the following:

(1) � ⊆ L and � is closed under subformulas.
(2) T ⊆ � is a set of sentences.
(3) For every M |= T a closure map clM is fixed such that if M,N |= T ,

ai ∈ M , bi ∈ N , for i < λ, and

(M, (ai : i < λ)) ≡� (N, (bi : i < λ))

then {ai : i < λ} is closed (with respect to clM) if and only if {bi : i < λ}
is closed (with respect to clN ). Because of this assumption we can, for
simplicity of notation, omit the subscript ‘M’ in clM in the situations
where we deal with a closure map.

(4) cl is uniformly locally finite with respect to T ; that is, for every m < ω

there is m′ < ω such that if M |= T , A ⊆ M and |A| ≤ m, then |cl(A)| ≤
m′.

Remark 3.3.4 Natural examples of � which are closed under subformulas
are � = Ln and

� = {ϕ ∈ L : the quantifier rank of ϕ is at most n}.
See [20] for a definition of quantifier rank.

Definition 3.3.5 A non-empty class A of L-structures is called a �-
amalgamation class for T if:

(1) Every structure in A is a model of T .
(2) A is closed under isomorphism.
(3) A is closed under�-elementary substructures, i.e. ifN ∈ A andM �� N

then M ∈ A.
(4) Whenever M1,M2 ∈ A and ā ∈ M1, b̄ ∈ M2 are closed sequences of the

same length and

(M1, ā) ≡� (M2, b̄),

then there are N ∈ A and a �-elementary embedding f : M2 → N such
that M1 �� N and f (b̄) = ā.

Remark 3.3.6 If there is a �-amalgamation class for T then there is, by the
downward Löwenheim-Skolem theorem, an amalgamation class for T such
that all structures in it are countable.

Examples 3.3.7 (a) Let n ≥ 4, let M be a tree such that for some m < ω no
path in M has length m and let T = T hLn(M). Moreover, for every M |= T
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and every A ⊆ M let cl(A) = A. Then the class of all models of T is an Ln-
amalgamation class for T .
(b) Let n ≥ 3, let K be a finite field and let T ⊆ L3 formalize the axioms of
K-vector spaces in a language where scalar multiplication and vector addition
are represented by function symbols. For every M |= T and every A ⊆ M let
cl(A) be the substructure which is generated by A. Then the class of all models
of T is an Ln-amalgamation class for T . If we had defined cl as in (a) then T
would not have had any Ln-amalgamation class. This fact is a consequence of
results in Section 3.4 and is discussed immediately after Theorem 3.4.7.

Definition 3.3.8 Suppose that A is a �-amalgamation class for T .

(i) We say that p ⊆ � is a closed (�,A)-type if there areM ∈ A and a closed
finite sequence ā ∈ M such that

p = {ϕ(x̄) ∈ � : M |= ϕ(ā)}.
(ii) We say that an L-structure M is (�,ω,A)-saturated for closed sets if

whenever b̄ ∈ N ∈ A, ā ∈ M ∩N , ā and b̄ā are closed finite sequences
and

(M, ā) ≡� (N, ā),

then there exists c̄ ∈ M such that (M, āc̄) ≡� (N, āb̄), and hence, by
Assumption 3.3.3 (3), c̄ā is closed.

Lemma 3.3.9 If A is a �-amalgamation class for T such that the set of all
closed (�,A)-types is countable, then there exists a countable L-structure M ,
such that

(i) M |= T

(ii) M is (�,ω,A)-saturated, and
(iii) for every finite ā ∈ M there existsN ∈ A such that ā ∈ N and (M, ā) ≡�

(N, ā).

Proof. By Remark 3.3.6 we may assume that A is a �-amalgamation class for
T which consists only of countable structures.

Then we use the idea in the proof of Fraı̈ssé’s theorem (see [20] for instance)
to construct Mi ∈ A, for i < ω, such that

• Mi �� Mi+1, for all i < ω, and
• for any i < ω, ā ∈ Mi and N ∈ A, if ā, b̄ ∈ N , ā and āb̄ are closed and

(Mi, ā) ≡� (N, ā), then there exists j ≥ i and c̄ ∈ Mj such that (Mj, āc̄) ≡�
(N, āb̄).
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Let π : ω3 → ω be a bijection such that π (i, j, k) ≥ i, j, k for all i, j, k and
let pk , k < ω, be an enumeration of all closed (�,A)-types. Let M0 ∈ A be
arbitrary. Now suppose that Mi is defined for all i < �+ 1, Mi �� Mi+1 for
all i < � and that āji , j < ω, is an enumeration of all closed finite sequences
of elements fromMi , for i < �+ 1. Suppose that � = π (i, j, k). If there exists
N ∈ A and b̄ ∈ N such that āji ∈ N , āji b̄ is closed, pk = {ϕ(x̄, ȳ) ∈ � : N |=
ϕ(āji , b̄)} and (Mi, ā

j

i ) ≡� (N, āji ), then (M�, ā
j

i ) ≡� (N, āji ) so, by condi-
tion (4) in the definition of a �-amalgamation class, there are M�+1 ∈ A and
c̄ ∈ M�+1 such thatM� �� M�+1 and (M�+1, ā

j

i c̄) ≡� (N, āji b̄). Otherwise let
M�+1 = M�.

Let M =⋃
i<ω Mi . Since � is closed under subformulas it follows from

Lemma 3.3.11 below that Mi �� M , for all i < ω, and from this we get (i).
Conditions (ii) and (iii) follows from the construction of M . �

Definition 3.3.10 If M is a model as in Lemma 3.3.9 then we call M a limit
of A.

Lemma 3.3.11 Suppose that � is closed under subformulas and that Mi ��

Mi+1 for i < κ . If M =⋃
i<κ Mi then Mi �� M for every i < κ .

Proof. By induction on the complexity of formulas in �. �

See [20] for a definition of an unnested formula.

Lemma 3.3.12 Suppose that every unnested atomic formula ofL is equivalent,
modulo T , to a formula in �. Let A be a �-amalgamation class for T and
suppose that M and N are limits of A. Then for all closed finite sequences
ā ∈ M and b̄ ∈ N with |ā| = |b̄|,

if (M, ā) ≡� (N, b̄) then (M, ā) ≡L (N, b̄),

and in fact there is an isomorphism from M onto N which sends ā to b̄.

Proofsketch. Using properties (ii) and (iii) of Lemma 3.3.9 one carries out a
back and forth argument which shows that there is an isomorphism from M to
N which sends ā to b̄. �

Corollary 3.3.13 Suppose that every unnested atomic formula of L is equiv-
alent, modulo T , to a formula in�. Then a limit of a�-amalgamation class A
for T is unique up to isomorphism.

Note that if, for example, � = Ln, n ≥ 2, every relation symbol has arity at
most n and every function symbol has arity less than n, then every unnested
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atomic L-formula belongs �, so the condition about � in Lemma 3.3.12 and
in Corollary 3.3.13 is satisfied.

Definition 3.3.14 An L-structure M is �-determined if for any closed finite
sequences ā, b̄ ∈ M ,

if (M, ā) ≡� (M, b̄) then (M, ā) ≡L (M, b̄).

Hence, if � and T satisfies the assumptions of Lemma 3.3.12 and A is a �-
amalgamation class for T , then a limit of A exists, is unique up to isomorphism
and is �-determined. We also have a partial converse. To state it we need the
following definition:

Definition 3.3.15 An L-structure M is ω-homogeneous if for all finite
sequences ā, b̄ ∈ M such that (M, ā) ≡L (M, b̄) and for every c ∈ M there
is d ∈ M such that (M, āc) ≡L (M, b̄d).

Lemma 3.3.16 If M a model of T which is �-determined and either finite,
or infinite and ω-homogeneous, then there is a �-amalgamation class for T .

Proofsketch. Take as the �-amalgamation class all N which are isomorphic to
some countable N ′ �� M . �

We say that an infinite L-structure M is ω-categorical if T hL(M) is ω-
categorical.

Remark 3.3.17 A basic fact is that every ω-categorical structure is ω-
homogeneous. Also, a complete theory is ω-categorical if and only if for every
model M of the theory and every n < ω, SLn (∅,M) is finite and there are only
finitely many formulas with at most n free variables, up to equivalence modulo
the theory. (This is the well-known “Ryll-Nardzewski theorem” [20]).

For the next proposition, recall that �x̄ = {ϕ(x̄) : ϕ(x̄) ∈ �}. By combining
the previous lemmas we get the following.

Proposition 3.3.18 Suppose that every unnested atomic formula inL is equiv-
alent to a formula in� and that for any x̄,�x̄ is finite up to equivalence modulo
T . Then the following are equivalent:

(i) There exists a �-amalgamation class for T .
(ii) There exists M |= T which is �-determined, and if M is infinite, then M

is ω-categorical (because, by Assumption 3.3.3 (4), cl is uniformly locally
finite on M).
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3.4 Stability

Now we will consider ‘stability’ and see how imposing a stability condition on
an Ln-theory T makes the limitM of every amalgamation class for T ω-stable.
This together with the ω-categoricity of M ensures that there are arbitrarily
large finite substructures of M which are models of T .

Assumption 3.4.1 In this section we assume the following:

(1) For every theory T that we speak about there is a closure map cl on the
models of T which is uniformly locally finite with respect to T . (See
Assumption 3.3.3 (4).)

(2) If T is an Ln-theory, M,N |= T , ai ∈ M , bi ∈ N , for i < λ and

(M, (ai : i < λ)) ≡Ln (N, (bi : i < λ))

then {ai : i < λ} is closed if and only if {bi : i < λ} is closed.

Definition 3.4.2

(i) Suppose that A is an Ln-amalgamation class (for T ). We say that A
is stable in Ln if for every ϕ(x̄, ȳ) ∈ Ln there exists kϕ < ω such that
there does not exist M ∈ A and āi , b̄i ∈ M , for i < kϕ , satisfying M |=
ϕ(āi , b̄j ) ⇐⇒ i ≤ j .

(ii) We adopt the convention that every finite structure is stable.
(iii) An infinite L-structure M is stable if for every ϕ(x̄, ȳ) ∈ L, there exists

kϕ < ω such that there do not exist āi , b̄i ∈ M , for i < kϕ , satisfying
M |= ϕ(āi , b̄j ) ⇐⇒ i ≤ j .

(iv) A formula ϕ(x̄, ȳ) is unstable with respect to a theory T if there exist
M |= T and āi , b̄i ∈ M , i < ω, such that M |= ϕ(āi , b̄j ) ⇐⇒ i ≤ j ;
otherwise ϕ(x̄, ȳ) is stable with respect to T .

Proposition 3.4.3 Suppose that n is greater than the arity of every function
symbol in the vocabulary of L and that n is at least as great as the arity of
every relation symbol in the vocabulary of L. If T is a complete Ln-theory such
that Snn (T ) is finite then the following are equivalent:

(i) There is a stable Ln-amalgamation class for T .
(ii) T has a stable model which is Ln-determined (and hence ω-categorical if

it is infinite).

Proofsketch. By Fact 3.2.5, the assumption that Snn (T ) is finite implies that there
are only finitely many Ln-formulas up to equivalence modulo T and hence
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for any sequence of variables x̄ (of any finite length) Lnx̄ is finite up to equiva-
lence modulo T .

Hence Proposition 3.3.18 gives all except the statement about stability. But
one direction of this follows from the fact that

• in (ii) we take the model of T to be the limit of a stable Ln-amalgamation
class for T , and

• if the formulas ϕi(x̄, ȳ), i = 1, . . . , m, are stable with respect to a complete
L-theory, then every boolean combination of the ϕi’s is stable with respect to
the same completeL-theory. (This can be proved directly by using Ramsey’s
theorem, but it also follows from the basic work on stable formulas by Shelah
[31].)

And conversely, given a model M satisfying the conditions in (ii), a stable
Ln-amalgamation class is obtained by taking all Ln-elementary substructures
of M (and structures isomorphic to these) as in Lemma 3.3.16. �

Definition 3.4.4 An L-structure M is ω-stable if whenever M ′ ≡L M , A ⊆
M ′ and |A| ≤ ω then |SL1 (A,M)| ≤ ω.

A basic fact from stability theory is that if M is ω-stable then M is stable. The
next lemma, which shows that under certain circumstances the converse also
holds, will be essential here.

Lemma 3.4.5 Suppose that M is an infinite L-structure such that cl(A) = A

for every A ⊆ M and Snn (∅,M) is finite. IfM is stable and Ln-determined then
M is ω-stable.

Proofsketch. Under the premises of the lemma it follows that any L-formula
is equivalent, modulo T hL(M), to a boolean combination of Ln-formulas and
there are only finitely many Ln-formulas up to equivalence modulo T hLn(M).
Thus for every complete L-type p(x̄) over a set A, p(x̄) is determined by
p(x̄) ∩ Ln(A). Now the lemma follows from the fact that if 0 < m < ℵ0 then
(ℵ0)m = ℵ0 and from Shelah’s “unstable formula theorem” ([31], Theorem
II.2.2), which tells us that if ϕ(v1, ȳ) is stable and A ⊆ M is countable then
S
{ϕ(v1,ȳ)}
1 (A) is countable. �

Suppose that n is greater than the arity of every function symbol in the vocab-
ulary of L and greater than or equal to the arity of every relation symbol in
the vocabulary of L. From Proposition 3.4.3 and Lemma 3.4.5 it follows that
if T is a complete Ln-theory such that Snn (T ) is finite and there is a stable
Ln-amalgamation class for T , then T has a model which is ω-stable and, if it
is infinite, ω-categorical.
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Next we state the crucial result which will give us finite models for every
complete Ln-theory T such that Snn (T ) is finite and there is a stable Ln-
amalgamation class for T .

Theorem 3.4.6 (Cherlin, Harrington, Lachlan [4]) If M is ω-categorical and
ω-stable, M |= ϕ and A is a finite subset of M , then there exists a finite
substructure N ⊆ M such that N |= ϕ and A ⊆ N .

Recall that, by Fact 3.2.6, if T is a complete Ln-theory such that Snn (T ) is finite
then T is axiomatized by an Ln-sentence. Thus, applying Theorem 3.4.6 and
previous results we get:

Theorem 3.4.7 Suppose that n is greater than the arity of every function
symbol in the vocabulary of L and greater or equal to the arity of every
relation symbol in the vocabulary of L. If T is a complete Ln-theory such that
Snn (T ) is finite then the following hold:

(i) If M is a model of T which is ω-categorical and ω-stable, then for any
finiteA ⊂ M there is a finiteN �Ln M such thatA ⊆ N , and consequently
N |= T .

(ii) Suppose that for everyM |= T andA ⊆ M , cl(A) = A. If there is a stable
Ln-amalgamation class A for T such that A contains at least one infinite
structure then T has arbitrarily large finite models.

Observe the assumption in part (ii) of the above theorem that the closure
operation is trivial. We now turn to the case when ‘cl’ is not trivial (i.e. for
some A, cl(A) �= A). An example of such a situation is if M is an infinite
vector space over a finite field and T = T hLn(M), for sufficiently large n. Then
there cannot exist a trivial closure operation cl and a stable Ln-amalgamation
class for T , with respect to this closure operation, which contains an infinite
structure. The reason is that it would imply the existence of an infinite vector
space, over the same field, which is Ln-determined and this is impossible. For
in every infinite model of T we can choose m greater than n and on the one
hand a linearly independent sequence ā = (a1, . . . , am) and on the other hand
a sequence b̄ = (b1, . . . , bm) such that b̄ is not linearly independent but every
proper subtuple of b̄ is linearly independent. With this choice, ā and b̄ have the
same Ln-type but not the same L-type, so the structure is not Ln-determined.

Motivated by this example we would like to find some amalgamation prop-
erty for complete Ln-theories T which holds also for the example of vector
spaces and which implies the existence of an ω-categorical and ω-stable model
of T , so that we are in position to apply Theorem 3.4.6.
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Definition 3.4.8 Let T be an Ln-theory. T has the strong Ln-amalgamation
property over countable models if, whenever

M0 |= T ,M0 �Ln Mi , whereMi is countable for i = 1, 2, ā1 ∈ M1, ā2 ∈ M2

are finite sequences and (M1, cl(ā1)M0) ≡Ln (M2, cl(ā2)M0)

then

there are M and Ln-elementary embeddings fi : Mi → M , i = 1, 2, such
that f1(ā1) = f2(ā2) and fi is the identity on M0 for i = 1, 2.

Remark 3.4.9 Suppose that M is a vector space over a finite field and T =
T hLn (M), for n larger than the number of elements in the field. Using the
elementary theory of vector spaces it is now easy to verify that T has the strong
Ln-amalgamation property over countable models. Also one can easily verify
that if cl is taken to be linear closure then there is a stable Ln-amalgamation
class for T with respect to this closure operation.

Theorem 3.4.10 (Baldwin, Lessmann [2]) Suppose that T is a complete Ln-
theory such that Snn (T ) is finite and T has the strongLn-amalgamation property
over countable models.

(i) If M |= T and M is stable and Ln-determined then M is ω-stable.
(ii) If there is a stable Ln-amalgamation class A for T such that A contains

at least one infinite structure then T has arbitrarily large finite models;
these can be taken as Ln-elementary substructures of the limit of A.

Proofsketch. (ii) follows from (i) and earlier results. Concerning (i): The
assumptions that Snn (T ) is finite, M is stable and Ln-determined (so M is
ω-categorical) imply, via Shelah’s “unstable formula theorem” [31], that for
any countable A ⊆ M ′ ≡L M , SL

n

1 (A,M ′) is countable. The useful conse-
quence of the strong Ln-amalgamation property over countable models is that
ifN � N ′ |= T , whereN is countable, and ā, b̄ ∈ N ′ are finite sequences then

(N ′, cl(ā)N ) ≡Ln (N ′, cl(b̄)N )

implies

(N ′, cl(āN )) ≡Ln (N ′, cl(b̄N)).

This property together with the assumption that M is Ln-determined (which
by the ω-categoricity ofM implies that anyN ≡L M is Ln-determined) shows
that M is ω-stable, by a counting types argument. �
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3.5 Recursive bounds

In this section we derive results about recursive upper bounds of the size of the
least model of Ln-theories.

We will use the theory of smoothly approximable structures which is pre-
sented in detail in [3]. Every structure which is ω-categorical and ω-stable is
smoothly approximable which essentially follows from [4], but also see [24].
One of several equivalent ways of defining ‘smoothly approximable’ is the
following:

Definition 3.5.1 An L-structure M is smoothly approximable if M is ω-
categorical and if every L-sentence which is true in M is true in a finite
substructure N ⊆ M such that

(1) for every θ (x̄) ∈ L there is χ (x̄) ∈ L such that

{ā ∈ N : M |= θ (ā)} = {ā ∈ N : N |= χ (ā)}, and

(2) for all ā, b̄ ∈ N of the same finite length

(N, ā) ≡L (N, b̄) ⇐⇒ (M, ā) ≡L (M, b̄).

We derive our results from the following theorem which does not directly speak
about smoothly approximable structures.

Theorem 3.5.2 (Cherlin, Hrushovski [3]) We can effectively decide for a
given sentence and k < ω if that sentence has a finite model M such that
|SL4 (∅,M)| = k.

For our purposes we now define a recursive function f : ω2 → ω as follows:

Let f(n, k) = k if n < 2 or k = 0.
Now suppose that n ≥ 2 and k ≥ 1.
• Let ϕ1, . . . , ϕm be an enumeration of all sentences (up to equivalence)

of quantifier rank at most k + n in a language Lk such that for every
1 ≤ i ≤ n the vocabulary of Lk contains exactly k constant symbols and
exactly k i-ary relation symbols, but no function symbols, and we assume
that ‘=’ is one of the binary relation symbols.

• For 1 ≤ i ≤ m, let Li be the language built up from the constant symbols
and the relation symbols that occur in ϕi and the identity symbol ‘=’ (but
no other symbols from the vocabulary of Lk). Then use Theorem 3.5.2 to
decide if ϕi has a finite model Mi such that |SLi4 (∅,Mi)| ≤ k;

• if such a model of ϕi exists then search until we find such Mi and let
�i = |Mi|; otherwise let �i = 0.

• Then let f(n, k) = max{�1, . . . , �m}.
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If we had allowed function symbols in the language Lk appearing in the def-
inition of f, then there would have been infinitely many formulas of rank at
most n ≤ k + n (even quantifier free formulas) that are non-equivalent. When
computing f we depend on the fact that (with the stated definition) there are
only finitely many non-equivalent Lk-formulas with quantifier rank at most
k + n.

Definition 3.5.3 Let T be a complete Ln-theory. As in the previous sections
we associate a uniformly locally finite closure operation cl with models of T .
We now define a function cl∗ : ω→ ω as follows:

cl∗(n) = max{|cl(A)| : A ⊆ M |= T , |A| ≤ n}.
Corollary 3.5.4 Let T be a complete Ln-theory such that Snn (T ) is finite and
let cl be the closure operation associated with models of T . Also assume that
n ≥ cl∗(4) and that the vocabulary of L contains no function symbols and that
the arity of every relation symbol is at most n. IfM |= T , whereM is smoothly
approximable and |Sncl∗(4)(∅,M)| = |Scl∗(4)(∅,M)|, then ϕ has a finite model of
cardinality at most f(n, |Snn (∅,M)|) (where Snn (∅,M) = Snn (T )).

Proof. Suppose that T , L, n and M satisfies the premises of the corollary. By
renaming symbols if necessary we may assume, without loss of generality, that
L ⊆ Lk where Lk is the language that occurs in the definition of f, with k =
|Snn (T )|. By Fact 3.2.6, T is axiomatized by anLn-sentence with quantifier rank
at most |Snn (T )| + n = k + n. SinceM is smoothly approximable it follows that
M has a finite substructure N such that N |= T and |S4(∅, N )| ≤ |S4(∅,M)|.
From the assumptions that n ≥ cl∗(4) and |Sncl∗(4)(∅,M)| = |Scl∗(4)(∅,M)| it
follows that

|S4(∅, N )| ≤ |S4(∅,M)| ≤ |Scl∗(4)(∅,M)| = |Sncl∗(4)(∅,M)| ≤ |Snn (∅,M)| = k.

By the definition of f, there is a model of T with cardinality at most
f(n, |Snn (∅,M)|). �

Corollary 3.5.5 Let n ≥ 4 and let L be a language with finite vocabulary
which contains no function symbols and in which all relation symbols have
arity at most n. If T is a complete Ln-theory such that

• Snn (T ) is finite,
• n ≥ cl∗(4),
• for every M |= T and every A ⊆ M , cl(A) = A, or T has the strong Ln-

amalgamation property over countable models, and
• there is a stable Ln-amalgamation class for T (with respect to cl),

then T has a model of cardinality at most f(n, |Snn (T )|).
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Proof. Suppose that T satisfies the above conditions. First note that (by
Fact 3.2.6) T is axiomatized by an Ln-sentence with quantifier rank ≤
|Snn (T )| + n. By results in the previous section, T has an ω-categorical and ω-
stable (hence smoothly approximable) modelM which is Ln-determined (with
respect to the given closure operator). Then |Sncl∗(4)(∅,M)| = |Scl∗(4)(∅,M)|, so
by Corollary 3.5.4, T has a modelN with cardinality at most f(n, |Snn (∅,M)|) =
f(n, |Snn (T )|). �

Remark 3.5.6 Grohe [17] has shown that if n ≥ 3 then there does not exist a
recursive function fn : ω→ ω such that for every complete Ln-theory T with
finite models,

min{|M| : M |= T } ≤ fn(|Snn (T )|).

Except for the results presented here, an existence result about recursive upper
bounds has also been obtained by Dawar in [5]. The hypothesis of Dawar’s
result is that the class C of finite structures considered (where C could be
the class of all finite models of an Ln-theory, for example) has the ‘weak n-
Ehrenfeucht-Mostowski property’. Roughly speaking, this property says that
every sufficiently long “Ln-indiscernible” sequence in a structure in C can both
be extended in some Ln-elementary extension which belongs to C and reduced
(as long as it does not become too short) in some Ln-elementary substructure
that belongs to C.

The question arises: How general can a class, T , of complete Ln-theories
with finite models be if we require that there exists a recursive function f such
that min{|M| : M |= T } ≤ f (|Snn (T )|) for all T ∈ T ? Another problem is to
determine such a function f more precisely (polynomial, exponential, etc.),
perhaps starting with some smaller class of theories over which we have more
control.

3.6 Simple, possibly not smoothly approximable structures

This paper has focused on obtaining finite models for a complete Ln-theory
T by showing that T has an infinite model M which has the finite submodel
property, by which we mean that every sentence which is true in M is true
in a finite substructure of M . As stated in Theorem 3.4.6, every ω-categorical
ω-stable structure has the finite submodel property. The same holds for the
more inclusive class of smoothly approximable structures which also contains
unstable examples (see [3]).
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There are natural examples of structures which have the finite submodel
property but are not smoothly approximable, such as the random (bipartite)
graph Grg [24]. Grg can be defined as the Fraı̈ssé limit of the class of all finite
graphs, or alternatively one can give an explicit axiomatization of the complete
theory ofGrg; see for instance [12, 20] for more about the random graph. (The
random bipartite graph is obtained similarly by considering the class of all finite
graphs expanded with an equivalence relation with exactly two classes subject to
the condition that edges may only occur between elements in different classes.)
The random (bipartite) graph has the following model theoretical properties:
it is ω-categorical with elimination of quantifiers, (super)simple (but unstable)
with SU-rank 1 and has trivial forking; see for instance [20] and [32] for
these model theoretic and stability/simplicity theoretic notions. The fact that
Grg has SU-rank 1 implies that the algebraic closure operation ‘acl’ forms a
pregeometry on Grg (see [20]).

Before continuing we note that there is a line of research [28, 13, 14, 15], not
discussed here, which studies the connection between classes of finite structures
in which definable sets have uniform behaviour, asymptotically, and (infinite)
simple structures with finite SU-rank and with a measure on the definable
subsets, but which are not necessarily smoothly approximable. A question not
answered here is whether the approach in this article has anything in common
with the work about ‘asymptotic classes’ and ‘measurable structures’ (the
random graph fits within both frameworks).

Work in two different directions has been carried out by the author to prove
the finite submodel property for classes of structures which contain the ran-
dom (bipartite) graph. One direction of research [10] studies ω-categorical
structures on which the algebraic closure operation forms a pregeometry. The
other direction of research [11, 26] studies structures which are ω-categorical,
simple with finite SU-rank and have trivial forking. In both directions a proba-
bilistic argument is involved in proving the finite submodel property. In order
to carry out this argument we need to assume that definable relations are
“sufficiently independent” from each other in senses that are made precise in
[10] and [26]. It seems that without any assumption about “sufficient inde-
pendence” we are in a difficult situation with respect to proving or disproving
the finite submodel property. We say more about this in the last paragraph of
Section 3.7.

The notion of “sufficient independence” which is considered in [26] is called
the ‘n-embedding of types property’ (for a natural number n ≥ 2), with respect
to certain kinds of “generators”. Before stating the main result of [26] we
introduce some notation from stability/simplicity theory and explain, roughly,
the involved notions. We assume familiarity with imaginary elements (see [20]
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or [32] for example). By A�|
C
B we mean that A is independent from B over C

(see for example [32] for a definition of ‘independence’). The negation ofA�|
C
B

is denoted by A�|�
C
B. A complete first-order theory T has trivial dependence

(or trivial forking) if whenever A,B1, B2, C are subsets ofMeq whereM |= T

and A�|�
C

(B1 ∪ B2), then A�|�
C
Bi for i = 1 or i = 2.

Here is a rough description of the n-embedding of types property (with
respect to all/simple generators). Suppose that T is a complete first-order theory
which is simple (see [32] for a definition of ‘simple’) and assume thatM |= T .
As usual,Meq denotes the extension ofM by imaginary elements and ‘algebraic
closure’ is taken in the structure Meq (see [20] for a definition of algebraic
closure). We identify every natural number n with the set {0, . . . , n− 1} and
let P(n) be the set of all subsets of n and P−(n) = P(n)− {n}. Suppose that
A0
i and B0

i , for i ∈ n, are subsets of Meq and that, for every w ∈ P−(n), Aw is
the algebraic closure of

⋃
i∈w A

0
i and Bw is the algebraic closure of

⋃
i∈w B

0
i .

Also assume that

� for all w,w′ ∈ P−(n), Aw �
|

Aw∩w′
Aw′ and Bw �|

Bw∩w′
Bw′ , and

� for everyw ∈ P−(n) there is an elementary map (see [20]) fw fromAw onto
Bw such that fw(A0

i ) = B0
i for every i ∈ w, and if w ⊆ w′ then fw′ extends

fw�
⋃
i∈w A

0
i .

The n-embedding of types property says (omitting some details) that if
ā = (a1, . . . , ar ) is a sequence of elements from Meq which does not con-
tain any element from the algebraic closure of

⋃
w∈P−(n) Aw, then there are

b̄ = (b1, . . . , br ) in Meq (we can assume that M is sufficiently saturated) and,
forw ∈ P−(n), elementary mapsgw : Aw ∪ {a1, . . . , ar} → Bw ∪ {b1, . . . , br}
such that gw�

⋃
i∈w A

0
i = fw�

⋃
i∈w A

0
i and if w ⊆ w′ then gw′ extends gw�⋃

i∈w A
0
i .

The phrase ‘with respect to all/simple generators’ when stating the condition
‘n-embedding of types property with respect to all/simple generators’ in the
next theorem refers to the conditions (if any) that we impose on the sets A0

i ,
B0
i , for i ∈ n. In [26] the sets A0

i , B
0
i , i ∈ n, are called the “generators” of

the sets Am, Bm, m ∈ P−(n). Every stable theory (see [20, 31, 32] for the
notion ‘stable’) has the n-embedding of types property with respect to simple
generators for every 1 < n < ω [26]. The complete theory of the random graph
[20] has the n-embedding of types property with respect to all generators for
every 1 < n < ω [26].

Theorem 3.6.1 [26] Suppose that there is m < ω such that every function
symbol of the language of M has arity at most m. If T h(M) is ω-categorical,
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simple with finite SU-rank, has trivial dependence and, for every 1 < k < ω,
has the k-embedding of types property with respect to all generators, then M
has the finite submodel property. If the SU-rank of T h(M) is 1, then the phrase
‘with respect to all generators’ can be replaced by the phrase ‘with respect to
simple generators’, a weaker hypothesis.

It follows from Lemma 3.6.3, below, that Theorem 3.6.1 holds also if we replace
‘trivial dependence’ with ‘n-degenerate dependence for some n < ω’, where
n-degenerate dependence is defined as follows.

Definition 3.6.2 Let T be a complete simple (L-) theory. We say that T
has n-degenerate dependence if the following holds: Whenever M |= T and
A,B,C ⊆ M and A�|�

C
B then there is B ′ ⊆ B such that |B ′| ≤ n and A�|�

C
B ′.

Observe that trivial dependence implies 1-degenerate dependence.

Lemma 3.6.3 Suppose that T isω-categorical, simple with finite SU-rank and
with n-degenerate dependence for some n < ω. Then T has trivial dependence.

Proof sketch. Suppose that T satisfies the premises of the lemma. By Corollary
4.7 in [18] and Lemma 3.22 in [7], it is sufficient to show that every type
with SU-rank 1 is trivial, i.e. if D is the set of realizations of the type, in Meq

where M is a sufficiently saturated model of T , then the restriction to D of
the algebraic closure operator forms a trivial pregeometry. For a contradiction,
suppose that there is a nontrivial type of SU-rank 1. By Corollary 3.17 in [7]
there is a definable subset of Meq on which the algebraic closure is a projective
geometry over a finite field. Now a contradiction can be derived in the same
way as in the last two paragraphs of the proof of Proposition 8.7 in [8]. �

Now we can derive a corollary which applies to Ln-theories and amalgamation
classes. Suppose that � is a subset of L and T is a set of sentences from �

such that � is closed under subformulas, every unnested atomic formula of L
is equivalent, modulo T , to a formula in �, and for every x̄, �x̄ is finite up to
equivalence modulo T . Also suppose that A is a �-amalgamation class for T .
Note that the assumptions about � hold if � = Ln and n is greater than the
arity of every symbol in the vocabulary. Then the assumptions of Lemma 3.3.9
and of Corollary 3.3.13 are satisfied, so by these results a unique limit of A
exists. By Lemma 3.3.12 and Proposition 3.3.18 the limit of A is finite or
ω-categorical.

Corollary 3.6.4 Assume that there is m < ω such that every function symbol
has arity at most m. Let T be a set of sentences from � ⊆ L where � is closed
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under subformulas. Suppose that, for every x̄, �x̄ is finite up to equivalence
modulo T and that every unnested atomic formula is equivalent to a formula in
�, modulo T . Moreover, suppose that T has a �-amalgamation class A with
a limitM such thatM is simple with finite SU-rank and has both n-degenerate
forking for some n < ω and the k-embedding of types property with respect to
all generators for every 1 < k < ω. Then T has arbitrarily large finite models
(which can be taken as substructures of M).

The following example illustrates the notions and assumptions of the previous
corollary.

Example 3.6.5 Let the vocabulary of the language L be {=, E} where
E is a binary relation symbol. Let χ be the sentence ∀x1, x2

(¬E(x1, x1) ∧
(E(x1, x2) → E(x2, x1))

)
. For every n ≥ 2 and every w ⊆ {1, . . . , n− 1} let

θnw(x1, . . . , xn) be the formula∧
i∈w

E(xi, xn) ∧
∧
i /∈w
¬E(xi, xn)

and let ϕnw be the sentence

∀x1, . . . , xn−1

(∧
i �=j

xi �= xj → ∃xnθnw(x1, . . . , xn)
)
.

Then let ϕn be the conjunction of χ and every ϕnw as w ranges over subsets of
{1, . . . , n− 1}, so ϕn ∈ Ln. Also, every model of ϕn is an undirected graph, or
just ‘graph’ for brevity.

Fix an arbitrary natural number n ≥ 2. Recall that, by Definition 3.3.1,
M ≡Ln N means that M and N are Ln-elementarily equivalent, i.e. satisfy
exactly the same Ln-sentences, From the n-pebble game characterization of
Ln-elementary equivalence [23, 29] it follows that if M and N are models
of ϕn, then Duplicator (or “player II” or “∃”) has a winning strategy in the
n-pebble game on M and N in ω rounds, and therefore M ≡Ln N . It follows
that T n = {ϕn} is a complete Ln-theory (in the sense of Definition 3.2.1 (vii)).

Infinite models of ϕn exist since for every sequence a1, . . . , an−1 from a
graph and every w ⊆ {1, . . . , n− 1} we can add a new element b to the graph
and extend the interpretetation of E so that E(ai, b) holds if and only if i ∈ w.
By repeating this process systematically in ω steps (if we start with a finite
structure) we can make sure that the union of the graphs created in the process
is a model of ϕn. In fact, by reasoning similarly as has been outlined, we can
show the following.

(I) For every graph G (finite or infinite) there is a graph M |= ϕn such that G
is a substructure of M .
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From the n-pebble game characterization of ‘M ≡Ln N ’ we can also derive the
the following.

(II) If M and N are models of ϕn, m < ω, a1, . . . , am ∈ M are dif-
ferent elements and b1, . . . , bm ∈ N are different elements, then
(M,a1, . . . , am) ≡Ln (N, b1, . . . , bm) if and only if for all i, j ∈
{1, . . . , m}, M |= E(ai, aj ) ⇐⇒ N |= E(bi, bj ).

Consequently, if M,N |= ϕn then every embedding f : M → N is an Ln-
elementary embedding. In particular, ifM,N |= ϕn thenM �Ln N if and only
if M is a substructure of N .

For every M |= ϕn and every A ⊆ M , define cl(A) = A, so every subset of
every model ofϕn is closed. LetA be the class of all models of T n = {ϕn}. From
the definition ofA it immediately follows that (1)–(3) in the definition of anLn-
amalgamation class for T n (Definition 3.3.5) are satisfied. We verify that also
(4) in the same definition holds. Suppose that M1,M2 ∈ A, a1, . . . , am ∈ M1,
b1, . . . , bm ∈ M2 and that

(M1, a1, . . . , am) ≡Ln (M2, b1, . . . , bm).

To simplify the argument, without loss of generality, we may assume that
ai = bi for i = 1, . . . , m, and that M1 ∩M2 = {a1, . . . , am}. By (I), the graph
M1 ∪M1 (whereM1 ∪M2 |= E(a, b)⇐⇒M1 |= E(a, b) orM2 |= E(a, b)) is
a substructure of some model N of T n = {ϕn}. Since M1,M2 |= ϕn, it follows
from (II) that Mi �Ln N for i = 1, 2. Hence A is an Ln-amalgamation class
for T n.

By Lemma 3.3.9 and Corollary 3.3.13, A has a unique limit M which is
countable (by the definition of limit). By Lemma 3.3.12, M is Ln-determined
which together with (II) implies that

(III) if m < ω, a1, . . . , am ∈ M are different elements and b1, . . . , bm ∈ M
are different elements, then (M,a1, . . . , am) ≡L (M,b1, . . . , bm) if and
only if for all i, j ∈ {1, . . . , m}, M |= E(ai, aj )⇐⇒M |= E(bi, bj ).

Hence T hL(M) has elimination of quantifiers and is ω-categorical. Since M is
the limit ofA, conditions (ii) and (iii) in Lemma 3.3.9 are satisfied. This together
with (I) implies that for everym < ω, every choice of distinct a1, . . . , am ∈ M
and everyw ⊆ {1, . . . , m}, there is b ∈ M such thatM |= E(ai, b)⇐⇒ i ∈ w.
HenceM |= ϕm for every 1 < m < ω. This implies thatM is the random graph
[12, 20]. It is well-known that T hL(M) is simple with SU-rank 1 and has trivial
dependence [32]. In [26] it is shown that T hL(M) has the k-embedding of types
property with respect to all generators, for every 1 < k < ω. Note that since
M |= ϕm for every 1 < m < ω, we can, for every m < ω, find ai, bi ∈ M for



132 Vera Koponen

i < m such that M |= E(ai, bj ) if and only if i ≤ j . Hence M and A are not
stable in Ln.

Corollary 3.6.4 implies that T n = {ϕn} has arbitrarily large finite models
(all of which are isomorphic to substructures ofM). This is nothing new, since
the proof of the so-called 0-1 law for the random graph shows that, for every
1 < n < ω, the number of graphs with universe m = {0, . . . , m− 1} which
satisfy T n divided by the number of all graphs with universem approaches 1 as
m→∞ [12, 20]. At the core of the proof is a probabilistic argument (“What is
the probability that ϕn holds in a graph with universem?”). The method in this
example of showing that ϕn has arbitrarily large finite models does not avoid
the main idea, the probabilistic argument, in the proof of the 0-1 law. On the
contrary, our approach has utilized this idea in a more general setting, but this
is not evident in this paper since we don’t discuss the proof of Theorem 3.6.1
or of Theorem 3.7.7, on which the former theorem relies.

Remark 3.6.6 It would be nice if we could specify some properties of com-
plete Ln-theories (without speaking about limits of amalgamation classes)
which, if they hold for such a theory, would allow us to derive the exis-
tence of a structure M as in Theorem 3.6.1. However, while the notion of
stability straightforwardly transfers from the context of complete L-theories
to complete Ln-theories (in Section 3.4) the notions ‘n-degenerate forking’,
‘SU-rank’ and ‘n-embedding of types property’ involve the stability/simplicity
theoretic notion of forking (or (in)dependence) and the author does not cur-
rently see a straightforward, or “natural”, way of defining forking with respect
to a complete Ln-theory (which, according to our definition, need not be com-
plete in the usual sense). The notion of simplicity may, on the other hand,
be straightforwardly transferred to the context of complete Ln-theories by
saying that a complete Ln-theory is simple if no Ln-formula has the tree prop-
erty (see [32]) in any model of the theory. However, the question remains
whether simplicity, defined in this way, has any interesting consequences for
Ln-theories.

3.7 Structures on which algebraic closure forms a
pregeometry

In this section we give a brief overview of the main results in [10], about
the finite submodel property, which are stated as Theorems 3.7.6 and 3.7.7
below. Theorem 3.7.7 is used to prove the main result in [26] (stated as Theo-
rem 3.6.1 in this survey). We will assume throughout this section that M is an
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ω-categorical L-structure such that the algebraic closure in M , denoted aclM ,
forms a pregeometry on M; see for instance [10] or [20] for a definition of a
pregeometry. A consequence of M being ω-categorical is that for every finite
A ⊆ M , aclM (A) is finite. Moreover, in this context every subset A ⊆ M has a
dimension defined by

dimM(A) = inf{|B| : B ⊆ A and A ⊆ aclM (B)}.
A type is called algebraic if it has only finitely many realizations.

Definition 3.7.1 Let 0 < k < ω. We say thatM is polynomially k-saturated if
there is a polynomial P (x) such that for every n0 < ω there is a natural number
n ≥ n0 and a finite substructure N ⊆ M such that:

(1) n ≤ |N | ≤ P (n).
(2) N is algebraically closed (in M).
(3) Whenever A ⊆ N , dimM(A) < k and q(x) ∈ SL1 (A,M) is non-algebraic,

then there are distinct b1, . . . , bn ∈ N such thatM |= q(bi) (i.e. bi realizes
q in M) for each 1 ≤ i ≤ n.

Examples of structures on which the algebraic closure forms a pregeometry and
which are polynomially k-saturated for every 0 < k < ω include the “infinite
empty structure” (having only the relation ’=’), the random (bipartite) graph,
infinite vector spaces, projective spaces and affine spaces over any finite field
[10]. Another example is obtained by “independently” expanding a vector space
(for instance) with the random graph [10].

We also have the following result from [10] which relates polynomial k-
saturation to the finite submodel property.

Lemma 3.7.2 IfM is polynomially k-saturated for every 0 < k < ω, thenM
has the finite submodel property.

Assumption 3.7.3 From now on L is a first-order language such that L’s
vocabulary is included in L’s vocabulary, so L ⊆ L. We suppose that aclM
coincides with aclM�L (i.e. aclM (A) = aclM�L(A) for everyA ⊆ M). Moreover,
we assume that both M and M�L have elimination of quantifiers, where M�
L denotes the reduct of M to L. If these conditions are not fulfilled in the
beginning, then we can just add new relation symbols to L and L so that
the resulting expansions satisfy these conditions and all previous assumptions
about M .

Before going to the next definition we note that if aclM and aclM�L coincide and
ā, b̄ ∈ M satisfy exactly the same L-formulas, then ā is algebraically closed if
and only if b̄ is.
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Definition 3.7.4 We say that M satisfies the k-independence hypothesis over
L if the following holds:
Whenever A and B are algebraically closed substructures of M and

(1) dimM (B) ≤ k,
(2) dimM (A) < k,
(3) f : A�L→ B�L is an L-embedding (i.e. it preserves all atomic L-

formulas and negations of atomic L-formulas), and
(4) if A′ ⊂ A (proper inclusion) is an algebraically closed substructure then

the restriction f : A′ → B is an L-embedding,

then there are an algebraically closed substructureC ⊆ M and anL-ismorphism
g : B�L→ C�L such that

(5) gf : A→ C is an L-embedding, and
(6) for every algebraically closed substructure B ′ ⊆ B such that f (A) �⊆ B ′,

g : B ′ → C is an L-embedding.

The definition of the k-independence hypothesis given above looks a
bit different from the definition of it given in [10], but the two ways
of defining the k-independence hypothesis are equivalent under Assump-
tion 3.7.3. Below follow some examples which illustrate the k-independence
hypothesis.

Examples 3.7.5 (a) The random graph: Let the vocabulary of L be {=} and
let the vocabulary of L be {=, E} where E is a binary relation symbol. Let
M be the random graph in the language L where E is interpreted as the edge
relation. Then M and M�L have elimination of quantifiers and aclM(A) = A

and dimM(A) = |A| for any A ⊆ M . Since any finite graph embeds into M
it follows that M satisfies the k-independence hypothesis over L for every
k < ω. With the notation of the definition, the case when dimM (A) = 2 is
the most interesting. The reason is that M has elimination of quantifiers in
a language with only binary relations symbols and that dimension coincides
with cardinality.

(b) The random structure: Let L be as in (a) and let the vocabulary of L be
{=, R1, . . . , Rm} where Ri are relation symbols of any arity. Let M be the
random structure in the language L, i.e. M is the Fraı̈ssé limit of the class
of all finite L-structures. For the same reasons as in (a), M satisfies the k-
independence hypothesis over L for every k < ω. However the verification
becomes a little bit more interesting for A of dimension > 2 if L contains
relation symbols of arity greater than 2.
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(c) A vector space expanded with the bipartite random graph: Let K be the
class of all finite structures
N = (V, P,E,+, f0, f1, 0) such that:
1. V , the universe of N , is a vector space over the field F = {0, 1}.
2. P is a unary relation.
3. E is a binary relation symbol interpreted as an irreflexive and symmetric
relation.
4.+ is a binary function symbol interpreted as vector addition and the constant
symbol 0 is interpreted as the zero vector.
5. fi(v) = i · v, for i = 0, 1 and any v ∈ V (so fi represents scalar multiplica-
tion by i).
6. N |= ∀xy( E(x, y) → [ (

P (x) ∧ ¬P (y)
) ∨ (¬P (x) ∧ P (y)

) ] )
.

7. N |= P (0).
It is easy to verify thatK is nonempty and has the hereditary property, the joint
embedding property and the amalgamation property and is uniformly locally
finite (see [20]). Hence the Fraı̈ssé limit of K , which we call M , exists and
is ω-categorical with elimination of quantifiers. Since the reduct of M to the
language with vocabulary {=, P ,E} is the random bipartite graph, M is not
smoothly approximable [3].

Let L ⊆ L be the sublanguage which contains all symbols of L except
P and E. Then M�L is a vector space over a finite field, so M�L has
elimination of quantifiers. It is not hard to see, using quantifier elimination
of M and the fact that any structure in K can be embedded into M (since
M is the Fraissé limit of K), that aclM (A) is linear span of A. Hence aclM
and aclM�L coincide. Again using the fact that M is the Fraissé limit of K it
follows thatM satisfies the k-independence hypothesis overL, for every k < ω.

(d) The random pyramid-free (3)-hypergraph: As shown in [10], the random
pyramid-free (3)-hypergraph does not satisfy the 4-independence hypothesis
over the language L with vocabulary {=} (as opposed to the case of the random
graph).

Having Assumption 3.7.3 in mind, we now state the two main results of [10].

Theorem 3.7.6 Suppose that M�L is polynomially k-saturated and that M
satisfies the k-independence hypothesis over L. If ϕ ∈ L is an unnested sen-
tence, in which at most k distinct variables occur, and M |= ϕ, then ϕ has
arbitrarily large finite models.

Note that Theorem 3.7.6 only speaks about arbitrarily large finite models, but
does not claim that these can be taken as substructures of M .
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Theorem 3.7.7 Suppose that, for every 0 < k < ω, M�L is polynomially k-
saturated and that M satisfies the k-independence hypothesis over L. Then M
is polynomially k-saturated, for every 0 < k < ω, and thus M has the finite
submodel property.

We say thatM has trivial (also called degenerate) algebraic closure if for every
A ⊆ M , aclM (A) =⋃

a∈A aclM (a). Examples of (ω-categorical) M which are
simple with SU-rank 1 and trivial algebraic closure include the random (bipar-
tite) graph, the random structure and the random pyramid-free (3)-hypergraph.
The following is a consequence of the first theorem:

Corollary 3.7.8 Suppose that M is simple with SU-rank 1 and has trivial
algebraic closure. If ϕ ∈ L3 is unnested and M |= ϕ then ϕ has arbitrarily
large finite models.

The assumption thatM satisfies the k-independence hypothesis (over L) in the
previous two theorems is used in the probabilistic argument at the core of the
proofs. It generalizes the argument used when showing that the random graph
(or random structure) satisfies a 0-1 law with the uniform probability measure.
The proofs of Theorems 3.7.6 and 3.7.7 do not however lead to 0-1 laws in
general, with the uniform probability measure.

It seems that without assuming any kind of independence we get into a
difficult situation with respect to proving or disproving the finite submodel
property, as witnessed by the complete theory of the random pyramid-free
(3)-hypergraph (example (d) above). It is ω-categorical with elimination of
quantifiers, simple with SU-rank 1, has trivial dependence and trivial alge-
braic closure. However, for all k ≥ 4, it does not satisfy the k-independence
hypothesis over (the only proper sublanguage) L with vocabulary {=} [10].
It has neither the n-embedding of types property for any n ≥ 4, nor the
n-amalgamation property for any n ≥ 4 [25, 26]. It is an open problem
whether or not the random pyramid-free (3)-hypergraph has the finite submodel
property.

3.8 Questions and problems

In connection with the approach expounded in this paper one may of course
ask many questions, some of which are stated below.

(1) Can we find “natural” amalgamation properties and stability/simplicity
theoretic properties for Ln-theories T (or other fragments of first-order logic)
which imply the existence of an infinite model M of T with the finite model
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property (i.e. every sentence which is true in M is true in a finite model), for
other classes of theories T than those that fit into the framework presented here
(in sections 1–3)?

(2) In particular, can we find “natural” amalgamation properties and sta-
bility/simplicity theoretic properties for “simple” Ln-theories T (without a
stable amalgamation class) which guarantee that T has a model such as M in
Theorem 3.6.1?

(3) Can stronger upper bounds than recursive (exponential, polynomial etc.)
on the size of the smallest model be obtained for some interesting classes of
theories?

(4) Are there other approaches, than the one presented here, towards under-
standing when (arbitrarily large) finite models exist and when a recursive (or
better) upper bound of the smallest model exists, in terms of the number of
Ln-types, for instance?

(5) Can one derive the conclusions of Theorem 3.6.1 from a weaker assump-
tion than that forking is trivial?

(6) Can the approach in Section 9, about structures on which algebraic
closure forms a pregeometry, be helpful for understanding Ln-theories (or, say,
theories in a language with a finite bound on the quantifier rank)?

(7) The random graph fits within the framework presented in sections 3.6
and 3.7 as well as within the framework of ‘asymptotic classes’ and ‘measurable
structures’ [28, 13, 14, 15]. Do the two approaches have anything in common?
If ‘yes’, can both approaches together enrich our knowledge about relationships
between infinite structures and classes of finite structures.

(8) Does the random pyramid-free (3)-hypergraph (Example 3.7.5 (d)) have
the finite submodel property?
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4

Definability in classes of finite structures

dugald macphersona and charles steinhornb

4.1 Introduction

This paper provides an overview of recent work by the authors and others on
two topics in the model theory of finite structures. The point of view here
differs from that usually associated with the term ‘finite model theory’, as
presented for example in [21] or [46], in which the emphasis and motivation
come primarily from computer science. Instead, the inspiration for this work has
its origins in contemporary (infinite) model theoretic themes such as dimension,
independence, and various measures of the complexity of definable sets. Each
of the topics deals with classes of finite structures for first-order logic that are
isolated by conditions that are drawn from these model-theoretic considerations.
Moreover, in both cases, connections exist to areas in infinite model theory such
as stability and simplicity theory, and o-minimality. This survey is intended for
both mathematical logicians and computer scientists whose work focuses on
logical aspects of the subject.

The first theme concerns asymptotic classes of finite structures. This subject
has its origins in the model theory of finite fields, via the work of Chatzidakis,
van den Dries and Macintyre [13] (see Theorem 4.2.1) and the earlier model
theory of finite fields developed by Ax [4], and ultimately rests on the Lang-
Weil bounds for the number of points in a finite field of an irreducible variety
defined over that field. Given a first-order formula ϕ in the language of rings, the
analysis in [13] provides estimates for the cardinality of the set defined by this
formula in all finite fields in terms of two parameters, dimension and measure.
Denoting the universe of a finite field by F , the cardinality estimate has the
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form µ|F |k , where k represents the dimension and µ the measure of the size of
the set defined by ϕ. Asymptotic classes are, roughly speaking, classes of finite
structures with a strong uniformity condition on the cardinality of definable
sets that mirrors precisely that for finite fields (see [22], [25], or [48]). Indeed,
finite fields, as developed in [13], provides a key example, but there are many
others. Ryten [52] has shown that certain difference fields, and hence any family
of finite simple groups of fixed Lie rank, fit into this framework, and Elwes
[23] has established that every smoothly approximable structure admits a class
of (finite) envelopes which forms an asymptotic class that witnesses smooth
approximability. The uniformity properties of asymptotic classes feed through
to ultraproducts of the members of any such class: they are supersimple of finite
rank, with an additional ingredient, still rather mysterious, called measure.

The second topic, robust classes of finite structures, has its origins in an
attempt to bring an appropriate version of o-minimality to classes of finite
structures. Obstacles quickly present themselves: for example, no class of
finite totally ordered structures can be an asymptotic class – see [25] or [48].
In fact, every o-minimal structure elementarily equivalent to an ultraproduct of
totally ordered finite structures must be discretely ordered, and thus carry very
limited structure [51]. A robust class is a directed system of finite structures with
embeddings, such that any formula, interpreted in a structure in the class that is
sufficiently large relative to the parameters appearing in the formula, assumes
a constant truth value. In this setting, a non-trivial notion of o-minimality may
be defined. For example, the group (Q,+,<), with + interpreted as a ternary
relation, is the direct limit of an o-minimal robust class of finite structures. The
initial theory of robust classes has been developed by the authors, and in the
Ph.D. thesis of Macpherson’s student, R. Marshall [49]. It is our hope is that
connections eventually will emerge between the two topics of this survey and
current concerns of finite model theory. This seems particularly possible for
robust classes; here Ehrenfeucht-Fraı̈ssé games intervene, locality can play a
role, and there are very natural, if still rudimentary, notions of complexity.

The organization of this paper is as follows. Asymptotic classes are intro-
duced in Section 4.2, and examples are the focus of Sections 4.3, 4.4 and 4.6.
Smoothly approximable structures, which provide important examples for both
asymptotic classes and robust classes, are given a brief overview in Section 4.4.
Section 4.5 links asymptotic classes with contemporary infinite model the-
ory, in particular simple theories, and introduces the notion of a measurable
structure. Asymptotic classes of groups, with connections to simple theories,
are treated in Section 4.6. Robust classes are introduced in Section 4.7 and
Section 4.8 is devoted to examples. In the final section of the paper, Section 4.9,
an ‘o-minimal’ robust approximation of the ordered group of rational numbers
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is presented. Notation throughout is standard; any uncommon terminology or
notation is defined where it arises.

4.2 Asymptotic classes

The starting point here is the following theorem of Chatzidakis, van den Dries,
and Macintyre. One considers, uniformly across finite fields, families of defin-
able sets determined by formulas ϕ(x̄, ȳ), where the ȳ are parameter-variables.

Theorem 4.2.1 ([13]) Let ϕ(x̄, ȳ) be a formula in the language Lrings =
(+,×,−, 0, 1) for rings, with x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , ym). Then
there is a positive constant C, and a finite set D of pairs (d, µ) with d ∈
{0, . . . , n} and µ a non-negative rational number, such that for each finite field
Fq and ā ∈ Fmq , ∣∣|ϕ(Fnq, ā)| − µqd ∣∣ ≤ Cqd−(1/2) (∗)

for some (d, µ) ∈ D.
Furthermore, for each (d, µ) ∈ D, there is a formula ϕ(d,µ)(x̄) which defines

in each finite field Fq the set of tuples ā such that (∗) holds.

Each such pair (d, µ) may be understood as providing a finite combinatorial
version of the dimension d and measure µ of those definable sets to which the
pair corresponds. For formulas which define absolutely irreducible varieties –
without the µ – this is the result of Lang-Weil [45]. A ‘near model complete-
ness’ result of Kiefe [40], coming rapidly out of Ax’s work [4], asserts that
every formula ϕ(x̄) is equivalent, uniformly across finite fields, to a boolean
combination of formulas ∃yg(x̄, y) = 0 where g(X̄, Y ) ∈ Z[X̄, Y ]. This sug-
gests why the above theorem should hold: one can reduce definable sets to sets
built from finite-to-one projections of varieties. The details are intricate.

Theorem 4.2.1 suggests that one might consider arbitrary classes of finite
structures satisfying asymptotic uniformities in the spirit of the theorem. Note
that there are possible natural weakenings of the conditions. First, one could
weaken the error term Cqd−(1/2). There also is perhaps no reason to require
µ to be rational. Additionally, and most importantly, the class of finite fields
is in a sense 1-dimensional: any formula uniformly picking out an arbitrarily
large subset of the field (in affine 1-space) picks out a positive fraction of the
field. Thus, for example, Theorem 4.2.1 answers a question of Felgner (that
in fact inspired the paper), showing that Fq is not uniformly definable in Fq2 .
One could easily consider the universe F of a structure to be N -dimensional
if all definable subsets of F are roughly of size µ|F |d/N for d ∈ {0, 1, . . . , N}



Definability in classes of finite structures 143

and µ a constant. These considerations lead to the following definition of
Elwes [22] of an N -dimensional asymptotic class of finite structures. For the
initially considered concept, 1-dimensional asymptotic classes, see [48]. A
more extensive survey of asymptotic classes than provided here, with more
emphasis on the infinite limits, may be found in [25].

Definition 4.2.2 (Elwes, [23]) Let N ∈ N, and let C be a class of finite L-
structures, whereL is a finite language. Then we say that C is anN -dimensional
asymptotic class if the following hold.

(i) For every L-formula ϕ(x̄, ȳ) where l(x̄) = n and l(ȳ) = m, there is a
finite set of pairsD ⊆ ({0, . . . , Nn} × R>0) ∪ {(0, 0)} and for each (d, µ) ∈ D
a collection �(d,µ) of pairs of the form (M, ā) where M ∈ C and ā ∈ Mm, so
that {�(d,µ) : (d, µ) ∈ D} is a partition of {(M, ā) : M ∈ C, ā ∈ Mm}, and∣∣|ϕ(Mn, ā)| − µ|M| dN ∣∣ = o(|M| dN )

as |M| −→ ∞ and (M, ā) ∈ �(d,µ).
(ii) Each �(d,µ) is ∅-definable, that is to say {ā ∈ Mm : (M, ā) ∈ �(d,µ)} is

uniformly ∅-definable across C.

We may writeDϕ forD in the definition above, and call {�(d,µ) : (d, µ) ∈ D}
a (definable) asymptotic partition. We define h(ϕ(Mn, ā)) to be the pair

(Dim(ϕ(Mn, ā)),Meas(ϕ(Mn, ā))),

which equals (d, µ) if (M, ā) ∈ �(d,µ), except that if d = µ = 0 we work with
the convention that Dim(ϕ(Mn, ā)) = −1.

The o-notation in (i) here means that for every ε > 0 there is Q ∈ N such
that for all M ∈ C with |M| > Q and all ā ∈ Mm, where (M, ā) ∈ �d,µ, we
have ∣∣|ϕ(Mn, ā)| − µ|M| dN ∣∣ < ε|M| dN .

We call C a weak asymptotic class if C satisfies the asymptotic criterion (i)
for all ϕ, but the �(d,µ) are not assumed to be definable. We do not discuss
the intermediary condition that the �(d,µ) are definable but not necessarily
∅-definable.

It is clear that clause (i) is preserved by reducts; that is, by the process of
restricting the class of structures to the reducts in a sublanguage. In fact, by
Lemma 3.7 of Elwes [22], it is preserved by parameter-interpretations which
are uniform in the sense that the interpreting formulas range through a finite set.
However, clause (ii) may by lost under interpretations, though it is preserved
under parameter-free bi-interpretations ([22], Lemma 3.7).
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In infinite model theory, the definition of o-minimality (see e.g., [20]) places
a restriction on the definable sets in one variable: a totally ordered structure is
o-minimal if every definable set is a finite union of open intervals and points.
The Cell Decomposition Theorem in this context yields topological and logical
finiteness properties for n-variable definable sets. By the following theorem,
which might be viewed as a combinatorial cell decomposition theorem, the
story is essentially the same for asymptotic classes, though we have chosen
here to have the definition focus on the n-variable condition. The proof makes
heavy use of clause (ii).

Theorem 4.2.3 (Lemma 2.1.2 of [23]; Theorem 2.1 of [48]) Suppose that C is
a class of finite structures which satisfies Definition 4.2.2 (clauses (i) and (ii))
for n = 1, i.e. for definable sets in one variable. Then C is an N -dimensional
asymptotic class.

Its proof, an induction on n, is analogous to that of the Cell Decomposi-
tion Theorem for o-minimal structures, with asymptotic calculations replacing
topological arguments. For a definable subset X of Mn+1 let π : Mn+1 → M

denote projection to the first coordinate. Then apply the definition to π (X) and
the inductive hypothesis to the fibers Xa for a ∈ π (X). Note for every pair
(d, µ) that {a ∈ M : h(Xa) = (d, µ)} is an ∅-definable subset of M , by clause
(ii), so itself has a specified dimension and measure.

The next section provides many examples of asymptotic classes. As a
paradigmatic non-example – see Remark 4.5.2 (d) – observe that the collection
of all finite total orders is not an asymptotic class: if ϕ(x, y) is the formula
x < y, then as a ranges through a finite totally ordered structure M , ϕ(M,a)
is a subset of M of arbitrary size.

4.3 Examples of asymptotic classes

The most interesting of the examples below are associated with finite fields.
We see it as an area of significant interest to find new classes of examples with
no connection to finite fields.

Example 4.3.1 The class of all finite fields forms a 1-dimensional asymptotic
class, by the main theorem of [13].

Example 4.3.2 A difference field is a pair (F, σ ) where F is a field and
σ is an automorphism of F . Fix a prime p, and positive integers m, n with
m ≥ 1, n > 1, and (m, n) = 1. Let C(m,n,p) be the collection of difference fields
(Fpkn+m,Frobk) where k > 0 and Frob denotes the Frobenius automorphism
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x �→ xp; so m, n, p are fixed in the class, but k is varying. Then, by Theo-
rem 3.5.8 of [52], C(m,n,p) is a 1-dimensional asymptotic class. Note that the
fixed field of σ : x �→ xp

k

on Fpkn+m is Fpt where t = (k,m), so has bounded
size. Ryten’s result rests upon the main results of Hrushovski [37]: the asymp-
totic results for difference varieties, and the identification of the ultraproduct
theory of (F̄p, x �→ xp

k

) with the theory ACFAp, the model companion of
the theory of characteristic p difference fields; here F̄p denotes the algebraic
closure of Fp .

Example 4.3.3 By further results of Ryten [52, Chapter 5], every family
of finite simple groups of fixed Lie type is an asymptotic class. The Lie type
here in particular determines the Lie rank, that is the number of nodes of the
associated Dynkin diagram (or orbits on nodes under the corresponding graph
automorphism, in the case of twisted groups). For example, the groups PSL3(q),
with q varying, form a family of finite simple groups of fixed Lie type and Lie
rank 2, corresponding to the Dynkin diagram with two nodes joined by a single
edge, so form an asymptotic class. The groups PSU3(q), which are subgroups
of PSL3(q2), also form an asymptotic class. Here we view the alternating group
Altn as having Lie rank n, and these do not form an asymptotic class as n grows
with the size of the group; indeed, the model theory of the finite alternating
groups, like the model theory of groups PSLn(q) for fixed q and increasing n,
seems to be completely wild. For undecidability of the theory of all finite
symmetric groups, or for various families of n× n matrix groups with
unbounded n over a fixed field, see [27], or [12, Section 6.3] for a survey.
Also, see [2] for a treatment of non-standard alternating groups as objects in
Peano Arithmetic. For separate reasons, the (simple) cyclic groups of prime
order also form an asymptotic class – see Example 4.3.5 below.

Most of the families of finite simple groups are uniformly parameter bi-
interpretable (even bi-definable), in a natural sense, with finite fields (see
Chapter 4 of [52]). Using results of Elwes and Ryten, it follows that the
property of being an asymptotic class transfers from the fields to the groups,
though care is needed with clause (ii) in Definition 4.2.2, due to the role of
parameters in the interpretations.

For example, for any fixed n the groups PSLn(q) and PSUn(q) are both
(uniformly in q) bi-interpretable with the field Fq ; details can be found in
Chapter 5 of [52]. The uniform interpretation of the PSLn(q) in Fq is almost
immediate from the definition of PSLn(q). More generally, for a given family
of Chevalley groups of Lie type L, such as the family of symplectic groups
PSp2m(q), we can uniformly in Fq interpret the Lie algebra L(Fq ), hence the
general linear group GL(L(Fq )), and inside this the family of root subgroups
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which generate Sp2m(q). Since the symplectic group is a product of a bounded
number, dependent only on m, of these root subgroups, it is itself uniformly
interpretable in Fq , and hence so is PSp2m(q). In the other direction, to construct
the field Fq inside PSLn(q), the additive structure is given by a root group. The
multiplicative structure of the field arises from a torus – which is conjugate to
the image in PSLn(q) of an appropriate diagonal subgroup of SLn(q) – acting
on the root group. See also [59] and [42].

For the families of Suzuki and Ree twisted simple groups, the situation is
rather more complicated. The construction involves an automorphism of the
Dynkin diagram which does not preserve lengths of roots. As a result, these
groups are uniformly parameter bi-interpretable not with pure fields, but with
difference fields. The class of Suzuki groups 2B2(22k+1) is uniformly parameter
bi-interpretable with the clas C(1,2,2), as is the class of Ree groups 2F4(22k+1).
The Ree groups 2G2(32k+1) are uniformly parameter bi-interpretable with the
members of C(1,2,3). In these cases we apply Example 4.3.2 above.

Example 4.3.4 The families of simple groups of Lie type all arise as automor-
phism groups of Tits buildings. The building blocks for these are the so-called
‘rank 2 residues’, which are generalized polygons. Here, a generalized polygon
is an incidence structure of points and lines such that the associated bipartite
incidence graph – which has the points and lines as vertices with incidence
for adjacency – has diameter n and girth 2n. A generalized n-gon is said to
be thin if it is an ordinary n-gon, and is thick if every point (respectively line)
is incident with at least three lines (respectively points). A thick generalized
3-gon is just a projective plane. The generalized polygons involved in finite sim-
ple groups satisfy an additional symmetry condition, the ‘Moufang’ property.
Moufang generalized polygons have been classified by Tits and Weiss [61].
In particular, there are seven families of finite Moufang generalized polygons,
each such polygon associated with its corresponding ‘little projective group.’
Dello Stritto [19] shows that each of these seven families forms an asymptotic
class by proving that the polygons are uniformly parameter bi-interpretable
with their corresponding little projective groups, as each corresponding class
of groups forms an asymptotic class, by Example 4.3.3 above.

Example 4.3.5 By [48, Theorem 3.14], the collection of all finite cyclic
groups is a 1-dimensional asymptotic class. This is hardly surprising, as the
multiplicative groups of finite fields are cyclic. In general, the result follows
from Szmielew’s Theorem (see for example [31, Theorem A.2.2]), which says
that in every abelian group every formula ϕ(x, ȳ) is equivalent to a boolean
combination of formulas of the form pm|t(x, ȳ) or t(x, ȳ) = 0, where p is
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prime, t is a term, and pm|t(x, ȳ) abbreviates (∃z)pmz = t(x, ȳ). By the Com-
pactness Theorem, there is a finite family of such boolean combinations, one of
which will be equivalent to ϕ in each abelian group. The argument then reduces
to examining a conjunction of such conditions and their negations. Observe,
by Theorem 4.2.3, that it suffices to consider formulas ϕ(x, ȳ), i.e., families of
definable sets in one variable x.

Example 4.3.6 Recall that the random graph is the unique countably infinite
graph that satisfies, for each n > 0, the following sentence σn, where Rxy
denotes that vertices x and y are adjacent:

∀x1 . . . xn,∀y1, . . . yn

[ ∧
1≤i,j≤n

xi �= yj

→ ∃z
( n∧

1=1

Rzxi ∧ z �= xi ∧
n∧
i=1

¬Rzyi ∧ z �= yi

)]
.

The Paley graph Pq , where q is a prime power with q ≡ 1 (mod 4), has
vertex set Fq and edge relation given by x, y ∈ Fq are adjacent if and only
if x − y is a square in Fq . The collection C of all Paley graphs forms a 1-
dimensional asymptotic class – see [48, Example 3.4]. The essential point here
is due to Bollobás and Thomason [9] (see also [10, Ch. XIII.2]). IfU andW are
disjoint sets of vertices in the Paley graph Pq with |U ∪W | = m, and v(U,W )
is the number of vertices of Pq not in U ∪W joined to each vertex of U and
none of W , then

|v(U,W )− 2−mq| ≤ 1

2
(m− 2+ 2−m+1)q

1
2 +m/2.

It follows that every non-principal ultraproduct satisfies each σn, so is elemen-
tarily equivalent to the random graph. As the latter has quantifier elimination,
to check that C is an asymptotic class it suffices to consider quantifier-free
formulas, which are handled by the above asymptotic estimates.

Thus the Paley graphs form a class of finite graphs whose theory approxi-
mates the random graph and witness that the random graph has the finite model
property, that is, every sentence true of the random graph, and in particular the
above axioms σn for n ≥ 1, has a finite model and in fact hold in almost all
finite graphs.

If one works instead with primes congruent to 3 mod 4, then −1 is a non-
square, so the relation R defined above is antisymmetric, and one obtains a 1-
dimensional asymptotic class of Paley tournaments, whose theory approximates
the random tournament. Here a tournament is a directed graph such that any
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two vertices are connected by an arc. The analogue of the result of Bollobás
and Thomason can be found in [29].

It would be interesting to find other asymptotic classes of graphs approxi-
mating the random graph, e.g. not corresponding to edge probability 1/2. Work
of Szönyi [57] may be relevant here.

Example 4.3.7 The random graph has, for each k > 2, an arity k analogue,
the countable universal homogeneous k-uniform hypergraph. Here, a k-uniform
hypergraph is just a set equipped with a collection of k-element subsets, the
hyperedges. Like the random graph, its theory is axiomatized by ‘extension
axioms’, which hold with probability tending to one in finite k-uniform hyper-
graphs. There is no naı̈ve arity k analogue of the Paley graphs, but Beyarslan [7]
has shown that the random k-uniform hypergraph is interpretable in a pseud-
ofinite field, that is, an infinite model of the theory of finite fields. Hence,
there is a family of finite k-uniform hypergraphs, uniformly interpretable in
finite fields, with an ultraproduct elementarily equivalent to the random k-
uniform hypergraph. This certainly yields a weak asymptotic class of finite
k-uniform hypergraphs whose theory approximates the random one. So far as
we know, it has not been checked whether it is an asymptotic class, i.e., satisfies
Definition 4.2.2(ii).

Example 4.3.8 Recall that a theory T is strongly minimal if, in all models of
T , every definable subset of the domain is finite or cofinite. Suppose that C is a
class of finite structures such that every non-principal ultraproduct is strongly
minimal. It follows rather easily, by Theorem 4.2.3, that C is a 1-dimensional
asymptotic class – see Example 3.9 of [48]. In particular, for every positive
integer d > 2, the collection of all finite vertex transitive graphs of valency d is
a 1-dimensional asymptotic class. Indeed, an ultraproduct is a vertex transitive
graph of valency d, and all such are well-known to be strongly minimal; see
for example [8], Lemma 2.2.11.

Example 4.3.9 Lastly, let M be a smoothly approximable structure – see
Section 4.4 directly following this example for a fuller discussion of smooth
approximability. ThenM is a union of a chain of finite so-called ‘envelopes’. It
was shown by Elwes [22] that these envelopes can be chosen to form an asymp-
totic class. This rests on the asymptotic information on the sizes of definable
sets in [18, Proposition 5.2.2]. In particular, suppose thatM is unidimensional,
that is, up to non-orthogonality has a unique family of definable Lie geometries.
Then the asymptotic bounds are much tighter than in Definition 4.2.2. Namely,
one finds that if the class C isN -dimensional,E ∈ C, andD is a d-dimensional
definable subset of measure µ of E, then for some fixed constant C depending
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just on M , it follows that∣∣|D| − µ|E| dN ∣∣ < C|E| dN − 1
N .

In the non-unidimensional case, the asymptotic behavior is not so clear –
consider for example a countably infinite structure consisting of the disjoint
union of two ℵ0-dimensional vector spaces, one over F2 and the other over F3.
It is not clear how to approximate these by a class of finite substructures so that
a conclusion like that in Theorem 4.2.1 holds. This is the reason for the weaker
error term, in the form o(|M| dN ), in Definition 4.2.2. Smoothly approximable
structures are relevant also to robust classes, and we discuss them further in the
next section.

4.4 Smoothly approximable structures

The notion of smooth approximation appears to be due originally to Lachlan;
it plays a role already in [15] and [16]. The first systematic investigation of
smooth approximation is [39], and a deep theory was developed by Cherlin
and Hrushovski in the monograph [18]. There also are two excellent survey
accounts, [35] and [17].

A finite substructure N of a structure M is a k-homogeneous substructure
of M if all ∅-definable relations on M induce ∅-definable relations on N , and
for every pair ā, b̄ of k-tuples fromN , they have the same type inN if and only
if they have the same type in M . An ℵ0-categorical structure M is smoothly
approximated if it is the union of a chain (Mi : i ∈ N) of finite substructures,
where for each i, Mi is an |Mi |-homogeneous substructure of M .

As a very basic example, let M be an ℵ0-dimensional vector space over
the finite field Fp, and let the Mi for i ∈ N form a sequence of finite sub-
spaces with Mi ≤ Mi+1 and with

⋃
i∈NMi = M . These structures are parsed

in the language of Fp-modules, that is the language for M as a group under
addition, and a unary function symbol for multiplication by each element of
Fp. The point here is that if Dim(Mi) = ni then we have a natural sequence
of embeddings GLn0 (p) ≤ GLn1 (p) ≤ GLn2 (p) ≤ · · · , and the union of this
sequence of groups has the same orbits on n-tuples fromM as Aut(M), which is
GLℵ0 (p).

For a slightly more complicated example, suppose that M is endowed with
a symplectic form, that is, a non-degenerate bilinear form β : M ×M → Fp
such that β(v, v) = 0 for all v ∈ M , and let the Mi form a sequence of finite
(even dimensional) subspaces with union M , on each of which β induces a
non-degenerate form. Here, β can be given by a family of binary relations,
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one for each element of Fp. The fact that each Mi is an |Mi|-homogeneous
substructure of M is a consequence of Witt’s Lemma – see for example
Section 20 of [3].

These two smoothly approximable structures are both examples of Lie
geometries (see [39] or [18]), about which we say more below. The first is
totally categorical, even strongly minimal. The second is not stable (it has
the independence property; see, e.g., [31]) but is supersimple of rank 1 (see
Remark 4.5.2(c) for more about simple theories). We remark that the random
graph is not smoothly approximable, even though it is also supersimple of
rank 1, ℵ0-categorical, and arises in a natural way as a union of a chain of Paley
graphs (see Example 4.8.3).

Let M be smoothly approximable. As M is ℵ0-categorical, the Ryll-
Nardzewski Theorem yields a function g : N → N such that for each k ∈ N,
the automorphism group of M , Aut(M), has at most g(k) orbits on Mk . It fol-
lows that if (Mi : i ∈ ω) is a sequence of finite substructures witnessing smooth
approximability, then Aut(Mi) has at most g(k) orbits onMk

i , for each i, k ∈ ω.
This is a very strong condition on a family of arbitrarily large finite permutation
groups. In fact, a posteriori, the condition holds for all k if one just knows the
condition for k ≤ 4. Using finite permutation group theory – the classification
of finite simple groups, the O’Nan-Scott Theorem, and Aschbacher’s struc-
ture theory for subgroups of classical groups – the authors in [39] were able
to classify all smoothly approximable structures with primitive automorphism
groups, that is, automorphism groups which preserve no proper non-trivial
equivalence relation. In particular, certain building blocks, the Lie geometries,
were identified. These include pure sets, examples like those described in the
preceding paragraphs (possibly with orthogonal or unitary bilinear forms), and
their projective and affine versions. There is also the ‘self-dual geometry’,
which is really a pair of infinite dimensional vector spaces V, V ′ over a finite
field Fq equipped with a non-degenerate bilinear map V × V ′ → Fq , and the
‘quadratic geometry’. The somewhat more mysterious latter is essentially the
collection of all quadratic forms associated with a given symplectic form on an
ℵ0-dimensional vector space over a finite field of characteristic 2.

A very beautiful structure theory of smoothly approximable structures is
developed in [18]. We provide a brief overview.

As shown in [15], every ℵ0-categorical ω-stable structure – in particular
every totally categorical structure, and every stable structure homogeneous over
a finite relational language – is smoothly approximable. This is already quite
a deep result, and includes rather complicated structures built, by a sequence
of finite and affine covers, from pure sets and projective or affine spaces over
finite fields. See for example [15], [1] and [32].



Definability in classes of finite structures 151

Smoothly approximable structures which are not ω-stable are all unstable.
Indeed, any stable ω-categorical structure which is not ω-stable interprets a
pseudoplane [43], and by [18, Corollary 5.5.5] a pseudoplane cannot be inter-
preted in any smoothly approximable stucture. However, all smoothly approx-
imable structures have a simple theory–see Remark 4.5.2(c) for basic facts
about simple theories, and [62] for a general source – and in fact they are
supersimple of finite rank (see Remark 4.5.2). Indeed, some crucial ideas in
simplicity theory, such as the Independence Theorem, first appeared in [18]
(see e.g. Section 5.1 and Proposition 8.4.3 of [18]). They are 1-based (see
Section 4.5 for the definition; that they are 1-based may be found in [18]), and
thus in particular, no infinite field is definable. Although finite fields play a key
role in any family of finite approximating structures, any field involved remains
fixed throughout the family.

All groups definable in a smoothly approximable structure are finite-by-
abelian-by-finite (see [18]). As noted in Section 4.6 (see Proposition 4.6.2 ff.),
extraspecial p-groups of exponent p are smoothly approximable and finite-by-
abelian, but not abelian-by-finite.

Cherlin and Hrushovski define the notion of a Lie coordinatizable structure.
This is a structure bi-interpretable with a Lie coordinatized structure, which is,
roughly speaking, one coordinatized by a tree of finite height of Lie geometries.
A key fact proved in [18] is that the Lie coordinatizable structures are exactly
the smoothly approximable structures. Arguments by induction on the height
of the coordinatizing tree thus are often used.

Smoothly approximable structures also are quasi-finitely axiomatizable.
This means that the theory is axiomatized by a single sentence together with
a schema of axioms saying that each ‘non-orthogonality class’ of Lie geome-
tries (again, see [18]) is infinite dimensional. In particular, if the smoothly
approximable structure is unidimensional, that is, any two interpretable Lie
geometries are non-orthogonal, then the theory is axiomatized by a single sen-
tence together with, for each n, a sentence saying that the structure has size at
least n. This generalizes an earlier result of Hrushovski [32], itself extending
work of Ahlbrandt and Ziegler [1], that all totally categorical structures are
quasi-finitely axiomatized in this last sense.

Built into Lie coordinatizability is a theory of the envelopes – that is,
the finite approximating substructures – of smoothly approximable struc-
tures. There are precise results in [18] on the cardinalities of definable sets
in envelopes, given by certain polynomials. This is exploited in [22] to
show the envelopes can be chosen to form an asymptotic class, so yields
Example 4.3.9 above. It also suggests that there may be interesting strength-
enings of the notion of asymptotic class, where one considers classes of finite
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structures in which the sizes of definable sets, with respect to a fixed formula
ϕ(x̄, ȳ), are given not by asymptotic conditions, but by one of finitely many
polynomials. So far as we know, this has not been explored. In addition, Lach-
lan’s theory [44] of ‘shrinking and stretching’, developed for the class of finite
structures homogeneous over a fixed finite relational language, holds in the
smoothly approximable context too.

It also follows from the theory that, over a fixed finite language L, if C is
a class of finite structures for which there is some k such that Aut(M) has at
most k orbits on M4 for all M ∈ C, then there is g : N → N such that for all
M ∈ C and all k ∈ N, Aut(M) has at most g(k) orbits on Mk . See for example
Theorem 6 of [18].

Smooth approximability is not preserved by reducts, due to problems with
the quadratic geometries mentioned above – see the example due to Evans in
[18, p. 149]. Yet the class of reducts, namely the weakly Lie coordinatizable
structures, also is fairly well understood. In particular, the class of weakly Lie
coordinatizable structures is characterized by the conjunction of nine model-
theoretic properties (Theorem 7 in [18]), among which are ℵ0-categoricity,
pseudofiniteness (or the finite model property), finiteness of a certain rank,
the Independence Theorem, and some more technical conditions. Intriguingly,
whereas the bulk of the structure theory of [18] rests ultimately on the classifica-
tion of finite simple groups, this last result does not, even though it characterizes
a class of structures intimately connected to finite simple groups.

4.5 Asymptotic classes and their ultraproducts

We have already seen that investigations of asymptotic classes can be assisted
by working with ultraproducts. This is already explicit in [13] on finite fields.
Indeed, recall that a pseudofinite field is an infinite model of the theory of finite
fields. Equivalently, by Ax [4] it is a field F which is perfect, quasifinite (has
a unique extension of degree n for each n > 1), and is pseudo-algebraically
closed (PAC) (that is, every absolutely irreducible variety defined over F has
an F -rational point). It is shown in [13] that, by Theorem 4.2.1, if F is a
pseudofinite field then it is possible to associate with each definable subset D
of each power F t a pair (d, µ), where d is a nonnegative integer and µ ∈ Q>0,
such that d is the algebraic-geometric dimension of the Zariski closure of D,
and the pairs (d, µ) satisfy certain counting conditions. This led the authors in
[48] to introduce the following notion of measurable structure. The definition
below, taken from [25], is slightly different from Definition 5.1 of [48], but
equivalent.
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Definition 4.5.1 An infiniteL-structureM is measurable if there is a function
h : Def(M) → N× R ∪ {(0, 0)} (we write

h(X) = (Dim(X),Meas(X)) = (Dim,Meas)(X))

such that the following hold.

1. For each L-formula ϕ(x̄, ȳ) there is a finite setD ⊂ N× R>0 ∪ {(0, 0)}, so
that for all ā ∈ Mm we have h(ϕ(Mn, ā)) ∈ D.

2. If ϕ(Mn, ā) is finite then h(ϕ(Mn, ā)) = (0, |ϕ(Mn, ā)|).
3. For every L-formula ϕ(x̄, ȳ) and all (d, µ) ∈ Dϕ , the set {ā ∈ Mm :

h(ϕ(Mn, ā)) = (d, µ)} is ∅-definable.
4. (Fubini) Let X, Y ∈ Def(M) and f : X→ Y be a definable surjection.

Then there are r ∈ N and (d1, µ1), . . . , (dr , µr ) ∈ (N× R>0) ∪ {(0, 0)} so
that if Yi := {ȳ ∈ Y : h(f −1(ȳ)) = (di, µi)}, then Y = Y1 ∪ . . . ∪ Yr is a
partition of Y into non-empty disjoint definable sets. Let h(Yi) = (ei, νi)
for i ∈ {1, . . . , r}. Also let c := Max{d1 + e1, . . . , dr + er}, and suppose
(without loss) that this maximum is attained by d1 + e1, . . . , ds + es . Then
h(X) = (c, µ1ν1 + · · · + µsνs).

If X ∈ Def(M) and h(X) = (d, µ), we call d the dimension of X and µ the
measure of X, and h the measuring function.

We do not emphasize measurable structures in this paper. For more infor-
mation, see [48] or [25]. We do note the following observations.

Remark 4.5.2 a. IfM is measurable andN ≡ M thenN is measurable; hence
one may speak of a measurable theory.

b. If C is an N -dimensional asymptotic class, then every non-principal
ultraproduct of C is measurable – essentially, the pairs (d, µ) transfer through
to the ultraproduct.

c. Shelah introduced in [55] the concept of a simple theory (see also [41]).
Simplicity is a generalization of stability in which model-theoretic non-forking
still provides a good notion of independence. Indeed, it satisfies all the main
properties of non-forking in stable theories except stationarity, which controls
the number of non-forking extensions of a complete type. Stationarity (i.e.,
the Finite Equivalence Relation Theorem) is replaced by the ‘Independence
Theorem’ in simple theories. The analogue of a superstable theory in stability is,
in the context of simplicity, the notion of a supersimple theory. In a supersimple
theory every definable set has an ordinal-valued ‘D-rank’; in fact, there are
several notions of rank on a definable set in a supersimple theory – D-rank,
SU -rank, and S1-rank – all of which coincide if any of them is finite. It is shown
in [25, Corollary 3.4] – but was noted earlier by Ryten – that ifM is measurable
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then it is supersimple, and for any definable set X in M , the D-rank of X is at
most its dimension and hence is finite.

d. It follows from (b) and (c) that an ultraproduct of an asymptotic class
cannot have the strict order property: there cannot be a definable partial order
(even on a power of the structure) with an infinite chain. This generalizes the
observation made at the end of Section 4.2 that the collection of finite linear
orders does not form an asymptotic class.

e. There are measurable structures that are not elementarily equivalent to any
ultraproduct of an asymptotic class. Vector spaces over an infinite field, in the
language of modules over the field, provide one example. A more interesting
example of Elwes [22, Section 3.4] consists of a structure with two different
pseudofinite field structures (in disjoint languages) of different prime charac-
teristics. It arises by taking the fixed point set of a generic automorphism of the
‘Hrushovski fusion’ [37] of two different algebraically closed fields in distinct
positive characteristics. Such a structure cannot be an ultraproduct of finite
structures, since no positive integer can be a power of two distinct primes.

We next discuss how some stability-theoretic notions interact with asymp-
totic classes. The following result enables us to detect in the 1-dimensional
case, just from asymptotic information, whether or not every ultraproduct of
an asymptotic class is stable.

Proposition 4.5.3 ([48]) Let C be a 1-dimensional asymptotic class. Then
some ultraproduct of C is unstable if and only if there is a formula ϕ(x, ȳ), and
for each k ∈ N some M ∈ C and ā1, . . . , āk ∈ M�(ȳ) with

(a) |ϕ(M, āi)| ≥ k for each i = 1, . . . , k
(b) |ϕ(M, āi)*ϕ(M, āj )| ≥ k for all distinct i, j ∈ {1, . . . , k}.

Of the examples of asymptotic classes considered in Section 4.3, only the
following have all ultraproducts stable: the class of finite cyclic groups; the
asymptotic classes of Example 4.3.8 with all ultraproducts strongly minimal;
in Example 4.3.9, if M is a smoothly approximable structure which is ω-
categorical and ω-stable (or in particular, which is totally categorical), then
every asymptotic class consisting of its envelopes.

We now recall the construction, from a complete theory T , of T eq. For each
n > 0, and each ∅-definable equivalence relation E on n-tuples, one adjoins a
new sort interpreted, forM |= T , byMn/E and a function taking eachn-tuple to
its correspondingE-equivalence class in the new sort. There is a corresponding
language Leq, and all models M of T have corresponding expansions Meq in
the language Leq with theory T eq.
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Recall also that if A is a subset of a structure M , then b ∈ M is algebraic
over A if there is a finite A-definable subset of M containing b. The alge-
braic closure of A, namely the set of elements algebraic over A, is denoted
acl(A).

A supersimple theory T is said to be 1-based if, for every M |= T and all
subsets A and B ofMeq, we have that A and B are independent, in the sense of
non-forking, over acleq(A) ∩ acleq(B). Using the main theorem of [33] Elwes
[22] derived the result below, which a fortiori gives structural restrictions on
asymptotic classes all of whose ultraproducts are stable. Note that there is an
error in [22] stemming from a misunderstanding of [33] – an invalid use of
compactness in [22, Lemma 6.4]. A valid argument in its place has been given
by Kestner and Pillay (personal communication).

Theorem 4.5.4 Every measurable stable theory is 1-based.

As a very special case, note that an algebraically closed field cannot be
measurable. To illustrate, for the complex field C, the map x �→ x2 is a sur-
jection C \ {0} → C \ {0} which is 2-to-1, contrary to Definition 4.5.1(iv). In
fact, there is evidence that measurable fields must be pseudofinite. Scanlon
has shown that every infinite measurable field is quasifinite, and easily, every
measurable field is perfect – see [48, Theorems 5.18 and 6.1], and also [54].
It is not known if the PAC pseudo-algebraically closed property (see the first
paragraph in this section) holds for all measurable fields; this would yield
pseudofiniteness.

If M is a 1-dimensional measurable structure – e.g., an ultraproduct of a 1-
dimensional asymptotic class – then the algebraic closure operator defines a pre-
geometry on subsets ofM (as it is supersimple of rank 1). In particular it satis-
fies the exchange property: if b ∈ acl(A ∪ {c}) \ acl(A), then c ∈ acl(A ∪ {b}).
The exchange property can be formalized fairly concretely for 1-dimensional
asymptotic classes. The definitions can be finitized, and the formula making c
algebraic overA ∪ {b} can be identified up to finitely many possibilities over the
given data. Indeed, suppose that C is a 1-dimensional asymptotic class, ϕ(x, ȳ)
is a formula, and D is the corresponding subset of {0, 1} × R>0 of dimension-
measure pairs as provided in Definition 4.2.2(i). Let E := {µ : (1, µ) ∈ D}
and for µ ∈ E let ϕµ(ȳ) be a formula defining �(1,µ) as in Definition 4.2.2(ii).
If M ∈ C, A ⊂ M , and b ∈ M , we say b is in the ϕ-closure of A, written
b ∈ clϕ(A), if there is some ā from A such that M |= ϕ(b, ā) and M �|= ϕµ(ā)
for each µ ∈ E. For a set of formulas �, we say that b is in the �-closure of
A, written b ∈ cl�(A), if b ∈ clϕ(A) for some ϕ ∈ �. We have:
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Proposition 4.5.5 [48, Proposition 4.4] Let C be a 1-dimensional asymptotic
class, M ∈ C, and A ⊂ M . There are finite sets �(ϕ) and 
(ϕ) of formulas
(depending on ϕ) such that for a, b ∈ M with a ∈ clϕ(Ab) \ cl�(ϕ)(A), if M is
‘large enough’ relative to A and ϕ, then b ∈ cl
(ϕ)(Aa).

The notion of a 1-based theory is related to the trichotomy conjecture of
Zilber. One version of this conjecture, now known to be false, asserts that ifM is
a strongly minimal structure, then: either M is disintegrated, that is, acl(A) =⋃

(acl(a) : a ∈ A) for every A ⊂ M; or M is locally modular, equivalently,
1-based; or M interprets an infinite field. Counterexamples to this conjecture
were found by Hrushovski [34], but the conjecture has remained extremely
influential, and versions hold in key contexts. Furthermore, disintegrated and
locally modular strongly minimal sets now are fairly well understood.

It makes sense to investigate the conjecture for 1-dimensional asymptotic
classes. The following result, Proposition 4.5 of [48], gives a clear notion of
a ‘disintegrated 1-dimensional asymptotic class’, identified by the asymptotic
condition (iii).

Proposition 4.5.6 Let C be a 1-dimensional asymptotic class. Then the fol-
lowing are equivalent.

(i) for every formula ϕ(x, ȳ), there is a formula ψ(x, z̄) and some K ∈ N

such that if M ∈ C with |M| > K and A ⊂ M , then clϕ(A) ⊂⋃
a∈A(clψ ({a});

(ii) in every infinite ultraproductM of members of C, ifA ⊂ M then acl(A) =⋃
a∈A(acl({a});
(iii) for every ϕ(x, ȳ) there is some Kϕ ∈ N such that for all M ∈ C with

|M| > Kϕ , if A ⊂ M then | clϕ(A)| ≤ Kϕ |A|.
It would be of interest to investigate the Zilber trichotomy further for asymp-

totic classes. Certainly, by one of the main results of [18], all smoothly approx-
imable structures are 1-based. This includes in particular the Lie geometries.
We have no idea if, in a 1-dimensional asymptotic class that is not 1-based –
that is, ultraproducts of which are not 1-based, and so by Theorem 4.5.4 are
unstable – arbitrarily large finite fields must be uniformly interpretable. It would
be intriguing to investigate this already for classes of structures interpretable
in finite fields, or even for reducts of finite fields.

4.6 Asymptotic classes of groups

As mentioned in Example 4.3.3, the work of Ryten on difference fields yields
the following theorem; we emphasize again that the bound on Lie rank is
essential.
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Theorem 4.6.1 (Ryten) If C is any family of finite simple groups of fixed Lie
type, then C is an asymptotic class.

The structure of asymptotic classes of groups is an attractive area of study.
For groups in which definability is governed by definability in finite fields,
or by definable subgroups of cartesian powers (as in one-based groups), one
expects good control of definability. It is not clear whether ‘asymptotic class’
is the optimal model theoretic assumption on a family of finite groups; often
the same conclusions can be drawn just assuming that all ultraproducts have
supersimple finite rank theory. This is developed in [24].

In developing a structure theory one wants, as far as possible, not to assume
the classification of finite simple groups (CFSG). It would be wonderful to
recover parts of the classification just from model theoretic hypotheses. As one
step in this direction, Hrushovski has shown that any family of finite simple
groups uniformly definable in finite fields is a family of (possibly twisted) Lie
type [36, Theorem 9.2], and the same holds for groups uniformly definable in
a family of the difference fields C(m,n,p) (see [37, Theorem 1.8] – the proof is
unpublished). In the same spirit, Theorem 7.5.6 of [18] identifies, by model-
theoretic hypotheses, a class of structures closely associated with finite simple
groups.

As mentioned in Example 4.3.5, the class of finite cyclic groups is a 1-
dimensional asymptotic class. It should be feasible to describe all asymptotic
classes of abelian groups. At higher levels of complexity – but within the class
of soluble groups – very little is known, though one expects unipotent and Borel
subgroups of finite Chevalley groups of fixed Lie type to fall into asymptotic
classes. We also mention the following ([48, Proposition 3.11]). A p-group
is extraspecial if G′ = Z(G) = �(G) ∼= Cp. In particular, extraspecial groups
are nilpotent of class 2.

Proposition 4.6.2 If p is an odd prime, then the class of finite extraspecial
groups of exponent p is a 1-dimensional asymptotic class.

In fact, finite extraspecial groups of odd exponent p are envelopes of a
smoothly approximable structure, the unique countably infinite extraspecial
group of exponent p. This group has cyclic center, and the quotient by the
center is an elementary abelian p-group, equipped with an alternating bilinear
form given by the commutator map to the center. Its theory is supersimple but
unstable.

The remaining results in this section dealing with families of finite groups are
obtained under weaker hypotheses than that of being an ‘asymptotic class’ –
see our remarks following Theorem 4.6.1. We say that a family C of finite
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structures is supersimple of finite rank (respectively, supersimple of rank n) if
all non-principal ultraproducts have these properties. The results below are all
analogues of theorems about groups of finite Morley rank. Typically, the proofs
use ultraproducts, and facts about measurable groups, or, more generally, groups
with a supersimple finite rank theory. In some cases – Propositions 4.6.3(i),
4.6.5, 4.6.6, 4.6.8 – the results really belong in some such setting, and there is
no use of finiteness or pseudofiniteness.

Proposition 4.6.3 (i) [48, Theorem 3.12] Let C be a supersimple rank 1 family
of finite groups. Then there is d ∈ N such that each group G ∈ C has normal
subgroups H and N , where |G : N | ≤ d, |H | ≤ d, H ≤ Z(N ), and N/H is
abelian.

(ii) [24] Let C be a supersimple rank 2 family of finite groups. Then there
is d ∈ N such that all groups in C have a normal subgroup of index at most d
which is soluble of derived length at most 4.

Neither result requires CFSG. Part (ii) was proved by Elwes and Ryten in
[26] under the extra assumption that C is a (2-dimensional) asymptotic class,
using CFSG. The bound 4 on the derived length is probably not optimal; it
should perhaps be 2, arising from the class of 1-dimensional affine groups
AGL1(Fq).

One key ingredient in the proof is the body of results on so-called BFC
groups: that is, groups with a finite bound d on the size of all conjugacy
classes. If G is such a group with bound d on the size of conjugacy classes,
then there is a bound B(d) ∈ N such that |G′| ≤ B(d); see Wiegold [63], for
example, where B(d) = d

1
2 d

4(log2 d)3
is obtained. Another element is a theorem

of Schlichting, strengthened by Bergman and Lenstra [6]. It asserts that if G is
a group and F is a family of subgroups ofG which is (setwise) invariant under
a group K of automorphisms of G such that for some d and every F1, F2 ∈ F
we have |F1 : F1 ∩ F2| ≤ d, then for some d ′ dependent only on d, there is a
K-invariant subgroup N of G so that |F : F ∩N | ≤ d ′ and |N : F ∩N | ≤ d ′
for all F ∈ F .

To establish further results, one often needs a version for supersimple the-
ories of the Zilber Indecomposability Theorem, applied to ultraproducts. The
version below follows from [62, Theorem 5.5.4].

Theorem 4.6.4 LetG be a group definable in a supersimple structure of finite
rank, and let {Xi : i ∈ I } be a collection of definable subsets of G. Then there
exists a definable subgroup H of G such that:

(i) H ≤ X±1
i1
. . . X±1

im
for some i1, . . . , im ∈ I ;

(ii) Xi/H is finite for each i ∈ I .



Definability in classes of finite structures 159

Moreover, if the collection {Xi : i ∈ I } is invariant under the group K of
definable automorphisms of G, then H can be chosen to be K-invariant.

Consequences of Theorem 4.6.4 include the next results. If C is a family of
groups, we say that the subsets X of members G of C are uniformly definable
if just finitely many formulas ϕ(x, ȳ) are required to define the sets X as G
ranges through C.

Proposition 4.6.5 (from [36, Corollary 7.4]) If C is a supersimple finite rank
family of finite groups with no uniformly definable proper non-trivial normal
subgroups, then all but finitely many of the groups in C are simple.

Proposition 4.6.6 (from [36, Corollary 7.1]) If C is a supersimple finite
rank family of finite groups, then the derived subgroups of members of C are
uniformly definable.

Recall that the soluble radical R(G) of a finite groupG is its largest soluble
normal subgroup.

Proposition 4.6.7 [24, Theorem 1.1] If C is a supersimple finite rank family of
finite groups, then the soluble radicalsR(G) of the groupsG ∈ C are uniformly
definable.

Proposition 4.6.7 has further structural consequences. For a group G we
denote its socle, the direct product of its minimal normal subgroups, by Soc(G).
It follows fairly easily from Proposition 4.6.7 that if C is a supersimple finite
rank class, then the groups Soc(G/R(G)) are uniformly interpretable in G as
G ranges through C, and are a direct product of a bounded number of finite
simple groups of bounded Lie rank.

There are also the beginnings of a model theory for families of finite per-
mutation groups. We view a permutation group model-theoretically as a pair
(X,G), with a definable group structure on G and a definable action of G on
X. By the Orbit-Stabilizer Theorem, if G is transitive on X, we may parse
(X,G) as a pair (G,H ), where H is a subgroup of G, the stabilizer of some
x ∈ X.

Recall that a permutation group (X,G) is primitive if there is no proper
non-trivial G-invariant equivalence relation – that is, G-congruence – on X,
equivalently, if all point stabilizers Gx for x ∈ X are maximal subgroups of
G. We say that the family C of finite permutation groups (X,G) is definably
primitive if, for each non-principal ultraproduct (X∗,G∗), there is no definable
proper non-trivial G∗-congruence on X∗.
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Proposition 4.6.8 [[26]] If C is a supersimple finite rank class of definably
primitive finite permutation groups, then all but finitely many of the permutation
groups in C are primitive.

Theorem 4.6.9 ([24]) Let C be a supersimple finite rank family of finite prim-
itive permutation groups, and suppose that for every ultraproduct (X∗,G∗),
rk(X∗) = 1. Then one of the following holds for ultraproducts (X∗,G∗).

(i) rk(G∗) = 1, G∗ acts regularly on X∗, and G∗ is elementary abelian or
torsion-free divisible abelian.

(ii) rk(G∗) = 2, and there is an interpretable pseudofinite field F such that
G ≤ AGL1(F ) (the one-dimensional affine group (F,+).(F,×)) in the natural
action on F .

(iii) rk(G∗) = 3, there is an interpretable pseudofinite field F , and
PSL2(F ) ≤ G ≤ P
L2(F ) in the natural action on the projective line PG1(F ).

In [47] a structure theory is given for families of finite permutation groups
all of whose non-principal ultraproducts are primitive. We do not give details
here. One feature concerns families of primitive permutation groups (X,G)
such that Soc(G) is a non-abelian simple group of fixed Lie rank. Except in
very specific cases (essentially where the point stabilizers are bounded, or are
‘subfield subgroups’ associated with subfields for which the field extension
degree is unbounded) families of this type have primitive ultraproducts. The
proof uses much of the above work of Elwes and Ryten, Theorem 4.6.4, and
also knowledge of maximal subgroups of finite simple groups. In particular,
we have the following result. It generalizes [38, Proposition 8.1], which is over
prime fields, but unlike the latter, it makes heavy use of the classification of
finite simple groups.

Theorem 4.6.10 ([47]) Let Chev be a fixed Lie type (possibly twisted) of
finite simple groups, and d a positive integer. Let C be a family of pairs (G,H )
where G = Chev(q) and H is a maximal subgroup of G, and suppose that if
H = Chev(q0) then the degree [Fq : Fq0 ] ≤ d. Then the groupsH are uniformly
definable in the groups G, and C is an asymptotic class.

4.7 Robust classes

Robust classes consist of chains of finite structures in which the truth value of
every formula, with parameters from some structure in the chain, eventually
stabilizes when the formula is interpreted in a sufficiently larger structure. That
is, one must “look ahead” in the chain to determine satisfaction of a formula
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with parameters in some structure in the chain. This framework has provided
a setting in which to investigate notions of stability and o-minimality, as well
as some provisional versions of complexity of such a chain. In addition to
investigating these topics, the interest has mainly been in finding examples.

We begin with the definition of a robust class, and some initial observations,
working over an arbitrary – and, unless otherwise specified, finite – first-
order language L. Examples are discussed in the next section, and a robust
approximation to the ordered additive group of rational numbers is established
in Section 4.9.

Definition 4.7.1 A sequence C = (Mi : i ∈ N) of finite L-structures forms a
chain of structures if Mi ⊆ Mi+1 (as a substructure) for each i ∈ N. A chain
C is said to be robust if for each n ∈ N and L-formula ϕ(x1, . . . , xn) there is a
function f = fϕ : N → N such that for each i ∈ N and a1, . . . , an ∈ Mi , and
for every j ≥ f (i), we have

Mf (i) |= ϕ(ā) if and only if Mj |= ϕ(ā).

If C is robust and ā and Mi are as above, we write C |=ev ϕ(ā) if Mj |= ϕ(ā)
for all sufficiently large j .

Remark 4.7.2 (a) In what follows, we always assume that fϕ grows as slowly
as possible subject to witnessing robustness. Thus, fϕ is uniquely determined
by C.

(b) There is a natural generalization of Definition 4.7.1, where we replace
the chain C by a directed system of finite structures, equipped with specified
embeddings. This is our original context, but as nothing has yet been done with
the greater generality, we here use the more concrete version in Definition 4.7.1.

Initial results on robust classes have been obtained over the last few years
by the authors (first published here) and in the Ph.D. thesis of the first author’s
student, Richard Marshall [49]. The study of robust classes is still in its early
stages and thus not yet fully systematic. For example, one could envisage
a theory of ‘asymptotic robust classes’, in which the asymptotic estimates
described in Definition 4.2.2 are required to hold only when a formula is
interpreted in a sufficiently larger structure, but this has not been considered.

Observe that Definition 4.7.1 applies in particular to sentences. Thus, if
C = (Mi : i ∈ N) is a robust class, then for every L-sentence σ , precisely one
of σ or ¬σ holds in cofinitely many Mi . If C is an arbitrary chain of finite
structures, we define the asymptotic theory T as

C to be the collection of L-
sentences true in cofinitely many Mi ∈ C. If C is robust then this is a complete
theory. Let M be the (countable) direct limit structure of the chain C. The limit
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theory T lim
C of C is defined to be Th(M). In general, even assuming robustness,

we do not expect T as
C = T lim

C (see Propositions 4.7.4 and 4.8.2, and the comment
following 4.8.2).

Recall that a first-order structure M is locally finite if every finite subset of
M is contained in a finite substructure of M . Given a countably infinite locally
finite structure M , it is natural to ask if it is possible to construct a robust
chain with direct limit M . The next result demonstrates that we must refine
this initial question to investigate conditions under which we can obtain an
explicitly described robust chain. This question can take several forms, a theme
that we explore throughout the rest of this paper. If a chain of finite structures
C ′ is a subsequence of a chain C, we call it a coarsening of C. Obviously, any
coarsening of a robust chain is robust.

Proposition 4.7.3 [49, Theorem 2.4.5]
(i) Let C = (Mi : i ∈ N) be a chain of finite L-structures. Then there is a

coarsening of C which is robust.
(ii) Every countably infinite locally finite structure is the direct limit of a

robust chain.

Proof. (i) One systematically, for each structure in the chain and choice of
parameters in the structure, replaces the sequence of larger structures by an
infinite subsequence in which the formula takes an eventually constant truth
value.

(ii) Immediate from (i). �

Recall that a theory T is near model complete if every formula is equivalent
modulo T to a boolean combination of existential formulas. Many familiar
theories are near model complete; in particular, every model complete theory is
near model complete. The theory of pseudofinite fields is near model complete
by [40] (see also [14, Section 3]), and so is any complete theory of abelian
groups, or, more generally, of modules. Several ‘Hrushovski constructions’
have near model complete but not model complete theories; see for example
Baldwin and Shelah [5].

Proposition 4.7.4 Let C = (Mi : i ∈ N) be a chain of finite structures.
(i) If T as

C is near model complete then C is robust.
(ii) If T as

C is ∀∃-axiomatized then T lim
C |= T as

C .
(iii) If T as

C is ∀∃-axiomatized and complete, then T lim
C = T as

C .

Proof. (i) Let M be the direct limit of C. For every tuple ā from M and
existential formula ϕ(x̄), we have that M |= ϕ(ā) if and only if Mi |= ϕ(ā) for
sufficiently large i ∈ N. For every formulaψ(x̄) there is, modulo T as

C , a formula
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θ (x̄), which is a boolean combination of existential formulas, and a sentence
σ ∈ T as

C , such that σ |= (∀x̄) ψ(x̄) ↔ θ (x̄). As there is some N ∈ N such that
Mi |= σ for all i ≥ N , it follows for sufficiently large i that Mi |= ψ(x̄) if and
only if M |= θ (x̄). Hence C is robust.

(ii) Each of the ∀∃-axioms of T as
C holds in sufficiently largeMi , thus hold in

the union M , and hence so do their consequences.
(iii) This is immediate from (ii). �

Recall that a theory T has the finite submodel property if for every M |= T

and σ ∈ T , there is a finite substructure ofM satisfying σ . An extension of the
arguments above yields the following.

Proposition 4.7.5 [49, Theorem 2.4.13] Let L be a finite language and let
T be a complete L-theory that is near model complete, ∀∃-axiomatized, and
has the finite submodel property. Then there is a robust chain C such that
T as
C = T lim

C = T .

One of the original aims behind the introduction of robust classes is to
develop a framework in which a (countable) stable or o-minimal structure might
be approximated by a chain of finite structures that reflects these properties. To
this end, we propose the following analogues of stability and o-minimality.

Definition 4.7.6 Let C = (Mi : i ∈ N) be a robust chain of L-structures with
limit M .

(i) The L-formula ϕ(x1, . . . , xm, y1, . . . , yn) is unstable in C if for all t ∈ N

there are ā1, . . . āt ∈ Mm and b̄1, . . . , b̄t ∈ Mn such that for all i, j ≤ t we have

C |=ev ϕ(āi , b̄j ) ⇔ i ≤ j.
(ii) The chain C is unstable if and only if some formula is unstable in C.
(iii) The chain C is strongly minimal if for every formula ϕ(x, y1, . . . , yn)

there is nϕ ∈ N such that for all ā ∈ Mn either |{x ∈ M : C |=ev ϕ(x, ā)}| ≤ nϕ ,
or |{x ∈ M : C |=ev ¬ϕ(x, ā)}| ≤ nϕ .

(iv) Assume thatL contains a binary relation< that totally ordersM . Then C
is said to be o-minimal if for every formula ϕ(x, y1, . . . , yn) there is an nϕ ∈ N

such that for all ā ∈ Mn we have {x ∈ M : C |=ev ϕ(x, ā)} is the union of at
most nϕ singletons and open intervals of (M,<).

Proposition 4.7.7 Let C = (Mi : i ∈ N) be a robust chain with limit M .

(i) [49, 4.2.12] For a formula ϕ(x̄, ȳ), if ϕ is unstable in C then ϕ is unstable
in T as

C .
(ii) If T as

C is near model complete, then:
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(a) [49, 4.2.4] a formula ϕ is stable in C if ϕ is stable in T lim
C ;

(b) C is strongly minimal if T lim
C is strongly minimal;

(c) if M is totally ordered by <, then C is o-minimal if M is o-minimal.

(iii) If T lim
C is near model complete, then the converses to (ii)(a)–(c) hold.

Proof. (i) If ϕ is unstable, then for all t the following sentence holds eventually
in C, and hence belongs to T as

C :

∃x̄1, . . . x̄t∃ȳ1 . . . ȳt [
∧
i<j

ϕ(x̄i , ȳj ) ∧
∧
i≥j
¬ϕ(x̄i , ȳj )].

(ii) In each case, this follows from the observation that every formula is
equivalent, in sufficiently large members of C, to a boolean combination of
existential formulas, and the latter holds eventually in C if and only if it holds
in M . (It is important to note that we do not claim that C |=ev ϕ ⇔ M |= ϕ for
every formula ϕ; indeed, this already may fail for sentences.)

(iii) The argument is similar to that for (ii). �

The beginnings of a stability theory for robust chains are explored by Mar-
shall in [49, Chapter 4]. For example, a version of Shelah’s ϕ-rank (for a
formula ψ) is defined, and it is shown that for a robust class C, some formula
ϕ(x̄, ȳ) is unstable in C if and only if the ϕ-rank of x̄ = x̄ is infinite in this
sense. An interesting feature here is that the infinitary arguments of Shelah
[55, II.2] seem to be unavailable, and the combinatorial result of [30] is used
instead. Marshall shows [49, 4.5.19] that if C is a strongly minimal robust class
with T as

C model complete, then C is stable, but this has not been proved without
the model completeness assumption. An initial theory of Morley rank is also
developed. Versions of the independence property and the strict order property
for robust classes are defined, and each implies that C is unstable. Conversely,
under the assumption that T as

C is near model complete and ∀∃-axiomatized,
Marshall proves that C has either the independence property or the strict order
property.

The “look ahead” aspect of satisfaction in a robust chain suggests the intro-
duction of various notions of complexity. Partly adapting [49, Definition 6.2.1],
we make the following provisional definitions.

Definition 4.7.8 Let C = (Mi : i ∈ N) be a robust chain.

a. We say C has chain complexity 0 if for every formula ϕ(x̄) there is nϕ such
that fϕ(i) ≤ Max{i, nϕ}. The chain C has linear (respectively, polynomial)
chain complexity, if, for each formula ϕ, the function fϕ is bounded above
by a linear (respectively, polynomial) function.
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b. We say that C has linear (respectively, polynomial, exponential) model
growth if the function i �→ |Mi| is bounded above by a linear (respectively,
polynomial, exponential) function.

c. The chain C has polynomial satisfaction complexity if for every formula
ϕ(x̄) there are constants C > 0 and d ∈ N so that |Mfϕ (i)| ≤ C|Mi |d for all
for all Mi ∈ C.

Note that chain complexity and satisfaction complexity can be defined for
each formula separately. Observe also that Proposition 4.7.3 suggests that chain
complexity and model growth play off against each other. Chain complexity
and model growth have been explored in [49]; satisfaction complexity is newer
and not yet well-explored. Note also that chain complexity 0 implies even linear
satisfaction complexity. Satisfaction complexity can be refined by specifying
how the constants C and d depend on ϕ; for example one could demand that C
be a recursive or even polynomial function of ϕ or |ϕ|.

As a corollary to Proposition 4.7.5, we have

Corollary 4.7.9 [49, 6.2.3] Let T be a complete theory with quantifier elim-
ination and the finite submodel property. Then there is a robust chain C with
T as
C = T lim

C = T , and every such chain has chain complexity 0.

Proof. The first assertion is just Proposition 4.7.5. For the second, let C = (Mi :
i ∈ N) be such a chain. For every formula ϕ(x̄) there is a quantifier-free formula
ψ(x̄) such that T contains the sentence σ :≡ (∀x̄) ϕ(x̄) ↔ ψ(x̄). Choose nϕ
least such that Mi |= σ for all i ≥ nϕ . Since for all i > j ≥ nϕ and ā in Mj

we have Mj |= ψ(ā) ⇔ Mi |= ψ(ā), it follows that Mj |= ϕ(ā) ⇔ Mi |=
ϕ(ā). �

As an extension of 4.7.9, we give a syntactic characterization of robust
classes of chain complexity 0. If L ⊂ L+ are languages and C = (Mi : i ∈ N)
is a chain of finite L-structures, we say that C+ = (M+

i : i ∈ N) is an L+-
expansion of C if each M+

i is an L+ expansion of Mi and C+ is a chain, that is,
M+
i is an L+-substructure of M+

i+1 for each i ∈ N.

Proposition 4.7.10 Let C = (Mi : i ∈ ω) be a chain of finite L-structures.
The following are equivalent.

(i) C is robust with chain complexity 0.
(ii) There is a language L+ ⊃ L and an expansion C+ of C to L+ such that

T as
C+ is model-complete.

Proof. (ii) ⇒ (i). Suppose that C and C+ are as in (ii). Let ϕ(x̄) be an L-
formula. Then there are formulas ∃ȳ ψ(x̄, ȳ) and ∀z̄ χ (x̄, z̄), where ψ and
χ are quantifier-free L+-formulas, such that T as

C+ contains both (∀x̄) ϕ(x̄) ↔
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∃ȳψ(x̄, ȳ) and (∀x̄) ϕ(x̄) ↔ ∀z̄χ (x̄, z̄). Hence there is nϕ ∈ N such that each
of these sentences holds in M+

i for i ≥ nϕ . Let j > i ≥ nϕ and ā ∈ Ml(x̄)
i . If

Mi |= ϕ(ā), then there is b̄ ∈ Ml(ȳ)
i such that Mi |= ψ(ā, b̄), and thus, as ψ is

quantifier-free, M+
j |= ψ(ā, b̄). Hence Mj |= ϕ(ā). If Mi |= ¬ϕ(ā) we argue

similarly, using χ .
(i) ⇒ (ii). We ‘Morleyize’, uniformly. That is, we expand L to L+ by

introducing, for each L-formula ϕ(x̄), a relation symbol Rϕ(x̄), and let

T + := T as
C ∪ {(∀x̄) ϕ(x̄) ↔ Rϕ(x̄) : ϕ an L-formula}.

Then it follows from robustness of C that T + is a complete L+-theory.
We expand C to L+ as follows. For each new relation symbol Rϕ , let

nϕ be chosen least so that for all j > i ≥ nϕ and ā ∈ Ml(x̄)
i , we have that

Mi |= ϕ(ā) if and only if Mj |= ϕ(ā); such an nϕ exists as C is robust with
chain complexity 0. For i ≥ nϕ , interpret Rϕ in Mi by ϕ and for i < nϕ inter-
pret Rϕ as the relation induced by the interpretation of Rϕ in Mnϕ . Then
C+ is a chain of L+-structures, and its asymptotic theory contains T +, so is
model-complete. �

4.8 Examples of robust classes

We present several examples of robust classes here and in the next section. The
emphasis here is two-fold: to provide examples that illustrate the properties
introduced in Section 4.7, and to produce classes with various properties that
have prescribed limit structures.

Proposition 4.8.1 LetM be a smoothly approximable structure, approximated
by a chain C = (Mi : i ∈ ω) of finite substructures, where Mi is an |Mi |-
homogeneous subtructure of M . Then

(i) C is robust with chain complexity 0.
(ii) The chain C approximatingM can be chosen to have exponential model

growth.

Proof. (i) We may suppose that Th(M) admits quantifier elimination by adding
a new relation symbol for each formula. Now Th(M) is model complete, and
every sentence in Th(M) holds in Mi for all sufficiently large i. Since every
expansion of M by finitely many constants also is smoothly approximable, the
same holds for formulas, that is, C is robust. By Corollary 4.7.9, C has chain
complexity 0.

(ii) The fact that C can be chosen to have exponential model growth follows
from [18, 5.2.2]. �

Example 4.8.2 Let L be the language of rings, and in this language let
C = (Mi : i ∈ N) be any chain of finite fields of characteristic p with union F̄p,
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the algebraic closure of Fp. The theory T as
C includes the theory of pseudofinite

fields, so is near model complete. By Propositions 4.7.4 and 4.7.7 it follows
that C is a strongly minimal robust chain (and is stable).

Note here that T as
C �= T lim

C , as T as
C has the independence property and is thus

unstable. The point essentially is that formulas – or sentences – which are
boolean combinations of existential formulas hold in the direct limit of C if and
only if they hold eventually in C, but this is not true for arbitrary sentences, in
particular the axioms of the theory of pseudofinite fields.

Example 4.8.3 Let p ≡ 1 (mod 4) be prime and Mi be the field Fp2i for
i ∈ N. Let Pi be the Paley graph on Mi (see Example 4.3.6 for the definition),
and put C := (Pi : i ∈ N). Then T as

C is the theory of the random graph, so has
quantifier elimination and the finite submodel property. Thus, C is robust of
chain complexity 0, with the random graph as its direct limit.

By probabilistic arguments, it is possible to realize the random graph, or its
arity k analogue, as the direct limit of a chain complexity 0 robust chain (Mi :
i ∈ N), with model growth given by the identity function – i.e., |Mi | = i for all
i. Indeed, by [60, Theorem 3.2], if 
k denotes the universal homogeneous k-
uniform hypergraph, then we may write 
k as the union of a chain (Mi : i ∈ N)
of finite substructures such that |Mi| = i for each i, and for every sentence σ ,
if 
k |= σ then Mi |= σ for all but finitely many i. This suffices, by quantifier
elimination.

Example 4.8.4 [49, Section 3.5] Using the invariants for the elementary
theories of Boolean algebras (in the language (∨,∧,−, 0, 1)), due to Tarski
[58], as described in [11, p.288], it can be shown that the theory of pseudofinite
Boolean algebras is complete and near model complete, although not model
complete. Hence, any chain (Mi : i ∈ N) of finite Boolean algebras is robust
by 4.7.4. We may obtain the countable atomless Boolean algebra as a direct
limit by choosing the embeddings Mi → Mi+1 carefully, for example, putting
Mi+1 := Mi ×Mi for each i, with the diagonal embedding Mi → Mi+1 given
by a �→ (a, a).

Example 4.8.5 [49, Section 3.4.1] The analysis of theories of abelian groups
based on the Szmielew invariants yields that any complete theory of abelian
groups is near model complete (see e.g., [31, p.663]). Hence, if C is a chain of
finite abelian groups such that T as

C is complete, then C is robust. Since theories
of abelian groups are stable, it follows from Proposition 4.7.7 that in this case
C is stable.

Example 4.8.6 [49, Section 3.2] The theory of pseudofinite total orders is
complete and near model complete. This can be proved, for example, by an
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Ehrenfeucht-Fraı̈ssé game argument. It follows that any infinite chain of finite
total orders is robust.

It is easy to build such a chain so that it is o-minimal and has direct limit
(Q,<). LetMn be the natural total order on {1, 2, . . . , 2n+ 1}, and embedMn

into Mn+1 via the map i �→ 2i. The model growth of C is clearly linear.
Of course, any other countable total order can be realized as the direct limit

of a robust chain by Proposition 4.7.3, and (N,<) and (Z,<) each is the direct
limit of an o-minimal robust chain, by Lemma 4.7.7.

We conclude this section with an example which is closer in spirit to
finite model theory, in that it uses Gaifman’s Locality Theorem and locality
arguments.

Example 4.8.7 LetL be a finite relational language, and letM be a countably
infinite L-structure of finite valency, in the sense that every a ∈ M lies in just
finitely many tuples satisfying relations of L. Suppose in addition that the
automorphism group of M , Aut(M), is transitive on M . Thus, there is d ∈ N

such that all elements ofM have valency d in the sense above. This assumption
is for convenience, and can surely be weakened. At any rate, Cayley graphs of
finitely generated groups provide a rich source of examples.

There is a natural notion of distance inM: for a, b ∈ M , we write d(a, b) = r

if r is least such that there is a sequence a = a0, a1, . . . , ar = b such that each
pair ai, ai+1 lie in a tuple satisfying a relation in M . We further suppose that
M is connected, in the sense that d(a, b) is finite for all a, b ∈ M . Lastly, for
each n ∈ N and a ∈ M , let Sn(a) be {x ∈ M : d(a, x) ≤ n}with theL-structure
induced from M .

Fix a ∈ M . We recursively construct finite substructuresMn ofM as follows.
LetM1 := S1(a). IfMn has been defined, letMn+1 be the union ofMn ∪ Sn+1(a)
and a disjoint isomorphic copy of Mn that is not connected to Mn ∪ Sn+1(a).
Note that eachMn has at least n connected components. Let C := (Mn : n > 0).
Then the direct limit of C is isomorphic to M .

We claim that T as
C is complete and near model complete. From this it follows

by Proposition 4.7.4 that C is robust.
We use the presentation of Gaifman’s Locality Theorem from [21, Sec-

tion 2.5]. For an L-structure N and ā = (a1, . . . , an) from N , let Sk(ā) :=
Sk(a1) ∪ . . . ∪ Sk(an). We first recall that for every L-formula ϕ(x̄) and k ∈ N

one can associate a formula ϕSk(x̄), called a local formula, such that for every
L-structure N and ā in N ,

N |= ϕSk(x̄)(ā) if and only if Sk(ā) |= ϕ(ā).
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A basic local sentence has the form

∃x1 . . . ∃xn
∧

1≤i<j≤n
d(xi, xj ) > 2r ∧ ϕSr (xi )(xi).

Gaifman’s Theorem asserts that every first-order L-sentence is logically equiv-
alent to a boolean combination of basic local sentences.

Since Mn+1 includes some connected components whose union Un is iso-
morphic to Mn, it is clear that if σ is a basic local sentence and Mn |= σ , then
Mn+1 |= σ ; the witnesses for the existential quantifiers of σ inMn have copies
in Un that witness σ in Mn+1. Thus, every basic local sentence is eventually
true or eventually false in C. The completeness of T as

C follows.
It remains to verify near model completeness. An extension of Gaifman’s

Theorem (see [28]) asserts that every formula ϕ(x̄) is logically equivalent to
a boolean combination of local formulas and basic local sentences. A local
formula ϕSr (x̄) is a boolean combination of formulas which describe possible
atomic diagrams of Sr(x̄). Since there is a fixed upper bound on valency in
substructures of M , the formula ϕSr (x̄) can itself be assumed to be a boolean
combination of existential formulas. This yields near model completeness.

Note that if M has valency d, then it can be checked that |Mn+1| ≤ (d +
2)|Mn| for all n. It follows that |Mn| ≤ (d + 2)n for each n. In particular, C
has exponential model growth. We have not attempted to minimize growth and
chain complexity for a chain with limit M .

4.9 A robust approximation of (Q,<,+)

Our aim is to show that an o-minimal robust class can support some algebraic
structure, despite the discreteness of finite total orders, and thus approximate
an infinite o-minimal structure on which at least one algebraic operation is
defined. The goal here is to construct an o-minimal robust class whose direct
limit is (Q,<,+). The dense ordering can easily be constructed by dovetailing
embeddings as in Example 4.8.6; the difficulty lies in incorporating the group
operation. Since ordered groups are torsion-free, hence not locally finite, the
group operation must be given by a ternary relation symbol.

Theorem 4.9.1 Let L = {<, 0,−, R}, where − is a unary function, and R
is a ternary relation. Then there is an o-minimal robust class C such that T as

C
is near model complete, and T lim

C is the theory of divisible ordered abelian
groups, with the addition function parsed as a ternary relation R.
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Proof. For each n > 0, let Hn be the L-structure on {−n,−n+ 1, . . . , 0,
. . . , n}, with 0,<,− interpreted naturally, and such that R(x, y, z) holds for
x, y, z ∈ Hn if and only if x + y = z. Let H = {Hn : n > 0}.

A sequence (ak)k>0 of natural numbers is called legal if

a. (∀k > 0) 0 ≤ ak < k

b. (∀k > 0)(∃� > k)(∀r ≤ k) � ≡ ar (mod r).

It is not difficult to show that legal sequences exist. For example, one may argue
by induction employing the fact (see, e.g., [50, Section 2.3, Exercise 23]) that
for arbitrary integers m1, . . . , mr the system

x ≡ a1 (mod m1), . . . , x ≡ ar (mod mr )

has a solution if and only if ai ≡ aj (mod (mi,mj )) for all 1 ≤ i < j ≤ r .
Note also that the constant sequence (0)k>0 is legal. Let S be the set of all legal
sequences.

Let S = (ak)k>0 ∈ S. From S, we can obtain a sequence (nk)k>0 such that
nk+1 , nk

2 that further satisfies the condition that

(∀r) (∃�) (∀k ≥ �) (∀s ≤ r) nk ≡ as (mod s).

Let CS := {Hnk : k > 0}. To make CS into a chain, we must define how Hnk is
embedded intoHnk+1 for all k. To this end, let (dk)k>0 be a sequence of integers
so that 2 ≤ dk ≤ nk for all k and in which everym ≥ 2 appears infinitely often.
Then we embed Hnk into Hnk+1 via the mapping i �→ dki. The intent of this is
to ensure that the direct limit structure of CS is isomorphic to (Q,<,+), with
x + y = z parsed as the relation R(x, y, z). Finally, let T as

S be the asymptotic
theory of CS , and T lim

S be the limit theory. Observe that if S, S ′ are distinct legal
sequences, then T as

S �= T as
S′ .

We shall prove that each theory T as
S is near model complete. It follows by

Proposition 4.7.4 that CS is robust and, as CS is totally ordered, that T as
S is

complete. Lastly, we prove that CS is o-minimal.
For each M ∈ CS , we define the span of M , span(M), and the hull of

M , hull(M). In fact, span(M) is isomorphic to (Z,<,R, 0), and hull(M) is
isomorphic to (Q,<,R, 0) – that is, the divisible hull of (Z,<,R, 0) – with R
interpreted as the graph of the group operation. In this proof, however, we shall
view span(M) and hull(M) as many sorted structures, with infinitely many sorts,
to ensure that the span and hull of every model of T as

S (and its substructures) is
well-defined.

First, 0 ∈ span(M) and each positive element of span(M) has, for some
r > 0, a representative of the form (x1, . . . , xr ), where x1, . . . , xr ∈ M>0.
For intuition, the reader may interpret (x1, . . . , xr) as the sum x1 + · · · + xr .
Recursively on r + s, we define (x1, . . . , xr )E(y1, . . . , ys) as the symmetric
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closure of the relation defined to hold if xr ≥ ys and (x1, . . . , xr−1, xr −
ys)E(y1, . . . , ys−1). For each x1, . . . , xr ∈ M>0 as above, span(M) also con-
tains an element −(x1, . . . , xr ) with representative (−x1, . . . ,−xr ). Addition
is defined on E-classes by putting

(x1, . . . , xr )/E + (y1, . . . , ys)/E = (x1, . . . , xr, y1, . . . , ys)/E

and

−(x1, . . . , xr )/E +−(y1, . . . , ys)/E = −(x1, . . . , xr , y1, . . . , ys)/E.

Lastly, if x1, . . . , xr > 0 and y1, . . . , ys < 0, then (x1, . . . , xr )/E +
(y1, . . . , ys)/E = (z1, . . . , zt )/E, where z1, . . . , zt > 0, if and only if
(x1, . . . , xr )/E = (−y1, . . . ,−ys)/E + (z1, . . . , zt )/E.

It is convenient to extend the definitions to sequences (x1, . . . , xr ) where
some xi are positive and some negative. First, for all permutations π ∈
Sym(r) we define (x1, . . . , xr )E(xπ (1), . . . , xπ (r)). Then if x1, . . . , xr > 0 and
xr+1, . . . , xs < 0, define (x1, . . . , xs)E(y1, . . . , yt ), where yi > 0 for all i, to
hold if (x1, . . . , xr)/E = −(xr+1, . . . , xs)/E + (y1, . . . , yt )/E.

The group span(M) is an ordered group, with the ordering defined
sortwise by (x1, . . . , xr )/E > 0 if and only if there are y1, . . . , ys > 0
with (x1, . . . , xr)E(y1, . . . , ys). It is now easily checked that span(M) is
a Z-group. The key point is that for every n > 1 and x1, . . . , xr > 0,
there are i ∈ {0, . . . , n− 1} and y1, . . . , yr ′ > 0 such that n(y1, . . . , yr ′ ) =
(x1, . . . , xr−1, xr − i). Also M clearly is convex in span(M).

Now we define hull(M) to be the divisible hull of span(M). Since the above
definitions are uniform across CS , they carry across to models M of T as

S : that
is, we may talk of span(M) and hull(M), defined as above. As the definitions
are quantifier-free, they apply also to substructures.

Model-theoretically, we remark that this construction may be understood as
analogous to that of the algebraic closure of a field F : each finite extension
of F is interpretable in F , but the full algebraic closure lives on the union of
infinitely many sorts of F eq.

The key element in the proof of the theorem is the following assertion.

Claim 4.9.2 Let M,N |= T as
S , and suppose that M,N have a common L-

substructure A. Then M ≡A N if and only if M ∩ hull(A) ∼=A N ∩ hull(A).

Proof. The left-to-right direction is immediate, since elements of hull(A) are
quantifier-free definable over A.

For the right-to-left direction, we assume that M ∩ hull(A) = N ∩ hull(A)
and that M and N are saturated of the same cardinality > |A|. We build an
isomorphism ϕ : M → N that extends ϕ0 := idA. We further suppose that ϕ0

is extended to idhull(A).
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The construction of the isomorphism proceeds through a series of steps.

Step 1 Let 1M := min{x ∈ M : x > 0} and 1N := min{x ∈ N : x > 0}.
Define ϕ(1M ) = 1N . Then extend ϕ to hull(A ∪ {1M}).

Step 2 Defineϕ(max(M)) = max(N), and extendϕ to hull(A ∪ {max(M)}).
In Step 1, we must check for all x ∈ hull(A ∪ 1M ) that x ∈ M if and only
if ϕ(x) ∈ N ; likewise, in Step 2, with max(M) in place of 1M . This is done
carefully in the last paragraph of the argument in Step 3 below, so we omit the
details in this case. Note that it is needed here that max(M) and max(N) satisfy
the same congruence conditions, which holds as M,N |= T as

S .
Once Steps 1 and 2 have been completed, we may suppose that initially

1M = 1N ∈ hull(A), which we denote by 1 in what follows, and that max(M) =
max(N) ∈ hull(A). The remaining task is the following:

Step 3 We must extend ϕ to x ∈ M \ dom(ϕ).

Put C := {y ∈ hull(A) : y < x} and D := {y ∈ hull(A) : x < y}. We first
assert that for each z ∈ C there is some az ∈ span(A) with z ≤ az < x.
Indeed, using the fact that for every n and every w ∈ span(M), among the
elements w,w + 1, . . . , w + (n− 1) there is an element that is divisible by
n, it is easy to see that if the assertion were false then we must have
z < x < z+ 1. With z = z′/q, where z′ ∈ span(A), q ∈ Z \ {0}, it follows that
z′ < qx < z′ + q. Then z′, z′ + q ∈ span(A) ⊆ dom(ϕ), whence, as span(M)
is a Z-group, qx ∈ dom(ϕ). It follows that x ∈ dom(ϕ), a contradiction. A
similar argument shows that for each z ∈ D there is some bz ∈ span(A) with
x < bz ≤ z.

Now let C ′ := {az : z ∈ C} and D′ := {bz : z ∈ D}. So C ′ < x < D′, and
C ′,D′ ⊂ span(A) ∩M . The preceding paragraph shows thatC ′ has no greatest
element and D′ no least element. By saturation of N we see that there is some
y ∈ N such that C ′ < y < D′ and x ≡ y (mod k) for each positive integer k.
We put ϕ(x) = y, and extend ϕ to hull(A ∪ {x}).

A typical element of hull(A ∪ {x}) has the form 1
q

(e1 + · · · + er + nx),
where q ∈ Z and q �= 0, n is a positive integer, and e1, . . . , er ∈ A (not neces-
sarily distinct). It remains to check that 1

q
(e1 + · · · + er + nx) ∈ M if and only

if 1
q

(e1 + · · · + er + ny) ∈ N . Observe first that both e1 + · · · + er + nx ∈
span(M) and e1 + · · · + er + ny ∈ span(N ), and that e1 + · · · + er + nx >
max(M) if and only if e1 + · · · + er + ny > max(N). Thus, it suffices to see
that e1 + · · · + er + nx ≡ 0 (mod q) inM if and only if e1 + · · · + er + ny ≡
0 (mod q) in N . This holds since x and y satisfy the same congruences. With
this, the proof of the claim is complete. �
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We now finish the proof of the theorem. First, we assert that T as
S is near model

complete. By Claim 4.9.2, it follows for all ā ∈ M |= T as
S and substructuresA of

M that tp(ā/A) is determined by the collection of formulas which describe the
quantifier-free type of ā over hull(A). Such formulas are boolean combinations
of existential formulas over A. From this and Proposition 4.7.4, it follows that
CS is robust. As CS is totally ordered, we also see that T as

S is complete.
It remains only to check that CS is o-minimal. LetG := lim CS , with x + y =

z parsed asR(x, y, z). It is evident thatG is isomorphic to (Q,<,+), and hence
is o-minimal. The o-minimality of CS then follows immediately from the near
model completeness of T as

S and Proposition 4.7.7 . �

Remark 4.9.3 By varying the embeddings, we may find, for any S ∈ S other
robust classes C ′ with the same asymptotic theory T as

S but different limits
theories. For example, we may realize the infinite cyclic group Z as lim C′, by
putting C ′ = C, equipped with the identity embeddings.

We expect that a variation of this argument should allow us to construct
(Q,+) as the limit of a strongly minimal robust class. It is an open problem to
construct an o-minimal robust chain whose limit is a real closed field.
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5

Algorithmic meta-theorems

stephan kreutzera

Abstract

Algorithmic meta-theorems are general algorithmic results applying to
a whole range of problems, rather than just to a single problem alone.
They often have a logical and a structural component, that is they are
results of the form: every computational problem that can be formalised
in a given logic L can be solved efficiently on every class C of structures
satisfying certain conditions.

This paper gives a survey of algorithmic meta-theorems obtained in
recent years and the methods used to prove them. As many meta-theorems
use results from graph minor theory, we give a brief introduction to the
theory developed by Robertson and Seymour for their proof of the graph
minor theorem and state the main algorithmic consequences of this theory
as far as they are needed in the theory of algorithmic meta-theorems.

5.1 Introduction

Algorithmic meta-theorems are general algorithmic results applying to a whole
range of problems, rather than just to a single problem alone. In this paper
we will concentrate on meta-theorems that have a logical and a structural
component, that is on results of the form: every computational problem that
can be formalised in a given logic L can be solved efficiently on every class C
of structures satisfying certain conditions.

The first such theorem is Courcelle’s well-known result [13] stating that
every problem definable in monadic second-order logic can be solved efficiently
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on any class of graphs of bounded tree-width1. Another example is a much more
recent result stating that every first-order definable optimisation problem admits
a polynomial-time approximation scheme on any class C of graphs excluding
at least one minor (see [22]).

Algorithmic meta-theorems lie somewhere between computational logic and
algorithm or complexity theory and in some sense form a bridge between the two
areas. In algorithm theory, an active research area is to find efficient solutions
to otherwise intractable problems by restricting the class of admissible inputs.
For instance, while the dominating set problem is NP-complete in general, it
can be solved in polynomial time on any class of graphs of bounded tree-width.

In this line of research, algorithmic meta-theorems provide a simple and easy
way to show that a certain problem is tractable on a given class of structures.
Formalising a problem in MSO yields a formal proof for its tractability on
classes of structures of bounded tree-width, avoiding the task of working out
the details of a solution using dynamic programming – something that is not
always trivial to do but often enough solved by hand-wavy arguments such as
“using standard techniques from dynamic programming . . .”.

Another distinguishing feature of logic based algorithmic meta-theorems
is the observation that for a wide range of problems, such as covering or
colouring problems, their precise mathematical formulation can often directly
be translated into monadic second-order logic. Hence, ideally, instead of hav-
ing to design an explicit algorithm for solving a problem on bounded tree-
width graphs, one can read off tractability results directly from the problem
description.

Finally, algorithmic meta-theorems yield tractability results for a whole class
of problems providing valuable insight into how far certain algorithmic tech-
niques range. On the other hand, in their negative form of intractability results,
they also exhibit some limits to applications of certain algorithmic techniques.

In logic, one of the core tasks is the evaluation of logical formulas in
structures – a task underlying problems in a wide variety of areas in computer
science from database theory, artificial intelligence to verification and finite
model theory.

Among the important logics studied in this context is first-order logic and
its various fragments, such as its existential conjunctive fragment known as
conjunctive queries in database theory. Whereas first-order model-checking is
Pspace-complete in general, even on input structures with only two elements,
it becomes polynomial time for every fixed formula. So what can we possibly

1 The definition of tree-width and the other graph parameters and logics mentioned in the
introduction will be presented formally in the following sections.
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gain from restricting the class of admissible structures, if the problem is hard
as soon as we have two elements and becomes easy if we fix the formula? Not
much, if the distinction is only between taking the formula as full part of the
input or keeping it fixed.

A finer analysis of first-order model-checking can be obtained by studying
the problem in the framework of parameterized complexity (see [36, 46, 69]).
The idea is to isolate the dependence of the running time on a certain part of
the input, called the parameter, from the dependence on the rest. We will treat
parameterized complexity formally in Section 5.2.4. The parameterized first-
order evaluation problem is the problem, given a structureA and a sentence ϕ ∈
FO, to decide whetherA |= ϕ. The parameter is |ϕ|, the length of the formula. It
is called fixed parameter tractable (FPT) if it can be solved in time f (|ϕ|) · |A|c,
for some fixed constant c and a computable function f : N → N. While first-
order model-checking is unlikely to be fixed-parameter tractable in general
(unless unexpected results in parameterized complexity happen), Courcelle’s
theorem shows that even the much more expressive monadic second-order logic
becomes FPT on graph classes of bounded tree-width. Hence, algorithmic meta-
theorems give us a much better insight into the structure of model-checking
problems taking structural information into account.

In this paper we will give an overview of algorithmic meta-theorems obtained
so far and present the main methods used in their proofs. As mentioned before,
these theorems usually have a logical and a structural component. As for
the logic, we will primarily consider first-order and monadic second-order
logic (see Section 5.2). As for the structural component, most meta-theorems
have been proved relative to some structure classes based on graph theory, in
particular on graph minor theory, such as classes of graphs of bounded tree-
width, planar graphs, or H -minor free graphs. We will therefore present the
relevant parts of graph structure theory needed for the proofs of the theorems
presented here.

The paper is organised as follows. In Section 5.2, we present basic notation
used throughout the paper. In Section 5.2.3 we present the relevant logics and
give a brief overview of their model-checking problem. Section 5.2.4 contains
an introduction to parameterized complexity. In Section 5.3, we introduce the
notion of the tree-width of a graph and establish some fundamental proper-
ties. We then state and prove theorems by Seese and Courcelle establishing
tractability results for monadic second-order logic on graph classes of bounded
tree-width. In Section 5.4 we present an extension of tree-width called clique-
width and a more recent, broadly equivalent notion called rank-width. Again
we will see that monadic second-order model checking and satisfiability is
tractable on graph classes of bounded clique-width. Section 5.5 contains a brief



180 Stephan Kreutzer

introduction to the theory of graph minors to the extent needed in later sections
of the paper. The results presented in this section are then used in Section 5.7
to obtain tractability results on graph classes excluding a minor. In Section 5.7,
we also consider the concept of localisation of graph invariants and use it to
obtain further tractability results for first-order model checking. But before,
in Section 5.6, we use the results obtained in Section 5.5 to show limits to
MSO-tractability. Finally, we conclude the paper in Section 5.9.

Remark An excellent survey covering similar topics to this paper has recently
been written by Martin Grohe as a contribution to a book celebrating Wolfgang
Thomas’ 60th birthday [53]. While the two papers share a common core of
results, they present the material in different ways and with a different focus.

5.2 Preliminaries

In this section we introduce basic concepts from logic and graph theory and fix
the notation used throughout the paper. The reader may safely skip this section
and come back to it whenever notation is unclear.

5.2.1 Sets

By N := {0, 1, 2, . . . } we denote the set of non-negative integers and by Z the
set of integers. For k ∈ N we write [k] for the set [k] := {0, . . . , k − 1}. For a[k]

set M and k ∈ N we denote by [M]k and [M]≤k the set of all subsets of M of[M]k ,

[M]≤k size k and size ≤ k, respectively, and similarly for [M]<k.

5.2.2 Graphs

A graph G is a pair consisting of a set V (G) of vertices and a set E(G) ⊆V (G)

[V (G)]2 of edges. All graphs in this paper are finite, simple, i.e. no multipleE(G)

edges, undirected and loop-free. We will sometimes write G := (V,E) for a
graph G with vertex set V and edge set E. We denote the class of all (finite)
graphs by Graph.Graph

An edge e := {u, v} is incident to its end vertices u and v and u, vincident,

adjacent are adjacent. If G is a graph then |G| := |V (G)| is its order and ||G|| :=
|G|, ||G|| max{|V (G)|, |E(G)|} its size.

For graphsH,Gwe define the disjoint unionG∪̇H as the graph obtained as
the union ofH and an isomorphic copyG′ ofG such that V (G′) ∩ V (H ) = ∅.
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Subgraphs. A graph H is a subgraph of G, written as H ⊆ G, if V (H ) ⊆ H ⊆ G

V (G) and E(H ) ⊆ E(G) ∩ [V (H )]2. If E(H ) = E(G) ∩ [V (H )]2 we call H
an induced subgraph.

LetG be a graph and U ⊆ V (G). The subgraphG[U ] induced by U inG is G[U ]

the graph with vertex set U and edge set E(G) ∩ [U ]2.
For a set U ⊆ V (G), we write G− U for the graph induced by V (G) \ U . G− U

Similarly, if X ⊆ E(G) we write G−X for the graph (V (G), E(G) \X). G−X
Finally, if U := {v} ⊆ V (G) or X := {e} ⊆ E(G), we simplify notation and G−

v, G− ewrite G− v and G− e.
Degree and neighbourhood. Let G be a graph and v ∈ V (G). The neigh-

bourhoodNG(v) of v inG is defined asNG(v) := {u ∈ V (G) : {u, v} ∈ E(G)}.
The distance dG(u, v) between two vertices u, v ∈ V (G) is the length of the NG(v)

shortest path from u to v or∞ if there is no such path. For every v ∈ V (G) and
r ∈ N we define the r-neighbourhood of v in G as the set

NG
r (v) := {w ∈ V (G) : dG(v,w) ≤ r}.

of vertices of distance at most r from v. For a set W ⊆ V (G) we define
NG
r (W ) :=⋃

v∈W N
G
r (v). We omit the index ·G whenever G is clear from the

context.
The degree of v is defined as dG(v) := |NG(v)|. We will drop the index dG(v)

G whenever G is clear from the context. Finally, �(G) := max{d(v) : v ∈ V }
denotes the maximal degree, or just degree, of G and δ(G) := min{d(v) : v ∈ �(G)

V } the minimal degree. δ(G)

Paths and walks. A walk P in G is a sequence x1, e1, . . . , xn, en, xn+1

such that ei := {xi, xi+1} ∈ E(G) and xi ∈ V (G). The length of P is n, i.e. the
number of edges. A path is a walk without duplicate vertices, i.e. vi �= vj

whenever i �= j . We find it convenient to consider paths as subgraphs and
hence use V (P ) and E(P ) to refer to its set of vertices and edges, resp. An
X− Y -path, for X, Y ⊆ V (G), is a path with first vertex in X and last vertex
in Y . If X := {s} and Y := {t} are singletons, we simply write s− t-path.

A graph is connected if it is non-empty and between any two vertices s and
t there is an s− t-path. A connected component of a graph G is a maximal
connected subgraph of G.

Special graphs. For n,m ≥ 1 we write Kn for the complete graph on n Kn

vertices andKn,m for the complete bipartite graph with one partition of order n Kn,m

and one of orderm. Furthermore, if X is a set thenK[X] denotes the complete K[X]

graph with vertex set X.
For n,m ≥ 1, the n×m-grid Gn×m is the graph with vertex set {(i, j ) : 1 ≤ Gn×m

i ≤ n, 1 ≤ j ≤ m} and edge set {((i, j ), (i ′, j ′)
)

: |i − i ′| + |j − j ′| = 1}. For
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• • • •

• • • •

• • • •

Figure 5.1 A 3× 4-grid

i ≥ 1, the subgraph induced by {(i, j ) : 1 ≤ j ≤ m} is called the ith row of
Gn×m and for j ≥ 1 the subgraph induced by {(i, j ) : 1 ≤ i ≤ n} is called the
j th column. See Figure 5.1 for a 3× 4-grid.

Trees. A tree T is a connected acyclic graph. Often we will work with
rooted trees T with a distinguished vertex r , the root of T . A leaf in T is a
vertex of degree 1, all other vertices are called inner vertices. A tree is sub-
cubic, if all vertices have degree at most 3. It is cubic if every vertex has degree
3 or 1.

A directed tree is a rooted tree where all edges are directed away from
the root. A binary tree is a directed tree where every vertex has at most two
outgoing edges. In directed graphs, we view edges as tuples (u, v), where u is
the tail and v is the head of the edge, rather than sets {u, v}.

Coloured graphs. Let � be an alphabet. A �-labelled tree is a pair (T , λ),
where T is a tree and λ : V (T ) → � is a labelling function. Often, � will be a
set C of colours and then we call C-labelled trees C-coloured, or just coloured.
A �-tree is a �-labelled tree.

5.2.3 Logic

I assume familiarity with basic notions from mathematical logic. See e.g.
[38, 57] for an introduction to mathematical logic.

A signature σ := {R1, . . . , Rk, c1, . . . , cq} is a finite set of relation sym-signature

bols Ri and constant symbols ci . To each relation symbol R ∈ σ we assign
an arity ar(R). A σ -structure A is a tuple A := (

V (A), R1(A), . . . , Rk(A),ar(R)

c1(A), . . . , cq (A)
)

consisting of a set V (A), the universe, for each Ri ∈ σ
of arity ar(Ri) := r a set Ri(A) ⊆ V (A)r and for each ci ∈ σ a constant
ci(A) ∈ V (A). We will usually use letters A,B, ... for structures. Their uni-
verse is denoted as V (A) and for each R ∈ σ we write R(A) for the relation R
in the structure A and similarly for constant symbols c ∈ σ .

Tuples of elements are denoted by a := a1, . . . ak . We will frequently writea

a without stating its length explicitly, which will then be understood or not
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relevant. Abusing notation, we will treat tuples sometimes as sets and write
a ∈ a, with the obvious meaning, and also a ⊆ b to denote that every element
in a also occurs in b.

Two σ -structuresA,B are isomorphic, denotedA ∼= B, if there is a bijection A ∼= B

π : V (A) → V (B) such that

� for all relation symbols R ∈ σ of arity r := ar(R) and all a ∈ V (A)r , a ∈
R(A) if, and only if, (π (a1), . . . , π (ar )) ∈ R(B) and

� for all constant symbols c ∈ σ , c(B) = π (c(A)).

Let σ be a signature. We assume a countably infinite set of first-order
variables x, y, . . . and second-order variables X, Y, . . . . A σ -term is a first-
order variable or a constant symbol c ∈ σ . The class of formulas of first-order
logic over σ , denoted FO[σ ], is inductively defined as follows. If R ∈ σ and x
is a tuple of σ -terms of length ar(R), then Rx ∈ FO[σ ] and if t and s are terms
then t = s ∈ FO[σ ]. Further, if ϕ,ψ ∈ FO[σ ], then so are (ϕ ∧ ψ), (ϕ ∨ ψ)
and ¬ϕ. Finally, if ϕ ∈ FO[σ ] and x is a first-order variable, then ∃xϕ ∈ FO[σ ]
and ∀xϕ ∈ FO[σ ].

The class of formulas of monadic second-order logic over σ , denoted
MSO[σ ], is defined by the rules for first-order logic with the following addi-
tional rules: ifX is a second-order variable and ϕ ∈ MSO[σ ∪̇{X}], then ∃Xϕ ∈
MSO[σ ] and ∀Xϕ ∈ MSO[σ ]. Finally, we define FO :=⋃

σ signature FO[σ ] and
likewise for MSO.

First-order variables range over elements of σ -structures and monadic
second-order variables X range over sets of elements. Formulas ϕ ∈ FO[σ ]
are interpreted in σ -structures A in the obvious way, where atoms Rx denote
containment in the relation R(A), = denotes equality of elements, ∨,∧,¬
denote disjunction, conjunction and negation and ∃xϕ is true in A if there is
an element a ∈ V (A) such that ϕ is true in A if x is interpreted by a. Analo-
gously, ∀xϕ is true in A if ϕ is true in A for all interpretations of x by elements
a ∈ V (A).

For MSO[σ ]-formulas, ∃Xϕ is true inA if there is a set U ⊆ V (A) such that
ϕ is true if X is interpreted by U and analogously for ∀Xϕ.

The set of free variables of a formula is defined in the usual way. We will
write ϕ(x) to indicate that the variables in x occur free in ϕ. Formulas without
free variables are called sentences. If ϕ is a sentence we write A |= ϕ if ϕ is A |= ϕ

true in A. If ϕ(x) has free variables x and a is a tuple of the same length as
x, we write A |= ϕ(a) or (A, a) |= ϕ if ϕ is true in A where the free variables A |= ϕ(a)

(A, a) |= ϕx are interpreted by the elements in a in the obvious way. We will sometimes
consider formulas ϕ(X) with a free second-order variable X. The notation
extends naturally to free second-order variables.
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We will use obvious abbreviations in formulas, such as→ (implication), x �=
y instead of¬x = y and

∨k
i=1 ϕi and

∧k
i=1 ϕi for disjunctions and conjunctions

over a range of formulas.

Example 5.2.1 1. An independent set, or stable set, in a graph G is aindependent

set set X ⊆ V (G) such that {u, v} �∈ E for all u, v ∈ X. The first-order
sentence

ϕk := ∃x1 . . . ∃xk
∧

1≤i<j≤k

(
xi �= xj ∧ ¬Exixj

)
is true in a graphG (considered as an {E}-structure in the obvious way) if,
and only if, G contains an independent set of size k.

2. A dominating set in a graph G is a set X ⊆ V (G) such that for alldominating

set v ∈ V (G), either v ∈ X or there is a u ∈ X such that {v, u} ∈ E(G). The
formula

ϕ(X) := ∀x(Xx ∨ ∃z(Exz ∧Xz))
states thatX is a dominating set. Precisely, a setU ⊆ V (G) is a dominating
set in G if, and only if, (G,U ) |= ϕ.

To say that a graph contains a dominating set of size k we can use the
formula ∃x1 . . . ∃xk∀y

∨k
i=1

(
y = xi ∨ Exiy

)
. -

Note the difference between the formulas defining an independent set and
a dominating set: whereas an independent set of size k can be defined by
a formula using existential quantifiers only, i.e. without alternation between
existential and universal quantifiers, the formula defining a dominating set of
size k contains one alternation of quantifiers. This indicates that the independent
set problem might be simpler than the dominating set problem, a realisation
that is reflected in the parameterized complexity of the problem as discussed
later (see Proposition 5.2.10).

Example 5.2.2 1. Consider the following MSO-formula

ϕ := ∀X
((∃xXx ∧ ∀x∀y(Xx ∧ Exy → Xy)

)→ ∀xXx
)
.

The formula says of a graphG that all setsX ⊆ V (G) which are non-empty
(∃xXx) and have the property that whenever v ∈ X and {v, u} ∈ E(G) then
also u ∈ X, already contain the entire vertex set of G.

Clearly, G |= ϕ if, and only if, G is connected, as the vertex set of any
connected component satisfies

(∃xXx ∧ ∀x∀y(Xx ∧ Exy → Xy)
)
.
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2. A 3-colouring of a graph G is a function f : V (G) → {1, 2, 3} such that
f (u) �= f (v) for all {u, v} ∈ E(G). The formula

ϕ := ∃C1∃C2∃C3
(∀x 3∨

i=1

Cix
) ∧ ∀x∀y(Exy → 3∧

i=1

¬(Cix ∧ Ciy)
)

is true in a graph G if, and only if, G is 3-colourable. -

With any logicL, we can naturally associate the following decision problem,
called the model-checking problem of L.

MC(L)
Input: Structure A and sentence ϕ ∈ L.

Problem: Decide A |= ϕ.

Much of this paper will be devoted to studying the complexity of model-
checking problems on various classes of graphs, primarily in the parameterized
setting introduced in the next section.

Another natural problem associated with any logic is its satisfiability problem satisfiability

defined as the problem to decide for a given sentence ϕ ∈ L whether it has a
model. We will study this problem relative to a given class C of structures. This
is equivalent to asking whether the L-theory of C, i.e. the class of all formulas
ϕ ∈ L which are true in every structure A ∈ C, is decidable.

The quantifier rank of a formula ϕ, denoted qr(ϕ), is the maximal number quantifier rank
qr(ϕ)of quantifiers in ϕ nested inside each other. If ϕ ∈ MSO, we count first- and

second-order quantifiers. For instance, the formula in Example 5.2.2 (1) has
quantifier rank 3.

LetA be a structure and v1, . . . , vk be elements in V (A). For q ≥ 0, the first-
order q-type tpFO

q (A, v) of v is the class of all FO-formulas ϕ(x) of quantifier-

first-order
type
tpFO
q (A, v)

rank ≤ q such that A |= ϕ(v). Monadic second-order types tpMSO
q (A, v) are tpMSO

q (A, v)

defined analogously.
By definition, types are infinite. However, it is well known that there are only

finitely many FO or MSO-formulas of quantifier rank ≤ q which are pairwise
not equivalent. Furthermore, we can effectively normalise formulas in such a
way that equivalent formulas are normalised syntactically to the same formula.
Hence, we can represent types by their finite set of normalised formulas.

This has a number of algorithmic applications. For instance, it is decidable
if two types are the same and whether a formula ϕ is contained in a type
: we simply normalise ϕ to a formula ψ and check whether ψ ∈ . Note,
however, that it is undecidable whether a set of normalised formulas is a type:
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by definition, types are satisfiable and satisfiability of first-order formulas is
undecidable.

The following lemma, which essentially goes back to Feferman and Vaught
will be used frequently later on. We refer the reader to [53] or [64] for a proof.

Lemma 5.2.3 Let tp be either tpMSO or tpFO and let H,G be graphs such
that V (H ) ∩ V (G) = {v}. Let u ∈ V (H ) and w ∈ V (G).

For all q ≥ 0, tpq(G ∪H, vuw) is uniquely determined by tpq (G, vw) and
tpq(H, uv) and this is effective, i.e. there is an algorithm that computes tpq (G ∪
H, vuw) given tpq(G, vw) and tpq(H, uv).

SupposeG = H1 ∪H2 can be decomposed into subgraphsH1,H2 such that
V (H1 ∩H2) = v. The importance of the lemma is that it allows us to infer the
truth of a formula in G from the q-type of v in H1 and H2, where q := qr(ϕ).
Hence, if G is decomposable in this way, we can reduce the question G |= ϕ

to the question on smaller graphs H1,H2. This will be of importance when we
study graph-decompositions such as tree-decompositions and similar concepts
in Section 5.3 and 5.4.

MSO-Interpretations
Let C be a class of σ -structures and D be a class of τ -structures. Suppose
we know already that MSO-model-checking is tractable on C and we want to
show that it is tractable on D also. Here is one way of doing this: find a way
to “encode” a given graph G ∈ D in a graph G′ ∈ C and also to “rewrite”
the formula ϕ ∈ MSO[τ ] into a new formula ϕ′ ∈ MSO[σ ] so that G |= ϕ if,
and only if, G′ |= ϕ′. Then tractability of MSO-model checking on D follows
immediately from tractability on C – provided the encoding is efficient.

MSO-interpretations help us in doing just this: they provide a way to rewrite
the formula ϕ speaking about D to a formula ϕ′ speaking about C and also give
us a translation of graphs “in the other direction”, namely a way to translate
a graph G′ ∈ C to a graph G := 
(G′) ∈ D so that G′ |= ϕ′ if, and only if,
G |= ϕ. Hence, to reduce the model checking problem for MSO on D to the
problem on C, we have to find an interpretation 
 to translate the formulas from
D to C and an encoding of graphs G ∈ D to graphs G′ ∈ C so that 
(G′) ∼= G.
Figure 5.2 demonstrates the way interpretations are used as reductions.

We will first define the notion of interpretations formally and then demon-
strate the concept by giving an example.

Definition 5.2.4 Let σ := {E,P1, . . . , Pk} and τ := {E} be signatures, where
E is a binary relation symbol and the Pi are unary. A (one-dimensional)
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Class D Class C

GG

ϕ ∈ MSO[τ (Γ] ϕ) ∈ MSO[σ]

Γ(G ) ∼= GG

algorithmic encoding

interpretation

interpretation

Figure 5.2 Using interpretations as reductions between problems

MSO interpretation from σ -structures to τ -structures is a triple 
 := MSO-

interpretation(ϕuniv, ϕvalid, ϕE) of MSO[σ ]-formulas.
For every σ -structure T with T |= ϕvalid we define a graph (i.e. τ -structure)

G := 
(T ) as the graph with vertex set V (G) := {u ∈ V (T ) : T |= ϕuniv(v)}
and edge set

E(G) := {{u, v} ∈ V (G) : T |= ϕE(u, v)}.
If C is a class of σ -structures we define 
(C) := {
(T ) : T ∈ C, T |= ϕvalid}.
Every interpretation naturally defines a mapping from MSO[τ ]-formulas ϕ

to MSO[σ ]-formulas ϕ∗ := 
(ϕ). Here, ϕ∗ is obtained from ϕ by recursively
replacing

� first-order quantifiers ∃xϕ and ∀xϕ by ∃x(ϕuniv(x) ∧ ϕ∗) and ∀x(ϕuniv(x)
→ ϕ∗) respectively,

� second-order quantifiers ∃Xϕ and ∀Xϕ by ∃X(∀y(Xy → ϕuniv(y)) ∧ ϕ∗)
and ∀X(∀y(Xy → ϕuniv(y)) → ϕ∗

)
respectively and

� atoms E(x, y) by ϕE(x, y).

The following lemma is easily proved (see [57]).

Lemma 5.2.5 (interpretation lemma) Let 
 be an MSO-interpretation from
σ -structures to τ -structures. Then for all MSO[τ ]-formulas and all σ -structures
G |= ϕvalid

G |= 
(ϕ) ⇐⇒ 
(G) |= ϕ.

Note that here we are using a restricted form of interpretations. In particular, we
only allow one free variable in the formula ϕuniv(x) defining the universe of the
resulting graph. A consequence of this is that in any such an interpretation 
,
we always have |
(G)| ≤ |G|. In general interpretations, ϕuniv(x) can have any
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number of free variables, so that the universe of the resulting structure consists
of tuples of elements and hence can be much (polynomially) larger than the
original structure. For our purposes, one-dimensional interpretations are enough
and we will therefore not consider more complex forms of interpretations as
discussed in e.g. [57].

Initially we studied interpretations to reduce complexity results from one
class C of graphs to another class D. This is done as follows. Let 
 be inter-
pretation from C in D, i.e. 
 is a set of formulas speaking about graphs in C so
that for all G ∈ C, 
(G) ∈ D.

We first design an algorithm that encodes a given graph G ∈ D in a graph
G ′ ∈ C so that 
(G′) ∼= G. Now, given G ∈ D and ϕ ∈ MSO as input, we
translateG to a graphG′ ∈ C and use the interpretation
 to obtainϕ′ ∈ MSO[σ ]
such thatG′ |= ϕ′ if, and only if,G |= ϕ. Then we can check – using the model-
checking algorithm for C – whether G′ |= ϕ ′.

Example 5.2.6 Let C be the class of finite paths and D be the class of finite
cycles. Then 
(C) = D for the following interpretation 
 := (ϕuniv, ϕvalid, ϕE):
ϕuniv(x) = ϕvalid := true and

ϕE(x, y) := Exy ∨ ¬∃z1∃z2
(
z1 �= z2 ∧

(
(Exz1 ∧ Exz2) ∨ (Eyz1 ∧ Eyz2)

))
The formula is true for a pair x, y if there is an edge between x and y or if
neither x nor y have two different neighbours. Hence, if P ∈ C is a path then
G := 
(P ) is the cycle obtained from P by connecting the two endpoints.

Now, if we know that MSO-model-checking is tractable on C then we can infer
tractability on D is follows. Given C ∈ D and ϕ ∈ MSO, delete an arbitrary
edge from C to obtain a path P ∈ C and construct ϕ′ := 
(ϕ). Obviously,

(P ) ∼= C and hence P |= ϕ′, if and only if, C |= ϕ. -

5.2.4 Complexity

We assume familiarity with basic principles of algorithm design and analysis,
in particular Big-O notation, as can be found in any standard textbook on algo-
rithms, e.g. [11]. Also, we assume familiarity with basic complexity classes
such as Ptime, NP and Pspace and standard concepts from complexity theory
such as polynomial-time reductions as can be found in any text book on com-
plexity theory, e.g. [72]. By reductions we will generally mean polynomial-time
many-one reductions, unless explicitly stated otherwise.

The following examples introduce some of the problems we will be consid-
ering throughout the paper.
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Example 5.2.7 1. Recall from Example 5.2.1 that an independent set in an independent

setgraph G is a set X ⊆ V (G) such that {u, v} �∈ E for all u, v ∈ X. The
independent set problem is defined as

Independent Set
Input: A graph G and k ∈ N.

Problem: Decide if G contains an independent set of size k.

2. Recall from Example 5.2.1 that dominating set in a graph G is a set X ⊆ dominating

setV (G) such that for all v ∈ V (G), either v ∈ X or there is a u ∈ X such that
{v, u} ∈ E(G). The dominating set problem is defined as

Dominating Set
Input: A graph G and k ∈ N.

Problem: Decide if G contains a dominating set of size k.

3. A k-colouring of a graph G is a function f : V (G) → {1, . . . , k} such that
f (u) �= f (v) for all {u, v} ∈ E(G). Of particular interest for this paper is
the problem to decide if a graph can be coloured by three colours.

3-Colouring
Input: A graph G.

Problem: Decide if G has a 3-colouring.

-
It is well known that all three problems in the previous example are NP-

complete. Furthermore, we have already seen that the dominating set problem
can be reduced to first-order model-checking MC(FO). Hence, the latter is NP-
hard as well. However, as the following lemma shows, MC(FO) is (presumably)
even much harder than Dominating Set.

Lemma 5.2.8 (Vardi [88]) MC(FO) and MC(MSO) are Pspace-complete.

Proof (sketch). It is easily seen that MC(MSO), and hence MC(FO) is in
Pspace: given A and ϕ ∈ MSO, simply try all possible interpretations for the
variables quantified in ϕ. This requires only polynomial space.

Hardness of MC(FO) follows easily from the fact that QBF, the problem to
decide whether a quantified Boolean formula is satisfiable, is Pspace-complete.
Given a QBF-formula ϕ := Q1X1 . . .QkXkψ , whereψ is a formula in proposi-
tional logic over the variables X1 . . . Xk andQi ∈ {∃,∀}, we compute the first-
order formula ϕ′ := ∃t∃f (t �= f ∧Q1x1 . . .Qkxkψ

′), where ψ ′ is obtained
from ψ by replacing each positive literalXi by xi = t and each negative literal
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¬Xi by xi = f . Here, the variables t, f represent the truth values true and
false. Clearly, for every structure A with at least two elements, A |= ϕ′ if, and
only if, ϕ is satisfiable. �

An immediate consequence of the proof is that MC(FO) is hard even for
very simple structures: they only need to contain at least two elements. An
area of computer science where evaluation problems for logical systems have
intensively been studied is database theory, where first-order logic is the logical
foundation of the query language SQL. A common assumption in database
theory is that the size of the query is relatively small compared to the size of the
database. Hence, giving the same weight to the database and the query may not
truthfully reflect the complexity of query evaluation. It has therefore become
standard to distinguish between three ways of measuring the complexity of
logical systems:

� combined complexity: given a structure A and a formula ϕ as input, what is
the complexity of deciding A |= ϕ measured in the size of the structure and
the size of the formula?

� data complexity: fix a formula ϕ. Given a structure A as input, what is the
complexity of deciding A |= ϕ measured in the size of the structure only?

� expression complexity: fix a structure A. Given a formula ϕ as input, what is
the complexity of deciding A |= ϕ measured in the size of the formula only?

As seen in Lemma 5.2.8, the combined complexity of first-order logic is
Pspace-complete. Furthermore, the proof shows that even the expression com-
plexity is Pspace-complete, as long as we fix a structure with at least two
elements. On the other hand, it is easily seen that for a fixed formula ϕ, check-
ing whether A |= ϕ can be done in time |A|O(|ϕ|). Hence, the data complexity
of first-order logic is in Ptime.

Besides full first-order logic, various fragments of FO have been studied
in database theory and finite model theory. For instance, the combined com-
plexity of the existential conjunctive fragment of first-order logic – known as
conjunctive queries in database theory – is NP-complete. And if we consider
the bounded variable fragment of first-order logic, the combined complexity is
Ptime [89].

Much of this paper is devoted to studying model-checking problems for a
logic L on restricted classes C of structures or graphs, i.e. to study the problem

MC(L, C)
Input: A ∈ C and ϕ ∈ L.

Problem: Decide A |= ϕ.
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In Example 5.2.2, we have already seen that 3-colourability is definable by
a fixed sentence ϕ ∈ MSO. As the problem is NP-complete, this shows that the
data-complexity of MSO is NP-hard. In fact, it is complete for the polynomial
time hierarchy. There are, however, interesting classes of graphs on which the
data-complexity of MSO is Ptime. One example is the class of trees, another
are classes of graphs of bounded tree-width.

For first-order logic there is not much to classify in terms of input classes
C, as the combined complexity is Pspace-complete as soon as we have at
least one structure of size ≥ 2 in C and the data complexity is always Ptime.
Hence, the classification into expression and data complexity is too coarse for
an interesting theory. However, polynomial time data complexity is somewhat
unsatisfactory, as it does not tell us much about the degree of the polyno-
mials. All it says is that for every fixed formula ϕ, deciding A |= ϕ is in
polynomial time. But the running time of the algorithms depends exponentially
on |ϕ| – and this is unacceptably high even for moderate formulas. Hence,
the distinction between data and expression complexity is only of limited
value for classifying tractable and intractable instances of the model checking
problem.

A framework that allows for a much finer classification of model-checking
problems is parameterized complexity, see [36, 46, 69]. A parameterized prob-
lem is a pair (P, χ ), where P is a decision problem and χ is a polynomial
time computable function that associates with every instance w of P a positive
integer, called the parameter. Throughout this paper, we are mainly interested
in parameterized model-checking problems. For a given logic L and a class C
of structures we define2

MC(L, C)
Input: Given A ∈ C and ϕ ∈ L.

Parameter: |ϕ|.
Problem: Decide A |= ϕ.

A parameterized problem is fixed-parameter tractable, or in the complexity
class FPT, if there is an algorithm that correctly decides whether an instance w FPT

is in P in time

f (χ (w)) · |w|O(1),

for some computable function f : N → N. An algorithm with such a running
time is called an fpt algorithm. Sometimes we want to make the exponent fpt

algorithm
2 We abuse notation here and also refer to the parameterized problem as MC(L,C). As we will

not consider the classical problem anymore, there is no danger of confusion.
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of the polynomial explicit and speak of linear fpt algorithm, if the algorithm
achieves a running time of f (χ (w)) · |w|, and similarly for quadratic and
cubic fpt algorithms. We will sometimes relax the definition of parameterized
problems slightly by considering problems (P, χ ) where the function χ is no
longer polynomial time computable, but is itself fixed-parameter tractable. For
instance, this will be the case for problems where the parameter is the tree-
width of a graph (see Section 5.3.1), a graph parameter that is computable by
a linear fpt-algorithm but not in polynomial time (unless Ptime = NP). Every-
thing we need from parameterized complexity theory in this paper generalises
to this parametrization also. See [46, Chapter 11.4] for a discussion of this
issue.

In the parameterized world, FPT plays a similar role to Ptime in classical
complexity – a measure of tractability. Hence, much work has gone into classi-
fying problems into those which are fixed-parameter tractable and those which
are not, i.e. those that can be solved by algorithms with a running time such as
O(2k

2
n2) and those which require something like O(nk), where k is the param-

eter. Running times of the form O(nk) yield the parameterized complexity class
XP, defined as the class of parameterized problems that can be solved in timeXP

O(nf (k)), for some computable function f : N → N.
In terms of model-checking problems, a model-checking problem MC(L,

C) is in XP if, and only if, the data complexity of L on C is Ptime. Obviously,
FPT⊆XP and this inclusion is strict, as can be proved using the time hierarchy
theorem. If FPT is the parameterized analogue of Ptime then XP can be seen as
the analogue of Exptime. And again, similar to classical complexity, there are
hierarchies of complexity classes in between FPT and XP. For our purpose, the
most important class is called W[1], which is the first level of the W-hierarchyW[1]

W-hierarchy formed by classes W[i], for all i ≥ 1. We refrain from giving the precise
definition of W[1] and the W-hierarchy and refer the reader to the monograph
[46]. For our purposes, it suffices to know that FPT, XP and the W[i]-classes
form the following hierarchy

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ XP.

In some sense, W[1] plays a similar role in parameterized complexity as NP
in classical complexity, in that it is generally believed that FPT �= W[1] (as
far as these beliefs go) and proving that a problem is W[1]-hard establishes
that it is unlikely to be fixed-parameter tractable, i.e. efficiently solvable in
the parameterized sense. The notion of reductions used here is fpt-reduction.
Again, we refer to [46].

We close the section by stating the parameterized complexity of some prob-
lems considered in this paper.
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Definition 5.2.9 1. The p-Dominating Set problem is the problem, given a
graph G and k ∈ N, to decide whether G contains a dominating set of size
k. The parameter is k.

2. The p-Independent Set problem is the problem, given a graph G and
k ∈ N, to decide whether G contains an independent set of size k. The
parameter is k.

3. The p-Clique problem is the problem, given a graph G and k ∈ N, to
decide whether G contains a clique of size k. The parameter is k.

In the sequel, we will usually drop the prefix p− and simply speak about the
Dominating Set problem. It will always be clear from the context whether
we are referring to the parameterized or the classical problem.

Lemma 5.2.10 (Downey, Fellows [34, 35]) 1. p-Dominating Set is W[2]-
complete (see [34]).

2. p-Independent Set is W[1]-complete (see [35]).
3. p-Clique is W[1]-complete (see [35]).

We have already seen that dominating and independent sets of size k can
uniformly be formalised in first-order logic. Hence MC(FO) is W[2]-hard as
well. In fact, it is complete for the parameterized complexity class AW[∗],
which contains all levels of the W-hierarchy and is itself contained in XP.
Finally, as 3-colourability is expressible in MSO, MSO model-checking is not
in XP unless NP = Ptime.

5.3 Monadic Second-Order Logic on Tree-Like Structures

It is a well-known fact, based on the close relation between monadic second-
order logic and finite tree- and word-automata (see e.g. [9, 31, 85, 86, 10, 46,
63]), that model-checking and satisfiability for very expressive logics such as
MSO becomes tractable on the class of finite trees. At the core of these results
is the observation that the validity of an MSO sentence at the root of a tree
can be inferred from the label of the root and the MSO-types realised by its
successors. There are various ways in which this idea can be turned into a
proof or algorithm: we can use effective versions of Feferman-Vaught style
theorems (see e.g. [64]) or we can convert formulas into suitable tree-automata
and let them run on the trees. The aim of the following sections is to extend
the results for MSO and FO from trees to more general classes of graphs. The
aforementioned composition methods will in most cases provide the key to
obtaining these stronger results.
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In this section we generalise the results for MSO model-checking and satis-
fiability from trees to graphs that are no longer trees but still tree-like enough
so that model-checking and satisfiability testing for such graphs can be reduced
to the case of trees.

5.3.1 Tree-Width

The precise notion for “tree-likeness” we use is the concept of tree-width. We
first introduce tree-decompositions, establish some closure properties and then
comment on algorithmic problems in relation to tree-width.

Tree-Decompositions
Definition 5.3.1 A tree-decomposition of a graph G is a pair T :=tree-

decomposition (T , (Bt )t∈V (T )) consisting of a tree T and a family (Bt )t∈V (T ) of sets Bt ⊆ V (G)
such that

1. for all v ∈ V (G) the setB−1(v)

B−1(v) := {t ∈ V (T ) : v ∈ Bt}
is non-empty and connected in T and

2. for every edge e ∈ E(G) there is a t ∈ V (T ) with e ⊆ Bt .

The width w(T ) of T is w(T ) := {|Bt | − 1 : t ∈ V (T )} and the tree-width oftree-width,

w(T ) G is defined as the minimal width of any of its tree-decompositions.

We refer to the sets Bt of a tree-decomposition as bags. For any edgebags

e := {s, t} ∈ E(T ) we call Bs ∩ Bt the cut at or along the edge e. (The reasoncut

for this will become clear later. See Lemma 5.3.13.)

Example 5.3.2 Consider the graph in Figure 5.3 a). A tree-decomposition of
this graph is shown in Figure 5.3 b). -

Example 5.3.3 Trees have tree-width 1. Given a tree T , the tree-decomposition
has a node t for each edge e ∈ E(T ) labelled by Bt := e and suitable edges
connecting the nodes. -
Example 5.3.4 The class of series-parallel graphs (G, s, t) with source s andseries-

parallel sink t is inductively defined as follows.

1. Every edge {s, t} is series-parallel.
2. If (G1, s1, t1) and (G2, s2, t2) are series parallel with V (G1) ∩ V (G2) = ∅,

then so are the following graphs:
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1 2

3 4

5

6 7 8

9

10 11

1,3,11

1,3,6,11 1,3,4,11

1,6,9,11 1,2,3,4 3,4,7,11

1,5,6,9 6,9,10,11 4,7,8,11

a) Graph G b) Tree-decomposition of G of width 3.

Figure 5.3 Graph and tree-decomposition from Example 5.3.2

a) the graph (G, s, t) obtained from G1 ∪G2 by identifying t1 and s2 and
setting s = s1 and t = t2 (serial composition).

b) the graph (G, s, t) obtained from G1 ∪G2 by identifying s1 and s2 and
also t1 and t2 and setting s = s1 and t = t2 (parallel composition).

The class of series-parallel graphs has tree-width 2. Following the induc-
tive definition of series-parallel graphs one can easily show that every such
graph (G, s, t) has a tree-decomposition of width 2 containing a node labelled
by {s, t}. This is trivial for edges. For parallel and serial composition the
tree-decompositions of the individual parts can be glued together at the node
labelled by the respective source and sink nodes. -

The final example shows that grids have very high tree-width. Grids play
a special role in relation to tree-width. As we will see later, every graph of
sufficiently high tree-width contains a large grid minor. Hence, in this sense,
grids are the least complex graphs of high tree-width.

Lemma 5.3.5 For all n > 1, the n× n-grid Gn,n has tree-width n.

In the remainder of this section we will present some basic properties of
tree-decompositions and tree-width.

Closure Properties and Connectivity. It is easily seen that tree-width is
preserved under taking subgraphs. For, if (T , (Bt )t∈V (T )) is a tree-decomposition
of widthw of a graphG, then (T , (Bt ∩ V (H ))t∈V (T )) is a tree-decomposition of
H of width at mostw. Further, ifG andH are disjoint graphs, we can combine
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tree-decompositions forG andH to a tree-decomposition of the disjoint union
G∪̇H by adding one edge connecting the two decompositions.

Lemma 5.3.6 Let G be a graph. If H ⊆ G, then tw(H ) ≤ tw(G).
Further, if C1, . . . , Ck are the components of G, then

tw(G) = max{tw(Ci) : 1 ≤ i ≤ k}.

To state the next results, we need further notation. Let G be a graph and
(T , (Bt )t∈V (T )) be a tree-decomposition of G.

1. If H ⊆ G we define B−1(H ) := {t ∈ V (T ) : Bt ∩ V (H ) �= ∅}.B−1(H )

2. Conversely, for U ⊆ T we define B(U ) :=⋃
t∈V (U ) Bt .B(U )

Occasionally, we will abuse notation and use B,B−1 for sets instead of sub-
graphs. The next lemma is easily proved by induction on |H | using the fact that
for each vertex v ∈ V (G) the setB−1(v) is connected in any tree-decomposition
T ofG and that edges {u, v} ∈ E(G) are covered by some bagBt for t ∈ V (T ).
Hence, B−1(u) ∪ B−1(v) is connected in T for all {u, v} ∈ E(H ).

Lemma 5.3.7 Let G be a graph and T := (T , (Bt )t∈V (T )) be a tree-
decomposition of G. If H ⊆ G is connected, then so is B−1(H ) in T .

Small tree-decompositions. A priori, by duplicating nodes, tree-decomposi-
tions of a graph can be arbitrarily large (in terms of the number of nodes in the
underlying tree). However, this is not very useful and we can always avoid this
from happening. We will now consider tree-decompositions which are small
and derive various useful properties from this.

Definition 5.3.8 A tree-decomposition (T , (Bt )t∈V (T )) is small, if Bt �⊆ Bu forsmall tree-

decompositions all u, t ∈ V (T ) with t �= u.

The next lemma shows that we can easily convert every tree-decomposition
to a small one in linear time.

Lemma 5.3.9 LetG be a graph and T := (T , (Bt )t∈V (T )) a tree-decomposition
of G.

Then there is a small tree-decomposition T ′ := (
T ′, (B ′t )t∈V (T ′))

)
ofG of the

same width and with V (T ′) ⊆ V (T ) and B ′t = Bt for all t ∈ V (T ′).

Proof. Suppose Bs ⊆ Bt for some s �= t . Let s = t1 . . . tn = t be the nodes of
the path from s to t in T . Then Bs ⊆ Bt2 , by definition of tree-decompositions.
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But then, (T ′, (Bt )t∈V (T ′)) with V (T ′) := V (T ) \ {s} and

E(T ′) :=
(
E(T ) \ {{v, s} : {v, s} ∈ E(T )}) ∪
{{v, t2} : {v, s} ∈ E(T ) and v �= t2}.

is a tree-decomposition of G with V (T )′ ⊂ V (T ). We repeat this until T is
small. �

A consequence of this is the following result, which implies that in measuring
the running time of algorithms on graphs whose tree-width is bounded by a
constant k, it is sufficient to consider the order of the graphs rather than their
size.

Lemma 5.3.10 Every (non-empty) graph of tree-width at most k contains a
vertex of degree at most k.

Proof. LetG be a graph and letT := (T , (Bt )t∈V (T )) be a small tree-decomposi-
tion ofG of width k := tw(G). If |T | = 1, then |G| ≤ k + 1 and there is nothing
to show. Otherwise let t be a leaf of T and s be its neighbour in T . As T is
small, Bt �⊆ Bs and hence there is a vertex v ∈ Bt \ Bs . By definition of tree-
decompositions, v must have all its neighbours in Bt and hence has degree at
most k. �

Corollary 5.3.11 Every graph G of tree-width tw(G) ≤ k has at most k ·
|V (G)| edges, i.e., for k > 0, ||G|| ≤ k · |G|.

Separators. We close this section with a characterisation of graphs of small
tree-width in terms of separators. This separation property allows for the
aforementioned applications of automata theory or Feferman-Vaught style
theorems.

Definition 5.3.12 Let G be a graph.

(i) Let X, Y ⊆ V (G). A set S ⊆ V (G) separates X and Y, or is a separator
for X and Y , if every path containing a vertex of Y and a vertex of Z separator

also contains a vertex of S. In other words, X and Y are disconnected
in G− S.

(ii) A separator of G is a set S ⊆ V (G), so that G− S has more than one
component, i.e. there are sets X, Y ⊆ V (G) such that S separates X
and Y and X \ S �= ∅ and Y \ S �= ∅.

Lemma 5.3.13 Let (T , (Bt )t∈V (T )) be a small tree-decomposition of a
graph G.
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(i) If e := {s, t} ∈ E(T ) and T1, T2 are the components of T − e, then
Bt ∩ Bs separates B(T1) and B(T2).

(ii) If t ∈ V (T ) is an inner vertex and T1, . . . , Tk are the components of
T − t then Bt separates B(Ti) and B(Tj ), for all i �= j .

Proof. Let e := {s, t} ∈ E(T ) and let T1, T2 be the components of T − e. As
T is small, X := B(T1) \ B(T2) �= ∅ and Y := B(T2) \ B(T1) �= ∅. Suppose
there was an X − Y -path P in G not using any vertex from Bt ∩ Bs . By
Lemma 5.3.7, B−1(P ) is connected and hence there is a path in T from T1 to
T2 not using the edge e (as V (P ) ∩ Bt ∩ Bs = ∅), in contradiction to T being
a tree.

Part (ii) can be proved analogously. �

Recall from the preliminaries that for an edge e := {s, t} ∈ E(T ) we refer to
the set Bs ∩ Bt as the cut at the edge e. The previous lemma gives justification
to this terminology, as the cut at an edge separates the graph. A simple con-
sequence of this lemma is the following observation, that will be useful later
on.

Corollary 5.3.14 Let G be a graph and T := (T , (Bt )t∈V (T )) be a tree-
decomposition of G. If X ⊆ V (G) is the vertex set of a complete subgraph
of G, then there is a t ∈ V (T ) such that X ⊆ Bt .

Proof. By Lemma 5.3.9, there is a small tree-decomposition T ′ := (T ′,
(B ′t )t∈V (T ′)) such that V (T ′) ⊆ V (T ) and B ′t = Bt for all t ∈ V (T ′). Hence,
w.l.o.g. we may assume that T is small.

By Lemma 5.3.13, every cut at an edge e ∈ E(T ) is a separator of the graph
G. Hence, asG[X] is complete, if e ∈ E(T ) and T1, T2 are the two components
of T − e, then either X ⊆ B(T1) or X ⊆ B(T2) but not both. We orient every
edge e ∈ E(T ) so that it points towards the component of T − e containing
all of X. As T is acyclic, there is a node t ∈ V (T ) with no outgoing edge. By
construction, X ⊆ Bt . �

Corollary 5.3.15 tw(Kk) = k − 1 for all k ≥ 1.

Algorithms and Complexity
The notion of tree-width has been introduced by Robertson and Seymour as
part of their proof of the graph minor theorem. Even before that, the notion
of partial k-trees, broadly equivalent to tree-width, had been studied in the
algorithms community. The relevance of tree-width for algorithm design stems
from the fact that the tree-structure inherent in tree-decompositions can be used
to design bottom-up algorithms on graphs of small tree-width to solve problems
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efficiently which in general are NP-hard. A key step in designing these algo-
rithms is to compute a tree-decomposition of the input graph. Unfortunately,
Arnborg, Corneil, and Proskurowski showed that deciding the tree-width of a
graph is NP-complete itself.

Theorem 5.3.16 (Arnborg, Corneil, Proskurowski [3]) The following problem
is NP-complete.

Tree-Width
Input: Graph G, k ∈ N.

Problem: tw(G) = k?

However, the problem becomes tractable if the tree-width is not a part of the
input, i.e. if we are given a constant upper bound on the tree-width of graphs
we are dealing with.

A class C of graphs has bounded tree-width, if there is a k ∈ N such that bounded

tree-widthtw(G) ≤ k for all G ∈ C. In [6] Bodlaender proved that for any class of graphs
of bounded tree-width tree-decompositions of minimal width can be computed
in linear time.

Theorem 5.3.17 (Bodlaender [6]) There is an algorithm which, given a graph
G as input, constructs a tree-decomposition of G of width k := tw(G) in time

2O(k3) · |G|.
The algorithm by Bodlaender is primarily of theoretical interest. We will

see later that many NP-complete problems can be solved efficiently on graph
classes of bounded tree-width. For these algorithms to work in linear time,
it is essential to compute tree-decompositions in linear time as well. From a
practical point of view, however, the cubic dependence on the tree-width in the
exponent and the complexity of the algorithm itself poses a serious problem.
But there are other simpler algorithms with quadratic or cubic running time in
the order of the graph but only linear exponential dependence on the tree-width
which are practically feasible for small values of k.

5.3.2 Tree-Width and Structures

So far we have only considered graphs and their tree-decompositions. We
will do so for most of the remainder, but at least want to comment on tree-
decompositions of general structures. We first present the general definition of
tree-decompositions of structures and then give an alternative characterisation
in terms of the Gaifman- or comparability graph.
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Definition 5.3.18 Let σ be a signature. A tree-decomposition of a σ -structure
A is a pair T := (T , (Bt )t∈V (T )), where T is a tree and Bt ⊆ V (A) for all
t ∈ V (T ), so that

(i) for all a ∈ V (A) the set B−1 := {t ∈ V (T ) : a ∈ Bt } is non-empty and
connected in T and

(ii) for every R ∈ σ and all (a1, . . . , aar(R)) ∈ R(A)ar(R) there is a t ∈ V (T )
such that {a1, . . . , aar(R)} ⊆ Bt .

The width w(T ) is defined as max{|Bt | − 1 : t ∈ V (T )} and the tree-width of
A is the minimal width of any of its tree-decompositions.

The idea is the same as for graphs. We want the tree-decomposition to
contain all elements of the structure and at the same time we want each tuple in
a relation to be covered by a bag of the decomposition. It is easily seen that the
tree-decompositions of a structure coincide with the tree-decompositions of its
Gaifman graph, defined as follows.

Definition 5.3.19 (Gaifman-graph) Let σ be a signature. The Gaifman-graph
of a σ -structure A is defined as the graph G(A) with vertex set V (A) and anG(A)

edge between a, b ∈ V (A) if, and only if, there is an R ∈ σ and a ∈ R(A) with
a, b ∈ a.

The following observation is easily seen.

Proposition 5.3.20 A structure has the same tree-decompositions as its
Gaifman-graph.

So far we have treated the notion of graphs informally as mathematical
structures. As a preparation to the next section, we consider two different ways
of modelling graphs by logical structures. The obvious way is to model a graph
G as a structure A over the signature σGraph := {E}, where V (A) := V (G)σGraph

andE(A) := {(a, b) ∈ V (A)× V (A) : {a, b} ∈ E(G)}. We writeA(G) for thisA(G)

encoding of a graph as a structure and refer to it as the standard encoding.
Alternatively, we can model the incidence graph of a graph G defined asincidence

graph the graph GInc with vertex set V (G) ∪ E(G) and edges E(GInc) := {(v, e) :
v ∈ V (G), e ∈ E(G), v ∈ e}. The incidence graph gives rise to the following
encoding of a graph as a structure, which we refer to as the incidence encoding.

Definition 5.3.21 Let G := (V,E) be a graph. Let σinc := {PV , PE, I ), where
PV , PE are unary predicates and I is a binary predicate. The incidence structure
AI (G) is defined as the σinc-structure A := AI (G) where V (A) := V ∪ E,
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PE(A) := E, PV (A) := V and

I (A) := {(v, e) : v ∈ V, e ∈ E, v ∈ e}.
The proof of the following lemma is straightforward but may be a good

exercise.

Theorem 5.3.22 tw(G) = tw(AI (G)) for all graphs G.

It may seem to be a mere technicality how we encode a graph as a structure.
However, the precise encoding has a significant impact on the expressive power
of logics on graphs. For instance, the following MSO[σinc]-formula defines that
a graph contains a Hamilton-cycle using the incidence encoding, a property
that is not definable in MSO on the standard encoding (see e.g. [37, Corollary
6.3.5]).

∃U ⊆ PE∀v“v has degree 2 in G[U ]” ∧ ϕconn(U ),

where ϕconn is a formula saying that the subgraph G[U ] induced by U is
connected. Clearly, it is MSO-definable that a vertex v is incident to exactly two
edges in U , i.e. has degree 2 in G[U ]. The formula says that there is a set U
of edges so that G[U ] is connected and that every vertex in G[U ] has degree
2. But this means that U is a simple cycle P in G. Further, as all vertices of G
occur in P , this cycle must be Hamiltonian.

Hence, MSO is more expressive over incidence graphs than over the standard
encoding of graphs. It is clear that MSO interpreted over incidence graphs is
the same as considering the extension of MSO by quantification over sets of
edges (rather than just sets of vertices) on the standard encoding. This logic is
sometimes referred to as MSO2 in the literature. A more general framework are MSO2

guarded logics, that allow quantification only over tuples that occur together in
some relation in the structure. On graphs, guarded second-order logic (GSO)
is just MSO2. As we will not be dealing with general structures in the rest of GSO

this survey, we refrain from introducing guarded logics formally and refer to
[2, 51] and references therein instead.

5.3.3 Coding Tree-Decompositions in Trees

The aim of the following sections is to show that model-checking and satisfia-
bility testing for monadic second-order logic becomes tractable when restricted
to graph classes of small tree-width. The proof of these results relies on a reduc-
tion from graph classes of bounded tree-width to classes of finite labelled trees.
As a first step towards this we show how graphs of tree-width bounded by some
constant k can be encoded in �k-labelled finite trees for a suitable alphabet �k
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depending on k. We will also show that the class of graphs of tree-width k, for
some k ∈ N, is MSO-interpretable in the class of �k-labelled trees.

A tree-decomposition (T , (Bt )t∈V (T )) of a graph G is already a tree and we
will take T as the underlying tree of the encoding. Thus, all we have to do is
to define the labelling. Note that we cannot simply take the bags Bt as labels,
as we need to work with a finite alphabet and there is no a priori bound on the
number of vertices in the bags. Hence we have to encode the vertices in the
bags using a finite number of labels. To simplify the presentation we will be
using tree-decompositions of a special form.

Definition 5.3.23 A leaf-decomposition of a graph G is a tree-decompositionleaf-
decompositionT := (T , (Bt )t∈V (T )) of G such that all leaves of V (T ) contain exactly one

vertex and every v ∈ V (G) is contained in exactly one leaf of T .

In other words, in leaf-decompositions there is a bijection ρ between the
set of leaves of the decomposition and the set of vertices of the graph and the
bag Bt of a leaf t contains exactly its image ρ(t). It is easily seen that any
tree-decomposition can be converted into a leaf-decomposition of the same
width.

Lemma 5.3.24 For every tree-decomposition T of a graph G there is a leaf-
decomposition T ′ of G of the same width and this can be computed in linear
time, given T .

To define the alphabet �k , we will work with a slightly different form of
tree-decompositions where the bags are no longer sets but ordered tuples of
vertices. It will also be useful to require that all these tuples have the same
length and that the tree underlying a tree-decomposition is a binary directed
tree.3

Definition 5.3.25 An ordered tree-decomposition of width k of a graph G is
a pair (T , (bt )t∈V (T )), where T is a directed binary tree and bt ∈ V (G)k , so
that (T , (Bt )t∈V (T )) is a tree-decomposition of G, with Bt := {b0, . . . , bk} for
bt := b0, . . . , bk .

An ordered leaf-decomposition is the ordered version of a leaf-decom-
position.

Example 5.3.26 Consider again the graph from Example 5.3.2. The following
shows an ordered leaf-decomposition obtained from the tree-decomposition in

3 Note that, strictly speaking, to apply the results on MSO on finite trees we have to work with
trees where an ordering on the children of a node is imposed. Clearly we can change all
definitions here to work with such trees. But as this would make the notation even more
complicated, we refrain from doing so.
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Example 5.3.2 by first adding the necessary leaves containing just one vertex
and then converting every bag into an ordered tuple of length 4.

(1,3,11,1)

(1,1,1,1) (11,11,11,11)

)4,4,4,4()11,4,3,1()11,6,3,1(

(1,6,9,11) (3,4,7,11) (1,2,3,4)

(1,5,6,9) (6,9,10,11) (4,7,8,11) (2,2,2,2) (3,3,3,3)

(5,5,5,5) (6,6,6,6) (9,9,9,9) (10,10,10,10) (7,7,7,7) (8,8,8,8)

The graph G together with this leaf-decomposition induces the following
�3-labelled tree:

t1

t2 t3

t4 t5 t6

t7 t8 t9

t10 t11 t12 t13 t14

t15 t16 t14 t15 t16 t16

where, for instance, λ(t4) := (
eq(t4), overlap(t4), edge(t4)

)
, with

� eq(t4) := ∅,
� overlap(t4) := {(0, 0), (0, 3), (1, 1), (3, 2)}, and
� edge(t4) := {(0, 1), (1, 2), (1, 3), (2, 3)} ∪ {(1, 0), (2, 1), (3, 1), (3, 2)}.
eq(t4) := ∅, as all positions of bt4 correspond to different vertices inG. On the
other hand, eq(t15) := {(i, j ) : i, j ∈ {0, . . . , 3}}, as all entries of b15 refer to
the same vertex 5. -
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It is easily seen that every tree-decomposition of width k can be converted in
linear time to an ordered tree-decomposition of width k. Combining this with
Bodlaender’s algorithm (Theorem 5.3.17) and Lemma 5.3.24 above yields the
following lemma.

Lemma 5.3.27 There is an algorithm that, given a graph G of tree-width
≤ k, constructs an ordered leaf-decomposition of G of width tw(G) in time
2O(k3) · |G|.

Now let G be a graph and L := (T ′, (bt )t∈V (T ′)) be an ordered leaf-
decomposition of G of width k. We code L in a labelled tree T := (T , λ),
so that L and G can be reconstructed from T , and this reconstruction can even
be done by MSO formulas.

The tree T underlying T is the tree T ′ of L. To define the alphabet and the
labels of the nodes let t ∈ V (T ) and let bt := b0, . . . , bk .

We setλ(t)

λ(t) := (eq(t), overlap(t), edge(t))

where eq(t), overlap(t), edge(t) are defined as follows:

� eq(t) := {(i, j ) : 0 ≤ i, j ≤ k and bi = bj }.eq(t)
� If t is the root of T , then overlap(t) := ∅. Otherwise let p be the predecessor

of t in T and let bp := a0, . . . , ak . We setoverlap(t)

overlap(t) := {(i, j ) : 0 ≤ i, j ≤ k and bi = aj }.
� Finally, edge(t) := {(i, j ) : 0 ≤ i, j ≤ k and {bi, bj } ∈ E(G)}.edge(t)

For every fixed k, the labels come from the finite alphabet�k

�k := 2{0,...,k}
2 × 2{0,...,k}

2 × 2{0,...,k}
2
.

We write T (G,L) for the labelled tree encoding a leaf-decomposition L of aT (G,L)

graph G. Note that the signature depends on the arity k of the ordered leaf-
decomposition L, i.e. on the bound on the tree-width of the class of graphs we
are working with.

The individual parts of the labelling have the following meaning. Recall that
we require all tuples bt to be of the same length k + 1 and therefore they may
contain duplicate entries. eq(t) identifies those entries in a tuple relating to the
same vertex of the graph G. The label overlap(t) takes care of the same vertex
appearing in tuples of neighbouring nodes of the tree. As we are working with
directed trees, every node other than the root has a unique predecessor. Hence
we can record in the overlap-label of the child which vertices in its bag occur
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at which positions of its predecessor. Finally, edge encodes the edge relation
of G. As every edge is covered by a bag of the tree-decomposition, it suffices
to record for each node t ∈ V (T ) the edges between elements of its bag bt .

The labels eq(t), overlap(t) and edge(t) satisfy some obvious consistency
criteria, e.g. eq(t) is an equivalence relation for every t , eq(t) is consistent
with edge(t) in the sense that if two positions i, i′ refer to the same vertex,
i.e. (i, i ′) ∈ eq(t) and (i, j ) ∈ edge(t) then also (i′, j ) ∈ edge(t), and likewise
for eq(t) and overlap(t). We refrain from giving all necessary details. Note,
though, that any �k-labelled finite tree that satisfies these consistency criteria
does encode a graph of tree-width at most k. Furthermore, the criteria as outlined
above are easily seen to be definable in MSO, in fact even in first-order logic.
Again we refrain from giving the exact formula as its definition is long and
technical but absolutely straightforward. Let ϕcons be the MSO-sentence true in ϕcons

a�k-labelled tree if, and only if, it satisfies the consistency criteria, i.e. encodes
a tree-decomposition of a graph of tree-width at most k.

Of course, to talk about formulas defining properties of �k-labelled trees
we first need to agree on how �k-labelled trees are encoded as structures. For
k ∈ N we define the signature σk

σk := {E} ∪ {eqi,j , edgei,j , overlapi,j : 0 ≤ i, j ≤ k},
where eqi,j , overlapi,j , and edgei,j are unary relation symbols. The intended
meaning of eqi,j is that in a σk-structureA an element t is contained in eqi,j (A)
if (i, j ) ∈ eq(t) in the corresponding tree. Likewise for overlapi,j and edgei,j .
σk-structures, then, encode �k-labelled trees in the natural way. In the sequel,
we will not distinguish notationally between a �k-labelled tree T and the
corresponding σk-structure AT . In particular, we will write T |= ϕ, for an
MSO-formula ϕ, instead of AT |= ϕ.

Clearly, the information encoded in the �k-labelling is sufficient to recon-
struct the graph G from a tree T (G,L), for some ordered leaf-decomposition
of G of width k. Note that different leaf-decompositions of G may yield non-
isomorphic trees. Hence, the encoding of a graph in a �k-labelled tree is not
unique but depends on the decomposition chosen. For our purpose this does
not pose any problem, though.

The next step is to define an MSO-interpretation


 := (ϕuniv(x), ϕvalid, ϕE(x, y)) 


of the class Tk of graphs of tree-width at most k in the class T�k of �k-labelled
finite trees. To state the interpretation formally, we need to define the three
formulas ϕuniv(x), ϕvalid, and ϕE(x, y). Recall that in a leaf-decomposition L
there is a bijection between the leaves of T and the vertices of the graph that is
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being decomposed. Hence, we can take ϕuniv(x) to be the formula

ϕuniv(x) := ∀y¬Exy

saying that x is a leaf in T .
LetG be a graph and L := (T , (bt )t∈V (T )) be an ordered leaf-decomposition

ofG of width k. Suppose we are given two leaves tu, tv of L containing u and v
respectively and we want to decide whether there is an edge between u and v.
Clearly, if e := {u, v} ∈ E(G), then e must be covered by some bag, i.e. there
are a node t in L with bag bt := b0 . . . bk and i �= j such that bi = u and bj = v

and (i, j ) ∈ edge(t) in the tree T := T (G,L). Further, u occurs in every bag
on the path from t to tu and likewise for v. Hence, to define ϕE(x, y), where
x, y are interpreted by leaves, we have to check whether there is such a node t
and paths from x and y to t as before. For this, we need an auxiliary formula
which we define next.

Recall that each position i in a bag bt corresponds to a vertex in G. Hence,
we can associate vertices with pairs (t, i). In general, a vertex can occur at
different positions i and different nodes t ∈ V (T ). We can, however, identify
any vertex v with the set

Xv := {(t, i) : t ∈ V (T ) and v occurs at position i in bt}.Xv

We call Xv the equivalence set of v. If t ∈ V (T ) and 0 ≤ i ≤ k, we define the
equivalence set of (t, i) as the equivalence set of bi , where bt := b0, . . . , bk .

Clearly, this identification of vertices with sets of pairs and the concept of
equivalent sets extends to the labelled tree T := T (G,L), as T and L share
the same underlying tree.

To define sets Xv in MSO, we represent Xv by a tuple X := (X0, . . . , Xk)
of sets Xi ⊆ V (T ), such that for all 0 ≤ i ≤ k and all t ∈ V (T ), t ∈ Xi if, and
only if, (t, i) ∈ Xv.

We are going to describe an MSO-formulaψ(X0, . . . , Xk) that is satisfied by
a tupleX if, and only if,X is the equivalence set of a pair (t, i), or equivalently
of a vertex v ∈ V (G). To simplify notation, we will say that a tuple X contains
a pair (t, i) if t ∈ Xi . Consider the formulas

ψeq(X0, . . . , Xk) :=
∧
i

∀t ∈ Xi
(∧
j �=i

eqi,j (t) → t ∈ Xj
)

and

ψoverlap(X0, . . . , Xk) := ∀s∀t
∧
i,j

(
E(s, t) ∧ t ∈ Xi ∧ overlapi,j (t)

)
→ s ∈ Xj.
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ψeq(X) says of a tupleX thatX is closed under the eq-labels andψoverlap(X) says
the same of the overlap-labels. Now let ψ(X) := ψeq ∧ ψoverlap. ψ is satisfied
by a tupleX if wheneverX contains at a pair (t, i), then it contains the complete
equivalence set of (t, i). Now, consider the formula ϕvertex

ϕvertex(X0, . . . , Xk) := ψ(X) ∧X �= ∅ ∧ ∀X′ �= ∅
(
X
′
� X→ ¬ψ(X

′
)
)

where “X �= ∅” defines that at least one Xi is non-empty and “X
′
� X” is an

abbreviation for a formula saying that X′i ⊆ Xi , for all i, and for at least one i
the inclusion is strict.
ϕvertex(X) is true for a tuple if X is non-empty, closed under eq and overlap,

but no proper non-empty subset of X is. Hence, X is the equivalence set of a
single vertex v ∈ V (G). The definition of ϕvertex(X) is the main technical part
of the MSO-interpretation 
 := (ϕuniv(x), ϕvalid, ϕE(x, y)).

We have already defined ϕuniv(x) := ∀y¬Exy. For ϕvalid, recall from above
the formula ϕcons true in a �k-labelled tree T if, and only if, T encodes a
tree-decomposition of a graph G of tree-width at most k. To define ϕvalid we
need a formula that not only requires T to encode a tree-decomposition of G
but a leaf-decomposition.

To force the encoded tree-decomposition to be a leaf-decomposition, we
further require the following two conditions.

1. For all leaves t ∈ V (T ) and all i �= j , (i, j ) ∈ eq(t).
2. For all t ∈ V (T ) and all 0 ≤ i ≤ k the equivalence set of (t, i) contains

exactly one leaf.

Both conditions can easily be defined by MSO-formulas ϕ1 and ϕ2, respectively,
where in the definition of ϕ2 we use the formula ϕvertex defined above.

Hence, the formula

ϕvalid := ϕcons ∧ ϕ1 ∧ ϕ2 ϕvalid

is true in a �k-labelled tree T (or the corresponding σk-structure) if, and only
if, T encodes a leaf-decomposition of width k.

Finally, we define the formula ϕE(x, y) saying that there is an edge between
x and y in the graph G encoded by a �k-labelled tree T := (T , λ). Note that
there is an edge in G between x and y if, and only if, there is a node t ∈ V (T )
and 0 ≤ i �= j ≤ k such that (i, j ) ∈ edge(t) and x is the unique leaf in the
equivalence set of (t, i) and y is the unique leaf in the equivalence set of (t, j ).
This is formalised by

ϕE(x, y) := ∃t
∨
i �=j

( edgei,j (t) ∧ ∃X∃Yϕvertex(X) ∧ ϕvertex(Y ) ∧
X1(x) ∧ Y1(y) ∧Xi(t) ∧ Yj (t)

)
.
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This completes the definition of 
. Now, the proof of the following lemma
is immediate.

Lemma 5.3.28 Let G be a graph of tree-width ≤ k and L be a leaf-
decomposition of G of width k. Let T := T (G,L) be the tree-encoding of
L and G. Then G ∼= 
(T ).

Further, by the interpretation lemma, for all MSO-formulas ϕ and all �k-
trees T |= ϕvalid,

T |= 
(ϕ) ⇐⇒ 
(T ) |= ϕ.

5.3.4 Courcelle’s Theorem

In this section and the next we consider computational problems for monadic
second-order logic on graph classes of small tree-width. The algorithmic theory
of MSO on graph classes of small tree-width has, essentially independently,
been developed by Courcelle, Seese and various co-authors. We first consider
the model-checking problem for MSO and present Courcelle’s theorem. We
then state a similar theorem by Arnborg, Lagergreen and Seese concerning the
evaluation problem of MSO. In the next section, we consider the satisfiability
problem and prove Seese’s theorem.

Theorem 5.3.29 (Courcelle [13]) The problem

MC(MSO, tw)
Input: Graph G, ϕ ∈ MSO

Parameter: |ϕ| + tw(G)
Problem: G |= ϕ?

is fixed parameter tractable and can be solved in time f (|ϕ|)+ 2p(tw(G)) · |G|,
for a polynomial p and a computable function f : N → N.

That is, the model-checking problem for a fixed formula ϕ ∈ MSO can be
solved in linear time on any class of graphs of bounded tree-width.

Proof. Let C be a class of bounded tree-width and let k be an upper bound for
the tree-width of C. Let ϕ ∈ MSO be given.

On input G ∈ C we first compute an ordered leaf-decomposition L of G of
width k. From this, we compute the tree T := T (G,L). We then check whether
T |= 
(ϕ), where 
 is the MSO-interpretation of the previous section.

Correctness of the algorithm follows from Lemma 5.3.28. The time bounds
follow from Lemma 5.3.24 and the fact that MSO model-checking is in linear
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time (for a fixed formula) on the class of trees (see e.g. [63, Chapter 7] or [46,
Chapter 10]). �

We will see a different proof of this theorem using logical types later when
we prove Lemma 5.7.12. The result immediately implies that parametrized
problems such as the independence set or dominating set problem or problems
such as 3-colourability and Hamiltonicity are solvable in linear time on classes
of graphs of bounded tree-width.

Without proof we state the following extension of Courcelle’s theorem which
essentially follows from [4]. The proof uses the same methods as described
above and the corresponding result for trees.

Theorem 5.3.30 (Arnborg, Lagergreen, Seese [4]) The problem

Input: Graph G, ϕ(X) ∈ MSO, k ∈ N.
Parameter: |ϕ| + tw(G).

Problem: Determine whether there is a set S ⊆ V (G) such that
G |= ϕ(S) and |S| ≤ k and compute one if it exists.

is fixed-parameter tractable and can be solved by an algorithm with running
time f (|ϕ|)+ 2p(tw(G)) · |G|, for a polynomial p and a computable function
f : N → N.

Recall that by the results discussed in Section 5.3.2 the previous results also
hold for MSO on incidence graphs, i.e. MSO2 where quantification over sets of
edges is allowed also.

Corollary 5.3.31 The results in Theorem 5.3.29 and 5.3.30 extend to MSO2.

5.3.5 Seese’s Theorem

We close this section with another application of the interpretation defined in
Section 5.3.3. Recall that MSO2 has set quantification over sets of vertices as
well as sets of edges and corresponds to MSO interpreted over the incidence
encoding of graphs.

Theorem 5.3.32 (Seese [81]) Let k ∈ N be fixed. The MSO2-theory of the class
of graphs of tree-width at most k is decidable.

Proof. Let
 := (ϕuniv, ϕvalid, ϕE) be the interpretation defined in Section 5.3.3.
On input ϕ we first construct the formula ϕ∗ := 
(ϕ). Using the decidability
of the MSO-theory of finite labelled trees, we then test whether there is a
�k-labelled tree T such that T |= ϕvalid ∧ ϕ∗.
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If there is such a tree T , then, as T |= ϕvalid, there is a graphG of tree-width
at most k encoded by T which satisfies ϕ. Otherwise, ϕ is not satisfiable by
any graph of tree-width at most k. �

Again without proof, we remark that the following variant of Seese’s theorem
is also true.

Theorem 5.3.33 (Adler, Grohe, Kreutzer [1]) For every k it is decidable whe-
ther a given MSO-formula is satisfied by a graph of tree-width exactly k.

We remark that there is a kind of converse to Seese’s theorem which we will
prove in Section 5.6 below.

Theorem 5.3.34 (Seese [81]) If C is a class of graphs with a decidable MSO2-
theory, then C has bounded tree-width.

The proof of this theorem relies on a result proved by Robertson and Sey-
mour as part of their proof of the graph minor theorem. We will present the
graph theory needed for this in Section 5.5 and a proof of Theorem 5.3.34 in
Section 5.6.

5.4 From Trees to Cliques

In the previous section we considered graphs that are sufficiently tree-like so
that efficient model-checking algorithms for monadic second-order logic can be
devised following the tree-structure of the decomposition. On a technical level
these results rely on Feferman-Vaught style results allowing to infer the truth
of an MSO sentence in a graph from the MSO types of the smaller subgraphs
it can be decomposed into. In this section we will see a different property of
graphs that also allows for efficient MSO model-checking. It is not based on
the idea of decomposing the graph into smaller parts of lower complexity, but
instead it is based on the idea of the graphs being uniform in some way, i.e. not
having too many types of its vertices.

As a first example let us consider the class {Kn : n ∈ N} of cliques. Obvi-
ously, these graphs have as many edges as possible and cannot be decomposed in
any meaningful way into parts of lower complexity. However, model-checking
for first-order logic or monadic second-order logic is simple, as all vertices look
the same. In a way, a clique is no more complex than a set: the edges do not
impose any meaningful structure on the graph. This intuition is generalised by
the notion of clique-width of a graph. It was originally defined in terms of graph
grammars by Courcelle, Engelfriet and Rozenberg [17]. Independently, Wanke
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introduced k-NLC graphs, a notion that is equivalent to Courcelle et al.’s defi-
nition up to a factor of 2. The term clique-width was introduced in [19]. Clique-
decompositions (or k-expressions as they are called) are useful for the design
of algorithms, as they again provide a tree-structure along which algorithms
can work. However, until recently algorithms using clique-decompositions had
to be given the decomposition as input, as no fixed-parameter algorithms were
known to compute the decomposition.

In 2006, Oum and Seymour [71] introduced the notion of rank-width and
corresponding rank-decompositions, a notion that is broadly equivalent to
clique-width in the sense that for every class of graphs, one is bounded if,
and only if, the other is bounded. Rank-decompositions can be computed by
fpt-algorithms parametrized by the width and from a rank-decomposition a
clique-decomposition can be generated. In this way, the requirement of algo-
rithms being given the decomposition as input has been removed. But rank-
decompositions are also in many other ways the more elegant notion.

We first recall the definition of clique-width in Section 5.4.1. In Section 5.4.2,
we then introduce general rank-decompositions of submodular functions, of
which the rank-width of a graph is a special case. As a side effect, we also obtain
the notion of branch-width, which is another elegant characterisation of tree-
width. Model-checking algorithms for MSO on graph classes of bounded rank-
width are presented in Section 5.4.3, where we also consider the satisfiability
problem for MSO and a conjecture by Seese.

5.4.1 Clique-Width

Definition 5.4.1 (k-expression) Let k ∈ N be fixed. The set of k-expressions
is inductively defined as follows: k-expression

(i) i is a k-expression for all i ∈ [k].
(ii) If i �= j ∈ [k] and ϕ is a k-expression, then so are edgei−j (ϕ) and

renamei→j (ϕ).
(iii) If ϕ1, ϕ2 are k-expressions, then so is (ϕ1 ⊕ ϕ2).

A k-expression ϕ generates a graph G(ϕ) coloured by colours from [k] as
follows: The k-expression i generates a graph with one vertex coloured by the i
colour i and no edges.

The expression edgei−j is used to add edges. If ϕ is a k-expression generat- edgei−j
ing the coloured graph G := G(ϕ) then edgei−j (ϕ) defines the graph H with
V (H ) := V (G) and

E(H ) := E(G) ∪ {{u, v} : u has colour i and v has colour j
}
.
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Figure 5.4 Graph from Example 5.3.2

Hence, edgei−j (ϕ) adds edges between all vertices with colour i and all vertices
with colour j .

The operation renamei→j (ϕ) recolours the graph. Given the graphG gener-renamei→j (ϕ)

ated by ϕ, the k-expression renamei→j (ϕ) generates the graph obtained from
G by giving all vertices which have colour i in G the colour j in H . All other
vertices keep their colour.

Finally, if ϕ1, ϕ2 are k-expressions generating coloured graphs G1,G2

respectively, then (ϕ1 ⊕ ϕ2) defines the disjoint union of G1 and G2.
We illustrate the definition by an example.

Example 5.4.2 Consider again the graph from Example 5.3.2 depicted in Fig-
ure 5.3. For convenience, the graph is repeated below. We will show how this
graph can be obtained by a 6-expression.

Consider the expression ϕ0 in Figure 5.5, which generates the graph in
Figure 5.6 a). The labels in the graph represent the colours. Here we use
obvious abbreviations such as edgei−j,s−t to create edges between i and j as
well as edges between s and t in one step.

The vertices generated so far correspond to the vertices 5, 6, 9, 10 of the
graph in Figure 5.4. Note that we have already created all edges incident
to vertex 9. Hence, in the construction of the rest of the graph, the vertex
9 (having colour 2) does not have to be considered any more. We will use
the colour 0 to mark vertices that will not be considered in further steps of
the k-expression. Let ϕ1 := rename2→0(ϕ0) be the 6-expression that gener-
ates the graph in Figure 5.6 a), but where the vertex with colour 2 now has
colour 0.

The next step is to generate the vertex 11 of the graph. This is done by the

expression ϕ2 := rename5→0

(
edge1−5,1−4

(
1⊕ ϕ1

))
. We proceed by adding the
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edge 2 − 3
4 − 5
2 − 4

⊕

edge2−5 edge3−4

⊕⊕

2 5 3 4

Figure 5.5 The 6-expression ϕ0 generating the graph in Fig. 5.6 a)
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Figure 5.6 Graphs generated by the 6-expressions in Example 5.4.2

vertices 1 and 3 and the appropriate edges. Let

ϕ3 := rename3→0,4→0edge2−3,4−5,1−5

(
ϕ2 ⊕

(
edge2−5(2⊕ 5)

))
This generates the graph depicted in Figure 5.6 b). The next step is to add the
vertices 7 and 8. Let

ϕ4 := rename1→0edge1−3,1−4,3−5

(
ϕ3 ⊕ edge3−4(3⊕ 4)

)
Finally, we add the vertex 2 and rename the colour of the vertex 2 to 0,
i.e. essentially remove the colour, and rename all other colours to 1.

ϕ5 := rename2→0,5→1,3→1,4→1edge1−2,1−5(1⊕ ϕ4)

This generates the graph in Figure 5.6 c).
Finally, we add the vertex 4 and edges to all other vertices marked by the

colour 1.
The complete expression generating the graph is therefore edge1−2(2⊕ ϕ5).

-
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It is easily seen that every finite graph can be generated by a k-expression for
some k ∈ N. Just choose a colour for each vertex and add edges accordingly.

Lemma 5.4.3 Every finite graph can be generated4 by a k-expression for some
k ∈ N.

Hence, the following concepts are well defined.

Definition 5.4.4 The clique-width cw(G) of a graph G is defined as the leastclique-width

k ∈ N such thatG can be generated by a k-expression. A class C of graphs has
bounded clique-width if there is a k ∈ N such that cw(G) ≤ k for all G ∈ C.

We give a few more examples.

Example 5.4.5 1. The class of cliques has clique-width 2. (Clique-width 2, as
the edgei,j operator requires i �= j to avoid self-loops).

2. The class of all trees has clique-width 3. By induction on the height of the
trees we show that for each tree T there is a 3-expression generating this
tree so that the root is coloured by the colour 1 and all other nodes are
coloured by 0. This is trivial for trees of height 0. Suppose T is a tree of
height n+ 1 with root r and successors v1, . . . , vk of r . For 1 ≤ i ≤ k let
ϕi be a 3-expression generating the subtree of T rooted at vi . Then T is
generated by the expression

rename2→1rename1→0edge2−1(2⊕ ϕ1 ⊕ · · · ⊕ ϕk).
3. It can be shown that the clique-width of the (n× n)-grid is �(n). (This

follows, for instance, from Theorem 5.4.7 below). -
The next theorem due to Wanke and also Courcelle and Olariu relates clique-

width to tree-width.

Theorem 5.4.6 ([91, 19]) Every graph of tree-width at most k has clique-width
at most 2k+1 + 1.

As the examples above show, there is no hope to bound the tree-width of
a graph in terms of its clique-width. Hence, clique-width is more general than
tree-width in the sense that more graph classes have bounded clique-width
than bounded tree-width. Gurski and Wanke [55] established the following
relation between clique-width and tree-width in terms of complete bipartite
subgraphs.

4 By “generating” we always mean up to isomorphism. That is, a graph G is generated by an
expression ϕ if ϕ defines a graph isomorphic to G.



Algorithmic meta-theorems 215

Theorem 5.4.7 (Gurski, Wanke [55]) LetG be a graph of clique-width5 k such
that for some n > 1 the complete bipartite graph Kn,n is not a subgraph of G.
Then tw(G) ≤ 3k(n− 1)− 1.

Another interesting relation between clique-width and tree-width follows
from a connection, due to Oum [70], between the branch-width of a graph
and the rank-width of its incidence graph which we will present at the end of
Section 5.4.2.

As seen in the previous section, the notion of tree-width is preserved by tak-
ing subgraphs, induced subgraphs, minors, and other transformations. Clique-
width is less robust. It is easily seen that clique-width is preserved under
taking induced subgraphs. But it is not preserved under taking arbitrary sub-
graphs and hence not preserved under taking minors. For instance, cliques have
clique-width 2 but every graph is a subgraph of a clique and we know that there
are graphs of arbitrarily high clique-width.

Proposition 5.4.8 (i) If G is a graph and H is an induced subgraph of G,
then cw(H ) ≤ cw(G).

(ii) Clique-width is not preserved under taking subgraphs and hence not
preserved under taking minors. That is, there are graphsG andH ⊆ G

with cw(H ) > cw(G) and the difference can be arbitrarily large.

We close this section with a negative result concerning the complexity of
deciding clique-width and related measures. Gurski and Wanke showed that
deciding the NLC-width of a graph is NP-complete. For clique-width, this was
shown by Fellows, Rosamond, Rotics and Szeider.

Theorem 5.4.9 1. Given a graph G and an integer k, the problem to decide
whether G has NLC-width at most k is NP-complete (see [56]).

2. Given a graph G and an integer k, the problem to decide whether G has
clique-width at most k is NP-complete (see [42]).

However, as we will see in the next section, there are FPT-algorithms, para-
metrized by the clique-width, to compute an approximate clique-decomposition
of a given graph.

Finally, we mention a result by Espelage, Gurski and Wanke [41], that the
clique-width of a graph can be computed in linear time on graph classes of
bounded tree-width.

5 In [91] Wanke introduced the notion of k-node label controlled graphs (k-NLC). They are
defined by similar operations as in k-expressions and for every graph G we have
cw(G) ≤ nlc(G) ≤ 2 · cw(G), where nlc(G) denotes the NLC-width. The result in [55] is
actually stated and proved in terms of NLC-width.
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5.4.2 Rank-Width

In this section we consider an alternative characterisation of graph classes
of bounded clique-width – the rank-width of a graph. Rank-width is a spe-
cial case of abstract branch-decompositions of connectivity functions which
we present first. Another special case of this abstract notion is the branch-
width of graphs, a notion that is equivalent up to a small constant factor to
tree-width.

Branch-Decompositions of Connectivity Functions
Let M be a finite non-empty set and f : 2M → R be a function. A branch-
decomposition of the pair (M,f ) is a pair (T , β) consisting of a binary treeabstract

branch-

decomposition

T and a bijection β : L(T ) → M from the set L(T ) of leaves of T to M . We
inductively define a map β∗ : V (T ) → 2M by setting

β∗(t) :=
{
{β(t)} if t is a leaf

β∗(t1) ∪ β∗(t2) if t is an inner node with successors t1 ∪ t2.
The width of (T , β) is defined as max{f (β∗(t)) : t ∈ V (T )} and the branch-
width of (M,f ) is defined as the minimal width of any of its branch-

abstract

branch-width

decompositions. If M is empty, we define the branch-width of M to be f (∅).
Note that in this case, (M,f ) does not have a branch-decomposition, as a tree,
being connected, cannot be empty.

Of particular interest are branch-decompositions of connectivity functions f
which are integer valued, symmetric and submodular. A function f : 2M → R

is symmetric if f (A) = f (M \ A) for allA ⊆ M and it is submodular if f (A)+symmetric
submodular

f (B) ≥ f (A ∩ B)+ f (A ∪ B) for all A,B ⊆ M . Submodular and symmetric
connectivity functions are algorithmically particularly well-behaved. Note that
if f is symmetric we can take the tree T of a branch-decomposition of (M,f )
to be undirected and cubic (i.e. every vertex has degree 1 or 3). We will
occasionally do so, for instance in Figure 5.7 below.

In [71], Oum and Seymour showed that optimal branch-decompositions
of submodular, symmetric, and integer valued connectivity functions can be
approximated up to a factor 3 by an fpt-algorithm. Before we can state the result
we need to define how the input to such an algorithm is represented. Let M
be a class of pairs (M,f ), where f : 2M → N is symmetric and submodular.
M is a tractable class of connectivity functions if there is a representation oftractable class

the pairs (M,f ) ∈M such that, given the representation of a pair (M,f ), the
underlying setM and the values f (A) can be computed in polynomial time for
all A ⊆ M .
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Figure 5.7 Branch-decomposition of width 2

We are primarily interested in certain connectivity functions naturally
associated with graphs and in this case the graph itself will be the
representation.

Theorem 5.4.10 (Oum, Seymour [71]) Let M be a tractable class of connec-
tivity functions. Then there is an fpt-algorithm that, on input (the represen-
tation of) (M,f ) and a parameter k, computes a branch-decomposition of
(M,f ) of width at most 3k provided that the branch-width of (M,f ) is at
most k. If the branch-width of (M,f ) is greater than k, then the algorithm
may halt without output or still compute a branch-decomposition of (M,f ) of
width ≤ 3k.

As a first example of abstract branch-decompositions we consider the
branch-width of graphs.

Branch-Width of Graphs
Let G be a graph. The boundary ∂F of a set F ⊆ E(G) is defined as the set of boundary, ∂F

vertices incident to an edge in F and also an edge in E(G) \ F .
We define a function bG : 2E(G) → N by bG(F ) := |∂F | for all F ⊆ E(G).

The function bG is symmetric and submodular. A branch-decomposition of G branch-
decompositionis a branch-decomposition of (E(G), bG) and the branch-width bw(G) of G is branch-
widthdefined as the branch-width of (E(G), bG).

Example 5.4.11 Figure 5.7 shows a graph and its branch-decomposition of
width 2. For example, β∗(d) = {{1, 5}, {3, 5}} and ∂β∗(d) = {1, 3}, as the
vertex 5 has no edge to a vertex other than 1, 3. Similarly, ∂β∗(b) = ∂β∗(e) =
∂β∗(e) = {1, 3} and ∂β∗(f ) = {3, 4}. -
Example 5.4.12 (Robertson, Seymour [75]) 1. For every n ≥ 3, the n-clique

Kn has branch-width 2
3 · n.

2. For all n ≥ 2, the n× n-grid has branch-width n.
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3. A graph has branch-width 0 if, and only if, it has maximal degree at most 1.
4. Trees and cycles have branch-width at most 2. -

As the following theorem shows, the branch-width of a graph is equivalent
to its tree-width up to a small constant factor.

Theorem 5.4.13 (Robertson, Seymour [75]) For all graphs G

bw(G) ≤ tw(G)+ 1 ≤ max{2, 3

2
bw(G)}.

Proof. To show bw(G) ≤ tw(G)+ 1, let T := (T , (Bt )t∈V (T )) be a tree-
decomposition of G of width k := tw(G), such that T is a binary tree and
every edge of G is covered by exactly one leaf of T . Clearly, given a tree-
decomposition of G we can easily find one of the same width with this addi-
tional property. We define a branch-decomposition B := (T ′, β) of G as fol-
lows: T ′ = T and for a leaf t ∈ L(T ) of T we set β(t) := e, where e is the
(unique) edge covered by Bt . We define β∗ : V (T ) → 2E(G) as before. It is
easily seen that for all t ∈ V (T ), ∂β∗(t) ⊆ Bt and hence the width of B is at
most k + 1.

Conversely, letB := (T , β) be a branch-decomposition ofG of width bw(G).
For each t ∈ V (T ) we define Bt ⊆ V (G) as follows. If t is a leaf of T define
Bt := β(t). Now let t be an inner node with children t1, t2. For i = 1, 2
letFi := β∗(ti) and letF3 := (

E(G) \ β∗(t)) = (
E(G) \ (F1 ∪ F2)

)
. We define

Bt := ∂F1 ∪ ∂F2 ∪ ∂F3.
By construction, |Fi| ≤ bw(G). We claim that for all v ∈ V (G), if v occurs

in some ∂Fi then it also occurs in ∂Fj for some j �= i. For, if v ∈ ∂Fi
then there must be edges e ∈ Fi and e′ ∈ E(G) \ Fi with v ∈ e and v ∈ e′.
Hence, e′ ∈ Fj for some j �= i and therefore v ∈ ∂Fj . If follows that |Bt | ≤
max{2, 3

2 bw(G)}.
Now let T := (T , (Bt )t∈V (T )). It is easily verified that T is indeed a tree-

decomposition of G.6 Hence, we obtain a tree-decomposition of G of width
≤ max{2, 3

2 bw(G)} − 1. �

In principle one can use the general algorithm from Theorem 5.4.10 to
compute approximate branch-decompositions of graphs. However, as for the
case of tree-width, better algorithms are known.

Theorem 5.4.14 (Bodlaender, Thilikos [7]) There is an algorithm that, given
a graph G and k ∈ N, computes a branch-decomposition of G of width at

6 At least if G has no isolated vertices. If it does, add a bag for each isolated vertex.
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most k, if it exists, in time f (k) · |G|, for some computable function f : N

→ N.

Clique- and Rank-Width
We now turn back to the original goal of giving a different characterisation of
clique-width of a graph in terms of its rank-width. Recall that the branch-width
of a graph is based on a decomposition of its edge set. For rank-width we
decompose its vertex set.

Let G be a graph. For U,W ⊆ V (G) we define a |U | × |W |-matrix
MG(U,W ) with entries mu,w for u ∈ U and w ∈ W , where MG(U,W )

mu,w :=
{

1 if {u,w} ∈ E(G)

0 otherwise.

Note thatMG(V (G), V (G)) is the adjacency matrix ofG. For allU,W ⊆ V (G)
let rk

(
MG(U,W )

)
be its row rank when viewed as a matrix over GF(2). This rk

(
MG(U,W )

)
induces the following connectivity function rG : 2V (G) → N defined as

rG(U ) := rk
(
MG(U,V (G) \ U )

)
for U ⊆ V (G). Obviously, rG is symmetric, as the row and column rank of the
matrix coincide. It is left as an exercise to show that it is also submodular.

Definition 5.4.15 A rank-decomposition of a graph G is a branch-
decomposition of the pair (V (G), rG). The rank-width of G, in terms rw(G), is rank-width,

rw(G)the minimal width of any of its rank-decompositions.

Example 5.4.16 Consider again the graph G from Example 5.3.2 depicted in
Figure 5.3. The following is a rank-decomposition of G of width 3.

•
ba

dc

• • • • •
9 10 5 6 1 3 7 8 11 4 2
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The relevant matrices determining the width of the decomposition are the
matrices Ma, . . . ,Md at the nodes a, . . . , d.

Mc := MG

({5, 6, 9, 10}, {1, 2, 3, 4, 7, 8, 11}) =



1 0 0 0 0 0 0
0 0 1 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 1




Md := MG

({7, 8, 11}, {1, 2, 3, 4, 5, 6, 9, 10}) =

0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 1




Ma := MG

({1, 3, 5, 6, 9, 10}, {2, 4, 7, 8, 11}) =




1 0 0 0 0
1 1 1 0 1
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 1




Mb := MG

({2, 4, 7, 8, 11}, {1, 3, 5, 6, 9, 10}) =



1 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 1 0 1




Obviously, rk(Ma) = rk(Mb) = rk(Mc) = 3 and this is the maximal rank occur-
ring in the decomposition. Hence, the decomposition has width 3. -

It is not too hard to see that the rank-width of a graph can be bounded in
terms of its branch-width and hence its tree-width. The following theorem due
to Oum gives an exact bound.

Theorem 5.4.17 (Oum [70]) rw(G) ≤ max{1, bw(G)} for all graphs G.

It is easily seen that the rank of width a complete graph is 1 (all entries in
all matrices are 1). Hence, there can be an arbitrarily large difference between
the rank-width and the branch-width of a graph. On the other hand, Oum
[70] proved that if I (Kn) denotes the incidence graph of the n-clique Kn,
then for all n ≥ 3 with n = 0, 1 mod 3 we have rw(I (Kn)) = bw(I (Kn)) =
. 2

3 · n/.
Another example of graphs of high tree- and high rank-width are n× n-

grids, whose rank-width has been shown by Jelı́nek [58] to be n.
An fpt-algorithm for computing rank-decompositions follows from

Theorem 5.4.10 but more efficient algorithms are known.
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Theorem 5.4.18 (Hlineny, Oum [40]) There is an algorithm that, given a graph
G and k ∈ N, computes a rank-decomposition ofG of width at most k, provided
rw(G) ≤ k, in time f (k) · |G|3, for some computable function f : N → N.

Oum and Seymour [71] established the following connection between rank-
width and clique-width:

rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1.

In particular, a class of graphs has bounded clique-width if, and only if, it has
bounded rank-width (see [71]). Together with Theorem 5.4.18 this yields a
parameterized algorithm for computing approximate clique-decompositions of
graphs.

We have already seen that clique-width and tree-width and hence branch-
width of graphs can differ arbitrarily and this clearly extends to rank-width.
However, Oum [70] established the following relation between the branch-
width of a graph and the rank-width of the incidence graph.

bw(G)− 1 ≤ rw(I (G)) ≤ bw(G)

5.4.3 Monadic Second-Order Logic and Bounded Clique-Width

In this section we aim at extending Courcelle’s and Seese’s theorems from
tree-width to clique-width. As in Section 5.3, we will do so by a reduction to
MSO model-checking and satisfiability on trees. In particular, we show next
that for each k the class of graphs of clique-width k can be interpreted in the
class of coloured trees for a suitable set of colours depending on k. The idea is
simple: the class of graphs of clique-width k is the class of graphs generated
by k-expressions whose syntax trees will be the class of trees we are looking
for. Hence, let

�k := {0, . . . ,k− 1,⊕, edgei,j , renamei→j : 0 ≤ i �= j < k}
be the symbols used in k-expressions and let T�k be the class of all�k-labelled
directed trees. Obviously, not every �k-labelled tree is the syntax tree of a
k-expression. However, every�k-labelled directed tree such that the symbol⊕
occurs precisely at the nodes with two successors, no node has more than two
successors and the leaves are precisely the nodes labelled by a symbol from
{0, . . . ,k− 1} are syntax trees of k-expressions. These conditions are easily
expressed by an MSO-sentence ϕvalid. Hence, for all T ∈ T�k , T |= ϕvalid if,
and only if, T is the syntax tree of a k-expression. The formula ϕvalid is one
part of an interpretation 
k := (

ϕuniv, ϕvalid, ϕE(x, y)
)

from �k-labelled trees
to graphs of clique-width at most k.
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The formula ϕuniv(x) defining the universe of a graph generated by a k-
expression coded in a tree T is trivial: ϕuniv(x) just defines the set of leaves.

Finally, we have to define the formula ϕE(x, y) such that for all T ∈ T�
with T |= ϕvalid and all leaves u, v ∈ V (T ) we have T |= ϕE(u, v) if, and only
if, there is an edge between u and v in the graph G generated by T . Note that
such an edge exists if, and only if, there is a common ancestor t of u and v in T
labelled by edgei−j , for some 0 ≤ i �= j < k, so that at the node t , one of u, v
has colour i and the other the colour j . To check this, we only need to look at the
unique path from t to u (and v respectively) and keep track of how the colour of
u (resp. v) changes along this path. This can easily be formalised in MSO by a
formula ϕE(x, y) as required. Hence, the triple
k := (ϕuniv(x), ϕvalid, ϕE(x, y))
is an interpretation from σk-structures to graphs, where σk := {E} ∪�k is the
signature of �k-labelled trees.

The interpretation is the key to tractability results for MSO model-checking
and satisfiability. We consider model-checking first and prove the following
extension of Courcelle’s theorem. It was first proved by Courcelle in terms of
certain graph grammars (see [12, 14]) and then by Courcelle, Makowski and
Rotics for graph classes of bounded clique-width.

Theorem 5.4.19 (Courcelle, Makowski, Rotics [18]) Let C be a class of graphs
of bounded clique-width. Then the model-checking problem for MSO on C is
fixed-parameter tractable.

Proof. Letϕ ∈ MSO be fixed and let k be an upper bound for the clique-width of
the graphs in C. Given a graphG we first compute a k-expression ϑ generating
G. This can be done in polynomial time (see Section 5.4.2). Let T be the
�k-labelled syntax tree of ϑ . We can now test whether T |= 
k(ϕ). �

We now consider the satisfiability problem for monadic second-order logic.

Theorem 5.4.20 For every k, the MSO-theory of the class CWk of graphs of
clique-width at most k is decidable.

Proof. Let ϕ ∈ MSO[{E}] be given. By the interpretation lemma, ϕ is valid in
CWk if, and only if,
k(ϕ) ∈ MSO[σk] is valid in the class {T ∈ T� : T |= ϕvalid}
if, and only if, 
k(ϕ) ∧ ϕvalid is valid in the class of finite �k-trees. The latter is
well known to be decidable [31, 85]. �

Seese conjectured a kind of converse to the theorem, the famous Seese
conjecture [81].
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Conjecture 5.4.21 (Seese’s conjecture) Every class C of structures with
decidable MSO1-theory has bounded clique-width.

This conjecture can be rephrased in terms of MSO-interpretations using the
following result due to Engelfriet and V. van Oostrom and also Courcelle and
Engelfriet.

Lemma 5.4.22 ([39, 16]) A class of graphs has bounded clique-width if, and
only if, it is interpretable in the class of coloured trees for some suitable set of
colours.

Note that these papers use so-called MSO-transductions instead of interpreta-
tions. An MSO-transduction is essentially the same as an interpretation except
that the formulas are allowed to have free second-order variables, the param-
eters. A graph is then interpretable in a tree if there is an interpretation of
the parameters by sets of tree-nodes satisfying the formulas in the MSO-
transduction. Hence, the parameters play exactly the same role as the colours of
the trees we use here. As the colours/parameters in our context are the symbols
of k-expressions, we prefer to have them as labels of the syntax trees rather
than as free variables in the interpretation.

Using the previous lemma we can rephrase Seese’s conjecture as follows:

Conjecture 5.4.23 (Seese’s conjecture) Every class C of structures with
decidable MSO1-theory is MSO-interpretable in the class of coloured trees
for some set of colours.

In [20], Courcelle and Oum prove the following weakening of the conjecture.
Let C2MSO be the extension of MSO by atoms Even(X), whereX is a monadic
second-order variable, stating that the interpretation of X has even cardinality.
Hence, C2MSO extends MSO by counting modulo 2.

Theorem 5.4.24 (Courcelle, Oum [20]) Every class of graphs with a decidable
C2MSO theory has bounded clique-width, i.e. is interpretable in a class of
coloured trees.

Note that the theorem is weaker than Seese’s conjecture as there are less classes
of graphs whose C2MSO theory is decidable than there are classes of graphs
with a decidable MSO-theory.

5.4.4 MSO Model-Checking Beyond Tree- and Clique-Width

In the previous section we showed that the model-checking problem for
monadic second-order logic is fixed-parameter tractable on classes of graphs
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with bounded tree- or clique-width. There is not much hope for extending
these results to other or larger classes of graphs such as planar graphs or
graphs of bounded degree. This follows immediately from the following the-
orem by Garey, Johnson and Stockmeyer and the fact that 3-colourability is
MSO-definable.

Theorem 5.4.25 (Garey, Johnson, Stockmeyer [49]) 3-colourability is NP-
complete on the class of planar graphs of degree at most 4.

We will see much stronger intractability results for MSO2 in Section 5.8
below. However, first-order logic is tractable on many more classes of graphs.
For instance, Seese [82] showed that first-order logic admits linear time model-
checking (for a fixed formula) on any class of graphs of bounded degree. The
same complexity bound was later obtained by Frick and Grohe [47] for planar
graphs and classes of graphs of bounded local tree-width, a notion that properly
extends both planarity and bounded degree (see below).

The most general results in this respect are fixed-parameter algorithms for
first-order model-checking on H -minor free graphs and an extension thereof,
called locally excluded minors. These results make heavy use of concepts and
results developed by Robertson and Seymour in their celebrated proof of the
graph minor theorem. In the next section, we will therefore give a brief overview
of the relevant concepts of the graph minor theory used in the proofs. One such
theorem, the excluded grid theorem, will be used later to prove the converse
of Seese’s theorem mentioned above. This will be the topic of Section 5.6. We
return to first-order model-checking in Section 5.7.

5.5 Graph Minors

In this section we present relevant terminology and results from graph minor
theory used later in the paper. Most of the results were developed in Robertson
and Seymour’s celebrated proof of the graph minor theorem (Theorem 5.5.2
below) presented in a series [76] of 23 papers, with additions and improvements
by other authors.

5.5.1 Minors and Minor Ideals

LetG be a graph and e := {v,w} ∈ E(G) be an edge. The graphG/e obtainedG/e

fromG by contracting the edge e is the graph obtained fromG by removing e,contraction

identifying its two endpoints, and possibly removing parallel edges. Formally,
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Figure 5.8 Contracting an edge

G/e is defined by

V (G/e) := V (G) \ {v,w} ∪ {xe},
where xe is a new vertex, and

E(G/e) :=
(
E(G) \ {{u, u′} : {u, u′} ∩ e �= ∅

}) ∪{{u, xe} : u ∈ V (G/e) and{u, v} ∈ E(G) or {u,w} ∈ E(G)
}
.

Figure 5.8 illustrates edge contraction.
A graphH is a minor of a graphG ifH can be obtained fromG by deleting minor

vertices and edges and contracting edges. We writeH � G to denote thatH is
isomorphic to a minor of G.

An alternative definition of minors is in terms of minor maps. A minor map
from H to G is a function µ that associates with every vertex v ∈ V (H ) a
connected subgraph µ(v) ⊆ G and with every edge e ∈ E(H ) an edge µ(e) ∈
E(G) such that

� if u, v ∈ V (H ) and u �= v then µ(v) and µ(u) are vertex disjoint and
� if e := {u, v} ∈ E(H ) then µ(e) := {u′, v′} for some u′ ∈ V (µ(u)) and v′ ∈
V (µ(v)).

The subgraph Gµ ⊆ G with

V (Gµ) :=
⋃{

V (µ(v)) : v ∈ V (H )
}

and

E(Gµ) :=
⋃{

E(µ(v)) : v ∈ V (H )} ∪ {µ(e) : e ∈ E(H )
}

is called a model or image ofH inG. In graph theory literature, the term model model, image

is commonly used. We prefer the name image here to avoid confusion with
logical models. Figure 5.9 illustrates an image of K5 in a graph G.

It is easily seen that we can always choose an image of H in G so that each
vertex is represented by a tree in G.
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Figure 5.9 Image of K5 in a graph G

Let G,H be graphs. G is a subdivision of H if H can be obtained from Gsubdivision

by replacing some edges in G by paths which are pairwise internally vertex
disjoint, i.e. H can be constructed from G by repeatedly subdividing edges.
If a subgraph of G is isomorphic to a subdivision of H , then H is called a
topological minor of G. Now suppose H � G and H has maximal degree 3.topological

minor Let µ be a minor map from H into G so that the image of all vertices of H
are trees in G. Then each of these trees has at most 3 leaves and hence at most
one vertex of degree more than two. It follows that every graph H of maximal
degree ≤ 3 that is a minor of G also is a topological minor of G.

Lemma 5.5.1 Let H,G be graphs. If �(H ) ≤ 3 and H � G, then H is a
topological minor of G.

If H �� G, we say that H is a forbidden minor of G, or that G excludes
H . For any graph H let Excl(H ) := {G : H �� G} be the class of graphs notExcl(H )

containingH as a minor. Analogously, if H is a set of graphs, then Excl(H) :=Excl(H) ⋂{
Excl(H ) : H ∈ H} is the class of graphs not containing any member of H

as a minor.
A class C of graphs is a minor ideal if for allG ∈ C andH � G alsoH ∈ C.minor ideal

It is proper if it is not the class of all graphs.proper
minor ideal A class C is characterised by a class F of graphs if C = Excl(F ). Note

that any minor ideal C can be characterised by a class of excluded minors,
e.g. C = Excl(Graphs \ C). As the main result of their fundamental work on
graph minors, Robertson and Seymour proved that any minor ideal can in fact
be characterised by a finite set of forbidden minors.

Theorem 5.5.2 (Robertson, Seymour [80]) For every minor ideal C there is a
finite set F of graphs such that C = Excl(F).

There are many natural examples of minor ideals.
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� Every cycle can be contracted to a triangle. Hence, Excl(K3) is the class of
acyclic graphs.

� Kuratowski’s theorem [61] (or rather a variant established by Wagner [90])
implies that planar graphs are characterised by excluding K3,3 and K5.

� Series-parallel graphs and outerplanar graphs exclude K4. It can be shown
that Excl(K4) is the class of subgraphs of series-parallel graphs and the
class of outerplanar graphs is characterised by Excl(K4,K2,3). (See e.g. [30,
Exercises 7.32 and 4.20].)

� The class of graphs not having k vertex disjoint cycles, for any fixed k ∈ N.
For k ∈ N let Tk be the graph consisting of k disjoint copies of a triangle.
Clearly, every graph containing k vertex disjoint cycles contains Tk as a
minor. Conversely, every graph containing Tk as a minor also contains k
vertex disjoint cycles. Hence the class Ck of graphs not having k disjoint
cycles is characterised by Tk .

It is easily seen that for each k ∈ N the class Tk of graphs of tree-width at
most k and the class Bk of graphs of branch-width at most k are minor ideals
and so is the class of graphs of genus at most k. Finally, let us mention another
famous example of a minor ideal: the class of knotlessly embeddable graphs.

On the other hand, the class of graphs of clique-width at most k is not minor
closed and hence not a minor ideal. Also, the class of graphs of crossing number
k ≥ 1 is not minor closed.

Robertson and Seymour also proved that for any fixed graph H , testing
if a graph G contains H as a minor can be done in cubic time (we will say
more about this later in this section). Hence, combining this minor test with
Theorem 5.5.2 implies that every minor-ideal can be decided in cubic time.

Corollary 5.5.3 Every minor ideal can be decided in cubic time.

The various concepts and results developed in the course of the proof of
Theorem 5.5.2 have sparked of a rich algorithmic theory of graphs based on
structural restrictions of instances. We have already hinted at the algorithmic
theory of graphs of bounded tree-width. However, the algorithmic applications
of the graph minor theory developed by Robertson and Seymour extend far
beyond tree-like graphs. In the following two sections we present some of the
results and methods with implications for algorithms and model-checking on
graphs.

However, the following can only give a glimpse into the deep results under-
lying the proof of the graph minor theorem – we will not even be able to state
the relevant results in full detail let alone attempt to prove them. While we are
trying to give an intuitive account of the results and proof methods, we will
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necessarily have to be brief and the presentation may not always reflect the
actual proofs.

5.5.2 Disjoint Paths and the Trinity Lemma

Let us try to prove Theorem 5.5.2. Clearly, the statement of the theorem is
equivalent to the statement that in every infinite class of finite graphs one graph
is a minor of another. Let C := {H,G1,G2, . . . } be an infinite class of finite
graphs. If H is a minor of some Gi , then the claim is trivially satisfied by H .
Hence, the only interesting case is when noGi ∈ C contains H as a minor. For
this reason, much of the theory developed by Robertson and Seymour deals
with graphs not containing another fixed graph H as a minor. We refer to such
graphs as H -minor free. Clearly, if G is H -minor free, then G also excludes aH -minor free

clique Kk as a minor, for instance taking k := |V (H )|. Let us fix k for the rest
of the section.

The key to studying the structure of Kk-minor free graphs is the following
theorem, proved by Robertson and Seymour in [74]. Recall from Section 5.2
that Gk×k denotes the k × k-grid.

Theorem 5.5.4 (Excluded Grid Theorem [74]) There is a computable func-
tion f : N → N such that every graph of tree-width at least f (k) containsGk×k
as a minor.

We refer to [30] for a proof of this theorem. As every planar graph is a minor
of a suitably large grid, the theorem implies – is equivalent, in fact – to the
following statement.

Corollary 5.5.5 For all H , the class Excl(H ) of H -minor free graphs has
bounded tree-width if, and only if, H is planar.

The function f in the original proof of Theorem 5.5.4 was huge. In [73],
Robertson, Seymour and Thomas significantly improved the bounds on f to
202k5

. However, no matching lower bounds have been established and it is
conjectured that the actual bound may be as small as polynomial in k. For
planar graphs G a much better bound can be obtained.

Theorem 5.5.6 (Robertson, Seymour, Thomas [73]) Every planar graph with
no k × k-grid minor has tree-width ≤ 6k − 5.

For branch-width a slightly tighter bound has been established: every planar
graph of branch-width at least 4k − 3 contains a k × k-grid minor (see [73]).
Whereas it is still open whether optimal tree-decompositions of planar graphs
can be computed in polynomial time, in [84] Seymour and Thomas proved
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Figure 5.10 Elementary walls of height 1–4

that optimal branch-decompositions of planar graphs can be computed in time
O(n4). This has later been improved to O(n3) by Gu and Tamaki [54]. It should
be noted that these algorithms do not contain any large hidden constants and
perform reasonably well in practise. Optimal branch-decompositions of planar
graphs with up to 50.000 edges have been computed by actual implementations
of the algorithms (see e.g. [5]).

To give an application of the grid-theorem on planar graphs, we note that it
implies an 2O(

√
k) · nc algorithm, for some c ∈ N, for deciding whether a planar

graph has a path of length k. For this, use anO(n3) algorithm for testing whether
a given planar graph G has branch-width at most 4

√
k − 3. If so, then one can

compute a suitable branch-decomposition and use dynamic programming to
decide whether a path of length k exists. Otherwise, the planar grid theorem
tells us that the graph contains a

√
k ×√k grid as a minor and hence a path

of length at least k following the grid structure. A similar algorithmic idea has
found numerous applications, for instance onH -minor free graphs, in the form
of bidimensionality theory. See e.g. [25, 32, 27, 33, 24, 26, 28] and references
therein.

For the rest of this section we will work with a somewhat simpler structure
than grids, called walls. wall

An elementary wall is a graph as displayed in Figure 5.10. A wall of height
h is a subdivision of an elementary wall of height h. See Figure 5.11 for a
wall of height 4. The induced cycles of a wall, i.e. the cycles of length 6 in an
elementary wall or their subdivisions in general walls, are called the bricks of brick

the wall. We assign coordinates (i, j ) = (row, col) to the bricks of a wall. The
brick in the lower left corner is assigned (1, 1), its neighbour to the right (1, 2),
the brick just above it (2, 1) and so on. The central brick ofH is the brick with central brick
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Figure 5.11 A wall of height 4

coordinates (.h/2/ , .h/2/). A central vertex of a wall is a vertex contained incentral
vertex the central brick but not in its neighbours to the left or right.

The outermost (non-induced) cycle of a wall W is called its perimeter.perimeter

Clearly, every large grid contains a large wall as a subgraph and conversely
every large wall contains a large grid as a minor. The main advantage of working
with walls rather than grids is that if G contains an elementary wall as a minor
then, by Lemma 5.5.1, it contains a wall of the same height as a subgraph.

Let us come back to the analysis of the structure of graphs. Let t be a bound
on the tree-width we want to consider. If G has tree-width at most t , then it is
sufficiently tree-like and its structure is well understood. So supposeG has large
tree-width. By the Excluded Grid Theorem 5.5.4, we know that G contains a
large wall W as a subgraph. We can use W as a drawing board on which we
draw the rest of the graph G. Clearly, as G is not required to be planar, this
“drawing” will not necessarily be plane, i.e. edges may cross. In particular,
edges or paths may span over different bricks of the wall. This is called a
“crossing”. More formally, a crossing consists of two pairwise vertex-disjoint
paths with endpoints v1, v3 and v2, v4 such that v1, v2, v3, v4 occur clockwise
in this order on some cycle of the grid. Figure 5.12 illustrates the concept of
crossings.

Crossings are important for our purpose. For, if G contains many crossings
which, in addition, are sufficiently far apart from each other on the wall used to
drawG, then we can use the crossings to find a large clique minor of the graph.
To see this, take a large clique and draw it “flat” on the wall W . Necessarily
(unless your clique has less than five vertices) some of the edges in the clique
will cross each other. However, if the wall W is large enough and there are
sufficiently many crossings far apart from each other, then we can replace the
edges of the clique by disjoint paths in G so that edges that cross are replaced
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Figure 5.12 Crossings in a graph

Figure 5.13 A K5-minor in a wall with one crossing

by disjoint paths that cross each other using a “crossing” in the drawing of G.
The following Figure 5.13 illustrates this with K5 and one crossing. The grey
areas are (essentially) the parts that are being contracted for each vertex in the
clique.

Hence, ifW is large enough and there are many crossings pairwise far apart
in W , then G contains a large clique minor. So, how does a graph G drawn on
a large wall look like if it does not contain a large clique minor?

As explained before, all but a small number of crossings must be grouped
together in a bounded number of small parts of the wall. These regions with
many crossings are called vortices. Further, there can be some vertices which vortex

are very well connected to the rest of the graph, i.e. a setX of vertices that have
edges to arbitrary vertices in the graph, where edges can be replaced by paths
of arbitrary length. The vertices in X are called apices (see Figure 5.14). apex
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Figure 5.14 Vortices and apices in a graph drawn on a wall

However, any such well-connected vertex in X can be used as a crossing
and hence, if G excludes Kk , there are either at most |X| < (

k

2

)
such elements,

or their connections to the wall are concentrated on a small part of the wall W
(and hence they are part of the vortices) so that the crossings cannot be used to
route the edges of a Kk-minor. In this case, we will find a subwall of W which
is still “large” and is connected only to a subset of X of size <

(
k

2

)
. Hence, we

can continue the discussion with the subwallW ′ where we do not have vortices
and only a bounded number of apices.

Besides the apices, there can be other parts of the graph with direct connec-
tions to the interior of the wall,7 which do not induce any further crossings.
We call these extensions. Essentially, an extension is a subgraph D of G that
is connected to the wall only within a brick and only with at most 3 vertices.
This is important as with three vertices the extensions cannot induce further
crossings in the wall.

Furthermore, we can assume that the tree-width of any such extension is
bounded, as otherwise we could forget about the rest of the graph and do the
same analysis within the extension, either producing a large clique minor or a
large wall with vortices, apices and extensions. Note, though, that the apices
may have connections to the extensions. See Figure 5.15 for an illustration.

7 There may also be parts of the graph connected to the wall only through its perimeter. These
parts are not relevant here but we come back to this in the next section.
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Figure 5.15 Apices, extensions and connections within the subwall W ′

The discussion so far presents the main ideas in the proof of the next lemma,
one of the important results in the Graph Minor Series. To state it precisely, we
need some further notation.

For a subgraph D of a graph G, we let ∂GD be the set of all vertices of D
that are incident with an edge in E(G) \ E(D). In the following, let W be a
wall of height at least 2 in a graph G and let P be the perimeter of W , i.e. the
boundary cycle of W . Let K ′ be the unique connected component of G \ P
that contains W \ P . The graph K = K ′ ∪ P is called the compass ofW inG.
A layout of K (with respect to the wall W in G) is a family (C,D1, . . . , Dm)
of connected subgraphs of K such that:

1. K = C ∪D1 ∪ . . . ∪Dm,
2. W ⊆ C and there is no separation (X, Y ) ofC of order≤ 3 with V (W ) ⊆ X

and Y \X �= ∅,
3. ∂GDi ⊆ V (C) for all i ∈ {1, . . . , m},
4. |∂GDi | ≤ 3 for all i ∈ {1, . . . , m},
5. ∂GDi �= ∂GDj for all i �= j ∈ {1, . . . , m}.

We let C be the graph obtained from C by adding new vertices d1, . . . , dm

and, for 1 ≤ i ≤ m, edges between di to the vertices in ∂GDi and edges between
all vertices in ∂GDi . Hence, for each i ∈ {1, . . . , m}, the vertex di together with
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the (at most 3) vertices in ∂GDi form a clique. We call C the core of the layout
and D1, . . . , Dm its extensions. The layout (C,D1, . . . , Dm) is flat if its core
C is planar. Note that this implies that the core has an embedding in the plane
that extends the “standard planar embedding” of the wall W (as shown in
Figure 5.10), because the wall W has a unique embedding into the sphere. We
call the wall W flat (in G) if the compass of W has a flat layout.

The following lemma, which we refer to as the trinity lemma, is (essentially)
Lemma 9.8 of [78]. Concerning the uniformity, see the remarks at the end of
[78] (on page 109).

Lemma 5.5.7 (Trinity Lemma [78]) There are computable functions f, g :
N2 → N and an algorithm A that, given a graph G and non-negative integers
k, h, computes either

1. a tree-decomposition of G of width f (k, h),
2. a Kk-minor of G, or
3. a subset X ⊆ V (G) with |X| < (

k

2

)
, a wall W of height h in G \X, and a

flat layout (C,D1, . . . , Dm) of the compass of W in G \X such that the
tree-width of each of the extensions D1, . . . , Dm is at most f (k, h).

Furthermore, the running time of the algorithm is bounded by g(k, h) · |V (G)|2.

Using the trinity lemma, we can now sketch the proof of the following
theorem due to Robertson and Seymour [78].

Theorem 5.5.8 (Robertson, Seymour [78]) The following problem is fixed-pa-
rameter tractable with a cubic fpt algorithm.

p-Disjoint-Paths
Input: Graph G, s1, . . . , sk, t1, . . . , tk ∈ V (G).

Parameter: k.
Problem: Are there k vertex disjoint paths connecting si

and ti , 1 ≤ i ≤ k?

The idea of the algorithm is as follows. Apply the trinity lemma on G for
suitable values of k and h. IfG has tree-width≤ f (k, h), then the disjoint paths
problem can be solved by standard techniques using dynamic programming (or
by formalising the problem in MSO and using Courcelle’s theorem). Otherwise,
if G contains a large clique minor (say at least K3k), then we can do the
following. To simplify the presentation, let us assume that G actually contains
the 3k-clique as a subgraph. If there are 2k vertex disjoint paths connecting
{s1, . . . , sk, t1, . . . , tk} to the clique, then these paths together with the edges
of the clique yield the k vertex-disjoint paths connecting si , ti as desired.
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Otherwise, by Menger’s theorem, there is a separator X ⊆ V (G) of size at
most 2k separating the clique and (part of) the {si, ti : 1 ≤ i ≤ k}. But now,
the problem can be reduced to a constant number of disjoint paths problems
on smaller subgraphs, trying to connect si , ti with all possible combinations of
elements in the separator.

If G does not contain the clique as a subgraph but as a minor, then the
argument becomes considerably more complicated, but can still be done.
Hence, the case where G contains a large enough clique minor can be solved
efficiently.

Finally, consider the third case of the trinity lemma, whereG contains a large
wall W and we are given a flat layout of W , its extensions and the apices. This
is the tricky bit. However, one can show that if W is large enough, then it must
contain a subwall W ′, which is still large, does not contain any of the si’s or
ti’s and is “homogeneous” with respect to the apices. Informally, homogeneous
means that every type of a small part of the wall with respect to the apices
is realised sufficiently often all over the subwall W ′. In [78], Robertson and
Seymour show how such a homogeneous subwall can be constructed efficiently.
To simplify the presentation, assume that W ′ has actually no direct connection
to the apices (other than those using vertices of W \W ′). Now suppose there
are k vertex-disjoint paths connecting si and ti , 1 ≤ i ≤ k. Some of these paths
may use parts of W ′. As none of the endpoints si, ti is in W ′, the paths merely
cross W ′, although they may do so in a rather irregular and complicated way.
However, it can be shown that if W ′ is homogeneous and large enough, then
any such set of paths can be rerouted so as to avoid a central vertex v of the
wall (recall from above that the central vertices are those in the middle of the
wall). This implies, that k vertex-disjoint paths connecting si , ti exist in G if,
and only if, such paths exist inG− v. Hence, we can remove the central vertex
v and start the whole procedure again on the smaller graph.

It seems intuitively obvious that on a very large wall, everything that can
be routed through the wall can be routed without using the central vertex. A
formal proof of this is extremely complicated and uses a major part of the deep
structure theory developed in the graph minor series.

As mentioned above, the solution to the disjoint paths problem was given by
Robertson and Seymour in [78]. In fact, they solve the following more general
problem. A rooted graph (G, v1, . . . , vk) is a graph G together with vertices
vi ∈ V (G). A rooted graph (H, t1, . . . , tk) is a minor of (G, v1, . . . , vk), if there
is a minor map µ from H to G such that vi ∈ µ(ti) for all 1 ≤ i ≤ k.

Theorem 5.5.9 (Robertson, Seymour [78]) The following problem is fixed-pa-
rameter tractable with a cubic fpt algorithm.
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p-Rooted-Minor
Input: Rooted graphs (G, v1, . . . , vk), (H, t1, . . . , tk).

Parameter: k.
Problem: Is (H, t1, . . . , tk) a minor of (G, v1, . . . , vk)?

Clearly, this implies Theorem 5.5.8 and also Corollary 5.5.3. This is a
truly remarkable consequence of the proof of the graph minor theorem. Note,
however, that the statement is purely existential. For every minor ideal there is
a finite set of excluded minors and for each memberH of the set we can decide
in cubic time, whether a graph G contains H as a minor. The theory does not
yield an algorithm to compute a set of excluded minors and hence it only states
the existence of a polynomial time membership test but not an actual algorithm.
We come back to this in Section 5.5.4 where we consider ways in which to
overcome this non-constructive element in the theory.

5.5.3 The Structure of H -Minor Free Graphs

The proof of the graph minor theorem relies on a structure theory for graphs
G excluding a fixed graph H as a minor. We have already seen some of the
results developed in the proof. In this section we focus on describing the
structure of graphs in terms of simple building blocks into which they can be
decomposed.

The key to the decomposition theorem we are going to describe is once again
the grid theorem, or in this case the trinity lemma as described in the previous
section. Clearly, as G excludes a fixed graph H as a minor, it is obvious that,
if we choose the values for k and h correctly, of the three cases of the trinity
lemma, the second is impossible: if G excludes H it cannot contain a large
clique minor. Further, if G has small tree-width, then it can be decomposed
into subgraphs of constant size. Hence, we primarily have to deal with the third
case, where G has large tree-width but does not contain a large clique minor.

Recall our exploration of the trinity lemma in the previous section. Let us
assume that G is highly connected. If not, we first decompose it into parts that
are highly connected. We will come back to this later.

As G has high tree-width it must contain a large wall as a subdivision. This
wall may contain “crossings”, in particular there may be a bounded number
of apices and vortices. As explained before, apart from the vortices and the
apices, the rest of the graph, the extensions, must fit nicely into the planar
structure of the wall, i.e. they fit into the individual bricks. So far, however, we
only have discussed the interior of the wall. There may be more to the graph,
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which is connected to the wall only through the perimeter. These connections
cannot be too wild, though, as otherwise we would again find a large clique
minor.

We can now subdivide the exterior cycle of the wall into a bounded number
of regions and glue some of them together. In this way we obtain a graph that
can be embedded into a surface of bounded genus: any such surface can be
obtained from a convex polygon in the plane by gluing some edges together.
Hence, after removing a bounded number of apices and vortices we obtain a
graph that can be embedded into a surface of bounded genus. We say thatG has
almost bounded genus. Recall that we assumed thatG is highly connected. If it
is not, then we can decompose it into pieces with this property. This realisation
is the main structural theorem in Robertson and Seymour’s proof of the graph
minor theorem: if C is a class of graphs excluding a fixed minor H, then
every graph G ∈ C can be decomposed into graphs that have almost bounded
genus.

We still have to make precise what we mean by “decomposing a graph”.
Intuitively, we recursively find a small separator in the graph and split the graph
along the separator until the remaining graph is highly connected, and hence no
such separators can be found. However, by doing so some information is lost.
Let G be a graph and X be a small separator. We want to decompose the graph
into subgraphs each containing X and a component of G−X. Clearly, in a
graph obtained from X and a component C of G \X, we lose the connections
between elements of X through the other components of G \X. In particular,
elements of X which are far apart in X ∪ C can be close together in other
components and hence in G. This loss of information in the decomposition
process needs to be avoided. A rather drastic approach, which we take here, is
to add all possible edges between elements of the separator X, i.e. to turn X
into a clique.

Let T := (T , (Bt )t∈V (T )) be a tree-decomposition of a graph G and let t ∈
V (T ) be a node with neighbours t1, . . . , tk . The torso [Bt ] of the bag Bt is torso, [Bt ]

defined as G[Bt ] ∪
⋃k
i=1 K

[
Bti
]
, where K

[
Bti
]

is the complete graph on the
vertex set Bti . The tree-decomposition T ofG is over a class C of graphs if the tree-

decompo-
sition over Ctorsi of all bags in T belong to C.

Example 5.5.10 Figure 5.5.10 shows a tree-decomposition of a graph over
the class of triangles. Part b) shows the tree-decomposition and Part c) the
corresponding torsi.

A graph G is called decomposable over a class C if it has a tree-
decomposition over C. For every class C we denote the class of graphs



238 Stephan Kreutzer

4 1

6

3 2

5

1

3 2

4 1

3

1

3 5

4

6 3

1

3 2

4 1

3

1

3 5

4

6 3

a) Graph G b) Tree-Decom. of G c) Torsi of the bags

Figure 5.16 Tree-Decomposition over the class of triangles

decomposable over C by D(C). It is not hard to see that if C is minor closedD(C)

then so is D(C).

Example 5.5.11 Let Ck+1 be the class of graphs of order at most k + 1 and let
Tk be the class of graphs of tree-width at most k. Then Tk = D(Ck+1). -

Robertson and Seymour’s structure theorem for classes of graphs excluding
a minor can now be reformulated as follows.

Theorem 5.5.12 (Robertson, Seymour [79]) For every minor ideal D there is
a class C of graphs of almost bounded genus such that D ⊆ D(C).

We will not make the notion of “almost bounded genus” precise here and
instead refer to [79] or to [30, Chapter 12] which contains a more elaborate
introduction to the theory. For the applications we have in mind, we do not have
to work with almost bounded genus graphs, vortices and apices directly but
can use a simpler version of the structure theorem. This relies on the following
lemma, proved by Grohe in [52].

The local tree-width is the function ltw : Graphs× N → N defined aslocal
tree-width

ltw(G, r) := max
{

tw
(
G
[
Nr (v)

])
: v ∈ V (G)

}
,

where Nr (v) is the r neighbourhood of v, i.e. the set of vertices of distance
at most r from v. That is, the local tree-width of a graph assigns to every
radius r ∈ N the maximal tree-width of an r-neighbourhood in the graph G.
See Section 5.7.3 for more on local tree-width.
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Lemma 5.5.13 (Grohe [52]) Let S be a surface. Then the class of all minors
of graphs almost embeddable into S has linear local tree-width.

For all λ,µ ≥ 1 define

L(λ) := {G : ltw(H, r) ≤ λ · r for all H � G}
and

L(λ,µ) := {G : there is X ⊆ V (G), |X| ≤ µ s.th. G \X ∈ L(λ)}.
Then, the previous lemma implies the following simpler structure theorem that
will be used in later sections.

Theorem 5.5.14 For every minor ideal D there exist λ,µ ≥ 1 such that D ⊆
D(L(λ,µ)).

Furthermore, Grohe proves the existence of an algorithm for computing the
decompositions over L(λ,µ), based on the following lemma.

Lemma 5.5.15 (Grohe [52]) Let C be a minor closed class of graphs. Then
there is a polynomial-time algorithm that, given a graph G, either computes a
tree-decomposition of G over C or rejects G, if no such decomposition exists.

Taking C to be L(λ,µ), the lemma implies the existence of an algorithm for
computing tree-decompositions over L(λ,µ). However, the algorithm outlined
in [52] uses non-constructive elements of the graph minor theory and hence,
while proving the existence of an algorithm, does not actually state one.

In [29], Demaine, Hajiaghayi and Kawarabayashi proved that the decompo-
sitions as guaranteed by Theorem 5.5.12 can be computed in polynomial time
for every fixed class of graphs excluding at least one minor H .

Theorem 5.5.16 (Demaine, Hajiaghayi, Kawarabayashi [29]) For every fixed
H , there is a polynomial-time algorithm for computing the decompositions of
H -minor free graphs as stated in Theorem 5.5.12.

From this, for each fixed H , a polynomial time algorithm which computes
a tree-decomposition of an H -minor free graph G over L(λ,µ), for suitable
values of λ,µ, can easily be derived.

One may wonder why we only considered classes L(λ) of linear local tree-
width instead of classes of graphs where the local tree-width is bounded by
a polynomial p(r) or even worse. In [24], Demaine and Hajiaghayi showed
that minor closed classes of bounded local tree-width always have linear local
tree-width. Hence, there is no need to consider non-linear local tree-width here,
as all classes L(λ) are minor-closed.
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5.5.4 Computing Excluded Minor Characterisations

Recall from Section 5.5.1 that every minor ideal can be characterised by a finite
set of excluded minors (Theorem 5.5.2) and that for each fixedH it is decidable
in cubic time whether a graph G contains H as a minor (Theorem 5.5.9). As
a consequence we obtain Corollary 5.5.3 stating that every minor ideal can
be decided in cubic time. Note that the result contains a non-constructive
element as it does not give a way to compute the excluded minors for a minor
ideal. For instance, while we know that the class of knotlessly embeddable
graphs can be decided in cubic time, no algorithm for doing so is actually
known.

This naturally raises the question whether this non-constructive element can
be removed from the proof, i.e. whether characterisations of minor ideals in
terms of their excluded minors can be computed. Clearly, to state this precisely,
we have to specify how we want to represent a minor ideal as an input to an
algorithms and also what exactly we want to understand by a characterisation
of a minor ideal in terms of excluded minors.

Let C be a minor ideal. A graph H is an obstruction for C if H is anobstruction

excluded minor of C but for allH ′ � H withH ′ �= H we haveH ′ ∈ C. Hence,
obstructions are minimal excluded minors. We denote the set of obstruc-
tions of C by O(C). It is easily seen that for all minor ideals C, O(C) isO(C)

unique up to isomorphism and it is finite by the Graph Minor Theorem. We
will therefore take O(C) as the characterisation of minor ideals we want to
compute.

This leaves us with the question how to specify a minor ideal as an input
for algorithms. A natural choice is to provide a Turing-machine deciding the
ideal and use this as input. However, Fellows and Langston [44] observed that
there is no algorithm which, given a Turing-machine deciding a minor ideal C,
computes the set O(C). Later, Courcelle, Fellows and Langston [15] showed
that there is no algorithm which, given an MSO-sentence defining a minor ideal
C, computes O(C).

On the other hand, it is known that obstructions can be computed for a
number of natural minor ideals. For instance, for all k ≥ 1 the obstructions
can be computed for the class Tk of all graphs of tree-width ≤ k (see [62]),
for the class Bk of all graphs of branch-width ≤ k (see [50]) and for the class
Gk of graphs of genus ≤ k (this follows from [83] or a combination of [87]
and [43]).

Fellows and Langston were the first to study algorithmic issues related to
the graph minor theorem and ways to overcome its non-constructiveness. In
[43], they propose a general method for computing obstruction sets based
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on a generalisation of the Myhill-Nerode theorem of formal language theory
to “graph languages”. Adler, Courcelle, Grohe and Kreutzer8 present a similar
method for computing obstruction sets based on definability in monadic second-
order logic (see [1]). We will give a brief presentation of this method and
illustrate it by an example. For all minor ideals C and D, their union C ∪D
is minor closed and hence a minor ideal. We will show below that the set of
obstructions for C ∪D can be computed from O(C) and O(D).9 The proof of
this result also contains a nice application of the Trinity Lemma 5.5.7.

We first establish some lemmas which are all easily proved using well-
known results from automata theory and the connection between monadic
second-order logic on trees and tree-automata (see e.g. [86, 10]).

Lemma 5.5.17 There is an algorithm which, given a formulaϕ ∈ MSO defining
a minor ideal C, computes a formula ψ ∈ MSO defining O(C).

Proof. A graph H is an obstruction for C if H �∈ C but H − v ∈ C,H − e ∈ C
andH/e ∈ C for all v ∈ V (H ) and e ∈ E(H ). Given the formula ϕ defining C,
this can be easily be formalised in MSO. �

The next lemma is based on a pumping lemma for tree-automata (see [10]).

Lemma 5.5.18 There is an algorithm which, given a formula ϕ ∈ MSO so that
the class Mod(ϕ) := {H : H |= ϕ} is finite (up to isomorphism) and a k ∈ N

such that tw(H ) ≤ k for all H ∈ Mod(ϕ), computes Mod(ϕ).

Proof (sketch). Suppose ϕ has only finitely many models each of tree-
width ≤ k. As we are given k explicitly, we can use the interpretation defined
in Section 5.3.3 to encode the models of ϕ as coloured trees over a suitable
alphabet and reduce the problem of computing the models of ϕ to the problem
of computing the corresponding tree-encodings. An upper bound for the size
of these models can then be derived from a version of the pumping lemma of
formal language theory for classes of trees definable by tree-automata. From
this bound on the size, the actual models of ϕ can easily be computed. �

The previous lemmas together with the Graph Minor Theorem immediatly
imply the following corollary which is the basis of the method for computing
obstruction sets proposed in [1].

8 The proof presented here follows a suggestion by Bruno Courcelle simplifying the original
proof of the result in [1].

9 Note that the analogous problem for C ∩D is trivial.
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Corollary 5.5.19 There is an algorithm which, given a formulaϕ ∈ MSO defin-
ing a minor ideal C and a k ∈ N such that tw(H ) ≤ k for all H ∈ O(C),
computes the set O(C).

As an application of the result we show that the obstructions for the union
C ∪D of minor ideals C,D can be computed from the sets O(C) and O(D). For
this, we have to show that C ∪D is MSO-definable and to establish an upper
bound on the tree-width of its obstructions.

It is easily seen that for any fixed graph H there is an MSO-formula ϕH
which is true in a graph G if, and only if, H � G. This follows immediately
from the definition of minors in terms of minor maps and images as presented
in Section 5.5.1. To define C ∪D in MSO note that G ∈ C ∪D if, and only if,
G either excludes a minor from O(C) or a minor from O(D). As we have seen,
this is MSO-definable and a corresponding formula can easily be computed. It
remains to establish a bound on the tree-width of the obstructions.

Lemma 5.5.20 Let C and D be minor ideals and let U := C ∪D. There is an
algorithm which, given O(C) and O(D) as input, computes a number k ∈ N

such that tw(H ) ≤ k for all H ∈ O(U).

Proof (sketch). Suppose G ∈ O(U). Hence, G �∈ U but G− v ∈ U for all
v ∈ V (G). It follows that there are H ∈ O(C) and I ∈ O(D) such that H � G

and I � G. Let k := max{|H |, |I |} + 1 and choose h “large enough”, where
the meaning of large enough will become clear later.

By the Trinity Lemma 5.5.7, either a) tw(G) ≤ f (k, h) for some com-
putable function f , or b) Kk � G or c) there is a subset X ⊆ V (G) with
|X| < (

k

2

)
, a wallW of height h inG \X, and a flat layout of the compass ofW

in G \X.
Suppose c) applies. It follows from a result by Robertson and Seymour in

[78] that if h is chosen large enough then there is a vertex v in the wall W (the
middle vertex) such that G− v still contains H and I as minors, contradicting
the minimality of the obstruction G. Hence, case c) is impossible. The idea to
choose the middle vertex is same as in the proof of Theorem 5.5.8 described in
Section 5.5.2.

For b), if G contains a Kk minor then there is a strict subgraph G′ � G

containing a Kk−1 minor. Hence, by the choice of k, G′ contains H and I
as minors, contradicting the minimality of G. Thus, case b) is impossible as
well.

Finally, in a) the tree width of G is bounded by a computable function in h
and k and we have found a uniform upper bound for the tree-width of G which
concludes the proof. �
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Corollary 5.5.21 ([1]) For all minor ideals C,D the set O(C ∪D) is com-
putable from the sets O(C) and O(D).

Using a similar approach it was shown in [1] that obstructions can be
computed for other natural minor ideals. In particular, if C is a minor ideal
whose obstructions are known, then the obstructions can be computed for the
class Capex of apex graphs over C, defined as

Capex := {G : there is v ∈ V (G) such that G− v ∈ C}.

However, there remain interesting open problems.

Open Problem 5.5.22 1. Is there an algorithm which, given λ ≥ 0, computes
the obstructions O(L(λ))? See Section 5.5.3 for a definition of L(λ) and
L(λ,µ). Note that, by using the computability of O(Capex) from O(C), the
set O(L(λ,µ)) can be computed from O(L(λ)), for all µ ≥ 0.

2. If C is a minor ideal whose obstructions are given, can we compute the
obstructions of the class D(C) of graphs tree-decomposable over C?

A solution for both open problems would be particularly interesting as every
minor ideal is a subclass of a class D(L(λ,µ)) for some λ,µ ≥ 0.

5.6 Monadic Second-Order Logic Revisited

Recall from Section 5.3.5 that for each k, the MSO2-theory of the class Tk of
graphs of tree-width at most k is decidable. The aim of this section is to prove
a kind of converse, also due to Seese.

Theorem 5.6.1 (Seese [81]) If C is a class of graphs with decidable MSO2-
theory, then C has bounded tree-width.

The proof of the theorem crucially relies on the excluded grid theorem
(Theorem 5.5.4) and the fact that the MSO-theory of grids is undecidable. The
latter can easily be established using tiling systems or by a direct encoding of
the run of Turing-machines using MSO-formulas (see e.g. [8]).

Suppose C has a decidable MSO2-theory but unbounded tree-width. Then,
by the excluded grid theorem, for all n ≥ 1, there is a graphGn ∈ C containing
Gn×n as a minor. The key to the theorem is to show that grid minors can be
defined in MSO2. Hence, the (undecidable) MSO-theory of grids can be reduced
to the MSO-theory of C contradicting the assumption that the latter is decidable.
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We start by showing how walls can be formalised in MSO2. The exten-
sion to grids follows easily. Let G be a graph and consider an MSO2-formula
formalising the following.

1. There are two setsH and V of edges, each of which induces a set of pairwise
vertex disjoint paths (which we will think of as horizontal and vertical paths
in a wall).

2. For all P ∈ H and Q ∈ V , P ∩Q is a subpath of both, P and Q. Further,
V (P ∩Q) ∩ V (H ) = ∅ for all H ∈ (V ∪H) \ {P,Q}.

3. There is a path L ∈ V such that the intersection of L with each Q ∈ H
contains an endpoint of Q (L is the left-most vertical path in the wall).
Once we have L, we can give the horizontal paths P ∈ H a direction,
where we say that p ∈ V (P ) is to the left of p′ ∈ V (P ), if the subpath of P
containing p′ and a vertex in L also contains p.

4. There is a path T ∈ H such that the intersection of T with each P ∈ V
contains an endpoint of P (T is the top-most horizontal path in the wall).
As with horizontal paths, we can now use T to give the vertical paths P ∈ V
a direction and say that p ∈ V (P ) is above p′ ∈ V (P ).

5. For each pathP ∈ V exceptL there is a pathP ′ ∈ V (the path immediately to
the left ofP ) such that for allQ ∈ H: ifp ∈ V (P ∩Q) andp′ ∈ V (P ′ ∩Q)
are vertices in the intersection of Q and P , P ′, then p′ is to the left of p in
Q and there is no S ∈ H such that any s ∈ V (S ∩Q) lies in the subpath of
Q between p and p′.

6. The analogue condition for horizontal paths.

Clearly, the various conditions are MSO2-definable. Now, if V and H satisfy
the conditions above, then they generate a wall inG and conversely, the disjoint
horizontal and vertical paths in a wall satisfy the conditions. Finally, it is easily
seen that the class of grids can be defined in the class of walls and hence grid
minors are MSO2-definable in graphs.

Note that here we crucially use the fact the we are working with MSO2-
formulas and hence can quantify over the edge sets of disjoint paths. In MSO1

we could only try to quantify over the vertex set of disjoint paths. However,
if there are sufficiently many edges between these vertices, there is no way
we can give the paths an orientation, e.g. define paths being to the left of
others. And clearly, we cannot expect clique-minors to be definable in MSO1

as, by Theorem 5.4.20, the MSO1-theory of graph classes of bounded clique-
width is decidable and hence there are classes with decidable MSO1-theory but
unbounded tree-width.
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5.7 First-Order Model-Checking

In Section 5.3.4 and 5.4.3 we showed that the model-checking problem for
variants of monadic second-order logic is solvable in linear time for any fixed
formula on classes of graphs of bounded tree- or clique-width. As we have
argued in Section 5.4.4 and will explore further in Section 5.8 below, there is
not much hope for extending these results to other or larger classes of graphs.
However, first-order logic is tractable on much larger classes of graphs and in
this section we will present tractability results for first-order logic on several
special classes of graphs. The important property of first-order logic that makes
these results possible is locality.

The section is structured as follows. In Section 5.7.1 we introduce the
concept of locality and present Gaifman’s theorem. In Section 5.7.2 we apply
locality to obtain fixed-parameter algorithms for first-order model-checking on
graph classes of bounded degree. The algorithms developed in this section can
be applied in a much more general context using the concept of localisation of
graph invariants. This will be formally defined in Section 5.7.3. In Section 5.7.4
we present fixed-parameter algorithms for first-order model-checking on H -
minor free graphs.

5.7.1 Locality of First-Order Logic

Let G be a graph. Recall that the distance dG(u, v) between two vertices
u, v ∈ V (G) is the length of the shortest path from u to v or∞ if there is no such
path. Further, for every v ∈ V (G) and r ∈ N we define the r-neighbourhood
of v in G as the set

NG
r (v) := {w ∈ V (G) : dG(v,w) ≤ r}

of vertices of distance at most r from v. For a setW ⊆ V (G) we setNG
r (W ) :=⋃

v∈W N
G
r (v). We omit the index ·G whenever G is clear from the context.

If σ is a signature and A is a σ -structure, we define the distance dA(a, b)
and the r-neighbourhood NA

r (a) in terms of the Gaifman-graph G(A) of
A,10 i.e. NA

r (a) is the set of elements of distance at most r from a in the
Gaifman-graph.

It is easily seen that for any fixed r ∈ N “distance at most r” is first-order
definable, that is, for every r ∈ N there is a formula dist≤r (x, y) such that for

10 See Section 5.2 for a definition of Gaifman-graphs.
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all structures A and all u, v ∈ V (A)

A |= dist≤r (u, v) iff dA(u, v) ≤ r.
Similarly, there are formulas dist>r (x, y) and dist<r (x, y) defining distance >
r and < r respectively. To improve readability we will write dist(x, y) ≤ r
instead of dist≤r (x, y) and likewise for the other formulas.

A first-order formula ϕ(x) is r-local if for every structureA and all a ∈ V (A)

A |= ϕ(a) iff A
[
NA
r (a)

] |= ϕ,

where A
[
NA
r (a)

]
denotes the substructure of A induced by NA

r (a). Hence,
truth of an r-local formula at an element a in a structure only depends on its
r-neighbourhood. A formula ϕ(x) is local if it is r-local for some r ∈ N.

A basic local sentence is a first-order sentence of the form

∃x1 . . . ∃xk
( ∧

1≤i<j≤k
dist(xi, xj ) > 2r ∧

k∧
i=1

ϑ(xi)
)

where ϑ(x) is local. In 1981, Gaifman showed that every first-order sentence
is equivalent to a Boolean combination of basic local sentences.

Theorem 5.7.1 (Gaifman [48]) Every first-order sentence is equivalent to a
Boolean combination of basic local sentences. Furthermore, there is an algo-
rithm that, given a first-order formula as input, computes an equivalent Boolean
combination of basic local sentences.

A first-order formula is in Gaifman Normal Form (GNF), if it is a Boolean
combination of basic local sentences. Gaifman’s original proof is by an explicit
translation of first-order formulas into formulas in GNF. A proof sketch along
this lines can also be found in the survey paper [53]. A different, model-
theoretical proof can be found in [37, Section 2.5].

The translation of formulas into Gaifman normal form is effective. How-
ever, it has recently been shown [23] that this translation may involve a non-
elementary blow-up in the size of the sentence.

Theorem 5.7.2 (Dawar, Grohe, Kreutzer, Schweikardt [23]) Let σ := {E} be
the signature of graphs. For every h ≥ 1 there is an FO[σ ]-sentence ϕh of
size O(h4) such that every FO[σ ]-sentence in Gaifman normal form that is
equivalent to ϕh on the class of finite trees has size at least tower(h), where
tower(h) denotes a tower of 2s of height h.

From a practical point of view, this renders algorithms using Gaifman’s
theorem useless, no matter what their theoretical complexity might be.
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Example 5.7.3 Recall that a dominating setX in a graphG is a setX ⊆ V (G)
such that for all v ∈ V (G), v ∈ X or there is a u ∈ X and {u, v} ∈ E(G). For
k ∈ N, the formula

ϕk := ∃x1 . . . ∃xk∀y
( ∨

1≤i≤k

(
xi = y ∨ Eyxi

))

is true in a graph G if, and only if, G has a dominating set of size at most k.
To convert this into an equivalent sentence in Gaifman normal form, we

first observe that no connected graph of diameter at least 3k + 1 can have a
dominating set of size at most k. Here, the diameter of a graph is the maximum
of the distance between any two vertices.

Hence, on connected graphs, the formula ϕk above is equivalent to the
conjunction of the basic local sentence

ψ := ¬∃x1∃x2dist(x1, x2) > 3k + 1,

saying that the diameter of G is greater than 3k + 1, and the basic local
sentence ∃xχ (x), where χ (x) is the 3k + 1-local formula

∃y1 ∈ N3k+1(x) . . . ∃yk ∈ N3k+1(x)∀z ∈ N3k+1(x)
∨

1≤i≤k

(
yi = z ∨ Ezyi

)
.

Note that this formula correctly defines the existence of a dominating set of
size k only in connected graphs, as in graphs with more than one component
there may exist a dominating set of size k even though there are vertices x1, x2

of distance greater than 3k + 1. Adapting the formula to this case requires a
little more effort. -

5.7.2 First-Order Logic on Graphs of Bounded Degree

As a first application of the use of Gaifman’s locality theorem for algorithmic
meta theorems we consider graph classes of bounded degree.

Definition 5.7.4 A class C of graphs has bounded degree if there is a d ∈ N

such that �(G) ≤ d for all G ∈ C.

In 1996, Seese [82] showed that model-checking for a fixed first-order
sentence can be done in linear time on graph classes of bounded degree.

Theorem 5.7.5 (Seese [82]) For any class C of graphs of bounded degree and
any fixed first-order sentence it can be decided in linear time whether G |= ϕ

for a graph G ∈ C. In other words, first-order model-checking on C is fixed-
parameter tractable by a linear fpt algorithm.
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Figure 5.17 Algorithm to find k vertices of pairwise distance > 2r

Proof. The proof method we use here is essentially the method used by Frick
and Grohe to show a similar result for planar graphs.

Let ϕ and G ∈ C be given. We first convert ϕ into Gaifman normal form,
i.e. into a Boolean combination of basic local sentences. As Boolean combina-
tions are easy to deal with, we only need to consider basic local sentences of
the form

ψ := ∃x1 . . . ∃xk
( ∧

1≤i<j≤k
dist(xi, xj ) > 2r ∧

k∧
i=1

ϑ(xi)
)

where ϑ(x) is r-local for some r ∈ N.
To check whether ψ is true in G we proceed in two steps. First, we test for

all v ∈ V (G) if G
[
NG
r (v)

] |= ϑ . As G has degree bounded by some constant
d, the size ofNG

r (v) is constant and hence this can be decided in constant time.
Colour all vertices v red for which G

[
NG
r (v)

] |= ϑ and let Q be the set of red
vertices. Now, G |= ψ if Q contains k vertices of pairwise distance > 2r .

In the second step we search for k such vertices. For this, we use the greedy
algorithm shown in Figure 5.17. The algorithm proceeds as follows. In lines
2–6 of the algorithm, we try to choose k red vertices of pairwise distance > 2r
greedily. If we succeed, i.e. if the set L contains k elements, then we are done
and acceptG. Otherwise, we know that L contains fewer than k vertices which
are all red and of pairwise distance > 2r and also that any other red vertex is
within distance ≤ 2r of an element of L (otherwise we could add the vertex
to L). Hence, all red vertices of G are contained in the 2r-neighbourhood
N := N2r [L] of L. Again, N is of constant size and hence we can check in
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constant time whetherN contains k red vertices of pairwise distance> 2r . This
is done in line 12 by testing whether the graph induced by the neighbourhood
satisfies the first-order formula stating that there are k distinct red vertices of
pairwise distance > 2r . �

The previous theorem gives a simple example how locality can be used to
obtain efficient model-checking algorithms for first-order logic. As it turns out,
a similar scheme can be employed in many cases.

Theorem 5.7.6 Let C be a class of graphs such that the following problem is
fixed-parameter tractable:

Input: ϕ ∈ FO, graph G ∈ C, v1, . . . , vk ∈ V (G) and r ∈ N.
Parameter: r + k + |ϕ|.

Problem: Decide G
[
NG
r (v1, . . . , vk)

] |= ϕ.

Then model-checking for first-order logic is fixed-parameter tractable on C.

Proof. We proceed as in the proof of Theorem 5.7.5. By Gaifman’s theorem,
we may assume that ϕ is a basic local sentence

∃x1 . . . ∃xk
(∧
i �=j

dist(xi, xj ) > 2r ∧
∧
i

ϑ(xi)
)
,

where ϑ(x) is an r-local formula for some r ∈ N.
In the first step, we compute the set Q of vertices v ∈ V (G) such that

G
[
Nr (v)

] |= ϑ(v). By assumption, for each v ∈ V (G) this can be done in time
f (r + 1+ |ϑ |) · |G|O(1), for some computable function f : N → N, and hence
the total running time is f (r + 1+ |ϑ |) · |G|O(1).

In the second step we aim to find k vertices in Q whose distance is
pairwise > 2r . Using the algorithm of Figure 5.17 this can be done in time
f (2r · k +O(k)) · |G|O(1). Hence, the total running time is f (2r · k +O(k)) ·
|G|O(1). �

While this theorem may appear somewhat artificial, we will see a number
of interesting applications of it by considering localisations of graph invariants
such as tree-width or rank-width.

5.7.3 Localisation of Graph Invariants

Let Graph denote the class of all finite graphs.



250 Stephan Kreutzer

Definition 5.7.7 A graph invariant is a function f : Graph → N. For every
graph invariant f we define its localisation locf : Graph× N → N aslocf (G, r)

locf (G, r) := max
{
f
(
G
[
Nr (v)

])
: v ∈ V (G)

}
.

A class C of graphs has bounded local f , if there is a computable11 function
h : N → N such that locf (G, r) ≤ h(r) for all G ∈ C and r ∈ N.

That is, to compute locf (G, r) we compute the r-neighbourhoods N :=
Nr (v) of all vertices v ∈ V (G) and for each suchN the value f (N ). locf (G, r)
is then the maximum of these values. In particular, if the problem: givenG and
k, where k is the parameter, to decide whether f (G) ≤ k is fixed-parameter
tractable, then so is the problem: given G, r, k, where r + k is the parameter,
to decide if locf (G, r) ≤ k.

Example 5.7.8 Of particular interest is the localisation of tree-width, called
local tree-width (see also the discussion at the end of Section 5.5.3). There
are a number of interesting examples for graph classes with bounded local
tree-width.

1. Every graph class of bounded tree-width also has bounded local tree-width
(bounded by a constant).

2. The class of planar graphs has bounded local tree-width. More precisely,
Robertson and Seymour [77] showed that every planar graph of radius r
has tree-width ≤ 3r + 1.

3. Any class of graphs of bounded degree. This is easily seen as the r-neigh-
bourhoods of graphs of degree at most d contain < dr+1 vertices. -
Similar to local tree-width we can define local rank-width or clique-width,

where we take f : Graph → N to be the function assigning to each graph its
rank- or clique-width.

Another interesting example is the localisation of the following graph invari-
ant. Let mec : Graph → N (minimal excluded clique) be the function assigningmec(G)

to each graph G the minimal order of a clique that is not a minor of G, i.e.

mec(G) := min{k : Kk �� G}.
Graph classes with locally bounded mec are called graph classes with locally
excluded minors and have been studied by Dawar, Grohe and Kreutzer in [21].
Clearly, every graph class C with an excluded minor H also locally excludes

11 As we are asking for h to be computable, we should call this effectively bounded local f . But
this would make the notation even more clumsy and we therefore refrain from mentioning
effectiveness in the sequel.
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H , i.e. has bounded local mec. The converse fails, though, as is witnessed by
the following class of graphs. For k ∈ N let Sk be the graph obtained from Kk

by replacing all edges by internally vertex disjoint paths of length k. Now take
C := {Sk : k ∈ N}. Obviously, the minor closure of C is the class of all graphs,
i.e. C does not exclude a minor. However, it locally excludes minors, as every
k-neighbourhood of graphs G ∈ C excludes Kk . Hence, f : Graph× N → N

defined as f (G, r) := r dominates the local mec of C.
Note, that C has bounded local tree-width and hence also provides an exam-

ple separating proper minor ideals and graph classes of bounded local tree-
width. It is easily seen that every class of graphs of bounded local tree-width
also locally excludes minors. The converse fails again, as not even every minor
ideal has bounded local tree-width. This is witnessed by the class of apex graphs
defined as

Capex := {G : there is v ∈ V (G) such that G− v is planar}.

In particular, this class contains all grids with one additional vertex adjacent
to every vertex in the grid. Hence, Capex has unbounded local tree-width but
clearly excludes K6.

Lemma 5.7.9 The concept of locally excluded minors strictly generalises both
excluded minors and bounded local tree-width. That is, every class of graphs
that excludes a minor or has bounded local tree-width, also locally excludes
minors. The converse fails in both cases.

The aim of this section is to prove the following theorem.

Theorem 5.7.10 Let f be a graph invariant such that the following is fixed-
parameter tractable.

MC(FO, f )
Input: Graph G and ϕ ∈ FO.

Parameter: f (G)+ |ϕ|.
Problem: Decide whether G |= ϕ.

Then for every class C of locally bounded f , the problem MC(FO, C) is fixed-
parameter tractable.

Proof. Let g : N → N be a bound for locf (G, ·) for allG ∈ C. We first suppose
that f is induced subgraph monotone, i.e. f (H ) ≤ f (G) for all H,G such
that H is an induced subgraph of G, and further has the property that if
G1,G2 are vertex disjoint graphs, then f (G1 ∪G2) ≤ max{f (Gi) : i = 1, 2}.
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Note that graph invariants such as tree-width, branch-width, clique-width and
rank-width all have these properties.

Then the result follows from Theorem 5.7.6 as follows. Given ϕ ∈ FO, G ∈
C, v1, . . . , vk ∈ V (G) and r ∈ N, we first compute H := G

[
NG
r (v1, . . . , vk)

]
in polynomial time. Clearly, every component of H has radius at most k · r
and hence f (H ) ≤ locf (G, k · r) ≤ g(k · r). The assumptions of this lemma
then imply that the assumptions of Theorem 5.7.6 are satisfied and thus we can
decide H |= ϕ by fpt-algorithms.

If f does not have the properties above, we can no longer apply
Theorem 5.7.6 directly. Instead, we have to repeat its proof. We leave the
details to the reader. �

Corollary 5.7.11 First-order model-checking is fixed-parameter tractable on
graph classes of

� bounded local tree-width
� bounded local rank- or clique-width.

In the next section we will show that first-order model-checking is fixed-
parameter tractable on graph classes excluding at least one minor. We will later
consider localisation in this context and show an analogous result for graph
classes locally excluding a minor.

5.7.4 First-Order Logic on H -Minor Free Graphs

The aim of this section is to show that first-order model-checking is fixed-
parameter tractable on every class C of graphs excluding at least one minor
H . If we take |ϕ| as the parameter, this was first shown by Flum and Grohe
[45] in 2001. That is, for every fixed H , the problem is tractable under the
parametrization |ϕ|. However, the exponential of the polynomials occurring in
the running time analysis can depend onH . As it turns out, this parametrization
is not strong enough to apply our method of localisation to the problem. In
[21], therefore, Dawar, Grohe and Kreutzer consider the problem under the
parametrization |ϕ| + |H | and show fixed-parameter tractability for this case.

Let us first consider the case where H is fixed and |ϕ| is the parameter.
In the light of the previous sections, the proof of the theorem seems rather
straightforward: given G ∈ C, Theorem 5.5.14 tells us that there are λ,µ ≥ 1
such that G has a tree-decomposition over L(λ,µ), i.e. a tree-decomposition
such that the torsi of its bags have bounded local tree-width after removal of a
few elements, and Theorem 5.5.16 tells us how to compute the decomposition
in polynomial time. Furthermore, we already know how to deal with graphs in



Algorithmic meta-theorems 253

L(λ) of bounded local tree-width and extending this to graphs in L(λ,µ) poses
no real problem. And indeed, this is the general idea to show that FO model-
checking is FPT on H -minor free graphs, although formally implementing
the idea requires some care and additional lemmas. To make this precise it is
convenient to introduce further notation.

A graph G is the clique sum of graphs G1 and G2, denoted G = G1 ⊕G2, clique sum, ⊕
if G1 ∩G2 is a complete graph and G is obtained from G1 ∪G2 by possibly
deleting some edges from E(G1 ∩G2). Formally, V (G) = V (G1) ∪ V (G2),
G1 ∩G2 is a clique and there is a (possibly empty) set X ⊆ E(G1 ∩G2) such
that E(G) = E(G1 ∪G2)−X. We write G = G1 ⊕v G2 to indicate that G is ⊕v

the clique-sum of G1 and G2 and that V (G1 ∩G2) = v.
Recall that a tree-decomposition of a graph G is over a class C of graphs

if the torsi [Bt ] of all its bags belong to C, where the torso of a bag Bt is
obtained fromG[Bt ] by turning the intersections of Bt with neighbouring bags
Bs into cliques. Hence, the graph G is obtained as the clique-sum of its bags,
an observation that we will use in the following proofs.

We begin by proving an extension of Courcelle’s theorem, this time not by
a reduction to trees but by computing MSO-types directly. Recall the definition
of MSO and FO q-types and the Feferman-Vaught theorem from Section 5.2.3.

Lemma 5.7.12 Let tpq be one of tpFO
q and tpMSO

q . The following problem is
fixed-parameter tractable: given

� a labelled graph G of tree-width ≤ k,
� tuples vi ∈ V (G)ri , 0 ≤ i ≤ m for some m, such that G

[
vi
]

is a clique, and
� q-types 1, . . . , m,

compute tpq(G, v0) for all graphs G′ = G⊕v1 H1 ⊕v2 · · · ⊕vm Hm such that
tpq(Hi, vi) = i . The parameter is q + k.

Proof. GivenG, we first compute an ordered tree-decomposition (T , (bt )t∈V (T ))
ofG of width at most k (see Definition 5.3.25). Note that, as the vi induce cliques
inG, for each i there is at least one ti such that vi ⊆ bti . Hence, we can assume
that for each 0 ≤ i ≤ m there is a leaf t ∈ V (T ) such that vi = bt and that no
other leaf contains a vertex from any of the vi for 1 ≤ i ≤ m.

For each t ∈ V (T ), let Tt be the subtree of T rooted at t and let Bt be
the set Bt :=⋃

s∈V (Tt )
bs . Beginning from the leaves we inductively compute

tpq(G
[
Bt
]
, btv0) for each node t ∈ V (T ). Here, the notation tpq (G

[
Bt
]
, btv0)

indicates that inG
[
Bt
]

we compute the type of bt and all vertices of v0 contained
in Bt . For leaves t with bt = vi , for some 1 ≤ i ≤ m, we can infer the type
tpq(G

[
bt
]
, btv0) fromi . For other leaves we can compute their types directly,



254 Stephan Kreutzer

as they only contain at most k + 1 elements. For inner nodes t with children
t1, t2 we apply Lemma 5.2.3. �

As the previous lemma applies to MSO-types, Courcelle’s theorem is clearly
a special case of it. Hence, the proof here provides an alternative way of
establishing Courcelle’s theorem. While the two approaches may seem to be
somewhat different, the underlying principle is the same. Recall that in our
original proof of Courcelle’s theorem, we encoded graphs G of tree-width ≤ k
in labelled trees T and then rewrote the formula ϕ on G to a new formula ϕ′

on T such that G |= ϕ if, and only, if T |= ϕ′. On the tree-encoding, we then
applied results from automata theory which establish that MSO model-checking
is fixed-parameter tractable on trees. More specifically, the MSO-formula ϕ′ is
translated into an automaton Aϕ which accepts T if, and only if, T |= ϕ ′.
Although it is not usually proved this way, essentially the automaton has a state
for each possible q-type and its transition relation combines types similar to
what is done in Lemma 5.2.3.

But back to first-order model-checking on graph classes excluding a minor.
Essentially the previous lemma allows us to deal with tree-decompositions over
graphs of bounded tree-width, which clearly is not enough for our purposes.

Lemma 5.7.13 Let tpq denote tpFO
q . The following problem is fixed-parameter

tractable for all λ,µ: given

� a labelled graph G ∈ L(λ,µ),
� tuples vi ∈ V (G)ri , 0 ≤ i ≤ m for some m, such that G

[
vi
]

is a clique, and
� q-types 1, . . . , m,

compute tpq (G, v0) for all graphs G′ = G⊕v1 H1 ⊕v2 · · · ⊕vm Hm such that
tpq(Hi, vi) = i . The parameter is q.

Proof. The proof is by induction on µ. For µ = 0, we adapt the proof of
Theorem 5.7.6 using Lemma 5.7.12 locally. Now letµ > 0 and letG ∈ L(λ,µ),
vi,i be an instance of the problem. By definition, G contains a vertex v ∈
V (G) such that G \ v ∈ L(λ,µ− 1). Note that for all λ′, µ′, L(λ′, µ′) is a
minor ideal and hence has a cubic time membership test by Corollary 5.5.3.
Thus, in time O(|G|4) we can find such a vertex v. Let G2 be the coloured
graph obtained from G by introducing a new colour C by which we label
all neighbours of v and then eliminating v from G. By construction, G2 ∈
L(λ,µ− 1). Furthermore, it is an easy exercise to translate first-order formulas
ϕ over G to formulas ϕ′ over G2 such that G |= ϕ if, and only if, G2 |= ϕ ′.
Hence, the q-type of G′ = G⊕v1 H1 ⊕v2 · · · ⊕vm Hm can be recovered from
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the q-type of G′2 = G2 ⊕v1 H1 ⊕v2 · · · ⊕vm Hm, and the latter is computable
by the induction hypothesis. �

The previous two lemmas are the main ingredients for the proof of the
following theorem.

Theorem 5.7.14 (Flum, Grohe [45]) Let C be a class of graphs excluding at
least one minor. Then the following problem is fixed-parameter tractable.

MC(FO, C)
Input: G ∈ C, ϕ ∈ FO.

Parameter: |ϕ|.
Problem: Decide G |= ϕ.

Proof. Let G and ϕ be given and let q be the quantifier-rank of ϕ. Using The-
orem 5.5.16, we first compute a tree-decomposition (T , γ ) of G over L(λ,µ),
for some λ,µ. We view T as a directed tree with root r .

For each t ∈ V (T ), t �= r , with parent s ∈ V (T ), let vt := Bt ∩ Bs . Recall
that in the torsi of Bt and Bs , vt induces a clique. For the root r we define vr as
the empty tuple. Furthermore, for each t ∈ V (T ) letTt be the subtree ofT rooted
at t and let Bt :=⋃

s∈V (Tt ) Bs . Finally, for t ∈ V (T ) let Gt := G
[
Bt
] ∪K[vt ].

Note that for all t ∈ V (T ), vt ≤ k, where k := λ+ µ, as vt induces a clique in
the torso [Bt ] of Bt . As [Bt ] ∈ L(λ,µ) and graphs in L(λ,µ) cannot contain
a clique of order > λ+ µ we obtain |vt | ≤ k. Hence, as λ,µ only depend on
the excluded minor of C and therefore are fixed, we obtain a fixed upper bound
for the size of vt , t ∈ V (T ).

To decide G |= ϕ, we aim at computing the type tpq (G, vr ). We can then
simply check whether ϕ ∈ tpq (G, vr ). Towards this aim, starting at the leaves
and proceeding bottom-up, we apply Lemma 5.7.13 at each node to compute
the type tpq(Gt, vt ). �

The previous theorem shows that for every fixed graphH , first-order model-
checking is fixed-parameter tractable, with parameter |ϕ|, on every class of
graphs excluding H . However, the algorithm as described above is not fixed-
parameter tractable in the parameter |H | + |ϕ| as we use a non-constructive
approach in Lemma 5.7.13 and also the algorithm described in [29] seems to
use the minor H in an inappropriate way for parameterized complexity.

We therefore turn to a different parametrization of the problem, where we
take the parameter to be |ϕ| + |H |. This problem was studied by Dawar, Grohe
and Kreutzer in [21]. The approach taken there is similar to the method outlined
above. However, instead of using tree-decompositions over L(λ,µ), [21] uses
a slightly weaker form of decompositions, called weak decompositions over
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L(λ,µ). The main result in [21] is that for everyH , every graph excludingH has
a weak decomposition over someL(λ,µ) (which is relatively straightforward to
show) and that these decompositions can be computed by an fpt-algorithm with
parameterH (which requires considerably more work). Once this is shown, the
proof method outlined above can be adapted to weak decompositions yielding
the following result.

Theorem 5.7.15 (Dawar, Grohe, Kreutzer [21]) The following problem is
fixed-parameter tractable.

p-MC(FO)
Input: G,H such that H �� G, ϕ ∈ FO.

Parameter: |ϕ| + |H |.
Problem: Decide G |= ϕ.

An immediate consequence of the theorem is the following. Recall from
Section 5.7.3 the definition of the minimum excluded clique number mec(G) of
a graph G and of locally excluded minors. For any function f : N → N let Cf
be the class of graphs G such that mec(G) ≤ f (|G|).

Corollary 5.7.16 There is an unbounded function f : N → N such that
MC(FO, Cf ) is fixed-parameter tractable.

Another consequence of the theorem is that it allows us to apply the frame-
work of localisation as developed in Section 5.7.3 to obtain the following
result.

Corollary 5.7.17 Let C be a class of graphs locally excluding a minor. Then
the problem

MC(FO, C)
Input: G ∈ C, ϕ ∈ FO.

Parameter: |ϕ|.
Problem: Decide G |= ϕ.

is fixed-parameter tractable.

The previous result has a number of algorithmic applications.

Corollary 5.7.18 1. The following problem is fixed-parameter tractable.
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p-Dominating Set
Input: Given graphs G,H such that H �� G and k ∈ N.

Parameter: k + |H |.
Problem: Decide whether G contains a dominating set of

size ≤ k.

Analogous results hold for all other first-order definable parameterized
problems, such as Independent Set and Clique and also for problems
such as deciding for a fixed graphG′ whetherG′ has a homomorphism into
G, or G′ is an (induced) subgraph of G, where here the parameter can be
taken to be |H | + |G′|.

2. Let C be a class of graphs locally excluding a minor. Then problem such
as Dominating Set, Independent Set etc. are fixed-parameter tractable
on C. Furthermore, the problem, given graphs H and G such that G ∈ C,
to decide whether H is homomorphic to G or H is an (induced) subgraph
of G can be decided by fpt algorithms with parameter |H |.

5.8 Characterising Logical Complexity
under Structural Restrictions

The results presented in the previous sections have focussed primarily on meth-
ods to establish tractability results of logics on special classes of structures.
The aim was to exhibit more and more general classes of structures on which
first-order or monadic second-order model-checking becomes tractable. As we
have seen in Section 5.2.4, first-order model checking is not fixed-parameter
tractable in general (unless FPT = AW[∗]) and hence somewhere there must
be a tractability border for the model-checking problem of these logics. Pre-
vious research has mostly approached this border from below by establishing
tractability results. Quite as important is to establish intractability results, i.e.
to approach this tractability border from above. This has so far been studied
much less in the literature and the aim of this section is to survey some of the
results that have been obtained in this direction.

5.8.1 Classifying Logical Tractability with Respect to
Structural Restrictions

In the previous sections we have seen various examples for classes of graphs or
structures on which model-checking for first- or monadic second-order logic
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becomes tractable. The picture described there (and illustrated in Figure 5.18
below) is as yet far from being complete and in particular it is not known
whether any of the tractability results are actually strict. Surprisingly, not even
for Courcelle’s celebrated theorem it is known whether it can be extended to
classes of unbounded tree width.

We therefore propose a research program which aims at providing a refined
analysis of the complexity of logical formula evaluation with respect to specific
classes of structures. More precisely, for the most commonly used logics we
aim at identifying a property that precisely captures tractability of the logic in
the sense that the logic is tractable on a class of structures if, and only if, the
class has this particular property.

Such a classification would give completely new insights into the complexity
of the logics and would provide researchers designing new query or specifica-
tion languages based on these logics with valuable information for designing
languages tailored towards their specific application areas.

It may not always be possible to find such a property that excactly charac-
terises tractability of a logic within all classes of structures and possibly we will
need to further restrict the admissible classes of structures, such as to classes
closed under substructures. For instance, for first-order logic we conjecture that
model-checking of FO on a class of structures closed under substructures is
tractable if, and only if, the class is nowhere dense (see below).

There are two different, and somewhat complementary aspects to the results
we envisage. The first aspect are tractability results as we have presented them
in the previous sections. The other aspect are intractability results where we
show that evaluation of formulas is hard whenever a class of structures does
not have a particular property. In this context, this aspect has virtually not
been studied in the literature before. We will present some recent and new
intractability results in the following subsections.

5.8.2 Limits to Monadic Second-Order Model-Checking

Recall Courcelle’s theorem (see Theorem 5.3.29 and Corollary 5.3.31) which
states that MSO2-model checking is fixed-parameter tractable on every class
of structures of bounded tree-width. We will see in this section that in this
generality, Courcelle’s theorem can not be extended much beyond bounded
tree-width.

The following result by Garey, Johnson and Stockmeyer and the fact that
3-colourability is MSO-definable immediately imply that MSO-model checking
is not fixed-parameter tractable on the class of planar graphs.
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Theorem 5.8.1 (Garey, Johnson, Stockmeyer [49]) 3-colourability is NP-com-
plete on the class of planar graphs of degree at most 4.

However, the class of planar graphs is a very specific class and this result
does not rule out that Courcelle’s theorem could possibly be extended to classes
of unbounded but slowly growing tree-width. To show intractability results for
MSO2-model checking on classes of graphs of unbounded tree-width we first
need to classify the degree of “unboundedness”.

Definition 5.8.2 Let f : N → N be a non-decreasing function. A class C of
graphs has f -bounded tree width if tw(G) ≤ f (|G|) for all G ∈ C.

Hence, Courcelle’s theorem applies to f -bounded classes of graphs for
constant functions f . We will particularly be interested in classes of graphs
whose tree width grows logarithmically in the size of the graphs and aim at
proving that if the tree widthC is not bounded logarithmically then MSO2 model-
checking is not tractable on C. A first step towards this direction appeared in
[59, 60] where such a result was proved for classes of coloured graphs which
we define next.

Let � := {B1, . . . , Bk, C1, . . . , Cl} be a set of colours, where the Bi are
colours of edges and the Ci are colours of vertices. A �-coloured graph, or
simply �-graph, is an undirected graph G where edges may be coloured by
B1, . . . , Bk and vertices may be coloured by C1, . . . , Ck . We do not require
any additional conditions such as edges having endpoints coloured in different
ways, i.e. we do not require the colouring to be proper in the graph theoretical
sense. To obtain logical structures, we let σ := {E,B1, . . . , Bk, C1, . . . , Cl}
be the signature containing binary relations E,B1, . . . , Bk for edges and their
colours and unary relations C1, . . . , Cl for vertex colours.

Definition 5.8.3 A class C of�-graphs is said to be closed under�-colourings
if wheneverG ∈ C andG′ is obtained fromG by recolouring, i.e. the underlying
un-colored graphs are isomorphic, then G′ ∈ C.

A class C of σ -structures is closed under colourings if there is a class
C′ of (uncoloured) graphs such that C is the class of all σ -structures whose
Gaifman-graphs are in C ′.

We aim at showing that if C is a class of graphs closed under colourings
whose tree width is not bounded by a log-function then MSO2-model checking
is fixed-parameter intractable on C. The proof of this result relies on a reduction
from an NP-complete problem to MC(MSO2, C) and for this to work it is not
enough for the tree-width of C not to be bounded by a log-function f : N → N,
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we must also be able to compute witnesses for this large tree-width efficiently.
This leads to the following definition of effectively unbounded tree-width.

Definition 5.8.4 The tree-width of a class C of graphs is effectively unbounded
by a function f : N → N if there is a polynomial p(x) such that for all n

1. there is a graph G ∈ C of tree-width between n and p(n) whose tree-width
is not bounded by f (|G|) and

2. given n, Gn can be constructed in time 2n
ε

, for some ε < 1.

The tree-width of C is effectively unbounded poly-logarithmically if it is effec-
tively unbounded by logc n, for all c.

We will particularly be interested in classes effectively unbounded by a
function f (n) := logc n for some small constant c. For such a function the
second condition just says that we can compute witnesses for the high tree-
width of C in time polynomial in their size, which is what we need for the
reduction of an NP-complete problem to work. The first condition says that
there are enough witnesses for the large tree-width of C so that there are actually
enough graphs to reduce the problem to. The following result was proved in
[60] (see also [59]).

Theorem 5.8.5 Let � be a non-empty set of colours including at least one
edge and two vertex colours. Let C be any class of 
-coloured graphs closed
under colourings.

1. If the tree-width of C is effectively unbounded poly-logarithmically then
MC(MSO, C) is not in XP, and hence in particular not fixed-parameter
tractable, unless all problems in NP (in fact, all problems in the polynomial-
time hierarchy) can be solved in sub-exponential time.

2. If the tree-width of C is effectively unbounded by log48 n then MC(MSO, C)
is not in XP unless Sat can be solved in sub-exponential time.

The theorem together with Courcelle’s theorem has the following corollary,
as in the classes Cf colours can easily be replaced by suitable gadgets. Note,
however, that the corollary also has a much simpler direct proof.

Corollary 5.8.6 For any non-decreasing function f : N → N let

Cf := {G : tw(G) ≤ f (|G|)}.
1. If f (n) > log48 n for all n greater than some n0 ∈ N, then MC(MSO2,

Cf ) �∈ XP unless SAT can be solved in sub-exponential time.
2. If f is constant, then MC(MSO2, Cf ) ∈ FPT.
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Theorem 5.8.5 gives a classification of tractability of MSO2 on classes of
coloured graphs. The restriction to coloured graphs is somewhat artificial as
coloured graphs do not naturally occur very often. It does show, however, that
Courcelle’s theorem cannot be extended in full generality beyond logarithmic
tree-width.

A much more natural result would be if closure under colours could be
replaced by closure under subgraphs. I believe this is possible but it will require
much more involved algorithmic techniques.

5.8.3 Limits to First-Order Model-Checking

In this section we will summarise some intractability results for first-order
logic. As before, ideally we would like to completely classify the classes C of
structures into those where MC(FO, C) is FPT and where it is not. However,
with the graph structure properties studied so far, it is unlikely that we can
fully explore tractability for first-order model-checking as FO-model-checking
is preserved under interpretations whereas properties such as excluding a minor
or bounded tree-width are not.

Lemma 5.8.7 If C is a class of graphs such that MC(FO, C) is fixed-parameter
tractable and D is a class of graphs first-order interpretable in C as described
in Section 5.2.3, then first-order model-checking is fixed-parameter tractable
on D.

Corollary 5.8.8 If MC(FO, C) is fixed-parameter tractable then so is
MC(FO,D) for the class D := {G := (V, V 2 \ E) : (V,E) ∈ C} of graphs
whose complements are in C.

Hence, if there is a graph property that precisely describes when FO model-
checking is tractable, it has to be closed under edge-complementation or more
generally under first-order interpretations. Note that the analogous result does
not hold for MSO2, as in general MSO2 formulas on a graph cannot be rewritten
to work on the complement graph instead.

In addition to studying further classes of graphs obtained from graph invari-
ants it may therefore be beneficial to consider constructions that allow us to
construct new classes C of graphs with tractable model-checking from other,
known classes of graphs. For instance, one could try to generalise the construc-
tions using tree-decompositions over classes of graphs. It is easily seen that
if C is a class of graphs for which the appropriate version of Lemma 5.7.13
holds, then first-order model-checking is also tractable on the class of graphs
that can efficiently be tree-decomposed over C. We refrain from giving a formal
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definition of this as, so far, its only application seems to be Theorem 5.7.14.
Tree-decompositions are a special case where Feferman-Vaught style theorems
can be applied. It may be worthwhile to consider further constructions that
allow us to define new tractable model-checking intances from the classes we
already know.

The previous lemma also has interesting consequences in its negative form,
that is, it can be used to show intractability results as demonstrated in the next
lemma.

Lemma 5.8.9 For k ∈ N let ADk be the class of graphs of maximum average
degree at most k, where the maximum average degree of a graphG is the max-
imum of the average degrees of all subgraphs of G. For k ≥ 4, MC(FO,ADk)
is AW[∗]-hard, i.e. fixed-parameter intractable.

Proof. Recall from Section 5.2.4 that MC(FO,Graph), the model-check-
ing problem for FO on the class of all finite graphs, is AW[∗]-complete.
Further, FO model-checking on the class of all graphs G can easily be
reduced to FO model-checking on the class of incidence graphs I (G). As
incidence graphs have maximum average degree at most 4, the result follows
immediately. �

Hence, graph classes of bounded maximum average degree provide a first
non-trivial upper bound for parameterized tractability of FO model-checking.

Towards another graph property that may yield fixed-parameter algorithms
for first-order logic, consider again the proof of the previous lemma. Essentially,
given a graph G we subdivide every edge once to obtain the incidence graph.
For first-order logic, this does not pose much of a problem as we can easily
rewrite the formula to deal with the subdivision. Similarly, if we replace every
edge by a path of length k, i.e. subdivide a bounded number of times, then again
we obtain small maximum average degree but we can easily rewrite first-order
formulas to deal with these paths of fixed length.

Note that this essentially means that we replace every vertex by a graph
of fixed radius, e.g. in the case of k = 3 we replace every vertex by a star.
Hence, if we are interested in paramaterized tractability, then we should
require our graphs to have bounded maximum average degree even after
we contract neighbourhoods of a fixed radius. This idea is formalised in the
notion of bounded expansion introduced by Nešetřil and Ossona de Mendez in
[65, 66, 67].

An even more general concept of graphs is the concept of graph classes
which are nowhere dense, introduced by Nešetřil and Ossona de Mendez in
[68].
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We say that H is a minor at depth r of G (and write H �r G) if H is a
minor of G and this is witnessed by a minor map µ of H into G so that every
vertex v ∈ V (H ) is mapped to a subgraph µ(v) ⊆ G which induces a graph of
radius at most r . That is, for each v ∈ V (H ), there is a w ∈ V (µ(v)) such that
µ(v) ⊆ N

µ(v)
r (w).

Definition 5.8.10 ([68]) A class of graphs C is said to be nowhere dense if for
every r ≥ 0 there is a graph Hr such that Hr ��r G for all G ∈ C.

Conversely, if a class C of graphs is not nowhere dense then there is a
radius r such that every graph H is a depth r minor of some graph GH ∈ C.
If, furthermore, C is closed under taking subgraphs, then the depth-d image
IH of H in GH is itself a graph in C. Note that the size of IH is polynomially
bounded in H (for fixed r). Classes which are not nowhere dense are called
somewhere dense in [68]. Let us call a class effectively somewhere dense if,
given a graph H , a depth-d image IH ∈ C of H in a graph GH ∈ C can be
computed in polynomial time.

As the following theorem shows, in terms of sparse classes of graphs,
nowhere dense classes are the natural border for tractability of first-order logic.

Theorem 5.8.11 If C is effectively somewhere dense and closed under taking
subgraphs, then MC(FO, C) is not fixed-parameter tractable unless FPT =
AW[∗].

The proof relies on the fact that we can interpret the class of all graphs in
any effectively somewhere dense class of graphs which is closed under sub-
graphs, as every graph occurs as a depth d minor of a member of C and
the depth-d image of this is itself a graph in C. Sub-divisions of a fixed
length can be defined in first-order logic and hence model checking for first-
order logic on the class of all graphs can be reduced to FO-model-checking
on any effectively somewhere dense class of graphs which is closed under
subgraphs.

Furthermore, it seems likely that on every nowhere dense class of graphs,
first-order model checking is fixed-parameter tractable.

Conjecture 5.8.12 If C is nowhere dense then MC(FO, C) ∈ FPT.

If this conjecture could be proved then on subgraph closed classes of graphs,
the property of being nowhere dense would exactly characterise the tractable
cases.
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Nešeťril,
de Mendez [68]

Figure 5.18 Summary of results

5.9 Conclusion

This paper gives an overview of algorithmic meta-theorems developed in recent
years. See Figure 5.18 for a diagrammatic summary of the results presented in
this paper.

As we have seen, first-order model-checking is fixed-parameter tractable
on a wide range of graph classes defined by standard graph invariants such as
tree-width or excluded minors. By localising these invariants we obtained even
further tractable classes. However, we are still very far from a clear picture
of where first-order model-checking is tractable and where it is not. Further
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research, in particular into intractability results is needed before we can hope
for a clean and smooth theory.
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[51] E. Grädel, C. Hirsch, and M. Otto. Back and forth between guarded and modal
logics. ACM Transactions on Computational Logics, 3(3):418–463, 2002.

[52] M. Grohe. Local tree-width, excluded minors, and approximation algorithms.
Combinatorica, 23(4):613–632, 2003.

[53] M. Grohe. Logic, graphs, and algorithms. In T.Wilke J.Flum, E.Grädel, editor,
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model theory as well as the model theory of other natural non-elementary
classes of structures. We stress the modularity and compositionality of
the games as a key ingredient in the exploration of the expressive power
of logics over specific classes of structures. The leading model theo-
retic theme is expressive completeness – or the characterisation of frag-
ments of first-order logic as expressively complete over some class of
(finite) structures for first-order properties with some prescribed semantic
preservation behaviour. In contrast with classical expressive complete-
ness arguments, the emphasis here is on explicit model constructions and
transformations, which are guided by the game analysis of both first-order
logic and of the imposed semantic constraints.

keywords: finite model theory, model theoretic games, bisimulation, modal

and guarded logic, expressive completeness, preservation and characterisation

theorems

6.1 Introduction

6.1.1 Expressiveness over restricted classes of structures

The purpose of this survey is to highlight game-oriented methods and explicit
model constructions for the analysis of fragments of first-order logic, in par-
ticular in restriction to non-elementary classes of structures. The following is
meant to highlight and preview some key points in terms of both the material
to be covered and the perspective that we want to adopt in its presentation. All
these points will be addressed in a more self-contained manner in the technical
sections; an outline of the structure of the technical sections concludes this
preview.

Varying the class of structures The class of all finite structures is one
prominent non-elementary class of interest, but recent developments in finite
model theory have broadened the perspective. While the first tier of results
in finite model theory, which set the stage and clarified much of the specifics
of finite model theory, brought predominantly negative results (‘failures’ in
comparison to classical model theory, the first and foremost being the ‘failure
of compactness’ in finite model theory), a much more positive picture has
emerged with a focus on specific classes of well-behaved finite structures
rather than the class of all finite structures (cf. Weinstein’s tame fragments and
tame classes [51]). What good behaviour means for classes of structures, may
of course depend on the model theoretic issue at hand. Nevertheless, there are
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some interesting recurring themes, revolving around tree-likeness on the one
side and locality criteria on the other side, in delineating well-behaved classes
of (finite) structures.

Expressiveness and expressive completeness Our leading model theoretic
theme in terms of results is that of expressive completeness. We regard expres-
sive completeness results as classical hallmarks in the study of expressiveness
of fragments of first-order logic. Think of a classical example like the Łos–
Tarski existential preservation theorem (cf. Theorem 6.5.2) that a first-order
formula is preserved under extensions if, and only if, it is logically equiva-
lent to an existential formula. The preservation claim in this statement – that
existential formulae are preserved under extensions – is a trivial exercise in syn-
tactic induction, and its truth carries over to any restricted class of structures.
The expressive completeness statement – that within first-order, the existential
fragment is expressively complete for properties preserved under extensions –
requires real model theoretic proof. The classical proof in [11] uses elementary
extensions, whose availability hinges on the use of the compactness theorem for
first-order logic. So that proof does not relativise to arbitrary restricted classes,
and in fact the relativisation to the class of all finite structures is a typical
example of a ‘failure in finite model theory’ (due to Tait and Gurevich, see for
instance [15]). Preservation of a first-order property under extensions among
finite structures does not imply expressibility in existential first-order logic
over finite structures. Some instances of classical preservation theorems, like
Łos–Tarski, fail in restriction to the class of all finite structures, but are true –
with totally new proofs – in interesting restricted classes of finite structures (cf.
Theorem 6.5.9 for results pertaining to extension preservation, from [3]). Other
instances, like van Benthem’s theorem concerning preservation under bisim-
ulation (cf. Corollary 6.3.5), or, more classically, the Lyndon–Tarski theorem
(cf. Theorem 6.5.3), which associates preservation under homomorphisms with
the existential positive fragment, do have literal analogues in restriction to the
class of all finite structures as well as to some other restricted classes of struc-
tures of interest (cf. sections 6.3.2 and 6.5.2) – with new proofs that do not draw
on the classical proofs but shed interesting new light on the classical results as
well. And in some few instances we know of expressive completeness results
over restricted classes of (finite) structures that require more expressive frag-
ments than the classical analogue; a recent example concerning bisimulation
preservation is discussed in section 6.3.2.

Explicit model constructions and transformations Compactness, and with
it many of the typical model constructions prevalent in classical expressive
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completeness results, are typically not available over the restricted classes of
structures under consideration. Where expressive completeness results can be
obtained over non-elementary classes, the methods are very different from the
classical ones. The technical crux of many expressive completeness results,
classical or otherwise, consists in an upgrading of transfer or equivalence rela-
tions between structures. For instance, in the case of preservation under some
equivalence relation 	 like bisimulation associated with expressibility in the
fragment L: here preservation under 	 must be linked to preservation under
finitary approximations 	� to L-equivalence, finitary in the sense of finite
index and in the sense that its classes are L-definable (think of approximations
parameterised, e.g., by quantifier rank �). As these finitary approximations 	�

are rougher than full 	, the task of showing that every first-order property ϕ
preserved under 	 is even preserved under some 	�, involves model theo-
retic transformations that allow us to boost 	� either to 	 or to some other
equivalence under which ϕ is preserved (e.g., on account of being first-order of
a certain quantifier rank). The classical treatment of the Łos–Tarski theorem,
for instance, can similarly be viewed as an upgrading of a transfer relationship
A⇒∃ B (existential sentences true in A are also true in B), or of its finitary
approximations, to a substructure relationship between elementarily equiva-
lent companion structures of A and B. (In this case, B admits an elementary
extension that embeds A as a substructure, by compactness.) It follows that
any first-order ϕ preserved under extensions is preserved under ⇒∃, and – by
another compactness argument – therefore also under some finite quantifier
rank approximation⇒�

∃ to⇒∃.
As will be discussed in section 6.3.2, such upgrading arguments tend to

proceed in orthogonal directions of entirely different character, depending on
whether they are based on classical compactness arguments (often involving
elementary chains and saturation) or on explicit and finitary model transforma-
tions, which may also be carried out within some restricted, non-elementary
class of structures like the class of just all finite structures. Explicit model con-
structions and transformations can thus sometimes replace the sweeping clas-
sical compactness arguments that guarantee the existence of nice and smooth
(but typically infinite) representatives of the structures at hand, in which crucial
technicalities (e.g., back-and-forth arguments) can be dealt with more elegantly.
But there is also something to be gained, even from the classical point of view,
from the more explicit, more controlled and more constructive nature of the
alternative model transformations: in key examples of expressive completeness
results to be discussed below, for instance, bounds on the quantifier rank of the
target formulae are an integral part of the proofs based on explicit model con-
structions and transformations. In this sense, the alternative approach, which is
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necessitated by the loss of compactness in finite model theory, can offer a new
perspective and sometimes extra information on classical results.

Model theoretic games The equivalences and transfer relations between
structures underlying semantic preservation properties on the one hand, and
logical equivalences or transfer relations induced by fragments of first-order
logic on the other hand, are closely linked to model theoretic games or back-
and-forth systems. As pointed out above, upgrading arguments between these
equivalences and suitable finitary approximations, which are themselves nat-
urally cast as game equivalences, play a crucial role in expressive complete-
ness proofs. The methodological importance of model theoretic games, both
to understand the semantics and expressive power of logics and to guide the
desired explicit model constructions or transformations (over restricted classes
of structures), is being put at the centre of this presentation. We shall here
especially discuss variants of the classical Ehrenfeucht–Fraı̈ssé game and the
first-order model checking game for several fragments of first-order logic.
A prominent place among these variants is given to the modal Ehrenfeucht–
Fraı̈ssé game, or bisimulation game. In section 6.3, bisimulation games and
model transformations that respect bisimulation feature prominently in the
discussion of expressive completeness results for modal logics over various
classes of Kripke structures. Also locality of first-order logic in the sense of
Gaifman’s theorem (cf. Theorem 6.2.13) is presented in terms of the modular-
ity of the first-order Ehrenfeucht–Fraı̈ssé game w.r.t. locality in the Gaifman
graph. Locality-based approximations to first-order equivalence also play a
role in some of the expressive completeness results for modal logics, or in the
upgrading between approximate levels of bisimulation and first-order equiva-
lence. Structurally, the concept of locality will also be important in connection
with classes of structures defined in terms of wideness criteria in section 6.5.

Bisimulation as the game of games Putting games – model checking games
that define the semantics of a logic and Ehrenfeucht–Fraı̈ssé model comparison
games – at the centre of the analysis of fragments of first-order logic, it becomes
very natural to adopt a modal perspective [9, 10] and to relate other fragments
and their games to the bisimulation game. We thus draw on bisimulation games
and bisimulation equivalence not just in the study of modal fragments but
also on its role as an equivalence between game graphs that encapsulate the
semantics of other fragments. The connection is made by looking at the natural
game graphs associated with model checking games or Ehrenfeucht–Fraı̈ssé
games as Kripke structures. The elements of these Kripke structures are formed
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by the observable configurations in the underlying structures, their accessibility
relations reflect the transitions between game positions, which in turn reflect
the available quantification patterns of the fragment at hand. For the modal
fragment itself, the structure (Kripke structure, transition system) is its own
game graph, in which the elements can be navigated along the edges (of the
given accessibility or transition relation). Richer fragments have access to more
complex types of configurations within structures and possibly more complex
rules for navigation between configurations. For instance, in the k-variable
fragment FOk ⊆ FO we deal with arbitrary configurations consisting of up to k
elements, while in the guarded fragment GF ⊆ FO the configurations need to
be covered by some relational ground atom. This view may not directly offer
new technical insights, but has the advantage of making explicit a unifying and,
I think, intuitive framework whose specialisations to individual fragments are
of course very well understood.

Structure of the paper The overall structure of the paper is as follows. In
section 6.2 we review model checking and model comparison games for FO
and some of its fragments from a modal perspective; we also discuss Gaifman
locality in relation to the FO Ehrenfeucht–Fraı̈ssé game. Section 6.3 deals
with expressive completeness issues for modal logics over specific classes of
transition systems. The extension of the concept of bisimulation from graphs to
hypergraphs, its relationship with the guarded fragment and a connection with
extension properties for partial automorphisms is discussed in section 6.4. In
section 6.5 we turn to locality based techniques for special classes of relational
structures, and to expressive completeness for preservation under extensions
and homomorphisms.

Sections 6.2 and 6.3 are meant to be fairly expository, and may serve either
as a brief introduction to the fragments and methods discussed, or as an invi-
tation to re-discover some rather familiar concepts in a slightly different light.
Sections 6.4 and 6.5 are more technical and also less self-contained. To a large
extent they may, on the other hand, also be considered independently of the
first part. The intention is to give at least some high-level account of some more
recent results and developments in the framework of this survey.

6.1.2 Basic terminology and notational conventions

Structures and assignments Throughout we only consider relational struc-
tures. Typically τ will be a finite relational signature, and we refer to the
maximal arity of relations in τ as its width. A τ -structure with universe A will
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usually be denoted as A = (A, (RA)R∈τ ), but we often omit superscripts where
the structure is clear from context.

Within a τ -structure A, we look at (partial) assignments (to an offi-
cial set of first-order variables x1, x2, . . .), described by partial functions
β : (xi) → A. Assignments to finite tuples of variables are often regarded as
momentarily fixed parameter tuples, like a = (a1, . . . , ak) ∈ Ak as an assign-
ment β : (xi �→ ai)i=1,...,k . Such (finite) assignments will also play a role
in games as configurations (tuples of marked elements) within a structure,
often directly associated also with the substructure induced on the subset
[a] := {a1, . . . , ak} ⊆ A. Because we do not want to clutter terminology with
a fine distinction between tuples and assignments, we also think of assign-
ments (which officially are assignments to variables xi) as partial functions
β : i �→ β(i) over a domain of positive natural numbers. Notation for modifi-
cations of assignments is as in β a

i
, for the assignment obtained by changing

(or extending) β at i (at xi) to take the value a. For the semantics of formulae
ϕ(x) with free variables among those listed in the tuple x, notations A, a |= ϕ,
A |= ϕ[a], and A, β |= ϕ are used interchangeably, if β is an assignment to (at
least) the free variables of ϕ and assigns a to x.

Among important specific types of structures we mention the following to
clarify terminology. Other more specific classes of structures will be introduced
at appropriate places.

Directed and undirected graphs are structures over relational vocabularies of
width 2, i.e., we admit several binary relations (edge-labelled directed graphs)
and unary predicates (vertex colours). More traditional plain directed graphs
are a special case, with just a single binary edge relation. We also view directed
edge-labelled and vertex-coloured graphs as transition systems, with several
transition relations and atomic state predicates. Such transition systems are just
a terminological variant of Kripke structures, as the structures for modal logics.
Undirected graphs are graphs with a single edge relation that is symmetric and
irreflexive, viewed as a special case of directed graphs.

A (directed) tree is a directed graph that has a root w.r.t. the union of its binary
relations such that every other element is reachable on a unique edge-labelled
directed path from this node. Note that this implies irreflexivity (no loops),
antisymmetry (no edges in opposite directions, not even with different labels)
and that there are no multiple edges (with different labels). More generally, a
directed graph or transition system is called simple if it has no loops and no
multiple edges (not even in opposite directions).1

1 In section 6.3.2 we also discuss transitive tree structures, which are trees in the partial order
sense, not in the graph sense, but that will be highlighted there.
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Hypergraphs, which are at the centre of section 6.4, are not regarded as rela-
tional structures but as second-order structures of the format H = (A, S) with
a universe A and a subset of the power set S ⊆ P(A) as the set of hyperedges.
We shall encounter hypergraphs as auxiliary combinatorial structure, induced
by relational structures, but will not look at logics over hypergraphs.

Gaifman graph and distance With any structure in a finite relational vocab-
ulary τ we associate an undirected graph, its Gaifman graph.

Definition 6.1.1 The Gaifman graph of the τ -structure A is the undirected
graphG(A) = (A,EG(A)) with the same universeA and an edge (a, b) ∈ EG(A)

for a �= b if a and b occur together in some tuple within some relation RA,
R ∈ τ .

The associated notion of Gaifman distance is just ordinary graph distance
(minimal length of a connecting path, or infinity) between elements in G(A).
We denote this distance as d(· , ·). Finite distance relations like d(x, y) � k are
clearly FO-definable in A. In graphs (τ finite and of width 2), d(x, y) � 1 is
quantifier free definable, while in general the required quantifier rank is the
width of τ minus 2. An easy induction shows that d(x, y) � 2q is definable by
a first-order formula ϕ(x, y) for any finite τ .

Definition 6.1.2 The Gaifman neighbourhood of radius �, or �-
neighbourhood for short, of an element a in A is the subset N�(a) =
{b ∈ A : d(a, b) � �} ⊆ A. By extension, the �-neighbourhood of a tuple
a = (a1, . . . , ak) in A is the union of the N�(ai).

A subset (or tuple) in A is �-scattered if its elements (or components) have
pairwise distance greater than 2� (i.e., if their �-neighbourhoods are disjoint).

By the above considerations, �-neighbourhoods of tuples, or the property of
a tuple to be �-scattered, are all first-order definable, for every � ∈ N and for
any fixed finite τ .

A relational structure is called acyclic if its Gaifman graph is acyclic; for
directed graphs as relational structures, this is different from the usual notion
which only forbids directed cycles.

A directed graph or transition system is �-acyclic if its Gaifman graph is
acyclic in every �-neighbourhood (this rules out undirected cycles of lengths
up to 2�+ 1).

Logics We write FO for first-order logic, or more specifically FO[τ ] for the
set of first-order formulae over vocabulary τ . The set of free variables of a
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first-order formula ϕ is denoted free(ϕ). Notation as in ϕ = ϕ(x) indicates that
free(ϕ) ⊆ [x] (the set of variables listed as components of the tuple x).

Quantifier-rank is defined as usual for first-order formulae, and denoted
qr(ϕ). Atomic and quantifier-free types of tuples a in a τ -structure A provide full
descriptions of a at the quantifier-free level. Formally we may define the atomic
type of a (in a matching tuple of variables, so that β : x �→ a is appropriate
as an assignment) as the set of all atomic and negated atomic formulae α(x)
in variables x for which A |= α[a]. It is clear that the correspondingly defined
quantifier-free type is fully determined by the atomic type, and that both can be
summarised by a single quantifier-free formula in case τ is finite. The atomic
or quantifier-free type of a in A fully determines the isomorphism type of A�[a]
(of configuration a in A).

FOk stands for the k-variable fragment of FO, which uses only the variable
symbols x1, . . . , xk . The finite variable fragments have played a very prominent
role in the development of finite model theory as witnessed for instance in
[15, 33]; we shall not focus on these fragments very much here, but treat the
associated k-pebble games as a typical and natural example in the exposition
of section 6.2.

Apart from fragments of FO, we occasionally look at its infinitary extension
FO∞ (classically denoted L∞ω), which extends the syntactic framework of FO
by allowing disjunctions and conjunctions over arbitrary sets of formulae. Con-
nectedness of graphs, for instance, becomes definable in FO∞ with the use of
an infinite disjunction to express “d(x, y) <∞” as “

∨{d(x, y) � n : n ∈ ω}”.
Formulae in FO∞ have ordinal quantifier rank, defined by the usual inductive
clauses extended by taking suprema for infinite disjunctions or conjunctions.
The quantifier-rank of the formula “d(x, y) <∞” would thus be ω, that of
the natural sentence defining connectivity ω + 2. Similar infinitary extensions
naturally arise, e.g., for the modal fragment to be discussed next.

Basic modal logic is denoted ML, or ML[τ ] for a given vocabulary of width 2
appropriate for transition systems (Kripke structures). We typically use a τ with
binary transition relationsEα (regarding the indices α as edge labels) and unary
predicates Pj (associated to atomic state properties or atomic propositions pj ).
The formulae of ML[τ ] are generated from the atomic propositionspj by means
of boolean connectives and modal quantifications with ♦α or �α . The defining
clause for the semantics of ϕ = ♦αψ , say at a state a in a τ -structure A, is

A, a |= ϕ iff A, b |= ψ for some b such that (a, b) ∈ EA
α ,

and dually for �αψ , which is equivalent to ¬♦α¬ψ . We also view ML[τ ] as a
fragment of FO[τ ], having only formulae in one free variable, via the standard
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translation that associates pj withPjx and ♦αψ with ∃y(Rαxy ∧ ψ(y)) so that,
dually, �αψ is associated with ∀y(Rαxy → ψ(y)). This is briefly reviewed in
connection with the model checking game for modal logic in section 6.2.3.

The extension of basic modal logic with modal quantification backward
alongEα (inverse modalities) is denoted ML

−
; the extension by a global modal-

ity, corresponding to the introduction of modal quantification associated with
the full binary relation, is denoted ML∀; the combined extension with both these
additions is ML

−∀. For background in connection with our treatment of modal
logics and much more material on the model theory of modal logics see in
particular [17].

The guarded fragment GF is defined to be a syntactic fragment of FO
consisting of formulae in which all quantifications are relativised as in

ϕ(x) = ∃y(α(x′) ∧ ψ(x′)), or
ϕ(x) = ∀y(α(x′) → ψ(x′)),

where α(x′) is an atomic τ -formula (a relational atom, or an equality: the
guard atom) such that free(ψ) ⊆ var(α) (and y is a sub-tuple of x′ such that
[x′] \ [y] ⊆ [x]).

The quantification pattern of guarded logic extends that of modal logic.
For a modal vocabulary τ , GF[τ ] properly contains (the standard first-order
translations of) ML[τ ] and even ML

−∀[τ ]. One motivation for the study of the
guarded fragment stems from the analogy with modal logic, and the exten-
sion of modal quantification patterns from Kripke structures to more general
relational structures. Guarded fragments were proposed in [2] with a view to
explaining the good algorithmic and model theoretic properties of modal logics
in a richer fragment of first-order logic and other than the 2-variable fragment
[23]; see [21]. In many ways the guarded fragment has been shown to be a
rather well-behaved intermediary between first-order and modal logic, in terms
of its model theoretic and algorithmic properties. For instance (like modal logic
and unlike FOk for k � 3), GF has the finite model property and is decidable:
the satisfiability problem for GF[τ ] is complete for deterministic exponential
time if τ is fixed (more precisely, for any fixed bound on the width of τ ), and
complete for doubly exponential time without this constraint [21]. Similarly to
the tree model property of modal logic (which is a consequence of bisimulation
invariance and the model transformation of tree unfolding, see in particular
section 6.3.1), GF has a generalised tree model property, which similarly stems
from invariance under guarded bisimulation and the availability of guarded tree
unfoldings. For these considerations we refer to the discussion in section 6.4.2,
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where we interpret these phenomena in the light of a generalisation of bisim-
ulations from graphs to hypergraphs. For further results concerning the model
theory of GF and some of its generalisations see [21, 31, 25, 24, 8, 32] among
many others.

The semantics of the above-mentioned fragments, though assumed familiar,
will be reviewed again in section 6.2.3 when we discuss the associated model
checking games. There we shall proceed in the order of increasing specialisa-
tion, from FO to FOk to GF to (variants of ) ML.

6.2 Model theoretic games and bisimulation

As mentioned above, we adopt a non-standard perspective of looking at first-
order logic (and some of its fragments) through modal eyes. Connections are
made through games, at two levels: at the level of model checking games,
which capture the semantics, and at the level of model comparison games,
which capture degrees of logical indistinguishability between structures.

No technical knowledge of model checking games and Ehrenfeucht-Fraı̈ssé
games is assumed. The reader who has some familiarity with model checking
games and the Ehrenfeucht-Fraı̈ssé technique for various fragments and exten-
sions of FO on the other hand, will recognise the familiar notions in a slightly
different perspective.

6.2.1 The semantic game: verifier vs. falsifier

We take a look at the first-order model checking game from a modal point
of view. We shall then want to present some fragments of first-order logic in
terms of restricted game boards; the same view will uniformly be applied to
the Ehrenfeucht–Fraı̈ssé model comparison games in the next section.

A transition system of observable configurations With the relational vocab-
ulary τ associate the vocabulary τ ∗ consisting of binary transition relations Ei
for i � 1 and unary predicates Pθ for atomic τ -types θ = θ (x) in finite tuples
of variables from (xi)i�1. With a τ -structure A associate the following τ ∗

transition system O(A) of observable configurations over A:

– the universe of O(A) is the set of partial assignments to variables (xi)i�1;

– Ei is interpreted as {(β, β a
i
) : a ∈ A} (modifications of assignments at xi);

– Pθ as the set of assignments β satisfying θ (in particular var(θ ) ⊆ dom(β)).
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In a straightforward manner one obtains a uniform translation from FO[τ ]
over A to ML[τ ∗] over the associated O(A). This translation,

FO[τ ] −→ ML[τ ∗]
ϕ(x) �−→ ϕ∗,

is such that for all β with free(ϕ) ⊆ dom(β):

A, β |= ϕ ⇔ O(A), β |= ϕ∗.

At the quantifier-free level, ϕ = ϕ(x) translates into

ϕ∗ :=
∨{

Pθ : ϕ ∈ θ, var(θ ) = var(ϕ)
}
;

the translation is compatible with boolean connectives; and existential quan-
tification translates into a modal diamond in a natural manner, as in

ϕ = ∃xiψ(x) �−→ ϕ∗ = ♦iψ∗.

Note that the modal vocabularies involved are a priori infinite; this can be
avoided if we restrict attention to the k-variable fragment FOk[τ ] for fixed k and
fixed finite relational vocabulary τ . In this case, there are only finitely many Pθ
corresponding to atomic τ -types in variables x = (x1, . . . , xk); we may restrict
attention to full assignments to all the variables {x1, . . . , xk}, which can be
identified with An; and we just retain k transition relations Ei for 1 � i � k.
Further natural restrictions to be discussed in section 6.2.3 lead to modal and
guarded logics.

The model checking game The idea to associate a two-person game with
the semantics of first-order logic goes back at least to Lorenz’ and Lorenzen’s
dialogue games [40, 41] between a proponent and an opponent of some asser-
tion. The current interest in these games stems not from foundational issues
but from their algorithmic content, or more precisely from their conceptual
strengths towards the design of efficient model checking algorithms, see, e.g.,
[22, 50].

With formulae ϕ and τ -structures A with partial assignments β we associate
a game played by two players, V (verifier) and F (falsifier) such that the
winning positions in the game determine whether or not A, β |= ϕ.

We present this basic and simple idea in a modular fashion that uses the
transition system of observable configurations as one constituent of the game
(representing the structure input to the model checking problem). The other
constituent is essentially the syntax tree of the formulae to be checked (repre-
senting the formula input to the model checking problem). For a transparent
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account of the algorithmic content of this game, and its complexity analysis,
compare [22].

Let � ⊆ FO[τ ] be a set of negation normal form formulae that is closed
under subformulae (negation normal form restricts the occurrence of nega-
tions to negated atoms). Let S(�) be the transition system whose universe
is �, with transition relations E∨, E∧, E∃xi and E∀xi (i � 1) interpreted as
follows.

E∨ contains the pairs (ϕ, ϕ1) and (ϕ, ϕ2) for ϕ = ϕ1 ∨ ϕ2 ∈ �; similarly for
E∧;
E∃xi consists of all pairs (ϕ,ψ) for ϕ = ∃xiψ ∈ �; similarly for E∀xi .

The game graph G := G(A,�) for the�model checking game over A may
then be interpreted in a subsystem of the product system

O(A)× S(�).

More specifically, the universe of G(A,�) is the set of all syntactically appropri-
ate assignment/formula pairs, {(β, ϕ) : free(ϕ) ⊆ dom(β)}. The relevant tran-
sition relations of G(A,�) are

in G(A,�) in O(A) in S(�)

E∨ := id × E∨ (disjunctive moves)
E∧ := id × E∧ (conjunctive moves)
Ei,∃ := Ei × E∃xi (existential moves)
Ei,∀ := Ei × E∀xi (universal moves)

As atomic predicates we use PV and PF , which partition the universe of
G(A,�) according to:

PG
F =

{
(β, ϕ) : ϕ = ϕ1 ∧ ϕ2 or ϕ = ∀xiψ

}
∪ {

(β, ϕ) : ϕ atomic or negated atomic, A, β |= ϕ
}
,

PG
V =

{
(β, ϕ) : ϕ = ϕ1 ∨ ϕ2 or ϕ = ∃xiψ

}
∪ {

(β, ϕ) : ϕ atomic or negated atomic, A, β �|= ϕ
}
.

The rules of the game are then simply the following, according to which the
players move a pebble in the game graph G:

– Positions in PV require a move by V :
V moves along any E∨- or Ei,∃-edge (as available in current position);
V loses when stuck for a move.

– Positions in PF require a move by F :
F moves along any E∧- or Ei,∀-edge (as available in current position);
F loses when stuck for a move.
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As formula complexity is strictly reduced in each move, all plays are finite.
Positions in which neither player can move are terminal positions for the game
and the player who ought to move has lost. This happens exactly in positions
associated with atomic or negated atomic formulae, and here the attribution
of these nodes to V and F is such that V wins (because F ought to move) if
A, β |= ϕ, and vice versa. Clearly the game is positionally determined, and the
following is proved by an easy induction on the structure of the formula (or on
the length of the remaining game).

Lemma 6.2.1 The verifier V has a winning strategy in the model checking
game on A precisely in those positions (β, ϕ) for which A, β |= ϕ.

Let us sketch part of the game graph in one tiny example. For a binary
relation R consider the formula ϕ(x) = ∃y(Rxy ∧ ∀x(Rxx ∨ Rxy)

)
over the

R-structure A with two elements a and b and with R-edges as indicated by
arrows:

a  b ��

The model checking game to determine whether A |= ϕ[a] has positions
(β,ψ) where ψ is one of the subfurmulae of ϕ and β a (partial) assignment
to variables x, y. We may represent β by an {a, b, ·}-word of length 2 and
enumerate the subformulae ψ as ϕ0 := Rxx, ϕ1 := Rxy, ϕ2 = ϕ0 ∨ ϕ1, ϕ3 :=
∀xϕ2, ϕ4 := ϕ1 ∧ ϕ3 such that ϕ = ∃yϕ4.

(a ·, ∃yϕ4)

V

��

V

��������������

(ab, ϕ1 ∧ ϕ3)

F

��������������

F

��

(aa, ϕ1 ∧ ϕ3)

F

��

F

��
(ab, ϕ1) (ab,∀xϕ2)

F

��������������

F

��

(aa, ϕ1)

(ab, ϕ0 ∨ ϕ1)

V

�������������
V

��

(bb, ϕ0 ∨ ϕ1)

V

��

V

�������������

(ab, ϕ0) (ab, ϕ1) (bb, ϕ0) (bb, ϕ1)

In this partial sketch of the game tree, winning positions forV are underlined.
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There is a natural variant of the model checking game that does not restrict
formulae to negation normal form. The transition corresponding to the elim-
ination of a negation, say from ¬ϕ to ϕ, corresponds to a swap of players’
roles. Let us therefore call the players neutrally player 1 and player 0. Positions
in the game graph are extended by an extra component ℘ ∈ {0, 1} to indicate
which of the two players acts as verifier; the opponent, ℘̄, correspondingly
acts as falsifier. The two component games, G(A,�)× {0} and G(A,�)× {1}
are each as before (but not insisting on negation normal form formulae, and
with player ℘ in the role of V ), and linked by E¬-edges from (β,¬ϕ,℘) to
(β, ϕ, ℘̄). E¬-edges prescribe forced moves (for player ℘ say, but it does not
matter) from configurations in which the leading connective of ϕ is a negation.
Then the winning positions of player 1 are those (β, ϕ, ℘) in which either
℘ = 1 and A, β |= ϕ or ℘ = 0 and A, β �|= ϕ.

It is also straightforward to adapt the model checking game to deal with
FO∞ rather than FO. E∨ and E∧ can have infinite out-degree reflecting the
syntax of infinitary disjunctions and conjunctions; everything else remains just
the same; in particular plays are still finite, albeit not necessarily with a uniform
finite bound.

6.2.2 The comparison game: back and forth

The familiar Ehrenfeucht–Fraı̈ssé style model comparison games are two player
games played over two structures. A game configuration in these games may be
seen as a pairing between two observable configurations, one from each struc-
ture. The game is such that the winning positions determine whether or not
(or to which degree) these two observable configurations are logically indistin-
guishable. We present the basic idea in the slightly non-standard terminology
of (pairings between) observable configurations in order to highlight the con-
nection between the comparison games and the model checking games. This
point of view will contribute to a rather uniform presentation of fragments via
restrictions imposed at the level of observable configurations.

The first-order Ehrenfeucht–Fraı̈ssé game Consider two τ -structures A

and A′ over the same finite relational vocabulary τ . For partial assignments
β, β ′ to the same (finite) subset of variables (xi)i�1 in A and A′, respectively,
we write

A, β ≡q A′, β ′

for FO-equivalence up to quantifier-rank q, i.e., A, β |= ϕ ⇔ A′, β ′ |= ϕ for
all ϕ ∈ FO[τ ] such that free(ϕ) ⊆ dom(β) = dom(β ′) and qr(ϕ) � q. If A and
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A′ are clear from the context, we also write just

β ≡q β ′.
The coarsest of these equivalences, A, β ≡0 A′, β ′ corresponds to a local

isomorphism: π : β(i) �→ β ′(i) for i ∈ dom(β) = dom(β ′) being an isomor-
phism between the induced substructures A�image(β) and A′�image(β ′), which
is the same as equality of quantifier-free types.

Elementary equivalence, A, β ≡ A′, β ′, without the restriction on quantifier-
rank, is similarly defined. Note that≡ is the limit (coarsest common refinement)
of the approximations (≡q )q∈ω.

Further, A, β ≡∞ A′, β ′ stands for equivalence w.r.t. infinitary logic FO∞.2

The first-order Ehrenfeucht–Fraı̈ssé game over A and A′ is played by two
players, whom we call player I and player II. We describe the game protocol
in terms of rounds, each round consisting of an exchange of moves: challenge
by I/response by II.

The game board: positions. Positions between rounds are pairs (β, β ′) of assign-
ments to the same finite subset of variables (xi)i�1. Only locally isomorphic
assignments will be admissible for player II; we speak of sound positions:
Sound positions. Position (β, β ′) is sound if A, β ≡0 A′, β ′, i.e., if the corre-
spondence β(i) �→ β ′(i) describes a local isomorphism. In terms of O(A) and
O(A′): β ∈ Pθ ⇔ β ′ ∈ Pθ for all atomic θ .

Single round and overall protocol. A single round consists of a chal-
lenge/response exchange of moves as follows. In position (β, β ′),

– I chooses i � 1 and makes a move
{

either along an Ei-edge in O(A) from β,
or along an Ei-edge in O(A′) from β ′.

– II must make a move along an Ei-edge in the opposite structure.

This exchange of moves results in an overall transition from position (β, β ′)
to some successor position (γ, γ ′), where γ = β a

i
for some a ∈ A and γ ′ =

β ′ a
′
i

for some a′ ∈ A′.

We distinguish different levels of the game according to how many rounds
are played.

The q-round game Gq(A; A′) (for fixed q ∈ ω): play continues from an initial
position through q rounds (or until a position is reached that is not sound).

2 Equivalence up to quantifier-rank α in FO∞ can be defined, for every ordinal α. For finite
relational vocabularies, ≡ coincides with ≡ω, equivalence up to quantifier-rank ω in FO∞.
Note, however, that finitary and infinitary first-order equivalences do not coincide even at
quantifier-rank 1 for infinite relational vocabularies.
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The finite-round game Gω(A; A′): in the initial position, player I first selects
some q ∈ ω, then play continues in Gq (A; A′) from the initial position.

The infinite game G∞(A; A′): play continues through an infinite number of
rounds (or until a position is reached that is not sound).

In each variant, II loses as soon as the position is not sound. Maintaining
soundness of the evolving position is in fact the only commitment for II: II
wins the q-round game Gq after completion of round q if this final position
is sound; similarly II wins the finite-round game Gω if she wins Gq for the
q initially selected by I; and she wins the infinite game G∞ if play continues
indefinitely without violation of soundness.3

In all of these games we typically also specify the initial position as
in Gq(A, β; A′, β ′). For instance, we say that II has a winning strategy in
Gq(A, β; A′, β ′) if (β, β ′) is a winning position for player II in Gq(A; A′) (or
in Gq(A, β; A′, β ′)).

It is obvious that plays of Gq and Gω are finite and end in a position in which
one of the players has won; hence Gq and Gω are positionally determined. But
also G∞ is rather easily shown to be positionally determined, without recourse
to deeper results from game theory, as part of the model theoretic analysis
underpinning the following theorem. The core of this well-known analysis can
be summarised as follows.

Theorem 6.2.2 (Ehrenfeucht–Fraı̈ssé and Karp) For all structures of the same
finite relational vocabulary, A and A′, winning positions in games characterise
levels of first-order equivalence in the sense of the following equivalences.
(a) (β, β ′) is a winning position for II in Gq(A; A′) if, and only if, A,

β ≡q A′, β ′.
(b) (β, β ′) is a winning position for II in Gω(A; A′) if, and only if, A, β ≡ A′, β ′.
(c) (β, β ′) is a winning position for II in G∞(A; A′) if, and only if, A,

β ≡∞ A′, β ′.

We sketch the game-oriented skeleton of the underlying arguments in their
most rudimentary form to highlight this aspect (and deliberately ignoring some
of the logical niceties, like characteristic formulae, which the more thorough
analysis presented in textbooks typically yields).

(i) For the direction from left to right, one shows that logical inequivalence
yields a winning strategy for player I. This follows from the observation that I

3 Clearly a variant formulation to essentially the same effect would restrict the game board to
sound positions right away, making II lose when she is stuck for a response. This formulation,
however, has the slight disadvantage of restricting us to sound initial positions, too.
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can choose his challenge in a single round from a sound position such that, no
matter what response II chooses, the resulting position is logically inequivalent
at a lower quantifier-rank.

Why is that? A glance at the model checking game helps to illustrate the
point. For instance, if β �≡m+1 β

′ (but β ≡0 β
′), then this inequivalence mani-

fests itself in some formula ∃xiψ with ψ of quantifier-rank at mostm. Suppose
w.l.o.g. that A, β |= ∃xiψ while A′, β ′ |= ∀xi¬ψ . Then a good move for the
verifier in position (β, ∃xiψ) in the model checking game over A obviously
makes a good move for I in this game.4

(ii) In the opposite direction, player II always has a strategy, for her response
to I’s challenge in a single round, to maintain the required level of logical
equivalence. For instance towards (a) or (b), for a challenge γ = β a

i
in a

position (β, β ′) such that β ≡m+1 β
′, II can find a′ ∈ A such that β a

i
≡m β ′ a′i .

Otherwise, there would have to be a distinguishing formula ψa′ of quantifier-
rankm for every choice of a′ ∈ A′, such that A, β a

i
|= ψa′ while A′, β ′ a

′
i
�|= ψa′ .

But then the formula ∃xi
∧
a′ ψa′ would distinguish β and β ′ at quantifier-rank

m+ 1.
If the underlying structures (and hence the branching degree of the transition

systems of observable configurations) are infinite, this argument crucially uses
the fact that, for a fixed tuple of free variables there are only finitely many
formulae of quantifier-rank m over a fixed finite relational vocabulary, up to
logical equivalence – this is what brings ∃xi

∧
a′ ψa′ into first-order, even if A′

is infinite.5 We note that the corresponding claims in (a) and (b) of the theorem
actually fail for infinite relational vocabularies, even over finite structures. For
(c) on the other hand, to which the above argument is readily adapted, finiteness
(of the conjunction or of the vocabulary) is not essential.

The equally familiar description in terms of back-and-forth systems corre-
sponds to a delineation of a winning region for II with the appropriate closure
conditions (the back-and-forth conditions) that guarantee that player II has
responses to keep the game within the prescribed region, against all challenges
by I. The essential difference between the finite and the infinite game is that, in
the finite games, winning regions are stratified according to how many rounds
are still to be survived. The winning region for the infinite game, on the other

4 Entirely analogous reasoning applies towards (c) and for inequivalence in FO∞, w.r.t. its
ordinal-valued quantifier-rank.

5 While this is easily proved by induction on quantifier-rank, these preparatory considerations are
clearly not even required for the argument if we deal just with finite models.
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hand, is static, corresponding to an invariant that needs to be maintained indef-
initely (this is the classical notion of back-and-forth equivalence or partial
isomorphism in model theory, see for instance [30]).

Example 1: finite linear orderings The first example illustrating the use-
fulness of the first-order Ehrenfeucht–Fraı̈ssé game in almost any textbook
presentation concerns the limitations of FO in expressing properties of finite
linear orderings (or discrete linear orderings more generally). We just state the
following well-known result in order to stress its technical affinity with simple
locality based arguments to be considered later.

Lemma 6.2.3 Consider two finite linear orderings A = (N,<)�[0,m] and
A′ = (N,<)�[0,m′] with assignments to tuples

β = n = (n0, . . . , nk) where 0 = n0 < n1 < · · · < nk−1 < nk = m and
β ′ = n′ = (n′0, . . . , n

′
k) where 0 = n′0 < n′1 < · · · < n′k−1 < n′k = m′.

We write di := ni+1 − ni and d ′i := n′i+1 − n′i for distances between consec-
utive points in these assignments. Then the following are equivalent for any
q � 1:

(i) A, β ≡q A′, β ′

(ii) for 0 � i < k: di = d ′i or both di, d
′
i � 2q .

For the naked finite linear orderings one obtains that

A ≡q A′ ⇐⇒ |A| = |A′| or |A|, |A′| � 2q − 1.

For (ii) ⇒ (i) in the lemma, consider the first round in a game played
from a position satisfying the distance constraints (ii) with critical distance 2q .
It suffices to exhibit a strategy for player II to respond to any challenge by
player I in such a manner that the resulting position satisfies the analogous
distance constraints (ii), but now with critical distance 2q−1 instead of 2q .
W.l.o.g. we may assume that I extends the configuration β by some new
element n ∈ Ii = (ni, ni+1). The case that I plays in A′ instead is symmetric.
In case di = d ′i (the pair of intervals concerned have exactly the same length),
II may select an element n′ ∈ I ′i = (n′i , n

′
i+1) at precisely the same distances

from the end points in I ′i as n has in Ii ; the resulting position even satisfies the
distance constraints with critical distance 2q again.
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In the more interesting case, we have di �= d ′i but di, d ′i � 2q . We consider
cases, as to the sub-division of the interval Ii = (ni, ni+1) by n:

di 2q

<2q−1

one part small/
one large

2q−1

both parts
large2q−1 2q−1

ni ni+1n

ni ni+1n

As the distances of n from the end points of Ii add up to di , at most one of
these distances can be less than 2q−1; if one distance is ‘small’ in this sense,
II may copy this distance exactly to find a matching n′ ∈ I ′i (the other distance
will automatically be ‘large’, i.e., � 2q−1 just as on the side of Ii); if both
distances are at least 2q−1, then II similarly finds n′ ∈ I ′i which is at least that
far from both end points of I ′i .

It is a nice exercise to formalise sentences in quantifier rank q that, over
finite linear orderings, require at least 2q − 1 elements, thus showing that the
given bounds are tight.

It is also useful to draw on the compositionality of strategies for II w.r.t.
concatenation of linearly ordered intervals (slightly more generally, strategies
for player II are compatible with ordered sums of linearly ordered structures in
an otherwise monadic vocabulary; or with concatenation of word structures).
The implicit decomposition of the game into subgames on intervals in the above
strategy considerations reflects this.

Remark The above game argument illustrates the well-known fact that, for
instance, no FO sentence can distinguish even length from odd length finite
linear orderings. Any sentence ϕ proposed for the purpose is defeated by the
example of linear orderings of lengths 2q and 2q − 1 for q := qr(ϕ).

Maybe somewhat unexpectedly (and disturbing only from a didactic point
of view), this particular finite model theory assertion can also be shown by
classical means. Suppose there were a sentence ϕ ∈ FO[<] such that a finite
linear ordering satisfies ϕ if, and only if, it is of even length. Let [ϕ]�x be
the relativisation of ϕ to the initial segment formed by x. Let ψ0 ∈ FO[<] be
the usual characterisation of discrete linear orderings with first and without
last element; ψ1 ∈ FO[<] the assertion that precisely every other element x
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satisfies [ϕ]�x . Then ψ0 ∧ ψ1 would characterise the order type of (ω,<),
which is impossible by compactness. To see that ψ0 ∧ ψ1 forces the standard
model, consider any non-standard model (A,<) of ψ0 as in the sketch. Since
the non-standard part of (A,<) consists of an ordered sum of parts ordered
like (Z,<), the successor operation induces an automorphism of the non-
standard part. Therefore [ϕ]�x cannot distinguish next neighbours within the
non-standard part, and (A,<) �|= ψ0 ∧ ψ1.

� (ω,<)  · · · 
succ−→�� · · ·

This argument immediately also shows that the unary predicate P consisting
of every other element of a finite linear ordering and starting with the minimal
element cannot be explicitly definable in FO[<] over the class of all finite linear
orderings. Since the given specification of P translates into an obvious implicit
definition in FO[<,P ], the example directly refutes the finite model theory
analogue of Beth’s theorem. In this light, the given automorphism argument
just shows that the implicit definition of P over finite linear orderings does
not extend to any implicit definition that would be good over the class of all
discrete linear orderings with first element.

Example 2: a simple locality argument (also compare section 6.2.5) Let τ
be a finite relational vocabulary. A formula ϕ(x) ∈ FO[τ ] is called �-local if,
in any τ -structure A, whether A |= ϕ[a] is fully determined by A�N�[a] (the
�-neighbourhood of a):

A |= ϕ[a] ⇔ A�N�[a] |= ϕ[a].

Similarly ϕ(x) is invariant under disjoint unions if for all A, a and B,

A |= ϕ[a] ⇔ A⊕B |= ϕ[a],

where A⊕B is the disjoint union of A and B.

Lemma 6.2.4 Ifϕ ∈ FO[τ ] is invariant under disjoint unions, thenϕ is �-local
for � = 2qr(ϕ) − 1.

Remark: the bound on � is optimal, since there is, for every q, a quantifier-
rank q formula ϕq (x) ∈ FO[E,P ] asserting that N2q−1(x) ∩ P �= ∅.6

Proof. Let ϕ be invariant under disjoint unions, q := qr(ϕ) and � := 2q −
1. For a ∈ A and A0 := A�N�(a) it suffices to show that A |= ϕ[a] iff

6 One obtains ϕq (x) inductively, based on ϕq+1(x) := ∃y(d(x, y) � 2q ∧ ϕq (y)).
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A0 |= ϕ[a]. By invariance under disjoint unions, moreover, it suffices to estab-
lish an equivalence of the form A, a⊕ C ≡q A0, a⊕ C for a suitable structure
C. Taking C to be the disjoint union of q further disjoint isomorphic copies
each of A and of A0, we argue this equivalence:

��������◦ · · · ��������◦
︸ ︷︷ ︸

q copies of A

a

A

��������• 	
�����◦ · · · 	
�����◦
︸ ︷︷ ︸
q copies of A0

≡q

��������◦ · · · ��������◦
︸ ︷︷ ︸

q copies of A

a

A0

	
�����• 	
�����◦ · · · 	
�����◦
︸ ︷︷ ︸
q copies of A0

In the game on these structures, II wins the q-round game as follows. We use
dm := 2q−m as a critical distance to be observed in round m. II is to play such
that the configurations resulting from roundm are linked by a component-wise
trivial isomorphism between their (dm − 1)-neighbourhoods. This condition is
satisfied at the start, form = 0; form = q it still guarantees a local isomorphism
between the final configurations, hence a win for II.

Here is how to maintain the condition through round m of the game for
m � 1:

(i) if I’s challenge goes to some element at distance greater than dm from
the current configuration, then II responds with the same element in a new
isomorphic component on the opposite side (new in the sense of not yet involved
in the current configuration; such are always left).

(ii) if I’s challenge goes to an element within distance dm of the cur-
rent configuration, then II finds a response via the trivial local isomor-
phism between the (dm−1 − 1)-neighbourhoods of the current configurations.
We note that d(x, y) � dm implies Ndm−1(y) ⊆ Ndm−1−1(x), as d(x, z) �
d(x, y)+ d(y, z) � dm + dm − 1 = dm−1 − 1.

6.2.3 Natural restrictions/variations

Several of the most natural fragments of FO can be presented in terms of
restrictions or modifications of the system O(A) of observable configurations
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associated with structure A. The k-variable fragment FOk of FO, for instance,
exactly corresponds to the restriction that only up to k elements of A are
“simultaneously observable” – we just need to restrict the assignments to size
k. While this is a uniform, purely quantitative restriction, the modal and guarded
fragments of first-order logic are based on structural, qualitative restrictions.
In the guarded fragment GF, access to observable configurations is restricted
by the requirement that the target configuration be guarded, i.e., covered by
some relational ground atom (which is explicitly reflected in the syntax of
guarded quantification). In the more basic modal fragment ML of FO, A itself
is the system of observable configurations – in this case the transition relations
between the (trivial, one-point) configurations are the key to the restrictions
imposed in modal quantification. Below we treat k-variable logic, guarded
logic and modal logic in this order of increasing specialisation, with particular
emphasis on modal logic and its comparison game, the bisimulation game.

The k-variable fragment and the k-pebble game
The k-variable fragment FOk ⊆ FO in a relational vocabulary τ consists of all
first-order formulae in which only the variable symbols x1, . . . , xk occur, bound
or free. Assignments over τ -structures A can thus be restricted and normalised
to be full assignments to these k variables. We therefore identify assignments
with k-tuples.

Correspondingly, letOk(A) be the restriction ofO(A) to {β : |β| = k} = Ak .
It is easy to see that the restriction of both the model checking game and

of the comparison game that ensues if O(A) is consistently replaced with
Ok(A) are adequate for the semantics of FOk and for the induced notions of
k-variable equivalence. The k-variable Ehrenfeucht–Fraı̈ssé game is just the k-
pebble game: moves along Ei-edges in Ok(A) correspond to the re-positioning
of the i-th pebble on A. The correspondence between the different levels of
the game and of k-variable equivalence are the following, for finite relational
vocabularies τ :

≡kq : FOk-equivalence up to quantifier-rank q;
captured by the q-round k-pebble game Gk

q .

≡k : FOk-equivalence;
captured by the finite-round k-pebble game Gk

ω.

≡k∞ : FOk
∞-equivalence;

captured by the infinite k-pebble game Gk
∞.

It is important to note that Ok(A) is of finite type for each finite τ , and
of polynomial size in the size of A, for finite A. For the model checking
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implications see [23, 22] and also some related remarks in section 6.5.1. In
particular, the combined model checking complexity for FOk is complete for
Ptime, while for FO it is complete for Pspace.

The guarded fragment and the guarded bisimulation game
The characteristic feature of the guarded fragment GF of first-order logic [2] is
the relativisation of first-order quantification to guarded tuples – similar to the
restriction along accessibility edges in modal logic. Also compare the remarks
in section 6.1.2 where GF was introduced as a fragment of FO.

We start out with a discussion of a very liberal setting for the guarded
fragment that most naturally reflects the syntactic freedom allowed in the
standard formalisation of GF as given in section 6.1.2. Afterwards we also
indicate some more succinct alternative formulations that correspond to certain
syntactic normalisations (e.g., regarding the number of variables used) to which
GF can be subjected without impairing its expressive power; such less liberal
formalisations can be of technical advantage in the model theoretic analysis of
GF and its relatives.

Recall that a subset s ⊆ A is guarded in the τ -structure A if it is a
singleton set or, if for one of the relations R ∈ τ there is some tuple
a = (a1, . . . , ar) ∈ RA for which s = [a].7 In particular, the cardinality of
guarded subsets is bounded by the width of the vocabulary τ . A tuple b in
A is called guarded if [b] ⊆ s for some guarded subset s. The same terminol-
ogy applies to assignments β in A.

Call a tuple b or an assignmentβ in A strictly guarded if [β] is itself a guarded
subset. More specifically, for an atomic τ -formula α, we say the assignment β
is strictly guarded by α if var(α) = dom(β) and A, β |= α, which implies that
[β] is indeed a guarded subset. (In order to capture also guarded singleton sets,
we allow α to be an equality atom.)

A system of observable configurations for GF We work with the following
system of observable configurations OG(A) over the set of all finite (partial)
assignments over A with new binary transitions relations Eα,ρ (see below) and
unary predicates Pθ (as before). The universe of OG(A) is the same as in O(A)
for FO (this is for the liberal, redundant formalisation).

The transition relations of OG(A) describe passages from some assignment
β to a new assignment β ′ where the target assignment β ′ is required to be
strictly guarded by some atomic formula α. Each transition relation specifies

7 Recall that we denote as [b] the set of components of a tuple b, and similarly write [β] for the
image set of an assignment β.
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both the atomic formula α and a set of identities between components of the
old and the new assignment. As both β and β ′ are finite partial functions on the
positive integers, a set of identities between components can be specified as a
finite set ρ of pairs of positive integers. We write β

ρ= β ′ if β(i) = β ′(j ) for
all (i, j ) ∈ ρ. Then for every ρ and α, let Eα,ρ be interpreted as the following
transition relation on OG(A):

Eα,ρ =
{
(β, β ′) : β

ρ= β ′, β ′ strictly guarded by α
}
.

Unary predicates Pθ for atomic types θ (x) are as in the basic system O(A).

Guarded model checking The game graph for the model checking of for-
mulae in GF is obtained from OG(A) and a suitable formalisation of the syntax
of guarded quantification in close analogy to the basic case. With the formation
rule of existential guarded quantification, for instance,

ϕ(x) = ∃y(α(x′) ∧ ψ(x′)),

where y is a subtuple of x′, associate an Eα,ρ,∃-edge in the syntax tree from
ϕ(x) to ψ(x′), where ρ = {(i, j ) : xi = x ′j }. In the game graph GG(A,�),
correspondingly, there are Eα,ρ,∃-edges from positions (β, ϕ(x)) to positions
(β ′, ψ(x′)) such that x ⊆ dom(β), x′ ⊆ dom(β ′), (β, β ′) ∈ Eα,ρ inOG(A). Sim-
ilarly, universal guarded quantifications ϕ(x) = ∀y(α(x′) → ψ(x′)) give rise to
edges in Eα,ρ,∀ in the syntax tree, and induce transition relations EG

α,ρ,∀ in
GG(A,�).

Note that existential and universal quantification of variables in GF pro-
ceeds in batches (so as to cover a guarded successor set fully in one step) rather
than element-wise. Correspondingly, first-order quantifier-rank is replaced by
the nesting depth of guarded quantification steps for an appropriate analy-
sis of quantifier complexity. This is important for the induced levels of GF
equivalence, which are considered in connection with the comparison game of
guarded bisimulation below.

Guarded bisimulation In line with the general idea, positions between
rounds in the guarded Ehrenfeucht-Fraı̈ssé game GG(A,A′) are matching pairs
of assignments (β, β ′) in A and A′. With the possible exception of the initial
position of the game, which we choose to ignore in the following, we may
restrict attention to positions in which both β and β ′ are strictly guarded (this
is guaranteed for successor positions after the first round, by the rules below).

Soundness means that the induced correspondence β(i) �→ β ′(i) for i ∈
dom(β) = dom(β ′) is a local isomorphism; insofar as the assignments are
strictly guarded in their structures, the correspondence is a bijection between
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guarded subsets and thus a local isomorphism between induced substructures
on guarded subsets s = [β] and s ′ = [β ′]. Challenge/response pairs of moves
responsible for taking the game through a single round are governed by I’s
selection of an Eα,ρ and an Eα,ρ successor γ of β in OG(A) or an Eα,ρ

successor γ ′ of β ′ in OG(A′), and thus, together with II’s response, to a new
local isomorphism between substructures induced on a new pair of guarded
subsets t = [γ ] and t ′ = [γ ′] (insofar as the successor position is sound again,
i.e., unless II has lost).

A conceptually smoother, equivalent formulation therefore is the follow-
ing, which we take as the preferred description of the guarded bisimulation
game. Positions in the game are local bijections σ : s → s ′ between guarded
subsets s ⊆ A and s ′ ⊆ A′. In a single round played from position σ : s → s ′,
I proposes either a guarded subset t ⊆ A or a guarded subset t ′ ⊆ A′; II has to
respond with a guarded subset in the opposite structure (call this other subset
t ′ ⊆ A′ or t ⊆ A, as the case may be) and a bijection ρ : t → t ′ that is compat-
ible with σ . Compatibility of ρ with σ means that ρ needs to agree with σ on
s ∩ t if I chose t ; and on s ′ ∩ t ′ if I chose t ′. II loses if there is no such ρ or if
ρ is not a local isomorphism.

Either formulation of the game supports the usual analysis, which, as
expected, establishes correspondences between winning positions for II in
the different levels of the game and equivalence in GF. For finite relational
vocabularies τ these are:

≡G
q : GF-equivalence up to guarded nesting depth q;

captured by the q-round guarded bisimulation game GG
q .

≡G : GF-equivalence;
captured by the finite-round guarded bisimulation game GG

ω .

≡G
∞ : GF∞-equivalence;

captured by the infinite guarded bisimulation game GG
∞.

More succinct representations Another, much more succinct view on the
observable configurations can be based on more restricted classes of assign-
ments: it essentially suffices to admit strictly guarded assignments with domain
{1, . . . , k}where k is the width of τ . This second aspect corresponds to the nor-
malisation of variables to x1, . . . , xk as in FOk .8 Here we use strictly guarded
assignments to variables x1, . . . , xk , or surjective partial maps from {1, . . . , k}
onto guarded subsets of A.

8 Even more restrictively, [25] for technical convenience uses a format with only injective
assignments, there called guarded lists.
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The type of the resulting system of guarded observable configurations is
finite for finite τ . The model checking game obtained in analogy with the
above, by making the obvious changes and restrictions regarding the syntax of
formulae, then really is for (a specific syntactic variant of) GFk := GF ∩ FOk .

A closer analysis of the Ehrenfeucht–Fraı̈ssé games and notions of guarded
equivalence resulting from the two different formalisations would show that
there is no loss of expressiveness as far as properties of (strictly) guarded
tuples are concerned. The only real restriction concerns expressiveness at the
quantifier-free level and in boolean combinations, and this is inessential for
many purposes. The difference arises, trivially, because GF does not impose any
restrictions on boolean combinations. Analysis of the game shows, however,
that any formula of GF (in the liberal format) is logically equivalent to a boolean
combination of quantifier-free formulae and strictly guarded formulae (each of
which can, up to a necessary renaming of variables, be formalised in the above
fragment GFk).

Corollary 6.2.5 Any formula in GF[τ ] with explicitly guarded free variables
is equivalent to a formula in GF ∩ FOk where k is the width of τ .

The modal fragment and the bisimulation game
Modal logic is naturally interpreted over transition systems (Kripke structures
in traditional terminology). Having chosen a modal perspective for our analysis
of fragments, we may now choose the transition system A itself – as a relational
structure in a given vocabulary τ with binary relations Eα and unary predicates
Pj – as the system of modally observable configurations, putting OM(A) =
A. To keep in line with the general framework we may want to replace the
individual Pj in A by Pθ that are complete propositional types in the pj/Pj (in
first-order terms: atomic Pj -types in single variables x, containing for each Pj
either the atomic formula Pjx or its negation ¬Pjx).

Modal model checking The modal model checking game over structure A is
played in a game graph based on A and the syntax tree of the modal formulae
under consideration. With the formation rule of existential modal quantification

ϕ = ♦αψ

we associate an E♦α
edge in the syntax tree from ϕ to ψ . In the game graph

GM(A,�), this induces edges from positions (a, ϕ) to positions (b,ψ) for
(a, b) ∈ EA

α . Analogously for �α quantification: edges in E�α
from ϕ = �αψ

toψ in the syntax tree give rise to transitions in GM(A,�) from (a, ϕ) to (b,ψ)
for every (a, b) ∈ EA

α .
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It is clear that the model checking game for FO2 emulates the modal model
checking game, via the standard translation of ML into FO2:

(♦αψ)x = ∃y(Eαxy ∧ ψy),
(�αψ)x = ∀y(Eαxy → ψy),

where {x, y} = {x1, x2}. In terms of this translation, a move along an Eα edge
(a, b) in the A component of GM(A,�) is simulated by an E2 move from any
position of the form (a, ∗) to (a, b) or by anE1 move from any (∗, a) to (b, a) in
theO2(A) component of G2(A,FO(�)). At the same time this emulation can be
interpreted in GG(A,FO(�)), since {a, b} is a strictly guarded assignment and
(a, a) is linked to (a, b), for instance, by anEα,ρ edge inO2(A) for ρ = {(1, 1)}.

Bisimulation The bisimulation game is the Ehrenfeucht–Fraı̈ssé game for
modal logic. It also has a special status because of its fundamental nature as
the quintessential back-and-forth game – game equivalence of game graphs –
to be discussed in the following section.

In line with the general approach, the positions (between rounds) in
GM(A,A′) are pairs of observable configurations inO(A) = A andO(A′) = A′,
i.e., pairs (a, a′) ∈ A× A′. The challenge/response exchange that constitutes a
single round is as follows:

– I selects a transition relationEα , and
{

either some Eα successor b of a in A,
or some Eα successor b′ of a′ in A′.

– II has to respond by selecting an Eα successor in the opposite structure.
Overall this results in a successor position (b, b′) for which (a, b) ∈ EA

α and
(a′, b′) ∈ EA′

α . A position (a, a′) is sound if a and a′ satisfy exactly the same
predicates Pj (atomic propositions pj in modal terminology), which clearly
corresponds to quantifier-free indistinguishability in ML[τ ].

Because of their immediate importance we introduce the usual dedicated
notation for the levels of equivalence that are defined in terms of winning
positions for player II in the different levels of this bisimulation game. As
above, the q-round, finite-round, and infinite bisimulation game on A and A′

are denoted GM
q (A,A′), GM

ω (A,A′), and GM
∞(A,A′). We then define

A, a ∼q A′, a′ iff (a, a′) is a winning position for II in GM
q (A,A′);

A, a ∼ω A′, a′ iff (a, a′) is a winning position for II in GM
ω (A,A′);

A, a ∼ A′, a′ iff (a, a′) is a winning position for II in GM
∞(A,A′).

Note that∼ is the classical notion of bisimulation equivalence – equivalence
w.r.t. the infinite bisimulation game, and as such the modal counterpart of partial
isomorphism.
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We denote the relevant levels of equivalence in modal logic as ≡M
q (up

to modal nesting depth q), ≡M (full equivalence in finitary ML), and ≡M
∞

(equivalence in the infinitary extension ML∞). The associated Ehrenfeucht–
Fraı̈ssé and Karp theorems then state, for finite modal vocabularies τ , the
following equivalences:

A, a ∼q A′, a′ ⇔ A, a ≡M
q A′, a′.

A, a ∼ω A′, a′ ⇔ A, a ≡M
ω A′, a′.

A, a ∼ A′, a′ ⇔ A, a ≡M
∞ A′, a′.

Modal variations The simple extensions of basic modal logic by inverse
modalities and/or global modality, ML

−
, ML∀ and ML

−∀, are matched by cor-
responding variations in O(A) and G(A,A′). To deal with inverse modal-
ities, O(A) is enriched with the converse relations to the Eα, (E−α )A =
{(b, a) : (a, b) ∈ EA

α }; to deal with the global modality, O(A) is expanded
by the full binary relation UA = A× A. Everything else, including associ-
ated Ehrenfeucht–Fraı̈ssé and Karp theorems, is then set up by straightforward
analogy and we leave the details as an exercise. For later use, we denote the
levels of two-way global bisimulation equivalence corresponding to the com-
bined extension by inverse modalities and the global modality by ≈q , ≈ω
and ≈.

Bisimulations as relations and back-and-forth systems We also want to
use the notational variants corresponding to back-and-forth systems for bisim-
ulation games. Infinitary bisimulation equivalence (the modal counterpart of
partial isomorphism) between the nodes of two structures A and A′, in par-
ticular, is captured by the relation Z ⊆ A× A′ comprising exactly the win-
ning positions for II in GM

∞(A,A′) (known as the largest bisimulation relation
between A and A′, cf. [9, 17]). Any other relation Z ⊆ A× A′ that delineates
an appropriately closed winning region for II is also a bisimulation relation,
and necessarily a subset of the largest such. Corresponding finite bisimulation
levels are described by stratified back-and-forth systems in the usual manner.
Again, natural and straightforward adaptations for, e.g., two-way global bisim-
ulations are obtained. The difference lies in the closure conditions (back-and-
forth conditions), which reflect the nature of the challenges that I is allowed,
since II must have responses to all of them within the prescribed collection of
positions.

A particular variant of bisimulation relationships is realised by homomor-
phisms whose graphs are bisimulation relations (bounded morphisms in clas-
sical modal terminology, cf. [9, 17]). For instance, in the case of the two-way
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global bisimulation relation ≈, we write

π : A, a
≈−→ A′, a′

to indicate that π : A→ A′ is a map sending a to a′ and such that its graph is
a bisimulation relation with the back-and-forth closure conditions appropriate
for global two-way bisimulation game (in particular π needs to be a surjective
homomorphism).

Saturation and Hennessy–Milner properties We shall later look at the
relationship between equivalence w.r.t. the infinite game G∞ and the finite
approximations to the finite-round game Gω induced by the q-round games
(Gq)q∈ω also for games other than bisimulation. It is therefore interesting to
understand under which conditions there is no gap between the limit of the
finite approximations and full infinitary equivalence. In the modal situation,
or for the bisimulation game, this situation is particularly transparent, and at
the same time holds the key to the general situation for other fragments in the
game-oriented analysis.

Definition 6.2.6 Let A be a τ transition system with transition relationsEα.
(i) � ⊆ ML[τ ] is called a ♦α-type at a ∈ A if A, a |= ♦α

∧
�0 for every

finite �0 ⊆ �; it is realised at a ∈ A if there is some b such that (a, b) ∈
EA
α and A, b |= �.

(ii) A is called modally saturated if, for all α and all a ∈ A, every ♦α-type at
a is realised at a.

It is not hard to see that ω-saturated transition systems, and in particular
finite transition systems are modally saturated. But a very simple argument also
shows that even all finitely branching transition systems are modally saturated.
In the case of a structure A that is finitely branching (w.r.t. Eα) at a, consider
some ♦α-type � at a. Suppose � were not realised at a. This means that, for
every Eα successor b of a there must be some ϕb ∈ � not satisfied at b. But
then the finite subset �0 of these ϕb would violate the defining condition for a
♦α-type at a: A, a |= �α

∨
b ¬ϕb, whence A, a �|= ♦α

∧
�0.

For this and also for the reasoning behind the lemma below, compare part (ii)
of the argument indicated in connection with Theorem 6.2.2.

Definition 6.2.7 A class of transition systems has the Hennessy–Milner
property if over this class, modal equivalence ≡M coincides with full bisimu-
lation ∼.
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Note that, since even for not necessarily finite vocabularies τ , ∼ω implies
≡M, the Hennessy–Milner property implies that in particular also finite bisimu-
lation equivalence coincides with full bisimulation equivalence. The following
lemma also implies that for modally saturated transition systems, modal equiv-
alence, finite and full bisimulation equivalence all fall into one, even for infinite
vocabularies.

Lemma 6.2.8 The class of modally saturated transition systems has the
Hennessy–Milner property.

The straightforward game argument for this is again suggested by the rea-
soning underlying Theorem 6.2.2, part (ii), but finiteness of τ is not required.
Playing over modally saturated structures, II can maintain modal equivalence
between configurations. Consider a position (a, a′) in the game GM

∞(A,A′) for
which A, a ≡M A′, a′, and think of a challenge played by I, with a move along
(a, b) ∈ EA

α say. In general (and even for finite vocabulary) modal equivalence
A, a ≡M A′, a′ (or even A, a ∼ω A′, a′) would only provide II with responses
b′ that are good for surviving q further rounds, where this could be a separate
response for each individual q. Now, however, the full modal theory of b in
A constitutes a ♦α-type at a in A, and modal equivalence A, a ≡M A′, a′ is
good enough to ensure that it therefore also is a ♦α-type at a′ in A′. By modal
saturation, therefore, this ♦α-type is realised at a′ in A′, and any such realisation
gives II a valid response in the game which maintains≡M. But maintaining≡M

equivalence throughout the game, II cannot lose; so this gives her a strategy
in GM

∞.

6.2.4 Bisimulation as the master game

An analysis of whole families of fragments of FO w.r.t. their notions of finite
and infinitary equivalence can very nicely be based on the analysis of the
bisimulation game over the transition systems of observable configurations
associated with the particular fragment.

The possible advantage of this perspective lies in the conceptual separation of
the game theoretic commonality, which is here uniformly described in terms of
bisimulation, and the particular constraints of the fragment under consideration,
which enters the picture through the right formalisation of the observable
configurations. The natural criterion for the right formalisation lies in the
adequacy of the induced model checking game for the semantics of the given
fragment.

The treatment of FO and fragments like FOk , GF and ML (and some of
its simple variants) can be put in a uniform format as follows. Let L ⊆ FO be
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a fragment associated with systems of observable configurations OL(A) over
relational structures A in a finite relational vocabulary τ . Together with the
overhead that links syntax of L with moves in the model checking game with
structure inputsOL(A), this model checking game can be taken as a specification
of the semantics of L. The bisimulation game between OL(A) and OL(A′) then
is a representation of the Ehrenfeucht-Fraı̈ssé or model comparison game for L.
This representation is adequate at a round-by-round level in terms of a syntactic
notion of depth in L that corresponds to the number of quantification rounds
required in model checking a formula in L. The specification of the model
checking game is in turn reflected in the format of OL(A). As an example
for the latter point, consider GF as presented above: we deliberately chose
transitions in OG(A) to link any two strictly guarded patches in one transition
rather than a sequence of transitions corresponding to one-new-element-at-a-
time moves as in O(A). The latter option would have turned FO quantifier-rank
into our measure of semantic complexity in GF whereas the chosen stipulation
relates to the coarser but more intuitive notion of guarded nesting depth. With
the appropriate notion of depth that is implicit in the granularity of the model
checking game based onOL(A) come the notions of≡L

q as finite approximations
to≡L, and (for finite vocabulary) an Ehrenfeucht–Fraı̈ssé theorem of the format

A, β ≡L
q A′, β ′ ⇔ OL(A), β ∼q OL(A′), β ′, for q ∈ ω, and

A, β ≡L A′, β ′ ⇔ OL(A), β ∼ω OL(A′), β ′.

At the same time, a notion of infinitary L-equivalence is induced by the full
bisimulation relation, O(A), β ∼ OL(A′), β ′, supporting a Karp theorem of the
format

A, β ≡L
∞ A′, β ′ ⇔ OL(A), β ∼ OL(A′), β ′,

which can now also be seen as a specification of what L∞ (in terms of its model
checking game) needs to be.

Beyond a uniform perspective on the games and equivalences themselves,
the modal perspective on fragments of FO can also indicate what the right
transfer of other game-related notions to fragments should be. As one example
we state the following observation concerning ω-saturation (in the usual first-
order context).

Observation 6.2.9 A isω-saturated if, and only if,O(A) is modally saturated.

Similar correspondences can then be taken to define the appropriate notion of
ω-saturation in the context of fragments L ⊆ FO (e.g., for FOk or GF), in terms
of modal saturation of the corresponding OL(A). This allows us to extrapolate
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to a range of in-between fragments from the Hennessy–Milner property of
modal logic to other fragments with the appropriate notion of ω-saturation.
In particular, the right types to be considered for this notion of saturation are
derived from the modal ♦-types in the OL(A).

On the other hand, for many natural fragments including FOk , GFk and
all the modal fragments, classical first-order ω-saturation implies ω-saturation
(and the Hennessy–Milner property) in the sense of L. This is due to the
following.

Observation 6.2.10 For any fragment L ⊆ FO for which the system of observ-
able configurations OL(A) is uniformly first-order interpretable in A itself, ω-
saturation of A implies ω-saturation of OL(A), which (by the previous obser-
vation) implies modal saturation of OL(A), and hence the analogue of the
Hennessy–Milner property for L over the class of ω-saturated structures.

Note that this modal view is based on imposing the modal picture and the
bisimulation game on richer fragments of first-order logic, uniformly via the
appropriate system of observable configurations and games. Alternatively, one
may think of a specialisation of the classically well understood situation for
first-order and its infinitary counterpart, their links with classical Ehrenfeucht-
Fraı̈ssé games and Karp’s theorem (cf. Theorem 6.2.2). In connection with the
last observation for instance, ω-saturation (in the classical sense, w.r.t. FO-
types) implies ω-saturation in the sense of L for a fragment L ⊆ FO, since L-
types are (partial) FO-types; a Hennessy–Milner property forω-saturated struc-
tures then follows because player II has a strategy to maintain L-equivalence in
the infinite L-game starting from L-equivalent configurations. But this, and how
L-types are to be defined so that they can be transferred between L-equivalent
configurations as required for this argument, may be best understood system-
atically in terms of the game and its observable configurations as discussed
above.

6.2.5 Locality and modularity of the first-order game

Games and the Ehrenfeucht–Fraı̈ssé method are well suited to the exploration of
the expressive power of FO not just classically but equally well over restricted
classes of structures, and also to understanding the nature of fragments within
FO. Such explorations typically depend on the availability of suitable struc-
tures over which the game can be usefully analysed. In order to facilitate the
analysis, and equally importantly also as an indication of where to look for the
right candidate structures, one can often use the modularity of the game w.r.t.
Gaifman locality. We saw a glimpse of that aspect in Lemma 6.2.4 above.
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For Gaifman’s theorem, we want to establish that position (a, a′) in
Gq(A; A′) is a winning position for II, i.e., that A, a ≡q A′, a′, on the basis
of

– suitable global conditions on A and A′ (without reference to a and a′),
and

– purely local conditions on these parameters within their structures of the
form

A�N�(a), a ≡r A
′�N�(a′), a′

for values of � and r that are recursively determined as functions of q.
Towards an understanding of the nature of the global requirement, and for

a gradation of both the local and global equivalences involved, we need the
following definition.

Definition 6.2.11 (i) For any ϕ(x) we write ϕ�(x) for its relativisation to the
(FO-definable) �-neighbourhood of its free variables, ϕ�(x) := [ϕ]N

�(x).
If q = qr(ϕ), we refer to ϕ� as a local formula of Gaifman rank (�, q).

(ii) A basic �-local sentence is a sentence of the form

∃x1 . . . ∃xm
∧
i<j

d(xi, xj ) > 2� ∧
∧
i

ψ�(xi),

asserting the existing of an �-scatteredm-tuple whose components satisfy
the �-local formula ψ�(x). If q = qr(ψ), we regard the above basic local
sentence as one of Gaifman rank (�, q,m).

Definition 6.2.12 The configurations A, a and A′, a′ are (�, q,m)-Gaifman-
equivalent, denoted as A, a ≡�q,m A′, a′, if:

(i) A�N�(a), a ≡q A′�N�(a′), a′, i.e., a and a′ satisfy the same �-local formu-
lae ϕ� for qr(ϕ) � q (local condition).

(ii) A and A′ satisfy the same basic local sentences of ranks (�′, q ′,m′) for all
�′ � �, q ′ � q and m′ � m (global condition).

For fixed finite relational vocabulary and fixed arity of the tuples a, each
≡�q,m has finite index, and respects ≡. Clearly also ≡�q,m is monotone w.r.t. the
ranks (�, q,m). Gaifman’s theorem says that≡�q,m approximates full first-order
equivalence ≡ well, in the sense that ≡ is the common refinement or limit of
all levels ≡�q,m.

Theorem 6.2.13 (Gaifman) Any FO-formula is preserved under ≡�q,m for
suitable (�, q,m). Equivalently: any formula of FO is logically equivalent to a
boolean combination of local formulae and basic local sentences.
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Gaifman’s original proof establishes the second statement by induction
on the FO formula under consideration. The link with the modularity of the
Ehrenfeucht–Fraı̈ssé game, however, is brought out more clearly in an argu-
ment given in [15], which we adapt to give a brief sketch. To prove the first of
the statements in the theorem, it inductively suffices to establish the following
assertion about good responses for II.

Claim 6.2.14 If A and A′ are (L,Q,m)-Gaifman-equivalent 9 for values of
L andQ that are sufficiently large in relation to � and q, and if a and a′ of arity
less than m are such that

A � NL(a), a ≡Q A′ � NL(a′), a′ local pre-condition

then for any b ∈ A there is some b′ ∈ A′ such that

A � N�(ab), ab ≡q A
′ � N�(a′b′), a′b′, local post-condition

and, symmetrically, with the roles of b and b′ exchanged.

The claim is established on the basis of a case distinction w.r.t. the distance of
b from a. Suitable conditions on the choices of L andQ are extracted along the
way. Choosing L � 3�+ 1 and Q � q + 1 at least, any b ∈ N 2�+1(a) can be
dealt with according to the local pre-condition. For b that are further away from
a, A�N�(ab) is the disjoint union of A�N�(a) and A�N�(b). Due to modularity
of the game w.r.t. disjoint unions, it suffices to find b′ ∈ A′ that is also far from
a′ and such that A′�N�(b′), b′ ≡q A�N�(b), b. In this case we rely on the global
condition on A and A′ for a further case distinction. We use the global condition
for scattered tuples w.r.t. a quantifier-rank q formula ψ(x) that characterises
A�N�(b), b up to ≡q . We need to guarantee that A′ has a matching b′, i.e., we
seek some b′ �∈ N2�+1(a′) satisfying ψ�.

Firstly, if A and hence also A′ have (2�+ 1)-scatteredm-tuples of elements
satisfying ψ�, then one of the components of any such tuple in A′ will serve
as b′.

If, on the other hand, there are no such m-tuples, then the maximal size
n < m of (2�+ 1)-scattered tuples for ψ� is the same in A and A′. Now
a comparison with n0, the maximal size of (2�+ 1)-scattered tuples for ψ�

within N2�+1(a) can help to locate b′, provided L � 3�+ 1 and provided Q
is large enough to force the same n0 to work in A′�N2�+1(a′) (via the local
pre-condition).

9 Due to the absence of parameters this involves only the global condition (ii) of
Definition 6.2.12.
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If n0 < n, then there must be realisations of ψ� outside N2�+1(a′) and any
such is a good choice for b′.

The remaining subcase that n0 = n (no surplus of realisations of ψ� beyond
N2�+1(a′)), implies in particular that d(a, b) � 6�+ 3 and the existence of such
an element satisfying ψ� at distance greater than 2�+ 1 but at most 6�+ 3 is
covered by the local pre-condition, providedL � 7�+ 3 andQ is large enough
to cover this (under the local pre-condition), too.

6.3 Special classes of transition systems

Up to bisimulation, every transition system is equivalent to a tree via a bisimi-
lar tree unfolding, just as every game graph can be replaced by the associated
game tree, typically making the representation structurally simpler though
less succinct. Correspondingly, any bisimulation invariant logic (logic whose
formulae are preserved under bisimulation equivalence) has the tree model
property. Because cycles are unfolded into infinite paths, bisimulation equiv-
alent tree models may necessarily be infinite even though the original model
was finite. So bisimilar unfoldings into tree models are typically not avail-
able within classes of finite models. In the investigation of the model the-
oretic relationship between bisimulation invariant fragments of FO with FO
itself, however, Gaifman locality can be used to replace acyclicity by local
acyclicity in key arguments. We briefly review the classical construction of
bisimilar unfoldings into tree models and then review a construction of locally
acyclic bisimilar companion structures from [42]. These are used to estab-
lish variants of the classical model theoretic characterisations of modal frag-
ments of FO in terms of bisimulation preservation (van Benthem’s theorem, cf.
Corollary 6.3.5 below) over natural, restricted classes of transition systems in
section 6.3.2.

6.3.1 Tree unfoldings and locally tree-like systems

Bisimulation invariance and the tree model property
Let A be a transition system in a finite vocabulary τ consisting of binary
relations Eα and unary predicates Pj . With a ∈ A we associate the following
bisimilar unfolding of A at a, A∗a . The universe of A∗a is the set of all finite,
edge-labelled paths from a in A, σ = (a0, α1, a1, . . . , αn, an), where a0 = a

and (ai−1, ai) ∈ EA
αi

. The transition relation Eα of A∗a corresponds to path
extensions by single EA

α edges; the unary predicate Pj in A∗a consists of those
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paths that end inPA
j . Then the map that associates to every path its last element,

viewed as a map π : A∗a → A, induces a bisimulation:

π : A
∗
a

∼−→ A A
∗
a, σ ∼ A, π (σ ).

It follows that every bisimulation invariant logic has the tree model property:
satisfiability implies satisfiability in a tree model. The tree model property has
important algorithmic consequences. Since it reduces satisfiability issues to
problems over trees, strong classical results like Rabin’s decidability result for
the MSO theory of trees [45] and in particular automata theoretic methods can
be brought to bear, see also [49]. The example below illustrates the usefulness
of this simple insight for the (classical) model theory of modal logic, in giving
an alternative proof for van Benthem’s classical characterisation theorem for
modal logic (a preservation theorem in classical model theoretic terminology).
We first discuss the classical argument, though, with emphasis on the more
interesting aspect of expressive completeness.

Theorem 6.3.1 (van Benthem) Any bisimulation invariant first-order for-
mula ϕ(x) ∈ FO[τ ] is equivalent to a formula of ML[τ ] (and, conversely, this
condition is sufficient to guarantee bisimulation invariance).

A simple compactness argument shows that, if ϕ is not expressible in
ML, then there are A, a ≡M A′, a′ such that A |= ϕ[a] while A′ �|= ϕ[a′]. In
ω-saturated elementary extensions Â � A and Â′ � A′, which are modally
saturated, one automatically upgrades A, a ∼ω A′, a′ and A, a ≡M A′, a′ to
Â, a ∼ Â′, a′ (cf. the Hennessy–Milner property in Lemma 6.2.8), whence
Â |= ϕ[a] and Â′ �|= ϕ[a′] refutes preservation under ∼.

We turn to alternative approaches that work with explicit model construc-
tions and transformations. We shall later see how this alternative approach
relativises to many restricted classes (in particular also of finite models) where
compactness is not available. But even in the classical context, and working
over the class of all frames, such an explicit and game-based approach yields
extra benefits.

Example: van Benthem’s theorem via explicit constructions The follow-
ing auxiliary observation is straightforward from the bisimulation game: any
common upper bound on the lengths of directed paths from the elements in a
bisimulation game position is also a bound on the number of rounds that can
be played by I.
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Observation 6.3.2 For directed, rooted trees A, a and A′, a′ of depths � �:

A, a ∼� A′, a′ ⇒ A, a ∼ A′, a′.

Combining this with the tree model property, we find the following.

Claim 6.3.3 Any �-local ϕ(x) ∈ FO[τ ] that is invariant under ∼ is invariant
under ∼�.

Proof. We need to show for A, a ∼� A′, a′ that A |= ϕ[a] ⇔ A′ |= ϕ[a′].
Replacing both structures by their bisimilar unfoldings from the distinguished
nodes (and appealing to∼ invariance of ϕ), then truncating both tree structures
at depth � (and appealing to �-locality of ϕ), we have transformed the given
situation into

A, a 1(�) Â, â ∼ Â′, â′ 1(�) A′, a′,

where 1(�)stands for isomorphism up to depth � from the distinguished node.
The central bisimulation equivalence is based on Observation 6.3.2. But now
A |= ϕ[a] ⇔ A′ |= ϕ[a′] follows by ∼ invariance and �-locality.

Claim 6.3.4 If ϕ(x) ∈ FO[τ ] is preserved under∼, then it is preserved under
∼� for � = 2qr(ϕ) − 1.

Proof. As∼ invariance implies invariance under disjoint unions, Lemma 6.2.4
shows that ϕ is �-local, thus ∼� invariant by Claim 6.3.3.

As ∼� is of finite index, and each ∼� class definable in ML at nesting depth
�, we directly have the following version of van Benthem’s theorem, which
even gives a tight bound on the modal nesting depth which is not implicit in
the classical proof.

Corollary 6.3.5 Any quantifier-rank q formulaϕ(x) ∈ FO[τ ] that is preserved
under bisimulation is equivalent to a formula of ML[τ ] of nesting depth �
2q − 1.

It may be worth representing the overall strategy of upgrading a concrete
level of ∼� to preservation of ϕ in this approach. The transformations, from
top to bottom in the diagram, involve firstly a tree unfolding and secondly
truncation at depth �. The first step preserves ∼, the second simultaneously
preserves ∼� and ϕ (by Lemma 6.2.4). Consequently ϕ is preserved all along
the vertical, but also along the bottom horizontal (as here∼� guarantees full ∼
equivalence, by Observation 6.3.2). Thus ϕ is shown to be preserved along the
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top horizontal, too.

A, a ∼�

∼

A′, a′

∼

•

unfolding

��

A∗a, a ∼�

∼� / 1(�)

(A′)∗a′ , a
′

∼� / 1(�)

•

truncation

��

A∗�N�(a), a
∼�
∼ (A′)∗�N�(a′), a′ •

The construction of unfoldings shows that every τ transition system is
bisimilar to a τ -tree, and (by taking disjoint unions of unfoldings at different
elements as appropriate) globally bisimilar to a τ -forest. Obvious variations
of these constructions provide acyclic companion structures that are (globally)
two-way bisimilar.

As pointed out above, not every finite transition system is bisimilar to a
finite acyclic system. Note that, for instance, the above proof of van Benthem’s
theorem fails to yield the finite model theory version (due to Rosen [46]): the
argument crucially uses bisimulation invariance of ϕ in the transition from A, a

to A∗a , where the target structure may be infinite.
In the case of Corollary 6.3.5 there is in fact an easy way out: the full

(and potentially infinite) tree unfoldings of the given finite structures in the
proof of Claim 6.3.3 can in that context be replaced by truncations to depth �
with isomorphic copies of the finite original structures attached at the cut-off
points to yield fully bisimilar companions that are both finite and tree-like up to
depth �. This simple modification yields a proof of Rosen’s finite model theory
analogue of van Benthem’s theorem [46], including the tight bound on nesting
depth in our version [42].

In connection with stronger and, in particular, global notions of bisimulation
equivalence, however, better approximations to acyclicity in finite models are
required. The upgrading will lead from suitable levels of finitary game equiva-
lence to appropriate levels of local FO equivalence (Gaifman equivalence).
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Locally acyclic bisimilar covers
Recall that a transition system is simple if it does not have loops or mul-
tiple edges (not even in opposite directions); it is called �-acyclic if every
�-neighbourhood in its Gaifman graph is acyclic (this forbids undirected cycles
of lengths up to 2�+ 1).

Definition 6.3.6 A bisimilar cover π : Â
≈−→ A is a homomorphism π whose

graph is a global two-way bisimulation: Â, â ≈ A, π (â) for all â ∈ Â. We call
π faithful if it preserves in- and out-degrees w.r.t. each individual relation
Eα ∈ τ .

A (faithful) simple �-acyclic cover of A is a (faithful) bisimilar cover
π : Â

≈−→ A by a simple �-acyclic τ -structure Â.

Lemma 6.3.7 Every finite τ transition system admits, for every �, a finite
faithful simple �-acyclic cover.

The construction in [42] uses for Â a product of the given A with a finite
group G which has a generator ge for every edge e ∈ ⋃̇αE

A
α and such that the

Cayley graph of G w.r.t. this set of generators has girth greater than 2�+ 1
(compare [1] for such groups) – much as the tree unfolding could be described
in terms of a product with the infinite free group of this set of generators.
Over the cartesian product A×G one puts an Eα-edge precisely from (a, h)
to (b, k) if e = (a, b) ∈ EA

α and k = h ◦ ge. In this fashion, any cycle in the
product projects to a cycle in the Cayley graph of G, and hence its length is
bounded from below by the girth of that graph.

The following is a simple auxiliary observation towards an �-local upgrading
of �-bisimulation equivalence to ≡q . A natural strategy for II can be based
on maintaining full isomorphism of the substructures generated by the paths
connecting the elements of the current configurations to the roots [14].

Observation 6.3.8 Let A, a ∼� A′, a′ be two directed τ -trees of depths � �

with roots a and a′, such that every node apart from the root is one of at least
q bisimilar siblings. Then A, a ≡q A′, a′. The same holds w.r.t. two-way �-
bisimulation equivalence in acyclic �-neighbourhoods A�N�(a) and A′�N�(a′)
with at least q equivalent siblings to choose from in every node.

Structures that have at least q equivalent successors/predecessors in every
node are easily obtained by taking products with {1, . . . , q} in the natural man-
ner. We write A �→ A⊗ q for this transformation, and identify a distinguished
element a with (a, 1) in the new structure were appropriate.
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Faithful bisimilar covers preserve this property, and can be used to achieve
local acyclicity and therefore local ≡q -equivalence, viz. ≡�q,0, by the above
observation.

Example: van Benthem–Rosen once more Combining the passage to A⊗ q
(boosting multiplicities) with a bisimilar unfolding, one obtains a variant proof
of Claim 6.3.4 (and through it Corollary 6.3.5 and its finite model theory
analogue, too). Let qr(ϕ) = q and � := 2q − 1. Let Â be the tree unfolding
from (a, 1) in A⊗ q (or the truncation of this unfolding glued with copies of
A if we want to deal with finite structures exclusively), similarly for A′, a′.

A, a ∼�

∼

A′, a′

∼

Â, â
∼�
≡�q,0 Â′, â′

Now≡�q,0 equivalence in the bottom horizontal follows from Observation 6.3.8;
preservation of ϕ along the bottom horizontal additionally uses Lemma 6.2.4
again.

Acyclic bisimilar covers really come into their own in upgradings to some
target level ≡�q,m of Gaifman equivalence with m > 0, i.e., if the first-order
property at hand really does express non-trivial global conditions on the exis-
tence or non-existence of certain local types – global in the sense of not only
involving the �-neighbourhood of the distinguished element.10

We look, as a typical example, at the characterisation of ML
−∀ ⊆ FO in terms

of invariance under≈ (global two-way bisimulation) [42]. Again, we stress the
expressive completeness phenomenon, as preservation of ML

−∀ under ≈ is
obvious.

Theorem 6.3.9 Both classically and in the sense of finite model theory: any
first-order formula ϕ(x) ∈ FO[τ ] that is preserved under ≈ is equivalent to a
formula of ML

−∀[τ ].

10 See [42] for a discussion that for any ϕ(x) ∈ FO that is invariant under disjoint sums (over
finite structures, or indeed over some other class which itself is closed under disjoint sums),
only ≡�q,m for m = 0, 1 can matter.
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This follows from the following claim, based on an upgrading of≈� to≡�q,m
in an explicit≈ preserving model transformation, under which in particular the
class of finite structures is closed.

Claim 6.3.10 If ϕ(x) ∈ FO[τ ] is preserved under ≈ (over finite structures),
then it is preserved under≈� and hence expressible in ML

−∀[τ ] at nesting depth
�, for some �. Any � such that ϕ is preserved under ≡�q,m for some q,m will
do, i.e., the Gaifman locality radius of ϕ gives a bound on the necessary modal
nesting depth.11

A ≈�

≈

A′

≈

•

boosting multiplicities

��

A⊗ q ≈�

≈

A′ ⊗ q

≈

•

locally acyclic covers

��

Â
≈�
≡�q,1

≈

Â′

≈

•

disjoint sums

��

m · Â ≈�
≡�q,m m · Â′ •

Proof. We just mention the upgrading steps towards the proof of the claim,
also indicated in the diagram below.

11 For simplicity, the modal nesting depth in ML
−∀ discounts ∀/∃ quantifiers, which w.l.o.g. can

be eliminated from within the scope of modal quantifications so that they only occur ‘on the
outside.’
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The first step, passage to a product with {1, . . . , q}, serves to boost all
multiplicities to at least q: every Eα successor or predecessor of any node
belongs to a group of at least q siblings related by automorphisms of the entire
structure.

The second step yields an �-acyclic bisimilar cover of the resulting structures
so that the �-neighbourhood of any node will be acyclic, and maintains the at-
least-q-similar-siblings property due to the preservation of in- and out-degrees
in faithful covers. In these circumstances, the ≈� relationship between the two
structures guarantees ≡�q,1 equivalence, by Observation 6.3.8.

Finally we can, if we wish, upgrade ≡�q,1 further to ≡�q,m, for any desired
level m, by just passing to m disjoint copies of the structures obtained so far.
This step guarantees that any local isomorphism type that is realised at all
is a member of a scattered set of at least m many nodes of the same local
isomorphism type, so that ≡�q,1 implies ≡�q,m. As pointed out above, however,
this last upgrading can be made redundant by showing right away that ϕ must
be preserved under some ≡�q,1 (i.e., m = 1 suffices).

It is clear that arguments of the kind explored here may have entirely different
relativisations from the classical arguments. While classical model theoretic
arguments based on compactness go through in restriction to any elementary
class of structures, the above argument goes through, for instance, in restriction
to any class of (finite) transition systems that is closed under ≈. But while
this upgrading argument, and hence the expressive completeness result, does
relativise to the class of all finite transition systems, it does for instance not
immediately relativise to the class of connected or rooted (finite) transitions
systems: clearly the last step does not preserve connectivity (and there is no
immediate reason why a first-order formula ϕ(x) that is invariant under≈ over
connected structures should be preserved by some≡�q,1), and even the first step
does not preserve rootedness.

6.3.2 Non-classical modal characterisation theorems

The general format
Analogues of the van Benthem theorem in classical and finite model theory
for stronger and in particular global forms of bisimulation in the style of
Theorem 6.3.9 are pursued in [42]. Many further natural variations of the
underlying class of (finite) structures are explored in [14], with an emphasis
also on methodological distinctions. In all these cases, concrete and explicit
model transformations adapted to the classes at hand are used, which in many
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cases also provide alternative routes to characterisations over some interesting
elementary classes of not necessarily finite structures.

We highlight the general format of a characterisation theorem for a fragment
L of FO of this kind. Let L ⊆ FO be a fragment of FO with
(1) equivalences 	q for the relation of L-equivalence up to rank q, which we

assume to have finite index; it follows that 	q classes are L-definable at
rank q.
(	q is induced by the q-round game GL

q .)
(2) the common refinement of the (	q )q∈ω, 	ω, capturing ≡L.

(	ω is induced by GL
ω.)

(3) the full infinitary equivalence 	 associated with GL
∞.

The assumptions that each 	q has finite index and that≡L is the limit of these
finitary game equivalences reflect the ‘finitary nature’ of L. In this context
we want to show, over a given class C of τ -structures, that the following are
equivalent for ϕ(x) ∈ FO[τ ]:

(i) ϕ is preserved under 	 over C, i.e.,
for all A, a and A′, a′ in C: A, a 	 A′, a′ ⇒ (

A |= ϕ[a] ⇔ A′ |=
ϕ[a′]

)
.

(ii) ϕ is equivalent over C to a formula ϕ̃ ∈ L[τ ], i.e.,
there is some ϕ̃ ∈ L[τ ] s.t. for all A, a in C: A |= ϕ[a] ⇔ A |= ϕ̃[a].

It is worth looking at the two implications separately:

Preservation, (ii) ⇒ (i), is a trivial consequence of the game analysis of L-
equivalence (our assumptions above). Moreover, the validity of this implication
over the class of all structures trivially implies its validity in restriction to any
subclass C. In particular a preservation statement trivially implies its finite
model theory analogue.

Expressive completeness, (i) ⇒ (ii), is the crucial and non-trivial part of the
equivalence, which is sensitive to the class C. In particular, expressive complete-
ness does not generally relativise to subclasses, and a classical result cannot
generally be expected to persist in the sense of finite model theory.12

If 	ω coincides with 	∞ inω-saturated structures, as is typically the case,13

then expressive completeness of L for first-order properties that are preserved

12 An easy example of a known failure of the finite model theory version of a classically valid
expressive completeness result close to our concerns is provided by ≡2∞ and FO2: the class of
all finite linear orderings is closed under ≡2∞ within the class of finite structures, but not
definable in FO2.

13 Our discussion of saturation and the Hennessy–Milner property in section 6.2 and especially
section 6.2.4 indicates that this is true whenever the corresponding OL(A) is uniformly
FO-interpretable over A.
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under 	 over the class of all τ -structures follows from the assumptions (along
the lines of the classical proof outlined for van Benthem’s theorem above, for
instance).

Under the assumptions made, expressibility of ϕ in L (over C) is equivalent
to preservation of ϕ under some level of 	� (over C). Therefore, the expressive
completeness of L for 	 invariance over C is equivalent (for any C) to the
implication

ϕ(x) preserved under 	 (over C)

⇒ ϕ(x) preserved under 	� (over C) for some � ∈ ω,
which is a particular ‘compactness property’ that may or may not be valid,
depending on the nature of 	 and C. The classical manner of establishing
this compactness property, as well as the alternative explicit and game-oriented
constructions indicated above may both be cast as upgradings of equivalences,
albeit in orthogonal directions. The juxtaposition of the generic diagrams below
may serve to make this distinction apparent. While the classical upgrading
involves a transformation of structures up to full FO equivalence (passage
to ω-saturated elementary extensions say) to boost 	ω to 	, the alternative
upgrading consists of a transformation of structures up to full (infinitary) 	 to
boost a concrete finitary level of 	� to an approximate level ≡̇ of first-order
equivalence that is good enough to preserve ϕ. In the examples encountered
here, ≡̇ is either some level≡q or≡�q,m. The following two sections will review
and summarise some of the results obtained along these lines in [14].

A, a ω

≡

A , a

≡

A∗, a (A )∗, a

A, a A, a

Â, a
≡̇
ϕ

Â , a

Explicit upgrading through local control
By approximating FO equivalence by a concrete level of Gaifman equivalence
we shift the emphasis to local control over FO equivalence. This allows us
to make use of explicit model constructions that lead to locally acyclic struc-
tures, as in Lemma 6.3.7, which means that locally ≈� can be upgraded to ≡q
(if multiplicities have been boosted in preparation) via Observation 6.3.8. For
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characterisations of∼∀ invariance rather than≈ (global but only forward bisim-
ulation, related to ML∀), a correspondingly higher level of global �0-bisimulation
equivalence can first be upgraded (in a transformation up to full global forward
bisimulation ∼∀) to ≈�1 , which can then be further upgraded to some ≡�q,m as
above. In this manner, for example the expressive completeness results below
are proved in [14].

A rooted structure is a τ -structure A, a with distinguished element a as a
root from which all elements of A are reachable on directed paths. For tree
structures compare section 6.1.2. Note that even the class of not necessarily
finite rooted structures is not elementary. Also note that for rooted structures,
the full infinitary equivalences ∼∀ and ∼ coincide at the roots, while the finite
levels clearly do not.

Theorem 6.3.11 ML∀ is expressively complete for first-order properties that
are preserved under ∼ over the following classes C of structures:

(i) the class of rooted structures.
(ii) the class of finite rooted structures.

(iii) the class of tree structures.
(iv) the class of finite tree structures.

Another natural and classically important class of transition systems (as
Kripke structures in the context of knowledge representation) is the class of
equivalence structures: τ -structures in which all transition relations Eα are
interpreted as equivalence relations. And even though transitivity requirements
tend to trivialise locality analysis (also compare the next section), equivalence
structures are amenable to an analysis and to upgrading transformations based
on locally acyclic covers. Here FO interpretations can be used to adapt both
the construction of suitable covers and the analysis of bisimulation invariant
FO properties. As far as local acyclicity in bisimilar covers is concerned, the
following can be obtained from Lemma 6.3.7 via simple FO translations.

Lemma 6.3.12 Every finite equivalence structure admits, for every �, a faithful
bisimilar cover by some finite equivalence structure in which

(i) any two equivalence classes (w.r.t. to distinct Eα) intersect in at most one
element,

(ii) all cycles of lengths up to 2�+ 1 stay within a single Eα class for some
α.

Over such essentially �-acyclic structures, an analogue of Observation 6.3.8
is available to show that global �-bisimulation can be upgraded to≡�q,m for any
required level of q and m. Therefore, ∼ invariance implies ∼� invariance also
over the class of finite equivalence structures.
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Corollary 6.3.13 ML∀ is expressively complete for first-order properties that
are preserved under global bisimulation∼∀ over the class of finite equivalence
structures.

Explicit upgrading through decomposition
Locality arguments cannot be used to great effect over structures that trivialise
Gaifman locality. For instance, the Gaifman graph of directed transitive trees
(trees with a partial order) has diameter 2, and ≡�q,m is essentially just ≡q , for
� � 1. On some related and particularly interesting classes of transition systems
with one transitive transition relation, however, one may instead base expressive
completeness proofs for modal fragments on another classical constructive
approach to the analysis of games: composition arguments w.r.t. order. We saw
a glimpse of this in the Ehrenfeucht–Fraı̈ssé analysis of finite linear orderings
in section 6.2.2 (Lemma 6.2.3).

We consider the example of rooted, irreflexive transitive tree structures with
a single transition relation E: A = (A,EA, (PA

i )) with distinguished root a,
with a transitive and irreflexive partial order relation EA such that the set of
E-predecessors of any element b ∈ A is well-ordered by EA with minimal
element a. For succinctness we refer to such structures as ≺-trees. The class
of all ≺-trees (finite and infinite ones) is non-elementary (due to the well-
foundedness condition); and so is the class of all finite ≺-trees (due to the
finiteness condition).

We review the key decomposition idea from [14] that allows us to upgrade �-
bisimulation equivalence between (finite) ≺-trees A, a ∼� A′, a′ to quantifier-
rank q first-order equivalence ≡q through a transformation that preserves full
bisimulation equivalence.

In a preparatory step, we boost multiplicities and unravel in order to achieve
some homogeneity w.r.t. paths in ≺-trees.

For a given q let the ≺-trees A
q

0 and A
q

q−1 (an expansion of A
q

0 by colours
for certain ≡q−1 types) be obtained from A, a as follows.

The universe and the interpretation of the unary predicates of A
q

0 are those
of the bisimilar unfolding of A⊗ {1, . . . , q} from one of the representatives
of the root a (say we identify a with (a, 1)); for its transition relation we pass
to the transitive closure of the transition relation in the unfolding. It is easily
checked that this transformation leads to a bisimilar≺-tree A

q

0 , which is finite if
A is. Even for infinite A the≺-tree A

q

0 has predecessor sets that are finite linear
orderings rather than arbitrary well-orderings. In addition, due to the unfolding
step in its construction, Aq

0 has the following useful representation property for
its paths. Any path a0 = a, a1, . . . , an from the root in A

q

0 , can be matched with
some full path â0 = a, â1, . . . , ân consisting of the full predecessor set of the
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target node ân in A
q

0 , such that ai and âi are not only bisimilar but even are the
roots of isomorphic subtrees.

Towards an inductive analysis of ≡q , we use A
q

q−1, which is the expansion
of A

q

0 with new unary predicates that colour every node with the ≡q−1-class of
the subtree rooted at this node in A

q

0 .
In order to show how suitable levels of �-bisimulation between≺-trees A, a

and A′, a′ can be upgraded to ≡q equivalence in bisimilar ≺-trees, we firstly
replace A and A′ by the ≺-trees A

q

0 , a ∼ A, a and (A′)q0, a
′ ∼ A′, a′. It then

suffices to show, in the context of an induction on q, that for some sufficiently
large � (depending on q):

(∗) A
q

q−1, a ∼� (A′)qq−1, a
′ ⇒ A

q

0 , a ≡q (A′)q0 , a
′.

For this, a composition argument can be used towards a reduction to the
analysis of Ehrenfeucht–Fraı̈ssé games over finite coloured linear orderings.
We associate with an element b in Aq, a the coloured finite linear ordering Ib

induced on the interval [a, b] in Aq ; similarly I′b′ with any b′ in (A′)q, a′. Then

Ib, a, b ≡q−1 I′b′ , a
′, b′ ⇒ A

q

q−1, a, b ≡q−1 (A′)qq−1, a
′, b′,

due to compositionality of strategies in the games. A winning strategy for II in
the remaining (q − 1)-round game on the ≺-trees can be based on
(a) a strategy in the (q − 1)-round game on the induced linear orderings: this

provides a match between subtrees rooted along the coloured paths [a, b]
and [a ′, b′].

(b) strategies to play within colour-matched subtrees based on their ≡q−1

equivalence.
Therefore, it suffices to guarantee that for every b there is some b′ (and

vice versa, for every b′ a b) such that Ib, a, b ≡q−1 I′b′ , a
′, b′, provided only

that A
q

q−1, a ∼� (A′)qq−1, a
′. A bound on such an � can now be extracted from

the Ehrenfeucht–Fraı̈ssé game on finite coloured linear orderings. The follow-
ing is a consequence of the compatibility of the game with ordered sums or
concatenation (we leave it as a nice exercise; see [15] and also [14] for details).

Observation 6.3.14 There is a bound N (depending on q and the number
of colours) such that any finite coloured linear ordering (with constants for
the first and last elements) of length greater than N has some proper ≡q−1

equivalent substructure.

In the case of the finite coloured orderings Ib this means that, up to ≡q−1,
only those of lengths up to N need to be taken into account (any substructure
of an Ib is realised as Ib̂ for suitable b̂ by the homogeneity property of A

q

q−1).
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But the isomorphism types of (substructures of) Ib of size up to N are clearly
governed by the ∼N−1 type of A

q

q−1, a, whence we get (∗) for � = N − 1.
Based on this decomposition approach, the following are obtained in [14].

Theorem 6.3.15 ML is expressively complete for first-order properties that
are preserved under bisimulation over the following classes C of partially
ordered trees:

(i) the class of irreflexive transitive trees.
(ii) the class of finite irreflexive transitive trees.

While the classes of rooted reflexive transitive structures or reflexive tran-
sitive trees display a similar behaviour [14], the picture changes if reflexivity
is not uniformly prescribed. For transitive tree-like structures in which some
nodes may be reflexive, a marked difference between finite and not necessarily
finite structures becomes important. The first-order formula

ϕ(x) = ∃y(Exy ∧ Eyy),

expressing accessibility of a reflexive node, is
(a) invariant under bisimulation over the class of finite transitive structures, but
(b) not invariant under bisimulation over the class of all transitive structures.
Point (b) is illustrated by the simple example of the infinite irreflexive unfolding
of a structure consisting of a single reflexive node. For (a) consider finite
transitive structures A, a ∼ A′, a′ and assume that A |= ϕ[a]. Consider a play
of I from a to some reflexive b in A followed by a sequence of stationary moves
at b (b is reflexive) that is long enough to force the sequence of responses by
II to visit some node b′ twice: as b′ is on a cycle, it is reflexive.

[14] shows that an extension of basic modal logic with a modality as sug-
gested by ϕ above, asserting that there is some reflexive successor satisfying
ψ , is expressively complete for bisimulation invariant first-order properties
over finite transitive tree-like structures. For expressive completeness over the
wider classes of all finite transitive structures a stronger variant of this new
modality is required, which also captures reachability of an E-clique (rather
than a single reflexive node) realising several distinct formulae. As indicated
above, such extra modalities are necessary in the finite, but not compatible with
bisimulation in transitive structures in general. (In fact it is not finiteness, but
the absence of infinite strictly forward-directedE-paths, that matters, see [14].)

Over finite transitive structures and some related restricted classes of transi-
tive transition systems, the decomposition based analysis in [14] also extends
from first-order to monadic second-order logic.
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Among the long open questions in this area remain the finite model theory
status of

– the Janin–Walukiewicz result [34] that the modal µ-calculus is expres-
sively complete for monadic second-order properties preserved under
bisimulation, and

– expressive completeness of the guarded fragment for the first-order prop-
erties preserved under guarded bisimulation, established in the classical
setting in [2].

The second issue, concerning guarded bisimulation as a generalisation of
modal bisimulation, also leads over to the following section.

6.4 From graphs to hypergraphs

The guarded fragment of FO and, more fundamentally, the concept of guarded
bisimulations (compare section 6.2.3) point to a hypergraph structure induced
by a relational structure, over and above the graph structure embodied in the
Gaifman graph. With the relational τ -structure A we can associate the hyper-
graph of guarded subsets of A, whose universe is the universe A of A and
whose hyperedges are the guarded subsets s ⊆ A of A:

H (A) = (
A, {s ⊆ A : s a guarded subset }).

Generally, with any hypergraph H = (A, S), one also associates the graph
over the same universe A whose edge relation is precisely the union of the
cliques induced by the hyperedges of H :

G(H ) = (A,E) where E =⋃
s∈S{(a, b) : a, b ∈ s, a �= b}.

In the case of the hypergraph H (A) this just returns the Gaifman graph
G(A).

The graphG(H ), however, contains less information, since not every clique
in G(H ) need be induced by a hyperedge. The complete graph on three ele-
ments, K3, for instance, occurs as G(H ) for H = K3 as well as for any hyper-
graph that has the full set of three elements as one of its hyperedges. In the
classical literature on hypergraphs [7], a hypergraph H such that all cliques in
G(H ) are induced by hyperedges is called conformal; conformality plays a role
in acyclicity criteria for hypergraphs. In the next section we briefly look at the
natural notion of hypergraph bisimulation and discuss corresponding notions
of acyclicity and unfoldings.
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6.4.1 Hypergraph bisimulation

If we disregard the local relational content in guarded bisimulations, i.e., if we
relax the soundness condition on positions in the game from local isomorphism
of relational substructures to just local bijections, we obtain a natural notion
of hypergraph bisimulation. Guarded bisimulations become a special case of
hypergraph bisimulations between the associated hypergraphs of guarded sub-
sets. For questions of acyclicity and of tree decomposability, the actual local
relational content does not matter and it makes sense to work with the more
fundamental notion of hypergraph bisimulation.

The hypergraph bisimulation game The positions in the bisimulation game
on hypergraphs H = (A, S) and H ′ = (A′, S ′) are local bijections ρ : s →
s′ between hyperedges s ∈ S and s ′ ∈ S ′. The challenge/response exchange
between players I and II in a single round, from position ρ : s → s′, is played
as follows:

– I selects either some hyperedge t ∈ S or some hyperedge t ′ ∈ S ′;
– II has to respond with a position σ : t → t ′ (involving the hyperedge

proposed by I and a match with a hyperedge in the opposite structure)
such that ρ agrees with σ on the overlap (between s and t if I chose t , or
between s ′ and t ′ if I chose t ′).

II loses if she has no such response. Otherwise, winning conditions in the
q-round game, the finite-round game and the infinite game are as usual. We
correspondingly define equivalences in terms of winning positions for II.

Definition 6.4.1 For hypergraphs H = (A, S) and H ′ = (A′, S ′): H, a ∼q
H, a′ if the bijection ρ : a �→ a′ is a winning position in the q-round bisimu-
lation game on the hypergraphs H and H ′. Equivalences H, a ∼ω H ′, a′ and
H, a ∼ H ′, a′ are similarly defined w.r.t. the finite-round and infinite games.

Definition 6.4.2 A bisimilar cover of the hypergraph H = (A, S) by the
hypergraph Ĥ = (Â, Ŝ) is a map π : Â→ A such that

(i) π is injective in restriction to every ŝ ∈ Ŝ.
(ii) S = {π (ŝ) : ŝ ∈ Ŝ}.

(iii) π comprises a winning strategy for II in the infinite bisimulation game in
the sense that II can maintain positions in which hyperedges are matched
through π .

Consider the special case of H = H (A), the hypergraph of guarded subsets
of the τ -structure A. It is not hard to see that any bisimilar cover π : Ĥ → H
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by a hypergraph Ĥ = (Â, Ŝ) induces a guarded cover

π : Â→ A,

where Â is simply obtained by pulling the relational interpretation onA back to
Â in such a way that every restriction of π to a hyperedge of Ĥ becomes a local
isomorphism. One checks that this leads to a well-defined interpretation of a
τ -structure over the universe Â, for which indeed alsoH (Â) = Ĥ . In particular
π now comprises a winning strategy for II in the infinite guarded bisimulation
game on Â and A (compare (iii) above). These simple considerations sug-
gest to view hypergraph bisimulation just as ‘guarded bisimulations without
relations’ – or to view guarded bisimulation as a relational incarnation of a
possibly more fundamental notion of hypergraph bisimulation.

6.4.2 Tree-likeness: acyclicity criteria

Full acyclicity (in the hypergraph sense) can be achieved, up to bisimulation,
through a process of bisimilar unfolding in close analogy with the tree unfolding
of transition systems. We present this basic construction before relating it to
the relevant notions of acyclicity and tree-likeness that it exemplifies.

Bisimilar hypergraph unfolding Consider a hypergraph H = (A, S). We
want to find a tree-like hypergraph Ĥ that provides a bisimilar cover for H ;
while overlaps between hyperedges have to be reproduced in Ĥ , it should
otherwise and in particular globally be as free (free of incidental overlaps)
as possible. The construction follows the idea of a tree unfolding of a transi-
tion system, but instead of nodes, subsets need to be joined – joined through
identifications in overlaps as prescribed in H , compare [25].

WithH firstly associate the tree S∗ of all finite sequences of hyperedges, with
a successor relation linking a sequence σ ∈ S∗ to its immediate extensions σˆs
for s ∈ S. We obtain the universe Â of the desired hypergraph Ĥ as a quotient
of the following auxiliary set D, which may be seen as a disjoint union of
path-labelled copies of hyperedges s ∈ S:

D := {
(σˆs, a) ∈ S+ × A : a ∈ s} ⊆ S∗ × A.

In this set, we want to identify same elements in nodes that are labelled with
next-neighbour paths. Let =̇ be the reflexive, symmetric, transitive closure of
the relation that links (σ, a) to (σˆs, a) in D. In the following we write [σ, a]
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for the =̇ equivalence class of (σ, a) ∈ D. We put

Â := D
/ =̇,

Ŝ := {
ŝσ : s ∈ S, σ ∈ S∗},

where ŝσ = {[σˆs, a] : a ∈ s} for σ ∈ S∗, s ∈ S.
One checks that π : Ĥ → H, [σ, a] �→ a is well-defined and a bisimilar

hypergraph cover. In line with the above remarks, if the same construction is
applied to the hypergraph H = H (A) associated with the guarded subsets of a
τ -structure A, then the obvious expansion of Â to a τ -structure yields a guarded
bisimilar cover of A. In both cases, the tree structure of S∗ also provides a tree
decomposition of the new hypergraph Ĥ , or of the τ -structure Â.

Definition 6.4.3 A tree decomposition of H = (A, S) consists of a tree T
together with a surjective map ρ : T → S such that for every a ∈ A the subset
{t ∈ T : a ∈ ρ(t)} ⊆ T is connected in T .

It may be intuitive that the existence of a tree decomposition is an acyclicity
condition. Consider a tree decomposition ρ of a finite hypergraph H with
finite tree T . One can use ρ to reduce H to the empty hypergraph by repeated
application of the following two reduction steps

– removal of an element a ∈ A that is covered by at most one hyperedge
(more precisely, a is removed from A and from the hyperedge covering
it).

– removal of a hyperedge s that is contained in some other hyperedge that
is retained.

For the claimed reduction, essentially just proceed from the leaves of T : a leaf
of T is mapped to a hyperedge that is either contained in the hyperedge at
its predecessor node, or it contains some elements not covered by any other
hyperedge. Removal of hyperedges or elements based on this procedure is
compatible with maintaining a tree decomposition.14

If we transfer this notion of a hypergraph tree decomposition to relational
structures (cf. Definition 6.5.1 for tree decompositions in that sense), there
is an important difference: the usual notion of tree decomposition is more
liberal in allowing arbitrary subsets of A to be associated with the nodes of
the representation tree, while here we would only admit guarded sets. A cycle
(viewed as a hypergraph with size 2 hyperedges) does not admit a hypergraph
tree decomposition, but it does admit tree decompositions based on subsets of

14 Note that to deal with infinite hypergraphs, it is necessary to phrase the reduction condition for
finite sub-hypergraphs rather than the full graph; e.g., a two-way infinite edge chain is not
decomposable as such.
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size 3. We return to ordinary tree decompositions of relational structures in
section 6.5.1 below.

It follows that every logic invariant under guarded bisimulation (i.e., whose
formulae are preserved under guarded bisimulations) has a bounded treewidth
model property or generalised tree model property [21]. This property is of
great value in the algorithmic model theory of GF and of its extensions that
still are sublogics of GF∞ like guarded fixpoint logic [24], because it allows
a reduction of satisfiability issues to the model theory of trees, via a coding of
models in tree representations.

Proposition 6.4.4 (Grädel) GF has the following generalised tree model
property: any satisfiable ϕ ∈ GF[τ ] is satisfiable in a model that admits a tree
decomposition w.r.t. guarded subsets, and in particular one of treewidth less
than the width of τ .15

Returning to hypergraphs, the classical criterion for hypergraph acyclicity
is the following. As shown in [6] it coincides (for finite hypergraphs) with
hypergraph tree decomposability in the sense of Definition 6.4.3 above, as well
as with several other criteria. For classical hypergraph theory compare [7].

Definition 6.4.5 A hypergraph H = (A, S) with associated graph G(H ) is
called acyclic if it satisfies the following two conditions:

(i) conformality: every clique in G(H ) is contained in some hyperedge of
H .

(ii) chordality: every cycle of length at least 4 inG(H ) has a chord: there are
two nodes that are not next neighbours along the cycle that are linked (by
an edge of G(H )/hyperedge of H ).

Clearly hypergraph unfoldings are acyclic in this sense, so that every hyper-
graph admits a bisimilar cover by an acyclic hypergraph. Conformality can
be achieved in finite conformal bisimilar hypergraph covers according to [31];
this, however, had left open the following for quite some time.

Question 6.4.6 Does every finite hypergraph admit bisimilar covers by finite
conformal and �-acyclic hypergraphs, for all �?

Recent progress [43, 44] shows that the answer is yes for a natural and
seemingly strongest possible notion of bounded acyclicity which forbids short

15 Treewidth is defined to be one less than the maximal size of sets needed in a tree
decomposition, here bounded by the width of τ minus 1.
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chordless cycles.16 The following example shows that acyclicity cannot be
achieved even locally in finite bisimilar hypergraph covers.

Example Consider a cartwheel hypergraphHn consisting of an exterior cycle
of nodes a1, . . . , an, a1 plus a central node a, and with hyperedges {a, ai, ai+1}
for i ∈ Z/nZ. The exterior cycle of length n is without chord, and any bisimilar
cover of Hn will still have cycles in the 1-neighbourhood of any node related
to a, albeit possibly longer cycles.

The positive resolution to Question 6.4.6 is also the starting point for proving
the finite model theory analogue of the classical characterisation theorem [2] for
GF in [43]. Previously, only the graph case, or the case of GF[τ ] for relational
vocabularies of width 2, had been settled positively in [42].

6.4.3 Excursion: extension properties

The basic idea towards the construction of finite conformal bisimilar hypergraph
covers in [31] is quite simple – and surprisingly contrary to the intuition of an
unfolding. It essentially focuses on the footprints of forbidden cliques in the
associated graphG(Ĥ ). We illustrate the key idea with a (generic) local example
of the task.

Let, for instance, H = (A, S) be a finite hypergraph with a tuple of pair-
wise distinct nodes a = (a1, . . . , an) such that [a] = {a1, . . . , an} is a clique
in G(H ) not contained in any hyperedge of H . We want to construct a bisim-
ilar cover π : Ĥ → H by a finite hypergraph Ĥ = (Â, Ŝ) such that no lift
â = (â1, . . . , ân) with âi ∈ π−1(ai) forms a clique in G(Ĥ ). Let A0 := A \ [a]
and put

Â := A0 ∪ ([a]× {1, . . . , n− 1}); π�A0 = id, π(aj , i) = aj .

We now set Ŝ to be the set of all subsets ŝ ⊆ Â such that
(i) π�ŝ is a bijection onto some s ∈ S.

(ii) for (aj , i), (aj ′ , i ′) ∈ ŝ, if (aj , i) �= (aj ′ , i ′), then i �= i ′:
any two distinct nodes in ŝ above a must have distinct tags in {1, . . . ,
n− 1}.

On one hand, one checks that π : Ĥ → H is a bisimilar cover. Crucially, the
back-and-forth conditions do not give rise to requirements (of the back kind)
to produce a hyperedge ŝ whose projection to A would cover all of [a]: this
is clear, since [a] is not contained in any hyperedge of H . On the other hand,

16 A weaker notion of acyclicity is used to explore the finite model theory of the guarded and
clique guarded fragments in [5].
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condition (ii) rules out the possibility of a clique in G(Ĥ ) above a: if each pair
of components in â were to be linked by a hyperedge, then they would have
to have pairwise distinct tags, which is impossible simply by the pigeon-hole
principle.

A uniform application of this idea, for all forbidden cliques simultaneously,
yields a finite conformal cover which moreover has useful automorphism prop-
erties [31].

An automorphism of a hypergraph is a permutation of its universe that
preserves the set of hyperedges. We say that the cover π : Ĥ → H lifts auto-
morphisms of H if for every automorphism ρ of H there is an automorphism
of Ĥ such that ρ ◦ π = π ◦ ρ̂. The cover is homogeneous, if for every pair of
hyperedges ŝ1, ŝ2 ∈ Ŝ above the same s ∈ S, there is some automorphism σ of
Ĥ mapping ŝ1 to ŝ2.

Lemma 6.4.7 Every finite hypergraph H = (A, S) admits a bisimilar cover
π : Ĥ → H by some finite conformal hypergraph Ĥ = (Â, Ŝ).

Every finite relational τ -structure A admits a guarded cover by some finite
τ -structure Â whose hypergraph of guarded subsets H (Â) is conformal.

Moreover, the cover can be chosen homogeneous and such that it lifts all
automorphisms of the base structure.

Herwig–Lascar extension theorems, EPPA A local automorphism of a
τ -structure A is a partial bijection p of A that is an isomorphism between
the substructures induced on dom(p) and image(p). The following extension
theorem for local automorphisms is from [27], also compare [29].

Theorem 6.4.8 (Herwig) Let A0 be a finite τ -structure. Then there is a finite
extension A1 ⊇ A0 such that every local automorphism of A0 extends to a full
automorphism of A1. A1 can be chosen such that every guarded subset of A1

is the image under some automorphism of A1 of a guarded subset of A0.

The last condition is in the given situation in fact equivalent to saying that,
for every relation R ∈ τ :

RA1 =⋃
ρ∈Aut(A1) ρ(RA0 ).

If A′1 at first only satisfies the automorphism extension property, and
G′ = Aut(A′1), then replacing RA′

1 by
⋃
ρ∈G′ ρ(RA0 ) preserves the automor-

phism extension property and yields a structure that also satisfies the additional
requirement on guarded subsets. A combination with Lemma 6.4.7 then gives
the following strengthening of the theorem [31].
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Corollary 6.4.9 For every finite A0 there is a finite extension A2 ⊇ A0 such
that every local automorphism of A0 extends to a full automorphism of A2 and
such that every clique in G(A2) is the image under some automorphism of A2

of some clique in G(A0).

Proof. Let A1 ⊇ A as in Theorem 6.4.8. Let H1 = (A1, S) be the hypergraph
with hyperedges

S = {
ρ(A0) : ρ ∈ Aut(A1)

}
.

We may now apply Lemma 6.4.7 to obtain a conformal bisimilar coverπ : Ĥ →
H1 with hypergraph Ĥ = (Â, Ŝ). The desired τ -structure A2 = Â is obtained
by interpreting the relations over the universe Â such that, for every ŝ ∈ Ŝ,
the local bijection π�ŝ : ŝ → s becomes a local isomorphism between Â�ŝ and
A1�s. A0 may be isomorphically embedded into this new structure Â by singling
out any particular ŝ ∈ Ŝ above s = A0 ∈ S. The automorphism properties of
the cover as stated in Lemma 6.4.7 guarantee that the local automorphisms of
the embedded A0 still extend to automorphisms of Â. AndG(Â) does not have
any cliques other than those that are unavoidable automorphic copies of cliques
already present in the embedded A0: this is a consequence of the conformality
of Ĥ and the fact thatG(Â) consists of the union of theG(Â)�ŝ for ŝ ∈ Ŝ, each
of which is an isomorphic copy of G(A0) by construction.

Further corollaries of this are (simpler proofs of) the extension theorem for
local automorphisms within the class of finite triangle-free graphs [27], the
class of finite clique-free graphs [28], or the class of finite relational structures
with conformal hypergraphs of guarded sets.

The corollary as stated has also been employed in [31] to yield a very
transparent proof of the finite model property of the clique guarded fragment,
just as Theorem 6.4.8 itself yields a very natural proof of the finite model
property for basic GF first given by Grädel [21].

6.5 Locality and special classes of relational structures

6.5.1 Tree-decompositions and treewidth

Bounded treewidth has emerged as one central notion of ‘tameness’ or ‘well-
behavedness’ in finite relational structures, which is useful both algorithmically
and model theoretically. For instance, model checking for first-order or monadic
second-order formulae becomes more tractable if the input is restricted to finite
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structures of bounded treewidth. But also decidability issues, in particular sat-
isfiability, can often be linked to a priori bounds on the treewidth of target
models – a phenomenon best known, and in its purest form, for logics with the
tree model property, e.g., due to bisimulation invariance. As pointed out above,
the bounded treewidth model property of logics invariant under guarded bisim-
ulation extends this benefit to richer settings. Moreover, bounded treewidth has
featured in recent analogues to classical expressive completeness issues over
finite structures. While bounded treewidth certainly is not the only structural
restriction that helps to overcome well known obstacles in finite model theory,
it seems to occupy a central place in such concerns. We here mainly want to
discuss several such results, especially results concerning expressive complete-
ness for fragments of FO, in the light of connections with techniques stemming
form the fundamental notion of Gaifman locality.

Bounded treewidth is also at the center of Stephan Kreutzer’s chapter [39]
in this volume, where the algorithmic impact of bounded treewidth, among
other structural criteria, is treated in depth. There the reader will also find a
much more detailed account of the connections between bounded treewidth and
model checking complexities for first- and monadic second-order logic than
what is sketchily hinted at below.

Relational structures of bounded treewidth We have already come across
a special form of tree decompositions in section 6.4.2, cf. Definition 6.4.3, and
now briefly review the general notion of a tree decomposition underlying the
definition of treewidth.

Definition 6.5.1 A tree decomposition of the finite relational structure A

consists of a tree T together with a map ρ : T → P(A) associating subsets of
A with the nodes of T in such a manner that

(i) every relational ground atom of A is contained in some ρ(t).
(ii) for all a ∈ A, {t ∈ T : a ∈ ρ(t)} ⊆ T is connected in T .

The width of the tree decomposition (T , ρ) is maxt∈T |ρ(t)| − 1.
The treewidth of A, tw(A) is the minimal width among all tree decompositions
of A.
Ck[τ ] := {

A : tw(A) � k
}

denotes the class of finite τ -structures of treewidth
up to k.

Note that (i) is the same as to say that the subsets used in a tree decomposition
of A must cover the guarded subsets.17 The correction by −1 in the definition

17 That they must not themselves be guarded subsets accounts for the difference in comparison
with Definition 6.4.3; a tree decomposition of A is a hypergraph decomposition of some
hypergraph that may be coarser than the hypergraph H (A) of guarded subsets.
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of treewidth is so that trees get treewidth 1 (rather than 2, which is the required
patch size).

Model checking complexity For the complexity of the model checking prob-
lem for some logic L over the class C, one distinguishes

– combined complexity, where both ϕ ∈ L and A ∈ C vary, and the input
size is the sum of the input sizes, |ϕ| + ||A||;18

– data complexity, where the formula ϕ ∈ L is fixed, and the variation is in
the structure, with input size measure ||A||;

– expression complexity, with fixed A and varying ϕ ∈ L.
The following are some well known cornerstones for the model checking

complexity of monadic second-order logic MSO, FO and some fragments of
FO considered above:

– MSO model checking over Ck (treewidth k structures) has linear com-
bined complexity due to a fundamental theorem of Courcelle [12], where
“linear” refers to a complexity in O(||A|| · |ϕ|). On the class of all finite
graphs, on the other hand, MSO clearly captures graph properties at any
level of the polynomial hierarchy (this is w.r.t. data complexity).

– FO-formulae have logarithmic data complexity (i.e., poly-logarithmic in
||A|| or |A|, but with syntactic parameters of the formula in the exponent)
[15, 33].

– The combined complexity of FO model checking is complete for Pspace
(this is even true for formula complexity over the fixed naked two-element
structure, by a simple reduction of the Pspace complete satisfiability
problem for quantified boolean formulae).

– The combined complexity for model checking FOk , on the other hand,
is complete for Ptime for every k � 2, and even linear (in the sense of
O(||A|| · |ϕ|)) for ML as well as for GF, and still Ptime complete even
for ML, [48, 23, 8, 19].

Interestingly, measures of tree-likeness improve model checking
complexities – both on the side of the structure (e.g., model checking over
bounded treewidth structures) and on the side of the formula input (e.g., model
checking conjunctive queries with templates of bounded treewidth). We just
mention some key results with pointers to the literature, and again refer to [39]
for a more thorough treatment of some of these.

18 ||A|| stands for the size of a succinct encoding of the relational structure A. E.g., for graphs A

in an adjacency list encoding, ||A|| ∈ O(n2), but it can be sub-quadratic in the number n = |A|
of vertices for graphs with few edges. Finer complexity accounts need to be based on a random
access model of computation, so that access to the input structure does not distort the real
algorithmic content of formula evaluation.
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FO data and combined complexity and local constraints For FO data
complexity, Frick and Grohe [16] establish a linear bound over any class C
of structures whose treewidth is locally bounded. A class C of structures has
locally bounded treewidth if the treewidth of �-neighbourhoods in structures
from C is uniformly bounded by some function in the radius �. The underlying
model checking algorithm is based on a presentation of the formula in Gaifman
form. With this, the checking of ‘global’ structural properties reduces to local
evaluation of FO formulae in �-neighbourhoods and a graph theoretic core
algorithm that checks for existence of scattered tuples in the Gaifman graph,
vertex-coloured according to the local pre-processing. For generalisations and
more recent successes of this approach to first-order model checking complexity
in classes tamed by local conditions on graph invariants see Grohe’s survey
[26] as well as Kreutzer’s chapter [39] in this volume, with a view also to the
parameterised complexity of the combined model checking problem.

Combined complexity for fragments of FO The combined complexity of
conjunctive query evaluation has been studied intensively, with a natural moti-
vation central to database theory and with interesting connections to constraint
satisfaction problems. Also in these investigations tree-likeness (in this case of
syntactic features of very special FO formulae) plays a major role. Conjunc-
tive query evaluation is the model checking of existential positive prenex FO
formulae whose quantifier-free core is just a conjunction of relational atoms,
ϕ = ∃x

∧
i αi(xi) with atomic αi (in subtuples of variables xi of x). The link

with homomorphism problems and hence with constraint satisfaction (see for
instance [36, 38]) is natural and straightforward. The desired assignment to
variables x over the τ -structure A is a homomorphism from a τ -structure Xϕ

induced by the conjuncts αi on the set of variables [x] into A,

β : Xϕ
hom−→ A.

Note that while the data complexity is poly-logarithmic for each individual
(first-order) ϕ or X, in general one expects an exponential dependency on the
number of variables in ϕ or on the size of X.

It turns out that the hypergraph H (Xϕ) holds one key to better bounds on
the complexity of the associated homomorphism/query evaluation problems.
In fact ϕ is (equivalent to a formula) in GF if H (Xϕ) is acyclic, in which
case model checking becomes linear in |ϕ|. Indeed, a tree decomposition of
H (Xϕ) yields a translation into GF and hence a reduction to the linear model
checking of GF. This generalises to ϕ with a fixed bound on the treewidth of Xϕ ,
where the model checking can be based on the auxiliary acyclic hypergraph of
bounded width extracted from the tree decomposition (instead ofH (Xϕ) itself).
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In these cases, which admit considerable further extensions in terms of weaker
notions of bounded widths (e.g., bounded hypertreewidth rather than treewidth
[20]), combined model checking remains in Ptime [18, 20].

But also reductions to FOk can be seen as essential for tractability. For any
finite τ -structures X and A, the following are equivalent [13, 38]:

(i) existence of a homomorphism from X to A, X
hom−→ A;

(ii) A |= ∃xηX, where ηX is the positive diagram of X;
(iii) the transfer property X⇒pos ∃∗ A, meaning that every positive existen-

tial sentence true in X is also true in A.
For X = Xϕ , where ϕ is a conjunctive query, ϕ is equivalent to ∃xηX (cf. (ii)).
For X ∈ Ck , this sentence is expressible in positive existential FOk+1 [37, 38], so
that (iii) above can be replaced by a transfer condition for all positive existential
FOk+1 rather than FO. In this context, therefore, the Ptime analysis of winning
positions in the (positively restricted, one-sided) (k + 1)-pebble game [35] on
X versus A decides the homomorphism problem.

6.5.2 Non-classical proofs for (variants of) classical
characterisations

With this section we return to expressive completeness issues, related to the
existential and the existential positive fragments of FO over classes of finite
structures. A first-order sentence ϕ ∈ FO[τ ] is preserved under extensions if in
every substructure relationship A ⊆ B between τ -structures, A |= ϕ implies
B |= ϕ. Similarly, ϕ is preserved under homomorphisms if for every homomor-
phism A

hom−→ B between τ -structures, A |= ϕ implies B |= ϕ. As an embed-
ding of a substructure is a special case of homomorphism, preservation under
homomorphisms implies preservation under extensions. Clearly, existential
sentences are preserved under extensions, while existential positive sentences
are even preserved under homomorphisms.

The classical results are the following. We explicitly state the more interest-
ing expressive completeness statements.

Theorem 6.5.2 (Łos–Tarski) The existential fragment of first-order logic
is expressively complete for first-order properties that are preserved under
extensions.

Theorem 6.5.3 (Lyndon–Tarski) The existential positive fragment of first-
order logic is expressively complete for first-order properties that are preserved
under homomorphisms.
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These are proved classically, e.g. in [11], by means of a compactness argu-
ment for the construction of suitable elementary extensions, respectively ele-
mentary chain constructions.

Classically, as well as towards possible restrictions of the expressive com-
pleteness claim to some class C other than the class of all τ -structures,
both essentially amount to finiteness claims for classes of minimal models
(within C).

We refer to substructure minimal models as generators w.r.t. extensions,
and, as generators w.r.t. homomorphisms, also to so-called cores. In a class
closed under homomorphisms, the natural generators are simultaneously mini-
mal w.r.t. the weak substructure relationship and w.r.t. inverse homomorphisms.
We review some standard terminology in this connection.

A weak substructure relationship between τ -structures, denoted A ⊆w B,
requires that A ⊆ B and RA ⊆ RB for every relation R in τ (rather than
RA = RB�A as in the substructure relationship A ⊆ B). A retraction is a
homomorphism h from some structure A onto a weak substructure A0 ⊆w
A such that h�A0 = id. It is worth noting that a retraction h : A

ret−→ A0 is
accompanied by a trivial inclusion homomorphism back from A0 into A, since
A0 ⊆w A. A structure whose only retraction is the identity is called a core.
Every finite relational structure A possesses a retract onto some core and this
core is unique up to isomorphism. It is then straightforward to see that a
homomorphism closed class of finite structures is generated by its members
that are cores; viz., generated as the class of all weak extensions of these. But
the subclass of ⊆w-minimal members generates the same class.

Definition 6.5.4 (a) A is a substructure minimal (⊆-minimal) model of ϕ if
A |= ϕ and A′ �|= ϕ for all A′ � A.

(b) A is a weak-substructure minimal (⊆w-minimal) model of ϕ if A |= ϕ and
A′ �|= ϕ for all A′ �w A.

(c) A is a core model of ϕ if A |= ϕ and A is a core.

Observation 6.5.5 Let C0 be a class of finite τ -structures that is closed under
extensions. Then the following are equivalent:

(i) C0 is definable (within the class of finite τ -structures) by an existential
first-order sentence.

(ii) C0 has, up to isomorphism, finitely many substructure minimal members.

For the crucial direction, (ii) ⇒ (i): if A1, . . . ,AN are the isomorphism types
of substructure minimal members in C0, then C0 is definable by the disjunction
over the existentially quantified algebraic diagrams of the Ai . For (i) ⇒ (ii) it
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suffices to observe that the size of substructure minimal models of an existential
prenex sentence ϕ is bounded by the number of variables.

The above equivalence persists in restriction to any class C of τ -structures
that is itself closed under substructures (some such extra condition on the
surrounding class C is necessary for (i) ⇒ (ii), not for (ii) ⇒ (i)).

Similarly one obtains the following, where a disjunction over the existen-
tially quantified positive diagrams of ⊆w-minimal models, which are cores,
provides a canonical definition in existential positive FO. We state the equiv-
alence relative to the class of all (finite) τ -structures, but it similarly holds in
restriction to any class C of τ -structures that is closed, e.g., under substructures.

Observation 6.5.6 For any class C0 of (finite) τ -structures that is closed
under homomorphisms, the following are equivalent:

(i) C0 is definable (within the class of finite τ -structures) by a sentence in
existential positive FO.

(ii) C0 has, up to isomorphism, finitely many ⊆w-minimal members.
(iii) C0 has, up to isomorphism, finitely many ⊆-minimal members.
(iv) C0 has, up to isomorphism, finitely many homomorphism minimal core

members.

As we are dealing with finite relational vocabularies τ , a finite bound on the
number of isomorphism types of minimal models is equivalent to a bound on
the size of minimal models.

It has been known for a long time that the Łos–Tarski theorem (Theo-
rem 6.5.2) fails in the sense of finite model theory (with counterexamples due
to Tait and Gurevich, see e.g. [15]).

The status of the Lyndon–Tarski theorem (Theorem 6.5.3) in finite model
theory, on the other hand, had been an important open problem for quite some
time when it was resolved, positively, by Rossman [47].

Beside the overall finite model theory version, however, one may of course
investigate the status of these expressive completeness issues in restriction to
various classes of (finite) structures of interest. In the following sections we
outline a particular criterion of well-behavedness motivated by considerations
of Gaifman locality, which has led to interesting results along these lines.

Wideness criteria
The wideness criteria proposed in [4, 3] couple the existence of large scattered
subsets to the size of structures. In the context of the minimal model criteria as
in Observations 6.5.5 and 6.5.6 above they can be used to derive upper bounds
on the size of minimal models. Models exceeding a certain size cannot be
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minimal if their richness in scattered sets allows one to extract smaller models
on the basis of a Gaifman representation of the first-order property at hand.

Definition 6.5.7 A structure is (�,m)-wide if its Gaifman graph contains an
�-scattered subset of size m.

A class C of τ -structures is called wide if there is a functionN : N× N → N,
such that, for all � and m and A ∈ C, if |A| � N (�,m), then A is (�,m)-wide.

C is called almost wide if, for some fixed k, the analogous condition applies
after the removal of a suitable subset of at most k elements from the structures
A at hand.

A typical example of a wide class is the class of graphs of fixed bounded
degree. The class of trees, on the other hand, is not wide (there are arbitrarily
large trees of diameter 2), but almost wide: a large tree either has long branches
or a node of high degree; removal of a single node of high degree also produces
a large scattered set. Similarly, in a tree decomposition of fixed bounded width
of a sufficiently large graph or relational structure, a large scattered set becomes
available at least after the removal of the elements associated with some high
degree node in the decomposition tree. A much more profound analysis is
necessary to show almost wideness for every class of graphs that excludes a
minor [4].

Proposition 6.5.8 (Atserias–Dawar–Kolaitis) The class of treewidth k graphs
is almost wide. By extension, Ck[τ ], the class of τ -structures of treewidth up to
k, is almost wide.

More generally, any class of graphs with excluded minor is almost wide,
and by extension any class of τ -structures whose Gaifman graphs avoid some
minor.

Expressive completeness for extension preservation
The following summarises key results from [3].

Theorem 6.5.9 (Atserias–Dawar–Grohe) The size of ⊆-minimal models of a
first-order sentence ϕ that is preserved under extensions can be bounded over
the following classes of finite structures:

(i) acyclic relational structures (i.e., directed coloured graphs with acyclic
Gaifman graphs);

(ii) wide classes C, like any class of graphs of bounded degree.
(iii) Ck , the class of all finite structures of treewidth up to k.
As a consequence, existential FO is expressively complete for first-order prop-
erties preserved under extensions over these classes.
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Interestingly, there are almost wide classes over which existential FO is not
expressively complete for first-order properties preserved under extensions. A
counterexample over the class of planar graphs is given in [3].

The underlying idea in the proof of the theorem is to choose parameters
�, q,m from a Gaifman representation of ϕ, such that ϕ is preserved under
≡�q,m, and then to isolate a proper substructure A0 � A that at the same time is

≡�q,m equivalent to some extension Â ⊇ A, in any large enough model A. The
actual argument in [3] involves a sophisticated finite chain construction.

Expressive completeness for homomorphism preservation
The connection between wideness criteria and bounds on the number (or size)
of⊆w-minimal models, which is crucial according to Observation 6.5.6, is pro-
vided by the following theorem. It stems from the analysis of the boundedness
problem for Datalog programs (least fixpoint recursion over positive existential
FO) over finite structures.

Theorem 6.5.10 (Ajtai–Gurevich) Let C be a class of finite τ -structures that
is closed under substructures and disjoint unions. If ϕ ∈ FO is preserved under
homomorphisms within C, then there are �,m ∈ N such that no (�,m)-wide
model of ϕ can be ⊆-minimal.

The same applies w.r.t. wideness after removal of up to k elements, for
fixed k.

Corollary 6.5.11 (Atserias–Dawar–Kolaitis) Over any class of finite struc-
tures that is almost wide and closed under substructures and disjoint unions,
existential positive FO is expressively complete for first-order properties pre-
served under homomorphisms.

That minimal models cannot be too wide in the sense of Theorem 6.5.10,
comes from a Gaifman representation of ϕ. We sketch the argument that, for a
first-order sentence ϕ that is preserved under ≡�q,m and under homomorphisms
(within C), there are L,M ∈ N such that no (L,M)-wide model of ϕ can be
⊆w-minimal. More precisely, there are

� M , large enough w.r.t. L,Q, such that within any L-scattered subset of size
M in A |= ϕ we find some pair of elements a �= b for which A, a ≡LQ,0 A, b;

� L and Q, large enough w.r.t. �, q, such that A, a ≡LQ,0 A, b implies the
following transfer property for Gaifman rank (�, q, 1)-assertions:

A ⇒�
q,1 B := A�(A \ {b}),
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meaning that every sentence of the form ∃xχ�(x) where qr(χ ) � q that is
true in A remains true in B (A with b removed).19

M simply needs to be chosen large w.r.t. the number of quantifier-rank Q
types of single elements (in their L-neighbourhood) in order to guarantee the
existence of distinct but ≡LQ,0 equivalent nodes by the pigeon-hole principle.

For such a and b, the desired transfer of ∃xχ�(x)-assertions follows from
≡LQ,0 equivalence providedL � 2� andQ large enough so that for all qr(χ ) � q,
the assertion

∃x ′(d(x, x′) � � ∧ χ�(x ′)) (∗)

is L-local and of quantifier rank � Q. Compare the diagram below for this
proof sketch. In the non-trivial case A |= χ�[a′] for some a′ ∈ N�(b), so that
after the removal of b, there is no guarantee that still B |= χ�[a′]. Using ≡LQ,0
equivalence between a and b, though, (∗) is true of a if it is true at b. Hence there
is a corresponding b′ ∈ N�(a) such that A |= χ�[b′]. So B |= χ�[b′] follows,
since the L-neighbourhood of a is unaffected by the removal of b.

•
a

A

•b
L

•a ⇒q,1 •
ab

B

◦b•

It follows that A⊕m ·B ≡�q,m m ·B (with disjoint sums of m isomorphic
copies of B plus one copy of A on the left-hand side). Therefore, B |= ϕ is a
smaller model of ϕ:

A
hom−→ A⊕m ·B ≡�q,m m ·B hom−→ B.

Expressive completeness of the existential positive fragment of FO for
homomorphism preservation over the class of all finite relational structures –
the finite model theory version of the Lyndon–Tarski Theorem – has been
shown by Rossman in [47]. His approach is based on a combinatorial analysis
of existential positive types and saturation arguments for these, which can be
brought to a sufficient level of closure in a finite chain construction. Leaving
aside much of the actual sophistication of the combinatorial analysis, there

19 Note that this is a one-directional transfer rather than an equivalence. E.g., in a graph
consisting just of a large cycle, the removal of any single element results in a structure that is
inequivalent in the sense of ≡1

1,1.
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is one aspect of Rossman’s approach that may deserve to be highlighted in
connection with the leading themes of this survey. That is the manner in which
the new argument is based on explicit model construction (as opposed to an
abstract model existence argument), and can be viewed as an upgrading (not
of an equivalence, but of a unidirectional transfer relationship) to approximate
first-order equivalence, which is orthogonal to the classical argument. This is
an interesting parallel with the observations in section 6.3.2. While a traditional
proof of the Lyndon-Tarski Theorem can be based on the upgrading indicated
in the left-hand diagram, Rossman’s proof amounts to the upgrading indicated
in the right-hand diagram. In the traditional picture, transfer w.r.t. the full exis-
tential positive fragment of FO is upgraded, in a classical saturation argument
based on compactness, to yield a homomorphism between structures that are
elementarily equivalent to the original ones. In the ‘explicit’ construction of
Rossman’s, on the other hand, a specific finite level of transfer (existential pos-
itive formulae of quantifier rank up to r) is upgraded to a specific finite level of
first-order equivalence that preserves the given sentence ϕ.

A ⇒pos ∃ 

≡

B

≡

A∗ hom  B∗

A ⇒r

pos ∃
��

retract

��

B
��

retract

��

Â
≡q
ϕ

B̂

Moreover, Rossman’s proof has a classical variant, in which the chain con-
struction is extended to an infinite limit, that yields a completely new, alternative
proof of the classical Lyndon–Tarski result with added value. In fact, Rossman
shows that existential positive FO is expressively complete for first-order sen-
tences preserved under homomorphisms, level-by-level w.r.t. quantifier-rank.
In the classical model theory version of his proof, Rossman realises the above
upgrading for r = q, while in the finite model theory version there is no ele-
mentary bound on r in terms of q.

6.6 Concluding remarks

The focus on a model theory of well-behaved classes of (finite) structures –
adapted to specific application areas, or to the study of specific logics, or to
other specific model theoretic themes – offers promising perspectives for the
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development and ramification of finite model theory. Finiteness as the only
constraint, which often entails ‘negative’ results, may not be the best choice
for many reasons.

It can be that the class of all finite structure is still not a good match for the
natural domain of reasoning for certain application areas; some model theoretic
answers – ‘positive’ or ‘negative’ – may still be ‘too easy’ over the class of all
finite structures. In modal reasoning, for instance, rootedness or connectivity
constraints are arguably essential in the intuitive modelling. More generally, the
‘generic finite structure that we mean’ may well have more specific structural
properties than an ‘arbitrary finite structure.’

It can also be that the class of all finite structures is too liberal a setting for
structural insights into certain issues. Definability and expressive completeness
results, for instance, that fail over the class of all finite structures may not
just be recovered but also clarified overall through a better understanding of the
structural conditions that support them. In this sense there is not just finite model
theory, but there may be many adequate domains of structures for individual
issues.

I think both aspects are important from the modelling point of view (i.e.,
in relation to applications), also clearly from an algorithmic point of view, but
also from the point of view of classical issues in model theory. Sophisticated
adaptations of classical techniques, like the analysis of types and the use of
chain constructions in Rossman’s result, enrich finite model theory but also cast
fresh light on long-standing classical results. In this context the constructive
aspect of explicit model constructions or model transformations – in contrast
with smooth abstract existence proofs in classical model theory – is an important
methodological contribution.

It seems that the modularity in game-oriented arguments and model con-
structions, as illustrated by the power of an analysis in terms of Gaifman
locality, has had comparatively little impact on traditional classical model the-
ory. The great potential of another aspect of modularity, viz. decomposition
techniques, has apparently been realised more fully. The combination of such
aspects may lead to a better model theoretic view of more complex hierarchi-
cal decompositions in particular for finite structures; and there may be more
flavours of structural regularity, smoothness or tameness in finite structures to
be discovered.
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[21] Grädel, E. 1999. On the restraining power of guards. Journal of Symbolic Logic,
64, 1719–1742.
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