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Preface

The classical Steiner tree problem is defined as follows: Given a set of points

in a metric space, find the shortest network interconnecting all given points.

Such a network is called a Steiner tree on the given set.

The Steiner tree problem, which is one of most well known combinatorial

optimization problems, has a long research history [33; 183; 250]. It can

be considered as a generalization of Fermat’s problem. Three hundred

years ago, Fermat (1601-1665) proposed a problem of finding a point to

minimize the total distance from this point to three given points in the

Euclidean plane; Clearly, its solution yields the Steiner minimum tree on

the three points. The general form of Steiner tree problem was proposed by

Gauss (1777-1855) [69]. But somehow, Courant and Robbins [70] referred

to it as the Steiner tree problem. The popularity of their famous book

was responsible for bringing the Steiner tree problem to people’s attention.

Two important papers in the 1960’s further laid a solid groundwork for

further study. Melzak [206] first gave a finite algorithm for the Euclidean

Steiner trees. Gilbert and Pollak [114] made an excellent survey of the

problem where they raised many new topics including Steiner ratio problem

and extended the Euclidean Steiner tree problem to other metric spaces.

Since then, lots of research papers have been contributed to the Steiner

tree problem. One may refer to the book by Hwang et al. [144] for a

comprehensive survey on related works before 1992.

The study of the Steiner tree problem received much more attentions in

1990s since many important open problems, including Gilbert-Pollak con-

jecture on the Euclidean Steiner ratio, the existence of better approximation

algorithms, and the existence of polynomial time approximation schemes,

have all been solved, respectively. Those achievements have greatly influ-

enced not only the general theory of designs and analysis of approximation

v
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algorithms for combinatorial optimizations but also the discovery and study

on many new important applications, including VLSI designs, optical and

wireless communication networks. Those applications usually require some

modifications on the classical Steiner tree problem and hence demand new

techniques for solving them. As a result, studying various variations of

Steiner tree problems forms a very hot topic in the past twenty years.

In this book we will discuss the above mentioned significant achieve-

ments in the study of the classical Steiner tree problems and some of their

applications in computer communication networks. The book can be di-

vided into three parts:

(1) Fundamentals of classical Steiner tree problem;

(2) Variations of classical Steiner tree problem;

(3) Steiner tree based problems.

Each part consists of three or four chapters, each of them focuses on either

one approach or one problem for the study or the application of Steiner tree

problems. Roughly speaking, problems addressed in the first few chapters

are more closely related to classical Steiner tree problem than that ad-

dressed in the last few chapters.

In the first part, we will study some powerful approaches introduced

in the study of the classical Steiner tree problems and discuss some open

problems that may be solved by using those approaches. It includes the

first three chapters. In Chapter 1, we will study the minimax approach for

determining the Steiner ratio in the Euclidean plane. In Chapter 2, we will

study some techniques for designing approximation algorithms for Steiner

tree problem with performance ratios better than the inverse of Steiner

ratio. In Chapter 3, we will study two more techniques that turn out to be

very useful for designing good approximation algorithms not only for the

Steiner tree problem but also many other geometric optimization problems.

In the second part, we will discuss three variations of classical Steiner

tree problem, all of them have objectives different from that of the classical

Steiner tree problem. In Chapter 4, we will study the Steiner tree problem

for minimum cost of grade of service. In Chapter 5, we will study the

Steiner tree problem for minimal number of Steiner points. In Chapter 6,

we will study the Steiner tree problem for minimal longest edge of trees

with at most k Steiner points.

In the third part, we will study four optimization problems arising in

the design and applications of all-optical fiber networks and wireless sensor

networks. They all use Steiner trees (or networks) as basic models, but
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two of them aim at computing a set of Steiner trees, instead of computing

one optimal Steiner tree, for different objectives. In Chapter 7, we will

study the Steiner k-tree problem that asks for a set of Steiner trees of

minimum total cost each containing at most k terminal points in given

terminal-set. In Chapter 8, we will study two Steiner tree coloring problems.

One asks for a maximal number of sets of Steiner trees each spanning a

given terminal-set such that they could be properly colored with given

colors; The other asks for a set of Steiner trees each spanning a given

terminal-set such that Steiner trees associated with all terminal-sets could

be properly colored with minimal number of colors. In Chapter 9, we will

study Steiner tree scheduling problem that asks for the Steiner tree such

that data transmission over the tree could be finished in minimal time. In

Chapter 10, the last chapter, we will study multi-connected Steiner network

problem for minimal length.

Almost every chapter includes the motivation of study, related works,

problem formulation, complexity analysis, algorithm design and perfor-

mance analysis, and related problems. So all chapters are basically self-

contained, readers may read any of them while skipping the rest.

Since a book like this can not be expected to cover and discuss all pro-

gresses achieved in the past twenty years in the study and applications of

Steiner tree problems, we list in the appendix some important extensions

and variations of classical Steiner tree problem which are not addressed

in Chapters 1-10. Of course, the list of the problems is far from com-

plete and corresponding results may not be updated. Readers could refer

to some other monographs or books for further discussions in the diver-

sity of Steiner tree problems. For example, The Steiner Tree Problem by

Hwang et al. (1992) [144], Minimal Networks: The Steiner Problem and

Its Generalizations by Ivanov and Tuzhilin (1994) [149], Steiner Minimal

Trees by Cieslik (1998) [68], Advances in Steiner Trees edited by Du et al.

(2000) [87], Steiner Trees in Industry edited by Cheng and Du (2001) [55],

The Steiner Ratio by Cieslik (2001) [69], and The Steiner Tree Problem by

Prömel and Steger (2002) [228].
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Chapter 1

Minimax Approach and Steiner Ratio

Given a set P of points in a metric space1, the classical Steiner tree problem

is to find a shortest network interconnecting the points in P , that is, the

total length of edges in the network is minimal (the length of an edge is the

distance between its two endpoints). The optimal solution of this problem

has a tree structure, so it is called the Steiner minimum tree (SMT) on P

and denoted by Tsmt(P ). An SMT may have some points not in P , which

are called Steiner points while the points in P are called terminal points

(also called regular points) and P is called terminal set. The problem is

formally defined as follows.

Problem 1.1 Steiner Tree Problem in Metric Spaces

Instance A set P = {t1, t2, · · · , tn} of terminals in a metric space M .

Solution A Steiner tree T for P .

Objective Minimizing the total length of the edges in T , l(T ) ≡∑
e∈T l(e).

A closely related problem is minimum spanning tree problem. A span-

ning tree on P is a tree interconnecting all points in P under the restriction

that all edges have endpoints in P . In other words, no Steiner point is al-

lowed to use. The minimum spanning tree (MST) is the shortest spanning

tree, denoted by Tmst(P ). The problem is formally defined as follows.

Problem 1.2 Minimum Spanning Tree Problem in Metric Spaces

Instance A set P = {t1, t2, · · · , tn} of terminals in a metric space M .

Solution A spanning tree T for P .

Objective Minimizing the total length of the edges in T , l(T ) ≡∑
e∈T l(e).

1A metric space M is a set S with a metric that is a nonnegative, symmetric real
function f(, ) satisfying the triangle inequality; That is, for every three points x, y, z in
S, f(x, y) = 0 if and only if x = y, f(x, y) = f(y, x), and f(x, y) + f(y, z) ≥ f(x, z).

1
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Fig.1.1 shows a simple example of the above two problems. Terminal

set P consists of three points which form a regular triangle of unit side.

(a) is an MST of length 2. (b) is an SMT of length
√

3. Note that there

is a Steiner point at which three edges meet at each two forming an angle

of 120◦. (In general, the Steiner point can be determined in a geometrical

way as shown in (c).)

(a) (b)

t1

t2 t3

120o

120o

120o

t1

t2 t3
(c)

Fig. 1.1 (a) An MST, (b) the SMT, and (c) a geometrical method to determine the
Steiner point.

While the Steiner tree problem is intractable (i.e., NP-hard [109]), the

minimum spanning tree problem is polynomial-solvable (by using the well-

known greedy algorithms due to Kruskal [182] and Prim [226]). Thus, we

can use an MST to approximate the SMT. The Steiner ratio in a metric

space M is the largest lower bound for the ratio between lengths of an SMT

and an MST for the same set of points in the metric space. It can be more

formally defined as follows.

ρM ≡ inf
{ l

(
Tsmt(P )

)

l
(
Tmst(P )

)
∣∣∣ P in M

}
, (1.1)

where l(Tsmt(P )) and l(Tmst(P )) denote the length of Tsmt(P ) and Tmst(P )

under metric space M , respectively.

Steiner ratio can be considered as a measure of performance for an MST

as a polynomial time approximation of the SMT. An algorithm A is called

a polynomial time α-approximation algorithm for a minimization problem

if given any instance I of the problem, it finds a solution for I with cost

c(I) ≤ α copt(I), where copt(I) is the cost of an optimal solution for I , and

the running time of algorithm A is bounded by a polynomial in the input

size of I . In addition, a problem is called α-approximable (or approximable

within ratio α) if there is an α-approximation algorithm for the problem.

Clearly, α ≥ 1 and the smaller this ratio α, the better approxima-
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tion algorithm A. It immediately follows from the definition (1.1), the

minimum spanning tree algorithm [182; 226] is a polynomial time (1/ρM )-

approximation algorithm for Steiner tree problem.

Determining the Steiner ratio in each metric space is a traditional prob-

lem on the study of Steiner tree problem ([83; 69; 67]). In 1976, Hwang
[142] determined that the Steiner ratio in the rectilinear plane2 is 2/3.

Surprisingly, however, it took 22 years for determining the Steiner ra-

tio in the Euclidean plane. In 1968, Gilbert and Pollak [114] conjectured

that the Steiner ratio in the Euclidean plane is
√

3/2. (Fig.1.1 gives an

example with ρM =
√

3/2.) Through continuous efforts made by Graham

and Hwang [119], Pollak [225], Chung and Hwang [64], Du and Hwang
[80], Du et al. [85], Chung and Graham [63], Friedel and Widmayer [102],

Booth [38], and Rubinstein and Thomas [240; 241], the conjecture was fi-

nally proved by Du and Hwang [81] in 1990. Their proof is based on a new

minimax theorem about minimizing the maximum value of several concave

functions over a simplex. Moreover, its significance stems also from the

potential applications of the new approach included in the proof.

In this chapter we will first prove some minimax theorems and then

describe how they were used to solve Gilbert and Pollak’s long standing

conjecture on Steiner ratio in the Euclidean plane [75]. At the end we will

discuss some open problems related to Steiner ratios.

1.1 Minimax Approach

Minimax approach is one of the most important techniques for solving opti-

mization problems [72]. There are two fundamental ideas used in studying

minimax problems. The first one is the search for a basis. That is, for the

problem

min
x∈X

max
y∈Y

f(x, y), (1.2)

determine first a finite subset B of X such that

min
x∈X

max
y∈Y

f(x, y) = min
x∈B

max
y∈Y

f(x, y)

and then search for an optimal solution x∗ to problem (1.2) from B in

finitely many steps. The second is the determination of a saddle point. That
2Given two points p1 and p2 in a plane with coordinates (x1, y1) and (x2, y2), the

rectilinear distance (also known as Manhattan distance) between pq is defined as l(pq) ≡
|x1 − x2| + |y1 − y2|.
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is, a point (x∗, y∗) on the set X × Y that satisfies the following condition,

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗), for any x ∈ X and y ∈ Y. (1.3)

By the definition, we deduce that for any saddle point (x∗, y∗),

min
x∈X

max
y∈Y

f(x, y) = f(x∗, y∗) = max
y∈Y

max
x∈X

f(x, y). (1.4)

These two ideas have resulted in two important mathematical branches.

P. L. Chebyshev (1821-1894) is probably the first person who made an

important contribution to the first idea. He discover the theory of best

approximation. J. V. Neumann (1903-1957) is the person who made a

fundamental contribution to the second idea. He initiated the game theory.

Since then, many efforts have been made to find various sufficient conditions

for a point being a saddle point. This involves a great deal of mathematics

including the fixed point theory.

While there are a huge amount of materials about minimax approach in

the literature, we study only a small part in this section. In particular, we

restrict ourselves only to some recent developments on the first idea, which

leads to the settlement of a long standing conjecture about Steiner ratio in

the Euclidean plane.

1.1.1 Chebyshev Theorem

The original problem considered by Chebyshev is as follows: Given a list of

values of some real function, yi = f(xi), i = 0, 1, · · · , m, find a polynomial

p(·) of degree at most n < m which provides the best approximation at

these m points, that is, polynomial p(·) minimizes

max
i=0,1,··· ,m

∣∣yi − p(xi)
∣∣. (1.5)

Chebyshev gave a beautiful result about the solution of this approximation

problem.

First, consider m = n+1. In this case, there exists a unique polynomial

of the best approximation. Chebyshev proved that a polynomial p(·) is the

best approximation if and only if for some h,

(−1)ih + p(xi) = yi, for i = 0, 1, · · · , n + 1.

Furthermore, h and p both can be determined explicitly. Such a polynomial

p(·) is called a Chebyshev interpolating polynomial.
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Next, for general m, a subset of (n + 2) points is called a basis. Each

basis σ determines a Chebyshev interpolating polynomial pσ(·) and a value

h(σ) = max
xi∈σ

∣∣yi − pσ(xi)
∣∣.

A basis σ∗ is called an extremal basis if

h(σ∗) = max
σ

h(σ),

where σ is taken over all possible bases. Chebyshev proved the following

theorem.

Theorem 1.1 There exists a unique polynomial of best approximation.

A polynomial p(·) is the polynomial of best approximation if and only if p(·)
is a Chebyshev interpolating polynomial for some extremal basis.

There are some other ways to characterize the extremal basis (refer to
[72]). In fact, Chebyshev also proved that σ∗ is an extremal basis if and

only if

h(σ∗) = max
i=0,1,··· ,m

∣∣yi − pσ∗(xi)
∣∣.

For each polynomial p(·), define

I(p) ≡
{

j
∣∣∣
∣∣yj − p(xj)

∣∣ = max
i=0,1,··· ,m

∣∣yi − p(xi)
∣∣
}

.

I(p) is called maximal if no polynomial q(·) exists such that I(p) 6= I(q)

and I(p) ⊂ I(q). From the second characterization of the extremal basis,

we can deduce the following theorem.

Theorem 1.2 Basis σ∗ is extremal if and only if I(pσ∗) is maximal.

Chebyshev’s theorem can be transformed into a Linear Programming

(LP) problem as follows:

Min z

subject to −z ≤ a0 + a1xi + · · ·+ anxn
i − yi ≤ z

i = 0, 1, · · · , m.

Note that the above LP problem has (n + 2) variables and 2(m + 1) con-

straints. For an extremal basis σ∗, pσ∗(·) would make (n + 2) constraints

active (i.e., the equality signs would hold true for those constraints). This

means that each extremal basis corresponds to a feasible basis of the above

LP problem in the following standard form:
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Min z

subject to ui − z = a0 + a1xi + · · ·+ anxn
i − yi = z − vi

ui ≥ 0, vi ≥ 0;

i = 0, 1, · · · , m.

On the other hand, LP problems are closely related to minimax prob-

lems. In fact, there are several ways to transform a LP problem to a min-

imax problem. For example, consider the LP problem in standard form:

Min z = cT x

subject to Ax = b

x ≥ 0.

and its dual form:

Max bT y

subject to AT y ≤ c.

For any feasible solution x of the original LP problem and any feasible

solution y of the dual LP problem, cT x ≥ bT y. The equality sign holds

only if the two feasible solutions are actually optimal solutions for the two

problems, respectively. This is equivalent to the following minimax problem

achieving the minimax value 0.

min
(x,y)

max
{
cT x− bT y,−x, Ax− b, b−Ax, AT y − c

}
. (1.6)

In the above, we see that two problems (1.5-6) can be formalized as the

following minimax problem:

min
x∈X

max
i=1,2,··· ,m

fi(x). (1.7)

In the next subsection, we will extend Chebyshev’s idea to problem (1.7).

1.1.2 Du-Hwang Theorem

We consider minimax problem (1.7) with a few general conditions. Assume

that X is a polytope in <n and the fi(x)′s are continuous concave functions

of x. That is, fi(λx1 +(1−λ)x2) ≥ λfi(x1)+(1−λ)fi(x2) for any λ ∈ [0, 1]

and x1, x2 ∈ X . (Note that f(·) is a convex function if “≤” is satisfied;

Clearly, f(·) is a convex function if and only if −f(·) is a concave function.)

Fig.1.2(a) shows a concave function.
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To extend Chebyshev’s idea to problem (1.7), we start with the simplest

case of m = n = 1. As shown in Fig.1.2(a), the minimum value of a concave

function f1(x) on the interval [a, b] is achieved at either a or b (maybe both).

For m = 1 and general n, it is well-known that the minimum value of f1(x)

is achieved at a vertex of the polytope X . What we are interested in the

following discussion is the case m > 1. If m > 1 and n = 1, then as shown

in Fig.1.2(b) with m = 3, g(x) = max{fi(x) | i = 1, 2, · · · , m} is a piecewise

concave function. Thus, the minimum value of g(x) on the interval [a, b]

is achieved at an endpoint of a concave piece (one of four dark points in

Fig.1.2(b)).

(a) (b)a b

f
2

f
1

f
3

g  x(  )

Fig. 1.2 (a) Minimum point of a concave function, and (b) minimum point of a piecewise
concave function.

Similarly, for m > 1, the polytope X can be divided into small regions in

each of which g(x) is concave. These small regions can be defined by Xi =

{x ∈ X | fi(x) = g(x)}. However, they may not be convex. Thus, where the

minimum value of g(x) can be achieved is not easy to be determined. Du

and Hwang [81] found that the minimum value of g(x) can still be achieved

at an extreme point of some small regions where the extreme point is defined

in the following way.

Consider the polytope X = {x | aT
i x ≥ bi, i = 1, 2, · · · , m}. Denote

J(x) = {j | aT
j x = bj}. A point x in X is an extreme point if J(x) is

maximal, i.e., there does not exist y ∈ X such that J(x) is a proper subset

of J(y). Note that such a definition is different from the traditional one

(e.g., refer to [198]): x is an extreme point if x = 1
2y + 1

2z for y, z ∈ X

implies x = y = z. However, they are equivalent for polytopes.

Now, a point x in X is called a g-point if J(x)∪M(x) is maximal where

M(x) = {i | fi(x) = g(x)}, so that M(x) ∩ J(x) = ∅. Fig.1.3 shows some
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g-points of function g(x) with m = 5 defined in a polytope specified by

seven hyperplanes.

X2
X1

X3

X5

X4

Fig. 1.3 g-points in a polytope.

Theorem 1.3 The minimum value of g(x) is achieved at a g-point.

Proof. Let x∗ be a minimum point for g(x). Since all fi(x) are con-

tinuous, there is a neighborhood N(x∗) such that for any x ∈ N(x∗),
M(x) ⊆ M(x∗). Let Y = {x ∈ X | aT

j x = bj for j ∈ J(x∗)}. Then x∗

is a relative interior point of Y , that is, for any x ∈ Y and for sufficiently

small numbers λ, x∗ + λ(x∗ − x) ∈ Y . Consider a g-point x̄ such that

M(x∗) ∪ J(x∗) ⊆ M(x̄) ∪ J(x̄) and J(x∗) ⊆ J(x̄). The latter inclusion

implies that x̄ ∈ Y . To prove the theorem, it suffices to show that x̄ is also

a minimum point.

Suppose, by contradiction, that x̄ is not a minimum point. Choose a

positive λ sufficiently small such that x(λ) = x∗ + λ(x∗ − x̄) ∈ N(x∗) ∩ Y .

Thus we have M(x(λ)) ⊆M(x∗) ⊆M(x̄). Consider an index i ∈M(x(λ)).

Since x∗ is a minimum point of g(x), we obtain fi(x
∗) < fi(x̄) and fi(x

∗) ≤
fi(x(λ)). Note that

x∗ =
λ

1 + λ
x̄ +

1

1 + λ
x(λ).

By the concavity of fi(x), we have

fi(x
∗) ≥ λ

1 + λ
fi(x̄) +

1

1 + λ
fi(x(λ)) > fi(x

∗),

which is a contradiction. Hence x̄ is a minimum point. �

In fact, we can prove the following stronger result by relaxing the con-

cavity of fi(·) for each i. A function f(·) is pseudo-concave in a region if
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for any x and y in the region and for any λ ∈ [0, 1],

f(λx + (1− λ)y) ≥ min{f(x), f(y)}.

Clearly, pseudo concavity is weaker than concavity.

Theorem 1.4 Let g(x) = max{fi(x) | i ∈ I} where the f ′
is are continuous

pseudo-concave functions and I is a finite set of indices. Then the minimum

value of g(x) over a polytope is achieved at a g-point.

Proof. To prove the theorem, we can apply and modify the proof of

Theorem 1.3 as follows: Choose a minimum point x∗ with maximal J(x)

and a point x̄ in Y with M(x∗) ⊆M(x̄). By the pseudo-concavity of fi(x),

for i ∈ M(x(λ)), x(λ) = x∗ + λ(x̄ − x∗) ∈ Y ∩N(x∗), and for any λ > 0,

we have

fi(x
∗) ≥ min{fi(x̄), fi(x(λ)) ≥ fi(x

∗).

It follows that for x(λ) ∈ Y ∩N(x∗), x(λ) is a minimum point. Note that

all minimum points form a closed set. There exists a maximum value λ∗

such that x(λ∗) such that x(λ∗) is a minimum point. Clearly, x(λ∗) cannot

be a relative interior point of Y since, otherwise, we can obtain a larger λ

such that x(λ) is minimum point. Therefore, J(x∗) is a proper subset of

J(x(λ∗)), contradicting the choice of x∗. The proof is then finished. �

N x* x*

x

x(  )

(    )

Fig. 1.4 I(x) is defined on a subset of X.

By the definition of g-points, an interior point x in X is a g-point if

and only if M(x) is maximal. In general, for any g-point, there exists an

extreme subset Y of X such that M(x) is maximal over Y . A point x in

X is called a critical point if there exists an extreme set Y such that M(x)
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is maximal over Y . Thus, every g-point is a critical point. However, the

inverse is false. As shown in Fig.1.3, the interior boundary of X2 consists

of critical points which are not g-vertices.

A similar result holds true for a more general minimax problem as fol-

lows:

min
x∈X

max
i∈I(x)

fi(x), (1.8)

where I(x) is a finite index set varying as x varies. The following theorem is

a useful version of Theorem 1.3, whose proof, as shown in Fig.1.4, is similar

to the proof of Theorem 1.3.

Theorem 1.5 Let g(x) = max{fi(x) | i ∈ I(x)}, where fi’s are contin-

uous and pseudo-concave functions in a convex region X and I(x) is a

finite index set defined on a compact set X ′ of P . Denote M(x) = {i ∈
I(x) | fi(x) = g(x)}. Suppose that for any x ∈ X, there exists a neighbor-

hood of x such that for any point y in the neighborhood, M(y) ⊆M(x). If

the minimum value of g(x) over X is achieved at at interior point of X ′,
then this minimum value is achieved at a critical point, i.e., a point with

maximal M(x) over X ′. Moreover, if x is an interior minimum point in

X ′ and M(x) ⊆M(y) for some y ∈ X ′, then y is a minimum point.

In addition, we can prove a general version of Theorem 1.3 that replaces

the finite index set I with a compact set. The proof is also the same as the

proof of Theorem 1.3 except that the existence of the neighborhood N(x∗)
needs to be derived from the compactness of I and the existence of x̄ needs

to be derived from Zorn’s lemma.

Theorem 1.6 Let f(x, y) be a continuous function on X×I where X is a

polytope in <m and I is a compact set in <n. Let g(x) = max{f(x, y) | y ∈
Y }. If f(x, y) is concave with respect to x, then the minimum value of g(x)

over X is achieved at a critical point.

1.1.3 Geometric Inequalities

Du-Hwang Theorem was first used in the proof of a geometric inequality.

This inequality was proposed by Debrummer in 1956 and by Oppenhein in

1960 [41]. Since it appeared in American Mathematics Monthly as the 4964-

th problem in 1961, it obtained several proofs given by Dresel, Breusch,

Croft, Zalgaller, and Szekers. Using Du-Hwang Theorem, we can give an-

other proof. Although it is not the simplest one, it is more general. In fact,
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it is applicable for proving some other similar geometric inequalities.

Theorem 1.7 Let a′, b′, and c′ be three points on three edges bc, ca, and

ab of triangle 4abc, respectively. Let l(4abc) denote the perimeter of 4abc.

Then l(4a′b′c′) ≥ min{l(4ab′c′), l(4bc′a′), l(4ca′b′)}.

Proof. Let us first fix a′, b′, and c′, and then treat points a, b, and c as

variables. Consider the following function

f(a, b, c) = min{l(4ab′c′), l(4bc′a′), l(4ca′b′)}.

b*

a*

c*

a'

b'c'

(a) (b)

a*

c' b'

c

a' c*b*
b

W

bW

a

Wc

Fig. 1.5 a, b, and c are considered as three variables in Wa,Wb, and Wc, respectively.

As shown in Fig.1.5(a), point a is located in the area Wa bounded by

b′c′ and extensions of a′b′ and a′c′. Similarly, b and c are located in the

areas of Wb and Wc, respectively. Let

X ≡




(a, b, c) ∈ Wa ×Wb ×Wc

b, a′, c are colinear,

c, b′, a are colinear,

a, c′, b are colinear.




 .

We want to prove that for any (a, b, c) ∈ X ,

f(a, b, c) ≤ l(4a′b′c′). (1.9)

Note that three points (x1, y1), (x2, y2), and (x3, y3) are collinear if and

only if

x1 y1 1

x2 y2 1

x3 y3 1

= 0.
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Thus X is a polyhedran of dimension three, which is an unbounded region.

To obtain a polytope, consider 4a∗b∗c∗ with a′, b′, and c′ as the middle

points of corresponding three edges, respectively. Let W ′
a be the bounded

part obtained from cutting Wa by a line La parallel to b′c′. If La is suf-

ficiently far away from b′c′, then a∗ is an interior point of W ′
a, Similarly,

we can define polygons W ′
b and W ′

c, respectively. Now define polytope X ′

in the same way as X by using W ′
a ×W ′

b ×W ′
c to replace Wa ×Wb ×Wc.

Clearly, to prove inequality (1.9) it suffices to prove that for every X ′,

max
(a,b,c)∈X′

f(a, b, c) = l(4a′b′c′). (1.10)

Note that l(4ab′c′), l(4bc′a′), and l(4ca′b′) are convex functions with

respect to (a, b, c). By Theorem 1.3, the maximum value of f(a, b, c) over

X ′ is achieved at a g-point. We consider the following two cases.

Case 1. If this g-point is an interior point of X ′, then it must be

(a∗, b∗, c∗). In this case, equality (1.10) holds true.

Case 2. If this g-point (a, b, c) is on the boundary of X ′, then at least

one of a, b, and c is on the boundary of W ′
a, or W ′

b or W ′
c. Without loss

of generality, assume that a is on the boundary of W ′
a. If a is on b′c′ or

the extensions of a′b′ or a′c′, then one of l(4ab′c′), l(4bc′a′) and l(4ca′b′)
equals twice the length of an edge of4a′b′c′ which is smaller than l(4a′b′c′).
Thus, this a must be on La. When La is sufficiently far from b′c′, bc′ and

cb′ are almost parallel. In the extreme case that bc′ and cb′ are parallel as

shown in Fig.1.5(b), either b is different from b∗ and lies in 4b∗a′c′, or c is

different from c∗ and lies in 4c∗b′a′. Thus, either l(4ba′c′) < l(4b∗a′c′) =

l(4a′b′c′), or l(4cb′a′) < l(4a′b′c′). Therefore, in this case equality (1.10)

also holds true when La moves sufficiently far from 4a∗b∗c∗. The proof is

then finished. �

Let (xa, ya), (xb′ , yb′), and (xc′ , yc′) be the coordinates of points a, b′

and c′, respectively. Denote by s(4xyz) the size of 4xyz. Then we have

the following formula:

s(4ab′c′) =
1

2

xa ya 1

xb′ yb′ 1

xc′ yc′ 1

,

which is a linear function with respect to a. Thus, a similar argument yields

the following theorem.
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Theorem 1.8 Let a′, b′, and c′ be three points on three edges bc, ca,

and ab of triangle 4abc, respectively. Then max{s(4ab′c′), s(4bc′a′),
s(4ca′b′)} ≥ s(4a′b′c′) ≥ min{s(4ab′c′), s(4bc′a′), s(4ca′b′)}.

Since s(4ab′c′) is linear and l(4ab′c′) is convex with respect to a,

the ratio l(4ab′c′)/s(4ab′c′) is pseudo-convex with respect to a. Let

r(4xyz) denote the radius of the circle inscribed in 4xyz. Note that

l(4ab′c′)/s(4ab′c′) = 2/r(4ab′c′). Therefore, the above argument also

yields the following theorem.

Theorem 1.9 Let a′, b′, and c′ be three points on three edges bc, ca and ab

of triangle 4abc, respectively. Then max{r(4ab′c′), r(4bc′a′), r(4ca′b′)}
≥ r(4a′b′c′).

1.1.4 Analysis of Approximation Performance

Du-Hwang Theorem is the crux of their proof [81] for Gilbert-Pollak con-

jecture on Steiner ratio in the Euclidean plane [114]. In general, for NP-

hard optimization problems, such as Steiner tree problem, their optimal

solutions are unlikely to be computable in polynomial time. For such prob-

lems, polynomial time approximate solutions are useful. One way to design

a polynomial time approximation algorithm is as follows: Put some restric-

tion on feasible solutions so that the optimal solution under this restriction

can be computed in polynomial time, and then use this optimal solution for

the restricted problem to approximate the optimal solution for the original

problem.

To be more explicit, consider the following minimization problem

min
k∈K

φk(x). (1.11)

Suppose that finding the minimum solution of (1.11) is NP-hard. Let I ⊆ K

such that

min
i∈I

φi(x) (1.12)

can be computed by a polynomial time algorithm A. Now we use the

optimal solution to problem (1.12) as an approximate solution to problem

(1.11). By the definition of α-approximation algorithms, the performance

ratio of algorithm A is equal to the inverse of the following ratio:

ρ = min
x

mink∈K φk(x)

mini∈I φi(x)
. (1.13)
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Clearly, the larger this ratio, the better is the approximation by A.

Proving a lower bound for ratio (1.13) can be transformed to a minimax

problem. For this purpose, suppose that we want to prove ρ ≥ ρ0. Then it

suffices to prove that for any x,

min
k∈K

φk(x) ≥ ρ0 min
i∈I

φi(x).

This is equivalent to requiring that for any x and k ∈ K,

φk(x) − ρ0 min
i∈I

φi(x) ≥ 0,

that is,

max
i∈I

{
φk(x) − ρ0 φi(x)

}
≥ 0.

Thus, it suffices to prove that for any k ∈ K,

min
x

max
i∈I

{
φk(x)− ρ0 φi(x)

}
≥ 0. (1.14)

In the next section we will show how to determine the Steiner ratio in

the Euclidean plane using this approach.

1.2 Steiner Ratio in the Euclidean Plane

Du-Hwang’s proof of Gilbert-Pollak conjecture consists of four main steps

as follows:

(S1) Transforming the Steiner ratio problem to minimax problem (1.8),

where fi(x) = (the length of a Steiner tree) -(the Steiner ratio)·(the

length of spanning tree with graph structure i) and x is a vector whose

components are edge-lengths of the Steiner tree

(S2) Reducing the minimax problem to the problem of finding the minimax

value of the concave functions at critical points through the minimax

theorem (Theorem 1.5).

(S3) Transforming each critical point back to a set of terminal points with

a special geometric structure;

(S4) Verifying the conjecture on special geometric structures, by proving

the nonnegativeness of minimax value of some concave functions.

In the following subsections we will show in details how to implement

each of the above four steps.
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1.2.1 Equivalent Minimax Problem

The topology of a tree is the adjacency relation or the adjacency matrix of

the tree. Let t∗(P ) denote the minimum tree with topology t on terminal

set P . Let l(t∗(P )) denote the length of t∗(P ). Suppose that all topologies

of trees interconnecting P form a set K and all topologies of spanning trees

on P form a set I . Clearly, I is a subset of K. Then the Steiner minimum

tree problem and the minimum spanning tree problem can be represented

respectively as follows:

min
t∈K

l
(
t∗(P )

)
and min

s∈I
l
(
s∗(P )

)
.

Denote by lsmt(P ) and lmst(P ) the lengths of the SMT and the MST

on terminal set P , respectively. By equality (1.13) and inequality (1.14),

to prove a lower bound ρ0 for the Steiner ratio, it suffices to prove that

min
P

max
s∈I

{
l(t∗(P ))− ρ0 l(s∗(P ))

}
≥ 0, for any topology t ∈ K. (1.15)

A tree topology t ∈ K is called full if ever terminal point is a leaf. If

a terminal point is not a leaf, then this topology can be decomposed at

this point into two or more subtree topologies. In this way, ever topology

t ∈ K can be decomposed into edge-disjoint full topologies t1, t2, · · · , th,

respectively, interconnecting subsets P1, P2, · · · , Ph of P . Note that the

union of MSTs for P1, P2, · · · , Ph is a spanning tree for P . Hence, if for

each 1 ≤ i ≤ h, l(t∗i (Pi)) ≥ ρ lmst(P ), then l(t∗(P )) ≥
√

3
2 lmst(P ). It follows

that to prove the lower bound ρ0 for the Steiner ratio, it suffices to prove

that

min
P

max
s∈I

{
l
(
t∗(P )

)
− ρ0l

(
s∗(P )

)}
≥0, for any full topology t ∈ K. (1.16)

The following lemma [119] gives three well-known simple (but impor-

tant) structural properties of SMTs in the Euclidean plane (refer to Fig.1.1),

which will be used implicitly in our discussion.

Lemma 1.1 Each Steiner minimum tree on P in the Euclidean plane

satisfies the following conditions,

(i) All leaves are terminal points.

(ii) Any two edges meet at an angle of at least 120◦.
(iii) Each Steiner point is incident to exactly three edges, and any two of

them must meet at an angle of 120◦.
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By the above lemma we may only consider those Steiner trees that

satisfy the above conditions (i-iii). For the simplicity of presentation, we

assume that all Steiner trees satisfy those three conditions. A Steiner tree

on P is further called a full Steiner tree if every terminal point in P is a

leaf. Clearly, every angle in a full Steiner tree equals 120◦, and every full

Steiner tree has n terminals (as leaves) along with at most (n− 2) Steiner

points. Thus the full Steiner tree can be determined by lengths of (at most)

(2n− 3) edges provided the topology of the tree is fixed.

To make the presentation easier, we introduce some notations. Let

t(x) denote the full Steiner tree with topology t and edge-length x =

(x1, x2, · · · , x2n−3), let P (t; x) denote the set of all leaves of tree t(x), and

let s(t; x) denote the spanning tree with topology s for the terminal set

P (t; x). Now inequality (1.14) can be rewritten as following:

min
x

max
s∈I

{ 2n−3∑

i=1

xi −
√

3

2
l
(
s(t; x)

)}
≥ 0, (1.17)

where I is the set of spanning tree topologies for the set of n points. Note

that for any α > 0, P (t; αx) is similar to P (t; x). Thus, l(s(t; αx)) =

α l(s(t; x)). This means that among all similar point sets, we need to con-

sider only one set. So it suffices to consider x with x1+x2+ · · ·+x2n−3 = 1.

Define the following function

ft,s(x) = 1−
√

3

2
l
(
s(t; x)

)
and let X =

{
x ∈ <2n−3

∣∣
2n−3∑

i=1

xi = 1, xi ≥ 0
}
.

To show inequality (1.17), it suffices to prove that for every full Steiner tree

topology t,

min
x∈X

max
s∈I

ft,s(x) ≥ 0. (1.18)

The next lemma shows that ft,s(x) is a concave function of x thus satisfying

the condition of Theorem 1.5 (note that X is a convex set).

Lemma 1.2 ft,s(x) is a concave function of x.

Proof. It suffices to prove that l(s(t; x)) is a convex function of x. Let u

and v be two terminal points. We show that the distance d(u, v) between

u and v is a convex function of x. Find a path in s(t; x) which connects

points u and v. Suppose that the path has k edges with distinct lengths

x1′ , x2′ , · · · , xk′ and directions e1, e2, · · · , ek, respectively, where each ei is

a unit vector. Then d(u, v) = ||x1′e1 + x2′e2 + · · ·+ xk′ek||. Observe that
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norm functions are convex and the sum of terms inside the norm is linear

with respect to x. Hence, d(u, v) is a convex function with respect to x.

Finally, we notice that the sum of convex functions is also a convex function.

This proves that l(s(t; x)) is a convex function of x. �

By Theorem 1.3, determining the Steiner ratio is reduced to finding the

minimax value at critical points. Note that the transformation between

the Steiner ratio problem and the minimax problem is based on a mapping

between sets of n points in the Euclidean plane and points in the (2n− 3)-

dimensional space. Thus each critical point corresponds to a set of n points

with a nice geometric structure, called a critical structure. Finally, we only

need to verify Gilbert-Pollak conjecture on the terminal set with critical

structures.

For a technical reason, we also need to modify the conjecture at the

beginning. This modification is necessary because the critical structure

obtained above is not nice enough to enable us to handle. The modified

conjecture will make the critical structure much nicer. In the following

subsections, we will refine the proof of Gilbert-Pollak conjecture [81] by

applying Theorem 1.5. We will show how to modify the conjecture, how

to determine the critical structure and how to verify the conjecture for the

terminal set with critical structures.

1.2.2 Characteristic Area

Consider a full Steiner tree t(x). Two terminal points are called adjacent

if one can reach the other by always moving in a clockwise direction or

always moving in a counterclockwise direction. Clearly, each terminal point

has two adjacent terminal points.

Now consider two adjacent terminal points u and v with path

us1s2 · · · skv connecting them as shown in Fig.1.6. It is easy to verify the

following three facts:

(F1) Each angle ∠si−1sisi+1 contains either u or v (maybe both).

(F2) If u (resp. v) lies inside of ∠si−1sisi+1, then u (resp. v) lies inside of

∠s1s2s3, · · · , ∠si−1sisi+1 (resp. ∠si−1sisi+1, · · · , ∠sk−2sk−1sk).

(F3) There exists an index i such that both u and v lie inside of ∠si−1sisi+1.

Choose an index i satisfying condition (F3), and connect u to s2,

s3, · · · , si and connect v to si, si+1, · · · , sk−1. We will obtain triangles

4us1s2,4us2s3, · · · ,4usi−1si,4usiv,4sisi+1v, · · · ,4sk−1skv. Pasting

these triangle along with their edges such that every point between them
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has a neighborhood isometric to a neighborhood in the Euclidean plane,

we obtain a simply connected region either in the plane or in a multilayer

Riemann surface as shown in Fig.1.6(a). Call this region a cell. Observe

that when the cell has more than one layer, there are two ways to place the

layers. To be specific, we choose the one in the right hand screw rule as

shown in Fig.1.6(b).

v u

s1

si

v

s1

s i

si si+1

(b)(a)

(c)

u

u
v

Fig. 1.6 Simple connected regions in multilayer Rimann surface.

It is worth mentioning that although there are more than one choices

to choose such index i, we would obtain the same cell. The characteristic

area of t(x) is obtained by pasting all cells along all edges in t(x) such that

every point on t(x) has a neighborhood isometric to a neighborhood in the

Euclidean plane. Denote this area by C(t; x). Clearly, the characteristic

area is simply connected region in a multilayer Riemann surface satisfying

the following properties:

(P1) Every interior point has a neighborhood isometric to a disc in the

Euclidean plane.

(P2) All terminal points lie on the boundary of C(t; x).

Note that the characteristic area C(t; x) varies with x. For some x, t(x)
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may have a self-intersection in the Euclidean plane as shown in Fig.1.7(a)

but it has no self-intersection in C(t; x) as shown in Fig.1.7(b). Let us put

such x together with C(t; x) into our consideration. Let X(t; x) denote the

set of all edge-length vectors y ∈ X such that x together with C(t; x) can

be smoothly moved to y by varying the edge-lengths of all triangles which

consist of the characteristic area.

(b)(a)

Fig. 1.7 (a) A self-intersection in the Euclidean plane, and (b) no self-intersection in
the characteristic area.

Clearly, X(t; x) is a compact set and C(t; y) also has the properties

(P1-2) for any y ∈ X(t; x). If none of the triangles in the decomposition of

C(t; y) is degenerated, then y must be an interior point of X(t; x). Thus,

for every boundary point y of X(t; x), C(t; y) must have a degenerated

triangle. This means that this triangle has either an angle of 180◦ or an

edge of length zero.

Let us consider again the triangles 4us1s2, · · · ,4usi−1si, 4usiv,

4sisi+1v, · · · ,4sk−1skv. In each of them except 4usiv, every angle other

than the angle at u or v is at most 120◦. So only the angle formed at u may

become 180◦. Therefore, if a triangle other 4usiv is degenerated, then one

of the following two cases has to occur:

(C1) y has at least one zero-component.

(C2) t(y) has a terminal point which lies on the path from the point to an

adjacent terminal point.

Note that Case (C2) does not include the case of Fig.1.8(a) because the

terminal point and the path which seem to overlap are in different layers.

But, it includes the case of Fig.1.8(b).

If only 4usiv is degenerated, then either (C1) or (C2) occurs except
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that ∠siuv = 180◦ or ∠uvsi = 180◦. In the exceptional cases, for instance,

siuv = 180◦ as shown in Fig.1.6(c), we will replace 4usiv and 4vsisi+1

by 4usisi+1 and 4usi+1v, respectively. In this new set of triangles, no

one is degenerated. We expand X(t; x) by varying edge-lengths of this new

set of triangles. In this expanded X(t; x), y becomes an interior point.

Since there are only finitely many possibilities to decompose each cell into

triangles in the above form, only finitely many expanding operations are

needed. Finally, we would obtain a compact region X ′(t; x) such that every

point in X ′(t; x) has a characteristic area and every boundary point satisfies

either (C1) or (C2).

(b)(a)

Fig. 1.8 (b) belongs to Case (C2) but (a) does not.

Note that for each pair of adjacent terminal points, there are several

ways to construct their cell. However, they all yield the same cell. Thus,

the characteristic area is unique for each t(x). If for two full Steiner trees

t(x) and t(y) every pair of corresponding cells are built up in the same way,

then X(t; x) = X(t; y) and hence X ′(t; x) = X ′(t; y). It follows that there

are only (finitely many) 2n X ′(t; x)’s for each full Steiner tree topology t.

Let Xt denote the union of all X ′(t; x)’s. Then Xt is a compact set and

every boundary point of Xt must have the property (C1) or (C2).

1.2.3 Inner Spanning Trees

A spanning tree on P (t; x) is called an Inner Spanning Tree (IST) with

respect to t(x) if it lies inside of C(t; x). Let I(t; x) denote the set of inner

spanning tree topologies. We will prove the following theorem.

Theorem 1.10 For every full Steiner tree topology t,

min
x∈Xt

max
s∈I(t;x)

ft,s(x) ≥ 0. (1.19)
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Before we prove the above theorem at the end of this section, we make

some observations and prove a series of lemmas. Let list(P (t; x)) denote

the length of minimum inner spanning tree with respect to t(x). Then

inequality (1.19) is equivalent to the following inequality

Lsmt

(
P (t; x)

)
≥
√

3

2
list

(
P (t; x)

)
. (1.20)

Since list(P (t; x)) ≥ lmst(P (t; x)), the Gilbert-Pollak conjecture is a conse-

quence of Theorem 1.10. To prove the theorem, define

gt(x) = max
s∈I(t;x)

ft,s(x) and M(t; x) = {i ∈ I(t; x) | ft,s(x) = gt(x)}.

In order to apply Theorem 1.5, we will need the following lemma.

Lemma 1.3 For every x ∈ Xt, there is a neighborhood of x such that for

any y in the neighborhood, M(t; y) ⊆M(t; x).

Proof. First, we show that for any m ∈ M(t; x) there exists a neigh-

borhood N(x) of x such that m ∈ I(t; y) for any y ∈ N(x). Suppose, by

contradiction, that such a neighborhood does not exist. Then there is a

sequence of points {yk} converging to x such that m /∈ I(t; yk). Thus every

m(t; yk) has at least one edge not in the characteristic area C(t; yk). Since

the number of edges is finite, there exists a subsequence of {m(t; yk)} each

of which contains an edge not in C(t; x), but these edges converge to an

edge uv in m(t; x). It is easy to see that uv is on the boundary of the area

C(t; x) and that u and v are not adjacent. (Note that an edge between two

adjacent terminal points always lies in the characteristic area.) Since all

vertices in an inner spanning tree lie on the boundary of C(t; x), there is

a terminal point lying in the interior of the segment uv, contradicting the

minimality of m(t; x).

Now we prove the lemma by contradiction again. Suppose that there is

a sequence of points {yk} converging to x such that for each yk, a spanning

tree topology mk exists such that mk ∈M(t; yk)\M(t; x). Since the number

of spanning tree topologies is finite, there is a subsequence of points {yk′}
each with the same mk′ , denoted by m. We can also also assume that this

subsequence lies inside of the neighborhood N(x) of x. Thus for every k′,
l(m(t; yk′)) ≤ l(m′(t; yk′ )) for all m′ ∈ M(t; x) since M(t; x) ⊆ I(t; yk′ ).

Letting k′ → ∞, we obtain that l(m(t; x)) ≤ l(m′(t; x)) for m′ ∈ M(t; x).

Since m /∈ M(t; x), m(t; x) must not be an inner spanning tree. It follows

that there exists a neighborhood of x such that for any point y in the
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neighborhood, m(t; y) is not an inner spanning tree for t(y), contradicting

the existence of the subsequence {yk′}. This completes the proof. �

An immediate consequence of above lemma is that gt(x) is continuous

over Xt. Let

F (t) = min
x∈Xt

gt(x).

By Theorem 1.5 and Lemmas 1.2-3, F (t) is achieved at some critical point.

Choose a full topology t∗ such that F (t∗) = mint F (t), where t is taken

over all full Steiner tree topologies on n terminal points.

We prove Theorem 1.10 by contradiction argument. Suppose that the

theorem is not true, i.e., F (t∗) < 0, and that n is the smallest number of

terminal points such that F (t∗) < 0. From now on, a point x in Xt∗ is

called a minimum point if and only if gt∗(x) = F (t∗).

Lemma 1.4 Every minimum point is an interior point of Xt∗.

Proof. Suppose to the contrary that there exists a minimum point x on

the boundary of Xt∗ . First, assume that Case (C1) occurs, that is, t∗(t) has

some edges vanished. If there is a vanished edge incident to a terminal point,

then t∗(x) can be decomposed into several edge-disjoint smaller Steiner

trees. Since every smaller Steiner tree has fewer terminal points, we can

apply Theorem 1.10 to them. Note that a union of inner spanning trees

for the smaller Steiner trees is an inner spanning tree for t∗(x). We find

a contradiction to F (t∗) < 0 by summing over all inequalities. So every

vanished edge is between two Steiner points. In this case, we can find a

topology t satisfying the following conditions:

(C1.1) Two points are adjacent in t if and only if they are adjacent in t∗.
(C1.2) There is a tree T interconnecting n points in P (t∗; x), with the

topology t and with length less than l(t∗(x)).

We call topology t a companion of topology t∗ if t satisfies condition

(C1.1). To find the desired topology, consider a connected component Z of

the subgraph consisting of edges in t∗ which correspond to vanished edges

in t∗(t). Let Z ′ be the tree obtained from Z by adding all adjacent edges.

Then Z ′ is a three-regular tree (i.e., a tree in which every vertex has degree

on or three). Since all vertices of Z are Steiner points, all leaves of Z ′ are

not vertices of Z. In fact, each leaf is associated with an edge in Z ′ \ Z.

Two leaves are adjacent if they can reach each other by always moving

in a clockwise direction or always moving in a counterclockwise direction.
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Suppose that Z ′ has k leaves u1, u2, · · · , uk, where ui and ui+1 are adjacent

for each i = 1, 2, · · · , k (assume that uk+1 = u1).

We use the same notation to denote the corresponding points in t∗(x).

Suppose that under t∗(x), Z is vanished to the point s. Note that the point

u has a neighborhood isometric to a disc in the Euclidean plane. We then

have ∠u1su2 + ∠u2su3 + · · · + ∠uksu1 = 360◦. Since Z has at least two

points, Z ′ has at least four leaves. Thus, k ≥ 4, and there exists an index

i′ such that ∠ui′sui′+1 < 120◦. Now note that for four points, there exist

exactly two full Steiner tree topologies. In a Steiner tree topology, if we

change a subtree isomorphic to a full Steiner tree for four points to the

one isomorphic to the other full topology for four points, then we obtain

a companion. Through finitely many operations like this, we can obtain

a companion t of t∗ such that sui′ and sui′+1 correspond to two adjacent

edges in t. Thus, t also satisfies condition (C1.2). Fig.1.9 demonstrates this

process starting from (a) and ending up with (d).

(b)(a) (c) (d)

Fig. 1.9 Changing a subtree isomorphic to a full Steiner tree yields a companion.

In the following we study two cases.

Case 1. The Steiner tree of topology t for P (t; x) exists. In this case,

there exists a parameter vector y such that P (t; y) = P (t∗; x). Let h =

1/l(t(y)). Then we have h > 1 since l(t(y)) ≤ l(T ) < l(t∗(x)) = 1. Note

that t(hy) is similar to t(y). Hence, let s be an MST topology for the point

sets P (t; hy) and P (t∗; x), we have the following equalities

ft,s(hy) = 1−
√

3

2
l
(
s(t; hy)

)
= 1−

√
3

2
h l

(
s(t; y)

)

= 1−
√

3

2
h l

(
s(t∗; x)

)
< gt∗(x) = F (t∗),
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Since hy ∈ Xt, we have F (t) ≤ gt(hy) < F (t∗), contradicting the minimal-

ity of F (t∗).
Case 2. The Steiner tree of topology t for P (t∗; x) does not exist. In

this case, we cannot use the above argument for Case 1 directly since gt(y)

is undefined. (Remember that F (t∗) is the minimum over all full Steiner

topologies. So ever though T is a shorter tree, there is no contradiction

to the minimality of F (t∗).) Now, consider any tree of topology t. A tree

under topology t can be determined by edge-lengths and angles at every

Steiner point. Represent the lengths by a length vector y and the angles

by an angle vector θ. Denote such a tree by t(y, θ). Two terminal points

are said to be adjacent in t(y, θ) if in a Steiner tree of topology t, the

corresponding two terminal points are adjacent.

Note that we can define an inner spanning tree and a minimum inner

spanning tree for t(y, θ) in a similar way, and then construct the character-

istic area for t(y, θ) by connecting every pair of adjacent terminal points.

Let list(t; y, θ) denote the length of a minimum inner spanning tree for

t(y, θ). We can also show the continuity of list(t; y, θ). Restrict all angles

to be between 0◦ and 360◦, and the sum of any three angles at the same

Steiner point to equal 360◦. Let Yt be the set of vectors (y, θ) with the

described restrictions on θ and the restrictions
∑

yi = 1 and y ≥ 0. Then

Yt is compact. Let ht(y, θ) = 1−(
√

3/2)lt(y, θ). Then function h(, ) reaches

its minimum in Yt. Denote this minimum by h∗(t). By an argument sim-

ilar to that for Case 1, we can prove that h∗(t) < F (t∗). Thus we obtain

h∗(t) < F (t).

Suppose that ht(y, θ) = h∗(t). If all components of θ equal 120◦, then

t(y, θ) = t(y) and y ∈ Xt. Thus we obtain F (t) ≤ ht(y, θ) = h∗(t), a

contradiction. Therefore, we have θ < 120◦. Note that for an angle of less

than 120◦ in t(y, θ), at least one edge of the angle must be vanished; Since

otherwise, we can shorten the tree without changing the topology. Thus,

t(y, θ) contains vanished edges. If there exists a vanished edge incident

to a terminal point, we decompose h(y, θ) and find a full topology t′ with

fewer terminal points such that h∗(t′) < 0. If there exists a vanished edge

between two Steiner points, then we can find a new companion t′ of t

such that h∗(t′) < h∗(t). Repeating the above argument, we will obtain

infinitely many full topologies with at most n terminal points, contradicting

the finiteness of the number of topologies. Therefore, the assumption which

is made at the beginning of the proof cannot hold, i.e., Case (C1) cannot

occur.
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In the end, assume that Case (C2) occurs. Then t(x) (in its character-

istic area) has a terminal point touching an edge or another terminal point.

In the former case, we can decompose t(x) at the touching point to obtain

two trees each with less than n terminal points. In the latter case, we can

reduce the number of terminal points by one. In either case, a contradiction

will be achieved by an argument similar to the one used at the beginning

of the proof. The proof is then finished. �

1.2.4 Critical Structure

In this subsection we will determine the geometric structure of P (t∗, x)

for every interior minimum point x in Xt∗ . Let Γ(t∗; x) denote the union

of minimum inner spanning trees for P (t∗; x). We will first show some

properties of Γ(t∗; x) in the following lemmas.

Lemma 1.5 Two minimum inner spanning trees can never cross.

Proof. We will show that edges of two trees meet only at vertices of the

trees. Suppose, by contradiction argument, that uv and u′v′ are two edges

crossing at the point x as shown in Fig.1.10, and that they belong to two

minimum inner spanning trees T1 and T2, respectively. Without loss of

generality, assume that xu is the shortest one among those four segments

xu, xv, xu′, and xv′. Removing the edge u′v′ from T2, the remainder has

two connected components containing u′ and v′, respectively. Without loss

of generality, assume that u and v′ are in the same component. Note that

l(uv′) < l(xu) + l(xv′) ≤ l(u′v′).

u

v

u'

v'

x

Fig. 1.10 Two edges uv and u′v′ cross each other at point x.

If uv′ lies in the characteristic area, then connecting the two components

by uv′ results in a shorter inner spanning tree, contradicting the minimality
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of T2. If uv′ does not lie in the characteristic area, there must exist some

terminal points lying inside the triangle 4xuv′. Consider the convex hull

of those terminal points and the two points u and v′. The boundary of

the convex hull other than the edge uv′ must lie in the characteristic area.

This boundary contains a path from u to v′ as shown in Fig.1.10. In this

path there exist two adjacent vertices which belong to different connected

components of T2 \ {u′v′}. Connecting two such adjacent vertices also

results in an inner spanning tree shorter than T2, a contradiction again.

The proof is then finished. �

Lemma 1.6 Every polygon of Γ(t∗; x) has at least two equal longest edges.

Proof. Suppose to the contrary that Γ(t∗, x) has a polygon Q with the

unique longest edge e. Let T ∗ be the minimum inner spanning tree con-

taining e. For every edge e′ of Q not in T ∗, the union of T ∗ and e′ contains

a cycle. If this cycle contains e, then replacing e with e′ in T ∗ yields an

inner spanning tree shorter than T ∗, a contradiction. Therefore, such a

cycle does not contain e. Hence, for every e′ in Q not in T ∗, T ∗ has a path

connecting two endpoints of e′. These paths and e form a cycle in T ∗, a

contradiction. �

Lemma 1.7 Let u, v, and w be three terminal points. Suppose that all

three edges uv, vw, and wu lie in C(t∗; x). If the edge uv is in Γ(t∗; x),

then l(uv) ≤ max{l(uw), l(vw)}. Moreover, if uv is in Γ(t∗; x) and l(uv) ≥
max{l(uw), l(vw)}, then either vw or wu is in Γ(t∗; x) and also has the

same length as uv.

Proof. To prove the first half of the lemma, suppose to the contrary that

l(uv) > max{l(uw), l(vw)}. Removal of uv from the MST results in two

connected components containing u and v, respectively. Assume that w

is in one of the components. Thus, adding uw or vw would result in a

spanning tree shorter than the MST, a contradiction. The second half can

be proved in a similar way. �

Note that the characteristic area of t∗(x) is bounded by a polygon of n

edges. Partitioning the area into (n−2) triangles by adding (n−3) edges, we

will obtain a network with n vertices and (2n− 3) edges. This network will

be called a triangulation of C(t∗; x). Let us first ignore the full Steiner tree

t∗(x) and consider the relationship between the vertex set and the length

of edges. Note that in the previous discussion, when we say that a set P of

points is given, we really mean that the distance between every two points
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in the set is given, that is, relative positions between those points have been

given. Understanding in such a way, we make the following observations.

(O1) The vertex set of t∗(x) (the set of terminal points, P (t∗; x)) can be

determined by (2n− 3) edge lengths of the network.

(O2) The (2n− 3) edge-lengths are independent variables, that is, the

network could be varied by changing any edge-length and fixing all

others as long as the triangle inequality is preserved in each triangle.

Note that observation (O2) follows from Case (C2), from which the

triangles can be built up sequentially.

Lemma 1.8 Every Γ(t∗; x) can be embedded in a triangulation of

C(t∗; x).

Proof. Since Γ(t∗; x) and the boundary of C(t∗; x) partition C(t∗; x) into

polygons, it suffices to prove that every polygon lying in C(t∗; x) has a

triangulation. To show this, first note that the sum of all inner angles of any

polygon in C(t∗; x) equals (n−2)×180◦, where n is the number of vertices

of the polygon. This fact can be proved by noting that the polygon can be

obtained by pasting several polygons in the Euclidean plane and the pasting

that we did in Section 1.2.1 preserves the formula. Now, consider a polygon

of n > 3 vertices. Since the polygon satisfies the formula (n− 2)× 180◦, it

must have an inner angle less than 180◦, say ∠abc < 180◦. If the segment ac

lies in C(t∗; x), then ac partitions the polygon into two smaller polygons. If

ac does not lie in C(t∗; x), then we consider a segment ac′, where c′ moves

from b along bc until it touches the boundary of the polygon. At the last

position of ac′, there must be a vertex of the polygon other than a lying on

ac′, say d. Then bd partitions the polygon into two smaller polygons. �

Fig. 1.11 A critical structure.
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It follows from the above lemma that all edges in every Γ(t∗; x) are

independent. A Γ(t∗; x) is said to have a critical structure if Γ(t∗; x) parti-

tions C(t∗; x) into (n− 2) equilateral triangles as shown in Fig.1.11. Such

a structure has the property that any perturbation would change the set of

topologies of a minimum inner spanning tree. The following lemma shows

that every minimum point has Γ(t∗; x) with a critical structure.

Lemma 1.9 If x∗ is a minimum point, then Γ(t∗; x∗) divides C(t∗; x∗)
into (2n− 3) equilateral triangles.

Proof. First, let us embed Γ(t∗; x∗) into a triangulation of C(t∗; x∗).
Suppose to the contrary that the lemma is false. Then two cases must occur.

We will show that in each case, the number of MSTs can be increased, i.e.,

we can find another minimum point y such that M(t∗; x∗) ⊂M(t∗; y) and

M(t∗; x∗) 6= M(t∗; y).

Case 1. There is an edge in the triangulation which does not belong

to Γ(t∗; x∗). Let lM be the length of the longest edge which is in the

triangulation but is not in Γ(t∗; x∗). We shrink all longest edges and keep

other edge-lengths until a new MST is produced. Let l′M be the length of the

longest edge at the last minute during the shrink. Note that the triangular

inequality is always preserved in every triangle if shrinking happens to all

longest edges in the triangle or shrinking happens to the shortest edge in

an isosceles. The latter is guaranteed by Lemma 1.7. Thus, during the

shrinking from lM to l′M , we do not need to worry about the condition on

the triangular inequality.

Now, for each l ∈ [lM , l′M ], denote by P (l) the corresponding set of

terminal points. Then P (lM ) = P (t∗; x∗). Consider the set Sl of all l ∈
[lM , l′M ] satisfying the condition that there is a minimum point y in Xt∗

such that P (l) = P (t∗; y). Since lM ∈ Sl, Sl is nonempty. Moreover, Sl is

a closed set since all minimum points form a closed set. Consider now the

minimal element l∗ of Sl. We may assume l∗ > l′M since if l∗ = l′M , then

y meets the requirement already. Suppose that P (l∗) = P (t∗; y). Then

for any m ∈ M(t∗; x∗), l(m(t∗; y)) = l(m(t∗; x∗)). Since both x∗ and y

are minimum points, we have gt∗(x
∗) = gt∗(y), that is, the length of a

minimum inner spanning tree for P (t∗; x∗) equals that for P (t∗; y). Hence

M(t∗; x∗) ⊆ M(t∗; y). However, x∗ is a critical point. Thus M(t∗; x∗) =

M(t∗; y). By Lemma 1.4, y is an interior point of Xt∗ . This means that

there exists a neighborhood of l∗ such that for l in it, the Steiner tree of

topology t∗ exists for the point set P (l). Hence there exists an l ∈ (l′M , l∗)
such that P (l) = P (t∗; z) for some vector z (not necessarily in Xt∗ but
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h z ∈ Xt∗ for some h > 0). Since l(m(t∗; x)) is continuous with respect

to x, there is a neighborhood of y such that for every point y′ in the

neighborhood, M(t∗; y′) ⊆ M(t∗; y). So l can be chosen to make z satisfy

M(t∗; z) ⊆ l(m(t∗; y)), too. Note that M(t∗; x∗) = l(m(t∗; y)) and for

every m ∈ M(t∗; x∗), l(m(t∗; z)) = l(m(t∗; x∗)). It follows that for every

m ∈ M(t∗; x∗), m(t∗; z) is a minimum inner spanning tree for P (t∗; z).

Thus we have M(t∗; z) = M(t∗; x∗) and gt∗(x
∗) = gt∗(z). Suppose that

hz ∈ X where h is a positive number. By the second half of Theorem 1.5,

we obtain gt∗(x
∗) = gt∗(hz) = h gt∗(z). So h = 1, i.e., z ∈ X . Hence, z is a

minimum point, contradicting the minimality of l∗.
Case 2. Every edge in the triangulation belongs to Γ(t∗; x∗). But,

Γ(t∗; x∗) has a nonequilateral triangle. In this case, we can give a similar

proof by increasing the length of all shortest edges in Γ(t∗; x∗) and consid-

ering the ratio of lengths between the shortest edge and the longest edge

in Γ(t∗; x∗). The proof is then finished. �

1.2.5 Hexagonal Trees

In this subsection, we will prove gt∗(x
∗) ≥ 0 where x∗ is a minimum point.

For this purpose, we first study a different kind of trees [145]. A tree in

C(t∗; x∗) is called a hexagonal tree if every edge of the tree is parallel to

some edge in Γ(t∗; x∗). The shortest hexagonal tree interconnecting the

terminal set P is called a Minimum Hexagonal Tree (MHT) on P . Let

lmht(P ) denote the length of the minimum hexagonal tree on P . Weng
[267] discovered the following property about the minimum hexagonal tree.

Lemma 1.10 For any terminal set P , lsmt(P ) ≥
√

3
2 lmht(P ).

Proof. Note that if a triangle 4abc has the angle ∠bac ≥ 120◦, then

l(bc) ≥
√

3
2 (l(ab) + l(ac)). Thus each edge of an SMT can be replaced by

two edges meeting at an angle of 120◦ and parallel to the given directions.�

A point on a hexagonal tree but not in P is called a junction if the point

is incident to at least three lines. A hexagonal tree for n points is said to be

full if all terminal points are leaves. Any hexagonal tree can be decomposed

into a union of edge-disjoint smaller full hexagonal trees. Such a smaller

full hexagonal tree will be said to be a full component of the hexagonal tree.

In a hexagonal tree, an edge is referred to as a path between two vertices

(terminal points or junctions). Thus an edge can contain several straight

segments. An edge is called a straight edge if it contains only one straight
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segment, and is called a nonstraight edge otherwise. Any two segments

adjacent to each other in a nonstraight meet at an angle of 120◦ since if

they meet at an angle of 60◦ then we can shorten the edge easily.

u

v

e

Fig. 1.12 All shortest hexagonal paths from u to v form a parallelogram.

In any minimum hexagonal tree, an edge with more than two straight

segments can be replaced by an edge with at most two segments. To see

this, consider a nonstraight edge e in a minimum hexagonal tree Tmht.

Suppose that u and v are two endpoints of edge e. The all shortest hexag-

onal paths from a to b form a parallelogram as shown in Fig.1.12. This

parallelogram must lie in C(t∗; x∗) since otherwise, the part of this paral-

lelogram which is inside of C(t∗; x∗) must contain a piece of the boundary

of C(t∗; x∗). This boundary must have at least two consecutive segments in

the different directions to ensure that it passes through the parallelogram

without crossing edge e. The common endpoint of the two segments is a

terminal point lying in the parallelogram. Consider all such terminal points

and all shortest hexagonal paths from u to v in C(t∗; x∗). One of the paths

must pass through one of the terminal points, say w as shown in Fig.1.12.

Replacing e by this path and deleting an edge incident to w would yield

a shorter hexagonal tree, contradicting the minimality of Tmht. Now since

the parallelogram lies in C(t∗; x∗), we can use a path with at most two

straight segments to replace edge e.

From now on, we make the convention that any edge in a minimum

hexagonal has at most two straight segments. In addition, when we talk

about an edge of a junction, its first segment is the segment incident to the

junction. The other segment, if it exists, is the second segment of the edge.

Note that the junctions as shown in Fig.1.13 can result in a shorter tree.

Thus those kinds of junctions cannot exist in a minimum hexagonal tree.

The following facts then follow.
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(F1) If a minimum hexagonal tree has a nonstraight edge, then the

parallelogram obtained by flipping this edge lies inside of C(t∗; x∗).
(F2) If a minimum hexagonal tree has an angle equal to 60◦, then the

isosceles trapezoid whose two edges are identical to the two edges of

the angle lies inside of C(t∗; x∗).

(a) (b)

Fig. 1.13 Junctions that can not exist in a minimum hexagonal tree.

(a) (b)

(c) (d)

Fig. 1.14 Decrease the number of nonstraight edges: (a,b) a junction of degree three,
and (c,d) a junction of degree more than three.

Lemma 1.11 Let Tmht be a minimum hexagonal tree for the terminal set

P with the maximum number of full components. Then Tmht can be chosen

to have the property that every junction of degree three in Tmht having at

most one nonstraight edge.
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Proof. First, consider a junction of degree three has two nonstraight

edges. Then these two edges have segments in the same direction. Flip the

edges if necessary to line up these two segments, then the second segments of

these two edges as well as the first segment of the third edge comprise three

segments each lying completely on one side of the line just constructed.

Therefore, one side has the majority of the three segments, and as a result,

we can move the line to decrease the number of nonstraight edges as shown

in Fig.1.14(a,b). For a junction of degree more than three, the proof is

similar to the case of three-degree junctions as shown in Fig.1.14(c,d). �

Lemma 1.12 Let Tmht be a minimum hexagonal tree for the terminal set

P with the maximum number of full subtrees and the property in Lemma

1.11. Then Tmht is a minimum inner spanning tree.

Proof. Suppose, by contradiction argument, that the lemma is false.

Then Tmht has a full component T ′ with at least one junction. Suppose

that T ′ interconnects a subset P ′ of P . Clearly, T ′ has a junction x adja-

cent to two terminal points u and v (otherwise, T ′ contains a cycle). We

consider the following three cases.

Case 1. Both ux and xv are straight. If ux and xv are in different direc-

tions then x is a terminal point. Hence, they are in the same direction. Let

w be the third vertex adjacent to x. First we can assume that xw is straight

since otherwise, we can replace it by a straight edge without increasing the

length and the number of full components as shown in Fig.1.15(a).

(a) (b)

u v u v

y
w

w

xx x' x'

Fig. 1.15 (a) Replace a nonstraight edge with a straight one, and (b) shorten T ′.

Since w being a terminal point implies that x is a terminal point, we

deduce that w is a junction. We will show that one of the followings occurs:

Case 1.1. x is a terminal point.

Case 1.2. w can be moved further away from x.

Because the movement of w cannot go on forever, x is a terminal point,

this contradicts the definition of the junction.
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Let Lw be a line through w, which is parallel to uv. If w has a straight

edge overlapping Lw on the right of w, then we go from w along the edges

of T ′ to the right as far as possible. Suppose that we end at a point y.

Then l(wy) < l(xv) since if l(wy) ≥ l(xv), then xw can be moved to the

right until x and v are identical so that the number of full components is in-

creased. Since l(wy) < l(xv), y cannot be a terminal point since otherwise,

we can move xw to touch y which increases the number of full components.

However, y cannot be a junction either since otherwise, T ′ could be short-

ened as shown in Fig.1.15(b). Thus y is a corner of a nonstraight edge. A

similar situation happens to the left hand side of w.

(a) (b)

u v

yw

x u v

yw

x u v

w

x

(c)

w' w'
w'

Fig. 1.16 w is moved further away from x to w′.

Now we can move w further away from x as shown in Fig.1.16. If w has

no edge with segment overlapping Lw, then w can also be moved further

away from x. As this movement cannot last forever, eventually w will

become a terminal point and x is a terminal point, that is Case 1.1.

(a) (b)

u

v

x

u v

x

u
v

x

(c)

Fig. 1.17 x is moved to a terminal point.

Case 2. ux is a straight edge and xv is a nonstraight edge with a segment

in the same direction as ux. In this case, flip xv, if necessary, to line up the

two first segments of ux and xv. Let vy be the first segment of xv. Then

y must be a terminal point. If y is not identical to v, then we can shorten
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Tmht by deleting an edge incident to y. If y is identical to v, then we go

back to Case 1.

Case 3. ux is a straight edge and xv is a nonstraight edge without a

segment in the same direction as ux. In this case, x can be moved either to

u or to a terminal point as shown in Fig.1.17. Such a movement increases

the number of full components. It follows from facts (F1-2) that the new

location of x belongs to C(t∗; x). �

Finally, we are ready to prove the main theorem, Theorem 1.10.

Proof of Theorem 1.10. It follows from Lemma 1.10 and Lemma 1.12

that for any minimum point x∗,

lsmt

(
P (t∗; x∗)

)
≥
√

3

2
lmht

(
P (t∗; x∗)

)
,

which implies gt∗(x
∗) ≥ 0. Thus we have F (t∗) ≥ 0, contradicting the

assumption that F (t∗) < 0. This proves the theorem. �

1.3 Steiner Ratios in Other Metric Spaces

From discussions of Section 1.3, we can see that to apply the minimax ap-

proach for solving an (optimization) problem, the following three questions

should be addressed:

(Q1) How to transfer the problem to such a minimax problem satisfying

the condition that the corresponding functions are concave.

(Q2) How to determine the critical geometric structure.

(Q3) How to verify the function value on the critical structure.

Developing techniques for answering these three questions will enable

us to solve more problems. We will explain some examples in the following

discussions.

1.3.1 Steiner Ratios in Euclidean Spaces

Gilbert and Pollak [114] also conjectured that in any Euclidean space the

Steiner ratio is achieved by the vertex set of a terminal simplex. Chung

and Gilbert [62] constructed a sequence of Steiner trees on regular simplices

whose lengths go decreasingly to
√

3/(4−
√

2). Although the constructed

trees are not known to be SMTs, they conjectured that
√

3/(4 −
√

2) is

the best lower bound for Steiner rations in Euclidean spaces. Clearly, if
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√
3/(4−

√
2) is the limit of Steiner ratios in d-dimensional Euclidean space

<d as d goes to infinity, then Chung-Gilbert conjecture is a corollary of

Gilbert and Pollak’s general conjecture. However, the general conjecture of

Gilbert and Pollak has been disproved by Smith [247] for dimension from

three to nine and by Du and Smith for dimension larger than two. Now

interesting questions about Chung-Gilbert conjecture arise: Could Chung-

Gilbert conjecture also be false? If the conjecture is not false, can we prove

it by the minimax approach?

First, we claim that Chung-Gilbert conjecture could be true. In fact,

we could get rid of Gilbert-Pollak general conjecture, and use another way

to reach the conclusion that the limit of Steiner ratios for regular simplices

is the best lower bound for Steiner ratios in Euclidean spaces. To support

our claim, let us analyze a possible proof of such a conclusion as follows.

Consider n terminal points in (n−1)-dimensional Euclidean space. Then

all of n(n− 1)/2 distances between the n points are independent. Suppose

that we could do a similar transformation and the minimax theorem could

apply to these n points to obtain a similar result in the proof of Gilbert-

Pollak conjecture for the case of Euclidean plane, i.e., a terminal set with

critical geometric structure has the property that the union of all MSTs

contains as many equilateral triangles as possible. Then such a critical

structure must be a regular simplex. This observation tells us two facts:

(1) Chung-Gilbert conjecture can follow from the following two conjectures

(the second one due to Smith [247]).

(2) It may be possible to prove Conjecture 1 by the minimax approach if

we could find a right transformation.

Conjecture 1 The Steiner ratio for n terminal points in an Euclidean space

is not smaller than the Steiner ratio for the vertex set of (n−1)-dimensional

regular simplex.

Conjecture 2 The limit of Steiner ratios in simplices is
√

3/(4−
√

2).

One may wonder why we need to find another transformation. What

happens to the transformation used in the proof of Gilbert-Pollak conjec-

ture in the Euclidean plane. The reason is that the transformation we used

in Section 1.3.1 turns out not to be applicable for Conjecture 1. In fact,

in the Euclidean plane, with a fixed graph structure, all edge-lengths of

a full Steiner tree can determine the set of original terminal points, and

furthermore the length of a spanning tree for a fixed graph structure is a

convex function of the edge-lengths of the Steiner tree. However, in an
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Euclidean space of dimension more than two, edge-lengths of a full Steiner

tree are insufficient for determining the set of given terminal points. Even

worse than that, adding other parameters may destroy the convexity of the

length of a spanning tree as a function of the parameters.

Smith [247] showed, by an exhaustive computing, that for d =

3, 4, · · · , 7, the Steiner trees constructed by Chung and Gilbert are actu-

ally SMTs; But, for d = 8, their Steiner tree is not an SMT. Smith also

conjectured that the trees of Chung and Gilbert are SMTs if d = 3 · 2p.

From the above discussion, we see that proving Chung-Gilbert conjec-

ture requires a further development of the minimax approach.

1.3.2 Steiner Ratio in Rectilinear Spaces

Although Hwang [142] determined the Steiner ratio in the rectilinear plane

in the very early stage of the study of Steiner trees, there is still no progress

on the Steiner ratio in rectilinear spaces by now. In fact, Graham and

Hwang [119] conjectured that the Steiner ratio in a d-dimensional rectilin-

ear space is d/(2d− 1) for any d ≥ 2. The difficulty for extending Hwang’s

approach to proving Graham-Hwang conjecture is due to the lack of knowl-

edge on the full rectilinear Steiner trees in high dimensional spaces. Note

that for a full rectilinear Steiner tree in the plane, all Steiner points lie on

a path of the tree. However, it is not known whether a similar result holds

for full rectilinear Steiner trees in a space of dimension more than two.

Graham-Hwang conjecture can be easily transferred to a minimax prob-

lem that is needed for applying our minimax approach as follows: Choose

lengths of all straight segments of a Steiner tree. When the topology of the

Steiner tree is fixed, the terminal set can be determined by such segment-

lengths, the length of the Steiner tree is a linear function and the length of

a spanning tree is a convex function of such segment-lengths, thus fi(·) is

a concave function of segment-lengths. Unfortunately, under such a trans-

formation, it is hard to determine the critical structure. To explain the

difficulty, we notice that in general the critical points could exist in both

the boundary and interior of the polytope. In the proof of Gilbert-Pollak

conjecture in the Euclidean plane, the crux is that only interior critical

points need to be considered in a contradiction argument. The critical

structure of interior critical points are relatively easy to be determined.

However, for the current transformation on Graham-Hwang conjecture, we

have to consider some critical points on the boundary. It requires a new

technique to either determine critical structure for such critical points or
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eliminate them from our consideration.

One option is to combine the minimax approach and Hwang’s method.

In fact, using the minimax approach, we may get a useful condition on the

set of terminal points. With such a condition, the terminal set can have

only certain type of full Steiner trees. This may reduce the difficulty of

extending Hwang’s method to higher dimension.

The significance of developing new techniques for determining critical

structures corresponding to critical points on the boundary is not only

for solving Graham-Hwang’s conjecture, but also for solving some other

interesting problems. For example, it can be immediately applied to some

packing problems. One of them is to find the maximum number of objects

which can be put in a certain container. When the objects are discs or

spheres, the problem can be transferred to a minimax problem that meets

our requirement. To determine such a number exactly, we have also to deal

with critical points on the boundary of the polytope.

1.3.3 Steiner Ratio in Banach Spaces

Examining the proof of Gilbert-Pollak conjecture in the Euclidean plane,

we observe that the whole proof does not use the property of the Euclidean

norm except the last part when verifying the conjecture on terminal sets of

critical structure. This means that using the minimax approach to deter-

mine the Steiner ratio in Minkowski plane3 (2-dimensional Banach space4),

we would have no technical difficulty finding a transformation and deter-

mining critical structures, but only meet a difficulty verifying the conjecture

for terminal sets with critical structure.

SMTs in the Minkowski planes have been studied in [249; 3; 66; 193; 77;

82]. In these papers, some fundamental properties of SMTs in Minkowski

planes have been established. The following two nice conjectures about

the Steiner rations in Minkowski planes were proposed in [66; 77] and [77],

respectively.

Conjecture 3 In any Minkowski plane, the Steiner ratio is between 2/3

and
√

3/2.

Conjecture 4 The Steiner ratio in a Minkowski plane equals that in its

3The Minkowski plane, named after H. Minkowski (1864-1909), is a two-dimensional
affine space provided with a metric that is invariant under translations.

4A Banach space, named after S. Banach (1892-1945), is a complete vector space with
a norm || · ||.
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dual plane.

With some new techniques in the critical structures, Gao et al. [108]

proved the first half of Conjecture 3 that in any Minkowski plane, the

Steiner ratio is at least 2/3, and Wan et al. [259] showed that Conjecture 4

is true for three, four, and five points. With a different approach, Du et al.
[77] also proved that in any Minkowski plane, the Steiner ratio is at most

0.8766.

Chung-Gilbert conjecture and Conjecture 4 can be naturally extended

to high dimensional Banach spaces as follows.

Conjecture 5 In any infinite dimensional Banach space, the Steiner ratio

is between 1/2 and
√

3/(2−
√

2).

Conjecture 6 The Steiner ratio in any Banach space equals that in its

dual space5.

Significant results on these two conjectures could be produced by fur-

ther developments of minimax approach from successful application in two-

dimensional problems to d-dimension for d ≥ 3.

1.4 Discussions

The proof of Gilbert-Pollak conjecture implies that minimum spanning tree

algorithm is a 2/
√

3-approximation algorithm for the Steiner tree problem

in the Euclidean plane. A natural problem is to design a better algorithm

with approximation ratio smaller than 2/
√

3. A simple method is to start

from an MST for given terminal set and then improve it by adding some

Steiner points. Clearly, every solution obtained in such a way would have

an approximation ratio no worse (greater) than 2/
√

3. The problem is how

much better than 2/
√

3 that one can achieve.

It was a long-standing problem whether there exists a polynomial time

approximation algorithm whose performance ratio is smaller than the in-

verse of the Steiner ratio or not. Over more than thirty years numerous

heuristics (e.g., [26; 35; 44; 97; 175; 178; 179; 251; 271]) for Steiner mini-

mum tree problem have been proposed for terminal points in various metric

spaces. Their superiority over MST-based algorithms were often claimed

by computation experiments without theoretical proof.

5The dual of a real vector space S is the vector space of linear functions f : S → <.
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In particular, Chang [44; 45] proposed an approximation algorithm for

Steiner minimum tree problem in the Euclidean plane as follows: Start

from an MST and at each iteration choose a Steiner point such that using

this Steiner point to connect three vertices in the current tree could replace

two edges in the MST and this replacement achieves the maximum saving

among such possible replacements.

Smith et al. [248] also adopted the idea of greedy improvement. But,

they start with Delaunay triangulation instead of an MST. Since every

MST is contained in Delaunay triangulation, the performance ratio of their

approximation algorithm can also be bounded by the inverse of the Steiner

ratio. The advantage of this algorithm over Chang’s algorithm is on the

running time, it runs only in time of O(n log n) while Chang’s algorithm

runs in time of O(n3).

Kahng and Robin [160] proposed an approximation algorithm for the

Steiner tree problem in the rectilinear plane by adopting the same idea as

that of Chang. For these three algorithms, it can be proved that for any

particular set of terminal points, the ratio of lengths of the approximation

solution and that of the SMT is smaller than the inverse of the Steiner

ratio. Some experimental results also show that the approximation solu-

tions obtained by these algorithms are very good. However, no theoretical

proof has been found to show any one of them being a better approximation

algorithm.

The first significant work on finding a better approximation algorithm

was made by Bern [31]. He proved that for the rectilinear metric and

Poisson distributed terminal points, a greedy approximation obtained by a

very simple improvement over an MST has a shorter average length. Later,

Hwang and Yao [146] extended this result to the case when the number of

terminal points is fixed.

In 1991, Zelikovsky [276] made the first breakthrough to the problem by

proposing a better approximation algorithm for the Steiner tree problem in

graphs. In 1996, Arora [10] made another breakthrough by proving that the

Steiner tree problem in the Euclidean plane admits a series of approximation

algorithms whose performance ratios could arbitrarily approach to 1. These

are two important developments on Steiner tree problems in 1990s. In the

next two chapters, we will study their works in details, respectively.
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Chapter 2

k-Steiner Ratios and Better

Approximation Algorithms

In this chapter we will study the Steiner tree problem in graphs as well as

in metric spaces. The Steiner tree problem in graphs is also NP-hard [163]

and it can be defined as follows.

Problem 2.1 Steiner Tree Problem in Graphs

Instance A connected graph G(V, E) with a cost1 l(e) on each edge e ∈ E,

a terminal set P ⊂ V .

Solution A Steiner tree T for P that interconnects all terminals in P .

Objective Minimizing the total length of the edges in T , l(T ) ≡∑
e∈T l(e).

A k-Steiner tree is a Steiner tree with all full components of size at

most k. The k-Steiner minimum tree (k-SMT) is a k-Steiner tree with the

shortest length. Note that a 2-SMT is clearly an MST; But k-Steiner tree

for k ≥ 3 may not exist in some cases (e.g. a star graph with more than k

rays and terminal set containing all vertices except the central vertex), in

such cases it is assumed that a k-Steiner tree is allowed to use the edges

and Steiner vertices in more than one full components. As a result, we can

consider a k-Steiner tree as a collection of full components with at most k

terminals such that all terminals are connected.

Given a terminal set P , by the definition of k-Steiner trees, a k-SMT is

an SMT for k ≥ |P |, so it is reasonable to expect that a k-SMT gives a good

approximation of SMT for sufficiently large k. To measure the difference in

lengths between k-SMTs and SMTs, let lsmt(P ) be the length of the SMT

of P , and let lk−smt(P ) be the length of the k-SMT of P , we define the

k-Steiner ratio in a metric space M as the following

1To keep consistence we will still use l(·) to represent the cost function on edges.

41
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ρk(M) ≡ inf
{ lsmt(P )

lk−smt(P )

∣∣P ⊂M
}
. (2.1)

Note that the Steiner ratio ρM (1.1) is equal to k-Steiner ratio ρk(M)

of (2.1) with k = 2. In particular, in the rectilinear plane L1, ρ2(L1) = 2/3
[142], and in the Euclidean plane L2, ρ2(L2) =

√
3/2 [81].

Every edge-weighted graph G(V, E) can be considered as a metric space

M where the distance between two vertices2 in V equals to the length of

the shortest path between them in G. Thus we can define k-Steiner ratio

in graphs as follows

ρk ≡ inf
G

ρk(G) = inf
M

ρk(M),

which means that the k-Steiner ratio in graphs is the same as the k-Steiner

ratio over all metric spaces. It is well-known that ρ2 = 1/2 [179; 60; 253].

Unfortunately, computing k-SMTs for k ≥ 4 turned out to be NP-hard

in general and the complexity of k = 3 is unknown [29]. Indeed, the NP-

hardness proofs for computing SMTs in the Euclidean and rectilinear planes
[109; 111] are applicable for computing k-SMTs in the planes when k ≥ 4 is

fixed, respectively. For the case of graphs, the bounded degree independent

set problem3 can be reduced to computing k-SMTs for k ≥ 4 by using the

reduction of Hakimi [126]. As a result, k-Steiner ratio ρk can not serve as

an approximation performance ratio as classical ratio ρ.

However, studying k-Steiner ratio for k ≥ 3 is still very important since

it plays a key role in the design of better approximation algorithms for

Steiner tree problems. In fact, it was a long-standing open problem whether

there exits a polynomial time approximation for the Steiner tree problem

in each metric space with a performance ratio smaller the the inverse of

the Steiner ratio, i.e., ρ−1 = ρ−1
2 (M). Zelikovsky [276] made the first

breakthrough in the Steiner tree problem in graphs. He proposed a polyno-

mial time algorithm using 3-Steiner trees whose performance ratio is upper

bounded by

ρ−1
2 + ρ−1

3

2
.

2When studying Problem 2.1 we will use graph term “vertex/vertices” instead of
geometry term “point/points”.

3Given a graph G(V,E), the problem asks for the subset of V with maximal size such
that there is no edge in E between any two vertices in the set.
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By bounding ρ2 and ρ3, he proved that the ratio is 11/6 < ρ−1
2 = 2. Later

Du et al. [91] and Berman and Ramaiyer [29] generalized Zelikovsky’s idea

to k-Steiner trees. Du et al. [91] showed that a generalized Zelikovsky’s

algorithm has a performance ratio upper bounded by

(k − 2)ρ−1
2 + ρ−1

k

k − 1
.

Berman and Ramaiyer [29] proposed a better algorithm that has perfor-

mance ratio at most

ρ−1
2 −

ρ−1
2 − ρ−1

3

2
− ρ−1

3 − ρ−1
4

3
− · · · −

ρ−1
k−1 − ρ−1

k

k − 1

In addition, Zelikovsky [277] also obtained a better approximation algo-

rithm with performance ratio no more than

1− ln ρ2 + ln ρk

ρk
.

A main part of the above mentioned works was to establish the lower

bound for the k-Steiner ratio ρk since a better lower bound will give a better

performance ratio for their approximations. Zelikovsky [276] first showed

that ρ3 ≥ 3/5 and later Du [76] showed that ρ3 ≤ 3/5, which means that

ρ3 = 3/5. Du et al. [91] proved that ρk ≥ blog2 kc/(1 + blog2 kc). Berman

and Ramaiyer [29] proved that in the rectilinear plane ρ3(L1) = 4/5 and

ρk(L1) = (2k − 1)/(2k) for k ≥ 4.

In this chapter we shall first prove that for k = s + 2r with 0 ≤ s < 2r,

the k-Steiner ratio in graphs is

ρk =
s + r2r

s + (r + 1)2r
. (2.2)

And then we shall present some approaches proposed for designing better

approximation algorithms for Steiner tree problems. In the end we will

discuss some related open problems.

2.1 k-Steiner Ratio

To determine the k-Steiner ratio, we will need some concepts. Let T be a

Steiner tree in a graph G(V, E), the edges of T are actually shortest paths

between vertices of the graph. In fact, we may think of the vertices along

such a path as 2-degree Steiner vertices. The Steiner vertices all belong to
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V , but a vertex in V can be used more than once as a Steiner vertex in

different components of the same Steiner tree.

Recall that a binary tree is such a rooted tree that each vertex has at

most two children. We call a binary tree where every internal vertex has

exactly two children a terminal binary tree. A complete binary tree is a

terminal binary tree where all leaves have the same depth. A binary tree

that is complete except perhaps at the bottom level is a terminal binary

tree where all leaves have depth l or (l + 1) for some l.

2.1.1 Upper Bound for k-Steiner Ratio

To prove that the term on the right side of equality (2.2) is a upper bound

for the k-Steiner ratio, we consider a special metric space Mn based on a

weighted tree Bn as shown in Fig.2.1. Let Bn be a complete binary tree

with n levels of edges and a final bottom level where each internal vertex

has only one child. The edges at the i-th level have length 2n−i and the

edges at the (n+1)-th level, the bottom level, have length 1. The points of

Mn are the vertices of Bn. The distance between two points is the length

of the shortest path between them in Bn, we can think of edges between

two points in Mn as paths between those points in Bn. It is easy to verify

that this defines a metric space.

Level 14 4

2 222

1

1 1 1 11 1 1 1

1111 1 1 1

Level 2

Level 4

Level 3

Fig. 2.1 The metric space Mn based on a weighted binary tree Bn.

Let the leaves of Bn be the set Pn of terminal points. We will compute

the length of SMT for Pn, lsmt(Pn). Let lk−smt(Pn) be the length of the

k-SMT of Pn. The ratio of these two values will yield a upper bound for

ρk as n→∞.
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Lemma 2.1 The length of the Steiner minimum tree for Pn is the total

length of Bn, lsmt(Pn) = (n + 1)2n.

Proof. Note that in Bn the total length of the edges at any fixed is 2n,

this is true at the bottom two levels, and each level above has half as many

edges each with twice the length. As there are (n + 1) levels, we obtain

lsmt = (n + 1)2n. �

Lemma 2.2 There is a k-Steiner minimum tree for Pn such that each

Steiner point has degree exactly 3.

Proof. Note that the terminal points of a component in any k-SMT can

be interconnected by a binary tree embedded in Bn, and it follows from

Lemma 2.1, this must be a shortest tree interconnecting these points. Note

that Steiner points of degree 2 can be removed and the two adjacent edges

replaced by a single edge, which is a path in Bn, between the two adjacent

vertices. Therefore, we can assume all Steiner points in this component

tree have degree 3. Components obtained in such a way yield the desired

k-SMT. �

4 4

2 222

1

1 1 1 11 1 1 1

1111 1 1 1

2t1t 3t 4t 6t5t 7t 8t

2s1s
3s

2r

1r 3r

4r

Fig. 2.2 A k-Steiner tree and roots of its components.

We could consider a component in a k-SMT for Pn as a regular binary

tree with at most k leaves embedded in Bn, where the edges are paths in

Bn. The root of a tree component is defined as the 2-degree Steiner point

at the highest level, which will be called the component root. In the case

of n = 3 as shown in Fig.2.2, one component consists of one Steiner point
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s1, three terminals t1, t2, and t3 with root at the degree-2 Steiner point r1.

Observe that r1 is a degree-3 point in Bn and the edge between s1 and t3
is a path of length 6 in Bn.

Lemma 2.3 There is a k-Steiner minimum tree for Pn such that each

Steiner point has degree 3 and no point of Bn is used more than once as a

Steiner point or component root of any component.

Proof. Let Tk−smt be a k-SMT as described in Lemma 2.2. Suppose

that there exists a vertex s at the highest level of Bn that is used as a root

or Steiner point of two components, C and C ′, in Tk−smt. Let s1 and s2

be the two children of s. Then edges (s, s1) and (s, s2) are used in both

components C and C ′. Let C1 and C ′
1 be the parts of components C and

C ′, respectively, that lie below s, and let C2 and C ′
2 be the parts that lie

below s2. See Fig.2.3(a) where C consists of the thick links where C ′ the

thin links.

(a)

C'2C2C'1C1

s2

s

s1

(b)

C'2C2C'1C1

s2

s

s1

Fig. 2.3 Suppose that components C and C ′ share a root or a Steiner point.

Note that components C and C ′ must be connected by some path in

Tk−smt, which cannot go through both C ′
1 and C ′

2 since Tk−smt is a tree.

Assume that it does not go through C ′
2. Now remove edge (s, s2) from

component C ′, that will make C ′
2 a separate component, and connect C ′

2

to component C by a path from s2 to a terminal point in C2, which is a

leaf in Bn. See Fig.2.3(b) where the new component consists of the dashed

links.

Observe that in Bn the length of edge (s, s2) is the same as the length

of the path from s2 to a leaf since the length of the edges doubles at each

level up the tree. Therefore, the above modification will not increase the

length of the Steiner tree; Moreover, it will not increase the size of any
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component and add any Steiner points. Thus all Steiner points are still of

degree 3. Vertex s2 has become the root of a new component, so we might

have added points that are used as roots or Steiner points of more than one

component; However, we have only added them below s.

If we repeat the above described process, by mathematical induction we

can successively remove the Steiner points or component roots that overlap

at vertices of Bn from level to level going down towards the bottom of the

tree until no such points exist. The proof is then finished. �

Lemma 2.4 There is a k-Steiner minimum tree for Pn such that each

Steiner point has degree 3 and every internal vertex of Bn, except at the

lowest level, is used exactly once as a Steiner point or component root of

some component.

Proof. It follows from Lemma 2.3 that there is a k-SMT Tk−smt such

that every internal vertex of Bn is used at most once. The internal vertices

at the lowest level cannot be component roots or Steiner points because

they have only one child. We will show that (2n − 1) Steiner points and

roots are needed to interconnect all 2n points in Pn, and since there are

only (2n−1) internal vertices of Bn not at the lowest level, every point must

be used exactly once. Fig.2.2 shows such a k-SMT Tk−smt with k = 3.

Now remove the component roots and Steiner points one by one from

Tk−smt. Notice that when a component root is removed, the tree will be

split into two pieces at the root, and when a Steiner point is removed, the

tree will be split into two pieces by disconnecting one of the two children of

the Steiner point. After all points are removed, the 2n terminal points must

be completely disconnected. Since removing one point adds only one new

piece, we just have removed (2n − 1) points to yield the 2n disconnected

pieces. The proof is then finished. �

Let Tk−smt(Pn) be a k-SMT on Pn that satisfies Lemma 2.4. We then

can think of each component C in Tk−smt(Pn) as a regular binary tree whose

internal vertices are the component root and the Steiner points. Below each

of these internal vertices are two edges of Bn. By Lemma 2.2, all Steiner

points have two edges below them and the component root must have two

edges below it in Tk−smt(Pn). We call these edges of Bn the peak edges of

component C, and denote them by PC , and we call the rest of the edges

used by C the connecting edges of C, and denote them by CC . In addition,

denote all of the peak edges of Tk−smt(Pn) by Pk,n and all the connecting

edges by Ck,n. When we refer to a peak, we mean those two peak edges

and the vertex they incident to.
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4 4

2 222

1

1 1 1 11 1 1 1

1111 1 1 1

2t1t 3t 4t 6t5t 7t 8t

2s1s
4s

2r

1r 3s

3r
1C

2C

3C

Fig. 2.4 The peak edges and connecting edges of components.

Fig.2.4 shows a k-SMT Tk−smt(Pn) for k = 4 and n = 3. It consists

of three components C1, C2, and C3 each has some peak (dashed) edges

and connecting (thin) edges. In particular, the component C1 that contains

four terminals ti for i = 1, 2, 3, 4 and has three pairs of peak edges with

total length of 8 and four connecting edges with total length of 4. For the

component C3 that contains t7 and t8, these two values are both equal to

2. The following lemma gives a relationship between these two values in

general.

Lemma 2.5 For any k with k = s + 2r, where 0 ≤ s < 2r,

∑

e∈CC

l(e) ≥
( 2r

s + r · 2r

) ∑

e∈PC

l(e). (2.3)

Proof. We will prove the lemma for components of size k in the k-SMT

by mathematical induction on the sum of the depths of the peaks from

the root of the component. We compute the the depths of the peaks by

counting edges in Bn, not edges in Mn; and we count each edge the same,

ignoring the lengths of the edges. Note that the sum of the peak depths is

minimum when the peaks form a complete binary tree, except perhaps at

the lowest level, so we will consider this case first.

In a component C of size k whose peaks form a complete binary tree,

except perhaps at the lowest level, we have 2r peak edges at the second to

the lowest level and 2s peak edges at the lowest level. The components C1

and C2 in Fig.2.4 are such two components. Suppose that a peak edge at
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the lowest level has length w. Then the peak edges at the lowest level have

total length of 2s · w and at the r higher levels each level has total length

of w · 2r+1. Thus we have
∑

e∈PC

l(e) = 2w(r · s + 2r).

The connecting edges of C form paths from the peak edges at the lowest

level down to the terminal points at the leaves of Bn. By the construction

of Bn, these paths have the same length as the peak edges at the lowest

level where they originate. There are 2s such paths of length w at the

lowest level and (2r − s) such paths of length 2w one level higher. Thus we

have
∑

e∈CC

l(e) = 2w · 2r.

In this case, inequality (1.3) is satisfied. In fact, it is an equality.

(a)

C

w

(b)

C'

s
w

2w

w
s

w

2w 2w

Fig. 2.5 Case 1: (a) C has a peak with a nonpeak edge above it, and (b) C ′ after
moving the peak of C up.

We next will show that the ratio of total length of the connecting edges

to the total length of the peak edges decreases as the sum of the depths

of the peak edges decreases. In fact, as we change the configuration of

the component by moving a peak up, the total length of the connecting

edges remains unchanged, while the total length of the peak edges increases.

When the peaks cannot move up any further, the sum of the peak depths

achieves the minimum, and as we just showed, inequality (2.3) holds. Hence

it will hold for any configuration of a component. To show this fact, we

will consider two cases in which the sum of the peak depths might not be

minimum: either a peak has a nonpeak edge above it as shown in Fig.2.5(a)
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or else there are two peak edges at the bottom level whose depths differ

by more than 1 as shown in Fig.2.6(a). We assume that inequality (2.3)

has been established for all possible components where the sum of the peak

depths is at most m and that the sum of the peak depths of component C

is (m + 1), so it is not minimum.

Case 1. The component C has a peak with a nonpeak edge above it as

shown in Fig.2.5(a). Suppose that the peak edges with the nonpeak edge

above have length w. Consider the component C ′ obtained by moving the

peak with the nonpeak edge above it up one level as shown in Fig.2.5(b).

This decreases the sum of the peak depths by 1, so the induction hypothesis

applies to C ′.
Note that the total length of the connecting edges of C and C ′ are the

same since the connecting edge of length 2w above the peak in C has been

replaced by two connecting edges of length w in C ′. In addition, the total

length of the peak edges of C is less than that in C ′ since the two peak

edges of length w in C have been moved up so they each have length 2w in

C ′. Combining this with the induction hypothesis on C ′, we obtain

∑

e∈CC

l(e) =
∑

e∈CC′

l(e)

≥
( 2r

s + r · 2r

) ∑

e∈PC′

l(e)

≥
( 2r

s + r · 2r

) ∑

e∈PC

l(e) (2.4)

Case 2. The component C has two peak edges at bottom level whose

depths differ by more than 1 as shown in Fig.2.6(a). Consider the peak

edges at the lowest and highest bottom level in C. The lowest peak must

have two paths to two leaves below t; the highest peak must have at least one

path to a leaf below it. Suppose that the highest peak edge has length 2w′

and the lowest peak edges have length w. Then by the construction of Bn,

the paths below these peak edges also have length 2w′ and w, respectively.

Now consider the component C ′ obtained from C by moving the lowest

peak just below the peak edge at the highest bottom level as shown in

Fig.2.6(b). This operation decreases the sum of the peak depths by at least

1, so our induction hypothesis applies to C ′.
The total length of the connecting edges of C and C ′ are again the

same since the connecting path of length 2w′ below the highest peak in C

has been replaced by two connecting paths of length w′ in C ′, and the two
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connecting paths of length w below the lowest peak in C have been replaced

by one connecting path of length 2w in C ′. The total length of the peak

edges in C is less than that in C ′ since the two lowest peak edges of length

w in C have been moved up, so they have length w′ in C ′. As the peaks

at the lowest and highest bottom level differ in depth by at least, we have

that w < w′. Combining this inequality with the induction hypothesis on

C ′, we get inequality (2.4) again.

ww

(a)

C
w

(b)

w

2w'

2w2w'

w

C'
w

2w'

2w

w' w'

w'w'

Fig. 2.6 Case 2: (a) C, and (b) C ′ after moving the peak of C up.

The above analysis for two cases complete the induction step, and the

proof is then finished. �

Theorem 2.1 For any k with k = s+2r, where 0 ≤ s < 2r, the k-Steiner

ratio

ρk ≤
s + r2r

s + (r + 1)2r
. (2.5)

Proof. First consider the case where each component C has size k.

By Lemma 2.5, summing the inequality (2.3) over all components of

Tk−smt(Pn) yields

∑

e∈Ck,n

l(e) ≥
( 2r

s + r2r

) ∑

e∈Pk,n

l(e). (2.6)

By Lemma 2.4, the Steiner points and component roots of Tk−smt(Pn) cover
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all of the internal vertices of Bn exactly once, except at the lowest level.

Thus the peak edges of Tk−smt(Pn) cover all of the edges of Bn exactly

once, except for the edges at the lowest level. The total length of the edges

at the lowest level is 2n, and the total lengths of all edges of Bn is lsmt(Pn)

by Lemma 2.1. Therefore, we have

lsmt(Pn) = 2n +
∑

e∈Pk,n

l(e).

Then by inequality (2.6), we obtain

lsmt(Pn) =
∑

e∈Pk,n

l(e) +
∑

e∈Ck,n

l(e)

≥
(
1 +

2r

s + r2r

) ∑

e∈Pk,n

l(e)

=
s + (r + 1)2r

s + r2r

(
lsmt(Pn)− 2n

)
. (2.7)

Remember that ρk is the infimum of lsmt(Pn)/lk−smt(Pn). Then from in-

equality (2.7) and Lemma 2.1 we deduce

ρk ≤
lsmt(Pn)

lk−smt(Pn)
≤ s + r2r

s + (r + 1)2r
+

1

n + 1
.

Letting n→∞ implies inequality (2.5) yielding the upper bound for ρk.

Now consider the case where a component C has size k′ < k (as the

component C3 in Fig.2.4). In this case, it is easy to verify that for k′ =

2r′

+ s′, where 0 ≤ s′ < sr′

, we have

2r′

r′2r′ + s′
≥ 2r

s + r · 2r
,

from which we deduce that inequality (2.3) also holds for any component of

size less than k in a k-Steiner tree. Therefore, the above argument is also

applicable to this case. The proof is then finished. �

2.1.2 Lower Bound for k-Steiner Ratio

The proof for the lower bound of k-Steiner ratio ρk applies the same ap-

proach as the one used in the lower bound proof in [91]. We first convert

a Steiner tree into a weighted regular binary tree. Then by labelling the

vertices of this binary tree, we construct (s+ r ·2r) different k-Steiner trees
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and show that one of these trees has small enough length to enable us to

get the lower bound.

Lemma 2.6 For any regular binary tree T , there exists an one-to-one

mapping f(·) from internal vertices to leaves such that for any internal

vertex u,

(i) f(u) is a descendant of u;

(ii) all paths p(u) in T from u to f(u) are edge-disjoint.

Proof. To prove the lemma, we add the following additional requirement:

(iii) There is a leaf v so that the path from the root to v is edge-disjoint

from all other paths p(u).

We will prove by mathematical induction on the height of the tree that all

three conditions can be satisfied. Fig.2.7 shows a desired mapping where

f(ui) = vi for each internal vertex ui.

u1

v1

u2 u3

u4 u5 u6 u7

v4 v5v2 v6 v7v3 v

Fig. 2.7 A mapping that satisfies all three conditions.

When the tree has height 1, this is trivially true. Let T be a tree of

height h ≥ 2. Then T has two subtrees T1 and T2, each of them has

height at most (h− 1) and rooted at the two children of the root of T . By

induction hypothesis, there are two mappings f1(·) and f2(·) on the internal

vertices of T1 and T2 satisfying conditions (i) and (ii). In addition, there

are two vertices v1 and v2 in T1 and T2, respectively, that satisfy condition

(iii). Now define f(·) as the union of f1(·) and f2(·), and define f(·)(root

of T )= v1. Clearly, f(·) satisfies conditions (i,ii) and v2 satisfies condition

(iii) for T . This completes the induction process and the proof. �
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Theorem 2.2 For any k with k = s+2r, where 0 ≤ s < 2r, the k-Steiner

ratio

ρk ≥
s + 2r

s + (r + 1)2r
. (2.8)

Proof. We will prove that for any metric space M and any set P of

terminal points in M ,

lsmt(P )

lk−smt(P )
≥ s + 2r

s + (r + 1)2r
, (2.9)

from which inequality (2.8) follows immediately since ρk is the infimum of

these ratios.

We will prove inequality (2.9) by mathematical induction on n, the num-

ber of terminal points in P . If n ≤ k, then the inequality is trivially true

since lsmt(P ) = lk−smt(P ). For n > k, consider an SMT Tsmt(P ) on P . If

Tsmt(P ) is not a full Steiner tree, then we can split it at a terminal point

into two smaller Steiner trees each with fewer than n terminal points. De-

note the terminal points of these two trees by sets P1 and P2. Then we have

lsmt(P ) = lsmt(P1) + lsmt(P2) and lk−smt(P ) ≤ lk−smt(P1) + lk−smt(P2),

which, together with the induction hypothesis, yield the following inequal-

ities

lsmt(P )

lk−smt(P )
≥ lsmt(P1) + lsmt(P2)

lk−smt(P1) + lk−smt(P2)

≥ min
{ lsmt(P1)

lk−smt(P1)
,

lsmt(P2)

lk−smt(P2)

}
≥ s + 2r

s + (r + 1)2r
.

Therefore, we only have to consider the case where Tsmt(P ) is a full Steiner

tree, that is, all terminal points are leaves of T .

Now by adding some edges of length zero and Steiner points, we first

modify Tsmt(P ) to be a tree where every Steiner point has degree exactly

3. And then we choose a root in the middle of an edge to convert Tsmt(P )

into a weighted regular binary tree T ′
smt(P ), where the weight of each edge

in T ′
smt(P ) is the length of the edge in the metric space. Fig.2.8 illustrates

this process. A full Steiner tree Tsmt(P ) interconnects seven terminal points

{ti|i = 1, 2, · · · , 7} via two Steiner points s1 and s2 as shown in Fig.2.8(a).

After modification the new Steiner tree T ′
smt(P ), as shown in Fig.2.8(b),

interconnects {ti|i = 1, 2, · · · , 7} via five Steiner points with three added

(black) ones each of degree three where three (dashed) edges of length zero

are added.
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s1

t1

s2

t4

t5

t2

t6
t7

t3

s1

t1

s2

t4

t5

t2

t6t7t3

(a) (b)

Fig. 2.8 A Steiner tree is modified into a weighted regular binary tree.

Next we label all internal vertices of T ′
smt(P ) with sets of size 2r chosen

from the numbers in {1, 2, · · · , s + r · 2r}. The labelling of a vertex is

determined inductively by the labelling of the r vertices above it on a path

to the root, its r immediate ancestors. Fig.2.9 illustrates the labelling

process for k = 5, that is, r = 2 and s = 1.

We first show how to label the internal vertices on the i-th level in

T ′
smt(P ) for 1 ≤ i ≤ r. Label the vertex on the first level (the root) with

the set {1, 2, · · · , 2r}, and then label the two vertices on the second level

with the set {1 + 2r, 2 + 2r, · · · , 2 · 2r}; See Fig.2.9(a). In general, label all

vertices on the i-th level, for 1 ≤ i ≤ r, with the set {1 + (i− 1)2r, 2 + (i−
1)2r, · · · , i · 2r}.

We then describe how to inductively label the internal vertices on the

i-th level in T ′
smt for i > r. The labelling is made in such a way that the

label sets of up to r consecutive vertices on a path up the tree are disjoint,

which is called the disjointness property. Clearly, the labelling of the first

r levels satisfies the disjointness property.

Assume that the internal vertices on the first i levels have been labelled

for i ≥ r, and that the disjointness property holds up to the i-th level. We

label the vertices at the (i + 1)−st level by the following two rules.

(R1) Let v be a vertex at the (i + 1− r)-level with label set Sv = {l1, l2,
· · · , l2r}. Label the j-th descendant of v on the (i + 1)-st level with

the set Sj = {lj , lj+1, · · · , lj−s−1+2r}, where the subscripts take

module of 2r so that they are all in {1, 2, · · · , 2r}.
Vertex v has at most 2r descendants on the (i + 1)-st level, so we need

at most the sets S1, S2, · · · , S2r . Each of the sets Sj ’s has (2r−s) elements,



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

56 Steiner Tree Problems in Computer Communication Networks

and each label lk from Sv appears in at most (2r − s) of the sets, namely

lk ∈ Sk, Sk−1, · · · , Sk+s+1−2r , where again the subscripts take module of

2r. See Fig.2.9(b).

5678

1234

5678

5678 5678

1234

123 234 341 412

5678 5678

1234

1239 2349 3419 4129

1239 2349 3419 4129

5678 5678

1234

5674 6784 7851 8561 5672 6782 7853 8563

Rule (R1) Rule (R2)

(a)

(d)

(c)(b)

Induction

Fig. 2.9 Labelling process that guarantees the disjointness property.

(R2) For each vertex at the (i + 1)-st level, add to its label set those s

labels that are not in the label sets of any of its immediate r ancestors.

By the disjointness property, the r immediate ancestors of a vertex at

the (i + 1)-st level are labelled by r disjoint sets of size 2r, so there must

be exactly s numbers from {1, 2, · · · , s + r · 2r} unused. Also, the labels

added by rule (R2) will be different from the labels added by rule (R1), so

all vertices at the (i + 1)-st level are given exactly 2r labels by these two

rules. See Fig.2.9(c).

The disjointness property now holds up to the (i + 1)-st level, since a

vertex v at the (i + 1)-st has labels taken from its r-th ancestor’s label

set, which by the disjointness property at the i-th level are unused by v’s

(r − 1) immediate ancestors, and s other labels, which are also unused by

its (r − 1) immediate ancestors. By the induction, we can label the entire
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tree as shown in Fig.2.9(d).

We now can use this labelling to construct (s + r · 2r) k-Steiner trees.

Each label l determines the k-Steiner tree Tl for l = 1, 2, · · · , s + r · 2r.

Each vertex labelled l becomes the component root of a component in Tl.

In addition, we always have a component in Tl whose component root is

the root of T ′
smt, even if the root of T ′

smt is not labelled by l. A component

that roots at vertex v is connected, by paths in T ′
smt, with the first vertices

below v that are also labelled by l, which are called intermediate leaves of

the component. From the intermediate leaf u, the component then follows

the path p(u) to the tree leaf f(u) as given by Lemma 2.6. If there are no

vertices labelled l on a path below v, then the component extends along

that path all the way down to a tree leaf.

1

1

1

1

11

component root 

intermediate leaves

tree leaves 
t1 t2 t3 t4 t5 t6 t7 t8

Fig. 2.10 k-Steiner tree T1 construction based on node labelling given in Fig.2.9(d).

Fig.2.10 illustrates the construction of k-Steiner tree Tl based on the

node labelling given in Fig.2.9(d). T1 has four components, one of them

consists of solid edges containing five terminals {t2, t3, t4, t5, t7} while all

other three each consist of dashed edges containing two terminals.

In the following we first verify that Tl is in fact a tree that spans the

terminal set P . (Remember that all points in P are the leaves of T ′
smt.)

This can be proved by mathematical induction on the height of the tree

T ′
smt. It is trivially true when the height is zero. Let C be the component

at the top of Tl, the component whose component root is the root of T ′
smt.

Then consider a subtree below an intermediate leaf of C. By induction

hypothesis, Tl restricted to this subtree is a tree spanning those points in
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P which are leaves of the subtree. As component C is itself a tree, it joins

one tree leaf from each of the subtrees below its intermediate leaves (and

any tree leaves of T ′
smt that are not below any intermediate leaves) into one

large tree.

We next verify that every components in tree Tl has size at most k. If a

component stops at a tree leaf before reaching an intermediate leaf, its size

will be smaller, so we only look at the maximum-sized components that

have all possible intermediate leaves.

Suppose that a component root v is not labelled by l. Then v must be

the root of tree T ′
smt and l ≥ 1 + 2r. By the initial labelling, all numbers

in {1 + 2r, 2 + 2r, · · · , r · 2r} appears on all vertices of one of the (r − 1)

levels below the root, and by rule (R2), the remaining s labels appear on

all vertices of the r-th level below the root. Thus the intermediate leaves

are all at the r-th level or above, and so it is of size at most 2r ≤ k.

Therefore, we can assume that v is itself labelled by l. By rule (R1) of

the labelling process, we know that s of the descendants of v at r levels

below are not labelled by l, and the remaining (2r − s) descendants are

labelled by l.

Now look at a vertex w that is not labelled by l and r levels below the

component root v. Since l is used to label v, by the disjointness property, it

cannot be used to label any of the (r− 1) vertices on the path from v to w.

Because l is not used to label w, by rule (R2) of the labelling process, the

children of w must be labelled with l and they will be intermediate leaves.

Thus the component rooted at vertex v has 2s intermediate leaves (r+1)

levels below v and (2r − s) intermediate leaves r levels below. Therefore,

there are s + 2r = k intermediate leaves, and thus the component is of size

k. Hence all components are of size at most k, and Tl is a k-Steiner tree on

terminal set P .

In the end, let ll be the sum of the lengths of the paths p(u) from

intermediate leaves u in Tl to tree leaves. We will estimate the value of∑s+r2r

l=1 ll, from which we obtain an upper bound on the length of k-SMT.

Since each internal vertex u in T ′
smt is an intermediate leaf in exactly 2r of

the k-Steiner trees, namely Tl for each l in the label set of u, the length

of path p(u) will be counted exactly 2r times in the sum. Moreover these

paths are disjoint for different intermediate leaves, the sum of all of the

paths in all of the terms of the sum will be at most 2r times the length of

the entire tree T ′
smt, which is the length of the SMT Tsmt. Therefore, we
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have

l1 + l2 + · · ·+ ls+r2r ≤ 2rlsmt(P ). (2.10)

Then there must be an index i such that

li ≤
2r

s + r · 2r
lsmt(P ). (2.11)

Note that the total length of edges in Ti is the length of the components from

the component roots to the intermediate leaves plus the length from the

intermediate leaves to the tree leaves. The components from the component

roots to the intermediate leaves cover T ′
smt(P ) exactly once, so this part

has length equal to lsmt(P ) (the other part has length li). This, together

with inequality (2.11), leads to

l(Ti) = lsmt(P ) + li ≤
(
1 +

2r

s + r · 2r

)
. (2.12)

Since lk−smt(P ) ≤ l(Ti), we get

lsmt(P )

lk−smt(P )
≥ lsmt(P )

li
≥ 1

1 + 2r

s+r·2r

=
s + r2r

s + (r + 1)2r
,

which implies inequality (2.9). The proof is then finished. �

2.2 Approximations Better Than Minimum Spanning Tree

In the past decades numerous heuristics for Steiner tree problem have been

proposed for terminal points in various metric spaces (and graphs as well).

Their superiority over MST-based algorithms4 [179; 60; 253], which produce

2/
√

3-approximation and 2-approximation solutions in the Euclidean plane

and graphs, respectively, were claimed and demonstrated only by simula-

tions (no mathematical proof of superiority was ever obtained). In 1990, Ze-

likovsky [276] finally brought a breakthrough by giving a 11
6 -approximation

algorithm for the Steiner tree problem in graphs. After that many better

approximation algorithms were proposed, some of them are listed in the

following tables.

4This kind of algorithms was already known in 1968 [114; 120].
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Approximation ratios References

11/6≈ 1.833 Zelikovsky [276]

1.746 Berman and Ramaiyer [29]

1.734 Borchers and Du [39]

1 + ln 2 ≈ 1.693 Zelikovsky [277]

5/3 ≈ 1.666 Prömel and Steger [224]

1.644 Karpinski and Zelikovsky [165]

1.598 Hougardy and Prömel [136]

1 + 1
2 ln 3 ≈ 1.55 Robins and Zelikovsky [239]

Table 2.1 Better algorithms for Steiner tree problem in graphs.

Approximation ratios References

1.1546 Du et al. [91]

1 + ln(2/
√

3) ≈ 1.1438 Zelikovsky [277]

Table 2.2 Better algorithms for Steiner tree problem in Euclidean plane.

Approximation ratios References

11/8≈ 1.375 Zelikovsky [275]

1.323 Berman and Ramaiyer [29]

1.267 Karpinski and Zelikovsky [165]

Table 2.3 Better algorithms for Steiner tree problem in rectilinear plane.

All these better approximation algorithms, except for the randomized

algorithm of Prömel and Steger [224], are based on greedy strategies orig-

inally due to Zelikovsky [276]. In particular, Du et al. [91] generalized

Zelikovsky’s idea by extending 3-Steiner trees to k-Steiner trees. They

obtained a lower bound for the k-Steiner ratio in any metric space which

achieves one as k goes to infinity. Thus in any metric space with the Steiner

ratio less than one, there exists a k-Steiner ratio bigger than the Steiner

ratio. Thus, they proved that a better approximation exists in any metric

space satisfying the following conditions:

(C1) The Steiner ratio is smaller than one.

(C2) The Steiner minimum tree on any fixed number of points can be

computed in polynomial time.

Note that the Euclidean space (particularly the Euclidean plane) satisfies

the above two conditions.
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In the next three subsections we will study some of the approaches

proposed for designing approximation algorithms with performance ratios

better than MST-based algorithms.

2.2.1 Greedy Strategy

Recall that a k-Steiner tree is a tree with a Steiner topology and each of its

full components contains at most k terminals, and the k-Steiner minimum

tree is a k-Steiner tree of the shortest length, denoted it by k-SMT and

its length by lk−smt(P ) for given terminal set P . As we have mentioned

in the beginning of this chapter, no polynomial time algorithm is known

for computing k-SMT for k ≥ 3, so one cannot use a k-SMT as a better

approximation for SMT. The key idea of Zelikovsky’s algorithm [276] is to

use 3-Steiner trees instead.

Zelikovsky’s algorithm [276] essentially works as follows: Start from an

MST and at each iteration choose a Steiner vertex such that using this

Steiner vertex to connect three terminal vertices could replace two edges

in the MST and such a replacement achieves the maximum length reduc-

tion among all possible replacements. Although Zelikovsky started from a

point different from Chang’s [44; 45], the two approximations algorithms

are very similar. Indeed, they both start from an MST and improve it

step by step by using a greedy principal to choose a Steiner vertex to con-

nect a triple of vertices. The difference lies in the way of choosing triples

of vertices, Chang’s algorithm may choose some Steiner vertices while Ze-

likovsky’s algorithm only chooses terminal vertices. This difference makes

Chang’s algorithm hard to be analyzed. However, it is an interesting prob-

lem to know which algorithm yields a better approximation solution. In the

following we will present the general version of Zelikovsky’s algorithm [91;

83].

The greedy strategy for computing an MST for given terminal set can

be extended to the case where some of the terminal points are actually

point-sets. For a given set P of n terminal points and subset Pi ⊂ P ,

i = 1, 2, · · · , m, let P ′ =
⋃m

i=1 Pi. An MST T (P ; P1, P2, · · · , Pm) is a set of

(m + |P | − |P ′| − 1) edges connecting the m point-sets and the (|P | − |P ′|)
singletons where a point-set is considered connected if any of its points is

connected. In fact, Pi may be considered as a contracted terminal point of

all terminal points in Pi. The original MST Tmst(P ) can be considered as

the special case of m = 0 (no contraction).

Fig.2.11(a) shows an MST for nine terminals in the Euclidean plane, and
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(b) shows an MST Tmst(P ; P1, P2, · · · , Pm) is a set of (m + |P | − |P ′| − 1)

edges connecting the m point-sets and the (|P | − |P ′|) singletons where

m=2 and P1 = {t1, t2, t4} and P2 = {t3, t6, t7}.

(a) (b)

t1 t2

t3 t4 t5

t7t6 t8 t9

P1

P2

t5

t8 t9

Fig. 2.11 (a) An MST for nine terminals, and (b) an MST for two point-sets and three
singletons.

To assure that the connected graph is a tree, it is required that no set

(including singleton) is contained in another set, i.e., |Pi∩Pj | ≤ 1, and that

there does not exist a cyclic sequence of subscripts such that |Pi ∩ Pj | = 1

for all i and j that are consecutive in the cyclic sequence. Such a set of

terminal-sets {Pi} is called a cycle-free set. In Fig.2.11, {P1, P2} is cycle-

free, but P2 and {t3, t4, t7} do not make a cycle-free set.

Let Si denote the set of terminals in a full SMT Tsmt(Si). Then define

the gain of cycle-free set {Pi} as

gain
(
P ; P1, P2, · · · , Pm

)

≡ lmst(P )− l
(
Tmst(P ; P1, P2, · · · , Pm)

)
−

m∑

i=1

l
(
Tsmt(Si)

)
. (2.13)

When gain(; ) > 0, it can be considered as the saving of length over an

MST obtained by using Tsmt(Si) to connect points in Pi. For the example of

Fig.2.11, the gain is the difference between the length of MST of Fig.2.11(a)

and the length of Steiner tree of Fig.2.11(b).

Du and Zhang [90], extending the idea of Zelikovsky [276] for computing

an approximate solution of 3-SMT in graphs, gave the following greedy

algorithm for computing an approximate solution of k-SMT in an arbitrary

metric space M . It computes an MST of terminal-set P in the distance
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graph GD(P )5 as an initial solution, then it improves the current solution

by using i-trees with the maximal positive gain, where for 3 ≤ i ≤ k, an

i-tree is a full Steiner tree with i terminals.

Algorithm 2.1 Greedy Algorithm

Step 1 For each i = 1, 2, · · · , k, compute an i-SMT for each
(

n
i

)
subsets of

i terminals. Store the obtained i-SMT in list L if it is a full SMT.

Step 2 For j = 1, 2, · · · , n− 1, select Tj from L such that T1, · · · , Tj is

cycle-free and gain(P ; P1, · · · , Pj) maximizes gain(P ; P1, · · · , P ∗
j )

over all Tmst(Sj) from L, where Pj is the terminal-set of Tj .

Delete P ∗
j from L if P1, P2, · · · , P ∗

j is not cycle-free.

Step 3 Stop when L is empty and return Tk−G := Tmst(P ; P1, · · · , Pj′ ).

Since the edge between any pair of two terminals is in L, the re-

turned solution of Algorithm 2.1 is always a Steiner tree for terminal set

P . However, the efficiency of Algorithm 2.1 depends on the existence of

an efficient construction of minimum i-trees in metric space M . Given

that there exists such a procedure which requires time of f(k), then Step

1 takes time of O(knkf(k)) time to generate the O(knk) SMTs where

n = |P |. In Step 2, it takes time of O(n log n) to generate the MST

Tmst(P ; P1, P2, · · · , P ∗
j ) for each SMT Tmst(Sj) ∈ L and there are O(knk)

SMTs in L. As Step 2 is repeated O(n) times, Algorithm 2.1 requires total

time of O(knk(n2 log n + f(k))).

For a cycle-free set {P1, P2, · · · , Pm}, we define

gain
(
P ; Pi+1, · · · , Pm|P1, · · · , Pi

)

≡ gain
(
P ; P1, · · · , Pm

)
− gain

(
P ; P1, · · · , Pi

)
(2.14)

= l
(
Tmst(P ; P1, · · · , Pi)

)
− l

(
Tmst(P ; P1, · · · , Pm)

)
−

m∑

j=i+1

l
(
Tsmt(Sj)

)
.

For an edge e = (u, v) between two points u and v, let P (e) = {u, v}.
Lemma 2.7 Let {Pj} be a cycle-free set. For each edge e, either

gain
(
P ; {Pj} |P (e)

)
= gain

(
P ; {Pj}

)
(2.15)

or there exists a Pe ∈ {Pj} such that

gain
(
P ; {Pj} \ Pe |P (e)

)
≥ gain

(
P ; {Pj} \ Pe |Pe

)
(2.16)

5Given a graph G(V, E) with P ⊂ V , the distance graph GD(P ) is a complete graph
of P where the distance between two vertices u and v in P is the length of the shortest
path between u and v in the original graph G(V, E).
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Proof. Consider an edge e. Clearly, Tmst(P ) ∪ {e} contains a circuit,

and gain(P ; p(e)) is simply the length of the longest edge e∗ in this circuit.

Let U and V be the two components of Tmst(P ) after e∗ is deleted from

Tmst(P ). Since the two endpoints of e∗ must be connected in Tmst(P ; {Pj}),
one of the following two cases must occur.

Case 1. Tmst(P ; {Pj}) contains an edge e′ connecting U and V . Then

by definitions (2.13-14), we have

gain
(
P ; P (e) | {Pj}

)
= gain

(
P ; P (e)

)
. (2.17)

From equality (2.17) we deduce

gain
(
P ; {Pj} |P (e)

)
= gain

(
P ; {Pj}, P (e)

)
− gain

(
P ; P (e)

)

= gain
(
P ; {Pj}

)
+gain

(
P ; P (e) | {Pj}

)
−gain

(
P ; P (e)

)

= gain
(
P ; {Pj}

)
,

which yields equality (2.15).

Case 2. There exists a Pe ∈ {Pj} which contains one point u ∈ V and

one point v ∈ V . Let P ′
e denote the set of terminal points in Te \ {u, v}.

Then we have

gain
(
P ; {Pj} \ Pe

∣∣ Pe

)
= gain

(
P ; {Pj}

)
− gain

(
P ; Pe

)

= gain
(
P ;{Pj} \ Pe,{u, v}

)
+gain

(
P ; P ′

e|{Pj},{u, v}
)

−gain
(
P ; {u, v}

)
− gain

(
P ; P ′

e | {u, v}
)

≤ gain
(
P ; {Pj} \ Pe, {u, v}

)
− gain

(
P ; {u, v}

)

= gain
(
P ; {Pj} \ Pe | {u, v}

)

= gain
(
P ; {Pj} \ Pe |P (e)

)
,

which yields equality (2.16). The proof is then finished. �

By processing edge e at a time, we can deduce the following corollary

from the above lemma.

Corollary 2.1 For any cycle-free set {P1, P2, · · · , Pm},

gain
(
P ; {Pj} \

⋃

e

Pe

∣∣ ⋃

e

Pe

)
≤ gain

(
P ; {Pj} \

⋃

e

Pe

∣∣ ⋃

e

P (e)
)
.

Theorem 2.3 Let lk−G(P ) be the length of Steiner tree TG for P returned

by greedy algorithm 2.1. Then for any k ≥ 3

lk−G(P ) ≤ k − 2

k − 1
lmst(P ) +

1

k − 1
lk−smt(P ). (2.18)
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Proof. We will prove the theorem by mathematical induction on m,

where m is the number of Pi in the list L that satisfies |Pi| ≥ 3. Let

Lk =
⋃j

i=1 Tk−smt(Si) where each Tk−smt(Si) is a full SMT, and let

{Tk−smt(S1), Tk−smt(S2), · · · , Tk−smt(Sm)} be the full SMTs chosen by the

algorithm. If m = 0, then each Tk−smt(Si) must be an edge for otherwise

gain(P ; P1) ≥ gain(P ; P ∗
i ) > 0 and m ≥ 1. Thus gain(P ; P1, · · · , Pm) =

0 = gain(P ; P ∗
i ), and inequality (2.18) is trivially true. So, we assume

m ≥ 1.

Now subtracting lmst(P ) = l2−G(P ) from both sides of inequality (2.16),

we obtain

gain
(
P ; P1, P2, · · · , Pm

)
≥ 1

k − 1
gain

(
P ; P ∗

1 , P ∗
2 , · · · , P ∗

j

)
. (2.19)

Suppose that T1 contains t1 terminal points. Then Tmst(P1) has (t1 − 1)

edges. Without loss of generality, assume that

⋃

e∈Tmst(P1)

Pe = {T ∗
1 , T ∗

2 , · · · , T ∗
t }, 1 ≤ t ≤ t1 − 1.

Then by the way of choosing T1 in the algorithm, we have

(k − 1)gain
(
P ; P1

)
≥ (t1 − 1)gain

(
P ; P1

)

≥
t∑

i=1

gain
(
P ; P ∗

i

)
≥ gain

(
P ; P ∗

1 , P ∗
2 , · · · , P ∗

t

)
.

Note that

gain
(
P ; P1, · · · , Pm

)
= gain

(
P ; P1

)
+ gain

(
P ; P2, · · · , Pm |P1

)
and

gain
(
P ; P ∗

1 , · · ·,P ∗
j

)
=gain

(
P ; P ∗

1 ,· · ·,P ∗
t

)
+gain

(
P ; Pt+1,· · ·,Pj |P ∗

1 ,· · ·,P ∗
t

)
.

Hence to prove inequality (2.19), it suffices to show the following inequality

(k − 1)gain
(
P ; P2,· · · , Pm|P1

)
≥gain

(
P ; P ∗

t+1,· · · ,P ∗
j |P ∗

1 ,· · · , P ∗
t

)
. (2.20)

Let Tk−smt(P ; P ′
2, · · · , P ′

i |P1) denote a k-SMT given that P1 is chosen.

Then we have

(k − 1)gain
(
P ; P2, · · · , Pm |P1

)
≥ gain

(
P ; P ′

2, · · · , P ′
i |P1

)

≥ gain
(
P ; P ∗

t+1, · · · , P ∗
j |P1

)
, (2.21)
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where the first inequality follows from the inductive assumption and the

second from the minimality of Tk−smt(P ; P ′
2, · · · , P ′

m |P1).

By Corollary 2.1, we have

gain
(
P ; P ∗

t+1, · · · , P ∗
j

)
= gain

(
P ; P ∗

t+1, · · · , P ∗
j

∣∣ ⋃

e∈Tmst(P1)

Pe

)

≥ gain
(
P ; P ∗

t+1, · · · , P ∗
j

∣∣P ∗
1 , · · · , P ∗

t

)
,

which, together with inequality (2.21), implies inequality (2.20). The proof

is then finished. �

From Theorem 2.3 along with definition (2.1), we can obtain, by divid-

ing lsmt(P ) on both sides of (2.18), a upper bound on the approximation

performance ratio αkG of algorithm 2.1.

Corollary 2.2 For any k ≥ 3, αk−G ≤ k−2
k−1 ρ−1

2 + 1
k−1 ρ−1

k .

It follows immediately from the above corollary that, if

ρk > ρ2, for some k ≥ 3, (2.22)

then the greedy algorithm 2.1 has approximation performance ratio αk−G <

ρ−1
2 , that is, Algorithm 2.1 (with such ks) is a better approximation algo-

rithm. In the following we will prove inequality (2.23) is true.

Theorem 2.4 For any k ≥ 3, αk−G ≤ 1 + 1/κ, where κ = blog kc.

Proof. The theorem is trivially true for n ≤ k. The general case of n > k

is proved by mathematical induction on n. Note that it suffices to prove

the theorem by considering a full SMT Tsmt. Tsmt can be turned into a

rooted binary tree Tr by choosing an arbitrary edge and setting its middle

point r as the root for Tr. The root is considered at the first level of Tr,

and a vertex v is at the i-th level if the path from the root to the vertex

contains i vertices (including both r and v). By Lemma 2.6, let f(·) be the

desired one-to-one mapping. Then length of an edge is its length in metric

space M .

Let Il be the set of interval nodes at the l-th level of Tr. Let Ud =⋃
i=d(mod κ) Ii. Then Ud for d = 1, 2, · · · , κ are disjoint. Let p(u) denote

the path from an interval node u to f(u). Let ld =
∑

u∈Ud
l(p(u)) for each

d. Then by Lemma 2.6(ii), we have l(Tr) ≥
∑κ

d=1 Ld. Thus there exists an

index d′ such that ld′ ≤ l(Tr)/κ. Decomposing Tr at nodes of Ud′ yields a

collection of rooted binary trees each rooted at a node of Ud′ and having
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leaves either in Ud′ or in the leaf-set of Tr. Denote such a tree by Tr′ if it

is rooted at node r′. Clearly, each Tr′ has at most k leaves.

Now for each leave u of Tr′ which is an internal node of Tr, connect u

to f(u) with an edge. Thus Tr′ is transformed to a Steiner tree T r′ for at

most k terminals. Clearly, the union of Tr and Tr′ is connected for r′ ∈ Ud′ ,

hence it is a k-Steiner tree. Moreover, we have

l
(
Tk−G

)
≤ l

(
T r

)
+

∑

r′∈Ud′

l
(
T r′

)
≤ l

(
Tr

)
+ ld ≤

κ

κ + 1
l
(
Tsmt

)
,

which proves the theorem. The proof is then finished. �

Corollary 2.3 For every metric space M with lsmt(P ) 6= lmst(P ) for all

P ∈ M , the greedy algorithm 2.1 returns a better approximate solution for

the Steiner tree problem in M for large enough k.

Corollary 2.4 For the Steiner tree problem in Euclidean plane, the greedy

algorithm 2.1 with k = 128 has approximation performance ratio αk−G <

2/
√

3.

For the case of k = 3, Zelikovsky [276] obtained the lower bound on the

k-Steiner ratio in general graphs.

Theorem 2.5 For any graph G, ρ3 > 3/5.

Proof. Let Tr be the tree defined in the proof of Theorem 2.4. Let Tu

be a subtree of Tr rooted at node u and Iu denote the set of terminals

of Tu. For each v ∈ Ir, let c(v) denote a leaf closest to v, and let p(v)

denote the path from v to c(v). Then c(v′) may be equal to c(v) when

v′ is a child-node of v. Suppose that u′ and u′′ are the two child-nodes

of u. Then p(c(u), c(u′)) is the unique simple path connecting c(u′) and

c(u) in Tr. Let Pu =
⋃

v∈Iu
p(c(u), c(v)). Then Pu is a tree interconnecting

Iu. It can be easily verified that l(Pu) ≤ 2 l(Tr) − 2 l(p(c(r), c(r))). Let

δ(u) = l(Pu)− l(Tu). Then

δ(u) =

{
0, if u is a leaf;

δ(v′) + p(v′) + δ(w′) + p(w′′), otherwise.

From the above we obtain that δ(u) =
∑

v∈Iu\{u} p(v).

Let e = (u, u′) and u′ has two child-nodes x and y. Let Pe =

{c(u′′), c(x), c(y)}, and let Te be an SMT on Pe. Since p(u)∩ p(u′) = p(u′),
we have

l
(
Te

)
≤ l

(
p(c(u), c(u′))

)
+ l

(
p(c(u), c(u′′))

)
− p(u′). (2.23)
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Let T (Pe1 , · · · , Pet) denote a tree obtained from Pr by substituting Tei for

p(c(u), c(ui)) and p(c(u), c(vi)), i = 1, 2, · · · , t. Then

l
(
Pr(Pe)

)
≤ l

(
Pr

)
− l

(
p(u′)

)
. (2.24)

Furthermore, if {Pe1 , · · · , Pet} is a cycle-free set, then

l
(
Pr(Pe1 , · · · , Pet )

)
≤ l

(
P (r)

)
−

t∑

i=1

l
(
p(vi)

)
. (2.25)

It can be verified that {Pe1 , · · · , Pet} is a cycle-free set if and only if ei∩ej =

∅ for all 1 ≤ i ≤ j ≤ t. Since the edge-set E of a rooted binary tree can

be easily partitioned into three disjointed subsets such that edges in each

subset do not intersect, and one subset, say E ′, must satisfy

∑

ei∈E′

l
(
p(vi)

)
≥ 1

3

∑

ei∈E

l
(
p(vi)

)
.

Thus we obtain

l
(
Pr({Pei | ei ∈ E′})

)
≤ l

(
Pr

)
− 1

3

∑

ei∈E

l
(
p(vi)

)
(2.26)

≤ l
(
Pr

)
− 1

3
δ(r) (2.27)

≤ l
(
Pr

)
− 1

3

(
l
(
Pr

)
− l

(
Tr

))
(2.28)

=
2

3
l
(
Pr

)
+

1

3
l
(
Tr

)
(2.29)

≤ 3

5
l
(
Tr

)
− 3

4
l
(
Pr

)
. (2.30)

From the above it immediately follows that

ρ3 ≥
l(Tr)

Pr

(
{Pei | ei ∈ E′}

) >
3

5
,

which proves the theorem. The proof is then finished. �

Recall that the Steiner ratio in graphs is bounded by n
2(n−1) (refer to

[163]), i.e., ρ2 ≤ n
2(n−1) , where n is the number of vertices in given graph.

Therefore, for n > 12, from Theorem 2.5 and Corollary 2.2, we immediately

get the following theorem [276].

Corollary 2.5 For the Steiner tree problem in graphs, the greedy algo-

rithm 2.1 with k = 3 has approximation performance ratio α3−G ≤ 11/6.
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For the rectilinear plane, Zelikovsky [275] proved the following theorem

giving a better lower bound on ρ3.

Theorem 2.6 For the rectilinear plane, ρ3 ≥ 4/5.

Proof. To prove the theorem, we again just need to consider a full SMT

Tsmt. By the structural theorem of SMTs in the rectilinear plane [142], we

consider the following two cases.

Case 1. All Steiner points lie on one line, say, x = 0. Each terminal point

is connected to the line of x = 0 by a horizontal edge which rotates to the left

and to the right as shown in Fig.2.12(a). The first and the last such edges

can have length of zero. Let the i-th terminal point ti have the Cartesian

coordinates (xi, yi), i = 0, 1, · · · , n− 1, where y0 ≤ y1 ≤ · · · ≤ yn−1. Then

l
(
Tsmt

)
=

(
yn−1 − y0

)
+

n−1∑

i=0

xi. (2.31)

Now let Pi = {t2i, t2i+1, t2i+2}, for i = 0, 1, · · · , n′ where n′ = dn/2e−2.

In addition, let Ti denote an SMT for Pi. Then

l
(
Ti

)
= y2i+2 − y2i + x2i+1 + max

{
x2i, x2i+2

}
. (2.32)

It is also easily to verify that

l
(
T (P ; P0, · · · , Pn′)

)
= yn−1 − yn−2 + xn−1 + xn−2.

Since {P0, · · · , Pn′} is a cycle-free set, the following tree

T ′ ≡ T (P ; P0, · · · , Pn′)
⋃ (

T0 ∪ T1 ∪ · · · ∪ Tn′

)
(2.33)

is a 3-Steiner tree. Let n∗ = bn/2c − 1 and xi = 0 for i ≥ n. Then by

equality (2.33), we have

l(T ′) = yn−1 − y0 +
n∗∑

i=0

x2i+1 +
n∗∑

i=0

max{x2i, x2i+2}.

We now consider a second cycle-free set which is obtained from

{P0, · · · , Pn′} by substituting P ′
i−1 6= {t2i−2, t2i−1, t2i+1} for Pi−1 if x2i−1 >

x2i+1. Note that

l
(
T ′

i+1

)
≤ y2i+1 − y2i−2 + x2i−1 + x2i−2.

By further considering two more cycle-free sets obtained similarly as the

second set, it could be shown that the four trees together use up at most five



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

70 Steiner Tree Problems in Computer Communication Networks

copies of each edge of Tsmt. Therefore, one of the four trees, say T ′, has a

length at most 5
4 l(Tsmt). The theorem then follows from l(T3−smt) ≤ l(T ′).

(a) (b)

x0
t0

t1

t2x1

x2

xn-1
xn-2

yn-1

yn-2

yn-3xn-3

y2

y1

y0

tn-1

tn-2

tn-3

Fig. 2.12 (a) Case 1, and (b) Case 2.

Case 2. This case differs from Case 1 in that n must be even and the

first Steiner point is connected to the second through a corner as shown in

Fig.2.12(b). The theorem can be proved in a similar way. �

As Hwang [142] proved that ρ2 = 2/3 in the rectilinear plane, which is

smaller than 8/11, the following corollary immediately follows from Theo-

rem 2.6 and Corollary 2.2.

Corollary 2.6 In the rectilinear plane, the greedy algorithm 2.1 with

k = 3 has approximation performance ratio α3−G ≤ 11/8.

2.2.2 Variable Metric Method

Berman and Ramaiyer [29] employed a different idea to generalize Ze-

likovsky’s result by introducing a variable metric method. It consists of

two main phases, the evaluation phase and the construction phase.

In the evaluation phase, as the greedy algorithm 2.1, it initially com-

putes an MST Tmst(P ) of terminal set P in the distance graph GD(P ), then

it computes every possible i-tree for 3 ≤ i ≤ k and determine those with

positive gains. However, it doesn’t decide if an i-tree should be used at this

phase by the greedy strategy (as the greedy algorithm 2.1); Such a decision

will be made in the next phase after all possible alternatives have been
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considered. In the construction phase, it maintains a Steiner tree Tk(P )

(initially it equals Tmst(P ) and at the end of this phase it gives the final

solution). It considers the entries stored in the stacks in the reverse order in

which they were pushed onto them in the evaluation phase (the algorithm

terminates when the stack is empty).

Algorithm 2.2 Variable Metric Algorithm

Step 1 Process all i-trees, 3 ≤ i ≤ k, sequentially as follows: for each i-tree

Ti with positive saving in the current graph, put Ti in a stack and

if two leaves u and v of Ti are connected by a path p(u, v) in an

MST without passing any other leaf of Ti, then put an edge between

u and v with a weight equal to the length of the longest edge in

p(u, v) minus the savings of Ti.

Step 2 Repeatedly pop i-trees from the stack remodifying the original MST

for all terminal points and keeping only i-trees with the current

positive saving. Adding weighted edges to a point set would change

the metric on the point set.

Let Se be an arbitrary set of weighted edges such that adding them to

the input metric space makes all i-trees for 3 ≤ i ≤ k have nonpositive

saving in the resulting metric space MEe . Denote by tk(P ) a supremum of

the length of an MST for the terminal set P in metric space MEe over all

such Ees. Then Berman and Ramaiyer proved the following theorem [29]

Theorem 2.7 Algorithm 2.2 produces a k-Steiner tree with total length

at most

t2(P )−
k∑

i=3

ti−1(P )− ti(P )

i− 1
=

t2(P )

2
+

k−1∑

i=3

ti(P )

(i− 1)i
+

tk(P )

k − 1
.

The following corollary follows immediately from the above theorem and

the fact that tk(P ) ≤ ρ−1
k lsmt(P ).

Corollary 2.7 The approximation performance ratio of variable metric

algorithm 2.2 is at most

ρ−1
2 −

k∑

i=3

ρ−1
i−1 − ρ−1

i

i− 1
.

By k-Steiner ratio ρk (2.2), we know that the approximation ratio of the

variable metric algorithm converges to 1.734 for sufficiently large k. Berman
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and Ramaiyer [29] also proved the following theorem giving a general result

of Theorem 2.6.

Theorem 2.8 For the rectilinear plane, ρk ≥ (2k−2)/(2k−1) for k ≥ 2.

Combining Theorems 2.3 and 2.8, they deduce that the performance

ratio of Algorithm 2.2 with k = 4 is bounded by 97/72 < 3/2, which is the

performance ratio of MST-based algorithm in the rectilinear plane. In fact,

it follows from Corollary 2.7 that the performance ratio of Algorithm 2.2

converges to a value close to 1.323 for some k.

Based on the above observation, we may have the following questions.

Could we find another way to vary metric for a better bound? Could

we discard the greedy idea and design a better approximation algorithm

with only variable metric idea? Clearly, answering these questions requires

deeper understanding of the variable metric method.

2.2.3 Relative Greedy Strategy

The relative greedy algorithm was proposed by Zelikovsky [277]. It adopts

the same framework as the greedy algorithm 2.1. However, when choosing

an i-SMT Tj for i ≤ k, instead of maximizing the absolute gain it can

achieve, it uses the following selection rule to maximize the relative gain of

Tj defined as follows:

gain
(
P ; P1, P2, · · · , Pj , Pj+1

)
− gain

(
P ; P1, P2, · · · , Pj

)

l
(
Tsmt(Sj+1)

)

=
lmst

(
P ; P1, · · · , Pj

)
− lmst

(
P ; P1, · · · , Pj+1

)
− lsmt

(
Sj+1

)

lsmt

(
Sj+1

) .

In other words, it relates the length of Tj to its benefit. Zelikovsky [277]

proved the following theorem.

Theorem 2.9 The relative greedy algorithm for any metric space has ap-

proximation performance ratio upper bounded by (1+ln ρ−1
2 ) for sufficiently

large k.

Recall that in graphs ρ2 = 1/2 and in the Euclidean plane ρ2 =
√

3/2.

The following corollary immediately follows from the above theorem.

Corollary 2.8 The relative greedy algorithm has approximation perfor-

mance ratios (1 + ln 2) and (1 + ln 2√
3
) in graphs and the Euclidean plane,

respectively.
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2.2.4 Preprocessing Technique

Karpinski and Zelikovsky [165] observed that every time the above men-

tioned algorithms accept an i-tree, they also accept all its Steiner points.

This may increase the cost of the minimum solution achievable at the cur-

rent iteration. So they propose an approach to minimize this possible in-

crease.

Let Ti be an i-tree and Si be the set of its Steiner points. A subgraph

Fi of Ti is called a spanning forest if for any s ∈ Si, there is a path in

Fi connecting s with terminal set P . The minimum spanning forest in

Ti is called the loss of Ti, which is denoted by L(Ti). (Refer to the next

subsection for more detailed explanation.) For α ≥ 0, the α-relative gain

of Ti is defined as follows:

gain(α, Ti) ≡ gain(P ; Ti)− α · l
(
L(Ti)

)
.

Their algorithm [165] is similar to the algorithm of the variable metric

algorithm [29]. But it uses the relative gain instead of the savings as a

greedy function. Their method is to first use this procedure to choose some

Steiner points and then run a better approximation algorithm on the union

of the set of terminal points and the set of chosen Steiner points. Using

this preprocessing technique, Karpinski and Zelikovsky [165] improved the

variable metric algorithm and the relative greedy algorithm. Indeed, they

proved the following theorem.

Theorem 2.10 The preprocessing algorithm has performance ratios at

most 1.644 and 19/15 for Steiner tree problems in graphs and in the recti-

linear plane, respectively.

Hougardy and Prömmel [136] realized that the idea behind the concept

of loss is that we intend to choose only those Steiner points that an SMT

contains. Although no approximation algorithm could achieve this goal,

one attempts to avoid some bad choices by penalizing the choice of Steiner

points that require long edges to connect them to a terminal point. They

designed a sequence of algorithms each takes the returned solution of its

predecessor as its input. When making greedy selections, all algorithms in

the sequence use the weighted sum of the length and the loss of a Steiner

tree, but with different weights in each round. By choosing the weights

appropriately they obtained an approximation algorithm with performance

ratio of 1.598, which beats the ratio of 1.644 due to Karpinski and Ze-

likovsky [165]. In fact, with the help of a computer program they estimate
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that the limit of performance ratio behaves roughly as (1.588 + 0.114/k).

2.2.5 Loss-Contracting Algorithm

Robins and Zelikovsky [238] noticed that except the variable metric method,

all above mentioned algorithms choose appropriate i-trees and then contract

them in order to produce the final solution with them. Moreover, once we

have decided to accept an i-tree, we will not exchange it with a better i-tree

that has at least two common terminals with it (since accepting both will

not make a cycle-free set).

They proposed the loss-contracting algorithm, which can be considered

as a (relative) greedy algorithm. It does not contract the selected full

components entirely (unlike the relative greedy algorithm), but only their

losses. In fact, it tries to contract as little as possible while ensuring that

(i) a selected full component may still be put into the solution but

(ii) not many other full components would be rejected.

(a) (b)

F 1
2

2

1

1
2

2

1

(c)

Fig. 2.13 (a) A full component F , (b) the loss of F , and (c) the terminal-spanning tree.

Inspired by the above idea, Robins and Zelikovsky [238] introduced two

concepts, terminal-spanning trees and relative length savings. A terminal-

spanning tree is a Steiner tree that does not contain any Steiner points in

current contracted graph (i.e., each full component of the tree is a single

edge). The relative cost savings of a full component F is defined as the

ratio of how much F saves the length of the current terminal-spanning tree

over the cost connecting its Steiner points to terminals. Fig.2.13(a) shows

a full component F , Fig.2.13(b) shows the loss L(F ) of F consisting of

dashed edges and contracted components of L(F ). Fig.2.13(c) shows the

corresponding terminal-spanning tree with the contracted L(F ).
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The length savings of an arbitrary graph H with respect to a terminal-

spanning tree T is the difference between the length of T and the length of

Steiner tree obtained by using (possibly) some edges of H . More formally,

let T ∗
H be the graph of minimum length in T ∪ H that contains H and

interconnects all terminals in P . The gain of H with respect to T is defined

as

gain(T ; H) ≡ l(T )− l(T ∗
H). (2.34)

Observe the above definition is a generalization of definition (2.13), where

T is an MST of P and H a Steiner tree. In addition, we have gain(T ; H) ≤
l(T ) − l(Tmst(T ∪ H)) since the length of T ∗

H is not less than that of the

MST of T ∪H .

The basic idea of the loss-contracting algorithm is to contract the loss

of full component F after F is accepted, that is, to collapse each connected

component of loss L(F ) into a single node. In Fig.2.13(b), F has two

connected components, one of them contains one terminal node and one

Steiner node while the other contains one terminal node and two Steiner

nodes. In Fig.2.13(c) they each are contracted to a single node. Note that

a loss-contracted full component C(F ) is a terminal-spanning tree T (F ) for

terminals in F and the length of any edge in C(F ) is the same as that of

corresponding edge in F . Thus l(F )− loss(F ) = l(C(F )).

Algorithm 2.3 Loss-Contracting Algorithm

H := GD(P ) // the distance graph of terminal-set P )

T := Tmst(P ) // an MST of P in GD(P ))

while r > 0 do begin

find a full component F containing at most k terminals

that achieves the maximum r = gain(T ; F )/loss(F )

H := H ∪ F

T := Tmst

(
T ∪ C(F )

)

end-while

return Tk−LC := Tmst(H)

In the above, the algorithm iteratively modifies a terminal-spanning tree

T , which initially set to be Tmst(P ), by putting into T loss-contracted full

components C(F ). At each iteration, the full component F is chosen greed-

ily by the gain-over-loss ratio. The reason that Robins and Zelikovsky [239]

adopted this objective is as follows: The length of approximate solution T

lies between the lengths of Tmst(P ) and Tk−smt of P . Upon accepting a
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component F , it increases the gap between l(Tmst(P )) and l(T ) by a gain

of F , which is the profit obtained from choosing F . On the other hand, if F

does not belong to Tk−smt, then accepting F pushes T away from Tk−smt

since the cost loss(F ) for incorrectly connecting Steiner points occurs. It is

an upper bound on the increase in the length gap between Tk−smt and the

best achievable solution after F is accepted. In other words, loss(F ) is sim-

ply an estimate of connection expense. Maximizing the ratio of gain-over-

loss aims at maximizing the profit per unit expense. Robins and Zelikovsky
[239] proved the following theorem.

Theorem 2.11 For Steiner tree problem in graphs with edge costs satis-

fying the triangle inequality, the approximation ratio of the loss-contracting

algorithm 2.3 is at most ρ−1
k (1 + 1

2 ln(4ρk − 1)).

It follows from (2.2) that ρ−1
k ≤ 1 + (blog2 kc+ 1)−1. Thus the approx-

imation ratio of the loss-contracting algorithm converges to (1 + 1
2 ln 3) <

1.55 when k →∞.

2.3 Discussions

Although the k-Steiner ratio ρk in graphs and the rectilinear plane have

been completely determined for k ≥ 2, the k-Steiner ratio in the Euclidean

plane for k ≥ 3 is still unknown. Du et al. [91] conjectured that the ratio

is

(1 +
√

3)
√

2

1 +
√

2 +
√

3
.

They also analyzed that k-Steiner ratio in the Euclidean plane might be

determined in a similar way to the proof of Gilbert-Pollak conjecture (refer

to Section 1.3). The difficulty arises only in the description of “critical

structure”.

In addition, although many “better approximation algorithms” have

been proposed in past ten years, none of them has a performance ratio

smaller than the inverse of 3-Steiner ratio, ρ−1
3 . It seems that this is the

limit for the performance ratio of any polynomial time approximation al-

gorithm for the Steiner tree problem in graphs to be able to reach.

Arora et al. [19] conjectured that their backtrack greedy technique gives

a polynomial time approximation scheme to 3-size Steiner tree problem. If

their conjecture is true, then their algorithms also yield approximate solu-
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tions for Steiner tree problem with performance ratios approaching to the

inverse of the 3-Steiner ratio ρ−1
3 . This probably is the best possible per-

formance ratio. Thus their conjecture is a very attractive problem worthy

of further study.

A more accurate analysis [165; 275; 277] for the performance ratios of

the variable metric algorithm and the preprocessing technique, which are

discussed in Sections 2.2.2 and 2.2.4, respectively, requires bounds for tk

and a similar number t̄k. The techniques [39; 40] studied in Section 2.1 for

determining the k-Steiner ratio seems very promising for establishing tight

upper bounds for tk and t̄k.

The lower bound for the achievable performance ratio of better approx-

imation algorithms for Steiner tree problem in graphs is widely open. (The

case of metric planes has been solved, which will be discussed in next chap-

ter.) Bern and Plassmann [34] proved that the problem is MAX SNP-hard

even for the graphs whose edges have weights either 1 or 2. This implies that

there exists a lower bound larger than one for such a ratio unless P = NP .

Now the largest known lower bound is 1.010 due to Thimm [255], which is

far away from 1.550, the performance ratio of the loss-contracting algorithm

discussed in Section 2.2.5.

As all instances resulting from known lower bound reductions are uni-

formly quasi-bipartite, it is interesting whether this special case can be

approximated better than the general case. A graph G(V, E) with terminal-

set P ⊂ V is called uniformly quasi-bipartite, if vertex-set V \ P is stable

and if, for each vertex in that set, all incident edges have the same length.

It is called quasi-bipartite graph if vertex-set V \ P is stable, but the edges

incident with a vertex in that set may have different lengths. Rajagopalan

and Vazirani [232] gave a 3/2 + ε approximation algorithm based on the

primal-dual method for quasi-bipartite case. Robins and Zelikovsky [238]

showed that the popular 1-Steiner heuristic has a performance ratio of 3/2

in this case. Moreover, they showed that the performance ratio of their

loss contracting algorithm is 1.279 for quasi-bipartite instances. Gröepl

et al. [121] proposed an approximation algorithm with performance ratio

73/60 < 1.217 for the uniformly quasi-bipartite case. It uses a new method

of analysis that combines ideas from the greedy algorithm for set cover

problem with a matroid-style exchange argument to model the connectiv-

ity constraint.
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Chapter 3

Geometric Partitions and Polynomial

Time Approximation Schemes

In Chapter 1 we have determined the Steiner ratio ρ in the Euclidean plane

proving that the minimum spanning tree algorithm is a ρ−1-approximation

algorithm for the Steiner tree problem in the Euclidean plane. In Chapter

2 we have determined the k-Steiner ratio in graphs and studied some better

approximation algorithms whose performance ratios are smaller than ρ−1.

In this Chapter, we will present two best possible approximation algorithms

for the Steiner tree problem in metric planes. They both use geometric

partition techniques and could produce approximation solutions arbitrarily

close to the optimal solutions.

A series of algorithms {Aε|ε > 0} is called a Polynomial Time Approx-

imation Scheme (PTAS) for a minimization problem if given any instance

I of the problem, it finds a solution for I with cost cAε(I) ≤ (1 + ε)copt(I),

and the running time of algorithm Aε is bounded by a polynomial in 1/ε

and the input size of I .

In 1996, Arora [10] published a surprising result that many geo-

metric optimization problems, including the Euclidean Steiner Minimum

Tree (SMT), the rectilinear SMT, and the degree-restricted-SMT, have

polynomial-time approximation schemes. Several weeks later, Mitchell
[214] claimed that one of his earlier works [211] already contains an ap-

proach which is able to lead to the similar results. However, one year later,

Arora [212] made another big progress that he improved running time from

nO(1/ε) to n3(log n)O(1/ε). Soon later, Mitchell [212] claimed again that his

approach can lead to a similar result.

In this section we will study these two approaches and describe how to

use them to solve the Steiner tree problem in metric planes and some other

related problems. We will also discuss some related open problems.

79



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

80 Steiner Tree Problems in Computer Communication Networks

3.1 Guillotine Cut for Rectangular Partition

The approach that Mitchell [211; 214] proposed for the Euclidean Steiner

minimum tree problem was inspired by the technique that Du et al. [86]

introduced for studying Minimum Rectangular Partition (MRP) problem1.

This paper initiated the idea of using guillotine cut to design approximation

algorithms [56].

The minimum rectangular partition problem was first studied by Lingas

et al. [191]. It can be stated as follows: Given a rectilinear polygon possibly

with some rectangular holes that are simple rectilinear polygons whose sides

are parallel or perpendicular to the sides of the rectilinear boundary and

located on the inside of a rectilinear boundary (but no hole is allowed in

a hole). A hole can be, possibly in part, degenerated into a line segment

or a point. A rectangular partition of the polygon is a set of line segments

lying within its boundary and not crossing any nondegenerate hole so that

when drawn into the figure the are not enclosed by holes is partitioned into

rectangles which do not contain degenerate holes. The partitioning line

segments are called edges of the partition. The goal of minimum rectangular

partition problem is to compute a rectangular partition with minimum total

length of edges in the partition.

Fig.3.1(a) shows such an instance of minimum rectangular partition

problem with four holes (three shaded areas and one vertical line segment

in the middle). A partition that consists of some (thin) edges divides the

given polygon and four holes into many rectangles.

(a) (b)

Fig. 3.1 (a) An instance of minimum rectangular partition problem and a partition,
(b) the basic grid.

1The problem is called the Minimum Edge-Length Rectangular Partition (MELRP)
problem in the literatures, in this book it is shortened to MRP problem for simplicity.
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Lingas et al. [191] proved that the holes in the input make difference on

the computational complexity. While the minimum rectangular partition

problem in general is NP-hard, the problem for hole-free inputs can be

solved in time of O(n4), where n is the number of vertices in the input

rectilinear polygon. The polynomial algorithm is essentially a dynamic

programming that is based on the following fact as shown in Fig.3.2(b):

Through each vertex of the input rectilinear polygon, draw a vertical line

and a horizontal line. Those lines will form a grid in the inside of the

rectilinear polygon, which is called the basic grid for the rectilinear polygon.

Lingas et al. [191] proved the following lemma.

Lemma 3.1 There exists an optimal rectangular partition lying in the

basic grid.

Proof. Suppose that there exists an optimal rectangular partition Popt

not lying in the basic grid (otherwise we are done). Then there is an edge

e not lying in the basic grid. Consider the maximal straight segment in the

partition that contains edge e. Say it is a vertical segment ab. Suppose that

there are r horizontal segments touching the interior of ab from the right

side of ab and l horizontal segments touching the interior of ab from the left

side of ab. If r ≥ l, then we can move ab to the right without increasing the

total length of the rectangular partition. Otherwise, we can move ab to the

left. We must be able to move ab into the basic grid because, otherwise,

ab would be moved to overlapping with another vertical segment, so that

the total length of the resulting rectangular partition is shorter than that

of Popt, that contradicts the optimality of Popt. Therefore, we could be

able to move every edge in Popt that does not lie in the basic grid to the

basic grid without increasing the total length, and then obtain the desired

optimal rectangular partition. �

A natural idea to design approximation algorithm for the minimum rect-

angular partition problem in general case is to use a forest interconnecting

all holes to the boundary and then to solve the resulting hole free case in

time of O(n4). Applying this idea, Lingas [192] gave the first constant-

bounded approximation algorithm with performance ratio of 41. Later,

Du and Zhang [89] improved the algorithm by significantly reducing the

approximation performance ratio to 9.

Motivated from a work of Du et al. [84] on application of dynamic pro-

gramming to optimal routing trees, Du et al. [86] initiated a novel idea,

guillotine cut, which turns out to be important not only to the minimum
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rectangular partition problem, but also to many other geometric optimiza-

tion problems including the Euclidean Steiner minimum tree problem.

A cut is called a guillotine cut if it breaks a connected area into at least

two parts. A rectangular partition is called a guillotine rectangular parti-

tion if it can be performed by a sequence of guillotine cuts. Fig.3.2 shows

a guillotine rectangular partition consisting of seven guillotine cuts (thin

lines). Du et al. [86] noticed that there exists a minimum length guillotine

rectangular partition lying in the basic grid, which can be computed by a

dynamic programming in time of O(n5). Therefore, they suggested to use

the minimum length guillotine rectangular partition as an approximate so-

lution to the minimum rectangular partition problem. Unfortunately, they

failed to get a constant approximation performance ratio for general case;

Du et al. [78] proved the following theorem obtaining a constant ratio for a

special case where the given polygon is a rectangle with some points inside

(which remains NP-hard [117]).

(a) (b)

2

1

3

4

5

6

7

P

P2

P3

P4

P5

P6

P7

(c) (d)

1

Fig. 3.2 (a) The first guillotine cut, (b) two separated parts are obtained after the first
cut, (c) and (d) two parts in (b) are further divided by the second and third guillotine

cuts, respectively.
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Theorem 3.1 The minimum length guillotine rectangular partition is a

2-approximation for the minimum rectangular partition problem with some

points inside a rectangle.

Proof. Consider a rectangular partition P . Let lX(P ) denote the total

length of segments on a horizontal line covered by vertical projection of P .

Partition P is said to be covered by a guillotine partition if each segment

in P is covered by the guillotine cut. Let l∗G(P ) denote the minimum total

length of guillotine partition covering P , and let l(P ) denote the total length

of P . We will prove the following inequality by mathematical induction on

the number k of segments in P .

l∗G(P ) ≤ 2 l(P )− lX(P ). (3.1)

For k = 1, we have l∗G(P ) = l(P ). If the segment is horizontal, then

we have lX(P ) = l(P ), and thus we have l∗G(P ) = 2 l(P ) − lX(P ). If the

segment is vertical, then lX(P ) = 0, and hence we have l∗G(P ) < 2 l(P )−
lX(P ).

Now we assume that inequality (3.1) is true for (k − 1) with k ≥ 2 and

study the case where P has k segments. Suppose that the input rectangle

has each vertical edge of length a and each horizontal edge of length b.

Consider the following two cases.

(a) (b)

s
a

b b

P1

P1
P2

P2

Fig. 3.3 (a) Case 1 and (b) Case 2 for the proof of Theorem 3.1.

Case 1. There exists a vertical segment s having length not less than

a/2. In this case we apply a guillotine cut along this segment s. Then

the remainder of P is divided into two partitions P1 and P2 which form

a rectangular partition for two resulting small rectangles, respectively, as
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shown in Fig.3.3(a). By the induction hypothesis, we obtain

l∗G(Pi) ≤ 2 l(Pi)− lX(Pi), for i = 1, 2. (3.2)

Moreover, we have the following inequality and equalities

l∗G(P ) ≤ l∗G(P1) + l∗G(P2) + a,

l(P ) = l(P1) + l(P2) + l(s),

lX(P ) = lX(P1) + lX(P2),

from which we can deduce inequality (3.1).

Case 2. Every vertical segment in P has length less than 0.5a. In this

case we apply a horizontal guillotine cut to partition the input rectangle

into two equal parts. Let P1 and P2 denote rectangular partitions of the

two parts, obtained from P . Then inequality (3.2) also holds due to the

induction hypothesis. Moreover, we have the following inequalities and

equality

l∗G(P ) = l∗G(P1) + l∗G(P2) + b,

l(P ) ≥ l(P1) + l(P2),

lX(P ) = lX(P1) = lX(P2) = b,

from which we can also deduce inequality (3.1). The proof is finished. �

In the above proof, we notice that in Case 2, every point on the cut

line receives projection from two sides, both above and below. We call

such a point a vertical 1-dark point. In general, a point inside the input

polygon is called a vertical (horizontal) 1-dark point if starting from the

point along vertical (horizontal) line going either direction would meet at

least one horizontal (vertical) segment in considered partition. In fact, the

term lX(·) takes advantage in the induction proof only on those vertical

1-dark point, since the cut line lies in the area of vertical 1-dark point.

After cutting, the same size of term lX(·) would be kept in each of the two

inequalities for resulting subproblems. When the two inequalities are added

together, the size of term lX(·) is doubled.

There is an alternative way to take the advantage of 1-dark points,

which can be seen in the following alternative proof of Theorem 3.1.

Alternative Proof of Theorem 3.1 Consider a rectangular partition P .

Case 1. There exists a vertical segment s having length no less than a/2.

Apply a guillotine cut along this segment s and charge 1 to the segment s.
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Case 2. Every vertical segment in P has length less than a/2. Choose a

horizontal guillotine cut which partitions the rectangle into two equal parts.

Charge 1/2 to those horizontal segments, which directly face the cut. Note

that every point on the cut is a vertical 1-dark point. Therefore, charged

horizontal segments have a total length equal to exactly twice of the length

of the cut.

Since each vertical segment in P is charged at most once and each hori-

zontal segment is charged at most twice, the total length of added segments

in guillotine cuts cannot exceed the total length of P . This completes the

proof of Theorem 3.1. �

3.1.1 1-Guillotine Cut

Finding a guillotine cut that consists of 1-dark points is a central part of

the argument in [78; 86]. About ten years later, Mitchell [211; 213] made

a significant progress in extending the idea of guillotine cut to the general

case.

First, Mitchell [211] found a close relationship between 1-dark points

and the guillotine cut by extending the guillotine cut to the 1-guillotine

cut. A vertical (horizontal) cut is called 1-guillotine cut if it consists of all

vertical (horizontal) 1-dark points on the vertical (horizontal) line passing

through the cut. This line will be called a cut line. An 1-guillotine cut can

also be defined as a partition of a rectangle into two rectangles such that

the cut line intersects considered rectangular partition with at most one

segment. In fact, all cuts displayed in Fig.3.2 are 1-guillotine cuts.

Secondly, Mitchell [211] established a very important relationship be-

tween vertical 1-dark points and horizontal 1-dark points in the following

lemma.

Lemma 3.2 (Mitchell’s Lemma) Let H and V be the sets of all hor-

izontal and vertical 1-dark points, respectively. Then there exists either a

horizontal line LH such that l(LH ∩H) ≤ l(LH ∩ V ), or a vertical line LV

such that l(LV ∩H) ≥ l(LV ∩ V ).

Proof. First, we assume that the area of H is not smaller than the area

of V . Denote line Lu = {(x, y) |x = u}. Then areas of H and V can be

represented by

∫ +∞

−∞
l(Lu ∩H)du and

∫ +∞

−∞
l(Lu ∩ V )du, respectively.
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Since
∫ +∞

−∞
l(Lu ∩H)du ≥

∫ +∞

−∞
l(Lu ∩ V )du,

there must exist a number u such that l(Lu ∩H) ≤ l(Lu ∩ V ). Similarly, if

the area of H is smaller than the area of V , then there exists a horizontal

line LV such that l(LH ∩H) ≥ l(LH ∩ V ). The proof is then finished. �

The above lemma actually means that there exists either a vertical 1-

guillotine cut of length not exceeding the total length of segments consisting

of all horizontal 1-dark points on the cut line, or a horizontal 1-guillotine

cut of length not exceeding the total length of segments consisting of all

vertical 1-dark points on the cut line. Namely, there always exists an 1-

guillotine cut such that its length can be symmetrically charged to those

segments parallel to the cut line, with value 1/2 to each side.

A rectangular partition is called an 1-guillotine rectangular partition if

it can be performed by a sequence of 1-guillotine cuts. Fig.3.2 shows such a

cut. It can be showed that there exists a minimum 1-guillotine rectangular

partition such that every maximal segment contains at least a vertex of the

boundary.

Now, the question is whether the 1-guillotine cut also features the dy-

namic programming. The answer is yes. Refer to Fig.3.2. In fact, the

1-guillotine cut partitions a rectangular partition problem into two sub-

problems such that each maximal line-segment contains a vertex of the

boundary, which is called the boundary condition, since after an 1-guillotine

cut, two open segments may be created on the boundary. The boundary

condition increases the number of subproblems in the dynamic program-

ming. Since each subproblem is based on a rectangle with four sides, the

condition on each side can be described by two possible open segments at

the two ends. Hence each side has O(n2) possible conditions. So the total

number of boundary conditions is O(n8), this implies that the total num-

ber of possible subproblems is O(n12). For each problem, there are O(n3)

possible 1-guillotine cuts. Therefore, the minimum 1-guillotine rectangular

partition can be computed by a dynamic programming in time of O(n15).

With 1-guillotine cuts, we can find a 2-approximation solution not only

for the special case but also the general case as follows: Use a rectangle to

cover the input rectangular polygon with holes. Cut the rectangle each time

into two rectangles with an 1-guillotine cut, and then repeat this process

to resulting rectangles until a rectangular partition is obtained. Mitchell
[211] proved the following theorem.
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Theorem 3.2 The minimum 1-guillotine rectangular partition is a 2-

approximation for the minimum rectangular partition problem.

Proof. For any rectangular partition P , let P ∗
G denote the minimum 1-

guillotine rectangular partition covering P . Let lX(P ) (lY (P )) denote the

total lengths of segments on a horizontal (vertical) lines covered by vertical

(horizontal) projection of partition P . To prove the theorem, it suffices to

show that

l(P ∗
G) ≤ 2 l(P )− lX(P )− lY (P ). (3.3)

The argument is based on mathematical induction on the number k of

segments in P , which is similar to that used in the proof of Theorem 3.1.

For k = 1, we have l(P ∗
G) = l(P ). Assume, without loss of generality,

that the segment is horizontal. Then we have lX(P ) = l(P ) and lY (P ) = 0.

Hence inequality (3.3) is satisfied. Next assume that inequality (3.3) is true

for k− 1 with k ≥ 2 and study the case where P has k segments. Consider

the following two cases.

Case 1. There exists an 1-guillotine cut PG. Without loss of generality,

assume that PG is vertical with length a. Suppose that the remainder of

P is divided into two parts P1 and P2. Let P ∗
i denote the minimum 1-

guillotine rectangular partition covering Pi, i = 1, 2. Then, by induction

hypothesis, we have

l(P ∗
i ) ≤ 2 l(Pi)− lX(Pi)− lY (Pi), for i = 1, 2. (3.4)

It can be verified that the following inequalities and equalities hold true.

l(P ∗
G) ≤ l(P ∗

1 ) + l(P ∗
2 ) + a,

l(P ) = l(P1) + l(P2) + a,

lX(P ) = lX(P1) + lX(P2),

lY (P ) ≤ lY (P1) + lY (P2). (3.5)

From the above inequalities and equalities, we can deduce inequality (3.3).

Case 2. There does not exist any 1-guillotine cut. In this case, we need

to add a segment to partition P so that the resulting partition P ′ has an 1-

guillotine cut and the length of added segment is at most lX(P1)+ lX(P2)−
lX(P ) if the 1-guillotine cut is horizontal and lY (P1)+ lY (P2)− lY (P ) if the

1-guillotine cut is vertical, where P1 and P2 are partitions obtained from P

by the 1-guillotine cut.
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By Lemma 3.2, we may assume, without loss of generality, that there

exists a horizontal line LH such that l(LH ∩H) ≤ l(LH ∩H), which implies

l(LH ∩H) ≤ lX(P1) + lX(P2)− lX(P ), where P1 and P2 are subpartitions

obtained from P by the line which becomes an 1-guillotine cut after adding

segment LH ∩ H to the partition P . By induction hypothesis again, we

obtain inequality (3.4). Moreover, inequality (3.5) also holds true in this

case. Therefore, we obtain

l(P ′) = l(P ∗
1 ) + l(G∗

2) + l(LH ∩H)

≤ 2
2∑

i=1

l(Pi)−
2∑

i=1

lX(Pi)−
2∑

i=1

lY (Pi) + l(LH ∩H)

≤ 2 l(P )− lX(P )− lY (P )

As inequality (3.3) has been proved, the proof for the theorem is then

finished. �

In fact, Mitchell [211] used a different way to prove the above theorem.

He symmetrically charged a half of the length of added segment to those

parts of segments in P which face to 1-dark points. Since charging must

be performed symmetrically, each point in P can be charged at most twice

during the entire modification from a rectangular partition to an 1-guillotine

rectangular partition. Therefore, the total length of added segments is at

most l(P ) and hence the theorem is proved. Actually, this argument is

equivalent to the above proof. In fact, only projections from both sides are

considered (in Case 2), lX(P ) or lY (P ) can contribute something against

the length of the added segment.

3.1.2 m-Guillotine Cut

Mitchell [214] extended 1-guillotine cut to m-guillotine cut in the following

way: A point p is a horizontal (vertical) m-dark point if the horizontal

(vertical) line passing through p intersects at least 2m vertical (horizontal)

segments of the considered rectangular partition P , among which at least

m segments are on the left of p (above p) and at least m segments are on

the right of p (below p).

A horizontal (vertical) cut is an m-guillotine cut if it consists of all

horizontal (vertical) m-dark points on the cut line. In other words, let Hm

(Vm) denote the set of all horizontal (vertical) m-dark points, then an m-

guillotine cut is either a horizontal line LH satisfying LH ∩Hm ⊆ LH ∩P or

a vertical line LV satisfying LV ∩ Vm ⊆ LV ∩ P , where P is the considered
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partition. A rectangular partition is called m-guillotine if it can be realized

by a sequence of m-guillotine cuts.

Fig.3.4(a) shows a vertical m-guillotine cut with m = 3, which results

in 2m open segments on each subproblem’s boundary. The minimum m-

guillotine rectangular partition can also be computed by dynamic program-

ming in time of O(n10m+5). In fact, at each step, an m-guillotine cut has at

most O(n2m+1) choices. There are O(n4) possible rectangles appearing in

the algorithm and each rectangle has O(n8m) possible boundary conditions.

Therefore, the minimum m-guillotine rectangular partition can be used as

an approximation to the minimum rectangular partition for any natural

number m ≥ 1.

(a) (b)

Fig. 3.4 (a) A vertical m-guillotine cut, and (b) 2m open segments on each subprob-
lems’s boundary.

Using arguments similar to the proofs of Lemma 3.2 and Theorem 3.2,

Mitchell [214] proved the following lemma and theorem, respectively.

Lemma 3.3 (Mitchell’s Lemma) Let Hm and Vm be the sets of all

horizontal and vertical m-dark points, respectively. Then there exists either

a horizontal line LH such that l(LH ∩Hm) ≤ l(LH ∩Vm), or a vertical line

LV such that l(LV ∩Hm) ≥ l(LV ∩ Vm).

Theorem 3.3 The minimum m-guillotine rectangular partition is an (1+
1
m )-approximation for the minimum rectangular partition problem.

Proof. Every time, if an m-guillotine cut already exists in P , then we use

it to divide considered rectangle into two. If there does not exist such an

m-guillotine cut, then by Lemma 3.3, there exists a vertical or horizontal

m-guillotine cut whose length can be symmetrically charged with value

0.5/m to 2m vertical or horizontal segments in P ; they face the horizontal

or vertical m-dark points on the cut line and each side of the cut line has m
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layers. We can apply this m-guillotine cut to divide the considered rectangle

into two. Since charging is performed symmetrically, no segment in P can

be charged more than twice. Therefore, added segments have a total length

not exceed one m-th of the total length of P . �

Corollary 3.1 There exists a polynomial time approximation scheme

for the minimum rectangular partition problem with running time

O(nO(log 1/ε)).

3.1.3 Guillotine Cut for Rectilinear Steiner Minimum Tree

The significance of techniques developed from the study of guillotine rect-

angular partition stems from not only the Polynomial Time Approximation

Scheme (PTAS) for minimum rectangular partition problem, but also from

wide applications to other geometric optimization problems. In this sub-

section, we will consider how to design a PTAS for the rectilinear Steiner

Minimum Tree (SMT) problem.

Let Q be the minimal rectangle that covers all n given terminal points

in the rectilinear plane. With the technique of m-guillotine cut, we can

obtain a result similar to Theorem 3.3. For this purpose, we can similarly

define the notion of vertical (horizontal) m-dark points with respect to a

rectilinear SMT, and then prove the following version of Mitchell’s Lemma.

Lemma 3.4 Let Hm and Vm be the sets of all horizontal and vertical

m-dark points, respectively, and T be a rectilinear Steiner tree. Then there

exists either a horizontal cut line LH that does not pass through any given

point and satisfies l(LH ∩Hm) ≤ l(LH ∩Vm), or a vertical cut line LV that

does not pass through any given point and satisfies l(LV ∩Hm) ≥ l(LV ∩Vm).

Proof. First, we assume that the area of Hm is not smaller than the area

of Vm. Denote line Lp = {(x, y) |x = p}. Let the considered rectangle Q

have four corner points with coordinates (a, a′), (a, b′), (b, b′), and (b, a′).
Then areas of Hm and Vm can be represented by

∫ +∞

−∞
l(Lu ∩Hm)du and

∫ +∞

−∞
l(Lu ∩ Vm)du, respectively.

Since

∫ +∞

−∞
l(Lu ∩Hm)du ≥

∫ +∞

−∞
l(Lu ∩ Vm)du,



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

Geometric Partitions and Polynomial Time Approximation Schemes 91

and there are only finitely many u’s such that Lu passes through a given

point, there must exist a number u ∈ (a, b) such that Lu does not pass

through any given point and l(Lu ∩ Hm) ≤ l(Lu ∩ Vm). Similarly, if the

area of Hm is smaller than the area of Vm, then there exists a desired

horizontal line LV . The proof is then finished. �

By Hanan’s classical result [130], there exists a rectilinear SMT Tsmt

lying in the Hanan grid (that consists of all horizontal and vertical lines

each passing through a given terminal point). For such a Tsmt, every line L

between two adjacent lines of the Hanan grid has the same length of L∩Hm

and the same length of L ∩ Vm. Let SL be the set of lines each lying at

the middle between two adjacent lines of the Hanan grid. Fig.3.5(a) shows

Hanan grid that consists of all those thin lines, together with all boundary

lines, in the rectangle, and SL that is composed of all dashed lines.

(a) (b)

Fig. 3.5 (a) Hanan grid and cut lines, and (b) doubling an m-guillotine cut.

Theorem 3.4 There exist an (1 + 2/m)-approximate rectilinear SMT T

and an m-guillotine rectangular partition P of Q such that each cut of P

intersects T at no more than (2m − 1) points (called crosspoints) and all

cut lines locate at O(n) possible positions and all crosspoints also located at

O(n) possible positions.

Proof. In each iteration we always choose a cut line L ∈ SL and add

an m-guillotine cut. Hence the number of possible locations of cut lines is

O(n). We may also double the m-guillotine cut and consider one of the two

endpoints as a crosspoint as shown in Fig.3.5(b). Therefore, there are at

most (2m− 1) crosspoints all lying in the Hanan grid and thus the number

of possible locations of crosspoints is also O(n). Note that the cut line L is

chosen in such a way that the twice length of added m-guillotine cut can be
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symmetrically charged with value 1/m to m layers of parallel line segments

in each side. Therefore, the total length of added line segments is at most
2
m l(Tsmt). This completes the proof. �

Corollary 3.2 There exists a polynomial time (1 + ε)-approximation for

the rectilinear SMT problem with running time O(nO(log 1/ε)).

By Theorem 3.4, a dynamic programming can be employed to compute a

shortest T described in the theorem. The running time can be estimated as

follows: First, since each cut line has O(n) possible positions and there are

at most (2m+1) crosspoints on each cut which yield O(n2m−1) possibilities,

each iteration runs in time of O(n2m). Next, we study how many possible

subproblems appearing in the computation of dynamic programming. Note

that each subproblem can be specified in the following way:

(a) A rectangle R is given with a set S of at most (8m− 4) crosspoints

on the boundary (each edge has at most (2m− 1) crosspoints), and

all given terminal points lie in the interior of R.

(b) A partition of the set S is given.

(c) The goal is to find a forest with the minimum total length such that

(c.1) all crosspoints in each part are connected,

(c.2) two crosspoints in different parts are not connected,

(c.3) no two line segments cross each other, and

(c.4) each given terminal point is connected to at least one crosspoint.

There are O(n4) R′s, and for each R there are O(n8m−4) possible sets

of crosspoints. Note that not every partition S can have a feasible solu-

tion (a rectilinear Steiner tree) satisfying conditions (c.1-3). We will prove

in the following lemma that the number of partitions of S which has a

feasible solution satisfying conditions (c.1-3) is O(nO(m)). Therefore, the

total number of subproblems generated in the dynamic programming is

O(n4 · n8m−4 · nO(m)) = nO(m), and thus the dynamic programming runs

in time of nO(m) · O(n2m) = nO(m).

Lemma 3.5 The number of partitions of S that leads to a feasible solution

satisfying conditions (c.1-3) is O(nO(m)).

Proof. Break the rectangle R at a point and put it into a straight line.

Then the problem is reduced to count the number n(k) of partitions of a

set S of k (k ≤ 8m− 4) points on a horizontal line such that there exists a

forest above the line satisfying conditions (c.1-3).

Denote by p1, p2, · · · , pk the k points lying on the line from left to right.
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When p1 is connected to no one, the number of required partitions is n(k−
1). When p1 is connected to pi and pi is the leftmost point other than

p1 among those points that are connected to p1, the number of required

partitions is n(i− 2)n(k − i + 1), where n(0) = 1 for i = 2. Therefore,

n(k) = n(k − 1) +

k∑

i=2

n(i− 2)n(k − i + 1)

=
k−1∑

j=0

n(k − 2)n(k − 1− j).

To determine n(k), we define a generating function f(x) =
∑∞

k=0 n(k)xk .

Then we have

f2(x) =

∞∑

k=0

( k∑

j=0

n(k)n(k − j)
)
xk =

∞∑

k=0

n(k + 1)xk.

Hence, we obtain xf2(x) = f(x) − 1. Thus f(x) = (1 ±
√

1− 4x)/(2x).

Since

lim
x→0

f(x) = 1 and lim
x→0

1 +
√

1− 4x

2x
=∞,

we have

f(x) =
1−
√

1− 4x

2x
= − 1

2x

∞∑

k=1

(
1/2

k

)
(−4x)k.

Therefore, we obtain

n(k) = −1

2

(
1/2

k + 1

)
(−4)k+1 = 2O(k).

The proof is then finished. �

3.2 Portals

The Polynomial Time Approximation Scheme (PTAS) proposed by Arora
[10] is also based on a sequence of cuts on rectangles. To reduce the number

of connections between two subproblems resulting from a cut, he introduced

portals which enables him to equally divide the cut. In this section, we will

study this technique and compare it with the technique of guillotine cuts.
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3.2.1 Portals for Rectilinear Steiner Minimum Tree

In order to study the relationship between the technique of guillotine cut

and Arora’s seminal work [10], in this subsection we shall show how to

design a PTAS for the rectilinear Steiner Minimum Tree (SMT) problem

using his approach.

The basic idea is as follows: Initially, use a minimum square to enclose n

given terminals. Then with a tree structure, partition this square into small

rectangles each of which contains one given terminal. The tree structure is

established as follows:

(i) Equally divide the initial square into a (g × g)-grid with g ≥ n/ε.

Move each terminal point to the center of the cell where it is located.

(ii) Choose cut line from grid lines in a range between 1/3 and 2/3 of

a longer edge (or an edge for a square).

The following two lemmas explain how the above two techniques are

used towards a PTAS for the rectilinear SMT problem.

Lemma 3.6 Suppose ε < 1 and g ≥ 4.5n/ε. Let P be the set of n

terminal points and P ′ the set of n cell centers receiving n terminals. If

there is a polynomial time (1 + ε)-approximation for the rectilinear SMT

on P ′, then there exists a polynomial time (1 + 2ε)-approximation for the

rectilinear SMT on P .

Proof. Let Tε(P
′) be a polynomial time ε-approximation solution to the

rectilinear SMT problem on P ′, and let Tsmt(P ) and Tsmt(P
′) be the recti-

linear SMTs on P and P ′, respectively. Then l(Tε(P
′)) ≤ (1+ε)l(Tsmt(P

′)).
Note that |l(Tsmt(P ))− l(Tsmt(P

′))| ≤ s n/g, where s is the side length of

the initial square. Since the square is minimal, s is not bigger than the

length of the MST on P and s ≤ 3
2 l(Tsmt(P )).

Now construct a tree T interconnecting points in P from Tε(P
′) by

connecting each point in P ′ to its corresponding terminal point in P . As

g ≥ 4.5n/ε, we have

l(T ) ≤ l
(
Tε(P

′)
)

+
s n

g

≤ (1 + ε) l
(
Tsmt(P

′)
)

+
s n

g

≤ (1 + ε)
(
l
(
Tsmt(P )

)
+

s n

g

)
+

s n

g

= (1 + ε) l
(
Tsmt(P )

)
+ (2 + ε)

s n

g
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≤
(
1 + ε + (2 + ε)

3n

2g

)
l
(
Tsmt(P )

)

≤ 2ε · l
(
Tsmt(P )

)
.

Note that for sufficiently large n, we have (2+ε/2)3/2n ≤ ε/2, which implies

l(T ) < (1 + ε) l(Tsmt(P )). The proof is then finished. �

By the above lemma, we will consider the rectilinear SMT on P ′ instead

of the original terminal set P .

Lemma 3.7 The binary tree structure of the partition obtained by tech-

nique (ii) has O(log n) levels.

Proof. With technique (ii), the rectangle at the i-th level has area of

size at most 2s(2/3)i−1. Since the ratio between the lengths of longer

edge and shorter edge is at most three, the rectangle at the last level, say

the l-th level, has area of size at least 1
3 (s/n2)2. Therefore, we obtain

2s(2/3)l−1 ≥ 1
3 (s/n2)2, which leads to l = O(log n). The proof is then

finished. �

(a) (b)

Fig. 3.6 (a) p-portals, and (b) p-portals vs m-guillotine cut.

To reduce the number of crosspoints at each cut line, Arora [10] intro-

duced portals. A set of p points on a cut are called p-portals if they equally

divide the guillotine cut into (m + 1) segments. For rectilinear SMT (or

Euclidean SMT, etc), crosspoints of the Steiner tree on a cut line can be

moved to portals. This would reduce the number of crosspoints on the cut

line. Fig.3.6(a) shows p-portals with p = 5. The following lemma shows

that by properly choosing cut line, at each level of the tree structure moving

crosspoints to portals would increase the length of the tree within a certain

amount.
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Lemma 3.8 There exist a set of cut lines SL such that at each level of

the tree structure moving crosspoints to portals of SL would increase the

length of the tree within 3/p times the total length of Steiner tree.

Proof. Consider each rectangle R at a certain level. Suppose that its

longer edge has length a and shorter edge has length b (b ≤ a). Consider

every possible cut in a range between 1/3 and 2/3 of a longer edge. Choose

the cut line to intersect the Steiner tree with the smallest number of points,

say c points. Then the length of the part of the Steiner tree lying in

rectangle R is at least c a/3. Moving c crosspoints to portals requires to

add some segments of total length at most

c b

p + 1
≤ c a

p + 1
≤ 3/p

c a/3
,

which proves the lemma. �

Theorem 3.5 For any rectilinear SMT Tsmt, there exists an (1 + ε)-

approximation tree T with a guillotine rectangular partition P of Q such that

each guillotine cut intersects T with at most m(= 1/ε) crosspoints which

are all located at p-portals where p = O( log n
ε ). Moreover, the guillotine

rectangular partition P has O(log n) levels.

Proof. Since the tree structure has depth of O(log n), the total length

of the resulting Steiner tree is within (1 + 3/p)O(log n) times the length of

the optimal tree. Thus to ensure (1 + 3/p)O(log n) ≤ 1 + ε, we may choose

p = O( log n
ε ) . �

Corollary 3.3 There exists a polynomial time approximation scheme for

the rectilinear SMT problem with running time of O(nO(1/ε)).

Proof. We will describe how to compute such an (1 + ε)-approximation

specified in the above theorem. Again we employ the dynamic programming

to find the shortest one among the trees with the same structure as the

(1 + ε)-approximation.

To estimate the running time of dynamic programming, we first note

that each subproblem is characterized by a rectangle and conditions on

the boundary. There are O(n8) possible rectangles each having four sides.

One of them must contain p portals. However, each of other three may

contain less than p portals resulting from previous cuts. Thus the number

of positions for portals on each of these three sides is O(n4). Hence, the

total number of portal positions on the boundary is O(n20). For each

fixed set of portal positions, we need also consider whether a portal is a
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crosspoint or not and how crosspoints are connected each other inside the

rectangle. It yields wO(p) possibilities. Therefore, the total number of

possible subproblems is nO(1/ε).

Moreover, in each iteration of dynamic programming, the number of all

possible cuts is O(n2). Therefore, the dynamic programming runs in time

of O(nO(1/ε)). The proof is then finished. �

3.2.2 Portals versus Guillotine Cuts

In this subsection we will compare those two techniques, m-guillotine cuts

and portals, which were described in the previous two sections.

For those geometric optimization problems in three or higher dimen-

sional spaces, cut lines should be replaced by cut planes or hyperplanes.

The number of portals would be O(( log n
ε )2) or more. With so many possi-

ble crosspoints, the dynamic programming cannot be implemented in poly-

nomial time. However, m-guillotine cuts have at most 2m crosspoints in

each dimension and m is a constant with respect to n. Therefore, the poly-

nomial time for the dynamic programming would be preserved in three or

higher dimensional spaces.

In addition, the technique of portals cannot be applied to the minimum

rectangular partition problem and the following three geometric optimiza-

tion problems.

Problem 3.1 Rectilinear Steiner Arborescence Problem [196]

Instance A set of n terminals in the first and the second quadrants of the

rectilinear plane.

Solution A directed tree T rooted at the origin that is connected to all

terminals with only horizontal arcs (in either orientation) and

vertical arcs oriented from bottom to top.

Objective Minimizing the total length of arcs in T .

Problem 3.2 Symmetric Rectilinear Steiner Arborescence Problem [54]

Instance A set of n terminals in the first quadrant of the rectilinear plane.

Solution A directed tree T rooted at the origin that is connected to all

terminals with only horizontal and vertical arcs oriented from

left to right or bottom to top.

Objective Minimizing the total length of arcs in T .
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Problem 3.3 Convex Partition Problem [78]

Instance A polygon inside with some polygon-holes.

Solution A partition P of the polygon into convex areas.

Objective Minimizing the total length of partition in P .

In fact, for the above mentioned problems, moving crosspoints to por-

tals is sometimes impossible. But the technique of m-guillotine cuts is

applicable to them (refer to [196]).

On the other hand, the technique of m-guillotine cuts can not be applied

to the following three problems while the technique of portals can.

Problem 3.4 Euclidean k-Median Problem [17]

Instance A set of n points in the Euclidean plane.

Solution Locations of k medians in the plane.

Objective Minimizing the sum of the distances from each given point to

the nearest median.

Problem 3.5 Euclidean Facility Location Problem [17]

Instance A set of n points p1, p2, · · · , pn in the Euclidean plane with

a cost ci for openning a facility at pi for each i = 1, 2, · · · , n.

Solution A subset S of {p1, · · · , pn}.
Objective Minimizing

∑
pi∈S ci +

∑n
i=1 min{d(pi, pj)|pj ∈ S}.

Problem 3.6 Euclidean Grade Steiner Tree Problem [170]

Instance A sequence of terminal sets P1 ⊂ P2 ⊂ · · · ⊂ Pm in the

Euclidean plane, and costs c1 > c2 > · · · > cm.

Solution A network G(V, E) that contains a Steiner tree Ti for every Pi.

Objective Minimizing cost of G that equals
∑

e∈E l(e) ·max{ci|e ∈ Ti}.

In addition, the m-guillotine cut and partition require the number of

locations for crosspoints is bounded by a polynomial of input size. For

some problems (such as Euclidean SMT), without moving crosspoints, the

number of possible locations may not be able to have a polynomial bound.

Therefore, the m-guillotine alone may not work well. In this case, some

other technique, such as banyan (see Section 3.4), must be used if the

technique of portals is not used.
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3.2.3 Portals Integrated with Guillotine Cuts

When both techniques of portals and guillotine cuts can be applied to a

geometric optimization problem, such as the rectilinear SMT problem, it is

natural to ask question: could two techniques be combined to yield a better

result? Roughly speaking, this combination may reduce the running time

for dynamic programming. In fact, one may first use the portal technique

to reduce the number of possible locations for crosspoints to O( log n
ε ) and

then to choose 2m positions from them to form an m-guillotine cut with

m = 1/ε as shown in Fig.3.6(b). Therefore, the dynamic programming for

finding the best such partition runs in time of nc(log n)O(1/ε), where c is a

constant. However, when we implement this idea in detail, we may meet

the following trouble: In these two techniques, two different principals are

used for the choice of each cut. In the m-guillotine cut, the cut line satisfies

the inequality in Mitchell’s Lemma. But, when portals are used, the cut

line is chosen to minimize the number of crosspoints. How can these two

principles go together?

One method is to move our attention from a local optimal choice of each

cut to the entire partition. To do so, let us focus on the rectilinear SMT

problem again and define a family of partitions as follows.

(i) Construct a quadtree partition as shown in Fig.3.7(a): Initially, given

a square Q. In each subsequent step, if a square contains more than

one input terminal points, then partition it into four subsquares of

equal size.

(ii) Divide the square Q into a (2q × 2q) grid, where 2q = O(n/ε), such

that every input terminal point lies at the center of a cell.

We may assume that the initial square Q = {(x, y)|0 ≤ x ≤ 2q , 0 ≤ y ≤
2q}, from (ii) we can easily prove the following lemma.

Lemma 3.9 For any rectilinear Steiner tree T satisfying condition that

every Steiner point lies at the center of a cell, the total number of crosspoints

of T with vertical grid lines equals the total length of horizontal segments in

T and the total number of crosspoints of T with horizontal grid lines equals

the total length of vertical segments in T .

Let Tsmt be a rectilinear SMT lying in Hanan grid. Then every Steiner

point is at a grid point of Hanan grid and hence is the center of a cell. So

the above lemma can be applied to Tsmt.

Now for each point (a, b) in the rectilinear plane with 0 ≤ a, b < 2q , we

define a quadtree partition P (a, b) as follows: Choose (a, b) as the center
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to draw an initial square Q with edge length twice that of Q. This square

covers Q. From this initial square, construct a quadtree according to the

definition. Let P be the family of P (a, b) for (a, b) over all integer points

in Q. Fig.3.7(b) shows such a quadtree partition P (a, b) where Q is the

shaded area. In the following we will first estimate the average of the total

cost (the increased length) for moving crosspoints to p-portals.

(a) (b)

Q

a b(  ,  )

Fig. 3.7 (a) Quadtree partition, and (b) quadtree partition P (a, b) covering Q.

Lemma 3.10 Let c1(P, T ) denote the total increased length for moving

crosspoints of tree T to p-portals in partition P . Then

1

2q

∑

0≤a<2q

c1

(
P (a, a), T

)
≤ q + 1

2(p + 1)
l(T ). (3.6)

Proof. The quadtree partition has a rooted tree structure with the initial

square as the root. As usual, we call a vertex at the i-th level if the path

from the root to it has length i. Hence, the root is at the 0-th level. A

cut segment is said to be at the i-th level if it is one of four cut segments

cutting a square at the i-th level into four squares at the (i + 1)-th level.

Thus, we may say that a grid line is in the i-th level if all cut segments on

it are at the i-th level.

Consider a family of 2q quadtree partitions P (a, a) for a = 0, 1, · · · , 2q−
1. Let Lv be a vertical grid line. It is easy to see that Lv is at the 0-

th level once, at the 1-st level once, at the 2-nd level twice, at the 3-rd

level four times and so on; In general, it is at the i-th level 2i−1 times for

1 ≤ i ≤ q − 1. Let n(Lv , T ) denote the number of crosspoints of T on Lv.
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When Lv is at the i-th level, moving crosspoints on Lv to p-portals would

increase the length of T within n(Lv, T )2q−i/(p + 1). Therefore, the total

increased length for moving crosspoints at the vertical cuts to portals when

the partition is over all P (a, a) for a = 0, 1, · · · , 2q − 1 is at most

∑

Lv∈Svgl

n(Lv, T ) ·
(
2q +

q−1∑

i=1

2i−1 · 21−i
) 1

p + 1

= lvs(T ) · 2q−1(q + 1)
1

p + 1
, (3.7)

where Svgl is the set of vertical grid lines and lvs is the total length of vertical

segments in T . Similarly, the total increased length for moving crosspoints

at horizontal cuts to portals when the partition is over all P (a, a) for a =

0, 1, · · · , 2q − 1 is at most

lvs(T ) · 2q−1
(
q + 1

) 1

p + 1
, (3.8)

where lhs is the total length of vertical segments in T . Summarizing two

terms of (3.7-8) will lead to inequality (3.6). The proof is then finished. �

Next, we will show how to use global consideration to replace the local

choice of each cut when the technique of m-guillotine cut applies.

The main purpose of using m-guillotine cuts is to reduce the number of

crosspoints to O(m) at each cut. The local choice of each m-guillotine cut

is based on Mitchell’s Lemma which guarantees that the symmetric charge

can be done successfully. Such symmetric charge makes the total increased

length is bounded by l(T )/m. Thus, we can choose m ≥ 1/ε in order to

ensure the bound at most εl(T ).

We now need to estimate the average of the total cost (the increased

length) for reducing the number of crosspoints to no greater than m at

each cut segment. In the following we will show first how to carry out the

reduction and then how to make the analysis.

In fact, we would not consider symmetric charge any more. So, we may

not need to make m-guillotine cut. A simple way to reduce the number of

crosspoints at each cut is to add a guillotine cut segment. We may also

double the added segment to make only one crosspoint left as shown in

Fig.3.5(b). Such a process is sometimes called patching. An important

property of m-guillotine cuts is that the total cost of patching may be

bounded by ε · l(T ).
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However, keeping the total increased length bounded by ε · l(T ) is not

an easy job. It, in fact, requires to combine costs accumulated at different

levels. The following procedure gives such a technique. Let [x, y] denote

the line segment with endpoints x and y. For each cut line segment [x, y]

at the i-th level, denote by x(d) the point in [x, y] with distance d from x,

e.g., x = x(0) and y = x(2q−i).

Algorithm 3.1 Patching Procedure

for k = 0 to q − i do

for j = 0 to 2q−i−k − 1 do

if [x(j2k), x((j + 1)2k)] has more than m crosspoints

then patch [x(j2k), x((j + 1)2k)]

end-for−j

end-for−k

Lemma 3.11 Let c2(P, T ) denote the total increased length for reduc-

ing the number of crosspoints to no more than m at each cut segment in

partition P . Then

1

2q

∑

0≤a<2q

c2

(
P (a, a), T

)
≤ 2

m
l(T ). (3.9)

Proof. Let ns(k
′, L) denote the number of segments, or grid line L,

patched when k = k′ in the patching procedure (Algorithm 3.1). Then,

when L is at the i-th level, the total increased length for patching on grid

line L is at most

q−i∑

k=0

ns(k, L) · 2k+1,

where each cut segment is doubled for patching.

Now consider a family of wq quadtree partitions P (a, b) for a =

0, 1, · · · , 2q − 1 and an arbitrary vertical grid line Lv. Recall that Lv is

at the 0-th level once and at i-th level 2i−1 times for 1 ≤ i ≤ q− 1. There-

fore, the total increased length for patching on Lv and the partition over

all P (a, a) for a = 0, 1, · · · , 2q − 1 is at most

q∑

k=0

ns(k, Lv) · 2k+1 +

q∑

i=1

2i−1

q−i∑

k=0

ns(k, Lv) · 2k+1

=

q∑

k=0

ns(k, Lv)
(
2k+1 +

q−k∑

i=1

2k+i
)

=

q∑

k=0

ns(k, Lv) · 2q+1.



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

Geometric Partitions and Polynomial Time Approximation Schemes 103

Note that patching once would reduce at least m crosspoints. Thus we have

q∑

k=0

ns(k, Lv) ≤
nc(Lv , T )

m
,

where nc(Lv, T ) is the number of crosspoints of T on Lv. It follows that the

total increased length for patching on Lv and the partition over all P (a, a)

for 0 ≤ a < 2q is at most 2q+1nc(Lv, T )/m. Therefore, we obtain

1

2q

∑

0≤a<2q

c2

(
P (a, a), T

)
≤

∑

Lv∈Svgl

2 nc(Lv, T )

m
=

2

m
l(T ),

where Svgl is the set of vertical grid lines. The proof is then finished. �

Theorem 3.6 For p ≥ 2q/ε and m ≥ 8/ε, there are at least a half number

of partitions P (a, a) for 0 ≤ a < 2q having an ε-approximation T for the

rectilinear SMT such that each cut intersects T with at most m crosspoints

at p-portals.

Proof. Let Tsmt be a rectilinear SMT such that every maximal segment

contains a terminal point and a quadtree partition P (a, a). We first reduce

the number of crosspoints of Tsmt to at most m on each cut of P (a, a)

by patching procedure, and then move all crosspoints to p-portals. Let

c3(P (a, a), Tsmt) denote the total increased length in the above process.

Clearly,

c3

(
P (a, a), Tsmt

)
≤ c1

(
P (a, a), Tsmt

)
+ c2

(
P (a, a), Tsmt

)
.

Choose p ≥ 2(q + 1)/ε− 1 and m ≥ 8/ε. By Lemmas 3.10-11, we have

1

2q

∑

1≤a<2q

c3

(
P (a, a), Tsmt

)
≤ ε

2
l
(
Tsmt

)
.

Therefore, there are a half number of P (a, a) for 1 ≤ a < 2q such that

c3(P (a, a), Tsmt) ≤ ε · l(Tsmt). The proof is then finished. �

Theorem 3.7 With probability at least 1/2, an (1+ε)-approximation for

the rectilinear SMT can be produced in time of n((log n)/ε)O(1/ε).

Proof. First, randomly choose a quadtree partition P (a, a), and then

compute the shortest Steiner tree T interconnecting all terminal points

such that each cut of P (a, a) intersects T with at most m crosspoints which

are all located at p-portals. In fact, T can be computed with dynamic

programming. Next choose 2q = O(n/ε), p = O(q/ε) = O(log(n/ε)/ε), and
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m = O(1/ε). In each iteration, all possible sets of crosspoints need to be

considered. Since the number of possible sets of crosspoints is O(pm) =

(n/ε)O(1/ε), each iteration takes time of (log n/ε)O(1/ε).

Note that in quadtree partition, there are at most 2n squares containing

terminal points. Each subproblem can be specified by a particular square,

a set of crosspoints on the boundary, and connected pattern of those cross-

points. By considering these three parameters, it is not hard to find out that

there are totally 2n ·O(pm)4 · 2O(m)n((log n)/ε)O(1/ε) subproblems. There-

fore, the running time of the dynamic programming is n((log n)/ε)O(1/ε).

The proof is then finished. �

To derandomize, we need only to apply dynamic programming to every

quadtree partition P (a, a) for 0 ≤ a < 2q . Therefore, we have the following

corollary.

Corollary 3.4 There exists a PTAS for the rectilinear SMT problem with

running time of n2((log n)/ε)O(1/ε).

3.2.4 Two-Stage Portals

In this subsection, we will show how to improve the running time of the

PTAS described in the previous subsection by using two-stage portals,

which is motivated from the idea due to Mitchell [212].

Consider a cut [x, y]. Choose two point x′, y′ from p1−portals of [x, y].

Then all p2-portals of [x′, y′] form a group of (p1, p2)-portals of [x, y], which

are called two-stage portals. There are O(p2
1) groups of (p1, p2)-portals.

Lemma 3.12 Let c4(p(a, a), T ) denote the total length of such [x, y] over

all cuts in P (a, b) such that all crosspoints on the cut are located in [x, y].

Then

1

2q

∑

0≤a<2q

c4

(
P (a, a), T

)
≤ 4 l(T ). (3.10)

Proof. For each cut C in P (a, a), we break it into two equal parts if all

crosspoints keep on one part. Continue this process until further breaking

would not keep all crosspoints in one part. Then let [u(C), v(C)] denote

the resulting segment in the above process.

If cut C contains only one crosspoint, then the length of [u(C), v(C)]

must be one. Thus, the total length of [u(C), v(C)] for C over all cuts each

containing one crosspoints is bounded by the number of crosspoints of T in
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P (a, b), that is, by Lemma 3.9 it is bounded by l(T ). For the cut C that

contains at least two crosspoints, [u(C), v(C)] must be patched for doing

patching with m = 1. By Lemma 3.11, the total length of [u(C), v(C)] for C

over all cuts each with at least two crosspoints is bounded by c2(P (a, a), T )

with m = 1. Now, moving u(C) and v(C) to p1-portals would increase

totally at most 2c1(P (a, a), T ). Therefore, we have

1

2q

∑

0≤a<2q

c4

(
P (a, a), T

)
≤ l(T ) + 2 l(T ) +

q + 1

p1 + 1
l(T ) ≤ 4 l(T ),

which proves the lemma. �

Lemma 3.13 For m ≤ 8/ε, p2 = 2m2 and p1 ≥ q, there are at least a

half number partition P (a, a) for 0 ≤ a < 2q having an ε-approximation

T for the rectilinear SMT such that each cut intersects T with at most m

crosspoints which are all located at a group of (p1, p2)-portals.

Proof. Let Tsmt be a rectilinear SMT lying in Hanan grid. For each

quadtree partition P (a, a)(0 ≤ a < 2q), we first reduce the number of cross-

points on each cut to at most m by patching procedure. By Lemma 3.11,

the total increased length for patching is bounded by c1(p(a, a), T ). Then

for each cut we choose two p1-portals x and y with minimum length of [x, y]

such that all crosspoints on the cut are located in [x, y]. Let c4(p(a, a), T )

denote the total length of such [x, y] over all cuts in P (a, b). Moving all

crosspoints to (p1, p2)-portals in the group corresponding to [x, y], the total

increased length is bounded by (m/p2)c4(P (a, a), T ). By Lemma 3.12, we

have

1

2q

∑

0≤a<2q

c4

(
P (a, a), T

)
+

m

p2
c4

(
P (a, b), T

)
≤

( 2

m
+

4m

p2

)
l(T ) ≤ ε

2
l(T ),

which proves the lemma. �

Theorem 3.8 With probability at least 1/2, an (1+ε)-approximation for

the rectilinear SMT can be produced in time of n(log n)10(1/ε)O(1/ε).

Proof. To find the desired approximation, randomly choose a quadtree

partition P (a, a). We compute the shortest Steiner tree T interconnecting

terminals and satisfying the property that each cut of P (a, a) intersects T

with at most m crosspoints which are all located at p-portals. By Theorem

1.7, with probability 1/2, we have an (1+ε)-approximation T for rectilinear

SMT.
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In fact, T can be computed using dynamic programming as follows:

First, choose 2q = O(n/ε), p1 = O(q/ε) = O(log(n/ε)/ε), and m = O(1/ε).

In each iteration, we need to consider all possible sets of crosspoints. Note

that each set of crosspoints is chosen in two steps. In the first step, choose a

group of two-stage portals. There are O(p2
1) = O((log n/ε)2) groups of two-

stage portals. In the second step, choose no more than m crosspoints from

this group of (p1, p2)-portals. There are O(pm
2 ) = (1/ε)O(1/ε) such sets.

Thus, there are totally (log n)2(1/ε)O(1/ε) possible sets of crosspoints on

each cut. Hence, each iteration takes time (log n)2(1/ε)O(1/ε). Note that in

quadtree partition, there are at most 2n squares containing terminal points.

Moreover, each subproblem can be determined by a particular square, a set

of crosspoints on the boundary, and connected pattern of those crosspoints.

By considering these three parameters, it is not hard to figure out that there

are totally 2n·O(p2
1p

m
2 )4·2O(m)n(log n)8(1/ε)O(1/ε) subproblems. Therefore,

the running time of the dynamic programming is n(log n)10(1/ε)O(1/ε). The

proof is then finished. �

To derandomize, we need only to apply dynamic programming to every

quadtree partition P (a, a) for 0 ≤ a < 2q . Therefore, we have the following

corollary.

Corollary 3.5 There exists a PTAS for the rectilinear SMT problem with

running time of n2(log n)10(1/ε)O(1/ε).

3.3 Banyan and Spanner

From the discussion in Section 3.2, we can see that portals are used ex-

tensively to reduce the running time of Polynomial Time Approximation

Scheme (PTAS). However, to get further improvement, we have to give up

portals and refer to some novel technique. In fact, the cost for moving

to portals depends on the depth of partitions. This is really a disadvan-

tage compared with patching. In this subsection we will discuss how to

use spanner and banyan, instead of portals, to get a even faster PTAS.

This approach was first proposed by Rao and Smith [234], and later it was

extended to some problems in planar graphs by Arora et al. [13].

Patching with quadtree partition has the same power as the technique

of guillotine cuts. To apply dynamic programming, the number of possible

locations for crosspoints on each cut has to be limited. In the rectilinear

SMT problem, Hanan grid does the job. A wild idea is to apply patching
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to Hanan grid instead of the rectilinear SMT lying in Hanan grid.

In fact, consider quadtree partition P (a, a) which covers Hanan grid. We

patch Hanan grid to make each cut of P (a, a) contain at most m crosspoints.

By the same argument as the proof of Lemma 3.11, it is easy to know that,

when 0 ≤ a < 2q, this would increase the total length in average to at most

(1 + 2/m)h where h denotes the length of Hanan grid. Now, we compute

a shortest rectilinear Steiner tree T from the patched Hanan grid with

dynamic programming. Since each iteration takes time of O(2m) and there

are at most O(n 2O(m)) subproblems possibly appearing in the dynamic

programming, the running time would be in O(n 2O(m)). In addition, the

length of tree T in average is at most l(Tsmt)+(2/m)h. If h ≤ O(1)l(Tsmt),

then we may choose m = O(1/ε) to get an (1 + ε)-approximation while the

dynamic programming runs only in time of n 2O(1/ε).

This idea looks so wonderful and very promising. However, there are

two technical problems to solve. The first problem is that it is in general

not true that h ≤ O(1)l(Tsmt); The second problem is that the dynamic

programming is applying to the patched Hanan grid. So computing patched

Hanan grid is a part of algorithm for approximation. As a result, we also

need to count the computation time for patching.

If we directly estimate the running time of the patching procedure, then

the running time would be not what we expected. Indeed, for each quadtree

partition P (a, a), there are four cuts at the 0-th level, 42 cuts at the 1-st

level, · · · , rq+1 cuts at the (q − 1)-th level. For each cut at the i-th level,

the patching procedure runs in time O(2q−i). Thus, the total running time

for patching is bounded by

O
( q−1∑

i=0

4i+22q−i
)

= O
(
q 22q

)
= O

(
n2 log n

)
.

How can we do patching more efficiently? In fact, the patching proce-

dure wastes lots of time on some segments without any crosspoint. Given

a quadtree partition P (a, a), the following equivalent procedure can avoid

such wastage.

Algorithm 3.2 Modified Patching Procedure

for each square S in P (a, a) starting from the lowest level do

for each e ∈ S do

if e contains more than m crosspoints then patch e.

end-for-e

end-for-S
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Now suppose that Hanan grid has v vertices. Then P (a, a) has only

O(v) squares and hence the modified patching procedure would run in time

of O(vm). This means that if v = O(n), then O(vm) = (n/ε), which is

what we really desire. Unfortunately, in general, the number of vertices in

Hanan grid is O(n2) instead of O(n).

The above mentioned two technical problems motivate us to consider

something else with more properties instead of Hanan grid, but still con-

taining an optimal or near optimal solution.

An (1+ c)-banyan of a set S of points in the rectilinear plane is a graph

with vertex set containing S such that for any subset S ′ of S, the shortest

subgraph of the banyan interconnecting S ′ has the total length within a

fact of (1 + c) from the rectilinear SMT on S ′. the following result shows

that (1 + c)-banyan can really replace Hanan grid to make our wild idea

work.

Lemma 3.14 For any c > 0, there exists an (1 + c)-banyan of any set S

of n points in the rectilinear plane such that

(i) the total length of the (1 + c)-banyan is at most a constant factor

longer than the rectilinear SMT on S;

(ii) the number of vertices in the (1 + c)-banyan is O(n);

(iii) the (1 + c)-banyan can be computed in time of O(n log n).

The property (i) solves the above first problem while the property (ii)

solves the second. In addition, the property (iii) is clearly also necessary.

Now using (1 + ε/2)-banyan instead of Hanan grid and choose m such that

2/m times the total length of the banyan is no more than (ε/2) l(Tsmt).

Then from the above lemma we can easily deduce the following theorem.

Theorem 3.9 With probability at least 1/2, an (1+ε)-approximation for

the rectilinear SMT can be computed in time of O(n log n) for fixed ε. The

derandomization needs only time of O(n/ε).

3.4 Discussions

Clearly, from the 1-guillotine cut to the m-guillotine cut, there is no any

technical difficulty. However, why had Mitchell not did such a natural

extension before Arora [10] published his remarkable results that we men-

tioned at the beginning of this section? The answer is that before Arora’s

breakthrough, nobody was thinking towards that goal. In fact, Arora was
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well known for his work showing that for many problems2, no PTAS can

exist unless P = NP . He was trying to prove the same result for the Eu-

clidean travelling salesman problem. When he realized it would not work,

he began to try to find a PTAS and he succeeded. In deed, the importance

of Arora’s work [10] is more on opening people’s mind than proposing new

techniques. We observed that Arora [11] used the quadtree partition and,

by absorbing some nutrition from m-guillotine cuts, improved the patching

procedure that proposed in his early work [10].

It is an open problem whether the problems of minimum edge-length

rectangular partition, the rectilinear Steiner arborescence, the symmet-

ric rectilinear Steiner arborescence, the Euclidean k-medians, and the

Euclidean facility location each admits a PTAS with running time of

nc(log n)O(1/ε).

Bern and Eppstein [32] and Arora [12] give two nice surveys on approx-

imation algorithms for many geometric problems including many Steiner

tree related problems, some of them will be discussed in the following chap-

ters of this book.

2Arora had his first work reported in New York Times in 1992 about the probablistic
checkable proof system [16; 18], and his work on PTAS for many geometric optimization
problems [10] was also reported in New York Times.
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Chapter 4

Grade of Service Steiner Tree

Problem

The Grade of Service Steiner Tree (GoSST) problem arises from two dif-

ferent applications: the general design of interconnection networks with

different grade of service requests [71] and the multimedia distribution for

users with different bitrate requests [205]. In the first application, all ma-

jor universities are supposed to be connected to the Internet via a T3-line,

while other universities and colleges are supposed to be connected to the

Internet via a T1-line. It is clear that the Cost-Per-Unit-Length (CPUL)

of a T3-line is more than the CPUL of a T1-line. In the second application,

each node possesses a rate and the cost of a link is not constant but depends

both on the cost per unit of transmission bandwidth and the maximum rate

routed through the link.

The geometric version of minimum GoSST problem could be considered

as a natural generalization of the Steiner tree problem in the Euclidean

plane. Given a set P of n terminal points in the Euclidean plane, P =

{ti|i = 1, 2, · · · , n}, each terminal ti has a service request of grade r(ti) ∈
{1, 2, · · · , n}. Each edge e is assigned a specific grade of service r(e), which

is classified as a number in {1, 2, · · · , n}. Let 0 < c(1) < c(2) < · · · <

c(n) be n given real numbers. The objective is to find the Steiner tree

interconnecting all terminals in set P and some Steiner points each with a

service request of grade zero such that

(1) between each pair of terminal points ti and tj there is a path whose

minimum grade of service assigned is at least min{r(ti), r(tj)}, and

(2) the cost of the tree is minimum among all Steiner trees satisfying (1),

where the cost of an edge with service of grade r is the product

of the Euclidean length of the edge l(e) with c(r).

The minimum cost Steiner tree interconnecting P and satisfying conditions

(1-2) is called a minimum GoSST. The problem is more formally formulated

111
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as follows.

Problem 4.1 The GoSST Problem in Euclidean Plane

Instance A set of n terminal in Euclidean plane P = {ti | i = 1, 2, · · · , n}
each with a service request of grade r(ti) ∈ {1, 2, · · · , n}, and a

set of costs for n service grades 0 < c(1) < c(2) < · · · < c(n).

Grades of service for points not in P are zero.

Solution A Steiner tree T interconnecting all points in P with an assigned

grade of service to each edge e = (p, q) ∈ T such that r(e) ≥
min{r(p), r(q)} for any path between p and q including edge e.

Objective Minimizing the total cost of the grade of service of edges in T ,∑
e∈T c(r(e)) · l(e).

Fig.4.1 gives an instance of Problem 4.1. There are seven terminal

points in P which form a hexagon of unit length with one terminal located

at the center. The number in each node gives the grade of service of the

associated terminal. Fig.4.1(a-b) show two GoSSTs, which are two Steiner

Minimum Trees (SMTs) for P , the number on each edge gives the grade

of service of that edge. It can be verified that the total cost of GoSST of

Fig.4.1(a) is 5
√

3 and that of GoSST of Fig.4.1(a) 14
√

3/3, which, in fact,

is the minimum GoSST, the optimal solution to Problem 4.1. In addition,

Fig.4.1(c) shows the minimum grade of service spanning tree that has total

cost of 9. It is easy to see that there exists a Minimum Spanning Tree

(MST) whose total grade of service is 12.
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Fig. 4.1 An instance of Problem 4.1: (a) a GoSST, (b) the minimum GoSST, and (c)
the minimum grade of service spanning tree.

The graph version of minimum GoSST problem, which is known as the

quality of service multicast tree problem [49; 164], has a different formula-
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tion. Given a graph G(V, E) with a specified source vertex s ∈ V , each

edge e ∈ E has a length l(e) and each vertex v ∈ V } has a rate r(v) ≥ 0

with r(s) = 0. Let ri be the range of r and Si be the set of vertices with

rate ri for i = 1, 2, · · ·n with r0 = 0. The objective is to find a minimum

cost Steiner tree T of G spanning a given source vertex s and all vertices

in ∪i≥1Si, all of which are referred to as terminal vertices. The cost of an

edge e ∈ T is the product of the length of the edge l(e) with the rate of the

edge r(e), where r(e) is the maximum rate in the component of T \{e} that

does not contain the source vertex. Note that all vertices in S0 with zero

rate are not required to be connected to the source vertex s, but some of

them may be included in T as Steiner vertices. The minimum cost Steiner

tree interconnecting all terminal vertices in P is called a minimum GoSST.

The problem is more formally formulated as follows.

Problem 4.1’ Minimum GoSST Problem in Graphs

Instance A graph G(V, E) with a source vertex s ∈ V , each vertex v ∈ V

has a rate r(v) ≥ 0 and each edge e ∈ E has a length l(e) > 0.

Solution A Steiner tree T interconnecting vertex s and all vertices having

nonzero rates with a rate r(e) on each edge e ∈ T equal to the

maximum rate in the component of T \ {e} excluding source s.

Objective Minimizing the total rate of all edges in T , l(T )≡∑
e∈T r(e)l(e).

Fig.4.2 gives an instance of Problem 4.1’. Fig.4.2(a) shows a graph of

seven vertices, four of them have rates greater than 0 while the other all have

zero rate and one of them is the source. Each edge has a length between

one and seven. Fig.4.2(b) shows a Steiner tree T that has six edges, it has

total cost of rates c(T ) = 4× 2 + 6× 4 + 6× 1 + 6× 1 + 6× 2 + 4× 2 = 64

and total cost of lengths l(T ) = 2+4+1+1+2+2 = 12. Fig.4.2(c) shows

the minimum GoSST with c(T ) = 62 and l(T ) = 11.
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Fig. 4.2 An instance of Problem 4.1’: (a) a graph, (b) a GoSST, and (c) the minimum
GoSST.
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Karpinski et al. [164] observed that the above two problems are equiv-

alent. In fact, an instance of Problem 4.1’ can be transformed into an

instance of Problem 4.1 in graphs by assigning the maximum rate of all

vertices to the service request of grade of the source vertex. The length

of an edge will remain the same. Note that each edge e in a Steiner tree

T will be on the path from the source to the vertex of the maximum rate

in the component of T \ {e} that does not contain the source. Conversely,

an instance of Problem 4.1 in graphs can be transformed into an instance

of Problem 4.1’ by letting the vertex with the maximum service request of

grade to be the source vertex.

In this chapter, we will first study some approximation algorithms for

the GoSST problem in Euclidean plane in Section 4.1, and then for the

problem in graphs in Section 4.2. In the end we will also discuss some

related problems.

4.1 GoSST Problem in the Euclidean Plane

4.1.1 Recursive Approximation Algorithm

In this section we will focus on GoSST problem in the Euclidean plane with

r different grades of service request, which will be called r-level GoSST

problem. We will study the recursive approximation algorithm for this

problem [272].

For an instance of r-level GoSST problem, we can partition the ter-

minal set P into r subsets S1, S2, · · · , Sr with points in Si all hav-

ing a grade of service request ri, and it is assumed that 1 ≤ r1 ≤
r2 ≤ · · · ≤ rr . We will use GoSST(r; S1, r1; S2, r2; · · · ; Sr, rr) to de-

note an instance of r-level GoSST problem. In addition, we will use

TA(r; S1, r1; S2, r2; · · · ; Sr, rr) and cA(r; S1, r1; S2, r2; · · · ; Sr, rr) to denote

the tree and its cost returned by algorithm A, respectively. In particular, we

will use Topt(r; S1, r1; S2, r2; · · · ; Sr, rr) and copt(r; S1, r1; S2, r2; · · · ; Sr, rr)

to denote the minimum GoSST and its cost of r-level GoSST problem,

respectively.

The basic idea of the recursive approximation algorithm is to produce

a Steiner tree for an instance of r-level GoSST problem by using a Steiner

tree for an instance of (r− 1)-level GoSST problem, which is similar to the

one proposed by Mirchandani [210].
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Algorithm 4.1 Recursive Approximation Algorithm

Step 1 When r = 1, produce an α0-approximate SMT for terminal set P

(since in this case the r-level GoSST problem is equivalent to

the Steiner tree problem).

Step 2 Produce a Steiner tree T1 for (r − 1)-level GoSST problem,

GoSST(r − 1; S1, r1; S2, r2; · · · ; Sr−2, rr−2; Sr−1 ∪ Sr, rr).

Step 3 Produce a Steiner tree T ′ for GoSST(1; Sr, rr);

Produce a Steiner tree T ′′ for GoSST(r − 1; S1, r1; S2, r2; · · · ;
Sr−2, rr−2; Sr−1 ∪ Sr, rr−1);

Merge T ′ and T ′′ into a Steiner tree T2 by removing the longest

edge in any (possible) cycle with the lowest grade of service.

Step 4 Return T1 if c(T1) ≤ c(T2); Otherwise return T2.
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Fig. 4.3 Demonstration of the recursive algorithm: (a) Steiner trees T ′ and T ′′ and (b)
Steiner tree T2 obtained through the merging operation.

Fig.4.3 illustrates the recursive algorithm applied to an instance of

GoSST problem 4.1 with seven terminals and r = 2. Fig.4.3(a) shows

Steiner tree T ′ for spanning terminals of r2 = 2 (which consists of dashed

edges), and Steiner tree T ′′ for spanning all terminals (which consists of

solid edges), four Steiner points are represented by black nodes. Fig.4.3(b)

shows Steiner tree T2 with grades of service on each edge in T2 after merg-

ing T ′ and T ′′. Note that the cost of T2 could be reduced through shortcut

operation as shown in Fig.4.3(c).

The performance analysis for the above recursive algorithm for Problem

4.1 applies the same recursive idea as introduced by Mirchandani [210] for

Problem 4.1’. However, the proof is a combinatorial one, rather than using

a nonlinear programming approach. Mirchandani [210] proved the following

three technical lemmas, which will be used in our discussions.
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Lemma 4.1 For any β > 1, the following function achieves its maximum

4/3 at β = 2

f(β) =
β2

β2 − β + 1
.

Lemma 4.2 For any γ > β > 1, the following function achieves its

maximum 3/2 at (γ, β) = (3, 2)

f(γ, β) =
γ2

γ2 − γβ + β2 − β + 1
.

Lemma 4.3 For any γ > β > 1, the following function achieves its

maximum (5 + 4
√

2)/ at (γ, β) = ((4 + 3
√

2)/2, 1 +
√

2)

f(γ, β) =
γ2β − γ2 + γβ

γ2β − γ2 − γβ2 + γβ + γ − β2 + β3
.

For the easy presentation, we will use c∗i to denote the cost of the optimal

solution to GoSST(1;∪r
k=iSk, 1) for i = 1, 2, · · · , r. Then c∗i+1 ≤ c∗i for

i = 1, 2, · · · , r and the cost of the Steiner tree T1 returned by recursive

algorithm 4.1 is no more than α0 c∗i . Note that α c∗i is the cost of the

optimal solution to GoSST(1;∪r
k=iSk, α) for any α > 0. Thus we assume,

without loss of generality, that c∗1 = 1 and c(r1) = 1 in our analysis. In the

following we first study the performance of recursive algorithm 4.1 in the

case of r = 2.

Lemma 4.4 Let α2 be the approximation performance ratio of recursive

algorithm 4.1 for r-level GoSST problem with r = 2. Then we have

α2 ≤
min{c(r2), c(r2)c

∗
2 + 1}

(c(r2)− 1)c∗2 + 1
α0. (4.1)

Proof. Let T2−opt be an optimal solution to 2-level GoSST(2; S1, r1;

S2, r2). Since the subtree of T2−opt reduced by the terminals in S2 is a

tree with grade service r2 which spans N2, we then have

copt(2; S1, r1; S2, r2) ≥
(
c(r2)− c(r1)

)
c∗2 + c(r1)c

∗
1. (4.2)

As we assume that c(r1) = 1 and c∗1 = 1, we thus have

copt(2; S1, r1; S2, r2) ≥
(
c(r2)− 1

)
c∗2 + 1. (4.3)

Now let TRA be the tree returned by recursive algorithm 4.1. If TRA =

T1, which is the Steiner tree produced by applying the algorithm to

GoSST(1; S1∪S2, r2) at Step 2, then we obtain c(T ) ≤ α0c(r2)c
∗
1 = α0c(r2).

Otherwise, TRA = T2, which is the Steiner tree produced by applying the
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algorithm at Step 3, we obtain c(TRA) ≤ c(r2) c∗2 + c(r1) c∗1. Therefore, for

both cases, we have

cRA(2; S1, r1; S2, r2) = c(TRA) ≤ α0 min
{
c(r2), c(r2)c

∗
2 + 1

}
, (4.4)

which, together with inequality (4.3), yields inequality (4.1). The proof is

then finished. �

Theorem 4.1 Recursive algorithm 4.1 for r-level GoSST problem with

r = 2 has approximation ratio α2 ≤ 4
3α0.

Proof. By Lemma 4.4, to prove the theorem it suffices to show that for

any β > 1 and c∗2 ∈ [0, 1]

min
{ β

(β − 1)c∗2 + 1
,

β c∗2 + 1

(β − 1)c∗2 + 1

}
≤ 4

3
. (4.5)

Note that β/((β − 1)c∗2 + 1) is monotonically decreasing with respect to c∗2
for c∗2 ∈ [0, 1], and (βc∗2 + 1)/((β − 1) c∗2 + 1) is monotonically increasing

with respect to c∗2 for c∗2 ∈ [0, 1]. Therefore, the minimum of the two is

achieved only when β = β c∗2 + 1. In this case by Lemma 4.1 we obtain

β

(β − 1)c∗2 + 1
=

β2

β2 − β + 1
≤ 4

3
,

which leads to inequality (4.5). The proof is then finished. �

Applying the same argument we can obtain the parallel results in case

of r = 3.

Lemma 4.5 Let α3 be the approximation performance ratio of recursive

algorithm 4.1 for the r-level GoSST problem with r = 3. Then we have

α3≤
min

{
c(r3), c(r3)c

∗
2+1, c(r3)c

∗
3+c(r2), c(r3)c

∗
3+c(r2)c

∗
2+1

}

(c(r3)− c(r2))c∗3+(c(r2)− 1)c∗2 + 1
α0. (4.6)

Proof. Let T3−opt be an optimal solution to 3-level GoSST(3; S1, r1;

S2, r2; S3, r3). Since the subtree of T3−opt reduced by the terminals in

S3 is a Steiner tree with grade service r3 which spans N3, and the subtree

of T3−opt reduced by the terminals in S3 ∪ S2 is a Steiner tree with grade

of service at least r2 which spans S3 ∪ S2, we then have

c(T3−opt) = c3−opt(2; S1, r1; S2, r2; S3, r3)

≥
(
c(r3)− c(r2)

)
c∗3 +

(
c(r2)− c(r1)

)
c∗2 + c(r1) c∗1.
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from which, together with the assumption that c(r1) = 1 and c∗1 = 1, we

deduce

c(T3−opt) ≥
(
c(r3)− c(r2)

)
c∗3 +

(
c(r2)− 1

)
c∗2 + 1. (4.7)

Now let TRA be the tree returned by recursive algorithm 4.1, then we obtain

c(TRA)=cRA(3; S1, r1; S2, r2; S3, r3)≤cRA(2; S1, r1; S2 ∪ S3, r3), and

c(TRA)=cRA(3; S1, r1; S2, r2; S3, r3)≤cRA(1; S3, r3)+cRA(2; S1, r1; S2∪S3, r2).

Following the proof of inequality (4.4), we deduce the following three in-

equalities

cRA(2; S1, r1; S2 ∪ S3, r3) ≤ α0 min{c(r3), c(r3)c
∗
2 + 1}ρ,

cRA(1, S3, r3) ≤ c(r3) c∗3 α0

cRA(2; S1, r1; S2 ∪ S3, r2) ≤ α0 min{c(r2), c(r2)c
∗
2 + 1}.

Therefore we have

c(TRA) ≤ min
{
c(r3), c(r3)c

∗
2 + 1, c(r3)c

∗
3 + c(r2), c(r3)c

∗
3 + c(r2)c

∗
2 + 1

}
,

from which, along with inequality (4.7), we obtain inequality (4.6), the

proof is then finished. �

Theorem 4.2 Recursive algorithm 4.1 for the r-level GoSST problem

with r = 3 has approximation ratio α3 ≤ 5+4
√

2
7 α0.

Proof. By Lemma 4.5, to prove the theorem it suffices to show that for

any γ > β > 1 and 1 > c∗2 > c∗3

min
{
γ, γc∗2 + 1, γc∗3 + β, γc∗3 + βc∗2 + 1

}

(γ − β)c∗3 + (β − 1)c∗2 + 1
≤ 5 + 4

√
2

7
. (4.8)

In the following discussion, we consider four cases separately with respect

to the value of c∗2.
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Case 1. c∗2 ≥ c∗3 ≥ (γ − 1)/γ. In this case we have

min
{
γ, γc∗2 + 1, γc∗3 + β, γc∗3 + βc∗2 + 1

}

(γ − β)c∗3 + (β − 1)c∗2 + 1

≤ γ

(γ − β)c∗3 + (β − 1)c∗2 + 1

≤ γ

(γ − β)c∗3 + (β − 1)c∗3 + 1

≤ γ

(γ − 1)c∗3 + 1

≤ γ2

(γ3 − γ) + 1
≤ 4

3
(By Lemma 4.1).

Case 2. c∗2 ≥ (γ − 1)/γ ≥ c∗3. In this case we have

min
{
γ, γc∗2 + 1, γc∗3 + β, γc∗3 + βc∗2 + 1

}

(γ − β)c∗3 + (β − 1)c∗2 + 1

≤ min
{
γ, γc∗3 + β

}

(γ − β)c∗3 + (β − 1)c∗2 + 1

≤ min
{
γ, γc∗3 + β

}

(γ − β)c∗3 + (β − 1)(γ − 1)/γ + 1
. (4.9)

Since the function

γ

(γ − β)c∗3 + (β − 1)(γ − 1)/γ + 1

is monotonically decreasing in c∗3 and the function

γc∗3 + β

(γ − β)c∗3 + (β − 1)(γ − 1)/γ + 1

is monotonically increasing in c∗3, and 0 ≤ c∗3 < c∗2 < 1, the righthand term

in inequality (4.9) achieves its maximum only when c∗3 = (γ − β)/γ, and

the maximum value is

γ2

(γ − β)2 + (β − 1)(γ − 1) + γ
≤ 3

2
,

where the above inequality follows from Lemma 4.2.

Case 3. (γ − 1)/γ ≥ c∗2 ≥ (β − 1)/β. In this case we have

min
{
γ, γc∗2 + 1, γc∗3 + β, γc∗3 + βc∗2 + 1

}

(γ − β)c∗3 + (β − 1)c∗2 + 1
=

min
{
γc∗2 + 1, γc∗3 + β

}

(γ − β)c∗3 + (β − 1)c∗2 + 1
.
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Case 3.1. γc∗2 + 1 ≤ γc∗3 + c∗2. It follows that c∗2 ≤ c∗3 + (β − 1)/γ, and

min
{
γc∗2 + 1, γc∗3 + β

}

(γ − β)c∗3 + (β − 1)c∗2 + 1
=

γc∗2 + 1

(γ − β)c∗3 + (β − 1)c∗2 + 1

≤ γc∗2 + 1

(γ − β)(c∗2 − (β − 1)/γ) + (β − 1)c∗2 + 1

=
γc∗2 + 1

(γ − 1)c∗2 + (1− (γ − β)(β − 1)/c∗3)

The term in the last equality is a decreasing function with respect to c∗2
when (γ−β)(β− 1) ≥ 1, and it is an increasing function with respect to c∗2
when (γ − β2)(β − 1) ≤ 1. In the former case, it achieves its maximum at

c∗2 = (β−1)/β, here we have c∗3 = (β−1)/β− (β−1)/γ, and the maximum

value is

γ2β − γ2 + γβ

γ2β − γ2 − γβ2 + γβ + γ − β2 + β3
≤ 5 + 4

√
2

7
.

In the latter case, it achieves its maximum at c∗2 = (γ − 1)γ, here we have

c∗3 = (γ − 1)/γ − (β − 1)/γ = (γ − β)/γ, and the maximum value is

γ2

γ2 − γβ + β2 − β + 1
≤ 3

2
.

Case 3.2. γc∗2 + 1 ≥ γc∗3 + c∗2. It follows that c∗2 ≥ c∗3 + (β − 1)/γ, and

min
{
γc∗2 + 1, γc∗3 + β

}

(γ − β)c∗3 + (β − 1)c∗2 + 1
≤ γc∗3 + β

(γ − β)c∗3 + (β − 1)c∗2 + 1
.

Note that for any fixed c∗3, the righthand term in the above inequality is

a decreasing function with respect to c∗2. Moreover, if c∗3 ≥ (β − 1)/β −
(β − 1)/γ, it achieves the maximum when c∗2 = c∗3 + (β − 1)/γ; And if

c∗3 ≤ (β− 1)/β− (β− 1)/γ, it achieves the maximum when c∗2 = (β− 1)/β.

In the former case, we have

γc∗3 + β

(γ − β)c∗3 + (β − 1)c∗2 + 1
=

γc∗3 + β

(γ − β)c∗3 + (β − 1)(c∗3 + (β − 1)/c∗3) + 1

=
γc∗3 + β

(γ − 1)c∗3 + ((β − 1)2/γ + 1)
.

Observe that the right term in the above equality is a decreasing function

of c∗3 when β ≥ ((β−1)2 +γ)/γ−1 while an increasing function of c∗3 when
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β ≤ ((β − 1)2 + γ)/γ − 1, and it achieves the maximum respectively at

c∗3 = (β − 1)/β − (β − 1)/γ and

c∗3 = (γ − 1)/γ − (β − 1)/γ = (γ − β)/γ,

and the maximum values are

γ2β − γ2 + γβ

γ2β − γ2 − γβ2 + γβ + γ − β2 + β3
≤ 5 + 4

√
2

7
and

γ2

γ2 − γβ2 + β2 − β + 1
≤ 3

2
, respectively.

In the latter case, we have c∗3 ≤ (β − 1)/β − (β − 1)/γ and

γc∗3 + β

(γ − β)c∗3 + (β − 1)c∗2 + 1
=

γc∗3 + β

(γ − β)c∗3 + (β − 1)((β − 1)/β) + 1

=
γc∗3 + β

(γ − 1)c∗3 + ((β − 1)2/β + 1)
.

Observe that the right term in the above equality is a decreasing function of

c∗3 when γ ≥ β3/(β−1) while an increasing function of c∗3 when γ ≤ β3/(β−
1), and it achieves the maximum at c∗3 = 0 and c∗3 = (β− 1)/β− (β− 1)/γ,

respectively, and the maximum values are

β2

β2 − β + 1
≤ 4

3
and

γ2β − γ2 + γβ

γ2β − γ2 − γβ2 + γβ + γ − β2 + β3
≤ 5 + 4

√
2

7
, respectively.

Case 4. 0 ≤ c∗3 ≤ c∗2 ≤ (β − 1)/β. In this case we have

min
{
γ, γc∗2 + 1, γc∗3 + β, γc∗3 + βc∗2 + 1

}

(γ − β)c∗3 + (β − 1)c∗2 + 1
=

min
{
γc∗2 + 1, γc∗3 + βc∗2 + 1

}

(γ − β)c∗3 + (β − 1)c∗2 + 1
.

Case 4.1. γc∗2+1 ≤ γc∗3+βc∗2+1. It follows that c∗3 ≤ c∗2 ≤ (γ/(γ−β))c∗3
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and

min
{
γc∗2 + 1, γc∗3 + βc∗2 + 1

}

(γ − β)c∗3 + (β − 1)c∗2 + 1
=

γc∗2 + 1

(γ − β)c∗3 + (β − 1)c∗2 + 1

≤ γc∗2 + 1

(γ − β)((γ − β)/γ)c∗2 + (β − 1)c∗2 + 1

≤ γ((β − 1)/c∗2) + 1

((γ − β)2/γ + β − 1)((β − 1)/c∗2) + 1

≤ γ3β − γ2 + γβ

γ3β − γ2 − γβ2 + γβ + γ − β2 + β3

≤ 5 + 4
√

2

7
.

Case 4.2. γc∗2 + 1 ≥ γc∗3 + βc∗2 + 1. It follows that c∗2 ≥ (γ/(γ − β))c∗3
and

min
{
γc∗2 + 1, γc∗3 + βc∗2 + 1

}

(γ − β)c∗3 + (β − 1)c∗2 + 1
=

γc∗3 + βc∗2 + 1

(γ − β)c∗3 + (β − 1)c∗2 + 1

=
1

γ − β

(
γ +

(γ − β2)c∗2 − β

(γ − β)c∗3 + (β − 1)c∗2 + 1

)
.

Observe that the righthand term in the above equality is an increasing

function with respect to c∗3 for any fixed c∗2. Therefore, it achieves the

maximum at c∗3 = ((γ − β)/γ)c∗2, and we obtain

min
{
γc∗2 + 1, γc∗3 + βc∗2 + 1

}

(γ − β)c∗3 + (β − 1)c∗2 + 1
≤ γc∗2 + 1(

(γ − β)2/c∗3 + (β − 1)
)
c∗2 + 1

≤ γ2β − γ2 + γβ

γ2β − γ2 − γβ2 + γβ + γ − β2 + γ3

≤ 5 + 4
√

2

7
.

When γ − β2 ≥ 0, we have

min
{
γc∗2 + 1, γc∗3 + βc∗2 + 1

}

(γ − β)c∗3 + (β − 1)c∗2 + 1
=

γc∗3 + βc∗2 + 1

(γ − β)c∗3 + (β − 1)c∗2 + 1

=
1

β − 1

(
β +

(β2 − γ)c∗3 − 1

(γ − β)c∗3 + (β − 1)c∗2 + 1

)
.

Observe that the righthand term in the above equality is an increasing

function with respect to c∗2 for any fixed c∗3. Therefore, it achieves the
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maximum at c∗2 = (β − 1)/β, and we obtain

min
{
γc∗2 + 1, γc∗3 + βc∗2 + 1

}

(γ − β)c∗3 + (β − 1)c∗2 + 1
≤ γc∗3 + β

(γ − β)c∗3 + (β − 1)2/β + 1

=
γβc∗3 + β2

β(γ − β)c∗3 + (β2 − β + 1)
.

Observe that the righthand term in the above equality is an increasing

function of c∗3 when γ ≤ β3/(β − 1) while a decreasing function of c∗3 when

γ ≥ β3/(β − 1), and it achieves the maximum at c∗3 = 0 and c∗3 = ((γ −
β)/γ)((β − 1)/β), respectively, and the maximum values are

β2

β2 − β + 1
≤ 4

3
and

γ2β − γ2 + γβ

γ2β − γ2 − γβ2 + γβ + γ − β2 + β3
≤ 5 + 4

√
2

7
, respectively.

To summarize, we have shown that in any of the above four cases in-

equality (4.8) holds true. The proof is then finished. �

4.1.2 Branch-and-Bound Algorithm

Given an instance of Problem 4.1, a tree topology T (P ) for terminal set

P = {ti|i = 1, 2, · · · , n} is an undirected tree graph T (P ) = (V, E) where

V = {v1, v2, · · · , vn, vn+1, · · · , vn+m} for some m ≤ n− 2 is the vertex-set

of T (P ) such that {vi|i = 1, 2, · · · , n} is the terminal set P and {vi|i =

n + 1, n + 2, · · · , n + m} is the set of Steiner points and E is the edge-set

T (P ). A realization R(T ) of a Steiner topology T (P ) is obtained by the

following operations:

(1) Assign a grade of service r(vi, vj) to each edge (vi, vj) ∈ E such that

between each pair of terminal points ti and tj the minimum grade

of service on the path connecting ti and tj is at least as large as

min{r(ti), r(tj )};
(2) Fix the terminal vertices at their corresponding terminal points;

(3) Fix the Steiner vertices at some locations {si|i=n+1, n+2,· · ·, n+m}.
The cost of realization R(T ) is defined by

c
(
R(T )

)
≡

∑

(vi,vj)∈E

c
(
r(vi, vj)

)
l
(
vi, vj

)
,

and the cost of Steiner topology T is given by c(T ) = min{c(R(T ))|R is a
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realization of T}. The realization R(T ) is called the minimum cost Steiner

tree under topology T if c(R(T )) = c(T ). Given a Steiner topology T with

m = n − 2, for any realization R(T ), the degree of every terminal vertex

in R(T ) is 1, and the degree of every Steiner vertex in R(T ) is 3, so such a

topology T is called a full Steiner topology.

Let T be Steiner tree topology. An edge e = (s, t) ∈ T is called a

Steiner-terminal edge if t is a terminal vertex and s a Steiner vertex. For a

Steiner-terminal edge e = (s, t) ∈ T , we can shrink edge e by deleting e and

replacing vertices s and t with a new terminal vertex t′, which corresponds

to the terminal vertex t, and any vertex other than s and t is adjacent to

t′ if and only if it was adjacent to s or t before the shrinking operation.

Notice that tree topology T is changed to another tree topology T ′ after a

Steiner-terminal edge is shrunk as shown in Fig.4.4. A tree topology T ′ is

called a degeneracy of T if T ′ can be obtained from T using zero or more

number of shrink operations. We will use S(T ) to denote the set of tree

topologies which are degeneracies of T .

t
s

t'

T T'

shrinking

Fig. 4.4 Shrinking operation.

Lemma 4.6 Given any full Steiner topology T for n terminals, the grades

of service for all edges that will appear in the minimum cost network under

T can be computed in time of O(n).

Proof. Assume, without loss of generality, that t1 has the largest grade of

service request. Then consider T as a tree rooted at v1, which corresponds

to t1 and make an assignment as follows: For each terminal vertex vi,

set r(vi) = r(ti). For each Steiner vertex vj , j = n + 1, n + 2, · · · , n +

m, initially set r(vj) = 0. As long as there is a leaf edge which is not

incident to v1, say (vi, vj) where a degree-one vertex vi is a child of vj with

vj 6= v1, set r(vi, vj) = r(ti) and r(vj ) = max{r(vj), r(vi)}. It is clear

that such a method assigns the minimum possible grade of service to each

edge satisfying the service requirement in time of O(n). The proof is then

finished. �
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Lemma 4.7 Given an instance of the GoSST problem in Euclidean plane,

there exists a full Steiner topology T such that the minimum cost network

under T has the same cost as that of the optimal solution to the problem.

Proof. Let Topt be an optimal solution to Problem 4.1. We can modify

it into a minimum cost network under a full Steiner topology as follows: If

there is a terminal vertex t in Topt that is adjacent to vertices u1, u2, · · · , uk

for k ≥ 2, then we can introduce a Steiner point s located at the terminal

point t and then connect s and t with a zero-length edge while replacing each

edge (t, ui) with a new edge (t′, ui). If there is a Steiner vertex s whose

degree deg(s) is greater than three, then we can split s into deg(s) − 3

degree-3 Steiner points. It is easy to see that such a modification yields a

desired topology. �

Theorem 4.3 Given an instance of the GoSST problem with n terminals

in Euclidean plane and any given full Steiner tree topology T , an (1 + ε)-

approximation to the minimum cost network under T can be computed in

time of O(n1.5(log n + log(1/ε))).

Proof. By Lemma 4.6, we know that the optimal grades of service of

edges in the minimum cost network under a given full Steiner tree topology

can be computed in time of O(n) without knowing the optimal locations of

the Steiner points. In addition, computing the minimum cost network under

a full Steiner tree topology is a special case of the problem of minimizing the

sum of Euclidean norms [6; 7; 74]. This general optimization is to minimize

f(~x) =
∑m

i=1 ||ri(~x)||2, where ri(~x) = At
i~x −~bi with ~x ∈ Rn, ~bi ∈ Rm, and

Ai ∈ Rn×m.

Xue and Ye [274] presented a primal-dual interior point algorithm for

computing an ε-optimal solution to the problem of minimizing a sum of

Euclidean norms and proved that their algorithm requires O(n1.5(log n +

log(c/ε))) arithmetic operations if the problem has a tree structure, where c

is a constant dependent on the input. Using a similar approach introduced

in [272] that transforms the terminal points so that the weighted center is

at the origin), we can show that this algorithm is also a polynomial time

approximation scheme for computing the minimum cost network under a

given tree topology that computes an (1 + ε)-approximation in time of

O(n1.5(log n + log(1/ε))). The proof is then finished. �

A brute-force algorithm for solving the GoSST problem is to compute

the minimum cost network under a full Steiner topology for every full

Steiner topology interconnecting the n terminal points. Note, however,
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that the number of full Steiner topologies for n terminal points, denoted

by f(n), satisfies f(n + 1) = (2n − 3)f(n) for n ≥ 2, which yields f(n) =

(2n−4)!/((n−2)!2n−2) (refer to [144]) or f(n) = 1·3· · · · ·(2n−7)·(2n−5).

Thus Lemma 4.7 and Theorem 4.3 could not guarantee an efficient approxi-

mation algorithm for the GoSST problem. Smith [247] proved the following

lemma. It leads to a branch-and-bound algorithm for the GoSST problem

that partially enumerates the Steiner tree topologies.

Lemma 4.8 There is an one-to-one correspondence between full Steiner

topologies on n terminal points and integral vectors ~x = (x1, x2, · · · , xn−3)

with 1 ≤ xi ≤ 2i + 1.

t

s

(a)

1

t2 t3

e
1

2

e1

e3

t

s

1

t2 t3

e
1

5

e1

e3

t4

e2 e4

t

s

1

t2 t3

e
15

e1

e3

t4

e2 e4

e7

e6

t5

(c)(b)

Fig. 4.5 Correspondence between full Steiner tree topologies and (n−3)-element vectors.

Fig.4.5 illustrates the one-to-one correspondence for the case of n = 5

and ~t = (2, 5). Fig.4.5(a) shows the topology for three terminal points with

three edges each incident to a terminal and a common Steiner point s1,

which is the only moving point. To add the fourth terminal point t4 into

the network, we connect it to an interior point, which is a Steiner point

s2, on edge e2 since x4−3 = 2 in the corresponding vector. s2 becomes the

second moving point. Observe that edge e2 is broken into two parts with

one part still labeled e2 while the other labeled e5 (since 5 = 2 × 4 − 3).

The edge interconnecting t4 and s2 is labeled e4 (since 4 = 2×4−4). After

the above process, we obtain the topology for the first four terminal points

as shown in Fig.4.5(b). Similarly, Fig.4.5(c) shows the topology for the

first five terminal points, which is obtained by breaking the edge labeled e5

(since 5 = x5−3).

Using Lemma 4.8, we can use a backtrack method to enumerate only

part of the full topologies and then find the topology that leads to a min-

imum cost network. Before we present the branch-and-bound algorithm,
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we need the following lemma that can be used to prune hopeless branches,

which generalizes the result obtained in [244].

Lemma 4.9 For any k = 3, 4, · · · , n− 1 and any xk−2 ∈ {1, 2, · · · , 2k −
3}, the minimum cost network under a full Steiner topology for ter-

minal set {t1, t2, · · · , tk} with the topology vector (x1, x2, · · · , vk−3) has

cost no greater than that of the minimum cost network under the full

Steiner topology for terminal set {t1, t2, · · · , tk+1} with the topology vec-

tor (x1, x2, · · · , xk−3, xk−2).

Proof. Let T ∗
k+1 be a minimum cost network under the topology for

{t1, t2, · · · , tk+1}. Then deleting the leaf vertex vk+1, which corresponds to

tk+1, along with the edge incident to vk+1 forms a new tree T ′. Clearly, the

optimal grade of service for any edge in the topology of T ′ is no greater than

the optimal grade of service for the (corresponding) edge in the topology

of T ∗
k+1. Moreover, the Steiner vertex originally adjacent with vk+1 by

the deleted edge can now be removed since it is now a degree-2 interior

vertex, which could further shorten the cost of T ′ by the triangle inequality.

Optimizing the resulting network will yield a desired network T ∗
k , which

may have even less cost. The proof is then finished. �

Algorithm 4.2 Branch-and-Bound Algorithm

Step 1 Compute an upper bound UB on the cost of optimal solution to

Problem 4.1 or simply set UB :=∞,

k := 4 and x1 := 3.

Step 2 Compute the minimum cost network under the topology with

topological vector (x1, x2, · · · , xk−3).

Set c∗ be the cost of current network.

Step 3 if c∗ ≥ UB then go to Step 4

else go to Step 5.

Step 4 if xk−3 > 1 then xk−3 := xk−3 − 1; go to Step 2.

else if k = 4 then return the topological vector

(bx1, bx2, · · · , bxn−3)

(UB is the minimum cost)

else k := k − 1; go to Step 4.

Step 5 if k = n then UB := c∗;
(bx1, · · · , bxn−3) := the current topological vector;

go to Step 4;

else k := k + 1; xk−3 := 2k + 1;

go to Step 2.



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

128 Steiner Tree Problems in Computer Communication Networks

It follows from Lemma 1.9 that the above algorithm correctly computes

the optimal solution to any given instance of Problem 4.1. However, in

order to make the algorithm to be practically efficient, Xue et al. [272]

proposed some methods that produce a good initial upper bound and a

good ordering of the terminal points so that the algorithm will generate

only a small portion of the whole tree.

4.2 Minimum GoSST Problem in Graphs

In this section we will present the β-convex Steiner tree approximation algo-

rithms proposed by Karpinski et al. [164] for minimum GoSST problem in

graphs (Problem 4.1’). The performance analysis is based on more detailed

analysis of the k-Steiner ratio ρk of graphs in Section 2.1. They proved the

following lemmas.

Lemma 4.10 Let T be a full Steiner tree. Then lk−smt ≤ ρk(l(T )−
lmax(T )) +lmax(T ), where lmax(T ) is the length of the longest path in T .

Proof. For full Steiner tree T , there exits k-restricted Steiner trees Ti,

i = 1, 2, · · · , r2r + s such that l(Ti) = l(T ) + li, where li is the sum of the

lengths of the paths p(u) from intermediate leaves u in Ti to tree leaves.

By the argument of Theorem 2.2, we know that

l1 + l2 + · · ·+ ls+r2r ≤ 2r
(
l(T )− lmax(T )

)
. (4.10)

From inequality (4.10) we deduce that there exists an index i such that

li ≤ l(T ) +
2r

s + r2r

(
l(T )− lmax(T )

)
.

Therefore, we obtain

lk−smt ≤ l(Ti) ≤ l(T ) +
2r

s + r2r

(
l(T )− lmax(T )

)

=
(
1 +

2r

s + r2r

)(
l(T )− lmax(T )

)
+ lmax(T )

which, together with Theorems 2.1-2, proves the lemma. �

Lemma 4.11 Suppose that Steiner tree T for terminal set P is parti-

tioned into edge-disjoint full components Ci. Let lmax(T ) be the length of

the longest path in T . Then
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lk−smt(P ) ≤
∑

i

(
ρk

(
l(Ci)− lmax(Ci)

)
+ lmax(Ci)

)
. (4.11)

Proof. Let lk−smt(Ci) be the length of the optimal k-Steiner tree for

the full component Ci. Then we have lk−smt(P ) ≤ ∑
i lk−smt(Ci), which,

together with Lemma 4.10, implies inequality (4.11). �

4.2.1 β-Convex α-Approximation Steiner Tree Algorithms

Karpinski et al. [164] introduced the concept of β-convex α-approximation

Steiner tree algorithms, which is a uniform treatment of many approxi-

mation algorithms for Steiner tree problems. They obtained tighter upper

bounds on the performance of algorithms by applying this technique to the

minimum GoSST problem in graphs.

An algorithm Aαβ is called a β-convex α-approximation Steiner tree al-

gorithm if there exist an integer m and real numbers λi ≥ 0, i = 1, 2, · · · , m,

with β =
∑m

i=2 λi and α =
∑m

i=2 λiρi such that the length l(Tαβ) of the

tree TA computed by Aαβ , is at most l(Tαβ) ≤∑m
i=2 λili−smt, where li−smt

is the length of the optimal i-Steiner tree.

By the above definition, the minimum spanning tree algorithms [179;

253] are 1-convex 2-approximation Steiner tree algorithms since the re-

turned solutions are the optimal 2-Steiner trees of length l2−smt. Every

k-restricted approximation algorithm in [29] is an 1-convex (the sum of co-

efficients in the approximation ratio always equals to 1), e.g., for k = 3,

it is an 1-convex 11
6 -approximation algorithm since the returned solution

has length upper bounded by 1
2 l2−smt + 1

2 l3−smt. In addition, the returned

solution by the polynomial time approximation scheme in [227] converges

to the optimal 3-Steiner tree and has length (1 + ε)l2−smt, thus it is an

(1 + ε) 5
3 -approximation algorithm. However, the (1 +

√
3

2 )-approximation

algorithm in [238] is not known to be β-convex for any value of β.

Let Aαβ be a β-convex α-approximation algorithm. Then it follows from

Lemma 4.10 that

l(Tαβ) ≤
∑

i

λili−smt ≤
∑

i

λiρi

(
l(Tsmt)− lmax(Tsmt)

)
+ β lmax(Tsmt)

= α
(
l(Tsmt)− lmax(Tsmt)

)
+ β lmax(Tsmt) (4.12)

Let c(Topt) be the cost of optimal GoSST tree Topt, and let w∗
i be the total
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length of rate ri edges in Topt. Then

c(Topt) =

n∑

i=1

ri w∗
i .

Let T ∗
k be the subtree of Topt induced by edges of rates ri, i ≥ k. Then

T ∗
k interconnects the source s and all nodes of rate rk. Thus an optimal

Steiner tree interconnecting s and nodes of rate rk cannot have length longer

than

l(T ∗
k ) =

n∑

i=k

w∗
i .

The main idea of the proposed algorithms by Karpinski et al. [164] for

the minimum GoSST problem in graphs (Problem 4.1’) is to reuse con-

nections for the higher rate nodes when interconnecting lower rate nodes.

When interconnecting nodes of rate rk, they collapse nodes of rate strictly

higher than rk into the source s, thus allowing to reuse higher rate con-

nections for free. (Recall that it is assumed that ri < ri+1 for each

1 ≤ i ≤ n− 1.)

Let T (s; rk) be an α-approximation of Steiner tree interconnecting s and

all nodes of rate rk after collapsing all nodes of rate strictly higher than

rk into the source s and treating all nodes of rate lower than rk as Steiner

points. Then we have

l
(
T (s; rk)

)
≤ α · l

(
T ∗

k

)
= α w∗

k + α w∗
k+1 + · · ·+ α w∗

n.

Karpinski et al. [164] proved the following lemma, which shows that

one can obtain a tighter upper bound on the length of T (s; rk) by using the

β-convex α-approximation Steiner tree algorithm.

Theorem 4.4 Given an instance of the minimum GoSST problem in

graphs, the β-convex α-approximation Steiner tree algorithm computes a

tree T (s; rk) that has cost at most c
(
T (s; rk)

)
≤ α rk w∗

k + β(rk w∗
k+1 +

rk w∗
k+2 + · · ·+ rk w∗

n).

Proof. Let Topt be the optimal GoSST and T ∗
k be the subtree of Topt

induced by edges of rate ri, for i ≥ k. By duplicating nodes and introducing

edges of zero length as shown in Fig.2.8, we can modify T ∗
k into a complete

binary tree with the set of leaves consisting of the source s and all nodes of

rate at least rk . The edges of rate rk−1 form subtrees attached to the tree

T ∗
k connecting nodes of rate rk−1 to T ∗

k . See Fig.4.6(a) where edges of rate
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greater than rk form a Steiner tree for {s} ∪ Sk+1 ∪ · · · ∪ Sn (white nodes)

with some Steiner (black) nodes while edges of rate rk are attached to it.

Now we partition the binary tree T ∗
k into edge-disjoint paths as follows:

Each internal node v including the degree-2 root is split into two nodes

v′ and v′′ such that v′ becomes a leaf incident to one of the downstream

edges and v′′ becomes a degree-2 node (or a leaf if v is the root) incident

to an edge connecting v to its parent (if v is not the root) and another

downstream edge. Note since each node is incident to a downstream edge,

each resulted connected component will be a path containing exactly one

leaf of T ∗
k , which is adjacent with an internal node of T ∗

k .

(a) (b)

Fig. 4.6 (a) T ∗
k

is a complete binary tree, and (b) T ∗
k
(ri) contains a single terminal of

rate ri, i > k.

Denote by T ∗
k (ri) the connected component of T ∗

k that contains a single

terminal of rate ri, for each i > k, and denote by Pk(ri) the path that

contains all edges of rate ri, i > k. Thus T ∗
k is decomposed into edge-

disjoint connected components T ∗
k (ri), where each component consists of a

path Pk(ri) and attached Steiner trees with edges of rate rk as shown in

Fig.4.6(b). Moreover, the total length of paths Pk(ri) is

l
(
T ∗

k+1

)
= w∗

k+1 + w∗
k+2 + · · ·+ w∗

n.

In the end, we decompose the tree T (s; rk) along these full components

T ∗
k and, by Lemma 4.11 and the definition of β-convex α-approximation

Steiner tree algorithm, we obtain

l
(
T (s; rk)

)
≤

∑

i

(
α
(
l
(
T ∗

k (ri)
)
− l(Pk(ri))

)
+ β · l

(
Pk(ri)

))

= α · w∗
k + β

(
w∗

k+1 + w∗
k+2 · · ·+ w∗

n

)
.
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Multiplying the above inequality by rk yields the theorem. �

4.2.2 Algorithm for Two Non-Zero Rates

Karpinski et al. [164] proposed a generic approximation algorithm for the

minimum GoSST problem in graphs with two non-zero rates, which belongs

to the class of β-convex α-approximation Steiner tree algorithms described

in the previous subsection. It first computes two GoSSTs, and then returns

the better solution.

Algorithm 4.3 β-Convex α-Approximation Algorithm for Two Rates

Step 1 Produce an α1-approximate Steiner tree T1 for {s} ∪ S1 ∪ S2.

Step 2 Produce an α1-approximate Steiner tree T ′ for {s} ∪ S2

treating all other vertices as Steiner vertices.

Step 3 Compute a new graph G′ by contracting T ′ into the source s

(the length between s and a vertex v /∈ T ′ of rate r1 is the shortest

length between v to a vertex in T ′).
Produce an α2-approximate Steiner tree T ′′ for s and remaining

vertices of rate r1 (which are not included in T ′);
Merge T ′ and T ′′ into one Steiner tree T2, T2 := T ′ ∪ T ′′.

Step 4 Return T1 if c(T1) ≤ c(T2), otherwise return T2.

4
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Fig. 4.7 (a) T ′ is produced, (b) T ′ is contracted into s, and (c) T ′′ is produced.

Fig.4.7 demonstrates the Steps 2-3 of the above algorithm when it is

applied to the instance of the problem as shown in Fig.4.2. Fig.4.7(a)

shows the Steiner tree T ′ for s and vertices of rate r2 = 6, which consists

of four (solid) edges with total length of 8. Fig.4.7(b) shows the resultant

graph G′ after T ′ is contracted into the source s, and T ′′ consists of two

edges with total length of 4. Fig.4.7(c) shows the Steiner tree T2 of total

length 12 while the cost of T2 is 64 (the minimum GoSST has cost 62 as
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shown in Fig.4.2(c)).

Theorem 4.5 The Algorithm 4.3 for the minimum GoSST problem with

two rates has an approximation ratio at most

max
{
α2, max

{α1(α1 − α2r + β r)

α1 − α2r + β r2
lsmt

∣∣ r
}}

. (4.13)

Proof. In the Step 1, the algorithm produces a solution T1 with cost

c(T1) ≤ α1r2

(
w∗

1 + w∗
2

)
. In the Steps 2-3, the algorithm produces a Steiner

tree T ′ with cost c(T ′) ≤ α1r2w
∗
2 and T ′′ with cost c(T ′′) ≤ α2r1w

∗
1+β r1w

∗
2

(due to Theorem 4.4). Thus the algorithm produces a solution T2 with cost

c(T2) ≤ α1r2w
∗
2 + α2r1w

∗
1 + β r1w

∗
2 . To obtain the upper bound of (4.12),

we consider the following two cases.

Case 1. β r1 ≤ (α2 − α1)r2. In this case we have

c(T2) ≤ α1r2w
∗
2 + α2r1w

∗
1 + (α2 − α1)r2w

∗
2

≤ α2

(
r2w

∗
2 + r1w

∗
1

)
= α2lsmt

Case 2. β r1 > (α2 − α1)r2. In this case, let x2 = r2 − r1 and

x1 =
r1

α1r2

(
β r1 − (α2 − α1)r2

)
.

Then both x1 and x2 are positive. In the following we will bound the linear

combination of c(T1) and c(T2)

x1c(T1) + x2c(T2)

=
r1

α1r2

(
βr1 − (α2 − α1)r2

)
c(T1) + (r2 − r1)c(T2)

≤ r1

(
βr1−

(
α2−α1)r2

)(
w∗

1 +w∗
2

)
+

(
r2−r1

)(
α1r2w

∗
2 +α2r1w

∗
1+βr1w

∗
2

)

=
(
(β − α2)r

2
1 + α1r1r2

)
w∗

1 +
(
(β − α2)r1r2 + α1r

2
2

)
w∗

2

=
(
(β − α2)r1 + α1r2

)(
r1w

∗
1 + w∗

2

)

≤
(
β r1 + α1r2 − α2r1

)
lsmt (4.14)

Now let c(Tαβ) be the cost of the solution returned by Algorithm 4.3. Then

it follows from inequality (4.13) that
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c(Tαβ)=min
{
c(T1), c(T2)

}
=

x1 min{c(T1), c(T2)}+x2 min{c(T1), c(T2)}
x1 + x2

≤ x1c(T1) + x2c(T2)

x1 + x2

≤ βr1 + α1r2 − α2r1
r1

α1r2

(
βr1 − (α2 − α1)r2

)
+ r2 − r1

lsmt

≤ α1
βr1r2 + α1r

2
2 − α2r1r2

βr2
1 − (α2 − α1)r1r2 + α1r2

2 − α1r1r2
lsmt

≤ α1
α1 − α2r + βr

α1 − α2r + βr2
lsmt, where r =

r1

r2
.

By the analysis of the two cases, we deduce that c(Tαβ) is at most the

maximum of the following two values

α1lsmt and α1
α1 − α2r + β r

α1 − α2r + β r2
lsmt,

which proves the theorem. �

Karpinski et al. [164] applied Theorem 4.5 to obtain a few bounds

on the approximation ratios of Algorithm 4.3 by combining some known

algorithms for Steiner tree problem in graphs (refer to Section 2.2). They

obtained the following corollaries.

Corollary 4.1 If Algorithm 4.3 uses the algorithm from [238] to generate

the α1-approximate Steiner tree and the algorithm from [227] to generate

the α2-approximate Steiner tree, then it has approximation ratio of 1.960+ε.

Corollary 4.2 If Algorithm 4.3 uses the algorithm from [227] to gen-

erate both α1-approximate and α2-approximate Steiner trees, then it has

approximation ratio of 2.059 + ε.

Corollary 4.3 If Algorithm 4.3 uses the algorithm from [29] to generate

both α1-approximate and α2-approximate Steiner trees, then it has approx-

imation ratio of 2.237.

Corollary 4.4 If Algorithm 4.3 uses the algorithm from [60; 179; 253]

to generate both α1-approximate and α2-approximate Steiner trees, then it

has approximation ratio of 2.414.
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4.2.3 Algorithm for Arbitrary Number of Rates

For the general case of the minimum GoSST problem with arbitrarily many

rates in graphs, Karpinski et al. [164] proposed a randomized algorithm

that is a modification of the algorithm designed by Charikar et al. [49].

Both algorithms round up node rates to the closest power of some num-

ber a starting with ap, where p is picked uniformly at random between 0 and

1, that is, node rates are rounded up to numbers in the set {ap, ap+1, · · · }.
The only difference is that Karpinski et al. [164] contract each approximate

Steiner tree Tk for nodes of rounded rate ap+k, instead of simply taking their

union as Charikar et al. [49] do. Such a modification enables them to reuse

contracted edges at zero cost by Steiner trees when interconnecting lower

rate nodes. This idea is used when they design Algorithm 4.3 for the special

case of two rates and enables them to reduce the approximation ratio from

4.211 to 3.802 for the general case of unbounded number of node rates.

Algorithm 4.4 Randomized Algorithm for Multiple Rates

Step 1 Choose a real number a > 1 and randomly pick p ∈ (0, 1).

Round up each rate to the closest number in {ap, ap+1, · · · }.
Order new rates r′1 < r′2 < · · · r′m, where m ≤ n.

Compute S′
i that contains terminals whose rates rounded to r′i.

Step 2 Set T := ∅ and i := 1.

while i ≤ m do

Produce a β-convex α-approximate Steiner tree Ti of {s}∪S′
i.

Update T := T ∪ Ti and i := i + 1.

Contract Ti into source s.

end-while

Step 3 Return TR := T .

To obtain the approximation ratio of Algorithm 4.4, Karpinski et al.
[164] proved the following lemma, which applies the same idea from the

proof of Lemma 4 in [49].

Lemma 4.12 Let Topt be the optimal GoSST and w∗
i be the total length

of the edges of Topt with rates rounded to ap+i. Then the expected cost

c(T ′
opt) of T ′

opt after the rounding node rates

c(T ′
opt) =

m∑

i=0

w∗
i ap+i ≤ a− 1

ln(a)
c(Topt). (4.15)

Proof. Note that an edge e used at rate r in Topt will be used at rate ap+j ,
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where j is the smallest integer i such that ap+j ≥ r. Now let r = aq+j .

If q ≤ p, then the cost of e caused by rounding up is ap−q times the

original cost, i.e., c′(e) = ap−qc(e); otherwise, c′(e) = ap+1−qc(e). Hence

the expected factor by which the increasing cost of edge e is

∫ q

0

ap+1−qdp +

∫ 1

q

ap−qdp =
a− 1

ln(a)
.

By linearity of expectation, we can obtain the expected cost of T ′
opt in

inequality (4.14). The proof is then finished. �

A randomized algorithm A for a minimization problem is said to have an

α-approximation ratio if, given any instance of the problem, the expected

cost of the solution returned by A is at most α times that of the optimal

solution. Karpinski et al. [164] proved the following theorem, which gives

a upper bound on the approximation ratio of Algorithm 4.4.

Theorem 4.6 Randomized algorithm 4.4 has approximation ratio at most

min
a

{
(α− β)

a− 1

ln a
+ β

a

ln a

}
. (4.16)

Proof. Let c(TR) be the expected cost of the solution returned by Algo-

rithm 4.4, and c(TR(ri)) be the cost the tree Ti for {s} ∪ S′
i produced by

the algorithm. Then by Theorem 4.4, we have

c(TR(ri)) ≤ α ap+iw∗
i + β

(
ap+i+1w∗

i+1 + ap+i+2w∗
i+2 + · · ·+ ap+mw∗

m

)
.

Thus we obtain an upper bound on the total cost of the returned solution

c(TR) ≤ α w∗
1ap +βw∗

2ap +βw∗
3ap + · · · +βw∗

m−1a
p +βw∗

map

+αw∗
2ap+1 +βw∗

3ap+1 + · · · +βw∗
m−1a

p+1 +βw∗
map+1

. . .
. . .

+αw∗
m−1a

p+m−1 +βw∗
map+m−1

+αw∗
map+m

= (α−β)c(T ′
opt)+β·




w∗
1ap +w∗

2ap +w∗
3ap · · · +w∗

m−1a
p +w∗

map

+w∗
2ap+1 +w∗

3ap+1 · · · +w∗
m−1a

p+1 +w∗
map+1

. . .
. . .

+w∗
m−1a

p+m−1 +w∗
map+m−1

+w∗
map+m



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≤ (α−β)c(T ′
opt)+β·




...

w∗
1ap−m+1

...

w∗
1ap−m+2 +w∗

2ap−m+2
...

...
...

. . .

w∗
1ap−1 +w∗

2ap−1 + · · · +w∗
m−1a

p−1
...

w∗
1ap +w∗

2ap + · · · +w∗
m−1a

p +w∗
map

+w∗
2ap+1 + · · · +w∗

m−1a
p+1 +w∗

map+1

. . . + · · ·
. . .

...
+w∗

m−1a
p+m−1 +w∗

map+m−1

+w∗
map+m




Therefore, from Lemma 4.12 we deduce the following inequalities

c(TA) ≤ (α − β)c(T ′
opt) + β

(
1 +

1

a
+

1

a2
+ · · ·

)
c(T ′

opt)

≤ (α − β)
a− 1

ln a
c(Topt) + β

a

ln a
c(Topt)

which yields the upper bound of (4.14). The proof is then finished. �

Immediately from the above theorem, Karpinski et al. [164] obtained

the approximation ratio of Algorithm 4.4 is at most 3.802 and 4.059, re-

spectively, when β-convex α-approximation Steiner tree algorithm at Step

2 applies the algorithms in [227; 29], and 4.311 if the algorithm from [60;

179; 253] is used.

4.3 Discussions

To find a better approximation algorithm for the Grade of Service Steiner

Tree (GoSST) problem in the Euclidean plane, Kim et al. [170] observed

that the optimal solution to the problem is determined by the concurrent

combinations of two factors: (1) the service of grade for every edge, and (2)

the choice of Steiner points. That is, (1) could not be determined before

(2) is done, and vice versa. Therefore, to design a Polynomial Time Ap-

proximation Scheme (PTAS) for the problem applying rectangular partition

technique with portals [10; 11] and using dynamic programming, they made

some modifications to facilitate the running of the dynamic programming.

In particular, they not only move every terminal point to the nearest grid

point, but also assume that all Steiner points lie only at the grid points. It
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turns out that the GoSST problem after modification fits well to the PTAS

so they could obtain an (1 + ε)-approximation.

Khuller et al. [168] studied the quality of service multicast routing prob-

lem under a bicriteria optimization model. In order to guarantee that audio

or video signals can be effectively used in interactive multimedia commu-

nications, they consider not only the network cost of a multicast routing

tree, but also the delay of transmitting data over the tree from a source

node to any destination node. They assumed that the cost of the edges

reflects both the cost to install the link and the time for a signal to tra-

verse the link once the link is installed. Notice that multicast routing of

minimal network cost is equivalent to the Steiner tree problem in graphs

(Problem 2.1), while the Shortest Path Tree (SPT), which consists of the

shortest paths from the source to every destination, has the shortest delay

to any destination. Sometimes an SPT has a high network cost and the

Steiner Minimum Tree (SMT) causes long delay. They proved that a single

(Steiner) tree can approximately achieve both goals. More precisely, for

α ≥ 1 and β ≥ 1, there exists such a spanning tree T of given graph G,

called an (α, β)-LAST (Light Approximate Shortest-path Tree), that satis-

fies the following two requirements1:

(1) For every vertex v, the distance between r and v in T is at most α

times the shortest distance from r to v in G.

(2) The cost of T is at most β times the cost of an SMT of G.

An (α, β)-LAST can be found as follows [168]: Traverse an (approximation

of) SMT, and then check each vertex when it is encountered to ensure that

the distance requirement for that vertex is met in the current tree. If not,

the edges of the shortest path between the vertex and the root are added

into the current tree while other edges are discarded so that a tree structure

is maintained.

More recently, Charikar et al. [49] consider multicast routing problem

that require various levels of quality-of-service (QoS). The objective is to

compute a low-cost multicast/Steiner tree from a source that would provide

k QoS levels requested by r receivers. They assume that QoS level required

on a link is the maximum among the QoS levels of the receivers that are

connected to the source through the link, and the cost of a link to be a

function of the QoS level that it provides. They study a couple of variants of

this problem all are proved to be NP-hard. They propose an O(min{r, k})-

1The concept was originally defined for spanning trees, which, clearly, could be nat-
urally extended to Steiner trees.
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approximation algorithm for the problem and extend it the case of many

multicast groups.

Most recently, Wang et al. [266] studied how to provide the QoS with

a certain performance guarantee, such a mechanism is called Differentiated

service (DiffServ). They assume that each link will not provide the service

to receivers unless it receives a payment large enough to compensate its

relay cost. Under such an assumption, each link is first asked to report its

relay cost and then a payment to this link is computed based on mecha-

nisms. When a link is paid whatever it asked, clearly to its best interest

it may not report its cost truthfully. Consequently, instead of paying inks

whatever they requested a paying scheme should be designed to make every

link give its real cost out of its own interest, that is called strategy proof.

After the cost of each link is determined, a payment sharing scheme should

be designed to ensure that payment is fairly shared among the receivers. In

addition to computing multicost/Steiner tree of minimum cost, they stud-

ied how to design a strategy proof payment scheme and a fair payment

sharing scheme. Some positive and negative results are obtained.
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Chapter 5

Steiner Tree Problem for Minimal

Steiner Points

The Steiner tree problem for minimal Steiner points has an important appli-

cation in Wavelength Division Multiplexing (WDM) optical network design
[233]. Suppose that we need to connect n sites located at t1, t2, · · · , tn with

WDM optical network. Due to the limit in transmission power, signals

can only travel a limited distance (say R) otherwise correct transmission

may not be guaranteed. If some of the inter-site distances are greater

than R, we need to provide it into shorter pieces. This problem also finds

some applications in VLSI design [48] and the evolutionary/phylogenetic

tree constructions in computational biology [144]. The problem is more

formally stated as follows.

Problem 5.1 Steiner Tree Problem for Minimal Steiner Points [50]

Instance A set of n terminals in Euclidean plane <2 and a constant R > 0.

Solution A Steiner tree T interconnecting all terminal points such that

each edge in T has length no more than R.

Objective Minimizing the number of Steiner points in T

In this chapter, the optimal Steiner tree means the optimal Steiner tree

for above problem unless specified otherwise. We will see that optimal

Steiner trees have some structural properties different from those of Steiner

minimum trees. These properties demand new approaches different from

those used for classic Steiner tree problem. We shall study some of them

in this chapter. In Sections 5.1 and 5.2 we will study the Steiner tree

problem for minimal Steiner points in the Euclidean and rectilinear planes,

respectively. In Section 5.3 will turn to the case of general metric space. In

the end we will discuss some related problems.

141
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5.1 In the Euclidean Plane

In the classical Euclidean Steiner tree problem (Problem 1.1), all Steiner

points of Steiner minimum tree have degree 3. In the Steiner tree problem

for minimal Steiner points, however, the optimal Steiner tree may have

degree-2 Steiner points. For example, when n = 2 and the distance between

t1 and t2, denoted by ‖t1 − t2‖ is larger than R, then the optimal Steiner

tree is a path containing d‖t1t2‖/re − 1 Steiner points, each has degree 2.

In addition, Steiner points can also have degree larger than 3. Consider five

points t1, t2, · · · , t5 that make a regular pentagon whose sides have length

greater than R and the distance from the center to each vertex is R. The

optimal Steiner tree contains only one Steiner point at the center. See

Fig.5.1(a).

(a) (b)

R

>R

Fig. 5.1 (a) The Optimal Steiner tree, and (b) Steinerized minimum spanning tree.

The following two lemmas describe some properties of the optimal

Steiner trees with minimal lengths.

Lemma 5.1 Every shortest optimal Steiner tree Topt must have the fol-

lowing properties.

(i) No two edges in Topt cross each other.

(ii) Two edges meeting at a vertex in Topt form an angle of at least 60◦.
(iii) If two edges in Topt form an angle of exactly 60◦, then they have the

same length.

Proof. (i) Suppose, by contradiction, that two edges ac and bd in Topt

cross at point e as shown in Fig.5.2(a). Note that quadrangle abcd must

have an inner angle of at least 90◦. Without loss of generality, assume

∠abc ≥ 90◦. Then ∠bca < 90◦ and ∠cab < 90◦. Hence ‖ab‖ < ‖ac‖ and



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

Steiner Tree Problem for Minimal Steiner Points 143

‖bc‖ < ‖ac‖. When edge ac is removed from Topt, Topt would be broken

into two parts containing vertices a and c, respectively. Observe that the

part that contains a contains vertex b. Adding edge bc results in a shorter

optimal tree. This contradicts that Topt is the shortest one.

(a) (b)

a

b

c
d

e

a

b

c

d
> 90

Fig. 5.2 For the proof of Lemma 5.1: (a) for (i), and (b) for (ii).

(ii) Suppose, by contradiction again, that two edges ab and bc in Topt

meet at vertex b with ∠abc < 60◦ as shown in Fig.5.2(b). Then either

∠cab > 60◦ or ∠bca > 60◦. This implies that either ‖bc‖ > ‖ac‖ or ‖ab‖ >

‖ac‖. Now replacing either bc or ab with ac we can get a shorter optimal

tree. This leads the same contradiction.

(iii) It can be proved by a similar argument for (ii). �

Lemma 5.2 There exists a shortest optimal Steiner tree Topt such that

every vertex in Topt has degree at most five.

Proof. It follows immediately from Lemma 5.1(ii) that every vertex in

a shortest optimal Steiner tree Topt has degree at most six. If vertex u is

of degree six in T , then by Lemma 5.1(ii) each angle at u equals 60◦ and

by Lemma 5.1(iii) all edges incident to u have the same length.

Next consider any vertex v of degree d in T . Assume that v is adjacent to

k degree-six vertices, where k ≥ 1. Suppose that v is adjacent to u of degree

six. Then u is incident to two edges uy and ux with ∠zyv = ∠vux = 60◦

and ‖uv‖ = ‖uy‖ = ‖ux‖. See Fig.5.3. Replacing uy and ux with vy and

vx produces another shortest optimal tree. Vertex v, however, has degree

increased by two. For all degree-six vertices adjacent to v, perform the

same operation. We can get a shortest optimal tree such that v has degree

d + 2k ≤ 6 due to Lemma 5.1(ii). Now, for each degree-six vertex u we
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u
v

x

y

Fig. 5.3 For the proof of Lemma 5.2.

are able to move only one edge from u to one of its adjacent vertices whose

degree is less than five. In such a way we can construct a shortest optimal

tree such that every vertex has degree at most five. �

5.1.1 Complexity Study

We now prove the decision version of Problem 5.1 is NP-complete. The

proof [188] is based on a polynomial time reduction from the decision version

of discrete Euclidean Steiner tree problem.

Given two points u and v in the Euclidean plane, the discrete length of

the edge joining them is defined as d′(u, v) ≡ dd(u, v)e, where d(u, v) is the

Euclidean distance between u and v, and dαe is the least integer not less

than α. For a Steiner tree T , the discrete length of T , denoted by l′(T ), is

defined as the sum of the discrete Euclidean lengths of all edges in T .

Problem 5.2 Discrete Euclidean Steiner Tree Problem

Instance A set Q of n terminals all have integral coordinators in <2.

Solution A Steiner tree T for Q whose Steiner points all have integral

coordinators in the plane.

Objective Minimizing the discrete length of Steiner tree T .

Lemma 5.3 There is a polynomial time reduction from the decision of

discrete Euclidean Steiner tree problem to the decision version of Steiner

tree problem for minimal Steiner points.

Proof. The decision version of discrete Euclidean Steiner tree problem is

as follows: Given a set Q of points and a positive integer L, decide if there
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exists a Steiner tree T for Q such that all Steiner points in T have integral

coordinators and T has discrete length l′(T ) ≤ L. This problem is known

to be NP -complete [109].

The decision version of Steiner tree problem for minimal Steiner points

is as follows: Given a set P of points, a positive constant R and a positive

integer B, decide if there exists a Steiner tree T for P such that all edges

in T have lengths no greater than R and the number of Steiner points is at

most B.

Let I be an instance of the decision version of discrete Euclidean Steiner

tree problem. We construct an instance I ′ of the decision version of Steiner

tree problem for minimal Steiner points by letting P := Q, R := 1 and

B := L− (|Q| − 1). Clearly, the construction could be done in polynomial

time.

First, suppose that T ′ is a solution to I ′. Then the discrete length of

each edge in T ′ is no more than 1 since the Euclidean length of each each

in T ′ is no more than 1. Let P ′ be the set of all points in T ′, then we have

l′(T ′) ≤ |P ′| − 1 since there are (|P ′| − 1) edges in T ′. However,

|P ′| − 1 = |P ′ \ P |+ |P | − 1 ≤ L− (|P | − 1) + |P | − 1 = L.

Therefore, T ′ is also a solution to I .

Next, suppose that T is a solution to I . Let Q′ be the set of all points

in T , then T has (|Q′| − 1) edges. For each edge e in T , we equally place

(l′(e)− 1) degree-2 Steiner points on the edge dividing e into l′(e) edges so

that all have lengths at most 1. As a result, we obtain a tree T ′ spanning

P ′ ⊇ P such that each edge in T ′ has length no more than 1. Note that

the number of added Steiner points is

|P ′| − |Q′| =
∑

e∈T

(
l′(e)− 1

)
=

∑

e∈T

l′(e)− |E(T )| ≤ L− (|Q′| − 1).

Therefore, the number of Steiner points in T ′ is

|P ′| − |Q| = |P ′| − |Q′|+
(
|Q′| − |Q|

)

≤ L−
(
|Q′| − 1

)
+

(
|Q′| − |Q|

)

= L−
(
|Q| − 1

)
= B.

Therefore, T ′ is a solution to I ′.
We have proved that the answer to I is “Yes” if and only if the answer

to I ′ is “Yes”. The lemma is then proved. �
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Theorem 5.1 The decision version of Steiner tree problem for minimal

Steiner points is NP-complete.

Proof. Given an instance of decision version of Steiner tree problem for

minimal Steiner points and the topology of a Steiner tree, which specifies

the edges between points in the tree. Because a bottleneck tree under the

given topology and edge-bound constraint can be computed in polynomial

time [245], the decision version of Steiner tree problem for minimal Steiner

points belongs to the complexity class NP . This, together with Lemma

5.3, proves the theorem. �

5.1.2 Steinerized Minimum Spanning Tree Algorithm

Observe that a (minimum) spanning tree T may not be a feasible solution

for Steiner tree problem for minimal Steiner points since some edges in T

may have length longer than R. To make it feasible, we can add some

Steiner points in each long edge of T breaking them into small pieces each

having lengths at most R. The resulting tree is called a Steinerized spanning

tree. Recall that the Minimum Spanning Tree (MST) can be constructed

in polynomial time, thus we can develop a simple approximation algorithm

for Steiner tree problem for minimal Steiner points as follows.

Algorithm 5.1 Steinerized Minimum Spanning Tree Algorithm

Step 1 Construct an MST Tmst of P and set T := Tmst.

Step 2 for all edges e in T whose length l(e) > R do begin

Cut long edge e into dl(e)/Re shorter ones of equal length

by placing (dl(e)/Re − 1) Steiner points on e.

Replace edge e with dl(e)/Re shorter edges.

end-for

Output Steiner tree Tsmst := T .

Lemma 5.4 Every Steinerized minimum spanning tree has the minimal

Steiner points among Steinerized spanning trees.

Proof. Every MST can be obtained from a spanning tree by a sequence of

operations that each replaces an edge by a shorter edge. Since the shorter

edge needs Steiner points no more than the longer edge needs when we

Steinerize edges in a spanning tree. �

Let T be a Steiner tree for terminal-set P without Steiner points of

degree more than two. Removing Steiner points of degree two in T will

make T a spanning tree. Thus from Lemma 5.4 we deduce that the number
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of Steiner points in Tsmst is no bigger than the number of Steiner points in

T . Using this fact, we can prove the following theorem [188].

Theorem 5.2 The performance ratio of Steinerized minimum spanning

tree algorithm is at most 5.

Proof. By Lemma 5.2, let Topt be an optimal solution to Steiner tree

problem for minimal Steiner points whose Steiner points have degree at

most five. Partition Topt into full subtrees, T1, T2, · · · , Tk, such that every

terminal point in P is a leaf of some subtree. For each subtree Ti, duplicat-

ing all edges in Ti will produce an Eulerian tour for all points in ti (dashed

edges as shown in Fig.5.4(a)). Note that every Steiner point appears at

most five times in the tour while every Steiner terminal point in P appears

exactly once. Removing one (or more) edge in the tour will produce a tree

T ′
i , which, in fact, is a path (solid thin edges as shown in Fig.5.4(b)).

(a) (b)

Fig. 5.4 (a) Produce an Eulerian tour ti, and (b) obtain a tree T ′
i .

Clearly, the number of Steiner points in T ′
i is no more than five times

that Steiner points in Ti. Pasting all T ′
i s together, we obtain a spanning

tree T ′
opt for P whose Steiner points have degree at most two. Therefore,

the number of Steiner points in Tsmst is less than or equal to the number

of Steiner points in T ′
opt, which is at most five times that of Steiner points

in Topt. The proof is then finished. �

In the following we will make a more sophisticated analysis that proves

the performance ratio of Steinerized minimum spanning tree algorithm is

exactly 4. After some modifications, it can be used to prove that there ex-

ists a better approximation algorithm for Steiner tree problem for minimal

Steiner points, which will be discussed in the next subsection. In addition,

a much simple (but elegant) analysis [201] could prove the same result,

which is included in Section 5.3 since it is applicable to the Steiner tree

problem for minimal Steiner points in all metric spaces.
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Before we make the performance analysis of the algorithm, we need

two more lemmas on the geometrical properties of the shortest optimal

Steiner tree. A path q1q2 · · · qm in T is called a convex path if for every

i = 1, 2, · · · , m− 3, qiqi+2 intersects qi+1qi+3. Angles bigger than 120◦ will

play an important role in the following analysis, they, for simplicity, are

called big angles.

Lemma 5.5 Let q1q2 · · · qm be a convex path and m ≥ 2. Suppose

that there are t big angles among (m − 2) angles ∠q1q2q3, ∠q2q3q4, · · · ,
∠qm−2qm−1qm. Then |q1qm| ≤ (t + 2)R.

Proof. We prove the lemma by induction on m. For m ≤ 3, it is true

since |q1q3| ≤ |q1q2|+|q2q3| ≤ 2R ≤ (t+2)R. Now suppose m ≥ 4. Consider

the convex hull H formed by points q1, q2, · · · , qm. If at least one of q1 and

q2 does not lie on the boundary of H , then by the induction hypothesis,

any distance between two vertices of convex hull H is at most (t+2)R and

hence any two points lying in H have distance at (t + 2)R. This yields

|q1qm| ≤ (t + 2)R.

(a) (b)

q

q

q

q qq

qq
p

m

m-1

2

1m

m-1

2

1

Fig. 5.5 For the proof of Theorem 5.3.

Next, we can assume that both q1 and qm lie on the boundary of H . It

follows immediately that whole path q1q2 · · · qm lies on the boundary of H

as shown in Fig.5.5(a). If ∠q1qmqm−1 ≥ 90◦, then |q1qm| ≤ |q1qm−1| and

by the induction hypothesis, |q1qm−1| ≤ (t+2)R. Hence |q1qm| ≤ (t+2)R.

Similarly, ∠q2q1qm ≥ 90◦ can also produce |q1qm−1| ≤ (t + 2)R. Therefore,

we may assume ∠q1qmqm−1 < 90◦ and ∠q2q1qm < 90◦. If follows that

(m− 2) · 180◦ ≤ 2 · 90◦ + (m− t− 2) · 120◦ + t · 180◦,
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which implies m− t− 2 < 3. This means that path q1q2 · · · qm has at most

two angles of degrees not more than 120◦.
If ∠qm−2qm−1qm is a big angle, then by the induction hypothesis,

|q1qm−1| ≤ ((t− 1) + 2)R. Thus |q1qm| ≤ |q1qm−1|+ |qm−1qm| ≤ (t + 2)R.

Similarly, if ∠q1q2q3 is a big angle, then |q1qm| ≤ (t + 2)R. Therefore,

we can assume ∠qm−2qm−1qm ≤ 120◦ and ∠q1q2q3 ≤ 120◦. They are the

only two angles not big on the path q1q2 · · · qm. Now draw a parallelogram

q1q2qm−1p as shown in Fig.5.5(b). Since ∠q1q2qm−1 ≤ ∠q1q2q3 ≤ 120◦, we

have ∠q2qm−1p ≥ 60◦. Moreover, ∠q2qm−1qm ≤ ∠qm−2qm−1qm ≤ 120◦.
Thus, ∠pqm−1qm ≤ 60◦. If follows that

|pqm| ≤ max
{
|pqm−1|, |qm−1qm|

}
= max

{
|q1q2|, |qm−1qm|

}
≤ R.

Therefore, we obtain

|q1qm| ≤ |q1p|+ |pqm| ≤ |q2qm−1|+ |pqm| ≤ (t + 1)R + R = (t + 2)R.

That proves the lemma. �

Lemma 5.6 In a shortest optimal Steiner tree Topt, there are at most

two big angles at a vertex with degree three, there is at most one big angle

at a vertex with degree four, and there is no big angle with degree five.

Proof. Suppose that α1, α2, · · · , αd are all angles at a vertex with degree

d and k > 0 of them are big angles. Since each angle is of at least 60◦, we

have

360◦ = α1 + α2 + · · ·+ αd > (d− k) · 60◦ + k · 120◦,

which implies 6 < (d−k)+2k = d+k. Then the lemma follows immediately

from this inequality. �

Note that every leaf in a Steiner tree is a terminal point pi for some i.

Recall that a Steiner tree is full if every terminal point is a leaf. In the case

that a Steiner tree is not full, that is, there exists at least one terminal point

whose degree is greater than one. We can break the tree at these points

and obtain several small full Steiner trees, that are called full components

of the Steiner tree.

Lemma 5.7 Let Topt be a shortest optimal Steiner tree. Suppose that

Topt is a full Steiner tree. Let si denote the number of Steiner points with

degree i in Topt. Then 3s5 + 2s4 + s3 = n− 2.
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Proof. Since Topt has (s5 + s4 + s3 + s2 + n)− 1 edges in total, we have

5s5 + 4s4 + 3s3 + 2s2 + n = 2(s5 + s4 + s3 + s2 + n − 1). This proves the

lemma. �

Theorem 5.3 The Steinerized minimum spanning tree algorithm pro-

duces a Steiner tree Tsmst whose number of Steiner points is at most four

times that of the optimal Steiner tree Topt.

Proof. By Lemma 5.2, there exists a shortest optimal Steiner tree Topt in

which every Steiner point has degree at most five. We consider two cases.

Case 1. Topt is a full Steiner tree. By Lemma 5.6, n = 3s5 +2s4 +s3 +2.

Consider a spanning tree T consisting of (n− 1) edges each connecting two

terminals at endpoints of a convex path in Topt. See Fig.5.6. By Lemma

5.4, each edge ab in T has length upper bounded by (t + 2)R where t is the

number of big angles on the convex path connecting a and b. Hence, we

need at most (t+1) Steiner points to Steinerize edge ab. By Lemma 5.5, any

Steinerized minimum spanning tree contains at most s4 +2s3 +2s2 +n− 1

Steiner points. Clearly,

s4 + 2s3 + 2s2 + n− 1 = 3s5 + 3s4 + 3s3 + 2s2 + 1

≤ 3(s5 + s4 + s3 + s2) + 1.

If s5 + s4 + s3 + s2 > 0, then s4 + 2s3 + 2s2 + n− 1 ≤ 4(s5 + s4 + s3 + s2).

If s5 + s4 + s3 + s2 = 0, then T = Topt. Therefore, in either case, every

Steinerized minimum spanning tree contains at most 4(s5 + s4 + s3 + s2)

Steiner points.

Fig. 5.6 For the proof of Theorem 5.3.

Case 2. Topt is not a full Steiner tree. Then Topt can be decomposed into

several full components T 1
opt, T

2
opt, · · · , T k

opt. For each full component T i
opt,

by the above argument for Case 1, we know that the Steinerized minimum
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spanning tree T i
smst on terminals in T i

opt contains at four times Steiner

points of T i
opt. Note that the union of Steinerized minimum spanning trees⋃

i T i
smst, each for terminals in a full component, is a Steinerized spanning

tree Tsmst for all terminals. Therefore, the theorem follows from Lemma

5.3. �

5.1.3 Greedy Algorithm

Recall that in the proof of Theorem 5.1 we have shown that for any full

component T ′ of an optimal Steiner tree with degrees at Steiner points

upper bounded by five, the Steinerized minimum spanning tree on terminal

points in T ′ contains at most (3 · c(T ′) + 1) Steiner points, where, for a

Steiner tree T , c(T ) denotes the number of Steiner points in T . Now in the

following we will improve this bound.

Lemma 5.8 Let Topt be an optimal Steiner tree whose Steiner points

have degrees at most five. Suppose that Topt consists of k full components,

T1, T2, · · · , Tk. Then for each i,

(i) The steinerized minimum spanning tree on terminal points in Ti

contains at most (3 · c(Ti) + 1) Steiner points.

(ii) If Ti contains a Steiner point whose degree is at most four, then the

Steinerized minimum spanning tree on terminal points in Ti contains

at most 3 · c(Ti) Steiner points.

(iii) If the Steinerized minimum spanning tree on terminal points in Ti

contains an edge between two terminal points, then it contains at most

3 · c(Ti) Steiner points.

Proof. Since (i) and (iii) follow immediately from the proof of Theorem

5.3, we just need to prove (ii). Let si be the number of Steiner points with

degree i in Tj , and let nj be the number of terminals in Tj . Note that

there are exactly nj convex paths in Tj . So we can choose any (nj − 1) of

them and connect two endpoints of each path. We will obtain a spanning

tree and denote its Steinerization by Ts. Now, assume that vertex v is the

Steiner point with degree at most four. If there is a big angle at v, then we

choose (nj − 1) convex paths not containing the big angle. If there is no

big angle at v, then we can choose any (nj − 1) convex paths. Choosing in

such a way, we would have

c(Ts) ≤ s4 + 2s3 + 2s2 − 1 + (nj − 1) ≤ 3(s4 + s3 + s2) = 3 · c(Tj),

which proves (ii), and the proof is then finished. �
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To get a better approximation, we need to find a method for determining

whether three or four terminal points could be connected to a common

Steiner point. Note that an angle of less than 90◦ is acute and an angle of

more than 90◦ is obtuse. A triangle is acute if its three angles are all acute,

a triangle is obtuse if it has one obtuse angle, and a triangle is right if it

has one right angle.

Lemma 5.9 If triangle 4abc is acute or right, then the disk of minimal

radius that covers 4abc is the one bounded by the circle circumscribing a,

b, and c. If 4abc is obtuse or right, then the disk of minimal radius that

covers 4abc is the one whose diameter is the longest edge of triangle.

Proof. Suppose that ab is the longest edge of 4abc. When a disk covers

4abc, we can always arrange the boundary of the disk passing through a

and b. If ab is not a diameter of the disk and c is not on its boundary, then

we are able to shrink the disk while it still covers 4abc. �

Lemma 5.10 Four terminal points a, b, c, and d can be covered by a disk

of radius R if and only if each of four triangles 4abc, 4bcd, 4acd, and

4abd can be covered by a disk of radius R.

Proof. The ‘Only-if’ part is easy to be verified. it suffices to show the

‘If’ part. Assume, without loss of generality, that those four points a, b, c,

and d form a convex quadrilateral since if not, one of them must lie in the

triangle of other three, which can be covered by a disk of radius R.

a b

c

d

a

b

c

d

(a) (b)

Fig. 5.7 For the proof of Lemma 5.10.

Consider the longest edge of complete quadrilateral abcd (that has six

edges). Suppose that it is not a diagonal edge, say ab. We compare ∠acb
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with ∠adb. Assume, without loss of generality, that ∠acb ≤ ∠adb. Then

the minimum disk covering4abc also covers point d as shown in Fig.5.7(a).

Now suppose that the longest edge of complete quadrilateral abcd is a di-

agonal edge, say ac. Then we consider following two cases.

Case 1. Triangles 4abc and 4acd are obtuse or right. In this case,

∠abc and ∠cda are obtuse or right. Therefore the disk with diameter ac

can cover a, b, c, and d as shown in Fig.5.7(b).

Case 2. Either triangle 4abc or 4acd is acute, say 4abc. Suppose that

4abd is also acute. We compare ∠acb with ∠adb. Assume, without loss of

generality, that ∠acb ≤ ∠adb. Then the minimum disk that covers 4abc

also covers point d as shown in Fig.5.7(a). Similar argument may apply

to the subcases that 4bcd is acute and that ∠bdc ≥ 90◦ or ∠adb ≥ 90◦.
Note than ∠cbd ≤ ∠cba < 90◦ and ∠bda ≤ ∠cba < 90◦. Therefore, the

remainder is the case of ∠bad ≥ 90◦ and ∠dcb ≥ 90◦. In this subcase, the

disk with diameter bd can cover a, b, c, and d. �

Observe that the proof of Lemma 5.10 is constructive. Thus it enables

us to find the Steiner point to connect four terminal points when it exists.

We now are ready to present the improved approximation algorithm, which

is called the greedy algorithm since it tries to use the shortest edges between

terminal points.

Algorithm 5.2 Greedy Algorithm

Step 0 Given a set P of n terminals, sort all n(n− 1)/2 possible edges

between n points in length increasing order e1, e2, · · · , en(n−1)/2.

Initially, set Tg := (P, ∅) and i := 1.

Step 1 while |ei| ≤ R do begin

if ei connects two different connected components of T

then Tg := Tg ∪ {ei} and i := i + 1.

end-while

Step 2 for each subset of four terminal points a, b, c and d respectively

in four connected components of TG do

if there exists a point s within distance R from a, b, c and d

then TG := TG ∪ {sa, sb, sc, sd}
end-for

Step 3 while i ≤ n(n− 1)/2 do begin

if ei connects two different connected components of TG

then Tg := Tg ∪ {ei} (ei is cut into d|ei|/Re segments )

and i := i + 1

end-while
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return Tg

Theorem 5.4 Given a set P of n terminal points and a constant R, the

greedy algorithm returns a Steiner tree Tg whose number of Steiner points

is at most three times that of the optimal Steiner tree Topt.

Proof. Denote by Ti the Tg at the beginning of the i-th step for i = 1, 2, 3.

Suppose that T3 − T2 contains k 4-stars consisting of {sa, sb, sc, sd}. Then

c(Tg) ≤ C(Ts)−2k, where Ts is a Steinerized minimum spanning tree on all

n terminal points. Let Topt be a shortest optimal Steiner tree with Steiner

points of degrees at most five. Suppose that Topt has m full components

T 1
opt, T

2
opt, · · · , T m

opt. Then we construct a Steinerized spanning tree T as

follows: Initially, put T2 into T . For each full component T i
opt, add to T

the steinerized minimum spanning tree Hi for terminal points in T i
opt. If

T has a cycle, then destroy the cycle by deleting some edges and Steiner

points of Hi. An important observation is that if Hj does not contain an

edge between two terminal points, then a Steiner point must be deleted for

destroying a cycle in Hi ∪ T2. From this observation and Lemma 5.6, we

have

c(Ts) ≤ 3 · c(Topt) + h,

where h is the number of full components T i
opt’s with properties that every

Steiner point in T i
opt has degree five and T i

opt ∪ T2 has no cycle. Hence we

obtain

c(Tg) ≤ 3 · c(Topt) + h− 2k.

Clearly, to prove the theorem it suffices to show h ≤ 2k. Suppose that T2

has q connected components. Then T3 has (q − 3k) connected components

C1, C2, · · · , Cq−3k . We now construct a graph H with vertex set P and

edge set which is defined as follows:

(1) Put all edges of T2 into H . Then consider each of those full compo-

nent T i
opt that every Steiner point in T i

opt has degree five and T i
opt ∪ T2 has

no cycle. If Ti has only one Steiner point, then this Steiner point connects

to five terminal points which must lie in at most three Ci’s. Hence, among

them there are two pairs of terminal points each lying in the same Ci.

(2) Connect the two pairs with two edges and put them into H . If T i
opt

has at least two Steiner points, then there must exist at least two Steiner

points each connecting to four points. We can also find two pairs of terminal

points among them such that each pair lies in the same Ci.



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

Steiner Tree Problem for Minimal Steiner Points 155

(3) Connect these two pairs with two edges and put the two edges into

H .

Clearly, H has at most (q − 2h) connected components. Since every

connected component of H is contained by some Ci, we have q−3k ≤ q−2h.

Therefore, we have h ≤ 2k, and the proof is finished. �

4 3 4
6 6

(a) (b)

Fig. 5.8 The performance ratio of the greedy algorithm is at least 2.5.

Note that the exact value of the performance ratio of the greedy algo-

rithm is between 2.5 and 3. Consider the example shown in Fig.5.8 with

R = 4. The greedy algorithm returns a Steiner tree with five Steiner points

as shown in Fig.5.8(a) while the optimal Steiner tree has two Steiner points

as shown in Fig.5.8(b). Unfortunately, the exact value is not known.

5.1.4 Polynomial Time Approximation Scheme

In this subsection, we consider a variation of Steiner tree problem for min-

imal Steiner points. Instead of minimizing the number of Steiner points in

a Steiner tree, we now aim at minimizing the number of total points in the

Steiner tree, that is, both Steiner points and terminal points are counted.

The new version is more formally defined as follows.

Problem 5.3 Steiner Tree Problem for Minimal Total Points

Instance A set of n points P = {p1, · · · , pn} in the Euclidean plane <2

and a positive constant R.

Solution A Steiner tree T interconnecting all points in P such that

each edge in T has length no more than R.

Objective Minimizing the number of Steiner points in T plus n.

It is clear that the decision version of the above problem is the same

as that of Steiner tree problem for minimal Steiner points, thus the above

problem is also NP -hard. In the following, we will construct a Polynomial
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Time Approximation Scheme (PTAS) when terminal points satisfy certain

conditions.

A set P of terminal points is called c-local if in the Minimum Spanning

Tree (MST) of P the length of the longest edge is at most c times of the

length of the shortest edge. We assume, without loss of generality, that the

distance between any pair of points in P is at least 1 and c ≥ 1. We are

interested in the case of R < c.

y = i

x = j

X

Y

s t(  ,0)

(0,0) (0, )

s

t

(  ,  )
k

k

Fig. 5.9 Partition the whole area into many rectangles.

The basic idea of the scheme is to combine the shifting technique in
[135] with a local optimization method. We will design a set of partitions,

each of them partitions the whole area enclosing all terminal points in P

into many rectangular cells of some constant size as shown in Fig.5.9. Each

cell is further divided into interior and boundary areas as shown in Fig.5.10.

Then, with respect to each partition, we first organize the terminals

contained in the interior area of each cell into several groups such that the

distance between any two groups is greater than c, and then construct an

optimal solution (a local Steiner tree) for each group. The collection of

all the local Steiner trees in a cell constitute a local Steiner forest for the

cell. After that, we connect all the local Steiner forests and the terminal

points in the boundary areas using the spanning tree approach. At the end,

we select a partition which yields an optimal global solution among all the

partitions.
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Boundary area

l

Interior areal

l

l

Fig. 5.10 Each cell is divided into interior and boundary areas.

5.1.4.1 Partition Strategy

We first study how to partition the whole area into cells (mostly squares).

Assume, without loss of generality, that all terminal points in P are con-

tained in a rectangle Rec with four corners at (0, 0), (s, 0), (0, t), and (s, t)

as shown in Fig.5.9. For any positive integer k, a partition of size k is a

grid in which adjacent horizontal/vertical lines are separated by a distance

of k. Clearly, there are k2 different partitions of size k, depending on the

locations of the top horizontal line and the leftmost vertical line. Denote

Pi,j , where 0 ≤ i, j < k, the partition in which the top horizontal line and

the leftmost vertical line are y = i and x = j, respectively as shown in

Fig.5.9. Observe that the grid partitions the rectangle Rec into many cells,

most of which are squares of size k × k. Thus each cell contains at most

k2 points in P since the distance between any two points is assumed to

be at least one. Moreover, each cell is divided into an interior area and a

boundary area, with a boundary of width l = (2 + 3 log k)c.

5.1.4.2 Approximation Scheme

Given a set P of points and a partition X , let PX ⊆ P be the set of points

in the interior areas. Let T be a Steiner tree of P , an edge in T is a

crossing edge if it is not completely contained in any interior area of a cell,

a path in T is called a stem if every vertex in the path is Steiner points of

degree-2 except that the two vertices at the ends are terminal points. A

stem is called a crossing stem if at least one of the terminal points is in the

boundary area.

Denote by Topt and T X
opt the optimal solution to the Steiner tree problem
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for minimal total points for P and PX , respectively. Moreover, denote by

c(T ) the total number of points in Steiner tree T , i.e., c(T ) = c(T ) + n,

where c(T ) again is the number of Steiner points in T . Since PX is a subset

of P , we have

c(T X
opt) ≤ c(Topt) + n. (5.1)

Recall that in the algorithm, we will deal with one cell at a time, and

the terminal points in the interior area of a cell are divided into several

groups and an optimal solution is constructed for each group. In order to

show how to correctly group the terminal points in an interior area, let us

consider an optimal solution T X
opt. We need to modify T X

opt into a forest F X

such that each tree in F X is completely included in the interior area of a

cell for X . Note that each interior area of a cell may contain more than

one tree in FX . Define the distance between two trees to be the shortest

distance between any pair of terminal points in the two trees. The following

lemma shows that we may require some more properties.

Lemma 5.11 For any partition X, T X
opt can be modified into a forest

F X such that each tree in F X is completely in an interior area of a cell

for X and the distance between any pair of trees in FX is greater than c.

Moreover, the total cost c(F X), which is the sum of the costs of all trees in

FX , is at most c(T X
opt), and c(FX) ≤ c(FX ) ≤ c(Topt).

Proof. First, we eliminate those stems from FX that have lengths greater

than c. Note that the distance between any pair of resulting trees is greater

than c since T X is optimal. For each tree T ′ in the forest obtained above,

we reconstruct an optimal tree connecting terminal points in T ′. Assume,

without loss of generality, that each stem in the reconstructed trees has

length at most c (otherwise we can repeat the procedure and further de-

compose the forest).

Secondly, we prove that each tree in the forest obtained above is com-

pletely in an interior area of a cell. For this purpose, it suffices to show that

there is no Steiner point in the boundary area. Suppose, by contradiction,

that there are some Steiner points in the boundary area. We call a Steiner

point a real Steiner point if it has degree greater than 2. Recall that the

distance between two cells is (2 + 3 log k)c. It is easy to see that two ter-

minal points in distinct cells can not be connected in the above resultant

forest; otherwise, there must be a Steiner point s which is at least 3c
2 log k

away from any boundary line. To reach any boundary line, s has to cre-

ate at least 21.5 log k = k1.5 real Steiner points and (dc/Re − 1)k1.5 Steiner



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

Steiner Tree Problem for Minimal Steiner Points 159

points of degree-2. Now we remove all those dc/Rek1.5 Steiner points in

the boundary areas and use them to connect the disconnected subtrees with

distance less than c in the corresponding 4 neighboring cells as shown in

Fig.5.11. At most kd1/Re Steiner points are required to be added in each

of the eight boundary segments of the four cells.

s

Fig. 5.11 Connect the disconnected subtrees in the corresponding four neighbor cells.

Since no two cells are connected, we can move the Steiner points in the

boundary areas back to the interior areas. In such a way, all Steiner points

in the boundary area can be eliminated. The proof is then finished. �

Unfortunately, it is difficult to compute the forest FX since T X
opt is un-

known. Nevertheless, we can construct a forest which is similar to FX .

Consider the terminal points in the interior area of some fixed cell. By

Lemma 5.9, if the distance between two terminal points is at most c, then

they must belong to the same tree of FX . Thus we can group the terminal

points by forming an MST of these points and then deleting the edges longer

than c. As a result, we obtain a set of spanning trees {T1, T2, · · · , Tm} each

consisting of degrees of length at most c. We call these trees the c-spanning

trees. Let Si be the set of terminal points contained in the c-spanning trees

Ti for i = 1, 2, · · · , m. Clearly, the terminal points in the same group Si

belong to the same tree of the forest FX . The converse, however, is not nec-

essarily true. Namely, terminal points in different group may also belong

to the same tree of FX . Thus to find the best way of grouping the termi-

nal points, we have to consider all possible ways for merging the groups

S1, S2, · · · , Sm. After each such possible merging process, we obtain a local

Steiner forest by constructing an optimal solution for every new group. We

are interested in a local Steiner forest with the minimum cost among all
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possible merging processes for each cell.

Lemma 5.12 Let forest F ′
X denote the collection of the minimum-cost

local Steiner forests, one for each cell. Then

(i) Each tree in F ′
X is completely contained in the interior area of a cell;

(ii) The distance between any tree pair T ′ and T ′′ in F ′
X is greater than c;

(iii) The total cost of F ′
X is at most c(FX ), and c(F ′

X ) ≤ c(FX ) ≤ c(Topt).

Suppose that there are m groups in a cell. Then using the method in
[263], we are able to compute a minimum-cost local Steiner forest in time

of O(2mM(|S|)), where M(S) is the time to construct an optimal solution

for the set of terminal points, which is exponential in the size of S.

5.1.4.3 Exact Algorithm

Assume, without loss of generality, that the terminal points in S are leaves

in the tree. The number of possible topologies for S is at most |S|!. Now

consider a fixed topology t for S. If the number of candidate points for each

internal vertex in t is at most m, then a modification of a standard dynamic

programming algorithm finds an optimal solution for the fixed topology in

time of O(m|S|) [143].

Lemma 5.13 The number of candidate points for each internal vertex is

at most (|S|
√

2k/R)3
|S|−1 if terminal points in S are in a square of size k

by k.

Proof. Let T t
opt be an optimal solution for the fixed topology t. Consider

an internal vertex v at the bottom whose children are leaves in t. Let

v1 and v2 are two children of v. Without increasing the number of Steiner

points, we are able to move the point adjacent with v such that the distance

between v and vi is Rhi for i = 1, 2, where hi’s are integers. Thus, the

number of candidate points for v is at most |S|2(
√

2k/R)2. The height of

t is at most (|S| − 1). For a vertex of height i, denote by f(i) the number

of candidate points. Then f(i) ≤ f(i − 1)2|S|2(
√

2k/R)2 ≤ f(i − 1)3.

Therefore, for any internal vertex, the number of candidate points is at

most (|S|
√

2k/R)3
|S|−1. The proof is then finished. �

From the above discussion, we can easily deduce that M(S) =

O
(
|S|!(|S|

√
2k/R)2

|S|)
.
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5.1.4.4 Connecting Local Forests and Boundary Points

We can now construct a Steiner tree for terminal-set P from the forest F ′
X

as follows. (1) Fix an MST Tmst for P and add degree-2 Steiner points to

ensure that the length of each edge is at most R. Note that each stem in

Steinerized Tmst has length at most c since P is c− local. Let EX denote

the set of crossing edges in Tmst. (2) Construct a graph GX by adding

all the crossing edges in EX to F ′
X and adding degree-2 Steiner points to

ensure that the length of each edge is at most R.

Note that in the above GX is connected. Now we are ready to present

the whole algorithm.

Algorithm 5.3 Polynomial Time Approximation Scheme

Step 0 Construct an MST Tmst for P .

Step 1 for each possible partition Xi,j do begin

Find the set of crossing edges EXi,j .

for each cell

Compute a minimum-cost local Steiner forest.

end-for

F ′
Xi,j

:= { all local Steiner forests }
Construct the graph GXi,j consisting of EXi,j ∪ F ′

Xi,j

Add degree-2 Steiner points if necessary

end-for

Step 2 Select a GXi,j with the smallest cost among all partitions.

Step 3 Prune GXi,j into a tree T

Return Tptas := T .

Theorem 5.5 The performance ratio of approximation scheme 5.3 is

1 +
(
16 + (4 + 3 log k)c/k

)
.

Proof. Consider the stems in MST Tmst for P . Since the boundary

area of each cell consists of at most 4(2 + 3 log k)ck terminal points, each

terminal point of a crossing stem can be inside a boundary area at most

4(2 + 3 log k)ck times under the k2 partitions. Since the length of a stem

is at most c, a stem can be a crossing stem at most 4(2 + 3 log k)ck times.

Therefore, the total cost of k2GXi,j ’s is bounded by:

k−1∑

i=0

k−1∑

j=0

c
(
GXi,j

)
≤ k2 c

(
Topt

)
+

k−1∑

i=0

k−1∑

j=0

c
(
EXi,j

)

≤ k2 c
(
Topt

)
+ 4(4 + 3 log k) c k · c

(
Tmst

)
.



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

162 Steiner Tree Problems in Computer Communication Networks

From Theorem 5.1, we know that at least one partition yields a solution

with cost at most 1 +
(
16 + (4 + 3 log k)c/k

)
times of the optimal solution.

The proof is then finished. �

Corollary 5.1 There exists a polynomial time approximation scheme for

the Steiner tree problem for minimal total points when the set of terminal

points is c− local.

Corollary 5.2 Let Tptas be the Steiner tree produced by approximation

scheme 5.3 and Topt be an optimal Steiner tree for Steiner tree problem for

minimal total points. Then

c(Tptas)

c(Topt)
≤ 1 +

16(4 + 3 log k)c

k

(
1 +

4n

c(Tsmst)

)
,

where Tsmst is a Steinerized minimum spanning tree for the same set of

terminal points.

The above implies that there exists a PTAS for Steiner tree problem for

minimal total points when the set P of n terminal points is c − local and

the MST on P has length at least (1 + α)nR for some positive constant α.

5.2 In the Rectilinear Plane

In this section, we will study the Steiner tree problem for minimal Steiner

points in the rectilinear plane [195]. The analysis and discussion are similar

to those for the case of Euclidean plane (i.e., Problem 5.1), but different

techniques are used.

The Steiner Minimum Tree (SMT) for the rectilinear Steiner tree prob-

lem and the optimal Steiner tree for the rectilinear Steiner tree problem for

minimal Steiner points may have different structures. Recall that in a rec-

tilinear SMT, every vertex has degree less than five and Steiner points have

degree either three or four. In an optimal Steiner tree, however, Steiner

points may have degree two. For example, when V contains two terminals

v1 and v2 with |v1v2| > R, the optimal Steiner tree is a path containing

d|v1v2|/R − 1e Steiner points whose degrees are two; Moreover, some ver-

tices may have degree as large as eight. Consider nine terminals (white

nodes) in Fig.5.12(a). The SMT for the rectilinear Steiner tree problem in

Fig.5.12(b) includes two Steiner points (black nodes) and has length of 6R.

Two optimal Steiner trees for minimal Steiner points in Fig.5.12(c,d) both

include no Steiner point and have length of 8R; Note in the first tree every
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terminal has degree less than three while in the second tree one terminal

has degree eight. However, we can show the following lemma.

(a) (b)

(c) (d)

R

R

R

R

Fig. 5.12 (a) nine terminals in the rectilinear plane, (b) the SMT of the rectilinear
Steiner tree problem, (c) and (d) two optimal Steiner trees for minimal Steiner points.

Lemma 5.14 There exists a shortest optimal Steiner tree for the rectilin-

ear Steiner tree problem for minimal Steiner points such that every vertex

in the tree has degree at most four.

Proof. Suppose, by contradiction, that every shortest optimal Steiner

tree has a vertex whose degree is more than four. Then let Topt be such a

tree with minimal number of vertices that have degrees more than four, and

let vertex v0 in T be adjacent to five vertices vi, i = 1, 2, · · · , 5. We assume,

without loss of generality, that v0 = (0, 0). Now consider v0’s neighborhood

of radius R, which is a square. Note that lines x = y and x = −y partition

the square into four small squares. See Fig.5.13.

Suppose that vertices v1 and v2 are in same small square, say, the one

formed by lines −x ≤ y and x ≤ y. If neither v1 nor v2 is on one of these
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two lines, then it can be verified that |v1v2| < max{|v1v0|, |v2v0|}. Thus

replacing the longer edge of v1v0 and v2v0 with edge v1v2 will produce a

Steiner tree whose length is shorter than T , contradicting that Topt is a

shortest optimal Steiner tree. Therefore, we can assume that vertices v1, v2

and v3 are in two small squares formed by −x ≤ y and v2 is on line x = y.

See Fig.5.13(a). We now consider two cases separately.

v

v
v

v

0

1
2

4

x=y
x=- y

v

v

3

5 X

Y

R

R

R

R

(a) (b)

v

v
v

v

0

1
2

4

x=y
x=- y

v

v

3

5 X

Y

R

R

R

R

Fig. 5.13 Proof of Lemma 5.14.

Case 1. v2 has degree less than four. Then substituting edge v1v0

with edge v1v2 will produce a shortest Steiner tree that has less number of

vertices that have degree at least five than Topt, contradicting that Topt has

minimal number of such vertices.

Case 2. v2 has degree four (or bigger). Then v2 is adjacent to three

vertices u1, u2, and u3 besides vertex v0. If there exists a vertex ui that is in

the two small squares of v2’s neighborhood formed by the line in direction of

x = −y and passing vertex v2, then either |v1ui| < |v1v0| or |v3ui| < |v3v0|.
In either case a shorter Steiner tree can be constructed by replacing edge

v1v0 with edge v1ui or edge v3v0 with edge v3ui, contradicting that T is

a shortest one. Hence we can assume that ui for 1 ≤ i ≤ 3 are all in the

other two small squares while u2 in line x = y. See Fig.5.13(b).

By repeating the above argument at vertex u2 and so on, in the end we

will reach Case 1 and find a contraction. The proof is then finished. �

Lemma 5.15 There exists a shortest optimal Steiner tree for the rectilin-
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ear Steiner tree problem for minimal Steiner points such that no two edges

cross each other.

Proof. Suppose that Topt is a shortest optimal Steiner tree that includes

two edges ac and bd crossing at point p, and ac and bd may have corners

at points b′ and c′, respectively. See Fig.5.14.

a

b

cc'

d

d'p

a

b

cc'

d

d'p

T T'opt opt

Fig. 5.14 Proof of Lemma 5.15.

We can assume that |ap| ≤ |pc′|, |bp| ≤ |pd′| and |ap| ≤ |bp|. Then we

have

|ad| = |ap|+ |pd′| ± |d′d| ≤ |bp|+ |pd′|+ |d′d| = |bd|,

|ab| = |ap|+ |pb| ≤ |bp|+ |pd′|+ |d′d| = |bd|.

Therefore, replacing edge bd with edge ab if there is a path in Topt between

vertices b and a or c, and with edge ad if there is a path in Topt between

vertices d and a or c, can make a shortest Steiner tree T ′. Moreover,

the number of crossings in T ′
opt is less than that in Topt. By repeating

this operation we can obtain a shortest optimal Steiner tree without any

crossing. The proof is then finished. �

In fact, by applying the combination of the arguments in the proofs of

Lemmas 5.14-15, we are able to prove that there exists a shortest optimal

Steiner tree for the rectilinear Steiner tree problem for minimal Steiner

points such that every vertex in the tree has degree at most four and there

is no two edges crossing each other. Hence at the rest of the section, we

only consider such a kind of shortest optimal Steiner trees for the rectilinear

Steiner tree problem for minimal Steiner points.

Note that as in the Euclidean plane, we can Steinerize a rectilinear

Minimum Spanning Tree (MST) if it is a feasible solution for the rectilinear
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Steiner tree problem for minimal Steiner points by breaking any edge longer

than R into several small segments with lengths at most R through adding

some Steiner points in the edge. The Steinerized rectilinear MST has the

following interesting property.

Lemma 5.16 Every Steinerized rectilinear MST has the minimal Steiner

points among Steinerized rectilinear spanning trees.

Proof. Note that every rectilinear MST can be obtained from a rectilin-

ear spanning tree by a sequence of operations that each replaces an edge by

another shorter edge. Since the shorter edge needs less number of Steiner

points than the longer edge when rectilinear spanning tree is steinerized.

This proves the lemma. �

5.2.1 Steinerized Minimum Spanning Tree Algorithm

To obtain the lower bound of performance ratio for the Steinerized spanning

tree algorithm for the rectilinear case, consider a simple example shown in

Fig.5.15. There are four terminals (white nodes) such that every pair of

them has length of 2L, where L = (1 − ε)R and ε is a very small positive

real number. Fig.5.15(a) shows the optimal Steiner tree for minimal Steiner

points, which has only one Steiner point (black node). Fig.5.15(b) shows

the Steinerized rectilinear MST that has three Steiner points. This implies

that the performance ratio of Steinerized minimum spanning tree algorithm

is at least three.

L

(b)(a)

Fig. 5.15 The lower bound: (a) the optimal Steiner tree for minimal Steiner points,
and (b) the Steinerized rectilinear MST.

To obtain the upper bound of performance ratio, we need to study the
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properties of rectilinear convex path in the shortest optimal Steiner tree for

minimal Steiner points. A path q1q2...qm is called a rectilinear convex path

if one places a coordinate axis at any point on the path then at least one

of the quadrants does not contain any point in the path. Note that angles

can be defined along the convex path. The angles of 180◦ and 270◦ will

play an important role in the the following analysis. For simplicity, such

angles are called big angles.

Lemma 5.17 Let q1q2...qm be a rectilinear convex path and m ≥ 2. Sup-

pose that there are t1 angles of 180◦ and t2 angles of 270◦ among m − 2

angles ∠q1q2q3, ∠q2q3q4, · · · , ∠qm−2qm−1qm. Then |q1qm| ≤ (t1+2t2+2)R.

Proof. First, we define a staircase to be a continuous path of alternating

vertical lines and horizontal lines such that their projections on the vertical

and horizontal axes have no overlapping intervals.

Then we prove the lemma by induction on m. For m ≤ 3, it is true,

since |q1, q3| = 2R ≤ (t1 + 2t2 + 2)R. Now, suppose m ≥ 4. Consider the

rectilinear convex hull H of points q1, q2, · · · , qm. If at least one of q1 and

qm does not lie on the boundary of H , then by the induction hypothesis,

any rectilinear distance between two vertices of the convex hull H is at least

(t1 + 2t2 + 2)R. Therefore, we have |q1qm| ≤ (t1 + 2t2)R.

(a) (b)

q

q

q

q q

q q
q

q

q

q'

q'
1

i m

1 a i

1

k

j

b

m

m

Terminals Degree-2 Steiner points Degree-3 Steiner points

Steiner points with degrees 2 or 3 Steiner points with degrees 2 or 3 or 4

(c)

Fig. 5.16 Proof of Lemma 5.17.
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Next, we may assume that both q1 and qm lie on the boundary of H .

Then the whole path q1q2 · · · qm lies on the boundary of H as shown in

Fig.5.16(c). Since there are overlapping intervals if a rectilinear convex

path is not a staircase, we can always obtain |q1qm| ≤ (t1 + 2t2 + 2)R by

induction hypothesis. So it suffices to show that this inequality is true for

staircase as shown in Fig.5.16(a,b). We consider the following cases:

Case 1. When the rectilinear convex path is straight. Clearly, we have

|q1qm| = (t1 + 1)R < (t1 + 2t2 + 2)R.

Case 2. When the rectilinear convex path is a L-shaped path. As shown

in Fig.5.16(a), the turning point of the L-shaped path may be a Steiner

point with degrees 2 or 3 or 4. It can also just be a corner. For the latter

we have |q1qm| = (t1 + 1)R from Case 1. If the turning point is a Steiner

point, say qi, then we have |q1qm| = t1 + 2 ≤ (t1 + 2t2 + 2)R.

Case 3. The other possible shapes of rectilinear convex paths are those

like q′1q
′
2 · · · q′m and q1q2 · · · qm as shown in Fig.5.16(b) (maybe in other

directions). Otherwise, we can have a shorter tree by flipping some corner

or Steiner point contradicting that Topt is a shortest optimal Steiner tree for

minimal Steiner points. For those convex paths like q′1q
′
2 · · · q′m, it is easy to

show that |q′1q′m| ≤ (t1+2t2+2)R holds. For those like q1q2 · · · qm, when the

turning point of path qiqi+1 · · · qj is a Steiner point qk shown in Fig 5.16(b),

it can be verified that |q1qm| ≤ (t1+2t2+2)R also holds. When the turning

point is a corner, |q1qm| = (t1 + 3)R and t2 = 0 will be obtained. This

violates the inequality |q1qm| ≤ (t1 + 2t2 + 2)R. However, since there must

exist another rectilinear convex path q′′1 q′′2 · · · q′′n which shares qiqi+1 · · · qm

and it is not difficult to show that |q′′1 q′′m| ≤ (t′′1 + 2t′′2 + 2)R is true, where

t′′1 is the number of angles of 180◦ and t′′2 is the number of angles of 270◦

among n − 2 angles along this convex path. Thus, we can charge cost 1

from |q1qm| to |q′′1 q′′m|. Therefore, overall we have |q1qm| ≤ (t1 + 2t2 + 2)R.

The proof is then finished. �

The following lemma follows directly from the definition of optimal

Steiner trees for the rectilinear Steiner tree problem for minimal Steiner

points.

Lemma 5.18 In the shortest optimal Steiner tree for minimal Steiner

points, there are at most two big angles at a terminal with degree two, one

big angle at a vertex with degree three, and no big angle with degree four.

Note that every leaf in a shortest optimal Steiner tree is a terminal.

A rectilinear Steiner tree is called full if every terminal is a leaf. When

a rectilinear Steiner tree is not full, we can always find a terminal with
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degree more than one where we can break the tree into parts. In such

a way, every rectilinear Steiner tree can be broken into several small full

rectilinear Steiner trees, which are called full components of the rectilinear

Steiner tree.

Lemma 5.19 Let T be a full rectilinear Steiner tree interconnecting n

terminals, and si denote the number of Steiner points with degree i in T .

Then 2s4 + s3 = n− 2.

Proof. Since T has s4 + s3 + s2 + n − 1 edges, and the total degrees

of vertices in T is 4s4 + 3s3 + 2s2 + n = 2(s4 + s3 + s2 + n − 1). Hence,

2s4 + s3 = n− 2. �

Given a shortest optimal Steiner tree for for the rectilinear Steiner tree

problem for minimal Steiner points on n terminals, if it is a full rectilinear

Steiner tree, then we can find a set of n rectilinear convex paths in the tree

that satisfy the following three properties:

(1) each path connects two terminal points,

(2) each terminal point appears in exactly two paths, and

(3) each angle at a Steiner point appears in the paths exactly once.

Fig. 5.17 Rectilinear convex paths having desired properties.

Fig.5.17 shows an example where terminals and Steiner points are

marked by white and black nodes, respectively, and rectilinear convex paths

by dashed lines. Now, we are ready to show the main theorem.

Theorem 5.6 The Steinerized rectilinear minimum spanning tree is a
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polynomial-time approximation for the rectilinear Steiner tree problem for

minimal Steiner points with performance ratio exactly 3.

Proof. Denote by c(Topt) the number of Steiner points in Topt. First, we

assume that Topt is a full rectilinear Steiner tree. Let si denote the number

of Steiner points with degree i in Topt. Let s′2 denote the number of Steiner

points of degree two with angle 180◦, and s′′2 denote the number of Steiner

points of degree two with angle 270◦. Clearly, s2 = s′2+s′′2 . By Lemma 5.19,

n = 2s4 + s3 +2. Consider a rectilinear spanning tree Ts consisting of n−1

edges each connecting two terminals at endpoints of a rectilinear convex

path in Topt. By Lemma 5.17, each edge in Ts has length upper-bounded

by (t1 +2t2+2)R where t1 and t2 are the numbers of big angles of 180◦ and

270◦ on the rectilinear convex path connecting two terminals, respectively.

Hence we need at most (t1 + 2t2 + 1) Steiner points to Steinerize the edge.

By Lemma 5.18, the rectilinear spanning tree Ts can be Steinerized by at

most s3 + 2s′2 + 2s′′2 + n− 1 = s3 + 2s2 + n− 1 Steiner points. By Lemma

5.16, any Steinerized rectilinear MST contains at most s3 + 2s2 + n − 1

Steiner points. Clearly

s3 + 2s2 + n− 1 = 2s4 + 2s3 + 2s2 + 1 = 2(s4 + s3 + s2) + 1.

When s4 + s3 + s2 > 0, we have s3 + 2s2 + n− 1 ≤ 3(s4 + s3 + s2). When

s4 + s3 + s2 = 0, we have Ts = Topt. Therefore, in either case, every

Steinerized rectilinear MST contains at most 3(s4 + s3 + s2)(= 3 · c(Topt))

Steiner points.

Now suppose Topt is not a full rectilinear Steiner tree. Then Topt can

be decomposed into several full components T1, T2, · · · , Tk, each satisfies

the above properties (1, 2, 3). Let c(Ti) be the number of Steiner points

in Ti. For each full component Ti, by the above argument, we know that

the Steinerized RMST on terminals in Ti contains at most 3 · c(Ti) Steiner

points. Note that the union of Steinerized RMSTs is a Steinerized rec-

tilinear spanning tree for all terminals. By Lemma 5.16, the number of

Steiner points in Topt is at most 3
∑k

i=1 c(Ti) = 3 · c(Topt). The proof is

then finished. �

5.2.2 Greedy Algorithm

Suppose that Topt is a shortest optimal Steiner tree for minimal Steiner

points in the rectilinear plane that has k full components T1, T2, · · · , Tk.

In the proof of Theorem 5.6, we have showed that the Steinerized RMST
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on terminals in Ti contains at most (2 · c(Ti) + 1) Steiner points. In the

following we will study when this upper bound can be improved.

Lemma 5.20 Let T ′
i be the Steinerized RMST on terminals in Ti. Then

(i) T ′
i contains at most 2 · c(Ti) + 1 Steiner points;

(ii) T ′
i contains at most 2 · c(Ti) Steiner points when Ti contains a Steiner

point with degree at most three;

(iii) T ′
i contains at most 2 · c(Ti) Steiner points when T ′

i contains an edge

between two terminals.

Proof. Note that conclusions (i-ii) follow immediately from the proof

of Theorem 5.6. To show (iii), let ni be the number of terminals in Ti.

Note that there are exactly ni paths in the forms shown in Lemma 5.17 in

Ti. Choose any (ni − 1) of them and connect two endpoints of each path.

We will obtain a rectilinear spanning tree. Its Steinerization is denoted

by Ts. Now, assume that u is a Steiner point with degree at most three.

When there is a big angle at u, we choose (ni − 1) rectilinear convex paths

not containing the big angle. When there is no big angle at u, we can

choose any (ni − 1) rectilinear convex path. In such a way, we can obtain

c(Ts) ≤ s3 + 2s2 − 1 + (ni − 1) ≤ 2(s4 + s3 + s2) = 2 · c(Ti). The proof is

then finished. �

To deal with the case of the rectilinear plane, we could modify the greedy

algorithm 5.2 for minimal Steiner points in the Euclidean plane as follows:

At Step 2, if there exists a point within (rectilinear) distance R from a, b,

and c, then TG := TG ∪ {sa, sb, sc}.

Theorem 5.7 The greedy algorithm for minimal Steiner points in the

rectilinear plane returns a Steiner tree Tg that satisfies c(Tg) ≤ 2 · c(Topt).

Proof. Denote by Ti the Tg at the beginning of the i-th Step in the

greedy algorithm for i = 1, 2, 3. Suppose that T3 − T2 contains m 3-stars.

Then

c(Tg) ≤ c(Tsmst)−m,

where c(Tsmst) is the number of Steiner points in Tsmst which is the Steiner-

ized RMST on all terminal points. We construct a Steinerized rectilinear

spanning tree Ts as follows: Initially, put T2 into Ts. For each full compo-

nent T j
s (1 ≤ j ≤ k), add to Ts the Steinerized rectilinear spanning tree Hj

for terminals in T j
s . If Ts has a cycle, then destroy the cycle by deleting

some edges along with Steiner points of Hj . An important fact is that if Hj
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does not contain an edge between two terminals, then at least one Steiner

point must be deleted when destroying a cycle in Hj ∪ T2. From this fact

and Lemma 5.19, we have

c(Tsmst) ≤ 2 · c(Topt) + h,

where h is the number of full components T j
s ’s with properties that every

Steiner point in T j
s has degree four and T j

s ∪ T2 has no cycle. Hence we

have

c(Tg) ≤ 2 · c(Topt) + h−m.

Now to prove the theorem it suffices to show h ≤ m.

Suppose that T2 has p connected components. Then T3 has (p − 2m)

connected components C1, C2, · · · , Cp−2m. We now construct a graph H

with vertex set consisting of n terminals and the edge set defined as follows:

First, we put all edges of T2 into H . Then consider every full component

T j
s (1 ≤ j ≤ k) with properties that every Steiner point in T j

s has degree

four and T j
s ∪ T2 has no cycle. If T j

s has only one Steiner point, then this

Steiner point connects four terminals which must lie in at most two Ci’s.

Hence, among them there are two pairs of terminals; each pair lies in the

same Ci. Connect the two pairs with two edges and put the two edges into

H . If T j
s has at least two Steiner points, then there must exist at least two

Steiner points each connecting three terminals. We can also find two pairs

of terminals among them such that each pair lies in the same Ci. Connect

the two pairs with two edges and put the two edges into H .

Clearly, H has at most (p − 2h) connected components. Since every

connected components of H is included in a Ci, we have p− 2m ≤ p− 2h.

Therefore, h ≤ m. The proof is then finished. �

5.3 In Metric Spaces

In this section we present an elegant analysis [201] for the Steinerized min-

imum spanning tree algorithm for Steiner tree problem for minimal Steiner

points in metric spaces.

Given a set P of terminal points in a metric space M , let TM (P ) denote

the set of all Minimum Spanning Trees (MSTs) for P in metric space M .

Define

dM ≡ supP min
T∈TM (P )

max
v∈P

degT (v),
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where the supremum is taken over all finite subsets P in M . Observe that, if

dM is finite, then every set P of points in M admits an MST with maximum

degree at most dM .

Măndoiu and Zelikovsky [201] proved the following theorem and corol-

lary giving an upper bound on the approximation performance ratio for

Steinerized minimum spanning tree algorithm in metric space M in terms

of dM .

Theorem 5.8 Steinerized minimum spanning tree algorithm is a (dM −
1)-approximation algorithm for Steiner tree problem for minimal Steiner

points in metric space M whose dM is finite.

Proof. Let P be a set of terminal points in a metric space M , and let

T M
opt(P ) be an optimal solution to Steiner tree problem for minimal Steiner

points in metric space M . Then denote the Steiner points in T M
opt(P ) by

s1, s2, · · · , sk, which are numbered in the order of the breadth-first traversal

starting from an arbitrarily terminal point p ∈ P . Note that since all edges

of T M
opt(P ) have length at most R, si is within a distance of R of at least

one point from P ∪ {s1, s2, · · · , si−1} for each i = 1, 2, · · · , k.

Suppose that each Ti for 1 ≤ i ≤ k is an MST for P ∪ {s1, s2, · · · , si}
with maximum degree at most dM , and T0 is an MST for P . For a Steiner

tree T for P , let c2(T ) be the set of all degree-2 Steiner points needed to

place on the edges in T in order to ensure that T satisfies the length bound.

Clearly, |c2(Tk)| = 0.

p
1

p
m

p
2

p
0

si

p
m-1

... ...
p
1

p
m

p
2

p
0

si

p
m-1

... ...

Ti T'i

Fig. 5.18 Remove a Steiner point and make a new Steiner tree.

For each Ti, let {p0, p1, · · · , pm} be the set of nodes adjacent to si in

Ti, where m + 1 ≤ dM . Assume, without loss of generality, that p0 is the

closest neighbor of si in P ∪{s1, s2, · · · , si−1}. Now we remove si and make
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all edges that are incident to si in Ti incident to p0. As a result, we obtain

a new Steiner tree T ′
i . See Fig.5.18.

Note that d(si, p0) ≤ R since the ordering of {s1, s2, · · · , si} ensures

that si is within distance R of at least one point from P ∪{s1, s2, · · · , si−1}
and p0 is the point from this set closes to si. By the triangle inequality,

any edge (pj , p0) needs at most one more degree-2 Steiner point than edge

(pj , si) to satisfy the length bound. Thus we have

|c2(T
′
i )| ≤ |c2(Ti)|+ m ≤ |c2(Ti)|+ (dM − 1).

Moreover, since T ′
i does not contain si, it is an MST for the same set of

points P ∪{s1, s2, · · · , si−1} as Ti−1. Hence we obtain |c2(Ti−1)| ≤ |c2(T
′
i )|,

which, together with the above inequality, implies that

|c2(Ti−1)| ≤ |c2(Ti)|+ (dM − 1).

Taking the sum of above inequalities over i = 0, 1, · · · , k yields |c2(T0)| ≤
k · (dM − 1). Therefore, from Lemma 5.4 we deduce that the Steinerized

MST for P contains at most (dM − 1) times number of Steiner points that

T M
opt(P ) contains. The proof is then finished. �

Corollary 5.3 Let M be a metric space Lp with finite dM . Then the

approximation performance ratio of Steinerized minimum spanning tree al-

gorithm for minimal Steiner points in M is exactly (dM − 1).

Proof. By Theorem 5.8, the performance ratio is at most (dM−1). Recall

that Robins and Salowe [237] show that if M is a Lp metric space, then

dM equals to the maximal number of points that can be placed on the

surface of a unit ball such that the distance between all pairs of points is

greater than one unit. Thus when the algorithm is applied to the instance

of the Steiner tree problem for minimal Steiner points with R = 1 and a

set of terminal points realizing this configuration, it will return a tree with

(dM − 1) Steiner points all of degree 2. However, the optimal Steiner tree

to such an instance contains only one Steiner point of degree dM , which is

located at the center of the ball. The proof is then finished. �

It is easy to know that for the Euclidean plane, dM = 5 as shown in

Fig.5.1, and for the rectilinear plane, dM = 4 as shown in Fig.5.15. Thus

Theorem 5.4 and Theorem 5.6 follow immediately from the above corollary.
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5.4 Discussions

In this chapter we have studied the Steiner tree problem for minimal Steiner

points. A closely related problem is the bottleneck Steiner tree problem. It

asks for a Steiner tree interconnecting terminal points with at most k Steiner

points such that the length of the longest edge in the tree is minimized.

Clearly, this problem could be considered as the dual of Steiner tree problem

for minimal Steiner points and will be discussed in the next chapter.

As one of the basic optimization models, the Steiner tree problem for

minimal Steiner points finds an important application in Wireless Sensor

Networks (WSNs). A wireless sensor network consists of many low-cost,

low-power sensor nodes, which can perform sensing, simple computation,

and transmission of sensed information. Since in many applications of

WSNs, powers of sensors come from the equipped batteries that are usually

not easy to maintain (e.g., recharge or replace), energy-efficiency is one of

the most major concerns for the design of WSNs.

Lloyd and Xue [194] study the relay node placement problem in WSNs.

Since energy consumption is a super linear function of the transmission

distance, long distance transmission by sensor nodes is not energy efficient.

One method to prolong network lifetime while preserving network connec-

tivity is to deploy a small number of costly, but more powerful, relay nodes,

which can communication with other sensor or relay nodes. They assume

that sensor nodes have communication/transmission range r > 0, while

relay nodes have range R ≥ r. They study two versions of relay node

placement problems under this assumption. In the first version, the objec-

tive is to deploy minimal relay nodes so that, between each pair of sensor

nodes, there is a connecting path consisting of relay and/or sensor nodes.

In the second version, the objective is to deploy the minimal relay nodes so

that, between each pair of sensor nodes, there is a connecting path consist-

ing solely of relay nodes. They propose a 7-approximation algorithm for

the first version and a polynomial time (5+ ε)-approximation algorithm for

the second version, respectively, where ε > 0 can be any given constant.

Min et al. [209] study the design of virtual backbone for supporting

multicast communication in WSNs. A virtual backbone is a connected dom-

inating set in the network, which is a subset of sensors such that they form

a connected subnetwork and every sensor is either in the subset or adjacent

to a sensor in the subset. Since multicasting can be performed first within

virtual backbone and then to others, it has been recommended to man-

age and update the topology of virtual backbone instead of the topology
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of the whole network, which reduces both storage and message complex-

ities. Clearly, the smaller virtual backbone gives the better performance.

However, computing the connected dominating set of minimal size is NP-

hard even in Unit Disk Graphs1 (UDGs). Min et al. [209] propose a

6.8-approximation algorithm for the connected dominating set problem in

UDGs, which can be implemented distributedly (Cheng [57] proposed a

polynomial time approximation scheme for the problem, which, however, is

not a distributed algorithm). Their algorithm consists of two steps. At the

first step, it construct a maximal independent set2, which is also a dom-

inating set. At the second step, it produces a 3-approximate Steiner tree

for minimal Steiner points in the maximal independent set using greedy

algorithm 5.2.

1A unit disk is a disk with radius one. A unit disk graph is associated with a set of
unit disks in the Euclidean plane. Each node is the center of a unit disk. An edge exists
between two nodes u and v if and only if the Euclidean distance between u and v is at
most one.

2An independent set of graph G(V, E) is a subset S of V such that there is no edge
in E between any two nodes in S.



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

Chapter 6

Bottleneck Steiner Tree Problem

Bottleneck Steiner tree problem arises from the design of Wireless Sensor

Networks (WSNs). In WSNs, due to budget limits, suppose that we are

only allowed to put totally (n + k) base stations in the plane, where n

of them must be located at given points. Clearly, one would like to have

the distance between stations as small as possible. The problem is how

to choose locations for other k stations to minimize the longest distance

between stations. The problem can be more formally formulated as the

following.

Problem 6.1 Bottleneck Steiner Tree Problem [88]

Instance A set P of n terminals in a plane and an integer k > 0.

Solution A Steiner tree T for P with at most k Steiner points.

Objective Minimizing the length of the longest edge in T .

Observe that the above problem can be considered as the dual of the

Steiner tree problem for minimal Steiner points. Indeed, in the former

problem the constraint is put on the number of Steiner points and the ob-

jective is on the length of the longest edge, while in the latter the constraint

is put on the length of the longest edge in Steiner tree and the objective

is about the number of Steiner points. So optimal solutions to these two

problems have some common structural properties, and some basic ideas

for designing approximation algorithms are similar. In this chapter, the

optimal Steiner tree means the optimal Steiner tree for bottleneck Steiner

tree problem unless specified otherwise.

In Section 6.1 we will present a negative result on approximation al-

gorithms for bottleneck Steiner tree problem. In Sections 6.2 and 6.3 will

study two approximation algorithms for bottleneck Steiner tree problem

respectively. In the end we will discuss some related problems.

177
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6.1 Complexity Study

The following theorem [262] gives a lower bound for the performance ratio

of approximation algorithms for the bottleneck Steiner tree problem. The

proof is based on the known result due to Gary and Johnson [111] who

showed that the following problem is NP -complete.

Problem 6.2 Planar Vertex Cover Problem

Instance A planar graph G(V, E) with all vertices of degrees at most 4,

and a positive integer k < |V |.
Question Decide if there exists a connected vertex cover C of size k, i.e.,

a subset C ⊆ V with |C| = k such that for C contains at least

one of end vertices of each edge in E and the subgraph induced

by C is connected.

Theorem 6.1 The bottleneck Steiner tree problem in the rectilinear plane

does not admit any approximation algorithm with performance ratio less

than 2 unless P = NP .

Proof. Suppose, by contradiction argument, that there exists a

polynomial-time algorithm Aε with performance ratio (2−ε) for some ε > 0.

Then using Aε we will be able to design a polynomial-time algorithm for

the planar vertex cover problem, which is impossible unless P = NP .

Given an instance of planar vertex cover problem, we first embed G into

the rectilinear plane in such a way that all edges consists of some horizontal

or vertical segments of lengths at least (2k + 2) and every two edges meet

at an angle of either 90◦ or 180◦. And then we place some terminals on the

interior of each edge in G in such a way that each edge e ∈ E becomes a

path Pe of many edges in the rectilinear plane each having length at most

1 while the first and the last edges have length of exactly 1. Denote by

V ′ the set of all terminals. See Fig.6.1 where V has five vertices with a

connected vertex cover containing two (black) vertices as shown in (a) and

all terminals in V ′ are white nodes as shown in (b) with k = 2.

In the following we will prove that G has a connected vertex cover of

size k if and only if when algorithm Aε is applied to The bottleneck Steiner

tree problem with input G′ and k, it will produce a Steiner tree T (with at

most k Steiner points) such that the rectilinear length of each edge in T is

at most (2− ε).

Clearly, if G has a connected vertex cover of C of size k, then putting k

Steiner points at the k corresponding nodes contained in C at G′, we can

construct a Steiner tree on V ′ with k Steiner points such that the rectilinear
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length of each each in the tree is at most 1. This means that the rectilinear

length of each edge in any optimal solution on the input G′ is at most 1.

Therefore, when Aε is applied to G′ it will return a Steiner tree T with k

Steiner points such that the rectilinear length of each edge in T is at most

(2 − ε). Refer to Fig.6.1 where T contains two (black) Steiner points as

shown in Fig.6.1(c).

(a) (b) (c)

Fig. 6.1 (a) An instance of the planar vertex cover problem, (b) an instance of the
bottleneck Steiner tree problem in the rectilinear plane with k = 2, and (c) a Steiner
tree of k = 2 Steiner points.

Conversely, assume that when algorithm Aε is applied to G′ and k, it

will return a Steiner tree T with k Steiner points such that the rectilinear

length of each edge in the tree is at most (2− ε). Note that by the way of

constructing G′, G′ has two properties:

(1) Any two terminals in V ′ at two different edges of E(G) have distance

at least 2, and

(2) Any two terminals in V ′ at two non-adjacent edges of G have dis-

tance at least 2k + 2, which means that they cannot be connected

through k Steiner points.

From property (2) we deduce that in any full Steiner component of

T , every two terminals lie on either the same edge or two adjacent edges.

From property (1) we deduce that if a full Steiner component of T contains

two terminals lying on two different edges, then it must contain at least

one Steiner point. Thus we may move a Steiner point to the location of

the vertex which covers all edges containing terminals in the full Steiner

component and remove other Steiner points in the full Steiner component.

The result is a Steiner tree T ′ with at most k Steiner points such that the

rectilinear length of each edge in T ′ is at most 1. In addition, all Steiner

points in T ′ lie at vertices of G. They form a connected vertex cover C of



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

180 Steiner Tree Problems in Computer Communication Networks

size at most k for G. (Add more vertices to V ′ to increase its size equal to

k if necessary.) The proof is then finished. �

Using almost the same argument, we are able to show the parallel result

for the case of Euclidean plane, where the first and the last edges have

lengths exactly
√

2 in Fig.6.1(b).

Theorem 6.2 The bottleneck Steiner tree problem in the Euclidean plane

does not admit any approximation algorithm with performance ratio less

than
√

2 unless P = NP .

6.2 Steinerized Minimum Spanning Tree Algorithm

In this section we will present a simple 2-approximation algorithm for the

bottleneck Steiner tree problem in the rectilinear plane that works for both

rectilinear and Euclidean planes. The basic idea is to construct a Minimum

Spanning Tree (MST) Tmst for given set P of n terminals, and then add k

Steiner points to the edges in Tmst to cut some long edges short, in the end

we obtain a Steiner tree, which is called a Steinerized minimum spanning

tree. Similarly, adding some degree-2 Steiner points to a spanning tree

results in a Steinerized spanning tree.

In the following, for the simplicity of presentation, we allow a spanning

tree to have crossing edges so that for any topology each edge of a spanning

tree is a straight line segment between two vertices. Thus its length is the

shortest distance between the two vertices. Note, however, that MSTs

do not have crossing edges. The following lemma lays the basis for the

Steinerized minimum spanning tree algorithm.

Lemma 6.1 For any set P of terminals in the rectilinear plane, there

exists a spanning tree T for P such that adding k Steiner points to T can

make the longest edge in the resulting Steinerized spanning tree is at most

twice that of the optimal Steiner tree Topt to the bottleneck Steiner tree

problem in the rectilinear plane.

Proof. Since every Steiner tree can be decomposed into an edge-disjoint

union of full Steiner subtrees, we may assume that Topt is a full Steiner

tree with k Steiner points. We arbitrarily select a Steiner point as the root

of Topt. In the following we will describe how to construct a Steiner tree

T with at most k Steiner points of degree-2 such that the length of the

longest edge in T is at most twice the length of the longest edge in Topt.
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See Fig.6.2. The construction of T is bottom-up by induction on the height

of subtrees of Topt, which is defined as the number of edges in the longest

path from the root to a leaf in a rooted tree.

First, if the height of a subtree of Topt is 1, i.e., there is one Steiner

point in the subtree, then we can directly connect its leaves, which are all

terminals in P , without any Steiner points. By the triangular inequality,

the lengths of edges in the tree are at most twice that of the length of the

longest edge in the subtree.

Next we assume that for any subtree T ′ of Topt with height less than

or equal to h, if T has s Steiner points, then we have: (1) there exists a

unused path from the root of T ′ to a leaf containing l Steiner points, and

(2) there exists a Steiner tree T ′′ with s′ Steiner points of degree-2 such

that the length of the longest edge is at most twice the length of the longest

edge in T ′ and l + s′ ≤ s.

(a)

(b)

(c)

Topt

T'

T'1 T'3T'2 T"1 T"3T"2

T

Fig. 6.2 Construct a Steiner tree T with at most k Steiner points of degree-2.

We now consider a subtree T ′ with height (h + 1). Suppose that the

degree of the root of T ′ is r. See Fig.6.2(a). Eliminating the root of T ′

results in r subtrees T ′
1, T

′
2, · · · , T ′

r, all of them have heights at most h. See

Fig.6.2(b). Let ki be the number of Steiner points in T ′
i . By induction

hypothesis (1), for each T ′
i there exists an unused path from the root of
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T ′
i to a leaf of it with li Steiner points in T ′

i , and by induction hypothesis

(2), there exists a Steiner tree T ′′
i with at most (ki − li) Steiner points of

degree-2 such that the length of the longest edges in T ′′
i is at most twice

the length of the longest edge in T ′
i . Without loss of generality, we assume

that li ≥ li+1 for each i = 1, 2, · · · , r. Now we connect these r subtrees

T ′′
1 , T ′′

2 , · · · , T ′′
r with (r − 1) edges and add l1, l2, · · · , lr−1 Steiner points

to (r − 1) new edges, respectively. See Fig.6.2(c). Note that after this

process the unused paths for Tr remain unused, but those unused paths

for T ′
1, T

′
2, · · · , T ′

r−1 have been already used. In the end, adding the root,

which is a Steiner point, for T ′, we will obtain (lr +1) Steiner points which

are the Steiner points on the unused path for T ′.
By the induction argument and construction, we obtain the desired

Steiner tree T , and the proof is then finished. �

In the following we shall study a variation of bottleneck Steiner tree

problem, bottleneck Steinerized spanning tree problem. Given an instance

of bottleneck Steiner tree problem, the problem asks for the Steinerized

spanning tree T with k Steiner points of degree-2 such that the length of the

longest edge in T is minimized. We shall prove that the optimal Steinerized

spanning tree can be computed in polynomial time, which, by Lemma 6.1,

is a 2-approximation solution to bottleneck Steiner tree problem.

We first show that the optimal Steinerized spanning tree can be found

among Steinerized minimum spanning trees. For this purpose, we need the

following lemma.

Lemma 6.2 Given a set P of n terminals in a metric space, let Tmst

be the MST consisting of {e∗i |i = 1, 2, · · · , n} and T be a spanning tree

consisting of {ei|i = 1, 2, · · · , n}. Suppose that l(e∗i ) ≤ l(e∗i+1) and l(ei) ≤
l(ei+1) for all 1 ≤ i ≤ n− 2. Then l(e∗i ) ≤ l(ei) for each 1 ≤ i ≤ n− 1.

Proof. We prove the lemma by mathematical induction on |Tmst \ T |,
the number of edges in Tmst but not in T . For |Tmst \ T | = 0, we have

l(ei) = l(e∗i ) for all 1 ≤ i ≤ n − 1. Next consider |Tmst \ T | > 0. Then

there exists a natural number k, where 1 ≤ k ≤ n − 1, such that ei = e∗i
for 1 ≤ i ≤ k − 1 but ek 6= e∗k.

We now show that l(e∗k) ≤ l(ek). By contradiction argument, suppose

that l(e∗k) > l(ek). Then by the assumption of the lemma, we have l(e∗i ) >

l(ek) for i = k, · · · , n−1. Note that adding ek to Tmst will results in a cycle

containing ek and an edge e∗h for some h where k ≤ h ≤ n − 1. Deleting

e∗h yields a spanning tree whose total length is smaller than that of Tmst,

contradicting that Tmst is an MST. Hence l(e∗k) ≤ l(ek).
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We next add e∗k to T . The resulting graph T∪{e∗k} contains a cycle which

contains e∗k and an edge eg for some g where k ≤ g ≤ n− 1. Removing eg

from T∪{e∗k} will produce a spanning tree T ′ with |Tmst\T ′| = |Tmst\T |−1.

Note that all edges in T ′ satisfy the following order

l(e1)≤· · · ≤ l(ek−1)≤ l(e∗k)≤(ek)≤· · · ≤ l(eg−1)≤ l(eg+1)≤ · · · ≤ l(en−1).

By the induction hypothesis, we obtain

l(e∗k+1) ≤ l(ek), · · · , l(e∗g) ≤ l(eg−1) and

l(e∗g+1) ≤ l(eg+1), · · · , l(e∗n−1) ≤ l(en−1).

Therefore, we have l(e∗i ) ≤ l(ei) for all 1 ≤ i ≤ n− 1. �

It immediately follows from Lemma 6.3 that when we use the same

number of Steiner points to Steinerize a spanning tree and an MST, the

resulting tree from the latter has the longest edge of length not exceeding

that from the former. This implies that the optimal Steinerized spanning

tree can be found among Steinerized minimum spanning trees.

We now describe how to add k Steiner points to an MST in order to ob-

tain an optimal Steinerized spanning tree. A simple algorithm is as follows:

For each edge ei = (u, v) in the MST Tmst, if we use s(ei) Steiner points to

Steinerize it, then the length of the longest edge in the resulting path from

u to v has the minimum value l(ei)/(s(ei) + 1), which is achieved when ei

is divided evenly by s(ei) Steiner points. Denote l′(ei) ≡ l(ei)/(s(ei) + 1),

which equals the length of each segment in path ei after s(ei) is placed on

it. Initially, set s(ei) to be zero. The basic idea is to add a degree-2 Steiner

point to the edge ei with the largest s(·) at each time. After ei receives

one more degree-2 Steiner point, update l′(ei) by increasing it by one. The

process is repeated until k Steiner points of degree-2 are added.

Algorithm 6.1 Steinerized Minimum Spanning Tree

Step 0 Compute an MST Tmst = {e1, e2, · · · , en−1}
Set s(ei) := 0 and l′(ei) := l(ei)/(s(ei) + 1) for each ei ∈ Tmst

Set s := 0

Step 1 while s < k do begin

Sort all edges in TSMT in a non-increasing order of s(·)
Choose ej such that s(ej) = max{s(ei)|i = 1, 2, · · · , n− 1}
Add a degree-2 Steiner point to ej

Update s(ej) := s(ej) + 1 and l′(ei) := l(ei)/(s(ei) + 1
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Set k := k + 1

end-while

Step 2 Place s(ei) Steiner points at each ei ∈ Tsmt

Return the Steinerized minimum spanning tree T ′
smt

Lemma 6.3 Steinerized minimum spanning tree algorithm 6.1 returns

an optimal Steinerized spanning tree with k Steiner points.

Proof. We will prove the lemma by mathematical induction on k. For

k = 0, the lemma is trivially true. For any k > 0, let Tk be the Steinerized

minimum spanning tree with k Steiner points returned by algorithm 6.1

and T ∗
k be an optimal Steinerized spanning tree with k Steiner points. By

the induction hypothesis, the length of the longest edge in Tk equals that

of the longest edge in T ∗
k . In the following we show that the length of the

longest edge in Tk+1 equals that the longest edge in T ∗
k .

Denote by lmax(Tk) the length of a longest edge in Tk for any k > 0.

Then we have

lmax(Tk) = max

{
l(ei)

sk(ei) + 1

∣∣∣ 1 ≤ i ≤ n− 1

}
,

where sk(ei) is the numbers of Steiner points on the edge ei of Tk. In

addition, denote by l∗k+1 the length of a longest edge in an optimal Steiner-

ized spanning tree T ∗
k+1 with (k + 1) Steiner points. Clearly, l∗k+1 ≤

lmax(Tk+1) ≤ lmax(Tk). If l∗k+1 = lmax(Tk), then l∗k+1 = lmax(Tk+1), which

means Tk+1 is an optimal Steinerized spanning tree with k+1 Steiner points.

Thus, we may assume that l∗k+1 < lmax(Tk). Without loss of generality,

suppose that ej is an edge of Tmst satisfying lmax(Tk) = l(ej)/(sk(ej) + 1).

Let s∗k+1(ei) denote the number of Steiner points of T ∗
k+1 on the edge ei

of Tmst. Clearly, s∗k+1(ej) ≥ sk(ej) + 1. In fact, if s∗k+1(ej) ≤ sk(ej),

then l∗k+1 = lmax(T ∗
k+1) ≥ l(ej)/(sk(ej) + 1) = lmax(Tk), contradicting our

assumption.

We now show that s∗k+1(ej) = sk(ej) + 1. Suppose, by contradiction

argument, that s∗k+1(ej) > sk(ej) + 1. Then, removing one Steiner point

from ej , we obtain a Steinerized spanning tree with k Steiner points which

has the length of the longest edge not exceeding

max

{
l∗k+1,

l(ej)

sk(ej) + 2

}
< lmax(Tk) =

l(ej)

sk(ej) + 1
,

which contradicts the induction hypothesis that the length of the longest

edge in Tk equals that of the longest edge in T ∗
k .
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Next, we show that sk(ei) ≤ s∗k+1(ei) for each i 6= j. Suppose, by

contradiction argument, that sk(ei) > s∗k+1(ei) for some i 6= j. Then we

have sk(ei) > 0, which implies that edge ei receives some Steiner points

at some step in the algorithm since l(ei)/sk(ei) achieves the largest l′(·)-
value. Since the l′(·)-value does not increase for each edge in Tmst during

the computation of the algorithm, we have

l(ei)

sk(ei)
≥ l(ej)

sk(ej) + 1
= lmax(Tk).

Hence we obtain

l∗k+1 = lmax(T ∗
k+1) ≥

l(ei)

s∗k+1(ei)
≥ l(ei)

sk(ei) + 1
≥ lmax(Tk),

which contradicts the assumption that l∗k+1 < Lmax(Tk).

We now have sk(ei) ≤ s∗k+1(ei) for each i 6= j. Moreover,

sk(ej) +
∑

i 6=j

sk(ei) = k and s∗k+1(ei) +
∑

i 6=j

s∗k+1(ei) = k + 1,

which, together with s∗k+1(ej) = sk(ej) + 1, implies

∑

i 6=j

sk(ei) =
∑

i 6=j

s∗k+1(ei).

Thus we obtain sk(ei) = s∗k+1(ei) for each i 6= j, which implies sk+1(ei) =

s∗k+1(ei) for each i = 1, 2, · · · , n. Therefore, we have T ∗
k+1 = Tk+1, the

proof is then finished. �

The following theorem follows directly from Lemmas 6.2-3.

Theorem 6.3 Steinerized minimum spanning tree algorithm is a 2-

approximation algorithm for bottleneck Steiner tree problem.

6.3 3-Restricted Steiner Tree Algorithm

In this section we will study another algorithm for the bottleneck Steiner

tree problem in the Euclidean plane. It is based on the following theorem

due to Wang and Li [264].

Theorem 6.4 There exists a 3-restricted Steiner tree T of k Steiner

points whose longest edges have the length at most 1.866 times the length of
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the longest edges in the optimal Steiner tree Topt to the bottleneck Steiner

tree problem in the Euclidean plane.

Proof. Consider Topt as a tree rooted at a Steiner point. We will modify

Topt bottom up into the desired 3-restricted Steiner tree T . Without loss

of generality, we assume that Topt is a full component.

We organize the nodes in Topt level by level (ignoring degree-2 Steiner

points). The 1−th level is the lowest level and i− th level is above the (i−
1)−th level. Let s3 be a node at the 3-rd level that has some grandchildren.

Let s2 be a child of s3. If s2 is a Steiner point, we can assume that s2

has exactly two children that are terminals. Suppose, by contradiction

argument, that s2 has three (or more) children that are terminals, t1, t2,

and t3. Assume that they are clockwise around s2. Then at least one of

three angles ∠t1s2t2, ∠t2s2t3, and ∠t3s2t1 is at most 120◦. Without loss of

generality, assume that ∠t1s2t2 ≤ 120◦ and t1s2 is not shorter than t2s2

as shown in Fig.6.3(a). Then |t1t2| ≤
√

3|t1s2|. Assume further that there

are m Steiner points of degree-2 on the path from t1 to s2. Then we can

directly connect t1 with t2 while equally placing m Steiner points of degree-

2 on the segment t1t2 such that each edge in the segment has length at most√
3 < 1.866. As a result, degree of s2 is reduced by one.

(c)(b)

t
1t

2

s

t3
t4

s'

s

2

s

3

s

s2

3

(a)

t1

t2 t3

2

v

t
1t

2

s

t3
t4

u

s3

v

Fig. 6.3 (a) Degree of s2 could be reduced by one, (b, c) degree of s3 could be reduced
by one.

Now we assume that s2 has degree three, and consider two cases as

follows.

Case 1. Every edge below s3 in Topt between its children and s3 and its

grandchildren has length at most 1. Suppose that s3 has four grandchildren

(the case of three grandchildren can be handled in a similar way). We deal

with two cases separately in the following.
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Case 1.1. s3 has degree three. In this case, s3 has two children s2 and

s′2, each of them has two children t1, t2 and t3, t4, respectively. Assume that

∠t1s2t2 > 120◦ and ∠t3s
′
2t4 > 120◦ as shown in Fig.6.3(b). (Otherwise, we

can directly connect t1 and t2, t4 and t5, respectively, and get |t1t2| ≤
√

3

and |t4t5| ≤
√

3. As a result, the degree s2 is reduced by one. After that

we can repeat the modification with fewer number of Steiner points whose

degrees are greater than two.) Since one of angles ∠s3s2t1 and ∠t2s2s3 is at

most 120◦, and one of angles ∠s3s
′
2t5 and ∠t4s

′
2s3 is at most 120◦. Without

loss of generality, we may assume that ∠s3s2t1 ≤ 120◦ and ∠s3s
′
2t4 ≤ 120◦.

Thus we obtain |t1s3| ≤
√

3 and |t4s3| ≤
√

3. Let v be a node on edge

s2s3 with |vs3| = (2 −
√

3)/2. Then we have |vt2| ≤ 1.866, vt1 ≤ 1.866

and |vt4| ≤ 1.866. Note that we can replace s2 and s′2 with two Steiner

points v and u to connect those four terminals t1, t2, t3, and t4, and use s3

to directly connect t1 and its parent s in T ∗ as shown in Fig.6.3(c). Note

that the length of every new edge t1v, t2v, t3v, t1s3, t3u, and t4u is at most

1.866, and the length of s3s is at most 1. As a result, the degree of s3

has reduced by one. Hence we can continue the modification process with

(n− 3) terminals in P ∪{s3} \ {t1, t2, t3, t4}. Observe that v connects three

terminals t1, t2, and t3 forming a full Steiner component. Thus t1, t2, t3,

and t4 are not included while s3 is treated as a new terminal.

Case 1.2. s3 has degree more than three. This case can be handled in

a similar way except that more than one full component that spans three

terminals will be generated.

(a) (b)

t1t2 s

s3

s2

t1t2 s

s3

s2

Fig. 6.4 Case 2: (a) edge s2t2 has length greater than 1 and it contains degree-2 Steiner
points, and (b) degree of s2 is reduced to two after modification.

Case 2. Some edges below s3 in Topt between its children and s3 and its

grandchildren has length greater than 1. Again let s3 be a node at the third

level that has some grandchildren and s2 be one of its children. From the

previous discussion, we can assume that s2 has exactly two children t1 and
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t2. Without loss of generality, we assume that |s2t1| ≤ |s2t2| and |s2t1| = m

where m is an integer. See Fig.6.4(a). Note s2t2 can be divided into two

segments, s2s and st2 where s is a degree-2 Steiner point in Topt such

that s2s contains m edges where t2s contains m′ Steiner points of degree-2

including s. Note that the length of each edge on s2s and st2 is at most

1. Moreover, the total number of degree-2 Steiner points (not including s2

and s) in s2s and t1s2 is 2(m − 1). Thus we can directly connect t1 with

s using (d1.0713me − 1) Steiner points of degree-2, and connect t1 with t2
via s2s using (d1.0713me − 1 + m′) Steiner points of degree-2 as shown in

Fig.6.4(b). By the triangle inequality, we have |t1s| ≤ 2m. Thus the length

of each edge on t1s is at most 2m/d1.0713me ≤ 1.866. After than we can

connect t1 with s2 using 2(m−1)−(d1.0713me−1) = b0.9287mc−1 Steiner

points of degree-2. Thus t1s2 has b0.9287mc edges and each edge on it has

length at most

m

b0.9287mc − 1
≤ m

0.9287m− 1
,

which clearly is smaller than 1.68 if m ≥ 3. Thus when m ≥ 3, the degree of

s2 is reduced by one after modification as shown in Fig.6.4(b). Therefore,

we can continue the modification process with n−1 terminals in P ∪{s2}\
{t1, t2}, that is, t1 and t2 are not included while s2 is treated as a new

terminal.

(a) (b)

s3

2t

s2

t1

ss

s3

2t

s2

t1
(c)

s

s

2

t2

s

3

t1

Fig. 6.5 Case of m ≤ 2: (a) m = 2, (b) m = 2, and (c) m = 1.

We now consider the cases of m = 2 and m = 1 as shown in Fig.6.5(a-b)

and (c), respectively. Suppose that |t1s2| < |t2s2|. Then we can directly

connect t1 and t2 using the same number of degree-2 Steiner points lying

in t2s2. Note that the lengths of edges in t1t2 is at most 5/3 and 3/2 for

(a,b) and (c), respectively. After modification, the degree of s2 is reduced
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by one. Therefore, we can continue the modification process with (n − 1)

terminals P ∪{s2}\{t1, t2}. In the following we assume that |t1s2| < |t2s2|
and consider two cases separately.

Case 2.1 m = 2. In this subcase, there are three Steiner points including

s2 in path t1s2t2 in T ∗. If ∠t1s2t2 ≤ 120◦, then we have |t1t2| ≤ 2
√

3. Thus

we can use one Steiner point of degree-2 to connect t1 and t2 directly, and

then continue the process with (n− 1) terminals, that is, t1 and t2 are not

included while s is treated as a new terminal as shown in Fig.6.5(a).

If one of angles ∠t1s2s3 and ∠t2s2s3 is at most 120◦. Assume, without

loss of generality, that ∠t1s2s3 ≤ 120◦. Then we have |t1s3| ≤ 1 +
√

3.

Thus we can use two degree-2 Steiner points to connect t1 and t2 and one

Steiner point s to connect t1 and s3. Note that |ss3| ≤ 1 and s2 is no

longer in the resulting tree. Therefore, we can continue the process with

(n− 1) terminals, that is, t1 and t2 are included while s is treated as a new

terminal as shown in Fig.6.5(b).

Case 2.2 m ≤ 1. We assume that s2s3 > 1 since the case of s2s3 ≤ 1

has been discussed in Case 1. We can further assume that there exists a

degree-2 Steiner point s in the path between s2 and s3. If ∠t1s2t2 ≤ 120◦,
then we can directly connect t1 and t2 with an edge of length at most√

3. The modification process can still continue; Otherwise, one of angles

∠t1s2s3 and ∠t2s2s3 is at most 120◦. Thus one of edges t1s and t2s, say t1s,

has length at most 1.732. Thus, we directly connect t1 and s and use one

Steiner point to connect t1 and t2. Note that in the resulting tree, Steiner

point s2 is not included any more as shown in Fig.6.5(c). In this subcase,

we also can continue the modification process with (n− 1) terminals, that

is, t1 and t2 are no longer included while s is treated as a new terminal.

We have studied all possible cases, and the proof is then finished. �

By Theorem 6.4, to design a good approximation algorithm for the

bottleneck Steiner tree problem in the Euclidean plane, we may focus on

how to solve the problem of producing a 3-restricted Steiner tree T ∗
k with

k Steiner points such that the length of the longest edge in T ∗
k is minimal.

Wang and Li [264] transformed this problem into the minimum spanning

tree problem for 3-hypergraphs.

A hypergraph H(V, E) is a generalization of a graph where the edge-set

E is an arbitrary family of subsets of the vertex-set V (not just a family of

subsets of two vertices in V as a graph). A weighted hypergraph H(V, E; w)

is a hypergraph such that each edge e ∈ E has a weight w(e). An r-

hypergraph Hr(V, E; w) is such a weighted hypergraph that each edge in E
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has cardinality at most r. A path of length l ≥ 2 in H is an alternative

sequence of distinct vertices and edges v1, e1, · · · , vl−1, el−1, vl, el such that

vi ∈ ei−1 ∩ ei for all i = 2, 3, · · · , l. A hypergraph H is connected if there

exists a path in H between any two vertices in V . A cycle of length l ≤ 2 in

H is an alternative sequence of distinct vertices and edges v1, e1, · · · , vl−1,

el−1, vl, el such that v1 ∈ e1 ∩ el and vi ∈ ei−1 ∩ ei for all i = 2, 3, · · · , l.
A subhypergraph T ⊂ E of H is a tree if and only if T is connected and

contains no cycles. A tree T of a 3-hypergraph H3(V, E; w) is a spanning

tree of H3 if it contains every vertex in V . A minimum spanning tree Tmst

for a 3-hypergraph H3(V, E; w) is a spanning tree of minimum weight (total

weight of edges included in Tmst).

The transformation from the bottleneck Steiner tree problem in the

Euclidean plane into the minimum spanning tree problem for 3-hypergraphs

can be done as follows: construct a weighted hypergraph H3(V, E; w) with

vertex-set V = P and

F = {(a, b) | a, b ∈ P} ∪ {(a, b, c) | a, b, c ∈ P}.

The weight of an edge represents the smallest number of Steiner points

that should be added to the edge (corresponding a set of two or three

terminals) such that the length of Steiner tree interconnecting those two

or three terminals is no greater than the length of the longest edge in the

optimal solution to the bottleneck Steiner tree problem.

However, to assign a desired weight to each edge in E is not easy since

the length of the longest edge in an optimal solution, denoted by Lmax(T ∗
k ),

is not known. Thus we must refer to its upper bound β ≤ (1 + ε)Lmax(T ∗
k )

for any ε > 0. Such a bound can be estimated in the following way: First,

run the 2-approximation algorithm to get an upper bound β′ of Lmax(T ∗
k ),

and then use one of β′

2 , β′

2 (1 + 1
p ), β′

2 (1 + 2
p ), · · · , β′ as β, where p is an

integer such 1/p ≤ ε.

With an estimated upper bound β on Lmax(T ∗
k ), for each two-vertex

edge (a, b) ∈ E(H) we assign it a weight of the smallest number of Steiner

points that should be added to the edge such that the length of each Steiner-

ized edge in G is at most β, i.e.,

w(a, b) =
⌈ |ab|

β

⌉
− 1.

Similarly, for each three-vertex edge (a, b, c) ∈ E(H), we assign it a

weight of the smallest number of Steiner points required to connect three

terminals (possibly via a degree-3 Steiner points s) such that the length of
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each Steinerized edge in G is at most β. Such a number can be determined

as follows: Suppose |ab| ≤ |bc| ≤ ca|. Then

β′ = min
{⌈ |ab|

β

⌉
+

⌈ |bc|
β

⌉
− 2, k

}

gives an upper bound on the number, where k is the bound on the number

of Steiner points in an instance of the bottleneck Steiner tree problem. Note

that we do not need to consider those edges that satisfy

⌈ |ab|
β

⌉
+

⌈ |bc|
β

⌉
− 2 > k.

Now let i, j and l be the numbers of degree-2 Steiner points in the segments

as, bs and cs such that (i + j + l + 1) is minimized. Then to compute the

weight w(a, b, c) of three-vertex edge (a, b, c) ∈ E(H), we just need to guess

the values of i, j and l. This can be done by simply trying at most O(k3)

possibilities. For each guessed triple {i, j, j}, we can determine if the three

circles centered at terminals a, b, and c with radius iβ′, jβ′ and lβ′, denoted

by
⊙

a,
⊙

b and
⊙

c, have a point in common. Wang and Li [264] proved

the following lemma, which shows this can be done in a constant time.

(a) (b)

c

a
a

b
b

c

Fig. 6.6 There are six intersecting points: (a) one is located within all three circles and

(b) none is located within all three circles.

Lemma 6.4 Testing whether any three circles contain one common point

can be done in a constant time.

Proof. Note first that it is easy to determine whether two of
⊙

a,
⊙

b

and
⊙

c are disjoint or one completely contains the other. In the former

case, they do not contain any common point; while in the latter case, it is
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straightforward to test if the smaller of two circle is disjoint with the third

circle.

Now we only consider other cases where two of three circles intersect

with each other. Since there are only six intersecting points and these three

circles contain one common point if and only if they contain at least one

of the intersecting points, it is easy to determine whether one of the six

points is included in all three circles as shown in Fig.6.6(a) or not as shown

in Fig.6.6(b). The proof is then finished. �

In the above we have described how to, given an instance of the bottle-

neck Steiner tree problem consisting of n terminals in the Euclidean plane

and a natural number k > 0, find an instance of the minimum spanning

tree problem in weighted 3-hypergraphs H3(V, E, w) such that there is a 3-

restricted Steiner tree T for n terminals whose longest edge has length Lmax

if and only if there exists a spanning tree of H3(V, E, w) with weight equal

to k and the length of longest corresponding edges at most Lmax. To find

the MST of H3(V, E, w), we can apply an existing algorithm for this prob-

lem. In particular, Prömel and Steger [227] proposed a fully polynomial

randomized scheme for 3-uniform hypergraphs (where each edge contains

exactly 3 vertices) and proved its performance as follows.

Lemma 6.5 There exists a randomized algorithm that, given an edge-

weighted 3-uniform hypergraphs of n vertices and maximum weight wmax,

finds with probability at least 1/2 a minimum spanning tree in polynomial

time of (n + wmax).

From the above lemma, Wang and Li [264] proved the following theorem.

Theorem 6.5 There exists a randomized algorithm that, given an in-

stance of bottleneck Steiner tree problem and any ε > 0, finds with probabil-

ity at least 1/2 and running time of 1
ε poly(|P |, k) a solution to the problem

whose longest edge has length at most (1.866 + ε) times that of the optimal

Steiner tree to the problem.

Proof. Note that there are O(|P |3) edges in the hypergraph, and com-

puting the weight of an edge (a triple of three terminals) in the hypergraph

needs time of O(k3) to guess the radii of three circles. Thus the weighted

3-hypergraph can be constructed in time of O(n3k3). In addition, we can

add an extra vertex into each two-vertex edge in the hypergraph to modify

it into a 3-uniform hypergraph. Hence by Lemma 6.5 and Theorem 6.4 we

deduce that there exists a desired algorithm for the bottleneck Steiner tree

problem. The proof is then finished. �



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

Bottleneck Steiner Tree Problem 193

6.4 Discussions

Berman and Zelikovsky [30] study the bottleneck Steiner tree problem in

graphs as follows.

Problem 6.3 Bottleneck Steiner Tree Problem in Graphs

Instance A graph G(V, E) with a length l(e) on each edge e ∈ E and a

terminal-set P ⊂ V .

Solution A Steiner tree T that spans P in the distance graph GD(P ) and

each Steiner point has degree at least 3.

Objective Minimizing the bottleneck length of T , max{l(e) | e ∈ T}.
For the hardness of the above problem, they prove the following theorem

using the reduction from the problem of exact cover by 3-sets (X3C)1.

Theorem 6.6 The bottleneck Steiner tree problem in graphs does not ad-

mit any approximation algorithm with performance ratio less than 2 unless

P = NP .

For the approximability of the problem, Ganley and Salowe [106] first

prove that the minimum spanning tree algorithm has performance ratio

of 2 log2 |P |, and then Berman and Zelikovsky [30] get a better algorithm

reducing the ratio by half.

Theorem 6.7 The bottleneck Steiner tree problem in graphs admits an

approximation algorithm with performance ratio no greater than log2 |P |.

1Given a universal set X with |X| = 3k and a collection C of subsets of X each
containing exactly three elements, the problem is to determine if there is a subcollection
C′ of C that is a partition of X.
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Chapter 7

Steiner k-Tree and k-Path Routing

Problems

Steiner k-tree and k-path problems arises from the multicast communica-

tion in all-optical networks. Multicast is a point-to-multipoint communica-

tion that enables a node to send or forward data to multiple recipients [242].

In order to perform multicast communication in a network, the source and

all destination nodes must be interconnected by a tree. Thus, the prob-

lem of multicast routing in networks is usually treated as finding a tree in

a network that spans source and all destination nodes [242]. One of the

objectives of multicast routing is to minimize the network cost of produced

trees, which is defined as the sum of costs of all the links in the tree. This

can be considered as the Steiner tree problem in graphs (Problem 2.1).

To implement multicast routing in a wavelength-routed optical network
[22], the concept of a light-tree and the cross-connect architecture of splitter-

and-delivery were proposed in [5; 243]. A light-tree interconnecting the

source and all destination nodes uses a dedicated wavelength on all of its

branches. Each intermediate node in a light-tree must have a splitter so

that copies of data in the optical domain can be made and delivered to each

of its children. An n-way splitter is an optical device which splits an input

signal among n outputs, thus reducing the power of each output to 1
n -th

of that of the original signal [5]. As a result, while the power budget may

allow data on a given wavelength to be “dropped off” (or “delivered to”)

more than one destination node, it many not be possible to drop off data

at an arbitrary number of destination nodes using a single light-tree.

So Hadas [125] proposed the multi-tree routing model. Under this model

only some specified maximum number of light splitting are allowed per

transmission, and then multicast routing is to find a set of light-trees such

that each of them includes at most k destination nodes which can receive

data and every destination node is designated to receive data in one of the

195
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light-trees.

However, the application of multi-tree routing model is not easy because

most networks are designed to mainly support unicast (point-to-point) com-

munication and in a hetero-geneous high-speed network, some switches or

routers may not have multicast capability [242]. Even if a switch has mul-

ticast capability, duplicating the data and forwarding it to its neighbor

nodes in the multicast tree causes heavy load at the switch and makes

routing complicated. In addition, it is impossible to store multicast routing

information in a network of large size.

To overcome those difficulties, Hadas [125] proposed multi-path rout-

ing model, which could be considered as a generalization of point-to-point

connection. Under this model the data is sent from the source node to a

destination node in a light-path. During the data transmission along the

path, if an intermediate node itself is a destination node, then the data is

stored (dropped) and a copy of the data is forwarded to its adjacent neigh-

bor in the path. In each path some destination nodes are designated where

the data is stored (dropped). Accordingly, multicast routing is to find a set

of such paths so that every destination node is designated to receive the

data in a path. Compared with the tree model of multicast routing, this

simple model makes multicast easier and more efficient to implement, but

at the expense of increasing the network cost (since the cost of a multicast

tree is generally less than that of a set of paths rooted a fixed node).

In this chapter, we will study how to establish a multicast connection

under multi-tree and multi-path routing models in all-optical networks [122;

123]1. In Section 7.1 we shall formulate the problem as Steiner k-path

and k-tree routing problems and study their computational complexity. In

Section 7.2 and Section 7.3 we will study some approximation algorithms

for these two problems, respectively.

7.1 Problem Formulation and Complexity Study

7.1.1 Problem Formulation

We model the network under consideration as an arc-weighted digraph
~G(V, A, c), where vertex-set V is the set of nodes in the network repre-

senting switches/routers and arc-set A is the set of links between nodes

representing wires. For arc (u, v) ∈ A, cost function c : A → <+ mea-

1Although they were proposed for wavelength routed optical networks, the basic idea
may also applicable for packet switching networks [252].
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sures the desirability of using a particular arc (a lower cost means more

desirable). We assume that ~G(V, A, c) is totally symmetric, that is, there

is an arc (u, v) ∈ A from u to v if and only if there is an arc (v, u) ∈ A

from v to u, and the costs on two arcs between u and v are the same, i.e.,

c(u, v) = c(v, u). For the simplicity of presentation, we denote by G(V, A, c)

the underlying graph of ~G(V, A, c), that is a undirected graph that has the

same vertex-set V and two arcs between u and v is replaced an edge between

them whose cost is the same as the cost of one of the arcs.

As usual we also assume that the cost function c is additive over the

links in a path p(u, v) between u and v, i.e.,

c(p(u, v)) ≡
∑

a∈p(u,v)

c(a).

For the simplicity of presentation, we denote by PG′(u, v) the shortest path

from u to v in subgraph G′ of G. These notations will be used for both

directed and indirected graphs.

We define a k-path as directed trail in ~G such that in the trail at most k

nodes in D are designated to receive the data (all other nodes in the trail,

including destination nodes, can only forward the data to their neighbors

in the trail), where an arc can appear in the trail at most once (but a

node may appear more than once). In addition, we define a k-path routing

of < s, D >, denoted by Rp(s, D; k) = {Pi | i}, as a set of k-paths such

that every destination node in D must be designated to receive the data in

one of the k-paths in R(s, D; k). Two k-paths in Rp(s, D; k) may share an

arc, which will not cause any trouble during data transmission under time

division multiplexing [252]. Clearly, m ≡ d|D|/ke ≤ |Rp(s, D; k)| ≤ |D|.
Since, data is transmitted through each arc in a k-path exactly once, the

cost of multicasting data is then defined as the total costs of k-paths in

Rp(s, D; k), i.e.,

c
(
Rp(s, D; k)

)
≡

∑

Pi∈Rp(s,D;k)

c(Pi).

Multicast routing problem under k-path routing model is defined as follows.

Problem 7.1 Steiner k-Path Routing Problem [123]

Instance A graph ~G(V, A, c), a source node s ∈ V and a subset D ⊂ V

of destination nodes, and an integer k ≥ 1.

Solution A k-path routing Rp(s, D; k).

Objective Minimizing the cost of Rp(s, D; k).
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Similarly, a k-tree is defined as a tree in G such that in the tree at most

k nodes in D are designated to receive data (all other nodes in the tree,

including destination nodes, can only forward data to their neighbors in

the tree). A k-tree routing of < s, D >, denoted by Rt(s, D; k) = {Ti | i}, is

defined as a set of k-trees such that every destination node in D must be

designated to receive data in one of the k-trees in R(s, D; k). Two k-trees in

Rt(s, D; k) may also share an edge under the wavelength division multiplex-

ing. Clearly, m ≡ d|D|/ke ≤ |R(s, D; k)| ≤ |D|. Since, data is transmitted

through each edge in a k-tree exactly once, the cost of multicasting data is

then defined as the total costs of k-trees in Rt(s, D; k), i.e.,

c
(
Rt(s, D; k)

)
≡

∑

Ti∈Rt(s,D;k)

c(Ti).

Multicast routing problem under k-tree routing model is defined as follows.

Problem 7.2 Steiner k-Tree Routing Problem [122]

Instance A graph G(V, E), a source node s ∈ V and a subset D ⊂ V of

destination nodes, and an integer k ≥ 1.

Solution A k-tree routing Rt(s, D; k).

Objective Minimizing the cost of Rt(s, D; k).

It is worthy of emphasizing that under k-tree routing model, a k-tree

may contain more than k nodes in {s} ∪ D (but at k of them need to

be assigned to receive data), but in the discussion of k-Steiner ratios in

Chapter 2, a k-tree contains exactly k terminals in P . In addition, Steiner

tree problem in graphs (Problem 2.1) could be considered as a special case of

Steiner k-tree routing problem (Problem 7.2) with k ≥ |V | and P = {s}∪D.

7.1.2 Complexity Study

Let us first consider Steiner k-tree routing problem. Clearly, when k = 1,

the optimal k-tree routing consists of |D| shortest paths from source s to

each of |D| destination nodes. Thus it can be found in polynomial time.

The following theorem shows that this is also true when k = 2. The proof is

based on a polynomial-time reduction from the minimum weighted matching

problem: given a complete graph H of even |V (H)| with a weight function:

w(, ) : V (H) × V (H) → Q+, find a complete matching M ⊆ E(H) such

that every node in V (H) is incident to exactly one edge in M and the total

weight of edges in M is minimal. This problem can be solved in polynomial

time (refer to Chapter 11 of [224]).
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Theorem 7.1 The Steiner k-tree routing problem with k = 2 is

polynomial-time solvable.

Proof. Given a multicast connection request < s, D > on network G

with D = {d1, · · · , d|D|}, the reduction can be done as follows (see Fig.7.1,

where D contains six destination nodes in black).

Step 1. Compute the shortest path pG(u, v) for each node pair u, v ∈ V .

Step 2. Compute SMT T (di, dj , s) of {di, dj} for each pair di, dj ∈ D,

i.e., find u∈V such that c(pG(di, u))+c(pG(dj , u))+c(pG(s, u))=

min{c(pG(di, v)) + c(pG(dj , v)) + c(pG(s, v)) | v ∈ V }.
Step 3. Construct an auxiliary graph G′(D ∪ {s1, · · · , s|D|}, E′) such

that there is an edge between di and dj for i 6= j with weight

w(di, dj) = c(T (di, dj , s)), there is an edge between si and sj

for i 6= j with weight zero, there is an edge between si and di

for each i with weight w(si, di) = c(pG(s, di)), and there is no

edge between di and sj for i 6= j (or equivalently, edges between

them have very large costs).
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Fig. 7.1 The reduction from the Steiner k-tree routing problem with k = 2 to minimum
weight matching problem.

Clearly, Steps 1-3 can be done in polynomial time. Moreover, given

a minimum weight matching M ⊂ E ′ of G′, we can produce an optimal

k-tree routing Rt(s, D; k) on G as follows: (1) For each edge (di, dj) ∈ M ,

produce a k-tree that is an SMT of {s, di, dj}; (2) For each edge (si, di) ∈M ,

produce a k-tree that is the shortest path pG(s, di) from s to di. The proof

is then finished. �
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However, Lin [187] proved the following theorem showing that the prob-

lem becomes NP -hard when k = 3. His proof is based on a polynomial

reduction from the decision version of exact 3-set cover problem: Given a

universal set S and a collection of 3-sets C = {C1, C2, · · · , Cm}, where every

Ci is a set containing 3 elements from S, decide if there exists a subcollec-

tion of disjoint 3-sets whose union is S. This was proved to be NP -hard
[110].

Theorem 7.2 The Steiner k-tree routing problem with k = 3 is NP -hard.

Proof. It suffices to show that there exists a polynomial-time reduction

from the decision version of the exact 3-set cover problem to the decision

version of the Steiner k-tree routing problem with k = 3. The latter is as

follows: Given a graph G(V, E), a node s ∈ V and a subset D ⊂ V , and a

constant B > 0, decide if there exists a 3-tree routing with cost at most B.

CC

ss

32

65

C1

s s s2 3 4s1

s

Fig. 7.2 The reduction from the exact 3-set cover problem to the Steiner k-tree routing
problem with k = 3.

Given an instance I of decision version of the exact 3-set cover prob-

lem: S consisting of n = 3q elements, s1, s2, · · · , sn, and m subsets of S,

C1, C2, · · · , Cm. The reduction can be done as follows (see Fig.7.2):

Step 1. Create one destination node for every element si, 1≤ i ≤ n, and

create one Steiner point for every 3-set Ci, and there is an edge

connecting this point to every destination node inside the set.

Step 2. Create a source node s, which is adjacent to every Steiner point.

Step 3. Assign a unit weight to all edges and set B = 4q.

Clearly we can produce in polynomial time such an instance I ′ of the

decision version of the Steiner k-tree routing problem with k = 3. Moreover,

it is easy to verify that instance I ′ has a 3-tree routing of cost at most 4q if
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and only if instance I has a subcollection of q 3-sets C = {Ci1, Ci2, · · · , Ciq}
such that ∪q

j=1Cij = S and Cis ∩ Cit = ∅ for s 6= t and 1 ≤ s, t ≤ q. The

proof is then finished. �

We now consider Steiner k-path routing problem. When k = 1, the

problem is equivalent to the shortest path problem, thus it is polynomial-

time solvable. When k = 2, using almost the same argument for proving

Theorem 1.1, we can prove the following theorem.

Theorem 7.3 The Steiner k-path routing problem is polynomial-time

solvable when k = 2.

Proof. Again we will reduce the problem to minimum weight matching

problem. Given a multicast connection request < s, D > on network ~G

with D = {d1, · · · , d|D|}, the reduction can be done as follows.

Step 1. Compute the shortest path pG(di, dj) between each node pair

di, dj ∈ D for i 6= j, and the shortest path pG(s, di) from

source s to each di in D.

Step 2. Construct an auxiliary graph G′(D ∪ {s1, · · · , s|D|}, E′): there

is an edge between di and dj for i 6= j with weight w(di, dj) =

min{c(pG(s, di)) + c(pG(di, dj)), c(pG(s, dj)) + c(pG(dj , di))},
there is an edge between si and sj for i 6= j with weight zero,

and there is an edge between si and di for each i with weight

w(si, di) = c(pG(s, di)).

Clearly, Steps 1-2 can be done in polynomial time. Moreover, given a

minimum weight matching of G′ that is a perfect matching M of G′ whose

weight is minimal, we can produce an optimal k-path routing Rp(s, D; k) on

G as follows: (1) For each edge (di, dj) ∈M , produce a k-path from s to dj

via di that consists of PG(s, di) and PG(di, dj) if w(di, dj) = c(pG(s, di)) +

c(pG(di, dj)) and a k-path from s to di via dj that consists of PG(s, dj)

and PG(dj , di) if w(di, dj) = c(pG(s, dj)) + c(pG(di, dj)); (2) For each edge

(si, di) ∈M , produce a k-path from s to di.

The correctness of the reduction follows from two facts, which can be

easily verified: (a) Each of possible shortest k-paths is associated with

exactly one edge in G′ whose cost is the weight of the edge, and (b) each

of destination nodes is incident to exactly one edge in M . That means,

every destination node is designated in a produced k-path. The proof is

then finished. �

The following theorem, however, shows that the problem is NP -hard

for general k.
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Theorem 7.4 The Steiner k-path routing problem is NP -hard.

Proof. We will consider the decision version of Steiner k-path routing

problem. Given a multicast connection < s, D > on network G, an integer

k > 2 and a bound B > 0, the problem asks if there is a k-path routing for

< s, D > whose cost is at most B.

It was proved (refer to Theorem 16.7 of [224]) that Hamilton circuit

problem for graphs with all nodes of degree three (that is a 3-regular graph)

is NP -complete. It was also proved (refer to Corollary 1 of Section 15.6

of [224]) that Hamilton path problem is NP -complete through a simple

reduction as follows. Given a 3-regular graph G(V, E), construct a new

graph G(V ′, E′) where V ′ = V ∪ {x, y, z} and E′ = E ∪ {(y, z), (x, v0)} ∪
{(y, v) | (v, v0) ∈ E}, for some fixed v0 ∈ V . See Fig.7.2. It can be verified

that G(V, E) has a Hamilton circuit2 if and only if G(V ′, E′) has a Hamilton

path3.

v0 x y zv0

G  V  E G  V'  E'(   ,    ) (   ,     )

Fig. 7.3 Constructing a new graph G(V ′, E′) from given 3-regular graph G(V, E).

We now show that Hamilton path problem for above defined graph

G(V ′, E′) can be reduced in polynomial time to Steiner k-path routing

problem. First, we construct ~G(V ′, A, c) by substituting each edge (u, v) ∈
E′ with a pair of arcs (u, v) and (v, u) whose costs c are equal to one.

Secondly, we set s := x, D := V ′ \ {x}, B := |V ′| − 1, and k := |V ′|. It is

easy to verify that G(V ′, E′) has a Hamilton path if and only if ~G(V ′, A, c)

has a k-routing Rp(s, D; k) whose cost is at most B. The proof is then

finished. �

2A Hamilton circuit (also called cycle) of graph G(V, E) is a closed path that consists
of |V | edges and contains every vertex in V .

3A Hamilton path of graph G(V, E) is a path that consists of (|V | − 1) edges and
contains every vertex in V .
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7.2 Algorithms for k-Path Routing Problem

As in the previous section we have proved that Steiner k-path routing prob-

lem is NP -hard in general, in this section we will study two approximation

algorithms for the problem that both have guaranteed performances.

7.2.1 Steiner Tree Based Algorithm

The basic idea of this algorithm is to simply produce a Steiner tree of

D ∪ {s} first and then transverse the obtained tree. See Fig.7.4-5.
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Fig. 7.4 (a) Traverse along the Steiner tree TS , and (b) Partition the obtained trail T .

Algorithm 7.1 Steiner Tree Based Approximation Algorithm

Step 1 Construct an auxiliary complete edge-weighted graph Ga of D∪{s}.
For each node pair u, v ∈ D∪{s}, the weight of edge (u, v) in Ga is

the cost of the shortest path in G between u and v.

Step 2 Construct an MST Tmst of Ga and substitute each edge in Tmst

by the shortest path between two endpoints in G. And then as a

result, obtain a Steiner tree TS of D ∪ {s} in G.

Step 3 Produce a directed trail of D ∪ {s} by traversing each vertex of

D∪{s} along TS , and denote it by T = (s→ d1 →· · ·→ d|D| → s).

Step 4 Partition T into m subtrails Ti for i = 0, 1, · · ·m− 1 such that

dik+1, dik+2, · · · , dik+k are designated in Ti to receive the data.

Step 5 Find vi in Ti which is closest to source s for each i.

Step 6 Construct two k-paths via vi to include k designated destination
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nodes in subtrail Ti: P ′
i = {s→ di′ → di′−1 → · · · → dik+1},

P ′′
i = {s→ di′+1 → di′+2 → · · · → dik+k}, where vi lies between

di′ and di′+1 in Ti.

Return k-path routing RST ={P ′
i | i=0, 1,· · ·, m−1}∪{P ′′

i | i=0, 1,· · ·, m−1}.
Fig.7.4(a-b) illustrate Steps 3-4, and Fig.7.5(a-b) illustrate Steps 5-6,

respectively. Note that in Step 4, Ti may contain more than k destination

nodes. We now study the guaranteed performance of Algorithm 7.1 in worst

case analysis. To do this, we need the following lemma. Given a multicast

connection < s, D >, let Ropt be an optimal k-path routing and c(Ropt) be

its cost.

s

d

d d

d
vT i

i'

ik+1

i
i'+1

ik+k

p s, v(       )
G i

s

i iP' P"

(a)

(b)

Fig. 7.5 (a) Find node vi ∈ Ti closest to source s, (b) Produce two k-paths P ′
i and P ′′

i .

Lemma 7.1 Let di′ be the destination node in trail Ti that is designated

to receive the data and is closest to s. Then

m−1∑

i=0

c
(
pG(s, di′ )

)
≤ c(Ropt). (7.1)

Proof. Consider an optimal routing Ropt that has N k-paths

P ∗
1 , P ∗

2 , · · · , P ∗
N , where N ≥ m. We construct an auxiliary weighted bi-

partite graph B(X, Y ), where X = {Ti | i = 0, 1, · · · , m − 1} and Y =

{P ∗
i | i = 1, · · · , N}. There exists an edge (Ti, P

∗
j ) in B(X, Y ) if and only

if Ti and P ∗
j designate d ≥ 1 destination nodes in common and the weight
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of the edge is w(Ti, P
∗
j ) = d. See Fig.7.6.
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Fig. 7.6 Construct bipartite graph B(X, Y ).

Now we prove, by using Hall’s Theorem [224], that B(X, Y ) has a (per-

fect) matching such that each Ti is incident to an edge in the matching.

Suppose, by contradiction, that there exists a subset X0 ⊆ X such that

X0’s neighbor set Y0 ⊆ Y , which consists of vertices adjacent with some

vertices in X0, satisfies |Y0| ≤ |X0| − 1. Since each Ti designates at most k

destination nodes and each of them is designated in exactly one optimal k-

path, then the total weight of edges incident to Ti is at most k. For each P ∗
j

we have the same result. Now for X ′ ⊆ X and Y ′ ⊆ Y , let w(X ′) and w(Y ′)
denote the total weights of edges incident to some Ti ∈ X ′ and P ∗

j ∈ Y ′,
respectively. Then w(Y ′) ≤ k|Y ′|, this implies w(X0) ≤ w(Y0) ≤ k|Y0|. In

addition, we have

w(X \X0) ≤ k|X \X0| = k(m− |X0|).

Hence we obtain the following contradiction:

|D| = w(X0) + w(X \X0) ≤ k|Y0|+ k(m− |X0|) ≤ k(m− 1) < |D|.

Therefore, there exists a desired matching. Without loss of generality, we

denote this matching by M = {(Ti, P
∗
i ) | i}. This means that for each i there

exists a destination node designated in both Ti and P ∗
i . Thus the cost of

P ∗
i is not less than the cost of the shortest path from s to that common

designated destination node, which, by the definition of di′ , is not less than

the cost of the shortest path from s to di′ , i.e., c(P ∗
i ) ≥ c(pG(s, di′ )). To
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sum up this inequality over i, we obtain the desired inequality (7.1). The

proof is then finished. �

Theorem 7.5 Steiner tree based algorithm 7.1 returns a k-path routing

RST whose cost is at most four times that of an optimal k-path routing

Ropt.

Proof. Notice that an optimal k-routing Ropt = {P ∗
i | i = 1, · · · , N} can

be transformed into a (undirected) spanning tree of Ga, that can be done by

substituting each directed path in P ∗
i from one destination node to another

with the shortest path in G. Thus c(Ropt) ≥ c(Tmst). According to the

rules of Algorithm 7.1 and Lemma 7.1, we have

c(RST ) =
m−1∑

i=0

(
c(P ′

i ) + c(P ′′
i )

)
(7.2)

≤ c(T ) + 2
m−1∑

i=0

c
(
pG(s, vi)

)

≤ 2 · c(Tmst) + 2 · c(Ropt) ≤ 4 · c(Ropt),

which proves the theorem. �

Cai et al. [42] gave an example showing the bound 4 in Theorem 7.5 is

tight. In their example, the optimal k-path routing consists of m k-paths,

{P ∗
1 , P ∗

2 , · · · , P ∗
m}, where

P ∗
1 = {s→ dmk−1 → dmk → d1 → · · · → dk−2},

P ∗
2 = {s→ dk−1 → dk → dk−1 → · · · → d2k−2},
· · · = · · ·
P ∗

m = {s→ d(m−1)k−1 → d(m−1)k → d(m−1)k+1 → · · · → dmk−2}.

The costs of the edges on the optimal k-path routing are defined as follows:

c(s, dik−1) = M, i = 1, 2, · · · , m;

c(dj , dj+1) = 1, j 6= ik − 2 for some i.

The underlying network G is the completion of the routing tree. It is

easy to verify that the optimal k-path routing and MST both have cost

of m(M + k − 1) while the Hamilton circuit has cost of 2m(M + k − 1).

According to the partitioning scheme of Algorithm 7.1, d1, d2, · · · , dk are

on a segment and among them dk−1 is the closest to source s. Hence,
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Algorithm 7.1 returns a k-path routing has a cost m(4M + 2k − 3), which

is asymptotically 4m(M + k − 1).

In addition, Steiner tree based algorithm 7.1 can be easily modified so

that the bound on its approximation ratio could be reduced to 2 for m = 1, 2

and 3 for m = 3, respectively.

Applying the same idea of Algorithm 7.1, Cai et al. [42] proposed a

better approximation algorithm by introducing a different technique for

partitioning the Hamilton circuit.

Suppose, without loss of generality, that the destination nodes on the

Hamilton circuit are indexed consecutively from d1 to d|D|, with source

node s lying in between d1 and d|D|. Assume lk < |D| ≤ (l + 1)k for some

l. They make a new Hamilton circuit as follows:

(1) Make ((l + 1)k − |D|) copies of s, d|D|+1, · · · , d(l+1)k;

(2) Connect those new nodes in a path and replace s with them;

(3) Set w(d|D|, d|D|+1) = w(d|D|, s), w(di, di+1) = 0,

for i = |D|+ 1, ..., (l + 1)k − 1, and w(d(l+1)k , d1) = w(s, d1).

Clearly, the new Hamilton circuit contains exactly (l + 1)k nodes while its

weight remains unchanged.

Now in stead of dividing the Hamilton circuit into (l + 1) segments

starting from d1 each containing exactly k nodes, they choose an index j

such that
∑l

i=0 w(s, dik+j ) is minimal, denote it by j∗, and then divide the

Hamilton circuit into (l + 1) segments starting from dj∗ , i.e.,

(dj∗ , dj∗+1, dj∗+k−1), · · · , (dj∗+lk, dj∗+lk+1, dj∗+(l+1)k−1),

where the subscripts take module of (l + 1)k. In the end they append each

i-th segment (path) with edge (s, d(i−1)k+j∗ ) for i = 0, 1, · · · , l, and obtain

a k-path routing. Cai et al. [42] proved the following theorem.

Theorem 7.6 Given a multicast connection < s, D > and k ≥ 2, the

improved Algorithm 7.1 produces a k-path routing RIST whose cost is at

most three times that of an optimal k-path routing Ropt.

Proof. Let Ropt = {P ∗
i | i = 1, · · · , m} be an optimal k-path routing for

< s, D >. Let dj be a destination node in path P ∗
i , then the distance from

dj to s in graph G is no greater than the distance from dj to s in P ∗
i , i.e.,

w(dj , s) ≤ c(pP∗
i
(dj , s)). Now suppose that all destination nodes in P ∗

i are

dj1 , dj2 , · · · , djl
, where l ≤ k. Then we have
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l∑

j=1

w(djj , s) ≤
l∑

j=1

c
(
pP∗

i
(djj , s)

)
≤ l · w(P ∗

i ) ≤ k · w(P ∗
i ).

Hence we have

|D|∑

i=1

w(di, s) ≤ k

|D|∑

i=1

w(P ∗
i ) = k · c(Ropt). (7.3)

According to the method that we choose j∗, we deduce from the in-

equality (7.3) that

l∑

i=1

w(dik+j∗ , s) ≤ c(Ropt),

otherwise we will have

l∑

i=1

w(dik+j , s) > c(Ropt), j = 1, 2, · · · , k.

Recall that the Hamilton circuit has weight no greater than two times of

c(Ropt), which, together with (l+1) paths from s to dik+j∗ for i = 0, 1, · · · , l,
makes a k-path routing whose weight is at most three times that of the

optimal k-path routing Ropt. The proof is then finished. �

7.2.2 Set Cover Based Algorithm

The basic idea of the second algorithm is to transform Steiner k-path rout-

ing problem to the set cover problem, which can be solved approximately

by a greedy algorithm [65]. An instance of set cover problem consists of a

finite set S and a collection C of subsets Si ⊂ S with a weight w(Si) > 0 for

i = 1, 2, · · · , m that satisfies ∪m
i=1Si = S. A subcollection C′ ⊆ C is called a

set cover if each element in S is in at least one subset of C ′. The objective

is to find a set cover whose weight, the total weights of subsets in the set

cover, is minimal.
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Algorithm 7.2 Set Cover Based Approximation Algorithm

Step 1 For each subset of j destination nodes {di1 , · · · , dij} ⊆ D, where

j = 1, · · · , k, produce a j-path (as in the proof of Corollary 7.1):

Step 1.1 Produce an auxiliary graph G(di1 , · · · , dij ). It is a complete edge-

weighted graph of {di1 , · · · , dij}∪{s}. For u, v ∈{di1 , · · · , dij}∪{s}
the weight of edge (u, v) is the cost of the shortest path in G

between u and v.

Step 1.2 Construct an MST Tmst(di1 , · · · , dij ) of G(di1 , · · · , dij ) and

substitute each edge in Tmst(di1 , · · · , dij ) by the shortest path

between two endpoints in G. Obtain a Steiner tree TS(di1 , · · · , dij )

of {di1 , · · · , dij} ∪ {s}.
Step 1.3 Obtain a j-path P (di1 , · · · , dij ) by traversing each vertex of

{di1 , · · · , dij}∪{s} along TS(di1 , · · · , dij ) whose edges are replaced

by two arcs between two endpoints of the edges.

Step 2 Assign weight w(di1 , · · · , dij ) = c(P (di1 , · · · , dij )) for each subset

{di1 ,· · ·, dij}. Find a set cover C ′ of D, by using a subcollection of

C = {{di1 , · · · , dij} | all
(|D|

j

)
j-tuples {di1 , · · · , dij}, j = 1, · · · , k}.

Step 2.1 Choose a subset Sg = {di1 , · · · , dig} that satisfies the equality

w(di1 , · · · , dig )/g = min{w(di1 , · · · , dij )/j | {di1 , · · · , dij} ∈ C}.
Step 2.2 Put {di1 , · · · , dig} into set cover C ′, and then remove every element

in {di1 , · · · , dig} from D, C and each {di1 , · · · , dij}.
Step 2.3 Repeat (Step 2.1-2) until D is empty.

Step 3 Return k-path routing RSC that contains k-path P (di1 , · · · , dij )

if {di1 , · · · , dij} is in C′.

Theorem 7.7 Given a multicast connection < s, D > and k ≥ 2, Algo-

rithm 7.2 returns a k-path routing RSC whose cost is 2H(k) times that of

an optimal k-path routing Ropt, where H(k) =
∑k

i=1 1/i.

Proof. Let Copt be an optimal set cover of the set cover problem generated

at Step 2. Then it can be proved (refer to [65]) that

c(RSC) =
∑

{di1 ,··· ,dij
}∈C′

c
(
P (di1 , · · · , dij )

)

≤ H(k)
∑

{di1 ,··· ,dij
}∈Copt

c
(
P (di1 , · · · , dij )

)
. (7.4)

Now consider an optimal k-path routing Ropt = {P ∗(di1 , · · · , dij )},
where P ∗(di1 , · · · , dij ) is an optimal k-path designating all destinations
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in {di1 , · · · , dij}. Let C∗ = {{di1 , · · · , dij} |P ∗(di1 , · · · , dij ) ∈ Ropt}. Since

C∗ is a set cover, then we have
∑

{di1 ,··· ,dij
}∈Copt

c
(
P (di1 , · · · , dij )

)
≤

∑

{di1 ,··· ,dij
}∈C∗

c
(
P (di1 , · · · , dij )

)
. (7.5)

Notice that by using the same argument as in the proof of Theorem 7.5,

we can prove that each k-path P (di1 , · · · , dij ) produced by Algorithm 7.2

satisfies the following inequality

c
(
P (di1 , · · · , dij )

)
≤ 2 · c

(
P ∗(di1 , · · · , dij )

)
. (7.6)

Therefore, to combine above three inequalities we have

c(RSC) ≤ 2H(k)
∑

{di1 ,··· ,dij
}∈C∗

c
(
P ∗(di1 , · · · , dij )

)
= 2H(k)c(Ropt).

This is the desired bound, and the proof is then finished. �

For the case of small k = 3, Algorithm 7.2 can be modified so that its

approximation ratio can be reduced to 11/6. In addition, it is easy to verify

that the time-complexity of Algorithm 7.2 is O(k|D|k |V |2).

7.3 Algorithms for k-Tree Routing Problem

As in Section 7.1 we have proved that Steiner k-tree routing problem in

general is NP -hard, in this section we will propose two approximation

algorithms that have guaranteed performance ratios.

7.3.1 Hamilton Circuit Based Algorithm

The first algorithm is similar to Steiner tree based algorithm 7.1. It first

produces a directed trail of low cost including all nodes in D∪{s}, and then

break it into m small trails on which at most k nodes in D are specified,

in the end for each small trail make a k-tree constituting of s and those

specified nodes in D. The directed trail can be obtained by constructing

a Hamilton circuit of low cost in an auxiliary graph whose vertex-set is

D ∪ {s}.
Algorithm 7.3 Hamilton Circuit Based Algorithm

Step 1 Construct an auxiliary graph Ga as in Step 1 of Algorithm 7.1.

Step 2 Produce a Hamilton circuitHcof Gausing Christonfides’ method[61].



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

Steiner k-Tree and k-Path Routing Problems 211

Step 3 Obtain a directed trail T of D∪{s} in G by substituting each edge

in Hc by the shortest path between its two endpoints of the edge in

G, T = (s→ d1 → · · · → d|D| → s).

Step 4 Partition T into m subtrails Ti for i = 0, 1, · · ·m− 1 such that

dik+1, dik+2, · · · , dik+k are designated in Ti to receive the data. For

each i, find vi in Ti which is closest to source s.

Step 5 Construct a k-tree Ti consisting of two paths (dik+1 → dik+2 →
· · · → dik+k) and (s→ vi), where dik+1, dik+2, · · · , dik+k in subtrail

Ti are designated to receive the data in Ti.

Step 6 Return k-tree routing RHC = {Ti | i = 0, 1, · · ·m− 1}.
Notice that as the auxiliary graph Ga produced at Step 1 is a com-

plete graph and the cost function defined on its edges satisfies triangular

inequality, in Step 2 Christonfides’ method can be employed to construct a

Hamilton circuit Hc of Ga. The following lemma comes directly from the

well-known result due to Christonfides [61].

Lemma 7.2 For any given multicast connection < s, D > on G, the

Hamilton circuit Hc of Ga produced at Steps 1-2 of Algorithm 7.3 has cost

at most 3/2 times that of the minimum Hamilton circuit of Ga.

To study the performance of Algorithm 7.3, we also need Lemma 7.1,

which, it is easy to see, is also applicable here.

Theorem 7.8 Given a multicast connection < s, D > and k > 2, Hamil-

ton circuit based algorithm 7.3 returns a k-tree routing RHC whose cost is

at most four times that of the optimal k-tree routing Ropt.

Proof. Let Hopt be the minimum Hamilton circuit of Ga. Then we have

2 · c(Ropt) ≥ c(Hopt) since two Ropts correspond a Hamilton circuit of Ga.

In addition, by Lemma 7.2 we have 3
2c(Hopt) ≥ c(Hc). Thus according to

the rules of Algorithm 7.3 and Lemma 7.1, we have

c(RHC) =

m−1∑

i=0

c(Ti)

=

m−1∑

i=0

c(Ti) +

m−1∑

i=0

c
(
pG(s, vi)

)

< c(T ) + c(Ropt) ≤ c(Hc) + c(Ropt)

≤ 3

2
· 2 · c(Ropt) + c(Ropt) = 4 · c(Ropt),
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which proves the theorem. �

When m = 2, Hamilton circuit based algorithm 7.3 can be modified

as follows: After partitioning T into two subtrails To and T1 at Step 4,

construct a k-tree routing consisting of two k-trees,

T1 = {s→ d1 → d2 → · · · → dk−1 → dk},
T2 = {s→ d|D| → d|D|−1 → · · · → dk+2 → dk+1}.

Applying the same argument as used in the proof of Theorem 7.8, we can

deduce c(RHC) ≤ 3 · c(Ropt).

7.3.2 Steiner Tree Based Algorithm

The Steiner tree based algorithm is proposed by Cai et al. [42]. In stead of

constructing a Hamilton circuit of auxiliary graph Ga, it first produces a

low cost of Steiner tree T in G interconnecting all nodes in {s}∪D. Here we

can use an α-approximation algorithm for Steiner tree problem in graphs.

Suppose that there are l branches of T rooted at s. If each of l branches

contains at most k destination nodes in D, then T constitutes a k-tree

routing with cost c(T ) ≤ α·c(Ropt) since the cost of SMT c(Tsmt) ≤ c(Ropt)

and c(T ) ≤ α · c(Tsmt).

In the following we consider the case that there exists (at least) one

branch rooted at s, denote it by Tb, that contains more than k destination

nodes. We will demonstrate how to divide it into some small sub-branches

so that each of them contains at most k destination nodes in D while

keeping the total cost of distances from the roots of these sub-branches to s

within two times of the cost of the optimal k-tree routing. Note that those

branches which contain no more than k destination nodes in D do not need

dividing operations. In such a way, we will obtain a k-tree routing whose

cost is at most (2 + α) times that of the optimal k-tree routing.

We now assume that Steiner tree Tb contains d (> k) destination nodes

in D. Cai et al. [42] proved the following two lemmas that deal with two

cases separately, d ≥ 2k/3 and 2k/3 > d > k.

Lemma 7.3 Tb could be partitioned into two subtrees such that they have

one node in common and the number of destination nodes they contain is

at least d/3 but at most 2d/3.

Lemma 7.4 Suppose k < d ≤ 3k/2 and k ≥ 3. Let D0 be a set of

(d− k/2+1)destination nodes in Tb. Then Tb could be partitioned into two
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subtrees T1 and T2 such that they have one node in common and contain a

set of destination nodes D1 ⊂ D0 and D2 ⊂ D0 with 0 < |D1|, |D2| ≤ k,

respectively.

Proof. Consider Tb as a Steiner tree rooted at a node b in Tb. Denote by

d(v) be the number of destination nodes in the subtree of Tb rooted at v.

Let r denote the farthest node from b that has d(r) ≥ d− k/2. Note that r

is well-defined and unique since k < d ≤ 3k/2. Now rooting tree Tb at node

r instead of b will guarantee that r is the only node with d(r) ≥ d − k/2.

Clearly, the degree of node r is at least 2.

In order to obtain a desired pair of partition of Tb, we first arbitrarily

partition Tb into two subtrees T1 and T2 both rooted at r. Suppose that

T1 and T2 contain a set D1 and D2 of destination nodes, respectively. If

0 < |D1|, |D2| ≤ k, then we get the desired partition.

Now we assume that the current partition does not satisfy 0 <

|D1|, |D2| ≤ k, and assume further, without loss of generality, that |D2| ≥
|D1|. Then we have |D1| ≤ 1/k and |D2| > d− k/2. If not, we will obtain

either |D2| ≤ d − k/2 or |D1| > 1/k (which implies |D2| ≤ d − k/2).

Since d ≤ 3k/2, we obtain |D1| ≤ |D2| ≤ k. Moreover, notice that

|D0| = d− k/2 + 1, thus there must be at least one node in D0 included in

T1, and at least one distinct node in D0 included in T2, i.e., |D1| > 0 and

|D2| > 0, contradicting that the current partition is not a desired partition.

As we have proved in the above, |D1| ≤ 1/k and |D2| > d− k/2, if the

current partition is not a desired partition, we now show how to modify

the current partition into a desired partition. For this purpose, we consider

subtree T2. Since r is the only node with d(r) ≥ d− k/2, T2 must have at

least two branches rooted at r and each of these branches contains at most

(d− k/2) destination nodes (including r if r is a destination node). Denote

these branches by T2i for i = 1, 2, · · · l and the set of destination nodes in

T2i by D2i. Thus |D2i| ≤ d − k/2 for each i. In the following we consider

two cases.

Case 1. There is a branch T2i for some i with |D2i| > k/2. In this

case, we have |D2i| ≤ d − k/2 ≤ k. We can repartition T in such a way

that T2 has only one branch T2i while T1 consists of the rest. Clearly, this

produces a desired partition since T1 is not empty but contains at most

(d− k/2 + 1− (k/2 + 1)) ≤ d− k ≤ k/2 destination nodes.

Case 2. Every branch contains at most k/2 destination nodes, i.e.,

|D2i| ≤ k/2 for i = 1, 2, · · · , l. For ease presentation, we relabel T1 as T20

and D1 as D20. Recall that D0 has d−2/k+1 > k/2+1 destination nodes,
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thus there are at least two branches in {T20, T21, · · · , T2l}, say T2i and T2j ,

that contain distinct destination nodes in D0. We repartition the current

Steiner tree T by grouping T2i with some other subtrees as T1 and T2j with

the rest of subtrees as T2 in such a way that T1 and T2 both contain at

most k destination nodes. This can certainly be done since every subtree

in {T20, T21, · · · , T2l} contains at most k/2 destination nodes. It is easy

to verify that the new partition is a desired partition. The proof is then

finished. �

Algorithm 7.4 Steiner Tree Based Algorithm

Step 0 Produce an α-approximation of SMT T of {s} ∪D.

Consider T as a tree rooted at s, and set k-tree routing R := ∅.
Step 1 if a branch of T contains at most k destination nodes in D,

then put it into R;

else delete the edge incident to s from the branch

and obtain a subtree.

go to either Step 2 or Step 3.

Step 2 For each subtree T ′ that contains more than 3k/2 destination nodes,

apply the partitioning process given in the proof of Lemma 7.6

to get two subtrees of T ′.
if it contains more than 3k/2 destination nodes,

then repeatedly apply the process to the subsubtree

(When no further partition is needed, we obtain a set of subtrees

each containing no more than 3k/2 destination nodes.)

Step 3 For each produced subtree of branch T ′′ that is not a k-tree, apply

the partitioning process given in the proof of Lemma 7.6 and get

two subtrees of T ′′ each containing at most k destination nodes.

Step 4 For each obtained k-tree, find the destination node closest to source

s in the tree and connect it to s via shortest path between them,

that produces a k-tree rooted at s.

Step 5 Return k-tree routing RST that consists of all k-trees produced.

For the simplicity of presentation, we will call a resultant subtree in

Step 2 a type-1 k-tree if it contains at most k destination nodes, and the

resultant subtrees at the end of Step 3 type-2 k-trees.

Theorem 7.9 Given a multicast connection request < s, D > and k > 2,

the Steiner tree based algorithm 7.4 returns a k-tree routing RST whose cost

is at most (2 + α) times that of the optimal k-tree routing Ropt.

Proof. Let Ropt = {T ∗
1 , T ∗

2 , · · · , T ∗
m} be an optimal k-tree routing, where
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each k-tree T ∗
i has cost c(T ∗

i ). Then c(Ropt) =
∑m

i=1 c(T ∗
i ). Let dj be a

destination node in tree T ∗
i , then the distance from dj to s in graph G is no

greater than the distance from dj to s in T ∗
i , i.e., w(dj , s) ≤ c(pT∗

i
(dj , s)).

Applying a similar argument used for k-path routing in the proof of Theo-

rem 7.6, we have

|D|∑

i=1

w(di, s) ≤ k

|D|∑

i=1

w(P ∗
i ) = k · c(Ropt). (7.7)

Note that to prove the theorem it suffices to show that the total lengths

of the shortest paths from source s to the destination node closest to s in

each obtained k-tree in Step 3 is at most two times cost of Ropt.

First suppose that there are g type-1 k-trees, T ′
1, T

′
2, · · · , T ′

g, then for

each k-tree T ′
i , let k/2 closest destination nodes to s be the representatives

for T ′
i , and denote them by d′

i,j for j = 1, 2, · · · , k/2, which are labelled in

the order of non-decreasing distance from source s.

Secondly, consider every pair of type-2 k-trees T ′′
1 and T ′′

2 . If T ′′
1 (T ′′

2 ,

respectively) contains no less than k/2 destination nodes, then let k/2 clos-

est destination nodes to s be the representatives for T ′
i (T ′′

2 , respectively);

otherwise it contains l < k/2 destination nodes, let these l nodes along

with (k/2 − l) destination nodes farthest to s in its sibling tree be the

representatives. At the same time for its sibling k-tree, there are still

k/2 destination nodes closest to s that can be selected to be its own

representatives. Now each type-2 k-tree also has exactly k/2 represen-

tatives and no two k-trees share one common representative. Note that

such an assignment of representatives to type-2 k-trees could be imple-

mented since the total number of destination nodes in one pair of type-2

k-trees is greater than k. Suppose that there are h pairs of type-2 k-trees,

{T11, T12}, {T21, T22}, · · · , {Th1, Th2}, then denote their representatives by

{d′′j,1, d′′j,2, · · · , d′′j,k/2}, {d′′j,1, d′′j,2, · · · , d′′j,k/2}, for j = 1, 2, · · · , g,

which are labelled in the order of non-decreasing distance from source s.

For easy presentation, for every pair of type-2 k-trees Ti1 and Ti2, denote by

d′′i∗,1, d
′′
i∗,2, · · · , d′′i∗,k/2 the k/2 destination nodes closest to s among all des-

tination nodes in both of them, and denote by d′′
i∗,k/2+1, d

′′
i∗,k/2+2, · · · , d′′i∗,k

the k/2 destination nodes farthest to s among all destination nodes in both

of them.
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It follows from inequality (7.7) that

g∑

i=1

k/2∑

j=1

c(d′i,j , s) +

h∑

i=1

k∑

j=1

c(d′′i,j , s) ≤
|D|∑

i=1

c(di, s) ≤ k · c(Ropt).

Using the non-decreasing order of these destination nodes with respect to

their distance from s, from the above inequalities we deduce

g∑

i=1

c(d′i,j , s) +

h∑

i=1

(
c(d′′i,1, s) + c(d′′

i∗,k/2+1, s)
)
≤ 2 · c(Ropt).

Clearly, destination node d′
i,1 connects type-1 k-tree to source s. Note also

that d′′i,1 must be a representative for either type-2 k-tree Ti1 or Ti2, thus

it is connected to source s via the shortest path. Suppose, without loss of

generality, that d′′
i,1 is a representative for Ti1, then the closest destination

node di2,1 in Ti2, which is a representative of Ti2, has the distance to s no

larger than d′′
i,k/2+1’s distance to s, i.e., c(di2,1, s) ≤ c(d′′

i,k/2+1, s). Hence

we have

g∑

i=1

c(d′i,j , s) +

h∑

i=1

(
c(d′′i,1, s) + c(d′′

i,k/2+1, s)
)
≤ 2 · c(Ropt),

which means the total length of paths added to connect the source to the

obtained k-trees is at most 2 · c(R∗
opt). Therefore the total cost of the

obtained k-tree routing is at most (2 + α)c(R∗
opt). The proof is finished. �

7.4 Discussions

A more general version of Steiner k-tree routing problem is as follows.

Problem 7.3 Capacitated Steiner Minimum Tree Problem

Instance An undirected graph G(V, E) with a non-negative cost l(e) on

each edge e ∈ E, a root vertex r ∈ V and a subset D ⊆ V , each

vertex v ∈ D needs to transmit d(v) units of flow to r, and a

positive integer k.

Solution A sets of Steiner trees rooted at r that span all vertices in D

and each tree carries at most k units of flow.

Objective Minimizing the total length of Steiner trees.

When D = V , the above problem is the well-known Capacitated Min-

imum Spanning Tree (CMST) Problem, which finds an application in
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telecommunication network design [158]: When designing a minimum cost

tree network, we need to consider how to instal expensive (e.g., fiber-optic)

cables along its links. Each cable has a certain cost and a prespecified ca-

pacity on the amount of traffic flow it can handle. Every source node in the

network has some demand that needs to be transmitted to the sink node.

The objective is to construct a minimum cost tree network for simultaneous

routing of all demands from the source nodes to the sink node.

Capacitated minimum Steiner tree problem is NP -hard since Steiner

tree problem is a special case of this problem with k =∞. In fact, capaci-

tated minimum spanning tree problem is NP -hard even when vertices have

unit weights and k = 3 (but it is polynomial-time solvable for k = 2 [110]).

Moreover, the geometric version of the problem, where costs of edges are

the Euclidean distance between endpoints of them, remains NP -hard.

Jothi and Raghavachari [158] proved, among other results, that capac-

itated minimum Steiner and spanning tree problems admit a (ρ−1α + 2)-

approximation and a (ρ−1 + 2)-approximation algorithms, respectively,

where ρ is the Steiner ratio and α is the best achievable approximation

ratio for Steiner tree problem. Their algorithm adopts the same basic idea

as that of Algorithm 7.4 due to Cai et al. [42]: First construct an α-

approximation of SMT T of D∪{r} and root T at the root vertex r. Next,

prune subtrees of cost at most k in a bottom-up way and add edges to

connect r to the closest node in each of the pruned subtrees.

In addition, we also notice that Steiner k-path and k-tree routing prob-

lems (Problem 7.1-2) are similar to the following two well-known problems,

respectively.

Problem 7.4 k-Travelling Salesman Problem (k-TSP)

Instance A graph G(V, E) with a cost l(e) on each edge e ∈ E, and a

positive integer k ≤ |V |.
Solution A tour (closed path) T that contains k vertices and k edges,

called k-tour.

Objective Minimizing the total length of the edges in T , l(T ) ≡∑
e∈T l(e).

Problem 7.5 k-MST Problem (or Minimum Weight k-Tree Problem)

Instance A connected graph G(V, E) with a cost l(e) on each edge e ∈ E,

and a positive integer k ≤ |V |.
Solution A tree T that interconnects k vertices, called k-tree.

Objective Minimizing the total length of the edges in T , l(T ) ≡∑
e∈T l(e).
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Problem 7.5 is also known as quorum-cast problem [59]. It finds appli-

cations in data updating and replicated data management of distributed

database systems.

Notice that in the above two problems, when the set of k vertices is

determined, the shortest k-tour and the k-MST on that set are shortest

tour and SMT of the set, respectively. In particular, when k = |V |, they

are reduced to the travelling salesman problem and Steiner tree problem

in graphs, respectively. Notice that unlike the classical travelling salesman

problem and Steiner tree problem, the main difficulty arises from two tasks,

one needs to determine not only the order in which to visit the cities (or

edges to connect the vertices), but also which cities should be visited (or

which points should be interconnected).

Arora and Karakostas [14] proposed a (2 + ε)-approximation algorithm

for k-MST problem, the ratio holds for both the rooted and unrooted ver-

sions of the problem. (In the rooted version there is a specified root vertex

that must be in the tree produced.) Recently, Garg [112] improved the re-

sult by removing ε. His result also leads to a 2-approximation algorithm for

k-travelling salesman problem. Their algorithms apply an linear program-

ming relaxation and the primal-dual approach. For a geometrical version of

Problem 7.4: V contains a set of points in the Euclidean plane where the

cost of an edge is the Euclidean distance between its two endpoints, Arora
[10] and Mitchell [214] independently proposed a polynomial time approxi-

mation scheme for this case. Their algorithms use techniques of portals and

guillotine cuts that we discussed in Chapter 3.

Another problem similar to Problems 7.1-5 is minimal k-broadcasting

network problem [131; 184]. k-broadcasting is a special scheme to dissem-

inate a single message, originated at any node in a network, to all other

nodes of the network by letting each informed node transmit the message

to at most k neighbors simultaneously. A minimal k-broadcast networkis a

communication network in which k-broadcasting can be completed in min-

imum time from any node. An optimal k-broadcast network is a minimal

k-broadcast network with the minimal number of edges.

In this chapter we have studied the multicast routing problem under

multi-path and multi-tree routing models for minimum network cost. In

fact, to establish a multicast connection, we need also to consider the wave-

length assignment problem: each of generated k-paths (or k-trees) should

be assigned a wavelength in such a way that two wavelengths are needed if

any two of them share a common link in the network. In an all-optical
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Wavelength Division Multiplexing (WDM) network without wavelength

conversions (every link in the path or tree should be assigned the same

wavelength), wavelength assignment is the key to guarantee the quality of

service and to reduce communication costs. In Chapter 8, we will study

this problem. Recently, Wang et al. [265] considered wavelength assignment

problem for WDM multicast with two criteria: find a subset of available

wavelengths for each link such that, (1) the maximum number of desti-

nations can be reached, and (2) the wavelength cost is minimized under

the condition of (1). They studied the computational complexity of the

problem and proposed some heuristic algorithms.
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Chapter 8

Steiner Tree Coloring Problem

Steiner tree coloring problems arise from the application of multicast com-

munications in all optical Wavelength Division Multiplexing (WDM) net-

works. In a WDM network, nodes interested in some particular data make

a multicast group, which requires a multicast connection for sending data

from its source(s) to its destinations. Given a set of multicast connection

requests, two steps are needed to set up the connections, routing and wave-

length assignment. Multicast routing is to connect all members in each

multicast group with a tree, which is called light-tree. Wavelength assign-

ment is to assign a wavelength to each of generated light-trees in such a way

that no two trees sharing a common link are assigned the same wavelength.

Since the number of wavelengths can be used in a WDM network is very

limited, how to make a good use of wavelengths becomes very important.

This motivates extensive studies on the problem of multicast routing and

wavelength assignment in WDM networks.

Clearly, how to set up a multicast routing with minimal network cost in

WDM networks is equivalent to the Steiner tree problem in graphs (Problem

2.1) or Steiner k-tree problem (Problem 4.1). There are two basic versions

of Steiner tree coloring problem [52; 51], which consider not only multicast

routing but also wavelength assignment.

(1) Maximum tree coloring problem. It aims at finding an optimal way of

multicast routing and wavelength assignment to maximize the through-

put, where throughput is the number of requests that can be accepted/

satisfied given a prespecified number of wavelengths.

(2) Minimum tree coloring problem. It aims at finding an optimal way of

multicast routing and wavelength assignment to accept/satisfy all re-

quests with the minimal number of wavelengths.

221
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The remainder of this chapter is organized as follows. In Sections 8.1

and 8.2 we will study maximum and minimum tree routing and coloring

problems, respectively. For each problem, we shall first prove some inap-

proximability results for some graphs, and then some positive results as

well by proposing some approximation algorithms for general and special

graphs. In Section 8.3, we will conclude the chapter with some remarks.

8.1 Maximum Tree Coloring

In this section we study maximum tree coloring problem. We will first for-

mulate the maximum tree coloring problem by introducing a few notations,

and then we will present some inapproximability results for the problem in

trees, meshes and tori. After that we will propose a greedy algorithm for

the problem in general graphs and two approximation algorithms for the

problem in two special graphs.

8.1.1 Problem Formulation

Let G be a graph with vertex set V (G) with |V (G)| = n and edge set E(G)

with |E(G)| = m, and S = {S1, S2, · · · , Sg} be a set of g groups, where

each Si is a subset of V (G). A tree interconnecting Si is a tree of G with

Si ⊆ V (Ti). A family T = {T1, T2, · · · , Tg} of trees is said to be a tree

family of S = {S1, S2, · · · , Sg} if there is a permutation ρ on {1, 2, · · · , g}
such that Tρ(i) is a tree interconnecting Si for each 1 ≤ i ≤ g. A coloring

{(Ti, ci) | i = 1, 2, · · · , t} of a tree family {T1, T2, · · · , Tt} is called proper

if tree Ti (1 ≤ i ≤ t) receives color ci ∈ {1, 2, · · · , c} such that ci 6= cj

whenever E(Ti) ∩ E(Tj) 6= ∅ for each i, where c is a positive integer and

{1, 2, · · · , c} is the set of available colors. Clearly, tree family S has a proper

tree coloring with c ≥ g, and it may have a proper tree coloring with c < g.

The maximum tree coloring problem is to find the tree family of a maximum

subset of S that has a proper coloring, which can be formulated as follows.

Problem 8.1 Maximum Tree Coloring Problem

Instance A graph G(V, E), a family S={S1, S2, · · · , Sg} of subsets of V ,

and a set of c colors.

Solution A proper tree coloring {(Ti, ci) | i = 1, 2, · · · , t}, where T =

{T1, T2, · · · , Tt} is a tree family of S.

Objective Maximize the size of tree coloring, denoted by s(G,S, c).
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When every group has only two members, a tree interconnecting a group

is simply a path connecting the two members. The maximum tree coloring

problem in this case is commonly known as maximum path coloring problem,

and has been extensively studied for several topologies, such as trees, rings

and meshes. Maximum path coloring problem is NP-hard for all these three

topologies [180; 260; 220], and is approximable within 1.58 in trees [260],

within 1.5 in rings [221], and within O(1) in 2-dimensional meshes [173;

260]. A simplified version of maximum path coloring problem assumes that

the set of paths is prespecified [222]. For this version it was also proved NP-

hard in general (but polynomial-time solvable when the graph is a chain)

and inapproximable within mδ for some δ > 0 unless NP = P .

When the number of available colors is exactly one, the maximum tree

coloring problem reduces to maximum edge-disjoint Steiner tree problem,

and its special case mentioned above is referred to as the maximum edge-

disjoint path problem. The standard greedy approaches [260] guarantee

that if maximum edge-disjoint Steiner tree problem is approximable within

r, then maximum tree coloring problem is approximable within 1/(1 −
e−1/r). Nevertheless, even maximum edge-disjoint path problem seems

hard to approximate: the current-best approximation guarantee is (
√

m+1)

achieved through greedy selection of shortest paths [174] .

In addition, both the decision and optimization versions of maximum

tree coloring problem are closely related to maximum k-colorable induced

subgraph problem and its special case, maximum independent set problem.

The former is to find a maximum subset of V (G) that is the union of k in-

dependent sets in G while the latter is to find an independent set of largest

cardinality α(G), where an independent set of G is a set of pairwise nonad-

jacent vertices in V (G) (in particular, a single vertex forms an independent

set). Bellare et al. [27] proved that maximum independent set problem is

inapproximable within n1/4−ε for any ε > 0 assuming NP 6= P . Since the

faith in the hypothesis NP 6= ZPP 1 is almost as strong as NP 6= P , the

following negative result from [132], as well as positive result from [129],

explains the lack of progress on good approximation for maximum indepen-

dent set problem and maximum k-colorable induced subgraph problem.

Theorem 8.1 (i) Maximum independent set problem is inapproximable

within n1−ε for any ε > 0, unless NP = ZPP . (ii) Maximum k-colorable

induced subgraph problem is approximable within O(n(log log n/ log n)2).

1ZPP is the class of problems that can be solved in expected polynomial time by a
probabilistic algorithm that never makes an error, i.e. only the running time is stochastic.
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8.1.2 Inapproximability Analysis

In this subsection, we shall show that maximum tree coloring problem is as

hard as maximum independent set problem. Then our inapproximability

results follow from Theorem 8.1 one way or another. Roughly speaking,

we assume existence of an r-approximation algorithm A for maximum tree

coloring problem, and use A to design an r-approximation algorithm A′ for

maximum independent set problem.

Given a graph G, the set of edges in E(G) incident with a vertex v ∈
V (G) is denoted by δ(v). A tree family T = {T1, T2, · · · , Tg} in graph G is

usually associated with its intersection graph GT with vertex set V (GT ) =

{v1, v2, · · · , vg} and edge set E(GT ) = {vivj |Ti and Tj share at least one

edge in G}. Clearly, an independent set S in GT (resp. the union S of c

independent sets in GT ) corresponds to a set {Ti | vi ∈ S} of edge-disjoint

trees in G (resp. a set {Ti | vi ∈ S} of trees in G that admits a coloring

using colors in {1, 2, · · · , c}).
When the underlying graph is a tree, the tree interconnection group Si

is uniquely determined by the group members in Si. The first inapproxima-

bility result [52] is for the maximum tree coloring problem in star graphs.

A star graph is a tree with at most one vertex (called center) of degree

greater than one.

Theorem 8.2 The maximum tree coloring problem in trees is inapprox-

imable within max{g1−ε, m1/2−ε} for any ε > 0, unless NP = ZPP .

Proof. Suppose for a contradiction that for some ε > 0, there is an

approximation algorithm A with ratio max{g1−ε, m1/2−ε} for the maxi-

mum tree coloring problem in trees. Consider an arbitrary graph H with

V (H) = {v1, v2, · · · , vn} and E(H) = {e1, e2, · · · , em}. We construct

a star graph G with m + 1 vertices and m edges by setting V (G) :=

{a, b1, b2, · · · , bm} and E(G) := {abi | i = 1, 2, · · · , m}, where a is the cen-

ter. Define S := {S1, S2, · · · , Sn} by Si := {a} ∪
(
∪ej∈δ(vi)bj

)
, 1 ≤ i ≤ n.

Let Ti be the unique tree in G interconnecting Si for each 1 ≤ i ≤ n.

Then T = {T1, T2, · · · , Tn} is the unique tree family of S, and GT = H .

Now algorithm A′ runs A on the instance (G,S, 1) and outputs {vi | algo-

rithm A outputs Ti}. It is easy to see that A′ is an approximation algo-

rithm for maximum independent set problem and has performance ratio,

max{g1−ε, m1/2−ε} = max{n1−ε, m1/2−ε} = n1−ε, the same as that of A,

a contradiction to Theorem 8.1. The proof is then finished. �

Notice that the star graph used in the above reduction has a center
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of a very large degree. A natural question is: whether low degrees make

maximum tree coloring problem easier? The following inapproximability

result [52] on 2-dimensional meshes and tori gives a negative answer.

Theorem 8.3 The maximum tree coloring problem in meshes (tori) is

inapproximable within max{g1−ε, 1
3m1/4−ε} for any ε > 0, unless NP =

ZPP .

We will only prove the case of meshes since the proof for tori is similar.

For graph H with V (H) = {v1, v2, · · · , vn} and E(H) = {e1, e2, · · · , em},
we define groups S = {S1, S2, · · · , Sn} on a (5m× 5m)-mesh G as follows.

Assume the vertices in G are labelled as in the Cartesian plane with its

corners located at (0, 0), (0, 5m − 1), (5m − 1, 0), and (5m − 1, 5m − 1),

respectively. Associate each edge ej (1 ≤ j ≤ m) in H with two vertex

sets in G: Rj := {(`, 5j − k) | ` = 0, 1, · · · , 5m − 1; k = 1, 2, 3, 4, 5} and

R′
j := {(5j − k, `) | ` = 0, 1, · · · , 5m − 1; k = 1, 2, 3, 4, 5}. Notice that

Rj (resp. R′
j) consists of vertices located on five consecutive rows (resp.

columns) of G, and satisfies the following two properties:

Each of {R1, · · · , Rm} and {R′
1, · · · , R′

m} is a partition of V (G), (8.1)

Rj ∩ R′
k induces a (5× 5)− submesh Gjk of G, for 1 ≤ j, k ≤ m. (8.2)

Now corresponding to vertex vi in G, the i-th group

Si :=
⋃

ej∈δ(vi)

(
Rj ∪ R′

j

)
(8.3)

in G is defined as the union of Rj ∪ R′
j for all ej incident with vi. See

Fig.8.1-2 for an example.

Lemma 8.1 Let S = {S1, S2, · · · , Sn} consist of n groups in (5m× 5m)-

mesh G as defined in (8.3), and let T ′ = {T ′
1, T

′
2, · · · , T ′

n} be a tree family

in G such that T ′
i is a tree interconnecting Si, 1 ≤ i ≤ n. Then

(i) there is a tree family T = {T1, T2, · · · , Tn} such that Ti is a tree spanning

Si, 1 ≤ i ≤ n, and the intersection graph of T is H; and

(ii) there does not exist distinct i, j, k ∈ {1, 2, · · · , n} such that vivj ∈ E(H)

and T ′
i , T

′
j , T

′
k are pairwise edge-disjoint in G.

Proof. To justify claim (i), let us first construct a tree family T =

{T1, T2, · · · , Tn} so that each Ti (1 ≤ i ≤ n) is a tree obtained from

its vertex set V (Ti) := Si by two steps. In the first step, for ev-

ery ej incident with vi, we add five rows each connecting all vertices in

{(`, 5j− k) | ` = 0, 1, · · · , 5m− 1}, 1 ≤ k ≤ 5. Then the horizontal edges on
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the five rows span Rj . Summing over all ej ∈ δ(vi), in total 5|δ(vi)| rows

are added. In the second step, we use vertical edges with both ends in R′
j

for some ej ∈ δ(vi) to connect the 5|δ(vi)| rows and the rest vertices in Si

under the condition that the resulting graph is a tree. (Though there are

many possible Ti’s, it is not a hard task to pick any one of them. Fig.8.3

gives an illustration for the example depicted in Fig.8.1-2.)

v1

v2

v3

v4

e1 e2

e3

e4 e5

(a) (b)

(d)(c)

Fig. 8.1 Reduction: (a) Graph G, (b) R1 ∪ R′
1, (c) R2 ∪ R′

2, and (d) R5 ∪ R′
5.

By the construction, it suffices to show that the intersection graph GT
of T is identical with H . Indeed, for every edge vhvi = ej in H , trees

Th and Ti in G share common edges on the rows that span Rj . On the

other hand, for every pair of nonadjacent vertices vh and vi in H , since

δ(vh)∩ δ(vi) = ∅, we deduce from (8.1) that Rj ∩Rk = ∅ = R′
j ∩R′

k for all
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ej ∈ δ(vh), ek ∈ δ(vi). Therefore, combining the definitions of Sh and Si

(recall property (8.3) and the constructions of Th and Ti we see that Th and

Ti shares neither a common horizontal edge nor a common vertical edge.

In other words, Th and Ti are edge-disjoint. Thus GT = H as desired.

(a) (b)

(d)(c)

Fig. 8.2 Reduction: (a) S1 =
⋃

i=1,3,4(Ri ∪ R′
i), (b) S2 =

⋃
i=1,2(Ri ∪ R′

i), (c) S3 =⋃
i=2,3,5(Ri ∪ R′

i), and (d) S4 =
⋃

i=4,5(Ri ∪ R′
i).

We now prove claim (ii). Suppose on the contrary that vivj = ep ∈
E(H) and T ′

i , T
′
j , T

′
k are pairwise edge-disjoint. Since ep ∈ δ(vi) ∩ δ(vj), by

property (8.3), both T ′
i and T ′

j contain (Rp∪R′
p) ⊆ Si∩Sj . Take eq ∈ δ(vk).

Obviously ep 6= eq. Recalling property (8.2), we have a (5×5)- submesh Gpq

in G induced by Rp∩R′
q . Note that the 25 vertices of Gpq are all contained

in Si ∩ Sj ∩ Sk ⊆ V (T ′
i ) ∩ V (T ′

j) ∩ V (T ′
k), and hence every vertex in Gpq is
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T2

T3T

T1

T4

Fig. 8.3 Tree family T = {T1, T2, T3, T4}.

incident with three distinct edges one from each of T ′
i , T

′
j , T

′
k. Consequently

none of T ′
h, T ′

i , T
′
j can have a branching vertex in Gpq , and each of the 9

internal vertices of Gpq is a leaf of at least two of T ′
i , T

′
j , T

′
k. Therefore, there

are in total at least 18 different paths in T ′
i ∪T ′

j ∪T ′
k connecting these leaves

to the boundary of Gpq because every of T ′
i , T

′
j , T

′
k has vertices outside Gpq .

Two of those paths must have a common edge in Gpq as Gpq has only 16

boundary vertices. The two different paths are contained in exactly one

tree in {T ′
h, T ′

i , T
′
j}. It follows that this tree has a branching vertex in Gpq .

The contradiction establishes claims (ii). The proof is then finished. �

Proof of Theorem 8.3. Suppose that for some ε > 0, there exists an
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approximation algorithm A for the maximum tree coloring problem in 2-

dimensional meshes with performance ratio max{g1−ε, 1
3m1/4−ε}. By The-

orem 8.1, it suffices to present a polynomial time algorithm A′ which always

finds an independent set of size at least α(H)/n1−ε in any given graph H

on n vertices. If H is a complete graph, then A′ returns an arbitrary vertex

of H . So we assume that α(H) ≥ 2, and by examining all pairs of vertices

in H , A′ can find two nonadjacent vertices v1 and v2 in H in square time,

Suppose V (H) = {v1, v2, · · · , vn} and E(H) = {e1, e2, · · · , em′}, re-

spectively. Let groups S = {S1, S2, · · · , Sn} on a (5m′ × 5m′)-mesh G

be defined for H as in (8.3). Then the number of the edges in G is

m = 10m′(5m′ − 1) < 50n4, and by Lemma 8.1(i) there is a tree fam-

ily T = {T1, · · · , Tn} in G such that Ti interconnects Si (1 ≤ i ≤ n) and

GT = H . This implies that there is a subset S of T consisting of α(H)

pairwise edge-disjoint trees. Observe that S is a solution to the instance

(G,S, 1) of the maximum tree coloring problem with only one color avail-

able. Hence the optimal value sopt(G,S, 1) ≥ |S| = α(H). Now running

algorithm A on (G,S, 1), algorithm A′ yields a solution {T ′
i1 , T

′
i2 , · · · , T ′

iβ
}

consisting of β pairwise edge-disjoint trees interconnecting multicast groups

Si1 , Si2 , · · · , Siβ
. As a result, algorithm A′ outputs S = {v1, v2} if β = 2

and S = {vi1 , vi2 , · · · , viβ
} if β ≥ 3. Notice that S is an independent set in

G of size β (recall Lemma 8.1(ii)). Moreover, we have

α(H)

|S| ≤
sopt(G,S, 1)

β
=

sopt(G,S, 1)

sA(G,S, 1)

≤ max
{

g1−ε,
1

3
m1/4−ε

}
= max

{
n1−ε,

1

3
m1/4−ε

}
= n1−ε,

which shows that |S| approximates α(H) within n1−ε. It follows that A′ is

an n1−ε-approximation algorithm for maximum independent set problem.

The proof is then finished. �

8.1.3 Approximation Algorithms

In this subsection, we will first propose a simple greedy algorithm for the

maximum tree routing problem in general graphs, and then two approxi-

mation algorithms for the problem in trees and rings.

8.1.3.1 For General Graphs

The main philosophy of our greedy strategy is to produce trees of fewer

edges whenever possible. This is based on a natural intuition: a tree of
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fewer edges potentially has more chances to use the same color with others,

and therefore coloring more trees.

In order to carry out the greedy strategy, it is worth noting that finding

a tree for each given group Si with minimal number of edges is the Steiner

tree problem in graphs (Problem 2.1). The current best approximation

algorithm for this problem has performance ratio of 1.55 [238].

For a given instance (G,S, c) of maximum tree coloring problem, the

implementation of greedy strategy consists of a number of iterations. In

the (i + 1)-th iteration, set Si contains all currently unrooted multicast

groups. For every j = 1, 2, · · · , c, let Gi+1
j be the subgraph of G obtained

by removing all edges in the trees already colored with color j. Clearly,

Gi+1
j contains a Steiner tree of S, for every S ∈ Si whose connection can

be established using color j. Subsequently, for every such S, compute an

α-approximate Steiner Minimum Tree (SMT) of S in Gi+1
j ; all these α-

approximations are put into a set Ti (Steps 5-7). When all js have been

considered, every group in Si whose connection can be established has at

least a tree of Ti, and every tree in Ti can be colored with an appropriate

color. If Ti = ∅, then no more connection can be established and the

algorithm terminates; else among all produced trees in Ti, the algorithm

selects the one with the minimum number of edges and colors it with an

appropriate color (Steps 9-10), and then proceeds to the next iteration.

Algorithm 8.1 Greedy Tree Coloring

(1) i← 0, C0 ← ∅, S0 ← S.

(2) while Si 6= ∅ do begin

(3) Ti ← ∅
(4) For 1 ≤ j ≤ c do

(5) while Gi+1
j contains a tree spanning S∈Si do begin

(6) Ti ← Ti ∪ {α-approximate SMT of S in Gi+1
j }

(7) end-while

(8) If Ti 6= ∅ then

(9) Pick Ti+1 ∈ Ti and j∈{1, 2, ..., c} such that

|E(Ti+1)| = min
T∈Ti

|E(T )| and E(Ti+1)∩(
⋃

T :(T,j)∈Ci
E(T ))= ∅

(10) Ci+1 ← Ci ∪ {(Ti+1, j)}, Si+1 ← Si − {S |Ti+1 spans S}
(11) else Si+1 ← ∅
(12) t← i, i← i + 1

(13) end-while

(14) return C ← Ct
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Theorem 8.4 Greedy tree coloring algorithm 8.1 returns a (
√

α ·m+1)-

approximate solution to maximum tree coloring problem.

Proof. Clearly, greedy tree coloring algorithm 8.1 terminates after at

most g iterations (Steps 2-14) since |Si+1| ≤ |Si| − 1 for every i (see Steps

10-12). Additionally, Step 11 implies that at most one tree is output for one

group. The correctness follows from Steps 4-11 which guarantee inductively

that every Ci (1 ≤ i ≤ t) is a solution to (G,S, c).

We now turn to estimate the performance ratio of greedy tree coloring

algorithm. It is obvious that t ≥ min{c, g}. If c ≥ g, then the algorithm

solves (G,S, c) optimally. So we assume c < g and therefore t ≥ c. Consider

an optimal solution to (G,S, c) and let Topt consist of the trees of the

optimal solution for the groups unrouted by the algorithm. Therefore, we

have

sopt(G,S, c) ≤ |Topt|+ t, and (8.4)

no (c + 1) trees in Topt can share the same edge in G. (8.5)

If Topt = ∅, then t = sopt(G,S, c) and we are done. So we assume Topt 6= ∅
and consider an arbitrary T ∈ Topt. Suppose that T is a tree interconnecting

group S. Observe that in Step 11 S is contained in every of S1,S2, · · · ,St.

Since St+1 must be empty (otherwise the algorithm should return at least

(t + 1) trees), by Step 5, we have

T * G \
( ⋃

(T ′,j)∈Ct
E(T ′)

)
for every 1 ≤ j ≤ c.

On the other hand, it is clear that Cc−1 does not use color k for some

k ∈ {1, 2, · · · , c}, so the first c rounds of while-loop (Steps 2-14) always

find

T ⊆ G \
( ⋃

(T ′,k)∈Ch−1
E(T ′)

)
= G for 1 ≤ h ≤ c.

Hence we may take an integer i(T ) ≥ c such that

T ⊆
c⋃

j=1

(
G \

(
∪

(T ′,j)∈Ch−1

E(T ′)
))

for each 1 ≤ h ≤ i(T ), and (8.6)

E(T )
⋂ (

∪
(T ′,j)∈Ci(T )

E(T ′)
)
6= ∅ for each 1 ≤ j ≤ c. (8.7)

Subsequently, for every tree T ∈ Topt, we can find an h(T ) ≤ i(T ) and

charge T to a common edge eT
h(T ) ∈ E(T )∩E(Th(s)) of T and the tree Th(T )
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in a way that no two trees in Topt are both charged to the same edge of the

same tree in {T1, T2, · · · , Tt}, i.e.,

either eT
h(T ) 6=eT ′

h(T ′) or h(T ) 6= h(T ′), for any distinct T, T ′∈Topt. (8.8)

To establish such a correspondence between trees in Topt and edges in

T1, T2, · · · , Tt, we shall make use of a matching in a bipartite graph H

as follows: the vertex set of H is the disjoint union of independent set X

and independent set Y for which X := Topt consists of |Topt| vertices one

for a tree in Topt, while Y := {ei | e ∈ E(Ti), i = 1, 2, · · · , t} is considered

a multi-set of size
∑t

i=1 |E(Ti)| so that every edge e ∈ E(G) has a number

of copies ei in Y , each carrying an index i if and only if e ∈ E(Ti). The

edge-set of H contains an edge joining T ∈ X and eh ∈ Y if and only if

h ≤ i(T ) and e ∈ E(T ) ∩ E(Th) in G. Since, by Step 10, Ci(S) does not

route any of Ti(S)+1, · · · , Tt, it follows from (8.7) that in H every T ∈ X

has at least c neighbors in Y . For any X ′ ⊆ X , we use N(X ′) to denote the

set of vertices in H \X ′ each having a neighbor in X ′. Clearly, N(X ′) ⊆ Y .

If |N(X ′)| < |X ′| for some X ′ ⊆ X , then there exists ei ∈ N(X ′) which

has at least (c + 1) neighbors in X ′, so these (c + 1) neighbors are (c + 1)

trees in Topt sharing the same edge e ∈ E(G), contradicting (8.5). Thus

|N(X ′)| ≥ |X ′| for every X ′ ⊆ X , and Hall’s theorem [127] guarantees the

existence of a matching in H that saturates every T ∈ X . Suppose eh is the

neighbor of T in this matching. We then define h(S) := h and eS
h(T ) := e.

From the structure of H , it is easy to see that (8.8) is satisfied.

Furthermore, since h(T ) ≤ i(T ), by (8.6) and by Steps 5-7, Th(T )−1

contains a tree T ′ interconnecting S with |E(T ′)| ≤ α|E(T )|. In turn, from

the choice of Th(T ) ∈ Th(T )−1 made in Step 9, we deduce that |E(Th(T ))| ≤
|E(T ′)| ≤ α|E(T )|. Thus |E(T )| ≥ 1

α |E(Th(T ))| holds for every T ∈ Topt.

Let si := |{T |T ∈ Topt, h(T ) = i}| denote the number of trees in Topt that

are charged to edges of Ti, 1 ≤ i ≤ t, then
∑t

i=1 si = |Topt|, and by (8.8),

si ≤ |E(Ti)|. Recall from (8.5) that the total number of edges of all trees

in Topt does not exceed c ·m. This yields

c ·m ≥
∑

T∈Topt

|E(T )| =
t∑

i=1

∑

T∈Topt,h(T )=i

|E(T )|

≥
t∑

i=1

∑

T∈Topt,h(T )=i

1

α
|E(Th(T ))| =

1

α

t∑

i=1

|E(Ti)|si ≥
1

α

t∑

i=1

s2
i .
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Combining this with t ≥ c, we have

|Topt|/t =
( t∑

i=1

si

)
/t ≤

√√√√
( t∑

i=1

s2
i

)
/t ≤

√
α · c ·m/t ≤

√
α ·m.

This, together with (8.4), yields the desired performance ratio

sopt(G,S, c)/t ≤ √α ·m + 1. The proof is then finished. �

One of the techniques used in the above proof [52] borrows an idea

used in the work of [174] for maximum edge-disjoint path problem. How-

ever, combining those two approaches in [174] and [260] can only lead to

a performance ratio of 1/(1 − e−1/(
√

α·m+1)) for the greedy tree coloring

algorithm, which is greater than (
√

α ·m + 1) obtained in Theorem 8.4.

8.1.3.2 For Special Graphs

When the given graph G is a tree, the tree family T for any set S of groups

is unique, and the maximum tree coloring problem is reduced to coloring

as many trees in T as possible using c colors. Clearly, the algorithm pro-

posed by Halldórsson [129] for the maximum k-colorable induced subgraph

problem on GT carries over to the maximum tree coloring problem on S,

and has an approximation ratio O(g(log log g/ log g)2).

When the size of each group in S is upper bounded by a constant k (as

for Steiner k-tree problem, i.e., Problem 4.1), the maximum degree of any

tree in T is no more than k. We call such a tree family a k-tree family.

Notice that the maximum tree coloring problem on k-tree family in trees is

NP -hard even when k = 2 [260].

Theorem 8.5 The maximum tree coloring problem in tree graphs is ap-

proximable within 1/(1− e−1/k) for any given k-tree family.

To prove the above theorem [52], we apply the idea of iterative application

of an algorithm for computing a maximal set of edge-disjoint trees. The

standard iterative method by [260] goes as follows: First run the algorithm

on the tree family T to get a maximal set of edge-disjoint trees. All trees

in this set are colored with color 1, and then removed from the current tree

family. And then run the algorithm on the remaining tree family to find

the maximal set of edge-disjoint trees and color them with a new color.

Repeat this process until either no color can be used or no more tree is

left uncolored. Wan and Liu [260] proved that if this algorithm is a k-

approximation algorithm for computing a maximum set of edge-disjoint
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trees, then this iterative method provides a 1/(1 − e−1/k)-approximation

for maximum tree coloring problem.

To present the algorithm, we root the tree G at an arbitrary vertex r.

The level of a vertex v ∈ V (G) is defined as the length of the path from r

to v. We use ` to denote the highest level of vertices in G. Let T be a tree

in G, the root of T is the vertex in T that has the lowest level, and the level

of T is equal to the level of its root.

Algorithm 8.2 Disjoint Tree Iterating

(1) i← `− 1, Td ← ∅
(2) While i 6= −1 do begin

(3) Find a maximal set Ti of edge-disjoint trees

in G\ ∪
T∈Td

E(T ) for each level i in G

(4) Td ← Td ∪ Ti, i← i− 1

(5) end-while

(6) return Td

Proof of Theorem 8.5 It suffices to show that there are at most k|Td|
edge-disjoint trees in any k-tree family T . Note that Td is the disjoint

union of T0, T1, · · · , T`−1. Denote by Tmax the subset of T consisting of a

maximum number of edge-disjoint trees, and set T ′
j := {T ∈ Tmax |T is

edge-disjoint from every tree in ∪`−1
i=j+1Ti, and shares a common edge with

some tree in Tj}, ` − 1 ≥ j ≥ 0. Then the maximality in Step 3 implies

|Tmax| =
∑`−1

j=0 |T ′
j |. Since every tree in T ′

j is edge-disjoint from every tree

in Td of level higher than j, and shares a common edge with a tree in Td of

level j, every tree in T ′
j has an edge that is incident with a vertex of level

j and contained in a tree in Tj . It is easy to see that |T ′
j | ≤ k|Tj | for all

` − 1 ≥ j ≥ 0. Thus we have |Tmax| =
∑`−1

j=0 |T ′
j | ≤ k

∑`−1
j=0 |Tj | = k|Td|.

The proof is then finished. �

When the given graph is a ring, a tree for a group is simply a path

containing all vertices in the group. In this simple case, by matching pairs

of groups that can be routed as two edge-disjoint paths, an easy extension of

the algorithm due to Nomikos et al. [221] for unicast in rings can compute

an 1.5-approximation for the maximum tree coloring problem in rings. Thus

we have the following theorem.

Theorem 8.6 The maximum tree coloring problem in rings is approx-

imable within 1.5.
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8.2 Minimum Tree Coloring

In this section we study minimum tree coloring problem. We will first for-

mulate the minimum tree coloring problem by introducing a few notations,

and then we will present some inapproximability results for the problem in

trees, meshes and tori. After that we will propose a greedy algorithm for

the problem in general graphs

8.2.1 Problem Formulation

Let S be a set of groups in graph G and let T be a tree family over S, the

maximum load of G with respect to T (or simply the load of T ), denoted by

LT , refers to the maximum number of trees in T that share a common edge

in G. The minimum maximum load of G is defined as L(G,S) ≡ min{LT | T
is a tree family over S}. Clearly, the minimum number of colors necessary

for coloring any tree family of S is at least L(G,S).

The intersection graph GT of a tree family T = {T1, T2, · · · , Tg} in

graph G is an undirected graph with vertex-set V (GT ) = {v1, v2, · · · , vg}
and edge-set E(GT ) = {vivj |Ti and Tj share at least one edge in G, 1 ≤
i < j ≤ g}. Evidently, a k-coloring of GT gives rise to a coloring of T with

no more than k colors, and vice versa. For an instance (G,S) of minimum

tree coloring problem, the solution value is defined as the number of colors

used to color the trees in the output tree family over S. The problem is

to find the tree family for given set of groups that could be colored with

minimal number of colors. The problem is more formally formulated as

follows.

Problem 8.2 Minimum Tree Coloring Problem

Instance A graph G(V, E), a family S={S1, S2, · · · , Sg} of subsets of V .

Solution A proper tree coloring {(Ti, ci) | i = 1, 2, · · · , g}, where T =

{T1, T2, · · · , Tg} is a tree family of S.

Objective Minimize the number of colors used for tree coloring, c(G,S).

When every group has only two members, a tree over a group is simply

a path connecting the two members, the problem in this case is known as

minimum path coloring problem. This version has been extensively studied

for several topologies, e.g., trees, rings, meshes, etc. In particular, the

minimum path coloring problem is known to be NP-hard for all the three

topologies [254; 116; 96], and is approximable within 4/3 for trees [218],

within 2 for rings [231], and within poly(log log m) for 2-dimensional meshes
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[230]; but it is polynomial-time solvable when the underlying graph is a

chain [124] or a bounded-degree tree [219].

In addition, minimum tree coloring problem is closely related to the

vertex coloring problem. Given a graph H , a k-coloring of H is a function

φ : V (H) → {1, 2, · · · , k} such that each color class {v |φ(v) = i and

v ∈ V (H)} contains no two adjacent vertices of H for each 1 ≤ i ≤ k. We

say that H is k-colorable if it admits a k-coloring. The chromatic number

χ(H) is the minimum value of k for which H is k-colorable. The vertex

coloring problem on H is to find a χ(H)-coloring of H .

It was shown in [27] that the vertex coloring problem on graph H of

n vertices cannot be approximated within n
1
7−ε for any ε > 0 assuming

NP 6= P . In addition, based on a little stronger assumption NP 6= ZPP ,

the following negative result [99] and positive results [128] prove the in-

tractability of approximation for the vertex coloring problem, which will be

used in our discussion.

Theorem 8.7 (i) The vertex coloring problem on graph of n vertices is

not approximable within n1−ε for any ε > 0, unless NP = ZPP , and (ii)

it is approximable within O(n(log log n)2/(log n)3).

8.2.2 Inapproximability Analysis

In this subsection, we will show that minimum tree coloring problem is as

hard as the vertex coloring problem, and then deduce the inapproximability

results directly from Theorem 8.7. We consider the minimum tree color-

ing problem for three special graph topologies including trees, meshes and

tori, which occur in a variety of applications in computer communication

networks.

To distinguish the graph in an instance of minimum tree coloring prob-

lem and that in an instance of the vertex coloring problem, we reserve

symbol G for the former and symbol H for the latter. For ease of descrip-

tion, hereafter we assume |V (H)| = g and |E(H)| = m. Let v ∈ V (H), we

use δ(v) to denote the set of edges in E(H) incident with v.

The first inapproximability result [51] concerns with the minimum tree

coloring problem in star graphs. A star graph is a tree with at most one

node of degree greater than one, which is called the center of the star graph.

Theorem 8.8 The minimum tree coloring problem in trees is not approx-

imable within max{g1−ε, m
1
2−ε} for any ε > 0, unless NP = ZPP .
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Proof. Given a graph H with vertex-set V (H) = {v1, v2, · · · , vg} and

edge-set E(H) = {e1, e2, · · · , em}, the star graph G with (m + 1) ver-

tices and m edges is defined by V (G) := {c, d1, d2, · · · , dm} and E(G) :=

{(c, di) | i = 1, 2, · · · , m}, and S := {S1, S2, · · · , Sg} is defined by Si :=

{c} ∪
( ⋃

ej∈δ(vi)
dj

)
for each 1 ≤ i ≤ g. Let T = {T1, T2, · · · , Tg} be

the tree family over S such that Ti is the unique minimal tree in G

over Si for each 1 ≤ i ≤ g. It is easy to verify that GT = H and

copt(G,S) = χ(GT ) = χ(H).

Suppose that there is an r-approximation algorithm A for the vertex

coloring problem, then A colors the vertices in GT , and therefore the cor-

responding trees in T , with cA(GT ) ≤ rχ(GT ) = rcopt(G,S) colors. Con-

versely, any r′-approximation algorithm A′ for minimum tree coloring prob-

lem would color the trees in T , and therefore the corresponding vertices in

GT = H , with cB(G,S) ≤ r′copt(G,S) = r′χ(GT ) = r′χ(H). Thus under

approximation-ratio-preserving reduction, the minimum tree coloring prob-

lem in star graphs is equivalent to the vertex coloring problem, and then

the conclusion follows immediately from Theorem 8.7. The proof is then

finished. �

We now consider the minimum tree coloring problem in meshes and tori.

As in the discussion of Section 8.1.2, let k ≥ 2 be a positive integer. The

2-dimensional (k×k)-mesh (resp. torus) is an undirected graph with vertex-

set {(a1, a2)| a1, a2 ∈ {0, · · · , k − 1}} and edge-set {(a1, a2)(b1, b2)| ai = bi

and aj = bj ± 1, for {i, j} = {1, 2}} (resp. {(a1, a2)(b1, b2)| ai = bi and

aj ≡ bj±1 (mod k), for {i, j} = {1, 2}}). We will only present the analysis

for meshes since the same argument is applicable to tori unless otherwise

noted.

Let H be an arbitrary graph without isolated vertices. Suppose V (H) =

{v1, v2, · · · , vg} and E(H) = {e1, e2, · · · , em}, as in Section 8.1.2, we define

the group set S = {S1, S2, · · · , Sg} on a (5m× 5m)-mesh G as

Si :=
⋃

ej∈δ(vi)

{(`, 5j − k), (5j − k, `)| ` = 0, 1,· · ·, 5m− 1; k = 1,· · ·, 5}(8.9)

where i = 1, 2, · · · , g, and we prove the the following lemma.

Lemma 8.2 Let S = {S1, S2, · · · , Sg} consist of g groups in 5m × 5m

mesh G as defined in (8.9). Then

(i) A tree family T over S can be computed in polynomial time such that

GT = H and LT = 2; and
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(ii) there do not exist three distinct integers i, j, k ∈ {1, 2, · · · , g} such that

vivj ∈ E(H) and T ′
i , T

′
j , T

′
k are pairwise edge-disjoint, for any tree

family T ′ = {T ′
1, T

′
2, · · · , T ′

g} in G where T ′
i is a tree of Si for each g.

By a gap-preserving reduction (see [15] for an introduction to this con-

cept) from the vertex coloring problem, we shall establish the following in-

approximability threshold for the minimum tree coloring problem in meshes

and tori [51].

Theorem 8.9 The minimum tree coloring problem in 2-dimensional

meshes (tori) is not approximable within g1−ε for any ε > 0, unless

NP = ZPP .

Proof. The theorem will follow directly from Theorem 8.7 if we can prove

that, given an instance of the vertex coloring problem on graph H , an

instance (G,S) of the minimum tree coloring problem in meshes can be

constructed in polynomial time such that 1
2χ(H) ≤ copt(G,S) ≤ χ(H).

We now show that the (G,S) described in (8.9) is as desired. Since,

by Lemma 8.2(i), copt(G,S) ≤ χ(GT ) = χ(H), it remains to exhibit a

2copt(G,S)-coloring of H . Let {(T ′
1, c1), (T

′
2, c2), · · · , (T ′

g, cg)} be an optimal

solution in which T ′
i is a tree in G over Si and with color ci for each

1 ≤ i ≤ g. Considering the intersection graph GT ′ of T ′ = {T ′
1, T

′
2, · · · , T ′

g},
we deduce from Lemma 8.2(ii) that

vivk ∈ E(GT ′) or vjvk ∈ E(GT ′) for any distinct

vi, vj , vk such that vivj ∈ E(H) and vivj 6∈ E(GT ′).
(8.10)

Note that GT ′ has a copt(G,S)-coloring φ′ : V → {1, 2, · · · , copt(G,S)} with

φ′(vi) = ci for each 1 ≤ i ≤ g. We now prove that graph H ′ with vertex-set

V (H ′) := V (H) = V (GT ′) and edge-set E(H ′) = E(H) ∪ E(GT ′) has a

2copt(G,S)-coloring φ. If φ′ is a proper coloring of H ′, then we are done

since we can simply set φ := φ′; otherwise we can assume, without loss

of generality, that ei = aibi, i = 1, · · · , `, are all edges in E(H) \ E(GT ′)

with both ends assigned the same color in φ′. So 1 ≤ ` ≤ m, and φ′(ai) =

φ′(bi) for each 1 ≤ i ≤ `. By (8.10), every vertex in V (GT ′) \ {ai, bi} is

adjacent to ai or bi in GT ′ and hence assigned by φ′ a color different from

φ′(ai) = φ′(bi). It follows that all 2` vertices a1, b1, · · · , a`, b` are distinct,

` ≤ copt(G,S), and

φ(v) ≡
{

copt(G,S) + i, v = ai, for some 1 ≤ i ≤ `;

φ(v), v ∈ V (H) \ {a1, a2, · · · , a`}.
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defines a 2copt(G,S)-coloring of H ′ as claimed. Since H is a subgraph of

H ′, φ is also a 2copt(G,S)-coloring of H . The proof is then finished. �

Despite the same inapproximability threshold for trees (Theorem 8.8)

and meshes (Theorem 8.9), the comparison of their proofs shows that a few

more choices for routing in meshes/tori might bring a little bit of benefit in

computing an approximate solution to the minimum tree coloring problem

(though the benefit is negligible when g sufficiently large). Unfortunately,

two popular routing strategies for the minimum tree coloring problem in

meshes, the shortest path tree strategy and the single path strategy fail to

exploit the benefit. Under the shortest path tree strategy, every group is

connected by a tree, called shortest path tree, such that a distinguished

group member, called source, is connected to every member in the group

through a shortest path. Under the single path strategy, every tree over a

group is a (single) path that spans all group members.

Theorem 8.10 The minimum tree coloring problems in meshes under

the shortest path tree and single path strategies are both equivalent to vertex

coloring problem in terms of approximation-ratio-preserving reductions.

Proof. To see the equivalence, it suffices to consider an arbitrary graph

H with V (H) = {v1, v2, · · · , vg} and E(H) = {e1, e2, · · · , em}, and define

a set S = {S1, S2, · · · , Sg} of g groups in a mesh G satisfying the properties

(a) H is the intersection graph of some tree family over S, and

(b) the intersection graph of any tree family over S contains H as a

subgraph.

v1

v3v2

v4

e3e1

e2

e4

e5s1

s2 s3

s4

T2

T1

T3

T4

H

Fig. 8.4 Graph H and tree family T = {T1, T2, T3, T4} under the shortest path tree
routing.
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T2T1

T3 T4

Fig. 8.5 Tree family T = {T1, T2, T3, T4} under the single path routing.

In the case of shortest path tree routing, we consider the (p×p)-mesh G

with p = max{m, g}. We define groups by Si = {(i−1, k) | k = 0, 1, · · · , p−
1}∪{(h, j−1) | ej ∈ δ(vi); h = 0, 1, · · · , p−1} for each 1 ≤ i ≤ g. In addition,

we set si := (i− 1, p− 1) as the source of Si. We then have the tree family

T = {T1, T2, · · · , Tg} in which each Ti is the shortest path tree over Si that

has exactly (p− 1) vertical edges. (See Fig.8.4 for an illustration, where Ti

corresponds to vi in the graph H .) Clearly, GF = H and condition (a) is

satisfied. Notice that every shortest path tree over Si contains the column

spanning {(i−1, k) | k = 0, 1, · · · , p−1}. Hence for any (vh, vi) = ej ∈ E(H)

with h < i, since {(h−1, j−1), (h, j−1), · · · , (i−1, j−1)} ⊆ V (Sh)∩V (Si),

it is easy to see that every shortest path tree over Sh share at least one

common edge with any shortest path tree over Si. Thus condition (b) holds.
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In the case of single path routing, we consider (5m× 5m)-mesh G and

define Si := {(0, 5j − k) | ej ∈ δ(vi); k = 1, 2, · · · , 5} for each 1 ≤ i ≤ g.

Then we have the tree family T = {T1, T2, · · · , Tg} in which Ti is the path

in G with vertex set V (Pi) = Si ∪ {(h, 5j − 5), (h, 5j − 1) | ej ∈ δ(vi); h =

1, 2, · · · , i} ∪ {(i, 5j − k) | ej 6∈ δ(vi); k = 1, 2, · · · , 5}. See Fig.8.5. Observe

that GT = H . Moreover, for any vhvi = ej ∈ E(H), any path over Sh and

any path over Si must share an edge incident with one of the five vertices

(0, 5j − 5), (0, 5j − 4), (0, 5j − 3), (0, 5j − 2), (0, 5j − 1) on the boundary of

G since V (Sh) ∩ V (Si) contains the five vertices and at least three of the

five vertices are each incident with two edges from Th and from Ti. Hence

both conditions (a) and (b) are satisfied. The proof is then finished. �

We conclude this subsection with a brief discussion on the relationship

between the minimum number of colors and the minimum maximum load.

Based on the inequality copt(G,S) ≥ L(G,S), a common approach (e.g.
[24; 153]) to solve an instance (G,S) of minimum tree coloring problem

is to first lower the maximum load of the graph before coloring the trees.

Nevertheless, the following theorem shows that it might not contribute

much because the gap between copt(G,S) and L(G,S) can be arbitrarily

large in general.

Theorem 8.11 For any β > 0, there is an instance (G,S) of the mini-

mum tree coloring problem such that copt(G,S) ≥ β ·L(G,S), where G can

be a tree or a mesh or a torus.

Proof. Let H be a graph with χ(H) ≥ 4β. First let the star graph G

and the group set S be constructed as in the proof of Theorem 8.8, then

L(G,S) = 2 while copt(G,S) = χ(H) ≥ 4β. Second, let the mesh (torus)

G, the group set S, and the tree family T over S be as described in Lemma

8.2, then L(G,S) ≤ LT = 2, and by the proof of Theorem 8.10, we have

copt(G,S) ≥ χ(H)/2 ≥ 2β. The proof is then finished. �

8.2.3 Approximation Algorithms

In this subsection, we first present a greedy algorithm for the minimum tree

coloring problem in general graphs and analyze its performance, and then

we study approximation algorithms for the problem in some special graph

topologies including trees, tori, and rings.
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8.2.3.1 For General Graphs

The main philosophy of the greedy strategy for minimal tree coloring prob-

lem is the same as that for maximum tree coloring problem (refer to Section

8.1.3): route trees using as few edges as possible. Under such a strategy, in

order to save colors, one always tries to assign one color to as many groups

as possible by constructing trees of fewer edges. It does not introduce a new

color unless it has to. The algorithm iteratively finds a large maximal set of

edge-disjoint trees over some currently unrouted groups, and assigns them

a unique color. In the following algorithmic descriptions, Dis Trees(G,Si)

is used as a subroutine that, given a set S of groups in graph G, returns

a tree family T of edge-disjoint trees over a subset of S. If T is a tree

family over a subset of S, then Groups(T ,S) denotes an arbitrary subset

of S over which T is a tree family, and E(T ) stands for
⋃

T∈T E(T ). For

convenience, we set E(∅) = ∅.
Algorithm 8.3 Greedy Tree Coloring

(1) i← 0, B0 ← ∅, S0 ← S
(2) while Si 6= ∅ do begin

(3) Ti ← Dis Trees(G,Si)

(4) Si+1 ← Si\ Groups(Ti,Si)

(5) Bi+1 ← Bi ∪ {(T, i + 1) |T ∈ Ti} //assign i + 1 to all trees in Ti

(6) i← i + 1

(7) end-while

(8) return c← i and C ← Bc

Procedure Dis Trees

(1) T ← ∅
(2) repeat

(3) S←{anα-approx. of SMT of S in G\E(T ) |S∈S\Groups(T ,S)}
(4) Take T ∈ S such that |E(T )| = minS∈S |E(S)|
(5) T ← T ∪ {T}
(6) until S = ∅
(7) return T

Before proceeding to the performance analysis of greedy tree coloring

algorithm 8.3, let us make some necessary preparations. First recall that

greedy tree coloring algorithm 8.1, which is for maximum tree coloring

problem, has approximation performance ratio bounded by (
√

α ·m+ 1). It

consists of a number of iterations. In the (i+1)-st iteration, set Si contains
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all currently unrouted groups; for every j = 1, 2, · · · , c, it obtains subgraph

Gi+1
j of G by removing from G edges in the trees already colored with color

j, and computes, for every S ∈ Si whose connection can be established

using color j, an α-approximate SMT over S in Gi+1
j ; subsequently, all

these α-approximations are put into a set Ti; if Ti = ∅, then the algorithm

terminates, else

(∗) selects a tree T in Ti and an integer j with T ⊆ Gi+1
j such that

|E(T )| is minimum, and colors T with j, and then proceeds to the

next iteration.

It is obvious that for any (G,S), the trees returned by procedure

Dis Trees on instance (G,S) are exactly those returned by greedy tree col-

oring algorithm 8.1 on instance (G,S, 1). By this fact and the (
√

α ·m+1)-

performance guarantee of greedy tree coloring algorithm 8.1, applying the

techniques used in [21; 172] we can an approximation ratio of d√α ·m +

1e(log g + 1) for greedy tree coloring algorithm 8.3. Next, we improve this

slightly by presenting a somewhat different analysis.

Let us consider an adaptation of greedy tree coloring algorithm 8.1,

called algorithm 8.1’, which does the same as the algorithm 8.1 except

applies rule (∗’) below in place of rule (∗).
(∗’) Select a tree T in Ti and an integer j with T ⊆ Gi+1

j such that j is

minimum, and subject to the minimality of j, |E(T )| is minimum,

and color T with j, and then proceed to the next iteration.

Essentially the adaption of greedy tree coloring algorithm 8.1 has a

pseudo-code description quite similar to that of greedy tree coloring algo-

rithm 8.3.

Algorithm 8.4 Adaption of Greedy Tree Coloring

(1) i← 0, B0 ← ∅, S0 ← S.

(2) while Si 6= ∅ and i 6= c + 1 do begin

(3) execute Steps 3-6 of greedy tree coloring algorithm 8.3

(4) end-while

(5) return C ← Bi

By similarity of the above algorithm 8.4 and greedy tree coloring algo-

rithm 8.1, minor modification on the analysis of Algorithm 8.1 in Section

8.1.3 shows that Algorithm 8.4 remains a (
√

α ·m + 1)-approximation al-

gorithm for maximum tree coloring problem. In the following we include a
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short and a little different proof [51].

Lemma 8.3 The adaption of greedy tree coloring algorithm 8.4 returns

a (
√

α ·m + 1)-solution to maximum tree coloring problem.

Proof. We may assume that c < g, t ≥ c, and Algorithm 8.4 used all

c colors. Consider an optimal solution to (G,S, c) and let Topt consist of

the trees in the optimal solution over groups unrouted by Algorithm 8.4.

It suffices to show |Topt|/t ≤ √α ·m.

Notice that from rule (∗’), for every tree T ′ in Topt and every j =

1, 2, · · · , c, T ′ shares a common edge with some tree T ∈ {T1, · · · , Tt} such

that (T, j) ∈ C and |E(T )| ≤ α|E(T ′)|. We employ similar construction

to that used in the proof of Theorem 8.4. Let H be a bipartite graph

with bipartition (X, Y ) in which X = Topt and Y = {ei| e ∈ E(Ti), i =

1, 2, · · · , t}, and an edge join T ′ ∈ X and ei ∈ Y if and only if e ∈ E(T ′) and

|E(Ti)| ≤ α|E(S)|. Since every T ′ ∈ X has at least c neighbors in Y , and no

ei ∈ Y can have more than c neighbors in X , there is a matching in T ′ that

matches every T ′ ∈ X with an eT ′

h(T ′) ∈ Y with eT ′ ∈ E(T ′)∩E(Th(T ′)) and

|E(T ′)| ≥ |E(Th(T ′))|/α. Since eT ′′

h(T ′′) 6= eT ′

h(T ′) for distinct T ′, T ′′ ∈ Topt, we

see that |E(Ti)| ≥ si := |{T ′ |T ′ ∈ Topt, h(T ′) = i}| holds for i = 1, 2, · · · , t.
Therefore, as in the proof of Theorem 8.4, we obtain the following two

inequalities

c ·m ≥ 1

α

t∑

i=1

s2
i , and

|Topt|/t ≤ √α ·m.

The proof is then finished. �

We are now ready to estimate the approximation performance ratio of

greedy tree coloring algorithm 8.3 [51].

Theorem 8.12 Greedy tree coloring algorithm 8.3 for minimum tree col-

oring problem has approximation ratio at most dMe (log dg/Me+ 2) + 2,

where M =
√

α ·m + 1.

Proof. If g ≤ M or m ≤ 2, then the algorithm uses at most M colors

and has approximation ratio at most M . Thus we assume

g > M ≥
√

α× 3 + 1. (8.11)
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For an instance (G,S) of minimum tree coloring problem, let c∗ =

copt(G,S) denote the minimum number of colors needed, and let c denote

the number of colors used by the algorithm, and B∞,B∈, · · · ,Bc denote the

sets constructed in Step 5 of the algorithm.

Note that when the adaption of greed tree coloring algorithm 8.4 is

applied on the instance (G,S0, c
∗), it returns

⋃c∗−1
i=0 {(T, i + 1) |T ∈ Ti} =

Bc∗ . Hence by Lemma 8.3, we have β1 := |Bc∗ | ≥ g/M . Subsequently,

we see that there exists an execution of Algorithm 8.4 on the instance

(G,Sc∗ , c
∗) whose output is the same as B2c∗ − Bc∗ , and again by Lemma

8.3 we obtain

β2 := |B2c∗ − Bc∗ | ≥ |Sc∗ |/M = (g − |Bc∗ |)/M.

Continuing in this way, we get

βi+1 := |B(i+1)c∗ − Bic∗ | ≥ d(g − |Bic∗ |)/Me, i = 0, 1, · · · , bc/c∗c, (8.12)

where B0 := ∅. Notice that

|Bjc∗ | =
j∑

i=1

βj , j = 1, 2, · · · , bc/c∗c and

bc/c∗c∑

i=1

βi ≤ g.

To estimate the value c, we consider the sequence β′
0 = 0, β′

i = d(g −∑i−1
j=0 β′

j)/Me, i = 1, 2, · · · , and take the maximum positive integer c′ such

that β′
bc′/c∗c ≥ 1 and

∑bc′/c∗c
i=1 β′

i ≤ g. It can be seen from (8.12) that c ≤ c′.
Moreover β′

1 ≥ β′
2 ≥ · · · ≥ β′

bc′/c∗c ≥ 1, β′
1 ≥ 2 (by (8.11), and

c′

c∗
<

1

β′
1

+· · ·+ 1

β′
1︸ ︷︷ ︸

β′
1

+
1

β′
2

+· · ·+ 1

β′
2︸ ︷︷ ︸

β′
2

+· · ·+ 1

β′
bc′/c∗c

+· · ·+ 1

β′
bc′/c∗c︸ ︷︷ ︸

β′
bc′/c∗c

+1. (8.13)

Note that the right hand side of (8.13) can have at most (bMc+ i) terms

1/i for 1 ≤ i ≤ dMe. If β′
1 ≤ dMe, then

c

c∗
≤ c′

c∗
< bMc

( 1

β′
1

+
1

β′
1 − 1

+ · · ·+ 1

2
+ 1

)
+ β′

1

≤ dMe(logβ′
1 + 1) + dMe

≤ dMe
(
log

⌈
g/M

⌉
+ 2

)

giving the result. So we assume that for some integer k,

β′
1 > · · · > β′

k−1 > β′
k ≥ dMe+ 1 > β′

k+1 ≥ · · · ≥ β′
bc′/c∗c.
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Therefore, by the definitions of β′
i, we have

g −
k−1∑

j=0

β′
j ≥ dMe(dMe − 1) and

k−1∑

j=i

β′
j ≤ (β′

i − β′
k+1 + 1)dMe, for i = k − 1, k − 2, · · · , 1.

Rename by γ1, γ2, · · · , γp the decreasing series

1

β′
k−1

, · · · , 1

β′
k−1︸ ︷︷ ︸

β′
k−1

,
1

β′
k−2

, · · · , 1

β′
k−2︸ ︷︷ ︸

β′
k−2

, · · · , 1

β′
1

, · · · , 1

β′
1︸ ︷︷ ︸

β′
1

,

where p =
∑k−1

j=1 β′
j , so that γ1 ≥ γ2 ≥ · · · ≥ γp. Let q = dp/dMee, and for

i = 1, 2, · · · , q − 1, define

αi =

idMe∑

j=(i−1)dMe+1

γj and αq =

p∑

j=(q−1)dMe+1

γj .

It then follows that

q ≤ β′
1 − β′

k+1 + 1 and αi ≤
dMe

β′
k+1 + i− 1

for i = 1, · · · , q − 1, q,

which implies

q∑

i=1

αi ≤ dMe
( 1

β′
1

+
1

β′
1 − 1

+ · · ·+ 1

β′
k+1

)
.

From inequality (8.13), we get

c

c∗
≤ c′

c∗
<

q∑

i=1

αi + β′
k

1

β′
k

+ bMc
( 1

β′
k+1

+
1

β′
k+1 − 1

+ · · ·+ 1

2
+ 1

)
+ β′

k+1

≤ dMe
( 1

β′
1

+
1

β′
1 − 1

+ · · ·+ 1

2
+ 1

)
+
dMe
β′

k+1

+ β′
k+1 + 1

≤ dMe(log β′
1 + 1) + dMe+ 2 = dMe

(
log

⌈ g

M

⌉
+ 2

)
+ 2,

which proves the theorem. �
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The approximation ratio in the above theorem is rather high and reflects

again the hardness of the general problem. So in the next subsection we

will study the minimum tree coloring problem in some special graphs.

8.2.3.2 For Special graphs

In this subsection we will discuss the impact of graph topology on the

approximability of minimum tree coloring problem. We will study approx-

imation algorithms with guaranteed performance ratios for three special

graphs: trees, tori, and rings.

Recall that in trees, the minimum tree coloring problem is equivalent to

the tree coloring problem: color all trees in T with a minimum number of

colors, since the tree family T of minimal trees over a given set S of groups

is unique. We refer to groups in S simply as trees in T . Straightforwardly,

the approximation algorithm for the vertex coloring problem [128] on GT
carries over to the minimum tree coloring problem on T , and gives the

following immediate upper bound [51], which is close to the lower bounds

given in Theorem 8.8.

Theorem 8.13 The minimum tree coloring problem in trees is approx-

imable within a ratio O(g(log log g)2/(log g)3).

When the size of each group is upper bounded by a constant k as in

Steiner k-tree problem, i.e., |S| ≤ k for every S ∈ S, we have a tree family

T = {T1, T2, · · · , Tg}, called a k-tree family such that the maximum degree

of every Ti is no more than k. Notice that the minimum tree coloring

problem on a k-tree family in a tree graphs is NP -hard even when k = 2
[116]. Fortunately, by the nice property of k-tree family and the acyclic

structure of the underlying graph, this problem admits a k-approximation

algorithm. Initially, it picks an arbitrary vertex (root) r of the tree graph,

and reorders the trees T1, T2, · · · , Tg in the family as T ′
1, T

′
2, · · · , T ′

g such

that, for every i = 1, 2, · · · , g − 1, the shortest path from r to a vertex

of T ′
i is not longer than the shortest path from r to every vertex of T ′

i+1.

Then it runs in g steps: in the i-th step, assign T ′
i the first available color,

i.e., the smallest positive integer that has not been assigned to any trees in

{T ′
1, T

′
2, · · · , T ′

i−1} sharing an edge with T ′
i . Naturally, this is called first fit

algorithm.

Theorem 8.14 The minimum tree coloring problem is approximable

within (k − k−1
L ) for any given k-tree family in a tree graph of maximum

load L.
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Proof. Let T be a k-tree family in a tree graph G, and let L be the

maximum load of G. Since copt(G, T ) ≥ L, it suffices to show that the first

fit algorithm requires at most (kL−k+1) colors. Suppose for a contradiction

that the algorithm uses at least (kL − k + 2) colors. Then for some i, at

the beginning of the i-th step, T ′
i is uncolored, and (kL− k + 1) trees from

{T ′
1, T

′
2, · · · , T ′

i−1}, say T ′′
1 , T ′′

2 , · · · , T ′′
kL−k+1, have used up (kL − k + 1)

different colors, and every T ′′
h (1 ≤ h ≤ kL− k + 1) shares a common edge

eh with T ′
i . Let v be the vertex of T ′

i nearest to the root r. Recall that, for

every h = 1, 2, · · · , kL− k + 1, the shortest path from r to a vertex of T ′′
h

is not longer than the path from r to v. The tree structure of G enables us

to take the (kL− k + 1) common edges eh, 1 ≤ h ≤ kL− k + 1, such that

all of them are incident with v. Nevertheless, as the maximum degree of

vertices in Ti, T ′
i can share with at most k(L−1) other trees edges incident

with v, a contradiction. The proof is then finished. �

We now make a brief discussion on graphs of torus. In view of the 4-

regularity of tori, the comparison of Theorem 8.9 and Theorem 8.14 shows

that neither low degree nor regularity necessarily implies improvements on

the approximability of the minimum tree coloring problem. Consider an

instance of the problem (G,S) where G is a 2-dimensional torus. Since G

is 4-edge connected, there are two edge-disjoint spanning trees T and T ′ in

G [217; 256]. It is easy to see that either {(T, i), (T ′, i) | 1 ≤ i ≤ g/2} (when

g is even) or {(T, i), (T ′, i) | 1 ≤ i ≤ (g− 1)/2}∪ {(S, (g + 1)/2)} (when g is

odd) is a solution to (G,S).

Theorem 8.15 The minimum tree coloring problem in 2-dimensional

tori is approximable within dg/2e.
Finally, we investigate the minimum tree coloring problem in ring

graphs. A ring graph is a cycle with no chord. So in a ring, a tree is

simply a path traversing all vertices in a group. Due to the simple topol-

ogy, the minimum tree coloring problem in rings is relatively easy, and

admits a 2-approximation algorithm using the same technique as for path

routing and coloring in rings [231]: pick an arbitrary edge e of the ring

G, and output an optimal solution {(Ti, ci)| i = 1, 2, · · · , g} to the instance

(G\{e},S) of the minimum tree coloring problem in the chain G\{e} [124],

where the solution uses |{c1, c2, · · · , cg}| = L{T1,··· ,Tg} distinct colors. To

obtain the approximation ratio 2, consider T ∗ a tree family over S in an

optimal solution to the instance (G,S) of minimum tree coloring problem.

Let T ∗
e consist of trees in T ∗ using e. Then both LT ∗

e
and LT ∗\T ∗

e
are at

most LT ∗ , and L{T1,··· ,Tg} ≤ LT ∗
e

+LT ∗\T ∗
e
≤ 2LT ∗ . Now the performance
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guarantee 2 follows from the fact that the optimal solution to the instance

(G,S) must use at least LT ∗ colors.

The following theorem [51] shows that further improvement can be made

by investigating solutions for two chains and returning the better.

Theorem 8.16 The minimum tree coloring problem in rings is approx-

imable within (2− 1/g).

Proof. We may assume that |S1| ≥ 2 (otherwise the problem is trivial).

For every v ∈ S1, let v′, v′′ be the two neighbors of v in the ring G. The

approximation algorithm goes as follows. For w = v′, v′′, let ew be the

edge of G joining w and v, and let Sw = (S1 \ {v}) ∪ {w} and Sw =

{Sw, S2, · · · , Sg}; find an optimal solution Cw = {(Twi, cwi)| i = 1, 2, · · · , g}
to the instance (G \ {ew},Sw) of minimum tree coloring problem in which

Tw1 is a minimal tree over Sw1. Switch v′ and v′′ if necessary so that Cv′

uses no more colors than Cv′′ . Take u ∈ S1 with |Cu′ | = min{|Cv′ | | v ∈ S1}.
Return tree routing and coloring {(Ti, cu′i)| i = 1, 2, · · · , g} for the instance

(G,S) of minimum tree coloring problem, where T1 is the tree obtained by

connecting Tu′1 with u via edge eu′ , and Ti = Tu′i for i = 2, 3, · · · , g.

To analyze the algorithm, let C∗ = {(T ∗
i , c∗i )|i = 1, · · · , g} be an optimal

solution to the instance (G,S) of minimum tree coloring problem, and

suppose that T ∗
1 is a minimal tree over S1 and uses edge ew with w = v′

or v′′ to connect one of its leaves v. Let T ∗
ew consist of trees in T ∗ =

{T ∗
1 , T ∗

2 , · · · , T ∗
g } using ew, and S∗ew

consist of groups in S such that T ∗
ew

is

over S∗ew
and T ∗ \ T ∗

ew
is over S \S∗ew

. Observe that LT ∗ ≥ LT ∗
ew

= |T ∗
ew
| =

|S∗ew
| and S1 ∈ S∗ew

. Moreover, T1 = (T ∗\T ∗
ew

)∪{T ∗
1 \{v}} is a tree family in

the chain G\{ew} over (S\S∗ew
)∪{Sw1}, and straightforwardly LT1 ≤ LT ∗ .

Let T∈ be the family of the minimal trees in G\{ew} over S∗ew
\{S1}. Then

LT2 ≤ |S∗ew
| − 1 ≤ LT ∗ − 1, and T1 ∪ T2 is a tree family in G \ {ew} over

((S\S∗ew
)∪{Sw1})∪(S∗ew

\{S1}) = Sw which has load LT1∪T2 ≤ LT1 +LT2 ≤
2LT ∗ − 1 and can be colored with LT1∪T2 colors. Recalling the optimality

of Cw, we have |Cw| = |{cw1, cw2, · · · , cwg}| ≤ LT1∪T2 ≤ 2LT ∗ − 1.

Now consider the number of colors used by the solution {(Ti, cu′i)|i =

1, · · · , g} for the instance (G,S). We deduce from the choice of Cu′ that

|{cu′1, cu′2, · · · , cu′g}| = |Cu′ | ≤ |Cw| ≤ 2LT ∗−1 ≤ 2copt(G,S)−1. It follows

from copt(G,S) ≤ g that |{cu′1, cu′2, · · · , cu′g}|/copt(G,S) ≤ 2− 1/g. The

proof is then finished. �

Recalling the general large gap between the minimum number of colors

and the minimum maximum load stated in Theorem 8.11, we see that as a
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processing step of minimum tree coloring problem, the minimization of the

maximum load works much better in rings than in trees and tori.

8.3 Discussions

In this chapter we have studied two versions of Steiner tree coloring prob-

lem, maximum tree coloring problem and minimum tree coloring problem.

The former asks for the way for routing and coloring maximal number of

multicast requests with given colors, while the latter asks for the way for

routing and coloring all multicast requests with minimal number of colors.

More sophisticated studies also put Quality of Service (Q◦S) constraints

into consideration.

Jia et al. [154] consider Q◦S multicast in WDM networks. Given a set

of Q◦S multicast requests, the objective is to find a set of cost sub-optimal

Q◦S routing trees and assign wavelengths to them. The objective is to

minimize the number of wavelengths in the system. This is a more general

version of minimum tree coloring problem since it involves not only optimal

Q◦S multicast routing, but also the optimal wavelength assignment. Usu-

ally setting up a channel in WDM networks is done in two separate steps:

routing and wavelength assignment, which, however, has limited power in

minimizing the number of wavelengths. They propose two methods for

minimization of the number of wavelengths used that integrate routing and

wavelength assignment via light approximate shortest path tree (refer to

Section 5.3). One minimizes the number of wavelengths through reducing

the maximal link load in the network; while the other does it by trying to

free out the least used wavelengths. Simulation results demonstrate that

the proposed methods can produce sub-optimal Q◦S routing trees while

substantially saving the number of wavelengths used.

Jia et al. [155] study how to assign given wavelengths to (unicast) com-

munication requests such that the overall blocking in the network is mini-

mized. A communication request has to be blocked (also called rejected) if

it can not be satisfied due to limited number of available wavelengths or

load capacity. This problem can be considered as a general version of max-

imum tree coloring problem since the number of blocked requests is equal

to the number of given requests minus that of the satisfied requests. They

transform this problem into the maximum weight k-cut problem. Given

an edge-weighted graph G(V, E) and a k-partition {V1, V2, · · · , Vk} of V ,

a k-cut is a subset of E consisting of edges whose two endpoints are in
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two different sets Vi and Vj , for i 6= j. The weight of a k-cut is the sum

of weights of all edges in the cut. The objective is to find the k-partition

that produces a k-cut with maximum weight. They propose a local search

algorithm with approximation ratio of (1− 1/k) for this NP-hard problem
[163].
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Chapter 9

Steiner Tree Scheduling Problem

Steiner tree scheduling problems arise from the applications of information

dissemination in Wireless Sensor Networks (WSNs) [2]. A WSN usually

consists of a large number of small-sized and low-powered sensor deployed

over a geographical area and a sink node where the end user can access

data. All nodes are equipped with capabilities of sensing, data processing,

and communicating with each other by means of a wireless ad hoc net-

work. A wide range of tasks can be performed by these tiny devices, such

as condition-based maintenance and the monitoring of a large area with re-

spect to some given physical quantity, e.g., temperature, humidity, gravity

and seismic information.

The stringent resource constraint and the sheer number of sensor nodes

in WSNs pose unique challenges on time-efficient information dissemina-

tion. First, the sensor nodes operate on batteries and employ low-power

radio transceivers to enable communications. Data packet sent by a senor

(sender) reaches all its neighbor nodes within the transmission range of

the sender; Sensors far from the data sink have to use intermediate nodes

to relay data transmission. Second, collision resulting from a large num-

ber of simultaneous sending creates response implosion [148]: when two or

more sensors send data to a common neighbor at the same time, collision

occurs at this node, which will not receive any of these data. Third, the

data sent by a sender is received by any its neighbor (receiver) at which

no collision occurs; the receiver fuses the data received with its own data

(possibly null), and stores the fused data as its new data. In addition,

the time consumed by a single sending-receiving-fusing-storing is typically

normalized to one; parallel sending-receiving are desirable for reducing the

network delay. Fourth, with the large population of sensor nodes, it may

be impractical or energy consuming to pay attention to each individual

253
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nodes in all situations; for instance, the user wound be more interested in

querying “what is the highest temperature in some specified areas?”

Usually, it is assumed that each sensor node knows its geometric po-

sition in the network, which is considered as the unique ID of the sensor

(the aggregated data may include some of these IDs). We further assume

that the sink has global knowledge of IDs of all sensors in the WSN. When

it needs some data of particular interests at some sensor nodes, it informs

those nodes, by multicasting, of the transmission schedule which may be

represented by IDs of senders and receivers. Upon receiving the request,

sensor nodes will send their data or receive data from others as specified

in the schedule. In such a way, the schedule guarantees collision-free data

aggregation. It also enables significant energy savings since sensor nodes

are in an energy conserving state when they do not participate in send-

ing/receiving. Prior to the scheduled time for data aggregation, a node

switched from the energy conserving state to the energy consuming state,

transmits or receives data and then go back to the energy conserving state.

Motivated by various applications of time-efficient information dissem-

ination for query-based monitoring WSNs (e.g. battlefield communica-

tions and rescue operations), we will study in this chapter two Steiner

tree scheduling problems:

(1) Minimum aggregation time problem. It adopts a collision-free transmis-

sion model, which guarantees the energy-efficiency since no data need

to be transmitted more than once. The objective is how to, given a

WSN with a distinguished data sink d which is interested in data on a

subset S of sensor nodes, determine a data transmission schedule such

that all data on S are sent and aggregated to d in minimal time.

(2) Minimum broadcast time problem [110]. It is very similar to minimum

aggregation time problem. Initially d has a message to be broadcasted

to every node in the network; At each time round any node that has

received the message is allowed to communicate the message to at most

one of its neighbors. The objective is how to compute a broadcast

schedule of minimal number of time rounds that is required for every

node to receive the message.

Clearly, the minimum broadcast time problem schedules the data to

flow from d to all nodes in S while the minimum aggregation time problem

schedules data to flow from all nodes in S towards d.

The remainder of this chapter is organized as follows. In Sections 9.1

and 9.2 we will study minimum aggregation and broadcast time problems,
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respectively. For each problem, we will first give NP-hardness proofs, and

then propose some approximation algorithms. In Section 9.3, we will con-

clude the chapter with some remarks.

9.1 Minimum Aggregation Time

9.1.1 Problem Formulation

In view of miniature design of sensor devices, we assume that all sensors

in Wireless Sensor Networks (WSNs) are fixed and homogeneous. More

specifically, the WSN under investigation consists of stationary nodes (sen-

sor nodes and a sink node) distributed in the Euclidean plane. Assuming

the transmission range of any sensor node is a unit disk (circular region

with unit radius) centered at the sensor, we model a WSN as a Unit Disk

Graph (UDG) G = (V, E) in which two nodes u, v ∈ V are considered

neighbors,i.e., there is an edge uv ∈ E joining u and v, if and only if the

Euclidean distance |uv| between u and v is at most one. Hereafter we re-

serve symbol G for UDGs modelling WSNs, and ∆ for the maximum degree

of G. It is always assumed that G is connected. We assume that commu-

nication is deterministic and proceeds in synchronous rounds controlled by

a global clock. Moreover, we assume that in each time round,

(1) Each node can send data (be a sender) or receive data (be a receiver)

but cannot do both;

(2) Each node can receive data from at most one of its neighbors;

(3) Data packet sent by any sender reaches simultaneously all its neighbors;

(4) All nodes can receive data only if exactly one of their neighbors sends

data.

(a) (b)

r1
r2

s1 s2

r

s1 s2

Fig. 9.1 Description of network assumptions.
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Note that the above assumptions guarantee collision-free data trans-

mit/receiving between senders and receivers. In Fig.9.1(a), two time rounds

are required if node si needs to send its data to node ri for i = 1, 2 since

when they send their data in the same time round r2 will receive data from

both s1 and s2 causing collision, which is not allowed (due to Conditions

(3-4)). For the same reason, in Fig.9.1(b), two time rounds are required

if s1 and s2 both need to send their data to r. Moreover, we assume that

each receiver updates its data as the combination of all data received in

different rounds, this enforces that each node needs to send data at most

once.

In contrast to traditional networks (e.g., the Internet) which are address-

centric, WSNs are intrinsically data-centric. In some applications of WSN,

the end user needs to extract information from the sensor field with low

latency. In this case, data sensed at some sensors related to the same physi-

cal phenomenon need to be aggregated and sent to the data sink efficiently.

Real time data aggregation is a combination of data from different sensors

according to a certain aggregation function, e.g., duplicate suppression,

logical AND/OR, minima and maxima, and all requested data should be

periodically delivered to sink node within a certain period of time from the

moment they are requested (after that data may be useless).

An instance of minimum aggregation time problem is denoted by

(G, S, d), where the set S ⊆ V (G) consists of nodes whose data are re-

quested by the sink node d ∈ V . The solution of (G, S, d) is a transmission

schedule {(S1, R1), (S2, R2), · · · , (Ss, Rs)} such that Sr (resp. Rr) is the

set of senders (resp. receivers) in r-th round for r = 1, 2, · · · , s, and all

data on nodes in S must be aggregated to d within s rounds. Note that

every (Sr, Rr) gives implicitly the 1-1 correspondence between Sr and Rr

in a way that v ∈ Sr corresponds to its receiver in Rr which is the only

neighbor of v in Rr. The value s is called the data aggregation time of solu-

tion {(S1, R1), (S2, R2), · · · , (Ss, Rs)}. The objective is to find the schedule

with minimum data aggregation time topt(G, S, d). The problem is more

formally formulated as follows.

Problem 9.1 Minimum Aggregation Time Problem

Instance A unit disk graph G(V, E), a subset S of V and d ∈ V \ S.

Solution A transmission schedule {(S1, R1), (S2, R2), · · · , (Ss, Rs)}.
Objective Minimize the aggregation time of transmission schedule.

Given an instance (G, S, d) of minimum aggregation time problem, a

shortest path tree T of (G, S, d) is a tree in G consisting of shortest paths
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from d to nodes in S. The height of T , denoted by h(G, S, d), equals to the

length of the longest path in T from d to leaves of T . The following lower

bound can be easily obtained by applying the same argument used in the

estimation of multicasting time in telephone networks [23].

Lemma 9.1 For any instance (G, S, d) of minimum aggregation time

problem, topt(G, S, d) ≥ max{h(G, S, d), log2 |S|}.
However, data aggregation in WSNs is not simply the reverse of broad-

cast/multicast in traditional telephone network. For example, Gandhi et

al. [105] showed that the broadcast time in a WSN is at most 648 times the

height of the shortest path tree. Note also when the underlying topology G

of WSNs is a complete graph, we have topt(G, S, d) = n while the shortest

path tree gives a multicast time equal to 1 and minimum broadcast time

problem has minimum broadcast time of log2|V |.

9.1.2 Complexity Analysis

In order to prove the NP-hardness of minimum aggregation time problem,

we will apply some known results on orthogonal planar drawing. An or-

thogonal planar drawing of a planar graph H is a planar embedding of H in

the plane such that all edges are drawn as sequences of horizontal and ver-

tical segments. A point where the drawing of an edge changes its direction

is called a bend of this edge. All vertices and bends are drawn on integer

points. If the drawing can be enclosed by a box of width g and height g,

we call it an embedding with grid size (g× g). By a plane graph we mean a

planar graph together with a planar embedding of it. Biedl and Kant [36]

proved the following lemma.

Lemma 9.2 Given a simple plane graph H on g vertices that is not an

octahedron and has maximum degree at most 4, there is a linear algorithm

which produces an orthogonal planar drawing of H with grid size (g × g)

such that the number of bends along each edge is at most 2.

Using the above lemma we can deduce the following lemma [53].

Lemma 9.3 Let H be a plane graph on g vertices with maximum degree

at most 4. Suppose that H is not an octahedron, and let H ′ be the graph

obtained from H by replacing each edge in H with a path of length 120g2.

Then H ′ is a unit disk graph and an orthogonal planar embedding of H ′ of

grid size (40g2 + 40g)× (40g2 + 40g) can be computed in time polynomial

in g.
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Proof. Note first that the orthogonal planar embedding stated below is

derived in time polynomial in g.

(C1) H has an orthogonal planar drawing D of grid size (g × g) in which

every edge of H has at most 2 bends.

An orthogonal planar drawing D′ of H with grid size (40g2+40g)×(40g2+

40g) can be obtained from D in such a direct way that point (x, y) in D

maps to point (40nx, 40ny) in D′, and every vertical (resp. horizontal)

segment of unit length (segment for short) in D maps to a vertical (resp.

horizontal) path of length 40g in D′ between the images (in D′) of the

ends of the segment (in D). (The additional 40g is set for the further

modification on the drawing.) It is straightforward from claim (C1) that

(C2) each edge of H has length at most 120g2 in D′.

We propose to modify D′ into an orthogonal planar drawing of H ′ with

grid size (40g2 + 40g)× (40g2 + 40g) in which every edge of H ′ is a vertical

or horizontal segment and any two nonadjacent vertices of H ′ are drawn on

two points with distance at least two. To this end, we consider a 18g× 18g

grid K and a, b the two corners of K on one side. We call a path from a to

b an a-b path.

(C3) For every even integer j with 18g ≤ j ≤ 120g2, K contains an

a-b path Pj of length j which is a unit disk graph.

Suppose, without loss of generality, that a and b are located on (0, 0)

and (18g, 0), respectively. Let k ∈ {18g, 18g − 2} be such that (k/2 + 1)

is an even number (i.e. {0, 2, 4, · · · , k} is of even size). Denote by I2i

(0 ≤ i ≤ k/2) the path consisting of points and segments on the 2i-th

(vertical) column of K. For each 0 ≤ i ≤ k − 6 which is a fold of 4, let Ji

(resp. Ji+2) be the shortest path connecting the top ends of Ii and Ii+2

(resp. the bottom ends of of Ii+2 and Ii+4) and let Jk−2 (resp. Jk) be the

shortest path connecting the top ends of Ik−2 and Ik (resp. the bottom end

of Ik and b). Thus J0, J2, J4, · · · , Jk−2 are all horizontal paths of length 2,

Jk is horizontal paths of length 0 (when k = 18g) or 2 (when k = 18g− 2),

and J0, J4, · · · , Jk−2 (resp. J2, J6, · · · , Jk−4, Jk ) are contained in the top

(resp. bottom) row of K. Now we get an a-b path P` :=
⋃k/2

i=0(I2i ∪ J2i)

of even length ` > (k/2 + 1)18g > 120g2. Clearly P` is induced, and so

is a unit disk graph. Inductively, suppose that K contains an a-b path Pj

of even length j (≥ 18g + 2) such that Pj is a unit disk graph containing

J2 ∪ J6 ∪ · · · ∪ Jk−4 ∪ Jk, and all vertical segments of Pj are contained in
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∪k/2
i=0I2i. Since j ≥ 18g + 2, we see the statement holds for (j − 2) in a

way that Pj−2 is obtained from Pj by replacing a subpath of Pj of length

4 consisting of two vertical segments and two horizontal segments with a

horizontal path in K of length 2 between the same ends. Consequently,

Claim (C3) is proved by induction.

We now turn back to the drawing D′. Consider an arbitrary edge e of

H of length `e in D′. Let Se be the subpath (in the (40g2 + 20g)× (40g2 +

40g) grid) of the drawing of e consisting of a maximal sequence of vertical

(or horizontal) segments. Let ue and ve be the ends of Se such that the

summation of coordinates of ue is less than the summation of coordinates

of ve. Then

(C4) In D′, point ue (resp. ve) is a bend or an end of e, and Se is a vertical

or horizontal path of even length at least 40g.

Now we put a (18g × 18g)-grid Ke such that Ke ∩ Se is an ae-be path

Qe which is a side of Ke, and |aeve| > |beve| = 2. By (a) and (b), let Pe be

the ae-be path in Ke of length 120g2− `e + 18n which is a unit disk graph.

Construct drawing D′′ from D′ by replacing each Qe in Se with Pe in Ke.

Let H ′ be the graph whose vertex (resp. edge) set consists of all points

(resp. segments) in D′′. Then D′′ is an orthogonal planar drawing of G′ of

grid size (40g2 +40g)× (40n2 +40g) and G′ is a graph obtained from G by

replacing each edge of G with a path of length 120g2. Moreover,

(C5) In the embedding D′′ of H ′ the distance between any point (vertex)

in Pe\{ae, be} and any point (vertex)in H ′\V (Ke) is at least two.

Suppose the contrary that x ∈ V (Pe)−{ae, be} and y ∈ V (H ′)−V (Ke)

has distance one in D′′. Since any two vertical (resp. horizontal) segments

in D′ have distance at least 40g, it follows from claim (C3) and |aeve| >
|beve| = 2 that y ∈ Pf for some other edge f of H . From the positions of

Ke on Se and Kf on Sf , we deduce that Se or Sf has length less than 40g,

a contradiction to claim (C4). Hence claim (C5) holds.

Combining claims (C3-4), we conclude that H ′ is a unit disk graph and

establish the lemma. �

We now explain how to prove that minimum aggregation time problem

by reducing the restricted planar 3-SAT problem to it. Let {x1, x2, · · · , xn}
and {c1, · · · , cm} denote, respectively, the sets of variables and clause

in a Boolean formula ϕ in conjunctive normal form, where each clause

has at most 3 literals. Associate with ϕ the formula graph Gϕ =
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({x1, x2, · · · , xn} ∪ {c1, c2, · · · , cm}, E1 ∪ E2), where E1 := {xicj |xi ∈ cj

or x̄i ∈ cj} and E2 := {xixi+1 | 1 ≤ i ≤ n− 1} ∪ {xnx1}. Boolean formula

is called planar if Gϕ is a planar graph. The planar 3-SAT problem is to

decide if there is a truth assignment that satisfies all clauses in a planar

boolean formula, where each clause has at most three literals. A planar

3-SAT problem is said to be restricted if

(a) each variable (unnegated or negated) appears at most three clauses,

(b) both unnegated and negated forms of each variable appear; and

(c) at every variable node in the planar embedding of Gϕ, the edges in E2

that are incident with node x separate the edges in E1 incident to x

such that all edges representing nonnegative appearance are incident to

one side of x and all edges representing negative appearance are inci-

dent to the other side.

It is known that the restricted planar 3-SAT problem is NP-complete [186].

Theorem 9.1 The decision version of minimum aggregation problem is

NP-complete even when the underlying topology is a subgraph of a grid.

Proof. The proof is based on a reduction from restricted planar 3-SAT.

Given any restricted planar 3-SAT instance ϕ on n variable and m clauses,

from its planar formula graph Gϕ, we construct planar graphs Gk for pos-

itive integer k as follows.

To every variable xi, 1 ≤ i ≤ n, we associate a rectangle Xi and two

node-disjoint paths Pi, P̄i such that

(i) Xi has exactly 10k nodes among which equally spaced nodes pi, qi, ri, si,

ti, s
′
i, rr

′
i, q

′
i, p

′
i, t

′
i are located in cyclic order of Xi, and Pi (resp. P ′

i )

has ends oi and pi (resp. o′i and p′i) with Pi∩Xi = {pi} (resp. P ′
i ∩Xi =

{p′i}), and

(ii) both Pi and P ′
i are of length (6i− 5)k− 1. To every clause cj , we asso-

ciate a path Cj with ends bj , cj and of length k − 1. All Xi ∪ Pi ∪ P ′
i ’s

and Cj ’s are pairwise node-disjoint. For every edge xicj (resp. x′
icj) in

Gϕ, there is a path Pij in Gk such that Pij has one end cj and the

other end in {ri, si} (resp. {r′i, s′i}), and for all 1 ≤ i, i′ ≤ n, 1 ≤ j,

j′ ≤ m, we have

(iii) Pi,j

⋂
(
⋃n

h=1 Ch) = {cj}, Pi,j

⋂
(
⋃n

h=1(Xi ∪Pi ∪P ′
i )) consists of a node

in {ri, si, r
′
i, s

′
i};

(iv) Pij ∩ Pi′j′ 6= ∅ iff Pij = Pi′j′ or i 6= i′ and Pij ∩ Pi′j′ = {cj} = {cj′};
(v) Pij is of length (6i− 4)k when it has end in {ri, r

′
i} and of length

(6i− 3)k when it has end in {si, s
′
i}. Finally we add (n− 1) pairwise
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disjoint paths W1, W2, · · · , Wn−1 such that

(vi) Wh has length k and Wh

⋂ ( ⋃
i,j(Xi ∪Pi ∪P ′

i ∪Cj ∪Pij )
)

= {th, th+1}
for h = 1, 2, · · · , n− 1. This completes the construction of Gk :=⋃

i,j

(
Xi ∪ Pi ∪ P ′

i ∪Wi ∪ Cj ∪ Pij

)
.

Let G+
k be obtained from Gk by adding (2n + m) pendant edges such

that the 2n + m degree-one nodes o1, o
′
1, o2, o

′
2, · · · , on, o′n, b1, b2, · · · , bm in

Gk have degree two in G+
k . Denote by g the number of nodes in G+

1 and

set ` = 120g2. It is easy to see that g < 36n2 + m and that G+
` is obtained

from G+
1 by replacing each edge of G+

1 with a path of length 120g2. Since

Gϕ is a planar graph with maximum degree at least 3, so is G1. Thus a

planar embedding of G1 might be computed in time polynomial in (n + m)
[25]. By the construction, this planar embedding might be extended to be

a planar embedding for G+
1 in time polynomial in g and hence polynomial

in (n + m). Notice that G+
1 is a plane graph other than octahedron and

that the maximum degree of G+
1 is at most 4. It follows from Lemma 9.3

that G+
` is a unit disk graph, so is G`. Moreover from Lemma 9.3, we

deduce that G` is a subgraph of a grid, and that both the size of G` and

the construction time of G` are polynomial in (n + m).

Next we show that the restricted planar 3-SAT instance ϕ is satisfiable

if and only if the minimum aggregation time problem on (G`, V (G`), tn)

has a solution (schedule) which aggregates all data on V (G`) into the sink

tn within (6n−1)` rounds. To this end, let us first make some observations.

For notational convenience, we set Wn = ∅ and use X+
i (resp. X−

i ) to de-

note the shortest path from pi to si (resp. p′i to s′i), i = 1, 2, · · · , n. Clearly,

X+
i ∪X−

i ⊆ Xi, X+
i ∩X−

i = ∅, {pi, qi, ri, si} ⊆ X+
i and {p′i, q′i, r′i, s′i} ⊆ X−

i

for all 1 ≤ i ≤ n.

(a) Every shortest path from t′1 to tn is of length (6n− 1)` and must be

contained in ∪n
ı=1(Xı ∪Wı).

Suppose the contrary that P is a shortest path from t̄1 to tn violating

(a). Then by (i) and (vi), we have P *
⋃n

ı=1(Xı ∪Wı). Then there exist

1 ≤ h < i ≤ n and 1 ≤ j ≤ m such that Phj ∪ Pij is a subpath of P . Let

uh (resp. ui) denote the the end of Phj (resp. Pij) in Xh (resp. Xi). By

symmetry suppose that the shortest path in X1 from t̄1 to r1 is a subpath

of P . It is clear that P\((Phj ∪Pij)\{uh, ui}) consists of two paths P1 and

P2 with P1 containing t̄1, r1, uh and P2 containing ui, tn. Note from (i),

(v) and (vi) that (
⋃i−1

ı=1(Xı ∪Wı)) ∪ Xi contains a path Q from r1 to ui

of length |E(Q)| = |E(Pij)| − 2`. It is not hard to see that P1 ∪ Q ∪ P2
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contains a path P ′ from t̄1 to tn shorter than P , a contradiction. So (a)

holds.

Now combining (a) with (ii) and (v), we have

(b) For 1 ≤ i ≤ n, (
⋃n

ı=i(Rı ∪Wı))\t′i contains every shortest path from pi

(resp. p′i) to tn (which is of length (6(n− i) + 4)`), every shortest path

from ri (resp. r′i) to tn (which is of length (6(n− i) + 2)`), and every

shortest path from si (resp. s′i) to tn (which is of length (6(n−i)+1)`).

(c) For 1 ≤ i ≤ n, every shortest path from oi (resp. ōi) to tn has length

(6n− 1)`− 1 and its intersection with
⋃n

ı=1(Xı ∪ Λı) is a path from pi

(resp. p̄i) to tn containing X+
i (resp. X−

i ) and avoiding X−
i (resp. X+

i );

and no path from oi (resp. ōi) to tn has length (6n− 1)`.

(d) For 1 ≤ j ≤ m, each shortest path from bj to tn has length (6n−1)`−1

and its intersection with
⋃n

i=1(Xi ∪Wi) is a path; and no path from bj

to tn has length (6n− 1)`.

Now we assume that all data on V (G`) are aggregated into tn within

(6n−1)` rounds. It is immediate from (a) that the data on t̄1 is aggregated

up to tn along a shortest path P from t̄1 to tn in
⋃n

ı=1(Rı ∪Wı) without

any delay; particularly, we have

(e) for 1 ≤ i ≤ n, |P ∩ {X+
i , X−

i }| = 1.

For i = 1, 2, · · · , n, let {wi, w
′
i} = {pi, p

′
i}, {xi, x

′
i} = {qi, q

′
i}, {yi, y

′
i} =

{ri, r
′
i} and {zi, z

′
i} = {si, s

′
i} be such that P contains wi, xi, yi, zi. Using

inductive arguments we can show that

(f) for 1 ≤ i ≤ n, the aggregated data from t′1 is received by t′i in round

(6i− 6)`, by wi in round (6i− 5)`, by yi in round (6i− 3)`, by zi in

round (6i− 2)`, and by ti in round (6i− 1)`.

Note from (c) that the data on oi (resp. o′i) must be aggregated towards

tn along a shortest path from oi (resp. o′i) to tn containing Pi ∪X+
i (resp.

P ′
i ∪ X−

i ), and oi (resp. o′i) sends data in 1-th round or in 2-nd round.

Since by (i) and (ii) the length of Pi ∪X+
i (resp. P ′

i ∪X−
i ) is (6i− 2)`− 1,

we see that oi (resp. o′i) sends data in 1-th round as otherwise either the

aggregated data from t′1 and that from oi (resp. o′i) collide on wi in round

(6i − 5)` or collide on ti in round (6i − 1)`. Let vi = oi if wi = p′i and

vi = o′i if wi = pi. Then we have

(g) for 1 ≤ i ≤ n, the aggregated data from vi is received by w′
i in round

(6i− 5)`− 1, by y′
i in round (6i− 3)`− 1, by z′

i in round (6i− 2)`− 1,
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and by ti in round (6i− 1)`− 1.

Let us consider an arbitrary j ∈ {1, 2, · · · , m}. It can be seen from (d)

that the data on bj is aggregated to tn along a shortest path from bj to

tn without any delay. Obviously this shortest path contains Cj ∪ Pij as a

subpath for some i ∈ {1, 2, · · · , n}. Recall from (v) that Cj∪Pij is of length

(6i− 3)`− 1 when one end of Pij is in {ri, r
′
i}, and of length (6i− 2)`− 1

when one end of Pij is in {si, s
′
i}. If y′

i is an end of Pij , then data from vi

and the data from bj collide on y′
i in round (6i−3)`−1. So we have y′

i 6∈ Pij ,

and similarly z′
i 6∈ Pij . It follows that for every 1 ≤ j ≤ m, there exists

some Pij on the aggregation path from bj to tn such that Pij ∩{yi, zi} 6= ∅.
This allows us to derive a truth assignment for ϕ by setting xi := true if

and only if X+
i ⊆ P .

Conversely, we consider the case where the restricted planar 3-SAT

instance ϕ has a true assignment {x∗
1, x

∗
2, · · · , x∗

n}. Notice that for each

1 ≤ j ≤ m, there exists an index i(j) ∈ {1, 2, · · · , n} such that ei-

ther true = x∗
i(j) ∈ Cj and Pi(j)j connects cj with ri(j) or si(j), or

true = x̄∗
i(j) ∈ Cj and Pi(j)j connects cj with r′i(j) or s′i(j). To define a

schedule for the minimum aggregation time problem on (G`, V (G`), tn),

from G` we construct a spanning T of G` rooted at tn by deleting some

edges of G` as follows: For each 1 ≤ i ≤ n, we delete the edge incident

with t′i contained in X−
i (resp. X+

i ) when x∗
i = true (resp. x̄∗

i = true);

for each 1 ≤ j ≤ m, we delete all edges incident with cj but the two in

Cj ∪ Pi(j)j . From (i-vi) and (a-d), it is easy to see that the height of T

is (6n − 1)`. Now for i = 1, 2, · · · , (6n − 1)`, let Si consist of all nodes

such that the paths in T from tn to them have length (6n − 1)` − i + 1,

and let Ri consist of parents (in T ) of nodes in Si. Again (i-vi) and (a-d)

assure that {(S1, R1), (S2, R2), · · · , (S(6n−1)`, R(6n−1)`)} is a schedule with

data aggregation time (6n−1)` for the minimum aggregation time problem

on (G`, V (G`), tn). The theorem is then proved. �

9.1.3 Greedy Algorithms

In this subsection we will present four approximation algorithms for mini-

mum aggregation time problem, Asda, Alsda, Apsda and Aesda, all adopt the

shortest data aggregation strategy that aggregates data along shortest paths

towards the sink. Among them Asda is a basic algorithm for minimum ag-

gregation problem, while others are its variations for different cases. We

also present the theoretical analysis for the worst-case performance ratios
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of all these four algorithms.

9.1.3.1 Basic Algorithm

Algorithm Asda proceeds by incrementally constructing smaller and smaller

shortest path trees rooted at d that span all nodes in S. It, initially, sets T1

to a shortest path tree of (G, S, d). A number of iterations is implemented

by Asda (refer to the pseudo-code below) and each iteration produces a

schedule of a round. In the r-th iteration, Tr is a shortest path tree rooted

at d spanning a set of nodes that possess all data aggregated from S till

round (r − 1). Asda selects from the leaves of Ti as the senders for round

r. In Steps 4-9, the variable Zr with initial value {leaves of Tr}\{d} is

used for selection. The set Zr maintains the property that every non-leaf

neighbor of a leaf in Tr other than d has a neighbor in Zr. The leaves of Tr

other than d are examined in the decreasing order of the number of their

neighbors in G that are non-leaf node in Tr. A leaf is eliminated from Zr

if and only if the elimination does not destroy the property of Zr. When

all leaves of Tr other than d are examined, the remaining nodes in Zr form

the set Sr of the senders in the r-th round. Subsequently, Asda eliminates

Sr from its consideration by setting Tr+1 := Tr\Sr and ends the (r + 1)-th

iteration.

Algorithm 9.1 Shortest Data Aggregation

(1) r ← 1, I1 ← U , T1 ← a shortest path tree T of (G, S, d)

(2) while Tr 6= {d} do begin

(3) Tr ← Tr\({leaves of Tr}\({d} ∪ Ir))

(4) Zr = Zr ← {leaves of Tr}\{d};
Yr ← NG(Zr) ∩ V (Tr), Sr ← ∅, Rr ← ∅

(5) while Zr\Sr 6= ∅ do begin

(6) z ← a node in Zr\Sr of the max number of neighbors in Yr

(7) if Yr ⊆ NG((Zr ∪ Sr)\{z}) then Zr ← Zr\{z}
(8) else yz ← a node from Yr\NG((Zr ∪ Sr)\{z});

Sr ← Sr ∪ {z}, Rr ← Rr ∪ {yz}
(9) end-while

(10) Ir+1 ← Ir ∪ Rr, Tr+1 ← Tr\Sr

(11) r ← r + 1

(12) end-while

(13) return s← r−1 and Asda(G, S, d)← {(S1, R1), (S2, R2), · · · , (Ss, Rs)}

One of main ideas of the shortest data aggregation based algorithms is
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to apply degree sorting and assign parallel transmissions (e.g. Steps 3-9

of Asda). Intuitively speaking, we prefer to assign nodes of small degrees

to send data before those of large degrees, and to arrange nodes of similar

degrees to send data simultaneously. Both preferences increase potentially

the number of parallel sendings/receivings and therefore reduce potentially

the data aggregation time. Next we analyze theoretically the correctness

and the performance of algorithm Asda. For a subset of U ⊂ V in G =

(V, E), the notation NG(U) is a shorthand of {v |uv ∈ E, u ∈ U}, and

NG({u}) is simply written as NG(u).

Lemma 9.4 Let R0 = S0 = Zs+1 = ∅. Then for each r with 1 ≤ r ≤ s

(i) Ir consists of all informed nodes at the beginning of the r-th round.

(ii) Tr is a subtree of T\(⋃r−1
i=0 Si) with root d such that |V (Tr)| ≥ 2 and all

data on S\V (Tr) have been aggregated to nodes in V (Tr) at the beginning

of the r-th round (i.e. the end of the (r − 1)-th round.

(iii) Yr and Zr are nonempty subsets of V (Tr) such that Yr ⊆ NG(Zr).

(iv) Yr ⊆ NG(Sr) in Step 10.

(v) There is an 1-1 mapping between Sr and Rr in such a way that every

sender z ∈ Sr corresponds to its receiver yz ∈ Rr.

(vi) ∅ 6= Rr ⊆ Ir+1 ∩ Yr ⊆ V (Tr+1) ⊆ V (Tr)\Sr ( Tr, Sr ⊆ Zr ⊆ Ir, and

Zr\Sr ⊆ Zr+1.

Proof. We apply inductive arguments on r. First we examine the base

case of r = 1. Statements (i-iii) are trivially true since T is a shortest path

tree whose leaves must be all in S. Using Y1 ⊆ NG(Z1), it is easily checked

that in the |Z1| times implementations of the inter while-loop (Steps 3-

9), Y1 ⊆ NG(Z1) always holds, and z ∈ Z1 is put into S1 and yz is put

into R1 if and only if yz ∈ NG(z) and S1 will not contain any neighbor

of yz other than z. Statements (iv) and (v) follow (note that Z1 = S1

ultimately in Step 10. Step 5 guarantees S1 ⊆ Z1 ⊆ I1, which in turn gives

Z1\S1 ⊆ Z2. Since ∅ 6= Y1 ⊆ NG(S1) (by (iii) and (iv)), we deduce from

(v) that |R1| = |S1| > 0. It is easily checked from Step 10 and Step 5 that

(vi) holds.

Then we proceed to inductive steps. We verify statements (i-vi) one by

one for 2 ≤ r ≤ s under the hypothesis that (i-vi) are true for (r − 1). For

the simplicity of description, we use superscripts (r−1) and r to distinguish

the conclusions (i-vi) with respect to (r−1) and r, respectively, i.e., (i)r−1,

(ii)r−1, · · · , (vi)t−1 and (i)r, (ii)r, · · · , (vi)r. Statement (i)r is true by (i)r−1,

(v)r−1, (vi)r−1, and Ir = Ir−1∪Rr in Step 10. Since Sr−1 (⊆ Zr−1) consists

of some leaves of Tr−1 (by (vi)r−1), Tr−1\Sr−1 is a tree, so is Tr in Step 10
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and in Step 4. Moreover |V (Tr)| ≥ 2 in Step 4. If all nodes other than

d are deleted from Tr in Step 5, then Zr = ∅, and it follows from (vi)r−1

that Rr−1 = {d} (by Rr−1 ⊆ V (Tr)) and ∅ 6= V (Tr−1)\(Sr−1 ∪ {d}) ⊆
Zr−1\Sr−1 ⊆ Zr, a contradiction. Thus we have |V (Tr)| ≥ 2 in Step 4.

Now (ii)r follows from (ii)r−1, (vi)r−1, (vi)r−1, Step 5 and (i)r . Obviously,

(iii)r follows from |V (Tr)| ≥ 2. Statements (iv)r-(vi)r can be justified by

applying arguments similar to those used in the base case with script r in

place of script 1. The lemma is then proved. �

Corollary 9.1 (i) S1, S2, · · · , Ss are pairwise disjoint, (ii) Sr ∩ (Rr ∪
Rr+1 ∪ · · · ∪ Rs) = ∅ for all 1 ≤ r ≤ s, and (iii) T = T1 ) T2 ) · · · ) Ts )
Ts+1 = {d}.

Theorem 9.2 Given an instance (G, S, d) of minimum aggregation time

problem, Algorithm Asda produces a schedule in time of O(|V |2 log |V | +
|V | · |E|).

Proof. The termination of algorithm Asda is guaranteed by Corollary

9.1(iii). From Ts+1 = {d} and Lemma 9.4(v,vi), it can be verified that Ts

is a 2-node tree on Rs = {d} and it is the only sender in Ss. Since, by

Lemma 9.4(ii), all data on S have been aggregated to V (Ts) at the end

of the s − 1-th round, the schedule {(S1, R1), · · · , (Ss−1, Rs−1), (Ss, Rs)}
returned by algorithm Asda aggregates all data on S to d within s rounds.

To estimate the running time of algorithm Asda, note that the com-

putation of a shortest path tree in Step 1 requires time O(|V | + |E|) and

Asda executes the external while-loop (Steps 2-12) at most |V | times, i.e.,

s ≤ |V |. Since within the r-th iteration (of the external while-loop) sorting

degree of nodes in Zr and selecting nodes to form Sr can be accomplished

in time O(|V | log |V |) and O(|E|), respectively, we deduce that the time

complexity of SDA is O(|V |2 log |V | + |V | · |E|). The proof is then com-

pleted. �

We now study the approximation performance ratio of algorithm Asda.

Let h = h(G, S, d), and Li = {nodes in T at i hops away from d} for every

0 ≤ i ≤ h + 1; in particular, L0 = {d} and Lh+1 = ∅. Set Ti = ∅ for all

i ≥ s + 2.

Lemma 9.5 For every 0 ≤ i ≤ h− 1, Lh+1−i ∩ V (T(∆−1)i+1) = ∅, where

∆ is the maximum degree of given graph G.

Proof. We prove the lemma by mathematical induction on i. The base

case where i = 0 is justified by Lh+1 = ∅. Proceeding inductively, suppose
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that j = (∆− 1)(i − 1) + 1 and Lh+1−(i−1) ∩ V (Tj) = ∅, which implies

that any node in Lh+1−i ∩ V (Tj) is a leaf in Tj . We aim to show Lh+1−i ∩
V (Tj+∆−1) = ∅.

By contradiction, let v ∈ Lh+1−i ∩ V (Tj+∆−1). Note from Step 4 (the

definition of Zr) and Lemma 9.4(vi) that v ∈ Zj+k for every 0 ≤ k ≤ ∆−1.

Hence there exists u ∈ Lh−i such that u ∈ Yj+k for every 0 ≤ k ≤ ∆−1. It

follows from Lemma 9.4(iv) and Corollary 9.1(i) that there exist ∆ distinct

nodes v0, v1, · · · , v∆−1 such that vk ∈ Sj+k ∩NG(u) for k = 0, 1, · · · , ∆−1.

Recall from Lemma 9.4(ii-iii) that Sj+∆−1 ∩ Yj+∆−1 = ∅ and u is a node

in tree Tj+∆−1\Sj+∆−1. Observe that d ∈ V (Tj+∆−1)\Sj+∆−1 and u 6= d

(since i ≤ h− 1). Therefore, u has a neighbor w in Tj+∆−1\Sj+∆−1. Now

u has (∆ + 1) distinct neighbors w, v0, v1, · · · , v∆−1. The contradiction

completes the proof. �

Theorem 9.3 Given any instance (G, S, d), Algorithm Asda returns a

schedule whose data aggregation time tsda(G, S, d) ≤ min{(∆−1)h+1, (∆−
1)topt(G, S, d)}.

Proof. To prove the theorem, it suffices to show (i) |tsda(G, S, d)| ≤ (∆−
1)h + 1 and (ii) |tsda(G, S, d)| ≤ (∆ − 1)Topt(G, S, d). Recall from Lemma

9.1 that topt(G, S, d) ≥ h. If s = |tsda(G, S, d)| ≤ (∆ − 1)(h − 1) + 1 then

we are done. So we assume s > (∆− 1)(h− 1) + 1.

To justify (i), we deduce from Lemma 9.5 that L2∩V (T(∆−1)(h−1)+1) =

∅, and then from Lemma 9.4(iii) that V (T(∆−1)(h−1)+1) ⊆ L1 ∪ {d}. Note

that |L1| ≤ ∆ and Ts+1 = {r}. Thus by Corollary 9.1(iii) we obtain

s + 1 ≤ (∆− 1)(h− 1) + 1 + |L1| ≤ ∆(h− 1) + 2, which implies (i).

Next we prove (ii). In case of |Lh| ≥ 2, we have topt(G, S, d) ≥ h + 1

and (i) implies s ≤ (∆ − 1)topt(G, S, d). It remains to consider the case

where |Lh| = 1. We may assume ∆ ≥ 3 (since otherwise, G is a path

or a cycle and s = h = topt(G, S, d)). It is obvious that S1 = Lh. Let

G′ = G\Lh and S′ consist of the nodes in S\Lh and the neighbor (parent)

of Lh in T . Then T\Lh is a shortest path tree of (G′, S′, r) that has height

h−1; moreover, there is an implementation of algorithm Asda on (G′, S′, d)

which outputs {S′
1, S

′
2, · · · , S′

s−1} with S′
i = Si+1 for all 1 ≤ i ≤ s − 1.

Using (i), we have s − 1 = |tsda(G′, S′, d)| ≤ (∆ − 1)(h − 1) + 1 since the

maximum degree of G′ is upper bounded by ∆. It follows from ∆ ≥ 3 that

s ≤ (∆ − 1)h ≤ (∆ − 1)topt(G, S, d), and (ii) is proved. The proof is then

complete. �
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9.1.3.2 Algorithms for Special Cases

In this subsection, we show that, when Algorithm Asda is applied to some

special instances of minimum aggregation time problem, it will return solu-

tions with better theoretical guarantees. First, in view of Theorem 9.3(ii),

Asda returns a (∆ − 1)-approximation for Unit Disk Graphs (UDGs) with

maximum degree ∆. In the application of wireless sensor networks, sensor

devices cannot be too close or overlapped; thus it is reasonable to assume

that the distance between any two nodes is no less than a positive constant

λ. The UDG modelling such a sensor network is called a λ-precision unit

disk graph [141; 208]. Krumke et. al [181] showed that the maximum de-

gree of a λ-precision UDG is at most d2π/λ2e. Consequently, we have the

following result.

Corollary 9.2 Given any instance (G, S, d) with λ-precision G, Algo-

rithm Asda returns a schedule whose data aggregation time tsda(G, S, d) ≤
2π
λ2 topt(G, S, d).

Next we exhibit some local properties of UDGs, which ensure that Algo-

rithm Asda has better performance guarantee in some other special cases.

Let v be a node in a unit disk graph G = (V, E) of degree d. Then all

nodes in NG(v) = {v0, v1, · · · , vd−1} are located within a disk centered at

v with radius 1 and boundary B of length 2π. Corresponding to every vi

(0 ≤ i ≤ d − 1), let bi be a point on B such that |bivi| is minimized. If

|vivj | > 1, then the angle between the ray originated at v through vi, bi

and the ray originated at v through vj , bj is greater than π/3. This implies

|bibj | > 1. Thus for any 0 ≤ i, j ≤ d− 1,

(C0) li,j ≤ π/3⇒ |bibj | ≤ 1⇒ |vivj | ≤ 1,

where li,j denotes the length of the clockwise arc in B from bi to bj .

Lemma 9.6 Let G = (V, E) be a planar unit disk graph and v ∈ V be a

node of degree d. Then d ≤ 15 and

(i) every node w ∈ NG(v) has a neighbor in any subset W of NG(v)\{w}
with |W | ≥ 13.

(ii) there exist distinct y, z, y′, z′ in NG(v) such that NG(y) ∩ {z, z′} = {z}
and NG(y′) ∩ {z, z′} = {z′} if d ≥ 9.

Proof. Denote NG(v) = {v0, v1, · · · , vd−1} and let b0, b1, · · · , bd−1 be d

points on the boundary B of the unit disk centered at v that minimize |bivi|,
i = 0, 1, · · · , d− 1. As usual, Kk stands for a complete graph on k vertices,

and a subdivision of K5 is the graph obtained from a K5 by replacing each
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edge e of the K5 with a path between the ends of e whose internal nodes

(if any) all have degree 2. The planarity of G implies that

(C1) The subgraph induced by {v}∪NG(v) contains no subdivision of K5;

and in particular no four nodes in NG(v) can induce a K4.

If an arc in B of length at most π/3 contains four distinct points

bi, bj , bk, b`, then the distance between every pair from {bi, bj , bk, b`} is not

greater than 1, so is the distance between every pair from {vi, vj , vk, v`}
by claim (C0); it follows that {vi, vj , vk, v`} induces a K4, that contradicts

claim (C1). Hence

(C2) any arc in B of length π/3 can contain at most three points from

b0, b1, · · · , bd−1.

To see (i), for every 0 ≤ i ≤ d − 1, let Vi = NG(v)\({vi} ∪ NG(vi)),

and let Ai be the arc in B consisting of points at distance at least 1 from

bi. Clearly, Ai has length 4π/3, and by claim (C0), contains every bj

with vj ∈ Vi. Note from pigeonhole principle and claim (C2) that Ai can

contain at most 12 points from b0, b1, · · · , bd−1. It follows that |Vi| ≤ 12,

which implies (i).

We then prove (ii). If the subgraph of G induced by NG(v) contains a

triangle, say v0v1v2v0, then considering the distributions of b3, b4, · · · , b8 on

B, without loss of generality we may assume that l3,4 ≤ π/3, and therefore,

by (C0), v3v4 ∈ E. Recall from (C1) that {v0, v1, v2, v3, v4} induces a

subgraph of G containing no K4. It is routine to check that there exist

1 ≤ i 6= j ≤ 3 such that viv3 6∈ E and vjv4 6∈ E, which gives y = vi, z = v4,

y′ = vj , z′ = v3 as desired. So we consider the case in which the subgraph

induced by NG(v) is triangle-free. By d ≥ 9, permuting indices if necessary,

we may assume that {v0v1, v2v3} ⊆ E. It is routine to check that either

y = v0, z = v1, y
′ = v2, z

′ = v3 or y = v0, z = v1, y
′ = v3, z

′ = v2 satisfy (ii).

Finally we prove d ≤ 15 by contradiction argument. Assuming d ≥ 16,

we consider vi, bi, i = 0, 1, · · · , 15, and do all additions involving subscripts

in modulo 16. Without loss of generality suppose that b0, b1, · · · , bd−1 are

on B in clockwise order. It follows from (C0) that

li,i+3 > π/3 for every 0 ≤ i ≤ 15. (9.1)

If li,i+1 > π/3 for some i, then (9.1) implies a contradiction

2π ≥ li,i+1 + (li+1,i+4 + li+4,i+7 + li+7,i+10 + ii+10,i+13 + li+13,i)

> π/3 + 5(π/3).
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So li,i+1 ≤ π/3, and therefore, (C0) implies that

G contains a cycle C with V (C) = {v0, v1, · · · , v15}. (9.2)

Similarly, if both li,i+2 > π/3 and li+2,i+4 > π/3 for some i, then a contra-

diction occurs

2π ≥ li,i+2 + li+2,i+4 + (li+4,i+7 + li+7,i+10 + ii+10,i+13 + li+13,i)

> π/3 + π/3 + 4(π/3),

which also follows from (9.1). Thus

min{li,i+2, li+2,i+4} ≤ π/3 for every 0 ≤ i ≤ 15. (9.3)

If li,i+2 ≤ π/3 and li+1,i+3 ≤ π/3 for some i, then C ∪ {v} ∪
{vvi, vvi+1, vvi+2, vvi+3, vivi+2, vi+1vi+3} is a subdivision of K5 in G, a

contradiction to (C1). So

max{li,i+2, li+1,i+3} > π/3 for every 0 ≤ i ≤ 15. (9.4)

By (9.3), suppose, without loss of generality, that l0,2 ≤ π/3. We then have

the following implications l0,2 ≤ π
3

(9.4)
=⇒ l1,3 > π

3

(9.3)
=⇒ l3,5 ≤ π

3

(9.4)
=⇒ l4,6 >

π
3

(9.3)
=⇒ l6,8 ≤ π

3

(9.4)
=⇒ l7,9 > π

3

(9.3)
=⇒ l9,11 ≤ π

3

(9.4)
=⇒ l10,12 > π

3

(9.3)
=⇒ l12,14 ≤

π
3

(9.4)
=⇒ l13,15 > π

3

(9.3)
=⇒ l15,1 ≤ π

3

(9.4)
=⇒ l0,2 > π

3 . The contradiction establishes

(ii), and the proof is then finished. �

Corollary 9.3 Algorithm Asda returns a schedule to the minimum ag-

gregation time problem within approximation ratios 3 for grid graphs and√
12m for UDGs with m edges.

Proof. The first bound comes directly from Theorem 9.3(ii) and Lemma

9.6(iii) immediately. We prove the second bound by showing ∆−1 ≤
√

12m.

To this end, consider a node v in unit disk graph G of maximum degree

∆ and the boundary B of the unit disk centered at v. We may partition

NG(v) = {v0, v1, · · · , v∆−1} into six disjoint subsets V1, V2, · · · , V6 such

that {bj | vj ∈ Vi} is contained by an arc in B of length π/3. By (C0), each

Vi ∪ {v} (1 ≤ i ≤ 6) induces a K|Vi|+1 in G. It follows that
∑6

i=1 |Vi| = ∆,

and the number of edges in the subgraph of G induced by {v} ∪NG(v) =
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{v}⋃
(
⋃6

i=1 Vi) is lower bounded by

6∑

i=1

|Vi|(|Vi|+ 1)

2
=

( 6∑

i=1

|Vi|2
2

)
+

∆

2

≥ 1

12

( 6∑

i=1

|Vi|
)2

+
∆

2
=

∆2

12
+

∆

2
,

which implies m > ∆2/12. Hence ∆ − 1 ≤
√

12m, and then the proof is

then finished. �

9.1.4 Partition Algorithm

In this subsection we will present an approximation algorithm that uses

a geometrical partition technique. It has two stages: first construct an

aggregation tree, and then schedule data aggregation/transimssion of the

tree. We will describe each of these two stages in the following subsections.

9.1.4.1 Aggregation Tree Construction

The algorithm Acat for constructing aggregation tree consists of two main

steps: first we partition the plane into small cells of hexagons, and then

construct an auxiliary graph G′.
In the first step, given an instance (G, S, d) of minimum aggregation

time problem, we obtain the Unit Disc Graph (UDG) G = (V, E), the geo-

metric representation of underlying wireless sensor network. We partition

the plane into regular hexagons of size 0.5 in such a way that every node in

V is in exactly one of the hexagons. Refer to Fig. 9.2, where Hij denotes

the small hexagon for i = 1, 2, · · · , m and j = 1, 2, · · · , n.

Let Vij denote the set of nodes in Hij , which may be empty. Then

we have V =
⋃m

i=1

⋃n
j=1 Vij . Now we construct an auxiliary graph G′ =

(V ′, E′) of G as follows: We associate every nonempty subset Vij with a

node vij in V ′. Thus

V ′ = {vij

∣∣Vij 6= ∅, i = 1, 2, · · · , m; j = 1, 2, · · · , n};

There is an edge between two different nodes vij and vkl, if there exist

u ∈ Vij and v ∈ Vkl such that (u, v) ∈ E, that is,

E′ = {(vij , vkl)
∣∣ vij 6= vkl, ∃u ∈ Vij , v ∈ Vkl, s.t.(u, v) ∈ E}.
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H11 H12 H13 H1n

H21 H22 H23 H2n

H31 H32 H33 H3n

Hm1 Hm2 Hm3 Hmn

......

......

......

...... ...... ...... ......

......

......

Fig. 9.2 The plane is partitioned into cells of hexagons.

With the auxiliary graph G′ produced, we define the new data sink

d′ ∈ V ′ in G′ to be the node vij with d ∈ Vij , and the new source field

S
′ = {vij ∈ V ′ |Vij ∩ ({S} ∪ d) 6= ∅}. In the end we can obtain a new

instance (G′, S′, d′) of minimum aggregation time problem, and find the

shortest path tree T ′
spt of (G′, S′, d′).

In the second step, we construct an aggregation tree Td for the original

problem (G, S, d) with the help of T ′. It is done as follows.

First, given T ′
spt in G′, let V ′(T ′

spt) (resp. V (T )) and E′(T ′
spt) (resp.

E(T )) be the node-set and edge-set of T ′
spt (resp. T ). For each edge

(vij , vkl) ∈ E′(T ′
spt), by the definition of G′, there must exist u ∈ Vij

and v ∈ Vkl such that |uv| ≤ 1. There may be many such pairs of u and

v. We just take any of them for each edge of E ′(T ′
spt), and put nodes u, v

into V (T ), and edge (u, v) to E(T ). At the same time, we construct two

node-sets V h
ij and V c which stand for the head set in Vij and set of clusters

of all Vij , respectively. That means each Vij may have many heads, but

has at most one cluster. Suppose now that vij is the parent of vkl in T ′
spt,

we put u into V h
ij and v into V c. Notice that each hexagon has at most

one cluster. When all edge (vij , vkl) ∈ E′(T ′
spt) have been considered, we

put d into both V (T ) and V c. Now every hexagon has exactly one cluster.

Next we connect these components in the current graph to form the tree T .

For every 1 ≤ k, l ≤ m, let v be the unique cluster in Vkl, then we connect

v with all nodes in V h
kl whenever V h

kl 6= ∅. In particular, the cluster d is

connected with all nodes in the V h
ij with d ∈ Vij . It is easy to see that T is

a tree.

Secondly, let Ṽij = (S \ V (T )) ∩ Vij , then Ṽij is the set of nodes in

the intersection of S and the hexagon Sij but outside T . Notice that each
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nonempty Ṽij , T contains at least one node in the hexagon Sij , say u.

According to the way of partitioning the plane, {u}∪ Ṽij induces a complete

subgraph. Now connect u with every node in Ṽij , and in the end delete all

leaf nodes outside S recursively in the current tree constructed. The final

tree is the data aggregation tree Td as desired.

Algorithm 9.2 Constructing Aggregation Tree

(1) Embed G = (V, E) into the plane, and partition it into (m × n)

hexagons Sij of size 0.5 for i = 1, 2, · · · , m,j = 1, 2, · · · , n.

Vij ← V ∩ Sij

(2) Generate auxiliary graph G′ = (V ′, E′) and instance (G′, S′, d′)
T ′ ← a shortest path tree of (G′, S′, d′) and E0 ← E′(T ′)

(3) V h
ij ← ∅, i = 1, 2, · · · , m, j = 1, 2, · · · , n

V c ← {d}, V (T )← {d}, and E(T )← ∅
(4) while E0 6= ∅ do begin

(5) Take (vij , vkl) ∈ E0 and (u, v) ∈ E such that

vij is the parent of vkl in T ′ and u ∈ Vij and v ∈ Vkl

(6) V (T )← V (T ) ∪ {u, v} and E(T )← E(T ) ∪ {(u, v)}
(7) V h

ij ← V h
ij ∪ {u} and V c ← V c ∪ {v}

(8) E0 ← E0 \ {(vij , vkl)}
(9) end-while

(10) for every v ∈ V c do begin

(11) Vij ← the set containing v

(12) Put an edge (u, v) into E(T ) for every u ∈ V h
ij

(13) end-for

(14) Td ← T

(15) Ṽij ← (S \ V (Ts)) ∩ Vij , i = 1, 2, · · · , m,j = 1, 2, · · · , n
(16) for every i = 1, · · · , m,j = 1, · · · , n with Ṽij 6= ∅ do begin

(17) Take a node u ∈ Vij ∩ V (Td)

(18) Connect u with every node in Ṽij

(19) end-for

(20) Td ← a shortest path tree of (Td, S, d)

(21) return Td

9.1.4.2 Aggregation Time Schedule

The algorithm Asat for scheduling aggregation time also consists of two

steps. In the first step, schedule all nodes in Ṽij as follows: consider every

seven hexagons as a group (see Fig.9.3). In each group, the nodes coming
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from different hexagons are set to aggregate and transmit data to their

parents. In the second step, schedule all nodes in T obtained at the end of

Step 13 at Algorithm Acat by running Algorithm Asda with T as an input.

1 2 43 65

1 2 36 7

1 243 65 7

1 2 4365 7

1 2 43

6

5

7 1

2

43

65 7

1 2

4

365 7

1

2

5

3

6

57

1 2

43 65 7

7

Fig. 9.3 Considering every seven hexagons as a group.

Algorithm 9.3 Scheduling Aggregation Time

(1) Merge all hexagons into groups of seven hexagons

(2) From hexagons labelled from 1 to 7, schedule all nodes in Ṽij to their

parents in Td with aggregation time t1
(3) Use T obtained at the end of Step 13 in Algorithm Acat as the input

in Step 1 of Algorithm Asda, and then get the schedule Asda(T ) with

aggregation time t2
(4) Return the combined schedule in above Steps 2 and 3 with final ag-

gregation time t = t1 + t2

9.1.5 Performance Analysis of Algorithm

In this subsection, we will prove that integrating Algorithms Acat with Asat

yields a new algorithm, denoted by Amat, for minimum aggregation time
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problem that has guaranteed approximation performance ratio ( 7∆
log2 |S| +c).

For this purpose, we first show some lemmas in the following.

Lemma 9.7 Each Vij induces a complete subgraph of G.

Proof. This is true since each hexagon Hij has size of length 0.5 and

there is an edge between two nodes in G if and only if the distance between

them at most 1. �

Lemma 9.8 Let t1 be the aggregation time required for all nodes in Ṽij .

Then t1 ≤ 7∆
log2 |S| topt(G, S, d).

Proof. Let δ = max{|Ṽij |
∣∣ i = 1, 2, · · · , m; j = 1, 2, · · · , n}. Notice that

in each group, the nodes located in different hexagons can send data to

their parents at the same time without causing transmission conflict since

the distance between these nodes are bigger than 1. Thus we have t1 ≤
7δ ≤ 7∆. This, together with Lemma 9.1, leads to t1 ≤ 7∆

log2 |S| topt(G, S, d).

The proof is then finished. �

Lemma 9.9 Let ∆′ be the maximum degree of nodes in auxiliary graph

G′. Then ∆′ ≤ 18.

Proof. Recall that G is a unit disc graph and all hexagons vij have the

same size of length 0.5. Since every node in V that is located in Vij can

reach only nodes located in those 18 hexagons as shown in Fig.9.4,

1

5

7

6

8 9

3

4

10

Hi j

11

13

14

12

2

1516

17

18

Fig. 9.4 The degree of vij is at most 18.

hence each vij ∈ V ′ are adjacent to at most 18 other vij ’s. The proof is

then finished. �
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Lemma 9.10 Let ∆(T ) be the maximum degree of T generated at the

end of Step 13 in Algorithm Acat, ∆(G(T )) the maximum degree of induced

graph G(T ), and T ′ the shortest path tree of the auxiliary graph G′. Then

(i) T is a tree rooted at d with ∆(T ) ≤ 18 and ∆(G(T )) ≤ 361.

(ii) h ≤ 2h′ ≤ 2h(G, S, d), where h′ and h are the heights of T ′ and T ,

respectively.

Proof. (i) Recall that T is constructed in two steps. At first, all edges

in T ′ are replaced by the corresponding edges in G. These edges may be

separated since one node in T ′ may correspond to two or more different

nodes in G. In the second step, we join every cluster with all heads in

the same hexagon. Since T ′ is a tree, so is T . Notice that the maximum

degree of T is no more than that of T ′. Thus from Lemma 9.9 we deduce

∆(T ) ≤ ∆′ ≤ 18. By the way of constructing T , the number of nodes in

each hexagon is at most 19.

(ii) By Lemma 9.7, in each hexagon the cluster can be joined with nodes

in the head set directly. Then the length of each path in T is at most two

times the length of the corresponding path in T ′. Hence we have h ≤ 2h′.
By the way of constructing (G′, S′, d′), every path in G corresponds to a

path in G′ with equal or shorter length. Thus h′ ≤ h(G, S, d). The proof

is then finished. �

Theorem 9.4 Given an instance (G, S, d) of minimum aggregation time

problem, Algorithm Adat returns an approximation solution whose data ag-

gregation time is at most ( 7∆
log2 |S| + c) times that of the optimal solution,

where c is a constant.

Proof. Let t2 be the data aggregation time of schedule Asda(T ) obtained

in Step 3 of Algorithm Asat. Then from Theorem 9.4 and Lemmas 9-10,

we deduce t2 ≤ ∆h ≤ 361h ≤ 722h(G, S, d). Thus by Lemma 9.8, we have

the data aggregation time of schedule returned by Adat is t = t1 + t2 ≤
( 7∆
log2 |S| + 722)topt(G, S, d). The proof is then finished. �

9.2 Minimum Multicast Time Problem

9.2.1 Problem Formulation

The models for data transmission and transmission schedule adopted for

minimum multicast time problem [280] are almost the same as that of

minimum aggregation time problem (Problem 9.1).
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Now the source node s needs to send a query or message to some other

nodes in the destination field D. It is assumed that communication is

deterministic and proceeds in synchronous rounds controlled by a global

clock. At each time round, any sensor that has received the message is

allowed to communicate to at most one of its neighbors in the network;

in other words, all other neighbors of this sensor hear nothing from this

sensor. Due to collision-free constraint, two sensors can not send mes-

sage to the same sensor simultaneously. The solution of (G, S, d) is a

schedule {(S1, R1), (S2, R2), · · · , (Ss, Rs)} such that Sr (resp. Rr) is the

set of senders (resp. receivers) in round r, r = 1, 2, · · · , s, and all nodes

in D receive the message of s within s rounds. Note that every (Sr, Rr)

gives implicitly the 1-1 correspondence between Sr and Rr in a way that

v ∈ Sr corresponds to its receiver in Rr. The value s is called the multicast

time of solution {(S1, R1), (S2, R2), · · · , (Ss, Rs)}. The minimum multicast

time problem is to find the optimal schedule with minimum multicast time

topt(G, D, d). The problem is more formally formulated as follows.

Problem 9.2 Minimum Multicast Time Problem

Instance A unit disk graph G(V, E), a subset D of V and s ∈ V \D.

Solution A transmission schedule {(S1, R1), (S2, R2), · · · , (Ss, Rs)}.
Objective Minimize the multicast time of transmission schedule.

(a) (b)

5

1
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3

3

3
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1
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5

4

1

s 3 6

2 7

Fig. 9.5 An instance (G, D, s), where D = {vi | i = 1, 2, · · · , 7}.

In way of example, consider an instance (G, D, s) of minimum mul-

ticast time problem as shown in Fig.9.5(a), where the graph G contains

the source node s and destination field D = {vi | i = 1, 2, · · · , 7}. In the

first round, s sends message to v3. In the second round, s sends message

to v1, and at the same time v3 sends message to v6. Although v1 is lo-
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cated in the transmission range of v3, no collision occurs at v1 since the

communication between s and v1 and the communication between v3 and

v6 use different frequencies. In the third round, s sends message to v2,

while v1 sends message to v4, v3 sends message to v5, and v6 sends mes-

sage to v7. Fig.9.5(b) shows the schedule {(S1, R1), (S2, R2), (S3, R3)} =

{({s}, {v3}), ({s, v3}, {v1, v6}), ({s, v1, v3, v6}, {v2, v4, v5, v7})} with multi-

cast time 3.

As in Section 9.1, we assume that each sensor knows its geometric po-

sition in the network, which is considered the unique ID of the sensor, and

every sensor has global knowledge of all IDs in the WSN. The message will

be sent from s to D following the schedule {(S1, R1), (S2, R2), · · · , (Ss, Rs)}
determinately.

9.2.2 Complexity Study

It is known that minimum broadcast time problem is NP-hard [110] and has

a 2∆-approximation algorithm [246]. The NP-hardness proof for minimum

multicast time problem is very similar to that for minimum aggregation

time problem [53]. Let us consider a problem equivalent to the minimum

broadcast time problem, the minimum gathering time problem [235]. In an

instance (G, S, d) of minimum gathering time problem, the graph G(V, E)

models the WSN, the set § (⊆ V ) consists of nodes possessing messages

requested by the sink node d(∈ V ). The minimum gathering time problem

is to find a sending-receiving schedule {(S1, R1), (S2, R2), · · · , (St, Rt)} such

that all messages on subset S are gathered to d in a minimum number t of

time rounds, where in each round r (r = 1, · · · , t), Sr (resp. Rr) is the set

of senders (resp. receivers), and

(1) a node can send message (be a sender) or receive message (be a receiver)

but cannot do both.

(2) message sent by any sender reaches exactly one of its neighbors.

(3) a node receives a message only if the message is the only one that reaches

it (in this round).

(4) each receiver updates its message as the combination of its old message

and the message received.

The following lemma is obvious from the definitions of the minimum

multicast time problem and the minimum gathering time problem.

Lemma 9.11 Given a schedule of minimum multicast tree, a schedule

for minimum gathering time problem can be easily constructed just in the
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reverse order of the schedule of minimum gathering problem, and vice versa.

Therefore, the minimum multicast time problem and the minimum gath-

ering time problem are equivalent, and it suffices to prove that the minimum

gathering time problem is NP-complete. The proof is very similar to the

NP-hardness proof of the minimum aggregation time problem in Section

9.1.2 [53]. Applying results on orthogonal planar drawing and reduction

from the NP-complete problem – restricted planar 3-SAT [186], we see that

the minimum gathering time problem is NP-complete even when the un-

derlying topology is a subgraph of a grid. Now the equivalence stated by

Lemma 9.11 implies the following theorem.

Theorem 9.5 The minimum multicast time problem is NP-complete even

when the underlying graph is a subgraph of a grid.

9.2.3 Approximation Algorithm

In this subsection we first exhibit some important properties of the mini-

mum multicast time problem in wireless sensor networks. Then using these

properties and a partition technique, we design a 15-approximation algo-

rithm for the problem [281].

Given an instance (G, D, s) of minimum multicast time problem, a short-

est path tree T of (G, D, s) is a tree in G consisting of shortest paths from s

to nodes in D. The height of T , denoted by h(G, D, s), equals to the length

of the longest path in T from s to leaves of T . The following lower bound

can be easily established by estimating multicasting time in a telephone

network [23] (refer to Lemma 9.1).

Lemma 9.12 Given an instance (G, D, s) of minimum multicast time

problem, the minimal time of multicast schedule topt(G, D, s) is at least

max{h(G, D, s), dlog2 |{s} ∪D|e}.
Lemma 9.13 Suppose that H is a complete subgraph of G with v ∈ V (H),

then there exists a spanning tree TH of H such that v can broadcast the mes-

sage to all other nodes in H along the tree TH within time of dlog2 |V (H)|e
rounds.

Proof. In fact, TH can be constructed as follows: In each time round,

every node that has received the message sends message to any one of its

neighbor nodes which have not received the message yet. Then the whole

process of multicast can be finished in time of dlog2 |V (H)|e rounds. In

particular, if {s}∪D′ with D′ ⊆ D induces a complete subgraph of G, then



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

280 Steiner Tree Problems in Computer Communication Networks

(G, D′, s) is solvable in polynomial time, and the multicast time achieves

its lower bound dlog2 |{s} ∪D′|e. The proof is then finished. �

To make a multicast schedule we need to construct a multicast tree

as shown in Fig.9.5(b). Sometimes the shortest path tree may be a good

multicast tree. But the multicast schedule based on the shortest path tree

can not be always a good approximate solution to the minimum multicast

problem on G. The worst case occurs when G = (V, E) is a complete graph

with s ∈ V and D = V \ {s}: the multicast schedule based on the shortest

path tree, which is a star, needs time of (|V | − 1) rounds while the optimal

multicast time is dlog2 |V |e. In the next subsection we will propose a new

partition technique to construct a multicast tree which leads to an efficient

multicast schedule.

The main idea of our algorithm is to construct a multicast tree Ts so that

we make use of the optimal schedule on Ts to design an efficient multicast

schedule for minimum multicast time problem. The algorithm consists of

the following four basic steps.

Step 1. We firstly partition the plane into many small hexagons such that

all nodes in each area induces a complete subgraph of G.

Step 2. With the obtained partition, we first construct an auxiliary graph

G′ with each node representing an area, and then define auxiliary

instance (G′, D′, s′) and produce a shortest path tree T ′ of G′.
Step 3. Replacing each node in T ′ with some nodes in G, we obtain a

Steiner tree T in G so that each nonempty area contains at least

one node in T .

Step 4. Obtain Ts by joining the remaining nodes of D not on T with

some nodes in T in such a way that we can apply Lemma 9.13 to

assure an efficient schedule.

Since how to implement each of the above four stages has already been

discussed in Section 9.1.4, we will just describe how to schedule the obtained

multicast tree in the following.

Instead of using the simple implementation of an optimal broadcast

algorithm on Ts, we present a different scheduling strategy that uses Ts just

as a backbone tree (Messages are not multicasted strictly along the paths of

the tree). This multicast schedule consists of two steps: Firstly, multicast

on T generated at Step 13 of Algorithm Acat using time t′ rounds, and

second multicast on Ts \ T by applying Lemma 9.13. The whole schedule

algorithm Asmt on Ts is more formally presented below.
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Algorithm 9.4 Scheduling Multicast Tree

(1) Label all nodes on T according to their hops from s

(2) L(i)← the set of nodes at the i-th level

(3) L(0)← {s}
(4) for i from 0 to h do begin

(5) apply Schedule(v) to every node v ∈ L(i)

(6) Obtain the schedule and the time of t′ rounds

(7) end-for

(8) for u ∈ Ts \ T do begin

(9) Apply Lemma 9.13 to node u

(10) Obtain the schedule and the time of t′′ rounds

(11) end-for

(12) return the final schedule with time of t = t′ + t′′ rounds

Let C(v) denote the children of v on the tree T . Because of the property

of unit disk graph, all nodes in C(v) lie in the unit disk of v. From Lemma

9.9, we know the number of nodes in C(v) is at most 18.

v

S1

S2

S3

S4

S5

S6

Fig. 9.6 Partition a disk into six equal sectors.

Now we design a multicast schedule for {v} ∪ C(v) which uses at most

seven rounds. At first, we partition the unit disk into six equal sectors

s1, s2, · · · , s6 as shown in Fig.9.6. Suppose that each sector si contains

ni number of nodes in C(v), and assume, without loss of generality, that

n1 ≥ n2 ≥ · · · ≥ n6. Then since there are at most 18 nodes in the disk, we

have n1 ≤ 18, n2 ≤ 9,n3 ≤ 6,n4 ≤ 4,n5 ≤ 3,n6 ≤ 3, and the nodes in each

sector induce a complete graph. In the time round i, v sends the message
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to a node vi in si. Then by Lemma 9.13, vi finishes the multicast task in

at most dlog2 nie rounds. This schedule denoted by Schedule(v) requires at

most seven time rounds (see Lemma 9.15 in the next subsection).

9.2.4 Performance Analysis of Algorithm

In this subsection, we will prove that the proposed algorithm, which com-

bines Algorithms Acat with Asmt, is a 15-approximation algorithm for the

minimum multicast tree problem. For this purpose, first, notice that Lem-

mas 9.9-10 also hold true for the proposed algorithm for minimum multicast

time problem, and then we show two more technical lemmas.

Lemma 9.14 If D ∩ Vij 6= ∅, then Vij ∩ V (T ) 6= ∅.

Proof. The lemma is true since if D∩Vij 6= ∅, then vij ∈ D′, so T ′ must

contain vij . �

Lemma 9.15 For any node v ∈ T , Schedule(v) finishes in seven rounds.

Proof. Let ti denote the final time round that all nodes in si receive the

message. Then we have ti = i + dlog2 nie. For i = 1, 2, 3, 4, 5, it is easy to

verify that ti ≤ 7 and t6 ≤ 7 if n6 ≤ 2. If n6 = 3, let v6, u, w denote these

there nodes in s6. In the 6-th time round, v sends message to v6. In the

7-th time round, v6 sends message to u, and v sends to w. The proof is

then finished. �

Theorem 9.6 Given any instance (G, D, s) of minimum multicast time

problem, the proposed algorithm returns an approximation of the optimal

solution within ratio 15.

Proof. It follows from Lemmas 9.12-13, 9.7, 9.10, 9.15, that the proposed

algorithm returns a multicast schedule with time at most

t = t′ + t′′

≤ 7h + max{dlog2(1 + |Ṽij |)e}
≤ 14h(G, D, s) + dlog2 |{s} ∪D|e
≤ 15topt(G, D, s)

The proof is then finished. �
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9.3 Discussions

In this chapter we have studied two versions of Steiner tree scheduling

problem, minimum aggregating time problem and minimum multicast time

problem. Both arise from the design and applications of Wireless Sensor

Networks (WSNs) and aim at minimizing the transmission time of rout-

ing. It is worthy of pointing out that lots of work on routing problems in

WSNs adopt the energy-efficiency as a metric to evaluate the performance

of routing algorithms or protocols (refer to a recent survey [162] on the

state-of-the-art routing techniques in WSNs). In the following we will dis-

cuss some of them as well as those which are closely related to minimum

aggregation and multicast time problems.

9.3.1 Convergecast

There are two recent works [9; 166] on algorithm design of time efficient

routing in WSNs. They study a special case of minimum aggregation time

problem, called convergecasting problem, where S = V \ d (i.e., data at

all sensors are required to be sent and aggregated to the data sink). An-

namalai et al. [9] propose a centralized heuristic that constructs a tree

rooted at the sink node according to proximity criterion (a node is assigned

as a child to the closest possible parent node) and to assign each node a

code and a time slot to communicate with its parent node. More recently,

Kesselman and Kowalski [166] propose a randomized distributed algorithm

for convergecasting that has the expected running time O(log n) for any n-

node network. They also prove that this bound is tight and any algorithm

needs Ω(log n) time steps. An assumption central to their model is that

sensor nodes have capability of detecting collisions and adjusting transmis-

sion ranges, and that the maximum transmission range might be as large

as the diameter of the network.

Kalpakis [161] considers the problem of maximum lifetime data gather-

ing and aggregating in energy-constrained WSNs. They assume that each

sensor periodically produces information as it monitors its vicinity. The

basic operation in such a network is the systematic gathering and trans-

mission of sensed data to a base station for further processing. During

data gathering, sensors have the ability to perform in-network aggregation

(fusion) of data packets enroute to the base station. The lifetime of such

a sensor system is the time during which one can gather information from

all the sensors to the base station. They study how to maximize the sys-
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tem lifetime, given the energy constraints of the sensors, and propose some

heuristics for this problem.

Heinzelman et al. [133] propose an application-specific protocol archi-

tecture for data gathering in WSNs, which is known as LEACH (Low En-

ergy Adaptive Clustering Hierarchy). It provides a solution where clusters

are formed to fuse data before transmitting to the base station. By ran-

domizing the cluster-heads chosen to transmit to the base station, LEACH

achieves a factor of 8 improvement compared to direct transmissions in

terms of when nodes die. Lots of work have been done to improve LEACH.

For example, Lindsey et al. [190] propose an improved scheme, called PE-

GASIS (Power-Efficient GAthering in Sensor Information Systems), which

is a near-optimal chain-based protocol that minimizes energy. In PEGA-

SIS, each node communicates only with a close neighbor and takes turns

transmitting to the base station, thus reducing the amount of energy spent

per round.

Some works [133; 166] consider energy-efficiency and time-efficiency of

data gathering at the same time. Heinzelman et al. [133] propose a scheme

aiming at balancing the energy and delay cost for data gathering. Since

most of the delay factor is in the transmission time, they measure delay in

terms of number of transmissions to accomplish a round of data gathering.

Therefore, delay can be reduced by allowing simultaneous transmissions

when possible in the network. They introduce (energy × delay)-metric to

evaluate the performances of proposed scheme. Kesselman and Kowalski
[166] also study the trade-off between the energy and the latency of con-

vergecast. They propose an algorithm that consumes at most O(n log n)

times the minimum energy for n-node networks. They also demonstrate

that for a line topology, the minimum energy convergecast takes n time

steps while any algorithm performing convergecast within O(log n) time

steps requires Ω(n/ logn) times the minimum energy.

9.3.2 Multicast

Lots of work have been done on energy-efficient multicast routing in

WSNs, they adopt different network models. Wieselthier et al. [268;

269] assume that all sensors can adjust their transmission ranges contin-

uously and the energy cost for data transmission between two sensors is

measured in the square of Euclidean distance between them. They propose

three greedy heuristics for minimum energy asymmetric broadcast rout-

ing: SPT (Shortest Path Tree), MST (Minimum Spanning Tree), and BIP
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(Broadcasting Incremental Power). Based on the approach of pruning, they

also propose three greedy heuristics for minimum energy asymmetric multi-

cast routing: P-SPT (pruned shortest-path tree), P-MST (pruned minimum

spanning tree), and P-BIP (pruned broadcasting incremental power). Wan

et al. [261; 258] prove that SPT has an approximation ratio of at least

O(n2) where n is the total number of nodes, and both MST and BIP have

constant approximation ratios. They also prove that the approximation ra-

tios of these three multicasting heuristics are at least (n− 1/2), n− 1, and

n− 2− o(1), respectively. Moreover, they show that any ρ-approximation

Steiner tree algorithm gives rise to c · ρ-approximation heuristic, where c is

a constant between 6 and 12. In particular, Takahashi-Matsuyama Steiner

tree algorithm [253] leads to an algorithm SPF (Shortest Path First) with

approximation ratio at most 2c. At the same time, they propose an algo-

rithm MIPF (Minimum Incremental Path First) with approximation ratio

between (13/3) and 2c. SPF and MIPF can be regarded as an adapta-

tion of MST and BIP, respectively, but in a different manner from pruning

method.

Li et al. [185] consider energy efficient broadcast routing in WSNs

where each node is assumed to have a fixed level of transmission power.

They prove that the problem is NP-hard and propose three centralized

algorithms using shortest path tree, greedy strategy, and node weighted

Steiner tree-based heuristic, respectively.

Papadimitriou and Georgiadis [223] study the minimum energy broad-

cast problem in WSNs. Their approach differs from the most commonly

used one where the determination of the broadcast tree depends on the

source node, thus resulting in different tree construction processes for dif-

ferent source nodes. They attempt to use a single broadcast tree to simplify

the tree maintenance problem and allow scaling to larger networks. They

show that, using the same broadcast tree, the total power consumed for

broadcasting from a given source node is at most twice the total power

consumed for broadcasting from any other source node. They also propose

an algorithm that returns a tree with total power consumed for broadcast-

ing from any source node within 2H(n−1) from the optimal, where n is the

number of nodes in the network and H(n) is the harmonic function. More-

over, they show that this approximation ratio is close to the best achievable

bound in polynomial time.
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9.3.3 Convergecast and Multicast

Multicast (broadcast) is to disseminate data/information from a cen-

tral node to some (all other) nodes, while convergecast is to gather

data/information from some (all) nodes towards a central node. They both

are important communication paradigms in WSNs. Most of work focus on

just one of these two. However, most sensor applications of WSNs involve

both convergecasting and broadcasting, where the time taken to complete

either of them has to be kept minimal. This can be accomplished by con-

structing an efficient tree for both broadcasting as well as convergecast-

ing and allocating wireless communication channels to ensure collision-free

communication. Note that a multicast/broadcast tree may not be time

and energy efficient for convergecasting. For example, to minimize multi-

cast time, sensors with long transmission rages are better. But they do not

help for achieving time-efficient convergecast since collision will occur more

likely (as a result, simultaneous transmissions can not be carried out).

Annamalai et al. [9] propose a heuristic algorithm (convergecasting

tree construction and channel allocation algorithm) which constructs a tree

with schedules assigned to nodes for collision free convergecasting. The

algorithm is capable of code allocation, in case multiple codes are available,

to minimize the total time required for convergecasting. They also show

that the same tree can be used for broadcasting and is as efficient as a tree

exclusively constructed for broadcasting.
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Chapter 10

Survivable Steiner Network Problem

Survivable Steiner network problem arises from the survivable network de-

sign and applications. Given a set of terminals P , the network of minimum

length that interconnects all terminals is Steiner Minimum Tree (SMT).

Since such a network has a tree structure, it is vulnerable to the failures

of links or nodes in networks. In fact, if any link or a certain node breaks

down, then the resultant network will become disconnected, that is, there

does not exist a path between some pairs of (good) nodes. Thus a survivable

network must be multi-connected.

A graph G(V, E) is called k-edge connected for any integer k ≥ 1 if,

after any set S of (k − 1) edges are removed from G, there still exits (at

least) one path between any pair of vertices in G(V, E \ S). Similarly, a

graph G(V, E) is called k-vertex connected if, after any set S of (k − 1)

vertices (along with all edges incident to vertices in S) are removed from

G, there still exists a path between any pair of vertices in V \ S. Clearly,

k-vertex-connectivity is stronger than k-edge-connectivity in the sense that

for any k ≥ 1, a graph G is k-edge connected if it is k-vertex connected. In

this chapter for the simplicity of presentation, we will use k-connectivity to

denote either k-edge connectivity or k-vertex connectivity when a statement

or claim is true for both. It is well known that a simple graph is k-edge

(resp. k-vertex) connected if there exist k-edge (resp. k-vertex) disjoint

paths between any pair of vertices.

For a set P of terminals, N(V, E) is called a Steiner network on P if

vertex-set V contains terminal-set P . It is called a spanning network on P

if V = P . A Steiner network N(V, E) on P is called a weak k-edge (resp.

k-vertex) connected if after any (k − 1) edges (resp. vertices) are removed

from the network, there still exists a path between any two vertices in V \P .

Similarly, a Steiner network N(V, E) on P is called a strong k-edge (resp.

287
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k-vertex) connected if after any (k − 1) edges (resp. vertices) are removed

from the network, there still exists a path between any two vertices in V .

There are two versions of survivable Steiner network problem, which are

formally defined as follows.

Problem 10.1 Steiner Minimum k-Connected Network in Metric Spaces

Instance A set P = {t1, t2, · · · , tn} of terminals in a metric space M and

an integer k ≥ 1.

Solution A k-connected Steiner network N(V, E) for P .

Objective Minimizing the total length of the edges in N , i.e.,

l(N) ≡∑
e∈E l(e).

Problem 10.2 Steiner Minimum k-Connected Network in Graphs

Instance A connected graph G(V, E) with a cost1 l(e) on each edge e ∈ E,

a terminal set P ⊂ V , and an integer k ≥ 1.

Solution A k-connected Steiner network N(V ′, E) for P with V ′ ⊂ V .

Objective Minimizing the total length of the edges in N , i.e.,

l(N) ≡∑
e∈N l(e).

Note that in the above formulations, we do not specify strong or weak

connectivity. In fact, each has two versions associated with these two con-

cepts. Moreover, we may also define a spanning network version of Problem

10.1 as follows.

Problem 10.3 Minimum k-Connected Spanning Network in Metric Spaces

Instance A set P = {t1, t2, · · · , tn} of terminals in a metric space M and

an integer k ≥ 1.

Solution A k-connected spanning network N(V, E) for P , that is,

all edges have endpoints in P .

Objective Minimizing the total length of the edges in N , i.e.,

l(N) ≡∑
e∈E l(e).

Given an instance of Problem 10.1 and Problem 10.3, denote the lengths

of minimum k-connected Steiner and spanning networks by lsmn−k(P ) and

lmsn−k(P ), respectively. We can generalize Steiner ratio ρM in metric space

M , refer to (1.1), to ρM (k) as the infimum of the length of Steiner minimum

k-connected network over that of minimum k-connected spanning network

1To keep consistence we will still use l(·) to represent the cost function on edges.
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for all terminal-set P in M ; More formally,

ρM (k) ≡ inf
{ lsmn−k(P )

lmsn−k(P )

∣∣∣ P ⊂M
}
. (10.1)

For the simplicity of presentation, we will denote by rk(P ) the ratio of

lsmn−k(P )/lmsn−k(P ).

In this chapter, we will study some properties of k-connected Steiner and

spanning networks and the generalized Steiner ratio rM (k) (and rk(P )). We

will also discuss some algorithms for Steiner minimum k-connected network

problem. In Section 10.1, we consider the case of general k ≥ 2, and in

Sections 10.2 and 10.3 we focus on the cases of k = 2 and k = 3 (mainly in

the Euclidean plane), respectively. In Section 10.4, we discuss some related

problems.

10.1 Minimum k-Connected Steiner Networks

In this section, we will first present some general structural properties of

minimum k-connected spanning networks and a useful technique for study-

ing minimum k-connected Steiner networks.

Bienstock et al. [37] proved the following lemma that displays some

structural properties of minimum k-edge-connected spanning networks.

Lemma 10.1 Let H be the class of minimum k-edge-connected spanning

subgraphs, with a nonnegative, symmetric weight function satisfying the

triangle inequality. Then H can be restricted to those subgraphs which, in

addition to the connectivity requirements, satisfy the following two condi-

tions:

(1) Every vertex has degree k or k + 1.

(2) Removing any 1, 2, . . . , or k edges does not leave the resulting connected

components all k-edge-connected.

As a Steiner network N(V, E) of P can be regarded as a spanning net-

work N(V, E) of V , Lemma 10.1 is also true for Steiner networks.

Given P in a metric space M , let G(V, E) be a k-edge-connected Steiner

network on P . (G may contain multiple-edge.) Again points in V \ P

are called Steiner points while points in P are called terminal points (also

called regular points in some references). Denote by λ(x, y; G) the maximal

number of edge-disjoint paths between x and y in G. It is well known that

if G is k-edge-connected, then
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λ(G) ≡ min
x,y∈V (G)

λ(x, y; G) ≥ k. (10.2)

Denote by [x, y]G the set of edges between the vertices x and y in G and

by xy an arbitrary single edge in [x, y]G.

The length of edge between x and y is defined as the distance between

x and y in underlying metric space M and denoted by l(x, y). Accordingly

l( , ) is a nonnegative, symmetric function satisfying the triangle inequality.

The length of G(V, E), denoted by l(G), is defined as the total length of

edges in G, i.e.,

l(G) ≡
∑

xy∈E

l(x, y).

Let a = xz ∈ [z, x]G and b = yz ∈ [z, y]G with x 6= y, and denote

by G(a; b) the multigraph which arises from G by removing edges a and b

and adding exactly one new edge between x and y, i.e., G(a; b) = (V, E \
{a, b} ∪ {xy}). It follows from the triangle inequality of metric space that

l(G) ≥ l(G(a; b)). The multigraph G(a; b) is called a lifting of G at z, arising

from the lifting of edges a and b at vertex z. See Fig.10.1.

a

by

x

z
Lifting

a

by

x

z

Fig. 10.1 Lifting at vertex z.

For a pair of vertices x 6= y in V (G) \ {z}, it is obvious that

λ(x, y; G(a; b)) ≤ λ(x, y; G). If for all such pairs λ(x, y; G(a; b)) = λ(x, y; G)

holds, we call the lifting admissible. See Fig.10.2.

For any vertex x ∈ V , denote the neighbor-set of x by N(x; G) = {y ∈
V | [x, y]G 6= ∅}. Mader [200] proved the following basic result on admissible
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liftings, which will be frequently used in our study on the structure of k-

edge-connected Steiner networks.

Inadmissible Admissible

Fig. 10.2 Admissible lifting and inadmissible lifting.

Lemma 10.2 Let z be a non-separating vertex whose degree is at least

four, and |N(z; G)| ≥ 2. Then there exists an admissible lifting of G at z.

10.1.1 Minimum Strong k-Connected Steiner Networks

In this subsection we focus on minimum strong k-connected Steiner net-

works in metric spaces.

Lemma 10.3 Given a set P of points and an integer k ≥ 2, there exits a

minimum strong k-edge connected Steiner network G(V, E) on P such that

any Steiner points in V \ P has degree (k + 1) for even k and degree k for

odd k.

Proof. The theorem is obviously true for k = 2. We just consider the

case of k ≥ 3. By Lemma 10.1, we know that there exists a minimum-

weight k-edge connected Steiner network G(V, E) on P such that every

vertex in G has degree k or k + 1. Let s be a Steiner point of G, then s

must be a non-separating vertex of G with |N(s, G)| ≥ 2. By Lemma 10.2,

G has an admissible lifting at s if it has degree at least four. Moreover,

we can find more admissible liftings at s until the degree of s is reduced

to 3 or 2 since the degree of s is reduced by two each time of lifting while

the degree of other vertices remain unchanged. If the final degree of s is

two, then we can construct a new network G′(V ′, E′) by lifting at s and

deleting s. Obviously, G′ is still a k-edge connected Steiner network on

P since λ(x, y; G′) = λ(x, y; G) for all pairs of distinct vertices x and y in

V \ {s} = V ′. In addition, by the triangle inequality we have l(G′) ≤ l(G).

Therefore, there exists a minimum-weight k-edge connected Steiner network
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on P such that each Steiner point has odd degree, which implies that it

has degree (k + 1) for even k and degree k for odd k. The lemma is then

proved. �

Jordán [157] proved Theorem 10.12, whose proof is based on the follow-

ing lemma due to Jackson [151]. Given a graph G(V, E) and a subset F of

E, let nF (v) denote the number of edges of F incident to v. An odd join is

a set of J ⊆ E for which nJ (v) is odd if and only if nE(v) is odd.

Lemma 10.4 Let G(V, E) be a k-edge-connected graph with even k ≥ 2,

and let w be a non-negative weight function on the edge-set E. Then G has

an odd join J with w(J)/w(E) ≤ 1/(k + 1).

Proof. The proof is by mathematical induction on |E|. Suppose that

G has a vertex v with degree d(v) ≥ k + 2. Since k ≥ 2, we can apply

Lemma 10.2 and split off two edges (v, u) and (v, w) in such a way that the

resulting graph G′(V, E′) is k-edge-connected. Define a weight function w′

on G′ as follows: w′(u, w) = w(v, u) + w(v, w) and w′(x, y) = w(x, y) for

all (x, y) 6= (u, w). By the inductive hypothesis G′ has an odd join J ′ with

w′(J)/w′(E′) ≤ 1/(k + 1). Since w′(E′) = w(E) and an odd join of G′

yields an odd join of G of the same weight, the lemma follows.

Next suppose that G has vertex v of degree k. Since k is even, we can

split off all the edges incident to v in pairs (and then delete v) such that the

resulting graph G′ remains k-edge-connected. As above, the lemma follows

by induction.

In the end we may assume that G is (k + 1)-regular. By a result of

Edmonds [93], G has a non-empty set S of perfect matchings such that each

edge of G belongs to the same number of perfect matchings in S. Thus, for

a minimum weight perfect matching M ∈ S we have w(M) ≤ w(E)/(k+1).

Hence M is the desired odd join of G. The proof is then finished. �

Theorem 10.1 For a set of points P in metric space M , let rk(P ) be the

ratio of the length of minimum strong k-edge connected Steiner network of

P over that of minimum k-edge connected spanning network of P . Then

rk(P ) ≥ 1 − 1/(k + 2) for even k ≥ 2 and rk(P ) ≥ 1 − 1/(k + 1) for odd

k ≥ 3.

Proof. Let G∗(V, E) be a minimum strong k-edge connected Steiner net-

work on P . By Lemma 10.3, we can assume that each vertex in V \ P has

degree (k + 1) for even k or k for odd k.
2There is a flaw in the proof given in [79].
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Now let G′(V ′, E′) be the graph obtained from G∗(P ) by contracting

the set P of terminals to a single vertex t, and let the length of an edge of

G′ be equal to the length of the corresponding edge in G∗. Note that G′ is

k-edge-connected and each vertex v 6= t has odd degree in G′. By applying

Lemma 10.4 to G′(V ′, E′), we deduce that there is an odd join J with

l(J) ≤ 1

k + 1
l(E′) if k is even, or l(J) ≤ 1

k
l(E′) if k is odd.

Since l(E′) ≤ l(E), adding the set J of edges to G results in a graph

G′′(V ′′, E′′) where each vertex in V ′′ \ P has even degree and l(E ′′) ≤
k+2
k+1 l(E) for even k while l(E ′′) ≤ k

k+1 l(E) for odd k. By Lemma 10.2 we

can iteratively eliminate the vertices in V ′′ \ P by admissible splitting of

pairs of edges so that the resulting graph GS is a k-edge connected spanning

subgraph on P . Since l(GS) ≤ l(G′′), the proof is then finished. �

Edmonds [94] obtained many results on edge-disjoint branching of (un-

weighted) graphs and digraphs. One of them is given below, which finds an

interesting application for studying the length of k-edge-connected Steiner

networks.

Lemma 10.5 Let G(V , E) be a digraph and v a vertex in V . Suppose

that for any subset S ⊆ V \ {v}, there are k arcs from V \ S to S in G.

Then G has k arc-disjoint spanning arborescences routed at v.

Lemma 10.6 For a set P of terminals in a metric space M , let G∗
k(V, E)

be a minimum k-edge connected Steiner network on P , and let Tsmt and

Tmst be a Steiner minimum tree and minimum spanning tree on P , respec-

tively. Then l(G∗
k) ≥ k

2 l(Tsmt) ≥ k
2ρ · l(Tmst), where ρ is the Steiner ratio

on M .

Proof. Let G
∗
k be a digraph obtained from G∗

k by replacing each edge

(u, v) ∈ E with two oppositely oriented arcs (u, v) and (v, u). We may

choose a vertex v0 in V with maximum sum of lengths of edges incident to

v0, i.e.,

∑

(v,v0)∈E

w(v, v0) = max

{ ∑

(v,u)∈E

w(v, u)

∣∣∣∣ u ∈ V

}
. (10.3)

Now denote by G0
k the digraph obtained from G

∗
k by deleting all arcs en-

tering v0. It is easy to see that G
∗
k satisfies the condition of Lemma 10.5.

Thus for any vertex v ∈ V , there are k arc-disjoint spanning arborescences

rooted at v in G
∗
k, and each of them has weight greater than or equal to
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the length of Steiner minimum tree Tsmt of P . Hence by equality (10.3) we

can get

(1− 1

n
) l(G

∗
k) ≥ l(G0

k) ≥ k · l(Tsmt),

where n is the number of vertices in G
∗
k. The above inequality proves the

lemma since 2l(G∗
k) = l(G

∗
k). �

Note that we have proved Lemma 10.6 without using the triangle in-

equality of metric functions, and it matches the result |E| ≥ k
2 |V | of un-

weighted graphs.

Theorem 10.2 There exists an α-algorithm for minimum Strong k-edge

connected Steiner network problem with α = 3/2 for even k ≥ 2 and α =

(3/2 + 1/(2k)) for odd k ≥ 3.

Proof. A simple approximation algorithm is as follows: First apply

Christofides’ algorithm [61] to produce a Hamilton cycle CH of given

terminal-set P , and then construct a minimum spanning tree Tmst of P , in

the end construct a spanning network G of P that is composed of bk/2c
duplications of CH and (dk/2e − bk/2c) duplications of Tmst.

It is easy to see that the obtained graph G is a k-edge connected span-

ning network on P . Let G∗
k(V, E) be a minimum k-edge connected Steiner

network on P . Then by Lemma 10.6, we have

l(G) =
⌊k

2

⌋
l(CH) +

(⌈k

2

⌉
−

⌊k

2

⌋)
l(Tmst)

≤
⌊k

2

⌋
l(Tmst) +

(⌈k

2

⌉
−

⌊k

2

⌋)
l(Tmst)

=
(⌈k

2

⌉
+

1

2

⌊k

2

⌋)
l(Tmst)

≤ 2

k

(⌈k

2

⌉
+

1

2

⌊k

2

⌋)
l(G∗

k),

which proves the theorem. �

Observe that the approximation algorithm described in the above proof

produces a k-edge connected spanning network, and by using exactly the

same argument we can prove the following corollary.

Corollary 10.1 There exists a polynomial-time algorithm that produces

a k-edge connected spanning network for any given P whose weight is at

most α times that of the minimum k-edge connected spanning network for

P , where α = 3/2 for even k ≥ 2 and α = 3/2 + 1/(2k) for odd k ≥ 3.
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10.1.2 Minimum Weak k-Connected Steiner Networks

In this subsection we turn our attention to minimum weak k-connected

Steiner networks in metric spaces.

Lemma 10.7 Given a set of points P in a metric space M and k ≥ 2,

there exists a minimum weak k-edge-connected Steiner network G(V, E) on

P such that every Steiner point in V \ P has degree three.

Proof. Let s be a Steiner point of G that has degree at least four. Then

s is a non-separating vertex of G, and |N(s; G)| ≥ 2. By Lemma 10.2, G

has an admissible lifting at s if it has degree at least four. Thus we can

apply admissible liftings at s until the degree of s is reduced to 3 or 2,

since the degree of s decreases by two each time of lifting while the degree

of other vertices remain unchanged. If the final degree of s is two, then

we can construct a new network G′ by lifting at s and removing s (along

with two edges incident to s). Obviously, G′ is still a k-edge-connected

Steiner network on P , since λ(x, y; G′) = λ(x, y; G), for all pairs x 6= y in

V (G) \ {s} = V (G′). Moreover, it follows from the triangle inequality that

l(G′) ≤ l(G). The proof is then finished. �

Theorem 10.3 For any set P of terminals in a metric space M , let rk(P )

denote the ratio of the length of minimum weak k-edge connected Steiner

network on P over that of minimum k-edge connected spanning network on

P . Then rk(P ) ≥ 3/4 for k ≥ 2.

Proof. Let G∗(V, E) be a minimum k-edge connected Steiner network on

P . By Lemma 10.3, we can assume that each vertex in V \ P has degree

three.

Now let G′(V ′, E′) be the graph obtained from G∗(P ) by contracting

the set P of terminals to a single vertex t, and let the length of an edge of

G′ be equal to the length of the corresponding edge in G∗. Note that G′

is three-edge-connected and each vertex v 6= t has odd degree in G′. By

applying Lemma 10.4 to G′(V ′, E′), we deduce that there is an odd join J

with l(J) ≤ 1
3 l(E′).

Since l(E′) ≤ l(E), adding the set J of edges to G results in a graph

G′′(V ′′, E′′) where each vertex in V ′′\P has even degree and l(E ′′) ≤ 4
3 l(E).

By Lemma 10.2 we can iteratively eliminate the vertices in V ′′ \ P by

admissible splitting of pairs of edges so that the resulting graph GS is a

three-edge connected spanning subgraph on P . Since l(GS) ≤ l(G′′), the

proof is then finished. �
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Observe that the simple approximation algorithm described in the proof

of Theorem 10.2 can also be used to produce an approximate solution to

minimum weak k-edge connected spanning network problem.

Theorem 10.4 There exists an α-approximation algorithm for minimum

weak k-edge connected spanning network problem with α = 2 for even k ≥ 2

and α = (2 + 4/3k) for odd k ≥ 3.

10.2 Minimum Weak Two-Connected Steiner Networks

In this section we focus on the minimum weak two-connected Steiner net-

work problem in the Euclidean plane (unless specified otherwise). For

the simplicity of presentation, by “two-connectivity” we mean “weak two-

connectivity”, and an edge between vertices u and v will be denoted by

uv or vu, which also represent its length defined as the Euclidean distance

between the vertices/points u and v.

We assume throughout the section that there does not exist a straight

line that contains every point in P since otherwise, minimum k-connected

Steiner network problem (i.e., Problem 10.1) will become trivial.

Notice that for any three points a, b, and c, if ab + bc = ac, then these

three points are on a straight line. By applying this property and the

arguments similar to the proofs of [101; 215], we are able to show the

following two lemmas.

Lemma 10.8 The length of the minimum two-edge connected spanning

network on P is equal to the length of the minimum two-vertex connected

spanning network on P .

Lemma 10.9 Let G(V, E) be a minimum two-edge or two-vertex con-

nected spanning network on P . Then every vertex in V has degree 2 or 3;

Moreover, deleting any edge or pair of edges in E leaves a bridge in one of

the resulting connected components of G.

Since a Steiner network G(V, E) on P can be regarded as a spanning

network G(V, E) on V , so the above two lemmas are also valid for Steiner

networks, which further deduce the following two lemmas.

Lemma 10.10 If G(V, E) is a minimum two-edge or two-vertex con-

nected Steiner network on P , then it has no two edges that have the same

pair of endpoints.
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Lemma 10.11 Every minimum two-edge connected spanning network on

P is also a minimum two-vertex connected spanning network on P , and vice

versa.

By the above lemma and as far as minimum two-connect Steiner net-

work problem is concerned, we will use the term “two-connected” in the

rest of this section without specifying “two-edge-connected” or “two-vertex-

connected” unless the specification is needed. The following lemma can be

deduced directly from Lemma 1.1.

Lemma 10.12 Let G(V, E) be a minimum two-connected Steiner network

on P . Then every Steiner point in V \ P is incident to exactly three edges

and any two of them form an inner angle of 120◦.

Given a set of terminals P , let G∗ denote a minimum two-connected

Steiner network on P . As in the study of Steiner minimum trees, we can

partition G∗ uniquely into a set of full Steiner subnetworks G1, G2, · · · , Gm

in such a way that each Gi is maximal with respect to the fact that every

pair of edges in Gi can be connected by a path in G whose internal vertices

are Steiner points. We call Gi a full Steiner subnetwork of G∗. See Fig.10.3,

where G∗ is partitioned into five full Steiner subnetworks. Note that two

distinct Gi and Gj can intersect only at a set of terminals. Moreover,

Luebke and Provan [197] proved the following two structural properties of

minimum two-connected Steiner networks.

(a) (b)

Fig. 10.3 (a) A minimum two-connected Steiner network, and (b) it is partitioned into
full Steiner subnetworks.

Lemma 10.13 If two cycles C1 and C2 of G∗ intersect in a simple path

Path, then Path must have an internal vertex that is a terminal.
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Proof. Suppose, by contradiction argument, that all internal vertices in

Path are Steiner points. Moreover, we assume that C1 and C2 are a pair

of such cycles that Path has minimal number of edges. Suppose that they

intersect at two points u and v. Let Steiner point s be an internal vertex

in Path. Then there exists an edge e incident to s but not on Path, which

is also not on either cycle. See Fig.10.43.

Note that edges e and e′ must be on a cycle D since G∗ is two-connected.

Suppose that D intersects either C1 or C2, say C1 at w as shown in

Fig.10.4(a) (w may be on Path). Clearly, there exists a cycle C3 that con-

tains s, e, and e′. However, C3 and C2 intersect in a part of Path, which

contradicts the choices of C1 and C2. Therefore, path Path must contain

exactly a single edge (u, v). It can be verified that removing edge (u, v)

from G∗ will not spoil the two-connectivity of G∗, but this contradicts that

G∗ is a minimum two-connected Steiner network. The proof is finished. �

(a) (b)

e
s

C

e'

1

C2

C3
Path

u

v

w

e
P e'

3

DC

P2

s

v

P1

t

Fig. 10.4 All internal vertices in the simple path are Steiner points.

Lemma 10.14 Each full Steiner subnetwork Gi of G∗ is a full Steiner

subtree.

Proof. Suppose, by contradiction argument, that Gi contains a cycle C.

We can assume that C contains at most one terminal; If not, it contains one

terminal t, pick the two edges e and e′ on C incident to t. By the definition

of full Steiner subnetworks, there must be a cycle in Gi that contains e and

e′ but does not contain any other terminals except for t. Repeating this

argument leads to a desired cycle.

3In this and other figures a point in G is marked by a circle with dots inside when its
property is not clear, or this is not important with respect to our argument.
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Let s be a Steiner point on C incident two edges e and e′. Suppose that

edge e′ is on C but e not. Since G∗ is two-connected, there must exist a

cycle D containing e and e′ that intersects C at a Steiner point v. Now t

and v partition the edges of C into two paths P2 and P3. Note that since

C contains at most one terminal, at least one of P2 or P3, say P2, has all

of its internal vertices being Steiner points as shown in Fig.10.4(b). Thus

the cycle formed by paths P1 and P2 intersects cycle C in a simple path

P2, violating the conditions of Lemma 10.13. Therefore, Gi is a tree. By

the definition of full Steiner subnetworks, Gi can have terminals only at

the end vertices, hence Gi must be a full Steiner tree. The proof is then

finished. �

10.2.1 Complexity Study

In this subsection we will prove that minimum two-connected Steiner net-

work problem (i.e., Problem 10.1 with k = 2) is NP -hard. The proof is

given by Luebke and Provan [197], which is based on the reduction from a

special version of the Euclidean Travelling Salesman Problem (TSP) to it.

We first present some properties about the problem in a special case.

Lemma 10.15 Suppose that all given points in P are lattice points of

integral coordinates. Let G∗ be a minimum two-connected Steiner network

of P . Then

(i) If l(G∗) = |P |, then G∗ is a TSP cycle such that every two successive

points are adjacent in the lattice;

(ii) If l(G∗) 6= |P |, then l(G∗) ≥ |P |+
√

2− 1.

Proof. By Lemma 10.14, we can partition G∗ into a set of edges

e1, e2, · · · , em whose endpoints are terminals and a set of full Steiner trees

T1, T2, · · · , Ts. Let ki be the number of terminals in Ti for i = 1, 2, · · · , s.
Note that the length of minimum spanning tree on these ki terminals are

at least (ki − 1) since the distance between any two points is at least one

and Ti has (ki − 1) edges. Recall that the Steiner ratio in Euclidean plane

is
√

3/2 [81], we know that the length of Ti is at least
√

3(ki− 1)/2 > ki/2.

Hence the length of G is
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l(G∗) =
m∑

i=1

l(ei) +
s∑

j=1

l(Tj) (10.4)

≥ m +
s∑

j=1

3

2
(ki − 1) (10.5)

≥ m +
1

2

s∑

j=1

ki. (10.6)

Note that in the above inequality (10.4) is strict unless l(ei) = 1 for all

i, and inequality (10.5) is strict unless s = 0 (G∗ has no Steiner points).

Since each terminal in P must be contained in at least two distinct sets of

{ei | i = 1, 2, · · · , m} and {Tj | j = 1, 2, · · · , s}, we have

2m +

s∑

j=1

ki = 2|P |,

which, together with inequality (10.6), implies l(G∗) ≥ |P |.
Note that l(G∗) = |P | if and only if s = 0 and l(ei) = 1 for each

i = 1, 2, · · · , m, this is the case that the minimum two-connected Steiner

network is a Hamilton cycle through the points in P with each edge joining

two points having distance 1 apart. This proves (i).

Now we prove (ii). Suppose that l(G∗) > |P |. We will consider the

following four cases.

Case 1. G∗ contains an edge between two non-adjacent lattice points p

and q. In this case, pq ≥
√

2. So l(G∗) ≥ |P |+ (
√

2− 1).

Case 2. G∗ contains a full Steiner tree Ti interconnecting at least four

terminals for some i. In this case, we use l(Ti) ≥
√

3(4 − 1)/2 instead of

l(Ti) ≥ 4/2 in inequalities (10.4-6), and then obtain

l(G∗) ≥ |P |+
√

3(4− 1)/2− 4/2 > |P |+ (
√

2− 1).

Case 3. G∗ contains at least two full Steiner trees each interconnecting

at least three terminals. As in case 2, we deduce

l(G∗) ≥ |P |+ 2(
√

3(3− 1)/2− 3/2) > |P |+ (
√

2− 1).

Case 4. G∗ contains exactly one full Steiner tree Ti interconnecting

three terminals for some i. Since each terminal in P has degree at least

three in G∗, then the number of edges in G∗, excluding those in Ti, must
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be at least d(2|P |−3)/2e = |P |−1, each has length at least one. Using the

bound l(Ti) ≥
√

3(3− 1)/2 =
√

3, we have l(G∗) ≥ |P | − 1 =
√

3.

As (ii) is proved and the proof of lemma is then complete. �

Theorem 10.5 Minimum two-connected Steiner network problem is NP -

hard.

Proof. Recall that Itai et al. [150] show that the following problem is

NP -complete: Given a set P of integral lattice points in the plane, decide if

there exists a Hamilton cycle through all points in P such that the distance

between each successive pair of points in the cycle is 1.

It follows immediately from Lemma 10.15 that for any given set P ,

minimum two-connected Steiner network problem has a solution of length

k if and only if the above decision problem has a desired Hamilton cycle.

The proof is then finished. �

10.2.2 Generalized Steiner Ratio

Let G(V, E) be a Steiner network of terminal-set P in the Euclidean plane.

Clearly, G consists of a cycle, denoted by C(G), and the union of some

connected subnetworks inside C(G). We call G basic if G \ C(G) does not

contain any cycle as shown in Fig.10.5(a), and nonbasic otherwise as shown

in Fig.10.5(b). The following theorem shows some properties of basic net-

works.

(a) (b)

Fig. 10.5 (a) A basic Steiner network, and (b) a nonbasic Steiner network.

Theorem 10.6 Suppose that G∗(V, E) is a basic minimum two-connected

Steiner network of P . Then

(i) There does not exist two Steiner points in G \ C(G∗) that are adjacent

to each other;

(ii) G∗ \ C(G∗) is a union of 3-Steiner minimum trees;
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(iii) There does not exist any terminal point in G \ C(G∗) that is adjacent

to two Steiner points.

Proof. (i) Suppose, by contradiction argument, that there exists an edge

st in G∗ \ C(G∗) such that both s and t are Steiner points. We will show

that G∗ \ {st} is also a two-connected Steiner network on P contradicting

that G has the minimum length. It is clear that there exist two paths from s

to C(G∗) since G∗ is two-connected; We denote one of them by su1u2 · · ·uk

while the other by sv1v2 · · · vm. Similarly, there are two paths from t to

C(G∗), tw1w2 · · ·wn and tr1r2 · · · ri, respectively. See Fig.10.6. Note that

these four paths are all vertex-disjoint to one another and uk, vm, wn, and

ri are four distinct points on C(G∗) since G∗ is basic.

a

s t b

uk

u1

w1

wn

r1

r2

v1vm

a'

F

b'

1

F2

Fig. 10.6 Four vertex-disjoint paths connects C(G∗) to s and t, respectively.

For any pair of points a and b in G \ {st}, there are two vertex-disjoint

paths Q and R in G \ {st} connecting them. Suppose that one of them

contains u1s, st, and tw1. Observe that there exist two paths connecting

a and b with a′ and b′ in C(G∗), respectively, such that all points in these

two paths except a′ and b′ are in G \ C(G∗). Since G∗ is basic, these two

paths are disjoint with sv1v2 · · · vm and tr1r2 · · · ri. Moreover, there are two

paths F1 and F2 on C(G∗) connecting a′ with b′ and vm with ri, respectively.

Therefore, a and b are on the following common cycle:

{a′ · · · a · · ·u1s} ∪ {sv1 · · · vm} ∪ F1 ∪ {ri · · · r1t} ∪ {tw1 · · · b · · · b′} ∪ F2.

When Q or R contains u1s, st, and tr1, or v1s, st, and tr1, by using the

same argument we can arrive at the same conclusion that a and b are on a

common cycle. Hence G∗ \ {st} is two-connected.
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(ii) It follows directly from (i) and Lemma 10.14.

a

s t

b

c

d

r

a

s t

b

c

d

r

Fig. 10.7 A two-connected Steiner network with less length can be obtained.

(iii) Suppose, by contradiction argument again, that there exists a ter-

minal point r incident to two Steiner points s and t. Now assume that s is

adjacent to a and b, and t is adjacent to c and d as shown in Fig.10.7. With-

out loss of generality, we further assume that |rt| ≥ |rs|. By the triangle

inequality we obtain

|ar| < |as|+ |sr| ≤ |as|+ |rt|, |br| < |bs|+ |sr|, and |cd| < |td|+ |tc|.

Adding up the above three inequalities leads to

|ar|+ |br|+ |cd| < (|sa|+ |sb|+ |sr|) + (|tc|+ |td|+ |tc|).

By applying an argument similar to that used in (i), we can deduce that

G∗ \ {sa, sb, sr, tc, td, tr} ∪ {ra, rb, cd} is a two-connected Steiner network

on P . This produces a contradiction since G∗ has the minimum length.

The proof is then finished. �

Observe that in the above proof of Theorem 10.6(i), we only use the

assumption that s and t have degree three. Thus we can prove the following

corollary using the same argument.

Corollary 10.2 Suppose that G∗ is a basic minimum two-connected

Steiner network, then no edge in G∗ \ C(G∗) is incident to two points of

degree three.

Theorem 10.7 Suppose that all terminal points in P are on the sides of

the convex hull of P . Then the minimum two-connected Steiner network

on P is the minimum two-connected spanning network on P , which is a

Hamilton cycle of P on the sides of the convex hull of P .

Proof. Let G∗(V, E) be a minimum two-connected Steiner network on P ,

and let CH be the convex hull of P . Since all points in P are on the sides
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of CH , P is the set of extreme points of CH . So we are able to label them

by ti in such a way that ti is adjacent to ti−1 and ti+1 for i = 1, 2, · · · , |P |,
where t0 ≡ t|P | and t|P |+1 = t1. Now let us consider the spanning network

G′(V, E′) on P with E′ = {titi+1|i = 1, 2, · · · , |P |}, which is a Hamilton

cycle of P on the sides of CH .

1t

(a)

mt

1t

(b)

mt

1s

ks

Fig. 10.8 Two possible cases when G′ 6= C(G∗).

We will show, in fact, G′ = C(G∗), which implies that G′ = C(G∗) = G∗

since G′ is two-connected. Suppose, by contradiction, that there exists

a path in G∗ joining t1 and tm that consists of only Steiner points. We

consider two possible cases.

Case 1. The path lies outside C(G∗) as shown in Fig.10.8(a). But this

contradicts the geometrical structure of Steiner points specified in Lemma

1.1.

Case 2. The path lies inside C(G∗) as shown in Fig.10.8(b). In this case

we can get a two-connected Steiner network of shorter length by removing

all edges incident to Steiner points on the path and joining t1 with tm
directly. This contradicts that G∗ has the minimum length.

In each case, a contradiction will occur. The theorem is proved. �

Theorem 10.8 Suppose that every point in P except one is on the sides

of the convex hull of P . Then the minimum two-connected Steiner network

on P is the minimum two-connected spanning network on P , which is a

Hamilton cycle of P .

Proof. By applying a similar analysis of Theorem 10.7, we deduce that

the only possible way to cut the length short through introducing some

Steiner points is to add two Steiner points adjacent to that unique terminal

point lying inside CH . However, using the same proof as for Theorem
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10.6(iii), we can easily exclude this possibility. Hence the minimum two-

connected Steiner network G∗ on P is a spanning network on P .

1t

(a)

0t

(b)
2t

3t

4t

1t

0t

2t
3t

4t

Fig. 10.9 The length of G∗ could be shortened.

Suppose that C(G∗) is composed of the sides of CH . Assume that the

unique point inside C(G∗), denoted by t0, is incident to two other terminal

points t1 and t2 as shown in Fig.10.9(a). Without loss of generality, we

assume that |t0t1| ≥ |t0t2|. Denote two points adjacent to t2 by t3 and t4,

respectively. Note that

|t0t3| < |t0t2|+ |t2t3| ≤ |t0t1|+ |t2t3|,

|t0t4| < |t0t2|+ |t2t4| ≤ |t0t1|+ |t2t4|.

Thus the length of G∗ can be shortened by replacing t0t1 and t2t3 (or

t2t4) with t0t3 (or t0t4) as shown in Fig.10.9(b) while the resulting network

remains two-connected. This is a contradiction since G has the shortest

length. The proof is then finished. �

Theorem 10.9 If P contains at most five points, then the minimum

two-connected Steiner network G∗ is a spanning network on P , which is a

Hamilton cycle of P .

Proof. The theorem is true for |P | ≤ 4 due to Theorems 10.7-8. For the

same reason, we only need to verify the case of |P | = 5 that there are two

points, denoted by t1 and t2, which are inside the triangle formed by other

three points, denoted by a, b, and c, respectively. In the following we will

show that the length of G∗ could be shortened if G∗ contains some Steiner

points by considering two cases.

Case 1. There are two Steiner points s1 and s2, and t1 is incident to s1

while t2 is incident to s1 and s2. It can be verified that the length of G∗
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can be shortened by deleting two Steiner points: In the case as shown in

Fig.10.10(a), three edges at2, t1t2, and bc can be added when |s1t2| ≤ |s2t2|,
and three edges at1, ct2, and bt2 can be added when |s1t2| ≤ |s2t2|; In the

case as shown in Fig.10.10(b), three edges at2, t1t2, and ac can be added

when |s1t2| ≤ |s2t2|, and three edges at1, ct2, and at2 can be added when

|s1t2| ≤ |s2t2|.
Case 2. There are two Steiner points s1 and s2, and t1 is incident

to s1 while t2 to s2 as shown in Fig.10.10(c). Note that |as1| + |s1t1| >

|at1| and |as2| + |s2t2| > |at2|. Adding these two inequalities gives rise to

(|as1|+ |s2t2|)+(|as2|+ |s1t1|) > |at2|+ |at1|. Clearly, the length of G∗ can

be cut short by removing two Steiner points s1 and s2 while adding three

edges bt1, at2 and ac when |as1|+ |t2s2| > |at2| or adding three edges at1,

ct2 and ab when |as2|+ |s1t1| > |at1| (since at least one of the inequalities

must hold).

1t

(a)

a

(b)

2s

1
s

2t

b

c

1t

a2s

1
s

2t

b

c

1t

a

2s 1s2t

b

c

(c)

Fig. 10.10 Three possible two-connected Steiner networks when |P | = 5.

All other cases could be handled by using the length reducing technique

developed in the proofs of Theorems 10.6-8. The proof is then finished. �

No examples are discovered that show Theorem 10.9 is not true for

|P | = 6 or 7. In fact, we believe that Theorem 10.9 remains true for

|P | ≤ 7. In addition, Winter and Zachariasen [270] give an example, as

shown in Fig.10.12(a), that demonstrates Theorem 10.9 is incorrect for six

terminals in a graph of eight vertices with all edges having unit cost.

Moreover, Luebke and Provan [197] gave an example that demonstrates

that Theorem 10.9 is not true for |P | = 8. As shown in Fig.10.11, there are

eight terminals {ti|i = 1, 2, · · · , 8} making a symmetric configuration with

respect to left-right and up-down, four terminals t5, · · · , t8 in the middle

lying in a straight line, where |t5t6| = |t7t8| = 1 and |t6t7| =
√

3/2; Two
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(a)
3t 4t

1t 2t
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(c)
3t 4t

1t 2t

5t

6t

8t

7
t

Fig. 10.11 Three two-connected spanning networks for an example of |P | = 8.

pairs of terminals t1, t3 and t2, t4 are on two sides of t5t8, respectively,

where |t1t3| = |t2t4| = 4 +
√

2, t1t3 and t2t4 both are parallel to t5t8 with

distance of 3. It can be verified that Fig.10.11(a) gives the minimum two-

connected spanning networks with total length equal to 26.731, and two

other solutions as shown in Fig.10.11(b) and (c) have lengths of 26.876

and 26.980, respectively. Clearly, the length of the optimal solution of

Fig.10.11(a) can be shortened by replacing t5t2 and t5t6 with a Steiner

minimum tree of t2, t5, and t6, and replacing t8t3 and t8t7 with a Steiner

minimum tree of t3, t7, and t8.

(a) (b)

Fig. 10.12 Minimum two-connected Steiner networks: (a) in a graph and (b) in the
Euclidean plane.

In addition, Winter and Zachariasen [270] give a similar example, as

demonstrated in Fig.10.12(b), that shows the minimum two-connected

Steiner network may not be a two-connected spanning network for eight
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terminals in the Euclidean plane.

Theorem 10.10 Let r2(P ) be the ratio of the length of minimum two-

connected Steiner network over that of minimum two-connected spanning

network both on terminal-set P in the Euclidean plane, then
√

3

2
≤ inf{r2(P )

∣∣ P} ≤ 2

√
3 + 2√
3 + 6

.

Proof. We will first prove the lower bound of r2(P ) for any P . The main

idea is as follows: By Lemma 10.14, we first partition the minimum two-

connected Steiner network G∗ into full Steiner trees Gi, i = 1, 2, · · · , m;

And then we construct a spanning tree Ti for the set of terminals in Gi for

each i; In the end, we construct a spanning network G consisting of all Tis.

Recall that Steiner ratio in the Euclidean plane is
√

3/2 [81], we just need

to show that G is a two-edge connected spanning network.

s

u

t

2t

t'

1t 1t'

2t'

Fig. 10.13 Two disjoint paths joining t and t′ meet at a full Steiner tree.

Suppose, by contradiction argument, that G is not two-edge connected.

Then there exist a pair of terminals t and t′ such that there are two disjoint

paths in G∗ connecting t and t′ and each of them meets at full Steiner

tree Tj for some j as shown in Fig.10.13. In this case, replacing Tj with a

minimum spanning tree will make the resulting network not two-connected.

In the following we will show that such a case, in fact, can not occur.

Let su be an edge on the path in T joining two paths which connects

t1 with t′1 and t2 with t′2, respectively. Clearly, any path passing through

edge su may go around via t1 → t → t2 or t′1 → t′ → t′2. Deleting edge

su will yield a two-connected Steiner network with a shorter length, which

contradicts that G∗ has the shortest length. Hence there are two disjoint

paths in G connecting t and t′, each of them consisting of parts of different
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minimal spanning trees induced by their corresponding full Steiner trees.

Thus G is a two-edge connected spanning network on P .

(a)

2t

1t

3t

4t

5t

2t

1t

3t

4t

5t

7t

6t

8t

1 2 ...... k

(b)

Fig. 10.14 (a) Minimum two-connected spanning network, and (b) minimum two-
connected spanning network.

In the end, we will prove an upper bound of r2(P ) by giving a series

of terminal-sets Pk with r2(Pk) ≤ 2[(
√

3 + 2)/(
√

3 + 6)]. Each Pk mainly

consists of k identical units fastened one after another in a way specified

in Fig.10.10, where |titi+1| = 1 for 1 ≤ i ≤ 7. It can be verified that the

length of the minimum two-connected spanning network on Pk, as shown

in Fig.10.14(a), is equal to (
√

3 + 6)k + 6 −
√

3, while the length of the

minimum two-connected Steiner network on Pk, as shown in Fig.10.14(b),

is 2(
√

3 + 2)k + 2(4 −
√

3). It is easy to see that r2(Pk) tends to 2[(
√

3 +

2)/(
√

3 + 6)] as k approaches infinity. The proof is then finished. �

The following corollaries follow directly from Theorem 10.10.

Corollary 10.3 There exists a
√

3-approximation algorithm for the min-

imum two-connected Steiner network problem in the Euclidean plane.

Corollary 10.4 There exists a 3
2 -approximation algorithm for the mini-

mum two-connected spanning network problem in the Euclidean plane.
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Moreover, from Theorems 10.7-8 and the well known fact [118] that the

convex hull of any finite set could be computed in polynomial time, we

deduce the following corollary.

Corollary 10.5 Suppose that every point in terminal-set P except one

is on the sides of the convex hull of P . Then the minimum two-connected

Steiner network on P could be computed in polynomial time.

As Provan [229] showed that if the given points lie on the boundary of

a “convex” region, then Steiner tree problem on graphs or rectilinear plane

is polynomial-time solvable, and a fully Polynomial Time Approximation

Scheme (PTAS) exists for this problem on the Euclidean plane. Or more

precisely, he proved the following theorem.

Theorem 10.11 There exists a fully PTAS for Steiner tree problem in

the case when all points in P lie on the sides of its convex hull, and there

does not exist a fully PTAS for Steiner tree problem in general case unless

P = NP .

So in such a sense, we may say that the minimum two-connected Steiner

network problem is easier than the Steiner tree problem in the case (every

point in terminal-set P except one is on the sides of the convex hull of P ).

Recall that Arora [10] proved that there exists a fully PTAS for the

Steiner minimum tree problem in Euclidean plane (refer to Chapter 3).

Luebke and Provan [197], however, proved the following negative result

for the minimum two-connected Steiner network problem in the Euclidean

plane.

Theorem 10.12 There is no any fully PTAS for the minimum two-

connected Steiner network problem in the Euclidean plane unless P = NP .

Proof. Consider the travelling salesman problem with all given terminals

in P of lattice points. Recall Lemma 10.15, an optimal solution to the

problem that is not a Hamilton cycle must have length at least (|P |+
√

2−1).

Now for ε = (
√

2 − 1)/|P |, an ε-approximate solution to the problem has

length less than (|P |+
√

2− 1) if and only if there exists a Hamilton cycle

through the points of P such that the distance between each successive

pair of points is 1. This means that if there exists such an ε-approximation

algorithm, then it can be used to decide if P has a Hamilton cycle of length

|P | in polynomial time. Since this decision problem is known NP -complete,

so there is no fully PTAS for the minimum two-connected Steiner network

problem in the Euclidean plane unless P = NP . �
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10.2.3 In the Rectilinear Plane

By applying the same approach as used for the case of Euclidean plane, we

can deduce a series of results for minimum two-connected Steiner networks

on the rectilinear plane (refer to [138]) parallel to those obtained for the case

of the Euclidean plane. In order to study and present these results easily,

we need a few terminologies about the rectilinear geometry by referring to

parallel terminologies adopted in the Euclidean geometry.

Given two points p and q in a plane, the rectilinear edge between p and

q is defined as a set of all finite sequences of horizontal (vertical) segments

alternating with vertical (horizontal) segments such that p and q are con-

nected by them, and the total length of all segments in each sequence is

equal to the rectilinear distance between p and q. In other words, the edge

between p and q consists of infinite elements each has the same length. We,

however, will denote the edge between p and q by pq or qp, which is used

to denote one certain element in the edge between p and q (rather than the

whole set) and its length as well as mathematical formulae.

(a) (b)

Fig. 10.15 (a) A convex hull of three points may not be a singleton, and (b) a convex
hull is a singleton.

In addition, a set S of points in the plane is called a rectilinear convex

set if for any two points p and q in S, there exists an edge pq such that

every point on edge pq is in S. Note that if a set is a convex set in the

Euclidean plane, then it is also a rectilinear convex set; but the reverse is

not true. The rectilinear convex hull of a set S of points in the plane is a

set of rectilinear convex sets containing S with minimal size. By contrast

with corresponding concept in the Euclidean plane, the rectilinear convex

hull of S is a collection of (maybe infinite number of) convex sets as shown
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in Fig.10.15 However, we can prove that the total length of sides in each

convex set is equal. Hence, we denote the rectilinear convex hull of S by

C(S), which will be used to indicate a single convex set in the hull.

Adopting the above definitions and using the similar arguments applied

to the case of the Euclidean plane, we can prove the following theorems.

Theorem 10.13 Suppose that all terminals in P (maybe except one)

are on the sides of the rectilinear convex hull of P . Then the minimum

two-connected Steiner network on P in the rectilinear plane is a spanning

network on P .

Theorem 10.14 In the rectilinear plane the minimum two-connected

Steiner network for any P with |P | ≤ 5 is a spanning network.

(a) (b)

a a'

b b'

c c'

a'

b'

a

b

c c'

Fig. 10.16 (a) Minimum two-connected spanning network, and (b) minimum two-
connected Steiner network.

Fig.10.16 shows an example where |aa′| = |bb′| = |ac| = |a′c′| = |bc| =
|b′c′| = 3, |ab| = |a′b′| = 4, and |cc′| = 1. It is easy to verify that the

minimum two-connected spanning network as shown in Fig.10.16(a) has

length 18, but the minimum two-connected Steiner network as shown in

Fig.10.16(b) has length 16.

Theorem 10.15 Let r2(P ) be the ratio of the length of minimum two-

connected Steiner network over that of minimum two-connected spanning

network both on terminal-set P in the rectilinear plane, then

3

4
≤ inf{r2(P )

∣∣P} ≤ 6

7
.

Proof. The lower bound of 3/4 follows from Theorem 10.1. The upper

bound of 6/7 is achieved by a special class of set Pk as shown in Fig.10.17

with k = 4, where |t1t2| = |t2t3| = |t6t8| = 3, |t1t4| = |t2t5| = |t2t6| =
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(a) (b)

t1t2t3

t4t5t6t7
t8

3

4

2

1

Fig. 10.17 (a) Minimum two-connected spanning network, and (b) minimum two-
connected Steiner network.

|t3t7| = |t3t8| = |t7t8| = 2, and |t4t5| = |t6t7| = 1. It is easy to verify

that the length of the minimum two-connected spanning network on Pk of

Fig.10.17(a) is 2(7k + 3), and the length of the minimum two-connected

Steiner network on Pk of Fig.10.17(a) is 12(k +1), the ratio of the latter to

the former achieves 6/7 as k goes to the infinity. The proof is finished. �

10.3 Minimum Weak Three-Edge-Connected Steiner

Networks

In this section we study the minimum weak three-edge-connected Steiner

network problem (i.e., Problem 10.1 with k = 3). Throughout the section,

for the simplicity of presentation, by “three-connectivity” we mean “weak

three-connectivity”.

10.3.1 In the Euclidean Plane

In this subsection we focus on the case of terminal-set P on the Euclidean

plane. To avoid triviality, we assume that there does not exist a straight

line that contains every point in P . Let G(V, E) be a minimum three-edge-

connected Steiner network of P . In order to simplify our analysis and argu-

ment, we will get rid of crossing edges in G(V, E) (if any) in the following

way: We enlarge vertex-set V to include all points in V and all intersections
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produced from edge crossing and modify edge-set E accordingly, and then

get a new network G(V , E) with V ⊇ V ⊇ P and l(G) = l(G), which can

be easily verified to be a minimum three-edge-connected Steiner network

of P . See Fig.10.18. Accordingly, as far as the length of the minimum

three-edge-connected Steiner network of P , we can just consider G(V , E).

(   )

G G

C G (   )C G\G

Fig. 10.18 Removing crossing edges from G produces G = C(G) + G \ C(G).

For the resulting network G(V , E), we can describe it as a close trail

C(G) enclosing some subnetworks. See Fig.10.18. Let V (C(G)) denote the

set of points on C(G). Observe that in Fig.10.18 all points in V (C(G))

belong to V except one which is a crossing point of edges in E.

Lemma 10.16 Let G(V, E) be a minimum three-edge-connected Steiner

network of P . Then C(G) is a cycle, and G\C(G) is a connected spanning

network of V and a connected Steiner network of V (C(G)).

Proof. Suppose, by contradiction argument, that C(G) is not a cycle,

then C(G) is a union of at least two cycles, thus C(G) contains a cut

vertex c which is the joint of two cycles C1 and C2 in C(G) and has degree

four because of Lemma 10.1. Notice that c is incident to two edges in

C1 (and C2, respectively). Clearly removing these two edges will cause G

disconnected, this contradicts that G is three-edge-connected.

By contradiction argument again, suppose that G \ C(G) is not a con-

nected spanning network of V , then there exist two separated subnetworks

G1 and G2 of G \ C(G), i.e., there is no path in G \ C(G) connecting G1
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and G2. Since C(G) is a cycle and G \C(G) is inside C(G), there exist two

edges on C(G) which connects G1 and G2 while deleting them will cause

G to be disconnected, this contradicts that G is three-edge-connected.

By using the same method we can show that G \ C(G) is a connected

Steiner network of V (C(G)). The proof is then finished. �

In general, Lemma 10.16 is not true for original network G(V, E), even if

it is a minimum three-edge-connected spanning network of P . See Fig.10.19

for a simple example, where P has four points that produce a square.

(c)(b)(a)

Fig. 10.19 (a) Minimum 3-edge-connected spanning network G, (b) G \ C(G), and (c)
minimum 3-edge-connected Steiner network.

In order to simplify our notations, we will keep using G(V, E) instead

of G(V , E), and assume

(1) G(V, E) is a minimum three-edge-connected Steiner network of P ;

(2) G(V, E) has minimal number of Steiner points in V , which consists

of terminals, Steiner points, and crossing points.

From assumption (1) we know that for any pair of points u and v in V ,

there are three edge-disjoint paths in G connecting them. Denote them by

pi(u, v), i = 1, 2, 3.

t

s

s

s

t

t

1

1

2
2

t

s

s
t

1

1

2
2

Fig. 10.20 Steiner lifting at st.
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Let s and t be two adjacent Steiner points, where s and t are adjacent

to two points si and ti, i = 1, 2, respectively. The process of deleting s and

t together with all edges incident to them and adding two edges s1s2 and

t1t2 is called Steiner lifting of G at st. See Fig.10.20. It is further called

admissible if the resulting network remains three-edge-connected.

From this definition and assumption (1) we know that G has no admis-

sible Steiner lifting.

Lemma 10.17 Each Steiner point in G is adjacent to exactly three edges

meeting at angles of 120◦.

Proof. According to Lemma 10.1, every point in G has degree three or

four. Now suppose, by contradiction, that there is a Steiner point s which

has degree four. If s is adjacent to four different points, then it follows from

the triangle inequality that s must be the intersection of two edges. This

implies that this Steiner point is unnecessary (in fact, it can be considered

as a crossing point in V ), which contradicts the assumption (2). If s is

adjacent to three different points a, b, and c, this means that one of these

points, say a, is connected with s by multiple edges. Now construct a new

network G′ by removing Steiner point s from G (together with those four

edges incident to it) and adding edges ab and bc. It is easy to verify that

G′ is a three-edge-connected Steiner network of P with l(G′) < l(G), this

contradicts assumption (1).

Now suppose, by contradiction again, that a Steiner point is incident

to three edges and two of them do not meet at an angle of 120◦. Then we

can relocate this Steiner point in such a way that it is incident to these

three edges while any two of them meet at an angle of 120◦. Clearly,

the modified network is still a three-edge-connected Steiner network of P ,

while its length, according to Lemma 1.1, is shorter than that of G, this

contradicts the assumption (1). The proof is then finished. �

Lemma 10.18 There is no cycle in G exclusively composed of Steiner

points.

Proof. Suppose, by contradiction, that there is such a cycle. We denote

it by C, and label all Steiner points on C by s0, s1, s2, . . ., and denote

points adjacent to them by r0, r1, r2, . . ., respectively. It can be deduced

from Lemma 1.1 and Lemma 10.17 that there exist two adjacent Steiner

points on C, s1 and s2 (without lose of generality) with r1 and r2 being

outside of C. We will produce a contradiction by showing that there is an

admissible Steiner lifting of G at edge s1s2 on C, or equivalently we will
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show that for any pair of points u and v in V \ {s1, s2}, there are three

edge-disjoint paths connecting them in G′(V ′, E′) obtained from G(V, E)

by applying Steiner lifting at s1s2.

Case 1. There exists an edge xy such that {xy, s0s1, s2s3} is a cut set 4

of G. In this case, xy is not incident to s1 or s2 (otherwise there will exist

a smaller cut set of G), and G \ {xy, s0s1, s2s3} consists of two separate

subnetworks G1 and G2. See Fig.10.21.

2
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G G
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4
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5
6

6

Fig. 10.21 Case 1 in the proof of Lemma 7.

Now we will use three paths connecting r1 with r2, i.e., pi(r1, r2), i =

1, 2, 3, as auxiliary paths to reconstruct {pi(u, v) | i = 1, 2, 3} in G to make

them to be three edge-disjoint paths in G′ connecting u and v. It can be

easily verified that all possible cases associated with pi(r1, r2), i = 1, 2, 3 can

be reduced to the case that {pi(r1, r2) | i = 1, 2, 3} are in G1, and p1(r1r2) is

r1s1s2r2. Notice that when no path in {pi(u, v) | i = 1, 2, 3} includes s1s2,

then we are done, as they, after some minor modification (if necessary,

replacing r1s1s0 and r2s2s3 in G with r1s0 and r2s3 in G′, respectively),

are three edge-disjoint paths in G′ connecting u and v. Suppose that one

of these three paths, say p1(u, v), includes s1s2. Then p2(u, v) and p3(u, v)

can not include any edge in {r1s1, r2s2, s1s2, s1s0, s2s3}. Thus u and v are

either in G1 or G2 (otherwise both p2(u, v) and p3(u, v) use xy). In the

former case, p2(u, v) and p3(u, v) are both in G1, and p1(u, v) can go around

4Removing all edges in the set from E will make resultant graph G disconnected.
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s1s2 via a path of C in G2. In the latter case, p2(u, v) and p3(u, v) are both

in G2, and p1(u, v) can go around s1s2 via path p2(r1, r2) in G1.

Case 2. There exist k (> 1) edges, x1y1, x2y2, . . . xkyk, such that no

point in V is incident to two of them and {xiyi | i = 1, 2, . . . k}∪{s0s1, s2s3}
makes a cut set of G. The above argument for Case 1 can be used to deal

with this case in a similar way. The proof is then finished. �

Now according to Lemma 10.18, splitting G at every terminal will de-

compose G into a set of edge-disjoint full Steiner trees, which are called full

Steiner components of G.

Lemma 10.19 Let T be a full Steiner component of G. Then G has no

cut set of size three which includes two edges in T unless it contains three

edges incident to a common Steiner point in T .

Proof. Suppose that there exists a cut set {ab, a′b′, xy}, where a, b, a′

and b′ are four different points of T , and no two edges are incident to each

other (otherwise we will find a smaller cut set of G). Then G\{ab, a′b′, xy}
has two separate subnetworks G1 and G2. Notice that there is a unique

path T ′ on T joining ab and a′b′, and every point on T ′ is a Steiner point.

Let T ′ = bs1s2 · · · skb′, where k ≥ 0. We indicate the points which are

adjacent to si by xi, for i = 1, 2, . . . , k, and denote the points adjacent to

b and b′ by c and c′, respectively. See Fig.10.22.

x
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Fig. 10.22 Case 1 in the proof of Lemma 10.19.

First consider the case of k ≥ 1. We will produce a contradiction by

showing that G has an admissible Steiner lifting at bs1, or equivalently, we

will show that for any pair of points u and v in V \ {b, s1}, there are three
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edge-disjoint paths connecting them in G′(V ′, E′) obtained from G(V, E)

by applying Steiner lifting at bs1. This time we use three paths connect-

ing c with x1, i.e., pi(c, x1), i = 1, 2, 3, as auxiliary paths to reconstruct

{pi(u, v) | i = 1, 2, 3} in G to make them to be three edge-disjoint paths

in G′ connecting u and v. It is easy to verify that all possible cases as-

sociated with pi(c, x1), i = 1, 2, 3 can be reduced to two cases: Case 1,

p1(c, x1) = cbs1x1, p2(c, x1) includes edges a′b′ and xy, and p3(c, x1) is in

G2; Case 2, p1(c, x1) = cbs1x1, p2(c, x1) and p3(c, x1) are in G2. In both

cases, we can apply the same case-study as we have done in the proof of

Lemma 10.18. The detailed analysis is omitted.

In the end, consider the case of k = 0, we can produce a contradiction

by showing that G has an admissible Steiner lifting at bb′ in a similar way.

The proof is then finished. �

Theorem 10.16 For a terminal-set P in the Euclidean plane, let rk(P )

be the ratio of the length of minimum three-edge connected Steiner network

of P over that of minimum k-edge connected spanning network of P . Then

√
3

2
≤ inf{r3(P )

∣∣ P} ≤ 2 +
√

3

4
.

Proof. First we will show that for any P ,
√

3/2 ≤ r3(P ). In order to do

this, we will, 1) decompose G into a set of full Steiner components of G, 2)

replace each full Steiner component of G with its corresponding minimum

spanning tree, and 3) prove that the resulting network G′ is three-edge-

connected. The whole process is demonstrated by a simple example in

Fig.10.23. (Notice that G′ may not be a shortest three-edge-connected

spanning network of P .) In the end, recall that the Steiner ratio in the

Euclidean plane is
√

3/2 [81], we have l(G) ≥
√

3
2 l(G′), this implies the

inequality, since l(G′) is greater than or equal to the length of the minimum

three-edge-connected spanning network of P .

To show that G′ is a three-edge-connected spanning network of P , con-

sider any pair of terminals u and u in P . Given a full Steiner component T

of G, from Lemma 10.19 we know that at most one path in {pi(u, v) | i =

1, 2, 3} includes some edges in T . If no path in {pi(u, v) | i = 1, 2, 3} includes

edges in T , then after substitution of T they remain three edge-disjoint

paths connecting u with v. Now suppose that p1(u, v) include some edges

in T . When T is substituted by its corresponding minimum spanning tree

T ′, we can reconstruct p1(u, v) by replacing these edges in T with a path

in T ′ so that the modified path p′1(u, v) is still edge-disjoint with other
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two paths p2(u, v) and p3(u, v). Thus there always exist three edge-disjoint

paths connecting u with v during the substituting process. This means that

G′ is a three-edge-connected spanning network of P .

(b) (d)(c)(a)

Fig. 10.23 (a) A Steiner network, (b) Split G at every terminal, (c) replace every full
Steiner component with its corresponding minimum spanning tree, and then (d) produce
a spanning network G′.

In the end we consider a set P12 that consists of twelve terminals; they

form two regular hexagons with radius of one and a > 1, respectively as

shown in Fig.10.24(b), where b2 = 1/4 + (a −
√

3/2)2). It is not very

difficulty to verify that the length of the minimum 3-edge-connected Steiner

and spanning networks are 3(
√

3 + 2)a + 6 and 6(1 + a + b), respectively as

shown in Fig.10.24(c,a). Now let a go to infinity, we obtain r3 ≤ (
√

3+2)/4.

The proof is then finished. �

The following corollary follows directly from Theorem 10.16.

Corollary 10.6 There is a polynomial time 5√
3
-approximation algorithm

for the minimum three-edge-connected spanning network in the Euclidean

plane.

In the following study we restrict our attention on those P that all points

in P lie on the sides of its convex hull. For this special case, we are able

to label each terminal point in P by ti, i = 0, 1, . . . , |P | − 1, in clockwise

order, and denote by C(P ) the cycle consisting of (t0t1 · · · t|P |−1t0).

Lemma 10.20 Suppose that all terminal points in P lie on the sides of

the convex hull of P . Then C(G) = C(P ), and G \ C(G) is a Steiner

minimum tree of P .

Proof. (1) Suppose, by contradiction, that C(G) 6= C(P ), and t0t1 /∈
C(G). Then there exists a path in C(G) connecting t0 with t1. Denote this

path by t0q1q2 · · · qkt1, where k ≥ 1. Now we consider the following three

cases.
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(a) (b) (c)

b

a

1

Fig. 10.24 (a) The minimum 3-edge-connected spanning network, (b) twelve terminals
form two regular hexagons, and (c) the minimum 3-edge-connected Steiner network.

Case 1. q1 is a terminal. Let q1 = ti. See Fig.10.25(a). According

to Lemma 10.1, there are at most four edges incident to ti. It is easy to

check that two of them compose a cut set of G, since edge t0ti separates

the points in P into two parts {t1, t2, . . . , ti−1} and {ti, . . . , t0}. This con-

tradicts assumption (1).

(a)

ti

tt 10

(b)
t i

tt 10

q
1 qk

tm

tn

Fig. 10.25 For the proof of Lemma 10.20: (a) Case 1 and (b) Case 2.

Case 2. q1 is an intersection of two edges t0a and q2b. See Fig.10.25(b).

Now produce a new network G′ by replacing t0a and q2b in G with t0q2 and

ab. Clearly, l(G′) < l(G). According to Lemma 1.1 we can deduce that G′

is three-edge-connected. This contradicts assumption (1).

Case 3. q1 is a Steiner point, where q1 is adjacent to s1 and q2. If
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s1 = ti, for some i, then according to Lemma 10.1, there are at most four

edges incident to ti, and it is easy to verify that two of them compose

a cut set of G, since edge q1ti separates the points in P into two parts

{t1, t2, · · · , ti−1} and {ti, · · · , t0}. This contradicts assumption (1). Hence

s1 is either a Steiner point or a crossing point. In the former case (see

Fig.10.26(a)), construct a new network G′ by applying a Steiner lifting at

q1s1; In the latter case (see Fig.10.26(b)), construct a new network G′ by

removing q1 (together with those three edges incident to it) and adding

edge t0q2. In both cases, it is easy to verify, by using Lemma 5, that G′ is

a three-edge-connected Steiner network with l(G′) < l(G), this contradicts

assumption (1).

(b)(a)

q

a

b

a

bc

t

t t

t

ss

qq

q

qq
1

1

1

11

1

k0 0 k

22

Fig. 10.26 Case 3 in the proof of Lemma 10.20.

Therefore, we have C(G) = C(P ). It follows from Lemma 10.16 that

G \ C(G) is a Steiner minimum tree of P . The proof is then finished. �

Corollary 10.7 Under the same assumption of Lemma 10.20, there is a

fully PTAS for the minimum three-edge-connected Steiner network problem

in the Euclidean plane.

Proof. According to Lemma 10.20, the minimum three-edge-connected

Steiner network of terminal-set P consists of C(P ) and the Steiner minimum

tree Tsmt(P ) of P . As there is a polynomial time algorithm to construct

C(P ) [118] and a fully PTAS for the Steiner tree problem in this case [229],

integrating these two algorithms can make a fully PTAS for the minimum

three-edge-connected Steiner network problem. �

Theorem 10.17 Under the same assumption of Lemma 10.20, r3(P ) >

(2 +
√

3)/4.
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Proof. Let G? be a minimum three-edge-connected spanning network

of P . Recall that it is proved in Chapter 1 [81] that Steiner ratio in the

Euclidean plane is
√

3/2, by Lemma 10.20 we have

l(G) = l
(
C(P )

)
+ l

(
Tsmt(P )

)
≥ l

(
C(P )

)
+

√
3

2
l
(
Tmst(P )

)
.

Since a Hamiltonian cycle of P and a minimum spanning tree Tmst(P ) of

P can compose a three-edge-connected spanning network of P , we have

l(G?) ≤ l(C(P )) + l(Tmst(P )). In addition, it is obvious that l(Tmst(P )) <

l(C(P )). Therefore, we have

r3(P ) =
l(G)

l(G?)
≥ l

(
C(P )

)
+

√
3

2 l
(
Tmst(P )

)

l
(
C(P )

)
+ l

(
Tmst(P )

) >
2 +
√

3

4
,

and then the proof is finished. �

Let G? be a minimum three-edge-connected spanning network of P .

Then we can show the following result by applying the same approach that

we have used to study the minimum three-edge-connected Steiner network.

Lemma 10.21 Under the same assumption of Lemma 10.20, C(G?) =

C(P ).

Note, however, that although C(P ) and a minimum spanning tree of P

can be constructed in polynomial time, Lemma 10.21 does not imply that

the minimum three-edge-connected spanning network of P can be produced

in polynomial time, since G? \C(P ) = G? \C(G?) may not be a minimum

spanning tree of P . See Fig.10.19 for a simple example.

10.3.2 In the Rectilinear Plane

By applying the same approach as used for the case of Euclidean plane, we

can deduce a series of results [138] for minimum three-connected Steiner

networks on the rectilinear plane parallel to those obtained for the case of

the Euclidean plane.

Theorem 10.18 Suppose that all terminals in P (maybe except one)

are on the sides of the rectilinear convex hull of P . Then the minimum

two-connected Steiner network on P in the rectilinear plane is a spanning

network on P .
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Theorem 10.19 For a terminal-set P in the rectilinear plane, let rk(P )

be the ratio of the length of minimum three-edge connected Steiner network

of P over that of minimum three-edge connected spanning network of P .

Then

3

4
≤ inf{r3(P )

∣∣P} ≤ 7

8
.

Proof. Given a set P of terminals in the rectilinear plane, let G∗ be the

minimum three-edge connected Steiner network on P . We can construct

a three-edge connected spanning network G′ on P by replacing each full

Steiner component in G∗ with its corresponding minimum spanning tree.

Recall that the Steiner ratio in the rectilinear plane is 2/3 [142], we obtain

that l(G′) ≤ 3
2 l(G∗), which yields the lower bound.

(a)

(b)

t1 t2

t3 3 421 5
t4

Fig. 10.27 (a) Minimum three-connected spanning network and (b) minimum three-
connected Steiner network.

The upper bound of 7/8 is achieved by a special class of set Pk as shown

in Fig.10.27 with k = 5, where |t1t2| = |t3t4| = |t1t3| = |t2t4| = |t1t4| = 2.

It is easy to verify that the length of the minimum two-connected spanning

network on Pk of Fig.10.27(a) is (8k + 2), and the length of the minimum

two-connected Steiner network on Pn of Fig.10.27(a) is (7k + 2), the ratio

of the latter to the former achieves 7/8 as k goes to the infinity. The proof

is then finished. �

Theorem 10.20 Suppose that all terminals in P are on the sides of the

convex hull of P . Then there exists a minimum three-edge connected Steiner

network on P that consists of a Hamilton cycle of P and a Steiner minimal

tree of P .
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10.4 Discussions

We have obtained some lower bounds of generalized Steiner ratio rM (k)

in metric space M for k ≥ 2, and some estimations of the ratios in the

Euclidean plane for k = 2, 3. It is a challenge to determine the exact

value of rM (k), or narrow the gap between its lower and upper bounds,

especially for small k in the Euclidean plane, which is more important

in practice. However, the currently used arguments for this case heavily

rely on the structural properties of Steiner minimum trees in the Euclidean

plane. Thus acquiring similar results for minimum k-edge-connected Steiner

networks with k ≥ 4 demands new techniques, since every Steiner point is

incident to at least four edges.

(b)(a)

a

b

Fig. 10.28 (a) The minimum 3-vertex-connected spanning network and (b) The mini-
mum 3-vertex-connected Steiner network.

There are two other interesting cases of generalized Steiner ratio prob-

lem, which are also of great interest for further study. One is addressed un-

der k-vertex-connectivity, and the other disallows multiple edges between

any pair of points. Observe in these two cases Theorem 10.16 does not hold

any more. For example, in Fig.10.28 four points in the Euclidean plane

form a rectangle of size a× b. It is easy to verify that when a is sufficiently

smaller than b, the length of the shortest 3-vertex-connected Steiner and

spanning networks are (2+
√

3)a+3b and 2(a+ b+
√

a2 + b2), respectively.

Let a/b approach to zero, we get r3 ≤ 3/4 <
√

3/2. These two versions

demand a new approach, since the technique of admissible lifting can not

be applied.

10.4.1 Minimally k-Edge Connected Networks

Jordán [157] studied minimally k-edge-connected graphs, which are very

similar to minimum weak k-connected Steiner networks. A graph G(V, E)
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is called (k, P )-edge-connected for P ⊆ V if there exist k-edge disjoint paths

in G between each pair of vertices of P , and G is called minimally (k, P )-

edge-connected if it is (k, P )-edge-connected but G\{e} is no longer (k, P )-

edge-connected for any e ∈ E. Clearly, minimum weak k-connected Steiner

networks are minimally (k, P )-edge-connected.

The focus of Jordán’s work [157] is on determining the upper bounds

on the number of vertices (and edges) of minimally (k, P )-edge-connected

graphs in terms of k and |P |. It is easy to see that given a minimally

(k, P )-edge-connected network G(V, E), replacing any edge in E by a path

between its two endpoints will produce a minimally (k, P )-edge-connected

network with arbitrarily larger number of edges. Thus in general there does

not exist such a bound. Based on this simple fact, it is assumed that every

vertex of V \ P has degree at least three. Unfortunately, even with this

assumption such bounds do not necessarily exist for k ≥ 2. Consider a

simple example Gk that is obtained from a path of n vertices by replacing

every edge by k parallel edges and P contains the two end-vertices of the

path. This graph is minimally (k, P )-edge-connected and it contains n

vertices, which can be made arbitrarily large.

Consequently, the effort is put into so-called odd minimally (k, P )-edge-

connected networks whose vertices in V \ P all have odd degrees. Clearly,

minimum weak k-connected Steiner networks are odd minimally (k, P )-

edge-connected. Jordán proved the following theorem among some other

results.

Theorem 10.21 Let G(V, E) be an odd minimally (k, P )-edge-connected

graph for some P ⊆ V . Then |E| ≤ 2k|P | − 3k and |V | ≤ (k + 1)|P | − 2k.

10.4.2 Minimum k-Edge Connected Spanning Networks

The minimum k-edge connected Steiner network problem will be reduced to

minimum k-edge connected spanning network problem [169] if P = V . This

problem is equivalent to the source based minimum k-edge connected span-

ning network problem: given an edge-weighted k-connected graph G(V, E)

and a vertex r ∈ V , find a minimum weight subgraph G′ of G such that for

every vertex v ∈ V , there are k edge-disjoint paths from r to v in G′. Any

solution to this problem is also a solution to the minimum k-edge connected

spanning network problem [257]. Using Edmonds’ results [95], Khuller and

Vishkin [169] proved the following theorem.

Theorem 10.22 There is a 2-approximation algorithm for the minimum
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k-edge connected spanning network problem.

Given an edge-weighted directed graph G(V, E) and a vertex r ∈ V .

A set E′ ⊆ E is called an r-arborescence if every vertex except r has in-

degree 1. In fact, an r-arborescence is a directed spanning tree rooted at r.

The r-connectivity of G is defined as the maximum k such that there are k

edge-disjoint paths from r to v for any v ∈ V \ {r}. Edmonds [95] proved

that maximum number of edge-disjoint r-arborescences in G is equal to the

r-connectivity of G. As a result, Khuller and Vishkin [169] showed that

to find a minimum weight subgraph G′ ⊆ G of r-connectivity is the same

as to find a minimum weight subgraph G′ ⊆ G that has k edge-disjoint

r-arborescences.

Moreover, Edmonds [95] proved that the edges of a directed G(V, E)

can be partitioned into k edge-disjoint r-arborescences if and only if, when

directions of edges are ignored, E can be partitioned into k spanning trees,

and the in-degree of every vertex except r is exactly k. From this result

Khuller and Vishkin [169] deduced that the subgraph G′ ⊆ G of minimum

weight that has k edge-disjoint arborescences can be computed in polyno-

mial time.

Now given an edge-weighted undirected graph G(V, E) and a vertex

r ∈ V . We can obtain a weighted directed graph H by simply replacing each

edge (u, v) ∈ E with two edges of opposite directions each having the same

weight as (u, v). Then we can compute, in polynomial time, a minimum

weight subgraph of H that can be partitioned into k r-arborescences Ak(H)

and satisfies the following inequalities

l
(
Gopt

)
≤ l

(
Ak(H)

)
≤ 2 · l

(
Gopt

)
,

where l(Gopt) is the length of the minimum k-edge connected spanning

network of G. Now ignoring the directions of edges in Ak(H), we obtain a

2-approximation of minimum k-edge connected spanning network.

For the unweighted version of minimum k-edge connected spanning net-

works in graphs, that is, how to, given a k-edge connected graph G(V, E),

find a subgraph G(V, E′) of G that is k-edge connected and the number of

edges in E′ is minimized. Gabow et al. [104] proposed a LP-rounding based

algorithm for the problem, and obtained a tight bound on the approxima-

tion ratio of (1 + 3/k) and (1 + 2/k) for undirected graphs with odd k > 1

and even k, respectively, and (1 + 2/k) for directed graphs with arbitrary

k. The first bound can be reduced to (1 + 2/k) by using iterated rounding.

In addition, Jothi et al. [159] proposed a 5/4-approximation algorithm for
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the case of k = 2 in undirected graphs.

For the case of multigraphs, Gabow [103] proved that the algorithm

proposed by Khuller and Raghavachari [167] has approximation ration at

most (1 +
√

1/e).

10.4.3 Minimum k-Vertex Connected Spanning Networks

As a contrast to the case of k = 2, minimum k-edge and minimum k-

vertex connected spanning networks may have different weights for k ≥
3. Fig.10.29 demonstrates such an example of six terminal points in the

Euclidean plane that make a regular hexagon of one unit. Fig.10.29(a) is a

minimum 3-edge connected spanning network of length 11, Fig.10.29(b) is

a minimum 3-vertex connected spanning network of length (8 + 2
√

3), and

Fig.10.29(c) is a minimum 3-connected Steiner network of length (6+3
√

3).

(c)(a) (b)

Fig. 10.29 Minimum 3-connected Networks of six terminals: (a) 3-edge-connected span-
ning network, (b) 3-vertex-connected spanning network, and (c) 3-vertex-connected
Steiner network.

Bienstock et al. [37] described a polynomial time algorithm that

produces a k-vertex connected spanning network with weight at most

3k(k + 1)/4 times that of the minimum 2-connected spanning network.

This algorithm can be improved as follows: Produce a Hamilton cycle first

and then connect vertices on the cycle in a systematic way as shown in

Fig.10.30 The construction for even k is a little bit different from that for

odd k, which is a more difficult case. Fig.10.30 show three k-vertex con-

nected spanning networks of twelve terminals. Note that Fig.10.30(a-b) are

for k = 4 and k = 6, respectively, both have the topologies of double-loop
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networks [139], while Fig.10.30(c) is for k = 3, which have the topology of

chordal ring networks [140].

(c)(a) (b)

Fig. 10.30 Spanning networks: (a) 3-vertex-connected, (b) 6-vertex-connected, and (c)
a 3-vertex-connected.

Theorem 10.23 There exists an approximation algorithm for the min-

imum k-vertex connected spanning network problem in metric spaces with

performance ratio of 3(k + 2)/8 for even k ≥ 2 and 3(k + 4 + 3/k)/8 for

odd k ≥ 3.

For the minimum k-vertex connected spanning networks in graphs,

Aulettaa et al. [20] proposed a polynomial time algorithm that finds a

(dk/2e+1)-connected spanning subgraph whose weight is at most twice the

optimum of the problem. In particular, they obtained a 2-approximation

algorithm for the case of k = 3. Recently, Kortsarz and Nutov [176] proved

that for arbitrary weights on edges, there are a k-approximation algorithm

for undirected graphs and a (k + 1)-approximation algorithm for directed

graphs; For metric weights, the ratios could be reduced to (2 + k−1
n ) and

(2 + k
n ), respectively.

More recently, Kortsarz and Nutov [177] proposed two algorithms for

directed or undirected case. The first one has approximation ratio of

O( n
n−k ln2 k), which is based on properties of `-connected p-critical graphs;

The second one using the primal-dual method has approximation ratio of

O(
√

n ln k).

For the unweighted version of minimum k-vertex connected spanning

networks in graphs, that is, how to, given a k-vertex connected graph

G(V, E), find a subgraph G(V, E ′) of G that is k-vertex connected and

the number of edges in E′ is minimized. Cheriyan and Thurimella [58]
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proposed a (1 + 2/k)-approximation algorithm for this problem.

10.4.4 Minimum Spanning Network of Nonuniform

Connectivity

A more general version of minimum k-edge connected spanning network

problem is the following problem that does not assume the same connec-

tivity between any two nodes in graphs.

Problem 10.4 Minimum Generalized Spanning Network Problem

Instance A undirected graph G(V, E), a length function on edges l : E →
Q+, a connectivity requirement function on vertex-pairs

r : V ×V → Z+, a capacity function on edges c : E → Z+∪{∞}
giving an upper bound on the number of copies of edge e ∈ E

that are allowed to use; When c(e) =∞, there is no upper

bound on edge e.

Solution A multigraph H on vertex-set V that has r(u, v) edge-disjoint

paths for each pair of vertices u, v ∈ V .

Objective Minimizing the total length of the edges in H ,

l(H) ≡∑
e∈H l(e), where each copy of edge e in H costs l(e).

In the above formulation, the length function not necessarily satisfies

the triangle inequality. Jain [152] proposed an iterated rounding algorithm

for the above problem and proved the following theorem.

Theorem 10.24 There is a 2-approximation algorithm for the minimum

generalized Steiner network problem in graphs.
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More Steiner Tree Related Problems

In Chapters 1-10, we have studied the classical Steiner tree problem and

some their generalizations or variants arising from the design of computer

communication networks. In fact, there are many more Steiner tree related

problems proposed in the past twenty years, which are not addressed in

Chapters 1-10. In the following, we give a list for some of them, which is

certainly not complete.

Problem A.1 Steiner Forest Problem

Instance A graph G(V, E) with a cost l(e) on each edge e ∈ E, a family of

k disjoint subsets of V , P1, P2, · · · , Pk.

Solution A subgraph G′ in which each pair of vertices in Pi is connected

for i = 1, 2, · · · , k.

Objective Minimizing the total length of edges in G′,
l(G′) ≡∑

e∈G′ l(e).

Positive result It has a 2-approximation algorithm [1]. There is an

O(log2 n)-competitive algorithm for the online version of the generalized

Steiner tree problem where each Pi contains exactly two vertices [28].

Problem A.2 Acyclic Directed Steiner Tree Problem1

Instance An acyclic directed graph G(V, E) with a cost l(e) on each arc

e ∈ E, a terminal-set P ⊂ V , and a root r.

Solution A subgraph G′ containing a path from r to each terminal in P .

Objective Minimizing the total length of edges in G′,
l(G′) ≡∑

e∈G′ l(e).

1Also known as the Steiner arborescence problem in acyclic networks [144].

331
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Positive results It admits an O(|P |ε)-approximation algorithm for any

ε > 0 for any ε [278]. For the online version for the case of bounded

edge-asymmetry β, which equals the maximum ratio of the costs of antipar-

allel arcs in the graph, it has a greedy algorithm with competitive ratio of

O(min{|P |, β log |P |/ log log β}) [8].

Negative results Unless NP ⊆ DTIME[|V |poly log |V |] no polynomial

time algorithm can guarantee better then (ln |P |)/4-approximation [199].

For the online version specified above, every deterministic algorithm has

competitive ratio at least Σ(min{k1−ε, β log k/ log log k}) for any arbitrar-

ily small ε [8].

Problem A.3 Power-p Steiner Tree Problem in Graphs

Instance A graph G(V, E) with a length l(e) on each edge e ∈ E,

a terminal-set P ⊂ V and an integer p > 1.

Solution A Steiner tree T that spans P in the distance graph GD(P ) and

each Steiner point has degree at least 3.

Objective Minimizing the total power p length of edges in T ,
∑

e∈T lp(e).

Negative result It is MAX SNP-hard [30]. It is conjectured that the

problem is not finitely solvable for p ≥ 5 [107].

Positive result The power-p Steiner ratio for p = 2 is between

[1/17.2, 1/23.3) [107; 30].

Problem A.4 Polymatroid Steiner Tree Problem

Instance A graph G = (V, E) with a cost l(e) on each edge e ∈ E, a

polymatroid P (V ) defined on V , and a terminal-set P ⊂ V .

Solution A Steiner tree T spanning at least one base of P (V ).

Objective Minimizing the total cost of edges in T ,
∑

e∈T l(e).

Positive Result It admits an approximation algorithm with polylogarith-

mic ratio [43]. It includes the group and covering Steiner tree problems as

special cases, and it is reduced to Steiner tree problem when there is only

one base P ⊂ V .

Problem A.4’ Polymatroid Directed Steiner Tree Problem

Instance A directed graph G(V, E) with a cost l(e) on each arc e ∈ E,

a terminal-set P ⊂ V , a root r ∈ V , and a polymatroid M(P )

defined on P .

Solution A Steiner arborescence T connecting root r to a base of

polymatroid M(P ).
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Objective Minimizing the total cost of arcs of T ,
∑

e∈T l(e).

Positive Result It has an approximation algorithm with polylogarithmic

ratio [43].

Problem A.5 Prize Collecting Steiner Tree Problems

Instance A graph G(V, E) with a prize p(v) for each v ∈ V and a cost c(e)

for each e ∈ E; A quota bound Q and a budget bound B.

Solution A Steiner tree T (or a Steiner tree T contain a specified root

vertex v0 ∈ V ).

Objective (1) Minimizing the total cost of edges in T plus the prizes of

vertices not in T ,
∑

e∈T c(e) +
∑

v/∈T p(v).

Objective (2) Maximizing the net worth of T ,
∑

v∈T p(v)−∑
e∈T c(e).

Objective (3) Minimizing the total cost of edges in T under the quota

constraint, min{∑e∈T c(e) | ∑v∈T p(v) ≥ Q}.
Objective (4) Maximizing the total prize of vertices in T under the budget

constraint, max{∑v∈T p(v) | ∑e∈T c(e) ≤ B}.
Positive results It has a 2-approximation algorithm for objective (1) [115].

It has approximation algorithms for objective (3) with the same perfor-

mance ratios as for k-MST problem2 [156]. It has (5 + ε)-approximation

algorithm for objective (4) if there is a 3-approximation algorithm for k-

MST problem [156]. Refer to [46] for some recent results on the variations

of the problem.

Negative result It is NP-hard to approximate the problem for objective

(2) within any constant factor [100].

Problem A.6 Group Steiner Tree Problem3

Instance A graph G = (V, E) with a length l(e) on each edge e ∈ E, a set

of k disjoint groups {V1, V2, · · · , Vk} with Vi ⊂ V for each i.

Solution A Steiner tree T that spans at least one node in Vi for each i.

Objective Minimizing the total cost of edges in T ,
∑

e∈T l(e).

Positive results It admits an O(kε)-approximation algorithm for any ε > 0
[134], and an O(log2 |V | log k)-competitive randomized algorithm for the

online version in trees and an O(log3 |V | log k)-competitive randomized al-

gorithm in general graphs [4; 113].

2The problem for objective (3) is reduced to k-MST problem if all vertices have prize
1 and Q = k. k-MST problem has a 2-approximation algorithm [112].

3It is also called the class Steiner tree problem.
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Negative result It cannot be efficiently approximated with a performance

ratio less than ln k times the optimum [147].

Problem A.7 Node-Weighted Steiner Tree Problem

Instance A graph G = (V, E) with two cost functions, cv(·) defined on V

and ce(·) defined on E, and a terminal-set P ⊂ V .

Solution A Steiner tree T interconnecting all terminals in P .

Objective Minimizing the edge-cost and vertex-cost of vertices and edges

in T ,
∑

v∈T cv(v) +
∑

e∈T ce(e).

Positive result It can be approximated within 2 ln |P | [171].

Negative result It cannot be approximated to within less than a logarith-

mic factor unless DTIME[npoly log n] ⊇ NP [1; 199].

Problem A.8 Node-Weighted Geometric Steiner Tree Problem

Instance A set P = {t1, t2, · · · , tk} of terminal points in a metric space

each with a penalty p(ti) > 0, and a positive constant c > 0.

Solution A Steiner tree T that interconnects some terminals in P using

Steiner points S = {s1, s2, · · · , sm}.
Objective Minimizing the total length of T plus the total penalty of T ,∑

e∈T l(e) +
∑

ti /∈T p(ti) +
∑

sj∈S c · sj .

Negative result It admits a polynomial time approximation scheme in

the Euclidean plane [236].

Problem A.9 Prize Collecting Node-Weighted Steiner Tree Problems

Instance A graph G = (V, E), a profit p(v) and a cost c(v) for each v ∈ V ,

a terminal-set P⊂V . A budget bound B and a quota bound Q.

Solution A Steiner tree T interconnecting all points in P .

Objective (1) Maximizing the profit of T under budget constraint on edge

cost of T , max{∑v∈T p(v) | ∑
v∈T c(v) ≤ B}.

Objective (2) Minimizing the cost of T under quota constraint on the

prize of T , min{∑v∈T c(v) | ∑
v∈T p(v) ≥ Q}.

Objective (3) Minimizing the cost of T minus the profit of T (profit loss),∑
v∈T c(v) −∑

v/∈T p(v).

Positive result It has an O(log |V |)-approximation algorithm for the prob-

lem with all objectives [216].

Negative result It is at least as hard to approximate the problem for

objectives (2-3) as the set cover problem [216].
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Problem A.10 Terminal Steiner Tree Problem

Instance A terminal-set P in a metric space, or P in a graph G(V, E)

with P ⊂ V and cost l(e) on each edge e ∈ E.

Solution A terminal Steiner tree T that all vertices in P are leaves of T .

Objective Minimizing the total length of T ,
∑

e∈T l(e).

Positive Result It has an approximation algorithm with performance ratio

2ρ− ρ/(3ρ− 2) [203].

Negative Result It is MAX SNP-hard in metric spaces [189]. It has no

polynomial time approximation algorithm with a performance ratio less

than (1− o(1)) ln n unless NP = DTIME(nO(log log n)) [73].

Problem A.11 Diameter Bounded Steiner Tree Problem

Instance A graph G(V, E) with a set of Steiner nodes S and two functions,

length l(·) and cost c(·), defined on E. A diameter bound d4.

Solution A Steiner tree T such that all the Steiner nodes belongs to S and

the diameter of T (in terms of length l(·) is no more than d.

Objective Minimizing the total costs of T ,
∑

e∈T c(e).

Positive result It has O(log |V |)-approximation algorithms for both the

cost and diameter [202; 207].

Problem A.12 Path-Length Bounded Steiner Tree Problem

Instance A graph G(V, E) with two functions, length l(·) and cost c(·),
defined on E. A source vertex s ∈ V and a set of terminal

vertices in V , t1, t2, . . . , tk, and k delay bounds d1, d2, . . . , dk.

Solution A Steiner tree T such that the length of path from s to ti in T

is no more than di for each i.

Objective Minimizing the total cost of edges in T ,
∑

e∈T c(e).

Positive result It has a fully polynomial time approximation scheme when

the Steiner topology is given [273].

Negative result It is NP-hard even when the topology of the Steiner tree

is fixed [273].

4When the diameter bound d is set to be infinitely large, it becomes equivalent to
Steiner tree problem.
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Problem A.13 Bounded-Skew Steiner Tree Problem

Instance A terminal-set P in a metric space M and a bound b ≥ 0.

Solution A bounded-skew Steiner tree T that is a rooted tree with two

mappings π : V (T )→M and c : E(T )→ R+ such that

1) π is an 1-1 mapping between leaves of T and P ,

2) c(u, v) ≥ d(π(u), π(v)) for each edge e = (u, v) ∈ E(T ), and

3) length difference between any two root-leaf paths is at most b.

Objective Minimizing the total cost of edges in T ,
∑

e∈T c(e).

Positive result It has approximation algorithms with performance ratios

4 for bound b = 0 (zero-skew) and 14 for b > 0 in any metric space, 3 for

b = 0 and 9 for b > 0 in the rectilinear plane, respectively [279].

Negative result It is NP-hard [47].

Problem A.14 Multi-Weighted Steiner Tree Problem

Instance A graph G(V, E) with k costs l1(e), · · · , lk(e) with li(e) ≥ li+1(e)

for each 1 ≤ i ≤ k − 1 on each edge e ∈ E, and a hierarchical

partition P1, · · · , Pk of V .

Solution A spanning tree T of V with a subtree Ti spanning P1 ∪ · · · ∪Pi.

Objective Minimizing the bottleneck length of edges in T ,∑k
i=1

∑
e∈Ti\Ti−1

li(e), where T0 = ∅5.
Positive result It has O(|P | · |V |2)-time heuristics, which are conjectured

to have the same performance ratio as any approximation algorithm for the

Steiner tree problem [92].

5When k = 1, it is the minimum spanning tree problem; When li(e) = 0 for each
e ∈ E and all i = 2, · · · , k, it is the Steiner tree problem.
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[258] P.-J. Wan, G. Călinescu, and C.-W. Yi, Minimum-power multicast routing



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

352 Steiner Tree Problems in Computer Communication Networks

in static ad hoc wireless networks, IEEE/ACM Transactions on Network-
ing, 12(3)(2004), 507-514.

[259] P.-J. Wan, D.-Z. Du, and R. L. Graham, The Steiner ratio on the dual
normed plane, Discrete Mathematics, 171(1-3)(1997), 261-275.

[260] P.-J. Wan and L. Liu, Maximal throughput in wavelength-routed optical
networks, DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, 46(1998), 15-26.

[261] P.-J. Wan, G. Calinescu, X.-Y. Li, and O. Frieder, Minimum-energy broad-
casting in static ad hoc wireless networks, Wireless Networks, 8(6)(2002),
607-617.

[262] L.-S. Wang and D.-Z. Du, Approximations for a bottleneck Steiner tree
problem, Algorithmica, 32(4)(2002), 554-561.

[263] L.-S. Wang and T. Jiang, An approximation scheme for some Steiner tree
problems in the plane, Networks, 28(4)(1996), 187-193.

[264] L. Wang and Z. Li, An approximation algorithm for a bottleneck k-
Steiner tree problem in the Euclidean plane, Information Processing Let-
ters, 81(3)(2002), 151-156.

[265] J.-P. Wang, X.-T. Qi, and B. Chen, Wavelength assignment for multicast in
all-optical WDM networks with splitting constraints, IEEE/ACM Trans-
actions on Networking, 14(1)(2006), 169-182.

[266] W.-Z. Wang, X.-Y. Li, and Z. Sun, Design differentiated service multicast
with selfish agents, IEEE Journal on Selected Areas in Communications,
24(5)(2006), 1061-1073.

[267] J. F. Weng, Steiner problem in hexagonal metric, Technical Report (un-
published).

[268] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, On the construction
of energy-efficient broadcast and multicast trees in wireless networks, Pro-
ceedings of the 19th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), 2000, pp. 585-594.

[269] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, Energy-efficient
broadcast and multicast trees in wireless networks, Mobile Netowrks and
Applications, 7(6)(2002), 481-492.

[270] P. Winter and M. Zachariasen, Two-connected Steiner networks: structural
properties, Operations Research Letters, 33(44)(2005), 395-402.

[271] Y. F. Wu, P. Widmayer, and C. K. Wong, A faster approximation algorithm
for the Steiner problem in graphs, Acta Informatica, 23(1986), 223-229.

[272] G.-L. Xue, G.-H. Lin, and D.-Z. Du, Grade of serveice Steiner minimum
trees in the Euclidean plane, Algorithmca, 31(4)(2001), 479-500.

[273] G.-L. Xue and W. Xiao, A polynomial time approximation scheme for
minimum cost delay-constrained multicast tree under a Steiner topology,
Algorithmica, 41(1)(2004), 53-72.

[274] G.-L. Xue and Y.-Y. Ye, An efficient algorithm for minimizing a sum
of Euclidean norms with applications, SIAM Journal on Optimization,
7(4)(1997), 1017-1036.

[275] A. Z. Zelikovsky, An 11/8-approximation algorithm for the Steiner prob-
lem on networks with rectilinear distance, Coll. Math. Soc. János Bolyai ,



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

Bibliography 353

60(1992), 733-745.
[276] A. Z. Zelikovsky, The 11/6-approximation algorithm for the Steiner prob-

lem on networks, Algorithmica, 9(5)(1993), 463-470.
[277] A. Z. Zelikovsky, Better approximation bounds for the network and Eu-

clidean Steiner tree problems, Technical Report, CS-96-06, University of
Virginia, Charlottesville, VA, USA.

[278] A. Zelikovsky, A series of approximation algorithms for the acyclic directed
Steiner tree problem, Algorithmica, 18(1)(1997), 99-110.

[279] A. Zelikovsky and I. Mandoiu, Practical approximation algorithms for
zero- and bounded-skew trees, SIAM Journal on Discrete Mathematics,
15(1)(2002), 97-111.

[280] Z.-M. Zhu, X.-J. Chen, and X.-D. Hu, Minimum multicast time problem
in wireless sensor networks, Lecture Notes in Computer Science, 2006, vol.
4138, pp. 500-511.

[281] Z.-M. Zhu, W.-P. Shang, and X.-D. Hu, New algorithm for minimum mul-
ticast time problem in wireless sensor networks, Proceedings of IEEE Wire-
less Communications and Networking Conference (WCNC), 2007.



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

This page intentionally left blankThis page intentionally left blank



December 27, 2007 18:43 WSPC/Book Trim Size for 9in x 6in du˙hu˙book

Index

α-approximable, 2
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β-convex α-approximation, 129
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c-spanning trees, 159
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k-SMT, 41
k-Steiner minimum tree, 41
k-Steiner ratio, 41
k-Steiner tree, 41
k-broadcasting, 218
k-coloring, 236
k-cut, 250
k-edge connected spanning network,

327
k-edge connectivity, 287
k-path, 197
k-path routing, 197
k-tour, 217
k-tree, 63, 198, 217

type-1, 214
type-2, 214

k-tree family, 233, 247
k-vertex connected spanning network,

328, 329
k-vertex connectivity, 287
m-dark point, 88
m-guillotine cut, 88
p-portals, 95
r-arborescence, 327
(k × k)-mesh, 237
1-guillotine cut, 85

1-guillotine cut partition
boundary condition, 86

1-guillotine rectangular partition, 86

Aggregation time, 256

Backtrack greedy technique, 76
Banach space, 37
Banyan, 108
Basic grid, 81
Basis, 3, 5

extremal, 5
maximal, 5

Best approximation, 4
Better approximation algorithm, 60,

76, 79
Big angle, 148, 167
Binary tree, 44

complete, 44
connecting edge, 47
peak edge, 47
terminal, 44

Bottleneck Steinerized spanning tree,
182

Bottleneck tree, 146
Boundary area, 157
Branch-and-bound algorithm, 127
Budget bound, 333, 334
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Characteristic area, 18, 24

triangulation, 26
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Chebyshev interpolating polynomial,
4

Chebyshev Theorem, 4
Chordal ring, 329
Chung-Gilbert conjecture, 34
Component root, 45
Concave function, 6

piecewise, 7
pseudo, 8

Connected dominating set, 175
Connected vertex cover, 178
Connecting edge, 47
Contraction, 61
Convex function, 6
Convex path, 148, 167
Critical point, 9
Critical structure, 17, 28, 36, 76
Cut set, 317
Cycle-free set, 62

Differentiated service, 139
Discrete length, 144
Disjoint tree iterating, 234
Disjointness property, 55
Distance between trees, 158
Distance graph, 63
Double-loop networks, 329
Du-Hwang Theorem, 6
Dual space, 38
Dynamic programming, 81, 82, 92, 96

Edge-asymmetry, 332
Exact cover, 193
Extreme point, 7

First fit, 247
Full component, 149, 169
Full Steiner component, 318
Full Steiner subnetwork, 297
Full Steiner tree, 16, 149
Full subtree, 147

Gain, 62, 75
Gain-over-loss ratio, 75
Gap-preserving reduction, 238
Gilbert-Pollak conjecture, 3, 34

GoSST problem, 111
in Euclidean plane, 112
in graphs, 113, 128
multiple rates, 135

Grade of service, 111
Graham-Hwang conjecture, 36
Greedy tree coloring, 230
Guillotine cut, 82, 218
Guillotine partition

cover, 83
Guillotine rectangular partition, 82

Hamilton circuit, 202
Hamilton path, 202
Hanan grid, 91
Hexagonal tree, 29

full component, 29
junction, 29
nonstraight edge, 30
straight edge, 29

Horizontal 1-dark point, 84
Hypergraph, 189

connectivity, 190
cycle, 190
path, 190
spanning tree, 190
tree, 190

Independent set, 42, 176, 223
Inner spanning tree, 24
Interior area, 157
Intermediate leaf, 57
Intersection graph, 224, 235
Iterated rounding, 330

Lifting, 290
admissible, 290

Light approximate shortest path tree,
138, 250

Light-tree, 195, 221
Linear programming

dual form, 6
minimax problem, 6
standard form, 6

Linear programming relaxation, 218
Load of tree family, 235
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Local Steiner forest, 156
Local Steiner tree, 156
Loss of spanning forest, 73
Loss-contracting algorithm, 75

Manhattan distance, 3
MAX SNP-hard, 77
Metric space, 1, 44
Minimally (k, P )-edge-connectivity,

326
Minimax approach, 3
Minimum spanning tree, 1

in hypergraph, 190
Minkowski plane, 37
Multi-path routing, 196
Multi-tree routing, 195
Multicast

routing, 195, 221
time, 277

Multilayer Riemann surface, 18

Net worth, 333

Odd join, 292
Optimal Steiner tree, 141, 177
Orthogonal planar drawing, 257
Overall blocking, 250

Patching, 101
Peak edge, 47
Plane graph, 257
Polynomial time approximation

scheme, 79, 137, 156, 161, 310
Portal, 93, 218

two-stage, 104
Precision unit disk graph, 268
Primal-dual approach, 218
Problem

k-MST, 217, 333
k-broadcasting network, 218
k-colorable induced subgraph, 223
k-edge connected spanning

network, 326
k-vertex connected spanning

network, 329
r-level GoSST, 114

acyclic directed Steiner tree, 331
bottleneck Steiner tree, 175, 177
bottleneck Steiner tree in graphs,

193
bounded-skew Steiner tree, 336
capacitated Steiner minimum tree,

216
classical Steiner tree, 1
convergecast, 283
convex partition, 98
diameter bounded Steiner tree, 335
discrete Euclidean Steiner tree, 144
Euclidean k-median, 98
Euclidean facility location, 98
Euclidean grade Steiner tree, 98
exact 3-set cover, 200
generalized Steiner tree, 331
GoSST in Euclidean plane, 112
group Steiner tree, 333
Hamilton circuit, 202
Hamilton path, 202
independent set, 42, 223
linear programming, 5
maximum edge-disjoint path, 223
maximum edge-disjoint Steiner

tree, 223
maximum lifetime data gathering,

283
maximum path coloring, 223
maximum tree coloring, 221, 222
maximum weight k-cut, 250
minimal Steiner points, 141
minimal total points, 155
Minimax, 3, 10
minimum k-connected spanning

network, 288
minimum aggregation time, 254,

256
minimum broadcast time, 254
minimum energy broadcast, 285
minimum gathering time, 278
minimum generalized spanning

network, 330
minimum multicast time, 277
minimum path coloring, 235
minimum rectangular partition, 80
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minimum spanning tree, 1

minimum tree coloring, 221, 235

minimum weight k-tree, 217

minimum weighted matching, 198

multi-weighted Steiner tree, 336

node-weighted geometric Steiner
tree, 334

node-weighted Steiner tree, 334

path-length bounded Steiner tree,
335

planar 3-SAT, 260

planar vertex cover, 178

polymatroid directed Steiner tree,
332

polymatroid Steiner tree, 332

power-p Steiner tree, 332
prize collecting node-weighted

Steiner tree, 334

prize collecting Steiner tree, 333

quality of service multicast tree,
112

quorum-cast, 218

rectilinear Steiner arborescence, 97

relay node placement, 175

set cover, 208

source based k-edge connected
spanning network, 326

Steiner k-path routing, 197

Steiner k-tree, 233

Steiner k-tree routing, 198

Steiner arborescence, 331

Steiner forest, 331

Steiner minimum k-connected
network, 288

Steiner tree coloring, 221

sum of Euclidean norms, 125

symmetric rectilinear Steiner
arborescence, 97

terminal Steiner tree, 335

travelling salesman, 217

vertex coloring, 236

wavelength assignment, 218

Quadtree partition, 99

Quality of service, 250

Quality of service multicast routing,
138

Quasi-bipartite, 77
Quota bound, 333, 334

Randomized algorithm, 136
Real Steiner point, 158
Rectangular partition, 80
Rectilinear

convex hull, 311
convex set, 311
edge, 311

Rectilinear distance, 3
Rectilinear plane, 311, 323
Recursive approximation algorithm,

115
regular point, 1
Relative cost savings, 74
Relative gain, 72, 73
Relative greedy algorithm, 72
Relative interior point, 8
Ring graph, 248

Saddle point, 3
Service request of grade, 111
Set cover, 208
Shortest data aggregation, 264
Shortest path tree, 138, 239, 256, 279
Single path strategy, 239
Smith conjecture, 36
Spanner, 106
Spanning forest, 73
Spanning network, 287
Spanning tree, 1

inner, 20
Steinerization, 146

Star graph, 224, 236
Steiner lifting, 316

admissible, 316
Steiner minimum tree, 1
Steiner network, 287

basic, 301
nonbasic, 301

Steiner point, 1, 289
real, 158

Steiner ratio, 2
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generalization, 288
in Banach space, 37
in Euclidean space, 34
in Rectilinear space, 36

Steiner tree
full, 16, 147
local, 156

Steiner tree problem
discrete Euclidean distance, 144
in graphs, 41
in metric spaces, 1

Steiner-terminal edge, 124
Steinerized spanning tree, 146, 180

algorithm, 183
Stem, 157
Strong k-connectivity, 288
Survivable network, 287

Terminal point, 1, 289
Terminal set, 1
Terminal vertex, 113

Terminal-spanning tree, 74
Total point, 155
Transmission schedule, 256
Tree coloring, 222, 242
Tree family, 222
Tree topology, 15, 123

companion, 22–24
degeneracy, 124
full, 15, 124
realization, 123

Triangle inequality, 1

Unit disk graph, 176, 255

Variable metric method, 70
Vertical 1-dark point, 84
Virtual backbone, 175

Wavelength assignment, 218, 221
Weak k-connectivity, 287
Wireless sensor network, 175, 253
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