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Preface

This book, Analysis of Complex Networks: From Biology to Linguistics, presents
theoretical and practical results on graph-theoretic methods that are used for
modeling as well as structurally investigating complex networks. Instead of
focusing exclusively on classical graph-theoretic approaches, its major goal
is to demonstrate the importance and usefulness of network-based concepts
for scientists in various disciplines. Further, the book advocates the idea that
theoretical as well as applied results are needed to enhance our knowledge
and understanding of networks in general and as representations for various
problems. We emphasize methods for analyzing graphs structurally because
it has been shown that especially data-driven areas such as web mining, com-
putational and systems biology, chemical informatics, and cognitive sciences
profit tremendously from this field.

The main topics treated in this book can be summarized as follows:

• Information-theoretic methods for analyzing graphs
• Problems in quantitative graph theory
• Structural graph measures
• Investigating novel network classes
• Metrical properties of graphs
• Aspects in algorithmic graph theory
• Analytic methods in graph theory
• Network-based applications.

Analysis of Complex Networks: From Biology to Linguistics is intended for
an interdisciplinary audience ranging from applied discrete mathematics,
artificial intelligence, and applied statistics to computer science, compu-
tational and systems biology, cognitive science, computational linguistics,
machine learning, mathematical chemistry, and physics. Many colleagues,
whether consciously or unconsciously, provided us with input, help, and
support before and during the development of the present book. In par-
ticular we would like to thank Andreas Albrecht, Rute Andrade, Gökhan
Bakır, Alexandru T. Balaban, Subhash Basak, Igor Bass, Natália Bebiano,



XIV Preface

Danail Bonchev, Stefan Borgert, Mieczyslaw Borowiecki, Michael Drmota,
Abdol-Hossein Esfahanian, Bernhard Gittenberger, Earl Glinn, Elena Kon-
stantinova, Dmitrii Lozovanu, Alexander Mehler, Abbe Mowshowitz, Max
Mühlhäuser, Arcady Mushegian, Paolo Oliveira, João da Providência, Host
Sachs, Heinz Georg Schuster, Helmut Schwegler, Chris Seidel, Fred Sobik,
Doru Stefanescu, Thomas Stoll, John Storey, Kurt Varmuza, Bohdan Zelinka,
and all the coauthors of this book and apologize to all those whose names
have been mistakenly omitted. We would also like to thank our editors An-
dreas Sendtko and Gregor Cicchetti from Wiley-VCH; they were always avail-
able and extremely helpful. Last but not least, we would like to thank our
families for their support and encouragement throughout the writing of the
book.

Finally, we hope that this book helps the reader to understand that the
presented field is multifaceted in depth and breadth and as such is inherently
interdisciplinary. This is important to realize because it allows one to pursue
a problem-oriented rather than field-oriented approach to efficiently tackling
state-of-the-art problems in modern sciences.

Vienna and Belfast, Matthias Dehmer
March 2009 Frank Emmert-Streib
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Institute Rudjer Bos̆kovíc
Group for Satellite Oceanography
10000 Zagreb
Croatia

Jennifer Simonotto

Newcastle University
School of Computing Science
Newcastle-upon-Tyne NE1 7RU
UK
and
Newcastle University
Institute of Neuroscience
Newcastle-upon-Tyne NE2 4HH
UK

Stefan Thurner

Medical University of Vienna
Complex Systems Research Group
Währinger Gürtel 18–20
1090 Vienna
Austria
and
Santa Fe Institute
1399 Hyde Park Road
Santa Fe, NM 87501
USA

Alexander Zelikovsky

Georgia State University
Department of Computer Science
Atlanta, GA 30303
USA

Jianbin Zhang

Nankai University
Center for Combinatorics
LPMC-TJKLC
Tianjin 300071
P.R. China



1

1

Entropy, Orbits, and Spectra of Graphs
Abbe Mowshowitz and Valia Mitsou

1.1

Introduction

This chapter is concerned with the notion of entropy as applied to graphs for
the purpose of measuring complexity.

Most studies of complexity focus on the execution time or space utiliza-
tion of algorithms. The execution time of an algorithm is proportional to the
number of operations required to produce the output as a function of the in-
put size. Space utilization measures the amount of storage required for com-
putation. Both time and space complexity measure the resources required to
perform a computation for a specified input. Measuring the complexity of
a mathematical object such as a graph is an exercise in structural complexity.
This type of complexity does not deal directly with the costs of computa-
tion; rather, it offers insight into the internal organization of an object. The
structural complexity of a computer program, for example, may indicate the
difficulty of modifying or maintaining the program.

One approach to structural complexity involves the length of a code needed
to specify an object uniquely (Kolmogorov complexity). The complexity of
a string, for example, is the length of the string’s shortest description in
a given description language [27]. The approach taken in this chapter cen-
ters on finding indices of structure, based on Shannon’s entropy measure.
Unlike Kolmogorov complexity, such an index captures a particular feature
of the structure of an object. The symmetry structure of a graph provides the
basis for the index explored here.

The choice of symmetry is dictated by its utility in many scientific disci-
plines. D’Arcy Thompson’s classic work [25] showed the relevance of sym-
metry in the natural world. Structure-preserving transformations based on
symmetry play a role in physics, chemistry, and sociology as well as in biol-
ogy. A symmetry transformation of a graph is typically an edge-preserving
bijection of the vertices, i.e., an isomorphism of the graph onto itself. Such
a transformation is called an automorphism. If the vertices of the graph are
labeled, an automorphism can be viewed as a permutation of the vertices
that preserves adjacencies. The set of all automorphisms forms a group
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whose orbits provide the foundation for applying Shannon’s entropy mea-
sure.

The collection of orbits of the automorphism group constitutes a parti-
tion and thus defines an equivalence relation on the vertices of a graph. Two
vertices in the same orbit are similar in some sense. In a social network, col-
lections of similar vertices can be used to define communities with shared
attributes. The identification of such communities is of interest in applica-
tions such as advertising, intelligence, and sensor networks.

Measures of structural complexity are useful for classifying graphs and
networks represented by graphs. One is led to conjecture, for example, that
the more symmetric a network is (or the lower its automorphism-based com-
plexity is), the more vulnerable to attack it will be. These related issues are ex-
plored in [19] in relation to sensor networks modeled as dynamic distributed
federated databases [2].

In what follows we define the measure of graph complexity, discuss al-
gorithms and heuristics for computing it, and examine its relationship to
another prominent entropy measure [11] defined on graphs.

1.2

Entropy or the Information Content of Graphs

Given a decomposition of the vertices or edges of a graph, one can construct
a finite probability scheme [10] and compute its entropy. A finite probability
scheme assigns a probability to each subset in the decomposition. Such a nu-
merical measure can be seen to capture the information contained in some
particular aspect of the graph structure.

The orbits of the automorphism group of a graph constitute a decomposi-
tion of the vertices of the graph. As noted above, this decomposition captures
the symmetry structure of the graph, and the entropy of the finite probabil-
ity scheme obtained from the automorphism group provides an index of the
complexity of the graph relative to the symmetry structure.

Let G = (V, E) be a graph with vertex set V (with |V| = n) and edge set E.
The automorphism group of G, denoted by Aut(G), is the set of all adjacency-
preserving bijections of V. Let {Vi|1 u i u k} be the collection of orbits of
Aut(G), and suppose |Vi| = ni for 1 u i u k. The entropy or information content
of G is given by the following formula ([13]):

Ia(G) = –
k∑

i = 1

ni

n
log

ni

n
.

For example, the orbits of the graph of Figure 1.1 are {1}, {2,5}, and {3,4},
so the information content of the graph is Ia(G) = – 1

5 log 1
5 – 2( 2

5 log 2
5 ) =

log 5 – 4
5 log 2.
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1

52

3 4 Figure 1.1 Information content of a graph.

Clearly, Ia(G) satisfies 0 u Ia(G) u log n, where the minimum value occurs
for graphs with the transitive automorphism group, such as the cycle Cn and
the complete graph Kn on n vertices; the maximum is achieved for graphs
with the identity group. The smallest nontrivial, undirected graph with an
identity group is shown in Figure 1.2.

1

5

2 3

46 Figure 1.2 Smallest nontrivial graph with identity group.

The idea of measuring the information content of a graph was first pre-
sented in [21]; it was formalized in [26] and further developed in [13–16].
Ia(G) is a function of the partition of the vertices of G determined by the
orbits of Aut(G). As such the measure captures the structure of vertex sim-
ilarity. In the case of organic molecules, the lower the information content
(or the greater the symmetry), the fewer the possibilities for different inter-
actions with other molecules. If all the atoms are in the same equivalence
class, then it makes no difference which one interacts with an atom of an-
other molecule. The same can be said for social networks. Any member of
an equivalence class of similar individuals can serve as a representative of
the class.

The utility of the measure Ia(G) can be seen from the following special
case. The cartesian product G ~ H of graphs G and H is defined by V(G ~
H) = V(G) ~ V(H) and for (a, b), (c, d) ∈ V(G ~ H), [(a, b), (c, d)] ∈ E(G ~ H) if
a = c and [b, d] ∈ E(H) or if b = d and [a, c] ∈ E(G).

The hypercube Q n with 2n vertices is defined recursively by Q1 = K2 and
for n v 2, Q n = K2 ~ Qn–1. Since Q n has a transitive automorphism group,
I(Q n) = 0. The hypercube Q n offers a desirable configuration for parallel
computation because processors must exchange messages in executing an
algorithm, and the distance between any two vertices (representing proces-
sors) in the hypercube is at most n.
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By contrast, an m ~ m mesh configuration (formed by taking the cartesian
product of two isomorphic line graphs, each with m vertices) consists of m2

vertices and has a maximum distance of 2m. A 2
n
2 ~ 2

n
2 mesh for even n

having the same number of vertices as Q n has a maximum distance between
vertices of 2(2

n
2 –1). At the same time the information content of such a mesh

is n
2 – 1 [13].
This example suggests that good graph configurations for parallel compu-

tation score low on information complexity or, alternatively, are highly sym-
metric. Information complexity is a coarse filter, but it is useful nonetheless.

Computing the group-based entropy or information content of a graph
requires knowledge of the orbits of the automorphism group. An obvious
approach to computing the orbits is to determine the automorphism group
and then to observe the action of automorphisms on the vertices of the
graph. This is not an efficient method in general, but the algebraic structure
of a graph can be exploited to find the automorphism group efficiently in
some cases. The general question of determining the automorphism group
is taken up in Section 1.3; heuristics for finding the orbits of Aut(G) are sur-
veyed in Section 1.4.

1.3

Groups and Graph Spectra

Let G = (V, E) be a graph with vertex set V of size n, edge set E of size m,
and automorphism group Aut(G). (See [3] for general coverage of algebraic
aspects of graph theory and [12] for specific treatment of the automorphism
group of a graph.) Since automorphisms are in effect relabelings of the ver-
tices, they can be represented as permutation matrices. Let A = A(G) be the
adjacency matrix of G. Then a permutation matrix P is an automorphism
of G if and only if PTAP = A or PA = AP.

Thus, one way to construct the automorphism group of a graph G is to
solve the matrix equation AX = XA for permutation matrices X. The Jordan
canonical form of A as a matrix over the reals can be used to obtain the
general solution X. Taking G to be undirected and thus A symmetric and
letting Ã = UTAU be the Jordan form of A, we have (UÃUT)X = X(UÃUT) or
ÃX̃ = X̃Ã, where X̃ = UTXU.

Thus the construction of Aut(G) requires computing the orthogonal ma-
trix U and finding all X̃ that commute with Ã. The matrix X̃ depends on the
elementary divisors of A. With no additional information, this method of
constructing the group is not too promising since it is necessary to find all
those solutions that are permutation matrices.

In the special case where A has all distinct eigenvalues, X̃ has the form
of a diagonal matrix with arbitrary parameters on the main diagonal. In this
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case, X = UX̃UT. Clearly UX̃UT is symmetric, so if it is a permutation matrix,
it must correspond to a product of disjoint transpositions. This means that
every element of Aut(G) has order 2 and the group is therefore abelian [12,
17]. The converse is not true since, for example, the graph G of Figure 1.3
has the characteristic polynomial (x + 1)2(x3 – 2x2 – 5x + 2).

1

52

3 4
Figure 1.3 Aut(G) is abelian, every element is of order 2, but the
characteristic polynomial has repeated roots.

An analogous result holds for digraphs. Using the same analysis, Chao [5]
showed that if the adjacency matrix of a digraph has all distinct eigenvalues,
then its automorphism group is abelian. However, the automorphisms need
not be of order 2. For example, the adjacency matrix of digraph D in Fig-
ure 1.4 has the characteristic polynomial (x3 – 1) = (x – 1)(x2 + x + 1) but the
permutation (123) is an automorphism of D.

1

2

3

Figure 1.4 Aut(D) = 〈(123)〉, abelian but not every element has
order 2.

Both of these results are special cases of the following:

Theorem 1.1 Suppose the adjacency matrix A = A(D) of a digraph D is non-
derogatory with respect to a field F, i.e., its characteristic polynomial coincides
with its minimal polynomial over F. Then Aut(D) is abelian.

Proof. The result is an immediate consequence of the fact that under the
hypothesis of the theorem, every matrix over F commuting with A can be
expressed as a polynomial in A.

In particular, if A has all distinct eigenvalues, it is non-derogatory over the
complex number field. To see that every automorphism of an (undirected)
graph has order 2 under this condition, it suffices to observe that any poly-
nomial in a symmetric matrix is again symmetric.

If the adjacency matrix fails to be nonderogatory, then some leverage in
constructing the automorphism group can be obtained by taking advantage
of the fact that the matrix consists of zeroes and ones. In particular, the ad-
jacency matrix can be interpreted as a matrix over GF(2), thus reducing the
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solution space of the matrix equation AX = XA to zero-one matrices at the
outset.

Thus suppose A = A(G) (for a graph G) is a matrix over GF(2). To demon-
strate a method for constructing automorphisms, we revisit the special case
of A being nonderogatory over GF(2).

In this case we know that:

1. M ∈ Aut(G) implies M2 = I (the identity matrix) and

2. M ∈ Aut(G) implies M =
n – 1∑
i = 0

aiAi.

So if M ∈ Aut(G), then we can write

M =
n – 1∑
i = 0

aiAi

and

I = M2 =

(
n – 1∑
i = 0

aiAi

)2

=
n – 1∑
i = 0

ai(Ai)2.

Thus {M|M =
n – 1∑
i = 0

aiAi and M2 = I} ⊇ Aut(G).

Constructing the group in this case reduces to finding all polynomials in
A2 that are equal to the identity matrix. These have the form

p(A)μA2 (A2) + I,

where μA2 (x) is the minimal polynomial of A2.
Thus, if M2 = I, then M = p(A)μA2 (A) + I for some polynomial p(x), since

(p(A)μA2 (A) + I)2 = (p(A2)μA2 (A2) + I) = 0 + I = I.
The characteristic and minimal polynomials of graph G in Figure 1.5 co-

incide over the real numbers, i.e., φ(x) = μ(x) = (x3 – x2 – 6x + 2)x(x + 1)
and over GF(2) with φ(x) = μ(x) = x3(x + 1)2. Hence, the adjacency matrix
of G is nonderogatory over both fields. The minimal polynomial of A2 is
μA2 (x) = x2(x + 1), which is of degree 3.

Therefore, M ∈ Aut(G) implies M = μA2 (A)(b0I + b1A) + I. There are four
possible solutions for M corresponding to the four possible values for b0

and b1. All of these solutions, namely,

I, A3 + A2 + I, A4 + A3 + I, A4 + A2 + I,

turn out to be permutation matrices so that the automorphism group of G
contains precisely these four elements.
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1

5

2

4

3

Figure 1.5 Computation of automorphisms
over GF(2).

Note that μ2
A2 (x) = xφA(x) if n is odd, or μ2

A2 (x) = φA(x) if n is even.
Hence, if m = deg μA2 (x) and M satisfies AM = MA and M2 = I, then

M = μA2 (x)
n – m – 1∑

i = 0
biAi + I, where bi ∈ GF(2).

To determine Aut(G), it suffices to examine 2n – m – 1 W 2n/2 values of the
parameters bi, to pick out the permutation matrices (i.e., elements of Aut(G)).

However, some further simplification is possible. Let Q = μA2 (A) and

Z(b) =
n – m – 1∑

i = 0
biAi. Then M = QZ(b) + I. Multiplying by M on the right gives

MQ = Q2Z(b) + Q = Q. Thus, if M is an automorphism of G, then MQ = Q ,
which means that similar vertices of G correspond to identical rows of Q. In
addition, the identical rows must occur in minimal pairs, which gives a suffi-
cient condition for Aut(G) to be trivial.

If μA2 (A) has all distinct rows or no minimal pairs of identical rows, then
Aut(G) is trivial. The converse is not true. Both graphs in Figure 1.6 have
trivial groups, but μA2 (A(G1)) has all distinct rows while μA2 (A(G2)) has three
pairs of identical rows.

Theorem 1.2 [18]; see also [6]. Let D be a digraph and A = A(D) be its adjacency
matrix. If φA(x) is irreducible over the integers, then Aut(D) is trivial.

Figure 1.6 Identity graphs.
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Proof. Suppose there is an M(=/ I) ∈ Aut(D), and that the permutation cor-
responding to M consists of r disjoint cycles of lengths k1, . . . , kr. Let z be
a nonzero vector consisting of k1 components equal to c1, followed by k2

components equal to c2, followed by . . . kr components equal to cr. Consider
Az = xz. This gives a system of r equations in the r unknowns c1, c2, . . . , cr.
Thus Az = xz reduces to Bc = xc, where c = (c1, c2, . . . , cr)T. Now z and c
are eigenvectors of A and B, respectively, and det(B – xc)| det(A – xz), where
deg(det(B – xc)) < deg(det(A – xz)). Hence, φA(x) has a nontrivial factoriza-
tion, which completes the proof.

Figure 1.7 shows a digraph (D) and graph (G) (with the smallest number
of vertices) satisfying the condition of the theorem. φA(D)(x) = x3 – x – 1 and
φA(G)(x) = x6 – 6x4 – 2x3 + 7x2 + 2x – 1.

Figure 1.7 Smallest graph and digraph whose characteristic
polynomials are irreducible over the integers.

Note that the theorem also holds if φA(x) is taken as a polynomial over
a finite field. For example, over GF(2), x3 – x – 1 is irreducible, but x6 – 6x4 –
2x3 + 7x2 + 2x – 1 = x6 + x2 + 1 = (x3 + x + 1)2.

For graphs this criterion is not very useful since the characteristic polyno-
mial of any graph is reducible over GF(2). There are regular graphs and trees
that have the trivial group, but the characteristic polynomial of any regular
graph has a linear factor, as does the characteristic polynomial of a tree with
an odd number of vertices.

The foregoing discussion suggests the utility of trying to relate the factor-
ization of the characteristic polynomial to the structure of the automorphism
group. For example, if G is a graph with an even number n of vertices and
adjacency matrix A = A(G), and if φA(x) = α(x)�(x) with deg α = deg � and
both α and � are irreducible, then either Aut(G) is trivial or it is of order 2
and consists of the identity and (with a suitable labeling) the permutation
(1, 2)(3, 4) · · · (n/2, n/2).
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Table 1.1 contains a list of all 156 graphs on six vertices, showing factored
characteristic polynomials and the sizes of their respective automorphism
group orbits. Each graph is defined by its list of edges, shown as a sequence
of pairs of numbers referring to a standard template with the vertices num-
bered from 1 to 6 in clockwise order. The last column shows the sizes of the
orbits. Complements are not given explicitly, but their polynomials are listed.
The orbits of G and Ḡ are the same.

Table 1.1 Characteristic polynomials and orbit sizes of all graphs on six vertices.

G: Polynomial Polynomial Orbit
# edges: list of G of Ḡ sizes

0: x6 (x + 1)5(x – 5) 6

3: 16 23 45 (x + 1)3(x – 1)3 x3(x + 2)2(x – 4) 6

6: 12 16 23 34
45 56

(x – 1)2(x + 1)2(x + 2)(x – 2) x2(x – 1)(x + 2)2(x – 3) 6

6: 15 16 23 24
34 56

(x – 2)2(x + 1)4 x4(x – 3)(x + 3) 6

3: 15 16 56 x3(x + 1)2(x – 2) x2(x + 1)2(x2 – 2x – 9) 33

1: 12 x4(x – 1)(x + 1) x(x + 1)3(x2 – 3x – 8) 24

4: 12 15 24 45 x4(x – 2)(x + 2) (x – 1)(x + 1)3(x2 – 2x – 7) 24

4: 12 16 34 45 x2(x2 – 2)2 (x + 1)2(x4 – 2x3 – 8x2 + 6x – 1) 24

5: 12 15 16 23
24

x2(x – 1)(x + 1)(x – 2)(x + 2) (x – 1)(x + 2)(x + 1)2(x2 – 3x – 2) 24

5: 14 16 23 45
56

x2(x – 1)(x + 1)(x – 2)(x + 2) x(x – 1)(x + 1)2(x2 – x – 8) 24

6: 12 14 15 24
25 45

x2(x – 3)(x + 1)3 x3(x + 1)(x2 – x – 8) 24

7: 12 16 23 25
34 45 56

(x + 1)(x – 1)(x2 – 2x – 1)(x2 + 2x – 1) x(x + 2)(x2 – 2)(x2 – 2x – 2) 24

7: 14 15 16 23
45 46 56

(x + 1)4(x – 3)(x – 1) x4(x2 – 8) 24

7: 15 16 23 24
34 45 56

(x + 1)2(x2 – 3)(x2 – 2x – 1) x2(x2 – 2x – 2)(x2 + 2x – 2) 24

2: 12 56 x2(x – 1)2(x + 1)2 x2(x + 1)(x + 2)(x2 – 3x – 6) 222

3: 12 16 23 x2(x2 – x – 1)(x2 + x – 1) (x + 1)(x2 + x – 1)(x3 – 2x2 – 8x – 3) 222

6: 14 15 16 23
45 56

x(x – 1)(x + 1)2(x2 – x – 4) x2(x + 1)(x3 – x2 – 8x + 4) 222

7: 13 16 23 26
34 45 56

x(x2 + x – 1)(x3 – x2 – 5x + 4) (x – 1)(x + 1)(x2 + x – 1)(x2 – x – 5) 222

7: 12 15 23 24
25 45 56

x2(x2 + x – 1)(x2 – x – 5) (x + 1)(x2 + x – 1)(x3 – 2x2 – 4x + 1) 222

5: 12 16 24 45
56

x(x – 2)(x2 + x – 1)2 (x2 + x – 1)2(x2 – 2x – 5) 15

5: 12 23 24 25
26

x4(x2 – 5) x(x – 4)(x + 1)4 15

2: 12 16 x4(x2 – 1) (x + 1)3(x3 – 3x2 – 7x + 3) 123

3: 12 15 16 x4(x2 – 3) (x + 1)3(x3 – 3x2 – 6x + 4) 123

4: 15 16 23 56 x(x + 1)(x – 2)(x + 1)3 x3(x3 – 11x – 12) 123

4: 12 15 16 34 x2(x + 1)(x – 1)(x2 – 3) x(x + 1)2(x3 – 2x2 – 8x + 4) 123
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Table 1.1 (continued).

G: Polynomial Polynomial Orbit
# edges: list of G of Ḡ sizes

5: 15 16 23 34
56

x(x – 2)(x + 1)2(x2 – 2) x2(x + 1)(x3 – x2 – 9x + 3) 123

6: 12 15 23 24
35 45

x4(x2 – 6) (x + 1)3(x3 – 3x2 – 3x + 7) 123

6: 12 13 14 15
16 56

x2(x + 1)(x3 – x2 – 5x + 3) x2(x + 1)2(x2 – 2x – 6) 123

7: 12 14 15 16
25 45 56

x3(x – 3)(x + 1)(x + 2) x(x – 1)2(x3 – 2x2 – 5x + 4) 123

4: 12 14 15 16 x4(x – 2)(x + 2) (x + 1)3(x3 – 3x2 – 5x + 3) 114

7: 15 16 26 34
35 45 56

(x – 1)(x + 1)2(x3 – x2 – 5x + 1) x3(x + 2)(x2 – 2x – 4) 114

3: 16 23 56 x2(x + 1)(x – 1)(x2 – 2) x(x + 1)(x4 – x3 – 11x2 – 7x + 4) 1122

4: 12 15 16 56 x2(x + 1)(x3 – x2 – 3x + 1) x(x + 1)(x + 2)(x3 – 3x2 – 4x + 2) 1122

4: 12 16 23 56 x2(x – 1)(x + 1)(x2 – 3) x(x + 1)(x + 2)(x3 – 3x2 – 4x + 4) 1122

5: 12 15 16 45
56

x2(x2 – x – 3)(x2 + x – 1) (x + 1)(x2 + x – 1)(x3 – 2x2 – 6x + 1) 1122

5: 12 14 15 16
56

x2(x + 1)(x3 – x2 – 4x + 2) x(x + 1)(x4 – x3 – 9x2 – 5x + 4) 1122

5: 12 15 16 23
45

(x – 1)(x + 1)(x4 – 4x2 + 1) x(x + 2)(x4 – 2x3 – 6x2 + 2x + 4) 1122

5: 15 16 23 45
56

(x – 1)(x + 1)2(x3 – x2 – 3x + 1) x2(x4 – 1x2 – 8x + 4) 1122

6: 12 15 16 24
45 56

x2(x + 2)(x3 – 2x2 – 2x + 2) (x – 1)(x + 1)(x4 – 8x2 – 8x + 1) 1122

6: 13 16 23 34
45 56

(x – 1)(x2 + x – 1)(x3 – 4x – 1) (x + 2)(x2 + x – 1)(x3 – 3x2 – x + 2) 1122

6: 12 13 14 16
45 56

x2(x4 – 6x2 + 4) (x – 1)(x + 1)2(x3 – x2 – 7x – 3) 1122

4: 12 16 23 45 (x – 1)(x + 1)(x2 – x – 1)(x2 + x – 1) x(x2 + x – 1)(x3 – x2 – 9x – 4) 222

5: 12 14 15 24
45

x3(x + 1)(x2 – x – 4) x(x + 1)2(x3 – 2x2 – 7x + 4) 222

5: 12 16 34 45
56

(x3 – x2 – 2x + 1)(x3 + x2 – 2x – 1) (x3 – 2x2 – 5x + 1)(x3 + 2x2 – x – 1) 222

6: 12 14 16 34
45 56

(x3 – 2x2 – x + 1)(x3 + 2x2 – x – 1) (x3 – x2 – 6x – 3)(x3 + x2 – 2x – 1) 222

6: 12 15 16 23
25 45

(x2 – 2x – 1)(x2 + x – 1)2 (x2 – 2x – 4)(x2 + x – 1)2 1122

6: 12 15 16 23
24 56

x(x + 1)(x4 – x3 – 5x2 + 3x + 4) x(x + 1)(x4 – x3 – 8x2 – 2x + 6) 1122

7: 12 15 16 24
26 45 56

x2(x + 1)(x3 – x2 – 6x + 2) x(x + 1)(x4 – x3 – 7x2 + x + 8) 1122

7: 12 14 15 16
24 45 56

x(x2 + x – 1)(x3 – x2 – 5x – 2) (x2 + x – 1)(x4 – x3 – 6x2 – x + 1) 1122

7: 12 16 23 24
34 45 56

(x2 + x – 1)(x4 – x3 – 5x2 + 2x + 4) (x2 + x – 1)(x4 – x3 – 6x2 + 3x + 1) 1122

7: 14 16 23 24
34 45 56

x(x + 1)(x4 – x3 – 6x2 + 4x + 4) x(x – 1)(x + 1)(x3 – 7x – 4) 1122

7: 12 13 15 24
34 45 56

x2(x4 – 7x2 + 4) (x + 1)2(x4 – 2x3 – 5x2 + 6x + 4) 1122

7: 12 14 16 23
24 45 56

x2(x – 1)(x + 2)(x2 – x – 4) (x + 1)(x – 1)(x + 2)(x3 – 2x2 – 3x + 2) 1122
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Table 1.1 (continued).

G: Polynomial Polynomial Orbit
# edges: list of G of Ḡ sizes

7: 14 16 24 34
45 46 56

x2(x + 2)(x3 – 2x2 – 3x + 2) x(x + 1)2(x3 – 2x2 – 5x + 2) 1122

7: 12 15 16 24
25 34 45

(x – 1)(x + 1)2(x3 – x2 – 5x + 1) x2(x + 2)(x3 – 2x2 – 4x + 4) 1122

7: 12 15 16 23
24 25 56

x(x – 1)(x + 1)(x + 2)(x2 – 2x – 2) x(x + 1)(x4 – x3 – 7x2 + x + 4) 1122

5: 16 25 35 45
56

x2(x4 – 5x2 + 3) (x + 1)2(x4 – 2x3 – 7x2 + 2x + 3) 1113

7: 12 14 15 24
25 34 45

x(x + 1)2(x3 – 2x2 – 4x + 2) x2(x4 – 8x2 – 6x + 3) 1113

7: 12 13 15 16
24 34 45

x2(x4 – 7x2 + 3) (x + 1)2(x4 – 2x3 – 5x2 + 4x + 3) 1113

4: 12 15 16 23 x2(x4 – 4x2 + 2) (x + 1)(x5 – x4 – 1x3 – 6x2 + 7x + 3) 11112

5: 12 15 16 23
56

x(x – 1)(x + 1)(x3 – 4x – 2) x(x5 – 1x3 – 1x2 + 5x + 4) 11112

5: 12 15 16 34
45

x2(x4 – 5x2 + 2) (x + 1)(x5 – x4 – 9x3 – 3x2 + 1x + 4) 11112

5: 16 24 34 45
56

x2(x4 – 5x2 + 5) (x + 1)(x5 – x4 – 9x3 – x2 + 7x – 1) 11112

6: 12 15 23 24
25 45

x2(x4 – 6x2 – 4x + 2) (x + 1)(x5 – x4 – 8x3 – 2x2 + 5x – 1) 11112

6: 12 15 24 25
34 45

x(x + 1)(x4 – x3 – 5x2 + x + 2) x(x + 2)(x4 – 2x3 – 5x2 + 2x + 2) 11112

6: 14 16 23 34
45 56

x2(x4 – 6x2 + 6) (x + 1)(x5 – x4 – 8x3 + 2x2 + 9x – 1) 11112

6: 12 13 15 16
45 56

x2(x4 – 6x2 – 2x + 5) x(x + 1)(x4 – x3 – 8x2 – 2x + 6) 11112

7: 12 14 15 16
23 45 56

x(x – 1)(x + 1)(x + 2)(x2 – 2x – 2) (x + 1)(x5 – x4 – 7x3 + 3x2 + 3x – 1) 11112

7: 14 15 16 23
24 45 56

x(x + 1)2(x3 – 2x2 – 4x + 6) x2(x4 – 8x2 – 2x + 7) 11112

7: 15 16 24 25
34 45 56

(x + 1)(x5 – x4 – 6x3 + 2x2 + 7x – 1) x2(x4 – 8x2 – 4x + 6) 11112

7: 12 15 16 23
24 25 45

x6 – 7x4 – 4x3 + 6x2 + 2x – 1 x6 – 8x4 – 6x3 + 7x2 + 4x – 1 111111

7: 12 15 16 24
34 45 56

x6 – 7x4 – 2x3 + 8x2 + 2x – 1 x6 – 8x4 – 4x3 + 9x2 + 4x – 1 111111

7: 12 14 16 24
34 45 56

x6 – 7x4 – 2x3 + 7x2 – 1 x(x5 – 8x3 – 6x2 + 8x + 6) 111111

1.4

Approximating Orbits

The automorphism group Aut(G) of a graph G is a subgroup of Sn, the sym-
metric group on n objects, so |Aut(G)| u n!. Constructing all the elements of
the automorphism group could take exponential time, e.g., Kn has Sn as its
automorphism group. However, it may be sufficient to find a relatively small
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generating set that represents Aut(G). Indeed, it is always possible to find
a generating set of size log n for a group H of size n [1].

Unfortunately it is not known whether or not such a small set representing
Aut(G) can be computed in polynomial time, because the problem of deter-
mining the automorphism group can be shown to be equivalent to graph
isomorphism (i.e., determining whether two graphs are isomorphic). The
relationship between the two problems is shown more explicitly in [1].

Since the problem of determining when two graphs are isomorphic has
been studied extensively and is not known to be solvable by a polynomial
bounded algorithm, heuristics are needed to find the orbits of the automor-
phism group. If such heuristics are easy to compute and provide a high de-
gree of accuracy, the complexity of a graph can be computed efficiently with
a high degree of confidence.

The orbits of a graph consist of vertices with similar properties such as
having the same degree. So if it were possible to create a small list of all
these properties and if, in addition, there were polynomial time tests for
each one, then there would be a polynomial time algorithm for the graph
automorphism problem. Of course such a complete list of properties is not
known. However, if there exists one such property that does not hold for two
vertices, then these vertices are not in the same orbit. So, creating a partial
list of polynomial time tests would help to distinguish vertices having differ-
ent properties and thus to separate them into different orbits. In surveying
the literature on heuristic approaches to computing the orbits of the auto-
morphism group of a graph we have made use of [20], which in turn draws
on [7].

The procedure adopted here for finding the orbits of a graph is as follows:

1. Identify several polynomially checkable properties designed to distinguish
between vertices. At the start of the procedure all the vertices are taken to
be in the same orbit.

2. For each property and each pair of vertices u, v in an orbit thus far deter-
mined, find whether or not u and v can be distinguished by the property.
If yes, then draw the inference “u, v are in different orbits”; otherwise,
apply the next test.

If two vertices pass all the tests, then they will be considered to be in the
same orbit. This procedure gives rise to a deterministic process with one-
sided error, i.e., two vertices in the same putative orbit may in fact be distin-
guishable.

Critical to developing an efficient procedure is making judicious choices
of vertex properties that can serve as tests. The selection of properties used
in our procedure has been guided by results in the theory of networks and in
sociological theory.
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1.4.1

The Degree of the Vertices

The first test is quite simple: If two vertices have different degrees, then
they cannot be in the same orbit. The degree of a vertex can be computed
in time n, with n being the size of the graph. So this test will take time O(n).
The degree of a vertex is an important property in the theory of networks
since finding the high-degree vertices in an underlying graph is considered
equivalent to determining the so-called “authorities” of the network.

1.4.2

The Point-Deleted Neighborhood Degree Vector

Examining only the degree of the vertices is insufficient. Consider, for exam-
ple, the path of five vertices, labeled 1, 2, 3, 4, 5. The degree test does not
distinguish 2 and 4 from 3, but 3 is in not in the same orbit as 2 and 4; this
is obvious since both 2 and 4 have one neighbor (1 and 5, respectively) with
degree 1, while 3 does not have such a neighbor. This observation leads nat-
urally to the idea of the second test, namely, to examine the neighborhood of
the vertices.

Definition 1.1 The neighborhood of a subset S ⊆ V denoted by N(S) is the
set of all the neighbors of S, i.e., N(S) = S

⋃{v ∈ V \ S|(v, s) ∈ E and s ∈
S}. The {i + 1}th degree neighborhood of S is defined inductively, N i+1(S) =
N(Ni(S)). The point-deleted neighborhood of v, with v being a vertex of V, is
Ñi(x) = Ni({x}) \ {x}.

Thus, for the path mentioned above we have that

• N({3}) = {2, 3, 4},
• N2({3}) = {1, 2, 3, 4, 5},
• Ñ(3) = {2, 4}.

The notion of the degree vector is also needed.

Definition 1.2 The degree vector d(S) of a subset S of the vertices of a graph
can be defined as the ordered sequence of the degrees of these vertices in the
induced subgraph.

Again for the above example of the path of five vertices, the degree vector
of the whole path is (1,1,2,2,2). The degree vector of {2,3} is (1,1).

The test to be considered is comparing the point-deleted neighborhood
degree vectors of the vertices to be examined. This technique is presented
in [7]. The degree test yields several groups of vertices of equal degree. To
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apply this test we first compute the point-deleted neighborhood of each of
the vertices to be compared and then determine the degree vector. If the de-
gree vector is different, draw the inference “not in the same orbit.” The test
can be made more subtle if higher-order neighborhoods are taken into ac-
count.

The execution time required for this test can be computed as follows. If
v and u are the vertices to be compared and k is their degree, we can com-
pute the degree vectors of the point-deleted neighborhoods of u and v in
time k2. Sorting the two vectors, each of size k, and comparing them is at
most of this order of complexity. Thus the total execution time required
is Θ(k2). Since k is bounded by n, the worst-case complexity of the test is
O(n2).

As an example, consider the graph of Figure 1.8. Table 1.2 shows the point-
deleted neighborhood of the vertices.

The test defines two groups of vertices that for this example coincide with
the two orbits. The sets are {1,3,5,7} and {2,4,6,8}.

Examining the point-deleted neighborhood degree vector has several ad-
vantages and disadvantages over the degree sequence of the neighbors of
a vertex. The latter would probably give faster negative results when test-
ing whether two vertices belong in the same orbit, since it takes account of
the whole graph and not simply the induced subgraph of the neighbors; on
the other hand, the former also works in regular graphs. However, the main
reason for using the latter test is that it is associated with the concept of
clustering coefficients that are widely used in networking theory. Informally

1

4 62

3

8

5

7

Figure 1.8 Example: graph for point-
deleted neighborhood degree vectors
test.

Table 1.2 Information about the point-deleted neighbor-
hood of every vertex and its degree vector.

v Ñ(v) d(Ñ(v))
1 {2,4,5} (0,1,1)
2 {1,3,4} (1,1,2)
3 {2,4,7} (0,1,1)
4 {1,2,3} (1,1,2)
5 {1,6,8} (0,1,1)
6 {5,7,8} (1,1,2)
7 {3,6,8} (0,1,1)
8 {5,6,7} (1,1,2)
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speaking, the clustering coefficient indicates the degree to which the induced
subgraph of the neighbors of a vertex resembles a clique. Determining the
point-deleted neighborhood degree vector of a vertex would help in comput-
ing the clustering coefficient. So vertices that pass this test will also have the
same clustering coefficient.

1.4.3

Betweenness Centrality

The above techniques correctly determine the orbits of a large variety of
graphs. However, there are cases where they fail. Consider, for example, the
graph in Figure 1.9. The point-deleted neighborhood degree vector would
place vertices 13 and 14 in the same orbit since d(Ñ(13)) = d(Ñ(14)) =
(2, 2, 2, 2, 3, 3). However, it is obvious from the figure that vertices 13 and 14
do not belong in the same orbit.

In this section we will describe one more method of estimating the orbits
of a graph. This method is based on the concept of betweenness centrality,
which was first introduced in [8] and can be described as follows.

Definition 1.3 The betweenness centrality of a vertex x of a graph G(V, E) is
the sum over all pairs of vertices y, z in the graph of the number of shortest
paths (px

y,z) from y to z that pass through x divided by the number of all

1

46

2 3

8

5

7 9

101112

13

14

1

46

3

5

2

87 9

101112

G

N(13)
~

N(14)
~

Figure 1.9 Graph where the technique of the point-deleted
neighborhood degree vector fails.
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the shortest paths from y to z. More precisely, the betweenness centrality of
a vertex x is:

CB(x) =
1
2

∑
y∈V

dy,x ,

where

dy,x =
∑
z∈V

by,z

and

by,z(x) =
px

y,z

py,z
.

This measure is suggested by the sociology of networks of individuals, so-
called “social networks.” In addition, it captures important structural fea-
tures of a graph, making it quite useful in approximating orbits.

The method considered in [7] is an extension of the point-deleted neigh-
borhood degree vector. Once the induced subgraph on Ñ(x) is computed
for every vertex x, we compute the betweenness vector CB(Ñ(x)) = CB(v1),
CB(v2), . . . , CB(vd(x)), where CB(vi) u CB(vi+1), with vi ∈ Ñ(x) and d(x) being
the degree of vertex x. If the vectors CB(Ñ(x)) and CB(Ñ(y)) are not identical,
then x and y belong to different orbits.

Consider again the graph of Figure 1.9. We want to compute the between-
ness centrality vectors of vertices 13 and 14, which will help in deciding
whether they belong in the same orbit or not. We first find the induced sub-
graphs on Ñ(x) for every vertex x (also shown in Figure 1.9). Then, for each
subgraph, we first compute a table that contains all the intermediate vertices
in every shortest path between each pair of vertices. We assume that paths
of length 1 have no intermediate vertices and we omit paths that start and
end on the same vertex. The tables are shown below (Table 1.3). Then we
compute the dependency matrix, the matrix D = dy,z for every y, z. Finally
we sum and then halve every column of D to compute the betweenness cen-
trality of every vertex of the induced subgraph. The dependency matrices for
both vertices 13 and 14 are computed below (Table 1.4). The computed vec-
tor will be the betweenness centrality vector of vertex x. Finally, when all the
computations are done, we compute the vectors of each pair of vertices. If
they are different, then the vertices belong in different orbits; otherwise the
algorithm concludes that the vertices belong to the same orbit.

It is clear that

CB(Ñ(13)) =
(

5
6

,
5
6

,
5
6

,
5
6

, 3, 3
)

=/ CB(Ñ(14)) =
(

0, 1, 1
1
2

, 1
1
2

, 2
1
2

, 2
1
2

)
.

Thus vertices 13 and 14 belong to different orbits.
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Table 1.3 Tables containing the intermediate vertices of the
shortest paths between each pair of vertices.

1 2 3 4 5 6

1 – – 2
2 3

2
–2 5

6
6 5

2 – – –
3

–
1

5 5

3 2 – – –
2

2 1

4
2 5
4 5

4
3 2

3
– – – 55 2

5
5 6

5
2

–
2

– – –
6 4

6 –
1

1 2
5 – –

5
5 2
5 4

7 8 9 10 11 12

7 – – 8 11
–

–

8 – – – 9 7 7

9 8 – – – 10
8 7

10 11

10 11 9 – – – 11

11 – 7 10 – – –

12 – 7
8 7

11 – –
10 11

Table 1.4 Dependency matrices for vertices 13 and 14 and
the betweenness centrality vectors.

1 2 3 4 5 6

1 0 1 5
6

1
3 0 2

3
5
6

2 1
2 0 1

2 0 1 0
3 1

3 1 5
6 0 5

6
2
3 0

4 0 2
3

5
6 0 1 5

6
1
3

5 0 1 0 1
2 0 1

2

6 5
6

2
3 0 1

3 1 5
6 0

CB
5
6 3 5

6
5
6 3 5

6

7 8 9 10 11 12

7 0 1 0 0 1 0
8 2 0 1 0 0 0
9 1

2 1 1
2 0 1 1

2
1
2 0

10 0 0 1 0 2 0
11 1 0 0 1 0 0
12 1 1

2
1
2 0 1

2
1
2 0

CB 2 1
2 1 1

2 1 1 1
2 2 1

2 0

The betweenness centrality of all the vertices of a graph can be computed
in O(n3) time (where n is the number of vertices in the graph) by a modi-
fied version of Floyd’s algorithm for determining all shortest paths between
pairs of vertices. The fastest known exact algorithm for determining the be-
tweenness centrality of all the vertices of a graph is due to Brandes [4], and its
complexity is Θ(n ·m), where m is the number of edges of the graph. Thus, if
u and v are vertices to be compared and k is their degree, then determining
the betweenness centrality vectors of u and v requires O(k3) time. Thus the
worst-case complexity of the test is O(n3).

It is still possible to compute the orbits of the previous example exactly by
examining the degree vector of higher-order point-deleted neighborhoods.
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However, there are (rare) cases where the idea of the degree vector does not
work at all. The graph (whose adjacency matrix is presented below) is such
an example.

0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1
1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0
0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0
1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0
0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0
0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1
1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0
1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0
0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0
1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1
1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0
0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1
0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0
0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0
1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1
0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1
0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1
0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0

This graph is 10-regular, so that for every vertex x, Ñ(x) contains ten ver-
tices. Furthermore, its diameter is two, so Ñ2 contains every vertex of the
graph except for x. It follows that d(Ñ(x)) = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3) for ev-
ery vertex x. Thus the above tests will yield one orbit {1, . . . , 26}. However,
it can be proven that the graph has two orbits, {1, . . . , 13} and {14, . . . , 26}
(this example is taken from [7]). The problem is solved by examining the
point-deleted neighborhood betweenness centrality vector. We can show that
CB(Ñ(1)) = . . . = CB(Ñ(13)) = (3, 3, 3, 3, 4, 4, 4, 5, 5, 5), whereas CB(Ñ(14)) =
. . . = CB(Ñ(26)) = (3, 3, 3, 4, 4, 4, 4, 4, 4, 6).

In this section we have only examined the betweenness centrality measure
in approximating the orbits of a graph. However, there are several variants of
centrality measures that could be taken into account. These variants include



1.5 Alternative Bases for Structural Complexity 19

1

5

2

3 4

6

Chromatic decompositions:
{1,3} {2,5} {4,6}
{2} {1,3} {4,5,6}

{2} {3} {1,4,5,6}

Figure 1.10 Graph with multiple chromatic decompositions.

closeness centrality [22], graph centrality [9], and stress centrality [23]. All
these concepts are attempts to capture the notion of the relative importance
of a vertex in the overall structure of a graph, and thus each of them could
play an important role in estimating the orbits of a graph.

1.5

Alternative Bases for Structural Complexity

Colorings of a graph can be used to obtain a decomposition of the vertices.
Sets of vertices of the same color (or independent sets) constitute equiva-
lence classes. Unlike the orbits of the automorphism group, a partition of
the vertices obtained in this way is not unique. However, an information
measure may be defined by taking the minimum value over some set of de-
compositions linked to colorings [16]. This section explores such a measure,
compares it with the symmetry-based measure, and shows its relationship to
the graph entropy as defined in [11].

A coloring of a graph is an assignment of colors to the vertices so that no
two adjacent vertices have the same color.

An n-coloring of a graph G = (V, E) is a coloring with n colors or, more
precisely, a mapping f of V onto the set {1, 2, . . . , n} such that whenever
[u, v] ∈ E, f(u) =/ f(v).

The chromatic number κ(G) of a graph G is the smallest value of n for which
there is an n-coloring. A graph may have more than one n-coloring.

An n-coloring is complete if, for every i, j with i =/ j, there exist adjacent
vertices u and v such that f(u) = i and f(v) = j.

A decomposition {Vi}n
i = 1 of the set of vertices V is called a chromatic de-

composition of G if u, v ∈ Vi imply that [u, v] /∈ E. Note that Vi in a chromatic
decomposition is a set of independent vertices. If f is an n-coloring, the collec-
tion of sets {v ∈ V| f(v) = i}n

i = 1 forms a chromatic decomposition; conversely,
a chromatic decomposition {Vi}n

i = 1 determines an n-coloring f. The sets Vi

are thus called color classes.
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Given a graph G = (V, E) with |V| = n and h = κ(G), let V̂ = {Vi}h
i = 1 be

an arbitrary chromatic decomposition of G with ni(V̂) = |Vi| for 1 u i u h.
The chromatic information content Ic(G) of G is defined by the following for-
mula [16]:

Ic(G) = min
V̂

{
–

h∑
i = 1

ni(V̂)
n

log
ni(V̂)

n

}
.

Figure 1.10 shows a graph with three different chromatic decomposi-
tions whose finite probability schemes are (1/3, 1/3, 1/3), (1/2, 1/3, 1/6), and
(2/3, 1/6, 1/6). The minimum entropy is given by (2/3, 1/6, 1/6), so that
Ic(G) = 2/3 log 3/2 + 1/3 log 6.

Ic(G) is defined as the minimum value over chromatic decompositions
with κ(G) color classes and thus does not necessarily give the minimum over
all chromatic decompositions. When the graph does not have a complete
k-coloring for k > κ(G), Ic(G) does give the minimum over all chromatic
decompositions [16]. The restricted minimization in the definition allows for
interpreting Ic(G) as the amount of information needed to construct a κ(G)-
coloring.

A related measure called graph entropy was introduced in [11] and sub-
sequently applied to a variety of problems in graph theory and combina-
torics [24]. This measure is a generalization of Ic(G) formulated as aver-
age mutual information between two random variables representing the
vertices and independent sets of G, respectively. Let S be the collection of
independent sets of G = (V, E) with |V| = n, and let P be a probability dis-
tribution on V. The graph entropy H(G, P) is given by I(V; S), the average
mutual information between V and S (treated as random variables). Now,
I(V; S) = H(V) – H(V|S), so if P is a uniform probability distribution over V,
then H(G, P) = I(V; S) = log n – H(S). So, Ic(G) = log n – H(G, P). In sum-
mary, the essential difference between the two measures is that Ic(G) as-

S = {{2, 4}, {1}, {3}}

V = {1, 2, 3, 4}

Pr[{2, 4}] =
1
2

Pr[{1}] = Pr[{3}] =
1
4

Pr[v|sk] =

(
0, if v is not in sk;

1
|sk|

, if v is in sk.

H(G, P) = log 4 –
„

1
2

log 2 +
1
2

log 4
«

=
1
2

Ic(G) = log 4 – H(G, P) =
3
2

Figure 1.11 Chromatic information and graph entropy.
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sumes a fixed (uniform) probability distribution over V, whereas H(G, P )
allows the probability distribution over V to vary. Figure 1.11 illustrates the
relationship between Ic(G) and H(G, P ).

The two entropy-based measures of graph complexity, Ia(G) and Ic(G), dis-
cussed in this chapter capture different aspects of graph structure. Colorings
and symmetries of a graph do not necessarily say much about each other. The
difference can be seen from examples such as the cycle Cn on n vertices. This
graph has a transitive automorphism group so Ia(Cn) = 0 for all n, whereas
the cycle has chromatic number two or three, depending on whether n is
even or odd, and Ic(Cn) W log 2. The divergence between the two measures
is unbounded in the case of trees that have chromatic number two but (for
n v 7) can have a trivial automorphism group. In these cases, Ic(Cn) u 1 but
Ia(Cn) = log n.

The foregoing observations support the view that structural complexity
is in the eye of the beholder. No single measure can capture all aspects of
a graph.
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2

Statistical Mechanics of Complex Networks
Stefan Thurner

2.1

Introduction

An explanation for the impressive recent quantitative efforts in network the-
ory might be that it provides a promising tool for understanding complex
systems. Network theory is mainly focused on statistical descriptions of dis-
crete large-scale topological structures rather than on microscopic details of
interactions of its elements. This viewpoint allows one to naturally treat col-
lective phenomena that are often an integral part of complex systems, such as
biological or socioeconomic phenomena. Much of the attraction of network
theory arises from the discovery that many networks, natural or manmade,
exhibit some sort of universality, meaning that most of them belong to one
of three classes: random, scale-free, and small-world networks. Maybe most
important, however, is that, due to its conceptually intuitive nature, network
theory seems to be within realistic reach of a full and coherent understanding
from first principles.

It has become standard practice to describe networks by a set of macro-
scopic parameters. These parameters usually provide a practical understand-
ing about the statistics of linking within the network, the degrees of cluster-
ing, or the statistics of occurrence of certain motives. With this knowledge
it is in many cases sufficient to reliably characterize a particular network in
terms of its structure, robustness, and performance or function. Often net-
works are not structures that are purposefully designed but that emerge as
a consequence of microscopic rules that govern the linking and relinking dy-
namics of individual nodes. These rules can be very general and cover a huge
variety, ranging from purely deterministic to fully statistical ones.

One of the milestones in the history of science was the discovery that the
laws of thermodynamics could be related to – and based on – a microscopic
theory, so-called statistical mechanics. The statistical mechanics of Boltz-
mann is a framework that relates the properties of microscopic particles to
the macroscopic bulk properties of matter, thereby explaining thermodynam-
ics. The formal link between the macro- and the microworld is the concept
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of entropy, S. The aim of the following text is to motivate the idea that it is
straightforwardly possible to formulate a statistical mechanics of networks,
which in principle should allow one to relate macroscopic – emergent struc-
tures and phenomena – of networks to a set of microscopic rules. In this
view the connectivity of nodes plays the role of particles in classical statistical
mechanics.

Many real-world networks differ considerably from pure random graphs
[1, 2], leading to the notion of complex networks, which is a well-established
concept by now [3, 4]. Networks are discrete objects made up of a set of
nodes that are joined by a set of links. If a given set of N nodes is linked
by a fixed number of links in a completely random manner, the result is
a so-called random network, whose characteristics can be easily understood.
One of the simplest measures describing a network in statistical terms is
its degree distribution, p(k). The degree ki of a node i is defined by the dis-
crete number of links leading or originating from it, the degree distribu-
tion, p(k), is the distribution of degrees over the whole network, i.e., the
probability that a randomly chosen node has a specific degree, k. In the
case of random networks, the degree distribution is a Poissonian, i.e., the
probability (density) that a randomly chosen node has degree k is given by
p(k) = (λk e–λ)/k!, where λ = k̄ is the average degree of all nodes in the
network. However, as soon as more complicated rules for wiring or grow-
ing of a network are considered, the seemingly simple concept of a net-
work can become more involved. In particular, in many cases the degree
distribution becomes a power law, without any characteristic scale, which
raises associations to critical phenomena and scaling phenomena in com-
plex systems. This is the reason why these scale-free types of networks are
also called complex networks. A further intriguing aspect of dynamical com-
plex networks is that they can naturally provide some sort of toy model
for nonergodic systems, in the sense that not all possible states (configu-
rations) are equally probable or homogeneously populated, and thus can
violate a key assumption for systems described by classical statistical me-
chanics. In what follows we will not deal with the third “universality class”
of networks, the small-world networks, since in a dynamical context they of-
ten appear as transients, resulting in either random network or some highly
ordered states.

Networks in their purest form are sets of L links connecting a set of N
nodes. Every possible connection pattern is called a network state or a mi-
crostate. If states are not considered to be constant over time and are allowed
to change through the rewirement of nodes, it is clear that the theory of net-
works reduces to a statistical mechanics problem of counting states under
certain constraints. If we assume – as we will do for reasons explained be-
low – that N and L are constants, the only dynamics possible are rewirements
that can be governed by deterministic dynamical rules or pure chance.
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If it is assumed that links in a network carry no structure or information
(i.e., they do not have link weights/strengths or direction), the full informa-
tion about a network is captured in the adjacency matrix, c, whose elements
are cij = 1, if a pair of nodes {i, j} is linked and cij = 0 otherwise. A network is
then called unweighted and undirected. For weighted networks links cij are
associated with a link weight; if the links indicate a direction, matrix c will
not be symmetric. Each microstate can also be characterized by a degree dis-
tribution that is obviously a reduction of information. In general there can
be many states leading to the same degree distribution. The prime goal of
a statistical mechanics of network theory is to provide an understanding of
measured degree distributions, correlation functions between degrees, clus-
tering, motive distributions, etc. from first principles. These principles are
a combination of the possible number of states with the physical restrictions
on microstates, exclusion of states, restrictions on relinking rules, and over-
all constraints on the system.

As in classical statistical mechanics, physics enters through the physical
characterizations of states, such as the energy dependence of the probabil-
ities of finding certain states, or simply restrictions and the exclusion of
states. The same is true for networks. To understand a network in a real-
world situation (biological, social, or economic) besides counting possible
states, it is essential to identify the “physical” restrictions on the network
states. Given that network dynamics is sufficiently fast and that reasonably
large phase-space volumes are covered by network dynamics, a statistical me-
chanics approach to networks certainly seems reasonable. It is possible to
think of the “phase space” of networks as the set of all possible adjacency
matrices.

2.1.1

Network Entropies

Following a microstate view of networks, the measured degree distribution
in a given system should correspond to the largest number of states that have
this degree distribution, subject to certain constraints. Given this view, it is
natural to think about the existence of some sort of an H-theorem or entropy
principle, relating networks in equilibrium (or reasonably steady states) to
a maximum of some entropy definition. The existence of such an entropy
makes it possible to talk about a “thermodynamics of networks.” This estab-
lishes the link from microstates to a macroscopic description of networks.
As we shall see below, networks even in their simplest form lead to entropies
that are nonadditive or nonextensive. This is intuitively clear: if one imagines
that one separates a given network into two subnetworks A and B, all links
between A and B will be lost. This can be a substantial part of the network
and clearly induces nonadditivity.
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As mentioned, the degree distributions of complex networks are not of
a trivial Poissonian type but very often follow power laws [5] or more com-
plicated forms. It can be shown that there exist entropies that are associated
to these degree distributions. In particular, the degree distributions can be
derived under the extremization of these entropies – given the constraints
that the degree distribution is normalizable and the average degree exists.
In the special and important case for q-exponential degree distributions, the
entropy coincides with the Tsallis entropy (however, care must be taken for
the constraints under maximization). A q-exponential degree distribution is
given by

P(k) = eq(–(k – 1)/κ) (k = 1, 2, 3, 4, . . .) , (2.1)

where the q-exponential function is defined by eq(x) == [1+(1–q)x]1/(1–q) and κ

is a characteristic degree of the distribution. It has long been noticed that de-
gree distributions of some network models are exactly q-exponentials [6]. The
model in [5] describes growing networks with a so-called preferential attach-
ment rule, meaning that any new node being added to the system links itself
to an already existing node i in the network with a probability that is propor-
tional to the degree of node i, i.e., plink ∝ ki. In [6] this model was extended to
also allow for preferential rewiring. The analytical solution to the model has a
q-exponential as a result, with parameter q being fixed uniquely by the model
parameters. Recently it has been found that networks exhibiting degree dis-
tributions compatible with q-exponentials are not at all limited to growing
and preferentially organizing networks. Degree distributions of real-world
networks as well as of nongrowing models of various kinds seem to exhibit
a universality in this respect [7–9]. A model for non-growing networks which
was recently put forward in [9] also unambiguously exhibit q-exponential de-
gree distributions. This model was motivated by interpreting networks as
a certain type of “gas” where upon an (inelastic) collision of two nodes, links
get transfered in analogy to the energy-momentum transfer in real gases. In
this model a fixed number of nodes in an (undirected) network can merge,
i.e., two nodes fuse into one single node, which retains the union of links of
the two original nodes; the link connecting the two nodes before the merger
is removed. At the same time a new node is introduced to the system and
is linked randomly to any of the existing nodes in the network [8]. In Fig-
ure 2.1 we show a snapshot of this type of network representative for the
many models exhibiting q-exponential degree distributions. The correspond-
ing (cumulative) degree distribution is shown in log-log scale, clearly exhibit-
ing an assymptotic power law. The same figure (right) shows q-logarithms of
the degree distribution for several values of q. It is clear from the correla-
tion coefficient of the q-logarithm with straight lines (inset) that there exists
an optimal value of q, which makes the q-logarithm a linear function in k,
showing that the degree distribution is in fact a q-exponential.
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Figure 2.1 (a) Log-log representation of
(cumulative) degree distributions for the
model discussed in Section 2.1.1 for var-
ious system sizes; (b) q-logarithm of the
(cumulative) distribution function from
the same networks as a function of de-
gree k. Clearly, there exists an optimum q
that allows for an optimal linear fit. Inset:
Linear correlation coefficient of lnq P (v k)
and straight lines for various values of q.

The optimum value of q is obtained when
lnq P (v k) is optimally linear, i.e., where
the correlation coefficient has a maximum.
A linear lnq means that the distribution
function is a q-exponential; the slope of the
linear function determines κ. In this exam-
ple we get for the optimum q = 1.84, which
corresponds to the slope γ = 1.19. Plot
after [39].

2.1.2

Network Hamiltonians

A Hamiltonian provides an expression for the energy of a system based on its
state variables. The introduction of a network Hamiltonian that determines
the energy of a given network, under suitable conditions, formally acts as
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a temperature-dependent constraint. A Hamiltonian approach can thus be
mapped into the category of constraint optimization problems, like, e.g., the
traveling salesman problem, the spin-glass problem, etc. See, e.g., [10] for
a recent treatment of these analogies; some analysis about optimization and
networks can additionally be found in [11, 12]. Almost all of the microscopic
models proposed to describe complex – growing or static – networks involve
nonequilibrium and evolutionary elements, manifesting themselves in dif-
ferent procedures of preferential attachment [5, 13–15] or other structured
rewirement schemes [8, 9, 16]. Further, these procedures often involve the
need for nonlocal information, making an statistical mechanics approach
impracticable if not impossible. So far, comparatively little has been done
to understand complex networks from a purely classical statistical mechan-
ics point of view where the phase space is not constrained. A few serious
equilibrium approaches have been proposed [17–20] where topological prop-
erties of networks associated with specific Hamiltonians were studied. In [17]
an equilibrium partition function of the form (2.10), see below, was es-
tablished, giving an arbitrary degree distribution. In [19, 20] it was shown
that along topological transitions scale-free networks can be recovered at
a certain point in time during a relaxation process to equilibrium, implying
that scale-free graphs are temporary configurations not typical for equilib-
rium.

Below we shall review a form of a network Hamiltonian leading to ensem-
ble averages of networks that correspond to distinct topological “phases” of
networks, depending on the temperature of the system. By increasing the
temperature we observe a transition from starlike to scale-free to eventually
Poissonian networks. Numerical evidence is presented showing that scale-
free networks may indeed be obtained within a pure equilibrium approach,
as suggested in [17]. Moreover, we demonstrate that the introduced Hamilto-
nian leads to nontrivial hierarchic features. The form of the Hamiltonian is
derived from simple and general assumptions about individual linking en-
ergies of nodes, in a way that is standard in, e.g., economics. Nodes act as
utility maximizers, in analogy to physical systems minimizing energy.

2.1.3

Network Ensembles

Many real-world networks are random networks. The simplest random net-
work is the Erdös–Rényi classical random graph [1, 2], where a fixed num-
ber of links connect a fixed number of nodes. The linking probability for
each node is the same. The resulting networks show that trivial clustering
and degree distributions are of the mentioned Poissonian type. The simplest
generalization of the classical random graph is to relax the condition that all
linking probabilities are the same, but different nodes may be characterized
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by different probabilities of linking to others. Suppose that the linking prob-
ability of nodes is dictated by a distribution function. Then it becomes pos-
sible to view any network as a superposition of Poissonian random graphs
with different average degrees, k̄. Further, this superposition can be seen
as a network realization of superstatistics, where a statistical system is not
characterized by a single temperature, but by a “superposition of tempera-
tures” [21]. We will explicitly review how the linking probability distribution
of the individual nodes will translate to the macroscopic degree distribution
of the network ensemble. It is possible to show that instead of the ensem-
ble picture in [22], one could introduce an algorithm, which enables one to
produce single realizations of such networks [23].

This ensemble approach is motivated by the observation of the vast abun-
dance of similar degree distributions in a wide variety of static real-world
networks, in which nodes may be individuals, animals, chemicals, com-
panies, and so on. Often, nodes are characterized by a linking probabil-
ity defining how they are connected by links. A linking probability can
be nonuniform for all pairs of vertices, in general, unlike in the classi-
cal theory of random graphs. It conditions the states of nodes and intro-
duces nontrivial correlation properties. This approach may offer the pos-
sibility of finding a common “driving force” leading to the fact that only
a few “universality classes” of networks are observed in so many cases.
This driving force would be featured by a linking probability distribution
common in various systems. For example, many social and economic net-
works explicitly depend on a wealth of individuals, firms, banks, and so
on. Suppose that the wealth distribution, which obeys a power law com-
mon in industrialized countries [25, 26], is associated with such a linking
probability distribution, and assume that, under this probability, linking is
entirely random. Then, the resulting network will have a connectivity dis-
tribution, which is uniquely determined by the linking probability distri-
bution [22]. A common driving force could thus provide an understand-
ing of why real static networks tend to belong to only a few “universality
classes.”

Statistical mechanics is an equilibrium concept. In a few cases it may be
relaxed to sufficiently stationary situations; however, it is never wise to ap-
ply it to transient or growing systems. Thus in what follows we shall limit
ourselves to nongrowing, undirected, and unweighted networks, where no
global information exists about the system. The dynamics of the networks
is rewirement only, which is considered to take place rapidly, such that an
ensemble picture can be justified. Note that dozens of models have been in-
troduced for growing networks, characterized by growth rules that can often
be mapped to simple differential equations whose solutions characterize the
degree distribution of such networks. For systems open to such a description,
clearly, not much of statistical physics reasoning is necessary.
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2.1.4

Some Definitions of Network Measures

In what follows we will use the measures of the clustering coefficient and
the neighbor connectivity, which we define here. The clustering coefficient
of node i, ci is defined by

ci =
2ei

ki(ki – 1)
, (2.2)

with ei being the number of triangles node i is part of. c(k) is obtained by
averaging over all ci with a fixed k. It has been noted that c(k) contains in-
formation about hierarchies present in networks [27]. For Erdös–Rényi (ER)
networks [1, 2], as well as for pure preferential attachment algorithms with-
out the possibility of rewiring, the clustering coefficient c(k) is constant. The
global clustering coefficient is the average over all nodes, C = 〈ci〉i. A large
global clustering coefficient is often indicative of a small-world structure [28].
The average nearest-neighbor connectivity (of the neighbors) of node i is

knn
i =

1
ki

∑
j neighbor of i

kj . (2.3)

Again, when plotted as a function of k, knn(k) is a measure to assess the
assortativity of networks. A rising function means assortativity, which is the
tendency for well-connected nodes to link to other well-connected ones, while
a declining function signals a disassortative structure.

This work is structured as follows. In Section 2.2 we revisit the matter of
entropies of networks and review some work on a large class of models that
result in q-exponential degree distributions. Section 2.3 introduces network
Hamiltonians, ways of simulating their dynamics, and the topic of topolog-
ical phase transitions in networks. In particular it focuses on restrictions of
states imposed by rewirement dynamics dictated by an explicit form of a net-
work Hamiltonian [16, 19, 20, 29, 30]. Introducing a Hamiltonian allows one
to relate states to energy (or utility), which in turn enables one to study the
thermodynamics of network systems. Further, it is possible to use thermody-
namical relations to estimate the entropy of the system and compare it with
the microscopic entropy. In Section 2.4 we review an ensemble picture of
networks closely related to the recently introduced approach of superstatis-
tics [21]. Following [22], we shall see how degree distributions change by
relaxing the restriction of equal linking probabilities of nodes (pure random
matrix case) to a distribution of linking probabilities.
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2.2

Macroscopics: Entropies for Networks

Consider the microcanonical entropy of an unconstrained network with
equal a priori probabilities for the microstates. The entropy can be written –
in the spirit of Boltzmann – as the logarithm of the number of possible states

Sc = log
((N

2

)
L

)
, (2.4)

representing the number of possibilities to distribute L indistinguishable
links (particles) on N(N–1)

2 possible distinguishable positions in the symmet-
ric adjacency matrix. If the N involved nodes are indistinguishable, then this
has to be taken care of by an additional factor, 1

N! , in the argument of the loga-
rithm. As soon as networks become subjected to constraints such as specific
linking rules or probabilities, or through the definition of a Hamiltonian (as
will be discussed later), the evaluation of the number of possible states (ad-
jacency matrices) becomes more difficult. Clearly, Sc is a nonextensive quan-
tity, regardless of whether or not nodes are distinguishable. Note that this is
in contrast to classical statistical mechanics, where only the case of distin-
guishable particles leaves room for nonextensivity. If Sc is plotted against the
number of nodes N for a fixed density of links (average degree) λ = k̄ = L/N,
it is obvious that it is not linear in N (Figure 2.2). Nonextensivity becomes
more pronounced for more densely populated networks, which is intuitively
clear to understand (Section 2.1.1). Networks, even in their simplest realiza-
tions, are prototypes of nonextensive systems. For more details and other
aspects of nonextensivity in the context of networks, see, e.g., [31].

As indicated previously, most networks are not characterized by exponen-
tial degree distributions, but in many cases by q-exponentials, which are nat-
urally related to so-called Tsallis entropies. A Tsallis entropy is an example
of a nonextensive entropy. The concept of nonextensive statistical mechanics
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Figure 2.2 Dependence of
entropy Sc on the number of
(distinguishable) nodes, N,
for various values of average
degrees k̄ == L/N. Plot after [30].
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has been extremely successful in addressing critical phenomena, complex
systems, and nonergodic systems [32–34]. Nonextensive statistical mechan-
ics is a generalization of Boltzmann–Gibbs statistical mechanics, where en-
tropy is defined as

Sq ==
1 –

∫∞
0 dk [p(k)]q

q – 1
with q→ 1 limit S1 = SBG == –

∫ ∞

0
dk p(k) ln p(k) ,

(2.5)

where BG stands for Boltzmann–Gibbs. If – in the philosophy of the maxi-
mum entropy principle – one extremizes Sq under certain constraints, the
corresponding distribution is the q-exponential. The issue of these con-
straints is an important one under current debate. Recently there has been
concern that the so-called escort constraints, which have been advocated, e.g.,
in [35], are not physically relevant [24]. In order to use the usual constraints,
it might be necessary to switch to a slightly modified Tsallis entropy, as given
in Example 2 in [36, 37]. Another sign of the importance and ubiquity of q-
exponentials in nature might be the fact that the most general Boltzmann
factor for canonical ensembles (extensive) is the q-exponential, as was proved
in [38]. Given the above characteristics of networks and the fact that a vast
number of real-world and model networks show asymptotic power-law de-
gree distributions, it seems almost obvious to expect a deep connection be-
tween networks and nonextensive statistical physics, governed by general-
ized entropies.

2.2.1

A General Set of Network Models Maximizing Generalized Entropies

Recently there has been brought forward a general model [39] that is a uni-
fication and generalization of network generation models presented in [7,9].
The model in [7] captures preferential growing aspects of networks embed-
ded in a metric space, while [9] introduces a static, self-organizing model with
a sensitivity to an internal metric (chemical distance, Dijkstra distance). The
rewiring scheme there can be thought of as having preferential attachment
aspects in one of its limits [8] (see below), but none in the other limit. The
model contains some of the most important network generation models as
special cases. This will be made clear at the end of this section.

2.2.1.1 A Unified Network Model

In the model in [39] the network evolves in time as follows. At t = 1, the
first node (i = 1) is placed at some arbitrary position in a metric space. The
next node is placed isotropically on a sphere (in that space) of radius r, which
is drawn from a distribution PG(r) ∝ 1/r αG (αG > 0, G stands for growth).
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To avoid problems with the singularity, we impose a cutoff at rmin = 1. The
second node is linked to the first. The third node is placed again isotropically
on a sphere with random radius r ∈ PG; however, the center of the sphere
is now the barycenter of the preexisting nodes. From the third added node
on there is an ambiguity where the newly positioned node should link to.
We choose a generalized preferential attachment process, meaning that the
probability that the newly created node i attaches to a previously existing
node j is proportional to the degree kj of the existing node j, and inversely
proportional to the metric (Euclidean) distance between i and j, denoted by
rij. In particular, the linking probability is

pA
ij =

kj/r αA
ij∑N(t)–1

j=1 kj/r αA
ij

, (2.6)

where N(t) is the number of nodes at time t. It is not necessary that at each
timestep only one node enter the system, so we immediately generalize that
a number of n̄ nodes are produced and linked to the existing network with l̄
links per timestep. Note that n̄ and l̄ can also be random numbers from an
arbitrary distribution. For simplicity and clarity fix n̄ = 1 and l̄ = 1.

After every λ̄ timestep, a different action takes place on the network. At
this timestep the network does not grow but a pair of nodes, say i and j,
merge to form one single node [8]. This node keeps the name of one of the
original nodes, say, for example, i. This node now gains all the links of the
other node j, resulting in a change of degree for node i according to

ki → ki + kj – Ncommon , if (i, j ) are not first neighbors ,

ki → ki + kj – Ncommon – 2 , if (i, j ) are first neighbors , (2.7)

where Ncommon is the number of nodes that shared links to both i and j before
the merger. In the case where i and j were first neighbors before the merger,
i.e., they had been previously linked, the removal of this link will be taken
care of by the term –2 in Equation (2.7). The probability that two nodes i
and j will merge can be made distance dependent, as before. To stay close
to the model presented in [9], we randomly choose node i with probability
∝ 1/N(t) and then choose the merging partner j with probability

pM
ij =

d–αM
ij∑
j d–αM

ij
(αM v 0) , (2.8)

where dij is the shortest distance (path) on the network connecting nodes i
and j. Obviously, changing αM from 0 toward large values switches the model
from the case where j is picked fully at random (∝ 1/N(t)) to a case where
only the nearest neighbors of i will have a nonnegligible chance to get chosen
for the merger. Note that the number of nodes is reduced by one at that
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Figure 2.3 (a) Degree distribution p(k) for N = 10000, αA = 0,
αM = 0, and various values of λ̄. This case corresponds to
a growing network with preferential linking and random
merging of nodes. (b) qc values from q-exponential fits to the
cumulative degree distributions p (>k) for αG = 1, N = 1000,
and λ̄ = 1. Plot after [39].

point. To keep the number of nodes constant at this timestep, a new node is
introduced and linked with l̄ of the existing nodes with probability given in
Equation (2.6).

The relevant model parameters are the merging exponent αM, the attach-
ment exponent αA, controlling the sensitivity of “distance” in the network,
and the relative rate of merging and growing, λ̄. The remaining parameters,
αG, n̄, l̄, and rmin, play marginal roles in the dynamics of the model. In Fig-
ure 2.3 typical degree distributions are shown for three typical values of λ̄.
Obviously, the distribution is dominated by a power-law decay (see details
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of the functional form below) ending in an exponential finite size cutoff for
large k.

2.2.1.2 Famous Limits of the Unified Model

Depending on the choice of model parameters, some well-known networks
result as natural limits of the model:

• Soares et al. limit. For the lim λ̄ → ∞ we have no merging, and αM is
an irrelevant parameter. The model corresponding to this limit has been
proposed and studied in [7].

• Albert–Barabasi limit. The lim λ̄ → ∞ and lim αA → 0 gets rid of the
metric in the Soares et al. model and recovers the original Albert–Barabasi
preferential attachment model [5].

• Kim et al. limits. The limit lim λ̄ → 0 allows no preferential growing of
the network. If at each timestep after every merger a new node is linked
randomly with l̄ links to the network, the model reported in [9] is recov-
ered. The lim λ̄ → 0 model with lim αM → 0 (lim αM → ∞) recovers the
random case (“neighbor” case) in [8].

2.2.1.3 Unified Model: Additional Features

Not only does the model produce q-exponential degree distributions over
large regions of parameter space (Figure 2.3a), for many parameter set-
tings the resulting networks exhibit nontrivial clustering (both global and
as a function of the degree) and nontrivial neighbor connectivity. For details,
see [39]. The fitted value from simulations of parameter q is shown in Fig-
ure 2.3b as a function of model parameters αM and αA.

2.3

Microscopics: Hamiltonians of Networks – Network Thermodynamics

We now turn to dynamical restrictions on rewirement imposed by a network
Hamiltonian. Network Hamiltonians were recently introduced and studied,
e.g., in [16,18–20]. Here we study the Hamiltonian introduced in [29], which
was originally motivated by a standard choice of utility functions in the so-
cioeconomic literature [40, 41]. The basic idea is that a node has more utility
(less energy) if it has a link to a more “important” node, where the impor-
tance of a node is proportional to its degree. The Hamiltonian that we take
as a starting point – for a derivation see [29] – reads

H(c) = –
L∑

�=1

log(b + Δk) , (2.9)
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where c stands for the adjacency matrix, � is the summation over all links,
and Δk is the absolute value of the difference in degree between a pair of
nodes, one of them being �. b is a free parameter related to the detailed
structure of the log-utility [40, 41] needed to derive this Hamiltonian. Given
a Hamiltonian, the canonical ensemble, given by the partition function

Z(T, N, L) =
∑
P(c)

δ
(

L –
Tr(c2)

2

)
e–�H(c) , (2.10)

using the usual definition of temperature T == 1/k�, can be simulated, e.g.,
by the Metropolis algorithm: starting from an adjacency matrix c at time t,
a graph ĉ is generated by replacing a randomly chosen edge between nodes i
and j with a new edge between randomly chosen, previously unconnected,
nonidentical nodes k and m. In the next timestep c is replaced by ĉ with prob-
ability preplace = min(1, exp[–�(H(ĉ) –H(c))]). This procedure guarantees that
every possible configuration of the adjacency matrix is realized with the same
a priori probability. Note that here nodes are distinguishable whereas links
are not. Figure 2.4a shows the ensemble average of the total utility (energy)
of the system, U == –

∑N
i=1 Ui, as a function of T, where Ui is the utility (en-

ergy) contribution of node i. One clearly finds a radical change in energy and
a characteristic maximum of the specific heat (inset) at about Tc = 0.8 – 0.9,
indicating the vicinity of a critical point.

2.3.1

Topological Phase Transitions

Changes in energy are associated with considerable restructuring of the un-
derlying networks across the critical temperature. To study this in more de-
tail, ensemble averages of degree distributions along the transition were cal-
culated. Results are presented in Figure 2.4b. At low temperatures, networks
are dominated by a so-called star structure, indicating that there are a few
highly linked nodes that are practically linked to all the other nodes. For high
temperatures the networks are classical random graphs [1,2], with their Pois-
sonian degree distributions. These two phases are separated by a transition
region from T ~ 0.8 to ~1.1, where the network structures are dominated by
scale-free degree distributions, with asymptotic power laws, P(k) ~ k–γ. For
b = 5 and T = 0.95 the exponent is γ ~ 3. It was found that for values of
b > 5 the transition gets sharper, for b < 5 the transition softens slightly. In
the limit b → 0 we studied various values of b and found marginal changes
in the shape of the transition and in the slope of the resulting scale-free net-
works. The smallest value considered was b = 10–7 and the change in the
slope compared to b = 1 was < 0.05.
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2.3.2

A Note on Entropy

The specific heat being the derivative of the internal energy (see inset to
Figure 2.4a), can be used to compute the entropy of the system by

S(T ) – S(T0) =
∫ T

T0

dT ′
C(T ′)

T ′
. (2.11)
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Figure 2.4 (a) Internal energy (utility) of the network system
governed by the discussed Hamiltonian. The inset shows
the specific heat. (b) Ensemble averages of degree distribu-
tions at different temperatures for N = 103, λ = 3, and b = 5.

The line for T = 5 is the Poissonian p(k) = e–λλk

k! , expected for
random graphs. Plot after [29].
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Figure 2.5a shows the dependence of S(T ) – S(T0) as a function of N. We
fixed T = 2, T0 = 0.55, and shifted by S(T0) = 750. Note that this function is
not strictly linear, as expected, and indicates nonextensive behavior. We com-
pare this entropy with the microcanonical entropy Sc, from Equation (2.4)
which is given by the solid line in Figure 2.5a for the same parameters L, N,
and λ as used in the simulations. Note that the measured entropy is an em-
pirical quantity, whereas Sc is a microscopic function of the distribution of
microstates. The observed overlap is remarkable.
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Figure 2.5 (a) Entropy (points) computed from specific heat
as a function of N for b = 5; Sc (line) from Equation (2.4) is
shown for comparison. (b) q-parameter from q-exponential
fits to the degree distributions around the critical tempera-
ture. Plot after [30].
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Within the temperature window T ∈ [0.8, 1.1] degree distributions can
be fitted reasonably well to q-exponentials [9, 31]. The temperature depen-
dence of q is shown in Figure 2.5b around the critical point. Clearly, q has
a maximum at the critical point and tends toward an ordinary exponential
(q→ 1), for high and low temperatures. The origin of these q-exponentials is
not necessarily directly related to the nonextensiveness of the microcanonical
density. Finally, it should be noted that scale-free networks were previously
obtained by optimization with respect to different constraints (and by vary-
ing their relative weight) in [11, 12]. There, networks reach a stationary state
after the optimization procedure and a scale-free region is found in a regime
between random networks and stars.

2.4

Ensembles of Random Networks – Superstatistics

The simplest example for a (re-)wiring rule is the class of random networks
introduced by Erdös and Rényi [1, 2], where N nodes are fully randomly con-
nected by a set of L links. This corresponds to attaching a unique linking
probability p̄ to each node, i.e., p̄ is the probability that any possible given
pair of nodes is linked. The corresponding degree distribution is the bino-
mial distribution

p(k) =
(

N – 1
k

)
p̄k(1 – p̄)N–1–k , (2.12)

which in the large N limit reduces to the Poissonian distribution, p(k) = e–λλk

k! ,
where again λ == k̄ = p̄(N–1) ~ L/N. At this step one could introduce additional
limitations on states, such as forbidding, e.g., self-linking, cii = 0. In the large
N limit such limitations are of marginal importance.

In the Erdös–Rényi case each node has the same probability of being
linked to any other node. In many realistic situations this is not the case
and the linking probability of nodes is drawn from a distribution, Π(p). For
example, one could think of a social network of friends. The number of
friends will depend on characteristics of the individual, such as being out-
going, rich, introverted, gregarious, or other factors that result in a linking
probability. Assuming that the linking probability varies across nodes, and
adopting a Gibbsean ensemble view on random networks, the degree distri-
bution of Erdös–Rényi networks generalized to linking probabilities drawn
from Π(p), reads [22],

p(k) =
∫ ∞

0
d λ Π(λ)

e–λλk

k!
, (2.13)

for large enough N. This ensemble picture of generalized Erdös–Rényi net-
works is related to the concept of superstatistics [21], where the Boltzmann
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factor is generalized to a superposition of Boltzmann factors and where the
inverse temperature is not unique across the system (or ensembles), but is
represented by a distribution, f (�). The generalized Boltzmann factor is

B(E ) =
∫ ∞

0
d� f (�)e–�E , (2.14)

and with the partition function Z ==
∫∞

0 dEB(E ), one gets the probability
p(E ) = 1

Z B(E ), given that the system relaxes much faster than � varies. The
Boltzmann factor in Equation (2.14) is identified in our case with the Poisson
factor in Equation (2.13). Equation (2.13) establishes a one-to-one relation of
how linking probabilities that govern the linking dynamics are related to the
resulting degree distributions. The problem left is to invert the relation to
obtain the linking probability distribution, Π(λ), which is sometimes called
the hidden variable distribution, as a function of an observable degree distri-
bution. In [22] this inversion was obtained exactly by using the methodology
of quantum optics, which allows one to reduce the needed inverse “Poisson
transform” to a 2-dimensional Fourier transform. The argument is briefly
summarized here: recall the definition of an oscillator coherent state

|α〉 = exp
(
–|α|2/2

) ∞∑
k=0

αk
√

k!
|k〉 , (2.15)

where the number states |k〉 form a Fock basis,
{
|k〉 = (k!)–1/2(â†)k|0〉

}
k=0,1,2,···,

the ground state is defined by â|0〉 == 0, and the usual oscillator algebra is
given by [â, â†] = 1, [â, â] = [â†, â†] = 0. The number operator is n̂ = â†â, states
are normalized, 〈α|α′〉 = exp

[
– 1

2

(
|α|2 + |α′|2

)
+ α′α∗

]
, and coherent states

satisfy the overcompleteness relation,
∫∫ d2α

π |α〉〈α| = 1. This means that for
the inner product of state and number state, 〈k|α〉 = exp

(
–|α|2/2

) αk√
k!

, and

for the phonon number |〈k|α〉|2 = exp–|α|2 (|α|2)k

k! . The density operator is used
in the Sudarshan–Glauber representation, ρ̂ =

∫∫
d2αP(α)|α〉〈α|, αP(α) = 1.

Assuming that the density matrix depends on the number only, ρ̂ = f (n̂)

f (k) = 〈k|ρ̂|k〉 =
∫∫

d2αP(α) |〈k|α〉|2 =
∫∫

d2αP(α)
exp–|α|2 (|α|2)k

k!
. (2.16)

Since ρ̂ is a function of the number, P(α) = P(r) holds, and one gets f (k) =∫∞
0 d λΠ(λ) λk e–λ

k! , with Π(λ) == πP (|α|) and r2 = λ. This methodology now tells
one how to perform the inversion of the problem: Compute

〈–�|ρ̂|�〉 =
∫∫

d2αP(α)〈–�|α〉〈α|�〉 = e–|�|2
∫∫

d2αP(α)e–|α|2 e�α∗–�∗α (2.17)

and after an inverse Fourier transform get

P(α) = e|α|
2 1
π2

∫∫
d2�〈–�|ρ̂|�〉e|�|2 e α�∗–α∗� , (2.18)
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where Π(λ) = πP(α). The inversion problem thus reduces to a three-step
process:

(1) Take a density matrix ρ̂ that corresponds to a given degree distribution.
(2) Compute 〈–�|ρ̂|�〉.
(3) Perform a double integral.
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Figure 2.6 Degree distributions from a numerical simula-
tion of networks where the linking probabilities for nodes
are restricted to the distribution of Equation (2.20) (a) and
an exponential distribution (b). Points are simulation re-
sults, lines correspond to theoretical predictions. Plot af-
ter [23].
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As an example, the situation for scale-free networks was illustrated in [22].
Fix the density matrix to a q-exponential distribution, now for simplicity in
other notation,

ρ̂ =
A

(n̂ + k0)γ 〈k|ρ̂|k〉 =
A

(k + k0)γ = f (k) == p(k) , (2.19)

where A–1 =
∑∞

k=0
1

(k+k0)γ = (γ, k0), and (γ, k0) is the Hurwitz generalized
zeta function that is finite iff γ > 1. By use of the Mellin transformation and
performing the above steps one gets the exact result

Π(λ) =
A

Γ(γ)
eλ

∫ ∞

0
dt tγ–1 e(1–k0)t–λet

. (2.20)

No closed form for this integral exists; however, from its moments the
asymptotic behavior can be shown to be

Π(λ) ~
1
λγ , (2.21)

i.e., the hidden variable distribution, Π, which is now un-hidden. The result
is that it has the same asymptotic power as the degree distribution. For ex-
ponential networks the same procedure, starting from ρ̂ = A exp(–γn̂) and
〈k|ρ̂|k〉 = A exp(–γk), leads to an exact result for the hidden variable distribu-
tion Π(λ) = Aeγ e–λ(eγ–1). This further implies that a flat degree distribution
(γ = 0) leads to flat linking probabilities. In Figure 2.6 we show the examples
for the scale-free and the exponential cases.

Starting from Equation (2.13) the inversion problem can alternatively be
solved by expanding

Π(λ) =
∞∑
l=0

clLl(λ) , λk = k!
k∑

i=0

(–1)i
(

k
i

)
Li(λ) , (2.22)

where Li are Laguerre polynomials. The inversion becomes possible because
the inverse of the Pascal triangle (in matrix notation) is again a Pascal trian-
gle. The coefficients are then simply computed to be

cl =
l∑

k=0

(–1)k
(

l
k

)
p(k) . (2.23)

This again establishes a direct link between a microscopic linking probability
for the individual nodes and the bulk properties of the related networks.

2.5

Conclusion

We have discussed the question of how to formulate network theory – the
theory of how a set of N nodes can get linked through a set of L links – in
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terms of a statistical mechanics approach. In particular we were interested in
clarifying if and how it would be possible to relate microscopic linking rules
between individual nodes to the bulk properties of networks, such as degree
distributions or clustering. Further we search for the possibility to formulate
a meaningful “thermodynamics” of networks. We focused our attention on
stationary, nongrowing networks.

We addressed the question from three independent directions. First, start-
ing from considerations of network entropies we discussed a wide class of
network relinking models that maximize generalized entropies, such that the
observed degree distributions follow certain functional forms. In particular
we were interested in the frequently encountered q-exponential degree dis-
tributions. Second, we introduced an example of a network Hamiltonian that
allowed us to introduce a “temperature” to the system. We demonstrated ex-
plicitly how the introduction of an energy dependence of states allows one to
consistently use standard concepts of thermodynamics. With this framework
we were able to look at thermodynamical quantities and extract a “thermody-
namical” entropy, which we compared to the microscopic entropy definition.
We found that networks can undergo a phase transition of degree distribu-
tions, from starlike networks at low temperatures to random graphs with
Poissonian degree distributions at high temperatures. In the critical temper-
ature region where the transition takes place, degree distributions seem to
be again compatible with q-exponentials. Third, we discussed an ensemble
view of networks where networks are seen as superpositions of random net-
works, in close analogy to superstatistics. These superpositions can lead to
any desired degree distribution, or in other words, a given linking probabil-
ity distribution for the individual nodes can be exactly linked to the emerging
degree distribution.

In these approaches it was demonstrated explicitly that it is indeed rea-
sonable to consider the possibility of a statistical mechanics – maybe even
a thermodynamics – of networks.

I am deeply indebted to my colleagues Christoly Biely, Sumiyoshi Abe,
Constantino Tsallis, and Fragiskos Kyriakopoulos, with whom I had the great
pleasure of exploring these issues.
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3

A Simple Integrated Approach to Network Complexity

and Node Centrality
Danail Bonchev

3.1

Introduction

The traditional manner in which information theory [1–3] is applied to char-
acterize the structure and complexity of graphs [4–9] is based on the parti-
tioning of a certain set of graph elements N (vertices, edges, two-edge sub-
graphs, etc.) into k equivalence classes, having a cardinality of N1, N2, . . ., Nk.
This enables defining the probability of a randomly chosen element to belong
to the class i as the ratio of the class cardinality and that of the entire set of
graph elements, pi = Ni/N. The Shannon equations for the mean and total
information, Ī(α) and I(α),

Ī(α) = –
k∑

i = 1

pi log2 pi , (3.1)

I(α) = N log2 N –
k∑

i = 1

Ni log2 Ni (3.2)

are then directly applicable.
Depending on the selected criterion of equivalence α, different classes

and correspondingly different information measures can be ascribed to the
graph. The simplest example is the partitioning of the graph vertices accord-
ing to the vertex degree (the number of the nearest neighboring vertices),
the first subset of vertices including those of degree 1, then those of degree
2, 3, etc. Accounting for the second, third, and so forth neighbors [10, 11]
is another option, as is the most rigorous definition of vertex equivalence,
the equivalence classes being the orbits of the automorphisms group of the
graph. The symmetry operation in the latter case is the interchange of ver-
tices without breaking any adjacency relationship [12].

While useful for a variety of applications, this manner of applying infor-
mation theory to graphs is not sensitive to structural details and frequently
produces the same information content of nonisomorphic graphs. A viable
alternative, offered by Bonchev and Trinajstíc in 1977 [13–15], was to con-
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sider weighted distributions of graph elements. In this case, one partitions
not a set of graph elements but the overall value of some additive property of
these elements. The simplest and most basic properties of graph vertices are
their degree ai, determining globally the graph total adjacency A = Σiai, and
their distances di, determining the graph total distance D in the integer graph
metric, D = Σidi. The vertex degree distribution A{a1, a2, . . ., ak} and the dis-
tance degree distribution D{d1, d2, . . ., dk} are the most basic graph distribu-
tions. Defining the probability p(ai) and p(di) for a vertex to have a degree ai

and distance di, respectively, with Σip(ai) = 1 and Σip(ai) = 1, one enables
the application of Shannon’s equations. Two sensitive graph descriptors; the
average information on the vertex degree distribution, Īvd, and the average
information on the vertex distance distribution, Īd (and their corresponding
total descriptors) – are thus defined [13–15]:

Īvd = –
k∑

i = 1

ai

A
log2

ai

A
, (3.3)

Īd = –
k∑

i = 1

di

D
log2

di

D
. (3.4)

This approach to a more adequate characterization of the graph structure
has found broad applications in studying molecular topology [16–21]. Re-
cently, the expertise accumulated in chemical graph theory, along with simi-
lar contributions of graph theory to the social sciences [22–24] and computer
sciences [25], have found broad applications to characterize complex nonran-
dom systems within the framework of network theory [26–28]. The major
reason for these new avenues is the fact that complex systems are relational;
their functioning as a whole is possible because of the relations existing be-
tween their basic elements. Networks (graphs) are the natural language to
describe these complex dynamic systems, which promises to change impor-
tant areas of science and technology. It is expected that during the next 10 to
15 years the major biological functions and human diseases will be redefined
in terms of networks, and a similar paradigm change is expected in the area
of drug design.

This new scientific revolution has prompted extensive contributions to
network theory. Information theory descriptors like those given by Equa-
tions (3.3) and (3.4) have also been found useful in the characterization of
network complexity [20, 29]. This paper reports another information mea-
sure of network complexity. The idea for it was generated under the influence
of two major observations in complex networks. The most highly connected
nodes in the network, termed “hubs” [30], are vital for the existence of the sys-
tem described, e.g., the deletion of such a highly connected gene or protein
in the living cell is lethal. More generally, the distribution of node degrees
was shown to be scale-free, with few hubs, many sparsely connected nodes,
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and with all node degrees obeying in the majority of cases a power distribu-
tion law. The second general feature of all complex dynamic networks is their
small size, the small degree of separation of any two nodes in the network.
This property, termed “small-worldness” [30], indicates that the specific dis-
tribution of distances in networks is another network benchmark, along with
the specific distribution of node degrees. It is therefore natural to try to inte-
grate the two fundamental network features, connectivity and distances and
their distributions, into single-number descriptors.

3.2

The Small-World Connectivity Descriptors (Bourgas Indices, BI)

The simplest way to integrate the information on network connectivity and
distances is to use the ratio of the network total adjacency and total distance,
A and D [29, 32]:

B1 =
A
D

. (3.5)

The rationale for Equation (3.5) is straightforward: the graph (or network)
complexity increases with the increase in the number of edges (links) E,
where for undirected graphs A = 2E, and with the more compact “small-
world” type of structure organization, that is with a smaller graph radius,
and smaller total graph distance D.

The B1 index is a fast approximate measure of graph complexity, which
will be illustrated by some examples in Figures 3.1 and 3.2. However, due
to the fact that both A and D are additive functions, the same values could
emerge from different vertex degree and vertex distance distributions. This
partial degeneracy of B1 can be avoided (or at least very strongly reduced)
if instead of using directly A and D, one proceeds with such vertex de-
gree/vertex distance ratios bi for each graph vertex and then sums up over
all vertices to define the second small-world connectivity index B2:

bi =
ai

di
, (3.6)

B2 =
k∑

i = 1

bi =
k∑

i = 1

ai

di
. (3.7)

The distribution of the vertex bi descriptors, B2{b1, b2, b3, . . . , bk}, can then
be considered an important integrated distribution of vertex connectivity and
distances. Moreover, when reordered by descending bi values, this distribu-
tion will also show a new type of vertex-centric ordering (see next section).
The information measure B3 defined on this distribution:
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B1          0.107 0.115             0.120 
B2          0.820              0.900                                    0.953 
B3  2.195                       2.325             2.435

 B1 0.125              0.125                             0.130 
B2                    0.995              1.010             1.068 
B3                     2.480                            2.556                                    2.549 

B1                0.130             0.136                0.143 
B2                1.064                                   1.142                           1.207 
B3 2.608                                            2.683             2.754

Figure 3.1 Nine acyclic graphs with seven nodes ordered
according to their increasing complexity as characterized by
the three Bourgas indices B1–B3.

    

B1     0.333          0.313                       0.313 0.429                0.400    
B2     1.667             1.677               1.783               2.200                2.211 
B3     3.871           3.641 3.650              4.972                4.749 

2 3  4 5 

6  7  8  9 10

B1 0.429              0.538         0.538               0.818                        1 
B2        2.410              2.867       2.943               4.200                        5  
B3        4.957              6.298        6.311              9.580                 11.61 

1

Figure 3.2 Ten cyclic graphs with five nodes ordered accord-
ing to their increased complexity as reflected by the values of
the three small-world connectivity indices. The black points
mark the central vertices, as defined by the values of their bi
indices.
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B3 = B2 log2 B2 –
k∑

i = 1

bi log2 bi = B2 log2 B2 –
k∑

i = 1

ai

di
log2

ai

di
(3.8)

thus integrates connectivity, small-world, and centrality features of graphs
and networks and might be expected to find application for characterizing
network complexity. For brevity, the small-world connectivity indices B1–B3
were also named after the author’s native city, “Bourgas indices”.

Analysis of the topological descriptors B1 and B2, including derived for-
mulas for the major classes of graphs (paths, stars, monocycles, and com-
plete graphs), was presented in two preceding publications of the author
[29, 32]. Equation (3.8) allows analyzing the basic trend of the integrated in-
formation index B3, as well. At a constant number of vertices, adding another
edge increases the bi terms of the vertices incident to that edge, not only be-
cause the corresponding vertex degrees ai increase by one, but also because
the distances di of the two vertices decrease, as a consequence of the forma-
tion of a new cycle.

Figure 3.1 shows all nine acyclic graphs of seven vertices, ordered accord-
ing to the increasing number of complexifying elements. Thus the total num-
ber of branches increases from zero to three, and the number of branches
incident to a vertex increases from zero to two, and the length of a branch
increases from one to two. As previously mentioned, the B1 index cannot
always distinguish all compared graphs, and it produces here two pairs of
degenerate values (0.125 and 0.130). The B2 and B3 indices are nondegener-
ate and order the nine graphs almost identically, the only exception being the
structures with B1 = 0.130, which have close but reversely ordered values of
the B2 index.

Similar comparative analysis of ten cyclic graphs with the same number
of vertices is presented in Figure 3.2. The graphs ordering provided by the
increasing values of the B1–B3 indices again reflects the increase in the num-
ber of complexifying elements, the major factor being the number of cycles,
followed at the same number of cycles by the number of branches, and the
presence of vertex(es) of maximum degree. The B1 index produced pairs of
degenerate values for graphs having the same number of cycles. It also fre-
quently diverges from the very consistent complexity ordering produced by
B2 and B3, which distinguish all ten graphs. One may conclude that while
the B1 index can provide reasonably good approximate estimates of complex-
ity for graphs with considerable structural differences, in cases of consider-
able graph similarity one should use only the B2 and B3 indices.
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3.3

The Integrated Centrality Measure

The classical graph center [4] is the vertex(es) with the lowest eccentricity e(i),
that is, the lowest maximum vertex distance:

e(i) = max d(i) = min . (3.9)

This definition often produces multiple central points and can also be con-
sidered as the first step in a hierarchical definition for a graph center [33,34],
the next hierarchical criterion (applied at the same minimal eccentricity) be-
ing the minimum vertex distance:

for e(i) = e(j), d(i) < d(j) for i – center . (3.10)

The vertex distance itself defines a different graph center called the me-
dian [35]. Its inverse has been used to define a centrality measure in the
social sciences called the closeness centrality, CC [36]:

CC(i) =
V – 1

di
, (3.11)

where V is the number of graph vertices.
The betweenness centrality [37, 38] of a vertex i, BC(i), is defined as the frac-

tion of the shortest paths that traverse that vertex:

BC(i) =
Npaths(i)
Npaths

. (3.12)

The idea behind this centrality concept is that vertices that occur more fre-
quently on the shortest paths between other vertices have higher centrality
than those that do not.

The simplest centrality measure is based on the vertex degree and is called
the degree centrality [37]. The integrated centrality index b(i) = ai/di reported
here combines in a single descriptor the properties of degree centrality and
closeness centrality:

b(i) =
ai

V – 1
CC(i) . (3.13)

Analysis has shown that for small graphs, the vertex distances in which are
relatively close, the vertex degree is the dominant factor and the b(i) index
is more hub-oriented and closer to the degree centrality. In contrast, as the
graph size increases, the distances become the dominant factor, and the in-
tegrated centrality index will behave more like the closeness centrality. In
fact, the basic advantage of the new centrality measure is in the fact that
it emerged within the framework of a more general approach aimed at de-
scribing graph complexity. Thus, the integrated centrality index reveals the
centrality component of the graph and network complexity.
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4

Spectral Theory of Networks:

From Biomolecular to Ecological Systems
Ernesto Estrada

4.1

Introduction

The best way to understand how things work is by understanding their struc-
tures [1]. Complex networks are not an exception [2]. To understand why
some networks are more robust than others, or why the propagation of a dis-
ease is faster in one network than in another, it is necessary to understand
how these networks are organized [3–5]. A complex network is a simplified
representation of a complex system in which the entities of the system are
represented by the nodes in the network and the interrelations between en-
tities are represented by means of the links joining pairs of nodes [3–5]. In
analyzing the architecture of a complex network we are concerned only with
the topological organization of these nodes and links. That is to say, we are
not concerned with any geometric characteristic of the systems we are repre-
senting by these networks but only with how the parts are organized or dis-
tributed to form the whole system. Some of these topological characteristics
of a network can be evident by simple visual inspection. This is particularly
easy when the networks (graphs) are small. For instance, the first two graphs
displayed below do not contain cycles, i.e., they are trees. The first of them is
simply a linear chain and the second a star. The third and fourth graphs are
cyclic. The third graph is the cycle of four nodes, C4, and the last is a graph
having a connection between every pair of nodes, i.e., the complete graph
K4 [6]. All these graphs are connected, which means that we can travel from
any given node to another in any graph.

However, this visual analysis is not possible even for medium-sized net-
works. In addition, most real-world complex networks are very large and the
questions we have to formulate to understand their structures and function-
ing are by far more complex [2–5]. To get a feel for how complex this prob-
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Figure 4.1 Representation of the human protein-protein in-
teraction network. The proteins marked in red are those that
have been identified as being involved in human diseases in
the Online Mendelian Inheritance in Man (OMIM).

lem is we illustrate in Figure 4.1 the network of protein-protein interactions
in human cells [7]. This network is far from being complete but it already
contains more than 3000 nodes [7]. In Figure 4.1 we illustrate some proteins
in red that have been identified as being responsible for hereditary diseases
in humans [7].

It is evident that we need more sophisticated tools than visual inspection
for analyzing the structure of complex networks. One of these tools is the
spectral graph theory [8]. The spectrum of a graph (technically explained in
the next section) can be considered the x-ray test for networks. Similarly to
how we obtain information from x-ray spectroscopy about the internal struc-
ture of molecules, we can obtain information about the internal organization
of complex networks with the use of spectral graph theory. This chapter is
dedicated to the analysis of graph spectra to extract information about the
architectural organization of real-world complex networks.

4.2

Background on Graph Spectra

A graph G = (V, E) is a set of nodes V connected by means of the elements
of the set of links E. Here we are dealing only with simple graphs [6], that



4.2 Background on Graph Spectra 57

is, an undirected graph without multiple links or self-loops. Thus, by graph
we mean a simple graph. A node v ∈ V is a terminal point of a link and
represents an abstraction of an entity in a complex network such as a person,
a city, a protein, an atom, etc. The links represent the relations between these
entities.

A graph G = (V, E) can be represented by different kinds of matrices [6].
The (ordinary) spectrum of a graph always refers to the spectrum of the ad-
jacency matrix of the graph [9]. Thus, we will be concerned here only with
this matrix. Excellent reviews about the Laplacian spectrum of graphs can
be found in the literature [10]. The adjacency matrix A = A(G) of a graph
G = (V, E) is a symmetric matrix of order n = |V|, where | · · · |means the car-
dinality of the set and where Aij = 1 if there is a link between nodes i and j,
and Aij = 0 otherwise.

The “spectrum” of a network is a listing of the eigenvalues of the adjacency
matrix of such a network. It is well known that every n ~ n real symmet-
ric matrix A has a spectrum of n orthonormal eigenvectors φ1, φ2, . . . , φn

with eigenvalues λ1 v λ2 v . . . v λn [11]. The largest eigenvalue of graph
λ1 is known as the principal eigenvalue, the spectral radius, or the Perron–
Frobenius eigenvalue [11]. The eigenvector associated with this eigenvalue is
also known as the principal eigenvector of a graph.

A walk of length l is any sequence of (not necessarily) different vertices
v1, v2, . . . , vk, vk+1 such that for each i = 1, 2, . . . , k there is an edge from vi

to vi+1. A closed walk (CW) of length k is a walk in which vk+1 = vk [7]. The
number of CWs of length μk is determined by the trace of the kth power of
the adjacency matrix, μk = Tr Ak. This number is also known as a spectral
moment due to the following relationship with graph eigenvalues:

μk =
n∑

j=1

(
λj
)k . (4.1)

The number of CWs of length k starting (and ending) at node p in the graph
can also be expressed in terms of the graph eigenvalues and eigenvectors [12]:

μk (p) =
n∑

j=1

[
φj (p)

]2 (λj
)k . (4.2)

In a similar way, the number of walks of length k starting at node p and
ending at node q are given by [12]

μk (p, q) =
n∑

j=1

φj (p) φj (q)
(
λj
)k . (4.3)

The spectrum of certain graphs is completely determined by the structure of
the graph [9]. For instance, the complete graph, which is a graph in which
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every node is connected to every other node, has a spectrum (n – 1)1, (–1)n–1.
In the cycle graph, which is a graph on n nodes containing a single cycle
through all nodes, the spectrum is given by 2 cos(2πj/n) ( j = 0, . . . , n – 1). The
path or linear chain is also determined by its spectrum, which is given by
2 cos(2πj/n + 1) ( j = 0, . . . , n). The reader is referred to several books, such
as [9,12,13], for a more thorough discussion and list of references to original
papers.

4.3

Spectral Measures of Node Centrality

A local characterization of networks is made numerically by using one of
several measures known as “centrality” [14]. One of the most used centrality
measures is the “degree centrality” (DC) [15], which can be interpreted as
a measure of immediate influence, as opposed to long-term effect, in a net-
work [14]. Several other centrality measures have been introduced and stud-
ied for real-world networks, in particular for social networks. They account
for the different node characteristics that permit them to be ranked in or-
der of importance in the network. Betweenness centrality (BC) measures the
number of times that a shortest path between nodes i and j travels through
a node k whose centrality is being measured. The farness of a vertex is the
sum of the lengths of the geodesics to every other vertex. The inverse of far-
ness is closeness centrality (CC).

The first spectral measure of centrality was introduced by Bonacich in
1987 as the eigenvector centrality (EC) [16]. This centrality measure is not
restricted to shortest paths [16]; it is defined as the principal or dominant
eigenvector of the adjacency matrix A representing the connected subgraph
or component of a network. It simulates a mechanism in which each node
affects all of its neighbors simultaneously [17]. EC is better interpreted as
a sort of extended-degree centrality that is proportional to the sum of the
centralities of the node neighbors. Consequently, a node has a high value of
EC either if it is connected to many other nodes or if it is connected to others
that themselves have a high EC [18].

Here we designate the number of walks of length L starting at node i by
NL(i) and the total number of walks of this length existing in the network
by NL(G). The probability that a walk selected at random in the network has
started at node i is simply

PL(i) =
NL(i)
NL(G)

. (4.4)

It is known that for a nonbipartite connected network with nodes 1, 2, . . . , n,
for L → ∞, the vector [PL(1) PL(2) . . . PL(n)] tends toward the eigenvec-
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tor corresponding to the largest eigenvalue of the adjacency matrix of the
network. Consequently, the elements of EC represent the probabilities of
selecting at random a walk of length L starting at node i when L → ∞:
EC(i) = PL(i) [12].

Another spectral measure of node centrality was introduced recently by
Estrada as the subgraph centrality of vertex i in a network, which is given
by [19]

SC(i) =
∞∑

k=0

μk(i)
k!

, (4.5)

where μk(i) are the number of closed walks of length k starting and ending
at node i. The relation of this measure with the graph spectrum comes from
the following results.

Let λ1 be the principal eigenvalue of A. For any nonnegative integer k and
any i ∈ {1, . . . , n}, μk(i) u λk

1, Series (4.2), whose terms are nonnegative,
converges,

∞∑
k=0

μk (i)
k!

u
∞∑

k=0

λk
1

k!
= eλ1 . (4.6)

Thus, the subgraph centrality of any vertex i is bounded above by SC(i) u
eλ1 . The following result shows that the subgraph centrality can be obtained
mathematically from the spectra of the adjacency matrix of the network.

Theorem 4.1 [19]: Let G = (V, E) be a simple graph of order n. Let φ1, φ2, . . . , φn

be an orthonormal basis of Rn composed of eigenvectors of A associated to the
eigenvalues λ1, λ2, . . . , λn. Let φj(i) denote the ith component of φj. For all i ∈ V,
the subgraph centrality may be expressed as follows:

SC(i) =
n∑

j=1

[
φj (i)

]2 eλj . (4.7)

The sum of the subgraph centralities of all nodes in the network SC depends
only on the eigenvalues of the adjacency matrix of the network [19]:

SC (G) =
n∑

i=1

SC (i) =
n∑

i=1

eλi . (4.8)

SC is also known as the Estrada index of a graph, and several mathematical
results are available in the literature for this index [20–23]. Hereafter we will
follow this designation and represent the subgraph centrality as EE(G), or
simply EE.
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4.3.1

Subgraph Centrality as a Partition Function

To start with, let us now consider a network in which every pair of vertices
is weighted by a parameter �. Let B be the adjacency matrix of this weighted
network. It is obvious that B = �A and μr(B) = Tr Br = �r Tr Ar = �rμr. In this
case, the subgraph centrality can be generalized as follows [24]:

EE (G, �) =
∞∑
r=0

�rμr

r!
=

N∑
j=1

e �λj . (4.9)

Alternatively, we can write EE (G, �) as follows:

EE (G, �) = Tr
∞∑
r=0

�rAr

r!
= Tr e �A . (4.10)

It is straightforward to realize that the subgraph centrality is generalized to
the partition function of the complex network in the form [25]

Z (G, �) == EE (G, �) == Tr e �A , (4.11)

where the Hamiltonian is H = –A and � is the inverse temperature, that is,
� = 1/ (kBT). Note that � can be considered the “strength” of the interaction
between a pair of vertices, assuming that every pair of vertices has the same
interaction strength [25]. For instance, � = 0, which corresponds to the limit
T → ∞, corresponds to a graph with no links. This case is similar to a gas
formed by monoatomic particles. On the other hand, very large values of � in
the limit T → +0 represents very large attractive interactions between pairs
of bonded nodes in a similar manner to a solid. The “classical” subgraph
centrality is the particular case where � = 1, i.e., the unweighted network.

Using this approach we can define the probability pj that the system occu-
pies a microstate j as follows [25]:

pj =
e �λj∑

j
e �λj

=
e �λj

EE (G, �)
. (4.12)

Based on Equation (4.4) we can also define the information-theoretic entropy
for the network using the Shannon expression [25]

S (G, �) = –kB

∑
j

[
pj
(
�λj – ln EE

)]
, (4.13)

where we wrote EE(G,�) = EE. Then we can obtain the expressions for the
total energy H(G) and Helmholtz free energy F(G) of the network [25]:



4.3 Spectral Measures of Node Centrality 61

H (G, �) = –
n∑

j=1

λjpj , (4.14)

F (G, �) = –�–1 ln EE . (4.15)

These statistical mechanics functions of networks are bounded as follows
[25]:

0 u S (G, �) u � ln n , (4.16)

–� (n – 1) u H (G, �) u 0 , (4.17)

–� (n – 1) u F (G, �) u –� ln n , (4.18)

where the lower bounds are obtained for the complete graph as n → ∞ and
the upper bounds are reached for the null graph with n nodes.

4.3.2

Application

As a first illustration of the possibilities of the spectral measures of central-
ity we selected one example published recently by Choi et al. [26] in which
the EC was used in comparing world city networks. The authors ranked the
most central cities in the world by considering the Internet backbone and
air-transport intercity linkages. When the authors considered only the num-
ber of direct links in the Internet backbone network, New York emerged as
the most connected node, followed by London, Frankfurt, Tokyo, and Paris.
However, when the EC was considered, the most central city was London,
followed by New York, Paris, Frankfurt, and Amsterdam. In the network of
air passengers the ranking according to the DC was dominated by London,
followed by Frankfurt, Paris, New York, and Amsterdam. The use of the EC
ranks London as the most central one, but changes the order of the other
cities, Paris becomes the second most central followed by New York, Amster-
dam and Frankfurt. The differences arise from the fact that in the EC a city
that is connected to central cities has its own centrality boosted. Then, it is
not only important to have a large number of connections but to have these
connections with highly central nodes in the network.

To illustrate the characteristics of the subgraph centrality we selected
an example from the collaboration network of Computational Geometry au-
thors [19]. We selected at random two authors with the same degree and dif-
ferent subgraph centrality (Figure 4.2): Timothy M.Y. Chan and S.L. Abrams,
both having DC = 10, but having SC = 8.09 · 109 and SC = 974.47, respec-
tively. Despite both authors’ having the same number of coauthors, Chan
is connected to five of the hubs of this collaboration network: Agarwal (98),
Snoeyink (91), Sharir (87), Tamassia (79), and Yap (76) (DC is given in paren-
thesis). However, Abrams is connected to authors having lower numbers of
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Figure 4.2 Part of the collaboration network in computational
geometry for two authors with the same degree centrality but
a different subgraph centrality: Timothy M.Y. Chan and S.L. Abrams
and all their coworkers.

coworkers; e.g., Patrikalakis has 31 coauthors and the rest have only 5 to 16
collaborators. This simple difference means that Chan is separated from 623
other authors by a distance of only two; i.e., simply connected triplets, while
this number is significantly lower for Abrams, i.e., only 116. The risk that
Chan is “infected” with an idea circulating among the authors in this field
of research is much higher than the risk with Abrams. This difference is
accounted for by the subgraph centrality [19].

4.4

Global Topological Organization of Complex Networks

Our objective here is to give a characterization of the global organization
of complex networks. The first step for analyzing the global architecture of
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a network is to determine whether the network is homogeneous or modu-
lar. In a homogeneous network, what you see locally is what you get globally
from a topological point of view. However, in a modular network, the organi-
zation of certain modules or clusters would be different from one to another
and to the global characteristics of the network [27–29].

Formally, we consider a network homogeneous if it has good expan-
sion (GE) properties. A network has GE if every subset S of nodes (S u 50%
of the nodes) has a neighborhood that is larger than some “expansion factor”
Ω multiplied by the number of nodes in S. A neighborhood of S is the set of
nodes that are linked to the nodes in S [30]. Formally, for each vertex v ∈ V
(where V is the set of nodes in the network), the neighborhood of v, denoted
as Γ(v), is defined as Γ(v) = {u ∈ V |(u, v) ∈ E} (where E is the set of links
in the network). Then, the neighborhood of a subset S ⊆ V is defined as
the union of the neighborhoods of the nodes in S: Γ(S) =

⋃
v∈S Γ(v), and the

network has GE if Γ(v) v Ω |S| ∀S ⊆ V.
Consequently, in a homogeneous network we should expect that some lo-

cal topological properties scale as a power law of global topological proper-
ties. A power-law relationship between a two variables x and y of the network
is known by the term scaling and refers to the relationship [31]

y = Ax η , (4.19)

where A and η are constant. The existence of a scaling law reveals that the
phenomenon under study reproduces itself on different time and/or space
scales. That is, it has self-similarity [31]. Then, if x and y are variables repre-
senting some topological features of the network at the local and the global
scale, the existence of such scaling implies that the network is topologically
self-similar and what we see locally is what we get globally, which means that the
network is homogeneous. In the following section we develop an approach
to account for such scaling.

4.4.1

Spectral Scaling Method

Our first task here is to find a couple of appropriate topological variables
for a network that characterize the local and global environment around
a node. As for the local property we consider the subgraph centrality. As
we already noted, this spectral measure characterizes the local cliquishness
around a node because it gives larger weights to the participation of a node
in smaller subgraphs. It should be noted that EE(i) counts all CWs in the net-
work, which can be of even or odd length. CWs of even length might be trivial
on moving back and forth in acyclic subgraphs, i.e., those that do not contain
cycles, while odd CWs do not contain contributions from acyclic subgraphs.
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It is easy to show [32] that

EE(i) =
N∑

j=1

[
φj (i)

]2 cosh
(
λj
)

+
N∑

j=1

[
φj (i)

]2 sinh
(
λj
)

= EEeven (i) + EEodd(i) ,

(4.20)

which means that the term EEodd(i) only accounts for subgraphs contain-
ing at least one odd cycle. In this way, EEodd(i) can be considered a topo-
logical property of local organization in networks that characterize the odd-
cyclic wiring of a typical neighborhood. We consider the EC a global topo-
logical characterization of the environment around a node. We have already
shown that the EC represents the probability of selecting at random a walk
of length L starting at node i when L → ∞ [12]. Due to the infinite length
of the walk we are considering, such a walk visits all nodes and links of the
network obtaining a global picture of the topological environment around
the corresponding node.

Now, we can establish the relationship between the local and global spec-
tral properties of a network. To start with, we consider a graph with GE
properties. Then, it is known that for a network to have good expansion,
the gap between the first and second eigenvalues of the adjacency matrix
(Δλ = λ2 – λ1) needs to be sufficiently large. For instance, what follows is
a well-known result in the field of expander graphs [33–35].

Theorem 4.2 (Alon–Milman): Let G be a regular graph with spectrum λ1 v λ2 v
. . . v λn. Then, the expansion factor is bounded as

λ1 – λ2

2
u φ (G) u

√
2λ1 (λ1 – λ2).

Then, let us write EEodd (i) as follows:

EEodd(i) =
[
EC(i)

]2 sinh (λ1) +
∑
j=2

[
φj(i)

]2 sinh
(
λj
)

, (4.21)

where EC(i) is the EC (the principal eigenvector φ1(i)) and λ1 is the principal
eigenvalue of the network. Then, let us assume that λ1 >> λ2 in such a way
that we can consider that

[
EC(i)

]2 sinh (λ1) >>
∑
j=2

[
φj(i)

]2 sinh
(
λj
)
. Conse-

quently, we can write the odd-subgraph centrality as

EEodd(i) W
[
EC(i)

]2 sinh (λ1) , (4.22)

and the principal eigenvector of the network is directly related to the sub-
graph centrality in GENs according to the following spectral scaling relation-
ship [36, 37]:

EC(i) ∝ A
[
EEodd(i)

]η , (4.23)
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which corresponds to the power-law relationship between EC(i) and EEodd(i)
for GENs, which is similar to the one given by Equation (4.19), where x and y
are variables representing some topological features of the network at the lo-
cal and the global scale. Here, A W

[
sinh (λ1)

]–0.5 and η W 0.5. This expression
can be written in a log-log scale as [36, 37]

log
[
EC(i)

]
= log A + η log

[
EEodd(i)

]
. (4.24)

Consequently, a log-log plot of EC(i) vs. EEodd (i) in a homogeneous network
has to show a linear fit with slope η W 0.5 and intercept log A for GENs.

4.4.2

Universal Topological Classes of Networks

There are several classification schemes grouping networks according to
their structures. For instance, complex networks can be classified accord-
ing to the existence or not of the “small-world” property [38, 39] or according
to their degree distribution. The last classification permits us to classify net-
works as “scale-free” [40] if their node degree distribution decays as a power
law, “broad-scale” networks, which are characterized by a connectivity dis-
tribution that has a power-law regime followed by a sharp cutoff, or “single-
scale” networks in which degree distribution displays a fast decaying tail [41].
Even scale-free networks have been classified into two different subclasses
according to their exponent in the power-law distribution of the betweenness
centrality [42].

Each of these classification schemes reproduces different characteristics
of complex networks. “Small-worldness” [38] and “scale-freeness” [40] reflect
global organizational principles of complex systems. The first characterizes
the relatively small separation among pairs of nodes and the high cliquish-
ness of some real-world networks [38]. The second reproduces the presence
of a few highly connected hubs that keep glued together the vast majority of
poorly connected nodes in certain networks [40]. Both properties are of great
relevance in analyzing other important properties of complex networks, such
as disease propagation [43–45] or robustness against targeted or random at-
tacks [46–48]. However, there are important organizational principles of com-
plex networks that escape the analysis of these global network characteristics.

The theoretical approach we presented in the previous section permits
the classification of complex networks into two groups: homogeneous
(GEN) and nonhomogeneous networks. Here we are interested in identi-
fying the topological differences existing among the nonhomogeneous net-
works in such a way that permit us to classify them into some universal
classes.

Let us consider the ideal case in which a network displays perfect spectral
scaling, such that we can calculate the eigenvector centrality by using the
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following expression:

log ECIdeal(i) = 0.5 log EEodd(i) – 0.5 log
[
sinh (λ1)

]
. (4.25)

Now, let us consider the deviations from the ideal behavior represented by
Equation (4.22) in nonhomogeneous networks. We can account for these
deviations from the ideal by measuring the departure of the points from the
perfect straight line with respect to log ECIdeal(i):

Δ log EC(i) = log
EC(i)

ECIdeal(i)
= log

{[
EC(i)

]2 sinh (λ1)
EEodd(i)

}0.5

. (4.26)

Then, according to the values of Δ log EC(i), there are four different classes
of complex networks. These classes are as follows [49].

• Class I: networks displaying perfect spectral scaling:

Δ log EC(i) ~W 0, ∀i ∈ V⇒
[
EC(i)

]2 sinh (λ1) ~W EEodd(i) . (4.27)

• Class II: networks displaying spectral scaling with negative deviations:

Δ log EC(i) u 0⇒
[
EC(i)

]2 sinh (λ1) u EEodd(i), i ∈ V . (4.28)

• Class III: networks displaying spectral scaling with positive deviations:

Δ log EC(i) v 0⇒
[
EC(i)

]2 sinh (λ1) v EEodd(i), i ∈ V . (4.29)

• Class IV: networks displaying spectral scaling with mixed deviations:

Δ log EC (p) u 0, p ∈ V and Δ log EC (q) > 0, q ∈ V . (4.30)

We previously showed that the first of such classes corresponds to net-
works displaying good expansion properties, that is, networks in which
nodes and links are homogeneously distributed through the network in such
a way that there are not structural bottlenecks. The other three classes cor-
respond to different organizations of the community structure in the net-
works. Class II corresponds to networks in which there are two or more
communities of highly interconnected nodes, which display low intermod-
ule connectivity. These kind of networks look like networks containing holes
in their structures. In class III the networks display a typical “core-periphery”
structure characterized by a highly interconnected central core surrounded
by a sparser periphery of nodes. Finally, class IV networks display a com-
bination of highly connected groups (quasi-cliques) and some groups of
nodes partitioned into disjoint subsets (quasi-bipartite), without a predom-
inance of either structure. In Figure 4.3 we illustrate the main structural
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Figure 4.3 Models of networks in classes II, III, and IV
according to the classification of the spectral scaling ap-
proach. On the left-and side we show the corresponding
spectral scaling for these networks.

properties of nonhomogeneous networks and their respective spectral scal-
ing plots.

To quantify the degree of deviation of the nodes from the ideal spectral
scaling, we account for the mean square error of all points with positive and
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negative deviations in the spectral scaling, respectively [49]:

�+ =

√
1

N+

∑
+

(
log

EC(i)
ECIdeal(i)

)
and � – =

√
1

N–

∑
–

(
log

EC(i)
ECIdeal(i)

)
.

where
∑

+ and
∑

– are the sums carried out for the N+ points having
Δ log EC(i) > 0 and for the N– having Δ log EC(i) < 0, respectively.

4.4.3

Applications

We have studied 61 real-world complex networks accounting for ecologi-
cal, biological, protein secondary structures, informational, technological,
and social systems [49]. Using the values of �– and �+ we have classified
these networks into the four different classes that are predicted to exist from
a theoretical point of view. We have carried out a canonical discriminant
analysis (CDA) [44] for the 61 networks studied using log

(
�– + 10–3

)
and

log
(
�+ + 10–3

)
as classifiers, where the sum of the constant 10–3 is necessary

to avoid indeterminacies due to zero values. In Figure 4.4 we can see the
main factors (roots) that perfectly separate the networks studied into the four
different structural classes.

Consequently, we have identified the existence of the four classes of net-
works in real-world systems by studying a large pool of networks represent-
ing ecological, biological, informational, technological, and social systems.
While classes I, II, and IV are equally populated, each having about 32% of
the total networks, class III is less frequent and only appeared in two eco-
logical networks. In general, most ecological networks correspond to class I
(70%), and they represent the only systems in which the four classes of
networks are represented. Most biological networks studied correspond to
class IV (67%), while all protein secondary structure networks correspond to
class II. Informational networks are mainly classified into two classes: class I
(50%) and class II (33.3%). On the other hand, technological networks are
mainly in class IV (64%), while 27% correspond to class I. Social networks
also display great homogeneity in their structural classes as they correspond
mainly to classes II and IV (91%) [49].

We finally have explored the possible growing mechanisms determining
the structural classes observed in this work. We found that a random grow-
ing mechanism giving rise to uniform distributions of node degrees and
the preferential attachment mechanism of Barabási-Albert reproduces very
well the characteristics of networks in class I when the average degree is
larger than 5. For sparser networks, such as those having an average degree
of less than 3, both mechanisms reproduce the characteristics of networks in
class IV. However, neither growing mechanism is able to reproduce the topo-



4.5 Communicability in Complex Networks 69

Figure 4.4 Plot of the two principal roots obtained in the
canonical discriminant analysis (CDA) of the 61 networks
classified into 4 different structural classes. Ellipses corre-
spond to 95% of confidence in the CDA.

logical organization of networks in classes II and III [49]. Similar results are
obtained when generating random networks with the same degree sequence
as real-world networks. Our results confirm previous findings about the ne-
cessity of investigating new growing mechanisms for generating networks
to model real-world systems [50].

4.5

Communicability in Complex Networks

The communicability between a pair of nodes in a network is usually consid-
ered as taking place through the shortest path connecting both nodes. How-
ever, it is known that communication between a pair of nodes in a network
does not always take place through the shortest paths but it can follow other
nonoptimal walks [51–53]. Then, we can consider a communicability mea-
sure that accounts for a weighted sum of all walks connecting two nodes in
the network. We can design our measure in such a way that the shortest path
connecting these two nodes always receives the largest weight. Then, if P(s)

pq

is the number of shortest paths between nodes p and q having length s and
W (k)

pq is the number of walks connecting p and q of length k > s, we propose
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to consider the quantity [54]

Gpq =
1
s!

Ppq +
∑
k>s

1
k!

W (k)
pq . (4.31)

In fact, Equation (4.31) can be written as the sum of the p, q entry of the
different powers of the adjacency matrix:

Gpq =
∞∑
k=0

(
Ak

)
pq

k!
, (4.32)

which converges to [54]

Gpq =
(

eA)
pq =

n∑
j=1

φj (p) φj (q) eλj . (4.33)

We call Gpq the communicability between nodes p and q in the network. The
communicability should be minimum between the end nodes of a chain,
where it vanishes as the length of the chain is increased. On the other hand,
the communicability between an arbitrary pair of nodes in a complete graph
diverges as the size of the graph is increased because the oscillation is greatly
amplified by the infinitely many walks between the nodes. Thus, the commu-
nicability between a pair of nodes in a network is bounded between zero and
infinity, which are obtained for the two end nodes of an infinite linear chain
and for a pair of nodes in an infinite complete graph. For the linear chain Pn

the value of Gpq is equal to [54]

Gpq =
1

n + 1

∑
j

(
cos

jπ (p – q)
n + 1

– cos
jπ (p + q)

n + 1

)
e2 cos

“
jπ

n+1

”
. (4.34)

Let P∞ be a chain of infinite length. It is straightforward to realize by simple
substitution in Equation (4.34) that G1,∞ = 0 for the end nodes p = 1 and
q =∞. For the complete graph we have that [54]

Gpq =
en–1

n
+ e–1

n∑
j=2

φj(p)φj(q) =
en–1

n
–

1
ne

=
1

ne
(en – 1) , (4.35)

and it is easy to see that Gpq →∞ as n→∞ for Kn.
A physical interpretation of the communicability can be done by consid-

ering a continuous-time quantum walk on the network. Take a quantum-
mechanical wave function |ψ (t)〉 at time t. It obeys the Schrödinger equa-
tion [55]

i�
d
dt
|ψ (t)〉 = –A |ψ (t)〉 , (4.36)

where we use the adjacency matrix as the negative Hamiltonian.
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Assuming from now on that � = 1 we can write down the solution of the
time-dependent Schrödinger Equation (4.33) in the form |ψ (t)〉 = eiAt |ψ (0)〉.
The final state eiAt |q〉 is a state of the graph that results after time t from
the initial state |q〉. The “particle” that resided on the node q at time t = 0
diffuses for the time t because of the quantum dynamics. Then, we can ob-
tain the amplitude that the “particle” ends up in at node p of the network by
computing the product 〈p| eiAt |q〉. By continuation from real time t to imag-
inary time, we have the thermal Green’s function defined as Gpq = 〈p| eA |q〉,
which is the communicability between nodes p and q in the network as de-
fined in this work [54]. Consequently, the communicability between nodes p
and q in the network represents the probability that a particle starting from
node p ends up at node q after wandering on the complex network due to
the thermal fluctuation. By regarding the thermal fluctuation as some form
of random noise, we can identify the particle as an information carrier in
a society or a needle in a drug-user network.

4.5.1

Communicability and Network Communities

Many complex networks in the real world are not homogeneous, as we have
already seen in this chapter. Instead, the nodes in most networks appear to
group into subgraphs in which the density of internal connections is larger
than the connections with the rest of the nodes in the network. This no-
tion was first introduced by Girvan and Newman [56] and it is known as the
community structure of complex networks [57–61]. In the language of com-
municability we are using in this section, we can say that a community is
a group of nodes having larger communicability among them than with the
rest of the nodes in the graph. Later on we will give a more formal definition
of community.

To perform further analysis, we now use the spectral decomposition of
the Green’s function [62]. Imagine that the network has a spring on each
link. Each eigenvector indicates a mode of oscillation of the entire network
and its eigenvalue represents the weight of the mode. It is known that the
eigenvector of the largest eigenvalue λ1 has elements of the same sign. This
means that the most important mode is the oscillation where all nodes move
in the same direction at one time.

The second largest eigenvector φ2 has both positive and negative elements.
Suppose that a network has two clusters connected through a bottleneck but
each cluster is closely connected within. The second eigenvector represents
the mode of oscillation where the nodes of one cluster move coherently in
one direction and the nodes of the other cluster move coherently in the op-
posite direction. Then the sign of the product φ2 (p) φ2 (q) tells us whether
nodes p and q are in the same cluster or not.
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The same analysis can be applied to the rest of the eigenvalues of the net-
work. The third eigenvector, φ3, which is orthonormal to the first two eigen-
vectors, has a different pattern of signs, dividing the network into three dif-
ferent blocks after appropriate arrangement of the nodes. In general, the sec-
ond eigenvector divides the graph into biants, the third divides it into triants,
the fourth into quadrants, and so forth, but these clusters are not necessarily
independent of each other.

According to this pattern of signs, we have the following decomposition of
the thermal Green’s function [54]:

Gpq =
[
φ1 (p) φ1 (q) eλj

]
+

⎡⎣ ++∑
j=2

φ+
j (p) φ+

j (q) eλj +
– –∑
j=2

φ–
j (p) φ–

j (q) eλj

⎤⎦
+

⎡⎣ + –∑
j=2

φ+
j (p) φ–

j (q) eλj +
– +∑
j=2

φ–
j (p) φ+

j (q) eλj

⎤⎦ , (4.37)

where φ+
j and φ–

j refer to the eigenvector components with positive and neg-
ative signs, respectively. According to the partitions made by the pattern of
signs of the eigenvectors in a graph, two nodes have the same sign in an
eigenvector if they can be considered as being in the same partition of the
network, while those pairs having different signs correspond to nodes in
different partitions. Thus, the first bracket in Equation (4.34) represents the
background mode of translational movement. The second bracket represents
the intracluster communicability between nodes in the network, and the third
bracket represents the intercluster communicability between nodes [54].

The above consideration motivates us to define a quantity ΔGpq by
subtracting the contribution of the largest eigenvalue λ1 from Equation
(4.34) [54]:

ΔGpq =
intracluster∑

j=2

φj (p) φj (q) eλj +
intercluster∑

j=2

φj (p) φj (q) eλj . (4.38)

By focusing on the sign of ΔGpq, we can unambiguously define a community
for a group of nodes. If ΔGpq for a pair of nodes p and q have a positive sign,
then they are in the same community. If ΔGpq the two nodes have a negative
sign, then they are in different clusters [54].

Definition 4.1 A community in a network is a group of nodes U ⊆ V for
which the intracluster communicability is larger than the intercluster com-
municability, i.e., ΔGpq > 0, ∀ (p, q) ∈ U.
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4.5.2

Detection of Communities: The Communicability Graph

To start with, we represent the values of ΔGpq in the form of a matrix Δ.
Δ is a matrix whose nondiagonal entries are given by the values of ΔGpq and
zeroes in the main diagonal. Now, let us introduce a Heaviside step function:

Θ(x) =

{
1 if x > 0

0 if x u 0
(4.39)

Let Θ(Δ) be the result of applying the Heaviside step function in an element-
wise way to matrix Δ. Then, in the resulting matrix Θ (Δ) a pair of nodes p
and q is connected if, and only if, they have ΔGpq > 0. Then let us define the
following graph [63].

Definition 4.2 The communicability graph Θ (G) is a graph having adjacency
matrix Θ (Δ).

In such a graph two nodes are connected if they have ΔGpq > 0. That is
to say, the nodes forming a community in the original graph are connected
in the communicability graph. Now, suppose that there is a link between
nodes p and q and there are also links between them and a third node r.
This means that ΔGpq > 0, ΔGpr > 0, and ΔGqr > 0. Consequently, the three
nodes form a positive subgraph C. As we want to detect the largest subset of
nodes connected to this triple, we have to search for the nodes s for which
ΔGis > 0 ∀i ∈ C. Using the communicability graph, this search is reduced
to finding the cliques in a simple graph, Θ (Δ). These cliques correspond to
the communities of the network. A clique is a maximum complete subgraph
in a graph, that is, a maximum subgraph in which every pair of nodes is
connected.

Finding the cliques in a graph is a classical problem in combinatorial opti-
mization that has found applications in diverse areas [64]. Here we use a well-
known algorithm developed by Bron and Kerbosch [65], which is a depth-first
search for generating all cliques in a graph. This algorithm consumes a time
per clique that is almost independent of the graph size for random graphs,
and for the Moon–Moser graphs of n vertices the total time is proportional
to (3.14)n/3. The Moon–Moser graphs have the largest number of maximal
cliques possible among all n-vertex graphs regardless of the number of edges
in the graph [66].
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4.5.3

Application

As an example of a real-world network, we consider a friendship network
known as the Zachary karate club, which has 34 members (nodes) with some
friendship relations (links). The members of the club, after some entangle-
ment, were eventually divided into two groups, one formed by the followers
of the instructor and the other formed by the followers of the administra-
tor [67]. This network has been analyzed in practically every paper consider-

Figure 4.5 (a) The friendship network from the karate club
and the two communities identified by Zachary.
(b) The communicability graph associated to the karate club
network. The numbering is the same in both figures.
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ing the problem of community identification in complex networks. In Fig-
ure 4.5a we illustrate the Zachary network in which the nodes are divided
into the two classes observed by Zachary on the basis of the friendship rela-
tionships among the members of the club.

In the Figure 4.5b we illustrate the communicability graph Θ (G) of the
Zachary network. As can be seen, Θ (G) correctly divides the network into
two groups. There is very high internal communicability among the mem-
bers of the respective groups, but there is almost no communicability be-
tween the groups. In fact, node 3 is correctly included in the group of the
instructor (node 1).

An analysis of the cliques in the communicability graph reveals a more de-
tailed view of the community structure of this network. Accordingly, there are
five different cliques representing five overlapping communities in the net-
work. These communities are given below, where the numbers correspond
to the labels of the nodes in Figure 4.5a:

1 : {10, 15, 16, 19, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34}
2 : {9, 10, 15, 16, 19, 21, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34}
3 : {10, 15, 16, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34}
4 : {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 20, 22}
5 : {3, 10}

Figure 4.6 Illustration of the overlapping between two groups
or neighborhoods formed among the followers of the ad-
ministrator (node 34) in the Zachary karate club network.
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As can be seen, the first three communities, which correspond to the group
of the administrator (node 34), are formed by 16 members each and display
an overlap of about 94% (Figure 4.6). The fourth community corresponds
to that of the instructor (node 1) and also has 16 members. The last com-
munity is formed by nodes 3 and 10 only. This community displays overlaps
with the communities of the administrator as well as with that of the instruc-
tor. In fact, node 10 appears in communities 1 to 4, and node 3 appears in
communities 4 and 5.

4.6

Network Bipartivity

There are numerous natural systems that can be modeled by making a parti-
tion of the nodes into two disjoint sets [68,69]. For instance, in a network rep-
resenting heterosexual relationships, one set of nodes corresponds to female
and the other to male partners. In some trade networks, one set of nodes
can represent buyers and the other sellers, and so forth. These networks are
called bipartite networks or graphs and are formally defined below [6].

Definition 4.3 A network (graph) G = (V, E) is called bipartite if its vertex set V
can be partitioned into two subsets V1 and V2 such that all edges have one
endpoint in V1 and the other in V2.

Now, let us consider the case in which some connections between the
nodes in the same set of a formerly bipartite network are allowed. Strictly
speaking these networks are not bipartite, but we can consider them loosely
as almost bipartite networks. For instance, if we consider a sexual relation-
ships network in which not only heterosexual but also some homosexual
relations are present, the network is not bipartite, but it could be almost bi-
partite if the number of homosexual relations is low compared to the number
of heterosexual ones. It is known that the transmission rates for homosexual
and heterosexual contacts differ [69]. Consequently, the transmission of this
disease will depend on how bipartite the corresponding network is. In other
words, having an idea of the bipartivity of sexual networks we will have an
idea on the rate of spreading of a sexually transmitted disease.

The following is a well-known result due to König that permits us to char-
acterize bipartite graphs [70].

Theorem 4.3 (König): A graph is bipartite if and only if all its cycles are even.

We will make use of this result in order to characterize the bipartivity of
a network. To start with, we consider the subgraph centrality of the whole
graph defined by Equation (4.5). We can express this index as the sum of two
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contributions, one coming from odd and the other from even CWs [32]:

EE (G) =
n∑

j=1

[
cosh(λj) + sinh(λj)

]
= EEeven + EEodd . (4.40)

If G (V, E ) is bipartite, then according to the theorem of König [70]: EEodd =
n∑

j=1
sinh(λj) = 0 because there are no odd CWs in the network [32]. Therefore:

EE (G) = EEeven =
n∑

j=1

cosh(λj) . (4.41)

Consequently, the proportion of even CWs to the total number of CWs is
a measure of the network bipartivity [32]:

b(G) =
EEeven

EE (G)
=

EEeven

EEeven + EEodd
=

n∑
j=1

cosh
(
λj
)

n∑
j=1

eλj

. (4.42)

It is evident that b (G) u 1 and b (G) = 1 if and only if G is bipartite, i.e.,
EEodd = 0. Furthermore, as 0 u EEodd and sinh(λj) u cosh(λj), ∀λi, then
1
2 < b (G) and 1

2 < b (G) u 1. The lower bound is reached for the least possible
bipartite graph with n nodes, which is the complete graph Kn. As the eigen-
values of Kn are n – 1 and –1 (with multiplicity n – 1), then b (G) → 1

2 when
n→∞ in Kn.

Then b (G) represents a quantitative characterization of the bipartivity of
a complex network. Now we have a quantitative measure that permits us
to discern between quasi-bipartite networks as well as to differentiate them
from bipartite and not bipartite graphs. However, an open question remains:
Can we identify the bipartite subgraphs existing in a network?

4.6.1

Detecting Bipartite Substructures in Complex Networks

It is known that the eigenvectors corresponding to positive eigenvalues give
a partition of a network into clusters of tightly connected nodes [71, 72]. In
contrast, the eigenvectors corresponding to negative eigenvalues make par-
titions in which nodes are not close to those with which they are linked, but
rather with those with which they are not linked [71, 72]. Then we can make
use of the communicability function to identify the bipartite structures in
complex networks. In general, we can say that a positive (negative) value
of � in the communicability function (30) increases the contribution of the
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positive (negative) eigenvalues to the communicability function. Then, if we
write the communicability function as [73]

Gpq (�) =
∑
λj<0

φj (p) φj (q) e �λj +
∑
λj=0

φj (p) φj (q) e �λj +
∑
λj>0

φj (p) φj (q) e �λj ,

(4.43)

we have that

Gpq (� > 0) W
n∑

λj>0

φj (p) φj (q) e �λj , (4.44)

Gpq (� < 0) W
n∑

λj<0

φj (p) φj (q) e–|�|λj . (4.45)

In other words, Gpq (� > 0) determines a partition of the network into clusters
of tightly connected nodes, which corresponds to the network communities.
On the other hand, for Gpq ( � < 0) the network is partitioned in such a way
that the nodes are close to other nodes that have similar patterns of con-
nections with other sets of nodes, i.e., nodes to which they are structurally
equivalent. In the first case, we say that the nodes corresponding to larger
components tend to form quasi-cliques, that is, clusters in which every two
nodes tend to interact with each other. In the second case, the nodes tend to
form quasi-bipartites, i.e., nodes are partitioned into almost disjoint subsets
with high connectivity between sets but low internal connectivity.

Let us consider a bipartite graph and let p and q be nodes that are in two
different disjoint sets of the graph. Then, there are no walks of even length
between p and q in the graph and [73]

Gpq (� = –1) = [– sinh (A)]pq < 0 . (4.46)

However, if p and q are nodes in the same disjoint set, then there is no walk
of odd length connecting them due to the lack of odd cycles in the bipartite
graph, which yields

Gpq (� = –1) = [cosh (A)]pq > 0 . (4.47)

The above argument shows that, in general, the sign of the communicability
at a negative temperature, Gpq ( � = –1) =

(
e–A

)
pq, gives an indication as to

how the nodes can be separated into disjoint sets.
Our strategy for detecting quasi-bipartite clusters in complex networks is

as follows. First we start by calculating exp (–A), whose (p, q)-entry gives the
communicability between the nodes p and q in the network. Then we intro-
duce the following definition [73].
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Figure 4.7 (a) Network representation of the food web of
Canton Creek. (b) Bipartite structure of this network as
found by the method explained here. Nodes in each qua-
sibipartite cluster are represented by squares and circles of
two different colors. The thick red lines represent the intra-
cluster connections and the gray lines the intercluster links.
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Definition 4.4 The node-repulsion graph is a graph whose adjacency matrix is
given by Θ [exp (–A)], which results from the elementwise application of the
function Θ(x) to the matrix exp (–A). A pair of nodes p and q in the node-
repulsion graph Θ [exp (–A)] is connected if and only if they have Gpq > 0.
The Heaviside function Θ (x) was already introduced in Equation (4.39).

Using the node-repulsion graph, the search for quasi-bipartite subgraphs
in a complex network is reduced to finding the cliques in a simple graph,
Θ [exp (–A)]. These cliques correspond to the quasi-bipartite clusters of the
network [73].

4.6.2

Application

Here we study the food web of Canton Creek, which consists primarily of in-
vertebrates and algae in a tributary, surrounded by pasture, of the Taieri River
in the South Island of New Zealand [74]. This network consists of 108 nodes
(species) and 707 links (trophic relations). Using our current approach, we
find that this network can be divided into two almost-bipartite clusters, one
having 66 nodes and the other 42. Only 20 links connect nodes in the same
clusters, 13 of them connect nodes in the set containing 66 nodes and the
other 7 connect nodes in the set of 42 nodes. Thus 97.2% of links are con-
nections between the two almost-bipartite clusters and only 2.8% links are
intracluster connections [73]. In Figure 4.7, we illustrate the network and its
quasi-bipartite clusters as found in the current work. The value of the bi-
partivity measure for this network b(G) = 0.775 indicates that the network in
general is not bipartite but that important bipartite and quasi-bipartite struc-
tures are present in the graph, which is corroborated by our algorithm for
finding such structures [73].

4.7

Conclusion

The discovery of X-rays more than a century ago has increased our knowl-
edge in many fields, such as the structure of matter, cosmology, security in
technology, and X-ray diagnostics, among others. The existence of a tool, like
X-rays and other spectroscopic techniques, permits us to understand the in-
ternal structure of the systems under study from molecules and materials to
the human body. In a similar way, spectral graph theory is the X-ray machine
for studying complex networks. As we have shown here, the use of graph
spectral techniques permits us to analyze the local and global structure of
complex networks.
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Using graph spectral theory it is possible to “see” how central a node is
based on its weighted participation in all substructures present in the graph.
The same techniques permit us to analyze whether a network is homoge-
neous or modular. In the last case it permits us to classify their structures
according to certain universal structural classes, regardless of whether it is
representing a cell or a society. In addition, the spectral techniques explained
in this chapter permit us to identify the communities existing in a complex
network, as well as the bipartivity structure of certain substructures present
in such systems. Many other characteristics of complex networks could be
investigated using the spectra of graphs. Some of them have already been
described by the scientists working in this field, others are still waiting for
the development of the appropriate tools. I hope this chapter helps to inspire
the development of new spectral measures for characterizing the structure
and functioning of complex networks.
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5

On the Structure of Neutral Networks

of RNA Pseudoknot Structures
Christian M. Reidys

5.1

Motivation and Background

Random induced subgraphs arise in the context of molecular folding maps
[24] where the neutral networks of molecular structures can be modeled as
random induced subgraphs of n-cubes [17]. They also occur in the context of
neutral evolution of populations (i.e., families of Qn

2-vertices) consisting of er-
roneously replicating RNA strings. Here, one works in Qn

4 since we have for
RNA the nucleotides {A, U, G, C}. Random induced subgraphs of n-cubes
have had an impact on the conceptual level [23] and led to experimental work
identifying sequences that realize two distinct ribozymes [22]. A systematic
computational analysis of neutral networks of molecular folding maps can
be found in [11, 12]. An RNA structure, s, is a graph over [n] having vertex
degree u 1 and whose arcs are drawn in the upper half-plane (Figure 5.1).
The set of s-compatible sequences, C[s], consists of all sequences that have
at any two paired positions one of the 6 nucleotide pairs (A, U), (U, A), (G, U),
(U, G), (G, C), (C, G). The structure s gives rise to a new adjacency relation

1 2 3 4 65 7 8 9 10 11 12 13 14 1816 1715

14 9 12
15

16 2
8

3 7
5 14

613 10
18

11
17

Figure 5.1 An RNA structure and its induced subcubes Qnu

4
and Qnp

6 : a structure allows one to rearrange its compatible
sequences into unpaired and paired segments. The former
is a sequence over the original alphabet A, U, G, C and for
the latter we derive a sequence over the alphabet of base
pairs, (A, U), (U, A), (G, U), (U, G), (G, C), (C, G).



86 5 On the Structure of Neutral Networks of RNA Pseudoknot Structures

within C[s]. Indeed, we can reorganize a sequence (x1, . . . , xn) into the tuple(
(u1, . . . , unu ), (p1, . . . , pnp )

)
, (5.1)

where uj denotes the unpaired nucleotides and pj = (xi, xk) all base pairs, re-
spectively (Figure 5.1). We can view vu = (u1, . . . , unu ) and vp = (p1, . . . , pnp ) as
elements of the cubes Qnu

4 and Qnp
6 , implying the new adjacency relation for

elements of C[s]. That is, C[s] carries the natural graph structure Qnu
4 ~ Qnp

6 ,
where “~” denotes the direct product of graphs. The neutral network of s is
the set of all sequences that fold into s and are contained in the set of com-
patible sequences. Whether or not some compatible sequence is contained
in the neutral network can be decided by independently selecting vertices
vu and vp with probability λu and λp, respectively [17]. This modeling ansatz
leads accordingly to random induced subgraphs of n-cubes. Note that the
probabilities λu and λp are easily measured locally via RNA computer folding
maps: they coincide with the average fraction of neutral neighbors within
the compatible neighbors. Explicitly, λu is the percentage of sequences that
differ by a neutral mutation in an unpaired position, while λp corresponds to
the percentage of neutral sequences that are compatible via a base pair muta-
tion (for instance, (A, U) �→ (G, C)) (Figure 5.2). One particularly fascinating
property of random induced is the existence of unique, large components.
Its existence has a profound impact on the evolutionary optimization process
since it shows that large Hamming distances can be traversed in the course
of neutral evolution by successively performing point mutations. Burtin was

A

A A

A

A

A

U

U

U

U

U

U

G

G G G

G

G

G

G

C

C C

C

C

C

C

C C

U
U G CC U UG G GA C

Figure 5.2 Compatible mutations: representing a secondary
structure differently, the red edges correspond to the arcs
in the upper half-plane of its diagram representation. We
illustrate the different alphabets for compatible mutations in
unpaired and paired positions.
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the first [8] to study the connectedness of random subgraphs of n-cubes, Qn
2,

obtained by selecting all Qn
2-edges independently (with probability pn). He

proved that a.s. all such subgraphs are connected for p > 1/2 and are discon-
nected for p < 1/2. Erdős and Spencer [10] refined Burtin’s result and, more
importantly in our context, they conjectured that there exists a.s. a giant com-
ponent for pn = 1+ε

n and ε > 0. Their conjecture was proved by Ajtai, Komlós,
and Szemerédi [1], who established the existence of a giant component for
pn = 1+ε

n . Key ingredients in their proof are Harper’s isoperimetric inequal-
ity [13] and a two-round randomization, used for showing the nonexistence
of certain splits. Considerably less is known for random induced subgraphs
of the n-cube obtained by independently selecting each Qn

2-vertex with proba-
bility λn. One main result here is the paper of Bollobás et al., who have shown
in [5] for constant � that C (1)

n = (1+o(1))κ� 1+�
n 2n. Recently their result has been

improved [20]: for �n v n– 1
3 +δ, where δ > 0, a unique largest component of

specific size exists. For �n = ε this result (combined with a straightforward
argument for λn u 1–ε

n ) implies the analog of Ajtai et al.’s [1] result for random
induced subgraphs. In this contribution we will introduce the key concepts
and ideas in the context of connectivity and large components in binary and
generalized n-cubes.

5.1.1

Notation and Terminology

The n-cube, Qn
α, is a combinatorial graph with vertex set An, where A is some

finite alphabet of size α v 2. W.l.o.g. we will assume F2 ⊂ A and call Qn
2 the

binary n-cube. In an n-cube two vertices are adjacent if they differ in exactly
one coordinate. Let d(v, v′) be the number of coordinates by which v and v′

differ. We set

∀A ⊂ An, j u n; B(A, j) = {v ∈ An | ∃α ∈ A; d(v, α) u j} (5.2)

S(A, j) = {v ∈ An | ∃α ∈ A; d(v, α) = j} (5.3)

∀A ⊂ An; d(A) = {v ∈ An \ A | ∃α ∈ A; d(v, α) = 1} (5.4)

and call B(A, j) and d(A) the ball of radius j around A and the vertex boundary
of A in Qn

α, respectively. If A = {v}, we simply write B(v, j). Let A, B ⊂ An; we
call A �-dense in B if B(v, �) ∩ A =/ ∅ for v ∈ B.

Qn
2 can be viewed as the Cayley graph Cay(Fn

2, {ei | i = 1, . . . , n}), where ei is
the canonical base vector. We will view Fn

2 as a F2-vector space and denote the
linear hull over {v1, . . . , vh}, vj ∈ Fn

2 by 〈v1, v2, . . . , vh〉. There exists a natural
linear order u over Qn

2 given by

v u v′ ⇐⇒ (d(v, 0) < d(v′, 0)) ∨ (d(v, 0) = d(v′, 0) ∧ v <lex v′) , (5.5)
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where <lex denotes the lexicographical order. Any notion of minimal element
or smallest element in A ⊂ Qn

2 is considered w.r.t. the linear order u of
Equation (5.5).

Each A ⊂ An induces a unique induced subgraph in Qn
α, denoted by

Qn
α[A], in which a1, a2 ∈ A are adjacent if a1, a2 are adjacent in Qn

α. Let
Qn

α,λn
be a random graph consisting of Qn

α-subgraphs, Γn, induced by se-
lecting each Qn

α-vertex with independent probability λn. Qn
α,λn

is the finite
probability space ({Qn

α[A] | A ⊂ An}, P), with the probability measure
P(A) = λ|A|n (1 – λn)αn–|A|. A property M is a subset of induced subgraphs of
Qn

α closed under graph isomorphisms. The terminology “M holds a.s.” is
equivalent to limn→∞ P(M) = 1. A component of Γn is a maximal connected
induced Γn-subgraph, Cn. The largest Γn-component is denoted by C(1)

n . It is
called a giant component if and only if

∃κ > 0, |C(1)
n | v κ |Γn| , (5.6)

and xn ~ yn is equivalent to (a) limn→∞ xn/yn exists and (b) limn→∞ xn/yn = 1.
Let Zn =

∑n
i=1 �i be a sum of mutually independent indicator random vari-

ables (r.v.), �i having values in {0, 1}. Then we have, [9], for η > 0 and
cη = min{– ln(eη[1 + η]–[1+η]), η2

2 }

Prob ( |Zn – E[Zn] | > η E[Zn] ) u 2e–cηE[Zn] . (5.7)

n is always assumed to be sufficiently large and ε is a positive constant satis-
fying 0 < ε < 1

3 . We use the notation Bm(�, λn) =
(m

�

)
λ�

n (1 – λn)m–� and write
g(n) = O( f(n)) and g(n) = o(f(n)) for g(n)/f(n)→ κ as n→∞ and g(n)/f(n)→ 0
as n→∞, respectively.

5.2

Preliminaries

In this section we present three theorems, instrumental for our analysis of
connectivity, large components, and distances in n-cubes. The first result is
due to [4] used for Sidon sets in groups in the context of Cayley graphs. In
what follows G denotes a finite group and M a finite set acted upon by G.

Proposition 5.1 Suppose G acts transitively on M and let A ⊂M. Then we have

1
|G|

∑
g∈G

|A ∩ gA| = |A|2/|M| . (5.8)

Proof. We prove Equation (5.8) by induction on |A|. For A = {x} we derive
1
|G|

∑
gx=x 1 = |Gx|/|G|, since |M| = |G|/|Gx|. We next prove the induction
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step. We write A = A0 ∪ {x} and compute

1
|G|

∑
g

|A ∩ gA| = 1
|G|

∑
g

( |A0 ∩ gA0| + |{gx} ∩ A0| + |{x} ∩ gA0|

+ |{gx} ∩ {x}|
=

1
|G|

(
|A0|2|Gx| + 2|A0||Gx| + |Gx|

)
=

1
|G|

(
(|A0| + 1)2 |Gx|

)
=
|A|2
|M| .

Aldous [2, 3] observed how to use Proposition 5.1 for deriving a very gen-
eral lower bound for vertex boundaries in Cayley graphs:

Theorem 5.1 Suppose G acts transitively on M and let A ⊂ M, and let S be
a generating set of the Cayley graph Cay(G, S), where |S| = n. Then we have

∃ s ∈ S; |sA \ A| v 1
n
|A|

(
1 –
|A|
|M|

)
. (5.9)

Proof. We compute

|A| = 1
|G|

∑
g

(|gA \ A| + |A ∩ gA|) =
1
|G|

∑
g

|gA \ A| + |A| |A||M| , (5.10)

and hence |A|
(

1 – |A||M|
)

= 1
|G|

∑
g |gA \ A|. From this we can immediately

conclude

∃ g ∈ G; |gA \ A| v |A|
(

1 –
|A|
|M|

)
.

Let g =
∏k

j=1 sj. Since each element of gA \ A is contained in at least one set
sjA \ A, we obtain

|gA \ A| u
k∑

j=1

|sjA \ A| .

Hence there exists some 1 u j u k such that |sjA \ A| v 1
k |gA \ A|, and the

lemma follows.

Let us next recall some basic facts about branching processes [14,16]. Sup-

pose � is a random variable and
(

�(t)
i

)
, i, t ∈ N counts the number of off-

spring of the ith individual at generation t – 1. We consider the family of
r.v. (Zi)i∈N0 : Z0 = 1 and Zt =

∑Zt–1
i=1 �(t)

i for t v 1 and interpret Zt as the num-
ber of individuals “alive” in generation t. We will be interested in the limit
probability limt→∞ Prob(Zt > 0), i.e., the probability of infinite survival. We
have the following theorem.
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Theorem 5.2 Let un = n– 1
3 , λn = 1+�n

n , m = n – � 3
4 unn�, and Prob(� = �) =

Bm(�, λn). Then for �n = ε the r.v. � becomes asymptotically Poisson, i.e., P(� =
�) ~ (1+ε)�

�! e–(1+ε) and

0 < lim
t→∞

Prob(Zt > 0) = α(ε) < 1 . (5.11)

For o(1) = �n v n– 1
3 +δ, δ > 0, we have

lim
t→∞

Prob(Zt > 0) = (2 + o(1)) �n . (5.12)

We proceed by stating Janson’s inequality [15]. It is the key tool for prov-
ing Theorem 5.4 in Section 5.3 and Theorem 5.7 in Section 5.5. Intuitively,
Janson’s inequality can be viewed as a large deviation result in the presence
of correlation.

Theorem 5.3 Let R be a random subset of some set [V] = {1, . . . , V} obtained by
selecting each element v ∈ V independently with probability λ. Let S1, . . . , Ss be
subsets of [V] and X be the r.v. counting the number of Si for which Si ⊂ R. Let
furthermore

Ω =
∑

(i,j); Si∩Sj=/∅

P(Si ∪ Sj ⊂ R) , (5.13)

where the sum is taken over all ordered pairs (i, j). Then for any γ > 0, we have

P(X u (1 – γ)E[X]) u e– γ2E[X]
2+2Ω/E[X] . (5.14)

5.3

Connectivity

As already mentioned, the connectivity property of neutral networks of RNA
structures has a profound impact on our picture of evolutionary optimiza-
tion. It is closely related to the connectivity of the two subcubes induced
by the unpaired and paired nucleotides. We present the combinatorial, con-
structive proof that localizes the threshold value for generalized n-cubes due
to [18]. The particular construction has led to several computational studies
on the connectivity of neutral networks [11, 12].

Lemma 5.1 Let Qn
α be a generalized n-cube, λ > 1 – α–1

√
α–1, and Γn an induced

Qn
α-subgraph obtained by selecting each Qn

α-vertex with independent probability
λ. Then we have

lim
n→∞

P(∀ v, v′ ∈ Γn, dQn
α
(v, v′) = k; v is connected to v′) = 1 . (5.15)
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Proof. Claim 1. Suppose λ > 1 – α–1
√

α–1. Then for arbitrary � ∈ N, Γn contains
a.s. exclusively vertices of degree v �.
To prove the claim we first observe that λ > 1 – α–1

√
α–1 is equivalent to

(1 – λ)(α–1)α < 1. We fix � ∈ N. Using the linearity of expectation, the ex-
pected number of vertices of degree u � is given by

αn
�∑

i=0

(
(α – 1)n

i

)
λi(1 – λ)(α–1)n–i u � ((α – 1)n)�αn(1 – λ)(α–1)n–�

= c′n�
[
α(1 – λ)(α–1)]n

, c′ > 0
~ e–cn, c > 0 .

Since we have for any r.v. X with positive integer values: E(X) v P(X > 0),
Claim 1 follows.

According to Claim 1 we can now choose for v, v′ ∈ Γn with d(v, v′) = k and
� ∈ N the two sets of neighbors {v(jh) | 1 u h u �} and {v′(ih) | 1 u h u �}.
W.l.o.g. we may assume that {jh} = {1, . . . , �} and {ih} = {� + 1, . . . , 2�} and
that v, v′ differ exactly in the positions 2� + 1, . . . , 2� + k. Furthermore we may
assume that v, v′ and v(i), v′(�+i) differ by 0 and 1 entries, i.e., are of the form

v = (0, . . . , 0︸ ︷︷ ︸
�

, 0, . . . , 0︸ ︷︷ ︸
�

, 0, . . . , 0︸ ︷︷ ︸
k

, x2�+k+1, . . . , xn) (5.16)

v′ = (0, . . . , 0︸ ︷︷ ︸
�

, 0, . . . , 0︸ ︷︷ ︸
�

, 1, . . . , 1︸ ︷︷ ︸
k

, x2�+k+1, . . . , xn) (5.17)

v(i) = (0, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
1 in ith position

, 0, . . . , 0︸ ︷︷ ︸
�

, 0, . . . , 0︸ ︷︷ ︸
k

, x2�+k+1, . . . , xn) (5.18)

v′(�+i) = (0, . . . , 0︸ ︷︷ ︸
�

, 0, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
1 in (� + i)th position

, 1, . . . , 1︸ ︷︷ ︸
k

, x2�+k+1, . . . , xn) . (5.19)

For each pair of elements (v(i), v′(�+i)) with 1 u i u � we consider the sets
Bn–(2�+k)(v(i), 1) and Bn–(2�+k)(v′(i+�), 1), where

Bn–(2�+k)(w, 1) = {eh + w | 2� + k < h u n} . (5.20)

(v(i), v′(i+�)) is connected by the Qn
α-path

γi =

⎛⎝v(i), ei+�, e2�+1, . . . , e2�+k︸ ︷︷ ︸
k

, ei, v′(i+�)

⎞⎠ , 1 u i u � . (5.21)

γi is contained in Γn with a probability of at least λk+2. Since all neighbors of
v and v′ are of the form v(i), for 1 u i u � and v′(i+�) for � + 1 u i + � u 2�, for
i =/ j any two paths

γi =
(
v(i), ei+�, e2�+1, . . . , e2�+k, ei, v′(�+i)) (5.22)

γj =
(
v(j), ej+�, e2�+1, . . . , e2�+k, ej, v′(�+j)) (5.23)
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are vertex disjoint. The probability of selecting a pair of vertices (v(i)+eh, v′(i+�)+
eh) is λ2. We have the pairs(

v(i) + eh, v′(i+�) + eh
)

,
(
v(j) + eh′ , v′(j+�) + eh′

)
, 1 u i, j u �, h =/ h′

and for i = j we have the vertex disjoint paths γi+eh, γi+eh′ since h, h′ > 2�+(k).
Two paths γi + eh and γj + eh of two pairs(

v(i) + eh, v′(i+�) + eh
)

and
(
v(j) + eh, v′(j+�) + eh

)
are, in view of Equations (5.22) and (5.23), also disjoint (Figure 5.3). The
probability that for all pairs (v(i) + eh, v′(i+�) + eh), where 1 u i u �, 2� + k < h we
select none of the γi + eh-paths is by linearity of expectation less than

αnnk+2
(

1 – λ2λ2+k
)�(n–(2�+k))

= αnnk+2
(

1 – λ4+k
)–�(2�+k) (

1 – λ4+k
)�n

.

By choosing � large enough we can satisfy(
1 – λ4+k

)�

< (1 – λ)(α–1) , (5.24)

whence

nk+2(1 – λ4+k)–�(2�+k) [α(1 – λ)(α–1)]n
,

which obviously tends to zero. Accordingly, there exists a.s. at least one path
of the form γi +eh (Equation (5.21)) that connects v and v′ in Γn, and the proof
of the lemma is complete.

Theorem 5.4 Let Qn
α be a generalized n-cube and P the probability P(Γn) =

λ|Γn|(1 – λ)αn–|Γn|. Then the following assertions hold:

lim
n→∞

P(Γn is connected) =

{
0 for λ < 1 – α–1

√
α–1

1 for λ > 1 – α–1
√

α–1
. (5.25)

v ( +i)v(i)

v v

v(i) + eh v ( +i) + eh

d(v, v ) = k

Figure 5.3 Illustration of the proof idea: constructing the independent paths.
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Proof. Suppose first we have λ > 1 – α–1
√

α–1. For any two vertices w, w′ ∈ Γn

we fix a shortest Qn
α-path γw,w′ connecting them. Let Z be the r.v. counting

the isolated vertices in Γn and wij the vertex of the jth step of γw,w′ . Since

P(B(wij , 1) ∩ Γn = ∅, 1 u j u s) u E(Z) = αnλ(1 – λ)(α–1)n , (5.26)

we observe that for all 1 u j u s, B(wij , 1)∩Γn =/ ∅ holds. Let aj ∈ B(wij , 1)∩Γn.
All pairs (aj, aj+1) have distance d(aj, aj+1) u 3 and are by Lemma 5.1 a.s. con-
nected. We can therefore select a Γn-path, γj, connecting aj and aj+1. Con-
catenating all paths γj produces a Γn-path connecting w and w′, whence for
λ > 1 – α–1

√
α–1 Γn is a.s. connected.

Claim 2. For λ < 1 – α–1
√

α–1 the random graph Γn contains a.s. isolated points.
We consider B(v, 1) ⊂ Qn

α and define Iv as the indicator r.v. of the event

{Γn | v ∈ Γn, S(v, 1) ∩ Γn = ∅} (5.27)

and set

Ω =
∑

{(v,v′)|v =/ v′ , B(v,1)∩B(v′ ,1) =/ ∅}
P(Iv · Iv′ = 1) . (5.28)

Suppose for v =/ v′, B(v, 1)∩B(v′, 1) =/ ∅. Then either d(v, v′) = 1 and |B(v, 1)∩
B(v′, 1)| = α or d(v, v′) = 2 and |B(v, 1) ∩ B(v′, 1)| = 2. Therefore,

B(v, 1) ∩ B(v′, 1) =/ ∅ ⇒ P(Iv · Iv′ = 1) u λ2(1 – λ)2(α–1)n–α .

Clearly we have Z =
∑

v∈Qn
α

Iv and E(Z) = αnλ(1–λ)(α–1)n. Since λ < 1– α–1
√

α–1,
we have E(Z) ~ ecn, for c > 0. We next compute

Ω u αn(α – 1)2
(

n
2

)
λ2(1 – λ)–α [

(1 – λ)(α–1)n]2

= (α – 1)2
(

n
2

)
(1 – λ)–αλ(1 – λ)(α–1)n E(Z)

~ e–c′nE(Z), c′ > 0 .

Janson’s inequality (Theorem 5.3) guarantees

P(Z u (1 – γ)E[Z]) u e– γ2E[Z]
2+2Ω/E[Z] . (5.29)

Therefore, Γn contains a.s. isolated points, which proves that Γn is not con-
nected for λ < 1 – α–1

√
α–1.

5.4

The Largest Component

In this section we assume α = 2, i.e., we work in binary n-cubes. All results
and proofs easily extend to arbitrary alphabets. The analysis of large compo-
nents presented here follows [20]. Section 5.3 has shown that the connectivity
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threshold 1– α–1
√

α–1 reflects the disappearance of isolated vertices. Therefore,
it seems natural to ask which probabilities we find a unique large component
for. In addition, one would like to know its size. Note that the connectiv-
ity property alone is not sufficient for understanding the neutral evolution.
The relevant property will be identified in Section 5.5 and is related to the
emergence of short paths in n-cubes. Intuitively the largest component is
in its “early” stage locally “treelike” and therefore not suited for preserving
sequence-specific information. We set

π(�n) =
{

α(ε) for �n = ε
2(1 + o(1))�n for o(1) = �n v n– 1

3 +δ (5.30)

and

νn =
⌊

1
2k(k + 1)

unn
⌋

, ιn =
⌊

k
2(k + 1)

unn
⌋

, and zn = kνn + ιn . (5.31)

We write a Qn
2-vertex v = (x1, . . . , xn) as

(x(1)
1 , . . . , x(1)

νn︸ ︷︷ ︸
νn coordinates

, x(2)
1 , . . . , x(2)

νn︸ ︷︷ ︸
νn coordinates

, . . . , x(k+1)
1 , . . . , x(k+1)

ιn︸ ︷︷ ︸
ιn coordinates

, xzn+1, . . . , xn︸ ︷︷ ︸
n–znv

n–� 1
2 unn� coordinates

) . (5.32)

For any 1 u s u νn, r = 1, . . . , k we set e(r)
s to be the s + (r – 1)νnth-unit vector,

i.e., e(r)
s has exactly one 1 at its (s + (r – 1)νn)th coordinate. Similarly, let e(k+1)

s ,
1 u s u ιn, denote the (s + kνn)th-unit vector. We use the standard notation for
the zn + 1 u t u n unit vectors, i.e., et is the vector where xt = 1, and xj = 0,
otherwise.

Let us outline the strategy of the proof. First we prove Lemma 5.2, which
generates small subcomponents of size v � 1

4 unn�. The size is small enough
to assure that they exist for any Qn

2-vertex with probability π(�n) (Theo-
rem 5.2). In Lemma 5.3 we build on these subcomponents, proving that they
can, for certain λn, be extended to size v nh, h ∈ N. We next prove Lemma 5.4,
which shows that the number of vertices not contained in subcomponents
of size v nh is concentrated. We integrate our results thus far in Lemma 5.5,
showing that the number of vertices contained in subcomponents of size
v nh is concentrated at π(�n) |Γn|. The idea is now to prove that exactly the
latter merge into the unique large component. To show this, we first prove
Lemma 5.6, a technical prerequisite for Lemma 5.7 that will be instrumental
in proving that the vertices contained in subcomponents of size v nh merge
into the unique largest component.

Lemma 5.2 Suppose λn = 1+�n
n and ε v �n v n– 1

3 +δ, where δ > 0. Then each
Γn-vertex is contained in a Γn-subcomponent of size � 1

4 unn� with probability at
least π(�n).
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Proof. We consider the following branching process in the subcube Qn–zn
2

(Equation (5.32)). W.l.o.g. we initialize the process at v = (0, . . . , 0) and set
E0 = {ezn+1, . . . , en} and L0[0] = {(0, . . . , 0)}. We consider the n – � 3

4 unn�
smallest neighbors of v. Starting with the smallest we select each of them
with independent probability λn = 1+�n

n . Suppose v+ej is the first one selected.
Then we set E1 = E0 \ {ej} and L1[0] = L0[0] ∪ {ej} and proceed inductively,
setting Es = Es–1 \ {ew} and Lt[0] = Lt–1[0] ∪ {ew} for each neighbor v + ew

being selected subject to the condition |Es| > n – (� 3
4 unn�– 1). This procedure

generates the set containing all selected 0-neighbors and 0 itself, which we
denote by N∗[0]. We consider L∗[0] = N∗[0] \ {0}. If ∅ =/ L∗[0], we proceed by
choosing its smallest element, v∗1. By construction, v∗1 has at least n – � 3

4 unn�
neighbors of the form v∗1 + er, where er ∈ Es. We iterate the process selecting
from the smallest n – � 3

4 unn� neighbors of v∗1 and set L∗[1] = (N∗[1] ∪ L∗[0]) \
{v∗1}. We proceed inductively, setting L∗[r] = (N∗[r] ∪ L∗[r – 1]) \ {v∗r}. This
process constructs an induced subtree of Qn–zn

2 . It stops if we have L∗[r] = ∅

for some r v 1 or

|Es| = n –
(⌊

3
4

unn
⌋

– 1
)

,

in which case � 1
4 unn�– 1 vertices have been connected. Theorem 5.2 guaran-

tees that this Qn–zn
2 -tree has size � 1

4 unn� with probability at least π(�n).

We refer to the particular branching process used in Lemma 5.2 as a γ-
process (Figure 5.4). The γ-process produces a subcomponent of size � 1

4 unn�,
which we refer to as γ-(sc). The γ-process employed in Lemma 5.2 did not by
construction involve the first zn coordinates. Following our outline, in the fol-
lowing lemma we will use the first k νn of them in order to build inductively
larger subcomponents (sc).

v

Figure 5.4 Lemma 5.2: The induced tree of size u � 1
4 unn�.
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Lemma 5.3 Let k ∈ N be arbitrary but fixed, λn = 1+�n
n , νn = � unn

2k(k+1)�, and
ϕn = π(�n)νn(1 – e–(1+�n)un/4). Then there exists ρk > 0 such that each Γn-vertex is
with probability at least

πk(�n) = π(�n) (1 – e–ρkϕn ) (5.33)

contained in a Γn-subcomponent of size at least ck (unn)ϕk
n, where ck > 0.

Lemma 5.3 allows us to introduce the induced subgraph Γn,k = Qn
2[A],

where

A =
{

v | v is contained in a Γn-(sc) of size v ck (unn)ϕk
n, ck > 0

}
. (5.34)

In case of ε v �n v n– 1
3 +δ, we have 1 – e– 1

4 (1+�n)un v un/4, and consequently
ϕn v c′ (1 + o(1))�nu2

n n v c0 nδ for some c′, c0 > 0. Furthermore⌊
1
4

unn
⌋

ϕk
n v ck n

2
3 nkδ, ck > 0 . (5.35)

Accordingly, choosing k sufficiently large, each Γn-vertex is contained in a (sc)
of arbitrary polynomial size with probability at least

π(�n)
(

1 – e–ρknδ
)

, 0 < δ, 0 < ρk . (5.36)

Proof. Since all translations are Qn
2-automorphisms, we can w.l.o.g. assume

that v = (0, . . . , 0). We use the notation of Equation (5.32) and recruit the
n – zn-unit vectors et for a γ-process. The γ-process of Lemma 5.2 yields a
γ-(sc), C(0), of size � 1

4 unn� with probability v π(�n). We consider for 1 u i u k
the sets of νn elements Bi = {e(i)

1 , . . . , e(i)
νn} and set H = 〈ezn+1, . . . , en〉. By

construction we have

〈Bi ∪ 〈
⋃

1ujui–1

Bj〉 ⊕H〉 = 〈Bi〉 ⊕ 〈
⋃

1ujui–1

Bj〉 ⊕H . (5.37)

In particular, for any 1 u s < j u νn: e(1)
s – e(1)

j ∈ H is equivalent to e(1)
s = e(1)

j .
Since all vertices are selected independently and |C(0)| = � 1

4 unn�, for fixed
e(1)

s ∈ B1 the probability of not selecting a vertex v′ ∈ e(1)
s + C(0) is given by

P
({

e(1)
s + � | � ∈ C(0)

}
∩ Γn = ∅

)
=
(

1 –
1 + �n

n

)� 1
4 unn�

~ e–(1+�n) 1
4 un . (5.38)

We set μn = (1 – e–(1+�n) 1
4 un), i.e., μn = P((e(1)

s + C(0)) ∩ Γn =/ ∅), and introduce
the r.v.

X1 =
∣∣{e(1)

s ∈ B1 | ∃ � ∈ C(0); e(1)
s + � ∈ Γn

}∣∣ . (5.39)
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Obviously, E(X1) = μnνn, and, using the large deviation result of Equa-
tion (5.7), we can conclude that

∃ ρ > 0; P

(
X1 <

1
2

μnνn

)
u e–ρ μnνn . (5.40)

Suppose for e(1)
s there exists some � ∈ C(0) such that e(1)

s + � ∈ Γn (that is, e(1)
s

is counted by X1). We then select the smallest element of the set {e(1)
s + � |

� ∈ C(0)}, say e(1)
s + �0 and initiate a γ-process using the n – zn elements

{ezn+1, . . . , en} at e(1)
s +�0. The process yields a γ-(sc) of size � 1

4 unn�with proba-
bility at least π(�n). For any two elements e(1)

s , e(1)
j with e(1)

s +�(e(1)
s ), e(1)

j +�(e(1)
j ) ∈

Γn the respective sets are vertex disjoint since 〈B1 ∪H〉 = 〈B1〉⊕H. Let X̃1 be
the random variable counting the number of these new, pairwise vertex dis-
joint sets of γ-(sc) of size � 1

4 unn�. By construction each of them is connected
to C(0). We immediately observe E(X̃1) v π(�n)μnνn and set ϕn = π(�n)μnνn.
Using the large deviation result in Equation (5.7) we derive

∃ ρ1 > 0; P

(
X̃1 <

1
2
ϕn

)
u e–ρ1ϕn . (5.41)

We proceed by proving that for each 1 u i u k there exists a sequence of r.v.s.
(X̃1, X̃2, . . . , X̃i), where X̃i counts the number of pairwise disjoint sets of γ-(sc)
added at step 1 u j u i such that:

(a) all sets, C(j)
τ , 1 u j u i, added until step i are pairwise vertex disjoint and

are of size � 1
4 unn�;

(b) all sets added until step i are connected to C(0) and

∃ ρi > 0; P

(
X̃i <

1
2i (ϕn)i

)
u e–ρiϕn , where ϕn = π(�n)μnνn . (5.42)

We prove the assertion by induction on i. Indeed in our construction of X̃1

we have already established the induction basis. To define X̃i+1, we use the set
Bi+1 = {e(i+1)

1 , . . . , e(i+1)
νn }. For each C(i)

τ counted by X̃i (i.e., the vertices that were
connected in step i) we form the set e(i+1)

s + C(i)
τ . By induction hypothesis two

different C(i)
τ , C(i)

τ′ , counted by X̃i, are vertex disjoint and connected to C(0).
Since 〈Bi+1〉

⊕〈⋃1ujui Bj〉
⊕

H are disjoint, we can conclude

(s =/ s′ ∨ τ =/ τ′) ⇒ (e(i+1)
s + C(i)

τ ) ∩ (e(i+1)
s′ + C(i)

τ′ ) = ∅ ,

and the probability that we have for fixed C(i)
τ : (e(i+1)

s + C(i)
τ ) ∩ Γn = ∅ for some

e(i+1)
s ∈ Bi+1 is exactly as in Equation (5.38)

P
(

(e(i+1)
s + C(i)

τ ) ∩ Γn = ∅
)

=
(

1 –
1 + �n

n

)� 1
4 unn�

~ e–(1+�n) 1
4 un .
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As for the induction basis, μn = (1 – e–(1+�n) 1
4 un ) is the probability that (e(i+1)

s +
C(i)

τ ) ∩ Γn =/ ∅. We proceed by defining the r.v.

Xi+1 =
∑
C(i)

τ

∣∣∣{e(i+1)
s ∈ Bi+1 | ∃ � ∈ C(i)

τ ; e(i+1)
s + � ∈ Γn

}∣∣∣ . (5.43)

Xi+1 counts the number of events where (e(i+1)
s + C(i)

τ ) ∩ Γn =/ ∅ for each C(i)
τ .

For fixed C(i)
τ and fixed e(i+1)

s ∈ Bi+1 we choose the minimal element

e(i+1)
s + �0,τ ∈

{
e(i+1)

s + �τ | �τ ∈ C(i)
τ , e(i+1)

s + �τ ∈ Γn

}
.

Then Xi+1 counts exactly the minimal elements e(i+1)
s + �0,α, e(i+1)

s′ + �0,τ′ , . . . for
all C(i)

τ , C(i)
τ′ , . . . , and any two can be used to construct pairwise vertex disjoint

γ-(sc) of size � 1
4 unn�. We next define X̃i+1 to be the r.v. counting the number

of events in which the γ-process in H initiated at the e(i+1)
s + �0,τ ∈ Γn yields a

γ-(sc) of size � 1
4 unn�. By construction each of these is connected to a unique

C(i)
τ . Since 〈Bi+1〉

⊕〈⋃1ujui Bj〉
⊕

H, all newly added sets are pairwise vertex
disjoint to all previously added vertices. We derive

P

(
X̃i+1 <

1
2i+1 ϕi+1

n

)
u P

(
X̃i <

1
2i ϕ

i
n

)
︸ ︷︷ ︸

failure at step i

+ P

(
X̃i+1 <

1
2i+1 ϕi+1

n ∧ X̃i v
1
2i ϕ

i
n

)
︸ ︷︷ ︸

failure at step i + 1 conditional to X̃i v 1
2i ϕ

i
n

u e–ρi ϕn + e–ρ ϕi+1
n (1 – e–ρi ϕn ) , ρ > 0

u e–ρi+1 ϕn .

Therefore, each Γn-vertex is with probability at least π(�n) (1 – e–ρkϕn) con-
tained in a Γn-(sc) of size at least ck (�nn)ϕk

n, for ck > 0, and the lemma is
proved.

We next prove a technical lemma that will be instrumental for the proof
of Lemma 5.5. We show that the number of vertices not contained in Γn,k is
sharply concentrated, using a strategy similar to that in Bollobás et al. [6]. Let
Un denote the complement of Γn,k in Γn.

Lemma 5.4 Let k ∈ N and λn = 1+�n
n , where ε v �n v n– 1

3 +δ. Then we have

P

(
| |Un| – E[|Un|] | v

1
n

E[|Un|]
)

= o(1) . (5.44)

Proof. Let C be a Qn
2-component of size strictly smaller than τ = ck (unn)ϕk

n
and let v be a fixed C-vertex. We shall denote the ordered pair (C, v) by Cv and
the indicator variable of the pair Cv by XCv . Clearly, we have

|Un| =
∑
Cv

XCv ,
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where the summation is taken over all ordered pairs (C, v) with |C| < τ.
Considering isolated points, we immediately obtain E[Un] v c|Γn| for some
1 v c > 0.

Claim. The random variable |Un| is sharply concentrated.
We prove the claim by estimating V[|U|] via computing the correlation terms
E[XCv XDv′ ] and applying Chebyshev’s inequality. Suppose Cv =/ Dv′ . There are
two ways by which XCv , XDv′ viewed as r.v. over Qn

2,λn
, can be correlated. First

v, v′ can belong to the same component, i.e. C = D, in which case we write
Cv ~1 Dv′ . Clearly,∑

Cv~1Dv′

E[XCv XDv′ ] u τ E[|Un|]. (5.45)

Second, correlation arises when v, v′ belong to two different components Cv,
Dv′ having minimal distance 2 in Qn

2. In this case we write Cv ~2 Dv′ . Then
there exists some Qn

2-vertex, w, such that w ∈ d(Cv) ∩ d(Dv′ ) and we derive

P(d(Cv, Dv′ ) = 2) =
1 – λn

λn
P(Cv ∪ Dv′ ∪ {w} is a Γn-component)

u n P(Cv ∪ Dv′ ∪ {w} is a Γn-component).

We can now immediately give the upper bound∑
Cv~2Dv′

E[XCv XDv′ ] u n (2τ + 1)3 |Γn|. (5.46)

The uncorrelated pairs (XCv , XDv′ ), writing Cv �~ Dv′ , can easily be estimated
by ∑

Cv �~Dv′

E[XCv XDv′ ] =
∑

Cv �~Dv′

E[XCv ]E[XDv′ ] u E[|Un|]2. (5.47)

Consequently we arrive at

E[|Un|(|Un| – 1)] =
∑

Cv~1Dv′

E[XCv XDv′ ] +
∑

Cv~2Dv′

E[XCv XDv′ ] +
∑

Cv �~Dv′

E[XCv XDv′ ]

u τ E[|Un|] + n (2τ + 1)3|Γn| + E[|Un|]2.

Using V[|Un|] = E[|Un|(|Un| – 1)] + E[|Un|] – E[|Un|]2 and E[Un] v c |Γn| we
obtain

V[|Un|]
E[|Un|]2

u
ck (unn)ϕk

n + 1
c n

(
2ck (unn)ϕk

n + 1
)3

+ 1
|E[Un]| = o

(
1
n2

)
.

Chebyshev’s inequality guarantees P(||Un| – E[|Un|]| v 1
n E[|Un|]) u n2 V[|Un|]

E[|Un|]2 ,
whence the claim and the lemma follows.
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Lemma 5.5 Let λn = 1+�n
n , where ε v �n v n– 1

3 +δ. Then we have for sufficiently
large k ∈ N

(1 – o(1)) π(�n) |Γn| u |Γn,k| u (1 + o(1)) π(�n) |Γn| a.s. (5.48)

In view of Lemma 5.3 the crucial part is to show that there are sufficiently
many Γn-vertices contained in Γn-(sc) of size < ck unnϕk

n. For this purpose we
use a strategy introduced by Bollobás et al. [6] and consider the n-regular
rooted tree Tn. Let v∗ denote the root of Tn. Then v∗ has n descendents and
all other Tn-vertices have n – 1. Selecting the Tn-vertices with independent
probability λn we obtain the probability space Tn,λn whose elements, An, are
random induced subtrees. We will be interested in the An-component that
contains the root, denoted by Cv∗ . Let �v∗ and �v, for v =/ v∗, be two r.v. such
that Prob(�v∗ = �) = Bn(�, λn) and Prob(�v = �) = Bn–1(�, λn), respectively. We
assume that �v∗ and �v count the offspring produced at v∗ and v =/ v∗. Then
the induced branching process initialized at v∗, (Zi)i∈N0 , constructs Cv∗ . Let
π0(�) denote its survival probability; then we have, in view of Theorem 5.2
and [6], Corollary 6:

π0(�n) = (1 + o(1)) π(�n) . (5.49)

Proof. Claim 1. |Γn,k| v
(
(1 – o(1)) π(�n)

)
|Γn| a.s.

According to Lemma 5.3 we have E[|Un|] < (1 – πk(�n)) |Γn| , and we can
conclude using Lemma 5.4 and E[|Un|] = O(|Γn|) that

|Un| <
(

1 + O
(

1
n

))
E[|Un|] <

(
1 –

(
πk(�n) – O

(
1
n

)))
|Γn| a.s. (5.50)

In view of Equation (5.33) and �n v n– 1
3 +δ we have for arbitrary but fixed k

πk(�n) – O(
1
n

) = (1 – o(1)) π(�n) .

Therefore, we derive

|Γn,k| v (1 – o(1)) π(�n) |Γn| a.s. , (5.51)

and Claim 1 follows.

Claim 2. For sufficiently large k, |Γn,k| u
(
(1 + o(1)) π(�n)

)
|Γn| a.s. holds.

For any fixed Qn
2-vertex, v, we have the inequality

P (|Cv∗ | u �) u P (|Cv| u �) . (5.52)

Indeed we can obtain Cv by inductively constructing a spanning tree as fol-
lows. Suppose the set of all Cv-vertices at distance h is MCv

h . Starting with
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the smallest w ∈ MCv
h (h v 1) there are at most n – 1 w-neighbors contained

in MCv
h+1 that are not neighbors for some smaller w′ ∈ MCv

h . Hence for any
w ∈ MCv

h at most n–1 vertices have to be examined. The An-component Cv∗ is
generated by the same procedure. Then for each w ∈ MCv∗

h there are exactly
n – 1 neighbors in MCv∗

h+1. Since the process adds at each stage less or equally
many vertices for Cv, we have by construction |Cv| u |Cv∗ |. Standard estimates
for binomial coefficients allow one to estimate the numbers of Tn-subtrees
containing the root [6], Corollary 3. Since vertex boundaries in Tn are easily
obtained, we can accordingly compute P(|Cv∗ | = �). Choosing k sufficiently
large, the estimates in [6], Lemma 22, guarantee

P
(
|Cv∗ | < ck unn ϕk

n

)
= (1 – π0(�n)) + o(e–n) . (5.53)

In view of P (|Cv∗ | u �) u P (|Cv| u �) and Equation (5.49), we can conclude
from Equation (5.53) that

(1 – (1 + o(1))π(�n)) |Γn| + o(1) u E[|Un|] . (5.54)

According to Lemma 5.4 we have (1 – O( 1
n )) E[|Un|] < |Un| a.s., and therefore

(1 – (1 + o(1) + O
(

1
n

)
) π(�n)) |Γn| u |Un| a.s. (5.55)

Equations (5.51) and (5.55) imply

(1 – o(1)) π(�n)|Γn| u |Γn,k| u (1 + o(1)) π(�n)|Γn| a.s. , (5.56)

whence the lemma.

Finally, we show that Γn,k is a.s. 2-dense in Qn
2 with the exception of

2n e–Δ̃ nδ
vertices. Accordingly, Γn,k is uniformly distributed in Γn. The lemma

will allow us to establish via Lemma 5.7 the existence of many vertex disjoint
short paths between certain splits of the Γn,k-vertices.

Lemma 5.6 Let k ∈ N and λn = 1+�n
n and ε v �n v n– 1

3 +δ. Then we have

∃Δ > 0; ∀ v ∈ Qn
2, P

(
|S(v, 2) ∩ Γn,k| <

1
2

(
k

2(k + 1)

)2

nδ

)
u e–Δ nδ

. (5.57)

Let Dδ = {v | |S(v, 2) ∩ Γn,k| < 1
2

(
k

2(k+1)

)2
nδ}; then

|Dδ| u 2n e–Δ̃ nδ
a.s., where Δ > Δ̃ > 0 . (5.58)
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Proof. To prove the lemma we use the last (Equation (5.32)) ιn = � k
2(k+1) unn�

elements e(k+1)
1 , . . . , e(k+1)

ιn . We consider for arbitrary v ∈ Qn
2

S(k+1)(v, 2) =
{

v + e(k+1)
i + e(k+1)

j | 1 u i < j u ιn,
}

. (5.59)

Clearly, |S(k+1)(v, 2)| =
(ιn

2

)
holds. By construction, the Γn-(sc) of size v

ck (unn)ϕk
n of Lemma 5.3 are vertex disjoint for any two vertices in S(k+1)(v, 2)∩

Γn and each Γn-vertex belongs to Γn,k with probability v πk(�n). Let Z be
the r.v. counting the number of vertices in S(k+1)(v, 2) ∩ Γn,k. Then we have

E[Z] v
(

k
2(k+1)

)2 u2
n

2 n π(�n). Equation (5.57) follows now from Equation (5.7),

u2
nn�n v nδ, and P(|S(v, 2) ∩ Γn,k| < η) u P(|S(k+1)(v, 2) ∩ Γn,k| < η). Now

let Dδ = {v | |S(v, 2) ∩ Γn,k| < 1
2

(
k

2(k+1)

)2
nδ}. By linearity of expectation

E(|Dδ|) u 2n e–Δ nδ
holds, and using Markov’s inequality, P(X > tE(X)) u 1/t

for t > 0, we derive that |Dδ| u 2n e–Δ̃nδ
a.s. for any 0 < Δ̃ < Δ.

The next lemma proves the existence of many vertex disjoint paths con-
necting the boundaries of certain splits of Γn,k-vertices. The lemma is re-
lated to a result in [7] but is much stronger since the actual length of these
paths is u 3. The shortness of these paths results from the 2-density of Γn,k

(Lemma 5.6) and is a consequence of our particular construction of small
subcomponents in Lemma 5.3.

Lemma 5.7 Suppose λn = 1+�n
n , where ε v �n v n– 1

3 +δ. Let (A, B) be a split of the
Γn,k-vertex set with the properties

∃ 0 < σ0 u σ1 < 1;
1
n2 2n u |A| = σ0|Γn,k| and

1
n2 2n u |B| = σ1|Γn,k| .

(5.60)

Then there exists some t > 0 such that a.s. d(A) is connected to d(B) in Qn
2 via at

least

t
n4 2n/

(
n
7

)
(5.61)

vertex disjoint (independent) paths of length u 3.

Proof. We consider B(A, 2) and distinguish the cases

|B(A, 2)| u 2
3

2n and |B(A, 2)| > 2
3

2n . (5.62)

Suppose first |B(A, 2)| u 2
3 2n holds. According to Theorem 5.1 and Equa-

tion (5.60) we have

∃ d1 > 0; |d(B(A, 2))| v d1

n3 2n , (5.63)
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and Lemma 5.6 guarantees that a.s. all except of at most 2n e–Δ̃nδ
Qn

2-vertices
are within distance 2 to some Γn,k-vertex. Hence there exist at least d

n3 2n ver-
tices of d(B(A, 2)) (which by definition are not contained in B(A, 2)) contained
in B(B, 2) i.e.,

|dB(A, 2)∩ B(B, 2)| v d
n3 2n a.s. (5.64)

For each �2 ∈ d(B(A, 2)) ∩ B(B, 2) there exists a path (α1, α2, �2), starting in
d(A) with terminus �2. In view of B(B, 2) = d(B(B, 1))∪̇B(B, 1), we distinguish
the following cases:

|d(B(A, 2))∩d(B(B, 1))| v 1
n3 d2,1 2n and |d(B(A, 2))∩B(B, 1)| v 1

n3 d2,2 2n .

(5.65)

Suppose we have |d(B(A, 2))∩ d(B(B, 1))| v 1
n3 d2,1 2n. For each �2 ∈ d(B(B, 1))

we select some element �1(�2) ∈ d(B) and set B∗ ⊂ d(B) to be the set of
these endpoints. Clearly, at most n elements in B(B, 2) can produce the same
endpoint, whence

|B∗| v 1
n4 d2,1 2n .

Let B1 ⊂ B∗ be maximal subject to the condition that for any pair of
B1-vertices (�1, �′1) we have d(�1, �′1) > 6. Then we have |B1| v |B∗|/

(n
7

)
since

|B(v, 7)| =
(n

7

)
. Any two of the paths from d(A) to B1 ⊂ d(B) are of the form

(α1, α2, �2, �1) and vertex disjoint since each of them is contained in B(�1, 3).
Therefore, there are a.s. at least

1
n4 d2,1 2n/

(
n
7

)
(5.66)

vertex disjoint paths connecting d(A) and d(B). Suppose next |d(B(A, 2)) ∩
B(B, 1)| v 1

n3 d2,2 2n. We conclude in complete analogy that there exist a.s. at
least

1
n3 d2,2 2n/

(
n
5

)
(5.67)

vertex disjoint paths of the form (α1, α2, �2) connecting d(A) and d(B). It re-
mains to consider the case |B(A, 2)| > 2

3 2n. By construction both A and B
satisfy Equation (5.60), whence it suffices to assume that also |B(B, 2)| > 2

3 2n

holds. In this case we have

|B(A, 2)∩ B(B, 2)| > 1
3

2n ,

and to each α2 ∈ B(A, 2) ∩ B(B, 2) we select α1 ∈ d(A) and �1 ∈ d(B). We
derive in analogy to the previous arguments that there exist a.s. at least

1
n2 d2 2n/

(
n
5

)
(5.68)
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pairwise vertex disjoint paths of the form (α1, α2, �1), and the proof of the
lemma is complete.

Theorem 5.5 [20] Let Qn
2,λn

be a random graph consisting of Qn
2-subgraphs, Γn,

induced by selecting each Qn
2-vertex with independent probability λn. Suppose

λn = 1+�n
n , where ε v �n v n– 1

3 +δ, δ > 0. Then we have

lim
n→∞

P

(
|C(1)

n | ~ π(�n)
1 + �n

n
2n and C(1)

n is unique
)

= 1 . (5.69)

Proof. Claim. We have |C(1)
n | ~ |Γn,k| a.s.

To prove the claim we use an idea introduced by Ajtai et al. [1] and select Qn
2-

vertices in two rounds. First we select Qn
2-vertices with independent probabil-

ity 1+�n/2
n and subsequently with �n

2n . The probability for some vertex not to be
chosen in both randomizations is (1 – 1+�n/2

n )(1 – �n/2
n ) = 1 – 1+�n

n + (1+�n/2)�n/2
n2 v

1 – 1+�n
n . Hence selecting first with probability 1+�n/2

n (first round) and then
with �n/2

n (second round) a vertex is selected with probability less than 1+�n
n

(all preceding lemmas hold for the first randomization 1+�n/2
n ). We now se-

lect in our first round each Qn
2-vertex with probability 1+�n/2

n . According to
Lemma 5.5

|Γn,k| ~ π(�n) |Γn| a.s. (5.70)

Suppose Γn,k contains a component, A, such that

1
n2 2n u |A| u (1 – b) |Γn,k|, b > 0 ;

then there exists a split of Γn,k, (A, B) satisfying the assumptions of Lemma 5.7
(and d(A)∩d(B) = ∅). We now observe that Lemma 5.3 limits the number of
ways these splits can be constructed. In view of

�1
4

unn�ϕk
n v ck n

2
3 nkδ, ck > 0 , (5.71)

each A-vertex is contained in a component of size at least ck n
2
3 nkδ. Therefore,

there are at most

2
“

2n/
“

ck n
2
3 nkδ

””
(5.72)

ways to choose A in such a split. According to Lemma 5.7, there exists t > 0
such that a.s. d(A) is connected to d(B) in Qn

2 via at least t
n4 2n/

(n
7

)
vertex

disjoint paths of length u 3. We now select Qn
2-vertices with probability �n/2

n .
None of the above v t

n4 2n/
(n

7

)
paths can be selected during this process.

Since any two paths are vertex disjoint, the expected number of such splits
is less than

2
“

2n/
“

ck n
2
3 nkδ

”” (
1 –

(
�n/2

n

)4
) t

n4 2n/(n
7)

~ 2
“

2n/
“

ck n
2
3 nkδ

””
e– t�4

n
24n8 2n/(n

7) . (5.73)
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Hence choosing k sufficiently large, we can conclude that a.s. there cannot
exist such a split. Therefore, |C(1)

n | ~ |Γn,k|, a.s. and the claim is proved. Ac-
cording to Lemma 5.5, we therefore have |C(1)

n | ~ π(�n) |Γn|. In particular, for
�n = ε, Theorem 5.2 (0 < α(ε) < 1) implies that there exists a giant com-
ponent. It remains to prove that C(1)

n is unique. By construction, any large
component, C′n, is necessarily contained in Γn,k. In the proof of the claim we
have shown that a.s. there cannot exist a component C′n in Γn with the prop-
erty |C′n| v 1

n2 |Γn|. Therefore, C(1)
n is unique, and the proof of the theorem is

complete.

Theorem 5.6 below is the analog of Ajtai et al.’s result [1] (for random
subgraphs of n-cubes obtained by selecting Qn

2-edges independently).

Theorem 5.6 Let Qn
2,λn

be a random graph consisting of Qn
2-subgraphs, Γn, in-

duced by selecting each Qn
2-vertex with independent probability λn. Then

lim
n→∞

P(Γn has an unique giant component) =

{
1 for λn v 1+ε

n

0 for λn u 1–ε
n .

(5.74)

Proof. We proved the first assertion in Theorem 5.5. It remains to consider
the case λn = 1–ε

n .

Claim. Suppose λn = 1–ε
n ; then there exists κ′ > 0 such that |C(1)

n | u κ′ n holds.
The expected number of components of size � is less than

1
�

2n n�–1
(

1 – ε
n

)�

=
1
� n

2n (1 – ε)� (5.75)

since there are 2n ways to choose the first element and at most n-vertices to
choose from subsequently. This component is counted � times correspond-
ing to all � choices for the “first” vertex. Let Xκ′ n be the r.v. counting the
number of components of size v κ′ n. Choosing κ′ such that (1 – ε)κ

′
< 1/4

we obtain

E(Xκ′ n) u
∑
�vκ′ n

1
� n

2n (1–ε)� u
1
n2 2n(1–ε)κ

′ n
∑
�v0

(1–ε)� <
1
n2

(
1
2

)n 1
1 – (1 – ε)

,

(5.76)

whence the claim, and the proof of the theorem is complete.

5.5

Distances in n-Cubes

In this section we analyze for which probabilities, λn, random induced sub-
graphs of n-cube exhibit “short” distances. To be precise, we ask for which λn
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does there exist some constant Δ such that

(†) ∃Δ > 0; dΓn(v, v′) u Δ dQn
2
(v, v′) a.s. provided v, v′ are in Γn . (5.77)

Before we give the main result of this section we prove a combinatorial
lemma [21]. A weaker version of this lemma is proved in [6].

Lemma 5.8 Let d ∈ N, d v 2, and let v, v′ be two Qn
2-vertices where d(v, v′) = d.

Then any Qn
2-path from v to v′ has length 2� + d, and there are at most(

2� + d
� + d

)(
� + d

�

)
n� �! d! (5.78)

Qn
2-paths from v to v′ of length 2� + d.

Proof. W.l.o.g. we can assume v = (0, . . . , 0) and v′ = (xi)i, where xi = 1 for
1 u i u d, and xi = 0 otherwise. Each path of length m induces the family of
steps (εs)1usum, where εs ∈ {ej | 1 u j u n}. Since the path ends at v′, we have
for fixed 1 u j u n

∑
{εs|εs=ei}

εs =

{
1 for 1 u i u d

0 otherwise
. (5.79)

Hence the families induced by our paths contain necessarily the set
{e1, . . . , ed}. Let (ε′s)1usum′ be the family obtained from (εs)1usum by removing
the steps e1, . . . , ed at the smallest index at which they occur. Then (ε′s)1usum′

represents a cycle starting and ending at v. Furthermore, we have for all j;∑
{ε′s|ε′s=ei} ε′s = 0, i.e., all steps must come in (ej, ej), that is, as (up-step,down-

step) pairs. As a result, we derive m = 2� + d, and there are exactly � steps
of the form ej that can be freely chosen (free up-steps). We now count the
number of 2� + d-tuples (εs)1usu2�+d. There are exactly

(2�+d
�+d

)
ways to select the

(� + d) indices for the up-steps within the set of all 2� + d indices. Further-
more, there are

(
�+d
�

)
ways to select the � positions for the free up-steps and

at most n� ways to choose the free up-steps themselves. Since a free up-step
is paired with a unique down-step reversing it, the � free up-steps determine
all � down-steps. Clearly, there are at most �! ways to assign the down steps to
their � indices. Finally, there are at most d! ways to assign the fixed up-steps,
and the lemma follows.

The following theorem [21] establishes the threshold value for the exis-
tence of the above constant Δ. The result is of relevance in the context of
local connectivity of neutral networks, a structural property that allows pop-
ulations of RNA strings to preserve sequence-specific information.
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Theorem 5.7 Let 0 < δ u 1
2 and v, v′ be arbitrary but fixed Qn

2-vertices having
distance dQn

2
(v, v′) = d, d v 2, d ∈ N. Let Γn denote the random subgraph of Qn

2
obtained by independently selecting Qn

2-vertices with probability λn. Suppose v, v′

are contained in Γn. Then we have

(a) Suppose λn < nδ– 1
2 for any δ > 0. Then there exists a.s. no Δ > 0 satisfying

dΓn(v, v′) u Δ dQn
2
(v, v′) . (5.80)

(b) Suppose λn v nδ– 1
2 for some δ > 0. Then there exists a.s. some finite

Δ = Δ(δ) > 0 such that

dΓn(v, v′) u Δ dQn
2
(v, v′) . (5.81)

Proof. Suppose d = d(v, v′) and Δ > 0 are fixed. Let Z = Z(d, Δ) be the
r.v. counting the paths of length u Δ d from v to v′. According to Lemma 5.8
we have

E[Z] u
∑

2�+duΔ d

(
2� + d
� + d

)(
� + d

�

)
n� �! d! λ2�+d–1

n . (5.82)

Since λn < nδ– 1
2 for any δ > 0, we obtain∑

2�+duΔ d

(
2� + d
� + d

)(
� + d

�

)
n� �! d! λ2�+d–1

n

u
∑

2�+duΔ d

(
2� + d
� + d

)(
� + d

�

)
�! d! nδ 2�

[
1

n
1
2 –δ

]d–1

. (5.83)

For given d v 2 and Δ, the quantity � is bounded, and choosing δ sufficiently
small we derive the upper bound

E[Z] u O(n–μ) for some μ > 0 , (5.84)

and assertion (a) is proved.
To prove (b) we consider the subset of paths Aσ, where σ is some permutation
of d – 1 elements. Aσ-elements are called a-paths and given by the following
data:

(I) some family (ej1 , . . . , ej�), where d – 1 u ji u n and |{ji | 1 u i u �}| = �;
(II) the fixed family (eσ(1), . . . , eσ(d–1)); and, finally,
(III) the family (ej� , . . . , ej1 ), i.e., the mirror image of the family chosen in (I).

Let Xa be the indicator r.v. for the event “a is a path in Γn.” Clearly, A =∑
a∈Aσ

Xa is the r.v. counting the number of a-paths contained in Γn. Let
n′ = n – (d – 1). By construction of a-paths and the linearity of expectation, our
first observation is

E[A] = �!
(

n′

�

)
λ2�+(d–1)

n = (n′)� λ2�+(d–1)
n , (5.85)
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where (n)� = n(n – 1) · · · (n – (� – 1)). Since λn v n– 1
2 +δ for some 0 < δ < 1

2 ,

E[A] v
[

(n′ – �)
n

]�

n2�δ
[
n– 1

2 +δ
]d–1

. (5.86)

The idea is to use Janson’s inequality (Theorem 5.3) to show that a.s. at least
one a-path is contained in Γn. For this purpose we estimate the correlation
between the indicator r.v. Xa and Xa′ . The key term we have to analyze is
Ω =

∑
a∈Aσ

∑
a′∈Aσ ;
a′∩a=/∅

E[XaXa′ ]. Let us = v + (
∑s

i=1 eji ), where s u �. Since

the sequence given in (III) represents the mirror image of the sequence
(ej1 , . . . , ej�), we inspect

|a ∩ a′| = 2 |{uh ∈ a ∩ a′}| +
{

d – 1 if u� ∈ a ∩ a′

0 otherwise.
(5.87)

Indeed, only if a and a′ intersect at u� do the subsequent d – 1 steps of (II)
coincide. In view of Equation (5.87) we distinguish the cases

(i) u� �∈ a ∩ a′ and (ii) u� ∈ a ∩ a′ . (5.88)

Ad (i): then we have |a ∩ a′| = 2h, where 1 u h u � – 1. For fixed h there are
exactly

(
�–1
h

)
ways to select the h vertices where a and a′ intersect. For each

such selection there are at most h! (n′ – h)�–h paths a′, whence

|{a′ | |a′ ∩ a| = 2h}| u
(

� – 1
h

)
h! (n′ – h)�–h . (5.89)

The probability for choosing a correlated a′-path is given by λ2[2�+(d–1)]–2h
n , and

we compute∑
a∈Aσ

∑
a′∈Aσ ;

u� �∈a′∩a=/∅

E[XaXa′ ] = E[A]
�–1∑
h=1

|{a′ | |a′ ∩ a| = 2h}|λ[2�+(d–1)]–2h
n

u E[A]
�–1∑
h=1

h!
(

� – 1
h

)
(n′ – h)�–hλ[2�+(d–1)]–2h

n

= E[A]2
�–1∑
h=1

h!
(

� – 1
h

)
(n′)–1

h λ–2h
n

u E[A]2
�–1∑
h=1

h!
(

� – 1
h

)
nh

(n′)h
n–2hδ ,

where the last inequality is implied by λn v n– 1
2 +δ. In view of Equation (5.85)

we have for sufficiently large n

�–1∑
h=1

h!
(

� – 1
h

)
nh

(n′)h
n–2hδ = (� – 1)

n
n′

n–2δ︸ ︷︷ ︸
h=1

+ O(n–4δ)︸ ︷︷ ︸
h>1

. (5.90)
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Consequently we can give the following upper bound for case (i):∑
a∈Aσ

∑
a′∈Aσ ;

u� �∈a′∩a=/∅

E[XaXa′ ] u
[
(� – 1)

n
n′

n–2δ + O
(

n–4δ
)]

E[A]2 . (5.91)

Ad (ii): the key observation is that for fixed a there are at most �! paths a′ that
intersect a at least in u�. Each of these appears with probability of at most 1,
whence∑

a∈Aσ

∑
a′∈Aσ ;

u�∈a′∩a=/∅

E[XaXa′ ] u �! E[A] . (5.92)

Equations (5.91) and (5.92) guarantee

Ω u

⎛⎜⎜⎜⎝(� – 1)
n
n′

n–2δ + O
(

n–4δ
)

︸ ︷︷ ︸
(i)

+
�!

E[A]︸ ︷︷ ︸
(ii)

⎞⎟⎟⎟⎠ E[A]2 . (5.93)

According to Theorem 5.3 we have P(A u (1 – γ)E[A]) u e– γ2E[A]
2+2Ω/E[A] , i.e.,

P(A u (1 – γ)E[A]) u exp

⎡⎣–
γ2

2/E[A] + 2
(

(� – 1) n
n′ n–2δ + O

(
n–4δ

)
+ �!

E[A]

)
⎤⎦ .

(5.94)

In view of E[A] v
[

(n′–�)
n

]�

n2�δ
[
n– 1

2 +δ
]d–1

, we observe⎡⎣ γ2

2/E[A] + 2
(

(� – 1) n
n′ n–2δ + O

(
n–4δ

)
+ �!

E[A]

)
⎤⎦ = O

(
n2δ

)
, (5.95)

for sufficiently large �. Setting γ = 1, Equation (5.94) becomes

P(A = 0) u e–c′n2δ
for some c′ > 0 . (5.96)

Since an a-path has length 2� + d, Equation (5.96) proves (b), and the proof of
the theorem is complete.

Corollary 5.1 Let α, d ∈ N, α, d v 2, v, v′ be arbitrary but fixed Qn
α-vertices having

distance dQn
α
(v, v′) = d and n′ = n – (d – 1). Suppose we select Qn

α-vertices with the
probability 0 < λ < 1. Then there exists a Γn-path connecting v and v′ of length
exactly 2 + dQn

α
(v, v′) with a probability of at least

σ[α]
λ,d(n) = 1 – exp

(
–

(α – 1) n′ λ2+(d–1)

4

)
, (5.97)

provided v, v′ are contained in Γn.
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Proof. The expected number of a-paths is, according to Theorem 5.7,

E[A] = (α – 1) (n – (d – 1)) λ2+(d–1) = (α – 1) n′ λd+1 .

For � = 1 we have only type (ii) correlation, given by Equation (5.92). In this
case any two correlated paths necessarily coincide, whence∑

a∈Aσ

∑
a′∈Aσ ;

u�∈a′∩a=/∅

E[XaXa′ ] = (α – 1) n′ λd+1 .

Consequently Equation (5.94) becomes

P(A = 0) u exp
[

–
E[A]

4

]
= exp

[
–(α – 1) (n – (d – 1)) λd+1/4

]
.

5.6

Conclusion

We began by showing how RNA sequence-structure relations give rise to
particular subcubes within a sequence space. These subcubes reduce many
questions arising in the context of a neutral evolution of RNA sequences to
structural properties of random induced subgraphs of n-cubes. The first and
probably best known property is the connectivity of n-cubes in Section 5.3.
Here we give a constructive proof that shows how the actual paths can be
obtained. In Section 5.4 we discuss the largest component in n-cubes. We
prove an extension of Ajtai et al.’s [1] result for random graphs in which
edges are selected with independent probability. We adopt an “algorithmic”
approach and try to give constructive proofs of our results; see, for instance,
Lemma 5.3. Only the argument given in Theorem 5.5, where we show that
the small subcomponents constructed in Lemma 5.3 have to “melt,” does not
indicate how to obtain the largest component constructively. The existence of
the largest component is of vital importance for neutral evolution. It repre-
sents the structural prerequisite for changing the nucleotides of a sequence
by successive local “computations” while remaining on the neutral network
of a given structure. Upon closer inspection, however, additional properties
for neutral evolution are needed [21]. The neutral network has to have many
“short” paths whose lengths scale with the Hamming distance of the se-
quences. This led in Section 5.5 to the analysis of the local connectivity of
n-cubes [21]. Local connectivity is a scaling property that reflects a structural
relation between the neutral network and sequence space itself. Since local
connectivity is a monotone graph property (i.e., once Γn is locally connected
increasing the probability λn does not change the local connectedness), there
exists a threshold value. In Theorem 5.7 we localized this threshold value. If
locally connected, neutral networks can be viewed as Δ-dilated n-cubes. In
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particular, a small Hamming distance for two sequences on the neutral net-
work implies the existence of a short neutral path connecting them. We have
studied the “algorithmic” perspective, i.e., how to obtain such short paths, in
Corollary 5.1.
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6

Graph Edit Distance – Optimal and Suboptimal Algorithms

with Applications
Horst Bunke and Kaspar Riesen

6.1

Introduction

In recent years, the use of graph-based data structures has gained popularity
in various fields of computer science. Informally, a graph is a set of entities
often referred to as nodes connected by links termed edges. The edges repre-
sent binary relationships that might exist between pairs of nodes. In general,
both nodes and edges can be labeled by one or several attribute values de-
scribing their respective properties. Due to the ability of graphs to represent
properties of entities as well as binary relations at the same time, graphs have
found widespread applications in science and engineering [13, 28].

In the fields of bioinformatics and chemoinformatics, for instance, graph-
based representations have been intensively used [5,33,41]. In [5] graphs are
used to model proteins for protein function prediction. In [33, 41] graphs
serve for molecular structure-activity relationship analysis. Another field of
research where graphs are studied with emerging interest is that of web con-
tent mining. In [48] it is described how graphs can be used to model rela-
tional information that is often not present in a vectorial representation of
the underlying web document. Image analysis is another field of research
where graph-based representation has attracted attention [23, 30, 32, 35]. The
basic idea in [23, 30] is to represent color images by means of region ad-
jacency graphs where the nodes are labeled according to RGB color in-
formation. In [32] corner points of 2D views of 3D objects are used to
construct Delaunay graphs. Graph-based fingerprint classification in the
Henry scheme is studied in [35]. The idea here is to use the directional
variance in order to extract regions from fingerprints and convert them
subsequently into attributed graphs. Finally, graphs have been used to de-
tect network anomalies and to predict abnormal events in computer net-
works [9].

From an algorithmic perspective, graphs are the most general data struc-
tures, as all common data types are simple instances of graphs [4]. Vectors
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or strings, for instance, can be seen as simple graphs. In this case each node
represents the value of a specific data item and edges connect each item with
its successor. Yet, in contrast with the high representational power of graphs
as well as their high degree of flexibility, we observe that many operations
on graphs, though conceptually simple, are computationally expensive. Con-
sider, for instance, the comparison of objects, i.e., the computation of a simi-
larity or dissimilarity value of a pair of objects. In the case of feature vectors,
this operation is linear in the number of data items. Using strings the com-
parison becomes quadratic in the length of the underlying strings [58], and
for graphs the same operation is exponential in the number of nodes [55].

In fact, a dissimilarity computation is needed in various applications (e.g.,
data mining, machine learning, pattern recognition, etc.). Hence, when
graphs are used as the basic data structure, an adequate dissimilarity model
for graphs has to be defined. In contrast to vectorial data structures, where
the efficiently computable Euclidean distance is widely accepted as a natu-
ral distance model, no universally accepted metric on graphs is available.
However, in the last three decades quite a large number of different graph
distance measures have been proposed in the literature [13] ranging from
spectral decompositions of graph matrices over tree search procedures to
the training of neural networks.

It turns out that the concept of graph edit distance [7,47] is one of the most
flexible graph distance measures, as it can be applied to arbitrary graphs
(labeled, unlabeled, directed, undirected) with unconstrained labels on both
nodes and edges. The basic idea of the graph edit distance is to define the
dissimilarity of two graphs by the minimum amount of distortion that has to
be applied to transfrom one graph into the other. Yet, the major problem of
the graph edit distance is its computational complexity, which is intractable
for large graphs. Typically, the computation of an exact graph edit distance is
limited to graphs with at most a few tens of nodes. In order to overcome this
severe limitation, different approximative approaches to graph edit distance
have been proposed. In the present chapter one particular methodology is
presented, allowing one to approximate the edit distance of graphs in cubic
time [42].

In the context of the work presented in this chapter, graphs and (subop-
timal) graph edit distance are used for the classification of structured data.
Classification refers to the process of assigning an unknown input object to
one of a given set of classes. It is a common task in the areas of pattern recog-
nition, machine learning, and data mining. Applications of classification can
be found in biometric person identification, optical character recognition, au-
tomatic protein prediction, medical diagnosis, and other domains. Usually,
a classifier is built on the basis of a training set of objects on which the clas-
sification rule is learned, based on some underlying mathematical model.
Though graph edit distance provides us with a general dissimilarity model
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in the graph domain, this is typically not sufficient for many standard clas-
sification algorithms. In fact, edit-distance-based graph classification is basi-
cally limited to nearest-neighbor classification (e.g., [48]). Recently, however,
a novel approach to graph-based object classification has emerged [10,45]. In
this particular method the graph edit distance is used to transform graphs
explicitly into feature vectors. This transformation implies that all standard
methods in object classification [17] – originally developed for vectors – be-
come applicable to graphs.

The remainder of this chapter is organized as follows. In Section 6.2 the
concept of graph edit distance is introduced in detail. Then, Section 6.3 ad-
dresses the problem of optimal and suboptimal graph edit distance com-
putation. In Section 6.4 four different graph data sets with quite different
characteristics comming from various applications are reviewed, and more-
over, two different approaches to edit-distance-based object classification are
discussed. An experimental evaluation of (suboptimal) graph edit distance in
conjunction with the two classification scenarios is conducted in Section 6.5.
Finally, in Section 6.6 the chapter is summarized and conclusions are drawn.

6.2

Graph Edit Distance

In this section the basic notation for graphs and graph edit distance (GED)
is introduced. Let LV and LE be a finite or infinite set of labels for nodes and
edges, respectively.

Definition 6.1 A graph g is a four-tuple g = (V, E, μ, ν), where V is the finite set
of nodes, E ⊆ V ~ V the set of edges, μ : V→ LV the node-labeling function,
and ν : E→ LE the edge-labeling function.

This definition allows us to handle arbitrary graphs with unconstrained la-
beling functions. For example, the labels can be given by the set of integers,
the vector space Rn, or a set of symbolic labels L = {α, �, γ, . . .}. Moreover,
unlabeled graphs are obtained as a special case by assigning the same label l
to all nodes and edges. Edges are given by pairs of nodes (u, v), where u ∈ V
denotes the source node and v ∈ V the target node of a directed edge. Undi-
rected graphs can be modeled by inserting a reverse edge (v, u) ∈ E for each
edge (u, v) ∈ E with ν(u, v) = ν(v, u).

Graph matching refers to the task of evaluating the similarity of graphs.
There are two major versions of this task: exact and error-tolerant graph
matching. The aim of exact graph matching is to determine whether two
graphs or parts of them are identical in terms of structure and labels. Com-
pared to vectors, where the determination of identical parts is trivial, exact
matching of graphs is substantially more difficult [55]. Generally, there is no
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canonical ordering for nodes and edges in a graph, which makes the com-
parison of two sets of nodes and edges quite complex.

Based on the exact graph matching paradigms of maximum common
subgraph and minimum common supergraph, a few graph similarity mea-
sures have been proposed [11, 18, 59]. However, the main restriction of exact
graph matching and related similarity measures is the requirement that
a significant part of the topology together with the corresponding node
and edge labels in two graphs have to be identical to obtain a high sim-
ilarity value. In fact, this is not realistic for many applications. Especially
if the node or edge label alphabet LV or LE, respectively, is given by the
n-dimensional vector space Rn, the exact matching paradigm is too restric-
tive. In order to make graph matching better applicable to real-world prob-
lems, several error-tolerant, or inexact, graph matching methods have been
proposed.

One class of error-tolerant graph matching methods employs artificial neu-
ral networks. In two seminal papers [19,52] it is shown that neural networks
can be used to classify directed acyclic graphs. Further examples of graph
matching methods based on neural networks can be found in [2,26]. Another
class of error-tolerant graph matching procedures is based on relaxation la-
beling techniques for structural matching. In [12,61], for instance, the graph
matching problem is stated as a labeling problem. The spectral decomposi-
tion of graphs is another approach to graph matching [32,56]. The basic idea
here is to represent graphs by the eigendecomposition of their adjacency or
Laplacian matrix. Other examples of graph matching algorithms are based
on graduated assignment [21] or random walks [22].

A common problem of the above-mentioned methods for error-tolerant
graph matching is that they are often restricted to special classes of graphs.
One of the most flexible methods for error-tolerant graph matching that does
not suffer from this restriction is based on the edit distance of graphs [7,47].
Originally, the edit distance was proposed in the context of string matching
[58]. Procedures for edit distance computation aim at deriving a dissimilarity
measure from the number of distortions one has to apply to transform one
pattern into another. The concept of edit distance has been extended from
strings to trees [50] and eventually to graphs [7, 47]. Similarly to string edit
distance, the key idea of GED is to define the dissimilarity, or distance, of
graphs by the minimum amount of distortion that is needed to transform
one graph into another.

A standard set of distortion operations is given by insertions, deletions, and
substitutions of both nodes and edges. Other operations, such as merging and
splitting of nodes [1], can be useful in certain applications but are not con-
sidered in the remainder of this chapter. We denote the substitution of two
nodes u and v by (u→ v), the deletion of node u by (u→ ε), and the insertion
of node v by (ε→ v). For edges we use a similar notation. Given two graphs,
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g1 g2

Figure 6.1 A possible edit path between graph g1 and g2
(node labels are represented by different shades of gray).

the source graph g1 and the target graph g2, the idea of GED is to delete some
nodes and edges from g1, relabel (substitute) some of the remaining nodes
and edges, and insert some nodes and edges in g2, such that g1 is finally
transformed into g2. A sequence of edit operations e1, . . . , ek that transform
g1 into g2 is called an edit path between g1 and g2. Figure 6.1 gives an example
of an edit path between two graphs g1 and g2. This edit path consists of three
edge deletions, one node deletion, one node insertion, two edge insertions,
and two node substitutions.

Obviously, for every pair of graphs (g1, g2) there exist a number of differ-
ent edit paths transforming g1 into g2. Let Υ(g1, g2) denote the set of all such
edit paths. To find the most suitable edit path out of Υ(g1, g2), one introduces
a cost for each edit operation, measuring the strength of the corresponding
operation. The idea of such a cost function is to define whether or not an edit
operation represents a strong modification of the graph. Obviously, the cost
function is defined with respect to the underlying node or edge labels. Conse-
quently the method is versatile, i.e., it is possible to integrate domain-specific
knowledge about object similarity, if available, when defining the costs of the
elementary edit operations. Hence GED can be made more discriminative
by tuning graph similarity to the specific application area. However, auto-
matic procedures for learning the edit costs from a set of sample graphs are
available as well [36, 37].

Clearly, between two similar graphs, there should exist an inexpensive edit
path, representing low-cost operations, while for dissimilar graphs an edit
path with high costs is needed. Consequently, the edit distance of two graphs
is defined by the minimum cost edit path between two graphs.

Definition 6.2 Let g1 = (V1, E1, μ1, ν1) be the source and g2 = (V2, E2, μ2, ν2)
the target graph. The graph edit distance between g1 and g2 is defined by

d(g1, g2) = min
(e1,...,ek)∈Υ(g1,g2)

k∑
i=1

c(ei) ,

where Υ(g1, g2) denotes the set of edit paths transforming g1 into g2, and c
denotes the cost function measuring the strength c(ei) of edit operation ei.
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6.3

Computation of GED

Unlike exact graph matching methods, the edit distance for graphs allows
every node of a graph to be matched to every node of another graph. This
flexibility makes GED particularly appropriate for noisy data but is, on the
other hand, computationally more expensive than simpler graph matching
models. One can distinguish two computation paradigms for GED, viz. op-
timal and approximate or suboptimal GED algorithms. The former approach
always finds a solution that represents the minimum cost edit path between
two given graphs. Consequently, the time and space complexity of optimal
GED is exponential in the number of nodes of the two involved graphs. That
is, for large graphs the computation of edit distance is intractable. The latter
computation paradigm addresses the GED problem by only ensuring to find
a local minimum of the matching costs. Often this minimum is not very far
from the global one, but this property cannot be guaranteed. If such an ap-
proximation of the edit distance is acceptable in a certain application, then
the subopotimality can be traded for a shorter, usually polynomial, matching
time [13].

6.3.1

Optimal Algorithms

The computation of the exact edit distance is usually carried out by means
of a tree search algorithm that explores the space of all possible mappings
of the nodes and edges of the first graph to the nodes and edges of the sec-
ond graph. A widely used method is based on the A* algorithm [24], which
is a best-first search algorithm. The basic idea is to organize the underlying
search space as an ordered tree. The root node of the search tree represents
the starting point of our search procedure, inner nodes of the search tree
correspond to partial solutions, and leaf nodes represent complete – not nec-
essarily optimal – solutions. Such a search tree is constructed dynamically
at runtime by iteratively creating successor nodes linked by edges to the cur-
rently considered node in the search tree. In order to determine the most
promising node in the current search tree, i.e., the node that will be used
for further expansion of the desired mapping in the next iteration, a heuris-
tic function is usually used. Formally, for a node p in the search tree, we
use g(p) to denote the cost of the optimal path from the root node to the
current node p, i.e., g(p) is set equal to the cost of the partial edit path ac-
cumulated so far, and we use h(p) for denoting the estimated cost from p to
a leaf node. The sum g(p) + h(p) gives the total cost assigned to an open node
in the search tree. One can show that, given that the estimation of the future
cost h(p) is lower than, or equal to, the real cost, the algorithm is admissible,
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Algorithm 6.1 Graph edit distance algorithm.

Input: Nonempty graphs g1 = (V1, E1, μ1, ν1) and g2 = (V2, E2, μ2ν2),
where V1 = {u1, . . . , u|V1 |} and V2 = {v1, . . . , v|V2|}

Output: A minimum cost edit path from g1 to g2, e.g., pmin = {u1 → v3, u2 → ε, . . . , ε→ v2}

1: Initialize OPEN to the empty set {}
2: For each node w ∈ V2, insert the substitution {u1 → w} into OPEN
3: Insert the deletion {u1 → ε} into OPEN
4: loop
5: Remove pmin = argminp∈OPEN{g(p) + h(p)} from OPEN
6: if pmin is a complete edit path
7: Return pmin as the solution
8: else
9: Let pmin = {u1 → vi1, · · · , uk → vik}

10: if k < |V1| then
11: For each w ∈ V2 \ {vi1, · · · , vik}, insert pmin ∪ {uk+1 → w} into OPEN
12: Insert pmin ∪ {uk+1 → ε} into OPEN
13: else
14: Insert pmin ∪

S
w∈V2\{vi1,··· ,vik}{ε→ w} into OPEN

15: end if
16: end if
17: end loop

i.e., an optimal path from the root node to a leaf node is guaranteed to be
found [24].

In Algorithm 6.1 the A*-based method for optimal GED computation is
given. The nodes of the source graph are processed in the order (u1, u2, . . .).
The deletion (line 12) or the substitution of a node (line 11) are considered
simultaneously, which produces a number of successor nodes in the search
tree. If all nodes of the first graph have been processed, the remaining nodes
of the second graph are inserted in a single step (line 14). The set OPEN
of partial edit paths contains the search tree nodes to be processed in the
next steps. The most promising partial edit path p ∈ OPEN, i.e., the one
that minimizes g(p) + h(p), is always chosen first (line 5). This procedure
guarantees that the complete edit path found by the algorithm first is always
optimal, i.e., has minimal costs among all possible competing paths (line 7).

Note that edit operations on edges are implied by edit operations on their
adjacent nodes, i.e., whether an edge is substituted, deleted, or inserted de-
pends on the edit operations performed on its adjacent nodes. Formally, let
u, u′ ∈ V1∪{ε} and v, v′ ∈ V2∪{ε}, and assume that the two node operations
(u→ v) and (u′ → v′) have been executed. We distinguish three cases.

1. Assume there are edges e1 = (u, u′) ∈ E1 and e2 = (v, v′) ∈ E2 in the
corresponding graphs g1 and g2. Then the edge substitution (e1 → e2) is
implied by the node operations given above.

2. Assume there is an edge e1 = (u, u′) ∈ E1 but there is no edge e2 = (v, v′) ∈
E2. Then the edge deletion (e1 → ε) is implied by the node operations



120 6 Graph Edit Distance – Optimal and Suboptimal Algorithms with Applications

given above. Obviously, if v = ε or v′ = ε there cannot be any edge (v, v′) ∈
E2 and thus an edge deletion (e1 → ε) has to be performed.

3. Assume there is no edge e1 = (u, u′) ∈ E1 but an edge e2 = (v, v′) ∈ E2.
Then the edge insertion (ε → e2) is implied by the node operations given
above. Obviously, if u = ε or u′ = ε, there cannot be any edge (u, u′) ∈ E1.
Consequently, an edge insertion (ε→ e2) has to be performed.

Obviously, the implied edge operations can be derived from every partial
or complete edit path during the search procedure given in Algorithm 6.1.
The costs of these implied edge operations are dynamically added to the cor-
responding paths in OPEN.

In order to integrate more knowledge about partial solutions in the search
tree, it has been proposed to use heuristics [24]. Basically, such heuristics
for a tree search algorithm aim at the estimation of a lower bound h(p) of the
future costs. In the simplest scenario this lower bound estimation h(p) for the
current node p is set to zero for all p, which is equivalent to using no heuristic
information about the present situation at all. The other extreme would be
to compute for a partial edit path the actual optimal path to a leaf node, i.e.,
perform a complete edit distance computation for each node of the search
tree. In this case, the function

(
h(p)

)
is not a lower bound, but the exact value

of the optimal costs. Of course, the computation of such a perfect heuristic is
both unreasonable and intractable. Somewhere in between the two extremes
one can define a function h(p) evaluating how many edit operations have to
be performed in a complete edit path at least [7]. One possible function of
this type is described in the next paragraph.

Let us assume that a partial edit path at a position in the search tree is
given, and let the number of unprocessed nodes of the first graph g1 and
second graph g2 be n1 and n2, respectively. For an efficient estimation of the
remaining optimal edit operations, we first attempt to perform as many node
substitutions as possible. To this end, we potentially substitute each of the n1

nodes from g1 with any of the n2 nodes from g2. To obtain a lower bound of
the exact edit cost, we accumulate the costs of the min{n1, n2} least expensive
of these node substitutions, and the costs of max{0, n1 – n2} node deletions
and max{0, n2 – n1} node insertions. Any of the selected substitutions that is
more expensive than a deletion followed by an insertion operation is replaced
by the latter. The unprocessed edges of both graphs are handled analogously.
Obviously, this procedure allows multiple substitutions involving the same
node or edge and, therefore, it possibly represents an invalid way to edit the
remaining part of g1 into the remaining part of g2. However, the estimated
cost certainly constitutes a lower bound of the exact cost, and thus an optimal
edit path is guaranteed to be found [24]. We refer to this method for GED
computation as Heuristic-A*.
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6.3.2

Suboptimal Algorithms

The method described in the previous section finds an optimal edit path be-
tween two graphs. Unfortunately, the computational complexity of the edit
distance algorithm, whether or not a heuristic function h(p) is used to gov-
ern the tree traversal process, is exponential in the number of nodes of the
involved graphs. This means that the running time and space complexity
may be huge even for rather small graphs.

In recent years, a number of methods addressing the high computational
complexity of GED computation have been proposed. A common way to
make graph matching more efficient is to restrict considerations to spe-
cial classes of graphs. Examples include the classes of planar graphs [25],
bounded-valence graphs [31], trees [54], and graphs with unique node la-
bels [15]. Recently, a suboptimal edit distance algorithm has been proposed
[35] that requires the nodes of graphs to be planarly embedded, which is sat-
isfied in many, but not all, computer vision applications of graph matching.
In some approaches, the basic idea is to perform a local search to solve the
graph matching problem, that is, to optimize local criteria instead of global
or optimal ones [3]. In [27], a linear programming method for computing
the edit distance of graphs with unlabeled edges is proposed. The method
can be used to derive lower and upper edit distance bounds in polynomial
time. A number of graph matching methods based on genetic algorithms
have been proposed [14]. Genetic algorithms offer an efficient way to cope
with large search spaces, but they are nondeterministic.

In [39] a simple variant of an optimal edit distance algorithm based on
Heuristic-A* is proposed. Instead of expanding all sucessor nodes in the
search tree, only a fixed number s of nodes to be processed are kept in the
OPEN set at all times. Whenever a new partial edit path is added to OPEN in
Algorithm 6.1, only the s partial edit paths p with the lowest costs g(p) + h(p)
are kept, and the remaining partial edit paths in OPEN are removed. Obvi-
ously, this procedure corresponds to a pruning of the search tree during the
search procedure, i.e., not the full search space is explored, but only those
nodes are expanded that belong to the most promising partial matches. This
method with parameter s is referred to as Beamsearch((s)), or Beam((s)) for
short.

6.3.2.1 Bipartite Graph Matching

Another approach to solving the problem of GED computation is introduced
in [42]. In this approach the GED is approximated by finding an optimal
match between nodes of two graphs together with their local structure. The
computation of GED is then reduced to the assignment problem. The assign-
ment problem considers the task of finding an optimal assignment of the
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elements of a set A to the elements of a set B, where A and B have the same
cardinality. Assuming that numerical costs are given for each assignment
pair, an optimal assignment is one that minimizes the sum of the assign-
ment costs. Formally, the assignment problem can be defined as follows.

Definition 6.3 Let us assume there are two sets A and B together with an
n ~ n cost matrix C of real numbers given, where |A| = |B| = n. The matrix
elements Cij correspond to the costs of assigning the ith element of A to the
jth element of B. The assignment problem can be stated as finding a permu-
tation p = p1, . . . , pn of the integers 1, 2, . . . , n that minimizes

∑n
i=1 Cipi .

The assignment problem can be reformulated as finding an optimal
matching in a complete bipartite graph and is therefore also referred to
as a bipartite graph matching problem. Solving the assignment problem in
a brute force manner by enumerating all permutations and selecting the one
that minimizes the objective function leads to an exponential complexity
that is unreasonable, of course. However, there exists an algorithm that is
known as Munkres’ algorithm [34]1) that solves the bipartite matching prob-
lem in polynomial time. In Algorithm 6.2 Munkres’ method is described
in detail. The assignment cost matrix C given in Definition 6.3 is the algo-
rithms’ input, and the output corresponds to the optimal permutation, i.e.,
the assignment pairs resulting in the minimum cost. In the description of
Munkres’ method in Algorithm 6.2, some lines (rows or columns) of the cost
matrix C and some zero elements are distinguished. They are termed covered
or uncovered lines and starred or primed zeros, respectively. In the worst case
the maximum number of operations needed by the algorithm is O(n3). Note
that the O(n3) complexity is much smaller than the O(n!) complexity required
by a brute force algorithm.

Let us assume a source graph g1 = (V1, E1, μ1, ν1) and a target graph g2 =
(V2, E2, μ2, ν2) of equal size, i.e., |V1| = |V2|, are given. One can use Munkres’
algorithm in order to map the nodes of V1 to the nodes of V2 such that the
resulting node substitution costs are minimal, i.e., we solve the assignment
problem of Definition 6.3 with A = V1 and B = V2. In our solution we define
the cost matrix C such that entry Ci,j corresponds to the cost of substituting
the ith node of V1 with the jth node of V2. Formally, Ci,j = c(ui → vj), where
ui ∈ V1 and vj ∈ V2, for i, j = 1, . . . , |V1|.

The constraint that both graphs to be matched are of equal size is too
restrictive since it cannot be expected that all graphs in a specific problem
domain will always have the same number of nodes. However, one can de-
fine a quadratic cost matrix C that is more general in the sense that we al-
low insertions and/or deletions to occur in both graphs under consideration.

1) Munkres’ algorithm is a refinement of an earlier version
by Kuhn [29] and is also referred to as Kuhn–Munkres, or
Hungarian algorithm.
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Algorithm 6.2 Munkres’ algorithm for the assignment problem.

Input: A cost matrix C with dimensionality n
Output: The minimum-cost node or edge assignment

1: For each row r and column c in C, subtract its smallest element from every element in r
and c, respectively.

2: For all zeros zi in C, mark zi with a star if there is no starred zero in its row or column
3: STEP 1:
4: Cover each column containing a starred zero
5: if n columns are covered then GOTO DONE else GOTO STEP 2 end if
6: STEP 2:
7: if C contains an uncovered zero then
8: Find an arbitrary uncovered zero Z0 and prime it
9: if There is no starred zero in the row of Z0 then

10: GOTO STEP 3
11: else
12: Cover this row, and uncover the column containing the starred zero GOTO STEP 2.
13: end if
14: else
15: Save the smallest uncovered element emin GOTO STEP 4
16: end if
17: STEP 3: Construct a series S of alternating primed and starred zeros as follows:
18: Insert Z0 into S
19: while In the column of Z0 there exists a starred zero Z1
20: Insert Z1 into S
21: Replace Z0 with the primed zero in the row of Z1. Insert Z0 into S
22: end while
23: Unstar each starred zero in S and replace all primes with stars. Erase all other primes

and uncover every
line in C GOTO STEP 1

24: STEP 4: Add emin to every element in covered rows and subtract it from every element
in uncovered columns. GOTO STEP 2

25: DONE: Assignment pairs are indicated by the positions of starred zeros in the cost matrix.

Moreover, matrix C is now by definition quadratic, regardless of the size of
the underlying graphs. That is, |V1| =/ |V2| is explicitly allowed.

Definition 6.4 Let g1 = (V1, E1, μ1, ν1) be the source and g2 = (V2, E2, μ2, ν2)
the target graph with V1 = {u1, . . . , un} and V2 = {v1, . . . , vm}, respectively.
The cost matrix C is defined as

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,1 c1,2 · · · c1,m c1,ε ∞ · · · ∞
c2,1 c2,2 · · · c2,m ∞ c2,ε

. . .
...

...
...

. . .
...

...
. . .

. . . ∞
cn,1 cn,2 · · · cn,m ∞ · · · ∞ cn,ε

cε,1 ∞ · · · ∞ 0 0 · · · 0

∞ cε,2
. . .

... 0 0
. . .

...
...

. . .
. . . ∞

...
. . .

. . . 0
∞ · · · ∞ cε,m 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where ci,j denotes the cost of a node substitution, ci,ε the cost of a node dele-
tion c(ui → ε), and cε,j the costs of a node insertion c(ε→ vj).

Obviously, the upper left corner of the cost matrix represents the costs
of all possible node substitutions, the diagonal of the upper right corner the
costs of all possible node deletions, and the diagonal of the bottom left corner
the costs of all possible node insertions. Note that each node can be deleted
or inserted at most once. Therefore, any nondiagonal element of the upper
right and lower left part is set to ∞. The bottom right corner of the cost
matrix is set to zero since substitutions of the form (ε→ ε) should not incur
any costs.

On the basis of the new cost matrix C defined above, Munkres’ algo-
rithm [34] can be executed (Algorithm 6.2). This algorithm finds the opti-
mal, i.e., the minimum cost, permutation p = p1, . . . , pn+m of the integers
1, 2, . . . , n + m that minimizes

∑n+m
i=1 Cipi . Obviously, this is equivalent to the

minimum cost assignment of the nodes of g1 represented by the rows to
the nodes of g2 represented by the columns of matrix C. That is, Munkres’
algorithm indicates the minimum cost assignment pairs with starred zeros
in the transformed cost matrix C. These starred zeros are independent, i.e.,
each row and each column of C contains exactly one starred zero. Conse-
quently, each node of graph g1 is either uniquely assigned to a node of g2

(upper left corner of C) or to the deletion node ε (upper right corner of C).
Conversely, each node of graph g2 is either uniquely assigned to a node of g1

(upper left corner of C) or to the insertion node ε (bottom left corner of C).
The ε-nodes in g1 and g2 corresponding to rows n + 1, . . . , n + m and columns
m+1, . . . , m+n in C that are not used cancel each other out without any costs
(bottom right corner of C).

So far the proposed algorithm considers the nodes only and takes no in-
formation about the edges into account. In order to achieve a better approx-
imation of the true edit distance, it would be highly desirable to involve
edge operations and their costs in the node assignment process as well.
In order to achieve this goal, an extension of the cost matrix is needed.
To each entry ci,j, i.e., to each cost of a node substitution c(ui → vj), the
minimum sum of edge edit operation costs, implied by node substitution
ui → vj, is added. Formally, assume that node ui has adjacent edges Eui and
node vj has adjacent edges Evj. With these two sets of edges, Eui and Evj,
an individual cost matrix similar to Definition 6.4 can be established and
an optimal assignment of elements Eui to elements Evj according to Algo-
rithm 6.2 performed. Clearly, this procedure leads to the minimum sum
of edge edit costs implied by the given node substitution ui → vj. These
edge edit costs are added to the entry ci,j. Clearly, to the entry ci,ε, which
denotes the cost of a node deletion, the cost of the deletion of all adja-
cent edges of ui is added, and to the entry cε,j, which denotes the cost of



6.4 Applications 125

a node insertion, the cost of all insertions of the adjacent edges of vj is
added.

Note that Munkres’ algorithm used in its original form is optimal for solv-
ing the assignment problem, but it provides us with a suboptimal solution
for the GED problem only. This is due to the fact that each node edit oper-
ation is considered individually (considering the local structure only), such
that no implied operations on the edges can be inferred dynamically. The
result returned by Munkres’ algorithm corresponds to the minimum cost
mapping, according to matrix C, of the nodes of g1 to the nodes of g2. Given
this mapping, the implied edit operations of the edges are inferred, and the
accumulated costs of the individual edit operations on both nodes and edges
can be computed. The approximate edit distance values obtained by this pro-
cedure are equal to, or larger than, the exact distance values, since it finds an
optimal solution in a subspace of the complete search space. We refer to this
method as Bipartite, or BP for short.

6.4

Applications

The intention of this section is twofold. First, four different graph data sets
are discussed in order to give an exemplary insight into how graphs can be
used to model objects in certain applications. Secondly, two different ap-
proaches to graph-based object classification in conjunction with GED are
discussed. First we make use of the edit distance for a direct classification by
means of a nearest-neighbor classifier. The second approach uses the GED
in order to transform graphs into feature vectors. The classification process
is then carried out in the target vector space.

6.4.1

Graph Data Sets

In this section four different graph data sets with quite different character-
istics are presented. They represent line drawings, grayscale images, HTML
web sites, and molecular compounds. The graph data sets emerged in the
context of the authors’ recent work on graph kernels [38] and graph embed-
ding [10, 45]. All graph data sets discussed in the present paper are publicly
available or will be made available in the near future [43].

Letter Database The first graph data set involves graphs that represent dis-
torted letter drawings. We consider the 15 capital letters of the Roman alpha-
bet that consist of straight lines only (A, E, F, H, I, K, L, M, N, T, V, W, X, Y, Z).
For each class, a prototype line drawing is manually constructed. These pro-
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totype drawings are then converted into prototype graphs by representing
lines by undirected edges and ending points of lines by nodes. Each node is
labeled with a two-dimensional attribute giving its position relative to a ref-
erence coordinate system. Edges are unlabeled. The graph database consists
of a training set, a validation set, and a test set of size 750 each. In order to
test classifiers under different conditions, distortions are applied on the pro-
totype graphs with three different levels of strength, viz. low, medium, and
high. Hence, our experimental data set comprises 6,750 graphs altogether.
Figure 6.2 illustrates the prototype graph and a graph instance for each dis-
tortion level representing the letter A.

(a) (b) (c) (d)

Figure 6.2 Instances of letter A: Original and distortion
levels low, medium and high (from left to right).

Fingerprint Database Fingerprints are converted into graphs by filtering the
images and extracting regions that are relevant [35]. In order to obtain graphs
from fingerprint images, the relevant regions are binarized and a noise re-
moval and thinning procedure is applied. This results in a skeletonized rep-
resentation of the extracted regions. Ending points and bifurcation points
of the skeletonized regions are represented by nodes. Additional nodes are
inserted in regular intervals between ending points and bifurcation points.
Finally, undirected edges are inserted into link nodes that are directly con-
nected through a ridge in the skeleton. Each node is labeled with a two-
dimensional attribute giving its position. The edges are attributed with an
angle denoting the orientation of the edge with respect to the horizontal
direction.

The fingerprint database used in our experiments is based on the NIST-4
reference database of fingerprints [60]. It consists of a training set of size 500,

(a) Left (b) Right (c) Arch (d) Whorl

Figure 6.3 Fingerprint examples from the four classes.
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a validation set of size 300, and a test set of size 2000. Thus, there are a total
of 2800 fingerprint images from the four classes arch, left, right, and whorl
of the Galton–Henry classification system. For examples of these fingerprint
classes, see Figure 6.3.

AIDS Database The AIDS data set consists of graphs representing molec-
ular compounds. We construct graphs from the AIDS Antiviral Screen
Database of Active Compounds [16]. This data set consists of two classes
(active, inactive), which represent molecules with activity against HIV or not.
The molecules are converted into graphs in a straightforward manner by rep-
resenting atoms as nodes and the covalent bonds as edges. Nodes are labeled
with the number of the corresponding chemical symbol and edges by the
valence of the linkage. Figure 6.4 illustrates one molecular compound from
each class. Note that different shades of gray represent different chemical
symbols, i.e., node labels. We use a training set and a validation set of size
250 each, and a test set of size 1500. Thus, there are 2000 elements in all
(1600 inactive and 400 active elements).

(a)  (b)  

Figure 6.4 A molecular compound of both classes: (a) active, (b) inactive.

Web Page Database In [48] several methods for creating graphs from web
documents are introduced. For the graphs used in the experiments, the fol-
lowing method was applied. First, all words occuring in the web document –
except for stop words, which contain little information – are converted into
nodes in the resulting web graph. We attribute the nodes with the corre-
sponding word and its frequency, i.e., even if a word appears more than once
in the same web document, we create only one unique node for it and store
its total frequency as an additional node attribute. Next, different sections
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of the web document are investigated individually. These sections are title,
which contains the text related to the document’s title, link, which is a text
in a clickable hyperlink, and text, which comprises any of the readable text
in the web document. If word wi immediately precedes word wi+1 in any of
the sections title, link, or text, a directed edge from the node corresponding
to word wi to the node corresponding to the word wi+1 is inserted in our web
graph. The resulting edge is given the appropriate section label. Although
word wi might immediately precede word wi+1 in more than one section, only
one edge is inserted. That is, an edge is possibly labeled with more than one
section label. Finally, only the most frequently used words (nodes) are kept
in the graph and the terms are conflated to the most frequently occurring
form.

In our experiments we make use of a data set that consists of 2340
documents from 20 categories (Business, Health, Politics, Sports, Technology,
Entertainment, Art, Cable, Culture, Film, Industry, Media, Multimedia, Mu-
sic, Online, People, Review, Stage, Television, and Variety). The last 14 cat-
gories are subcategories related to entertainment. These web documents
were originally hosted at Yahoo as news pages (http://www.yahoo.com).
The database is split into a training, a validation, and a test set of equal
size (780).

In contrast to the other data sets, these graphs are characterized by the ex-
istence of unique node labels. This is interesting since it implies that when-
ever two graphs are being matched with each other, each node has at most
one uniquely defined candidate for possible assignment in the other graph.
Hence, the computationally expensive step in graph matching, i.e., the explo-
ration of all possible mappings between the nodes of the two graphs under
consideration, is no longer needed [6].

Note that the graph data sets are of a quite different nature, coming from
a variety of applications. Furthermore, the graph sets differ in their character-
istics, such as the number of available graphs (|G|), the number of different
classes (|Ω|), and the average and maximum number of nodes and edges per
graph (∅|V |, ∅|E |, max |V |, max |E |). Table 6.1 gives a summary of all graph
data sets and their corresponding characteristics.

Table 6.1 Graph data set characteristics.

Database |G| |Ω| ∅|V | ∅|E | max |V | max |E |
Letter 6750 15 4.7 4.5 9 9
Fingerprint 2800 4 5.4 4.4 26 24
AIDS 2000 2 9.5 10.0 85 328
Web page 2340 20 186.1 104.6 834 596
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6.4.2

GED-Based Nearest-Neighbor Classification

A traditional approach to addressing the classification problem in a graph
space is to apply a k-nearest-neighbor (k-NN) classifier in conjunction with
edit distance. Given a labeled set of training graphs, an unknown graph is
assigned to the class that occurs most frequently among the k nearest graphs
(in terms of edit distance) from the training set. Formally, let us assume
that a graph space G, a space of class labels Y , and a labeled training set
of patterns {(gi, yi)}i=1,...,N ⊆ G ~ Y are given. If {(g(1), y(1)), . . . , (g(k), y(k))} ⊆
{gi, yi)}i=1,...,N are the k patterns that have the smallest distance d(g, g(i)) to
a test pattern g, then the k-NN classifier f : G → Y can be defined by

f(g) = argmax
y∈Y

|{(g(i), y(i)) : y(i) = y}| .

If k = 1, the k-NN classifier’s decision is based on just one element from the
training set, regardless of whether this element is an outlier or a true class
representative. Obviously, a choice of parameter k > 1 reduces the influence
of outliers by evaluating which class occurs most frequently in a neighbor-
hood around the test pattern.

Classifiers of the nearest-neighbor type in conjunction with GED have
been succesfully applied to various classification problems. In [48], for in-
stance, this concept is used for web content mining, which involves the
clustering and classification of web documents based on their textual sub-
stance. The automatic identification of diatoms using GED and k-NN classi-
fiers is conducted in [1]. Diatoms are unicellular algae found in humid places
where light provides the basis for photosynthesis. The classification of di-
atoms is useful for various applications such as environmental monitoring
or forensic medicine. The huge estimated number of more than 10,000 di-
atom classes makes the classification of diatoms very difficult. Finally, in [38]
nearest-neighbor classification based on GED is applied to various classifica-
tion problems, viz. fingerprint, color image, and molecule classification.

6.4.3

Dissimilarity-Based Embedding Graph Kernels

Although GED and related similarity measures allow us to compute dis-
tances between general graphs, this is not sufficient for most standard pat-
tern recognition algorithms. In fact, edit-distance-based graph matching that
can be applied directly in the domain of graphs is limited to nearest-neighbor
classification described in Section 6.4.2.

A promising direction to overcome the lack of algorithmic tools for graph
classification is graph embedding. Basically, an embedding of graphs into
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a vector space establishes access to the rich repository of algorithmic tools for
pattern analysis. Examples of graph embeddings can be found in [32,46,62].
Recently a new class of graph embedding procedures that are based on pro-
totype selection and GED computation has emerged. Originally the idea was
proposed in [40] in order to map feature vectors into dissimilarity spaces.
This idea was generalized first to strings [53] and eventually to the domain of
graphs [45]. The key idea of this approach is to use the distances of an input
graph to a number of training graphs, termed prototype graphs, as a vecto-
rial description of the input graph. That is, we use a dissimilarity represen-
tation rather than the original graph representation for pattern recognition
tasks.

This graph embedding procedure makes use of GED. Consequently, it can
be applied to both directed and undirected graphs, as well as to graphs with-
out and with labels on their nodes and/or edges. In case there are labels
on the nodes and/or edges, these labels can be of any nature (discrete sym-
bols, the set of integer or real numbers, or whole attribute vectors). Even
hypergraphs can be embedded with this embedding method [8]. Hence, the
proposed embedding approach is more general than other graph embedding
techniques where (sometimes quite severe) restrictions on the type of under-
lying graph are imposed.

General Embedding Procedure Assume we have a labeled set of sample
graphs, G = {g1, . . . , gN}. After having selected a setP = {p1, . . . , pn} ⊆ G, we
compute the GED of a given input graph g to each prototype p ∈ P . Note that
g can be an element of G or any other graph. This leads to n dissimilarities,
d1 = d(g, p1), . . . , dn = d(g, pn), which can be arranged in an n-dimensional
vector (d1, . . . , dn). In this way we can transform any graph from the train-
ing as well as any other graph set (for instance a validation or a test set of
a classification problem) into a vector of real numbers.

Definition 6.5 Let G be a finite or infinite set of graphs andP = {p1, . . . , pn} ⊆
G a set of prototypes. Then, the mapping ϕPn : G → Rn is defined as the
function

ϕP
n (g) = (d(g, p1), . . . , d(g, pn)) ,

where d(g, pi) is the edit distance between graph g and the ith prototype2).

The complexity of the embedding procedure in conjunction with GED is
exponential since the exact computation of GED is exponential in the num-
ber of nodes for general graphs. However, as mentioned above, there ex-
ist a number of efficient approximation algorithms for GED computation

2) Note that any other graph dissimilarity measure can be used as well.
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(e.g., the bipartite matching approach [42] with cubic time complexity de-
scribed in the present chapter). Consequently, given n predefined prototypes,
the embedding of one particular graph is established by means of n distance
computations with polynomial time.

Prototype Selection One crucial question about the proposed graph embed-
ding is how to define a set P of prototypes that lead to a good performance
of the classifier in the feature space. Often, the prototype set P is defined as
a subset of the training set of graphs T , i.e., P ⊆ T [45]. In [40,45,53] differ-
ent prototype selection algorithms are discussed. These prototype selection
strategies use some heuristics based on the underlying dissimilarities in the
original graph domain. It is shown that none of them is globally best, i.e., the
quality of the selected prototypes and in particular their number depends on
the underlying data set. Thus, both the selection strategy and dimensionality
are determined with the target classifier on a validation set.

An alternative approach is to use all available elements from the training
set as prototypes, i.e., P = T , and subsequently apply dimensionality reduc-
tion methods. This process is more principled and allows us to completely
avoid the problem of finding the optimal prototype selection strategy. For di-
mensionality reduction, for instance, the well-known principal component
analysis (PCA) and Fisher’s linear discriminant analysis (LDA) [17] can be
applied. This approach (using all available elements from the training set as
prototypes) has been applied to graph embeddings in [44]. Note that in this
approach the vector space embedded graphs of dimensionality N are mapped
into another vector space of dimensionality n u N. For the sake of simplic-
ity, however, we also denote these embedded, and eventually transformed,
graphs with ϕP

n (g).

Relationship to Graph Kernel Methods Another idea to overcome the lack of
algorithmic tools for graph classification, which is closely related to graph
embedding procedures, is kernel methods [49,51,57]. In recent years, kernel
methods have become one of the most rapidly emerging subfields in intel-
ligent information processing. The vast majority of work on kernel meth-
ods is concerned with transforming a given feature space into another one
of higher dimensionality without computing the transformation explicitly
for each individual feature vector. As a fundamental extension the exis-
tence of kernels for symbolic data structures, especially for graphs, has been
shown [20]. By means of suitable kernel functions, graphs can be implicitly
mapped into vector spaces. Consequently, a large class of kernel machines
for classification, most of them originally developed for feature vectors, be-
come applicable to graphs.
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Definition 6.6 Let G be a finite or infinite set of graphs, gi, gj ∈ G, and ϕ : G →
Rn a function with n ∈ N. A graph kernel function is a mapping κ : G ~ G →
R such that κ(gi, gj) = 〈ϕ(gi), ϕ(gj)〉.

According to this definition a graph kernel function takes two graphs gi

and gj as arguments and returns a real number that is equal to the result
achieved by first mapping the two graphs by a function ϕ to a vector space
and then computing the dot product 〈ϕ(gi), ϕ(gj)〉 in the feature space. The
kernel function κ(gi, gj) provides us with a shortcut (kernel trick) that elimi-
nates the need for computing ϕ(.) explicitly. It is well-known that many clas-
sification algorithms can be kernelized, i.e., formulated in such a way that
only scalar products of vectors rather than the vectors of individual objects
are needed. Such algorithms are commonly referred to as kernel machines.
Hence, applying a graph kernel provides us access to all these algorithms.

Based on the graph embedding ϕPn established above, one can define
a valid graph kernel κ by computing the standard dot product of two graph
maps in the resulting vector space

κ〈〉(gi, gj) = 〈ϕPn (gi), ϕPn (gj)〉 .
Of course, not only the standard dot product can be used but any valid kernel
function defined for vectors, e.g., an RBF kernel function

κRBF(gi, gj) = exp
(
–γ||ϕPn (gi) – ϕPn (gj)||2

)
where γ > 0. We denote this graph kernel as dissimilarity embedding graph
kernel.

In a recent book, graph kernels were proposed that directly use GEDs [38].
This approach turns the existing dissimilarity measure (GED) into a simi-
larity measure by mapping low distance values to high similarity values and
vice versa. To this end, a simple monotonically decreasing transformation
is applied to the GED. Note the fundamental difference between such an
approach and our embedding procedure. While in the former methodology
the existing dissimilarity measure is turned into a similarity measure (i.e.,
a kernel value) and subsequently plugged into a kernel machine, the latter
uses the dissimilarities to n prototypes as features for a new description of
the underlying object. Therefore, not only kernel machines but also other
nonkernelizable algorithms can be applied in conjunction with the proposed
graph embedding method.

6.5

Experimental Evaluation

Two different experiments are described in this section in order to demon-
strate the feasibility of (suboptimal) GED for graph-based object classifi-
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cation. First, GED is computed with optimal and suboptimal methods.
A comparison of the computation time and the classification accuracy us-
ing a nearest-neighbor classifier is carried out. In the second experiment
the suboptimal GEDs as computed for the first experiment are used for the
dissimilarity embedding graph kernel described in Section 6.4.3.

6.5.1

Optimal vs. Suboptimal Graph Edit Distance

In our experiments we divide each database into three disjoint subsets, viz.
the training, the validation, and the test set. The elements of the training set
are used as prototypes in the NN classifier. The validation set is used to deter-
mine the values of the meta parameters τnode, which correspond to the cost of
a node deletion or insertion, and τedge, which corresponds to the costs of an
edge deletion or insertion. For all considered graph data sets node and edge
labels are integer numbers, real numbers, real vectors, or strings, and the
substitution cost of a pair of labels is given by a suitable distance measure
(Euclidean distance or string edit distance [58]). Finally, the parameter pair
that leads to the highest classification accuracy on the validation set is used
on the independent test set to perform GED computation and NN classifica-
tion.

We use three algorithms for GED computation, viz. Heuristic-A*, Beam,
and BP, which are all described in detail above. Besides the computation
time (t) and classification accuracy of the NN classifier, we are interested in
other indicators. In particular, we compute the correlation (ρ) between exact
and suboptimal distances. Clearly, the correlation coefficient between exact
and suboptimal distances is an indicator of how good a suboptimal method
approximates the exact edit distance.

In Table 6.2 the results achieved on all data sets except the Webpage data
are given.3) The computation time in Table 6.2 corresponds to the total time
elapsed while performing all GED computations on a given data set. Missing
table entries correspond to cases where a time limit was exceeded and the
computation was aborted. We observe that exact edit distance computation
by means of Heuristic-A* is feasible for the Letter graphs only. The graphs of
the remaining data sets are too complex, too large, or too dense to compute
exact GEDs.

Comparing the runtime of the suboptimal method, BP, with the other
systems we observe a massive speedup. On the Letter data at the lowest dis-
tortion level, for instance, the novel bipartite edit distance algorithm is about

3) Due to unique node labels, no approximation is needed for match-
ing these graphs. Consequently, a comparison on this data set is
omitted.
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Table 6.2 Accuracy of a NN classifier (NN), correlation (ρ), and time (t)

Heuristic-A* Beam(10) BP
Database NN ρ t NN ρ t NN ρ t

Letter L 91.0 1.00 649′05′′ 91.1 0.95 107′52′′ 91.1 0.98 7′52′′

Letter M 77.9 1.00 2061′29′′ 78.5 0.93 120′04′′ 77.6 0.93 6′11′′

Letter H 63.0 1.00 4914′45′′ 63.9 0.93 149′47′′ 61.6 0.97 8′48′′

Fingerprint – – – 84.6 – 166′05′′ 78.7 – 2′09′′

AIDS – – – 96.2 – 1047′55′′ 97.0 – 4′17′′

81 times faster than the exact algorithm (Heuristic-A*) and about 13 times
faster than the second system (Beam). On the Letter graphs at medium and
high distortion levels the corresponding speedups of the novel algorithm are
even higher. On the two data sets Fingerprint and AIDS exact computation of
the edit distance is not possible within a reasonable amount of time. The run-
time of BP on these data sets is about 83 (Fingerprint) and 260 (Molecules)
times faster than the other suboptimal algorithm Beam.

From Table 6.2 a significant speedup of the novel bipartite method for
GED computation compared to the exact procedure is evident. However, the
question remains whether the approximate edit distances found by BP are
accurate enough for pattern recognition tasks. As mentioned before, the dis-
tances found by BP are equal to, or larger than, the exact GED. In fact, this
can be seen in the correlation scatter plots in Figure 6.5. These scatter plots
give us a visual representation of the accuracy of the suboptimal methods
Beam and BP on the Letter data at the lowest distortion level. We plot for
each pair consisting of one test and one training graph its exact (horizontal
axis) and approximate (vertical axis) distance value.

Based on the scatter plots given in Figure 6.5 we find that Beam approxi-
mates small distance values accurately, i.e., all small approximate distances
are equal to the exact distances. On the other hand, large distance values are
overestimated quite strongly. The mean and the standard deviation of the
difference between the approximate and exact distances are 0.23 and 0.59,
respectively. Based on the fact that graphs within the same class usually have
a smaller distance than graphs belonging to two different classes, this means
that the suboptimality of Beam mainly increases interclass distances, while
intraclass distances are not strongly affected.

A similar conclusion can be drawn for the suboptimal algorithm BP. Many
of the small distance values are not overestimated, while higher distance val-
ues are increased due to the suboptimal nature of the novel approach. In con-
trast with the suboptimal Beam method, where the level of overestimation
increases with larger distance values, the distance values are better bounded
by BP, i.e., large distance values are likewise not strongly overestimated. That
is, both the mean (0.16) and the standard deviation (0.27) of the difference
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(a) Beam(10) (b) BP

Figure 6.5 Scatter plots of the exact edit distances (x-axis)
and the suboptimal edit distances (y-axis).

between the approximate and exact distances are smaller than with Beam.
On all other data sets, we obtain scatter plots similar to those in Figure 6.5
and can draw the same conclusions.

BP considers the local edge structure of the graphs only. Hence, in com-
parison with Heuristic-A*, the novel algorithm BP might find an optimal
node mapping that eventually causes additional edge operations. These ad-
ditional edge edit operations are often deletions or insertions. This leads to
additional costs of a multiple of the edit cost parameter τedge. Obviously, this
explains the accumulation of points in the two linelike areas parallel to the
diagonal in the distance scatter plot in Figure 6.5b.

Based on the scatter plots and the high correlation coefficient ρ reported in
Table 6.2, one can presume that the classification results of an NN classifier
will not be negatively affected when we substitute the exact edit distances by
approximate ones. In fact, this can be observed in Table 6.2 for all data sets.
On Letter L the classification accuracy is improved, while on Letters M and H
it drops compared to the exact algorithm. Note that the only difference that
is statistically significant (using a Z-test at the 95% level) is the deterioration
on Letter H from 63.0% to 61.6%. On the AIDS data set we observe that BP
outperforms Beam (with statistical significance), while on Fingerprints the
accuracy drops statistically significantly.

From the results reported in Table 6.2 we can conclude that in general the
classification accuracy of the NN classifier is not negatively affected by us-
ing the approximate rather than the exact edit distances. This is due to the
fact that most of the overestimated distances belong to interclass pairs of
graphs, while intraclass distances are not strongly affected. Obviously, intra-
class distances are of much higher importance for a distance-based classifier
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than interclass distances. In other words, through the approximation of the
edit distances, the graphs are rearranged with respect to each other such
that a better classification becomes possible. Graphs that belong to the same
class (according to the ground truth) often remain near each other, while
graphs from different classes are pulled apart from each other. Obviously, if
the approximation is too inaccurate, the similarity measure and the underly-
ing classifier will be unfavorably disturbed.

6.5.2

Dissimilarity Embedding Graph Kernels Based on Suboptimal Graph Edit Distance

The purpose of the experiments described in this section is to employ the
suboptimal GEDs computed by BP for the dissimilarity embedding graph
kernel. In an experimental evaluation, the classification accuracy of a kernel
machine in conjunction with the dissimilarity embedding graph kernel is
compared to a k-NN classifier in the original graph domain. The kernel ma-
chine used is a support vector machine (SVM). The basic idea of SVM is to
separate classes of patterns by hyperplanes. The sum of distances from the
hyperplane to the closest pattern of each class is commonly termed margin.
The SVM is characterized by the property that it finds the maximum-margin
hyperplane, which is expected to perform best on an independent test set.
This type of classifier has proven very powerful in various applications and
has become one of the most popular classifiers in machine learning, pattern
recognition, and related areas recently.

For graph embedding we use all available elements from the training set
as prototypes, i.e., P = T , and subsequently apply dimensionality reduction
methods [44]. For dimensionality reduction, we make use of the well-known
PCA and Fisher’s LDA [17].

PCA [17] is a linear transformation. It seeks the projection that best repre-
sents the data. PCA is based on the observation that the first principal com-
ponent points in the direction of the highest variance of the underlying data
and, therefore, includes the most information about the data. The second
principal component is perpendicular to the first principal component and
points in the direction of the second highest variance and so on. For reducing
the dimensionality of the transformed data we retain only the n u N princi-
pal components with the highest variance. The data are then represented in
a new coordinate system defined by these n principal components.

Fisher’s LDA [17] is a linear transformation as well. In contrast to PCA,
LDA takes class label information into account. In its original form, LDA
can be applied to two-class problems only. However, we make use of a gener-
alization, called multiple discriminant analysis (MDA), which can cope with
more than two classes. In MDA, we are seeking the projection of the data
that best separates the classes from each other. In this approach the trans-
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formed data points have a maximal dimensionality of c – 1, where c is the
number of classes.

In Figure 6.6a the SVM parameter validation is illustrated on the Webpage
data set for one fixed value of the dimensionality. The SVM, in conjunction
with the dissimilarity embedding graph kernel used in this chapter, has pa-
rameters C and γ, where C corresponds to the weighting factor for misclas-
sification and γ is used in the RBF kernel function. For each dimensionality
and each possible value of C and γ an SVM is trained and its performance is
evaluated on the validation set. In Figure 6.6a the classification accuracy on
the validation set is plotted as a function of C and γ.

Figure 6.6b (solid line) displays the best classification results achieved on
the validation set with the best (C, γ) pair for various dimensionality values.
Together with the accuracy, another curve that corresponds to the fraction of
the variance is shown in the same figure (dashed line). This curve displays

(a)

(b)

Figure 6.6 Validation of meta parameters of dissimilarity
embedding graph kernel. (a) Optimizing C and γ for a spe-
cific dimensionality. (b) Validation of the PCA space dimen-
sionality.
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the fraction of the variance kept in the PCA-reduced vectors as a function
of the dimensionality. As one expects, the fraction monotonically increases
with the number of principal components retained. However, there is no
clear cutoff point in the fraction curve. This is why we use a validation set
to find the optimal number of dimensions. The parameter values (C, γ, and
dimensionality) that result in the lowest classification error on the validation
set are applied to the independent test set.

The procedure for the MDA-transformed data differs from the validation
on PCA data in that no validation set is used. There are two reasons for not
using a validation set. First, as the number of dimensions is limited by the
number of classes minus one, we always use the maximum possible value.
Second, for MDA it is more important to provide a large training set for
transformation than optimizing the SVM parameter values. Hence, for MDA
transformation we merge the validation and training set to one large set. The
MDA transformation is applied on this new set.

In our experiments we use both nonnormalized and normalized data. Nor-
malized data are obtained by linearly scaling all individual feature values
to the range [–1, 1]. Of course, the whole optimization process of the meta
parameters is independently carried out for both nonnormalized and nor-
malized data. In Table 6.3 all classification accuracies on all data sets are
shown. In the first column the reference systems’ accuracy is given (k-NN).
In the remaining columns the results of the dissimilarity embedding graph
kernel in conjunction with PCA- and MDA-reduced data are given. The clas-
sifiers applied to normalized data are marked with an asterisk (PCA* and
MDA*).

The dissimilarity space embedding graph kernel in conjunction with PCA
outperforms the reference system on all data sets. Note that all improve-
ments are statistically significant. Comparing the use of normalized vs.
nonnormalized data, we note that three times we obtain further improve-

Table 6.3 Classification accuracy on the graph data sets.

Reference Embedding kernel
DB k-NN PCA PCA* MDA MDA*

Letter L 91.1 92.1 ◦ 92.7 ◦ 88.7 • 89.8
Letter M 77.6 81.4 ◦ 81.1 ◦ 58.0 • 68.5 •
Letter H 61.6 73.8 ◦ 73.3 ◦ 60.2 60.5
Fingerprint 80.6 81.9 ◦ 83.1 ◦ 71.5 • 74.7 •
AIDS 97.1 98.3 ◦ 98.2 ◦ 94.6 • 95.4 •
Webpage 77.4 81.5 ◦ 84.0 ◦ 87.9 ◦ 82.6 ◦

◦ Statistically significant improvement over the reference system (Z-test, α = 0.05)
• Statistically significant deterioration over the reference system (Z-test, α = 0.05)
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ments by means of normalization. Two of these improvements are statisti-
cally significant (Fingerprint and Webpage) while none of the deteriorations
(Letter M, Letter H, AIDS) are significant.

Regarding the embedding kernel applied to MDA reduced data, we ob-
serve that the recognition rates are lower than those of the PCA in general.
This can be explained by the fact that the maximum possible dimensional-
ity is restricted by the number of classes minus one. On five data sets, the
results achieved with an MDA are even worse than those of the reference
system. However, on the Webpage data set the MDA-based method achieves
the best result among all classifiers with 87.9%.

Comparing MDA and MDA* we observe that the graph kernel applied to
normalized data outperforms the kernel applied on the raw data five times.
Four of these improvements (Letters L and M, Fingerprint, AIDS) and the
deterioration (Webpage) are statistically significant. The problem of too low
dimensionalities also arises on MDA*, of course.

6.6

Summary and Conclusions

Graphs, which can be seen as the most general data structure in computer
science, are used for object representation in the present chapter. As a basic
dissimilarity measure for graphs, the concept of edit distance is applied. The
edit distance of graphs is a powerful and flexible concept that has found vari-
ous applications. A serious drawback is, however, the exponential complexity
of GED computation. Hence using optimal, or exact, algorithms restricts the
applicability of the edit distance to graphs of rather small size.

In the current chapter a suboptimal approach to GED computation is in-
troduced (BP) that is based on Munkres’ algorithm for solving the assign-
ment problem. The proposed solution allows for the insertion, deletion, and
substitution of both nodes and edges, but considers these edit operations in
a rather independent fashion from each other. Therefore, while Munkres’ al-
gorithm returns the optimal solution to the assignment problem, BP yields
only a suboptimal, or approximate, solution to the GED problem. However,
the time complexity is only cubic in the number of nodes of the two underly-
ing graphs. In the experimental section, optimal and approximative edit dis-
tance is computed on different graph data sets. The first finding of our work
is that, although Beam, which is another suboptimal algorithm developed
previously, achieves remarkable speedups compared to the exact method, BP
is still much faster. Furthermore, the new approach makes GED feasible for
graphs with up to 130 nodes.

The second finding is that suboptimal GED need not necessarily lead to
a deterioration of the classification accuracy of a distance-based classifier. An
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experimental analysis has shown that the larger the true distances are, the
larger is their overestimation. In other words, smaller distances are com-
puted more accurately than larger distances by the suboptimal algorithm.
However, for a NN classifier, small distances have more influence on the
decision than large distances. Hence no serious deterioration of the classi-
fication accuracy occurs when the proposed suboptimal algorithm is used
instead of an exact method.

In a second application, suboptimal distances computed by BP are used for
the dissimilarity space embedding graph kernel. This graph kernel computes
the GED of a sample graph to a training set of size N. As a result, we obtain
N real numbers, which are used as a high dimensional vectorial description
of the given graph. Previous work on graph embedding depends on the selec-
tion of suitable prototypes. However, the way of selecting these prototypes is
a critical issue. With the method described in this chapter the difficult task of
prototype selection is avoided by taking all available graphs from the training
set as prototypes, then reducing the dimensionality by applying the mathe-
matically well-founded dimensionality reduction algorithms PCA and MDA.
With several experimental results obtained on four databases with quite dif-
ferent characteristics we show that the performance of a k-NN classifier in
the graph domain, used as a reference system, can be outperformed with
statistical significance. The SVM in the optimized PCA space outperforms
the reference system on all data sets. One of the findings of the experiments
is that the PCA-based system is superior compared to the MDA-based classi-
fier in most cases.
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7

Graph Energy
Ivan Gutman, Xueliang Li, and Jianbin Zhang

7.1

Introduction

In this chapter we are concerned with the eigenvalues of graphs and some of
their chemical applications. Let G be a (simple) graph, with vertex set V(G)
and edge set E(G). The number of vertices of G is n, and its vertices are
labeled by v1, v2, . . . , vn. The adjacency matrix A(G) of the graph G is a square
matrix of order n, whose (i, j)-entry is equal to 1 if the vertices vi and vj are
adjacent and equal to zero otherwise.

The eigenvalues λ1, λ2, . . . , λn of the adjacency matrix A(G) are said to be
the eigenvalues of the graph G and to form its spectrum. Details of the spectral
theory of graphs can be found in the seminal monograph [1].

The characteristic polynomial of the adjacency matrix, i.e., det(λ In – A(G)),
where In is the unit matrix of order n, is said to be the characteristic polynomial
of the graph G and will be denoted by φ(G, λ). From linear algebra it is known
that the graph eigenvalues are just the solutions of the equation φ(G, λ) = 0.

One of the most remarkable chemical applications of graph theory is based
on the close correspondence between the graph eigenvalues and the molec-
ular orbital energy levels of π-electrons in conjugated hydrocarbons. For de-
tails, see [2–4]. If G is a molecular graph of a conjugated hydrocarbon with n
vertices and λ1, λ2, . . . , λn are its eigenvalues, then in the so-called Hüchkel
molecular orbital (HMO) approximation [3,5], the energy of the ith molecular
orbital is given by

Ei = α + λi � ,

where α and � are pertinent constants. In order to simplify the formalism,
it is customary to set α = 0 and � = 1, in which case the π-electron orbital
energies and the graph eigenvalues coincide.
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The total π-electron energy (E ) is equal to the sum of the energies of all

π-electrons that are present in the respective molecule, i.e., E =
n∑

i = 1
gi Ei =

n∑
i = 1

gi λi, where gi is the number of electrons in the ith molecular orbital

(whose energy is Ei). Because of restrictions coming from the Pauli exclu-
sion principle [5], gi is 2, 1, or 0. In the majority of chemically relevant cases,
gi = 2 whenever λi > 0 and gi = 0 whenever λi < 0, implying E = 2

∑
+

λi with∑
+

indicating the summation over positive eigenvalues. Because the sum of

all eigenvalues is zero, one immediately arrives at

E = E(G) =
n∑

i = 0

|λi| . (7.1)

The total π-electron energy and, in particular, the right-hand side of Equa-
tion 7.1 was studied already in the pioneering days of quantum chemistry
(see, e.g., [6]). In the 1970s one of the present authors [7] came to the idea
of defining the energy of a graph G as the sum of the absolute values of its
eigenvalues. By this, Equation 7.1 could now be viewed as the definition of
a graph invariant (that in the case of some special graphs has a chemical
interpretation) that is applicable to all graphs. This seemingly insignificant
change of the approach to E(G) eventually resulted in the development of an
entirely new theory of graph energy. In this chapter we outline its main results,
especially those obtained in the last decade. For earlier mathematical results
on graph energy see the review [8]; for its chemical aspects see [9, 10]

Although put forward already in the 1970s [7], and having much older
roots in theoretical chemistry [6], the concept of graph energy has for a long
time failed to attract the attention of mathematicians and mathematical
chemists. However, around the year 2000, research on graph energy sud-
denly became a very popular topic, resulting in numerous significant dis-
coveries and in a remarkable number of publications. Since 2001 over 100
mathematical papers on E were produced, more than one per month.

This chapter has six sections, followed by a detailed (yet far from com-
plete) bibliography on graph energy. In the second section numerous up-
per and lower bounds for graph energy are given, and in many cases the
graphs achieving these bounds are characterized. The third section is con-
cerned with hyperenergetic (E > 2n – 2) and hypoenergetic (E < n) graphs,
as well as with pairs of equienergetic graphs (E(G1) = E(G2)). The fourth
section outlines some selected (of very many existing) results on graphs ex-
tremal with regard to energy. In the fifth section we briefly state a few results
on graph energy that could not be included in the preceding three sections.
Concluding remarks are given in the last section.
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7.2

Bounds for the Energy of Graphs

Let G be a graph possessing n vertices and m edges. We say that G is an
(n, m)-graph.

For any (n, m)-graph [1],
n∑

i = 1
λ2

i = 2m.

In what follows we assume that the graph eigenvalues are labeled in a non-
increasing manner, i.e., that

λ1 v λ2 v · · · v λn .

If G is connected, then λ1 > λ2 [1]. Because λ1 v |λi| , i = 2, . . . , n, the
eigenvalue λ1 is referred to as the spectral radius of graph G.

Some of the simplest and longest standing [8] bounds for the energy of
graphs are given below.

Theorem 7.1 [11] For an (n, m)-graph G,

E(G) u
√

2mn

with equality if and only if G is either an empty graph (with m = 0, i.e., G ~W Kn)
or a regular graph of degree 1, i.e., G ~W (n/2)K2.

Theorem 7.2 [12] For a graph G with m edges,

2
√

m u E(G) u 2m .

Equality E(G) = 2
√

m holds if and only if G consists of a complete bipartite
graph Ka,b, such that a · b = m, and arbitrarily many isolated vertices. Equal-
ity E(G) = 2m holds if and only if G consists of m copies of K2 and arbitrarily
many isolated vertices.

7.2.1

Some Upper Bounds

Using

n∑
i = 2

λ2
i = 2m – λ2

1

together with the Cauchy–Schwarz inequality, applied to the (n – 1)-dimen-
sional vectors (|λ2|, . . . , |λn|) and (1, . . . , 1), we obtain the inequality

n∑
i = 2

|λi| u
√

(n – 1)(2m – λ2
1) .
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Thus, we have

E(G) u λ1 +
√

(n – 1)(2m – λ2
1) .

Since F(x) := x +
√

(n – 1)(2m – x2) is a decreasing function in the variable
x and the spectral radius obeys the inequality λ1 v 2m/n [1], we have the
following theorem.

Theorem 7.3 [13] Let G be an (n, m)-graph. If 2m v n, then

E(G) u
2m
n

+

√√√√(n – 1)

[
2m –

(
2m
n

)2
]

. (7.2)

Moreover, equality holds in (7.2) if and only if G consists of n/2 copies of K2, or G ~W
Kn, or G is an noncomplete connected strongly regular graph with two nontrivial
eigenvalues both having absolute values equal to

√
(2m – (2m/n)2)/(n – 1).

If 2m u n, then the inequality

E(G) u 2m (7.3)

holds. Moreover, equality holds in (7.3) if and only if G is a disjoint union of edges
and isolated vertices.

Recall [1] that a graph G that is neither complete nor empty is said to be
strongly regular with parameters (n, k, a, c) if it has n vertices, it is regular of de-
gree k, every pair of its adjacent vertices has a common neighbors, and every
pair of its nonadjacent vertices has c common neighbors. A strongly regular
graph with parameters (n, k, a, c) has only three distinct eigenvalues and the
eigenvalues of G that are different from k are the zeros of the quadratic poly-
nomial x2 – (a – c)x – (k – c). Denote these eigenvalues by s and t, and let ms

and mt be, respectively, their multiplicities. Since k has a multiplicity equal
to one, and the sum of all the eigenvalues is 0, we have ms + mt = n – 1 and
ms s + mt t = –k.

Using routine calculus, it can be shown that the left-hand side of Inequal-
ity 7.2 becomes maximal when m = (n2 + n

√
n)/4. It thus follows:

Theorem 7.4 [13] Let G be a graph on n vertices. Then

E(G) u
n
2

(
√

n + 1) (7.4)

with equality if and only if G is a strongly regular graph with parameters(
n ,

n +
√

n
2

,
n + 2

√
n

4
,

n + 2
√

n
4

)
.
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Obviously, if such a graph with property E = n(
√

n + 1)/2 does exist, then
n must be a square of a positive integer. Very recently, Haemers [14] conjec-
tured that n = p2 is necessary and sufficient for the existence of such graphs.
He also tried to construct such strongly regular graphs, and proved:

Theorem 7.5 [14] There are strongly regular graphs with parameters(
n ,

n +
√

n
2

,
n + 2

√
n

4
,

n + 2
√

n
4

)
for (i) n = 4p , p v 1 ; (ii) n = 4p q4 , p, q v 1 ; (iii) n = 4p + 1 q2 , p v 1 and
4q – 1 is a prime power, or 2q – 1 is a prime power, or q is a square, or q < 167.

As explained above, the graphs specified in Theorem 7.5 have maximum
energy. Haemers also found that for n = 4, 16, 36 the above extremal graphs
are unique, whereas for n = 64, 100, 144, these are not unique.

Earlier, McCelland [11] showed that E(G) u
√

2mn (Theorem 7.1). It is easy
to demonstrate [15] that Inequality 7.2, and therefore also (7.4), improve this
bound.

For special classes of graphs one can obtain better bounds.

Theorem 7.6 [16] Let G be a bipartite graph on n > 2 vertices. Then

E(G) u
n√
8

(
√

n +
√

2) (7.5)

with equality if and only if n = 2v and G is the incidence graph of

a 2-
(

v, v+
√

v
2 , v+2

√
v

4

)
-design.

Recall [17] that a 2-(v, k, λ)-design is a collection of k-subsets or blocks of
a set of v points such that each 2-set of points lies in exactly λ blocks. The
incident matrix B of a 2-(v, k, λ)-design is the v ~ b matrix defined so that for
each point x and block S, Bx,S = 0 if x ∈ S and Bx,S = 1 otherwise.

A graph is said to be semiregular bipartite if it is bipartite and each vertex in
the same part of bipartition has the same degree.

Among known bounds for λ1, we need here the following [18]:

λ1 v

√√√√1
n

n∑
i = 1

d2
i ,

where d1, d2, . . . , dn is the degree sequence of the underlying graph G. Equal-
ity holds if and only if G is either regular or semiregular bipartite.
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Theorem 7.7 [19] If G is an (n, m)-graph with degree sequence d1, d2, . . . , dn, then

E(G) u

√√√√1
n

n∑
i = 1

d2
i +

√√√√√√(n – 1)

⎡⎢⎣2m –

⎛⎝√√√√1
n

n∑
i = 1

d2
i

⎞⎠2
⎤⎥⎦ .

Equality holds if and only if G is either (n/2)K2 (if m = n/2), or Kn (if
m = n(n – 1)/2), or a noncomplete connected strongly regular graph with two
nontrivial eigenvalues both having absolute value

√
(2m – (2m/n)2)/(n – 1), or

n K1 (if m = 0).

Since

4m2 =

(
n∑

i = 1

di

)2

u n
n∑

i = 1

d2
i

and F(x) = x +
√

(n – 1)(2m – x2) decreases for
√

2m/n u x u
√

2m, it follows
that the upper bound of Theorem 7.8 is better than that of Theorem 7.6.

Theorem 7.8 [19] If G is a bipartite (n, m)-graph, n > 2, with degree sequence
d1, d2, . . . , dn, then

E(G) u 2

√√√√1
n

n∑
i = 1

d2
i +

√√√√(n – 2)

[
2m –

2
n

n∑
i = 1

d2
i

]
.

Equality holds if and only if G is (n/2)K2, or a complete bipartite graph, or
the incidence graph of a symmetric 2-(v, k, λ)-design with k = 2m/n and
λ = k(k – 1)/(v – 1), (n = 2v), or n K1.

An extension of Theorem 7.8, for the case where the number of zero eigen-
values is known, was reported in [20].

For vi ∈ V(G), the 2-degree of vi, denoted by ti, is the sum of degrees of the
vertices adjacent to vi. We call ti

di
the average degree of vi. The average 2-degree

of vi, denoted by mi, is the average of the degrees of the vertices adjacent
to vi. Then ti = di mi. Furthermore, denote by σi the sum of the 2-degrees
of the vertices adjacent to vi. A graph G is called p-pseudoregular if there is
a constant p such that each vertex of G has an average degree equal to p.
A bipartite graph G = (X, Y) is said to be (px, py)-pseudo-semiregular if there
are two constants px and py such that each vertex in X has an average degree
px and each vertex in Y has an average degree py.

Theorem 7.9 [21] Let G be an (n, m)-graph, m > 0, with degree sequence
d1, d2, . . . , dn and 2-degree sequence t1, t2, . . . , tn. Let

D2 =
n∑

i = 1

d2
i and T2 =

m∑
i = 1

t2
i .
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Then

E(G) u 2
√

T2/D2 +
√

(n – 1)(2m – T2/D2) .

Equality holds if and only if G ~W (n/2)K2 or G ~W Kn or G is a nonbipartite
connected p-pseudoregular graph with three distinct eigenvalues p,√

(2m – p2)/(n – 1), and –
√

(2m – p2)/(n – 1), provided p >
√

2m/n.

Theorem 7.10 [21] Let G be a bipartite (n, m)-graph, m > 0. Using the same
notation as in Theorem 7.9 we have

E(G) u 2
√

T2/D2 +
√

(n – 2)(2m – 2 T2/D2) .

Equality holds if and only if G ~W (n/2)K2, or G ~W Kr1,r2∪(n–r1–r2)K1, where r1 r2 =
m, or G is a connected (px, py)-pseudo-semiregular bipartite graph with four dis-
tinct eigenvalues √px py,

√
(2m – 2px py)/(n – 2), –

√
(2m – 2px py)/(n – 2), and

–√px py, provided px py >
√

2m/n.

Theorem 7.11 [22] Let G be an (n, m)-graph, m > 0 with degree sequence
d1, d2, · · · , dn and 2-degree sequence t1, t2, · · · , tn. Let

S2 =
n∑

i = 1

σ2
i ,

and let the other symbols be the same as in Theorem 7.9. Then

E(G) u 2
√

S2/T2 +
√

(n – 1)(2m – S2/T2) .

Equality holds if and only if G ~W (n/2)K2, or G ~W Kn, or G is a nonbipartite
connected graph satisfying σ1/t1 = σ2/t2 = · · · = σn/tn = p and has three
distinct eigenvalues p,

√
(2m – p2)/(n – 1), and –

√
(2m – p2)/(n – 1), provided

p >
√

2m/n.

Theorem 7.12 [22] Let G be a bipartite (n, m)-graph and everything else the same
as in Theorem 7.11. Then

E(G) u 2
√

S2/T2 +
√

(n – 2)(2m – 2 S2/T2) .

Equality holds if and only if G ~W (n/2)K2, or G ~W Kr1,r2 ∪ (n – r1 – r2)K1,
where r1 r2 = m, or G is a connected bipartite graph with V = {v1, v2, . . . , vs} ∪
{vs + 1, vs + 2, . . . , vn} such that σ1/t1 = · · · = σs/ts = px and σs + 1/ts + 1 = · · · =
σn/tn = py and has four distinct eigenvalues √px py,

√
(2m – 2px py)/(n – 2),

–
√

(2m – 2px py)/(n – 2), and –√px py, provided px py >
√

2m/n.

For v ∈ V(G), the k-degree dk(v) of v is the number of walks of length k of
G, starting at v.
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Theorem 7.13 [21] Let G be an (n, m)-graph, m > 0. Then

E(G) u

√∑
v∈V(G) d2

2(v)∑
v∈V(G) d2(v)

+

√√√√(n – 1)

(
2m –

∑
v∈V(G) d2

2(v)∑
v∈V(G) d2(v)

)
.

Equality holds if and only if G ~W (n/2)K2, or G ~W Kn, or G is a non-
bipartite connected p-pseudoregular graph with three distinct eigenvalues p,√

(2m – p2)/(n – 1), and –
√

(2m – p2)/(n – 1), provided p >
√

2m/n.

Theorem 7.14 [23] Let G be a connected (n, m)-graph. Then

E(G) u

√∑
v∈V(G) d2

k + 1(v)∑
v∈V(G) d2

k(v)
+

√√√√(n – 1)

(
2m –

∑
v∈V(G) d2

k + 1(v)∑
v∈V(G) d2

k(v)

)
.

Equality holds if and only if G is either the complete graph Kn or G is a strongly
regular graph with two nontrivial eigenvalues both having absolute value equal to√

[2m – (2m/n)2]/(n – 1).

Theorem 7.15 [23] Let G be a connected bipartite (n, m)-graph, n v 2. Then

E(G) u 2

√∑
v∈V(G) d2

k + 1(v)∑
v∈V(G) d2

k(v)
+

√√√√(n – 2)

(
2m – 2

∑
v∈V(G) d2

k + 1(v)∑
v∈V(G) d2

k(v)

)
.

Equality holds if and only if G is either the complete bipartite graph or G is the
incidence graph of a symmetric 2-(ν, k, λ)-design with ν = n/2, k = 2m/n, and
λ = k(k – 1)/(ν – 1).

More upper bounds of the same kind can be found in [24, 25].

It is well known [1] that the eigenvalues of a bipartite graph G on n = 2N
vertices occur in pairs: ±λ1,±λ2, · · · ,±λN, where λ1 v λ2 v · · · v λN. Then
the energy of G is given by

E(G) = 2(λ1 + λ2 + · · · + λN)

and

N∑
i = 1

λ2
i = m .

Let q =
N∑

i = 1
λ4

i . By the Cauchy–Schwarz inequality, m2 u Nq.
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Theorem 7.16 [26] Let G be a bipartite graph on 2N vertices. Then the following
holds. (i) m2 = Nq if and only if G ~W N K2. (ii) m2 = q if and only if G is the
direct sum of h isolated vertices and a copy of a complete bipartite graph Kr,s, such
that rs = m and h + r + s = 2N. (iii) If 1 < m2/q < N, then

E(G) u
2√
N

[(
m –

√
(N – 1)Q

)
+ (N – 1)

(
m –

√
Q/(N – 1)

)]
, (7.6)

where Q = Nq – m2. Equality holds if G is the graph of a symmetric BIBD. Con-
versely, if the equality holds and G is regular, then G is the graph of a symmetric
BIBD.

Recall [17] that a balanced incomplete block design (BIBD) is a family of
b blocks of a set of v elements, such that (i) each element is contained in
r blocks, (ii) each block contains k elements, and (iii) each pair of elements is
simultaneously contained in λ blocks. The integers (v, b, r, k, λ) are called the
parameters of the design. In the particular case r = k, the design is said to be
symmetric. The graph of a design is formed in the following way: the b + v
vertices of the graph correspond to the blocks and elements of the design
with two vertices adjacent if and only if one corresponds to a block and the
other corresponds to an element contained in that block.

Theorem 7.17 [26] Let G be a bipartite graph on 2N+1 vertices. Then the following
holds. (i) Q v 0 and the equality is obeyed if and only if G is the direct sum of
an isolated vertex with N K2. (ii) Inequality 7.6 remains true if q < m2 < Nq,
and the equality holds if G consists of an isolated vertex and a copy of the graph of
a symmetric BIBD.

If n = 2N and m v N, then the upper bound of Theorem 7.3 is

E∗(N, m) =
2m
N

+ 2

√
(N – 1)

[
m –

(m
N

)2
]

.

Theorem 7.18 [26] If N3 q v m4, then E(G) u E∗(N, m).

Therefore, if N3 q u m4, then the bound of Theorem 7.16 improves that of
Theorem 7.3.

Ending this subsection, we state one of the several bounds for energy ob-
tained by Morales [27–29]. Let G be a bipartite graph on 2N vertices. Then

E(G) u 2

√
m(N – 1) +

√
N(m2 – q)

N – 1
.
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7.2.2

Some Lower Bounds

In [30] it was shown that for all regular graphs G with degree k > 0, the
energy is not less than the number of vertices, E(G) v n. Equality is attained if
G consists of n/(2p) components isomorphic to the complete bipartite graph
Kp,p.

Eventually several other classes of graphs were characterized for which
E v n holds [31]. Among these are the hexagonal systems (representing ben-
zenoid hydrocarbons [32]).

A lover bound for E was obtained by McClelland [11]. Start with(
n∑

i = 1

|λi|
)2

=
n∑

i = 1

λ2
i +

∑
i =/ j

|λi||λj| .

Since the geometric mean of positive numbers is not greater than their arith-
metic mean,

1
n(n – 1)

∑
i =/ j

|λi||λj| v
∏
i =/ j

(|λi||λj|)1/n(n–1) =
n∏

i = 1

(|λi|)2/n = | det(A)|2/n .

Hence,

E(G)2 v
n∑

i = 1

λ2
i + n(n – 1)| det(A)|2/n .

Theorem 7.19 [11] E(G) v
√

2m + n(n – 1)| det A|2/n.

If det A =/ 0, which is equivalent to the condition that no graph eigenvalue
is equal to zero, then from Theorem 7.19 it follows that E(G) v n.
For bipartite graphs a similar argument yields [33]

E(G) v
√

4m + n(n – 2)| det A|2/n .

There are some other lower bounds:

Theorem 7.20 [26] (i) Let G be a bipartite graph with 2N vertices. Then

E(G) v 2m
√

m
q

. (7.7)

Equality holds if and only if either G = N K2 or G is the direct sum of isolated
vertices and complete bipartite graphs Kr1,s1 , . . . , Krj,sj such that r1 s1 = · · · = rj sj.

(ii) If G is a bipartite graph with 2N + 1 vertices, then Inequality 7.7 remains
true. Moreover, the equality holds if and and only if G is the direct sum of isolated
vertices and complete bipartite graphs Kr1,s1 , . . . , Krj,sj such that r1 s1 = · · · = rj sj.
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Theorem 7.21 [34] Let G be a bipartite graph with at least one edge and let r, s, t
be positive integers, such that 4r = s + t + 2. Then

E(G) v Mr(G)2[Ms(G)Mt(G)]–1/2 , (7.8)

where Mk = Mk(G) =
n∑

i = 1
(λi)k is the kth spectral moment of the graph G.

For a bipartite graph, the odd spectral moments are necessarily zero. In
order to overcome this limitation we define the momentlike quantities

M∗k = M∗k(G) =
n∑

i – 1

|λi|k .

Then we have the following theorem.

Theorem 7.22 [35] Let G be a graph with at least one edge and let r, s, t be non-
negative real numbers such that 4r = s + t + 2. Then

E(G) v M∗r (G)2[M∗s (G)M∗t (G)]–
1
2 (7.9)

with equality if and only if the components of graph G are isolated vertices and
complete bipartite graphs Kp1,q1 , . . . , Kpk,qk for some k v 1 such that p1 q1 = · · · =
pk qk.

From [11] we know that E(G) u
√

2mn holds for all graphs. There exists
a constant g such that g

√
2mn is a lower bound for E(G).

For a quadrangle-free (n, m)-graph G with maximum vertex degree 2, and
no isolated vertices, we have [36]

E(G) >
4
5

√
2mn .

If the maximum vertex degree is 3, then [36]

E(G) >
2
√

6
7

√
2mn .

Some other lower bounds of this type are found in [37–41]. Of these we
state here:

Theorem 7.23 [41] Let G be a quadrangle-free (n, m)-graph with minimum vertex
degree δ v 1 and maximum vertex degree Δ. Then

E(G) >
2
√

2δΔ
2(δ + Δ) – 1

√
2mn . (7.10)
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The authors of [13] expressed the opinion that for a given ε > 0 and al-
most all n v 1, there exists a graph G on n vertices for which E(G) v (1 – ε)
(n/2)(

√
n+1). Nikiforov [42,43] arrived at a stronger statement for sufficiently

large n.

Theorem 7.24 [42] (i) For all sufficiently large n, there exists a graph G of order n
with E(G) v 1

2 n3/2 – n11/10. (ii) For almost all graphs(
1
4

+ o(1)
)

n3/2 < E(G) <
(

1
2

+ o(1)
)

n3/2 .

7.3

Hyperenergetic, Hypoenergetic, and Equienergetic Graphs

7.3.1

Hyperenergetic Graphs

The energy of the n-vertex complete graph Kn is equal to 2(n – 1). We call
an n-vertex graph G hyperenergetic if E(G) > 2(n – 1). From Nikiforov’s The-
orem 7.24 we see that almost all graphs are hyperenergetic. Therefore, any
search for hyperenergetic graphs appears nowadays a futile task. Yet, before
Theorem 7.24 was discovered, a number of such results were obtained. We
outline here some of them.

In [7] it was conjectured that the complete graph Kn had greatest energy
among all n-vertex graphs. This conjecture was soon shown to be false [44].

The first systematic construction of hyperenergetic graphs was proposed
by Walikar, Ramane, and Hampiholi [45], who showed that the line graphs
of Kn , n v 5, and of Kn/2,n/2 , n v 8, are hyperenergetic. These results were
eventually extended to other graphs with a large number of edges [46, 47].

Hou and Gutman [48] showed that the line graph of any (n, m)-graph,
n v 5, m v 2n, is hyperenergetic. Also, the line graph of any bipar-
tite (n, m)-graph, n v 7 , m v 2(n – 1), is hyperenergetic. Some classes
of circulant graphs [49–51] as well as Kneser graphs and their comple-
ments [52] are hyperenergetic. In fact, almost all circulant graphs are hy-
perenergetic [49].

Graphs on n vertices with fewer than 2n – 1 edges are not hyperenergetic
[53, 54]. This, in particular, implies that Hückel graphs (graphs representing
conjugated molecules [2–4], in which the vertex degrees do not exceed 3)
cannot be hyperenergetic.
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7.3.2

Hypoenergetic Graphs

A graph on n vertices, whose energy is less than n is said to be hypoenergetic.
In what follows, for obvious reasons we assume that the graphs considered
have no isolated vertices.

Studies of hypoenergetic graphs started only quite recently [31, 55], and
until now very few results on such graphs have been known.

There are reasons to believe (cf. Theorem 7.24) that there are few hypoen-
ergetic graphs.

Theorem 7.25 [56] (i) There exist hypoenergetic trees of order n with maximum
vertex degree Δ u 3 only for n = 1, 3, 4, 7 (a single such tree for each value of n; see
Figure 7.1). (ii) If Δ = 4, then there exist hypoenergetic trees for all n v 5, such
that n == k (mod 4) k = 0, 1, 3. (iii) If Δ v 5, then there exist hypoenergetic trees
for all n v Δ + 1.

Figure 7.1 The only four hypoenergetic trees with maximum
vertex degree not exceeding 3.

Independently of the paper [56], and almost at the same time, Nikiforov
[57] arrived at results essentially the same as Theorem 7.25, (i).

Computer search indicates that there exist hypoenergetic trees with Δ = 4
also for n == 2 (mod 4). The existence of these kinds of trees is still under our
consideration.

7.3.3

Equienergetic Graphs

Two nonisomorphic graphs are said to be equienergetic if they have the same
energy. There exist numerous pairs of graphs with identical spectra, so-called
cospectral graphs [1]. In a trivial manner such graphs are equienergetic.

Therefore, in what follows we will be interested only in noncospectral
equienergetic graphs.

It is also trivial that the graphs G and G∪Kp (which are not cospectral) are
equienergetic. Namely, the spectrum of the graph whose components are G
and additional p isolated vertices consists of the eigenvalues of G and of p
zeros.
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G1 G2 G3

Figure 7.2 Three noncospectral equienergetic graphs with E = 4.
Note that Sp(G1) = {2, –1, –1}, Sp(G2) = {1, 1, –1, –1}, and
Sp(G3) = {2, 0, 0, –2}.

Figure 7.3 The smallest pair of connected equienergetic graphs
with an equal number of vertices.

The smallest triplet of nontrivial equienergetic graphs (all having E = 4) is
shown in Figure 7.2. The smallest pair of equienergetic noncospectral con-
nected graphs with an equal number of vertices is shown in Figure 7.3. These
examples indicate that there exist many (nontrivial) families of equienergetic
graphs, and that the construction/finding of such families will not be partic-
ularly difficult.

The concept of equienergetic graphs was put forward independently and
almost simultaneously by Brankov, Stevanovíc, and Gutman [58] and Balakri-
shnan [59]. Since 2004 a plethora of papers has been published on equiener-
getic graphs [60–72]. In what follows we state some of the results obtained
along these lines.

Let G be a graph on n vertices and let V(G) = {v1, v2, . . . , vn}. Take another
set of vertices U = {u1, u2, . . . , un}. Define a graph DG whose vertex set is
V(HDG) = V(G) ∪ U and whose edge set consists only of the edges joining
ui to the neighbors of vi in G, for i = 1, 2, . . . , n. The resulting graph DG is
called the identity duplication graph of G [64, 73].

With the same notation as above, let u1, u2, . . . , un be vertices of another
copy of G. Make ui adjacent to the neighbors of vi in G, for i = 1, 2, . . . , n.
The resulting graph [64] is denoted by D2G.

The adjacency matrix of DH is

A(DG) =
[

0 A(G)
A(G) 0

]
= A

⊗[
0 1
1 0

]
.
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Thus if spec(G) = {λi , i = 1, . . . , n}, then spec(DH) = {λi, λi , i = 1, . . . , n}.
The adjacency matrix of D2H is

A(D2G) =
[

A(G), A(G)
A(G), A(G)

]
= A

⊗[
1, 1
1, 1

]
,

and therefore spec(D2G) = {2λ1, 2λ2 . . . , 2λn, 0, 0, . . . , 0}. We thus have the
following theorem.

Theorem 7.26 [64] DG and D2G are a pair of equienergetic graphs.

Let G be an r-regular graph on n vertices, and V(G) = {v1, . . . , vn}. Intro-
duce a set of n isolated vertices {u1, u2, . . . , un} and make each ui adjacent to
the neighbors of vi in G for every i. Then introduce a set of k, (k v 0), iso-
lated vertices and make all of them adjacent to all vertices of G. The resultant
graph is denoted by H.

By direct computation it follows that

E(H) =
√

5

[
E(G) +

√
r2 +

4
5

n k – r

]
.

Combining this and Theorem 7.26 one arrives at:

Theorem 7.27 [64] There exists a pair of n-vertex noncospectral equienergetic
graphs for n = 6, 14, 18 and n v 20.

Ramane and Walikar [65] recently obtained a stronger result:

Theorem 7.28 [65] There exists a pair of connected noncospectral equienergetic
n-vertex graphs for all n v 9.

If G is a graph and L(G) = L1(G) its line graph, then Lk(G), k = 2, 3, . . . ,
defined recursively via Lk(G) = L(Lk – 1(G)), are the iterated line graphs of G.

If G is an r-regular graph with n vertices and m edges, then the character-
istic polynomials of G and L(G) are related as [1]

φ(L(G), x) = (x + 2)m – nφ(G, x – r + 2) .

If spec(G) = {r, λ2, . . . , λn}, then spec(L(G)) = {r + r – 2, λ2 + r – 2, . . . , λn + r –
2, –2, . . . , –2} and spec(L2(G)) = {2r– 6, . . . , 2r– 6, r+3r– 6, λ2 +3r– 6, . . . , λn +
3r – 6, –2, . . . , –2}. Now, because the eigenvalues of any r-regular graph G
obey the condition |λi| u r, we see that the only negative eigenvalues of L2(G)
are those equal to –2, whose multiplicity is equal to nr(r – 2)/2. Consequently,

E(L2(G)) = 2 ~ 2 ~
nr(r – 2)

2
= 2nr(r – 2) .

In a similar manner, also E(Lk(G)) , k > 2, depends solely on n and r.
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Theorem 7.29 [62] Let G1 and G2 be two noncospectral regular graphs of the same
order and of the same degree r v 3. Then, for k v 2, the iterated line graphs
Lk(G1) and Lk(G2) form a pair of noncospectral equienergetic graphs of equal order
and with the same number of edges. If, in addition, G1 and G2 are chosen to be
connected, then also Lk(G1) and Lk(G2) are connected.

Let G1 and G2 be two r-regular graphs of order n. From [61] we know
that L2(G1) and L2(G2) are also equienergetic, and E(L2(G1)) = E(L2(G2)) =
(nr – 4)(2r – 3) – 2, where G denotes the complement of graph G.

Let G be a simple graph with vertex set V = {v1, v2, . . . , vn}. The extended
double cover of G, denoted by G∗, is the bipartite graph with bipartition
(X, Y), where X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, in which xi and yi

are adjacent if and only if either i = j or vi and vj are adjacent in G. Further, G∗

is regular of degree r + 1 if and only if G is regular of degree r. Then we have:

Theorem 7.30 [66] Let G1, G2 be two r-regular graphs of order n. Then

(i) (L2(G1))∗ and (L2(G2))∗ are equienergetic bipartite graphs, and

E((L2(G1))∗) = E((L2(G2))∗) = nr(3r – 5) .

(ii) (L2(G1))∗ and (L2(G2))∗ are equienergetic bipartite graphs, and

E((L2(G1))∗) = E((L2(G2))∗) = (5nr – 16)(r – 2) + nr – 8 .

(iii) (L2(G1))∗ and (L2(G2))∗ are equienergetic bipartite graphs, and

E((L2(G1))∗) = E((L2(G2))∗) = (2nr – 4)(2r – 3) – 2 .

A computer search showed that there are numerous pairs of noncospectral
equienergetic trees [58]. Some of these are depicted in Figure 7.4.

Numerical calculations, no matter how accurate, cannot be considered as
proof that two graphs are equienergetic. In the case of equienergetic trees
this problem can sometimes be overcome as in the following example.

Consider the trees TA, TB, and TC, depicted at the bottom of Figure 7.4.
Using standard recursive methods [1,4], one can compute their characteristic
polynomials as:

φ(TA, λ) = λ18 – 17 λ16 + 117 λ14 – 421 λ12 + 853 λ10

– 973 λ8 + 588 λ6 – 164 λ4 + 16 λ2

φ(TB, λ) = λ18 – 17 λ16 + 117 λ14 – 421 λ12 + 853 λ10

– 973 λ8 + 588 λ6 – 164 λ4 + 16 λ2

φ(TC, λ) = λ18 – 17 λ16 + 111 λ14 – 359 λ12 + 632 λ10

– 632 λ8 + 359 λ6 – 111 λ4 + 17 λ2 – 1
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Figure 7.4 Equienergetic trees [58]. Of the three 18-vertex trees
at the bottom of this figure, the first two are cospectral, but
not cospectral with the third tree.

Trees TA and TB have identical characteristic polynomials and, conse-
quently, are cospectral. The characteristic polynomial of TC is different, im-
plying that TC is not cospectral with TA and TB.

Now, if we are lucky, the above characteristic polynomials can be factored.
In this particular case we are lucky, and by easy calculation we find that:

φ(TA, λ) = λ2 (λ2 – 1)(λ2 – 2)2 (λ2 – 4)(λ4 – 3 λ2 + 1)(λ4 – 5 λ2 + 1)

φ(TC, λ) = (λ2 – 1)3 (λ4 – 3 λ2 + 1)(λ4 – 5 λ2 + 1)(λ4 – 6 λ2 + 1) .

It is now an elementary exercise in algebra to verify that

E(TA) = E(TB) = E(TC) = 6 + 4
√

2 + 2
√

5 + 2
√

7 .

If, however, the characteristic polynomials cannot be properly factored,
then at the present moment there is no way to prove that the underlying
trees are equienergetic. Note that until now no general method (different
from computer search) for finding equienergetic trees has been discovered.
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7.4

Graphs Extremal with Regard to Energy

One of the fundamental questions that is encountered in the study of graph
energy is which graphs (from a given class) have the greatest and smallest
E-values. The first such result was obtained for trees [74], when it was demon-
strated that the star has minimum and the path maximum energy. In the
meantime, a remarkably large number of papers were published on such ex-
tremal problems: for general graphs [13, 14, 16, 75–78], trees and chemical
trees [79–93], unicyclic [94–107], bicyclic [108–114], tricyclic [115, 116], and
tetracyclic graphs [117], as well as for benzenoid and related polycyclic sys-
tems [118–122].

In this section we state a few of these results, selecting those that can be
formulated in a simple manner.

We first present elementary results.
The n-vertex graph with minimum energy is Kn, the graph consisting of

isolated vertices. Its energy is zero.
The minimum-energy n-vertex graph without isolated vertices is the com-

plete bipartite graph Kn – 1,1, also known as the star [12]. Its energy is equal to
2
√

n – 1; cf. Theorem 7.2.
Finding the maximum-energy n-vertex graph(s) is a much more difficult

task, and a complete solution of this problem is not known. For some results
along these lines see Theorem 7.5.

Let G be a graph on n vertices and A(G) its adjacency matrix. As before, let
the characteristic polynomial of G be

φ(G, λ) = det(λIn – A(G)) =
n∑

k = 0

ak λn – k .

A classical result of the theory of graph energy is [6, 8] that E(G) can be com-
puted from the characteristic polynomial of G by means of

E(G) =
1
π

+∞∫
–∞

[
n –

ix φ ′(G, ix)
φ(G, ix)

]
dx ,

where φ ′(G, λ) denotes the first derivative of φ(G, λ), and where i =
√

–1.
More on the Coulson integral formula can be found elsewhere [4, 123, 124].

Another way to write the Coulson integral formula is [74]

E(G) =
1
π

+∞∫
–∞

1
x2 ln

⎡⎣(∑
k v 0

(–1)k a2k x2k

)2

+

(∑
k v 0

(–1)k a2k + 1 x2k + 1

)2
⎤⎦ dx .

(7.11)
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If graph G is bipartite, then its characteristic polynomial is of the form

φ(G, λ) =
∑
k v 0

(–1)k bk λn – 2k ,

and bk v 0. Then the Coulson integral formula is simplified as

E(G) =
2
π

+∞∫
0

1
x2 ln

[
1 +

∑
k v 1

bk x2k

]
dx .

If G is a tree (or, more generally, a forest), then

φ(G, λ) =
∑
k v 0

(–1)k m(G, k) λn – 2k

and

E(G) =
2
π

+∞∫
0

1
x2 ln

[
1 +

∑
k v 1

m(G, k) x2k

]
dx , (7.12)

where m(G, k) is the number of matchings of size k of G, i.e., the number of
selections of k independent edges in G.

Consider now Equation 7.11 and let G1 and G2 be two graphs. If the in-
equalities

(–1)k a2k(G1) u (–1)k a2k(G2)

(–1)k a2k + 1(G1) u (–1)k a2k + 1(G2)
(7.13)

are satisfied by all values of k, then from Equation 7.11 it follows that E(G1) u
E(G2). If, in addition, at least one of these inequalities is strict, then E(G1) <
E(G2).

Bearing this in mind we define a partial order ≺ and write G1 � G2 or
G2 � G1 if the conditions (7.13) are obeyed by all k. If, moreover, at least one
of the inequalities in (7.13) is strict, then we write G1 ≺ G2 or G2 � G1. Thus
we have:

G1 � G2 ⇒ E(G1) u E(G2)

G1 ≺ G2 ⇒ E(G1) < E(G2) .

As a special case of the above, if G1 and G2 are bipartite graphs, then [125]

G1 ≺ G2 ⇔ (∀k) bk(G1) u , bk(G2)
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whereas if G1 and G2 are trees (or, more generally, forests), then

G1 ≺ G2 ⇔ (∀k) m(G1, k) u m(G2, k) .

If for some k′ =/ k′′,

(–1)k′ a2k′(G1) < (–1)k′ a2k′(G2)

(–1)k′′ a2k′′(G1) > (–1)k′′ a2k′′ (G2)

or

(–1)k′ a2k′+1(G1) < (–1)k′ a2k′+1(G2)

(–1)k′′ a2k′′+1(G1) > (–1)k′′ a2k′′+1(G2) ,

then graphs G1 and G2 cannot be compared by means of the relation ≺ and
their energies cannot be compared by using the Coulson integral formula.

Practically all the (above-quoted) results on graphs that are extremal with
regard to energy were obtained by establishing the existence of the relation≺
between the elements of some class of graphs.

Theorem 7.31 [74] If Tn is a tree on n vertices, then

E(Sn) u E(G) u E(Pn) ,

where Sn and Pn denote, respectively, the star and the path with n vertices. Equality
holds only if G ~W Sn or G ~W Pn.

Eventually, the first few minimum- and maximum-energy n-vertex trees
were determined [88,89]. For instance, let P∗n be the tree obtained by attaching
a P3 to the third vertex of Pn – 2. Then P∗n is a tree with the second-maximum
energy [74].

Denote by Φn the class of trees on n vertices having a perfect matching
and by Ψn the subclass of Φn consisting of trees whose vertex degrees do
not exceed 3. Let Fn be obtained by adding a pendent edge to each vertex of
the star K1,(n/2)–1, and let Bn be the graph obtained from Fn – 1 by attaching
a P3 to the 2-degree vertex of a pendent edge. Let Gn be obtained by adding
a pendent edge to each vertex of the path Pn/2, Dn be the tree obtained from
Gn + 2 by deleting the third and fourth pendent edges.

Theorem 7.32 [79] (i) Fn and Bn are, respectively, the only trees with minimum
and second-minimum energies in Φn.

(ii) Gn and Dn are, respectively, the only trees with minimum and second-
minimum energies in Ψn.
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Eventually, Zhang and Li [80] determined the first four trees with maxi-
mum energy in Φn.

Let Bn,d be obtained from the path Pd with d vertices by attaching n – d
pendent edges to an end vertex of Pd.

Theorem 7.33 [82] Among n-vertex trees with a diameter of at least d, Bn,d is the
only tree with minimum energy (Figure 7.5).

Theorem 7.34 [86, 87] Among n-vertex trees having exactly k pendent vertices,
Bn,n – k + 1 is the only tree with minimum energy (Figure 7.5).

Figure 7.5 A minimum-energy tree with prescribed diameter [82].
This minimal-energy tree also has a prescribed number of
pendent vertices [86, 87].

Let S(n, m, r) be obtained by attaching one pendent vertex to each of the m
pendent vertices of the star K1,m + r. Let Y(n, m, r) be obtained by attaching m
P2s to one end vertex of Pr + 1. Let D(n, p, q) be obtained from P2 by adding
p and q pendent vertices to the vertices of P2. Let T2

r,s,t be the tree obtained
from P3 by adding r, s, t pendent vertices to its first, second, and third ver-
tices. Lin, Guo, and Li [84] determined the trees of given maximum degree
Δ, having minimum and maximum energies.

Theorem 7.35 [84] Let T be an n-vertex tree, n v 4. Let

T∗1(n, Δ) ~W

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S(n, n – Δ – 1, 2Δ – n + 1) if 3 u � n

2� u Δ(T) v n – 2

Y(n, Δ – 1, 2Δ – n + 1) if 3 u Δ(T) u � n
2�

Pn if Δ(T) = 2

.

Then E(T) u E(T∗1(n, Δ)), with equality if and only if T ~W T∗1(n, Δ).

Theorem 7.36 [84] Let T be an n-vertex tree, n v 7. Let

T∗2(n, Δ) ~W

⎧⎨⎩ D(n, Δ – 1, n – Δ – 1) if ! n
2" u Δ(T) u n – 2

T2
Δ – 1,Δ – 1,n – 2Δ – 1 if ! n

2" u Δ(T) u ! n
2 " – 1

.

If !(n + 1)/3" u Δ(T) u n – 2, then E(T) u E(T∗2(n, Δ)), with equality if and only
if T ~W T∗2(n, Δ).
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In the above, the trees with a given maximum vertex degree Δ and maxi-
mum E happen to be trees with a single vertex of degree Δ. Recently, we [93]
offered a simple proof of this result and, in addition, characterized the max-
imum energy trees having two vertices of maximum degree Δ.

Let D(p, q) be a double star obtained by joining the centers of two stars Sp

and Sq by an edge, and let F(p, q) be the tree obtained from D(p – 1, q) by
attaching a pendent edge to one of the vertices of degree one that joins the
vertex of degree q in D(p – 1, q).

Theorem 7.37 [81] Let T be a tree with a (p, q)-bipartition (p, q v 1, p + q v 3).
Then

E(T) v
√

2(p + q – 1) + 2
√

(p + q – 1)2 – 4(p – 1)(q – 1)

+
√

2(p + q – 1) – 2
√

(p + q – 1)2 – 4(p – 1)(q – 1) ,

with equality if and only if T ~W D(p, q).
Furthermore, if q v p v 2 and T �~W D(p, q), then E(T) v E(F(p, q)), with equality

if and only if T ~W F(p, q).

Let B(p, q) be the graph formed by attaching p – 2 and q – 2 vertices to two
adjacent vertices of a quadrangle, respectively, and let H(3, q) be the graph
formed by attaching q – 2 vertices to the pendent vertex of B(2, 3).

Theorem 7.38 [97] In the class of bipartite unicyclic graphs with a (p, q)-biparti-
tion, (q v p v 2), the graph B(p, q) has minimum energy if p v 4 or p = 2, whereas
B(3, q) and H(3, q) have minimum energy if p = 3.

Let S3
n be the graph obtained from the star graph with n vertices by adding

an edge. Hou [94] showed that S3
n is the graph with minimum energy among

all unicyclic graphs (Figure 7.6).

Let U (n, d) be the class of connected unicyclic graphs with n vertices and
diameter d, where 2 u d u n–2. Let U(n, d) be the graph obtained by attaching

Figure 7.6 Unicyclic graphs with minimum [94], second-minimum,
and third-minimum energy [98].
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Figure 7.7 A minimum-energy unicyclic graph with prescribed diameter [106].

a path of length d – 3 at a vertex of C4 and n – d – 1 pendent edges at another
vertex such that these two vertices are not adjacent (Figure 7.7).

Theorem 7.39 [106] Let G ∈ U (n, d) with d v 3 and G =/ U(n, d). Then E(G) >
E(Un,d).

For the (n, m)-graphs with minimum energy, Caporossi et al. [12] put for-
ward the following conjecture.

Conjecture 1 [12] If m u n+�(n–7)/2�, then the connected (n, m)-graph, n v 6 and
n – 1 u m u 2(n – 2), has minimum energy if it is obtained from the star by adding
to it m–n+1 additional edges all incident to the same vertex. If m > n+�(n–7)/2�,
the minimum-energy graph is the bipartite graph with two vertices in one class, one
of which is connected to all vertices on the other class.

This conjecture is true for m = n – 1, n (cf. Theorem 7.31). The conjecture
was proved to be true for m = n – 1, 2(n – 2) in [12] by Caporosi et al., and
for m = n by Hou [94]. Recently, Li, Zhang, and Wang [78] obtained a positive
solution to the second part of the conjecture for bipartite graphs and fur-
thermore determined the graph with the second-minimum energy among
connected bipartite (n, m)-graphs, n u m u 2n – 5.

Let S3,3
n be the graph formed by joining n – 4 pendent vertices to a vertex

of degree three of K4 – e, and let P6,6
n be the graph obtained from two C6s

by joining them by a path of length n – 10. Let G(n) be the class of bicyclic
graphs G on n vertices containing no disjoint odd cycles of lengths k and �

with k + � == 2 ( mod 4). Then S3,3
n is the graph with minimum energy in

G(n) [110].
Let P6

n be obtained by connecting a vertex of the cycle C6 with a terminal
vertex of the path Pn – 6.

Theorem 7.40 [96] Among n-vertex bipartite unicyclic graphs either P6
n or Cn have

maximum energy. Thus, if n is odd, then P6
n is the maximum-energy unicyclic

n-vertex graph.
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Computer-aided calculations show that Cn is the maximum-energy uni-
cyclic graph only for n = 10 [95]. However, the proof of the seemingly very
simple inequality E(Cn) < E(P6

n) has not been accomplished so far. The rea-
son for this lies in the fact that graphs Cn and P6

n are not comparable by the
relation ≺.

For bicyclic graphs with maximum energy, the following conjecture was
stated, based on computer-aided numerical experiments [75]:

Conjecture 2 If n = 14 and n v 16, then the maximum-energy bicyclic molecular
graph is P6,6

n , obtained by attaching six-membered cycles to the end vertices of the
path Pn – 12.

Recently a partial proof of this conjecture was obtained [111].

Theorem 7.41 [111] LetA(n) be the subset consisting of graphs obtained from two
cycles Ca and Cb (a, b v 10 and a == b == 2 (mod 4)) by joining them by an edge.
Let Bn denote the set of all other bipartite bicyclic graphs on n vertices. Then P6,6

n
has maximum energy in Bn.

7.5

Miscellaneous

We state here a few noteworthy results on graph energy that did not fit into
the previous sections.

E(G) v 4 holds for all connected graphs, except for K1, K2, K2,1, and K3,1

[126].

The rank ρ of a graph is the rank of its adjacency matrix. For a connected
bipartite graph G of rank ρ [126],

E(G) v
√

(ρ + 1)2 – 5 .

For any graph, E v ρ.

Let �(G) be the chromatic number of graph G. For any n-vertex graph G,
E(G) v 2(n – �(G)) [126].

The inequality E(G) + E(G) v 2n is satisfied by all n-vertex graphs, n v 5,
except by Kn and Kn – e [126].

As an immediate special case of the Koolen–Moulton upper bound (7.2),
for an n-vertex regular graph of degree r, we have E(G) u E0, where

E0 := r +
√

r(n – 1)(n – r) .
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Balakrishnan [59] showed that for any ε > 0, there exist infinitely many n,
for which there are n-vertex regular graphs of degree r , r < n – 1, such that
E(G)/E0 < ε.

There is no known answer to the question of whether there exist n-vertex
regular graphs of degree r for which E(G)/E0 > 1 – ε [59].

A direct consequence of Equation (7.12) is that by deleting an edge e from
a tree (or forest) T, the energy necessarily decreases, E(T) – E(T– e) > 0. In the
general case the difference E(G) – E(G – e) may be smaller than, greater than,
or equal to zero, and the complete solution of this problem is not known.
Some partial results along these lines were recently obtained [127, 128].

The energy of a graph is never an odd integer [129] and is never the square
root of an odd integer [130].

The way in which the energy depends on various structural features of
the underlying (molecular) graph has been much studied in the chemical
literature, in most cases empirically [9, 10]. Scores of approximate formulas
for E were put forward, in particular formulas that relate the E-value of an
(n, m)-graph with n and m [9,10,131]. Of these we call the reader’s attention to
a recent empirical finding that E(G) is an almost perfectly linear (decreasing)
function of the number of zeros in the spectrum of G [132, 133].

7.6

Concluding Remarks

At this moment the most significant open problem in the theory of graph
energy seems to be the characterization of n-vertex graphs with the greatest
energy. Although quite recently much progress has been achieved in this
direction (cf. Theorem 7.5), the problem is still far from being completely
solved. An additional difficulty that recently emerged [14] is the fact that for
some values of n, there exist numerous maximum-energy n-vertex graphs.

There have been several recent attempts to extend the graph-energy con-
cept to eigenvalues of matrices other than the adjacency matrix. Especially
much work has been done on the so-called “Laplacian graph energy,” based on
the spectrum of the Laplacian matrix, and on “distance graph energy,” based
on the spectrum of the distance matrix. “Energy” has been redefined so that
it could be associated with any matrix, including nonsquare matrices. How-
ever, the discussion of such energylike quantities goes beyond the scope of
this survey.
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8

Generalized Shortest Path Trees:

A Novel Graph Class by Example of Semiotic Networks
Alexander Mehler

8.1

Introduction

In this chapter we introduce a class of tree-like graphs that combines the
efficiency of tree-like structures with the expressiveness of general graphs.
Our starting point is the notion of a generalized tree (GT)∗, that is, a graph
with a kernel hierarchical skeleton in conjunction with graph-inducing pe-
ripheral edges [17]. We combine this notion with the theory of network opti-
mization problems (NOPs) [60] in order to introduce generalized shortest pathS
trees (GPST) as a subclass of the class of GTs. One advantage of this novel
class is that it provides a functional semantics of the different types of edges
of GTs. Another is that it naturally gives rise to combining graph model-
ing with conceptual spaces [28] and, thus, with cognitive or, more generally,
semiotic modeling. This chapter provides three examples in support of this
combination.

The graph model presented in this chapter focuses on structure forma-
tion in semiotic networks. Its background is the rising interest in network
models due to the renaissance of, so to speak, functionalist models of net-
working in a wide range of scientific disciplines starting from the famous
work of [45] in social psychology and extending into the area of physics [1],
quantitative biology [3,23], quantitative sociology [6,66], quantitative linguis-
tics [26, 41], and information science [48], to name only a few. See [21, 40, 47]
for surveys of this research in the area of the natural sciences and the hu-
manities.

What all these network models have in common is that they start from
a remarkably low-level graph model in terms of simple graphs with at most
labeled or typed vertices and edges. That is, for a decade or so networks
have been explored almost exclusively in terms of simple graphs [47], in
some cases with weighted edges [4, 52], together with a partitioning into

∗ A list of abbreviations can be found at the end of the chapter.
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bipartite models [67]. One exception to this trend is the notion of network
motifs [53], which is restricted to the formation of micro-level structures.
That is, the main focus of research has been on structures on the macro
level (cf., e.g., the bow-tie model of [8]) disregarding intermediate levels of
structure formation within complex networks. As a consequence, structure
formation is almost exclusively dealt with in terms of network characteris-
tics as a gateway to “universal” laws of network organization [5]. Note that
there are many graph cluster algorithms for identifying subgraphs of an
above-average cluster-internal homogeneity and cluster-external heterogene-
ity (see [11] for an overview). This is in the line of supervised or unsupervised
learning, which basically decides on the membership of objects to clusters
as partitions of the vertex sets of the underlying graph. In this chapter we
want to shed light on a graph model in the area of semiotic networks that
goes beyond traditional approaches to graph clustering and, at the same
time, departs from the predominant model-theoretic abstinence regarding
meso-level structures.

Generally speaking, graph models are quite common in semiotics and re-
lated disciplines. Whereas in linguistics tree-like models predominate (as,
e.g., rhetorical structure trees [37] to name only one example), efforts have
been made to build more general graph models in quantitative linguis-
tics [7, 38], partly inspired by category theory [29] and topology [27]. Here we
mention only three less cited approaches in this area (see [40] for a survey of
network models in linguistics): Firstly, Thiopoulos [61] builds on, amongst
others, the categorical notion of product and coproduct in order to model
the process of meaning constitution in lexical networks. Secondly, Baas [2]
utilizes hierarchical hypergraphs as models of recursive processes of net-
working. Thirdly, Ehresmann and Vanbremeersch [22] utilize – comparable
to [2] – the notion of a colimit in order to give a formal account of emergent
structures in complex systems.

In spite of their expressiveness, category theory and topology are hardly
found as methodic bases of present-day approaches in quantitative and com-
putational linguistics. One reason is that graph theory seems to be already
expressive enough to master a wide range of structure formations in linguis-
tics. In this chapter we follow this methodic conception, however, with a fo-
cus on generalized trees [16]. In web mining, GTs were introduced in order to
grasp the striking gestalt of web documents in-between tree- and graph-like
structures [15, 17, 43]. See Figure 8.1 for an example of a GT with a typical
kernel hierarchical structure complemented by graph-inducing lateral and
vertical links. Recently, Emmert-Streib, Dehmer, and Kilian [25] have shown
that this concept is also of interest in modeling biological structures. How-
ever, one important question has been left open by this research.

Generally speaking, the search for spanning trees of a given graph that
satisfy certain topological constraints is a well-known research topic in graph
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Figure 8.1 A webgraph [11] in the form of a directed GT derived
from a conference web site (www.text-technology.de) [15, 43].

theory [60]. Along this line of research we can formulate a central question
about GTs as follows: Given a connected graph G, which GT G′ induced by G
satisfies certain desirable topological constraints? By focusing on this question
we do not – unlike related approaches – ask about a similarity model of pairs
of predetermined GTs (see [16] for such a model). In contrast to this, we take
a step back and ask how to induce GTs from a given connected graph. This
problem is at the core of the present chapter. It will be tackled by means of
the notion of a generalized shortest path tree (GSPT). The basic idea behind
this notion is to introduce a functional semantics of edge types of GTs. That
is, starting from a graph we justify in functional terms which of its edges
would preferably serve as kernel, lateral, or vertical links. In this way, we in-
troduce a functional semantics into the inducement of GTs that goes beyond
the approaches mentioned above.

This endeavor is in accordance with Tarjan [60, p. 71], who generally de-
scribes the approach of network optimization as follows: Given a weighted
graph G – called a network – whose edges are weighted by an edge weight-
ing function μ : E → R, the task is to describe a network optimization prob-
lem (NOP) that consists of finding a subgraph of G that satisfies a set of
well-defined properties by optimizing (i.e., minimizing or maximizing) a cer-
tain function of μ. It is a basic idea of the present chapter to introduce the
notion of context sensitivity into the specification of such NOPs. That is, as
distinguished from the notion of a minimum spanning tree, we look for sub-
graphs in the form of GTs whose generation is nontrivially affected by the
choice of some root vertex. This sort of context sensitivity is in accordance
with what is known about priming and spreading activation in cognitive net-
works [46]. As becomes clear by this explanation, the present chapter always
strives to provide both a graph-theoretically and empirically well-founded
graph model.

What do we gain by such a graph model? Such a model is a first step towards
a time- and space-efficient, as well as cognitively plausible, model of infor-
mation processing in semiotic networks. Although we aim at this model,
the present chapter does not cut the Gordian knot. That is, our graph model
of structure formation in complex networks does not overcome the disre-
gard mentioned at the beginning. What we provide is a further development
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of GT as a model of semiotic structures. So the main result of this chap-
ter is a formalization of a promising concept that may help to better under-
stand structure formation in semiotic networks and the processes operating
thereon.

The chapter is organized as follows. In Section 8.2, our graph model is
developed in detail, including directed and undirected graphs. At the core of
this chapter is the notion of a GSPT that enables a detailed semantics of the
different edge types provided by GTs. It turns out that this is a step towards
combining GTs with the theory of conceptual spaces. This combination is
also provided by Section 8.2. Next, Section 8.3 gives an empirical account of
our graph model by example of three semiotic systems: social tagging, text
networks, and discourse structures.

8.2

A Class of Tree-Like Graphs and Some of Its Derivatives

8.2.1

Preliminary Notions

In this section we briefly define two well-known notions that will be used
throughout the chapter to introduce our graph model. This relates to paths in
undirected and directed graphs as well as to the notion of geodesic distance
in weighted graphs.

Definition 8.1 (Preliminaries) Let G = (V, E,LV,LE, μ) be a connected weighted
undirected graph whose vertices are uniquely labeled by the function LV :
V → LV for the set of vertex labels LV and whose edges are uniquely labeled
by LE : E → LE for the set of edge labels LE. Throughout this chapter we
assume that LV ⊂ N0 and LE ⊂ N0, that is, vertices and edges are labeled
by ordinal numbers. Further, we assume that this numbering is consecutive.
Next, let D = (V, A,LV,LE, ν) be an orientation of G, that is, a connected
weighted digraph such that ∀a ∈ A : ν(a) = μ(e) ⇔ e = {in(a), out(a)} ∈ E.
By uV⊂L2

V (uE⊂L2
E) we denote the natural order of LV ⊂ N0 (LE ⊂ N0) such

that for all a, b ∈ LV (a, b ∈ LE): a <V b (a <E b) iff a uV b (a uE b) and
a =/ b. This allows us to define the order relation ua = uV ∪ uE of vertices and
edges. Without loss of generality we assume that μ : E→ R+ \ {0} is an edge
weighting function that represents the costs of traversing edges in E. Think
of μ, for example, as a function of the loss of coherence induced by following
hyperlinks. Analogously, we assume that ν(a), a ∈ A, represents the cost of
entering out(a) when coming from in(a). Now let P(G) be the set of all simple
paths in G and P = (vi0 , ej1 , vi1 , . . . , vim–1 , ejm , vim ) ∈ P(G) such that ∀1 u k u m :
ejk = {vik–1 , vik} ∈ E. Further, let P(D) be the set of all simple paths in D
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and P = (vi0 , aj1 , vi1 , . . . , vim–1 , ajm , vim ) ∈ P(D) such that ∀ajk ∈ {aj1 , . . . , ajm} :
in(ajk ) = vik–1 ∧ out(ajk ) = vik . Then, V(P) = {vi0 , vi1 , . . . , vim–1 , vim} ⊆ V is the set
of all vertices, E(P) = {ej1 , . . . , ejm} ⊆ E the set of all edges, and VE(P) = V(P)∪
E(P) the set of all constituents of P. Analogously, we define the sets V(P), E(P)
and V(P) for directed paths (P). If G (resp. D) is a (directed) tree, then for each
v, w ∈ V the simple path ending at v and w is unique. Such paths will be de-
noted as Pvw ((P)vw), indexed by their end vertices v and w. Next, we define
the order relation �a⊆ P(G)2 over the set of paths P(G) of G such that for
P = (vi1 , ei2 , . . . , eimi–1 , vimi

), P ′ = (vj1 , ej2 , . . . , ejmj–1 , vjmj
) ∈ P(G), P =/ P ′: P �a P ′

iff ∃r < min(mi, mj)∀k ∈ {1, . . . , r} : VE(P) # xik = xjk ∈ VE(P ′) ∧ VE(P) #
xir+1 <a xjr+1 ∈ VE(P ′). Analogously, we define the order relation �a⊆ P(D)2

over the set P(D) of directed paths of D. Further, by PG(v, w) we denote the
set of all simple paths in G ending at v and w. Finally, for vimi

= vj1 we define
the concatenation P◦P ′ = (vi1 , ei2 , . . . , eimi–1 , vimi

, ej2 , . . . , ejmj–1 , vjmj
) of P and P ′.

Remark. Throughout this chapter we will always assume the existence of the
labeling functions LV and LE and, thus, of the order relations �a and �a

without explicitly noting this in the subsequent definitions of graphs. The
reason for this omission is to keep the formalism simple.

Remark. Why so much effort in defining order relations over paths? The reason
is that in semiotic systems, multi- and pseudographs are common (e.g., due
to redundancy in the system), while simple graphs seem to be the exception.
Think, for example, of graphs as simple as webgraphs in which vertices de-
note pages while edges stand for hyperlinks. Here, it is not unusual that two
pages are linked by different edges distinguished by the location of their an-
chors within the source page. Using some measure of lexical similarity of in-
terlinked texts [35] such links may be equally weighted. As a consequence, we
need a method of distinguishing such edges and the paths built out of them
in order to provide uniqueness of the mathematical notions to be defined.
This is provided by uE, which may explore, for example, the aforementioned
positional information.

Based on Definition 8.1 we can now define the notion of a geodesic path.

Definition 8.2 (Geodesic Distance and Geodesic Path) Let G = (V, E, LV, LE, μ)
be a weighted connected graph according to Definition 8.1. Then, we extend
μ as a function of P(G), that is,

μ : P(G)→ (0,∞) ,

such that for each P = (vi0 , ej1 , vi1 , . . . , vim–1 , ejm , vim ) ∈ P(G) we set

μ(P) =
m∑

k=1

μ(ejk ) .
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Based on μ we define the geodesic path GPμ(v, w) between v and w in G as

GPμ(v, w) = inf
�a

{
arg min
P∈PG(v,w)

μ(P)

}
,

where PG(v, w) is the set of all simple paths in G ending at v and w (Defini-
tion 8.1). Further, the geodesic distance μ̂ : V ~ V→ [0,∞) between v, w ∈ V is
defined as

μ̂(v, w) =
{

0 v = w ,
μ(GPμ(v, w)) v =/ w .

Finally, for any weighted graph G = (V, E, μ) we define

μ(G) =
∑
e∈E

μ(e) .

Note that the definition of geodesic distances and paths makes use of the
order relation �a of paths. These two notions play a crucial role in defining
so-called generalized shortest path trees in Sections 8.2.4 and 8.2.5. Further,
they are used to bridge the gap between the graph model introduced here and
the cognitive-linguistic notion of a conceptual space [28]. This is done in Sec-
tions 8.2.8 and 8.2.9. We are now in a position to introduce the fundamental
notion of a GT.

8.2.2

Generalized Trees

What is common to many semiotic networks is their hierarchical skeleton in
conjunction with graph-inducing links. Obviously, such networks lie in be-
tween tree-like structures on the one hand and more general graphs on the
other. This ambivalent nature has been grasped by the notion of a generalized
tree (GT) [17], which will be developed further in the subsequent sections. Ex-
tending the approach presented in [17] and [41] we will distinguish directed
from undirected GTs. The reason for doing this is dictated by the nature of
semiotic structures: there are semiotic systems that are better described by
abstracting from the orientation of arcs used to model relations among their
components. This holds, for example, for lexical networks whose nodes are
interlinked by multiple arcs or simply by edges. In order to capture the vari-
ety of semiotic structures that are spanned over their kernel tree-like skele-
tons, we utilize and extend the following graph-theoretical apparatus.

Definition 8.3 (Undirected Generalized Tree) Let T = (V, E ′, r) be an undirected
tree rooted in r. Further, let Prv = (vi0 , ej1 , vi1 , . . . , vin–1 , ejn , vin), vi0 = r, vin = v,



8.2 A Class of Tree-Like Graphs and Some of Its Derivatives 181

ejk = {vik–1 , vik} ∈ E ′, 1 u k u n, be the unique path in T from r to v ∈ V and
V(Prv) = {vi0 , . . . , vin} the set of all vertices of Prv. An undirected GT

G = (V, E, τ, r)

induced by T is a pseudograph (i.e., a multigraph that may contain loops)
rooted in r whose edges are typed by the function τ : E → T = {k, l, r, v} as
follows (note that edges e ∈ E are multisets of exactly two elements that in
the case of reflexive edges contain the same element twice):1)

∀e ∈ E :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ(e) = k ⇒ e ∈ Ek = E ′

(kernel edges)
τ(e) = v ⇒ e ∈ Ev = {{v, w}| v ∈ V(Prw) ∨ w ∈ V(Prv)}

(vertical edges)
τ(e) = r ⇒ e ∈ Er = {{v, v}| v ∈ V}

(reflexive edges)
τ(e) = l ⇒ e ∈ El = [V]2 \ (Ek ∪ Ev ∪ Er)

(lateral edges)

such that E τ
[1] = {e ∈ E | τ(e) = k}, E τ

[2] = {e ∈ E | τ(e) = v}, E τ
[3] = {e ∈

E | τ(e) = r}, E τ
[4] = {e ∈ E | τ(e) = l}, where E = ∪4

i=1E τ
[i]. Because of the in-

terdependence of τ and the sequence of sets E τ
[i], 1 u i u 4, we alternatively

denote G by (V, E τ
[1..4], r), where e ∈ E τ

[1..4] iff e ∈ ∪4
i=1E τ

[i]. In other words,
GTs G are interchangeably denoted by (V, E, τ, r) and (V, E τ

[1..4], r). We say that
G is generalized by its lateral, reflexive, and vertical edges. Further, r is called
the root (vertex) of G. The GT G = (V, E, τ, r) induces the undirected tree
kern(G) = (V, E τ

[1], r) = T, called kernel (tree) or skeleton of G. Further, the
graph periphery(G) = (V,∪4

i=2E τ
[i]) is called periphery or complementary graph

of G. Edges belonging to periphery(G) are called peripheral edges (comple-
menting the set of kernel edges). Finally, the GT (V, E, τ, r, μ) with the edge
weighting function μ : E→ R is called a weighted undirected GT.

Remark. The reason why we use the implication instead of the equivalence
relation in defining the edge typing function τ is that there may be multiple
edges that are typed differently. Note further that since GTs are multigraphs,
the sets E τ

[i], 1 u i u 4, do not form a partition of E in the strict sense.

Remark. In order to prevent negative cycles [60, 85], we henceforth assume
that μ is a function from E to R+ \ {0}. Note that it does not make sense to
have zero valued edges, that is, edges e for which μ(e) = 0. Such edges simply
do not exist. Further, throughout this chapter we only deal with finite graphs.

1) For a multiset X = (Y, m), m : Y → Nv1, we use the notation
X = {x, . . . , x| {z }

n times

| x ∈ Y ∧m(x) = n}. Further, [X]k denotes the set of all

subsets of k elements of X (cf. [19]).
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Example Let graph A in Figure 8.2 be given as a starting point. In this case, we
can derive a GT C = (V, E τ

[1..4], 0) from A such that E τ
[1] = {{0, 1}, {0, 4}, {0, 6},

{1, 3}, {4, 5}, {2, 5}}, E τ
[2] = E τ

[3] = ∅ and E τ
[4] = {{1, 2},{1, 6}, {2, 3}}. Graph D

in Figure 8.2 exemplifies another GT of A also rooted in 0 but with a different
kernel tree. Finally, graph E in Figure 8.2 shows a GT rooted in vertex 4, thereby
exemplifying a vertical edge ending at 0 and 6.

(A) (B)

(C)

(D)

(E)

Figure 8.2 A connected graph A. The same graph in a tree-
like perspective denoted by graph B. A GT C of A rooted
in 0. A GT D of A rooted in 0 with a different kernel than C.
Finally, a GT E of A rooted in 4. For reasons of simplification,
edge weights are omitted while edge types are noted as edge
labels.
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Remark. Unlike [24] but in accordance with [17], we do not define GTs by
means of a multilevel function. Rather, we focus more generally on unleveled
graphs. The reason is that in semiotic systems we hardly observe such a map-
ping of vertices onto distinguished levels of a graph. Look, for example, at the
category graph of Wikipedia [64]: despite what its users might claim, the cate-
gories in this graph do not span a tree, but a directed cyclic graph. This fact is
contrary to mapping vertices to the same level of taxonomic resolution even
if they have the same geodesic distance to the root of the category system,
which, by the way, does not uniquely exist in this example of social tagging.
Further, as we do not focus solely on categorical systems with a hierarchical
skeleton but additionally on association networks, the idea of a level func-
tion becomes obsolete. Thus, we need a more general definition of GTs as
provided by Definition 8.3.

In the sequel of this chapter, the notion of a generalized subtree of a GT
will be used. By exploring the type system of GTs such subtrees are defined
as follows.

Definition 8.4 (Type-Restricted Generalized Subtree) Let G = (V, E, τ, r, μ) be
a weighted GT. Further, let r ∈ V be a vertex in G. Then, for a subset
T ′ = {k, . . .} ⊆ T ← E : τ and the restriction τ′ of τ to T ′, a type-
restricted generalized subtree of G is a GT G′ = (V, E ′, τ′, r, μ′) of G such that
∀e ∈ E : τ(e) �∈ T ′ ⇒ e �∈ E ′ ⊆ E. In cases where T ′ omits types in de-
scending order of the index of the sequence E τ

[i], 1 < i, we alternatively denote
type-restricted generalized subtrees by (V, E τ′

[1..i], r, μ′) for i > 1. As usually, μ′

is the restriction of μ to E ′.

Remark. As GTs are connected graphs, we do not consider type-restricted
subtrees that exclude kernel edges. Therefore, we always have that k ∈ T ′.

It seems natural to map the tree-like structure of a semiotic network by
means of the kernel edges of a corresponding GT G while its peripheral
edges may be used to map the remainder of that network. However, as the
same graph induces several GTs (see, e.g., Figure 8.2), we must pose the
following question: Given an undirected connected graph G = (V, E, μ), how
many GTs can we build out of G? Look, for example, at Figure 8.3: Given graph
G with three vertices, we can derive exactly nine GTs from G in which the
third edge is either a vertical edge (if ending at the corresponding root) or
a lateral edge. More generally, if G is a completely connected graph with n
vertices, there exist nn–1 GTs of G. The reason is that the cardinality of this set
of GTs equals the number of vertices in G times the cardinality of the set of
spanning trees of G. And the latter cardinality is determined by nn–2 [69]. But
why do both of these sets have the same size? The reason is that a GT according
to Definition 8.3 is determined by its kernel (spanning) tree – remember that
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Figure 8.3 A graph G of three vertices together with all GTs
derivable from it. Vertical edges are labeled by v, lateral
edges by l. Roots are marked by an incoming arrow→.

apart from kernel edges all other edge types are defined with respect to the
kernel tree.

In order to stress the relationship of a graph G = (V, E, μ) with its GTs, we
add the following definition.

Definition 8.5 (Generalized Spanning Tree) Let G = (V, E, μ) be a weighted con-
nected undirected graph without negative cycles. Further, let r ∈ V be a vertex
in G. An undirected generalized spanning tree (GST) G′ = (V, E τ

[1..4], r, μ) of G is
a GT with the kernel kern(G′) = (V, E τ

[1], r, ν) as a spanning tree T = kern(G′)
of G such that E = ∪4

i=1E τ
[i] and ν is the restriction of μ to E τ

[1]. We say that G′

is spanned over G by means of T starting from r. G is called the underlying graph
of G′.

From this perspective, a GT simply denotes a sort of “partitioning” of the
set of edges of its underlying graph G: it neither contains more nor less, but
exactly the same number of edges as G. The sole but informative exception is
that edges in GTs are typed according to the structural classes distinguished
by Definition 8.3. What these types actually denote depends on the applica-
tion area in which GTs are empirically observed. Moreover, a GT is deter-
mined by the choice of a spanning tree of the underlying graph: once this
kernel is specified together with the root of the GT to be built, its periph-
eral edges are uniquely determined. Therefore, as long as we do not select
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a subset of edges but retain the complete edge set of an input graph when
deriving a GT from it, we have to focus on the choice of the kernel tree in
order to specify subclasses of the class of GTs. From a formal point of view,
this is the central theme of this chapter: we ask about the impact of this
choice on typing peripheral edges and shed light on their semantics as a re-
sult of this choice. This semantics is in turn our bridge to empirical systems
that, because of their structural constraints, impose different semantics of
kernel and peripheral edges. This will be specified in the remainder of the
chapter.

Before we proceed introducing subclasses of the class of GTs, we first ask
about the time complexity of computing the sort of edge typing induced by
them. This is answered by the proof of the following theorem.

Theorem 8.1 Given a connected graph G = (V, E, μ) without negative cycles, a ver-
tex r ∈ V and a spanning tree T = (V, E ′, ν) of G, the time complexity of comput-
ing the GST G′ = (V, E τ

1..4, r, μ) spanned over G by means of T starting from r is
in the order of O(|V| + |E|).

Proof. First, we observe that solving this task basically demands distinguish-
ing between vertical and lateral edges. The reason is that while kernel edges
are identified by their membership to T, reflexive edges are distinguished
by the fact that they contain the same vertex twice. Because of the definition
of lateral edges, this further means that we have to decide whether a given
edge e ∈ (E τ

[1..4] \ E τ
[1]) \ E τ

[3] is a vertical edge. This decision is computed by
Algorithm 8.1, whose time complexity can be estimated as follows:

• Line 3 computes a vector of all paths starting from r and ending at some
vertex v ∈ V. We suppose that all vertices are indexed consecutively (by
the labeling function LV – see Definition 8.1) so that any path Prv can be
accessed in x by v’s index. In this way, generating x can be carried out by
a breadth-first search of order O(|V| + |E|) = O(|V| + |V| – 1) = O(|V|).

• Line 8 denotes an index-based access operation that, in the case of a vector,
is of constant complexity [59].

• Line 9 denotes a search operation that is also of constant complexity if
paths are represented as vectors of length |V|. That is, x[v] is a Boolean
vector such that for any w ∈ V : x[v][w] = 1 ⇔ w ∈ Prv; note that we only
check for membership of vertices in paths.

• Line 4 requires the repetition of lines 5–14 exactly |E| – |E ′| times, which
because of the constant complexity of the latter operations is in the order
of O(|E| – |E ′|) = O(|E|).

Thus we getO(|V|+|E|) as the desired upper bound. Of course, more efficient
algorithms can be designed, but they are not of interest in this chapter as
Algorithm 8.1 is already sufficiently efficient.
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Algorithm 8.1 Spanning Peripheral Edges

Require: A graph G = (V, E, μ), a spanning tree T = (V, E ′, ν) of G, and a
vertex r ∈ V according to Definition 8.5.

Ensure: The set E τ
[2] of vertical, the set E τ

[3] of reflexive, and the set E τ
[4] of

lateral edges of the GST G′ spanned over G by means of T starting
from r.

1: procedure SpanningPeripheralEdges(G, T, r)
2: E τ

[1] ← E ′; E τ
[2] ← E τ

[3] ← E τ
[4] ← ∅

3: x← VectorOfAllPathsInTreeStartingFromRoot(T, r)
4: for e = {v, w} ∈ E \ E τ

[1] do
5: if v = w then
6: E τ

[3] ← E τ
[3] ∪ {e}

7: else
8: v← x[v] ∧ w← x[w]
9: if v[w] ∨ w[v] then

10: E τ
[2] ← E τ

[2] ∪ {e}
11: else
12: E τ

[4] ← E τ
[4] ∪ {e}

13: end if
14: end if
15: end for
16: return E τ

[2..4]
17: end procedure

Remark. Utilizing Algorithm 8.1 the computation of GSTs is divided into two
parts: firstly, computing the kernel spanning tree T and, secondly, typing the
remainder of lateral, reflexive, and vertical edges. Below we will reuse this
greedy approach in order to estimate the time complexity of generating GTs
whose kernel trees meet specific constraints.

8.2.3

Minimum Spanning Generalized Trees

Based on the notion of a GST and on the fact that the number of these GTs
derivable from a connected graph G is a simple function of the number
of its spanning trees, we can pose a more interesting question: Which GTs
among all possible spanning GTs of a connected graph G meet which structural
constraints? This question goes beyond a purely mathematical endeavor as it
bridges the area of empirical, that is, semiotic, systems on the one hand and
mathematical systems on the other. The reason is that interesting structural
constraints are those for which there are relevant semiotic or information-
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theoretic interpretations. From this point of view not all but only a subset
of GTs is worth being considered theoretically thereby stigmatizing the re-
mainder of GTs as semiotically irrelevant. A subclass of GTs of a graph G
that is certainly of higher relevance due to its impact on the flow of infor-
mation within G is the one whose kernel tree is spanned by the minimum
spanning tree (MST) [60] of G.2) This notion relates to the class of GTs G′ of
a graph G = (V, E, μ) whose kernel tree minimizes the cost of edge transi-
tions among all candidate spanning trees of G while every peripheral edge
ending at some vertices v, w ∈ V is at least as costly as the kernel edges of
G′ ending at least at one of these vertices. This notion is captured by the
following definition.

Definition 8.6 (Minimum Spanning Generalized Tree) Let G = (V, E, μ) be a
weighted connected graph, T = (V, E ′, ν) a MST of G and r ∈ V. The
minimum spanning generalized tree (MSGT) induced by T is a GT G′ =
(V, E τ

[1..4], r, μ) spanned over G by means of the kernel tree T starting from r.

Corollary 8.1 Given a graph G = (V, E, μ) according to Definition 8.6 and a vertex
r ∈ V, the MSGT spanned over G starting from r is not necessarily unique.

This property is a simple consequence of the fact that already the MST of
a graph is not necessarily unique, especially if we consider equally weighted
multiple edges. In order to secure uniqueness in this case one can proceed
as follows:

Definition 8.7 (Minimum Spanning Generalized Tree Revisited)

Let mst(G) be the set of all MSTs of the weighted connected labeled graph
G = (V, E,LV,LE, μ) according to Definition 8.1. Then, we define the order
relation ukern⊆ mst(G)2 such that ∀T ′ = (V, E ′, ν′), T ′′ = (V, E ′′, ν′′) ∈ mst(G) :
T ′ ukern T ′′ ⇔ T ′ = T ′′ ∨∑

e∈E ′ LE(e) <
∑

e∈E ′′ LE(e). For a given vertex r ∈ V,
the ukern-induced MSGT of G is a GT G′ = (V, E τ

[1..4], r, μ) spanned over G by
means of infukern mst(G) starting from r.

This definition shows a way to derive uniquely defined MSGTs wherever
needed. As mentioned above, the derivation of a GT from a graph G generally
includes two steps: first, generating the spanning tree with its kernel edges

2) Note that the MST of a connected graph G is not necessarily
unique. However, utilizing the order relation ua of vertices and
edges (Definition 8.1) we can uniquely determine one of these
equally weighted spanning trees of minimum weight. This
approach can be followed whenever uniqueness is desired with
respect to the mathematical constructs introduced later. For an
example see Definition 8.7 (below).
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and, second, typing the remaining edges of G. Following this approach, the
time complexity of generating an MSGT is bound by the sum of the complex-
ity of generating its kernel tree and that of typing its peripheral edges. This
idea is reflected by the following corollary. (Note that typing peripheral edges
may be done simultaneously with spanning kernel edges so that there are
certainly lower-complexity bounds than the one mentioned in the following
corollary.)

Corollary 8.2 Because of Theorem 8.1 the time complexity of generating an MSGT
is in the order ofO(|V|+ |E|+ |E| log |V|) when using a standard algorithm [60] to
generate the kernel MST of the MSGT. It reduces to O(|V| + |E| + |E|α(|E|, |V|))
when using the algorithm of [12], where α is the classical functional inverse of
Ackermann’s function.

The following theorem presents a first important statement about the se-
mantics of peripheral edges – in this case as a result of using a MST as the
kernel of a GT.

Theorem 8.2 Let G′ = (V, E τ
[1..4], r, μ) be an MSGT spanned over G = (V, E, μ) by

means of the MST T = (V, E ′, ν) starting from r. Then, ∀e ∈ E τ
[1..4] \ E ′ ∀f ∈ E ′ :

e ∩ f =/ ∅ ⇒ μ( f ) u μ(e).

Proof. Let e = {v, w} ∈ E τ
[1..4] \ E ′. Let further Prv = (r, . . . , v′, f, v) and

Prw = (r, . . . , w′, g, w) be the unique paths in T from r to v ∈ V and w ∈ V,
respectively. Then, we have to distinguish two cases:

• Case A (vertical edges): w is a vertex on Prv or v is a vertex on Prw. In this
case we conclude as follows. Without loss of generality we assume that v
is a vertex on Prw. Then we can construct a tree T ′ = (V, (E ′ \ {g}) ∪ {e})
such that μ(T ′) < μ(T ) – T and T ′ differ by a single edge. This contradicts
the status of T as a MST of G. Note that changing f by e would disconnect
T in the present case where we assume that v ∈ Prw.

• Case B (lateral edges): w is not a vertex on Prv, nor is v a vertex on Prw. That
is, v and w belong to different branches of T. In this case we conclude as
follows: If μ(e) < μ( f ), we can construct a tree T ′ = (V, (E ′ \ { f }) ∪ {e})
such that μ(T ′) < μ(T ), once more in contrast to the status of T as a MST
of G. Analogously, we conclude when changing g by e.

Remark. Theorem 8.2 separates MSGTs from ordinary graphs G and the
remaining GTs derived from G as they distinguish peripheral from kernel
edges in terms of μ. In MSGTs, the function of peripheral edges is separated
from that of kernel edges: information flow along the former is more costly
than along the latter. In spite of this information, MSGTs do not distinguish
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vertical from lateral links: Irrespective of its status as a vertical link or as
a lateral link, an edge may contribute to paths shorter than that on the kernel
MST. (Note that MSTs are not shortest path trees.) In this sense, MSGTs do
not explore the full informational capacity of GTs. Below we will introduce
generalized shortest path trees, which additionally provide this latter infor-
mation value.

Example Let the graph A = (V, E, μ) be given as shown in Figure 8.4. In
this case, we can derive the MSGT B = (V, E τ

[1..4], 0, μ) with the kernel MST
T = (V, {{0, 4}, {4, 5}, {2, 4}, {1, 2}, {2, 6}, {1, 3}}) and the following subsets of
edges: E τ

[2] = {{0, 5}, {0, 3}}, E τ
[3] = E τ

[4] = ∅.

Now we are in a position to repeat the basic principle of generating GTs as
follows. Starting from an underlying graph we select a GT whose kernel and
periphery meet certain structural constraints. By specifying these constraints
we get more and more informative GTs. This principle is followed in the
subsequent sections.

(A) (B)

(C)

Figure 8.4 A graph A together with an MSGT (cf. graph B)
rooted in vertex 0 and a GSPT (cf. graph C) also rooted in 0
derived from A. For reasons of simplification, edge weights are
omitted in the graphical representations of graphs B and C.
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8.2.4

Generalized Shortest Path Trees

It is Theorem 8.2 that motivates speaking about a minimum spanning GT.
It divides an underlying graph G = (V, E, μ) into the set of low-price (i.e.,
kernel) and high-cost (i.e., peripheral) edges. In this sense, MSGTs share the
restricted view of a graph G with its MSTs but additionally retain complete
information about the topology of G. Note that for different vertices v, w ∈ V
used to root the kernel MST of G, E is separated differently into vertical and
lateral edges (while the set of kernel edges remains the same if the MST is
uniquely defined). Obviously, this is a very low degree of context sensitivity
induced by the choice of a root that only affects the typing of edges while
leaving the kernel tree untouched. In order to exceed this lower bound of
context sensitivity, we can think of GTs whose kernel varies with the choice
of the root, that is, GTs whose construction is context sensitive to the root
being chosen. A candidate instance of this notion is given by a generalized
shortest path trees, which – by analogy to Definition 8.6 – are defined as
follows.

Definition 8.8 (Generalized Shortest Path Tree) Let G = (V, E, μ) be a weighted
connected undirected graph without negative cycles, r ∈ V a vertex, and Tr =
(V, E ′, r, ν) the shortest path tree (SPT) of G rooted in r. The generalized shortest
path tree (GSPT) induced by Tr is a GT G′ = (V, E τ

[1..4], r, μ) spanned over G by
means of Tr starting from r.

Corollary 8.3 Given a graph G = (V, E, μ) according to Definition 8.8 and a vertex
r ∈ V, the GSPT induced by Tr is not necessarily unique.

Once more, this property simply follows from the fact that the underlying
graphs of GTs may contain equally weighted multiple edges. As before, we
can utilize uE to provide uniqueness. By analogy to Corollary 8.2 we get the
following corollary.

Corollary 8.4 According to Theorem 8.1 the time complexity of generating a GSPT
is in the order ofO(|V|+ |E|+ |V|2) = O(|V|2) when using Dijkstra’s algorithm [20]
to solve the single-source problem of computing the shortest paths. It reduces to
O((|V|+ |E|) log |V|) = O(|E| log |V|) when operating on sparse graphs (for which
|E| << |V|2).

Remark. The notion of a GSPT is reminiscent of the notion of a distance-
function-based GT as introduced by [24]. The difference is that Emmert-
Streib and Dehmer [24] use the geodesic distance of vertices from the root
of a GT to map equally distant vertices onto the same level. In contrast to
this, we start from a SPT in order to get a kernel tree disregarding any graph
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levels. It seems that our notion is more general than that of Emmert-Streib
and Dehmer [24] as it does not refer to structural constraints hardly observ-
able in empirical systems, that is, the questionable existence of graph levels
(see above). Nevertheless, both notions pave the way for more complex ker-
nel trees of GTs whose construction is restricted by observable constraints of
natural systems (see Sections 8.2.8 and 8.2.9).

Example Let graph A in Figure 8.4 be given as a starting point. Then, graph C
in Figure 8.4 is a GT induced by G with the kernel SPT T = (V, {{0, 3}, {0, 4},
{0, 5}, {2, 4}, {1, 2}, {2, 6}}, 0) rooted in 0 and the following subsets of edges:
E τ

[2] = E τ
[3] = ∅, E τ

[4] = {{1, 3}, {4, 5}}.

Unlike MSGTs, GSPTs are context sensitive not only with respect to the
classification of peripheral edges but also with respect to the kernel tree it-
self, which may vary with the choice of the root of the GSPT. In this way, we
get a one-to-many relation: the same underlying graph G = (V, E, μ) is non-
trivially related to many different kernel SPTs (with different edge sets) and,
thus, to as many different GSPTs. In the extreme case we get |V|many differ-
ent kernel trees of GSPTs starting from the underlying graph G = (V, E, μ).
Nontrivially means that we disregard multiple edges in this counting (which
may induce different GSPTs rooted in the same vertex). In contrast to this,
the kernel trees of all MSGTs induced by the various root vertices v ∈ V have
the same edge set as long as the MST of G is unique. Thus, MSTs lack the
kind of context sensitivity of GSPTs and, therefore, do not induce the afore-
mentioned one-to-many relation.

By analogy to Theorem 8.2 we now consider Corollary 8.5 and Theorem 8.3
about GSPTs, which together provide a functional separation of vertical and
lateral edges in relation to kernel edges (as absent in MSGTs):

Corollary 8.5 Let G′ = (V, E τ
[1..4], r, μ) be a GSPT spanned over G = (V, E, μ) by

means of the SPT Tr = (V, E ′, r) starting from r. Then, for any v ∈ V each path
P = (r, ei1 , . . . , eim , v) in G′ ending at r and v is at least as costly as the unique path
Prv in Tr, that is, μ(P) v μ(Prv).

This corollary is in a sense obvious so that we can skip its proof (it is
a simple consequence of the definition of SPTs). Its meaning is to assign
vertical and lateral edges marginal roles in relation to kernel edges: starting
from the root of a GSPT it is more costly to traverse lateral or vertical edges
than following kernel edges. An obvious implication of Corollary 8.5 runs as
follows.

Corollary 8.6 Any vertical edge in a GSPT is at least as costly as the corresponding
subpath of the kernel SPT, which is cut short by this vertical edge.
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So far, we have distinguished lateral and vertical from kernel edges. This
does not really make it beyond the notion of an MSGT. Thus, we have to
additionally ask: How can we further separate the function of lateral edges from
that of vertical edges in GSPTs? This question is answered by the proof of the
following theorem.

Theorem 8.3 Let G′ = (V, E τ
[1..4], r, μ) be a GSPT spanned over G = (V, E, μ) by

means of the SPT Tr = (V, E ′, r) starting from r. Then, the shortest path GPμ′ (v, w)
between any pair of vertices v, w in T ′ = (V, E τ

[1..3], r, μ′) is a path in Tr – μ′ is the
restriction of μ to E τ

[1..3]. In other words: apart from lateral edges e ∈ E τ
[4], the

shortest paths in G′ contain only kernel edges.

Proof. For v, w ∈ V, Prv, Prw are the shortest paths in Tr ending at r as well as
v and w, respectively. Now we have to consider two cases:

• Case A: v ∈ V(Prw): In this case we conclude that the subpath P =
(v, ei1 , . . . , eim , w) of the shortest path Prw from r to w is the shortest path
between v and w. Otherwise, if there is at least one vertical edge e between
two vertices x, y ∈ V(P) such that μ((v, ei1 , . . . , x, e, y, . . . , eim , w)) < μ(P),
then Prw, including the subpath P is not the shortest path between r and
w – in contrast to the definition of SPTs. w ∈ V(Prv) is a mirror case.

• Case B: v �∈ V(Prw) ∧ w �∈ V(Prv), that is, v and w belong to different
branches of Tr rooted in r. In this case, there is a unique least common
predecessor u of v and w in Tr such that u ∈ V(Prv), u ∈ V(Prw), and for
any other vertex x =/ u ∈ V satisfying the same conditions it holds that
x ∈ Pru. Now we conclude that P1 = (v, ei1 , . . . , eim , u) is the shortest path
in Tr from v to u and P2 = (u, ej1 , . . . , ejn , w) the shortest path in Tr from u
to w. Further, by case A we know that neither P1 nor P2 is shortened by in-
cluding any vertical edge. Thus, P1 ◦P2 = (v, ei1 , . . . , eim , u, eij1

, . . . , eijn , w) =
GPμ′ (v, w) in T ′.

According to this theorem, vertical edges do not shorten any shortest path
in the kernel tree of a GSPT. However, things look different if lateral edges
are taken into account that may cut short the paths in Tr. For example, in
the GSPT in Figure 8.4 (see graph C), the shortest path between vertex 4
and 5 is spanned by a single lateral edge. Together with Theorem 8.3 this
observation assigns vertical and lateral edges quite different roles in GSPTs
so that this class of GTs is more informative about their peripheral edges
than MSGTs:

• Vertical edges do not shorten any path of the kernel tree of a GSPT. Their
role is rather to provide aggregations of such paths at the expense of
a more costly transition of or less efficient information flow within the
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kernel tree. From the point of view of social taxonomies one can think
of vertical edges as condensations in terms of [30]: In a concept hierar-
chy induced by hypernymy relations, vertical edges provide shortcuts by
relating specific to general terms, thereby bypassing (i.e., aggregating or
condensing) intermediary hypernyms.3)

• Lateral edges do not have this role in GSPTs. Their function changes be-
tween genuine shortcuts on the one hand – as they enable faster informa-
tion flow or less costly graph transitions – and cross references on the other
(which realize more expensive shifts in direction). GSPTs are underspec-
ified with respect to this distinction. Thus, we need a more informative
notion of a GT that goes beyond GSPTs; this extension is introduced in
Section 8.2.5.

At this point we come back to one of the central themes of the present
chapter, that is, the context-sensitive formation of GTs spanned over a certain
semiotic network. As seen above, MSGTs are less sensitive to the selection of
the root of a GT than GSPTs. From a formal point of view, this difference is
manifested by Corollary 8.2 in contrast to Corollary 8.5, 8.6 and Theorem 8.3.
From an empirical point of view, the choice between MSGTs, GSPTs, or even
more restricted GTs depends on the characteristics of the natural system un-
der consideration to be retained by its formal model. This can be formulated
by means of a criterion as follows: Whenever we observe a sensitivity of hav-
ing an overview of a given network subject to adopting an initial position in that
network, we have to prefer GSPTs to MSGTs. Otherwise, we can rely on MSGTs
that provide invariant kernel trees irrespective of our initial (root) position in the
network. Thus, we can formulate our question about the preferred model of
a GT pointed by asking: Are there empirical systems in which rooting is decisive
at least in the sense reflected by GSPTs? This, of course, holds for all cogni-
tive processes based on priming and spreading activation [49, 54, 62]. In this
sense, GSPTs are one step toward an empirically well-observable concept of
structure formation.

8.2.5

Shortest Paths Generalized Trees

In spite of the latter considerations, we may complain that, unlike MSTs,
which realize selections of subsets of edges of the corresponding input graph
G, MSGTs and GSPTs always include all edges of G. That is, according to
Definitions 8.3 and 8.5, GTs induce classifications of G’s edges and, thus,

3) Think, for example, of a situation in which a certain concept, say
small car, is classified (by a group of interlocutors) nearly as often
as a vehicle or as a car. In this case, the classification by the more
general noun vehicle bypasses that by car without making the latter
obsolete.
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contain as many edges as G. In order to circumvent this situation, we have
at least two alternatives:

• We may start from a kernel MST in order to span the periphery of a GT by
the shortest paths between its vertices. This notion preserves information
about the cheapest edges (to let the resulting GT be efficiently manageable
as a tree) and about the shortest paths (as the cheapest graph-like skeleton
of the underlying graph) while it disregards the remaining edges.

• Alternatively, we may generalize the notion of a GSPT by SPTs itself. That
is, as in the latter case we span the periphery of a GT solely by means
of shortest paths, but now around a kernel SPT so that the resulting GT
consists solely of SPTs – it declares a single SPT as its kernel while the
remaining SPTs span its periphery.

It is the latter notion that is of interest here: it combines the context sen-
sitivity of GSPTs with a finer-grained semantics of peripheral edges, finer
than in the case of MSGTs. This combination is grasped by the following
definition.

Definition 8.9 (Shortest Paths Generalized Tree) Let G = (V, E, μ) be a weighted
connected undirected graph without negative cycles, r ∈ V any vertex, and
Tr = (V, E ′, r, ν) the SPT of G rooted in r (as usual, ν is the restriction of μ
to E ′). The shortest paths generalized tree (SPGT) G′ = (V, E τ

[1..4], r, μ′) derived
from G is a GSPT spanned over the simple graph G′′ = (V, E ′′, μ′) by means
of Tr starting from r such that

E ′′ =
⋃

v∈V,Tv=(V,Ev,v,μv)

Ev ,

where E ′′ is the set of all edges belonging to any SPT of any vertex of G, Tv is
the SPT induced by v ∈ V in G, and μ′ is the restriction of μ to E τ

[1..4].

Remark. We assume that G′′ is a simple graph and therefore contains neither
loops nor multiple edges. Otherwise, the resulting SPGT of a graph would
contain more edges than its underlying graph (because of the union that is in
use in Definition 8.9).

Based on this definition we can easily prove the following corollary.

Corollary 8.7 Let G′ = (V, E τ′
[1..4], r, μ) be a GSPT spanned over G = (V, E, μ)

by means of the SPT Tr = (V, E ′, r, ν) starting from r ∈ V. Then, the SPGT
G′′ = (V, E τ

[1..4], r, μ′′) derived from G by means of Tr and r satisfies the following
equalities and one inequality:

1. E τ
[2] = ∅,
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2. E τ
[3] = ∅,

3. E τ
[4] ⊆ E τ′

[4],
4. ∀e = {v, w} ∈ E τ

[4] : μ(e) u μ(Pvw).
Note that in case 4 Pvw denotes the unique path in the kernel tree of G′ ending
at v and w (Definition 8.1).

Proof. Case 1 is a consequence of Theorem 8.3, case 2 is a consequence of
the fact that shortest paths are always simple, while cases 3 and 4 are simple
consequences of the way SPGTs are defined, that is, for generating a shortest
path between two vertices v, w in G′′ a lateral edge {x, y} is added to E τ

[4] if and
only if it shortens the path Pxy as a subpath of Pvw.

Remark. If we define G′′ in Definition 8.9 as a multigraph, then the periphery
of the SPGT derived from it is always connected. The reason is that in this
case all kernel edges are duplicated as often (in the form of peripheral edges)
as there are different SPTs of G to which they belong. This characteristic of
“peripheral connectivity” is not necessarily provided by any of the concur-
rent notions of GTs introduced so far. However, such a highly connected GT
would contain more edges than its underlying graph. In the present stage of
modeling this characteristic is not desirable. It may be the starting point for
future extensions of the notion of a GT.

In Section 8.2.6 we utilize the notion of an SPGT in order to take the next
step in specifying a functional semantics of edges in GTs. As will be shown,
this is accompanied by an extension of the set of edge types used so far.

8.2.6

Generalized Shortest Paths Trees

Based on the notion of an SPGT we can now define GTs in which shortcuts
are provided by a separate, more specific edge type. This is done by means of
the notion of a generalized shortest paths tree:

Definition 8.10 (Generalized Shortest Paths Tree) Let G = (V, E, μ) be a weighted
connected undirected graph without negative cycles, Tr = (V, E ′, r, ν) the SPT
of G rooted in r ∈ V, G′ = (V, E τ′

[1..4], r, μ′) the SPGT, and G′′ = (V, E τ′′
[1..4], r, μ)

the GSPT both derived from G by means of Tr and starting from r. The
generalized shortest paths tree (GPST) G′′′ = (V, E τ

[1..5], r, μ) is derived from G′

and G′′ by refining the edge typing functions τ′ and τ′′ in terms of τ : E →
{c, k, r, s, v} = T such that

∀e ∈ E :

⎧⎨⎩
τ′′(e) ∈ {k, r, v} ⇒ τ(e) = τ′′(e)

τ(e) = c ⇒ e ∈ E τ′′
[4] \ E τ′

[4] (cross-reference edges)
τ(e) = s ⇒ e ∈ E τ′

[4] (shortcut edges)
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Further, we set E τ
[1] = {e ∈ E | τ(e) = k} = E τ′

[1] = E τ′′
[1] = E ′, E τ

[2] = {e ∈
E | τ(e) = v} = E τ′′

[2] , E τ
[3] = {e ∈ E | τ(e) = r} = E τ′′

[3] , E τ
[4] = {e ∈ E | τ(e) = c}, E τ

[5]

= {e ∈ E | τ(e) = s} = E τ′
[4], where E τ

[4] ∪ E τ
[5] = E τ′′

[4] .

Corollary 8.8 Apart from shortcut edges e ∈ E τ
[5], the shortest paths in a GPST G

contain only kernel edges.

This corollary is a simple consequence of Theorem 8.3 and the fact that
GPSTs basically induce a partition of lateral edges into the subset of shortcut
edges e ∈ E τ

[5], which contribute to the shortest paths, and the subset of cross-
reference edges e ∈ E τ

[4], which do not. Based on Definition 8.10 and the latter
corollary we can now establish a fine-grained semantics of lateral edges in
addition to that of vertical edges induced by Theorem 8.3:

• Short cut edges: In order to span the shortest paths among vertices subject
to the topology of the underlying graph G, an SPGT G′ selects a subset of
lateral edges. Lateral edges in the GSPT G′′ of G with the same kernel as
G′ that do not shorten paths in the latter sense are excluded from G′. Thus,
in SPGTs lateral edges are genuine shortcuts: they are the only means to
establish shortest paths apart from the corresponding kernel tree. Think
of such edges, for example, as shortcuts in small-world graphs [68] that are
used to establish a high cluster value within a network. In contrast to this,
vertical edges realize more costly aggregations or, in terms of semiotics,
conceptual condensations along chains of hypernymy relations.

• Cross-reference edges: Compared with shortcut and vertical edges, cross-
reference edges neither aggregate nor shorten any (e.g., conceptual) re-
lation in any other way. They rather serve as transverse edges that bridge
weakly related regions of a GT. That is, cross-reference edges build short-
cuts in a broader sense as they bridge more distant vertices of the un-
derlying graph G. In terms of small-world graphs, cross-reference edges
correspond to somehow randomly rewired (and therefore costly) edges.
They provide short average geodesic distances and, thus, connectivity even
among less related vertices as a precondition of efficient information flow
within the network [68] – however, at the price of a loss in coherence
among the vertices linked in such a manner.

Now we are in a position to directly interpret the semantics of kernel
and peripheral edges in terms of real semiotic systems. Assume, for exam-
ple, that we model a social (terminological [55]) ontology [56] as spanned
by the category system of Wikipedia. In this case, vertical edges can be
used to model transitivity among hypernymy relations, while lateral links
are a means to map co-classifications or polymorphic categorizations. Obvi-
ously, the role of vertical and lateral edges is quite different in this example,
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so that this distinction should be reflected in the construction of a GT span-
ning the social ontology. From a functional point of view, this distinction can
be emphasized as follows:

• Searching: In order to efficiently search or walk through a network, kernel
edges are the first choice.

• Changing: If in contrast to the latter search function agents aim at non-
randomly changing the current standpoint (view or topic) in the course of
their network transitions, they should select lateral or, more specifically,
shortcut edges as long as they are available. A more random walk through
the network is instead of this supported by following cross-reference links.

• Abridging: Finally, in order to cut short the traversal of the kernel hierarchy,
vertical edges are the primary means.

This functional scenario gives a complete and distinguished semantics of
the different types of edges in GTs and, therefore, motivates the introduction
of this kind of tree-like graph in between complete order – as manifested by
trees – and randomness – as manifested by random graphs. That is, unlike
the literature about GTs and complex networks introduced so far, we are now
in a position where we can assign edges a certain role as a function of their
contribution to the topology of the network in which they are spanned. Ac-
cording to the definition of GPSTs, this system of potential roles of edges
distinguishes five types. Obviously, this goes much beyond present-day ap-
proaches to complex networks in which edges are normally neither labeled
nor typed.

Let us now consider an example that exemplifies the notion of a GPST.

Example Let the graph A = (V, E, μ) in Figure 8.5 be given. Then, the graph
B = (V, E τB

[1..4], 0, μB) is an SPGT spanned over A by means of the kernel
SPT T0 = (V, {{0, 3}, {0, 4}, {0, 5}, {2, 4}, {1, 2}, {2, 6}}, 0) and the set of
shortest-path-inducing lateral edges E τB

[4] = {{1, 3}, {4, 5}}. Next, the graph
C = (V, E τC

[1..5], 0, μC) is a GPST with the following sequence of edge sets: E τC
[1] = E τB

[1] ,
E τC

[2] = {{4, 6}}, E τC
[3] = ∅, E τC

[4] = {{2, 5}}, E τC
[5] = E τB

[4] .

So far, we have introduced GTs by combining the context-sensitive forma-
tion of kernel trees with an increasingly constrained semantics of periph-
eral edges. This approach goes beyond existing efforts to use GTs as a graph
model in between tree-like structures and unconstrained graphs. The reason
is that it does not just demarcate generalized from ordinary graphs by means
of typed edges. These types are also justified in functional terms that are
missing in general graphs. Section 8.2.8 shows that this extension is a pre-
requisite of a graph model of a certain class of semiotic systems. But before
introducing this model we extend our approach by orientating GTs.
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Figure 8.5 A graph A together with its SPGT (graph B)
rooted in vertex 0 and the corresponding GPST (graph C).
For reasons of simplification, edge weights are omitted in
the graphical representations of graph B and C.

8.2.7

Accounting for Orientation: Directed Generalized Trees

So far we have considered only undirected graphs. As is well known from
graph theory, things look quite different when dealing with oriented graphs.
The MST of a directed graph, for example, cannot be computed in the same
way as its undirected counterpart [60]. In the remainder of this section we
provide an orientation of GTs. However, we concentrate on complexity state-
ments leaving the proofs of many counterparts of the theorems presented
above for future work.

Definition 8.11 (Directed Generalized Tree) Let T = (V, A′, r) be a directed tree
rooted in r ∈ V. Further, let Prv = (vi0 , aj1 , vi1 , . . . , vin–1 , ajn , vin ), vi0 = r, vin =
v, ajk ∈ A′, in(ajk ) = vik–1 , out(ajk ) = vik , 1 u k u n, be the unique path in T
from r to v and V(Prv) = {vi0 , . . . , vin} the set of all vertices of Prv. A directed
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generalized tree (DGT)

G = (V, A, τ, r)

induced by T is a pseudograph (i.e., a multigraph possibly with multiple
and parallel arcs or loops) whose arcs are typed by the function τ : A →
{d, k, l, r, u} as follows:

∀a ∈ A :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ(a) = k ⇒ a ∈ Ak = A′

(kernel arcs)
τ(a) = u ⇒ a ∈ Au = {a | in(a) = v ∈ V

∧ out(a) = w ∈ V(Prv) \ {v}}
(upward arcs)

τ(a) = d ⇒ a ∈ Ad = {a | in(a) = w ∈ V(Prv) \ {v}
∧ out(a) = v ∈ V}
(downward arcs)

τ(a) = r ⇒ a ∈ Ar = {a | in(a) = out(a) = v ∈ V}
(reflexive arcs)

τ(a) = l ⇒ a ∈ V2 \ (Ak ∪ Au ∪ Ad ∪ Ar)
(lateral arcs)

such that A τ
[1] = {a ∈ A | τ(a) = k}, A τ

[2] = {a ∈ A | τ(a) = u}, A τ
[3] = {a ∈

A | τ(a) = d}, A τ
[4] = {a ∈ A | τ(a) = r}, A τ

[5] = {a ∈ A | τ(a) = l} is a partition
of A such that A = ∪5

i=1A τ
[i] and ∀1 u i < j u 5 : A τ

[i] ∩ A τ
[j] = ∅. Because of

the interdependence of τ and the latter partition, we alternatively denote G
by (V, A τ

[1..5], r), where a ∈ A τ
[1..5] iff a ∈ ∪5

i=1A τ
[i]. In other words, directed GTs

G are interchangeably denoted by (V, A, τ, r) and (V, A τ
[1..5], r). We say that G is

generalized by its lateral, reflexive, upward, and downward arcs. The directed GT
G = (V, A, τ, r) induces the directed tree kern(G) = (V, A τ

[1], r) = T called kernel
(tree) or skeleton of G. Further, the graph periphery(G) = (V,∪5

i=2A τ
[i]) is called

periphery or complementary graph of G. Arcs belonging to periphery(G) are
called peripheral arcs (complementing the set of kernel arcs). Finally, any GT
(V, A, τ, r, μ) with the arc weighting function μ : A → R is called a weighted
undirected GT.

Remark. A simple consequence of orientating GTs is the need to distinguish
between upward and downward arcs both of which are subsumed under the
notion of vertical edges in undirected GTs.

Remark. By analogy to undirected GTs we henceforth assume that μ is a func-
tion from A to R+ \ {0}. Once more, the reason is to prevent negative cycles.
Further, we only deal with finite graphs.
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Definition 8.12 (Directed Generalized Spanning Tree) Let G = (V, A, μ) be
a weighted connected digraph without negative cycles. Further let r ∈ V be
a vertex in G. A directed generalized spanning tree (DiGST) G′ = (V, A τ

[1..5], r, μ)
of G is a directed GT whose kernel kern(G′) = T is a directed spanning tree
T = (V, A τ

[1], r, ν) of G rooted in r such that A = ∪5
i=1A τ

[i] and ν is the restriction
of μ to A τ

[1]. We say that G′ is spanned over G by means of T starting from r. G is
called the underlying graph of G′.

Example Let the digraph A in Figure 8.6 be given. In this case, we have at most six
different directed spanning trees (vertex 6 does not root a spanning tree). Starting
with graph D in Figure 8.6, we see that it does not induce any DGT since D does
not have any directed spanning trees.

(A) (B)

(C) (D)

Figure 8.6 A digraph A and two directed spanning trees
derived from it: rooted in vertex 1 (graph B) and alternatively
rooted in vertex 5 (graph C). For reasons of simplification,
edge weights are omitted in graphs B and C.
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Algorithm 8.2 Spanning Peripheral Arcs

Require: A digraph G = (V, A, μ), a spanning tree T = (V, A′, r, ν) of G, and
a vertex r ∈ V according to Definition 8.12.

Ensure: The set A τ
[2] of upward, the set A τ

[3] of downward, the set A τ
[4] of

reflexive, and the set A τ
[5] of lateral arcs of the DiGST G′

spanned over G by means of T starting from r.

1: procedure SpanningPeripheralArcs(G, T, r)
2: A τ

[1] ← A′; A τ
[2] ← A τ

[3] ← A τ
[4] ← A τ

[5] ← ∅
3: x← VectorOfAllPathsInTreeStartingFromRoot(T, r)
4: for a ∈ A \ A τ

[1] do
5: v← in(a), w← out(a)
6: if v = w then
7: A τ

[4] ← A τ
[4] ∪ {a}

8: else
9: v← x[v] ∧ w← x[w]

10: if v[w] then
11: A τ

[2] ← A τ
[2] ∪ {a}

12: else if w[v] then
13: A τ

[3] ← A τ
[3] ∪ {a}

14: else
15: A τ

[5] ← A τ
[5] ∪ {a}

16: end if
17: end if
18: end for
19: return A τ

[2..5]
20: end procedure

Theorem 8.4 Suppose we have a weighted connected digraph G = (V, A, μ) with-
out negative cycles, a vertex r ∈ V, and a spanning tree T = (V, A′, r, ν) of G rooted
in r. Then, the time complexity of computing the DiGST G′ = (V, A τ

[1..5], r, μ)
spanned over G by means of T is in the order of O(|V| + |A|).

Proof. By analogy with the proof of Theorem 8.1 we observe that solving this
task demands differentiating between upward, downward, and lateral arcs.
The reason is that while kernel arcs are identified by their membership in T,
reflexive arcs are distinguished by the fact that they contain the same vertex
twice. Because of the definition of lateral arcs, this further means that we
have to decide whether a given arc a ∈ (A τ

[1..5] \ A τ
[1]) \ A τ

[4] is an upward or
a downward arc. This decision is computed by Algorithm 8.2 by analogy to
Algorithm 8.1. The only difference is that we distinguish between upward
and downward arcs (using the same format and method). Thus, the time ef-
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fort of Algorithm 8.2 is basically induced by lines 5–17, which are repeated
exactly |A| – |A′| times so that, due to the constant complexity of the latter
operations, the order in question is O(|A| – |A′|) = O(|A|). Further, the com-
plexity of performing a breadth-first search (line 3) is, as before, of order
O(|V| + |A|) = O(|V| + |V| – 1) = O(|V|), so that we get O(|V| + |A|) as the de-
sired upper bound. Again, more efficient algorithms can be envisioned but
are out of the focus of this chapter as Algorithm 8.2 is already sufficiently
efficient.

Now we can introduce and exemplify directed MSGTs as follows.

Definition 8.13 (Directed Minimum Spanning Generalized Tree) Let G = (V, E, μ)
be a weighted connected digraph and T = (V, A′, r, ν) an MST of G rooted
in some r ∈ V. The directed minimum spanning generalized tree (DiMSGT)
induced by T is a directed GT GTr = (V, A τ

[1..5], r, μ) spanned over G by means
of the kernel tree T starting from r.

Example Let the digraph A = (V, E, μ) in Figure 8.7 be given. Then, the digraph
B = (V, A τB

[1..5], 2, μB) is a DiMSGT spanned over A by means of the kernel MST
T2 = (V, A′, 0), A′ = {(2, 4), (2, 6), (4, 0), (0, 5), (0, 3), (3, 10), (3, 1), (10, 12),
(1, 7), (1, 8), (12, 11), (8, 9)}, together with the following partition of the arc set
A τB

[1..5]: A τB
[1] = A′, A τB

[2] = {(1, 2), (5, 4)}, A τB
[3] = {(3, 11), (10, 11), (3, 7)}, A τB

[4] = ∅,
A τB

[5] = {(7, 9)}. Note that the subgraph spanned by vertices 1, 7, 8, and 9 is a typi-
cal case that demarcates Prim’s algorithm of spanning MSTs from the correspond-
ing algorithms adapted to digraphs. While Prim’s algorithm would select the arc
(1, 7), then the arc (7, 9), and finally the arc (1, 8), we realize that the choice of
(1, 7), (1, 8), and (8, 9) is less costly [70].

Corollary 8.9 Because of Theorem 8.4, the time complexity of generating
a DiMSGT is on the order of O(|V| + |A| + min{|A| log |V|, |V|2}) when using
a standard algorithm [60] to generate a directed MST as its kernel.

This corollary is a simple consequence of separating the generation of
spanning trees from spanning peripheral arcs as realized by Algorithm 8.2.
As a DiMSGT rooted in a preselected vertex r equals the shortest path tree
rooted in the same vertex, it is superfluous to consider directed generalized
shortest path trees. As an alternative we consider directed generalized depen-
dency trees (DiGDTs). These are GTs that are spanned by means of directed
dependency trees that, in turn, result from orientating so-called dependency
trees. Dependency trees (DTs) have been used in computational linguistics to
order association data in a tree-like fashion [36, 39, 50]. They are generated
as follows. For a distinguished vertex r of a graph G = (V, A, μ), vertices are
inserted into the DT rooted by r in ascending order of their geodesic distance
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from r where the predecessor of any vertex v to be inserted is chosen to be the
vertex w that in terms of μ is closest to v among all vertices already inserted
into the DT. Look at Figure 8.7 and vertex 2 as our distinguished root ver-
tex. In this case, we realize first that the vertices of graph A are inserted into
a DT rooted by 2 according to their geodesic distance to 2. Thus, we get the
following sequence of vertices to be inserted: 4, 6, 0, 5, 3, 1, 10, 11, 12, 7, 8, 9.

(A) (B)

(C)

Figure 8.7 A directed graph A together with its DiMSGT (graph B)
rooted in vertex 2 and a directed generalized dependency tree (graph C)
rooted in the same vertex. For reasons of simplification, arc weights are
omitted in the graphical representations of graphs B and C.
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Based on this sequence we get a kernel spanning DT as shown in Figure 8.7
by graph C which is a generalized DT spanned by means of the latter DT
starting from 2. The generation of this DiGDT is more context sensitive than
that of the corresponding DiMSGT since the choice of the root uniquely de-
termines the sequence in which vertices are processed, that is, according to
their order of being primed by the root vertex. As a consequence, DiGDTs
realize a sort of construction-integration process [34] in which the root vertex
initiates firstly a process of spreading activation or information percolation,
which is secondly organized in the form of a GT. In other words: in Fig-
ure 8.7, the DiGDT C structures the network given by graph A more from
the perspective of vertex 2 than is done by the DiMSGT B. We do not try to
formalize this notion here but hint at a publication in which DTs and more
general Markov trees are studied as the kernel trees of GTs in detail (cf. [42]).

At this stage, we may envision many theorems about directed GTs by anal-
ogy to those proved for their undirected counterparts. However, we resist
following this branch of research and go back to elaborating the framework
of undirected GTs – this time with a strict view of semiotic modeling.

8.2.8

Generalized Trees, Quality Dimensions, and Conceptual Domains

So far we have introduced GTs as a fairly expressive, though nonetheless
well-constrained, model in between the extremal cases of trees and gen-
eral graphs. In this section, we explore the representational potential of
GTs a step further. As was done in previous sections, we do this in graph-
theoretical terms. The general story behind this approach is that we seek
a model beyond semantic spaces as far as they are based on a purely geo-
metric understanding of meaning relations [10, 31, 33, 50, 51]. Although we
agree with the conception of usage-based semantics and its quantitative re-
construction by semantic spaces, we quarrel with the space complexity of this
model and – as a result of this – with its cognitive implausibility. Without
going into the details of this argumentation we simply mention that seman-
tic spaces equal completely connected graphs as their meaning points are
always directly relatable in terms of their distance without the need to con-
sider intermediate points. Consequently, they always have a maximal cluster
value [68] – far from what is known about real semiotic networks [40,58] and
their small-world-like topology. As an alternative to this undesirable state we
seek a less compact model with a realistically sparse topology in conjunction
with a tree-like skeleton by analogy to conceptual hierarchies.

In order to approach this model, we refer to Gärdenfors [28], who elabo-
rates conceptual spaces as a level of representation in between subsymbolic
association networks of lower resolution and symbolic models of higher res-
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olution. Roughly speaking, a conceptual space is based on a system of con-
ceptual domains, which are integral dimensions used to map points onto the
space. That is, for a set of quality dimensions {D1, . . . , Dn} one can build a
conceptual space in which objects v to be observed are represented as vectors
v′ = (v(D1), . . . , v(Dn)), where v(Di), 1 u i u n, is the value taken by object v on
dimension Di. A central starting point of [28] is to view domains as systems
of interrelated quality dimensions. This gives a conceptual space an internal
structure as its objects can be characterized by structured values, which they
take on the corresponding domain.4)

Gärdenfors [28] does not completely determine the mathematical notion of
a conceptual space but relies on an axiomatic approach by naming necessary
conditions of candidate implementations. In this sense, semantic spaces are
just one way of implementing conceptual spaces that leave plenty room for
developing alternative, topologically more constrained space models. This
is exactly our gateway to make a first step in promoting GTs as such an
alternative. In this section we show how GTs can be conceived as concep-
tual domains. In this way, we open the door to less complex representation
formats apart from semantic spaces, formats that provide the efficiency of
tree-like structures together with the structural freedom of networks. In or-
der to approach this goal we proceed as follows. Firstly, we define a met-
ric space based on GTs. Secondly, we interrelate this definition with the
notion of betweenness and equidistance in terms of GTs. Thirdly, we in-
troduce an interpretation of GTs as a sort of conceptual domain by which
conceptual spaces are spanned as networks of networks (cf. Section 8.2.9).
Once more, it turns out that GSPTs are the valuable starting point of this
endeavor.

Corollary 8.10 Let G = (V, E,LV,LE, μ) be a weighted connected graph according
to Definition 8.1, G′ = (V, E τ′

[1..4], r, μ) a GSPT, and G′′ = (V, E τ′′
[1..5], r, μ) a GPST

spanned over G by means of the SPT Tr starting from r ∈ V. Then, μ̂′ (see Defini-
tion 8.2) is a distance function in Ĝ′ = (V, E τ′

[1..3], r, μ′) and μ̂′′ a distance function
in Ĝ′′ = (V, E τ′′

[1..4], r, μ′′) – μ′ and μ′′ are the restrictions of μ to E τ′
[1..3] and E τ′′

[1..4],
respectively. That is, (Ĝ′, μ̂′) and (Ĝ′′, μ̂′′) are metric spaces.

Proof. Because of Theorem 8.3 and Corollary 8.8 we can concentrate on
kernel edges when considering shortest paths and geodesic distances. As
a trivial consequence of these two theorems, Corollary 8.10 is reduced to
a statement about trees since neither vertical nor cross-reference links in-
terfere with the function of kernel links, that is, establishing shortest paths.
Thus, the proof simply looks as follows:

4) For more details of this notion see [28].
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• Minimality: The geodesic distance between two vertices is a nonnegative,
real-valued function that, because of the definition of μ̂, is 0 in the case of
two vertices v, w if and only if v = w (Definition 8.2).

• Symmetry: The symmetry of μ̂′ and μ̂′′ simply follows from the fact that
we are dealing with undirected graphs.

• Triangle inequality: If P is the geodesic path between u and v (which be-
cause of Definition 8.2 is uniquely defined) and P ′ the geodesic path be-
tween v and w, then P ◦ P ′ is the geodesic path between u and w so that
μ̂′(u, v) + μ̂′(v, w) = μ̂′(u, w). As claimed by Theorem 8.3, this does not
interfere with any vertical edge. In the case of μ̂′′ we must argue analo-
gously.

Following Gärdenfors [28], we now define the relation of betweenness and
the relation of equidistance in terms of GTs where the latter form – according
to Corollary 8.10 – a special kind of metric space.

Definition 8.14 (Geodesic Betweenness) Let G = (V, E,LV,LE, μ) be a weighted
connected graph according to Definition 8.1. Then, we define the relation
B ⊆ V3 where

∀u, v, w ∈ V : B(u, v, w)⇔ u =/ v =/ w ∧ v ∈ V(GPμ(u, w)) .

Relation B is called a relation of geodesic betweenness. This is the relation of all
vertices u, v, w for which v is on the geodesic path between u and w. Every
vertex v for which B(u, v, w) is called geodesically between u and w.

Corollary 8.11 Let G = (V, E,LV,LE, μ) be a weighted connected graph accord-
ing to Definition 8.1, G′ = (V, E τ′

[1..4], r, μ) a GSPT, and G′′ = (V, E τ′′
[1..5], r, μ)

a GPST spanned over G by means of the SPT Tr starting from r ∈ V. Then, firstly,
relation B satisfies Axioms B1–B4 of Betweenness [28] in Ĝ′ = (V, E τ′

[1..3], r, μ′)
and in Ĝ′′ = (V, E τ′′

[1..4], r, μ′′). Secondly, for any u, v, w ∈ V : (B(u, v, w) ⇔
μ̂′(u, v) + μ̂′(v, w) = μ̂′(u, w)) ∧ (B(u, v, w) ⇔ μ̂′′(u, v) + μ̂′′(v, w) = μ̂′′(u, w)).
μ′ and μ′′ are the restrictions of μ to E τ′

[1..3] and E τ′′
[1..4], respectively.

Proof. Trees are known to satisfy the axioms of betweenness. By Theorem 8.3
and Corollary 8.8 we know that neither vertical edges in GSPTs nor vertical
and cross-reference edges in GPSTs interfere with kernel edges in spanning
geodesic paths. Thus, the first part of Corollary 8.11 reduces to a well-known
statement about (kernel) trees so that we can claim that B satisfies the fol-
lowing axioms of betweenness:

• B1: ∀u, v, w ∈ V : u =/ v =/ w⇒ (B(u, v, w)⇒ B(w, v, u)).
• B2: ∀u, v, w ∈ V : u =/ v =/ w⇒ (B(u, v, w)⇒ ¬B(v, u, w)).
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• B3: ∀v, w, x, y ∈ V : v =/ w =/ x =/ y⇒ (B(v, w, x)∧ B(w, x, y)⇒ B(v, w, y)).
• B4: ∀v, w, x, y ∈ V : v =/ w =/ x =/ y⇒ (B(v, w, y) ∧ B(w, x, y)⇒ B(v, w, x)).

The second part of Corollary 8.11 simply interrelates the triangle inequality
of Corollary 8.10 with the present corollary.

By analogy with Definition 8.14 and Corollary 8.11 we get the following
definition of equidistance in conjunction with its concomitant corollary.

Definition 8.15 (Geodesic Equidistance) Let G = (V, E,LV,LE, μ) be a weighted
connected graph according to Definition 8.1. Then, we define the relation
E ⊆ V4, where

∀v, w, x, y ∈ V : E(v, w, x, y) ⇔ v =/ w =/ x =/ y ∧
μ(GPμ(v, w)) = μ(GPμ(x, y)).

Relation E is called the relation of geodesic equidistance. This is the relation of
all vertices v, w, x, y for which the geodesic distance between v and w equals
the geodesic distance between x and y. Any two pairs of vertices v, w and x, y
for which E(v, w, x, y) are called geodesically equidistant.

This allows us to formulate the following self-evident corollary.

Corollary 8.12 Let G = (V, E,LV,LE, μ) be a weighted connected graph accord-
ing to Definition 8.1, G′ = (V, E τ′

[1..4], r, μ) a GSPT, and G′′ = (V, E τ′′
[1..5], r, μ)

a GPST spanned over G by the SPT Tr starting from r ∈ V. Then, firstly, rela-
tion E satisfies Axioms E1–E4 of Equidistance [28] in Ĝ′ = (V, E τ′

[1..3], r, μ′) and in
Ĝ′′ = (V, E τ′′

[1..4], r, μ′′). Secondly, for any v, w, x, y ∈ V : (E(v, w, x, y)⇔ μ̂′(v, w) =
μ̂′(x, y)) ∧ (E(v, w, x, y) ⇔ μ̂′′(v, w) = μ̂′′(x, y)). μ′ and μ′′ are the restrictions of μ
to E τ′

[1..3] and E τ′′
[1..4], respectively.

Proof. Once more, the only thing we need to hint at is that the generalized
subtrees Ĝ′ and Ĝ′′ do not contain any edges that interfere with their kernel
edges in spanning geodesic paths. Thus, we can claim that E satisfies the
following axioms of equidistance within these generalized subtrees:

• E1: ∀u, v, w ∈ V : E(u, u, v, w)⇒ v = w.
• E2: ∀v, w ∈ V : E(v, w, w, v).
• E3: ∀u, v, w, x, y, z ∈ V : u =/ v =/ w =/ x =/ y =/ z ⇒ (E(u, v, w, x) ∧

E(u, v, y, z)⇒ E(w, x, y, z)).
• E4: ∀u, v, w, x, y, z ∈ V : u =/ v =/ w =/ x =/ y =/ z ⇒ (B(u, v, w) ∧ B(x, y, z) ∧

E(u, v, x, y) ∧ E(v, w, y, z)⇒ E(u, w, x, z)).
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By Corollaries 8.11 and 8.12 we see that well-defined generalized subtrees
of GSPTs and GPSTs respect the axioms of betweenness and equidistance.
Moreover, by Corollary 8.10 we additionally see that we get a simple metric
on instances of these classes of graphs. According to [28], these are basic
structural constraints to be satisfied by the dimensions of conceptual spaces.
In other words, it seems plausible to build conceptual spaces in terms of
a special kind of GT. By their hierarchical skeleton, they respect basic con-
straints of conceptual spaces but nevertheless share the full expressiveness
of graphs. This paves the way for a graph-theoretical model of conceptual
structures beyond ordinary trees and below the space complexity of seman-
tic spaces. But what does it mean to use GTs for spanning conceptual spaces?
More specifically: How can we think of GTs as quality dimensions? In order
to answer these questions, we utilize the notion of a conceptual domain as
a system of interrelated or interdependent quality dimensions. More specifi-
cally, we define a conceptual space as a set of quality dimensions with a topo-
logical structure as defined by GTs where a single domain equals a GT as
a kind of structured dimension. In other words, the vertices of a GSPT or
a GPST define basic dimensions that by virtue of their edges form integral
dimensions. The integrity of the dimensions is reflected by the hierarchical
skeleton of the respective GT. As a consequence, objects o to be mapped onto
a conceptual domain D are interrelated with a subset of vertices of D such
that all edges generated by this measurement operation preserve the GT-like
topology of D. In this way, a measurement of o along a basic dimension v
of D equals the geodesic path ending at v and o as a result of adding o as
a new vertex to D subject to preserving the structural constraints of this GT.
In Section 8.3 we exemplify this structuralistic notion of measurement in
detail. Note that so far we have sketched GT-based conceptual spaces only
in terms of undirected graphs leaving the examination of conceptual spaces
based on directed GTs for future work. The next section shows how this no-
tion of a graph-like representation of conceptual structures is extended in
order to cope (in Section 8.3) with distributed knowledge as provided by so-
cial ontologies and social encyclopedias.

8.2.9

Generalized Forests as Multidomain Conceptual Spaces

So far we have considered GTs as intermediary units between trees and
graphs. We have also related this notion to cognitive modeling in terms of
conceptual domains as introduced by Gärdenfors [28]. In this section we take
this perspective of spanning conceptual spaces by GTs a step further. This
is done by interlinking conceptual domains as separable, inherently struc-
tured dimensions whose values – taken by objects to be mapped onto a given
conceptual space – are measured separately from each other. From a graph-
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theoretical point of view, interlinked domains can be modeled by appropri-
ately generalizing the notion of a forest (of trees). Following this approach,
we build conceptual spaces in the form of generalized forests of GTs. This is
done as follows.

Definition 8.16 (Generalized Forest) A generalized forest (GF) is a graph G =
(V, E τ

[0..4], μ) such that the connected components D1, . . . , Dn of the subgraph
G′ = (V, E τ

[1..4], μ′) of G are GTs Di = (Vi, E τi
[1..4], ri, μi), 1 u i u n, that satisfy the

following structural constraints.

1. The sequence V1, . . . , Vn is a partition of V, that is, V = ∪n
i=1Vi and ∀1 u

i < j u n : Vi ∩ Vj = ∅. In order to denote this partition we use the function
V: V→ {V1, . . . , Vn}, where ∀v ∈ V, ∀1 u i u n : V(v) = Vi ⇔ v ∈ Vi.

2. The sequence E τ1
[1..4], . . . , E τn

[1..4] is a partition of E τ
[1..4], that is, E τ

[1..4] =
∪n

i=1E τi
[1..4] and ∀1 u i < j u n : E τi

[1..4] ∩ E τj

[1..4] = ∅. Thus, ∀1 u i u n : τi ⊆ τ.
3. τ : E τ

[0..4] → T = {e, k, l, r, v} is an extended edge typing function such that
∀e = {v, w} ∈ E τ

[0..4] : τ(e) = e ⇒ V(v) =/ V(w). That is, for any 1 u i u
n : E τ

[0] ∩ E τi
[1..4] = ∅. Further, we define E τ

[0] = {e ∈ E τ
[0..4] | τ(e) = e}. Thus,

∀{v, w} ∈ E τ
[0]∃1 u i < j u n : v ∈ Vi ∧ w ∈ Vj. Edges e ∈ E τ

[0] are called
external edges.

4. μi, 1 u i u n, denotes the restriction of μ to E τi
[1..4].

In other words, a GF is a graph that is partitioned into possibly interlinked
GTs. We call the GTs Di the components of the GF G linked by external edges
as elements of E τ

[0] and denote them by cmp(G) = {D1, . . . , Dn}.

Remark. A GF is a GT with an extended edge typing function that induces
a decomposition of the underlying graph into a sequence of GTs by specify-
ing external edges.

A connected graph with at least two vertices does not uniquely induce
a GT. Likewise, such a graph is not uniquely decomposable into the domains
of a GF. This simple observation gives plenty room for spanning GFs on
a given graph subject to cost functions of external edges or the coherence of
single domains. In this sense, we have to think of specific notions of GFs
that are specialized by analogy to minimum spanning GTs, GSPTs, and so
on. We may think, for example, of the domains D of a GF G as subgraphs
that span regions of higher “internal homogeneity” (e.g., in terms of graph
clustering [63]) within the underlying graph while its external edges span
a sort of MST over these domains. As a sample notion of this kind consider
the following definition of conceptual graphs.

Definition 8.17 (Conceptual Graph) Let G = (V, E, μ) be a weighted connected
graph and μ∗ : V2 → R+

0 a metric measuring the connectedness of vertices
subject to the topology of G spanned by E. Other than μ, μ∗ valuates directly
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as well as indirectly connected vertices. In this sense, it is reminiscent of the
notion of a transitive closure. However, we leave it open whether μ∗ only ex-
plores simple or even only shortest paths (as done by μ̂ – cf. Definition 8.2).
Think of μ∗, for example, as a function that measures the degree of unrelat-
edness or dissimilarity [9] of signs denoted by the vertices of G. Now a con-
ceptual graph (CG) is a labeled GF G = (V, E τ

[0..5], , r,LV,LE, , μ) together with
an edge typing function  : E τ

[0] → T = {c, k, r, s, v} and the top-level vertex
r ∈ V, which altogether satisfy the following additional constraints:

1. Metric basic structure: Each component Di ∈ cmp(G) – henceforth called
a domain of G – is a GPST – note that the index of E τ

[0..5] is running from 0
to 5 so that the edge typing functions of the components of G distinguish
among cross-reference and shortcut edges.

2. Micro-level coherence:

∀e ∈ E τ
[0]�e′ ∈ E τ

[1..5] : μ(e) < μ(e′)

3. Meso-level coherence:

∀v, w ∈ V : V(v) =/ V(w)⇒
μ∗(v, w) > max{maxx,y∈V(v){μ∗(x, y)}, maxx,y∈V(w){μ∗(x, y)}}

4. Macro-level structure: G′ = (V ′, E ′, ′, R, μ′) is a GPST such that V ′ =
{Vi|(Vi, E τi

[1..5], ri, μi) ∈ cmp(G)}, |E ′| = |E τ
[0]|, ∀e = {v, w} ∈ E τ

[0] : v ∈
Vi ∧w ∈ Vj ∧ �E τ

[0]
(e) = k⇒ {Vi, Vj} ∈ E ′ ∧ �E ′({Vi, Vj}) = k∧ ′({Vi, Vj}) =

(e) ∧ μ′({Vi, Vj}) = μ(e). Further, there exists an i such that 1 u i u
|cmp(G)| and (Vi, E τi

[1..5], ri, μi) ∈ cmp(G) and r ∈ R = Vi. That is, r is
the root of the root-building GPST-like component R of G.

We call G a |cmp(G)|-dimensional conceptual graph.

Remark. Satisfying Constraint 4 of Definition 8.17 guarantees the persis-
tence of metric characteristics not only within single domains of a CG but
also between the different domains of that graph. In this sense, we get the
notion of a metric space of metric spaces where each of these spaces is rep-
resented by a separate GT that satisfies certain structural constraints guaran-
teeing a functional semantics of its different edge types.

Remark. The notion of a conceptual graph is not to be confused with that of
the same name as introduced by [55]. In contrast to the latter term, Defini-
tion 8.17 is reminiscent of the notion of a conceptual space as introduced by
Gärdenfors [28] by relying on the notion of a graph-like topology instead of re-
ferring to a hyperspace-based geometry. In Section 8.2.8 we have shown how
to utilize GTs as graph models of conceptual domains. By Definition 8.17 we
get the understanding that these domains, each of which is endowed with
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a graph-like topology, are interlinked by external edges that connect less co-
herent and, thus, separable vertices. In other words: Definition 8.17 recon-
structs the opposition of separable and integral dimensions by the notion of
micro and meso (level) coherence – leaving the definition of macro (level)
coherence of conceptual graphs to future work: a domain is an internally
structured, externally separable and internally integral dimension of a con-
ceptual graph. We call a conceptual graph G for which |cmp(G)| >> 1 a multi-
dimensional conceptual space. In Section 8.3 we exemplify this notion by three
different semiotic systems.

Corollary 8.13 A GF can have micro-level coherence without having meso-level
coherence.

Proof. This corollary can simply be proved by constructing a counterexam-
ple as shown in Figure 8.8, which is a GF G = (V, E τ

[0..5], μ) with two com-
ponents D1 = ({1, 2, 3, 4}, E τ1

[1..5], 1, μ1) and D2 = ({5, 6, 7, 8}, E τ2
[1..5], 5, μ2)

such that E τ
[0] = {{2, 8}}, E τ1

[2] = E τ1
[3] = E τ1

[4] = E τ2
[2] = E τ2

[3] = E τ2
[4] = ∅,

E τ1
[1] = {{1, 2}, {1, 4}, {3, 4}}, E τ2

[1] = {{5, 6}, {5, 8}, {6, 7}}, E τ1
[5] = {{2, 3}}

and E τ2
[5] = {{7, 8}}. Further, μ({1, 2}) = μ({1, 4}) = μ({3, 4}) = μ({5, 6}) =

μ({5, 8}) = μ({6, 7}) = 1.5, μ({2, 3}) = μ({7, 8}) = 1.55, and μ({2, 8}) = 2.0.
Suppose now that μ∗ = μ̂. In this case we see that Constraint 1 of Defini-
tion 8.17 is satisfied while max{maxx,y∈V1{μ∗(x, y)}, maxx,y∈V2{μ∗(x, y)}} =
3.0 > 2.0 = μ̂(v, w).

Obviously, Definition 8.17 demands spanning CGs in a sense that vertices
of the same domain are “nearer” to each other, more related, or more similar
than vertices of different domains. This is the GT-based analog to the distinc-

Figure 8.8 A generalized forest with two components D1
and D2 (cf. the proof of Corollary 8.13). Kernel edges are
denoted by straight lines, lateral edges by dashed lines, and
the single external edge by a dotted line. Numeric labels
denote the weights of the edges.
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tion of integral (domain internal) and separable (domain external) dimen-
sions in conceptual spaces. It reflects a basic idea of explorative data analysis
according to which objects of the same cluster shall be more homogeneous
than objects of different clusters – irrespective of the operative measure of
object similarity. Although we do not specify μ∗ in Definition 8.17, good can-
didates for instantiating μ∗ can be derived from algorithms for clustering
graphs (cf., e.g., [63]).

At this point we stop extending the graph-theoretical apparatus introduced
so far and leave this endeavor for future work. What we finally present in the
next section is an overall interpretation of the notion of a GF as introduced
so far.

8.3

Semiotic Systems as Conceptual Graphs

So far we have gained several novel subclasses of the class of GTs. It was
Dehmer’s [15] task – who first and, up to that time, most comprehensively
formalized GTs – to define a similarity measure for classifying given sets of
GTs. That is, for a triple of GTs Dehmer [15] determines the most similar
pair of GTs. In this chapter we have taken one step back in order to ap-
proach an answer to the following question: Given a single graph, which of
the GTs derivable from it satisfies which topologically and semiotically founded
constraints? Following this line of research we have introduced the notion
of a minimum spanning generalized tree (MSGT), of a generalized shortest
path tree (GSPT), and of a generalized shortest paths tree (GPST). Especially
by the subclass of GPSTs we have gained a detailed semantics of kernel, ver-
tical, reflexive, and lateral edges where the latter have further been divided
into the subset of cross-reference and shortcut edges. In Section 8.2.6 we
have given a functional semantics of kernel edges as search facilities, of ver-
tical edges as abridging facilities, of shortcut edges as association facilities (in
support of large cluster values), and of cross-reference edges as randomiza-
tion facilities (in support of short average geodesic distances). GTs are a class
of graphs that impose functional restrictions on the typing of their edges,
which locate this class in between the class of trees and general graphs. In
this sense, we have reached an information-added value from our new look
on graphs: although each GT is a graph by definition, the latter semantics of
edge types provides a detailed classification of edges according to their func-
tion in processes of information flow in networks. Further, in Sections 8.2.8
and 8.2.9 we have approached the stage of elaborating the notion of a GT in
terms of cognitive modeling. It is now that we explain this model by example
of three semiotic domains.

In order to do that, let us briefly recapitulate our instantiation of concep-
tual spaces by means of GFs as presented above: Starting from a graph we
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denote quality dimensions by its vertices whose networking into GTs defines
domains, that is, internally structured dimensions of mutually integral basic
dimensions. Starting from this setting, conceptual spaces are spanned by
interlinked domains such that the dimensions of different domains are less
coherent than those belonging to the same domain (remember our analogue
to the notion of separable dimensions). So what does it mean to map an object
onto such a conceptual space? There are at least two candidate answers to this
question – a (neo-)structuralistic one and a conceptualistic one (as we call
them).

1. Structuralistic interpretation – the unipartite model: According to this view,
a conceptual space is a unipartite graph in which all entities – whether
dimensions or objects – are mapped onto the same single mode of the
graph. In this way, any object is defined in accordance with the general
stance of structuralism by its relative position with respect to all other ob-
jects of the same space [44] (in terms of direct or indirect links). Following
this interpretation – which below is exemplified by text networks – a newly
observed object o is mapped onto conceptual space
a) by finding the domain to which it is best related (in terms of the oper-

ative notion of object relatedness or similarity),
b) by locating o relative to the dimensions of that domain subject to the

restrictions of generalized shortest paths trees (GPSTs), and
c) by establishing external edges that relate o to alternative domains as

representations of its additional meanings.

Under this regime, the root of a GPST representing a certain domain is
the prototype of this domain, which by virtue of this structuralist interpre-
tation is an existent sign [46] (and not just a virtual configuration of fea-
tures). Further, domains (and the CGs spanned by them) necessarily grow
as a function of newly made observations, that is, by newly made object
measurements (e.g., processes of sign interpretation). This may also af-
fect the rewiring of already established domain-internal or -external links.
As a consequence, measurement operations are reconstructed as a sort
of object wiring or edge formation. We can represent such measurement
operations by means of a vector-like notation as follows: an object o is
mapped onto a CG G by a vector oT = (d1, . . . , dn), where di = μ(o, vi),
1 u i u n, iff o is linked with vertex vi, otherwise di = 0. From this point of
view, we naturally gain an interpretation of CGs according to the theory of
diachronic structuralism as put forward by [32], [13] and especially by [18].

2. Conceptualistic interpretation – the bipartite model: According to this view,
a CG spans a bipartite graph with two modes: whereas the top mode is (as
above) spanned by the interlinked domains of the graph, objects are now
separately mapped onto the graph’s bottom mode. There are two alterna-
tives for representing this bottom mode: either objects are represented in
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Table 8.1 Overview of the notion of a conceptual graph as
a purely graph-theoretical reconstruction of the notion of
a conceptual space [28] and three of its instances.

CS Conceptual graph Text networking Social tagging Thematic progression

Dimension Vertex Text Social category Text segment

Social category Subnetwork of textDomain Generalized tree Text subnetwork
subgraph segments

Space Generalized forest Text network Social category Network of text

Vertex of the same

Graph segments

Object
or different mode

Text Text (segment) Text (segment)

the usual way as vectors of values along dimensions that span a geometric
space or the object space spans itself a GF. The latter variant is preferred
here. Following this interpretation, a conceptual space consists of two in-
terrelated CGs, the one representing a system of dimensions, the other
a system of objects characterized and interrelated along these dimensions.
In order to make sense of this interpretation we are in need of a notion of
commutativity by analogy to category theory. That is, links among dimen-
sions restrict the set of links among objects. Under this regime, the root
of a GPST representing a certain domain is the prototype of this domain,
which by virtue of this conceptualistic interpretation is no longer a real
existing sign [46].

Both of these interpretations naturally include hierarchical categorization
as a mode of object representation [57]. This is a direct consequence of the
topology of GTs by which objects may be mapped onto vertices of different
levels of the kernel of the operative domain. Note that both of these interpre-
tations of conceptual spaces are contrary to feature semantics, which (i) es-
tablishes semes [30] as semantic dimensions that form building blocks of (ii)
categories as regions of semantic space onto which objects are (iii) mapped
by categorizing them along the latter categories. The reason why we do not
follow this approach is the sheer impossibility of finding such reliable se-
mantic dimensions. Thus, in good tradition with neostructuralism we refer
to the signs themselves as dimension-building units [18].

Now we can exemplify the latter two interpretations of conceptual spaces
in terms of conceptual graphs by means of three semiotic domains:

• Text networking: A first example of conceptual graphs can be constructed
in the area of social text networking. The most prominent example of this
is Wikipedia, where articles and related document units are the vertices
that are connected by encyclopedic links [41]. In this area we can build
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a conceptual graph along a structuralist interpretation by identifying topi-
cal domains as subnetworks of Wikipedia’s article graph. This can be done
by clustering articles according to their content. However, Wikipedia also
knows the concept of thematic portals that – as is easily shown [41] – have
a GT-like topology. Without elaborating this example in detail let us men-
tion that while in this example kernel and vertical links express relations
of thematic hypotaxis, subordination, or containedness among articles,
shortcut edges connect articles related by textual entailment, while cross-
reference links can be used to represent links among thematically loosely
connected articles (e.g., by means of dates, locations, etc.). Following this
line of thinking, the Wikipedia article graph gets a semantic space in itself
that is subdivided into portals and other clusters of articles where each of
these clusters spans a certain thematic domain by means of its thematic
homogeneity. By mapping a single text (or a new article) onto this concep-
tual graph we get, among other things, information about its membership
in certain thematic domains. Additionally, for each of these domains rep-
resenting its ambiguous content we get information about the degree of
its thematic resolution (as a function of its geodesic distance to the root
of that domain). Finally, by classifying all links starting from that text in
terms of kernel, vertical, shortcut, and cross-reference edges we specify
its functional position in processes of information flow through that net-
work. This is just a structuralist way of revealing the content of an object
by interlinking it with other objects of the same ontological sphere.

• Social tagging: Along a conceptualistic reading of conceptual graphs we
get a second example. Now instead of directly interrelating a text with the
vertices of a given text network we can alternatively map that text onto
the category system of Wikipedia [65]. In this way, the category system of
Wikipedia [64] is reconstructed as a GF in which different subgraphs span
thematically distinguished subject areas (e.g., culture, science, sports). That
is, we assume that kernel edges model hypernymy relations while vertical
edges abbreviate them according to their transitivity. Further, we assume
that shortcut edges map socially linked categories that denote coclassifi-
cations or polymorphic categorizations within a given thematic domain.
Finally, cross-reference edges are seen to denote remote, that is, less ob-
vious coclassifications. Under this regime, external edges combine obvi-
ously unrelated domains of categorization – possibly due to an erroneous
coclassification of an ambiguous term or so. Obviously, vertical and lateral
edges have quite different roles so that this information can be reflected by
the buildup of GTs representing single domains of categorizations. Note
that this interpretation in terms of interlinked domains relieves us of the
burden of deciding on a top-level category. Such a single top-level category
is as unrealistic as a purely tree-like skeleton of a category graph in social
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tagging. As before, when a text is mapped onto the resulting conceptual
graph, we perform a hierarchical categorization where ambiguous texts
are mapped onto different domains of the graph.

• Thematic progression: A third example belongs to the area of discourse
analysis. According to the notion of thematic progression [14] we may
think of a single discourse as being divided into interlinked thematic do-
mains each of which represents a single topic separated from the other
topics of the same discourse. Representing these domains as GTs we de-
cide to map thematic progressions by kernel edges that are supplemented
by vertical edges as a means to abridge hypotactic relations among dis-
continuous text segments. Further, we can think of shortcut edges as
links among thematically associated text segments while cross-reference
links denote thematically remote connections among randomly linked
text parts. In other words, kernel and vertical edges model textual coher-
ence as based on textual entailment, while shortcut and cross-reference
edges are used to model coherence relations of text segments based on
thematic association. Note that the original model of thematic progression
does not account for graph-like discourse structures but unrealistically re-
lies on a tree-like model.

What have we gained by the graph-theoretical apparatus introduced so far?
We have invented a graph model that shares the efficiency of SPTs with the
expressiveness of graphs. Further, we have elaborated this notion along the
notion of a conceptual space. More specifically, we have introduced GFs as
a graph model that retains several nontrivial characteristics of semiotic sys-
tems. With a view on semantic relations this model accounts for

1. thematic centralization according to the choice of prototypes as roots of
GTs,

2. hypotactic unfolding by means of kernel edges along increasingly special-
ized nodes starting from the prototypical root of the GT,

3. thematic condensation as provided by vertical links abridging taxonomical
relations due to transitivity relations among kernel edges,

4. thematic shortcuts as a means of representing thematic associations apart
from taxonomic or otherwise hierarchical meaning relations,

5. domain formation as a result of networking among thematically homo-
geneous signs,

6. domain networking by spanning external edges among different domains
in order to gain finally,

7. conceptual spaces as reference systems of modeling the content of poly-
semous signs.

This reference example shows that GFs and their constitutive trees can be
seen as a powerful tool for mapping semiotic systems of a wide range of areas
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(ranging from single texts and social ontologies to whole text networks). This
opens the perspective on semiotic measurements beyond semantic spaces
and their geometric model of meaning relations.
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List of Abbreviations

Acronym Meaning Definition

CG Conceptual Graph 8.17
DGT Directed Generalized Tree 8.11
DiGST Directed Generalized Spanning Tree 8.12
DiMSGT Directed Minimum Spanning Generalized Tree 8.13
GF Generalized Forest 8.16
GPST Generalized shortest PathS Tree 8.10
GSPT Generalized Shortest Path Tree 8.8
GST undirected Generalized Spanning Tree 8.5
GT (undirected) Generalized Tree 8.3
MST Minimum Spanning Tree
NOP Network Optimization Problem
MSGT Minimum Spanning Generalized Tree 8.6
SPT Shortest Path Tree 8.8
SPGT Shortest Paths Generalized Tree 8.9



218 8 Generalized Shortest Path Trees: A Novel Graph Class by Example of Semiotic Networks

References

1 Albert, R. and Barabási, A.-L. (2002). Sta-
tistical mechanics of complex networks.
Reviews of Modern Physics, 74:47.

2 Baas, N.A. (1994). Emergence, hierar-
chies, and hyperstructures. In Langton, C.
G. (ed.), Artificial Life III, SFI Studies in
the Sciences of Complexity, pp. 515–537.
Addison-Wesley, Reading.

3 Barabási, A.-L. and Oltvai, Z.N. (2004).
Network biology: Understanding the cell’s
functional organization. Nature Reviews.
Genetics, 5(2):101–113.

4 Barrat, A., Barthelemy, M., Pastor-
Satorras, R., and Vespignani, A. (2004).
The architecture of complex weighted net-
works. Proceedings of the National Academy
of Sciences USA, 101(11):3747–3752.

5 Barthelemy, M. (2004). Betweenness cen-
trality in large complex networks. Euro-
pean Physical Journal B, 38:163–168.

6 Blanchard, P. and Krüger, T. (2004). The
cameo principle and the origin of scale
free graphs in social networks. Journal of
statistical physics, 114(5–6):399–416.

7 Brainerd, B. (1977). Graphs, topology and
text. Poetics, 1(14):1–14.

8 Broder, A., Kumar, R., Maghoul, F.,
Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., and Wiener, J. (2000). Graph
structure in the web. Computer Networks,
33:309–320.

9 Budanitsky, A. and Hirst, G. (2006). Eval-
uating WordNet-based measures of lexical
semantic relatedness. Computational
Linguistics, 32(1):13–47.

10 Burgess, C., Livesay, K., and Lund, K.
(1999). Exploration in context space:
Words, sentences, discourse. Discourse
Processes, 25(2&3):211–257.

11 Chakrabarti, S. (2002). Mining the Web:
Discovering Knowledge from Hypertext Data.
Morgan Kaufmann, San Francisco. Das
Buch behandelt das Teilgebiet bzw. das
Anwendungsgebiet des Web Mining.

12 Chazelle, B. (2000). A minimum spanning
tree algorithm with inverse-ackermann
type complexity. Journal of the ACM,
47(6):1028–1047.

13 Coseriu, E. (1974). Synchronie, Diachronie
und Geschichte. Das Problem des Sprach-
wandels. Wilhelm Fink.

14 Daneš, F. (1974). Functional sentence per-
spective and the organization of the text.
In Danes, F. (ed.), Papers on Functional
Sentence Perspective, pp. 106–128. Mouton,
The Hague.

15 Dehmer, M. (2005). Strukturelle Analyse
Web-basierter Dokumente. Multimedia und
Telekooperation. DUV, Berlin.

16 Dehmer, M. and Mehler, A. (2007). A new
method of measuring the similarity for
a special class of directed graphs. Tatra
Mountains Mathematical Publications,
36:39–59.

17 Dehmer, M., Mehler, A., and Emmert-
Streib, F. (2007). Graph-theoretical char-
acterizations of generalized trees. In Pro-
ceedings of the 2007 International Confer-
ence on Machine Learning: Models, Tech-
nologies & Applications (MLMTA07), June
25–28, 2007, Las Vegas.

18 Derrida, J. (1988). Limited Inc. North-
western University Press, Chicago.

19 Diestel, R. (2005). Graph Theory. Springer,
Heidelberg.

20 Dijkstra, E.W. (1959). A note on two
problems in connexion with graphs.
Numerische Mathematik, 1:269–271.

21 Dorogovtsev, S.N. and Mendes, J.F.F.
(2004). The shortest path to complex net-
works. http://www.citebase.org/abstract?
id=oai:arXiv.org:cond-mat/0404593

22 Ehresmann, A.C. and Vanbremeersch,
J.-P. (1996). Multiplicity principle and
emergence in memory evolutive systems.
SAMS, 26:81–117.

23 Emmert-Streib, F. and Dehmer, M. (2006).
A systems biology approach for the clas-
sification of dna microarray data. In Pro-
ceedings of ICANN 2005, Torun, Poland.

24 Emmert-Streib, F. and Dehmer, M. (2007).
Topological mappings between graphs,
trees and generalized trees. Applied Mathe-
matics and Computing, 186(2):1326–1333.

25 Emmert-Streib, F., Dehmer, M., and
Kilian, J. (2005). Classification of large
graphs by a local tree decomposition.
In Arabnia, H.R. and Scime, A. (eds.),
Proceedings of DMIN 05, International Con-
ference on Data Mining, Las Vegas, Juni
20–23, pp. 200–207.

26 Ferrer i Cancho, R., Riordan, O., and
Bollobás, B. (2005). The consequences



References 219

of Zipf’s law for syntax and symbolic
reference. Proceedings ofthe Royal Society,
272:561–565.

27 Fischer, W.L. (1969). Texte als simpliziale
Komplexe. Beiträge zur Linguistik und
Informationsverarbeitung, 17:27–48.

28 Gärdenfors, P. (2000). Conceptual Spaces.
MIT Press, Cambridge, MA.

29 Goldblatt, R. (1979). Topoi: the Categorial
Analysis of Logic. Springer, Amsterdam.

30 Greimas, A.J. (2002). Semantique Struc-
turale. Presses Universitaires de France,
Paris.

31 Gritzmann, P. (2007). On the mathemat-
ics of semantic spaces. In Mehler, A. and
Köhler, R. (eds.), Aspects of Automatic Text
Analysis, Vol. 209 of Studies in Fuzziness
and Soft Computing, pp. 95–115. Springer,
Berlin, Heidelberg.

32 Jakobson, R. (1971). Selected Writings II.
Word and Language. Mouton, The Hague.

33 Jones, W. and Furnas, G. (1987). Pictures
of relevance: A geometric analysis of sim-
ilarity measures. Journal of the Ameri-
can Society for Information Science, 38(6):
420–442.

34 Kintsch, W. (1998). Comprehension.
A Paradigm for Cognition. Cambridge
University Press, Cambridge.

35 Landauer, T.K. and Dumais, S.T. (1997).
A solution to Plato’s problem: The latent
semantic analysis theory of acquisition,
induction, and representation of knowl-
edge. Psychological Review, 104(2):211–240.

36 Lin, D. (1998). Automatic retrieval and
clustering of similar words. In Proceedings
of the COLING-ACL ’98, pp. 768–774.

37 Marcu, D. (2000). The Theory and Practice
of Discourse Parsing and Summarization.
MIT Press, Cambridge.

38 Marcus, S. (1980). Textual cohesion and
textual coherence. Revue roumaine de lin-
guistique, 25(2):101–112.

39 Mehler, A. (2002). Hierarchical order-
ings of textual units. In Proceedings of the
19th International Conference on Compu-
tational Linguistics (COLING ’02), August
24 – September 1, 2002, Taipei, Taiwan,
pp. 646–652, Morgan Kaufmann, San
Francisco.

40 Mehler, A. (2008). Large text networks
as an object of corpus linguistic stud-
ies. In Lüdeling, A. and Kytö, M. (eds.),
Corpus Linguistics. An International Hand-
book of the Science of Language and So-

ciety. De Gruyter, Berlin, New York,
pp. 328–382.

41 Mehler, A. (2008). Structural similarities
of complex networks: A computational
model by example of wiki graphs. Applied
Artificial Intelligence, 22(7&8):619–683.

42 Mehler, A. (2009). Minimum spanning
Markovian trees: Introducing context-
sensitivity into the generation of span-
ning trees. In Dehmer, M. (ed), Structural
Analysis of Complex Networks. Birkhäuser
Publishing, Basel.

43 Mehler, A. and Gleim, R. (2006). The net
for the graphs – towards webgenre rep-
resentation for corpus linguistic studies.
In Baroni, M. and Bernardini, S. (eds.),
WaCky! Working Papers on the Web as
Corpus, pp. 191–224. Gedit, Bologna.

44 Merleau-Ponty, M. (1993). Die Prosa der
Welt. Fink, München.

45 Milgram, S. (1967). The small-world prob-
lem. Psychology Today, 2:60–67.

46 Murphy, G.L. (2002). The Big Book of Con-
cepts. MIT Press, Cambridge.

47 Newman, M.E.J. (2003). The structure
and function of complex networks. SIAM
Review, 45:167–256.

48 Pastor-Satorras, R. and Vespignani, A.
(2004). Evolution and Structure of the In-
ternet. Cambridge University Press, Cam-
bridge.

49 Pickering, M.J. and Garrod, S. (2004).
Toward a mechanistic psychology of di-
alogue. Behavioral and Brain Sciences,
27:169–226.

50 Rieger, B.B. (1978). Feasible fuzzy seman-
tics. In 7th International Conference on
Computational Linguistics (COLING-78),
pp. 41–43.

51 Schütze, H. (1997). Ambiguity Resolution
in Language Learning: Computational and
Cognitive Models, Vol. 71 of CSLI Lecture
Notes. CSLI Publications, Stanford.

52 Serrano, M.Á., Boguñá, M., and Pastor-
Satorras, R. (2006). Correlations in
weighted networks. Physical Review,
74(055101(R)):1–4.

53 Shen-Orr, S., Milo, R., Mangan, S.,
and Alon, U. (2002). Network motifs
in the transcriptional regulation net-
work of escherichia coli. Nature Genetics,
31(1):64–68.

54 Smolensky, P. (1995). Connectionism,
constituency and the language of thought.
In Donald, M. and MacDonald, G. (eds.),



220 8 Generalized Shortest Path Trees: A Novel Graph Class by Example of Semiotic Networks

Connectionism: Debates on Psychological Ex-
planation, Vol. 2, pp. 164–198. Blackwell,
Oxford.

55 Sowa, J.F. (2000). Knowledge Representa-
tion: Logical, Philosophical, and Computa-
tional Foundations. Brooks/Cole, Pacific
Grove.

56 Steels, L. (2006). Collaborative tagging as
distributed cognition. Pragmatics & Cogni-
tion, 14(2):287–292.

57 Stein, B. and Meyer zu Eißen, S. (2007).
Topic identification. Künstliche Intelligenz
(KI), 3:16–22.

58 Steyvers, M. and Tenenbaum, J. (2005).
The large-scale structure of semantic net-
works: Statistical analyses and a model
of semantic growth. Cognitive Science,
29(1):41–78.

59 Stroustrup, B. (2000). Die C++-Program-
miersprache. Addison-Wesley, Bonn.

60 Tarjan, R.E. (1983). Data structures and
network algorithms. Society for Industrial
and Applied Mathematics, Philadelphia,
Pennsylvania.

61 Thiopoulos, C. (1990). Meaning metamor-
phosis in the semiotic topos. Theoretical
Linguistics, 16(2/3):255–274.

62 Tversky, A. and Gati, I. (2004). Studies of
similarity. In Shafir, E. (ed.), Preference, Be-
lief, and Similarity. Selected Writing os Amos
Tversky, pp. 75–95. MIT Press, Cambridge,
MA.

63 van Dongen, S. (2000). A cluster al-
gorithm for graphs. Technical Report
INS-R0010, National Research Institute
for Mathematics and Computer Science
in the Netherlands, Amsterdam.

64 Voss, J. (2006). Collaborative the-
saurus tagging the wikipedia way.
http://www.citebase.org/abstract?id=
oai:arXiv.org:cs/0604036

65 Waltinger, U., Mehler, A., and Heyer, G.
(2008). Towards automatic content tag-
ging: Enhanced web services in digital
libraries using lexical chaining. In 4th
Int. Conf. on Web Information Systems and
Technologies (WEBIST ’08), 4–7 May,
Funchal, Portugal. Barcelona.

66 Wasserman, S. and Faust, K. (1999). So-
cial Network Analysis. Methods and Ap-
plications. Cambridge University Press,
Cambridge.

67 Watts, D.J. (2003). Six Degrees. The Sci-
ence of a Connected Age. W.W. Norton &
Company, New York, London.

68 Watts, D.J. and Strogatz, S.H. (1998).
Collective dynamics of ‘small-world’ net-
works. Nature, 393:440–442.

69 Wu, B.Y. and Chao, K.-M. (2004). Span-
ning Trees and Optimization Problems.
CRC Press, Boca Raton and London.

70 Yang, S.J. (2000). The directed min-
imum spanning tree problem. http:
//www.ce.rit.edu/~sjyeec/dmst.html.



221

9

Applications of Graph Theory in Chemo- and Bioinformatics
Dimitris Dimitropoulos, Adel Golovin, M. John, and Eugene Krissinel

9.1

Introduction

Chemoinformatics [1–4] and bioinformatics [5–9] may be broadly defined as
the use of information technologies in chemistry and biology. This includes
the collection and systematization of data with the purpose of converting it
into knowledge by the identification of common trends and similarities. It
also includes the analysis of data to determine if they support preexisting
hypotheses and models. The ultimate goal of chemo- and bioinformatics is
to aid discoveries (in particular, drug discoveries [10]) by narrowing the field
of search to areas of greater promise.

Chemo- and bioinformatics address a significant number of tasks, which
may be classed into several groups. Due to the ever growing amount of chem-
ical and biological data, as well as their specifics and variety, data storage, re-
trieval, and maintenance become a discipline in itself [11–15]. Statistical anal-
ysis of data is important for the identification of common trends, similarities,
and relationships [10,16]. Many problems arise in the field of data treatment
and assessment, such as sequence and structure analyses [17–20], analysis
of gene and protein expressions [20,21], measuring biodiversity [22,23], evo-
lutionary studies [7, 23–25], and many others. A particular type of applica-
tion where chemo- and bioinformatics merge with computational chemistry
and biology relates to modeling of different objects, processes, and phenom-
ena [26–28].

Graph theory is widely used in chemo- and bioinformatics [29, 30]. This is
so for a number of reasons, such as:

1. Many practical problems can be conveniently stated in graph terms.
2. Graph properties are well studied.
3. Efficient graph-theoretical algorithms continue to be developed for opti-

mal and almost-optimal solutions.
4. Intractable problems may be easily identified.
5. Graphs are convenient structures for storing, searching, and retrieving

data.
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Examples of the use of graphs in chemo- and bioinformatics include se-
quence analysis [18], identification of chemical compounds [29], analysis of
metabolic pathways [31–35] and phylogenetic trees [36–39], comparison and
analysis of molecular structures [40–48], protein docking [49], identification
of macromolecular complexes in crystal packing [50], and the investigation
of protein topology [51, 52].

In this chapter, we outline basic graph-theoretical concepts and meth-
ods used in structural chemo- and bioinformatics. We also discuss prac-
tical issues relating to the Macromolecular Structure Database (MSD) at
the European Bioinformatics Institute (EBI) [14], which are associated with
graph-theoretical algorithms. MSD is the European project for the collec-
tion, management, and distribution of data on macromolecular structures,
derived in part from the Protein Data Bank (PDB) [53]. The project involves
the construction of a relational database to store structural data on macro-
molecules (protein and nucleotide chains) and ligands (small molecules,
drugs, etc.) found in the PDB and the provision of a number of public web
services developed to assist research. The MSD resources are available at
http://www.ebi.ac.uk/msd/.

9.2

Molecular Graphs

Chemical diagrams that present molecules have been used in organic chem-
istry for centuries [54]. The orientation of atoms and the average length of
bonds that attach them to each other vary and are influenced by factors such
as the number of shared pairs of electrons, the characteristics of the atoms
being joined, and the nature of their immediate environment. A molecular
graph or chemical graph is an abstract representation of the structural for-
mula of a chemical compound in terms of graph theory, which in this context
refers to a collection of vertices (atoms) and a collection of edges that con-
nect pairs of vertices (bonds). Vertices are labeled with the type of atom and
bonds with bond types – single, double, or triple. The lengths of bonds and
the angles between them are depicted in 2D diagrams and provide a simple
representation of the molecule. Bonds have no direction and are described
as unidirectional. The treewidth is the maximum number of bonds attached
to each atom and is restricted by the valency of atoms, which is 5 or less. This
low number makes molecular graphs sparse. Bodlaender et al. checked the
treewidth of 10,000 chemical structures in a biological database and found
the maximum to be 4 [55]. Molecular graphs are typically planar, but nonpla-
nar ones do exist [56].
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The details depicted in molecular graphs need to be consistent with known
characteristics of the atoms and bonds as a group, which include factors such
as the following:

1. The sum of bonds attached to each atom, taking into account bond orders
and formal atom charges, must be consistent with the valency of each
atom.

2. Bond patterns that do not strictly fit single or double characterization such
as those in delocalized aromatic rings and bonds involved in hybridiza-
tion should be presented accordingly. Often this is not shown explicitly in
chemical diagrams, but is implied.

3. The configuration of substructures around chiral centers must be pre-
sented so that it is possible to distinguish between enantiomers. This is
done by identifying potential chiral atoms (Figure 9.1) and checking to
see if a stereochemical descriptor has been assigned to them (and only
for them). The Cahn-Ingold-Prelog [57] absolute notation is the preferable
notation for graph operations.

Cl

C

H

F

Br

Cl

C

H

F

Br

Figure 9.1 Example of a chiral center (the middle carbon atom),
with the two enantiomers shown.

Hydrogen atoms can only form single bonds and are often omitted from
graphs. Such graphs are referred to as hydrogen-depleted molecular graphs.
For molecules that have metal ions and metal complexes, the use of graphs
may be problematic as the atomic forces in a molecule are complex and can-
not be approximated by the use of standard covalent bonds.

9.3

Common Problems with Molecular Graphs

The first problem that arises when dealing with a collection of molecular
graphs such as those that exist in a database is duplication. The best ap-
proach to dealing with this task is to find a way to canonicalize [58] the
molecular graphs and reorder the nodes to obtain all possible permutations
of atoms. By storing the canonicalized forms in a database, the complexity of
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the task of checking whether an input molecule already exists is reduced sig-
nificantly. Textual representations of molecules such as absolute SMILES [59]
or INChi [60] can also be stored in databases and will help to reduce the
cost of searches. It is essential, though, to ensure that the molecular graphs
are chemically valid with the correct assignment of aromatic bond types and
stereochemical descriptors before canonicalization takes place. The INChi
strings in particular are an ideal tool for this task because by definition they
have to be produced by the INChi published algorithm proposed by IUPAC
and are designed particularly to solve the problem of chemical identity.

Another problem often encountered when dealing with a collection of
molecular graphs is that of finding ones that are chemically similar to an
input molecule, comparisons with which may involve finding others that:

(a) are supergraphs or subgraphs,
(b) share a large part of their structure (maximum common subgraph),
(c) share many similar subgraphs (common fragments).

A related class of problems is to organize molecules in a collection in
classes either by an ad-hoc set of rules regarding their structure or by using
a clustering algorithm and defining some method of assigning a similarity
distance for two input structures [61]. The majority of elements do not occur
frequently in molecules. The same is true for charged ions and triple bonds.
This makes it possible to use an algorithm that iterates over the nodes of one
graph to examine if a matching equivalent exists in the second graph start-
ing with the rarest properties so that cases that don’t match can be discarder
earlier.

A similar way to improve the performance of subgraph searching espe-
cially over a collection of molecules is to precalculate a bitmap string that in-
dicates the existence of properties or other graph features. The bitmap string
could indicate, for example, whether each one from a predefined set of chem-
ical fragments (subgraphs) is contained as a subgraph in the molecule. Us-
ing a technique like this may help to discard a large proportion of candidate
matches using relatively low-cost bit operations. For cases where a sufficient
sample of the molecules is known, the set of fragments can be selected in or-
der to partition the collection more efficiently. An extension of this method
is to keep not just a flag but also a counter of the number of occurrences of
each feature. The molecular formula, for example, may be used directly to fil-
ter out a large proportion of the molecules in a collection during a subgraph
search operation.

Some algorithms also take advantage of automorphisms that chemical
graphs have by avoiding repeat searches of symmetrical parts, while oth-
ers reduce graphs using the fact that aromatic structures of rings of five
or six atoms are very common in biological molecules. Many of these ap-
proaches can be problematic if the input search molecule is not a valid chem-
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ical graph. This may be quite common because many of the subgraphs of
valid molecules are not valid molecules themselves. For instance, removing
a single bond of an aromatic ring will make it invalid unless the other bonds
of the ring do not remain aromatic. SMARTS, a notation quite similar to
SMILES, is a language designed specifically to specify substructures for sub-
graph search operations.

9.4

Comparisons and 3D Alignment of Protein Structures

Proteins are natural biopolymers made of a limited number of amino acid
residues [62]. There are 20 basic amino acids plus a relatively large number
of chemically modified derivatives. In proteins, amino acid residues are con-
nected linearly by peptide links, forming chain structures often referred to
as protein primary structure.

In their natural environments, protein chains usually fold into complex 3D
structures [63]. Three levels of structural organization of proteins are recog-
nized [64]. Secondary structure refers to local elements of protein fold, such
as helices and strands, which normally have a size of 6 to 30 residues. The
secondary structure elements (SSEs) are stabilized by hydrophobic interac-
tions and hydrogen bonds [62,63] and are relatively well conserved in protein
evolution. Tertiary structure refers to the structure of the whole polypeptide
chain, as defined by the atomic coordinates [64], and may be viewed as the
way the SSEs assemble. Quaternary structure refers to protein assemblies
and represents the arrangement of several folded chains into a complex [64].

The function and chemical activity of proteins depend on their 3D struc-
tures [63]. Therefore the identification and measurement of structural simi-
larities are important tasks in protein research, which are used to understand
their biological role. Some practical questions that arise are, given two pro-
tein structures, how similar are they and which parts of their structures are
similar or dissimilar. Also, given a particular 3D structure, how many other
proteins share the structure, or, given several structures, which components
are common. These questions are difficult to answer due to the overall com-
plexity of protein folds and the expense of existing computational methods.
To date, over 52,000 protein structures are in the PDB [53], which makes
database screening for similar folds a resource-intensive task.

The problem of identifying residues that occupy geometrically equiva-
lent positions in two or more structures has been investigated by many
research groups over the last two decades. Techniques used include com-
parison of distance matrices [65], analysis of differences in vector distance
plots [66], minimization of the soap-bubble surface area between two protein
backbones [67], dynamic programming on pairwise distances between the
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residues [68, 69] and SSEs [70], 3D clustering [71, 72], combinatorial exten-
sion of alignment path [73], vector alignment of SSEs [44], depth-first recur-
sive search on SSEs [74], graph theory [40–47], and many others [75–83].

Graph theory is probably the most convenient tool for the problem. If suit-
able graph representations for proteins can be constructed, graph-matching
algorithms may be applied to identify common subgraphs and thus to estab-
lish structural similarities. However, a few problems considerably compli-
cate practical implementation of this method. Firstly, protein structures are
defined with a finite accuracy with respect to atomic coordinates. Because of
that, the representing graphs need to be matched with a level of tolerance,
which considerably increases the search field and makes the procedure more
computationally demanding. Secondly, protein structure similarity does not
necessarily assume chemical identity. In most cases, replacing a few residues
in a protein sequence does not result in considerable changes of the overall
structure. Therefore, graph-matching techniques need to allow for substruc-
ture substitutions. Thirdly, although protein molecules can be represented as
graphs (as any other molecule), the size of such graph would be prohibitively
large (typically on the order of a few thousand nodes) for any graph-matching
algorithm.

A typical simplification, used to reduce the problem size, is to limit protein
structures to representative atoms from each residue. Although chemically
different, all amino acids have a common structural part, which is used to
connect them into a chain in a regular way [62]. Traditionally, the only car-
bon atom from that part, the alpha carbon, is used for representing residues.
This reduces the problem size to the length of protein chains, which typically

(a) (b)

Figure 9.2 Graph representation of a protein structure.
(a) Cartoon image of a protein chain drawn through alpha
Carbon atoms, where colors represent secondary structure
elements (yellow strands and pink helices). (b) The corre-
sponding graph, where vector representations of SSEs are
used as graph vertices. Graph edges are sections connecting
mass centers of SSEs (for clarity, not all are shown).
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range from 60 to 5000 nodes. This is still too high for graph-theoretical algo-
rithms to be practical. Therefore, combining conserved structural elements
into complex graph nodes further reduces the problem. Here the SSEs serve
as natural and convenient objects.

Figure 9.2 shows the graph representation of a protein built on the ele-
ments of secondary structure [42,45,70]. Each SSE is represented as a vector.
These vectors are then used as graph nodes labeled with SSE type and num-
ber of residues in the given SSE. Mass centers of all SSEs are connected
with sections used as graph edges. The edges are labeled with a number of
properties: length, angles between the edge and connected SSEs, and angle
between the SSEs and the corresponding torsion angle (Figure 9.3).

Matching of SSE graphs may be performed using any available algorithm,
modified to compare complex labels of vertices and edges. A system of tol-
erances should be employed when comparing particular properties (lengths
and labels) [45]. Special care should be taken when matched graphs corre-
spond to different structural motifs due to the different connectivity of SSEs
along the protein chain. An example of such a case is given in Figure 9.4,
where motifs A and B have a different biological context and belong to chains
with distinctly different topologies, but the spatial arrangements of their
SSEs are identical. In such a case, the decision of whether A and B are similar
depends on the context of the biological problem under consideration. This
problem may be tackled by assigning serial numbers Pi to graph vertices and
adding them to the list of edge properties. In this way, SSE connectivity is
preserved if, during graph matching, the edge eA

ij of graph A may be matched

to the edge eB
kl of graph B only if sign

(
PA

i – PA
j

)
= sign

(
PB

k – PB
l

)
[45].

For most proteins, SSE graphs include 20 to 50 vertices, which repre-
sents a moderately hard problem for graph-matching algorithms. Note that
because SSE graphs are fully connected, the subgraph search tree may be

ij
2α

ij
1α

ij
3α

ij
4α

ijρ

jL

iL

iv

jv

ije

Figure 9.3 Labeling of vertices and edges of SSE graphs.
Vertices are represented by vectors and edges connect their
mass centers. Edge properties length and angles define
mutual positions and orientations of all vertices in the graph.
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HH S 1
S 2

S 3
S 1

S 2
S 3

Motif A Motif B 

Figure 9.4 Example of SSE motifs of helix H and 3 strands
S1, S2, and S3 each having different SSE connectivity. Motifs
A and B form 3D SSE graphs that are geometrically identical
but relate to different biological functions.

quite wide. However, this effect is compensated by the complex nature of
SSE graph labels. Because of this, the number of potential vertex and edge
matches is considerably decreased, which narrows the search field substan-
tially.

The performance of a subgraph search in SSE graphs appears to be insuffi-
cient for whole-scale database screening, in which a target is matched to each
and every one of more than 52,000 PDB structures. Graph-based database
screening may be helped significantly by decision-tree algorithms [84], which
include a preliminary decomposition and fragment classification of graphs.
While this approach seems to be very attractive, it is impractical due to a high
demand of computer memory [84]. Thus another approach, based on the as-
sumption that only sizeable matches, with common subgraphs including
30% and more vertices, are of practical interest, was developed [45]. An al-
gorithm for the detection of minimum-size graph isomorphisms has been
developed [85]. This algorithm is able to identify, without additional compu-
tational expense, whether a given branch of a subgraph search tree is able
to yield a subgraph isomorphism equal to or larger than a given size, and
terminates the branch early if that is not the case. Thus, a large number of
insignificant small-size matches are filtered out without computation result-
ing in substantial performance gains.

An implementation of the described approach is publicly available at http:
//www.ebi.ac.uk/msd-srv/ssm/ssmstart.html. The server performs pairwise
(target-to-query), serial (target-to-database) protein structure comparisons,
as well as identification of common structural motifs in sets of more than
two structures. After general structural similarity is established through SSE
graph matching, the server performs further refinement on the level of al-
pha C atoms, providing information on the correspondence of amino acid
residues in structures being compared and giving their best possible super-
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position. Running on a variable (up to 16) number of parallel CPUs, the
server provides an average response time of 1 min for queries that include
exhaustive structural search of the PDB [45].

9.5

Identification of Macromolecular Assemblies in Crystal Packing

The biochemical functions of many proteins are dependent on their ability to
form complexes. The way in which protein chains assemble in a complex rep-
resents the protein quaternary structure (PQS). Experimental identification
of PQS is a complicated procedure that normally involves use of several com-
plementing techniques, such as mobility and mass measurements [86, 87],
light scattering [86], neutron and X-ray scattering [88, 89], nuclear magnetic
resonance [90], electron microscopy [91], and others. However, most protein
structure data (80% of the PDB) come from experiments on X-ray diffraction
on macromolecular crystals [92]. It is reasonable to expect that stable protein
complexes do not change during crystallization, and therefore they should
be identifiable in crystal packing.

The inference of PQS from crystallographic data is not a straightforward
procedure. A complex may be represented as a graph, where vertices are
protein chains and edges are interchain interfaces that bind chains together.
The binding force of interfaces comes from hydrophobic interactions [93,94]
and weak bonds, such as hydrogen bonds, salt bridges, and disulphide
bonds [94–96]. There is no obvious way, in general, to discriminate between
inter- and intracomplex interfaces. Numerous attempts to find a set of dis-
criminating parameters have had limited success [97–99].

Chemically, a complex represents a stable structure if its free Gibbs energy
of dissociation is positive [100]:

ΔG0 = –ΔGi – TΔS > 0 , (9.1)

whereΔGi stands for the binding energy of dissociated subunits and ΔS is
the entropy change. These quantities depend on the choice of dissociating
subunits. For example, a homohexameric complex A6 may dissociate into
trimers A3 + A3, dimers A2 + A2 + A2, or six monomeric units 6A. While
all possible dissociation scenarios take place, thermodynamically, the most
probable one is that corresponding to minimal ΔG0.

Applying Equation 9.1 to all complexes that may be formed in a given
crystal, one could identify the largest stable complex, which will be the most
probable solution to the problem [50]. Considering a crystal as an infinite
periodic graph [50], this method may be described as looking for a subgraph
with specific properties. The outline of an algorithm to do this is as follows:
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• Define a “crystal” graph, where vertices are protein chains and edges are
interchain interfaces. Vertex labels are the protein chain type, as defined
by chain sequence and conformation. Edge labels refer to the type of con-
nected vertices and their relative orientation.

• Mark edges as “engaged” if the corresponding interface connects chains
from the same complex, and “disengaged” otherwise. Initially, set all edges
disengaged.

• Find all possible complexes in the crystal by enumeration of all combina-
tions of engaged and disengaged graph edges. Due to crystal symmetry,
if an edge is engaged, all other edges with the same label must be en-
gaged. An edge cannot be engaged if engagement results in a complex
containing identical protein chains in parallel orientations. In crystal, all
identical parallel chains are found in geometrically equivalent positions
with respect to each other; therefore, having two parallel chains in a com-
plex would automatically mean that the complex is infinite [50].

• Leave only stable complexes in the list, and select the largest one on the
top as the most probable solution (see detail score in [50]).

Enumeration of all edge engagements may be conveniently addressed by
a recursive backtracking scheme [50] with complexity O (2n), where n is the
number of different edge labels. In some cases, n may reach 50 to 100, which
makes a straightforward approach computationally intractable, despite con-
siderable trimming of the recursion tree due to restrictions on edge engage-
ments mentioned above. Two further enhancements allow one to overcome
the difficulty. Firstly, after engaging or disengaging an edge, the algorithm
should check whether the current configuration of engaged edges means au-
tomatic engagement of other edges. For example, engagement of two edges
in a three-edge subgraph A3 means that all three vertices belong to the same
subgraph and therefore the remaining edge may be only in an engaged state.
As practice shows, this trick drastically reduces the recursion tree.

Secondly, the algorithm may estimate whether the current branch of the
recursion tree may result in subgraphs representing stable complexes on
higher recursion levels, and terminate the branch if the answer is negative.
This technique is based on the observation that the entropy change ΔS in
Equation 9.1 do not decrease as more edges get engaged [50]. In the most
favorable situation, engagement of additional edges will decrease the binding
term in Equation 9.1, ΔGi, without changing ΔS. Therefore, if

ΔG∗0 –
∑
k>∗

ΔGk
i < 0 , (9.2)

where the asterisk denotes the current recursion level and ΔGk
i is the binding

energy of the interface that may be engaged further along the recursion tree,
no stable complexes may be found and the algorithm should retreat to lower
recursion levels.
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As mentioned above, the assessment of complex stability (Equation 9.1)
includes the calculation of a dissociation scenario. This may also be done
using the recursive scheme of engaging and disengaging edges. First repre-
sent the protein complex as a graph and mark all edges as engaged. Then
calculate all possible dissociation scenarios by the enumeration of all com-
binations of engaged and disengaged edges subject to the same restrictions
as above. If a scenario with negative ΔG0 is found, the complex is classed as
unstable and the algorithm quits.

The outlined approach to the identification of protein complexes in crystal
packing has been implemented in a web service called PISA (Protein Inter-
faces, Surfaces and Assemblies), publicly available at http://www.ebi.ac.uk/
msd-srv/prot{\_}int/pistart.html. The service provides a searchable database
of protein complexes and interfaces calculated for all PDB structures. The
service also allows the submission of structures for analysis, for which cal-
culations are distributed over a variable number of CPUs depending on task
complexity. Typical response times are under 1 min. However, difficult cases
may take up to 20 min. The service also provides detailed descriptions of
assemblies and interfaces, their visualization, and database search tools.

9.6

Chemical Graph Formats

A large number of file formats have been used to encode chemical graphs
in various software packages. CACTVS [101], a popular chemical software
package, supports many file formats and incorporates an input/output mod-
ule manager. BABEL [102] is one of the first chemoinformatics tools evolved
from a format conversion utility. One of the most popular file formats, MDL
molfile [103], provides a simple way to represent molecules, is easy to use,
and includes support for all chemical properties of atoms and bonds includ-
ing atomic coordinates.

The Chemical Markup Language [104] (CML) uses SGML and XML and
provides a rich and flexible format for providing chemical information.
A more compact popular format that includes all the necessary informa-
tion in chemical diagrams, including stereodescriptors and aromaticity, is
the SMILES string notation. It is easy to understand and naturally extends
the notion of the molecular formula, but it was not designed as a way to
provide a molecule’s identity since it does not include a clear, documented
method for canonicalizing. This contrasts with IUPAC INChi, which is by
definition unique for each molecule for various layers of isomerization.
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9.7

Chemical Software Packages

Popular chemical software packages useful for processing molecular graphs
are as follows:

1. CACTVS: a chemical package in C++ with a TCL-based scripting interface
that is free for academic use.

2. Daylight: commercial software package that introduced smiles. It is ideal
for chemical databases with very efficient subgraph and similarity capa-
bilities and specialized indexing.

3. BABEL/OpenBabel: open-source package for converting chemical files
but also incorporates a lot of chemical algorithms such as aromaticity de-
tection.

4. OpenEyes: commercial package with Java interface and low-level support
for most of the operations required by chemical databases and processing
applications.

5. Chemistry Development Kit [105] (CDK): open-source package imple-
mented in Java, useful also as a reference point for understanding chem-
ical algorithms.

9.8

Chemical Databases and Resources

While it is always possible to generate sets of molecules computationally, it is
often a lot more useful to work with molecules that have been experimentally
observed or at least are available from some source. Databases that provide
chemical data are:

1. PubChem [106]: 18.4 million entries, contains pure and characterized
chemical compounds.

2. PDB ligands [107]: ligands and small molecules interacting with biopoly-
mers.

3. ChEBI [108]: chemical entities of biological interest.
4. CCDC [109]: depositions of crystal structure data from X-ray and neutron

diffraction studies, organic compounds, and metal–organic compounds.
5. KEGG [110]: information on molecular interaction networks.

9.9

Subgraph Isomorphism Solution in SQL

The concept of organizing data into relations was first proposed by Codd
in 1970 [111] together with rules for integrity constraints and operators for
the manipulation of data. These relational operators form the basis of SQL,
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which is standard across different database platforms today. The relational
model is versatile and many problems can be tackled using it in preference
to custom-written applications or algorithms. One such problem is subgraph
isomorphism for which data can be visualized as a hypergraph [112] defined
by a pair (X, E), where X is a set of vertices and E is a set of hyperedges, each of
which is a nonempty subset of X. Thus one hyperedge can connect with more
than one pair of vertices. In relational database terms, X is a set of attributes
describing the application fields and E is a set of relations (tables without
ordered rows). Chemical graphs where edges and vertices have attributes,
like bond type and element type, can be represented as hypergraphs and
therefore can be stored in a relational database using two tables: atoms and
bonds. The atoms table contains vertices and their attributes, while the bonds
table contains data on pairs of atoms and the attributes associated with their
bond type. These tables are shown below:

Atoms table
atom_id Unique identified
molecule Name of molecule
atom Name of atom
symbol Symbol for atom

Bonds table
bond_id Unique identified
atom1 Identifier for the first atom
atom2 Identifier for the second atom
bond-type Type of covalent bond

As the graph is nondirectional, the bonds table must have two records for
each pair of atoms. An example of a SQL query that can be used for searching
an O=C–N fragment is presented below; its implementation is fairly straight-
forward.

SELECT
a1.molecule, a1.atom, a2.atom, a3.atom

FROM
atoms a1, bonds b1, atoms a2, bonds b2, atoms a3

WHERE
a1.symbol = ’O’ AND
b1.atom1 = a1.atom_id AND
a2.symbol = ’C’ AND
a2.atom_id = b1.atom2 AND
b2.atom1 = a2.atom_id AND
a3.symbol = ’N’ AND
a3.atom_id = b2.atom2;
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Although modern relational database management systems (RDBMS) can
execute complex searches very quickly, they cannot alter the complexity of
the problem. The drawback of the approach described above is the issue of
NP-complete, which is best illustrated using an example. Consider a frag-
ment consisting of five carbon atoms in a star architecture such that the one
carbon atom in the center is covalently bonded to the other four carbons via
single bonds. How can a RDBMS be used to search for this fragment? The
first approach is to use four nested loops of C–C bonds that can be presented
as:

FOR EACH C–C bond
FOR EACH C–C bond

FOR EACH C–C bond
FOR EACH C–C bond

The number of operations needed by a RDBMS in this case is N ~ N ~
N ~ N where N is the number of C–C bonds in the database. How can the
search speed be improved? We can make use of the property that chemical
graphs are sparse. If the bonds table is accessed by the first atom identifier,
the number of hits is considerably reduced. This can be effected by building
an index on the atom1 attribute. The number of operations now becomes
N ~ M ~ M ~ M, where M is the average number of bonds to C atoms,
which could be between 2 and 4 and considerably less than N. Thus by in-
troducing an index we reduce the number of operations by ~ (N/3) power of
bonds minus one. The conclusion is that simply by indexing the tables we
can largely improve the performance; however, the complexity still remains
NP-complete. The big challenge is reducing the complexity. Looking again
at the nested loops figure and thinking about other ways of resolving these
loops one can see that the number of valid hits is the number of combina-
tions, that is, factorial rather than exponential. The reason for this is that we
must exclude the hits where the same bond appears more than once. So, to
reduce the exponential problem to a combinatorial one we add nonequal con-
straints to the SQL query. Now the question is, if we have a total number N
of C–C bonds, then why after joining two bonds do we have N*4 (4 because
a carbon atom can form four single bonds). The N*4 figure is with repe-
titions where the first and second bonds can swap positions; they produce
a symmetry equivalent solution. The overall example has a fourfold symme-
try and therefore 4 factorial (24) possible combinations of the bonds that
give the same graph. This illustrates the point that it is symmetry that causes
the NP-complex problem. The theory of the constraint satisfaction problem
(CSP) [113] discusses methods of breaking symmetry [114]. CSP on a finite
domain (FCSP) is a hypergraph, and therefore a relational database can be
used to study it.
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The constraints added to SQL queries to break the symmetry impose or-
der on the vertices in the search subgraph, which can be found by solving
the graph isomorphism problem on the graph. The number of constraints
will then be the factorial of the number of graph vertices. Software that can
be used for this purpose are SAUCY and NAUTY. The cost of solving this
problem is not a critical factor as it is only executed once after which the re-
sulting template can be applied to the whole database of graphs (or chemical
compounds in our case). Examples of services that use the above technology
are available at:
http://www.ebi.ac.uk/msd-srv/chemsearch (chemical compound searches)
http://www.ebi.ac.uk/msd-srv/msdmotif/chem (ligand searches of PDB)

9.10

Cycles in Graphs

The identification of ring structures constitutes a large part of the structural
topology in the study and characterization of molecular structures. Chemi-
cal compounds with rings can be represented as graphs. If a graph repre-
sents a compound without cycles, then the number of edges it has will be
equal to the number of atoms minus 1. Graphs of compounds without cy-
cles are called acyclic and can be presented as trees. To draw a graph in 2D,
a common practice is to start with the largest ring from the set of smallest
rings, which highlights the importance of algorithms for determining the
size of rings. Rings are characterized as essential or nonessential. Nonessen-
tial rings are those that are tied, multitied, or dependent rings. A tied ring
is defined as a ring with one transannular bond that links directly two non-
adjacent nodes of rings. Essential rings are rings other than nonessential
rings.

Many different approaches for the extraction of cycles from molecular
graphs such as the smallest set of smallest rings (SSSR), essential set of
essential rings (ESER), extended set of smallest rings (ESSR), and the set
of smallest cycles at edges (SSCE) have been used. The popular graph theory
problem of finding the SSSR is ambiguous and, unlike the ERER, is not used
in organic chemistry. The definition of what is essential varies, and in prac-
tice the problem is solved by finding an ESSR. To solve it a tree is constructed
from each vertex of the graph, which terminates at any branch where an in-
tersection occurs (where a loop is found). Only branches that grow from the
selected atom and which do not encounter loops are allowed to grow further.
This set of rings is used to determine the aromatic properties of individual
rings as well as of ring subsets. It is also used to draw chemical structures
in 2D and to annotate and search databases of chemical compounds. Both
rings and atoms can take part in bonds such as hydrogen bonds and salt
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Figure 9.5 Ligand sandwich example found in PDB entries
1xmi, 1vc8, 2fl5, 1ewj, 1kll, 1l5q, 154d, and 4dcq.

bridges that occur in biological molecules. There are two special types of
molecular interactions, ring-ring and ring-atom. The first one occurs when
two aromatic rings are parallel and their pi electron clouds intersect. If this
type of interaction happens on both sides of a ring, a sandwich is formed. In
cases where the molecule in the middle is a ligand, the term ligand sandwich
is used. There are a number of such sandwiches in the Protein Data Bank
(PDB) (Figure 9.5).

For ring-atom interaction the favorable 3D conformation is when the atom
approaches the ring orthogonally and close to the ring side rather than the
center.

9.11

Aromatic Properties

Aromatic rings are made of a conjugated system of unsaturated bonds with
delocalized pi electron clouds [115,116]. Such systems are planar and exhibit
stronger stabilization than would be expected by conjugation alone. To assign
aromatic properties to rings we select the smallest rings first and then use
the breadth-first search (BFS) algorithm to identify conjugated bonds. This is
not enough to assign aromaticity to individual rings; the whole rings system
has to be taken into account.
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9.12

Planar Subgraphs

There are two different contexts in which the term planarity can be used.
Here we distinguish between chemical planarity and graph planarity. The
latter is used for an abstract presentation of chemical compounds in 2D. In
accordance with Kuratowski’s theorem, graphs that do not have K3,3 and K5
graphs as subgraphs are planar, that is, they can be drawn in 2D without edge
intersections (Figure 9.6).

In practice testing a graph against this theorem is considered to be a last
choice due to its complexity. The simple test that says that a graph is non-
planar is as follows: given graph G(X,Y), where X is the vertices, Y is the
edges, N is the number of vertices, and M is the number of edges, the graph
with at least three vertices where M > 3N – 6 is nonplanar. Another test
is to see if there are no three member rings and M > 2N – 4. Although
all chemical compounds are probably planar in terms of graph theory, they
are sometimes classified as 3D to underline essential properties influenced
by 3D conformation. As well as aromatic ring systems conjugated bonds in
other compounds exhibit chemical planarity. An example is the amide group
shown in Figure 9.7.

Figure 9.6 (a) K3,3 complete bipartite graph of six vertices
three of which connect to each of the other three;
(b) K5 complete graph of five vertices.

Figure 9.7 (a) Amide schematic 2D representation;
(b) amide 3D representation with the lone pair electrons
of the oxygen and nitrogen atoms delocalized.
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H3C
H3CH3CCH3

CH3

OH

Figure 9.8 Carbon atoms donate pi electrons in vitamin A.

Amides are the most stable of all carbonyl groups. This stability is gained
from delocalization of the lone pair of electrons of the oxygen and nitro-
gen atoms. Similar electron distributions are observed in most conjugated
systems.

An example of how carbon atoms donate pi electrons in vitamin A is
shown in Figure 9.8. However, the sequence of single and double bonds is
not enough to gain additional stability and other checks must be applied.

9.13

Conclusion

Graph theory is widely used in chemo- and bioinformatics, where it ad-
dresses a range of practical problems, ranging from identification of molec-
ular similarities to the analysis of macromolecular interactions and crystal
packing. Being a well-developed mathematical discipline, it saves researchers
from searching for technical implementations of their computational prob-
lems, allowing them to focus on the formulation of their problems in graph-
theoretical terms. This, however, is not always straightforward and often
represents a real challenge. Here, two main difficulties may be highlighted.

Firstly, objects in chemo- and bioinformatics are complex by nature. Graph
representations of chemical molecules and, even more so, biological macro-
molecules should reflect both chemical and topological (3D) properties.
A proper understanding of these properties is a necessary prerequisite for the
development of practical algorithms within the field. A simplified descrip-
tion of chemical molecules as planar graphs is suitable for many purposes,
however there needs to be special labeling when their chemical properties
depend on a particular 3D conformation. In the case of biological macro-
molecules, this is yet more entangled, given that their functionality is most
often associated with conformational changes.

Secondly, graph theory has size limits for the objects it works with. Many
useful graph-theoretical problems, such as graph matching, are known to be
NP-complete, which implies factorial complexity on the size of graphs. In the
recent past, this was to a certain degree compensated for by an exponential
growth of computing power; however, this progress has slowed to a linear
trend more recently. The state of things today allows us to work comfortably
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in a graph-theoretical framework with molecules up to medium size (100
atoms), while larger ones require special treatment. Therefore, much effort
is expended in finding suitable representations of chemical and biological
objects in order to reduce the size of their graphs. Inevitably, this results in
approximations, which may sometimes hinder the quality of results obtained
from graph-theoretical approaches.

It appears that the future of graph-theoretical techniques in chemo- and
bioinformatics will be most closely associated with the choice of particular
descriptions in graph terms, which would allow the achievement of the most
accurate solutions at controllable simplifications. Most of the practical re-
search in molecular biology today is based on similarity studies, which re-
quires powerful tools for comparison of different type of objects. It is ob-
vious that molecular biology is moving towards a systematic approach and
towards more complex objects: from small molecules to macromolecules,
macromolecular assemblies and real biological objects like viruses. All this
creates demand for more and more robust and efficient pattern recognition
techniques. While various methods of pattern recognition are in use today,
due to its flexibility and sound mathematical foundation, graph theory has
become one of the main tools.
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10

Structural and Functional Dynamics in Cortical

and Neuronal Networks
Marcus Kaiser and Jennifer Simonotto

10.1

Introduction

Nervous systems are complex networks par excellence, capable of generat-
ing and integrating information from multiple external and internal sources.
Within the neuroanatomical network (structural connectivity), the nonlin-
ear dynamics of neurons and neuronal populations result in patterns of
statistical dependencies (functional connectivity) and causal interactions (ef-
fective connectivity), defining three major modalities of complex brain net-
works [61]. How does the structure of the network relate to its function and
what effect do changes of edge or node properties have [37]? Since 1992 [1,76]
tools from graph theory and network analysis [18] have been applied to study
these questions in neural systems (cf. http://www.biological-networks.org).

After describing the properties of neural systems – fiber tracts between
brain areas of the mammalian cortex and axons between individual neurons
in the nematode Caenorhabditis elegans – we describe dynamics in structure
and function. Structural dynamics concern changes in network topology by
deleting or adding edges or nodes. We describe the deletion of components
in terms of the removal of tissue during strokes or head injuries and the ad-
dition of components during the development and growth of neural systems.
The network topology is robust to random attacks but reacts critically to tar-
geted attacks – similar to a scale-free network. The simulations on network
evolution show that spatial growth and time windows during development
are sufficient for generating small-world and multicluster networks.

Functional dynamics concern changes in the activity level of individual
neurons or of cortical regions. We observe the spreading of activation, first
describing spreading in excitable media and then in cardiac tissue before
moving to spreading of epileptic seizures in neural networks. In neural net-
works, the hierarchical and modular topology provides novel mechanisms
to limit spreading in addition to the known influence of inhibitory nodes.
Finally, we discuss principles of neural organization. Whereas we applied
concepts of network analysis to neuroscience, we reverse this process by



246 10 Structural and Functional Dynamics in Cortical and Neuronal Networks

suggesting theoretical and computational challenges of network science that
appeared during the analysis of neural systems.

10.1.1

Properties of Cortical and Neuronal Networks

Cortical areas are brain modules that are defined by structural (microscopic)
architecture. Observing the thickness and cell types of the cortical layers,
several cortical areas can be distinguished [10]. Furthermore, areas also
show a functional specialization. Within one area further subunits (cortical
columns) exist. Using neuroanatomical techniques, it can be tested which
areas are connected, that means that projections in one or both directions
between the areas do exist. If a fiber projection between two areas is found,
the value ’1’ is entered in the adjacency matrix; the value ’0’ defines absent
connections or cases where the existence of connections was not tested (Fig-
ure 10.1a). For a brain with N defined areas there would be N injection stud-
ies and, in total, N ∗ (N – 1) potential connections to be tested (loops are
not tested). For the neural systems described here, except for the neuronal
network of C. elegans, most but not all connections were tested. Ideas how
to predict missing connections by deciding which nodes are more likely to
be linked have included the combination of topological and spatial features
([15], see Section 10.1.2) as well as the combination of topological informa-
tion and response latencies [11].

(b)(a)

0 20 40
0

20

40

Figure 10.1 (a) Adjacency matrix of the cat connectivity
network (55 nodes; 891 directed edges). Dots represent
“ones” and white spaces the “zero” entries of the adjacency
matrix. (b) Macaque cortex (95 nodes; 2402 directed edges).



10.1 Introduction 247

10.1.1.1 Modularity

Contrary to popular belief, cortical networks are not completely connected,
i.e., not “everything is connected to everything else”: only about 30% of all
possible connections (arcs) between areas do exist. Instead, highly connected
sets of nodes (clusters) are found that correspond to functional differenti-
ation of areas. For example, clusters corresponding to visual, auditory, so-
matosensory, and frontolimbic processing were found in the cat cortical con-
nectivity network [34]. Furthermore, about 20% of the connections are uni-
directional [30], i.e., a direct projection from area A to area B, but not vice
versa, exists. Although some of these connections might be bidirectional as
the reverse direction was not tested, there were several cases where it was
confirmed that projections were unidirectional. Therefore, measures that
worked for directed graphs were used.

Until now, there has not been enough information about connectivity in
the human brain that would allow network analysis [17]. However, several
new noninvasive methods, including diffusion tensor imaging [66] and rest-
ing state networks [2], are under development and might help to define hu-
man connectivity in the future. At the moment, however, we are bound to
analyze known connectivity in the cat and the macaque (rhesus monkey,
Figure 10.1b cortical networks [52, 61]. Both networks exhibit clusters, i.e.,
areas belonging to a cluster have many existing connections between them
but there are few connections to areas of different clusters [54, 77]. These
clusters are also functional and spatial units. Two connected areas tend to
be spatially adjacent on the cortical surface and tend to have a similar func-
tion (e.g., both take part in visual processing). Whereas there is a preference
for short-length connections to spatially neighboring areas for the macaque,
about 10% of the connections cover a long distance (v 40 mm) – sometimes
close to the maximum possible distance (69 mm) between two areas of one
hemisphere [41].

10.1.1.2 Small-World Features

Many complex networks exhibit properties of small-world networks [71]. In
these networks neighbors are better connected than in comparable Erdös–
Rényi random networks [27] (called random networks throughout the text),
whereas the average path length remains as low as in random networks.
Formally, the average shortest path (ASP, similar, though not identical, to
characteristic path length � [70]) of a network with N nodes is the average
number of edges that has to be crossed on the shortest path from any one
node to another:

ASP =
1

N(N – 1)

∑
i,j

d(i, j) with i =/ j , (10.1)

where d(i, j) is the length of the shortest path between nodes i and j.
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The neighborhood connectivity is usually measured by the clustering co-
efficient. The clustering coefficient of one node v with kv neighbors is

Cv =
|E(Γv)|(kv

2

) , (10.2)

where |E(Γv)| is the number of edges in the neighborhood of v and
(kv

2

)
is

the number of possible edges [70]. In the following analysis, we use the term
clustering coefficient as the average clustering coefficient for all nodes of
a network.

Small-world properties were found on different organizational levels of
neural networks: from the tiny nematode C. elegans with about 300 neu-
rons [71] to cortical networks of the cat and the macaque [33, 34]. Whereas
the clustering coefficient for the macaque is 49% (16% in random networks),
the ASP is comparatively low with 2.2 (2.0 in random networks). That is, on
average only one or two intermediate areas are on the shortest path between
two areas. Note that a high clustering coefficient does not necessarily corre-
late with the existence of multiple clusters. Indeed, the standard model for
generating small-world networks by rewiring regular networks [71] does not
lead to multiple clusters.

10.1.1.3 Scale-Free Features

Features of scale-free networks, such as power-law degree distributions, were
found for functional brain networks. Dodel [22] developed a deterministic
clustering method that combines cross-correlations between fMRI (func-
tional magnetic resonance imaging) signal time courses and elements of
graph theory to reveal brain functional connectivity. Three-dimensional im-
age voxels (volume elements) form nodes of a graph, and their temporal cor-
relation matrix forms the weight matrix of the edges between the nodes.
Thus a network can be implemented based entirely on fMRI data, defin-
ing as “connected” those voxels that are functionally linked, that is, that are
correlated beyond a certain threshold rc. A set of experiments examined the
resulting functional brain networks [25] obtained from human visual and
motor cortex during a finger-tapping task. Over a wide range of threshold val-
ues rc the functional correlation matrix resulted in clearly defined networks
with characteristic and robust properties. Their degree distribution and the
probability of finding a link versus metric distance both decay as a power
law. Their characteristic path length is short (similar to that of equivalent
random networks), while the clustering coefficient is several orders of mag-
nitude larger. Scaling and small-world properties persisted across different
tasks and within different locations of the brain. The power-law degree dis-
tribution indicates a scale-free network, but one has to keep in mind that
the use of connections between individual voxels is not very meaningful in
terms of a physiological functional unit.
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The question about a power-law degree distribution for structural brain net-
works is even more difficult [45]. Such analysis is hindered by two problems:
the potentially incomplete network data and the low number of network
nodes (usually less than 100 brain areas). Whereas highly connected nodes
exist, the network is too small to test the degree distribution for a power-law
behavior. For the cortical network of the cat with 56 and the macaque with
66 nodes, there are some highly connected nodes; the top 5 nodes for each
network are shown in Table 10.1. The neuronal network of C. elegans with
about 300 neurons – enough for an analysis of the degree distribution – was
found to be small-world but not scale-free [5].

Whereas a direct analysis of the degree distribution of cortical networks
was impossible, we used an indirect approach in testing the response of cor-
tical networks toward structural damage (Section 10.2.1.2). We found that
effects of damage on the modeled cat and macaque brain connectivity net-
works are largely similar to those observed in scale-free networks. Further-
more, the similarity of scale-free and original cortical networks, as measured
by graph similarity, was higher than for other benchmark networks [45].

We note that this issue remains controversial. A study of the human rest-
ing state network between cortical areas [2] concluded that the resting state
network is not a scale-free network as (a) it is more resilient toward targeted
attack compared to a scale-free benchmark network, (b) the degree distribu-
tion is not a power law, and (c) late developing areas such as the dorsolateral
prefrontal cortex are among the hubs of the network. The structural network

Table 10.1 Overview of the most highly connected regions
in the cat and macaque network. The table shows the total
number of connections of the region (degree) as well as
the number of incoming/afferent (in-degree) and outgo-
ing/efferent (out-degree) connections. The maximal possi-
ble number of connections would have been 110 for the cat
and 130 for the macaque.

Rank Area Total Incoming Outgoing

Cat
1 AES 59 30 29
2 Ia 55 29 26
3 7 54 28 26
4 Ig 52 22 30
5 5al 49 30 19

Macaque
1 A7B 43 23 20
2 LIP 42 19 23
3 A46 42 23 19
4 FEF 38 19 19
5 TPT 37 18 19
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that we analyzed, however, differed from the resting state functional net-
work. First, the resilience toward targeted attack was comparable with that
of a scale-free network. Second, though the degree does not follow a power-
law distribution, this might be due to the small size of the network and in-
complete sampling of connections between regions (cf. [65] for the effect of
sampling on the classification of networks).

10.1.1.4 Spatial Layout

Whereas neural components such as individual neurons or axons may un-
dergo changes, their positions remain the same for mature neural systems
after the process of early migration. Observing the pattern of neural connec-
tivity, one might ask whether there are underlying principles for the spatial
organization of neural systems. An early concept, posed in 1994 [12], was
inspired by the layout of artificial information processing systems. For mi-
crochips, increasing the length of electric wires increases the energy loss
through heat dissipation. In a similar way, neural systems were thought to
be optimized to reduce wiring costs as well. In the brain, energy is consumed
for establishing fiber tracts between areas and for propagating action poten-
tials over these fibers. Thus, the total length of all wires should be kept as
short as possible. This has led to the idea of optimal component placement
according to which modules are arranged in a way so that every rearrange-
ment of modules would lead to an increase in total wiring length [12–14].

It has been proposed for several neural systems – including the C. elegans
neural network and subsets of cortical networks – that components are in-
deed optimally placed [12]. This means that all node position permutations
of the network – while connections are unchanged – result in higher total
connection length. Therefore, the placement of nodes is optimized to mini-
mize the total wiring length. However, using larger data sets than were used
in the original study, we found that a reduction in wiring length by swapping
the position of network nodes was possible [43].

For the macaque, we analyzed wiring length using the spatial three-
dimensional positions of 95 areas and their connectivity. We also looked
at the wiring of individual neurons in C. elegans. The total wiring length was
between the case of only establishing the shortest possible connections and
establishing connections randomly regardless of distance. For the original
networks, a further reduction of total wiring length by 32% for the macaque
and by almost 50% for C. elegans was possible (Figure 10.2). Reducing the
total wiring length was possible due to the number of long-distance con-
nections in the original networks [41], some of them even spanning almost
the largest possible distance between areas. Why would these metabolically
expensive connections exist in such large numbers? We tested the effect of
removing all long-distance connections and replacing them by short-distance
connections. Whereas several network measures improved, the value for the
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Figure 10.2 Projection length distribution
and total wiring length for original and
rearranged neural networks [43]. (a–c) Ap-
proximated projection length distribution
in neural networks. Macaque monkey cor-
tical connectivity network with 95 areas
and 2402 projections (a). Local distribu-
tion of connections within rostral ganglia
of C. elegans with 131 neurons and 764
projections (b). Global C. elegans neural
network with 277 neurons and 2105 con-
nections (c). (d–f) Reduction in total wiring
length by rearranged layouts yielded by
simulated annealing for macaque corti-

cal network (d), C. elegans local network
(neurons within rostral ganglia) (e), and
global C. elegans network (f). (g–i) Approx-
imated projection length distribution in
neural networks with optimized compo-
nent placement. Macaque monkey cortical
connectivity network (g). Local distribu-
tion of connections within rostral ganglia
of C. elegans (h). Global C. elegans neural
network (i). For all optimized networks, the
number of long-distance connections is
reduced compared to the original length
distribution in (a–c).
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ASP increased when long-distance connections were unavailable. Retaining
a lower ASP has two benefits. First, there are fewer intermediate areas that
might distort the signal. Second, as fewer areas are part of shortest paths,
the transmission delay along a pathway is reduced. The propagation of sig-
nals over long distances, without any delay imposed by intermediate nodes,
has an effect on synchronization as well: both nearby (directly connected)
areas and faraway areas are able to receive a signal at about the same time
and could have synchronous processing [43]. A low ASP might also be nec-
essary because of the properties of neurons: John von Neumann, taking into
account the low processing speed and accuracy of individual neurons, sug-
gested that neural computation needed to be highly parallel with using a low
number of subsequent processing steps [68].

10.1.2

Prediction of Neural Connectivity

As for other biological systems, incomplete data sets are a problem for struc-
tural brain connectivity. Because tract-tracing studies require an enormous
effort and take a long time, is there any way to predict missing connections?
We tried to predict whether two nodes of a neural network are connected
based on topological as well as spatial features of the nodes [15]. Starting with
all areas being disconnected, pairs of areas with similar sets of features are
linked together, in an attempt to recover the original network structure. Topo-
logical features included node degree, clustering coefficient, average shortest
path, and matching index (also called Jaccard clustering coefficient). Spatial
or geometrical features included local density of nodes, coefficient of varia-
tion of the nearest distances, area size of each cortical region, and cartesian
coordinates of the cortical areas’ center of mass.

Inferring network connectivity from the properties of the nodes already
resulted in remarkably good reconstructions of the global network organi-
zation, with the topological features allowing slightly superior accuracy to
the geometrical ones. Analogous reconstruction attempts for the C. elegans
neuronal network resulted in substantially poorer recovery of known con-
nections, indicating that cortical area interconnections are relatively stronger
with respect to the considered topological and geometrical properties than
neuronal projections in the nematode [15].

We tested the performance of the prediction for the network of the
macaque visual cortex reviewing reconstructed networks in light of whether
they were able to predict previously unknown connections. For the combi-
nation of the best two topological and two spatial measures, 111 currently
unknown projections were predicted to exist and 174 connections were pre-
dicted to be absent, yielding a realistic ratio for predicted existing connec-
tions of 39%, out of all unknown connections. The predicted projections are
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shown as yellow fields in the reconstructed subgraph matrix in Figure 10.3.
The figure also indicates mismatches (red fields) between the original and
reconstructed matrices, either existing connections that were left out of the
reconstructed matrix (90 cases) or absent connections filled in the recon-
structed matrix (106 cases). Most entries (in green fields), however, were
confirmed to exist (207 cases) or to be absent (212 cases).

The close relationship between area-based features and global connectivity
may hint at developmental rules and constraints for cortical networks. Par-
ticularly, differences between the predictions from topological and geomet-
rical properties, together with the poorer recovery resulting from geometric
properties, indicate that the organization of cortical networks is not entirely
determined by spatial constraints. This is also in line with the results in the

Figure 10.3 Confirmation or mismatch of
connections, and prediction of unknown
connections in a reconstructed submatrix
of the visual cortex of the macaque monkey.
Green fields denote confirmed existing (1)
and absent (0) connections, respectively,
whereas red fields indicate a mismatch
between the original and the shown recon-

structed connectivity (either by inserting
connections into the matrix or removing
them from the original). Yellow fields high-
light connections that were predicted to
exist (1) or to be absent (0) by the recon-
struction approach and whose status was
previously not known.
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previous section in that there are more long-distance connections than ex-
pected for optimal wiring [43] and therefore prediction methods based on
spatial proximity are of limited success.

10.1.3

Activity Spreading

One example of neural dynamics is the origin and spreading of epileptic
seizures. Whereas we will investigate the spreading of activity later (Sec-
tion 10.3.2), we will give a brief overview of epileptic seizures here.

Epilepsy affects 3 to 5% of the population worldwide, affecting persons
without regard to age, sex, or race. Seizures are the clinical manifestation
of an abnormal and excessive excitation and synchronization of a popula-
tion of cortical neurons. These seizures can spread along network connec-
tions to other parts of the brain (depending on the type and severity of the
seizure) and can be quite debilitating in terms of quality of life, cognitive
function, and development. In the vast majority of cases, seizures arise from
medial temporal structures that have been damaged (due to injury or illness)
months to years before the onset of seizures [26]. Over this “latent period,”
cellular and network changes are thought to occur that precipitate the onset
of seizures. Loss of inhibitory neurons, excitatory axonal sprouting, or loss of
excitatory neurons “driving” inhibitory neurons are all thought to contribute
to epileptogenesis [26].

It is not understood exactly how these seizures come about, but it is
thought to be due to structural changes in the brain, as in the loss of
inhibitory neurons, the strengthening of excitatory networks, or the sup-
pression of GABA (Gamma-aminobutyric acid) receptors [46]. Cranstoun et
al. [16] reported on the detection of self-organized criticality1) in EEG record-
ings from human epileptic hippocampus; thus the study and understanding
using network analysis in this system may reveal useful information about
the development (and possible prevention) of seizures. As these networks
that support the spread of seizure activity are the very same networks that
also support normal cognitive activity, it is important to understand how
this type of activity arises in networks in general [32]. The question of how
seizures are initiated (ictogenesis) is also of great interest, as further elucida-
tion to either epileptogenesis or ictogenesis has great impact in the treatment
and (possible cure) of epilepsy [36].

The phase transition to the epileptic (“ictal”) state is abrupt from a behav-
ioral point of view (seizures start suddenly), but from an electrical/network
point of view, there are subtle changes in network activity that can indicate

1) Self-organized criticality [6] has also led to other research in
neuroscience concerning neural avalanches [8].
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that a seizure will occur soon (with a prediction window ranging from min-
utes to hours). This so-called “preictal” period, in which one is not “interictal”
(between seizure states) or currently having a seizure, has been the subject of
intense debate in the literature, but more and more evidence points to its ex-
istence [36]. Epileptogenesis typically has a longer timescale of development
(months to years) than ictogenesis (weeks to days), but understanding the
changes of epileptogenesis and how seizures become more easily generated
is also of intense interest, as characterization of network changes may allow
the treatment of epilepsy in a more precise manner.

10.2

Structural Dynamics

The previous section described the topology and spatial organization of neu-
ral systems. The structure of neural systems, however, can change over time.
First, edges or nodes of the network could be removed. This can occur either
due to learning or cell death (apoptosis) or to head injuries or strokes af-
fecting fiber tracts or cortical tissue. Second, the network structure changes
during neural development. Whereas development consists of both the for-
mation of network connections and the loss of connections, especially in
the pruning phase of early development, we will focus on the establishment
of neural networks during development. In this section, we describe simula-
tions of robustness against structural changes and of the spatial development
of neural networks.

10.2.1

Robustness Toward Structural Damage

Compared to technical networks (power grids or communication networks),
the brain is remarkably robust toward damage. On the local level, Parkin-
son’s disease in humans only becomes apparent after more than half of the
cells in the responsible brain region have been eliminated [20]. On the global
level, the loss of the whole primary visual cortex (areas 17, 18, and 19) in
kittens can be compensated by another region, the posteromedial suprasyl-
vian area (PMLS) [60]. On the other hand, the removal of a small number
of nodes or edges of the network can lead to a breakdown of functional pro-
cessing. As functional deficits are not related to the number or size of re-
moved connections or brain tissue, it might be the role within the network
that makes some elements more critical than others. Identifying these crit-
ical components has applications in neurosurgery where important parts of
the brain should remain intact even after the removal of a brain tumor and
its surrounding tissue. The following sections describe simulations for the
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effect of removing edges or nodes from cortical networks. These simulations
show that neural systems are robust toward random removal of components
(average case) but show a rapid breakdown after the removal of few critical
components (worst-case scenario).

10.2.1.1 Removal of Edges

We found that the robustness toward edge removal is linked to the high
neighborhood connectivity and the existence of multiple clusters [40]. For
connections within clusters, many alternative pathways of comparable length
do exist once one edge is removed from the cluster (Figure 10.4a). For edges
between clusters, however, alternative pathways of comparable length are un-
available and removal of such edges should have a larger effect on the net-
work. The damage to the macaque network was measured as the increase
in the average shortest path (ASP) after single edge removal. Among several
measures, edge frequency (approximate measure of edge betweenness) of
an edge was the best predictor of the damage after edge elimination (linear
correlation r = 0.8 for macaque). The edge frequency of an edge counts the
number of shortest paths in which the edge is included.

Furthermore, examining comparable benchmark networks with three
clusters, edges with high edge frequency are those between clusters. In ad-
dition, removal of these edges causes the largest damage as measured by the
increase in ASP (Figure 10.4b). Therefore, intercluster connections are criti-
cal for the network. Concerning random loss of fiber connections, however,
in most cases one of the many connections within a cluster will be damaged
with little effect on the network. The chances of eliminating the fewer inter-
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Figure 10.4 (a) Schematic drawing of a network with three
clusters showing examples for an intra- (blue line) and in-
tercluster (red line) connection. (b) Edge frequency of the
eliminated edge vs. ASP after edge removal (20 generated
networks with three clusters, defined intercluster connec-
tions, and random connectivity within clusters; intercluster
connections: red; intracluster connections: black).
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cluster connections are lower. Therefore, the network is robust to random
removal of an edge [40].

10.2.1.2 Removal of Nodes

In addition to high neighborhood clustering, many real-world networks have
properties of scale-free networks [7]. In such networks, the probability for
a node possessing k edges is P(k) ∝ k–γ. Therefore, the degree distribution –
where the degree of a node is the number of its connections – follows a power
law. This often results in highly connected nodes that would be unlikely to
occur in random networks. Technical networks such as the worldwide web
of links between web pages [35] and the Internet [28] at the level of con-
nections between domains/autonomous systems. Do cortical networks, as
natural communication networks, share similar features?

In cortical networks, some structures (e.g., evolutionary older structures
like the Amygdala) are highly connected. Unfortunately, the degree distribu-
tion cannot be tested directly as less than 100 nodes are available in the cat
and macaque cortical networks. However, using the node elimination pat-
tern as an indirect measure, cortical networks were found to be similar to
scale-free benchmark networks [45].

In that approach, we tested the effect on the ASP of the macaque corti-
cal network after subsequently eliminating nodes from the network until all
nodes were removed [3]. For random elimination, the increase in ASP was
slow and reached a peak for a high fraction of deleted nodes before shrink-
ing due to network fragmentation (Figure 10.5a). When taking out nodes
in a targeted way ranked by their connectivity (deleting the most highly
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Figure 10.5 Average shortest path (ASP)
after either random (dashed line) or tar-
geted (gray solid line) subsequent node
removal (after [45]). (a) Macaque cortical
network (73 nodes, 835 directed edges).
(b) Scale-free benchmark network with the

same number of nodes and edges (lines
represent the average values over 50 gener-
ated networks and 50 runs each in the case
of random node removal). Similar results
were obtained for the cat cortical network
(not shown).
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connected nodes first), however, the increase in ASP was steep and a peak
was reached at a fraction of about 35%. The curves for random and tar-
geted node removal were similar for the benchmark scale-free networks (Fig-
ure 10.5b) but not for generated random or small-world [71] networks [45].
Therefore, cortical as well as scale-free benchmark systems are robust to ran-
dom node elimination but show a larger increase in ASP after removing
highly connected nodes. Again, as for the edges, only few nodes are highly
connected and therefore critical so that the probability to select them ran-
domly is low.

10.2.2

Network Changes During Development

Neural systems evolved over millions of years. Starting from diffuse homo-
geneous networks such as nerve nets, ganglia or network clusters evolved
when different tasks had to be implemented. During individual brain de-
velopment, the neural architecture is formed by a combination of genetic
blueprint and self-organization [64]. Here, we focus on the role of random
processes and self-organization on the development of neural systems.

10.2.2.1 Spatial Growth Can Generate Small-World Networks

What are the mechanisms of self-organization during network development?
A possible algorithm for developing spatial networks with long-distance con-
nections and small-world connectivity is spatial growth [42]. In this approach,
the probability to establish a connection decays with the spatial (Euclidean)
distance, thereby establishing a preference for short-distance connections.
This assumption is reasonable for neural networks as the concentration of
growth factors decays with the distance to the source so that faraway neu-
rons have a lower probability to detect the signal and sent a projection toward
the source region of the growth factor. In addition, anatomical studies have
shown that the probability of establishing a connection decreases with the
distance between neurons.

In contrast to previous approaches that generated spatial graphs, the node
positions were not determined before the start of connection establishment.
Instead, starting with one node, a new node was added at each step at a ran-
domly chosen spatial position. For all existing nodes, a connection between
the new node u and an existing node v was established with probability

P(u, v) = � e–α d(u,v) , (10.3)

where d(u, v) is the spatial distance between the node positions and α and
� are scaling coefficients shaping the connection probability. A new node
that did not manage to establish connections was removed from the net-
work. Node generation was repeated until the desired number of nodes
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was established. Parameter � (“density”) served to adjust the general prob-
ability of edge formation. The nonnegative coefficient α (“spatial range”)
regulated the dependence of edge formation on the distance to existing
nodes. Depending on the parameters α and �, spatial growth could yield
networks similar to small-world cortical networks and scale-free highway-
transportation networks, as well as networks in non-Euclidean spaces such
as metabolic networks [42]. Specifically, it was possible to generate net-
works with wiring organization similar to that of the macaque cortical net-
work [41].

10.2.2.2 Time Windows Generate Multiple Clusters

Whereas spatial growth can generate high neighborhood clustering, such as
in small-world networks, it does not generate multiple clusters. However, the
use of different time domains for connection development, where several
spatial regions of the network establish connections in partly overlapping
time windows, allows the generation of multiple clusters or communities
[44, 51].

In this extended algorithm, the establishment of an edge depends on the
distance between the nodes [42, 47, 72] and the current likelihood of estab-
lishing a connection given by the time windows of both nodes. The distance-
dependent probability is

Pdist = � e–γ d , (10.4)

where d is the spatial Euclidean distance between two nodes, γ = 6, and
� = 6. The effect of varying γ and � has been described previously [42].

The time-dependent probability Ptime of a node is influenced by its distance
to pioneer nodes (N1 . . . Nk ∈ R3, where k ∈ N is the desired number of time
windows). The reasoning is that nodes originate from other nodes in the
region, thereby inheriting their time domains from previous nodes. These
regions are the basis for network clusters. Each node has a preferred time
for connection establishment, and the probability decays with the temporal
distance to that time.

The investigated approach was able to generate small-world multiple-
cluster networks. We found that network topology is mainly influenced by
the number of time windows and the spatial position of pioneer nodes and
thus time domains.

The case of three time windows behaves remarkably different from the
other numbers of time windows. A potential explanation could be that the
low overlap of the time windows allows only for a very slow network growth,
in the sense that most nodes are discarded as they were not able to link to
the existing network.

Another critical parameter is the spatial position of pioneer nodes. For
the connectivity within and between clusters, “artifacts” can be seen inde-
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pendently of the number of time windows. This suggests that these values
depend on the actual placement of the pioneer nodes. Therefore, the inter-
connectivity and the size of network clusters could be adjusted by merely
changing the placement of pioneer nodes while preserving the number of
time windows.

10.3

Functional Dynamics

The previous section looked at changes in network topology but as an infor-
mation processing system the brain also shows functional changes regarding
the activity levels of nodes and to information transfer and processing. We
now look how activity spreads in neural systems starting with simple systems
that exhibit local neighborhood but no global long-distance connections.

10.3.1

Spreading in Excitable Media

In some cases, a network may be more simply connected than described
for neural systems in that only direct spatial neighbors are connected as in
lattice or regular networks. A simple model for activation spreading is that
of excitable media where waves can propagate but cannot pass another wave
until a certain amount of time (the refractory time) has passed. Such a model
can be implemented using either partial differential equations or cellular
automata.

One example of excitable media studies in neuroscience is the phe-
nomenon of spreading depression over the cortical surface. Whereas most
models only study a flat two-dimensional surface [67], some models start to
take into account the three-dimensional folding structure of the cortex and
the mapping of area function [19].

An earlier field, and in fact the first application of excitable media [73], was
the study of spreading activation in cardiac tissue. For cardiac tissue, mus-
cle cells are linked by electric synapses (gap junctions) so that changes in
the internal cellular potential can quickly spread to neighboring cells lead-
ing to a rapid contraction of the heart. The tissue thereby forms a so-called
syncytium where all cells are thus excited in turn by a wave of excitation for
a normal sinus rhythm (the sinus or sinoatrial node is a pacemaker for the
heart that initiates action potential and following muscle contractions). This
rapid spreading allows for coordinated contraction of atria and ventricles to
pump blood efficiently and effectively through the body. This connectivity
has been simplified in some models to two-dimensional sheets of nearest-
neighbor connected nodes, allowing one to study spreading more easily.
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10.3.1.1 Cardiac Defibrillation as a Case Study

Ventricular fibrillation (VF) is a serious medical problem; in the Western
world, VF claims more lives than any other heart disease. But little is un-
derstood about how normal, ordered behavior (sinus rhythm) can suddenly
change into the complex activity that characterizes VF. It has been estab-
lished [74, 75] that when there are wavebreaks on the surface of the heart
(a literal breakup of the smoothly propagating electrical wavefront), spiral
waves can result. Further breakdown can lead to VF, but it is unclear exactly
how changes in the system can lead to such a breakdown.

Currently the only effective therapy for VF is the delivery of a large electri-
cal shock (cardioversion) across the myocardium with the goal of terminating
VF and allowing the sinus node to reestablish sinus rhythm. However, exter-
nal defibrillation shocks (DS), which for humans can be 200 to 360 Joules
in magnitude, are not always successful. It is important to understand why
defibrillation failure occurs in order to make DS more effective.

Experimentally recorded data from porcine ventricles (taken from a whole
heart preparation) undergoing repeated defibrillation attempts was analyzed
to (1) understand the mechanism of defibrillation failure, (2) determine the
earliest point in time after the DS that defibrillation had failed, and (3) deter-
mine when in time it would be most effective to intervene again.

High spatial and temporal resolution optical mapping techniques and
voltage-sensitive dyes were used to visualize the surface excitations of
porcine (pig) heart. The data were taken at 1000 frames per second by a CCD
camera with an 80 ~ 80 pixel resolution covering a 5 ~ 5 cm area [57].

The data sets used in analysis consisted of 10 s of high-speed CCD video
recording, which was sufficient to cover the transition from fibrillation to DS
to defibrillation failure [56,58]. The data were processed with a custom image
processing program that corrected for offset and gain differences across the
image plane, and removed noise and anatomical information from the data
by means of bandpass filtering the signal across two bands and subtracting
one signal from another.

10.3.1.2 Critical Timing for Changing the State of the Cardiac System

Simonotto et al. [56, 58] observed the evolution of failed defibrillation and
spontaneous focal beating through synchronization and recurrence analysis.
The synchronization analysis categorized the tissue behavior into categories:
similar to focal behavior or similar to reentry behavior. One can clearly see
periods in which the entire tissue behaved similarly to the focal area and the
gradual breakdown of this type of behavior, with reentry gradually becom-
ing the more dominant type of behavior toward the end of the data set. This
switchover is captured in RQA (recurrence quantification analysis), showing
a changeover in orderedness, which can be interpreted as a time of maximal
orderedness that can be determined with analysis of very short noisy data
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sets (a strength of RQA). It can be extrapolated that this maximally ordered
time could be a window in which a minimal corrective shock could be ap-
plied to a failed cardioversion and restore the entire tissue to order. What we
found was a robust marker to demonstrate when a corrective shock could
be applied with the energy landscape at its lowest point, in agreement with
several points of defibrillation failure.

The implications of this work are potentially profound, with minimally
invasive smart cardioversion being the end goal of many researchers all
over the world. Current external defibrillators simply deliver enough energy
to rapidly excite and de-excite cardiac tissue blindly, allowing normal sinus
rhythm to reinitialize a beat. Current internal defibrillators attempt to pace
the heart of an arrhythmia, but in a blind rate-driven manner. Both types of
defibrillators work in a blind manner, without looking at characteristics of
signal order before defibrillation; indeed, the voltage settings are left up to
the operator. With a consistent measure for determining relative order in the
complex spatiotemporal dynamics, perhaps a minimal but properly timed
cardioversion shock would be more effective. This would mean less damage
to tissue due to excess voltage applied or multiple shocks applied, less pain,
and an equal, if not greater, success rate in cardioversion.

10.3.2

Topological Inhibition Limits Spreading

Excitable media models of spreading in lattice or small-world networks [49]
have a long tradition in statistical mechanics but are not realistic for
large-scale neural systems as these models lack long-distance connections
and multiple clusters, respectively. As seen earlier (Section 10.1.1.4), long-
distance connections lead to a reduction in path length and therefore to faster
information transmission and processing. However, short path lengths in
cortical networks also pose a potential problem as local activation patterns
could potentially spread through the whole brain. Such large-scale activa-
tions in the form of increased activity can be observed in the human brain
during epileptic seizures [38].

An essential requirement for the representation of functional patterns in
complex neural networks, such as the mammalian cerebral cortex, is the ex-
istence of stable network activations within a limited critical range. In this
range, the activity of neural populations in the network persists between the
extremes of quickly dying out, or activating a large part of the network as
during epileptic seizures. The standard model would achieve such a balance
by having interacting excitatory and local inhibitory neurons. Whereas such
models are of great value on the local level of neural systems, they are less
meaningful when trying to understand the global level of connections be-
tween columns, areas, or area clusters.
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Global corticocortical connectivity (connections between brain areas) in
mammals possesses an intricate, nonrandom organization. Projections are
arranged in clusters of cortical areas, which are closely linked among each
other but less frequently with areas in other clusters. Such structural clusters
broadly agree with functional cortical subdivisions. This cluster organization
is found at several levels: neurons within a column, area, or area cluster (e.g.,
visual cortex) are more frequently linked with each other than with neurons
in the rest of the network [34].

Using a basic spreading model without inhibition, we investigated how
functional activations of nodes propagate through such a hierarchically clus-
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Figure 10.6 Spreading in hierarchical mod-
ular networks (after [39]). (a) The hierar-
chical network organization ranges from
cluster such as the visual cortex to subclus-
ter such as V1 to individual nodes being
cortical columns; (b) schematic view of

a hierarchical cluster network with five clus-
ters containing five subclusters each. Ex-
amples of spread of activity in (c) random,
(d) small-world, and (e) hierarchical cluster
networks (i = 100, i0 = 150), based on 20
simulations for each network.
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tered network [39]. The hierarchical network consisted of 1000 nodes made of
10 clusters with 100 nodes each. In addition, each cluster consisted of 10 sub-
clusters with 10 nodes each (Figure 10.6a,b). Connections were arranged so
that there were more links within (sub-)clusters than between (sub-)clusters.
Starting with activating 10% of randomly chosen nodes, nodes became ac-
tivated if at least six directly connected nodes were active. Furthermore, at
each time step, activated nodes could become inactive with a probability of
30% (for a more complete overview of the parameter space, see [39]).

The simulations demonstrated that persistent and scalable activation
could be produced in clustered networks, but not in random or small-world
networks of the same size (Figure 10.6c–e). Robust sustained activity also
occurred when the number of consecutive activated states of a node was lim-
ited due to exhaustion. These findings were consistent for threshold models
as well as integrate-and-fire models of nodes, indicating that the topology
rather than the activity model was responsible for balanced activity. In con-
clusion, hierarchical cluster architecture may provide the structural basis for
the stable and diverse functional patterns observed in cortical networks.

10.4

Summary

Using methods and concepts of network analysis [4], we discussed the topo-
logical organization and structural and functional dynamics of neural net-
works. The topology of neural systems is influenced by several constraints:
the specialization into different subsystems such as modules for visual, audi-
tory, or sensorimotor processing leads to topological clusters in cortical net-
works [34] or multiple ganglia for the neuronal network of C. elegans. How-
ever, not all connections are limited to the local neighborhood of individual
modules: several spatially long-distance connections exist for both integrat-
ing different processing streams as well as enabling rapid processing due
to reduction in the characteristic path length (analogously to shortcuts in
small-world networks) [43]. Cortical networks show maximal structural and
dynamic complexity, which is thought to be necessary for encoding a max-
imum number of functional states and might arise as a response to rich
sensory environments [63]. Sporns and Kötter [62] have looked at how the
structure links to the degrees of freedom for network function. Motif analy-
sis of cortical (macaque) and neuronal (C. elegans) systems shows that these
systems are optimized for a maximal number of possible functional motifs
over the total network where the number of functional motifs of one struc-
tural motif is the set of distinct configurations of activated edges. More recent
results concern frequency patterns [53] and synchronization [23] in neural
systems.
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Neural systems can be remarkably robust toward structural dynamics
where brain structures change due to lesions or head injuries, a result that is
both visible in clinical studies as well as in computer models [45]. Whereas
removing the few highly connected nodes has a large effect on network struc-
ture, a more likely random removal of nodes or edges has a small effect in
most cases. For neural development, spatial network growth is able to gener-
ate small-world networks, and the inclusion of time windows for connection
establishment results in multiple clusters as observed for real-world neural
systems.

The hierarchical and modular structure of neural systems also influences
the functional dynamics of activity spreading. First, persistent but contained
network activation can occur in the absence of inhibitory nodes. This might
explain why cortical activity does not normally spread through the whole
brain, even though top-level links between cortical areas are exclusively
formed by excitatory fibers [48]. Second, in hierarchical clustered networks,
activity can be sustained without the need for random input or noise as an
external driving force. Third, multiple clusters in a network influence activity
spreading in two ways: bottleneck connections between clusters limit global
spreading, whereas a higher connection density within clusters sustains re-
current local activity.

Challenges for Network Science

The application domain of neural systems presents several challenges for
the field of network science. Neural systems differ from Erdös–Rényi and
traditional small-world networks in that they are modular and hierarchi-
cal. Network properties can be studied at different levels ranging from con-
nectivity between brain areas, connectivity within areas, connectivity within
columns [9], or connectivity of groups and ensembles. Another difference
with respect to standard network models is that nodes, although treated as
uniform at the global level of analysis, differ at the neuronal level in their re-
sponse modality (excitatory or inhibitory), their functional pattern due to the
morphology of the dendritic tree and properties of individual synapses, and
their current threshold due to the history of previous excitation or inhibition.
Such inhomogeneous node properties can also be expected at the global level
in terms of the size and layer architecture of cortical and subcortical regions.
Another theoretical challenge is the comparison of network topologies and
dynamics, e.g., between experiments and in silico studies. Recent studies on
network topologies have used the spectrum of a network given by the eigen-
values of its adjacency matrix [29,31] or information-theoretic measures such
as graph entropy [21].

In addition to theoretical challenges, the simulation of the dynamics in
these networks also poses computational problems. The analysis of experi-
mental network data, such as of correlation network between electrodes for
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multi-electrode recordings, can take a considerable amount of time. Whereas
detecting all network motifs [50] in a 100-node correlation network is compu-
tationally feasible, recordings over 20 h can generate hundreds of such cor-
relation networks. Moreover, multielectrode units with 1000 electrodes are
now becoming available. One recent e-science project addressing the stor-
ing, comparing, and analyzing of large electrophysiological data sets is the
CARMEN Neuroinformatics project (http://www.carmen.org.uk; [24,59,69]).
On the other hand, high-performance computing is also needed for large-
scale simulations of neural circuits, such as the Blue Brain project for simu-
lating activity within a single cortical column [55].
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11

Network Mapping of Metabolic Pathways
Qiong Cheng and Alexander Zelikovsky

11.1

Introduction

The explosive growth of cellular network databases requires novel analytical
methods constituting a new interdisciplinary area of computational systems
biology. The main problems in this area are finding conserved subnetworks,
integrating interacting gene networks, protein networks, and biochemical
reactions, discovering critical elements or modules, and finding homolo-
gous pathways. With the immense increase in good-quality data from high-
throughput genomic and proteomic technologies, studies of these questions
are becoming more and more challenging from analytical and computational
perspectives.

This chapter deals with network mappings, a central tool for comparing
and exploring biological networks. When mapping metabolic pathways by
matching similar enzymes and chemical reaction chains, one can match ho-
mologous pathways. Network mapping can be used for predicting unknown
pathways, fast and meaningful searching of databases, and potentially es-
tablishing evolutionary relations. This tool integrated with protein database
search can be used for filling pathway holes.

Let the pattern be a pathway for which one is searching for homologous
pathways in the text such as the known metabolic network of a different
species. Existing mapping tools on this problem are mostly based on isomor-
phic and homeomorphic embeddings (see [31–43] and [3–14,16]), effectively
solving a problem that is NP-complete [30] even when searching a match for
a tree in acyclic networks.

Given a linear length-� pathway as the pattern and a graph as the text,
Kelley et al. [7–9] find the image of the pattern in the text such that no con-
secutive mismatches or gaps in the pattern and the text are allowed. The
path-to-path mapping algorithm builds a global alignment graph and decom-
poses it into linear pathway mapping. A single enzyme in one pathway may
replace a few sequential enzymes in a homologous pathway and vice versa.
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Pinter et al. [5,6] find the optimal homeomorphic tree-to-tree mapping allow-
ing an arbitrary number of gaps.

In contrast to these approaches, this chapter considers network align-
ments that allow mapping of different enzymes from a pattern into the same
enzyme from the text while keeping the freedom to map a single edge from
the pattern to a path in the text. For such mappings (homomorphisms),
the undesirable node collapse can be prevented by appropriately setting the
cost on the matching of different nodes; furthermore, trees can be optimally
mapped into arbitrary networks in polynomial time.

A metabolic pathway hole may be the result of ambiguity in identifying
a gene and its product in an organism or when the gene encoding an en-
zyme is not identified in an organism’s genome [18]. Due to gaps in sequence
motif research, several sequences may not get specific annotations. The spe-
cific function of a protein may not be known during annotation. Reactions
catalyzed by those proteins result in metabolic pathway holes. An error in
reading an open reading frame (ORF) may also lead to a pathway hole. With
further research, some of those proteins will get specific annotations, and
pathway descriptions should be updated in pathway/genome databases. As
a consequence, filling pathway holes can facilitate the improvement of both
the completeness and accuracy of the pathway database and the annotation of
its associated genome. In this chapter, a framework is proposed for identify-
ing and filling metabolic pathway holes based on protein function homology
with matching prosites and significant amino acid sequence alignment.

This chapter describes:

• an efficient dynamic programming-based algorithm that can be used to
find the minimum-cost homomorphism from a directed graph with re-
stricted cyclic structure to arbitrary networks;

• a generalization of this algorithm to allow different types of pattern vertex
deletion;

• efficient implementations of this algorithms;
• an experimental study comparing the pathways of four unrelated organ-

isms using enzyme matching cost based on EC notation;
• the application of network mapping to detecting and filling pathway holes

and finding conserved pathways.

The remainder of the chapter is organized as follows. The next section
describes previous work. Section 11.3 presents the proposed models, nec-
essary definitions, and graph-theoretical problem formulation. Section 11.4
presents an effective dynamic programming algorithm that handles cycles in
patterns and allows pattern vertex deletion and runtime analysis. Section 11.5
describes the computational study of metabolic pathways of four organisms
based on the mapping algorithm. The analysis and validation of experimental
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studies is given in Section 11.6. The section also describes two pathway hole
types and proposes the framework for finding and filling these holes based
on pathway mapping and database search. Finally, conclusions are drawn in
Section 11.7.

11.2

Brief Overview of Network Mapping Methods

This section first gives a brief review of network mapping and then intro-
duces previous work on identifying and filling pathway holes.

The first class in network mapping is comprised of graph and subgraph
isomorphisms. An intuitive enumeration algorithm to obtain isomorphisms
of pattern graph P to text graph T is to generate a state-space representa-
tion tree that represents all possible mappings between the nodes of the two
graphs and to check whether each generated mapping in the tree is a good
alignment. In a tree with a vertex size of |VT||VP |+1–1

(|VT |–1) , a vertex represents a pair
of matched nodes; a path from a root down to a leaf represents a mapping
between the two graphs. Any path across k levels in the tree represents a pos-
sible subgraph isomorphism between P and T.

For circumventing the hardness, part of the computation is filtered by
using more selective feasibility rules to cut the state search space [35]. An-
other part is performed in an intensive preprocessing step so that the align-
ment process based on subgraph isomorphisms runs in polynomial time
when one ignores the exponential preprocessing time. The first examples of
this approach were presented by Shasha, Wang, and Giugno [37], Yan, Yuz,
and Hany [40], Yan and Han [36], Giugno and Shasha [38], Messmer [33],
and Bunke [32], which convert the database of graphs individually into DFS
a code tree, label path, and decisive tree.

For the second class-subgraph homeomorphism, earlier works restrict
their topology to a linear path [1–4]. They focus only on similarities between
vertices such as proteins or genes composing pathways rather than their con-
nectivity structure.

Pinter et al. [6] model metabolic pathways as outgoing trees; they reduce
the problem to the approximately labeled tree homeomorphism problem.
They solve the problem using a bottom-up dynamic programming algorithm
with a runtime of O( |VP|2 |VT|

log |VP | + |VP||VT| log |VT|), where |VP| and |VT| are the
number of vertices in the pattern and text, respectively.

Koyuturk, Grama, and Szpankowski [11] introduce and employ a duplica-
tion/divergence model for the evolution of PPI networks. The authors’ solu-
tion allows one to delete pattern and text vertices, and different vertices in
patterns and text can be mapped to one vertex respectively in the text and
patterns. The authors rebuild an alignment graph with |V ′| = O(|VP||VT|)
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vertices and |E ′| = O((|VP||VT|)2) edges and propose a greedy heuristic error
estimation algorithm. SAGA [16] converted graphs to fragment indices first
and calculated the differences between paths in patterns and text. Its greedy
algorithm may obtain the minimum subgraph distance. The heuristic greedy
algorithms cannot guarantee that an optimal solution will be found.

Kelly et al. [7–9] have taken into account the nonlinearity of protein net-
work topology and formulated the mapping problem as follows. Given a lin-
ear length-� pathway pattern T = (VP, EP) and text graph G = (VG, EG), find
an image of the pattern in the text without consecutive gaps and minimiz-
ing mismatches between proteins. A global alignment graph in [7] was built
in which each vertex represents a pair of proteins and each edge represents
a conserved interaction, gap, or mismatches; their objective is to find the
k-highest-scoring path with limited length � and no consecutive gaps or mis-
matches based on the built global graph. The approach takes O(|VT|�+2|VG|2))
in runtime.

PathBlast with the same problem formulation as [7] was presented in [8].
However, PathBlast’s solution is to randomly decompose the text graph into
linear pathways, which are then aligned against the pattern, and then to ob-
tain optimal mapping based on standard sequence alignment algorithms.
The algorithm requires O(�!) random decompositions to ensure that no sig-
nificant alignment is missed, effectively limiting the size of the query to
about six vertices.

Li et al. [10] formulate the problem as an integer quadratic problem for
alignment of networks based on both the protein sequence similarity and
the network architecture similarity. An exhaustive searching approach was
employed in [13] to find the vertex-to-vertex and path-to-path mappings with
the maximal mapping score under the condition of limited length of gaps or
mismatch. The algorithm has a worst-case time complexity of O(2m ~ m2).
Wernicke [12] proposes a label-diversity backtrack algorithm to align two net-
works with cycles based on the mapping of as many path-to-path similarities
as possible. Finally, Cheng, Harrison, and Zelikovsky [14] give an efficient
dynamic programming-based algorithm for the case of the mapping of tree
pattern to arbitrary text.

Yang and Sze [13] focused on two problems: path matching and graph
matching. The authors reduced the path matching problem to finding
a longest weighted path in a directed acyclic graph and showed that the
problem of finding the top k suboptimal paths could be solved in polyno-
mial time. Their graph matching reduced the graph matching problem to
finding the highest score subgraphs in a graph. They allow one to delete dis-
sociated vertices or induced subnetworks in a query network and then align
what’s left of it to target the network by a subgraph isomorphism. Their exact
algorithm solved the problem when the query graph is of moderate size.
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Implicitely, their solutions allow several different vertices of the pattern
graph to be associated with a single vertex of the text graph and a single
vertex of the pattern graph to be associated with several vertices of the text
graph. This is equivalent to allowing that different vertices in a query path
can be mapped to a vertex in text in an optimal graph matching.

The existing frameworks identifying pathway holes are based on a DNA
homology. Enzyme annotations in pathway/genome databases are used to
predict metabolic pathways present in an organism. Green and Karp ap-
ply a Bayesian method [18] on the assumption of conditional independence
among the evidence nodes in their model and the same probability distribu-
tions calculated from known reactions as those for missing reactions. Meth-
ods based on the similarity of nucleotide sequences to known enzyme cod-
ing genes [23] and on the similarity in pathway expression in related organ-
isms [24] have been used to fill pathway holes.

Following [25] this chapter shows a fresh approach to predicting the func-
tion of proteins by studying the annotations of similar sequences, because
similar sequences usually have common descendents and, therefore, a sim-
ilar structure and function. A framework has been designed that will find
potential enzymes for filling pathway holes by searching functionally similar
proteins using online protein databases.

11.3

Modeling Metabolic Pathway Mappings

A metabolic pathway is a series of chemical reactions catalyzed by enzymes
that occur within a cell. Metabolic pathways are represented by directed net-
works in which vertices correspond to enzymes and there is a directed edge
from one enzyme to another if the product of the reaction catalyzed by the
first enzyme is a substrate of the reaction catalyzed by the second.

Mapping metabolic pathways should capture the similarities of enzymes
represented by proteins as well as topological properties that cannot always
be reduced to sequential reactions represented by paths. The commonly used
measure of enzyme dissimilarity is the logarithm of the number of different
enzymes in the lowest common upper class (see, e.g., [2, 6]).

A different approach (Cheng, Harrison, and Zelikovsky [14]) makes full
use of the Enzyme Commission number (EC number) and the tight reaction
property classified by EC. The EC number is expressed with a four-level hi-
erarchical scheme. The 4-digit EC number, d1.d2.d3.d4, represents a subsub-
subclass indication of a biochemical reaction. If d1.d2 of two enzymes are dif-
ferent, and their similarity score is infinite; if d3 of two enzymes are different,
their similarity score is 10; if d4 of two enzymes are different, their similarity
score is 1; or else the similarity score is 0. The corresponding penalty score
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for a gap is 0.5. Cheng, Harrison, and Zelikovsky’s [14] experimental study
indicates that the proposed similarity score scheme results in biochemically
more relevant pathway matches.

The topology of most metabolic pathways is a simple path, but frequently
pathways may branch or have several incoming arcs – all such topologies are
instances of a multisource tree (for example, a directed graph that becomes an
undirected tree when edge directions are disregarded). The query pathways
are usually simple and can be represented as a multisource tree, but in some
cases they can have a cycle or alternative ways to reach the same vertex. Then,
by removing edges, such cycles or paths are broken and then the standard
practice of tree-to-tree mapping follows.

The obvious way to preserve the pathway topology is to use isomorphic em-
bedding – one-to-one correspondence between vertices and edges of a pattern
and its image in the text. The requirement on edges can be relaxed – an edge
in the pattern can be mapped to a path in the text [5,6] and the corresponding
mapping is called a homeomorphism. The computational drawback of isomor-
phic embedding and homeomorphism is that the problem of finding optimal
mapping is NP-complete and, therefore, requires severe constraints on the
topology of the text to become efficient. In [5, 6], the text is supposed to be
a tree, the pattern should be a directed tree, while allowing multisource-tree
patterns complicates the algorithm. Their algorithm is complex and slow be-
cause it repeatedly finds minimum weight perfect matchings.

The authors propose to additionally relax one-to-one correspondence be-
tween vertices – instead, one allows different pattern vertices to be mapped
to a single text vertex. The corresponding mapping is called a homomorphism.
Such relaxation may sometimes cause confusion – a path can be mapped to
a cycle. For instance, if two enzymes with similar functions belong to the
same path in a pattern and a cycle with a similar enzyme belongs to the text,
then the path can be mapped into a cycle (Figure 11.1). However, if the text
graph is acyclic, this cannot happen. Even if there are cycles in the text, still
one can expect that functionally similar enzymes are very rare in the same
path.

C

D

B

A A’=f(A)=f(D)

B’=f(B)

C’=f(C)

Path Cycle

Figure 11.1 Homomorphism of a path (A, B, . . . , C, D) in a pattern
onto a cycle (A ′, B ′, . . . , C ′, D ′ = A ′) in text.
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Computing minimum-cost homomorphisms is much simpler and faster
than do so for homeomorphisms. Wat follows will show that a fast dynamic
programming algorithm can find the best homomorphism from one path-
way to another.

11.3.1

Problem Formulation

Let P = (VP, EP) and T = (VT, ET) be directed graphs with vertex sets VP

and VT, respectively, and edge sets EP and ET, respectively. One can further
refer to P as the pattern and to T as the text. A mapping f : P → T is called
a homomorphism if

1. every vertex in VP is mapped to a vertex in VT ;
2. every edge e = (u, v) ∈ EP is mapped to a directed path in G.

The cost of a homomorphism consists of vertex and edge matching parts.
Following [6], if the edge is matched with the path, the homomorphism cost
should increase proportionally to the number of extra hops in the edge im-
ages, i.e.,∑

e∈EP

(
| f(e)| – 1

)
,

where | f(e)| = k is the number of hops in the path f(e) = (u0 = f(u), u1, u2, . . .,
uk = f(v)).

Let Δ(u, v), u ∈ VP, v ∈ VT, be the cost of mapping an enzyme correspond-
ing to the pattern vertex u into an enzyme corresponding to the text vertex v.
Thus the total cost of a homomorphism f : P→ T is

cos t( f ) =
∑
v∈VP

Δ(v, f(v)) + λ
∑
e∈EP

(| f(e)| – 1) ,

where λ is the cost of a single extra hop in an edge-to-path mapping. Finally,
the graph-theoretical problem formulation is as follows.

Minimum Cost Homomorphism Problem. Given a pattern graph P and a text
graph T, find the minimum cost homomorphism f : P→ T.

11.4

Computing Minimum Cost Homomorphisms

Computing minimum cost homomorphisms is much simpler and faster
than computing homeomorphisms. This chapter will describe a fast dynamic
programming algorithm that finds the minimum cost homomorphism from
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a tree pattern to an arbitrary text graph and then show how to generalize this
algorithm to patterns with the bounded cyclic structure.

Formally, a multisource tree is a directed graph whose underlying undi-
rected graph is a tree. If the pattern is a multisource tree, then the MCH
problem can be solved efficiently with the dynamic programming algorithm.
The next subsection describes and analyzes the runtime of such algorithm.
When the pattern graph is allowed to have cycles in the underlying undi-
rected graph, then the MCH problem becomes NP-complete. An efficient
algorithm still exists when the cyclic structure of the pattern is bounded. The
complexity of cyclic structure can be measured by the size of the vertex feed-
back set F(P ) ⊆ VP of the pattern P = (VP, EP). F(P ) covers all cycles of P, so
that the subgraph PV\F of P induced by V \ F is acyclic. Section 11.4.2 shows
how to efficiently handle patterns with small vertex feedback sets and prove
the following theorem.

Theorem (Cheng, Harrison, and Zelikovsky [14]) The Minimum cost homo-
morphism problem with the pattern P = (VP, EP) and the text T = (VT, ET)
can be solved in time

O
(
|VT|1+|F(P )| (|ET| + |VT||VP|)

)
Section 11.4.3 further generalizes this result to the case when vertices are

allowed to be deleted from the pattern.

11.4.1

The Dynamic Programming Algorithm for Multi-source Tree Patterns

This section will first describe preprocessing of the text graph T and order-
ing of vertices of the pattern graph P; and then it will define the dynamic
programming table and show how to fill that table in a bottom-up manner.
The runtime of the entire algorithm will be analyzed .

Text Graph Preprocessing. To compute the cost of a homomorphism, it is
necessary to know the number of hops for any shortest path in the text
graph T. Although finding single-source shortest paths in general graphs
is slow, in this chapter’s case it is sufficient to run a breadth-first search with
runtime O(|ET| + |VT|). Assuming that G is connected (|ET| v |VT|), one can
conclude that the total runtime of finding all shortest paths is O(|VT||ET|). In
the resulting transitive closure T ′ = (VT, E ′T) of graph T, each edge e ∈ E ′T
is supplied with the number of hops h(e) in the shortest path connecting its
ends.
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Pattern Graph Ordering. One will further need a certain fixed order of ver-
tices in VP as follows. Let P ′ = (VP, E ′P) be the undirected tree obtained from
P by disregarding edge directions. Let us choose an arbitrary vertex r ∈ VP

as a root and run depth-first search (DFS) in P ′ from r. Let {r = v1, . . . , v|VP |}
be the order of the DFS traversal of VP and let e′i = (vi, v) ∈ E ′P (correspond-
ing to the directed edge ei ∈ EP) be the unique edge connecting vi to the set
{v1, . . . , vi–1}. The vertex v ∈ {v1, . . . , vi–1} is called a parent of vi and vi is
called a child of v.

DP Table. Now the dynamic programming table DT[1, . . . , |VP|][1, . . . , |VT|]
will be described. Each row and column of this table corresponds to a vertex
of P and T, respectively. The columns u1, . . . , u|VT| of DT are in no particular
order. The rows {r = v1, . . . , v|VP|} of DT are sorted in the order of the depth-
first search traversal of the undirected tree underlying P from an arbitrary
vertex r ∈ VP. The unique vertex v ∈ {v1, . . . , vi–1} connected to v is called
a parent of vi and vi is called a child of v.

Filling the DP Table. Each element DT[i, j] is equal to the best cost of a homo-
morphism from the subgraph of P induced by vertices {v|VP|, v|VP|–1, . . . , vi}
into P ′, which maps vi into uj. The table DT is filled bottom-up for i =
|VP|, |VP| – 1, . . . , 1 as follows. If vi is not a parent for any vertex in T, then
vi is a leaf and DT[i, j] = Δ(vi, uj). In general, one should find the cheapest
mapping of each of vi’s children vi1 , . . . , vik subject to vi being mapped to uj.
The mappings of the children do not depend on each other since the only
connection between them in the tree T is through vi. Therefore, each child
vil , l = 1, . . . , k should be mapped onto ujl minimizing the contribution of vil
to the total cost

C[il, jl] = DT [il, jl] + λ
(
h( j, jl) – 1

)
,

where h( j, jl) depends on the direction of eil , i.e., h( j, jl) = h(uj, ujl ) if eil =
(vi, vil ) and h( j, jl) = h(ujl , uj) if eil = (vil , vi). Finally,

DT [i, j ] = Δ(vi, uj) +
k∑

l=1

min
j′=1,...,|VT|

C[il, j′] .

Runtime Analysis. The runtime for constructing the transitive closure T ′ =
(VT, E ′T) is O(|VT||ET|). The runtime to fill a cell DT[i, j] is proportional to

tij = degP(vi) degT ′(uj) ,

where degP(vi) and degT ′ (uj) are degrees of vi and uj in graphs P and T ′,
respectively. Indeed, the number of children of vi is degP(vi) – 1, and for each
child vil of vi there are at most degT ′ (uj) feasible positions in T ′ since f(vi) and
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f(vil ) should be adjacent. The runtime to fill the entire table DT is proportional
to

|VT |∑
j=1

|VP |∑
i=1

tij =
|VT|∑
j=1

degT ′(uj)
|VP |∑
i=1

degT(vi) = 2|E ′T||EP|

Thus the total runtime is O(|VT||ET| + |E ′T||EP|). Even though G is sparse,
|E ′T| may be as large as O(|VT|2), and therefore the runtime is O(|VT|(|ET| +
|VT||EP|)).

11.4.2

Handling Cycles in Patterns

The dynamic programming algorithm for multisource patterns relies heavily
on the existence of sorting of P such that for any vertex v no children can
communicate with each other except through v. In order to have the same
property for patterns with cycles, one can “fix” the images of the vertices
from F(P ) in the text T, called the feedback vertex set or cycle cut vertex set.
In other words, it is assumed that for each v ∈ F(P ) one knows its image
f(v) ∈ VT.

Searching for the minimum cost homomorphism f : P → T among only
mappings that preserve mapping pairs (v, f(v)), v ∈ F(P ) can be done effi-
ciently. Indeed, let K be a connected component of P \ F(P ) and let K ′ be the
connected component of K∪F(P ) containing K. The vertices of K ′ are sorted
in such DFS order that feedback vertices are leaves. One can then run the
algorithm discussed in the previous section on the assumption that the text
images of feedback vertices are fixed.

In order to find the overall optimal homomorphism one should repeat the
above procedure with all possible fixed mappings of the feedback vertices.
The total number of such mappings is O(V|F(P )|

T ) and can be very large if
|F(P )| is large.

One can further improve the runtime of the algorithm by reduction to the
minimum weighted feedback set problem. The text T usually contains very
few vertices corresponding to enzymes that have EC annotation similar to
the EC annotation of v. Let t(v) be the number of possible text images of
a given pattern vertex v. Then the total number of all possible feedback set
mappings is O(

∏
v∈F(P ) t(v)) rather than O(V|F(P )|

T ). To minimize that amount,
one can minimize its logarithm

∑
v∈F(P ) log t(v). Finally, one needs to find

the minimum weight feedback set of the pattern P where the weight of each
vertex v is log t(v). This problem is NP-complete and Bafna, Berman, and
Fujito suggest that a 2-approximation algorithm can be implemented [26].
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11.4.3

Allowing Pattern Vertex Deletion

Metabolic networks, like other biological networks such as protein–protein
interaction networks and gene regulatory networks, are experimentally de-
rived with substantial false-positive and false-negative errors [27]. Network
alignment, which is used to identify regions of similarity and dissimilarity
and also to detect conserved subnetworks among species, can be employed
to identify true functional modules. As a consequence, false functional sub-
modules can further be detected and deleted through the process of network
alignment. Additionally, it is well known that a single enzyme in one pathway
may replace a few sequential enzymes in a homologous pathway. So allow-
ing pattern vertex deletion, especially the deletion of degree 1 or 2 vertices or
submodules, becomes as reasonable as allowing text vertex deletion in sub-
graph homomorphism mapping. Of course, without loss of generality, one
also needs to consider pattern vertex deletion with degree larger than 3.

For simplicity, one can first consider pattern vertex deletion in mapping
multisource trees (Figure 11.2). Two types of pattern vertex deletion can be
considered. Strong deletion corresponds to the operation of deleting a sub-
tree of the pattern – all edges incident to the deleted vertices are deleted.
The bypass deletion of a vertex of degree 2 corresponding to replacing a path
across the vertex with a single edge and deleting the degree 2 vertex. If the
pattern is a directed graph, then a vertex v can be bypassed only if it be-
longs to a directed path a → v → b; as a result of deletion the incoming
and outgoing edges are replaced by a single edge a → b. One vertex v with
degree greater than 2 can be handled in the combination of a strong dele-
tion of all its child vertices except one and the following bypass deletion. As
for the vertex, there are different bypass deletion scores due to the possible

( 2 )
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b

c
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v

( 1 )

a

b
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u
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( 3 ) = (2) + (1)
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Figure 11.2 Examples of pattern ver-
tex deletion. Solid lines represent pat-
tern edges; dashed lines represent text
paths; dashed arrows connect pattern
vertices with their images in the text graph.
(1) Bypass deletion of a patten vertex of

degree 2; (2) branch deletion of three pat-
tern vertices; (3) = (2) + (1) composition
of strong and bypass deletions: after strong
deletions a pattern vertex becomes eligible
to be deleted by bypass deletion.
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bypass paths. Every deleted pattern vertex has a NULL vertex as its image in
text.

Further, as a result of allowing pattern vertex deletion, the mapping prob-
lem becomes a problem of finding a pair of subgraphs in the pattern graph
and the text graph that can be properly aligned with each other. Maximizing
the similarity between pattern and text is equivalent to minimizing the dis-
similarity between them. To quantify the dissimilarity, one needs to take into
account all penalties for vertex substitution and text vertex deletion as well
as pattern vertex deletion. By preprocessing the patterns, one can calculate
and obtain the corresponding penalty score of strong deletions and bypass
deletions for every vertex. The dynamic programming algorithm from Sec-
tion 11.4.1 can still be applied by adding two pseudovertices to the text graph:
one vertex s corresponding to the strong deletion and the other vertex b corre-
sponding to the bypass deletion. If a pattern vertex u is mapped to s (resp. b)
then u is a strong (resp. bypass) deletion and the cost of a strong (resp. by-
pass) deletion of u is added. By looping through every vertex in the pattern
as a root and iteratively mapping the generated pattern to the text, one can
search through all possibilities and obtain an optimal solution.

For arbitrary graphs with cycles, by “fixing” the feedback vertex set of pat-
tern to text vertices, one can still decompose the problem into a set of multi-
source tree mappings. Unfortunately, this decomposition is not as straight-
forward as in the case where vertex deletion is not allowed. Nonetheless,
strong and bypass deletions do not drastically increase the runtime when the
size of the feedback vertex set is small.

11.5

Mapping Metabolic Pathways

This section first describes the metabolic pathway data, then explains how
to measure the statistical significance of homomorphisms and reports the
results of pairwise mappings between four species.

Data. The genomescale metabolic network data in the studies were drawn
from BioCyc [19–21], a collection of 260 Pathway/Genome Databases, each
of which describes metabolic pathways and enzymes of a single organism. In
this chapter, authors have chosen the metabolic networks of Escherichia coli,
the yeast Saccharomyces cerevisiae, the eubacterium Bacillus subtilis, and the
archeabacterium Thermus thermophilus so that they cover the major lineages
Archaea, Eukaryotes, and Eubacteria. The bacterium E. coli, with 256 path-
ways, is the most extensively studied prokaryotic organism. T. thermophilus,
with 178 pathways, belongs to Archaea. B. subtilis, with 174 pathways, is one
of the best understood Eubacteria in terms of molecular biology and cell
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biology. S. cerevisiae, with 156 pathways, is the most thoroughly researched
eukaryotic microorganism.

Statistical Significance of Mapping. Following a standard randomization pro-
cedure, one can randomly permute pairs of edges (u, v) and (u′, v′) if no other
edges exist between these four vertices u, u′, v, v′ in the text graph by recon-
necting them as (u, v′) and (u′, v). This allows one to keep the incoming and
outgoing degrees of each vertex intact. One finds the minimum cost homo-
morphism from the pattern graph in the full randomization of the text graph
and checks if its cost is at least as great as the minimum cost before ran-
domization of the text graph. It is said that a homomorphism is statistically
significant with p < 0.001 if one finds at most 9 greater costs in 10000 ran-
domizations of the text graph.

Experiments. Two different extraction tools are used in [14] to retrieve the
enzyme-oriented models of metabolic pathways for four species. One is from
Pinter et al. [6], and the other is from Wernicke [12]. For different extrac-
tion tools, different mapping algorithms are applied and experiments are
conducted. In their experiments, Cheng et al. [14] found the minimum cost
homomorphism from each pathway of E. coli to each pathway of the four

Table 11.1 Pairwise statistical mapping of E. coli to T. thermophilus,
B. subtilis, E. coli and S. cerevisiae. The numbers of pathways in the
first column are from the BioCyc web site.

Text network (Parse) Statistically significant Pattern network (number of pathways)

p < 0.01 Tree pathways Graph pathways

T. thermophilus (178) # ofmapped pairs 864 1050

# of mapped pattern pathways 11 124

# of mapped text pathways 97 118

B. subtilis (174) # ofmapped pairs 842 1240

# of mapped pattern pathways 12 129

# of mapped text pathways 94 143

E. coli (256) # ofmapped pairs 1031 1657

# of mapped pattern pathways 12 122

# of mapped text pathways 114 201

S. cerevisiae (156) # ofmapped pairs 264 1611

# of mapped pattern pathways 11 117

# of mapped text pathways 30 156
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species (B. subtilis, E. coli, T. thermophilus, and S. cerevisiae) using algorithms
described in Section 11.4 (see examples in Figures 11.3 and 11.4); further-
more, they checked to see if this homomorphism was statistically significant;
then they compared the obtained homomorphism sets from when only tree
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Figure 11.3 Mapping of pentose phosphate
pathway onto E. coli to a superpathway of
oxidative and nonoxidative branches of
a pentose phosphate pathway in S. cere-
visiae (p < 0.01). The node with the upper
part and lower part represents a vertex-to-

vertex mapping. The upper part represents
the pattern enzyme and the lower part the
text enzyme. The node with the dashed box
represents a gap. (The same representation
of a homomorphism will be employed in
the following figures).
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Figure 11.4 Mapping of formylTHF biosynthesis I pathway in
E. coli to formylTHF biosynthesis I pathway in S. cerevisiae.
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pathways were available as patterns in the pairwise mapping and when both
nontree and tree pathways were available as patterns.

Results. The results of the experiments are reported in Table 11.1. The first
column contains the name of the species from E. coli for whose metabolic
network the text pathways were chosen. The last two columns demonstrate
the results of applying two different algorithms in one of which only tree
pattern pathways are mapped and in the other of which all pathways, includ-
ing tree and nontree pathways, as patterns are mapped. For every species-to-
species mapping, the authors computed the number of mapped pairs with
p < 0.01, the number of pattern pathways that have at least one statistically
significant homomorphic image and the number of text pathways that have
at least one statistically significant homomorphic preimage.

11.6

Implications of Pathway Mappings

This section identifies pathways conserved across multiple species, shows
how one can resolve enzyme ambiguity, identifies potential holes in path-
ways, and phylogenetically validates the pathway mappings.

Identifying Conserved Pathways. The authors first identified the pathways
that were conserved across all 4 species under consideration. Table 11.2
contains a list of all 20 pathways in B. subtilis that had statistically signifi-
cant homomorphic images simultaneously in all species. The lower part of
Table 11.2 contains 4 more pathways with different names in E. coli, T. ther-
mophilus, and S. cerevisiae, which have simultaneous statistically significant
images in all species.

Besides the 24 pathways conserved across all 4 species, this chapter shows
that 18 pathways have been found that are only common for triples of these
species. Table 11.3 gives the pathway names for each possible triple of species
(the triple E. coli, T. thermophilus, and S. cerevisiae does not have extra con-
served pathways).

Phylogenetic Validation. One can measure the similarity between species
based on the number of conserved pathways. The largest amount of con-
served pathways is found between B. subtilis and T. thermophilus – two
species-to-species mappings have in total 183 statistically significant pairs
of pathways. The next closest two species are E. coli and B. subtilis, which
have 126 statistically significant pairs of pathways. This agrees with the fact
that B. subtilis, T. thermophilus, and E. coli are prokaryotic and S. cerevisiae is
eukaryotic.
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Table 11.2 List of all 20 pathways in B. subtilis that have
statistically significant homomorphic images simultaneously
in all 3 other species E. coli, T. thermophilus, and S. cerevisiae.
The lower part contains 4 more different pathways with
statistically significant images in all 4 species.

Pathway name
alanine biosynthesis I
biotin biosynthesis I
coenzyme A biosynthesis
fatty acid beta
fatty acid elongation saturated
formaldehyde oxidation V (tetrahydrofolate pathway)
glyceraldehyde 3 phosphate degradation
histidine biosynthesis I
homoserine biosynthesis
lysine biosynthesis I
ornithine biosynthesis
phenylalanine biosynthesis I
phenylalanine biosynthesis II
polyisoprenoid biosynthesis
proline biosynthesis I
quinate degradation
serine biosynthesis
superpathway of gluconate degradation
tyrosine biosynthesis I
UDP galactose biosynthesis

alanine biosynthesis
biotin biosynthesis
fatty acid oxidation pathway
fructoselysine and psicoselysine degradation

Filling Holes in Metabolic Pathways. This section describes two pathway hole
types and proposes the framework for finding and filling these holes based
on pathway mappings and database searches. It concludes with the analysis
of two examples of pathway holes.

One can distinguish two types of pathway holes:
1. Visible pathway holes: an enzyme with partially or completely unknown

EC notation (e.g., 1.2.4.- or -.-.-.-) in the currently available pathway de-
scription. This type of hole is caused by ambiguity in identifying a gene
and its product in an organism.

2. Hidden pathway holes: an enzyme that is completely missing from the
currently available pathway description. This type of hole occurs when the
gene encoding an enzyme is not identified in an organism’s genome.

Mapping of an incomplete metabolic network of a pattern organism into
a better known metabolic network can identify possible hidden pathway
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Table 11.3 small List of 14 pathways conserved across
B. subtilis, E. coli, and T. thermophilus; 2 more pathways con-
served across B. subtilis, E. coli, and S. cerevisiae; 2 more
pathways conserved across B. subtilis, T. thermophilus, and
S. cerevisiae.

Pathway name
Triple: B. subtilis, E. coli, and T. thermophilus
4 aminobutyrate degradation I
de novo biosynthesis of pyrimidine deoxyribonucleotides
de novo biosynthesis of pyrimidine ribonucleotides
enterobacterial common antigen biosynthesis
phospholipid biosynthesis I
PRPP biosynthesis II
salvage pathways of pyrimidine deoxyribonucleotides
ubiquinone biosynthesis
flavin biosynthesis
glycogen biosynthesis I (from ADP D Glucose)
L idonate degradation
lipoate biosynthesis and incorporation I
menaquinone biosynthesis
NAD biosynthesis I (from aspartate)

Triple: B. subtilis, E. coli, and S. cerevisiae
oxidative branch of the pentose phosphate pathway
S adenosylmethionine biosynthesis

Triple: B. subtilis, T. thermophilus, and S. cerevisiae
tyrosine biosynthesis I
fatty acid elongation unsaturated I

holes in the pattern as well as suggest possible candidates for filling visible
or hidden pathway holes.

The candidates for filling pathway holes may have been previously iden-
tified in the pattern organism. Then the pathway description with visible
holes should be simply updated. In the case of hidden holes, the adjoining
enzymes may have been incorrectly annotated. Otherwise, if candidates for
filling pathway holes have not been identified in the pattern organism, then
the adjoining enzymes can be searched for matching the corresponding text
enzyme.

The proposed framework for filling pathway holes is based on an amino
acid sequence homology and, therefore, should be superior to existing frame-
works based on a DNA homology [23, 24], since amino acids may be coded
by multiple codons. Below, the framework is applied to two examples of such
holes.

The authors have analyzed an example of how one can fill a visible path-
way hole. The homomorphism from glutamate degradation VII pathway in
B. subtilis to glutamate degradation VII pathway in T. thermophilus is shown
in Figure 11.7. The pattern contains two visible pathway holes (the corre-
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Figure 11.5 Mapping of glutamate degradation VII path-
ways from B. subtilis to T. thermophilus (p < 0.01). The
node with the upper part and lower part represents a vertex-
to-vertex mapping. The upper part represents the query
enzyme and the lower part the text enzyme. The shaded
node represents an enzyme homology.
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Figure 11.6 Mapping of interconversion of arginine,
ornithine, and proline pathway from T. thermophilus to
B. subtilis (p < 0.01). The node with the upper part and
lower part represents a vertex-to-vertex mapping. The upper
part represents the query enzyme and the lower part the text
enzyme. The shaded node represents an enzyme homology.

sponding enzymes are shaded). The mapping results indicate that similar
corresponding enzymes 2.3.1.61 and 1.2.4.2 with similar functions can be
found in T. thermophilus. Their tool queries the Swiss-Prot and TrEMBL
databases to see if enzymes 2.3.1.61 and 1.2.4.2 have been reported for B. sub-
tilis. The authors found that these two enzymes have been reported in the
Swiss-Prot database for B. subtilis as P16263 and P23129, respectively. There-
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Figure 11.7 Mapping of glutamate degradation VII path-
ways from B. subtilis to T. thermophilus (p < 0.01). The
shaded node represents an enzyme homology.
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Figure 11.8 Mapping of formaldehyde oxidation V path-
way in B. subtilis to the formy1THF biosynthesis pathway in
E. coli (p < 0.01) (only vertices in the image of the pattern in
the text are shown).

fore, they recommend filling these pathway holes with enzymes 2.3.1.61 and
1.2.4.2.

Now this section will proceed with an example of a hidden pathway
hole. Mapping of formaldehyde oxidation V pathway in B. subtilis to the
formy1THF biosynthesis pathway in E. coli is shown in Figure 11.8. In this
case enzyme 3.5.1.10 is present between 3.5.4.9 and 6.3.4.3 in E. coli but ab-
sent in the pathway description for B. subtilis. The Swiss-Prot database search
shows that this enzyme is completely missing from B. subtilis and therefore
this hole does not allow an easy fix. Still it is possible that this enzyme has
not yet been included in the database but has already been identified either
in the literature (this can be detected through keyword search) or in closely
related organisms. The Swiss-Prot database search shows that 3.5.1.10 has
been reported for B. clausii, which is very close to B. subtilis. Therefore, it
is recommended that this pathway hole be filled with enzymes 3.5.1.10. If
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such a search would not return hits in close relatives, then it would be in-
vestigated if the function of this enzyme has been taken up by one of the
adjoining enzymes (in this case 3.5.4.9 or 6.3.4.3) or if there is an alternative
pathway existing for this function.

Allowing Pattern Vertex Deletion. The authors have implemented their algo-
rithm to support pattern vertex deletion (see Figure 11.9 as an example).
Their experimental results have shown more advantages. The first advantage
of the new network alignment with respect to the homomorphisms from [14]
is in the symmetry of network alignment. The homomorphism is inherently
asymmetrical since it can delete vertices only from the text but aligns all
pattern vertices. Further, it could be used to discover conserved motifs. The
second advantage that has been observed is significant deletion. Statistically
significant deletions in the network alignment of metabolic pathways corre-
spond to either the existence of an alternative pathway producing the same
nutrient or the addition of this nutrient to the minimal media required for
the growth of the text organism. Their experimental result is consistent with
this statement. The third advantage that has been observed is that the aver-
age number of mismatches and gaps in the solution has outperformed the
solution without the support pattern vertex deletion.

2.2.1.1

4.1.2.9

5.1.3.1

5.3.1.6

5.6.2.1

2.2.1.1

4.1.2.9 5.1.3.1

5.3.1.6

5.6.2.1

5.1.3.1
5.1.3.1

4.1.2.9
4.1.2.9

2.2.1.1
2.2.1.1

5.1.3.6
5.1.3.6

5.6.2.1

(a) (b) (c)

Figure 11.9 Example of network mapping allowing for
pattern vertex deletion. (a) pattern graph; (b) text graph;
(c) mapping result. In (c), the node with the upper and
lower part represents a vertex-to-vertex mapping. Labels
in the light gray background represent pattern vertices and
those in the white background represent text vertices.
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11.7

Conclusion

This chapter has introduced a new method of efficiently finding optimal ho-
momorphisms from a directed graph with a restricted cyclic structure to an
arbitrary network using enzyme matching cost based on EC notation. The
proposed approach allows one to map different enzymes of the pattern path-
way into a single enzyme of a text network. It also efficiently handles cycles in
patterns. The authors have applied their mapping tool in pairwise mapping
of all pathways for four organisms (E. coli, S. cerevisiae, B. subtilis, and T. ther-
mophilus species) and found a reasonably large set of statistically significant
pathway similarities. Furthermore, they have compared the obtained set for
when only tree pathways can be available as a pattern and that for when both
nontree and tree pathways are available as a pattern. The chapter also shows
that the authors’ mapping tool can be used for identification of pathway holes
and have proposed a framework for finding and filling these holes based on
pathway mapping and database search.

References

1 Forst, C.V., Schulten, K. (1999) Evolu-
tion of metabolism: a new method for
the comparison of metabolic pathways
using genomics information. Journal of
Computational Biology 6, 343–360.

2 Tohsato, Y., Matsuda, H., Hashimoto, A.
(2000) A Multiple Alignment Algorithm
for Metabolic Pathway Analysis using En-
zyme Hierarchy. Proceedings of ISMB
2000, pp. 376–383.

3 Chen, M., Hofestaedt, R. (2004)
PathAligner: metabolic pathway retrieval
and alignment. Applied Bioinformatics,
3(4), 241–252.

4 Chen, M., Hofest, R. (2005) An algorithm
for linear metabolic pathway alignment.
Silico Biology. 5, 111–128. ISSN 1386-6338.

5 Pinter, R.Y., Rokhlenko, O., Tsur, D., Ziv-
Ukelson, M. (2004) Approximate labeled
subtree homeomorphism. Proceedings of
the 15th Annual Symposium on Combi-
natorial Pattern Matching, Lecture Notes
in Computer Science 3109. pp. 59–73.
Springer, Berlin.

6 Pinter, R.Y., Rokhlenko, O., Yeger-Lotem,
E., Ziv-Ukelson, M. (2005) Alignment
of metabolic pathways. Bioinformatics.
LNCS 3109. Springer, Berlin, 21 (16),
3401–3408.

7 Kelly, B.P., Sharan, R., Karp, R.M., Sittler,
T. et al. (2003) Conserved pathways within
bacteria and yeast as revealed by global
protein network alignment. Proceedings
of the National Academy of Sciences of the
USA, 100 (20), 11394–11399.

8 Kelly, B.P., Sharan, R., Karp, R.M., Sit-
tler, T. et al. (2004) PathBLAST: a tool for
alignment of protein interaction networks.
Nucleic Acids Research, 32, W83–W88.

9 Sharan, R., Suthram, S., Kelley, R.M.,
Kuhn, T., McCuine, S. et al. (2005) Con-
served patterns of protein interaction in
multiple species. Proceedings of the Na-
tional Academy of Sciences of the USA, 102,
1974–1979.

10 Li, Z., Wang, Y., Zhang, S., Zhang, X.
et al. (2006) Alignment of Protein Inter-
action Networks by Integer Quadratic
Programming. Proceedings of EMBS ’06,
pp. 5527–5530.

11 Koyuturk, M., Grama, A., Szpankowski,
W. (2006) Pairwise local alignment of pro-
tein interaction networks guided by model
evaluation. Journal of Computational Biol-
ogy, 13, 182–199.

12 Wernicke, S. (2006) Combinatorial Algo-
rithms to Cope with the Complexity of



292 11 Network Mapping of Metabolic Pathways

Biological Networks. Ph.D. dissertation,
University of Jena, Germany, 2006.

13 Yang, Q., Sze, S. (2007) Path matching
and graph matching in biological net-
works. Journal of Computational Biology,
14 (1), 56–67, 5527–5530.

14 Cheng, Q., Harrison, R., Zelikovsky, A.
(2007) Homomorphisms of Multisource
Trees into Networks with Applications
to Metabolic Pathways. Proceedings of
BIBE’07.

15 Cheng, Q., Harrison, R., Zelikovsky, A.
(2007) Homomorphisms of Multisource
Trees into Networks with Applications to
Metabolic Pathways. RECOMB Satellite
Conference on Systems Biology.

16 Tian, Y., McEachin, R.C., Santos, C.,
States, D.J. et al. (2007) SAGA: a sub-
graph matching tool for biological graphs.
Bioinformatics Journal, 23 (2), 232–239.

17 Dandekar, T., Schuster, S., Snel, B., Huy-
nen, M., Bork, P. (1999) Pathway align-
ment: application to the comparative
analysis of glycolytic enzymes. Biochemical
Journal, 1, 115–124.

18 Green, M.L., Karp, P.D. (2004) A Bayesian
method for identifying missing enzymes
in predicted metabolic pathway databases.
BMC Bioinformatics, Sept. 2004.

19 http://www.biocyc.org/.
20 Keseler, I.M., Collado-Vides, J., Gama-

Castro, S., Ingraham, J. et al. (2005) Eco-
Cyc: a comprehensive database resource
for Escherichia coli. Nucleic Acids Research,
33 (1), D334–D337.

21 Krieger, C.J., Zhang, P., Mueller, L.A.,
Wang, A. et al. (2006) MetaCyc: a microor-
ganism database of metabolic pathways
and enzymes. Nucleic Acids Research, 32
(1), D438–D442.

22 Green, M.L., Karp, P.D. (2007) Using
genome-context data to identify specific
types of functional associations in path-
way/genome databases. Bioinformatics, 23
(13), i205–i211.

23 Kharchenko, P., Chen, L., Freund, Y.,
Vitkup, D. et al. (2006) Identifying
metabolic enzymes with multiple types
of association evidence, BMC Bioinfor-
matics, March 2006.

24 Kharchenko, P., Vitkup, D., Church, G.M.
(2004) Filling gaps in a metabolic network
using expression information. Bioinfor-
matics. August, Suppl 1, i178–i185.

25 Abascal, F., Valencia, A. (2003) Automatic
annotation of protein function based
on family identification. Proteins, 53 (3),
683–692.

26 Bafna, V., Berman, P., Fujito, T. (1999) A
2-approximation algorithm for the undi-
rected feedback vertex set problem. SIAM
Journal of Discrete Mathematics, 12 (3),
289–297.

27 von Mering, C., Krause, R., Snel, B.,
Cornell, M. et al. (2002) Comparative
assessment of large-scale data sets of
protein–protein interactions. Nature 417,
399–403.

28 Valiente, G., Martinez, C. (1997) An Algo-
rithm for Graph Pattern-Matching. Fourth
South American Workshop on String
Processing, 1997.

29 Hefferon, J. (2008) Linear Algebra,
excellent textbook with complete so-
lutions manual. Downloadable at
http://joshua.smcvt.edu/linearalgebra/.

30 Garey, M., Johnson, D. (1979) Computers
and Intractability: A Guide to the Theory of
NP-Completeness. Freeman and Company.

31 Tsai, W.H., Fu, K.S. (1979) Error-
correcting isomorphisms of attributed
relational graphsfor pattern recognition.
IEEE Transactions on Systems, Man, and
Cybernetics, 9, 757–768.

32 Bunke, H. (2000) Graph Matching: The-
oretical Foundations, Algorithms, and
Applications. International Conference
on Vision Interface, Montreal, Quebec,
Canada, May, pp. 82–88.

33 Messmer, B.T. (1996) Efficient graph
matching algorithm for preprocessing
model graphs. Ph.D. thesis, University of
Bern, Switzerland.

34 Bunke, H. (1998) Error-tolerant Graph
Matching: A Formal Framework and Al-
gorithms. Proceedings of the Joint IAPR
International Workshops on Advances
in Pattern Recognition. Lecture Notes in
Computer Science, Vol. 1451, Springer,
Berlin.

35 Foggia, P., Sansone, C., Vento, M. (2001)
A performance comparison of five algo-
rithms for graph isomorphism. Proceed-
ings of the 3rd IAPR TC-15 Workshop on
Graph-based Representations in Pattern
Recognition, pp. 188–199.

36 Yan, X., Han, J. (2002) gspan: Graph-
based substructure pattern mining. Pro-
ceedings of ICDM, pp. 721–724.



References 293

37 Shasha, D., Wang, J.T.-L., Giugno, R.
(2002) Algorithmics and Applications of
Tree and Graph Searching. Proceedings of
PODS 2002, pp. 39–52.

38 Giugno, R., Shasha, D. (2002) Graphgrep:
A Fast and Universal Method for Query-
ing Graphs. Proceedings of ICPR 2002.

39 Ambauen, R., Fischer, S., Bunke, H.
(2003) Graph Edit Distance with Node
Splitting and Merging and Its Applica-
tion to Diatom Identification. IAPR-TC15
Workshop on Graph-based Representation
in Pattern Recognition. Lecture Notes in
Computer Science, Vol. 2726, Springer,
Berlin, pp. 95–106.

40 Yan, X., Yuz, P.S., Hany, J. (2004) Graph
Indexing: A Frequent Structure-based Ap-
proach. Proceedings of SIGMOD 2004,
pp. 335–346.

41 Cordella, L., Foggia, P., Sansone, C.,
Vento, M. (2004) A (sub)graph isomor-
phism algorithm for matching large
graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26 (10),
1367–1372.

42 Ketkar, N., Holder, L., Cook, D., Shah, R.
et al. (2005) Subdue: Compression-based
Frequent Pattern Discovery in Graph
Data. Proceedings of ACM KDD, 2005.

43 Borgwardt, K.M. (2007) GRAPH KER-
NELS. Ph.D. thesis in computer science,
Ludwig-Maximilians-University, Munich.

44 Sharan, R., Ideker, T. (2006) Modeling
cellular machinery through biological net-
work comparison. Nature Biotechnology, 24
(4), 427–433.

45 Vazirani, V.V. (2001) Approximation Algo-
rithms. Springer, Berlin.





295

12

Graph Structure Analysis and Computational Tractability

of Scheduling Problems
Sergey Sevastyanov and Alexander Kononov

12.1

Introduction

Scheduling theory is one of those mathematical disciplines that are focused
on real-life applications [1,2]. Its main feature is consideration and optimiza-
tion of various processes running in time. Basically we speak about discrete
mathematical models of those processes and discrete optimization problems tar-
geted to optimize some characteristics of those processes. Each such opti-
mization problem can be solved by different algorithms [3], but for real-life
applications it is essential that the algorithm be efficient in running time
and required memory [4]. Designing such algorithms is one of the main
objectives of discrete optimization in general and scheduling theory in par-
ticular [5, 6].

It is clear that nowadays the variety of processes organized to serve various
human demands is so huge that practically, to model those processes, one
has to involve the whole pool of mathematical tools and models. That is why
the main feature of scheduling theory is a huge variety of different models. It
would not be exaggerating to say that, practically, scheduling theory contains
the whole Discrete Mathematics inside. And one of the most popular tools
being explored in scheduling theory is the model of graph [7, 8].

Different types of graphs are used for convenient visualization of various
constraints imposed on feasible solutions. Normally, the more general the
type of graph that is used, the more time is required to verify those con-
straints specified by the graph. As a rule, the type of graph is characterized
by various numerical parameters. Specifying constraints on those parame-
ters, we can define different types of graphs, and the complexity of the cor-
responding optimization problem significantly depends on the way in which
those constraints are imposed. In this chapter we consider the Connected List
Coloring (CLC) problem – an interesting and relatively new graph theoretical
problem closely related to various practical problems arising in scheduling
and other areas of discrete optimization. Due to this “relationship”, many
questions formulated for scheduling problems can be reformulated in terms
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of graphs. And one of the most important questions concerns the complexity
status of the problem under investigation.

Our main target here is the complexity analysis of the CLC problem with
respect to four key parameters of a given input graph Ĝ (for a definition
we refer the reader to Section 12.4): the type of graph G (representing the
“left part” of graph Ĝ), ΔV, ΔV,C, and ΔC,V. We introduce an infinite fam-
ily CLC(X ) of CLC(x) problems defined for various 4-dimensional vectors
x ∈ X bounding from above the characteristic vector consisting of four key
parameters. Next we investigate how different combinations of constraints
on the key parameters affect the problem complexity. And despite the fact
that the family of problems under investigation is of infinite cardinality, we
have managed to obtain the whole picture of complexities of all its items,
due to a basis notion of the multiparametric complexity analysis – the notion
of a basis system of problems (Section 12.6). As we learn from Section 12.6,
such a basis system exists also for our infinite family CLC(X ), and it consists
of exactly eight problems considered in Section 12.5.

12.2

The Connected List Coloring Problem

The main objective of our paper is the following Connected List Coloring prob-
lem introduced by Vising in 1999 [9].

Suppose we are given a graph G = (V, E) and a finite set C of colors. A given
function A : V → 2C specifies for each vertex v ∈ V a subset A(v) ⊆ C of
admissible colors. Function A will be referred to as a prescription. Function
ρ : V → C is called a connected list coloring (CLC) of graph G, if ρ(v) ∈
A(v), ∀v ∈ V, and for each color i ∈ C the subset of all identically colored
vertices ρ–1(i) specifies a connected subgraph of G. (The subgraph defined
on the empty set of vertices is supposed to be connected.) Given an input I
of the CLC problem, we wish either to find a CLC or to prove that it does not
exist.

This problem is closely related to the problem of determining sufficient
conditions for the existence of a CLC for a given input I = (G, C, A). The main
question is: for which graphs and under which constraints on the lists of
admissible colors does the desired coloring exist? In [9] this question was
investigated from the viewpoint of constraints on the cardinality of lists. Let
Amin = minv∈V |A(v)| and Amax = maxv∈V |A(v)| be, respectively, the minimum
and maximum list cardinalities. Let α(G) be the least positive integer k such
that for any lists of admissible colors with Amin v k there exists a CLC.

Parameter α(G) is an important characteristic of graph G when G is in-
vestigated subject to the feasibility of its connected list coloring. A few sim-
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ple cases where this characteristic can be easily calculated are presented be-
low.

If G is a complete graph, then α(G) = 1. Indeed, even if the list of each
vertex consists of a single color, then the assigning of those unique colors
generates a feasible coloring, because any subset of vertices in the complete
graph is connected.

In the case that G is an n-vertex chain, α(G) = ! n
2". Finally, the maximum

value of α(G) among all connected n-vertex graphs G is attained on the star
and is equal to n–1. These two facts are corollaries of the equality α(G) = ε(G),
proved in [9] for an arbitrary bipartite graph G, where ε(G) is the independence
number of graph G, that is, the cardinality of the maximal pairwise disjoint
subset of vertices in G. It is also clear that the maximum of α(G) over all n-
vertex graphs is equal to n and is attained on graph G consisting of n isolated
vertices. For some other classes of graphs the question of calculating the
function α(G) (or estimating it when its exact calculating is not tractable)
may also be of interest. Some properties and bounds on the parameter α(G)
in terms of other characteristics of graph G were obtained in [9]. It would be
natural to assume that calculating the parameter α(G) for an arbitrary graph
G must be NP-hard, but this question remains open.

The main target of the current paper is another algorithmic problem re-
solving the question: given a graph G and a prescription A, does there ex-
ist a CLC for vertices of graph G? It is not difficult to invent an infeasible
instance of this problem by means of vertices with unique colors in their
prescriptions (i.e., vertices {v} having A(v) = 1), thereby enforcing a discon-
nected coloring. A less trivial instance with A(v) > 1, ∀ v ∈ V, is presented
in Figure 12.1. Clearly, there exist different proofs that no CLC exists for this
particular instance. One such proof is presented below.

Suppose that a feasible CLC exists. First observe that the prescription of
vertex v1 does not contain the stripy color. This means that the coloring of
either the left or the right part of graph G cannot use the stripy color. Let it
be the right part (due to the symmetry of graph G). This implies that vertices
v3 and v4 must be black and, thus, must be connected in a black-colored

v1

v2

v3

v4

G

Figure 12.1 An infeasible instance of the CLC problem.
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subgraph Gbl. Due to the structure of graph G, vertex v2 must belong to Gbl;
but v2 has no black in its prescription – a contradiction.

It becomes rather clear from this example that the problem of checking
the existence of a feasible CLC for a given input (G, C, A) is nontrivial and,
probably, computationally hard (in terms of complexity theory, it must be
NP-complete). Vising made a stronger supposition that it is NP-complete
even if G is a simple chain. Indeed, as can be seen from the results of our
paper, this supposition proved to be true. Moreover, in Section 12.5 a detailed
complexity analysis of this problem with respect to various combinations of
constraints on four main parameters of this problem is presented.

12.3

Some Practical Problems Reducible to the CLC Problem

In fact, the CLC problem, while having an independent theoretical interest, is
nothing but a convenient mathematical model for presenting various prac-
tical problems arising in real-life situations. A few such situations are pre-
sented below as discrete optimization problems originating from different
areas of human activity.

12.3.1

The Problem of Connected Service Areas

The CLC problem may have the following interpretation. The set of vertices
of graph G is the set of clients consuming some resource or service. (Some
vertices may correspond to dummy clients.) To each client v ∈ V we need to
assign a unique provider ρ(v) ∈ C from a prespecified list A(v) of admissible
providers. At that, the connectivity of the service area for each provider is
often required.

This problem is closely related to the optimization Plant Location Problem
(PLP, or PL problem) in which, instead of a prespecified set of providers A(v),
we define a cost gi,v of serving client v by provider i. The objective is to find
the assignment ρ : V→ C that minimizes the function

Φ(ρ) =
∑
i∈C

gi(ρ) +
∑
v∈V

gρ(v),v , (12.1)

where gi(ρ) is the cost of using client i in the assignment ρ; it is equal to g0
i if

ρ–1(i) =/ ∅, and to zero otherwise.
It can be seen that for each input I = (G, C, A) of the CLC problem we can

define an input of the PL problem such that Φ(ρ) is finite if and only if ρ is
feasible with respect to prespecified lists A(v). To that end, it is sufficient to
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define the matrix (gi,v) as

gi,v =
{

0, i ∈ A(v)
∞, i �∈ A(v) .

(12.2)

Although the connectivity property is not among the direct requirements
of the problem, sometimes it is possible to show that for matrices satisfying
certain conditions there always exists an optimal solution of the PLP in which
the serving area of each provider is connected (we say that such a solution is
connected). One such condition was found by Gimadi [10]. In view of these
results, Ageev [11] defined (for any given graph G and a set C of providers) the
class Con(G, C) of all matrices (gi,v) such that for any vector (g0

1, . . . , g0
|V|) there

exists an optimal solution of the PLP that is connected. Next he introduced
the function

Ω(ρ) =
∑
i∈C

g0
i h (ρ–1(i)) +

∑
v∈V

gρ(v),v , (12.3)

where h(X) is the number of connected components of the subgraph based
on a subset of vertices X ⊆ V. Let PLP’ denote the problem of minimization
of the function Ω(ρ). Ageev proved the following lemma.

Lemma 12.1 (Ageev, 1992) If matrix (gi,v) belongs to class Con(G, C), then, given
a vector (g0

1, . . . , g0
|V|), the solution of PLP’ provides a connected solution to the PL

problem.

Lemma 12.1 enables one to obtain connected solutions for the PL problem
without requiring directly the connectivity property for feasible solutions.
Unfortunately, in the case of the CLC problem matrix (gi,v) (defined by Equa-
tion 12.2) does not belong to the class Con(G, C). (To be exact, we cannot say
that it belongs to Con(G, C) for every graph G.) Indeed, let graph G be a chain
consisting of three vertices: v1 → v2 → v3; the set of providers consists of two
elements: C = {1, 2}; matrix (gi,v) is defined according to

(gi,v) =
(

0 ∞ 0
∞ 0 ∞

)
.

Let us consider the vector (g0
1, . . . , g0

|V|) = (1, . . . , 1). It can be seen that the
solution ρ that minimizes Φ(ρ) determines a disconnected solution in which
vertices v1 and v3 receive provider 1, while v2 receives provider 2.

Thus, for solving the CLC problem we cannot take advantage of
Lemma 12.1 and the solution obtained by minimization of the function
Ω(ρ). Instead, we introduce another, but similar, function:

Ω ′(ρ) = max
i∈C

h(ρ–1(i)) +
∑
v∈V

gρ(v),v . (12.4)
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We can establish the following:

Lemma 12.2 Given a triple (G, C, A) defining an input of the CLC problem, a con-
nected solution for the CLC problem exists, iff for the assignment ρ∗ minimizing
the function Ω ′(ρ) defined by (12.4) we have Ω ′(ρ∗) = 1.

Lemma 12.2 enables one to apply the complexity results obtained in Sec-
tion 12.5 to the problem of minimization of function Ω ′(ρ).

12.3.2

No-Idle Scheduling on Parallel Machines

For the CLC problem on a chain (which is NP-complete, as will be shown in
Section 12.5.2) there exist some other practical interpretations belonging to
the area of scheduling theory. One such practical problem arising on parallel
machines is presented below.

PM Problem. There are m parallel machines and one job consisting of n
successive unit-length operations. Each operation can be processed on any
machine. For each machine a family of time intervals is specified when the
machine is available. The question is: does there exist a feasible schedule for
processing the job on those machines such that each machine works without
idle time and the job is processed without waiting time?

First we show that the CLC problem defined on a family of chains can be
reduced to a CLC problem on a single chain. The latter will then be polyno-
mially reduced to the PM problem.

Suppose that we are given a graph G = (V, E) that is a family of l chains. We
connect them to a single chain G ′ = (V ′, E ′) by adding l – 1 intermediate ver-
tices {w1, . . . , wl–1} to set V and by connecting each vertex wj(j = 1, . . . , l – 1)
with the end-vertex of the jth chain and the begin-vertex of the (j + 1)th chain.
The prescription of vertex wj is defined to consist of a single color uj that does
not belong to any other prescription. (The “extended” set of colors is denoted
by C ′.) It can be seen that a CLC exists for graph G ′ if and only if it exists for
graph G.

Let us consecutively number the vertices of chain G ′ from left to right by
numbers from 1 to n′ = n + l – 1. Note that a subset of vertices Ṽ ⊆ V ′

constitutes a connected area in graph G ′ iff their numbers constitute a con-
nected interval of integers. To each color i ∈ C ′ we assign a machine Mi.
No machine is available outside the time interval [0, n′]; in addition, machine
Mi, i ∈ C ′, is available in the kth unit length interval [k – 1, k] iff i ∈ A(vk).
There is also a job consisting of n′ unit-length operations. (Thus, we have to
process this job continuously within the time interval [0, n′].) At that, each
machine Mi should work without idle time.
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Evidently, a feasible schedule for the PM problem exists iff there exists
a connected list coloring for the given instance of the CLC problem.

Interval Edge Coloring Problem. It should be noted that the requirement for
a mutual “idleness” of jobs and machines in a feasible schedule already oc-
curred in some scheduling settings known in the literature (at least in open
shop problems). For example, such an open shop problem with a simultane-
ous no-idle requirement for machines and a no-wait requirement for jobs and
with unit execution times of operations was considered in [12]. Afterwards,
a real-life interpretation of this problem was presented in [13], where a mu-
tually convenient schedule for consultations of parents with college teachers
was the main target of the problem.

In [12] it was shown that the problem could be formulated in terms of
a proper interval edge coloring of a bipartite graph.1) Clearly, such an in-
terval edge coloring problem can be formulated for arbitrary graphs. In
this general form the problem represents a special case of the well-known
“2-DIMENSIONAL CONSECUTIVE SETS” problem (see Garey and John-
son [4] [SR 19], p. 230), which is nothing but an interval edge coloring problem
for hypergraphs. The latter was proved to be NP-complete in [14], while the NP-
completeness of its special case (interval edge coloring of ordinary graphs)
was proved in [12]. As for the problem on bipartite graphs, Asratyan and
Kamalyan [12] conjectured that the desired coloring exists for every bipartite
graph. The conjecture was partly confirmed by Kamalyan [15], who proved
that the desired interval coloring always exists for complete bipartite graphs
and trees (representing somewhat “opposite” cases of an arbitrary graph –
the “maximal” and the “minimal” connected graphs defined on a given set
of vertices). However, the question concerning arbitrary bipartite graphs re-
mained open until a counterexample to Asratyan and Kamalyan’s conjecture
was presented in [16]. In the same paper, the NP-completeness of the prob-
lem for arbitrary bipartite graphs was proved.

12.3.3

Scheduling of Unit Jobs on a p-Batch Machine

Let us formulate the following batch machine scheduling problem (BMS prob-
lem). A machine is called a batch machine if it can process several jobs at
a time, assuming them to be a single job J ′. The processing time p′ of this
job is defined by a certain formula via processing times {pj} of its compo-

1) We remind the reader that a coloring of vertices (edges) is called
a proper coloring if adjacent vertices (edges) receive different colors.
In this sense the above-defined connected coloring of vertices is
definitely “improper.” Edge coloring is called an interval one if
for any given vertex the set of colors used for coloring its incident
edges represents an interval of integers.
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nents. If p′ = max pj (as if supposing that the components are processed on
that machine in parallel), then the machine is called a p-batch machine.

A time interval Bt = [t, t + 1] defined for an integral t v 0 will be referred to
as a basic interval; B = {Bt | t = 0, 1, . . .}.

Given a set J of unit-length jobs, an integral schedule is an assignment of
jobs from J to basic intervals from B.

BMS Problem

Instance: There is a finite set J = {J1, . . . , Jn} of n unit-length jobs that have
to be processed on a single p-batch machine. Each job Jj ∈ J is available for
processing in one of the basic intervals from a prespecified list Aj ⊆ B.

On the set of jobs a relationship is specified by a graph G = (J , E) with
the set of vertices J . Two jobs Ji, Jj ∈ J are said to be relatives iff (Ji, Jj) ∈ E.
A subset of jobs J ′ ⊆ J is G-connected if the subgraph G ′ = G|J ′ defined
on the subset of vertices J ′ is connected. A partition of jobs into batches is
G-connected if each batch is G-connected.

A schedule for jobs in J is feasible if it is feasible with respect to lists {Aj}
of basic intervals and if it generates a partition of jobs into batches that is
G-connected for a given graph G.

Question: Does there exist a feasible integral schedule for jobs in J ?

It can be easily seen that the BMS problem is reducible to the CLC prob-
lem in which jobs remain vertices of graph G, while basic intervals become
colors. Clearly, a desired schedule exists for a given instance of the BMS prob-
lem iff there exists a connected list coloring for the corresponding instance
of the CLC problem.

12.4

A Parameterized Class of Subproblems of the CLC Problem

To perform the complexity analysis of the CLC problem, it is convenient to
represent its input in the form of graph Ĝ = (V, C; E, EA) depicted in Fig-
ure 12.2. The set of vertices of this graph consists of two parts: V and C; set V
will be referred to as the left part of graph Ĝ, while C will be called the right
part. The set of edges will also consist of two parts: E and EA; the edges from
E connect vertices in the left part, while the edges from EA connect parts V
and C (i.e., constitute a bipartite subgraph of Ĝ); an edge (v, i) belongs to EA

iff i ∈ A(v) (i.e., color i is admissible for vertex v).
The complexity of this problem will depend significantly on four parame-

ters of graph Ĝ: T, ΔV, ΔV,C, ΔC,V.
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V C

G

A

Figure 12.2 Graph bG defining an example of the CLC
problem.

The first parameter T defines the type of graph G. We will distinguish be-
tween two types of graphs, depending on whether G is acyclic or not. Re-
spectively, T will take only two values: 0 and∞; T = 0 denotes the case of an
acyclic graph G; otherwise T =∞.

The second parameter ΔV denotes the maximum vertex degree of graph G
(where we take into account only the edges from V to V).

The third parameter ΔV,C denotes the maximum vertex degree in V with
respect to edges from EA. It corresponds to the maximum cardinality of
lists A(v).

Finally, the fourth parameter ΔC,V denotes the maximum vertex degree
in C with respect to edges from EA. It shows the number of vertices from V
for which a given color i ∈ C is admissible (at maximum).

We will impose upper bounds on these parameters and analyze how the
complexity of the resulting subproblem changes under various combina-
tions of those constraints. Each such combination will be specified by a 4-
dimensional vector x = (x1, x2, x3, x4), where x1 ∈ {0,∞} and x2, x3, x4 ∈
{0, 1, . . . ,∞}. The value xi = ∞ will mean that the ith parameter is not re-
stricted. The set of all possible values of vector x will be denoted by X .

Clearly, each vector x = (x1, x2, x3, x4) ∈ X uniquely defines a CLC(x)
problem based on the set of inputs

I(x) = {Ĝ |T u x1, ΔV u x2, ΔV,C u x3, ΔC,V u x4} .

Thus, we defined an infinite class of problems CLC(X ) = {CLC(x)| x ∈ X},
each being a subproblem of the original CLC problem. (The latter is also
contained in CLC(X ). It corresponds to the subproblem CLC(∞,∞,∞,∞).)

In the next section we will consider eight problems from CLC(X ) and per-
form their complexity analysis.
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12.5

Complexities of Eight Representatives of Class CLC(X )

In this section eight specific subproblems of the CLC problem belonging to
class CLC(X ) will be analyzed in light of their complexity. As will be shown,
three of them are NP-complete, thereby confirming the NP-completeness of
the original CLC problem. For the other five subproblems polynomial-time
algorithms will be presented solving those special cases to the optimum.
At first glance, the selection of these eight representatives of class CLC(X )
seems random. But this is not the case, as we will see in Section 12.6.

12.5.1

Three NP-Complete Subproblems

In this section it will be shown that three subproblems CLC(x6), CLC(x7),
and CLC(x8) defined for x6 = (0, 1, 3, 3), x7 = (0, 4, 2, 3), x8 = (0, 3, 2, 4) are
NP-complete. Sample instances of these three subproblems are shown in
Figures 12.3 to 12.5.

Figure 12.3 A sample instance of the CLC(0, 1, 3, 3) problem (NP-complete).

Figure 12.4 A sample instance of the CLC(0, 4, 2, 3) problem (NP-complete).

Figure 12.5 A sample instance of the CLC(0, 3, 2, 4) problem (NP-complete).
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In the proof of NP-completeness of each subproblem the following NP-
complete problem is used.

3-SAT Problem

Instance: A finite family of Boolean variables z1, . . . , zn and a family of clauses
C1, . . . , Cm each consisting of at most tree literals, that is, either Boolean
variables zi or their negations.

Question: Do there exist values of variables zi such that each clause contains
at least one true variable?

Theorem 12.1 The CLC(0, 1, 3, 3) problem is NP-complete.

Theorem 12.2 The CLC(0, 4, 2, 3) problem is NP-complete.

Theorem 12.3 The CLC(0, 3, 2, 4) problem is NP-complete.

(Detailed proofs of these theorems can be found in [17].)

12.5.2

Five Polynomial-Time Solvable Subproblems

Once some subproblems of the CLC problem turned out to be NP-complete,
this immediately implied NP-completeness of the original CLC problem.
Moreover, the problem remains NP-complete even if graph G is a single
chain, as directly follows from Theorem 12.1 and the reduction (from the
case with a family of chains to the case with a single chain) presented in Sec-
tion 12.3.2. Thus, we have proved that Vising’s conjecture on the complexity
of the chain-based CLC problem is true.

NP-completeness of this problem in its general form makes relevant the
search for its most representative polynomial-time solvable subproblems.
In this section we will get acquainted with five such subproblems, as well
as with polynomial-time algorithms for their solution. Thus there are five
CLC(xi) problems (i = 1, . . . , 5) from CLC(X ) that are polynomial-time solv-
able for the following vectors xi ∈ X :

x1 = (∞, 0,∞,∞) ,

x2 = (∞,∞,∞, 2) ,

x3 = (∞,∞, 1,∞) ,

x4 = (∞, 2, 2,∞) ,

x5 = (∞, 3, 2, 3) .

Sample instances of these subproblems (except the CLC(x3) problem, which
is trivial) are shown in Figures 12.6–12.9.
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Figure 12.6 A sample instance of the CLC(∞, 0,∞,∞) problem (polynomially solvable).

{

{

{

,...

,...

,...

Figure 12.7 A sample instance of the CLC(∞,∞,∞, 2) problem (polynomially solvable).

Figure 12.8 A sample instance of the CLC(∞, 2, 2,∞) problem (polynomially solvable).

Figure 12.9 A sample instance of the CLC(∞, 3, 2, 3) problem (polynomially solvable).

Theorem 12.4 The CLC(∞, 0,∞,∞) problem is solvable in polynomial time.

Proof. For any instance of the CLC(∞, 0,∞,∞) problem all vertices of
graph G belong to different connected components. Therefore, they must
be colored in pairwise different colors. Thus, the CLC problem reduces to
maximum matching problem in the bipartite graph G = (V, C; EA). If the
maximum matching found in that problem covers all vertices in V, this
provides a solution for the CLC problem. Otherwise, the desired solution
does not exist. Once the maximum matching problem in bipartite graphs is
polynomial-time solvable ([18]), the CLC(∞, 0,∞,∞) problem is also solv-
able in the same running time.
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Theorem 12.5 The CLC(∞,∞,∞, 2) problem is solvable in polynomial time.

Proof. Let us describe algorithm A2 for solving this problem. To that end,
a variable graph Ĝ ′ = (V ′, C ′; E ′, E ′A) will be used initially coinciding with
graph Ĝ = (V, C; E, EA) defined in Section 12.4. Graph Ĝ ′ will undergo
changes while running algorithm A2.

AlgorithmA2 is divided into two stages. The first stage consists of m = |C|
steps, and each step is dedicated to its own color i ∈ C. Without loss of gen-
erality we may assume that step i = 1, . . . , m deals with color i.

Step i (i = 1, . . . , m). If the area O′i = {v ∈ V ′ | i ∈ A(v)} is connected, then all
vertices v ∈ O′i receive color i and are removed from graph Ĝ ′, while color i
is removed from the right part C ′ of graph Ĝ ′.

At the second stage the remaining vertices v ∈ V ′ are colored in pairwise
different (remaining) colors i ∈ C ′, as we did in the proof of Theorem 12.4
(i.e., applying the maximum matching algorithm).

Clearly, the algorithm just described is polynomial in time. Let us show
that it finds a feasible coloring for the CLC problem, if such coloring exists.

Let ρ : V→ C be a feasible coloring of graph G, and let Ĝi = (Vi, Ci; Ei, Ei
A)

denote the state of graph Ĝ ′ at the completion of step i, where Ĝ0 = Ĝ. The
desired property of algorithm A2 will follow from several propositions.

Proposition 12.1 The feasible coloring of vertices of the set O′i = {v ∈ V ′ | i ∈
A(v)} in color i attained at one of the steps of the algorithm A2 cannot be violated
in the subsequent steps.

Proof. Indeed, the connectivity of the area ρ–1(i) attained at one of the steps
of the algorithm can, theoretically, be violated in the subsequent steps in two
cases:

(a) as a result of eliminating some vertices from the area ρ–1(i);
(b) as a result of coloring new vertices in color i.

Yet case (a) is impossible because just colored vertices are immediately
eliminated from graph Ĝ ′ (thereby preventing their further recoloring),
while case (b) is impossible due to the deletion of color i from set C ′ right
after the first time we used it.

Proposition 12.2 Let Ĝ = (V, C; E, EA) be an instance of a CLC(x) problem with
x4 u 2, and let an instance Ĝ ′ = (V ′, C ′; E ′, E ′A) be obtained from Ĝ by deleting
a subset C ′′ ⊆ C of colors together with the subset of vertices ∪i∈C ′′Oi (where
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Oi = {v ∈ V | i ∈ A(v)}) and together with all incident edges. Let a feasible
coloring ρ : V→ C exist for the instance Ĝ. Then the restriction ρ|V ′ of coloring ρ
to the set of vertices V ′ is a feasible coloring for the instance Ĝ ′.

Proof. First let us make sure that ρ(v) ∈ C ′, ∀ v ∈ V ′. If we suppose the
contrary (that ρ(v) �∈ C ′ for some vertex v ∈ V ′), this would mean that color
i = ρ(v) was deleted from C. But in this case, together with color i, the whole
area Oi was deleted from set V, including vertex v, which would mean that
v �∈ V ′ – a contradiction.

Next it should be ascertained that the area ρ–1(i) remains connected in V ′

for each color i ∈ C ′. Again, as in the proof of Proposition 12.1, case (b)
is impossible. Case (a), in principle, is possible, but not for instances of the
CLC(x) problem with x4 u 2. Indeed, since the area ρ–1(i) in such instances
contains at most two vertices, a deletion of any number of vertices from it
remains the area connected.

Thus, coloring ρ on the remaining set of vertices V ′ remains feasible for
the instance Ĝ ′.

As a direct corollary, we have the following proposition.

Proposition 12.3 Let a feasible coloring ρ : V → C exist for the instance Ĝ. Then
there exists a feasible coloring for Ĝm = (Vm, Cm; Em, Em

A ) – the instance obtained
from Ĝ by the completion of the first stage of algorithm A2.

Still we need a proof for the following proposition.

Proposition 12.4 No feasible coloring for Ĝm = (Vm, Cm; Em, Em
A ) may have two

identically colored vertices.

Proof. Suppose the contrary, that is, two vertices v1, v2 ∈ Vm received the
same color i in a feasible coloring ρ : Vm → Cm. This means that both
vertices belong to ρ–1(i). Let Oi = {v ∈ V | i ∈ A(v)} and O′i = {v ∈ Vm | i ∈
A(v)}. Clearly, O′i ⊆ Oi, and due to the relations

2 u |ρ–1(i)| u |O′i| u |Oi| u x4 = 2 ,

we may conclude that ρ–1(i) = O′i = Oi = {v1, v2}.
Since the area ρ–1(i) must be connected, this means that vertices v1 and

v2 are adjacent. Therefore, the area Oi is also connected while considering
color i at the corresponding step of the first stage, and by the description
of algorithm A2 both vertices v1, v2 must be deleted from the set of vertices
immediately after their coloring. Thus, they cannot be presented in the set
Vm. The contradiction completes the proof of the proposition.

As a corollary, we have the following proposition.
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Proposition 12.5 Let a feasible coloring ρ : V → C exist for the instance Ĝ. Then
for the instance Ĝm = (Vm, Cm; Em, Em

A ) obtained from Ĝ by the completion of
the first stage of algorithm A2 there exists a feasible coloring in pairwise different
colors.

As we know, in the case where such a coloring exists, it can be found at the
second stage of algorithmA2 by applying the maximum matching algorithm.
Thus, in view of Proposition 12.1, we may conclude that a feasible coloring
is found for the whole set of vertices V. Theorem 12.5 is proved.

Theorem 12.6 The CLC(∞,∞, 1,∞) problem is solvable in polynomial time.

Proof. Since the list A(v) for each vertex v contains a single color, the coloring
ρ feasible with respect to the prescription A is uniquely defined. To check the
connectivity of this coloring, it is sufficient to ascertain for each color i ∈ C
that the area Oi = {v ∈ V | i ∈ A(v)} is connected. Clearly, this can be done in
polynomial time.

To prove the polynomial solvability of the next two subproblems, we need
to introduce new notions.

Definition 12.1 A function μ : V→ 2C assigning to each vertex v ∈ G a subset
of colors μ(v) ⊆ C will be referred to as a labeling, while μ(v) is the label of
vertex v. The set of vertices μ–1(i) = {v ∈ V | i ∈ μ(v)} will be called an area
of labeling with color i. A labeling μ is called a connected list labeling (CLL) of
vertices of graph G = (V, E) if it meets the following conditions.

• μ(v) =/ ∅, v ∈ V ;
• μ(v) ⊆ A(v), v ∈ V ;
• for each color i ∈ C the area μ–1(i) is connected in G.

A labeling μ that meets the above requirements will also be called feasible
with respect to a given input I = (G, C, A).

It is clear that any connected list coloring is a special case of CLL when
we assign to each vertex a one-element subset of colors. Thus, the existence
of CLC for a given input I implies the existence of CLL for that input. The
converse is not true, in general.

In the CLL problem we need to design an algorithm that for any given
input I either finds its CLL or establishes the nonexistence of such labeling.

Theorem 12.7 Any CLL(x) problem with x3 u 2 (which is thus defined on the set
of inputs I = (G, C, A) with Amax u 2) is solvable in time O(nu) if graph G has n
vertices and u edges.
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Proof. To solve the CLL problem, we designed an algorithm Aμ(I) con-
sisting of the initialization stage and a loop of the form repeat. . . until
false. The algorithm will use Boolean variables TENLAB and SUCCESS.
TENLAB = true will mean that a tentative labeling is applied that allows its
cancellation in the future; SUCCESS=true will mean that the desired CLL is
found.

Let W denote the set of pairs (V ′, A ′) such that V ′ ⊆ V; A ′ : V ′ →
2C; A ′(v) ⊆ A(v), v ∈ V ′. We will say that (V ′, A ′) ∈ W is less than the pair
(V ′′, A ′′) ∈ W if V ′ ⊆ V ′′ and A ′(v) ⊆ A ′′(v) for every vertex v ∈ V ′. If,
when that happens, at least one inclusion is strict, we say that pair (V ′, A ′) is
strictly less than (V ′′, A ′′).

The labeling procedure will deal with two variables: a current set of non-
labeled vertices VT and a current prescription AT; at each moment the pair
(VT, AT) will take a value fromW .

Algorithm Aμ(I )

Initialization
Set (VT, AT) := (V, A); TENLAB := false; SUCCESS := false .
It follows from Amax u 2 that the list A(v) of vertices v ∈ V consists of at most
two colors. We scan the set VT and form two lists V0 and V1, where Vi is the
list of vertices v ∈ VT with |AT(v)| = i. Then we define the initial labeling:
μT(v) = ∅ (v ∈ V).

Loop
At each iteration of the loop the following five conditions are verified, and
corresponding actions are performed.

Condition 1. If VT = ∅, then {SUCCESS := true; stop} (CLL is found).

Condition 2. If V0 = ∅ and V1 = ∅, then do
Action 2 (starting on a tentative labeling)
TENLAB:=true; (Ṽ, Ã) := (VT, AT); μ̃ := μT (the original value of (VT, AT) and
the labeling μT are stored prior to commencing the tentative labeling); a ver-
tex ṽ ∈ VT and a color ĩ ∈ AT (̃v) are chosen and the routine ExpandColor (̃v, ĩ)
is applied.

Condition 3. If V0 = ∅ and V1 =/ ∅, then do
Action 3
Take an arbitrary vertex v′ ∈ V1 and apply routine ExpandColor (v′, i′) with
the uniquely defined color i′ ∈ AT(v′).

Condition 4. If V0 =/ ∅ and TENLAB=true , then do
Action 4 (cancellation of the tentative labeling)
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TENLAB:=false ; (VT, AT) := (Ṽ, Ã); μT := μ̃; V0 := ∅; V1 := ∅. Choose a color
i′′ ∈ AT(̃v) different from ĩ and apply the routine ExpandColor (̃v, i′′).

Condition 5. If V0 =/ ∅ and TENLAB=false , then { Print: “No feasible labeling
exists”; stop}.
END of the Loop

Routine ExpandColor (v′, i′)
Find the maximum connected subarea O′ of the area Oi′ containing the ver-
tex v′; all vertices in O′ are labeled with color i′ and are deleted from VT

and V1. The remaining vertices v ∈ VT are looked through: if i′ ∈ AT(v),
then
{color i′ is deleted from AT(v), and vertex v is added to the list V|AT(v)|}.
END of the routine ExpandColor.

The description of algorithm Aμ(I) is completed.

Let us show that algorithm Aμ runs in polynomial time. Besides, if there
exists a CLL in graph G, then algorithm Aμ terminates with the value
SUCCESS=true, and the resulting labeling μ(v) (defined for all vertices v ∈ V,
since the condition V ′ = ∅ is valid) is feasible.

The totality of actions of algorithm Aμ prior to the first implementation of
Action 2, the one between two successive implementations of Action 2 (from
the beginning of the first one to the beginning of the next one), and the one
after starting the last implementation will be called the beginning round, the
intermediate round, and the ending round, respectively. The vertex ṽ and the
color ĩ chosen at Action 2 of the current round will be referred to as the initial
vertex and the initial color of the round.

To prove the finiteness of the algorithm, we first observe that at each iter-
ation of the loop at least one of those five conditions is satisfied. The validity
of Conditions 1 and 5 implies termination of the algorithm. The validity of
the remaining three conditions implies performance of the actions, at which
point the current pair (VT, AT) strictly decreases. The only exception is Ac-
tion 4, at the completion of which we return to the initial value (VT, AT) of
the current round. Yet it is clear that between two implementations of Ac-
tion 4 Boolean variable TENLAB should change its value from false to true.
To that end, Action 2 must be performed. As follows from the definition of
the round, Action 4 is performed in each round at most once.

Since right after Action 2 or 4 we have to perform Action 3 (in which the
current set VT decreases by at least one vertex), the assignment of the value
(Ṽ, Ã) := (VT, AT) at each implementation of Action 2 generates the set Ṽ
with a smaller number of vertices. This implies that the algorithm consists
of at most n rounds.
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Action 3 may be performed in a round many times. Yet since at each im-
plementation of this action at least one vertex is being labeled and deleted
from VT, we may conclude that in each round Action 3 is being performed
at most 2n times. By means of the lists of incident edges specified for each
vertex, and using the lists of vertices Oi (i ∈ C), we can implement the algo-
rithm Aμ so that the running time of each round will not exceed O(u) and
the overall bound on the running time of the algorithm Aμ will be O(nu),
where u is the number of edges in graph G.

Now suppose that for a given instance I there exists a feasible labeling μ.
Let us prove that the labeling μA found by algorithm Aμ is feasible.

The feasibility of μA with respect to connectivity and prescriptions is evi-
dent. It remains to prove that the final labeling μA is complete. To that end,
it is sufficient to make certain that the algorithm terminates at Condition 1
(when VT = ∅, that is, when all vertices are labeled).

Suppose the contrary, that is, that in some round (called final) the algo-
rithm terminates at Condition 5. We will show that this supposition contra-
dicts the supposition made above on the existence of CLL for input I.

Input I is called CLL-positive if it admits a CLL. Otherwise, it is CLL-
negative.

Next we will prove three auxiliary statements.

Proposition 12.6 Let A ′ and A ′′ be the values of the prescription AT prior to and
after the implementation of the routine ExpandColor (v′, i′). Let there exist a fea-
sible labeling μ for the input I ′ = (G, C, A ′), and color i′ is used in the label μ(v′).
Then the labeling μ is feasible for the input I ′′ = (G, C, A ′′).

Proof. Since while processing this routine we expand label i′ to the maximal
connected area O′ ⊆ Oi′ containing vertex v′, we may assert that none of
the vertices v �∈ O′ is labeled with color i′ in labeling μ (because there is no
connected area O′′ ⊆ Oi′ that would include both vertex v′ and vertex v at
the same time). Hence, the removal of color i′ from the list A(v) of each such
vertex v �∈ O′ does not violate the feasibility of the labeling μ, which implies
that μ is feasible with respect to input I ′′.

Proposition 12.7 Let (V ′, A ′) and (V ′′, A ′′) be the values of the pair (VT, AT) at
the beginning and at the end of some intermediate round, respectively, and let the
input I ′ = (G, C, A ′) be CLL-positive. Then the input I ′′ = (G, C, A ′′) is also
CLL-positive.

Proof. Let μ be a CLL for input I ′, and let μA be the labeling obtained by the
algorithm by the completion of the intermediate round. Then we can accept-
ably extend the labeling μA to the vertices in V ′′. Indeed, since at the com-
pletion of the intermediate round we have V0 = ∅, V1 = ∅, we may conclude
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that none of the colors i ∈ A(v) prescribed to vertices v ∈ V ′′ was removed
while processing the algorithm Aμ. This means that those colors have not
been used in the labeling μA yet, and therefore no color i ∈ A(v) (v ∈ V ′′)
has been removed from the lists of the remaining vertices v ∈ V. Thus, by
assigning the colors i ∈ A(v) (v ∈ V ′′) to the same sets of vertices as in the
feasible labeling μ, we thereby acceptably extend the labeling μA to the set of
vertices V ′′. The proposition is proved.

Proposition 12.8 Let Action 4 be implemented in the current round of the algo-
rithm Aμ, and let A ′, A ′′ be the values of AT at the beginning and at the end of
the current round, respectively. Let the input I ′ = (G, C, A ′) be CLL-positive. Then
the input I ′′ = (G, C, A ′′) is also CLL-positive.

Proof. Let μ be a feasible labeling of input I ′, and let ṽ and ĩ be, respectively,
the vertex and the color chosen to be initial in the current round of the al-
gorithm Aμ. Suppose that color ĩ is used in the label μ(̃v). Then, by Proposi-
tion 12.6, labeling μ is also feasible for the input I1 = (G, C, A1) obtained by
the time of the completion of Action 2. If for that input I1 we have V1 =/ ∅, and
at the next Action 3 vertex v′ ∈ V1 is chosen, then, clearly, the only color i′ ∈
A1(v′) is used in the label μ(v′). Hence, by Proposition 12.6, labeling μ also
remains feasible for the input obtained by the completion of Action 3. The
subsequent series of performances of Action 3 also results in a CLL-positive
input and cannot be completed with the condition V0 = ∅ (i.e., with a CLL-
negative input). But this contradicts the fact that Action 4 is implemented in
the current round. Therefore, our supposition that color ĩ is used in the label
μ(̃v) of a feasible labeling μ was wrong. But this immediately implies that the
second color from A(̃v) is used for sure in the label μ(̃v), and hence Action 4
and the subsequent series of performances of Action 3 of the current round
terminates with a CLL-positive input. The proposition is proved.

Let us proceed with the proof of Theorem 12.7. Since by the above as-
sumption input I is CLL-positive, this implies that, due to Proposition 12.6,
the series of Action 3 performed in the initial round preserves the CLL-
positiveness of the current input. CLL-positiveness is also preserved during
the subsequent intermediate rounds, due to Proposition 12.7. Finally, since
we assumed that the algorithm terminates its work with Condition 5, this im-
plies that the final round performs Action 4. Therefore, by Proposition 12.8,
the final round also generates a CLL-positive input. On the other hand, an
input produced by the algorithm with termination by Condition 5 contains
a vertex with an empty list and, thus, cannot possess a CLL. The contra-
diction shows that if the initial input I admits CLL, then the algorithm Aμ

cannot terminate its work by Condition 5, and hence it has to find a feasible
labeling for input I. Theorem 12.7 is proved.
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The next lemma establishes a strong connection between CLLs and con-
nected list colorings for inputs I ∈ I(x4).

Lemma 12.3 For a given input I ∈ I(x4) (where x4 = (∞, 2, 2,∞)) there exists
a CLL iff there exists a CLC. There is an algorithm with running time O(n) which,
given an input I ∈ I(x4) and his CLL, finds its CLC.

Proof. To transform a CLL μ to a CLC ρ, it is sufficient to eliminate the double
labeling of some vertices v ∈ V, while retaining in the label μ(v) a single color
for each vertex. For the inputs I ∈ I(x4) such a transformation of a CLL μ to
a CLC ρ can be performed by the algorithm A4

μ,ρ(I) described below.
Let us note that for each input I = (G, C, A) ∈ I(x4) the degree of each ver-

tex in graph G is at most 2; therefore, each connected component of graph G
represents either a simple chain or a cycle. Thus, we can successively visit all
vertices of a connected component in one of two possible directions. Since
the area μ–1(i) of vertices labeled by color i ∈ C is connected, we may con-
clude that for the class of inputs under consideration this area also represents
a chain or a cycle. The intersection of two such areas (for two different col-
ors i′ and i′′) is also a cycle, a chain, or a couple of chains. (The last case
occurs when each of the areas μ–1(i′), μ–1(i′′) is a chain, they are contained
in the same cyclic component, and the chains μ–1(i′), μ–1(i′′) cover the whole
connected component, while overlapping at their end fragments.)

Algorithm A4
μ,ρ(I )

In the algorithm we will use three different procedures of scanning the ver-
tices that will be referred to as scanning 1, scanning 2, and scanning 3. Scan-
ning 1 is an outer loop on graph vertices, inside of which scanning 2 and
scanning 3 are called.

Scanning 1. The vertices of graph G are scanned in some order (for instance,
in increasing order of their numbers). If a vertex v′ ∈ V has a labeling by two
colors (i′ and i′′), then we start

Scanning 2. Scan the vertices of that connected component, starting from
vertex v′ in one of two possible directions, until one of the following two
events happens:

• Event 1: a vertex v′′ was encountered whose label does not contain at least
one of the colors {i′, i′′};

• Event 2: vertex v′ was encountered.

Suppose that event 1 happened (let us assume for certainty that i′ �∈ μ(v′′)),
then we start

Scanning 3. Scan the vertices of that connected component, starting from
vertex v′′ and moving in the direction opposite to that used in scanning 2.
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Eliminate color i′ from the labels of all scanned vertices until one of two
events happens:

• Event 1′: a vertex v was encountered that does not contain at least one of
the colors {i′, i′′};

• Event 2′: the end of the chain was reached (when the component is
a chain).

Clearly, one of the two events 1′, 2′ will be encountered for sure, since in the
case where the component is a cycle (not a chain), event 1′ has to be met
either in vertex v = v′′ or earlier. If one of the events 1′, 2′ happens, stop
scanning 3 and proceed with scanning 1.

If scanning 2 terminates at event 2, the connected component is a cycle
(C) such that all its vertices are labeled in both colors i′, i′′. To eliminate the
double labeling of vertices v ∈ C, it is sufficient to remove one (arbitrary, but
the same) color from all vertices v ∈ C. After that we return to scanning 1.

Algorithm A4
μ,ρ(I) is completely described.

Suppose that a feasible labeling μ is known for a given input I ∈ I(x4).
First we note that the running time of algorithm A4

μ,ρ(I) is linear in n. It
is also clear that while removing color i′ from labels of vertices v ∈ V, the
area μ–1(i′) remains connected. (If that area was a cycle, then we remove it
wholly; otherwise, if it was a chain, then it shrinks at one of its ends.) Thus,
the coloring obtained after the double labeling is eliminated meets the color
prescription and is connected. It is thereby proved that the existence of a CLL
implies the existence of a CLC for a given input I. If no CLL exists, then no
CLC (as a special case of CLL) exists either. Lemma 12.3 is proved.

Next we consider the subproblem specified by vector x5 = (∞, 3, 2, 3). The
latter means that graphs G with the maximum vertex degree 3 are only al-
lowed in any input I ∈ I(x5), that the list of prescribed colors for each vertex
v ∈ G contains at most two colors, and that each color is included in the
prescribed lists of at most three vertices.

Lemma 12.4 For a given input I ∈ I(x5) (where x5 = (∞, 3, 2, 3)) there exists
a CLL iff there exists a CLC. There is an algorithm with running time O(n) that,
given an input I ∈ I(x5) and its CLL, finds its CLC.

Proof. The desired transformation of a given CLL μ to a CLC ρ for the inputs
I ∈ I(x5) can be performed by the following algorithm.

Algorithm A5
μ,ρ(I )

For each vertex v′ ∈ V we do the following verification. If μ(v′) consists of two
colors (i′ and i′′), then we inspect the labels of the vertices adjacent to v′ (let
V ′ be the set of such vertices; since I ∈ I(x5), we have |V ′| u 3). By the end
of this verification we come to one of the following two cases:
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• There exists a color i ∈ μ(v′) included in the label of at most one vertex
from V ′; in this case we just remove color i from μ(v′).

• Each of the colors i′, i′′ ∈ μ(v′) is included in labels of two vertices from
V ′; in this case there exists a vertex v′′ ∈ V ′ labeled by both colors i′ and
i′′; remove color i′ from μ(v′) and μ(v′′).

Algorithm A5
μ,ρ(I) is completely described.

To prove that for any input I = (G, C, A) ∈ I(x5) algorithm A5
μ,ρ(I) trans-

forms a feasible labeling μ of the vertices of graph G into a feasible coloring
ρ, it is enough to make certain that deleting a color from the label of some
vertex does not violate the connectivity of labeling with that color. Indeed, for
any color i ∈ C the area μ–1(i) consists of at most three vertices. Deleting
the vertex v from the area μ–1(i) (which happens while deleting color i from
the label of vertex v) can violate the connectivity of that area only in the case
where:

• |μ–1(i)| = 3;
• vertex v is adjacent to the remaining two vertices from μ–1(i).

(A vertex with the above properties will be referred to as a middle vertex for
color i.)

If vertex v is the middle vertex for only one of two colors of label μ(v), delet-
ing the other color (i) from μ(v) does not violate the connectivity of labeling
with color i. Thus, a violation of connectivity may occur only when vertex v is
the middle one for both colors from μ(v). But in this case some vertex v′ adja-
cent to v must be labeled by the same two colors (i.e., μ(v′) = μ(v)). Removing
the color i ∈ μ(v) from the labels of both vertex v and vertex v′ does not vi-
olate the connectivity of the area μ–1(i), simply because after the removal of
vertices v and v′ from that area it will contain at most one vertex.

Therefore, the coloring ρ that the algorithm A5
μ,ρ(I) outputs at its comple-

tion is a feasible CLC for input I. Clearly, the running time of the algorithm
can be estimated as O(n). Finally, if for a given input I there is no CLL, then
there is no CLC either. Lemma 12.4 is proved.

Now we are able to derive ultimate conclusions on the computational com-
plexity of CLC problems defined for classes of inputs I(x4) and I(x5).

Theorem 12.8 The CLC(x4) problem (where x4 = (∞, 2, 2,∞)) is solvable in time
O(n2), where n is the number of vertices of graph G.

Proof. To prove the CLC problem on the class of inputs I ∈ I(x4), it is suffi-
cient to apply algorithm A4 consisting of two stages.



12.6 A Basis System of Problems 317

• Suppose we are given an input I ∈ I(x4). At stage 1 by means of algorithm
Aμ(I) we find a solution to the CLL problem.

• If the problem has a positive solution (labeling μ), at stage 2 we transform
this labeling μ (by means of the algorithm A4

μ,ρ(I)) to a feasible CLC ρ.

Clearly, if there exists a solution to the CLC problem, then it will be found
by means of algorithm A4. Alternatively, if for a given input I there is no
CLC, then, as follows from Lemma 12.3, there is no CLL for input I either.
In this case algorithm Aμ(I) outputs: “CLL does not exist for input I.” It is
clear that the total running time of algorithms Aμ(I) and A4

μ,ρ(I) coincides
with the upper bound declared in the theorem, since u = O(n) for I ∈ I(x4).
Theorem 12.8 is proved.

Theorem 12.9 The CLC(x5) problem (where x4 = (∞, 3, 2, 3)) is solvable in time
O(n2), where n is the number of vertices of graph G.

The proof of Theorem 12.9 is similar to that of Theorem 12.8 (one should
only change algorithm A4

μ,ρ(I) to algorithm A5
μ,ρ(I) and Lemma 12.3 to

Lemma 12.4).

12.6

A Basis System of Problems

First let us introduce a few necessary notations.
An inequality of the form x′ u x′′ between two 4-dimensional vectors

x′, x′′ ∈ X will mean the validity of four inequalities x′i u x′′i , i = 1, . . . , 4.
We say that vectors x′, x′′ ∈ X are incomparable if neither x′ u x′′ nor x′′ u x′

holds.
We denote D–(x′) .= {x ∈ X | x u x′}, D+(x′) .= {x ∈ X | x v x′}, D–(X ′) .=
∪x∈X ′D–(x), D+(X ′) .= ∪x∈X ′D+(x); X (I) .= (T, ΔV, ΔV,C, ΔC,V).

Letter I will denote the set of all inputs of the CLC problem.

In the previous section eight CLC(x) problems for eight different values
of the constraining vector x were analyzed. Yet we recall that in Section 12.4
an infinite family CLC(X ) of CLC(x) problems over all possible vectors x ∈
X was defined. Does this mean that, once we have committed ourselves to
obtaining the whole picture of complexity over all problems in CLC(X ), we
have to perform a similar complexity analysis for every CLC(x) problem from
CLC(X )?

If this were so, it would be very unfortunate, because the family CLC(X ) is
infinite, and thus, the efforts of the whole scheduling community would be
insufficient to cope with this single problem. Fortunately, the situation is not
that bad: it is saved due to a simple fact formulated below in Proposition 12.9.
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Let x′, x′′ ∈ X and x′ u x′′. Then, clearly, the set of inputs I(x′) .= { I ∈
I | �(I) u x′} is contained in the set of inputs I(x′′), and thereby, the CLC(x′)
problem is a subproblem of the CLC(x′′) problem. This implies that any al-
gorithm that copes efficiently with the CLC(x′′) problem is able to cope (not
less efficiently) with the CLC(x′) problem. And vice versa: if the CLC(x′) prob-
lem cannot be solved efficiently, then the CLC(x′′) problem cannot be solved
either.

In terms of the complexity theory this can be formulated as follows.

Proposition 12.9 Suppose that a family of problems P = {P(x) | x ∈ X ′} is de-
fined, and we consider x′ ∈ X ′. Then

• if the P(x′) problem turns out to be polynomially solvable, then every problem
P(x) (x ∈ D–(x′)) is polynomially solvable as well;

• if the P(x′) problem turns out to be NP-complete, then every problem P(x) (x ∈
D+(x′)) is NP-complete as well.

Since we have already established that the CLC(xi) problems (i = 1, . . . , 5)
are polynomially solvable, then all CLC(x) problems (x ∈ ∪5

i=1D–(xi)) are
polynomially solvable. In addition, since it has been established that the
CLC(xi) problems (i = 6, 7, 8) are NP-complete, then all CLC(x) problems
(x ∈ ∪8

i=6D+(xi)) are NP-complete as well.
Yet what can we say about the remaining CLC(x) problems (x ∈ X )? We

can say nothing, because there are no other problems in CLC(X ). (For the proof
of this fact, we refer the reader to [17].) Thus, we are able to perform the com-
plete complexity analysis of the whole infinite family of problems CLC(X ).

This lucky situation was possible due to the fact that the family of prob-
lems CLC(X ) has a so-called complete basis system B CLC(X ) consisting of the
eight above-mentioned basis problems CLC(xi), i = 1, . . . , 8. Let us formally
define this important notion.

Definition 12.2 Suppose we consider a problem P and let a parameterized
family P = {P(x) | x ∈ X} of its subproblems be defined. Its subset P̂ P =
{P(x) | x ∈ X̂ P} defined on some subset of vectors X̂ P ⊆ X is called a basis
system of polynomially solvable problems of family P if it meets the following
three conditions.

• Polynomial solvability: any problem P(x) ∈ P̂ P is solvable in polynomial
time.

• Independence: any two vectors x′, x′′ ∈ X̂ P (x′ =/ x′′) are incomparable.
• PS-completeness: for any polynomially solvable problem P(x) ∈ P there

exists a basis problem P(x′) ∈ P̂ P such that x u x′ (and so, due to Propo-
sition 12.9, the polynomial solvability of P(x) directly follows from the
polynomial solvability of P(x′)).
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Definition 12.3 A set of problems P̂NP = {P(x) | x ∈ X̂ NP} defined on some
subset of vectors X̂ NP ⊆ X is called a basis system of NP-complete problems of
family P = {P(x) | x ∈ X} if it meets the following three conditions.

• NP-completeness: any problem P(x) ∈ P̂ NP is NP-complete.
• Independence: any two vectors x′, x′′ ∈ X̂ NP (x′ =/ x′′) are incomparable.
• NPC-completeness: for any NP-complete problem P(x) ∈ P there exists a

basis problem P(x′) ∈ P̂ NP such that x v x′ (and so, due to Proposition 12.9,
the NP-completeness of P(x) directly follows from the NP-completeness
of P(x′)).

Definition 12.4 A set of problems P̂ = P̂P ∪ P̂ NP (compound of all polyno-
mially solvable and all NP-complete basis problems) is called a complete basis
system for the family of problems P if

D–(X̂ P) ∪ D+(X̂ NP) = X . (12.5)

We would like to make two remarks regarding the above definitions.

Remark 12.1 Let X P and X NP be, respectively, the sets of vectors defining
polynomially solvable and all NP-complete problems in P . As shown in [19],
if there exists a set of vectors X̂ P defining a basis system of polynomially
solvable problems from P , then

• each vector in X̂ P is a maximum vector in X P;
• each maximum vector in X P must belong to X̂ P;
• therefore, X̂ P has to coincide with the setX P,max of all maximum elements

from X P.

It could be assumed that the set X̂P is identical to XP,max. But in fact, this is
not true! The reader should pay attention to the phrase “if there exists the set
of vectors X̂ P. . . .” The fact of the matter is that for some families of problems
P there is no basis system X̂ P, while the set X P,max always exists (possibly
empty).

A similar remark is valid with respect to the set XNP: if there exists a set
of vectors X̂NP defining a basis system of NP-complete problems from P ,
then it coincides with the set X NP,min of all minimum elements from X NP.
(However, if X̂NP does not exist, the set XNP,min exists anyway.)

Remark 12.2 It is well known from complexity theory [4] that if the conjecture
about P=/NP turns out to be true (and most people from our optimization
community believe that it should be so), then it implies that there must exist
problems in NP that are neither NP-complete nor polynomially solvable (let
us call them middle complexity problems). Condition 12.5 in Definition 12.4
means that we exclude the existence of middle complexity problems in our
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parameterized family P in cases where P has a (complete) basis system. In
other words, the existence of such a basis system in P implies the dichotomy
property [20] for the family P .

Knowledge on the complete basis system P̂ of the family P lightens con-
siderably the complexity analysis of any particular problem P(x) ∈ P . Indeed,
it is sufficient to compare vector x with every vector x′ ∈ X̂ .= X̂P ∪ X̂NP. If
a vector x′ ∈ X̂P occurs such that x u x′, this immediately implies the poly-
nomial solvability of problem P(x). Alternatively, if a vector x′′ ∈ X̂NP occurs
such that x v x′′, this implies that P(x) is NP-complete. (Evidently, both vec-
tors x′ and x′′ with the above properties cannot exist simultaneously.)

Admittedly, to guarantee the efficiency of the above procedure (namely,
that of enumerating all vectors from X̂ ), set X̂ must be no more than finite.
And luckily, as was shown in [19], such a property can be guaranteed for most
cases.

Theorem 12.10 (Sevastianov, 2005) If all key parameters of a problem P are
bounded from below, then for any set of vectors Y ⊆ Z

n
, the basis system of hard

problems for a parameterized family of problems P(Y) exists and is finite. The ba-
sis system of polynomially solvable problems for P(Y) is also finite, provided that it
exists.

It is also natural to pose the question: how many subsets of problems in
P(Y) possess the properties of a basis system? The answer to this question is
contained in the following theorem.

Theorem 12.11 (Sevastianov, 2005) If for a given parameterized family of prob-
lems P(Y) there exists a complete basis system (basis system of polynomially solv-
able problems, basis system of NP-complete problems), then it is unique.

It can be easily verified that three NP-complete subproblems and five
polynomially solvable subproblems of the CLC problem considered in Sec-
tion 12.5 meet all properties formulated in Definitions 12.2 and 12.3. Thus,
the eight problems constitute as a whole the uniquely determined complete
basis system for the parameterized family of problems CLC(X ).

12.7

Conclusion

In this paper, an interesting graph coloring problem was introduced. It was
shown that the problem has useful applications to scheduling and location
problems. Next, a parameterized family CLC(X ) of subproblems of the CLC
problem was defined. In Section 12.5, a complexity analysis was performed
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for eight problems from that infinite family. For five of them, efficient algo-
rithms for their exact solution were presented and analyzed, while the re-
maining three problems turned out to be NP-complete. And as the reader
could observe, graph structure is a significant factor affecting the complexity
of a CLC problem.

Finally, from Section 12.6 we learned that those eight problems constitute
a uniquely determined complete basis system for the family of problems
CLC(X ). Knowing such a basis system enables one to easily determine the
complexity of any other problem from this family.

The question is: what further research could be done for this particularly
interesting problem?

To begin with, it is worth mentioning that, although the complexity classi-
fication presented in this paper for the family of problems CLC(X ) is com-
plete, this does not exclude the possibility of performing a similar complexity
classification of some other families of problems determined for other col-
lections of key parameters, or even for other types of constraints imposed on
the same key parameters. For instance, in this paper parameters ΔG, ΔV,C,
and ΔC,V were bounded from above, and the NP-completeness of those prob-
lems was attained at relatively small values of those bounds. On the other
hand, when graph G is close to the complete graph (and thus vertex degrees
and the parameter ΔV become large), the connectivity of the colored area for
each color i is no longer a limited factor. As a result, checking the existence
of a CLC becomes an easy problem. Thus, an alternative parameterization
for the CLC problem is possible based on imposing upper bounds on the
parameter Δ(Ḡ), where Ḡ is the graph complement to G. The complexity
classification of the resulting “alternative” family of problems is of definite
interest.

Another open question is the complexity status of the problem of calcu-
lating the parameter α(G) (defined in Section 12.2) for an arbitrary graph G.
Clarifying the dependence of the problem complexity on the maximum ver-
tex degree of graph G and on its other parameters would be of interest.

The third (but not last) possible research direction is related to the notion
of connected list labeling introduced in Section 12.5.2. Performing its multi-
parametric complexity analysis (similar to the one presented in this paper)
is a very interesting challenge. To begin with, it would be nice to prove its
NP-completeness.
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13

Complexity of Phylogenetic Networks:

Counting Cubes in Median Graphs and Related Problems
Matjaž Kovše

We survey various results on counting hypercubes and related problems.
Since median graphs are built in a very special way from hypercubes, the
number of hypercubes of different dimensions can also be considered as
a measure of complexity for this class of graphs. Applications to phylogenet-
ics are also mentioned.

13.1

Introduction

Probably most mathematicians know the following formulas:

n – m = 1 (13.1)

and

n – m + f = 2 . (13.2)

The first formula is a characteristic property of trees, where n and m de-
note the number of vertices and number of edges, respectively. The second
formula is Euler’s formula for planar graphs, where, in addition to the same
meaning of n and m, f denotes the number of faces of a planar graph. In this
chapter we present different equalities and inequalities of a similar nature
for a special class of bipartite graphs, with rich structural properties, that
allow one to count their special subgraphs. These graphs are called median
graphs, and hypercubes can be considered in some special way as their build-
ing blocks. Therefore, the number of different hypercubes of given dimen-
sions can be regarded also as a measure of complexity for median graphs.
To count induced (maximal) hypercubes in median graphs is as hard a prob-
lem as counting complete graphs in arbitrary graphs. However, many nice
theoretical results have been obtained and applications found. The most in-
teresting is the application of counting hypercubes in phylogenetic analysis;
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in particular it has been used to detect phantom mutations in sequenced
mitochondrial DNA data.

The chapter is organized as follows. In Section 13.2 some basic notions
from metric graph theory are defined. Median graphs, which play a cen-
tral role in the chapter, are defined, and we also present their basic char-
acterizations. In particular, we present an expansion procedure that provides
an important tool when considering median graphs and related classes of
graphs. In Section 13.3 we present treelike equalities and some Euler-type in-
equalities for median graphs, quasi-median graphs, partial cubes, and cage-
amalgamation graphs. We also discuss the complexity of counting all hyper-
cubes in median graphs. Section 13.4 is devoted to cube polynomials. We
give characteristic properties of cube polynomials. Locations of real and ra-
tional zeros are presented. Graphs of acyclic cubical complexes and median
product graphs are characterized by roots of cube polynomials. Derivatives
of polynomials are also treated in this section. A multivariable polynomial
generalization of a cube polynomial – a Hamming polynomial – is treated
in Section 13.5. Results on a different type of one-variable Hamming poly-
nomial and cage-amalgamation graphs are presented. In Section 13.6 some
formulas are presented for counting maximal induced hypercubes in median
graphs of circular split systems. In Section 13.7 we briefly describe how me-
dian graphs appear in phylogenetics and mention the applications of cube
polynomials. We end the chapter with a brief summary and some sugges-
tions for further research.

Most of the theoretical results that we survey in this chapter have been
obtained by Brešar, Klavžar, Škrekovski, and their coworkers over the last
decade.

13.2

Preliminaries

For n ∈ N, let [n] denote the set {1, 2, . . . , n}. All graphs considered in this
chapter are finite and simple. As usual with V(G) and E(G) we denote the
vertex and edge set, respectively, of a graph G. If G does not include H as an
induced subgraph, then we say that G is an H-free graph.

The n-dimensional hypercube, or simply n-cube, is a graph that has all n-
tuples of 0s and 1s as its vertices, where two such tuples are adjacent if their
Hamming distance is equal to 1. The Hamming distance between two n-tuples
is defined as the number of positions in which these n-tuples differ. We de-
note the n-dimensional hypercube by Qn. The two-dimensional hypercube
Q2 is commonly referred as a square, while the three-dimensional hypercube
Q3 is commonly referred as a cube.
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For a graph G, let αi(G), i v 1, denote the number of induced i-cubes of
G. In particular, α1(G) = |E(G)|; in other words α1(G) equals the number
of edges of G. Let also α0(G) = |V(G)|; hence α0(G) equals the number of
vertices of G. The following equality holds for any hypercube (see [27]):

1 =
n∑

k=0

(–1)kαk(Qn) . (13.3)

See [46] for other identities related to counting hypercubes in hypercubes
and different approaches to proving (13.3). A natural generalization of hy-
percubes are Hamming graphs, whose vertices are n-tuples u = u(1) . . . u(n)

such that 0 u u(i) u ni – 1, where for each i we have ni v 2, and two vertices
are adjacent precisely when their Hamming distance is equal to 1.

13.2.1

Median Graphs

The length of a path is simply the number of its edges. Let u and v be vertices
of a connected graph G. The (shortest path) distance is defined as a length of
a shortest u, v-path in G and is denoted by dG(u, v), or d(u, v) for short if it is
clear from the context which graph is being considered. The corresponding
metric space is also called the graphic metric space, associated with graph G,
see [29]. See [23] for different aspects of distances in graphs.

The interval I(u, v) between u and v is the set of all vertices on all shortest
u, v-paths. A subgraph H of G is isometric if dH(u, v) = dG(u, v) for all u, v ∈
V(H) and convex if I(u, v) ⊆ V(H) for any u, v ∈ V(H). A graph H isometrically
embeds into a graph G if H is isomorphic to an isometric subgraph of G.
Isometric subgraphs of Hamming graphs are called partial Hamming graphs,
and in particular isometric subgraphs of hypercubes are called partial cubes.

A connected graph is a median graph if for every triple u, v, w of its vertices
|I(u, v) ∩ I(u, w) ∩ I(v, w)| = 1. The unique vertex that lies in I(u, v) ∩ I(u, w) ∩
I(v, w) is called the median vertex (or simply the median) of vertices u, v, and w.
Median graphs were first introduced in [2] and later independently in [56,59].
Prototype examples are trees and hypercubes. Further examples of families
of median graphs include trees, grids, graphs of acyclic cubical complexes,
superextensions, simplex graphs, Fibonacci and Lucas cubes, graphs of lin-
ear extensions, and covering graphs of distributive lattices. Besides these ex-
amples, which might also indicate the applications of median graphs, we
mention also applications in location theory [55], social choice theory [28],
and phylogenetics [60]. In the sequel we provide some basic characteriza-
tions for median graphs. For more information on median graphs see sur-
veys [7, 49] or the recent paper [20] and references therein.



326 13 Complexity of Phylogenetic Networks

Figure 13.1 Median graph G together with
its basic subsets. Here Wab = {a, c, e},
Wba = {b, d, f, g, h, i, j, k}, Uab = {a, c, e},
Uba = {b, d, f}, and Fab = {ab, cd, ef}.

Let G be a connected graph. For any edge ab of G we set

Wab = {w ∈ V(G) | dG(a, w) < dG(b, w)} , (13.4)

Uab = {w ∈Wab | w has a neighbor in Wba} , (13.5)

Fab = {e ∈ E(G) | e is an edge between Wab and Wba} . (13.6)

For an example of a median graph and its basic subsets consider Fig-
ure 13.1.

Note that if G is bipartite, then for any edge ab, V(G) = Wab∪Wba. Through-
out the literature different names are used for sets Wab: semicubes [36] or
sometimes simply W-sets. The set {Wab, Wba} is often called a split. More
formally, a bipartition of [n] is called a split [60]. Let A = [n] \ A, then sets A
and A form a split of [n] and we put S = {A, A} and refer to this bipartition
as split S. A set of splits is called a split system. Let G be a bipartite graph and
let |V(G)| = n. Then we can label vertices of G with elements from [n]. And
for any edge ij the sets Wij and Wji form a bipartition of the set [n].

Mulder proved in [57] that median graphs are partial cubes. The first char-
acterization of partial cubes is due to Djokovíc [31], and we present it in the
next theorem.

Theorem 13.1 A connected bipartite graph G is a partial cube if and only if all
subgraphs Wab are convex.

For median graphs a stronger property holds as Bandelt proved in [3].

Theorem 13.2 A connected graph G is a median graph if and only if G is bipartite
and for every edge ab of G, the sets Uab and Uba are convex.

The relation Θ [31, 65] is defined on the edge set of a graph G in the
following way. Edges e = xy and f = uv of G are in relation Θ if

d(x, u) + d(y, v) �= d(x, v) + d(y, u) .
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The relation Θ is clearly reflexive and symmetric. The following theorem
by Winkler from [65] characterizes graphs for which the relation Θ is transi-
tive.

Theorem 13.3 The relation Θ is transitive precisely on graphs isometrically embe-
dable into Cartesian products of K3. If in addition G is bipartite, then the relation
Θ is transitive if and only if G is a partial cube.

In the case of partial cubes Θ is therefore an equivalence relation and
the Θ-class containing edge ab coincides with the set Fab. Because of Theo-
rems 13.1 and 13.3 the relation Θ is often called a Djokovíc–Winkler relation
Θ. The set Fab forms a matching between Uab and Uba that induces an iso-
morphism between the subgraphs induced by Uab and Uba. Any Θ-class also
forms a minimal edge cutset, and a factor set of relation Θ is often also
referred to as a cutset coloring of a graph and Θ-classes as color classes.
Since partial cubes are by definition isometric subgraphs of hypercubes, the
binary labeling of the vertices of hypercubes can also be used to express the
distance between vertices in a partial cube with Hamming distance between
labels. Moreover, Θ-classes of a partial cube G represent also the coordinates
of the binary labeling induced by an isometric embedding into a hypercube.
Therefore, Θ-classes are sometimes also called parallel classes. Since a Θ-
class Fab of a partial cube G is uniquely determined by the split Wab, Wba,
and vice versa, labeling vertices of G that belong to Wab with 0 and those
that belong to Wba with 1, and similarly for any other Θ-class of G, gives the
mentioned labeling (at the same time assuming some ordering of Θ-classes
of G). In particular, for a median graph G embedded into a hypercube it is
straightforward to see that if x is the median of vertices u, v, and w, then the
kth coordinate of x can be obtained by applying the so-called majority rule for
the kth coordinates of u, v, and w: take 0 if at least two vertices among u, v,
and w have 0 as the kth coordinate and 1 otherwise.

A convex amalgamation consists of gluing together two graphs along iso-
morphic convex subgraphs. Bandelt and van de Vel [13] characterized me-
dian graphs as connected graphs that can be obtained from hypercubes by
a sequence of convex amalgamations.

Median graphs are by definition connected graphs. However, when study-
ing the cube polynomials it turns out that it is natural to consider also a wider
class of graphs, that is, a class of graphs that have connected components as
median graphs. We denote byM the class of all median graphs and byM∗

the class of all graphs with connected components as median graphs.
Note that ideas similar to those above can also be used for partial Ham-

ming graphs and other related classes of graphs, see [7, 15, 42].
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13.2.1.1 Expansion Procedure

The expansion procedure plays a very important role in metric graph the-
ory. Many interesting graph classes can be characterized in this way. Also,
when dealing with families of graphs, it serves as an induction tool for build-
ing proofs of statements that involve the number of vertices, edges, or some
other graph characteristics that can be controlled well by considering the ex-
pansion procedures (of special type).

A cover C of a graph G is a collection C = {G1, . . . , Gn} of induced sub-
graphs of G such that they cover the whole graph G, that is, G = G1 ∪ G2 ∪
. . . Gn.

Let {G1, G2} be a cover of a connected graph G, where G1 ∩ G2 =/ ∅ and
there is no edge between G1 \G2 and G2 \G1. Let G̃1 and G̃2 be isomorphic
copies of G1 and G2, respectively. For any vertex u ∈ Gi, 1 u i u 2, let ũi be
the corresponding vertex in G̃i. The expansion of G with respect to G1 and G2

over G1 ∩ G2 is the graph G̃ obtained from the disjoint union of G̃1 and G̃2,
where for any u ∈ G1∩G2 the vertices ũ1 and ũ2 are joined by an edge [57]. If
G1 and G2 are convex (isometric) sets in G, then G′ is called a convex expan-
sion (isometric expansion) of G. Next we state Mulder’s expansion theorem for
median graphs [56].

Theorem 13.4 A connected graph G is a median graph if and only if G can be
obtained from K1 by a sequence of convex expansions.

Chepoi [25] generalized Mulder’s convex expansion Theorem 13.4 to all
partial cubes, where the convex expansions are replaced by more general iso-
metric expansions. When a cover of a graph consists of more than two sub-
graphs, one can obtain similar characterizations also for classes of nonbipar-
tite graphs; for example, see [25] for a characterization of partial Hamming
graphs. Assuming some special properties of the cover can give characteriza-
tions for some special classes of graphs and may consequently also simplify
their recognition. For a discussion of different expansion procedures, the
reader may consult the books [42, 57] and articles [15, 40, 58].

13.2.1.2 The Canonical Metric Representation and Isometric Dimension

The Cartesian product G � H of two graphs G and H is a graph with vertex set
V(G) ~ V(H) and (a, x)(b, y) ∈ E(G � H) whenever either ab ∈ E(G) and x = y,
or a = b and xy ∈ E(H), see [43] and [42] for many references on Cartesian
product and other standard products of graphs. It is well known and also
follows easily from the above definition that hypercubes are the simplest ex-
ample of Cartesian products; they are Cartesian products of K2. Similarly
Hamming graphs can be viewed as Cartesian products of (arbitrary) com-
plete graphs.
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One of the main reasons why Cartesian product plays a very significant
role in metric graph theory is the fact that the distance function is additive
on Cartesian products of graphs; see, for instance, [42]. More precisely, for
(g, h) and (g′, h′) vertices of G�H, where G and H are arbitrary graphs, the
following equality holds:

dG�H((g, h), (g′, h′)) = dG(g, g′) + dH(h, h′) .

Probably one of the nicest results from metric graph theory is the so-called
canonical metric representation due to Graham and Winkler [38]. Let Θ∗

denote the transitive closure of the relation Θ. Furthermore, let E1, . . . , Ek

be the Θ∗-(equivalence) classes. For a connected graph G let Gi denote the
graph with the same vertex set as G, that is, V(Gi) = V(G), and the edge
set equal to the edge set of graph G minus the edges from the Θ∗-class Ei,
that is, E(Gi) = E(G) \ Ei, 1 u i u k. Further let C(i)

1 , . . . , C(i)
ri denote the

connected components of graph Gi. For every i, 1 u i u k, graphs G∗i are then
defined as graphs having connected components C(i)

1 , . . . , C(i)
ri as vertices, that

is, V(G∗i ) = {C(i)
1 , . . . , C(i)

ri }, and C(i)
j and C(i)

k are adjacent in G∗i if there is an

edge between C(i)
j and C(i)

k in the original graph G. For every i, 1 u i u k,
mapping �i : V(G)→ V(G∗i ) is defined as simply identifying a vertex v ∈ V(G)
with the connected component C(i)

j to which v belongs, that is, �i(v) = C(i)
j ,

where v ∈ C(i)
j . The canonical metric representation of graph G is the mapping

� : G→ G∗1� . . .�G∗k ,

where �(v) = (�1(v), . . . , �k(v)).
In [38] it is shown that � is an irredundant isometric embedding. It is irre-

dundant in the following sense: every factor graph G∗i has at least two vertices
and each vertex of G∗i appears as a coordinate of some vertex. Furthermore �
has the largest possible number of factors among all irredundant isometric
embeddings of G, and among such embeddings (with the largest possible
number of factors) it is unique. Hence every graph G∗i is prime with respect
to the Cartesian product. From all the properties of the canonical metric rep-
resentation it follows that the next graph invariant is well defined for any
connected graph. The isometric dimension of a graph G, denoted by dimI(G),
is the number of factors appearing in the canonical metric representation of
G. Since complete graphs are prime with respect to the Cartesian product, it
follows that the isometric dimension of a partial Hamming graph G is simply
the smallest number of complete graphs into which G embeds isometrically.
In particular, for a partial cube G, its isometric dimension equals the smallest
dimension of a hypercube into which G embeds isometrically. In the sequel
we will describe the isometric dimension in other ways as well, and it will
turn out to play an important role in many of the counting formulas we are
going to present.
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For more information and further examples see the books [30, 42, 43] and
the paper [47] for a very nice characterization of partial Hamming graphs
using canonical metric representation.

13.3

Treelike Equalities and Euler-Type Inequalities

In this section we present treelike equalities and Euler type inequalities
for median graphs and their generalizations: quasi-median graphs, partial
cubes, and cage-amalgamation graphs.

13.3.1

Treelike Eequalities and Euler-Type Inequalities for Median Graphs

Let G be a median graph. Two splits {A, A} and {B, B} of G are said to be
incompatible if all four of the possible intersections A ∩ B, A ∩ B, A ∩ B, and
A ∩ B are nonempty (otherwise they are called compatible). The correspond-
ing Θ-classes FA and FB are said to cross if the splits {A, A} and {B, B} are
incompatible. The next theorem, probably observed for the first time by Is-
bell [44] (in slightly different language) and later rediscovered several times,
see [55, 63] characterizes hypercubes.

Theorem 13.5 Let G be a median graph. Splits of G are pairwise incompatible if
and only if G is a hypercube.

It is also worth noting that trees are exactly median graphs with all splits
pairwise compatible, as was observed already, in a slightly different language,
by Buneman [24]. Dress et al. [32] proved the following theorem.

Theorem 13.6 Let G be a median graph. The number of all sets of pairwise in-
compatible splits of G, including the empty set and sets of single splits, equals the
number of vertices of median graph G.

In the proof we follow closely the arguments given by Bandelt et al. in [12].

Proof. Choose a vertex u and make a BFS ordering from a root of all other
vertices of G, corresponding to a root u. The crucial observation is that for
a vertex v of G all edges that are incident with v and lie on a shortest path
between root u and v induce a hypercube. Therefore, by Theorem 13.5 the
corresponding splits are pairwise incompatible, and we associate this set of
splits with vertex v. Conversely, for any set of k pairwise incompatible splits
there is a unique k-dimensional hypercube, corresponding to this set, that
is closest to root u. Uniqueness can be proved by using an expansion pro-
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cedure to construct G by a sequence of expansion steps starting from a k-
dimensional hypercube, corresponding to the set of k pairwise incompatible
splits, and then applying the induction principle on the isometric dimension
of G (the number of Θ-classes of G).

To count all i-dimensional hypercubes of median graph G, it is enough to
count the pairs of vertices v and w, where w lies on a shortest path between
v and root u and d(v, w) = i, and v is incident with exactly i edges that lie on
a shortest path between a root u and v. It follows from the correspondence
from the proof that it is equivalent to count all (k – i) subsets of the k sets of
pairwise incompatible splits, where 0 u i u k. Let �k(G) denote the number
of k sets of pairwise incompatible splits and, as before, αi(G) the number of
induced i cubes in a median graph G. Then it follows that

αi(G) =
∑
kvi

(
k
i

)
�k(G) for i v 0 , (13.7)

see [12, 32]. Using binomial inversion, see [1], it follows that

�i(G) =
∑
kvi

(
k
i

)
(–1)k–iαk(G) for i v 0 . (13.8)

For �0(G), (13.8) becomes∑
iv0

(–1)iαi(G) = 1 (13.9)

and therefore generalizes the treelike equality (13.3) to all median graphs,
as first observed by Soltan and Chepoi [62] and later independently by
Škrekovski [61]. For �1(G), (13.8) becomes∑

iv0

(–1)i+1iαi(G) = dimI(G) , (13.10)

as observed first by Škrekovki [61]. Moreover, using the binomial theorem,
we get∑

iv0

(q – 1)iαi(G) =
∑
iv0

qi�i(G) q ∈ R . (13.11)

It is also suggested in [12] that for positive choices of q the value ι(G) =∑
iv0(q – 1)iαi(G) can be regarded as a kind of complexity measure of the

median graph. From (13.11) and Theorem 13.5 it follows that the larger the
value of q, more the higher dimensional hypercubes add to the value of ι(G).
If q = 3, then ι(G) equals the number of all hypercubes of dimension at most
k in which some vertex of G is contained. In Section 13.4 another complex-
ity measure for median graphs is discussed – cube polynomial – that is the
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generating function of the sequence αi(G). Some results about yet another
complexity measure for median graphs, the number of all maximal induced
hypercubes of given dimension, are presented in Section 13.6.

The incompatibility graph of a median graph G has splits of G as vertices,
two vertices {A, A} and {B, B} being adjacent if they are incompatible. The
incompatibility graph is also called the crossing graph in [50], where in the
definition, instead of splits, Θ-classes of G are taken. See [6, 17, 48] for more
results on crossing graphs of median graphs (and partial cubes). By Theo-
rem 13.5 hypercubes with a dimension of at least 2 in a median graph G cor-
respond to complete subgraphs in their incompatibility graph, while max-
imal induced hypercubes in median graphs correspond to cliques in their
incompatibility graph. Since any graph can be represented as an incompati-
bility graph of a median graph [50], counting (maximal) hypercubes with a di-
mension of at least 2 is equivalent to counting complete subgraphs (cliques)
of an arbitrary graph, which is widely known to be a nontrivial task. How-
ever, many interesting results of counting hypercubes in median graphs have
been obtained so far, and the problem has even found interesting biological
applications [12, 39].

Klavžar et al. in [52] obtained the following Euler-type inequality for me-
dian graphs.

Theorem 13.7 Let G be a median graph with n vertices, m edges, and dimI(G) = k.
Then

2n – m – k u 2 .

The equality holds if and only if G is cube-free.

Combining Theorem 13.7 with Euler’s Formula (13.2) the following theo-
rem, obtained by Janaqi [45], follows.

Theorem 13.8 Let G be a planar, cube-free median graph with n vertices and
dimI(G) = k. Then the number of faces in its planar embedding is equal to n – k.

13.3.1.1 Cube-Free Median Graphs

Recall that cube-free median graphs are, by definition, median graphs with-
out an induced three-dimensional hypercube. Interesting applications of
cube-free median graphs can be found in the location theory [55]. A graph
is a cube-free median graph if and only if it can be obtained from the one
vertex graph by an expansion procedure, in which every expansion step is
done with respect to a convex cover with a convex tree as intersection. This
follows from the fact that a square in the intersection of the convex cover
produces a Q3 in the expansion. Klavžar and Škrekovski obtained in [53] the
following result.
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Theorem 13.9 Let G be a cube-free median graph with n vertices, m edges,
s squares, and dimI(G) = k. Then s = m – n + 1 and k = –m + 2n – 2.

The following result by Brešar et al. is from [21].

Theorem 13.10 Let G be a cube-free median graph different from a tree. Let r v 2
be the number of edges in its smallest Θ-class and let s denote the number of its
squares. Then

dimI(G) v 2r – 2

and

k2 v 4s .

Moreover, both equalities hold if and only if G is the Cartesian product of two trees
of the same order.

If G is a tree on more than one vertex, only the second inequality from
Theorem 13.10 fails to be strict.

13.3.1.2 Q4-Free Median Graphs

Klavžar and Škrekovski [53] also studied Q4-free median graphs and obtained
the following two results.

Theorem 13.11 Let G be a Q4-free median graph on n vertices and m edges, and
let h be the number of subgraphs of G isomorphic to Q3 and let dimI(G) = k. Then

2n – m + h – k = 2 .

A plane graph is a planar graph together with a given planar embedding.
Since Q4 is not a planar graph, all planar median graphs are Q4-free me-
dian graphs. On the other hand, not all Q4-free median graphs are planar.
Consider, for example, P3�P3�P3. For those that are, the following theorem
holds.

Theorem 13.12 Let G be a median plane graph with n vertices, f faces, dimI(G) = k
and h subgraphs isomorphic to Q3. Then

f = n – k + h .

13.3.1.3 Median Grid Graphs

A grid graph is a subgraph of a complete grid Pn�Pm. Klavžar and Škre-
kovski [53] characterized median grid graphs in several ways and obtained
the following result.
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Theorem 13.13 The length of the outer face of a plane median grid graph G is
4n – 2m – 4 = 2 dimI(G).

13.3.2

Euler-Type Inequalities for Quasi-Median Graphs

Mulder [57] introduced quasi-median graphs as a natural nonbipartite gen-
eralization of median graphs as follows. Let G be a graph, and let (u, v, w) be
an ordered triple of vertices of G. A pseudo-median of the triple (u, v, w) is an
ordered triple (x, y, z) satisfying the following three conditions:

(P1) d(u, x) + d(x, y) + d(y, v) = d(u, v),
d(v, y) + d(y, z) + d(z, w) = d(v, w),
d(w, z) + d(z, x) + d(x, u) = d(w, u);

(P2) d(x, y) = d(y, z) = d(z, x);
(P3) d(x, y) is minimal under conditions (P1) and (P2).

The first equality from (P1) (and analogously the second and third equal-
ities) says that there is a shortest u, v path on which lie both x and y. An
ordered triple (x, y, z) is the quasimedian of the triple (u, v, w) if it is pseudo-
median of (u, v, w) and if (u, v, w) has no other pseudo-medians. A connected
graph is a quasi-median graph if it satisfies the following three conditions:

(Q1) Each ordered triple has a quasi-median.
(Q2) K4 – e is not an induced subgraph of G.
(Q3) Each induced C6 in G has Q3 or K3�K3 as a convex closure.

If in the definition of pseudo-median d(x, y) = 0, then x = y = z, and
(u, v, w) has a median. Hence quasi-median graphs extend class of median
graphs in a natural way. The definition of quasi-median graphs is taken
from [57] and is rather long. The characterization, from the following theo-
rem, by Bandelt et al. from [11] of quasi-median graphs, analogous to that of
median graphs 13.2, is sometimes taken as an alternative and much shorter
definition. A subgraph H of a graph G is called gated (in G) if for every vertex
v ∈ V(G) there exists a vertex x ∈ V(H) that lies on a shortest path between v
and u for every u ∈ V(H). Note that such a vertex is always unique if it exists.

Theorem 13.14 A graph G is quasi-median if every maximal complete subgraph
of G is gated and Uab is convex for any edge ab.

In [57] it is proved that quasi-median graphs are partial Hamming graphs
and an expansion type theorem is presented. For other characterizations of
quasi-median graphs and further references about this class of graphs the
reader may consult [19]. Next we present a result by Brešar et al. from [19]
on counting i-regular Hamming subgraphs in quasi-median graphs. Let γi,
where i v 0, be the number of induced i-regular Hamming subgraphs of G.
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Theorem 13.15 Let G be a quasi-median graph. Then∑
iv0

(–1)iγi(G) = 1

and∑
iv0

(–1)i+1iγi(G) = dimI(G) .

A wider class, including quasi-medians graphs, has been introduced
in [15]. Quasi-semimedian graphs are partial Hamming graphs with Uab con-
nected for any edge ab. It is shown that quasi-semimedian graphs can be
obtained by a sequence of connected expansions from K1.

The next two Euler-type inequalities are from [19].

Theorem 13.16 Let G be a graph with n vertices, m edges, and dimI(G) = t, that
is, it is obtained by a sequence of connected expansions from K1. Then

2n – m – k u 2 .

Moreover, the equality holds if and only if G is Ct�K2-free, where t v 3, and
K4-free.

Combining Theorem 13.16 with Euler’s Formula (13.2) gives the next
result.

Theorem 13.17 Let G be a planar graph with n vertices and dimI(G) = t, that is,
it is obtained by a sequence of connected expansions from K1. Let f be the number
of faces in its planar embedding. Then

f v n – k .

Moreover, the equality holds if and only if G is Ct�K2-free (t v 3) and K4-free.

13.3.3

Euler-Type Inequalities for Partial Cubes

Recall that a graph G is a partial cube if G is an isometric subgraph of some
hypercube. In addition to the above-mentioned examples of families of me-
dian graphs we mention some more interesting families of graphs that be-
long to the class of partial cubes: hexagonal graphs, phenylenes, graphs of
linear extensions, zonotopes, and, more generally, tope graphs of oriented
matroids, (all) bipartite outerplanar graphs, etc. The examples just men-
tioned already point to those fields where, in addition to graph theory, partial
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cubes have found applications: computational geometry, topology, algebra,
computer science, mathematical chemistry, mathematical biology, social sci-
ences, and psychology. See also the book [36] for further applications of par-
tial cubes in media theory and some more interesting examples of partial
cubes.

The Euler-type inequality for median graphs 13.9 clearly does not hold
for all partial cubes. Consider, for example, the six cycle C6 to see that the in-
equality fails. Recently Klavžar and Shpectorov [51] obtained an Euler-type in-
equality for partial cubes, which we present in this subsection. A well-known
characterization of Bandelt [3] says that a connected graph is a median graph
if and only if the convex closure of any isometric cycle of G is a cube. Hence
the only possible convex cycles in median graphs are four cycles and there
are no cycles of length greater than 4. Let C(G) denote the set of all convex
cycles of a given graph G. The convex excess of a graph G has been introduced
in [51] as cex(G) =

∑
C∈C(G)

|C|–4
2 .

Theorem 13.18 [51] Let G be a partial cube with n vertices, m edges and
dimI(G) = k. Then

2n – m – k – cex(G) u 2 .

13.3.4

Treelike Equality for Cage-Amalgamation Graphs

In this section we present results by Brešar and Tepeh Horvat from [22],
where they introduced cage-amalgamation graphs that generalize both
chordal and median graphs.

A chord in a cycle is an edge joining two vertices that are not adjacent in
the cycle. A chordal graph (also triangulated graph) is a graph with the property
that each of its cycles on four or more vertices has a chord. It is not hard to
see that the isometric dimension of a chordal graph G equals the number of
blocks of G. Let κi(G) denote the number of i-cliques in a graph G. McKee [54]
obtained the following two treelike equalities that hold for any connected
chordal graph G:∑

jv0

(–1)jκj(G) = 1 (13.12)

and∑
jv0

(–1)j+1jκj(G) = dimI(G) . (13.13)

Note that Equalities 13.12 and 13.13 are symbolically very similar to Equali-
ties 13.9 and 13.10, respectively.
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A C-block in a graph G is a maximal connected, chordal-induced subgraph
without a cut vertex. A C-block graph is a connected chordal graph without
a cut vertex. The Cartesian product of arbitrary C-block graphs is called a cage.
A graph G is a cage-amalgamation graph if it can be obtained by a sequence
of gated amalgamations from cages.

Theorem 13.19 For a connected graph G the following propositions are equivalent:

(i) G is a cage-amalgamation graph.
(ii) Every C-block is gated in G and every set Uab is convex.
(iii) G can be obtained from K1 by a sequence of gated expansions with respect

to C-block graphs.

Note that Theorem 13.19(ii) is similar in nature to Theorem 13.2, while
Theorem 13.19(iii) is similar in nature to Theorem 13.4. Even more, triangle-
free cage-amalgamation graphs are precisely median graphs, while square-
free cage-amalgamation graphs are precisely chordal graphs and the inter-
section of both classes of graphs is all trees.

It follows straightforward from the definition of C-block graphs that they
are prime with respect to the Cartesian product; hence the isometric dimen-
sion of a cage-amalgamation graph G equals the smallest number of factors
in a Cartesian product of C-block graphs into which G can be isometrically
embedded.

Recall that γi(G) denotes the number of induced i-regular Hamming
graphs in graph G. Note that in chordal graphs i-regular Hamming sub-
graphs coincide with i-cliques, while in median graphs they coincide with
i-cubes. The next result generalizes both Equalities 13.9 and 13.10 for me-
dian graphs and Equalities 13.12 and 13.13 for chordal graphs.

Theorem 13.20 Let G be a cage-amalgamation graph. Then∑
iv0

(–1)iγi(G) = 1

and∑
iv0

(–1)i+1iγi(G) = dimI(G) .

13.4

Cube Polynomials

Many graph polynomials have been introduced so far. For different examples,
see, for instance, the book [37] and recent surveys [34, 35]. Although most
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graph polynomials are naturally defined as generating functions of a special
type, the reason they have attracted attention is that often algebraic methods
allow us to decode some combinatorial information contained in graph poly-
nomials. In this section we survey known results on the cube polynomial. In
particular, we survey results on the cube polynomial of special classes of me-
dian graphs and give bounds for rational and real zeros for both classesM
and M∗. A special subclass of median graphs – graphs of acyclic cubical
complexes – can be nicely characterized with the roots of their cube polyno-
mials. The Cartesian product of trees of the same order also has a special
cube polynomial. Results on higher derivatives are also presented.

Recall that αi(G), i v 1, denotes the number of induced i-cubes of G. The
cube polynomial c(G, x) of G is defined as

c(G, x) =
∑
iv0

αi(G)xi .

For instance, c(Qn, x) = (x + 2)n and c(T, x) = (n – 1)x + n, where T denotes
a tree on n vertices. Note also that

αk(G) =
c(k)(G, 0)

k!
.

A cover C of a graph G, as defined in Subsection 13.2.1.1, is cubical if every in-
duced hypercube of G is contained in at least one of the members of C. Every
cubical cover is also an isometric cover but may not be convex cover. Us-
ing the inclusion-exclusion principle the following theorem by Brešar et al.
from [18] can be easily proved.

Theorem 13.21 Let C = G1, . . . , Gn be a cubical cover of a graph G. Then,

c(G, x) =
∑
A⊆[n]

(–1)|A|–1c(GA, x) .

By F (G) we denote the set of edges of graph G consisting of repre-
sentatives of the Θ-classes of a median graph G. Recall that for an edge
e = uv ∈ E(G) the set Ue = Uxy is the subgraph of G induced by the ver-
tices x of G incident with some edge from Θ-class Fxy. The derivative ∂G of
a median graph G is defined as the disjoint union of the graphs Ue, e ∈ F (G).
Let G ∈ M∗ \M, in other words G = G1 ∪G2 ∪ . . .∪Gt and Gi ∈M, where
1 u i u t. The derivative of G is then defined as G = ∂G1 ∪ ∂G2 ∪ . . . ∪ ∂Gt.

For k v 0, higher derivatives are defined recursively in the natural way:

∂kG =

{
G for k = 0

∂(∂k–1G) for k v 1 .

As usual, by c′(G, x) we denote the derivative of c(G, x), and by c(k)(G, x) its
kth derivative.
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Brešar et al. obtained in [19] the following basic properties of cube poly-
nomials.

Theorem 13.22 Let c(G, x) be the cube polynomial of a graph G.

(i) Let G be the expansion with respect to the cubical cover G1, G2 and let
G0 = G1 ∩G2. Then c(G, x) = c(G1, x) + c(G2, x) + xc(G0, x).

(ii) For every median graph G, it holds c(G, –1) = 1.
(iii) For all graphs G and H, it holds that c(G�H, x) = c(G, x)c(H, x).
(iv) For every median graph G and every integer k v 1, it holds that

c(k)(G, x) = c(∂kG, x).
(v) For every median graph G, it holds that c′(G, –1) = dimI(G).

Note that when the expressions on the left side of the equality from Theo-
rem 13.22(ii) and (v) are expanded, these equalities are simply Equalities 13.9
and 13.10, respectively.

Motivated by Theorems 13.21 and 13.22(i) and (iii) we follow with next
definitions. Let G denote the class of all finite graphs. We say that a function
f : G ~ R→ R has:

(i) The amalgamation property if c(G, x) =
∑
A⊆[n]

(–1)|A|–1c(GA, x).

(ii) The product property if for any graphs G and H,
f(G�H, x) = f(G, x)f(H, x).

(iii) The expansion property if f(G, x) = f(G1, x)+ f(G2, x)+xf(G0, x) whenever
G is the expansion with respect to the cubical cover {G1, G2}, where
G0 = G1 ∩ G2.

Now we can state the characteristic properties from [19] regarding cube
polynomials.

Theorem 13.23 Let f : G ~ R→ R be a function with:

(i) The expansion property and the product property. Then either f == 0 or f == c.
(ii) The amalgamation and the expansion property. Then for any graph G,

f(G, x) = f(Q0, x)c(G, x) .

Moreover, if f : M ~ R → R is a function with the expansion property, then for
any graph G, f(G, x) = f(Q0, x)c(G, x).

13.4.1

Cube Polynomials of Cube-Free Median Graphs

In the case of cube-free median graphs, the cube polynomial is of degree two
and therefore more can be said about its roots. Brešar et al. [21] obtained the
following two results.
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Theorem 13.24 The cube polynomial of a cube-free median graph G always has
real zeros. Moreover, it has a unique zero if and only if G is a tree or the Cartesian
product of two trees of the same order.

Since the cube polynomials of cube-free median graphs are of degree two,
minimum points can also be described nicely.

Theorem 13.25 Let G be a cube-free median graph that is not a tree, and let xmin

be the minimum point of c(G, x). Then

xmin = –1 –
k∑

e∈F (G)

|E(Ue)|
.

If G is 2-edge-connected, then xmin v –2, and xmin = –2 if and only if G = Q2.

13.4.2

Roots of Cube Polynomials

It is quite natural to ask for roots of graph polynomials. The next theorem by
Brešar et al. [21] gives an upper bound for roots of cube polynomials.

Theorem 13.26 Let G ∈ M∗ be a graph with at least one edge. Then c(G, x) is
a strictly increasing function on [–1,∞).

Hence for any graph G ∈ M∗, its cube polynomial c(G, x) has no zeros in
[–1,∞).

13.4.2.1 Rational Roots of Cube Polynomials

As was already observed, c(T, x) = n + (n – 1)x for any tree T on n vertices.
Thus –(n/(n – 1)) is the root of c(T, x). As the next result by Brešar et al. [21]
shows, all possible rational roots of cube polynomials of median graphs are
already realized on trees.

Theorem 13.27 Let G be a median graph. Then any rational zero of c(G, x) is of
the form –((t + 1)/t) for some t ∈ N.

Hence for median graphs all rational zeros are bounded to the interval
[–2, –1). The situation is different in the classM∗, where every rational num-
ber smaller than –1 is realizable as a root of some cube polynomial. For ex-
ample, let G be the disjoint union of a tree on t + 1 vertices and s – t – 1
additional vertices, where s, t ∈ N with s v t + 1. Then, c(G, – s

t ) = 0.
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13.4.2.2 Real Roots of Cube Polynomials

For a median graph G, let z(G) denote the largest real zero of its cube poly-
nomial c(G, x). That z(G) is well defined follows from the following theorem
from [21].

Theorem 13.28 Let G be a nontrivial median graph. Then c(G, x) has a real zero
in the interval [–2, –1). Moreover, for any nontrivial convex subgraph H of G, it
holds that z(H) u z(G).

For N v 1, let G be a median graph obtained by gluing together a square
and a tree on 2N–3 vertices. Then c(G, x) = x2+2Nx+2N and the smallest zero
of c(G, x) equals –N –

√
N2 – 2N. Hence the next theorem from [21] follows.

Theorem 13.29 There exists a median graph with an arbitrarily small negative
real zero of its cube polynomial.

13.4.2.3 Graphs of Acyclic Cubical Complexes

Analogously to simplicial complexes, cubical complexes can be defined in
a similar way by considering hypercubes instead of simplices. More precisely,
a cubical complex K is a finite set of hypercubes of any dimension that is
closed under taking subcubes and nonempty intersections. The (underlying)
graph of cubical complex K has 0-dimensional hypercubes of K as its vertices,
and two vertices being adjacent if they belong to a common 1-dimensional
hypercube. The wheel Wn, n v 3, consists of the n-cycle Cn together with
an extra vertex joined to all the vertices of the cycle. The cogwheel (also bipar-
tite wheel) BWn is obtained from the wheel Wn by subdividing all the edges
of the outer cycle. Bandelt and Chepoi introduced graphs of acyclic cubical
complexes [6] and characterized them in several different ways, including as
follows.

Theorem 13.30 A graph G is the graph of an acyclic cubical complex if and only
if G is a median graph not containing any convex cogwheel.

By Theorem 13.27 the only possible candidate for an integer root of the
cube polynomial of a median graph is –2. It is straightforward to see that
c(BWn, –2) = 1. Using the characterization from Theorem 13.30 acyclic cubi-
cal complexes are characterized algebraically in [21] as follows.

Theorem 13.31 Let G be a median graph. Then G is a graph of an acyclic cubical
complex if and only if for every 2-connected convex subgraph H of G it holds that
c(H, –2) = 0.



342 13 Complexity of Phylogenetic Networks

For the problem of efficient recognition of graphs of acyclic cubical com-
plexes see [41].

13.4.2.4 Product Median Graphs

A graph G is a product graph if it is a Cartesian product of nontrivial graphs.
Using the observation that for H and K, two convex and nondisjoint sub-
graphs of a median graph G the union H ∪ K is an isometric subgraph of G,
median graphs that are product graphs are characterized in [21] as follows.

Theorem 13.32 Let G be a median graph. Then G is a product graph with
G = H�K if and only if G contains convex subgraphs H and K such that
|V(H) ∩ V(K)| = 1 and c(G, x) = c(H, x)c(K, x).

Special Cartesian products of trees are characterized in an algebraic way
in [21] as follows.

Theorem 13.33 Let G be a median graph with the cube polynomial c(G, x) of
degree p. Then, c(G, x) has a p-multiple zero if and only if G is a Cartesian product
of p trees all of the same order.

Bandelt et al. characterized in [5] the Cartesian products of trees by a for-
bidden list of isometric subgraphs.

13.4.3

Higher Derivatives of Cube Polynomials

Using the induction on the number of amalgamation steps the following
relation, from [19], between derivatives of cube polynomials can be proved.

Theorem 13.34 Let G be a median graph and s v 0. Then,

c(s)(G, x + 1) =
∑
ivs

c(i)(G, x)
(i – s)!

and

c(s)(G, x) =
∑
ivs

(–1)i–s

(i – s)!
c(i)(G, x + 1) .

Let θs(G), s v 0, denote the number of connected components in the graph
∂sG. The following relations between different parameters are from [19].
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Theorem 13.35 Let G be a median graph and s v 0. Then

θs(G) = c(s)(G, –1)

αs(G) =
1
s!

∑
ivs

θs(G)
(i – s)!

θs(G) = s!
∑
iv0

(–1)i–s
(

i
s

)
αi

∑
iv0

(–1)i2iαi =
∑
iv0

(–1)i θi(G)
i!

.

13.5

Hamming Polynomials

Brešar et al. introduced in [16] the Hamming polynomial h(G) of a graph G as
the Hamming subgraph counting polynomial. More precisely, the Hamming
polynomial of a graph G is defined as

h(G) = h(G; x2, x3, . . . , xω) =
∑

r2,r3,...,rωv0

α(G; r2, r3, . . . , rω)xr2
2 xr3

3 . . . xrω
ω ,

where α(G; r2, r3, . . . , rω) denotes the number of induced subgraphs of G iso-
morphic to the Hamming graph Kr2

2 �Kr3
3 � . . .�Krω

ω , and ω = ω(G), where
ω(G) denotes the clique number of G.

Cube polynomials are therefore only special case of Hamming polynomi-
als, since c(G, x) =

∑
r2v0 α(G; r2)xr2

2 .
Before defining the derivatives of a Hamming polynomial, we first de-

fine a relation on the set of all complete subgraphs of G on k vertices, de-
noted by Kk(G). Complete subgraphs X, Y ∈ Kk(G) on vertices x1, . . . , xk and
y1, . . . , yk, respectively, are in relation ~k if the notation of vertices can be
chosen in such a way that there exists an integer p such that d(xi, yj) = p + 1
for i =/ j, and d(xi, yi) = p. Relation ~k is an equivalence relation on Kk(G)
for a partial Hamming graph, see [21]. Moreover, if G is a partial Hamming
graph, then 2 u k u ω, and E is an equivalence class of relation ~k, then there
exists a graph UE such that 〈E〉 = Kk�UE. Let G be a partial Hamming graph
and E1, . . . , Er the equivalence classes of relation ~k. By the above-mentioned
fact, there exist graphs Ui, 1 u i u r such that 〈Ei〉 = Kk�Ui. The Kk-derivative
∂kG of G (with respect to k) is defined as the disjoint union of the graphs Ui:
∂kG =

⋃r
i=1 Ui.

For a median graph G, ∂kG is defined only for k = 2; moreover, ∂2G = ∂G,
where ∂G is defined as above. The relation between derivatives of Hamming
polynomials and derivatives of Hamming graphs is explained in the next
theorem, from [16].
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Theorem 13.36 Let G be a partial Hamming graph. Then for any k, 2 u k u ω,

∂h(G; x2, . . . , xω)
∂xk

= h(∂kG; x2, . . . , xω) .

Cartesian product behaves nicely on Hamming polynomials as well.

Theorem 13.37 For any graphs G and H, h(G�H) = h(G)h(H).

Let αd = α(G; 0, . . . , 0, d) denote the number of induced subgraphs isomor-
phic to Kd

r . The next theorem from [16] generalizes Equality 13.3 to Ham-
ming graphs.

Theorem 13.38 Let G be the Hamming graph Kn
r . Then

n∑
k=0

(–1)kαk = (r – 1)n

and

n∑
k=0

(–1)kkαk = –n(r – 1)n–1 .

13.5.1

A Different Type of Hamming Polynomial for Cage-Amalgamation Graphs

Brešar and Tepeh Horvat considered in [22] a different type of Hamming
polynomial, denoted by r(G; x), that can be obtained by approximately merg-
ing all variables to one and summing the corresponding coefficients in the
definition of the Hamming polynomial from the previous subsection. In
other words, let γi(G) denote the number of induced i-regular Hamming
graphs in G, then

r(G; x) =
∑
iv0

γi(G)xi .

In the rest of this section we present results from [22]. First we discuss
some properties for Hamming polynomials of arbitrary graphs. For a proper
cover of an arbitrary graph the next result is similar to Theorem 13.21 on
cube polynomials.

Theorem 13.39 Let C = G1, . . . , Gn be a proper cover of a graph G. Then,

r(G, x) =
∑
A⊆[n]

(–1)|A|–1r(GA, x) .
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Again as a consequence, when the cover is of a special type, namely both
parts are gated subgraphs, the next formula follows.

Theorem 13.40 If a graph G is a gated amalgam of graphs G1 and G2 along graph
G0, then

r(G, x) = r(G1, x) + r(G2, x) – r(G0, x) .

An expansion of a graph G is peripheral (also minimal) if one member of
the cover of G includes all other members of the cover of G.

Theorem 13.41 Let G∗ be a graph obtained by the peripheral expansion of G along
G0 with respect to H. Then

r(G∗, x) = r(G, x) + r(G0, x)(r(H, x) – 1) .

Using induction on the number of vertices of a chordal graph and using
Theorem 13.41 dimI(G) times one can obtain the next result, which is a spe-
cial case of 13.20.

Theorem 13.42 For a connected chordal graph G

r(G, –1) = 1

and

r ′(G, –1) = dimI(G) .

If the expressions from the theorem are expanded, one obtains exactly For-
mulas 13.12 and 13.13.

13.6

Maximal Cubes in Median Graphs of Circular Split Systems

Let S be a nonempty collection of splits (bipartitions of [n]) also called a split
system. Graph G(S) has as vertices all sets X that contain exactly one element
of each split from S and have the property that every pair of elements from X
intersects. Two vertices U and V of G(S) are adjacent if there exist exactly one
split S = {A, B} from S such that either A ∈ U∩V or B ∈ U∩V. Barthélemy
[14] introduced a similar construction by extending Buneman’s construction
of trees [24] (from a set of compatible splits). Graph G(S) is always a median
graph [14], and it can be easily seen that the isometric embedding into the
corresponding hypercube together with the corresponding binary labeling
of vertices is already encoded in the definition of vertices of G(S). Moreover,
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every median graph can be obtained by such a construction (just consider the
set of its splits). G(S) is also called a median network or Buneman graph [32,
33,60]. In [13,64] the number of vertices of the median graph G(S), where S
is the split system of all possible splits of set [n], is calculated for n u 7.

Bandelt and Dress introduced in [9] circular split systems. For n v 3, con-
sider an n-cycle Cn and label its vertices with elements from [n]. For n v 2,
the full circular split system S(n) on [n] is defined as follows. The full circular
split system S(2) consists of only one possible split of the set [2]; in other
words, S(2) = {{{1}, {2}}}. For n v 3, S(n) consists of all splits of [n] that
are induced by removing two edges from Cn and taking the split of [n] corre-
sponding to the two connected components.

Using Theorem 13.6 it is shown in [26] that the number of vertices of
a median graph of the full circular split system S(n) is 2n–1. Let ρi(G) denote
the number of maximal induced i-cubes in graph G. Choe et al. [26] also
provided the following formulas for ρi(G) of full circular split systems.

Theorem 13.43

ρi(S(n)) =

⎧⎪⎪⎨⎪⎪⎩
n

n–2p

p–1∑
j=0

2j
(p–1

j

)(n–2p
j+1

)
for 1 u p < � n

2�

1 for p = � n
2 �

In [26] the recursive formulas for maximal induced hypercubes of special
split subsystem S(n, m) are presented. There, the split subsystem S(n, m)
of S(n), where 1 u m < � n

2�, is defined as a system consisting of all splits
S = {A, B} from S(n) with the additional property min{|A|, |B|} = m.

13.7

Applications in Phylogenetics

Median graphs were introduced by Bandelt in 1994 as a tool for phylogenetic
analysis, see [4]. Since then many new theoretical as well practical results
have been obtained, that is, median graphs have also been successfully used
in the analysis of population data in the form of human mitochondrial data,
see [10, 12].

Median graph can be used to visualize phylogenetic relationships as fol-
lows. One way to build a median graph from a given alignment pattern of
some taxa is to consider all sequences and for any position form splits in
such a way as to combine in the same part all sequences that agree in this
position. If this is possible, then sequences are said to be binary (every po-
sition has only two possible values). Once splits are determined for every
position of the sequences, the construction from the previous section can be
applied (the construction of the Buneman graph).
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In practice, however, another approach is more appropriate. Suppose that
a given taxon has a binary sequence and that its length is k. Then one can re-
code the alignment into binary data as follows: choose an arbitrary reference
sequence L and code it by the sequence of the length k with all entries equal
to 1. For any other sequence the ith position is 1 if the sequence agrees with
L in the ith position and 0 otherwise. To reduce unnecessary data, remove
all positions that agree on all sequences to get a set M, a set of sequences
of length j. So far, sequences present vertices in a j-cube. However, they may
not induce a connected graph. In the sequel, a so-called median-joining al-
gorithm is applied that iteratively repeats the following process, for a triple
of vertices find their median vertex in a j-dimensional hypercube and add it
to set M. Repeat this process until it stabilizes (it is not possible to add any
new median vertex to M). The resulting set is also called a median closure and
the obtained graph is a median graph. If the sequences are not binary, then
a similar median-joining algorithm can be used to produce a quasi-median
graph instead of a median graph. For small data sets the construction can be
done by hand, and for larger examples computer programs are freely avail-
able (see the Shareware Phylogenetic Network Software web site).

However, sometimes before the sequencing of the data or during exper-
imental observations some phantom mutations may occur. It is observed
in [12] that phantom mutations generate a pattern quite different from that
of natural mutations. These mutations are then seen as high-dimensional
hypercubes in the corresponding median graph. High-dimensional hyper-
cubes are hard to visualize; therefore, one would like to avoid them if they
are not necessary to be present in a median graph obtained by the above
construction.

Since large sets of pairwise incompatible splits correspond to high-
dimensional hypercubes in median graphs, one would like to minimize
the occurrence of such situations. To this end the cube polynomial is used
in [12], where it is called a cube spectrum. Together with some other tech-
niques, a comparison with reliable data sets has been performed to extract
the real data and to avoid errors caused by phantom mutations [12].

13.8

Summary and Conclusion

In this chapter we have surveyed almost all, to the best of our knowledge,
known results on counting hypercubes in median graphs and related prob-
lems. Among special families of median graphs, other related families of
graphs with interesting metric properties were also discussed, that is, quasi-
median graphs, cage-amalgamation graphs, and partial cubes. The basic no-
tions and tools from metric graph theory were presented in the first part.
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All known treelike equalities and Euler-type inequalities were collected. The
properties of cube and Hamming polynomials were treated and their ap-
plications to phylogenetics were mentioned. Naturally, many new questions
will arise and new challenges will appear. We state some of the intriguing
problems that seem promising.

Although the location of roots of cube polynomials of median graphs is
quite well understood, it also seems interesting to consider the roots of Ham-
ming polynomials.

It would be interesting to find more treelike equalities for graph classes
whose members can be obtained by a sequence of amalgamations (of a spe-
cial type) from families of graphs with special properties.

Perhaps one could generalize Euler-type inequalities of partial cubes to
hold for partial Hamming graphs, or even more generally �1-graphs?

And finally, for an arbitrary graph G what is the role of the canonical met-
ric representation of G in counting special subgraphs induced by products of
some factors appearing in the canonical metric representation of G? More-
over, further applications would make the whole theory even more interest-
ing and valuable.
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Note Added After the Editing Process

After the chapter has been submitted for the publication the author has been
informed by Victor Chepoi that the class of graphs that is characterized by
fulfilling the equality (13.9) has been intensively studied in [8]. These are
partial cubes induced by so called lopsided sets. See [7] and [8] for more in-
formation on this very interesting class of graphs.
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Elementary Elliptic (R, q)-Polycycles
Michel Deza, Mathieu Dutour Sikiríc, and Mikhail Shtogrin

A (R, q)-polycycle is a map whose faces, besides some disjoint holes, are i-
gons, i ∈ R, and whose vertices have a degree between 2 and q with vertices
outside of holes being q-valent. This notion arises in organic chemistry and
crystallography as well as in purely mathematical contexts.

A (R, q)-polycycle is called elementary if it cannot be cut along an edge. Ev-
ery (R, q)-polycycle can be uniquely decomposed into elementary ones. This
decomposition is useful for computer enumeration and determination of
classes of plane graphs and (R, q)-polycycles [6, 11–14, 17, 20]. A critical step
for using the decomposition theorem is to be able to list all elementary poly-
cycles occurring in a given problem.

A (R, q)-polycycle is called elliptic, parabolic, or hyperbolic if 1
q + 1

r – 1
2 (where

r = maxi∈Ri) is positive, zero, or negative, respectively). Here we determine
all elementary elliptic (R, q)-polycycles. For parabolic and hyperbolic cases,
there is a continuum of possibilities, so this method is less useful.

14.1

Introduction

Given q ∈ N and R ⊂ N, a (R, q)-polycycle P is a nonempty 2-connected map
on a closed surface S with faces partitioned in two nonempty sets F1 and F2,
so that:

(1) all elements of F1 (called proper faces) are combinatorial i-gons with i ∈ R;
(2) all elements of F2 (called holes) are pairwisely disjoint, that is, have no

common vertices;
(3) all vertices have degree within {2, . . . , q} and all interior (i.e., not on the

boundary of a hole) vertices are q-valent.

The map P can be finite or infinite and some of the faces of the set F2 can
be i-gons with i ∈ R or have a countable number of edges. In practice almost
all the maps occurring here will be plane graphs, which most often will be
finite plane graphs. Note that while any finite plane graph has a unique ex-
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terior face, an infinite plane graph can have any number of exterior faces,
including 0 and infinity. The exterior faces will always be holes.

An isomorphism between two maps, G1 and G2, is a function φ mapping
vertices, edges, and faces of G1 to those of G2 and preserving inclusion re-
lations. Two (R, q)-polycycles, P1 and P2, are isomorphic if there is an iso-
morphism φ of corresponding plane graphs that maps the set of holes of
P1 to the set of holes of P2. The automorphism group Aut(G) of a map G is
the group of all its automorphisms, that is, isomorphisms of G to G. The au-
tomorphism group Aut(P) of a polycycle P, considered below, consists of all
automorphisms of map G preserving the pair (F1, F2); thus, Aut(P) is the
stabilizer of the pair (F1, F2) in Aut(G).

If a (R, q)-polycycle is a finite plane graph, then its automorphism group
is isomorphic to a group of isometries of R3. Such groups are classified and
we use the Schoenflies notation explained, for example, in [18]. If the (R, q)-
polycycle is infinite, then there is no general classification. However, if the
(R, q)-polycycle is “infinite in only one direction,” then the groups are iden-
tified as “frieze groups”; the seven possible patterns are described in [2]. It
turns out that the (R, q)-polycycles described here belong to those cases. But,
in general, many other types of groups could occur.

We now explain some notions of topology that allow us to reduce the prob-
lem to the case of (R, q)-polycycles, which are plane graphs. If one is not
interested in those notions, then one needs only know that a simply con-
nected (R, q)-polycycle, called an (R, q)simp-polycycle, is a plane graph with
the set of holes being the set of exterior faces. If P is an (R, q)-polycycle, then
the group π1(P) is a fundamental group (for details see, for example, [22]) of
the map obtained by removing the faces F2 from P, that is, by considering
them as boundaries. An (R, q)-polycycle P is simply connected if π1(P) = {Id},
and in this case we call P an (R, q)simp-polycycle. For example, Prismm (m-
gonal prism) is a ({4}, 3)-polycycle with F2 consisting of two m-gonal faces.
The map Prismm, drawn on a plane with one m-gon being an exterior face,
is simply connected. But after removal of F2 from the face set, it becomes
nonsimply connected, since a cycle around the faces will no longer be con-
tractible to a point. An (R, q)-polycycle is simply connected if and only if it
is a plane graph with F2 being exactly the set of exterior faces. An automor-
phism φ of an (R, q)-polycycle is called fixed-point-free if φ = Id or φ does not
fix any vertex, edge, or proper face. Any (R, q)-polycycle P admits a universal
cover, that is, an (R, q)-polycycle P̃, which is simply connected and such that P
is obtained as quotient of P̃ by a group G of fixed point free automorphisms,
which is isomorphic to π1(P).

The notion of an (R, q)-polycycle is a large generalization of (r, q)-polycycles,
that is, ({r}, q)simp-polycycles introduced by Deza and Shtogrin in [7] and
studied in their papers [7–16, 23, 24]. The case |R| = 1, that is, (r, q)-polycycles
with holes, was considered in [3].
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A boundary of an (R, q)-polycycle P is the boundary of any of its holes.
A bridge of an (R, q)-polycycle is an edge that is not on a boundary and

goes from a hole to a hole (possibly the same one). An (R, q)-polycycle is
called elementary if it has no bridges. See below for an illustration of these
concepts:

A nonelementary ({4, 5}, 3)simp-polycycle
with its bridges

An elementary
({5}, 3)simp-polycycle

An open edge of an (R, q)-polycycle is an edge on a boundary such that each
of its end vertices have a degree less than q. See below the open edges of
some (R, q)-polycycles:

The open edges of a
({5}, 3)simp-polycycle

The open edge of a
({2, 3}, 5)simp-polycycle

Theorem 14.1 Every (R, q)-polycycle is uniquely formed by the agglomeration of
elementary (R, q)-polycycles along open edges or, in other words, it can be uniquely
cut, along the bridges, into elementary (R, q)-polycycles.

See below for an example of a decomposition of a ({5}, 3)-polycycle:

A ({5}, 3)-polycycle with its
bridges being overlined

The elementary components
of this polycycle

Theorem 14.1 gives a simple way to describe an (r, q)-polycycle: give the
names of its elementary components and use the symbol +. In some cases,
this is ambiguous, that is, the same elementary component can be used to
form an (r, q)-polycycle in different ways; in the same way as the formula of
a molecule, giving its number of atoms does not define it in general. For
example, with D denoting the (5, 3)-polycycle formed by a 5-gon, D + D + D
refers unambiguously to the following (5, 3)-polycycle:
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There is another (5, 3)-polycycle with three 5-gons sharing a vertex; but this
one is elementary. On the other hand D+D+D+D is ambiguous, since there
are two (5, 3)-polycycles having four elementary components D.

Hence, the interesting question is to enumerate, if possible, those elemen-
tary (R, q)-polycycles. Call an (R, q)-polycycle elliptic, parabolic, or hyperbolic if
the number 1

q + 1
r – 1

2 (where r = maxi∈Ri) is positive, zero, or negative, respec-
tively. The number of elementary ({r}, q)simp-polycycles is uncountable for
any parabolic or hyperbolic pairs (r, q) (for example, [5,14]). But in [12,14], all
elliptic elementary ({r}, q)simp-polycycles were determined. That is to say, the
countable sets of all elementary ({5}, 3)simp- and ({3}, 5)simp-polycycles were
described; the cases of ({3}, 3)simp-, ({4}, 3)simp- and ({3}, 4)simp-polycycles
are easy. We generalize this classification to all elliptic (R, q)-polycycles. In
fact, we will consider the case R = {i : 2 u i u r} covering all elliptic possibili-
ties: ({2, 3, 4, 5}, 3)-, ({2, 3}, 4)- and ({2, 3}, 5)-polycycles in Sections 2, 3, and
4, respectively.

Given an (R, q)-polycycle P, one can define another (R, q)-polycycle P′ by
removing a face f from F1. If f has no common vertices with other faces
from F1, then removing it leaves unchanged the plane graph G and only
changes the pair (F1, F2). If f has some edges in common with a hole, then
we remove them and merge it with the hole. If f has a vertex v in common
with a hole and if v does not belong to a common edge, then we split v into
two vertices. See below for two examples of this operation:

Removal of a 2-, 5-gon having a boundary vertex, edge, respectively.

The reverse operation is the addition of a face. A (R, q)-polycycle P is called
extensible if there exists another (R, q)-polycycle P′ such that the removal of
a face of P′ yields P, that is, if one can add a face to it.

Theorem 14.1, together with the determination of the elementary
({r}, q)simp-polycycles, has been the main tool for the following applications:
determination of ({r}, q)simp-polycycles having the maximal number of in-
terior vertices for a fixed number of faces [12, 14], determination of nonex-
tensible finite ({r}, q)simp-polycycles [6, 14], classification of 2-embeddable
({r}, q)simp-polycycles [11, 13], determination of ({5}, 3)simp-polycycles not
uniquely characterized by their boundary [17]. But (R, q)-polycycles are also
useful for the enumeration of plane graphs; actually we came to this notion
in working on classification questions of face-regular two-faced maps [20].

In all pictures below, we put under an (R, q)-polycycle P, its symmetry
group Aut(P), and mark nonext. for nonextensible P. Also, we put in paren-
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theses the group Aut(G) of the corresponding graph G if Aut(P) �= Aut(G)
and no other polycycle with the same graph G exists. In fact, the same plane
graph G can admit several realizations as a (R, q)-polycycle; see examples be-
low mentioned in Appendices 1 and 2.

The computations and graphics presented here were done with the GAP
computer algebra program [21], the PlanGraph package [19], and the CaGe
drawing program [1].

We thank Gil Kalai for a question that led us to this study.

14.2

Kernel Elementary Polycycles

Call kernel Ker(P) of an (R, q)simp-polycycle P the cell complex formed by its
vertices, edge, and faces that do not contain a boundary vertex. Call an (R, q)-
polycycle kernel-elementary if it is an r-gon or if it has a nonempty connected
kernel such that the deletion of any face from the kernel will diminish it (i.e.,
any face of the polycycle is incident to its kernel).

Theorem 14.2

(i) If an (R, q)simp-polycycle is kernel-elementary, then it is elementary.
(ii) If (R, q) is elliptic, then any elementary (R, q)simp-polycycle is also kernel-

elementary.

Proof. (i) Take a kernel-elementary (R, q)-polycycle P; one can assume it to be
different from an r-gon. Let P1,. . . , Pm be the elementary components of this
polycycle. The connectedness condition on the kernel gives that all Pi but one
are r-gons with r ∈ R. But removing the components Pi that are r-gons does
not change the kernel; thus, m = 1 and P is elementary.

(ii) Consider any two vertices of an r-gon of an elliptic (R, q)-polycycle that
belongs to the kernel of this polycycle. The shortest edge path between these
vertices lies inside the union of two stars of r-gons with the centers at these
two vertices; this result can easily be verified in each particular case for any
elliptic parameters (R, q) = ({2, 3, 4, 5}, 3), ({2, 3}, 4), and ({2, 3}, 5). Hence,
any r-gon of an elliptic (R, q)-polycycle is incident with only one simply con-
nected component of its kernel. All r-gons that are incident with the same
nonempty connected component of the kernel constitute a nontrivial ele-
mentary component. Since the polycycle is elementary, this is its totality and
the kernel is connected.

In [14] the notion of kernel-elementary was called elementary. See below
for an example of a ({6}, 3)-polycycle that is elementary but not kernel-
elementary, since its kernel is not connected:



356 14 Elementary Elliptic (R, q)-Polycycles

The decomposition Theorem 14.1 (of (r, q)-polycycles into elementary polycy-
cles) is the main reason why we prefer to call the property elementary rather
than kernel-elementary. Another reason is that if an (R, q)-polycycle is ele-
mentary, then its universal cover is also elementary.

The notion of kernel is used as a technical tool in the classification results
obtained below. If P is an (R, q)simp-polycycle, then we denote by Ker(P) its
kernel and by G(P) the cell complex obtained by removing from Ker(P) all
edges and vertices that are not contained in any face. See below for an ex-
ample:

P Ker(P) G(P)

We will prove that G(P) is itself an (R, q)simp-polycycle if (R, q) is elliptic and P
is an elementary (R, q)simp-polycycle. Call an (R, q)simp-polycycle P′ kernelable
if there is an (R, q)simp-polycycle P such that P′ = G(P).

14.3

Classification of Elementary ({2, 3, 4, 5}, 3)-Polycycles

For 2 u m u ∞, denote by Barrelm the ({5}, 3)-polycycle with two m-gonal
holes separated by two m-rings of 5-gonal proper faces. This polycycle is
nonextensible if and only if m v 6. Its symmetry group, Dmd, coincides with
the symmetry group of the underlying 3-valent plane graph if and only if
m �= 5. See below for pictures of Barrelm for m = 2, 3, 4, 5, and∞:

D2d D3d D4d
D5d

(Ih)

D∞d=pma2, nonext.
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Theorem 14.3 The list of elementary ({2, 3, 4, 5}, 3)-polycycles consists of:

(i) 204 sporadic ({2, 3, 4, 5}, 3)simp-polycycles, given in Appendix 1.
(ii) Six ({3, 4, 5}, 3)simp-polycycles, infinite in one direction:

α: C1 δ: C1

�: C1 ε: C1, nonext.

γ: C1, nonext. μ: C1, nonext.

(iii) 21 =
(6+1

2

)
infinite series obtained by taking two ends of the infinite polycycles

from (ii) above and concatenating them.
For example, merging α with itself produces the infinite series of elementary
({5}, 3)simp-polycycles, denoted by En in [12]. See Figure 14.1 for the first 3
members (starting with 6 faces) of two such series: αα and �ε.

(iv) The infinite series of Barrelm, 2 u m u∞, and its nonorientable quotient for
m odd.

Proof. Take an elementary ({2, 3, 4, 5}, 3)simp-polycycle P that, by Theo-
rem 14.2, is kernel-elementary. If its kernel is empty, then P is simply an
r-gon with r ∈ R. If the kernel is reduced to a vertex, then P is simply a triple
of r-gons with r ∈ R – {2}. If each r-gon of P has at most three vertices from
the kernel that are arranged in succession along the perimeter, then the ker-
nel does not contain any face and has the form of a geodesic or a propeller,
that is, a vertex and three adjacent vertices. If Ker(P) is a geodesic, then P is
one of Barrel∞, (ii) or (iii). If it is a propeller, then there is a finite number of
possibilities, which occur in (i).

Suppose now that Ker(P) contains some faces. Then any face not contained
in Ker(P) contains at most 3 vertices of Ker(P). Now, if two faces F and F′ of
Ker(P) are related by a sequence of kernel edges, then one can see that F
and F′ are also related by a sequence of faces. Similarly, if e1 = {v0, v1}, e2 =
{v1, v2} are kernel edges with v0 belonging to a kernel face F′′ and e1 /∈ F′′,
then e1 belongs to another face of the kernel. So, G(P) is a ({2, 3, 4, 5}, 3)-
polycycle and Ker(P) is obtained from G(P) by adding edges sharing a vertex
with G(P). The method for enumerating the kernelable ({2, 3, 4, 5}, 3)simp-
polycycles is then as follows:
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1. Denote by L(N) a list of kernelable ({2, 3, 4, 5}, 3)simp-polycycles, which is
the complete list of such polycycles for those with at most N interior faces.

2. Start with L(1) being the list of r-gons for r ∈ {2, 3, 4, 5}.
3. For every N take any element in L(N) and add to it the kernelable

({2, 3, 4, 5}, 3)simp-polycycles obtained by adding one or two faces.
4. Reduce by isomorphism and obtain L(N + 1).

It turns out that this algorithm stops at N = 6. Let P be a kernelable ({2, 3, 4,
5}, 3)simp-polycycle. If P is infinite, then one can find finite subpolycycles of
arbitrary size that are also kernelable. If P is finite, then one can remove
one or two faces and still have a kernelable ({2, 3, 4, 5}, 3)simp-polycycle. This
proves that there are no kernelable ({2, 3, 4, 5}, 3)-polycycles with more than
6 proper faces, and so we have the complete list.

Given a kernelable ({2, 3, 4, 5}, 3)simp-polycycle, we consider all possible
ways of adding edges to it to form a kernel and obtain therefore all ele-
mentary ({2, 3, 4, 5}, 3)simp-polycycles. Let us now determine all elementary
({2, 3, 4, 5}, 3)-polycycles that are not simply connected. The universal cover
P̃ of such a polycycle P is an elementary ({2, 3, 4, 5}, 3)simp-polycycle, which
has a nontrivial fixed-point-free automorphism group in Aut(P̃). Considera-
tion of the above list of polycycles yields Barrel∞ as the only possibility. The
polycycle Barrelm and its nonorientable quotients arise in this process.

Infinite series αα of elementary ({2, 3, 4, 5}, 3)simp-polycycles:

Infinite series �ε of elementary ({2, 3, 4, 5}, 3)simp-polycycles:

Figure 14.1 The first 3 members (starting with 6 faces) of two
infinite series, among 21 series of ({2, 3, 4, 5}, 3)simp-polycycles
in Theorem 14.3(iii).
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14.4

Classification of Elementary ({2, 3}, 4)-Polycycles

Theorem 14.4 Any elementary ({2, 3}, 4)-polycycle is one of the following eight:

C3ν (D3h) C4ν C2ν C3ν, nonext. (Oh)

C2ν (D2h) Cs C2ν, nonext. (D2d) C2ν, nonext. (D3h)

Proof. The list of elementary ({3}, 4)simp-polycycles is determined in [3] and
consists of the first four graphs of this theorem. Let P be a ({2, 3}, 4)-polycycle
containing a 2-gon. If |F1| = 1, then it is the 2-gon. Clearly, the case where
two 2-gons share one edge is impossible. Assume that P contains two 2-gons
that share a vertex. Then we should add a triangle on both sides and thus
obtain the second polycycle given above. If there is a 2-gon that does not
share a vertex with a 2-gon, then P contains the following pattern:

Thus, clearly, P is one of the last two possibilities above.

Note that the seventh and fourth polycycles in Theorem 14.4 are, respec-
tively, 2- and 3-antiprisms; here the exterior face is the unique hole. The
m-antiprism for any m v 2 can also be seen as a ({2, 3}, 4)-polycycle with
F2 consisting of the exterior and interior m-gons; this polycycle is not ele-
mentary.

14.5

Classification of Elementary ({2, 3}, 5)-Polycycles

For 2 u m u ∞, call snub m-antiprism the ({3}, 5)simp-polycycle with two
m-gonal holes separated by 4m 3-gonal proper faces. This polycycle is nonex-
tensible if and only if m v 4. Its symmetry group, Dmd, coincides with the
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symmetry group of an underlying 5-valent plane graph if and only if m �= 3.
See below for pictures of a snub m-antiprism for m = 2, 3, 4, 5, and∞ (see [4],
p. 119 for a formal definition):

D2d D3d (Ih) D4d

D5d

D∞d=pma2, nonext.

Theorem 14.5 The list of elementary ({2, 3}, 5)-polycycles consists of:

(i) 57 sporadic ({2, 3}, 5)simp-polycycles, given in Appendix 2.
(ii) The following 3 infinite ({2, 3}, 5)simp-polycycles:

α: C1

�: C1

γ: C1, nonext.

(iii) 6 infinite series of ({2, 3}, 5)simp-polycycles with one hole (obtained by con-
catenating endings of a pair of polycycles, given in (ii); see Figure 14.2 for the
first 4 polycycles).

(iv) The infinite series of snub m-antiprisms for 2 u m u∞ and its nonorientable
quotient for m odd.

Proof. Take an elementary ({2, 3}, 5)simp-polycycle P that, by Proposition 14.2,
is kernel-elementary. If its kernel is empty, then P is simply an r-gon with



14.6 Conclusion 361

r ∈ {2, 3}. If the kernel is reduced to a vertex, then P is simply a 5-tuple of
2-, 3-gons. If three edges ei = {vi–1, vi}, i = 1, . . . , 3 are part of the kernel with
e1, e2 and e2, e3 not part of an r-gon of the kernel, then we have the following
local configurations:

v

Configuration 1 Configuration 2

In both of the above pictures, we used 3-gons; if 2-gons occur, then the de-
gree of involved vertices only increases. Therefore, configuration 1 is not
possible since it involves v of degree at least 6. A geodesic is a sequence (fi-
nite, or infinite in one or two directions) of edges in configuration 2. From
this we conclude that if the kernel Ker(P) does not contain any face, then it is
a geodesic and it is a snub∞-antiprism, α, �, γ, and the polycycles obtained
in (iii).

If Ker(P) contains some faces, then one can prove, using the nonexistence
of configuration 1, that any two faces of Ker(P) are related by a sequence of
kernel faces. If e1 = {v0, v1}, e2 = {v1, v2} are kernel edges with v0 belong-
ing to a kernel face F and e1 /∈ F, then e1 belongs to another kernel face.
Thus, Ker(P) is formed by G(P) and, possibly, some edges sharing a vertex
with them. G(P) is actually a kernelable ({2, 3}, 5)simp-polycycle. The enu-
meration of kernelable ({2, 3}, 5)simp-polycycles is done in a way similar to
the ({2, 3, 4, 5}, 3) case. One gets that G(P) has at most 10 faces and then,
after adding the edges, all 57 sporadic ({2, 3}, 5)-polycycles.

If P is an elementary ({2, 3}, 5)-polycycle that is not simply connected,
then its universal cover P̃ is an elementary ({2, 3}, 5)simp-polycycle that has
a nontrivial fixed-point-free automorphism group included in Aut(P̃). The
only ({2, 3}, 5)-polycycle with a non-trivial fixed-point-free automorphism is
snub∞-antiprism. It yields the infinite series of snub m-antiprisms and its
non-orientable quotients.

14.6

Conclusion

The classification, developed here, is an extension of previous work of Deza
and Shtogrin. It allows for various possible numbers of sides of interior faces
and several possible holes. A natural question is if one can further enlarge
the class of polycycles.
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Infinite series αα of elementary ({2, 3}, 5)simp-polycycles:

C5ν C2ν
Cs

C2

Infinite series α� of elementary ({2, 3}, 5)simp-polycycles:

Cs Cs
C1

C1

Infinite series αγ of elementary ({2, 3}, 5)simp-polycycles:

C1
C1

C1

C1

Infinite series �� of elementary ({2, 3}, 5)simp-polycycles:

C2ν

Cs
C2

Cs

Figure 14.2 The first 4 members of the six infinite series of ({2, 3}, 5)simp-polycycles
from Theorem 14.5(iii).
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Infinite series �γ of elementary ({2, 3}, 5)simp-polycycles:

C1
C1

C1

C1

Infinite series γγ of elementary ({2, 3}, 5)simp-polycycles:

C2 Cs
C2, nonext.

Cs, nonext.

Figure 14.2 (continued)

There will be only some technical difficulties if one tries to obtain the cat-
alog of elementary (R, Q)-polycycles, that is, the generalization of the (R, q)-
polycycle allowing the set Q for values of a degree of interior vertices. Such
a polycycle is called an elliptic, a parabolic, or a hyperbolic if 1

q + 1
r – 1

2 (where
r = maxi∈Ri, q = maxi∈Qi) is positive, zero, or negative, respectively. The de-
composition and other main notions could be applied directly.

We required 2-connectivity and that any two holes not share a vertex. If
one removes those two conditions, then too many other graphs appear.

The omitted cases (R, q) = ({2}, q) are not interesting. In fact, consider
the infinite series of ({2}, 6)-polycycles, m-bracelets, m v 2 (i.e., m-circle with
each edge being tripled). The central edge is a bridge for those polycycles,
for both 2-gons of the edge triple. But if one removes those two digons, then
the resulting plane graph has two holes sharing a face, that is, it violates the
crucial point (ii) of the definition of the (R, q)-polycycle. For even m, each
even edge (for some order 1, . . . , m of them) can be duplicated t times (for
fixed t, 1 u t u 5) and each odd edge duplicated 6 – t times; thus the degrees
of all vertices will still be 6. On the other hand, two holes (m-gons inside and
outside of the m-bracelet) have common vertices; thus, it is again not our
polycycle.
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Appendix 1: 204 Sporadic Elementary ({2, 3, 4, 5}, 3)-Polycycles

Always below (11 cases), when several elementary sporadic ({2, 3, 4, 5}, 3)simp-
polycycles correspond to the same plane graph, we add the sign x with
1 u x u 11.

List of 4 sporadic elementary ({2, 3, 4, 5}, 3)simp-polycycles with 1 proper face:

C2ν (D2h) C3ν (D3h) C4ν (D4h) C5ν (D5h)

List of 13 sporadic elementary ({2, 3, 4, 5}, 3)simp-polycycles with 3 proper
faces:

C2ν, nonext. (D2h) C2ν Cs, nonext. C3ν, nonext. (Td)

Cs, nonext. (C2ν) Cs (C2ν) C1 Cs

Cs Cs Cs C3ν

C3ν
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List of 26 sporadic elementary ({2, 3, 4, 5}, 3)simp-polycycles with 4 proper
faces:

C2ν, nonext. 1 Cs, nonext. (C2ν) 1 Cs, nonext. (C2ν) Cs (C2ν)

C1 C1 C1 Cs

Cs Cs Cs Cs

Cs Cs Cs Cs, nonext. 2

Cs, nonext. 2 Cs, nonext. (C2ν) C2ν C2ν

C2ν C2ν C2ν C2ν, nonext. 3

C3ν, nonext. 3 C3ν
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List of 36 sporadic elementary ({2, 3, 4, 5}, 3)simp-polycycles with 5 proper
faces:

C2ν, nonext. (D2d) C1 C1 C1

C1 C1 C1 C1

C1 C1 C1 C1

C1 C1 C1 C1

C1, nonext. C1, nonext. Cs Cs

Cs Cs Cs Cs

Cs Cs Cs, nonext. 4 Cs, nonext. 4

Cs, nonext. 4 Cs, nonext. 5 Cs, nonext. 5 Cs, nonext. (C2ν)
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Cs, nonext. (C2ν) C2ν C4ν C4ν, nonext. (Oh)

List of 34 sporadic elementary ({2, 3, 4, 5}, 3)simp-polycycles with 6 proper
faces:

C1 C1 C1 C1, nonext.

C1, nonext. Cs Cs Cs

Cs Cs Cs Cs

Cs Cs Cs Cs

Cs Cs Cs Cs

Cs, nonext. 6 Cs, nonext. 6 C3ν, nonext. 6 Cs, nonext.

Cs, nonext. Cs, nonext. Cs, nonext. (C2ν) C2ν
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C2ν, nonext. 7 C5ν, nonext. 7 C3ν C3ν

C3ν, nonext. C5ν

List of 36 sporadic elementary ({2, 3, 4, 5}, 3)simp-polycycles with 7 proper
faces:

C1 C1 C1 C1

C1 C1 C1, nonext. C1, nonext.

Cs Cs Cs Cs

Cs Cs Cs Cs

Cs Cs Cs Cs

Cs Cs Cs, nonext. Cs, nonext. 8



Appendix 1: 204 Sporadic Elementary ({2,3,4,5},3)-Polycycles 369

C3ν, nonext. 8 Cs, nonext. Cs, nonext. Cs, nonext.

Cs, nonext. Cs, nonext. 9 Cs, nonext. 9 Cs, nonext.

Cs, nonext. (C2ν) C2ν C2ν C2ν, nonext.

List of 29 sporadic elementary ({2, 3, 4, 5}, 3)simp-polycycles with 8 proper
faces:

C1 C1 C1 C1

C1 C1 C1, nonext. C1, nonext.

C1, nonext. Cs Cs Cs

Cs Cs Cs Cs

Cs Cs Cs Cs, nonext.
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Cs, nonext. Cs, nonext. Cs, nonext. Cs, nonext.

Cs, nonext. (D3h) 10 C2ν, nonext. (D3h) 10

C2 C2ν C2ν, nonext.

List of 16 sporadic elementary ({2, 3, 4, 5}, 3)simp-polycycles with 9 proper
faces:

C1 C1 C1, nonext. Cs

Cs Cs Cs Cs

Cs, nonext. Cs, nonext. Cs, nonext. 11 C4ν, nonext. 11

Cs, nonext. Cs, nonext. C3ν C3ν, nonext.
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List of 9 sporadic elementary ({2, 3, 4, 5}, 3)simp-polycycles with 10 proper
faces:

Cs Cs Cs, nonext.

Cs, nonext. C2ν C2ν

C2ν, nonext. C2ν, nonext. C2ν, nonext.

Unique sporadic elementary ({2, 3, 4, 5}, 3)simp-polycycle with at least 11
proper faces:

C5ν, nonext. (Ih)

Appendix 2: 57 Sporadic eLementary ({2, 3}, 5)-polycycles

Always below (three cases) when several elementary sporadic ({2, 3}, 5)simp-
polycycles correspond to the same plane graph, we add the sign A, B, or C.

List of 2 sporadic elementary ({2, 3}, 5)simp-polycycles without interior ver-
tices:

C2ν (D2h) C3ν (D3h)
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List of 3 sporadic elementary ({2, 3}, 5)simp-polycycles with 1 interior vertex:

Cs Cs (C2v) Cs, nonext. (C2ν)

List of 6 sporadic elementary ({2, 3}, 5)simp-polycycles with 2 interior vertices:

C2ν C1 (Cs) Cs

C2v, nonext. C2, nonext. (D2d) Cs, nonext. A

List of 10 sporadic elementary ({2, 3}, 5)simp-polycycles with 3 interior ver-
tices:

Cs, nonext. A C3ν C1

Cs Cs C1 (C2)

C1 Cs Cs
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C3, nonext. (D3) B

List of 14 sporadic elementary ({2, 3}, 5)simp-polycycles with 4 interior ver-
tices:

C1 Cs C2ν

C1 C1 Cs

Cs C2ν C1

C1, nonext. B C1, nonext. (C2ν) Cs

Cs C2
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List of 10 sporadic elementary ({2, 3}, 5)simp-polycycles with 5 interior ver-
tices:

Cs Cs C1 (C2ν)

C1 C1 C1

Cs C1 Cs, nonext.

C1, nonext. C

List of 9 sporadic elementary ({2, 3}, 5)simp-polycycles with 6 interior vertices:

C5ν C3ν C2ν, nonext. C

C2 C2ν C1

Cs C2, nonext. C2ν, nonext.
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Sporadic elementary ({2, 3}, 5)simp-polycycles with 7, 8, or 9 interior vertices:

Cs C2ν C3ν, nonext. (Ih)
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15

Optimal Dynamic Flows in Networks and Algorithms

for Finding Them
Dmitrii Lozovanu and Maria Fonoberova

15.1

Introduction

Dynamic flow problems are among the most important and challenging
problems in network optimization due to the large size of these models
in real-world applications. Dynamic flows are widely used in modelling of
control processes from different technical, economic, biological and infor-
mational systems. Road traffic assignment, evacuation planning, produc-
tion and distribution, schedule planning, telecommunications, modeling of
biological and ecological systems, and management problems can be for-
mulated and solved as single-commodity or multicommodity flow prob-
lems [1–3, 36].

The field of network flows blossomed in the 1940s and 1950s with inter-
est in transportation planning and has developed rapidly since then. There
is a significant body of literature devoted to this subject (see, for exam-
ple, [1,3,11,26,34]). However, it has largely ignored a crucial aspect of trans-
portation: transportation occurs over time. In the 1960s, Ford and Fulker-
son [19,20] introduced flows over time to include time in the network model
and proposed scheme for the reduction of the dynamic maximum flow prob-
lem with fixed transit times and capacities of arcs to the static maximum flow
problem.

The following two aspects of dynamic flows distinguish them from the
traditional model. Firstly, the flow value on an arc may change over time.
This feature is important in applications where supply and demand are not
given as fixed measures; instead, they change over time. Naturally, the flow
value on each arc should adjust to these changes. Secondly, there is a transit
time on every arc that specifies the amount of time flow units need to traverse
the arc.

Two basic network flow problems are concerned with determining max-
imum flows and with finding minimum cost flows. These problems have
large implementation for many practical problems and have theoretical im-
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portance for investigating and solving various optimization problems on
graphs. The techniques for solving such problems are similar, so in this chap-
ter we will mainly study the minimum cost flow problem.

Linear models of optimal dynamic flows have been studied by Cai, Sha,
and Wong [6], Carey and Subrahmanian [7], Fleischer [15, 16], Glockner
and Nemhauser [21] Hoppe and Tardos [25], Klinz and Woeginger [27, 28],
Lozovanu [29, 30], and Ma, Cui, and Cheng [33]. In this chapter the classi-
cal optimal flow problems on networks are extended and generalized for the
cases of nonlinear cost functions on arcs, multicommodity flows, and time-
and flow-dependent transactions on arcs of the network. Dynamic networks
are considered with time-varying capacities of arcs and the demand–supply
function that depends on time. It is assumed that cost functions, defined
on arcs, are nonlinear and depend on time and flow. Moreover, the dynamic
model with transit time functions that depend on flow value and entering
time-moment of flow in the arc is considered. Algorithms for solving such
problems are proposed and justified on the basis of the time-expanded net-
work method [18–20, 31, 32].

15.2

Optimal Dynamic Single-Commodity Flow Problems and Algorithms

for Solving Them

In this section we consider two basic models concerning dynamic flows: the
minimum cost flow problem and the maximum flow problem on dynamic
networks. We formulate and investigate the minimum cost dynamic flow
problem on a network with nonlinear cost functions, defined on arcs, that
depend on time and on flow, and demand–supply and capacity functions
that depend on time. The maximum dynamic flow problem is also consid-
ered in the case where all network parameters depend on time. To solve the
considered problems, we propose algorithms based on the reduction of dy-
namic problems to classical static problems on auxiliary time-expanded net-
works. Generalized problems with transit time functions that depend on the
amount of flow and the entering time-moment of flow in the arc are analyzed
and algorithms for solving such problems are developed and grounded.

15.2.1

The Minimum Cost Dynamic Flow Problem

A dynamic network N = (V, E, τ, d, u, ϕ) is determined by directed graph
G = (V, E) with set of vertices V, |V| = n, set of arcs E, |E| = m, transit
time function τ: E → R+, demand-supply function d: V ~ T → R, capacity
function u: E ~ T→ R+, and cost function ϕ: E ~ R+ ~ T→ R+. We consider
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the discrete time model, in which all times are integral and bounded by hori-
zon T. Time is measured in discrete steps, so that if one unit of flow leaves
vertex z at time t on arc e = (z, v), then one unit of flow arrives at vertex v
at time t + τe, where τe is the transit time on arc e. The time horizon is the
time until which the flow can travel in the network, and it defines the set
T = {0, 1, . . . , T} of time moments we consider.

In order for the flow to exist, it is required that
∑
t∈T

∑
v∈V

dv(t) = 0. It is

evident that this condition is necessary, but it is not a sufficient one. If for an
arbitrary node v ∈ V at a moment of time t ∈ T the condition dv(t) > 0 holds,
then we treat this node v at time moment t as a source. If at a moment of
time t ∈ T the condition dv(t) < 0 holds, then we regard the node v at time
moment t as a sink. In the case dv(t) = 0 at a moment of time t ∈ T, we
consider the node v at time moment t as an intermediate node. In this way,
the same node v ∈ V at different moments of time can serve as a source,
a sink, or an intermediate node.

Without loss of generality we consider that the set of vertices V is divided
into three disjoint subsets V+, V–, V∗, such that:

1. V+ consists of nodes v ∈ V, for which dv(t) v 0 for t ∈ T, and there exists
at least one moment of time t0 ∈ T such that dv(t0) > 0;

2. V– consists of nodes v ∈ V, for which dv(t) u 0 for t ∈ T and there exists at
least one moment of time t0 ∈ T such that dv(t0) < 0;

3. V∗ consists of nodes v ∈ V, for which dv(t) = 0 for every t ∈ T.

Thus V+ is a set of sources, V– is a set of sinks, and V∗ is a set of interme-
diate nodes of network N.

A feasible dynamic flow in network N is a function x: E ~ T → R+ that
satisfies the following conditions:∑

e∈E–(v)

xe(t) –
∑

e∈E+(v)
t–τev0

xe(t – τe) = dv(t), ∀ t ∈ T, ∀ v ∈ V; (15.1)

0 u xe(t) u ue(t), ∀ t ∈ T, ∀ e ∈ E; (15.2)

xe(t) = 0, ∀ e ∈ E, t = T – τe + 1, T. (15.3)

Here the function x defines the value xe(t) of flow entering arc e at time t.
It is easy to observe that the flow does not enter arc e at time t if it has to leave
the arc after time T; this is ensured by (15.3). Capacity constraints (15.2)
mean that in a feasible dynamic flow, at most ue(t) units of flow can enter
arc e at time moment t. Conditions 15.1 represent flow conservation con-
straints.

To model transit costs, which may change over time, we define the cost
function ϕe(xe(t), t) with the meaning that the flow of value ρ = xe(t) entering
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arc e at time t will incur a transit cost of ϕe(ρ, t). We assume that ϕe(0, t) = 0
for all e ∈ E and t ∈ T.

The total cost of the dynamic flow x in network N is defined as follows:

F(x) =
∑
t∈T

∑
e∈E

ϕe(xe(t), t) . (15.4)

The minimum cost dynamic flow problem consists in finding a feasible dy-
namic flow that minimizes the objective function (15.4).

It is easy to observe that if τe = 0, ∀ e ∈ E, and T = 0, then the formu-
lated problem becomes the classical minimum cost flow problem on a static
network.

15.2.2

The Maximum Dynamic Flow Problem

The concept of dynamic flows can be extended for the maximum flow
problem in the following way. We introduce the dynamic network Nm =
(V, E, τ, u, Vs, Vf), which consists of directed graph G = (V, E) with set of
vertices V and set of arcs E, transit time function τ: E → R+, capacity func-
tion u: E ~ T → R+, set of sources Vs, and set of sinks Vf. In an analogous
way as in the previous subsection we consider the discrete time model with
T = {0, 1, 2, . . . , T}.

A feasible dynamic flow in the network Nm is a function x: E ~ T → R+

that satisfies Conditions (15.2)–(15.3) and the following conditions:

∑
e∈E–(v)

xe(t) –
∑

e∈E+(v)
t–τev0

xe(t – τe) =

⎧⎨⎩
yv(t), ∀v ∈ Vs;
0, ∀v ∈ V \ (Vs ∪ Vf);

–yv(t), ∀v ∈ Vf, ∀ t ∈ T;

yv(t) v 0, ∀ t ∈ T, ∀ v ∈ V .

The maximum dynamic flow problem consists in finding a feasible dy-
namic flow that maximizes the total value of the flow:

Z =
∑
t∈T

∑
v∈Vs

yv(t) .

15.2.3

Algorithms for Solving the Optimal Dynamic Flow Problems

To solve the minimum cost dynamic flow problem, we propose an approach
based on the reduction of the dynamic problem to a corresponding static
problem. We show that the minimum cost dynamic flow problem on net-
work N = (V, E, τ, d, u, ϕ) can be reduced to a minimum cost static flow prob-
lem on an auxiliary network NT = (VT, ET, dT, uT, ϕT), which is called the
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time-expanded network. The advantage of such an approach is that it turns
the problem of determining an optimal flow over time into a classical static
network flow problem.

The essence of the time-expanded network is that it contains a copy of the
vertex set of the dynamic network for each moment of time t ∈ T, and the
transit times and flows are implicit in arcs linking those copies. We define
the network NT as follows:

1. VT: = {v(t) | v ∈ V, t ∈ T};
2. ET: = {e(t) = (v(t), z(t + τe)) | e ∈ E, 0 u t u T – τe};
3. dv(t)

T: = dv(t) for v(t) ∈ VT;
4. ue(t)

T: = ue(t) for e(t) ∈ ET;
5. ϕe(t)

T(xe(t)
T): = ϕe(xe(t), t) for e(t) ∈ ET.

In what follows we state a correspondence between feasible flows in the
dynamic network N and feasible flows in the time-expanded network NT. Let
xe(t) be a flow in the dynamic network N; then the function xT defined as
follows:

xe(t)
T = xe(t), ∀ e(t) ∈ ET (15.5)

represents a flow in the time-expanded network NT.

Lemma 15.1 Correspondence (15.5) is a bijection from the set of feasible flows in
the dynamic network N onto the set of feasible flows in the time-expanded net-
work NT.

Proof. It is obvious that Correspondence (15.5) is a bijection from the set of
T-horizon functions in the dynamic network N onto the set of functions in
the time-expanded network NT. In what follows we have to show that each
dynamic flow in the dynamic network N is put into the correspondence with
a static flow in the time-expanded network NT and vice versa.

Let xe(t) be a dynamic flow in N, and let xe(t)
T be a corresponding function

in NT. Let us prove that xe(t)
T satisfies the conservation constraints in the

static network NT. Let v ∈ V be an arbitrary vertex in N and t, and let 0 u t u
T – τe be an arbitrary moment of time:

dv(t)
(i)
=

∑
e∈E–(v)

xe(t) –
∑

e∈E+(v)
t–τev0

xe(t – τe) =

=
∑

e(t)∈E–(v(t))

xe(t)
T –

∑
e(t–τe)∈E+(v(t))

xe(t–τe)
T (ii)

= dv(t)
T .

(15.6)

Note that, according to the definition of the time-expanded network, the
set of arcs {e(t – τe)|e(t – τe) ∈ E+(v(t))} consists of all arcs that enter v(t), while
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the set of arcs {e(t)|e(t) ∈ E–(v(t))} consists of all arcs that originate from v(t).
Therefore, all necessary conditions are satisfied for each vertex v(t) ∈ VT.
Hence, xe(t)

T is a flow in the time-expanded network NT.
Let xe(t)

T be a static flow in the time-expanded network NT, and let xe(t)
be a corresponding function in the dynamic network N. Let v(t) ∈ VT be
an arbitrary vertex in NT. The conservation constraints for this vertex in the
static network are expressed by Equality (ii) from (15.6), which holds for all
v(t) ∈ VT at all times t, 0 u t u T – τe. Therefore, Equality (i) holds for all
v ∈ V at all moments of time t, 0 u t u T – τe. In this way xe(t) is a flow in the
dynamic network N.

It is easy to verify that a feasible flow in the dynamic network N is a feasible
flow in the time-expanded network NT and vice versa. Indeed,

0 u xe(t)
T = xe(t) u ue(t) = ue(t)

T .

The lemma is proved.

The total cost of the static flow xT in the time-expanded network NT is
determined as follows:

FT(xT) =
∑
t∈T

∑
e(t)∈ET

ϕe(t)
T(xe(t)

T) .

Theorem 15.1 If x is a flow in the dynamic network N and xT is a corresponding
flow in the time-expanded network NT, then

F(x) = FT(xT) .

Moreover, for each minimum cost flow x∗ in the dynamic network N there is a cor-
responding minimum cost flow x∗T in the static network NT such that

F(x∗) = FT(x∗T)

and vice versa.

Proof. Let x : E ~ T → R+ be an arbitrary dynamic flow in the dynamic
network N. Then according to Lemma 15.1 the unique flow xT in NT corre-
sponds to the flow x in N, and therefore we have:

F(x) =
∑
t∈T

∑
e∈E

ϕe(xe(t), t) =
∑
t∈T

∑
e(t)∈ET

ϕe(t)
T(xe(t)

T) = FT(xT) .

Thus the first part of the theorem is proved.
To prove the second part of the theorem we again use Lemma 15.1. Let

x∗ : E ~ T→ R+ be the optimal dynamic flow in N and x∗T the corresponding
optimal flow in NT. Then

F(x∗) =
∑
t∈T

∑
e∈E

ϕe(x∗e (t), t) =
∑
t∈T

∑
e(t)∈ET

ϕe(t)
T(x∗e(t)

T) = FT(x∗T) .
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The converse proposition is proved in an analogous way.
The theorem is proved.

The results described above allow us to propose the following algorithm
for solving the minimum cost dynamic flow problem.

1. To build the time-expanded network NT for the dynamic network N.
2. To solve the classical minimum cost flow problem on the static net-

work NT, using one of the known algorithms [1, 4, 12, 13, 22, 23,26, 34].
3. To reconstruct the solution of the static problem on network NT to the

dynamic problem on network N.

In what follows let us examine the complexity of this algorithm including
the time necessary to solve the resulting problem on the static time-expanded
network. Building the time-expanded network and reconstructing the solu-
tion of the minimum cost static flow problem to the dynamic one has com-
plexity O(nT + mT), where n is the number of vertices in the dynamic net-
work and m is the number of arcs in this network. The complexity of step 2
depends on the complexity of the algorithm used for the minimum cost flow
problem on static networks. If such an algorithm has complexity O(f(n′, m′)),
where n′ is a number of vertices and m′ is a number of arcs in the network,
then the complexity of solving the minimum cost flow problem on the time-
expanded network employing the same algorithm is O(f(nT, mT)).

To solve the maximum dynamic flow problem we can also use the time-
expanded network method. We define the auxiliary network NT

m = (VT, ET,
uT, VT

s , VT
f ) in the following way:

1. VT: = {v(t) | v ∈ V, t ∈ T};
2. ET: = {(v(t), z(t + τe)) | e = (v, z) ∈ E, 0 u t u T – τe};
3. ue(t)

T: = ue(t) for e(t) ∈ ET;
4. VT

s : = {v(t) | v ∈ Vs, t ∈ T};
5. VT

f : = {v(t) | v ∈ Vf, t ∈ T}.

In a similar way as above we can prove that if x is a flow in the dynamic
network Nm and xT is a corresponding flow in the time-expanded network
NT

m, then Z = ZT. Moreover, for each maximum flow x∗ in the dynamic net-
work Nm there is a corresponding maximum flow x∗T in the static network
NT

m such that Z∗ = Z∗T and vice versa.
In this way, to solve the maximum flow problem on dynamic network Nm

we have to construct the time-expanded network NT
m, then solve the classical

maximum flow problem on the static network NT
m, and, finally, reconstruct

the solution of the static problem to the dynamic problem.
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15.2.4

The Dynamic Model with Flow Storage at Nodes

In the above mathematical model it is assumed that flow cannot be stored at
nodes. Such a model can be extended for the case of flow storage at nodes if
we associate to each node v ∈ V a transit time τv, which means that the flow
passage through this node takes τv units of time. If in addition we associate
to each node v the capacity function uv(t) and the cost function ϕv(xv(t), t), we
obtain a more general mathematical model. It is easy to observe that in this
case the problem can be reduced to the previous one by simple transforma-
tion of the network where each node v is changed by a couple of vertices v′

and v′′ connected with directed arc ev = (v′, v′′). Here v′ preserves all entering
arcs and v′′ preserves all leaving arcs of the previous network. To arc ev we
associate the transit time τev = τv, the cost function ϕev (xev(t), t) = ϕv(xv(t), t),
and the capacity function uev (t) = uv(t).

Another mathematical model with unlimited flow storage at nodes can be
obtained by introducing loops in those nodes in which there is flow storage.
The flow that was stored at the nodes passes through these loops. Moreover,
by introducing transit times for the loops and the costs we can formulate the
problem with flow storage at nodes and storage costs at nodes.

An important particular case of the considered problem is when all flow
is dumped into the network from sources v ∈ V+ at time moment t = 0 and
arrives at sinks v ∈ V– at time moment t = T. This means that the supply–
demand function d : V ~ T→ R satisfies the following conditions:

(a) dv(0) > 0, dv(t) = 0, t = 1, 2, . . . , T, for v ∈ V+ ;
(b) dv(T) < 0, dv(t) = 0, t = 0, 1, 2, . . . , T – 1, for v ∈ V– .

In what follows we show that in this case another dynamic mathematical
model can be used.

15.2.5

The Dynamic Model with Flow Storage at Nodes and Integral Constant

Demand–Supply Functions

We consider the minimum cost flow problem on the dynamic network with
flow storage at nodes and integral constant demand–supply functions. Sup-
pose a dynamic network N = (V, E, τ, d, u, ϕ), where the demand–supply
function d : V → R does not depend on time. Without loss of generality, we
assume that no arcs enter sources or exit sinks. According to this dynamic
model, all flow is dumped into the network at zero time moment and arrive
in its entirety at the final moment of time T. We note that in order for a flow
to exist, supply must equal demand:

∑
v∈V dv = 0.
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The mathematical model of the minimum cost flow problem on this dy-
namic network is the following:

∑
e∈E–(v)

T∑
t=0

xe(t) –
∑

e∈E+(v)

T∑
t=τe

xe(t – τe) = dv, ∀ v ∈ V ; (15.7)

∑
e∈E–(v)

θ∑
t=0

xe(t) –
∑

e∈E+(v)

θ∑
t=τe

xe(t – τe) u 0, ∀v ∈ V∗, ∀θ ∈ T ; (15.8)

0 u xe(t) u ue(t), ∀ t ∈ T, ∀ e ∈ E ; (15.9)

xe(t) = 0, ∀ e ∈ E, t = T – τe + 1, T . (15.10)

Condition 15.10 ensures that there is no flow in the network after time
horizon T. Condition 15.9 is a capacity constraint. As flow travels through
the network, we allow unlimited flow storage at the nodes, but prohibit any
deficit by Constraint 15.8. Finally, all demands must be met, flow must not
remain in the network after time T, and each source must not exceed its
supply. This is ensured by Constraint 15.7.

We are seeking a feasible dynamic flow x that minimizes the total cost:

F(x) =
∑
t∈T

∑
e∈E

ϕe(xe(t), t) .

To solve the formulated problem we use the time-expanded network
method. We construct the auxiliary static network NT as follows:

1. VT := {v(t)|v ∈ V, t ∈ T};
2. VT

+ := {v(0)|v ∈ V+} and VT
– := {v(T)|v ∈ V–};

3. ET := {(v(t), z(t + τe)) | e = (v, z) ∈ E, 0 u t u T – τe} ∪
{v(t), v(t + 1) | v ∈ V, 0 u t < T};

4. dv(t)
T := dv for v(t) ∈ VT

+ ∪ VT
– ; otherwise dv(t)

T := 0;
5. u(v(t),z(t+τ(v,z) ))

T: = u(v,z)(t) for (v(t), z(t + τ(v,z))) ∈ ET;

u(v(t),v(t+1))
T: =∞ for (v(t), v(t + 1)) ∈ ET;

6. ϕ(v(t),z(t+τ(v,z) ))
T(x(v(t),z(t+τ(v,z)))

T): = ϕ(v,z)(x(v,z)(t), t)

for (v(t), z(t + τ(v,z))) ∈ ET;

ϕ(v(t),v(t+1))
T(x(v(t),v(t+1))

T): = 0 for (v(t), v(t + 1)) ∈ ET.

If we define a flow correspondence to be xe(t)
T := xe(t), where x(v(t),v(t+1))

T

in NT corresponds to the flow in N stored at node v in the period of time
from t to t + 1, then the minimum cost flow problem on dynamic networks
can be solved by solving the minimum cost static flow problem on the time-
expanded network.
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15.2.6

Approaches to Solving Dynamic Flow Problems with Different Types

of Cost Functions

Next we analyze the following cases of the minimum cost flow problem on
a dynamic network.

Linear Cost Functions on Arcs

If cost functions ϕe(xe(t), t) are linear with regard to xe(t), then cost func-
tions of the time-expanded network are linear. In this case we can apply well-
established methods for minimum cost flow problems, including linear pro-
gramming algorithms [19, 20, 24, 25] and combinatorial algorithms [20], as
well as other developments such as [14, 17].

Convex Cost Functions on Arcs

If cost functions ϕe(xe(t), t) are convex with regard to xe(t), then cost func-
tions of the time-expanded network are convex. Algorithms for solving the
dynamic version of the minimum cost flow problem with convex cost func-
tions can be obtained by using the time-expanded network method. We con-
struct the auxiliary time-expanded network, solve the minimum cost flow
problem in the static network with convex cost functions on arcs, and then
reconstruct the obtained solution. To solve the static problem we can apply
methods from convex programming and the specification of such methods
for the minimum cost flow problem.

Concave Cost Functions on Arcs

If there is exactly one source, and cost functions ϕe(xe(t), t) are concave with
regard to xe(t), then cost functions in the time-expanded network are con-
cave. If the dynamic network is acyclic, then the time-expanded network is
acyclic. Therefore, we can solve the static problem using classical algorithms
for minimum cost flow problems in acyclic networks with concave cost func-
tions [30, 35].

In what follows we present an approach for dynamic networks with cost
functions that are concave with regard to flow value and do not change over
time. Relying on concavity, we reduce the problem to the minimum cost
flow problem on a static network of equal size, not the time-expanded net-
work.

Suppose a dynamic network N = (V, E, τ, u, ϕ, d) constant in time capaci-
ties of arcs, constant in time demand–supply of nodes and the possibility of
flow storage at nodes. As above, we consider that no arcs enter sources or exit
sinks. The corresponding static network N 0 of N is obtained by discarding
all time-related information: N 0 = (V, E, u, ϕ0, d), where ϕ0

e (ρ) = ϕe(ρ, 0).
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Lemma 15.2 Let N be an uncapacitated dynamic network with cost functions
concave with regard to flow and constant in time. If x is a flow on N , then
ye =

∑
t∈T

xe(t) is a flow in the corresponding static network N 0 and F0(y) u F(x).

Proof. Note that if φ : R+ → R+ is a concave function, then φ(α + �) u
φ(α) + φ(�) for all α, � ∈ R+. Since F and F0 are concave with regard to flow
value, we obtain:

F0(y) =
∑
e∈E

ϕ0
e (ye) =

∑
e∈E

ϕ0
e

(∑
t∈T

xe(t)

)
u
∑
e∈E

∑
t∈T

ϕ0
e (xe(t)) =

∑
e∈E

∑
t∈T

ϕe(xe(t), t) = F(x) .

Moreover, ye =
T∑

t=0

xe(t) =
T∑

t=τe

xe(t – τe), since flow x obeys Constraint 15.10.

Hence, by substituting ye in dynamic conservation Constraint 15.7, we obtain
the corresponding static conservation constraint. Therefore, y is a flow inN 0.
The lemma is proved.

Further we will need the following definitions.

Definition 15.1 The graph Gx = (Vx, Ex) that consists of arc set Ex = {e ∈
E|xe > 0} and node set Vx = {v|∃z such that (v, z) ∈ Ex or (z, v) ∈ Ex} is
called the base graph of flow x in network N .

Definition 15.2 The graph Gx = (Vx, Ex) consisting of arc set Ex =
{

e ∈

E|
∑
t∈T

xe(t) > 0
}

and node set Vx =
{

v|∃z such that (v, z) ∈ Ex or (z, v) ∈ Ex

}
is called the base graph of dynamic flow x in N .

Lemma 15.3 Let N be an infinite-horizon dynamic network with cost functions
constant in time. If y is a static flow in N 0 such that its base graph Gy is a forest,
then there exists a dynamic flow x inN such that F(x) = F0(y).

Proof. Let x(v,z)(t) = y(v,z) if t = tv, and x(v,z)(t) = 0 otherwise, where:

tv =

{
0, if v ∈ V+,

max{tz + τ(z,v)|(z, v) ∈ Ey}, otherwise.
(15.11)

Since Gy = (Vy, Ey) is a forest, the constants tv are well defined and finite. To
prove that x is a flow inN , we have to show that it satisfies Constraints 15.10,
15.7, and 15.8.
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Because T = +∞, it follows that T v tv, ∀v ∈ Vy. Therefore, for any e =
(v, z) ∈ Ey, we obtain T v tz v tv + τe, hence T – τe v tv. Since t =/ tv implies
xe(t) = 0, it follows that xe(t) = 0 for all tv > T – τe v tv, hence Constraint 15.10
is obeyed.

Condition 15.11 means that flow starts leaving ∀v ∈ V∗ ∩ Vy only after all

inbound flow has arrived. Thus for θ < tv we have
∑

e∈E–(v)

θ∑
t=0

xe(t) = 0, hence

Constraint 15.8 holds for θ < tv. For θ v tv flow summed over time on any
arc is the same as the flow on that arc in the static network:∑
e∈E+(v)

θ∑
t=τe

xe(t – τe) =
∑

e∈E+(v)

ye =
∑

e∈E–(v)

ye =
∑

e∈E–(v)

θ∑
t=0

xe(t).

Therefore, Constraint 15.8 holds for θ v tv. We have established that Con-
straint 15.8 is obeyed.

By taking θ = T v tv in the previous argument, we obtain that Con-
straint 15.7 holds for all v ∈ V∗ ∩ Vy. For all sources v ∈ V+ incoming flow
is zero:

∑
e∈E+(v)

∑
t∈T

xe(t) = 0, since no arcs enter a source. On the other hand,

outgoing flow equals supply:
∑

e∈E–(v)

∑
t∈T

xe(t) =
∑

e∈E–(v)

ye = dv. Therefore, Con-

straint 15.7 holds for all sources. The proof for sinks is similar, taking into
account no arcs exit sinks. Therefore, Constraint 15.7 is obeyed.

Having proved that x is a flow, it is easy to see that it is feasible, since
0 u xe(t) u ye u ue. Finally, F(x) =

∑
e∈E

∑
t∈T

ϕe(xe(t), t) =
∑
e∈Ey

ϕe(xe(tv), tv) =∑
e∈E

ϕ0
e (ye) = F0(y). The lemma is proved.

In the above proof we employ the fact that T = +∞ only to maintain that
tv u T, ∀v ∈ Vy. However, if we denote by |L| =

∑
e∈L

τe the time length of a path

in N , then we immediately obtain that tv u max
L∈N
{|L|}. Hence max

L∈N
{|L|} is an

upper bound for the makespan of flow x as constructed in the above lemma,
and we can broaden the class of networks we examine.

Lemma 15.4 Let N be a dynamic network with cost functions constant in time
such that T v max

L∈N
{|L|}. If y is a static flow in N 0 such that its base graph Gy is

a forest, then there exists a dynamic flow x in N such that F(x) = F0(y).

To make the connection between Lemma 15.2, Lemma 15.4, and mini-
mum cost flows in dynamic networks, we will employ the following prop-
erty of minimum cost flows in static networks with concave cost func-
tions [29, 30].
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Lemma 15.5 LetN 0 be an uncapacitated static network with concave nondecreas-
ing cost functions. If there exists a flow in N 0, then there exists a minimum cost
flow y in N 0 such that its base graph Gy is a forest.

We are now able to prove the main result of this subsection. Denote by
yT the dynamic flow in N obtained from a forestlike flow y in N 0 such that
yT

(v,z)(t) = y(v,z) if t = tv, and yT
(v,z)(t) = 0 otherwise, where tv are defined as in

(15.11).

Theorem 15.2 Let N be an uncapacitated dynamic network with cost functions
concave with regard to flow and constant in time such that T v max

L∈N
{|L|}. If there

exists a flow in N , then there exists a minimum cost forestlike flow � in N 0, and
the flow �T is a minimum cost flow in N .

Proof. Since there exists a flow inN , a flow can be constructed inN 0 accord-
ing to Lemma 15.2. Hence, according to Lemma 15.5 there exists a minimum
cost forestlike flow in N 0; denote this flow by �. Flow �T is a minimum cost
flow in N . Indeed, for any flow x in N we have:

F(�T) = F0(�) u F0(y) u F(x),

where y is a static flow in N 0 such that ye =
∑
t∈T

xe(t). Equality F(�T) = F0(�)

follows from Lemma 15.4, inequality F0(�) u F0(y) from the fact that � is
a minimum cost flow in N 0, and inequality F0(y) u F(x) from Lemma 15.2.
The theorem is proved.

Therefore, a dynamic minimum cost flow can be computed using the fol-
lowing procedure:

(1) Find a forestlike minimum cost flow � in the corresponding static net-
work.

(2) Compute the constants tv and construct the dynamic minimum cost flow
�T.

To solve the minimum cost flow problem on dynamic networks that meet
the conditions of Theorem 15.2, and have exactly 1 source, we use the ap-
proach that represents an extension of the method for solving the static min-
imum cost flow problem proposed in [29, 30]. In detailed form the approach
can be found in [32]. In general, the algorithm can be developed for the case
where the cost functions on arcs are concave with respect to flow for every
fixed moment of time t ∈ T.
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15.2.7

Determining the Optimal Dynamic Flows in Networks with Transit Functions

That Depend on Flow and Time

In the above dynamic models the transit time functions are assumed to be
constant on each arc of the network. In this setting, the time it takes to tra-
verse an arc does not depend on the current flow situation on the arc and
the entering time moment of flow in the corresponding arc. Intuitively, it
is clear that in many applications the amount of time needed to traverse an
arc of the network increases as the arc becomes more congested and it also
depends on the entering time moment of flow in the arc. If we take into ac-
count these assumptions, we obtain a more general minimum cost dynamic
flow problem. In this model we consider two-sided restrictions on arc capac-
ities. We assume that the transit time function τe(xe(t), t) is a nonnegative,
nondecreasing, left-continuous step function with respect to the amount of
flow xe(t) for every fixed time moment t ∈ T and an arbitrary given arc e ∈ E.
We denote by Pe,t the set of numbers of steps of the transit time function for
the fixed moment of time t and the given arc e.

Thus we consider a dynamic network N = (V, E, τ, d, u′, u′′, ϕ) determined
by directed graph G = (V, E) with set of vertices V and set of arcs E, transit
time function τ: E ~ T ~ R+ → R+, demand–supply function d: V ~ T → R,
lower and upper capacity functions u′, u′′: E ~ T → R+, and cost function
ϕ: E ~ R+ ~ T → R+. As above, we consider the discrete time model, in
which all times are integral and bounded by a time horizon T, which defines
the set T = {0, 1, . . . , T} of time moments we consider. The supply is equal
to the demand, that is,

∑
t∈T

∑
v∈V

dv(t) = 0.

A dynamic flow in network N is represented by a function x: E ~ T →
R+, which determines the value xe(t) of flow entering arc e at time t. Since
we require that all arcs must be empty after time horizon T, the following
implication must hold for all e ∈ E and t ∈ T: if xe(t) > 0, then t + τe(xe(t), t) u
T. The dynamic flow x must satisfy the flow conservation constraints, which
means that at any time moment t ∈ T for every vertex v ∈ V the difference
between the total amount of flow that leaves node v and the total amount of
flow that enters node v is equal to dv(t).

The dynamic flow x is called feasible if it satisfies the following capacity
constraints: u′e(t) u xe(t) u u′′e (t), ∀ t ∈ T, ∀ e ∈ E.

The total cost of the dynamic flow x in network N is determined as follows:

F(x) =
∑
t∈T

∑
e∈E

ϕe(xe(t), t) .

The minimum cost dynamic flow problem consists in finding a feasible dy-
namic flow that minimizes this objective function.
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In [18] it is shown that the minimum cost flow problem on dynamic net-
work with transit time functions that depend on the amount of flow and the
entering time moment of flow in the arc can be reduced to a static problem
on a special modified time-expanded network NT = (VT, ET, dT, u′T, u′′T, ϕT),
which is defined as follows:

1. VT: = {v(t) | v ∈ V, t ∈ T};
2. ṼT: = {e(v(t)) | v(t) ∈ VT, e ∈ E–(v), t ∈ T \ {T}};
3. VT: = VT ∪ ṼT;

4. ẼT: = {̃e(t) = (v(t), e(v(t))) | v(t) ∈ VT and corresponding e(v(t)) ∈ ṼT, t ∈
T \ {T}};

5. E
T
: = {ep(t) = (e(v(t)), z(t + τp

e (xe(t), t))) | e(v(t)) ∈ ṼT, z(t + τp
e (xe(t), t)) ∈

VT, e = (v, z) ∈ E, 0 u t u T – τp
e (xe(t), t), p ∈ Pe,t};

6. ET: = E
T ∪ ẼT;

7. dv(t)
T: = dv(t) for v(t) ∈ VT;

de(v(t))
T: = 0 for e(v(t)) ∈ ṼT;

8. u′ee(t)
T: = u′e(t) for ẽ(t) ∈ ẼT;

u′′ee(t)
T: = u′′e (t) for ẽ(t) ∈ ẼT;

u′ep(t)
T: = xp–1

e (t) for ep(t) ∈ E
T
, where x0

e (t) = u′e(t);

u′′ep(t)
T: = xp

e (t) for ep(t) ∈ E
T
;

9. ϕee(t)
T(xee(t)T): = ϕe(xe(t), t) for ẽ(t) ∈ ẼT;

ϕep(t)
T(xep(t)

T): = εp for ep(t) ∈ E
T
, where ε1 < ε2 < · · · < ε|Pe,t| are small

numbers.

The most complicated moment in solving the considered problem is the
construction of the auxiliary time-expanded network NT. The solution of the
dynamic problem can be found on the basis of the following results.

Lemma 15.6 Let xT: ET → R+ be a flow in the static network NT. Then the func-
tion x: E ~ T→ R+ defined as follows:

xe(t) = xee(t)
T = xep(t)

T

for e = (v, z) ∈ E, ẽ(t) = (v(t), e(v(t))) ∈ ẼT,

ep(t) = (e(v(t)), z(t + τp
e (xe(t), t))) ∈ E

T
,

p ∈ Pe,t is such that xee(t)
T ∈ (xp–1

e (t), xp
e (t)], t ∈ T,

represents a flow in the dynamic network N.
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Let x: E ~ T → R+ be a flow in the dynamic network N. Then the function
xT: ET → R+ defined as follows:

xee(t)
T = xe(t) for ẽ(t) = (v(t), e(v(t))) ∈ ẼT, e = (v, z) ∈ E, t ∈ T;

xep(t)
T = xe(t) for such p ∈ Pe,t that xe(t) ∈ (xp–1

e (t), xp
e (t)]

and xep(t)
T = 0 for all other p ∈ Pe,t

for ep(t) = (e(v(t)), z(t + τp
e (xe(t), t))) ∈ E

T
, e = (v, z) ∈ E, t ∈ T,

represents a flow in the static network NT.

Theorem 15.3 If x∗T is a static minimum cost flow in the static network NT, then
the corresponding according to Lemma 15.6 dynamic flow x∗ in the dynamic net-
work N is also a minimum cost flow and vice versa.

In such a way, to solve the minimum cost flow problem on dynamic net-
works with transit time functions that depend on the amount of flow and
the entering time moment of flow in the arc, we construct a time-expanded
network, then solve the minimum cost static flow problem, and reconstruct
the solution of the static problem to the dynamic problem.

15.3

Optimal Dynamic Multicommodity Flow Problems and Algorithms

for Solving Them

In this section we formulate and investigate the optimal multicommodity
flow problems on dynamic networks ([18, 31]). The multicommodity flow
problem consists in shipping several different commodities from their re-
spective sources to their sinks through a given network satisfying certain ob-
jectives in such a way that the total flow going through arcs does not exceed
their capacities. No commodity ever transforms into another commodity, so
that each one has its own flow conservation constraints, but they compete
for the resources of the common network. We consider the minimum cost
multicommodity flow problem on dynamic networks with time-varying ca-
pacities of arcs and transit times on arcs that depend on a kind of commodity
entering them. We assume that cost functions, defined on arcs, are nonlin-
ear and depend on time and flow, and demand–supply functions depend on
time. For solving the considered problem, we propose algorithms based on
the time-expanded network method.

15.3.1

The Minimum Cost Dynamic Multicommodity Flow Problem

The minimum cost dynamic multicommodity flow problem is a problem of
finding the flow of a set of commodities through a network with a given time
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horizon, satisfying all supplies and demands with minimum total cost such
that arc capacities are not exceeded. We consider the discrete time model,
where all times are integral and bounded by horizon T, which defines the set
T = {0, 1, . . . , T} of time moments.

We consider a dynamic network N = (V, E, K, τ, d, u, w, ϕ), determined by
directed graph G = (V, E), where V is a set of vertices and E is a set of arcs,
set of commodities K = {1, 2, . . . , q} that must be routed through the same
network, transit time function τ: E ~ K → R+, demand–supply function
d: V ~ K ~ T → R, mutual capacity function u: E ~ T → R+, individual
capacity function w: E ~ K ~ T→ R+, and cost function ϕ: E ~ R+ ~ T→ R+.
Thus τe = (τ1

e , τ2
e , . . . , τq

e ) is a vector, each component of which reflects the
transit time on arc e ∈ E for commodity k ∈ K.

In order for the flow to exist, it is required that
∑
t∈T

∑
v∈V

dk
v(t) = 0, ∀k ∈ K.

If for an arbitrary node v ∈ V at a moment of time t ∈ T the condition
dk

v(t) > 0 holds, then we treat this node v at the time moment t as a source for
commodity k ∈ K. If at a moment of time t ∈ T the condition dk

v(t) < 0 holds,
then we regard node v at time moment t as a sink for commodity k ∈ K. In
the case dk

v(t) = 0 at a moment of time t ∈ T, we consider node v at the time
moment t as an intermediate node for commodity k ∈ K. In such a way, the
same node v ∈ V at different moments of time can serve as a source, a sink
on an intermediate node for commodity k ∈ K.

Without loss of generality we consider that for every commodity k ∈ K the
set of vertices V is divided into three disjoint subsets Vk

+, Vk
–, Vk

∗, such that:

• Vk
+ consists of nodes v ∈ V, for which dk

v(t) v 0 for t ∈ T, and there exists
at least one moment of time t0 ∈ T such that dk

v(t0) > 0;
• Vk

– consists of nodes v ∈ V, for which dk
v(t) u 0 for t ∈ T, and there exists

at least one moment of time t0 ∈ T such that dk
v(t0) < 0;

• Vk
∗ consists of nodes v ∈ V, for which dk

v(t) = 0 for every t ∈ T;
• Thus Vk

+ is a set of sources, Vk
– is a set of sinks, and Vk

∗ is a set of interme-
diate nodes for the commodity k ∈ K in the network N.

A feasible dynamic multicommodity flow in network N is determined by
a function x: E ~ K ~ T→ R+ that satisfies the following conditions:∑

e∈E–(v)

xk
e (t) –

∑
e∈E+(v)
t–τk

e v0

xk
e (t – τk

e ) = dk
v(t), ∀ t ∈ T, ∀ v ∈ V, ∀k ∈ K ; (15.12)

∑
k∈K

xk
e (t) u ue(t), ∀ t ∈ T, ∀e ∈ E ; (15.13)

0 u xk
e (t) u wk

e (t), ∀ t ∈ T, ∀ e ∈ E, ∀k ∈ K ; (15.14)

xk
e (t) = 0, ∀ e ∈ E, t = T – τk

e + 1, T, ∀k ∈ K . (15.15)
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Here the function x defines the value xk
e (t) of flow of commodity k en-

tering arc e at moment of time t. Condition 15.15 ensures that the flow of
commodity k does not enter arc e at time t if it has to leave the arc after
time horizon T. Individual capacity Constraints 15.14 mean that at most
wk

e (t) units of flow of commodity k can enter arc e at time t. Mutual capac-
ity Constraints 15.13 mean that at most ue(t) units of flow can enter arc e
at time t. Constraints 15.14 and 15.13 are called weak and strong forcing
constraints, respectively. Conditions 15.12 represent flow conservation con-
straints.

The total cost of the dynamic multicommodity flow x in network N is de-
fined as follows:

F(x) =
∑
t∈T

∑
e∈E

ϕe(x1
e (t), x2

e (t), . . . , xq
e (t), t). (15.16)

The minimum cost dynamic multicommodity flow problem consists in find-
ing a feasible dynamic multicommodity flow that minimizes the objective
Function 15.16.

It is important to note that in many practical cases cost functions are pre-
sented in the following form:

ϕe(x1
e (t), x2

e (t), . . . , xq
e (t), t) =

∑
k∈K

ϕk
e (xk

e (t), t) . (15.17)

The case where τk
e = 0, ∀ e ∈ E, ∀ k ∈ K and T = 0 can be considered as the

minimum cost static multicommodity flow problem on network.

15.3.2

Algorithm for Solving the Minimum Cost Dynamic Multicommodity

Flow Problem

To solve the formulated problem, we propose an approach based on the re-
duction of the dynamic problem to a static problem. We show that the min-
imum cost multicommodity flow problem on network N can be reduced to
a static problem on a special auxiliary network NT.

In the case of the minimum cost multicommodity flow problem on a dy-
namic network with different transit times on an arc for different commodi-
ties we define the auxiliary time-expanded network NT = (VT, ET, K, dT, uT,
wT, ϕT) in the following way:

1 VT: = {v(t) | v ∈ V, t ∈ T};
2 ṼT: = {e(v(t)) | v(t) ∈ VT, e ∈ E–(v), t ∈ T \ {T}};
3 VT: = VT ∪ ṼT;
4 ẼT: = {̃e(t) = (v(t), e(v(t))) | v(t) ∈ VT and corresponding e(v(t)) ∈ ṼT,

t ∈ T \ {T}};
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5 E
T
: = {ek(t) = (e(v(t)), z(t + τk

e )) | e(v(t)) ∈ ṼT, z(t + τk
e ) ∈ VT, e = (v, z) ∈

E, 0 u t u T – τk
e , k ∈ K};

6 ET: = E
T ∪ ẼT;

7 dk
v(t)

T
: = dk

v(t) for v(t) ∈ VT, k ∈ K;

dk
e(v(t))

T
: = 0 for e(v(t)) ∈ ṼT, k ∈ K;

8 uee(t)
T: = ue(t) for ẽ(t) ∈ ẼT;

uek(t)
T: =∞ for ek(t) ∈ E

T
;

9 w l
ek(t)

T
: =

{
w k(t)

e , if l = k for ek(t) ∈ E
T
, l ∈ K;

0, if l =/ k for ek(t) ∈ E
T
, l ∈ K;

w lee(t)
T

=∞ for ẽ(t) ∈ ẼT, l ∈ K;

10 ϕee(t)
T(x1ee(t)

T, x2ee(t)
T, . . . , xqee(t)

T): = ϕe(x1
e (t), x2

e (t), . . . , xq
e(t), t)

for ẽ(t) ∈ ẼT;

ϕek(t)
T(x1

ek(t)
T, x2

ek(t)
T, . . . , xq

ek(t)
T): = 0 for ek(t) ∈ E

T
.

The following lemma represents the relationship between flows in dy-
namic network N and flows in the time-expanded network NT.

Lemma 15.7 Let xT: ET ~ K→ R+ be a multicommodity flow in the static network
NT. Then the function x: E ~ K ~ T→ R+ defined in the following way:

xk
e (t) = xk

ek(t)
T

= xkee(t)
T

for e = (v, z) ∈ E, ek(t) = (e(v(t)), z(t + τk
e )) ∈ E

T
,

ẽ(t) = (v(t), e(v(t))) ∈ ẼT, k ∈ K, t ∈ T,

represents a multicommodity flow in the dynamic network N.
Let x: E ~ K ~ T → R+ be a multicommodity flow in the dynamic network N.

Then the function xT: ET ~ K→ R+ defined in the following way:

xkee(t)
T

= xk
e (t) for ẽ(t) = (v(t), e(v(t))) ∈ ẼT, e = (v, z) ∈ E, k ∈ K, t ∈ T;

xk
ek(t)

T
= xk

e (t); xl
ek(t)

T
= 0, l =/ k

for ek(t) = (e(v(t)), z(t + τk
e )) ∈ E

T
, e = (v, z) ∈ E, l, k ∈ K, t ∈ T,

represents a multicommodity flow in the static network NT.

Proof. To prove the first part of the lemma, we have to show that Condi-
tions 15.12–15.15 for the x defined above in the dynamic network N are true.
These conditions evidently result from the following definition of multicom-



396 15 Optimal Dynamic Flows in Networks and Algorithms for Finding Them

modity flows in the static network NT:∑
e(t)∈E–(v(t))

xk
e(t)

T
–

∑
e(t–τk

e )∈E+(v(t))

xk
e(t–τk

e )
T

= dk
v(t)

T
, ∀v(t) ∈ VT, ∀k ∈ K ; (15.18)∑

k∈K

xk
e(t)

T
u ue(t)

T, ∀e(t) ∈ ET ; (15.19)

0 u xk
e(t)

T
u wk

e(t)
T
, ∀ e(t) ∈ ET, ∀k ∈ K ; (15.20)

xk
e(t)

T
= 0, ∀ e(t) ∈ ET, t = T – τk

e + 1, T, ∀k ∈ K , (15.21)

where by v(t) and e(t) we denote v(t) or ṽ(t) and e(t) or ẽ(t), respectively, against
context.

To prove the second part of the lemma it is sufficient to show that Condi-
tions 15.18–15.21 hold for xT defined above. The correctness of these condi-
tions results from the procedure of constructing the time-expanded network,
the correspondence between flows in static and dynamic networks, and the
satisfied Conditions 15.12–15.15.

The lemma is proved.

The following theorem holds.

Theorem 15.4 If x∗T is a minimum cost multicommodity flow in the static net-
work NT, then, according to Lemma 15.7, the corresponding multicommodity flow
x∗ in the dynamic network N is also a minimum cost one and vice versa.

Proof. Taking into account the correspondence between static and dynamic
multicommodity flows on the basis of Lemma 15.7, we obtain that costs of
the static multicommodity flow in the time-expanded network NT and the
corresponding dynamic multicommodity flow in the dynamic network N
are equal. To solve the minimum cost multicommodity flow problem on the
static time-expanded network NT, we have to solve the following problem:

FT(xT) =
∑
t∈T

∑
e(t)∈ET

ϕe(t)
T(x1

e(t)
T
, x2

e(t)
T, . . . , xq

e(t)
T)→ min

subject to (15.18)–(15.21).

In the case of the minimum cost multicommodity flow problem on dy-
namic network with separable cost functions (15.17) and without mutual
capacities of arcs we can simplify the procedure of constructing the time-
expanded network. In this case we don’t have to add a new set of vertices
ṼT and a new set of arcs ẼT. In this way the time-expanded network NT is
defined as follows:
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1. VT: = {v(t) | v ∈ V, t ∈ T};
2. ET: = {ek(t) = (v(t), z(t + τk

e )) | v(t) ∈ VT, z(t + τk
e ) ∈ VT, e = (v, z) ∈ E,

0 u t u T – τk
e , k ∈ K};

3. dk
v(t)

T
: = dk

v(t) for v(t) ∈ VT, k ∈ K;

4. w l
ek(t)

T
: =

{
wk

e (t), if l = k for ek(t) ∈ ET, l ∈ K;
0, if l =/ k for ek(t) ∈ ET, l ∈ K;

5. ϕl
ek(t)

T
(xl

ek(t)
T
): =

{
ϕk

e (xk
e (t), t), if l = k for ek(t) ∈ ET, l ∈ K;

0, if l =/ k for ek(t) ∈ ET, l ∈ K .

As corollaries of Lemma 15.7 and Theorem 15.4 we can obtain the follow-
ing results.

Lemma 15.8 Let xT: ET ~ K→ R+ be a multicommodity flow in the static network
NT. Then the function x: E ~ K ~ T→ R+ defined as follows:

xk
e (t) = xk

ek(t)
T

for e ∈ E, ek(t) ∈ ET, k ∈ K, t ∈ T ,

represents the multicommodity flow in the dynamic network N.
Let x: E ~ K ~ T → R+ be a multicommodity flow in the dynamic network N.

Then the function xT: ET ~ K→ R+ defined as follows:

xk
ek(t)

T
= xk

e (t); xl
ek(t)

T
= 0, l =/ k for ek(t) ∈ ET, e ∈ E, l, k ∈ K, t ∈ T ,

represents the multicommodity flow in the static network NT.

Theorem 15.5 If x∗T is a minimum cost multicommodity flow in the static net-
work NT, then the corresponding according to Lemma 15.8 multicommodity flow
x∗ in the dynamic network N is also a minimum cost one and vice versa.

In the case of the minimum cost multicommodity flow problem on dy-
namic network with common transit times on an arc for different commodi-
ties, the time-expanded network NT can be constructed even more simply
and is defined in the following way:

1. VT: = {v(t) | v ∈ V, t ∈ T};
2. ET: = {e(t) = (v(t), z(t + τe)) | v(t) ∈ VT, z(t + τe) ∈ VT, e = (v, z) ∈ E,

0 u t u T – τe};
3. dk

v(t)
T
: = dk

v(t) for v(t) ∈ VT, k ∈ K;
4. ue(t)

T: = ue(t) for e(t) ∈ ET;

5. wk
e(t)

T
: = wk

e (t) for e(t) ∈ ET, k ∈ K;

6. ϕe(t)
T(x1

e(t)
T, x2

e(t)
T, . . . , xq

e(t)
T) mbox: = ϕe(x1

e (t), x2
e (t), . . . , xq

e (t), t) for e(t) ∈ ET.

The following lemma and theorem can be considered as particular cases
of Lemma 15.7 and Theorem 15.4.
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Lemma 15.9 Let xT: ET ~ K→ R+ be a multicommodity flow in the static network
NT. Then the function x: E ~ K ~ T→ R+ defined as follows:

xk
e (t) = xk

e(t)
T

for e ∈ E, e(t) ∈ ET, k ∈ K, t ∈ T,

represents the multicommodity flow in the dynamic network N.
Let x: E ~ K ~ T → R+ be a multicommodity flow in the dynamic network N.

Then the function xT: ET ~ K→ R+ defined as follows:

xk
e(t)

T
= xk

e (t) for e(t) ∈ ET, e ∈ E, k ∈ K, t ∈ T ,

represents the multicommodity flow in the static network NT.

Theorem 15.6 If x∗T is a minimum cost multicommodity flow in the static net-
work NT, then the corresponding according to Lemma 15.9 multicommodity flow
x∗ in the dynamic network N is also a minimum cost one and vice versa.

In this way, to solve the minimum cost multicommodity flow problem
on dynamic networks, we must build the time-expanded network NT for the
given dynamic network N, after which we must solve the classical minimum
cost multicommodity flow problem on the static network NT, using one of
the known algorithms [5, 8–10, 14], and then reconstruct the solution of the
static problem on NT to the dynamic problem on N.

The minimum cost dynamic multicommodity flow problems can be ex-
tended for the case with transit time functions that depend on the amount
of flow and the entering time moment of flow in the arc. The time-expanded
network method for such s class of problems can be developed and speci-
fied. Similar algorithms based on the time-expanded network method can be
derived for maximum dynamic multicommodity flow problems.

15.4

Conclusion

The mathematical models for finding optimal flows in dynamic networks
represent the extension and generalization of the classical optimal flow prob-
lems on static networks. Such dynamic models can be used for studying
and solving a large class of practical problems as well as problems from the
theory of graphs and combinatorics. The mathematical apparatus for deter-
mining optimal solutions of the network flow problems based on the time-
expanded network method has been elaborated and grounded. New efficient
algorithms for finding minimum cost and maximum dynamic flows have
been derived. The time-expanded network method has been specified for the
multicommodity case of optimal dynamic flow problems, and algorithms for
solving such problems have been developed.
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Analyzing and Modeling European R&D Collaborations:

Challenges and Opportunities from a Large Social Network
Michael J. Barber, Manfred Paier, and Thomas Scherngell

16.1

Introduction

Networks have attracted a burst of attention in the last decade (useful re-
views include references [1, 9, 15, 28]), with applications to natural, social,
and technological systems. While networks provide a powerful abstraction
for investigating relationships and interactions, the preparation and analysis
of complex real-world networks nonetheless presents significant challenges.
In particular, social networks are characterized by a large number of different
properties and generation mechanisms that require a rich set of indicators.
The objective of the current study is to analyze large social networks with re-
spect to their community structure and mechanisms of network formation.
As a case study, we consider networks derived from the European Union’s
Framework Programs (FPs) for Research and Technological Development.

The EU FPs were implemented to follow two main strategic objectives:
first, strengthening the scientific and technological bases of European in-
dustry to foster international competitiveness and, second, the promotion of
research activities in support of other EU policies. In spite of their different
scopes, the fundamental rationale of the FPs has remained unchanged. All
FPs share a few common structural key elements. First, only projects of lim-
ited duration that mobilize private and public funds at the national level are
funded. Second, the focus of funding is on multinational and multiactor col-
laborations that add value by operating at the European level. Third, project
proposals are to be submitted by self-organized consortia, and the selection
for funding is based on specific scientific excellence and socioeconomic rele-
vance criteria [33]. By considering the constituents of these consortia, we can
represent and analyze the FPs as networks of projects and organizations. The
resulting networks are of substantial size, including over 50,000 projects and
over 30,000 organizations.

We have a general interest in studying a real-world network of large size
and high complexity from a methodological point of view. Furthermore, so-
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cioeconomic research emphasizes the central importance of collaborative
activities in R&D for economic competitiveness (see, for instance, refer-
ence [16], among many others). Mainly for reasons of data availability, at-
tempts to evaluate quantitatively the structure and function of the large social
networks generated in the EU FPs have begun only in the last few years, us-
ing social network analysis and complex network methodologies [2, 6–8, 34].
Studies to date point to the presence of a dense and hierarchical network.
A highly connected core of frequent participants, taking leading roles within
consortia, is linked to a large number of peripheral actors, forming a giant
component that exhibits the characteristics of a small world.

We augment the earlier studies by applying a battery of methods to the
most recent data. We begin by constructing the network, discussing the need
for processing the raw data in section 16.2, and continuing with the network
definition in section 16.3. We next examine the overall network structure in
section 16.4, showing that the networks for each FP feature a giant compo-
nent with a highly skewed degree distribution and small-world properties.
We follow this with an exploration of community structure in sections 16.5
and 16.6, showing that the networks are made of heterogeneous subcommu-
nities with strong topical differentiation. Finally, we investigate determinants
of network formation with a binary choice model in section 16.7; this is simi-
lar to a recent analysis of Spanish firms [4], but with a focus on the European
level and on geographic and network effects. Results are summarized in
section 16.8.

16.2

Data Preparation

We draw on the latest version of the sysres EUPRO database. This database
includes all information publicly available through the CORDIS projects
database1) and is maintained by ARC systems research (ARC sys). The sys-
res EUPRO database presently comprises data on funded research projects of
the EU FPs (complete for FP1–FP5, and about 70% complete for FP6) and all
participating organizations. It contains systematic information on project ob-
jectives and achievements, project costs, project funding, and contract type,
as well as information on the participating organizations including the full
name, full address, and type of organization.

For purposes of network analysis, the main challenge is the inconsistency
of the raw data. Apart from incoherent spelling in up to four languages per
country, organizations are labeled inhomogeneously. Entries may range from

1) http://cordis.europa.eu
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large corporate groupings, such as EADS, Siemens, and Philips, or large pub-
lic research organizations like CNR, CNRS, and CSIC, to individual depart-
ments and labs.

Due to these shortcomings, the raw data are of limited use for meaningful
network analysis. Further, any fully automated standardization procedure is
infeasible. Instead, a labor-intensive, manual data-cleaning process is used
in building the database. The data-cleaning process is described in refer-
ence [34]; here, we restrict our discussion to the steps of the process relevant
to the present work. These are as follows.

1. Identification of unique organization name. Organizational boundaries
are defined by legal control. Entries are assigned to appropriate organiza-
tions using the most recently available organization name. Most records
are easily identified, but, especially for firms, organization names may
have changed frequently due to mergers, acquisitions, and divestitures.

2. Creation of subentities. This is the key step for mitigating the bias that
arises from the different scales at which participants appear in the data
set. Ideally, we use the actual group or organizational unit that partici-
pates in each project, but this information is only available for a subset of
records, particularly in the case of firms. Instead, subentities that operate
in fairly coherent activity areas are pragmatically defined. Wherever pos-
sible, subentities are identified at the second lowest hierarchical tier, with
each subentity comprising one further hierarchical sublayer. Thus, univer-
sities are broken down into faculties/schools, consisting of departments;
research organizations are broken down into institutes, activity areas,
etc., consisting of departments, groups, or laboratories; and conglomer-
ate firms are broken down into divisions, subsidiaries, etc. Subentities can
frequently be identified from the contact information even in the absence
of information on the actual participating organizational unit. Note that
subentities may still vary considerably in scale.

3. Regionalization. The data set has been regionalized according to the Euro-
pean Nomenclature of Territorial Units for Statistics (NUTS) classification
system,2) where possible to the NUTS3 level. This has been done mostly
via information on postal codes.

Due to resource limitations, only organizations appearing more than thirty
times in the standardization table for FP1–FP5 have thus far been processed.

2) NUTS is a hierarchical system of regions used by the statisti-
cal office of the European Community for the production of re-
gional statistics. At the top of the hierarchy are NUTS-0 regions
(countries), below which are NUTS-1 regions and then NUTS-2
regions, etc.
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This could bias the results; however, the networks have a structure such that
the size of the bias is quite low (see reference [34]).

Additionally, we make use of a representative survey3) of FP5 partici-
pants.4) The survey focuses on the issues of partner selection, intraproject
collaboration, and output performance of EU projects on the level of bilateral
partnerships, including individuals as well as organizations. As the survey
was restricted to small collaborative projects (specifically, projects with a min-
imum of 2 and a maximum of 20 partners), the survey addresses a subset of
9,107 relevant (59% of all FP5) projects. It yielded 1,686 valid responses, rep-
resenting 3% of all (relevant) participants, and covering 1,089 (12% of all
relevant) projects.

16.3

Network Definition

Using the sysres EUPRO database, for each FP we construct a network con-
taining the collaborative projects and all organizational subentities that are
participants in those projects. An organization is linked to a project if and
only if the organization is a member of the project. Since an edge never exists
between two organizations or two projects, the network is bipartite. The net-
work edges are unweighted; in principle, the edges could be assigned weights
to reflect the strength of the participation, but the data needed to assign the
network weights are not available.

We will also consider, for each FP, the projections of the bipartite net-
works onto unipartite networks of organizations and projects. The organiza-
tion projections are constructed by taking the organizations as the vertices,
with edges between any organizations that are at distance two in the corre-
sponding bipartite network. Thus, organizations are neighbors in the projec-
tion network if they take part in one or more projects together. The project
projections are similar, with project vertices linked when they have one or
more participants in common. While the construction of the projection net-
works intrinsically loses information available in the bipartite networks, they
can nonetheless be useful.

For the binary choice model, we construct another network using cross-
section data on 191 organizations that are selected from the survey data.
We employ the collaboration network of the respondents on the organiza-

3) This survey was conducted in 2007 by the Austrian Research
Centers GmbH, Vienna, Austria, and operated by b-wise GmbH,
Karlsruhe, Germany.

4) We chose FP5 (1998–2002) for the survey in order to cover some of
the developments over time, including prior as well as subsequent
bilateral collaborations, and effects of the collaboration with respect
to both scientific and commercial outcomes. Thus, the survey
complements the sysres EUPRO database.
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tion level (this network comprises 1,173 organizations collaborating in 1,089
projects) and extract the 2-core [14] of its largest component (203 organiza-
tions representing 17% of all vertices).5) Finally, another 12 organizations are
excluded due to nonavailability of geographical distance data, so that we end
up with a sample of 191 organizations.

16.4

Network Structure

We first consider the bipartite networks for each of the FP networks. Call the
size of an organization the number of projects in which it takes part, and
similarly call the size of a project the number of constituent organizations
taking part in the project. These sizes correspond directly to the degrees of
the relevant vertices in the bipartite networks. Both parts – organizations
(Figure 16.1) and projects (Figure 16.2) – of each of the networks feature
strongly skewed, heavy-tailed size distributions. The sizes of vertices can dif-
fer by orders of magnitude, pointing toward the existence of high degree
hubs in the networks; hubs of this sort can play an important role in deter-
mining the network structure.

The organization size distributions are similar for each of the FPs. The un-
derlying research activities thus have not altered the mix of organizations par-
ticipating in a particular number of projects in each FP, despite changes in
the nature of those research activities over time. In contrast, the rule changes
in FP6 that favor larger project consortia are clearly seen in the project size
distributions.

Turning to the projection networks, we see that both the organization pro-
jection (Table 16.1) and the project projection (Table 16.2) show small-world
properties [37]. First, note that the great majority of the (N) vertices and (M)
edges are in the largest connected component of the networks. In light of
this, we focus on paths in only the largest component. The average path
length (l) in each projection network is short, as is the diameter. However,
the clustering coefficient [37], which ranges between zero and one, is high.
The combination of short path length and high clustering is characteristic of
small-world networks. The small-world character is expected to be beneficial
in the FP networks, as small-world networks have been shown to encourage
the spread of knowledge in model systems [12].

Additionally, the heavy-tailed size distributions of the bipartite networks
have a visible effect on the degrees of the projection networks. In each case,
the data are quite asymmetric about the mean degree, as seen by examin-

5) This technical trick ensures optimal utilization of observed col-
laborations in the estimation model, while keeping the size of the
model small. It is important to note that it does not make use of
the network properties on this somewhat arbitrary subnetwork.
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Figure 16.1 Organization sizes.

Table 16.1 Organization projection properties.

Measure FP1 FP2 FP3 FP4 FP5 FP6

No. of vertices (N) 2116 5758 9035 21599 25840 17632
No. of edges (M) 9489 62194 108868 238585 385740 392879
No. of components 53 45 123 364 630 26
N for largest component 1969 5631 8669 20753 24364 17542
Share of total (%) 93.05 97.79 95.95 96.08 94.29 99.49
(M) for largest component 9327 62044 108388 237632 384316 392705
Share of total (%) 98.29 99.76 99.56 99.60 99.63 99.96
(N) for 2nd-largest component 8 6 9 10 12 9
(M) for 2nd-largest component 44 30 72 90 132 72
Diameter of largest component 9 7 8 11 10 7
(l) largest component 3.62 3.21 3.27 3.45 3.30 3.03
Clustering coefficient 0.65 0.74 0.74 0.78 0.76 0.80
Mean degree 9.0 21.6 24.1 22.1 29.9 44.6
Fraction of (N) above the mean (%) 29.4 28.0 23.6 22.4 23.5 26.1

ing what fraction of vertices have degrees above the mean. The fractions are
between 20% and 30%, consistent with the skewed degree distributions (the
distributions are shown in references [7,34]; the relation between the degrees
in the bipartite networks and the projections is explored in reference [7]).
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Figure 16.2 Project sizes.

Table 16.2 Project projection properties.

Measure FP1 FP2 FP3 FP4 FP5 FP6

No. of vertices (N) 2116 5758 9035 21599 25840 17632
No. of edges (M) 9489 62194 108868 238585 385740 392879
No. of components 53 45 123 364 630 26
(N) for largest component 1969 5631 8669 20753 24364 17542
Share of total (%) 93.05 97.79 95.95 96.08 94.29 99.49
(M) for largest component 9327 62044 108388 237632 384316 392705
Share of total (%) 98.29 99.76 99.56 99.60 99.63 99.96
(N) for 2nd-largest component 8 6 9 10 12 9
(M) for 2nd-largest component 44 30 72 90 132 72
Diameter of largest component 9 7 8 11 10 7
(l) largest component 3.62 3.21 3.27 3.45 3.30 3.03
Clustering coefficient 0.65 0.74 0.74 0.78 0.76 0.80
Mean degree 9.0 21.6 24.1 22.1 29.9 44.6
Fraction of (N) above the mean (%) 29.4 28.0 23.6 22.4 23.5 26.1

16.5

Community Structure

Of great current interest is the identification of community groups, or mod-
ules, within networks. Stated informally, a community group is a portion
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of a network whose members are more tightly linked to one another than to
other members of the network. A variety of approaches [3,11,19,20,22,26,27,
30,32] have been taken to explore this concept; see references [13,24] for use-
ful reviews. Detecting community groups allows quantitative investigation
of relevant subnetworks. Properties of the subnetworks may differ from the
aggregate properties of the network as a whole, for example, modules on the
World Wide Web are sets of topically related web pages. Thus, identification
of community groups within a network is a first step toward understanding
the heterogeneous substructures of the network.

Methods for identifying community groups can be categorized into dis-
tinct classes of networks, such as bipartite networks [5, 21]. This is imme-
diately relevant for our study of FP networks, allowing us to examine the
community structure in the bipartite networks. Communities are expected
to be formed of groups of organizations engaged in similar R&D activities
and the projects in which those organizations take part.

16.5.1

Modularity

To identify communities, we take as our starting point the modularity, in-
troduced by [26]. Modularity makes intuitive notions of community groups
precise by comparing network edges to those of a null model. The modular-
ity

(
Q
)

is proportional to the difference between the number of edges within
communities (c) and those for a null model:

Q ==
1

2M

∑
c

∑
i,j∈c

(
Aij – Pij

)
. (16.1)

Along with Eq. (16.1), it is necessary to provide a null model, defining
(
Pij

)
.

The standard choice for the null model constrains the degree distribution
for the vertices to match the degree distribution in the actual network. Ran-
dom graph models of this sort are obtained [10] by putting an edge between
vertices (i) and (j) at random, with the constraint that on average the degree
of any vertex (i) is (di). This constrains the expected adjacency matrix such
that

di = E

⎛⎝∑
j

Aij

⎞⎠ . (16.2)

Denote
(
E
(
Aij

))
by

(
Pij

)
and assume further that

(
Pij

)
factorizes into

Pij = pipj , (16.3)

leading to

Pij ==
didj

2M
. (16.4)
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A consequence of the null model choice is that
(
Q = 0

)
when all vertices are

in the same community.
The goal now is to find a division of the vertices into communities such

that the modularity
(
Q
)

is maximal. An exhaustive search for a decompo-
sition is out of the question: even for moderately large graphs there are far
too many ways to decompose them into communities. Fast approximate al-
gorithms do exist (see, for example, references [25, 31]).

16.5.2

Finding Communities in Bipartite Networks

Specific classes of networks have additional constraints that can be reflected
in the null model. For bipartite graphs, the null model should be modified to
reproduce the characteristic form of bipartite adjacency matrices:

A =
[

O M
MT O

]
. (16.5)

Recently, specialized modularity measures and search algorithms have been
proposed for finding communities in bipartite networks [5, 21]. These mea-
sures and methods have not been studied as extensively as the versions with
the standard null model shown above, but many of the algorithms can be
adapted to the bipartite versions without difficulty. Limitations of modularity-
based methods (e.g., the resolution limit described in reference [17]) are ex-
pected to hold as well.

We make use of the algorithm called BRIM: bipartite, recursively induced
modules [5]. BRIM is a conceptually simple, greedy search algorithm that
capitalizes on the separation between the two parts of a bipartite network.
Starting from some partition of the vertices of type 1, it is straightforward to
identify the optimal partition of the vertices of type 2. From there, optimize
the partition of vertices of type 1, and so on. In this fashion, modularity in-
creases until a (local) maximum is reached. However, the question remains:
is the maximum a “good” one? At this level, then, a random search is called
for, varying the composition and number of communities, with the goal of
reaching a better maximum after a new sequence of searching using the
BRIM algorithm.

16.6

Communities in the Framework Program Networks

A popular approach in social network analysis – where networks are often
small, consisting of a few dozen nodes – is to visualize the networks and
identify community groups by eye. However, the Framework Program net-
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Figure 16.3 Community groups in the network of projects and organizations for FP3.

works are much larger: can we “see” the community groups in these net-
works?

Structural differences or similarities of such networks are not obvious at
a glance. For a graphical representation of the organizations and/or projects
by dots on an A4 sheet of paper, we would need to put these dots at a dis-
tance of about (1 mm) from each other, and even then we still would not
have drawn the links (collaborations) that connect them.
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Previous studies used a list of coarse graining recipes to compact the net-
works into a form that would lend itself to a graphical representation [8]. As
an alternative we have attempted to detect communities just using BRIM,
that is, purely on the basis of relational network structure, ignoring any ad-
ditional information about the nature of agents.

In Figure 16.3, we show a community structure for FP3 found using
the BRIM algorithm, with a modularity of

(
Q = 0.602

)
for 14 community

groups. The communities are shown as vertices in a network, with the vertex
positions determined using spectral methods [35]. The area of each vertex
is proportional to the number of edges from the original network within
the corresponding community. The width of each edge in the community
network is proportional to the number of edges in the original network con-
necting community members from the two linked groups. The vertices and
edges are shaded to provide additional information about their topical struc-
ture, as described in the next section. Each community is labeled with the
most frequently occurring subject index.

16.6.1

Topical Profiles of Communities

Projects are assigned one or more standardized subject indices. There are
49 subject indices in total, ranging from Aerospace to Waste Management. We
denote by

f (t) > 0 (16.6)

the frequency of occurrence of the subject index (t) in the network, with∑
t

f (t) = 1 . (16.7)

Similarly we consider the projects within one community (c) and the fre-
quency

fc (t) v 0 (16.8)

of any subject index (t) appearing in the projects only of that community. We
call

(
fc
)

the topical profile of community (c) to be compared with that of the
network as a whole.

Topical differentiation of communities can be measured by comparing
their profiles, among each other or with respect to the overall network. This
can be done in a variety of ways [18], such as by the Kullback “distance”

Dc =
∑

t

fc (t) ln
fc (t)
f (t)

. (16.9)
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A true metric is given by

dc =
∑

t

|fc (t) – f (t)| , (16.10)

ranging from zero to two.
Topical differentiation is illustrated in Figure 16.4. In the figure, example

profiles are shown, taken from the network in Figure 16.3. The community-
specific profile corresponds to the community labeled ‘11. Food” in Fig-
ure 16.3. Based on the most frequently occurring subject indices – Agricul-
ture, Food, and Resources of the Seas, Fisheries – the community consists of
projects and organizations focused on R&D related to food products. The
topical differentiation is (dc = 0.90) for the community shown.

16.7

Binary Choice Model

We now turn to modeling organizational collaboration choices in order to
examine how specific individual characteristics, spatial effects, and network
effects determine the choice of collaboration (the theoretical underpinnings
are described in Ref. [29]). We will build upon the survey data and the sub-
network constructed therefrom (Section 16.3). While this restricts us to only
191 organizations, we have considerably more information about these orga-
nizations than for the complete networks.

16.7.1

The Empirical Model

In our analytical framework, the constitution of a collaboration
(
Yij

)
between

two organizations ( i ) and ( j ) will depend on an unobserved continuous vari-
able

(
Y∗ij

)
that corresponds to the profit that two organizations ( i ) and ( j )

receive when they collaborate. Since we cannot observe
(
Y∗ij

)
but only its di-

chotomous realizations
(
Yij

)
, we assume

(
Yij = 1

)
if

(
Y∗ij > 0

)
and

(
Yij = 0

)
if

(
Y∗ij u 0

)
.
(
Yij

)
is assumed to follow a Bernoulli distribution so that

(
Yij

)
can take the values one and zero with probabilities

(
πij

)
and

(
1 – πij

)
, respec-

tively. The probability function can be written as

Pr
(
Yij

)
= πYij

ij

(
1 – πij

)1–Yij , (16.11)

with
(
E
[
Yij

]
= μij = πij

)
and

(
Var

[
Yij

]
= σ2

ij = πij
(
1 – πij

) )
, where

(
μij

)
de-

notes some mean value.
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The next step in defining the model concerns the systematic structure – we
would like the probabilities

(
πij

)
to depend on a matrix of observed covari-

ates. Thus, we let the probabilities
(
πij

)
be a linear function of the covariates:

πij =
K∑

k=1

�kX(k)
ij , (16.12)

where the
(

X(k)
ij

)
are elements of the

(
X(k)

)
matrix containing a constant

and (K – 1) explanatory variables, including geographical effects, relational
effects, and FP experience characteristics of organizations ( i ) and ( j ).(
�K =

(
�0, �K–1

))
is the (K ~ 1) parameter vector, where (�0) is a scalar con-

stant term and
(
�K–1

)
is the vector of parameters associated with the (K – 1)

explanatory variables.
However, estimating this model using ordinary least-squares procedures

is not convenient since the probability
(
πij

)
must be between zero and one,

while the linear predictor can take any real value. Thus, there is no guarantee
that the predicted values will be in the correct range without imposing any
complex restrictions [23]. A very promising solution to this problem is to use
the logit transform of

(
πij

)
in the model, that is, replacing Eq. (16.12) by the

following ansatz:

Logit
(
πij

)
= log

πij

1 – πij
= hij , (16.13)

where we have introduced the abbreviation
(
hij

)
, defined as

hij = �0 + �1X(1)
ij + �2X(2)

ij + · · · + �K . (16.14)

This leads to the binary logistic regression model to be estimated given by

Pr
(

Yij = 1 | X(k)
ij

)
= πij =

exp
(
hij

)
1 + exp

(
hij

) . (16.15)

The focus of interest is on estimating the parameters ( � ). The standard es-
timator for the logistic model is the maximum-likelihood estimator. The re-
duced log-likelihood function is given by [23]

log L
(
� | Yij

)
= –

∑
i,j

log
(
1 + exp

((
1 – 2Yij

)
hij

))
, (16.16)

assuming independence over the observations
(
Yij

)
. The resulting variance

matrix (V ( �̂ )) of the parameters is used to calculate standard errors. ( �̂ )
is consistent and asymptotically efficient when the observations of

(
Yij

)
are

stochastic and in the absence of multicollinearity among the covariates.
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16.7.2

Variable Construction

16.7.2.1 The Dependent Variable

To construct the dependent variable
(
Yij

)
that corresponds to observed col-

laborations between two organizations ( i ) and ( j ), we construct the (n ~ n)
collaboration matrix (Y ) that contains the collaborative links between the
(( i ) , ( j )) organizations. One element

(
Yij

)
denotes the existence of collab-

oration between two organizations ( i ) and ( j ) as measured in terms of the
existence of a common project. (Y ) is symmetric by construction, so that(
Yij = Yji

)
. Note that the matrix is very sparse. The number of observed col-

laborations is 702, so that the proportion of zeros is approximately 98%. The
mean collaboration intensity between all (( i ) , ( j )) organizations is 0.02.

16.7.2.2 Variables Accounting for Geographical Effects

We use two variables,
(

x(1)
ij

)
and

(
x(2)

ij

)
, to account for geographical effects

on the collaboration choice. The first step is to assign specific NUTS-2 re-
gions to each of the 191 organizations that are given in the sysres EUPRO
database. Then we take the great circle distance between the economic cen-
ters of the regions where organizations ( i ) and ( j ) are located to measure

the geographical distance variable
(

x(1)
ij

)
. The second variable,

(
x(2)

ij

)
, con-

trols for country border effects and is measured in terms of a dummy vari-
able that takes a value of zero if two organizations ( i ) and ( j ) are located in
the same country, and one otherwise, in order to get empirical insight on the
role of country borders for collaboration choice of organizations.

16.7.2.3 Variables Accounting for FP Experience of Organizations

This set of variables controls for the experience of the organizations with
respect to participation in the European FPs. First, thematic specialization
within FP5 is expected to influence the potential to collaborate. We define

a measure of thematic distance
(

x(3)
ij

)
between any two organizations that is

constructed in the following way. Each organization is associated with a unit
vector of specialization (si) that relates to the number of project participations
(Ni,1, . . . , Ni,7) of organization ( i ) in the seven subprograms of FP5:6)

si = (Ni,1, . . . , Ni,7) /
√

N2
i,1 + · · · + N2

i,7 . (16.17)

The thematic distance of organizations ( i ) and ( j ) is then defined as the Eu-
clidean distance of their respective specialization vectors (si) and

(
sj
)
, giving

6) EESD, GROWTH, HUMAN POTENTIAL, INCO 2,
INNOVATION-SME, IST, and LIFE QUALITY
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x(3)

ij = x(3)
ji

)
and

(
0 u x(3)

ij u
√

2
)

. The second variable accounting for FP ex-
perience focuses on the individual (or research group) level and takes into
account the respondents inclination or openness to FP research. As a proxy
for openness of an organization ( i ) to FP research, we choose the total num-
ber (Pi) of FP5 projects in the respondent’s own organization that they are
aware of.7) Then we define

x(4)
ij = Pi + Pj (16.18)

as a measure for the aggregated openness of the respective pair of organi-
zations to FP research. The third variable related to FP experience is the
overall number of FP5 project participations an organization is engaged in.
Denoting, as above, (Ni = Ni,1 + · · · + Ni,7) as the total number of project par-
ticipations of organization ( i ) in FP5, we define

x(5)
ij =

∣∣Ni – Nj
∣∣ (16.19)

as the difference in the number of participations of organizations ( i ) and
( j ) in FP5. This is taken from the sysres EUPRO database and is an integer

ranging from
(

0 u x(5)
ij u 1,228

)
, resulting from the minimal value of one

participation and the maximum of 1,229 participations among the sample of
191 organizations.

16.7.2.4 Variables Accounting for Relational Effects

We consider a set of three variables accounting for potential relational effects
on the decision to collaborate. In this way we distinguish between joint his-
tory and network effects. The first factor to be taken into account is prior
acquaintance of two organizations and is measured by a binary variable de-
noting acquaintance on the individual (research group) level before the FP5

collaboration started. It is taken from the survey.8) By convention,
(

x(6)
ij = 1

)
if at least one respondent from organization ( i ) nominated organization ( j )

as being a prior acquaintance,
(

x(5)
ij = 0

)
otherwise. All other relational fac-

tors we take into account in the model are network effects. For conceptual
reasons we must look at the global FP5 network, where we make use of the
structural embeddedness of our 191 sample organizations.

One of the most important centrality measures is betweenness centrality.
Betweenness is a centrality concept based on the question of the extent to

7) The exact wording of the question was, “How many FP5 projects of
your organization are you aware of?” For multiple responses from
an organization, the numbers of known projects are summarized.
In cases of missing data, this number is set to zero.

8) The exact wording of the question was, “Which of your [project
acronym] partners (i.e., persons from which organization) did you
know before the project began?”
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which a vertex in a network is able to control the information flow through
the whole network [36]. Organizations that are high in betweenness may thus
be especially attractive as collaboration partners. More formally, the between-
ness centrality of a vertex can be defined as the probability that a shortest path
between a pair of vertices of the network passes through this vertex. Thus,
if (B (k, l; i )) is the number of shortest paths between vertices ( k ) and ( l )
passing through vertex ( i ), and (B (k, l )) is the total number of shortest paths
between vertices ( k ) and ( l ), then

b (i) =
∑
k=/l

B (k, l; i )
B (k, l)

(16.20)

is called the betweenness centrality of vertex ( i ) [15]. We calculate the be-
tweenness centralities in the global FP5 network and include

x(7)
ij = b ( i ) b ( j ) (16.21)

as a combined betweenness measure.
The third variable accounting for relational effects is local clustering. Due

to social closure, we may assume that within densely connected clusters or-
ganizations are mutually quite similar, so that it might be strategically ad-
vantageous to search for complementary partners from outside. In this way,
communities with lower clustering may be easier to access. We use the clus-
tering coefficient (CC1 ( i )), which is the share of existing links in the num-
ber of all possible links in the direct neighborhood (at a distance of (d = 1))
of a vertex ( i ). Thus, let (ki) be the number of direct neighbors and (Ti) the
number of existing links among these direct neighbors; then

CC1 (i) =
2Ti

ki (ki – 1)
(16.22)

is the relevant clustering coefficient [37]. We employ the difference in the
local clustering coefficients within the global FP5 network for inclusion in
the statistical model by setting

x(8)
ij = |CC1 (i) – CC1 ( j )| (16.23)

in order to obtain a symmetric variable in ( i ) and ( j ).

16.7.3

Estimation Results

This section discusses the estimation results of the binary choice model of
R&D collaborations as given by Eq. (16.15). The binary dependent variable
corresponds to observed collaborations between two organizations ( i ) and
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( j ), taking a value of one if they collaborate and zero otherwise. The inde-
pendent variables are geographical separation variables, variables capturing
FP experience of the organizations and relational effects (joint history and
network effects). We estimate three model versions. The standard model in-
cludes one variable for geographical effects and FP experience, respectively,
and two variables accounting for relational effects. In the extended model
version we add country border effects as an additional geographical variable,
in order to isolate country border effects from geographical distance effects,
and openness to FP research as an additional FP experience variable. The full
model additionally includes balance variables accounting for FP experience
and network effects, respectively.

Table 16.3 presents the sample estimates derived from maximum likeli-
hood estimation for the model versions. The number of observations is equal
to 36,481; asymptotic standard errors are given in parentheses. The statistics
given in Table 16.4 indicate that the selected covariates show a quite high pre-
dictive ability. The Goodman–Kruskal–Gamma statistic ranges from 0.769
for the basic and 0.782 for the extended model to 0.786 for the full model,
indicating that more than 75% fewer errors are made in predicting interor-
ganizational collaboration choices by using the estimated probabilities than
by the probability distribution of the dependent variable alone. The Somers
(D) statistic and the (C) index confirm these findings. The Nagelkerke (R)-
Squared is 0.391 for the basic model, 0.395 for the extended model, and 0.397
for the full model version.9) A likelihood ratio test for the null hypothesis of
(�k = 0) yields a

(
�2

4

)
test statistic of 2,565.165 for the basic model, a

(
�2

6

)
test statistic of 2,582.421 for the extended model, and a

(
�2

8

)
test statistic of

2,597.911 for the full model. These are statistically significant and we reject
the null hypothesis that the model parameters are zero for all model versions.

The model reveals some promising empirical insight in the context of the
relevant literature on innovation as well as on social networks. The results
provide a fairly remarkable confirmation of the role of geographical effects,
FP experience effects and network effects for interorganizational collabora-
tion choice in EU FP R&D networks. In general, the parameter estimates are
statistically significant and quite robust over different model versions.

The results of the basic model show that geographical distance between
two organizations significantly determines the probability of collaboration.
The parameter estimate of (�1 = –0.145) indicates that for any additional

9) Nagelkerke’s R-squared is an attempt to imitate the interpretation
of multiple R-squared measures from linear regressions based on
the log-likelihood of the final model versus log likelihood of the

null model. It is defined as
“

R2
Nag =

ˆ
1 = (L0/L1)2/n˜

/
h
1 – L2/n

0

i”
where (L0) is the log-likelihood of the null model, (L1) is the log-
likelihood of the model to be evaluated, and (n) is the number of
observations.
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Table 16.3 Maximum-likelihood estimation results for the
collaboration model based on

`
n2´

= 36,481 observations.
Asymptotic standard errors are given parenthetically.

Coefficient Basic model Extended model Full model

(�0) –1.882 (∗∗∗) (0.313) –1.951 (∗∗∗) (0.342) –1.816 (∗∗∗) (0.385)
(�1) –0.145 (∗∗∗) (0.038) –0.116 (∗∗∗) (0.039) –0.128 (∗∗∗) (0.040)
(�2) — –0.103 (∗∗∗) (0.034) –0.094 (∗∗) (0.034)
(�3) –1.477 (∗∗∗) (0.110) –1.465 (∗∗∗) (0.114) –1.589 (∗∗∗) (0.117)
(�4) — 0.004 (∗∗∗) (0.001) 0.003 (∗∗∗) (0.001)
(�5) — — 0.001(0.000)
(�6) 4.224 (∗∗∗) (0.089) 4.189 (∗∗∗) (0.089) 4.194 (∗∗∗) (0.089)
(�7) 0.161 (∗∗∗) (0.023) 0.135 (∗∗∗) (0.025) 0.119 (∗∗∗) (0.027)
(�8) — — 0.070 (∗∗) (0.025)

(∗∗∗) Significant at the 0.001 significance level.
(∗∗) Significant at the 0.01 significance level.
(∗) Significant at the 0.05 significance level.

Table 16.4 Performance of the three collaboration model
versions based on

`
n2´

= 36,481 observations.

Performance Basic model Extended model Full model

Somers (D) 0.733 0.746 0.753
Goodman–Kruskal–Gamma 0.769 0.782 0.786
(C) index 0.876 0.873 0.875
Nagelkerke (R)-squared index 0.391 0.395 0.397
Log-likelihood –2,190.151 –2,176.768 –2,169.578
Likelihood ratio test 2,565.156 (∗∗∗) 2,582.421 (∗∗∗) 2,597.911 (∗∗∗)

(∗∗∗) Significant at the 0.001 significance level.
(∗∗) Significant at the 0.01 significance level.
(∗) Significant at the 0.05 significance level.

100 km between two organizations the mean collaboration frequency de-
creases by about 15.6%. Geographical effects matter, but effects of the FP
experience of organizations are more important. As evidenced by the esti-
mate (�3 = –1.477) it is most likely that organizations choose partners that
are located closely in thematic space. A 1% increase in thematic distance
reduces the probability of collaboration by more than 3.25%. The most im-
portant determinants of collaboration choice are network effects. The esti-
mate of (�6 = 4.224) tells us that the probability of collaboration between two
organizations increases by 68.89% when they are prior acquaintances. Also
network embeddedness matters as given by the estimate for (�7 = 0.161),
indicating that choice of collaboration is more likely between organizations
that are central players in the network with respect to betweenness centrality.
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Turning to the results of the extended model version it can be seen that
taking into account country border effects decreases geographical distance
effects by about 24% ((�1 = –0.116)). The existence of a country border be-
tween two organizations has a significant negative effect on their collabo-
ration probability; the effect is slightly smaller than geographical distance
effects ((�2 = –0.103)). Adding openness to FPs as an additional variable to
capture FP experience does not influence the other model parameters much.
Openness to FPs, though statistically significant, shows only a small impact
on collaboration choice.

In the full model version we add one balance variable accounting for FP
experience and network effects. The difference in the number of submitted
FP projects has virtually no effect on the choice of collaboration, as given by
the estimate of (�5). An interesting result from a social network analysis per-
spective provides the integration of the difference between two organizations
with respect to the clustering coefficient. The estimate of (�8 = 0.070) tells us
that it is more likely that two organizations collaborate when the difference
of their clustering coefficients is higher. This result points to the existence of
strategic collaboration choices for organizations that are highly cross-linked
searching for organizations to collaborate with lower clustering coefficients,
and the other way round. The effect is statistically significant but smaller
than other network effects and geographical effects.

16.8

Summary

We have presented an investigation of networks derived from the European
Union’s Framework Programs for Research and Technological Development.
The networks are of substantial size, complexity, and economic importance.
We have attempted to provide a coherent picture of the complete process,
beginning with data preparation and network definition, then continuing
with analysis of the network structure and modeling of network formation.

We first considered the challenges involved in dealing with a large amount
of imperfect data, detailing the tradeoffs made to clean the raw data into a us-
able form under finite resource constraints. The processed data were then
used to define bipartite networks with vertices consisting of all the projects
and organizations involved in each FP. To provide alternative views of the
data, we defined projection networks for each part (organizations or projects)
of the bipartite networks. Additionally, we used results of a survey of FP5
participants to define a smaller network about which we have more detailed
information than we have for the networks as a whole.

Next we examined the structural properties of the bipartite and projection
networks. We found that the vertex degrees in the FP networks have a highly
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skewed, heavy tailed distribution. The networks further show characteristic
features of small-world networks, having both high clustering coefficients
and short average path lengths. We followed this with an analysis of the com-
munity structure of the Framework Programs. Using a modularity measure
and search algorithm adapted to bipartite networks, we identified communi-
ties from the networks and found that the communities were topically differ-
entiated based on the standardized subject indices for Framework Program
projects.

In the final stage of analysis, we constructed a binary choice model to ex-
plore determinants of interorganizational collaboration choice. The model
parameters were estimated using logistic regression. The model results show
that geographical effects matter but are not the most important determi-
nants. The strongest effect comes from relational characteristics, in partic-
ular prior acquaintance, and, to a minor extent, network centrality. Also, the-
matic similarity between organizations highly favors a partnership.

By using a variety of networks and analyses, we have been able to address
several different questions about the Framework Programs. The results com-
plement one another, giving a more complete picture of the Framework Pro-
grams than the results from any one method alone. We are confident that
our understanding of collaborative R&D in the European Union can be im-
proved by extending the analyses presented in this chapter and by expanding
the types of analyses we undertake.
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17

Analytic Combinatorics on Random Graphs
Michael Drmota and Bernhard Gittenberger

17.1

Introduction

In this chapter we present some results on various types of random graphs
that can be obtained by methods of analytic combinatorics. Our journey
through random graphs starts with the simplest type, random trees, and
goes on to more and more complex random graphs. The term “analytic com-
binatorics” summarizes the combinatorial and asymptotic analysis of certain
properties of discrete structures that can be treated by means of a generating
function; see the monograph by Flajolet and Sedgewick [24]. In fact, many
combinatorial constructions have their counterpart in generating functions
(GFs). In particular, if some strucure has a recursive description, then there
is usually a GF approach to the counting problem for this structure. Trees,
in particular rooted trees, are one of the most prominent structures that can
be analyzed in that way. There are at least two major advantages of a GF ap-
proach. First, it is usually not only possible to count the number of objects of
a given size but several parameters at the same time by introducing several
variables. Second, GFs can be considered as analytic objects, more precisely
as analytic functions, so that asymptotic methods like saddle point methods
or a singularity analysis provide asymptotic expansions for the coefficients
and also probabilistic limiting distributions.

This chapter is organized as follows. In Section 17.2 we discuss (rooted)
trees. From a graph-theoretic viewpoint, trees have a very simple structure.
Therefore, a wealth of information is known about them and we had to make
a choice. We decided to focus on the class of simply generated trees that can
be viewed as realizations of Galton–Watson branching processes. Further-
more, we chose four shape characteristics of trees, namely, degree distribu-
tion, height, profile, and width. The recursive structure of such trees allows
for a translation into functional equations for the corresponding GFs that
can be treated with analytic tools. In Section 17.3 we turn our attention to
random mappings from a finite set into itself. Such mappings give rise to
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directed graphs that themselves can be decomposed into trees arranged in
cycles. Due to this decomposition, random mappings are a natural general-
ization of trees. In view of analytic combinatorics the study of random map-
pings is similar to that of trees. As an example we briefly discuss the degree
distribution in random mappings. The next section deals with the random
graph model of Erdős and Rényi, which is the classical model in random
graph theory. One of the most exciting events is the emergence of a giant
component when random graphs become more and more dense and that
appears – at first glance – to occur suddenly. It turned out that a different
scaling than the one used originally by Erdős and Rényi allows a precise ob-
servation of this phase transition. As a preparation for the study of the phase
transition, we present Wright’s method to count connected graphs. Then we
give a brief overview of the analysis of the emergence of the giant component
where we focus on the analytic arguments used there. The last section deals
with various classes of planar graphs. Here the basic counting problem is al-
ready very difficult. We present the functional equations relating the GFs for
2-connected, connected, and all planar graphs. These lead to the numbers of
such graphs. Finally, we discuss the degree distribution for random planar
graphs.

17.2

Trees

Trees are a fundamental object in graph theory and combinatorics as well as
a basic object for data structures and algorithms in computer science. In re-
cent years research related to (random) trees has been constantly increasing
and several asymptotic and probabilistic techniques have been developed to
describe characteristics of interest of large trees in different settings.

A basic class of rooted trees are planted plane trees. Starting from the root,
every node has an arbitrary number of successors with a natural left to right
order (Figure 17.1). In particular, the subtrees of the root vertex are again
planted plane trees.

This example is also very instructive in order to give a flavor of analytic
combinatorics. Let P denote the set of planted plane trees. Then from the

= + + + ...+

Figure 17.1 Planted plane tree.
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above description we obtain the recursive relation

P = ◦ + ◦ ~ P + ◦ ~ P2 + ◦ ~ P3 + · · ·

(see again the schematic Figure 17.1). With the GF

p(z) =
∑
nv1

pnzn

this translates to

p(z) = z + z p(z) + z p(z)2 + z p(z)3 =
z

1 – p(z)
. (17.1)

Hence

p(z) =
1 –
√

1 – 4z
2

, (17.2)

and consequently

pn =
1
n

(
2n – 2
n – 1

)
~

4n–1
√

πn3/2
.

Note that z0 = 1/4 is the dominating singularity of p(z) and the singular be-
havior of p(z) is given by (17.2), which can also be used to obtain the asymp-
totic expansion of pn.

Interestingly enough, there is an intimate relation to Galton–Watson
branching processes. A Galton–Watson process is a discrete stochastic pro-
cess (Z0, Z1, . . . ) that can be defined as follows. Consider “particles” that can
give birth to a random number of “children.” The number of children is
governed by the so-called offspring distribution �, and all particles are as-
sumed to behave independently and with identical offspring distributions.
More precisely, (Z0, Z1, . . . ) is given by Z0 = 1, and for k v 1 by

Zk =
Zk–1∑
j=1

�(k)
j ,

where the (�(k)
j )k,j are iid random variables distributed as �. The random vari-

able Zi is precisely the number of particles in the ith generation. We also
assume that P{� = 0} > 0, so that eventually the process terminates and the
resulting object (interpreted as a family tree) can be viewed as a rooted plane
tree. The size of this tree is precisely Z0 + Z1 + · · · , the so-called total progeny.

Simply generated random trees (according to Meir and Moon [32]) are
precisely random rooted plane trees of size n, where the distribution is de-
termined by a Galton–Watson branching process conditioned to have total
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progeny n. For example, if the offspring distribution � is a geometric distri-
bution, then every tree of size n appears with equal probability. Thus, the
probability model in this case is precisely the combinatorial counting model.

In the sequel we assume that an exponential moment of the offspring
distribution exists. Under this assumption the offspring distribution � can
be written in the form

P{� = k} =
τkϕk

ϕ(τ)
, (17.3)

where (ϕk; k v 0) is a sequence of nonnegative numbers such that ϕ0 > 0
and ϕ(t) =

∑
kv0 ϕktk has a positive or infinite radius of convergence R and

τ is a positive number within the circle of convergence of ϕ(t). In particular,
these conditions imply that all moments of � exist. Without loss of generality
we assume that the Galton–Watson process is critical, that is, we have E� = 1
which equivalently means that τ satisfies τϕ′(τ) = ϕ(τ). The variance of � can
also be expressed in terms of ϕ(t) and is given by

σ2 =
τ2ϕ′′(τ)
ϕ(τ)

. (17.4)

Note that the offspring distribution (17.3) can be interpreted as assigning
weights to all trees defined by

ω(T) =
∏
kv0

ϕ
nk(T)
k

for a tree T having n nodes, nk of which have out-degree k, k v 0. Denote by
|T| the number of nodes of such a tree and let yn be the (weighted) number
of all trees with n nodes, that is,

yn =
∑

T:|T|=n

ω(T) .

Then the corresponding GF

y(z) =
∑
nv0

ynzn

satisfies the functional equation

y(z) = zϕ(y(z)) .

Obviously, the tree class discussed at the beginning of this chapter, namely,
planted plane trees, is a special case of simply generated trees: the set φ(t) =
1/(1 – t) returns the functional Equation (17.1). In the aperiodic case (i.e., if
gcd{i|ϕi > 0} = 1), which we will assume for the rest of this chapter, y(z) has
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only one singularity ρ on the circle of convergence. Then it can be shown
that y(z) admits the asymptotic expansion

y(z) = τ –
τ
√

2
σ

√
1 –

z
ρ

+ O
(∣∣∣∣1 –

z
ρ

∣∣∣∣) .

The singularity analysis of Flajolet and Odlyzko [21] is a powerful method
for obtaining asymptotic expansions for the coefficients of power series, if
their behavior near the singularites on the circle of convergence is known (as
asymptotic expansion in terms of “simple” functions). Using this method we
get the asymptotic number of simply generated trees yn ~ (τ/

√
2πσ2)ρ–nn–3/2.

17.2.1

The Degree Distribution

As a first application of the GF approach we describe the degree distribution
of simply generated resp. Galton–Watson trees. Let X(k)

n denote the number
of nodes of out-degree k in a random simply generated tree of size n; the
out-degree of a node is the number of successors. Then the corresponding
GF

yk(x, u) =
∑
nv1

ynE uX(k)
n zn

satisfies the functional equation

yk(x, u) = x(u – 1)ϕkyk(x, u)k + xϕ(yk(x, u)) .

If follows, then, that yk(x, u) has a local expansion of the form

yk(z, u) = g(u) – h(u)
√

1 –
z

ρ(u)
+ O

(∣∣∣∣1 –
z

ρ(u)

∣∣∣∣)
that directly leads to a central limit theorem for X(k)

n , that is,

X(d)
n – EX(d)

n

Var X(k)
n

w→ N(0, 1) ,

where the expected value and variance are asymptotically proportional to n
(cf. [15]. For example, we have

E X(k)
n =

ϕkτk

ϕ(τ)
n + O(1) .

This shows that the offspring distribution of the critial Galton–Watson
branching process (which is related to the simply generated tree family)
can be recovered just by looking at the degree distribution statistics.
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17.2.2

The Height

A very important paramater of rooted trees is the height, that is, the maximal
distance between a node and the root. The first contribution to the height
of simply generated trees was made by de Bruijn, Knuth, and Rice [12], who
considered the special case of planted plane trees (ϕ(t) = 1/(1– t)). The height
of simply generated trees has been studied by Flajolet et al. [22, 23]. They
showed the following results, where we again assume that an exponential
moment of the offspring distribution exists.

Theorem 17.1 (Flajolet and Odlyzko [23]) Let Hn denote the height of a simply
generated random tree with n vertices. Then we have

E(Hr
n) = 2r/2σ–rr(r – 1)Γ(r/2)(r) · nr/2

(
1 + O(n– 1

4 +η)
)

,

where (s) denotes the Riemann zeta function and (r – 1)(r) = 1 for r = 1 and η
is any positive number.

If y(h)
n denotes the weighted number of simply generated trees with n ver-

tices and height equal to h, then P{Hn = h} = y(h)
n /yn.

Theorem 17.2 (Flajolet et al. [22]) Let δ > 0 and � = 2
√

n/h. Then, as n → ∞,
we have

P{Hn = h} =
y(h)

n

yn
~ 4b

√
ρπ5

n
�4

∑
mv1

m2(2(m2π2�2 – 3)e–m2π2�2
(17.5)

uniformly for 1
δ
√

log n
u h√

n u δ
√

log n.

The assumption that an exponential moment of the offspring distribution
exists can be weakened to the assumption that just the second moment of
the offspring distribution exists. For example, this can be deduced from the
concept of continuum random trees that was introduced by Aldous [1]. A con-
tinuum random tree is, in a proper sense, the weak limit of scaled Galton–
Watson trees. Since the height is a continuous functional (in this context),
one directly gets a weak limit theorem for the height.

The approach of Aldous is quite general, but it does not give an error term.
The only known method that provides an error term is that of Flajolet and
Odlyzko [23] and is based on GFs. We quickly sketch their approach.

Let yk(z) denote the GFs

yh(z) =
∑
nv1

y(h)
n zn.
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Then

y0(z) = ϕ0z, yk+1(z) = zϕ(yk(z)), (k v 0).

A subtle analysis of the above recurrence yields (with α(z) = zϕ′(z))

y(z) – yk(z) =
2τ
σ2 ·

α(z)k

α(z)k/(1 – α(z)k) +
(
log |1/(1 – α(z))|

) ,

and by singularity analysis it is then possible to extract the coefficients of
y(z) – yk(z), which eventually leads to (17.5).

17.2.3

The Profile

The height gives a first impression of the “expected shape” of a rooted tree.
The so-called profile of a rooted tree provides much more precise shape char-
acteristics.

Consider a rooted tree T of size n. We denote by LT(k) the number of nodes
of T at distance k from the root. The sequence (LT(k))kv0 is called the profile
of T. If T is a random tree of size n, for example a simply generated tree,
then we denote the profile by (Ln(k))kv0, which is now a sequence of random
variables.

It is convenient to consider the continuous version of this stochastic pro-
cess obtained by defining the values for noninteger arguments by linear in-
terpolation, that is, we set

Ln(t) = (�t� + 1 – t)Ln(�t�) + (t – �t�)Ln(�t� + 1), t v 0.

Of course, (Ln(t))tv0 is a stochastic process and is called the profile process of
a random tree. By definition, the sample paths of the profile are continuous
functions on [0,∞).

Since the height of a simply generated tree is of order
√

n, we consider the
rescaled process

ln(t) =
1√
n

Ln(t
√

n), t v 0.

This process describes in some sense the local behavior of the contour pro-
cess obtained by recording the depth during a depth-first search traversal
of the tree. Aldous [1] showed that the contour process converges weakly to
a (properly scaled) Brownian excursion. The standard Brownian excursion
e(t) is a one-dimensional Brownian motion Wt on the unit interval [0, 1] and
conditioned to be nonnegative with zeroes only at t = 0 and t = 1. The conver-
gence of the contour to e(t) led to the conjecture ([1], Conjecture 4) that ln(t)
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weakly converges to the (properly rescaled) total local time of the Brownian
excursion, which is the process defined by

l(t) = lim
ε→0

1
ε

1∫
0

I[t,t+ε](e(s)) ds ,

where I[t,t+ε] denotes the indicator function of the interval [t, t + ε]. This con-
jecture was first proved in [16]:

Theorem 17.3 Let ϕ(t) be the defining series of a family of simply generated ran-
dom trees. Furthermore, suppose that the equation tϕ′(t) = ϕ(t) has a minimal
positive solution τ < R and that σ2 defined by (17.4) is finite. Then the process
ln(t) converges weakly to Brownian excursion local time, that is,

ln(t) w→ σ
2

l
(σ

2
t
)

in C([0,∞)), as n→∞.

Remark 17.1 The weak convergence above is the usual weak convergence of
probability measures on the space C([0,∞)) equipped with the supremum
norm ‖.‖∞ (for details see [6]).

We will now lay out the idea of the proof of the above theorem. The den-
sity of the distribution of l(ρ) for some fixed level ρ is well studied. Several
approaches are used in the literature that lead to different representations of
this density. We use the one obtained by Cohen and Hooghiemstra [11]. If
fρ(x) = d

dx P{l(ρ) u x}, then we have

fρ(x) =
1

i
√

2π

∫
γ

–se–s

sinh2(ρ
√

–2s)
exp

(
–

x√
2

√
–seρ

√
–2s

sinh(ρ
√

–2s)

)
ds , (17.6)

where γ is the straight line {z : 'z = –1}.

Remark 17.2 Note that this equation describes only the continuous part of
the local time density. Since P{sup0utu1 Wt < ρ} > 0, there is a jump of this
magnitude at 0. This quantity is well known (see (17.10)).

In order to prove Theorem 17.3, two facts have to be shown (cf. [6], The-
orem 12.3). First, weak convergence of the finite dimensional distributions
(fdd’s) of ln(t) to those of Brownian excursion local time, that is,

(ln(t1), . . . , ln(td)) w→ (l(t1), . . . , l(td)),

for any choice of d and t1, . . . , td. Second, the process must be tight, which
means, roughly speaking, that its sample paths have only moderate varia-
tion. Tightness proofs are necessary to complete functional limit theorems
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but are usually very technical. We will therefore confine ourselves to stating
a sufficient condition for tightness, namely, that one has to show that there
exists a constant C > 0 such that

E
(
Ln(r) – Ln(r + h)

)4 u C h2n (17.7)

holds for all nonnegative integers n, r, h. So let us now turn to the weak limit
theorem.

Consider a random tree T and set

ydmn =
∑

T:Ln(d)=m

ω(T).

Thus the distribution of Ln(d) is given by P{Ln(d) = m} = ydmn/yn. The GF of
this sequence satisfies∑

n,mv0

ydmnumzn = yd(z, uy(z)) ,

where

y0(z, u) = u, yi+1(z, u) = zϕ(yi(z, u)), i v 0. (17.8)

In order to prove the weak limit theorem (Theorem 17.3) it suffices to obtain
enough knowledge of the characteristic function of the distribution of Ln(d)
that is encoded in the GF. In fact, the characteristic function of Ln(k)/

√
n is

φkn(t) =
1
yn

[zn]yk

(
z, eit/

√
ny(z)

)
and that of the fdd, that is, the distribution of

(
Ln(k1)/

√
n, . . . , Ln(kp)/

√
n
)
, is

φk1···kpn(t1, . . . , tp) =
1
yn

[zn]yk1

(
z, eit1/

√
nyk2–k1

(
z, . . . ykp–kp–1

(
z, eitp/

√
ny(z)

)
. . .

)
.

In order to extract the desired coefficient, we will use Cauchy’s integral
formula with a suitably chosen integration contour and approximate the in-
tegrand there. Therefore, we need a detailed knowledge of the behavior of
the recursion (17.8). Note that yk(z, y(z)) = y(z), and knowing the behavior of
the error wk(z, u) in yk(z, u) = y(z) + wk(z, u) is enough. It is possible to show
the following lemma.

Lemma 17.1 Set z = ρ
(
1 + x

n

)
and α(z) = zϕ′(y(z)). Furthermore, assume

that |u – y(z)| = O
(

1√
n

)
and x

n → 0 in such a way that | arg(–x)| < π and

|1 –
√

–x/n| = 1 + O
(√

n
)

are satisfied. Then we have

wk(z, u) =
2
√

–x/n(u – y(z))α(z)k

(1 + α(z)k)
√

–x/n + (τ – u)(1 – α(z)k)σ/τ
√

2 + O (|x|/n)
,

uniformly for k = O
(√

n
)
.
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By means of this lemma it is possible to derive the characteristic functions
of the limiting distributions Ln(k)/

√
n as well as of the multivariate sequence

of random variables
(
Ln(k1)/

√
n, . . . , Ln(kp)/

√
n
)
:

Theorem 17.4 Let ki = κi
√

n, i = 1, . . . , p where 0 < κ1 < · · · < κp. Then the
characteristic function φκ1 ...κp (t1, . . . , tp) = lim

n→∞
φk1···kpn(t1, . . . , tp) of the limiting

distribution of
(

1√
n Ln(k1), . . . , 1√

n Ln(kp)
)

satisfies

φκ1 ...κp (t1, . . . , tp) = 1 +
σ

i
√

2π

∫
γ

fκ1,...,κp,σ(x, t1, . . . , tp)e–x dx ,

where

fκ1 ,...,κp,σ(x, t1, . . . , tp) =

Ψκ1σ(x, it1 + Ψκ2–κ1,σ(. . . Ψκp–1–κp–2,σ(x, itp–1 + Ψκp–κp–1,σ(x, itp)) · · · )
with

Ψκσ(x, t) =
t
√

–xe–κσ
√

–x/2

√
–xeκσ

√
–x/2 – t σ√

2
sinh

(
κσ

√
– x

2

) ,

and γ is the Hankel contour γ1 ∪ γ2 ∪ γ3 defined by

γ1 = {s||s| = 1 and 's u 0} , γ2 = {s|(s = 1 and 's v 0} , γ3 = γ2 .

This limiting distribution has to be identified as the characteristic function
of Brownian excursion local time, which was computed in [11] for p = 1 (cf.
(17.6)) and p = 2. One way to do this is to compute the characteristic function
of Brownian excursion occupation time for the sets [κ1, κ1+η]∪· · ·∪[κp, κp+η]
and do a kind of differentiation process afterwards. Another approach would
be the use of Itô’s excursion theory by computing the expected value of a suit-
ably chosen random variable with respect to Itô’s measure and then taking
the inverse Laplace transform. Both approaches are presented in [16].

17.2.4

The Width

We are interested in the width of such a tree, which is defined by

wn = max
tv0

Ln(t).

This quantity has attracted the interest of many authors. First, Odlyzko
and Wilf [33] became interested in this tree parameter when studying the
bandwidth of a tree. Regarding the width, they showed that there are positive
constants c1 and c2 such that

c1
√

n < Ewn < c2
√

n log n (17.9)

holds. The exact order of magnitude was left as an open problem.
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Biane and Yor [5] showed that suptv0 l(t) and 2 sup0utu1 Wt have the same
distribution, and due to Kennedy [29] this is

P{sup
0utu1

Wt u x} = 1 – 2
∑
kv1

(4x2k2 – 1)e–2x2k2
. (17.10)

Hence Theorem 17.3 implies suptv0 ln(t) w→ σ sup0utu1 Wt as n → ∞. This
suggests, but does not imply,

√
n as the correct order of magnitude in (17.9).

A moment convergence theorem of suptv0 ln(t) to suptv0 l(t) was shown by
Chassaing and Marckert [10] for Cayley trees and in [17] for all simply gen-
erated trees. Formulated in terms of the tree width wn = maxtv0 Ln(t) =
(σ/2)

√
n suptv0 ln(t) it reads as follows.

Theorem 17.5 Suppose that there exists a minimal positive solution τ < R of
tϕ′(t) = ϕ(t). Then the width wn satisfies

E
(
wp

n
)

= σp2–p/2p(p – 1)Γ
(p

2

)
(p) · np/2 · (1 + o(1))

as n→∞.

A weak limit theorem for the joint law of height and width of simply gen-
erated trees was given by Chassaing, Marckert, and Yor [9].

The proof of Theorem 17.5 relies on the notion of polynomial conver-
gence.

Definition 17.1 Let xn be a sequence of stochastic processes in C[0,∞). Then
we say that xn is polynomially convergent to x ∈ C([0,∞)) if for every con-
tinuous functional F : C[0,∞) → R of polynomial growth (i.e., |F(y)| =
O

(
(1 + ‖y‖∞)r

)
for some r v 0) we have limn→∞ EF(xn) = EF(x).

Theorem 17.6 Let xn be a sequence of stochastic processes in C[0,∞) that con-
verges weakly to x. Assume that for any choice of fixed positive integers p and d
there exist positive constants c0, c1, c2, c3 such that

sup
nv0

E|xn(t)|p u c0e–c1t for all t v 0 ,

and

sup
nv0

E|xn(t + s) – xn(t)|2d u c2e–c3tsd for all s, t v 0 . (17.11)

Then xn is polynomially convergent to x.

The quite technical proof of this theorem is given in [17]. Theorem 17.5
is now a consequence of the weak limit theorem for the profile as well as
the previous theorem. In order to show the exponential estimates needed to
apply Theorem 17.6, one must conduct a careful singularity analysis simi-
lar to that used to prove tightness. Equation (17.11) resembles the sufficient
condition for tightness (17.7) and is in fact a much stronger statement.
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Finally, we mention that the method allows one to derive moment conver-
gence theorems for other combinatorial problems as well. Examples are the
degree distribution in layers of random trees, strata of random mappings, or
the height of random trees (cf. [17]).

17.3

Random Mappings

While in the previous section we considered a particularly simple kind of
random graphs, we now turn to slightly more complex graphs. Random map-
pings are mappings from an n element set M into itself where uniform dis-
tribution is assumed. Obviously, any such mapping gives rise to a directed
graph: Draw n points in the plane and label them with the elements of M.
Then draw a directed edge from i to j (i, j ∈ M) whenever the mapping maps i
onto j. This graph is called the functional digraph of the mapping and allows
an easy decomposition. Each component contains exactly one cycle (which
may be a loop) and to each vertex of the cycle is attached a Cayley tree (i.e.,
a labeled rooted tree). So a functional digraph decomposes into a multiset of
cycles of labeled tree (see Figure 17.2 for an example).
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12 11
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19

Figure 17.2 A random mapping on M = {1, 2, . . . , 23}.

From this decomposition it is easy to derive the GF for the numbers of
such mappings. It is well known (cf. [24]) that the multiset and cycle con-
struction for labeled objects correspond to ez and log(1/(1 – z)) for the expo-
nential GFs. Hence the exponential GF is

A(z) = exp
(

log
1

1 – a(z)

)
=

1
1 – a(z)

,
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where a(z) is the GF for Cayley trees, given by the functional equation

a(z) = zea(z). (17.12)

Of course, elementary enumeration shows that [zn]A(z) = nn/n! such that
the above decomposition seems unnecessary. But it is useful to study more
complex features of random mappings. As an example we will sketch the
analysis of the degree distribution in random mappings that was first done
by Arney and Bender [3] by enumerative arguments and later in a more gen-
eral context by Drmota and Soria [18] via GFs. The analysis of the degree
distribution amounts to a study of the in-degree distribution since obviously
every vertex in a random mapping has an out-degree one. The bivariate GF
Cayley trees encoding tree size and number of nodes of out-degree r satisfies
the functional equation

ar(z, u) = zear(z,u) + z(u – 1)
ar(z, u)

r!
.

When building functional digraphs in each tree one of the incoming edges
of the root stems from the cycle, that is, from a node outside the tree. Taking
this into account yields the GF (for mappings)

Ar(z, u) =
1

1 – ar(z, u) + z(u – 1)
(

ar(z,u)
r! – ar–1(z,u)

(r–1)!

) .

It can be shown that ar(z, u) has a single algebraic singularity. More precisely,
it admits (locally at (1/e, 1) a representation of the form

ar(z, u) = g(z, u) – h(z, u)
√

1 –
z

ρ(u)
,

where g(z, u) and h(z, u) are analytic functions and ρ(u) is analytic at u = 1.
The expected number of nodes with in-degree r is

n!
nn [zn]

[
∂

∂u
Ar(z, u)

]
u=1

.

One easily obtains[
∂

∂u
Ar(z, u)

]
u=1

~
ρ′(u)
ρ(u)

1
23/2(1 – ez)3/2 .

Applying the transfer lemma ([21]) we obtain that the asymptotic number of
nodes of in-degree r is n/er!. Even more can be shown:

Theorem 17.7 Let μ = 1/(er!) and σ2 = 1/(er!) + (r2 – 2r + 2)/(er!)2. Then the
number of nodes with r preimages in a random mapping on an n-element set
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is asymptotically normally distributed with asymptotic mean μn and asymptotic
variance σ2n. Moreover, a local limit theorem holds: Let ank denote the number of
mappings on an n-element set with exactly k nodes of in-degree r. Then, as n→∞
and uniformly for k v 0, we have

ank

nn =
1√

2πσ2n

(
exp

(
(k – μn)2

2σ2n

)
+ O

(
n–1/4)) .

17.4

The Random Graph Model of Erdős and Rényi

In this section we want to present some results on the random graph model
of Erdős and Rényi [19, 20]. This model is defined as follows. Given are n
vertices with labels 1, . . . , n and a probability p. Then each possible edge is
included in the edge set of the graph with probability p, where all edges are
treated independently. The resulting graph is denoted by G(n, p). A second
model is considering the set of all graphs with n vertices and m edges and
choosing one graph uniformly at random. This graph is called G(n, m) and it
is known that the two models are equivalent in many respects, provided that
p
(n

2

)
is close to m (see [28, Section 1.4] for details).

One interesting phenomenon of random graphs is the emergence of a gi-
ant component. If we let n→∞ and set p = c/n, then for c < 1 a typical graph
consists of small and simple components, that is, each component has a typ-
ical size of O(log n) and does not contain many cycles. If c > 1, then a typical
graph consists of one giant component that comprises roughly two thirds of
all vertices and many small and simple components. The phase transition
occurring around c = 1 was thoroughly studied by Janson et al. [27].

17.4.1

Counting Connected Graphs with Wright’s Method

When analyzing the phase transition at the emergence of a giant compo-
nent, it is of prime importance to understand the behavior of the connected
components of the graph. A systematic treatment of the enumeration of con-
nected graphs according to their complexity was done by Wright [38–41]. We
briefly sketch his method.

Let f(n, n + k) denote the number of connected graphs with n vertices and
n + k edges. Of course, f(n, n + k) = 0 for k < –1 and k > N =

(n
2

)
. The number

of trees is the well-known Cayley’s formula, f(n, n – 1) = nn–2. The goal is to
derive a recurrence relation for the GFs

Wk(z) =
∑
nv1

f(n, n + k)zn/n!.
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We call a graph with n vertices and q edges an (n, q)-graph. A connected
(n, q + 1)-graph can be generated from an (n, q)-graph in two ways. First, one
could add an edge to a connected (n, q)-graph. In this case there are N– q pos-
sibilities to add the edge. The second way to generate a connected (n, q + 1)-
graph is to add an edge to an (n, q)-graph that consists of exactly two con-
nected components, an (s, t)-graph and an (n – s, q – t)-graph. Thus there are
s(n – s)/2 possibilities to connect these two components by an edge and so we
generate

Q(n, q) =
1
2

⎛⎝ n–1∑
s=1

(
n
s

)
s(n – s)

q–n+s+1∑
t=s–1

f(s, t)f(n – s, q – t)

⎞⎠
connected (n, q + 1)-graphs in that way. The two procedures above generate
each connected (n, q+1)-graph q+1 times since there are q+1 ways to choose
the edge to be added to an (n, q)-graph. Thus

(q + 1)f(n, q + 1) = (N – q) f(n, q) + Q(n, q).

This recurrence relation for f(n, n + k) can be translated into a recurrence
relation for Wk(z),

a(z)k+1Wk+1(z) =
∫ z

0
Jk(x)a(x)ka′(x) dx , (17.13)

where

Jk(x) =
1
2

((
∂2

∂x2 –
∂

∂x
– 2k

)
Wk(x) +

k∑
h=0

(
∂

∂x
Wh(x)

)(
∂

∂x
Wk–h(x)

))

and a(z) is the GF for Cayley trees defined in (17.12). Using (17.13) and the
well-known relation

W–1(z) = a(z) –
a(z)2

2

we obtain

W0(z) =
1
2

log
1

1 – a(z)
–

1
2

a(z) –
1
4

a(z)2

and

W1(z) =
1
24

a(z)4(6 – a(z))
(1 – a(z))3 .

Similarly, W2(z) can be expressed in terms of finitely many powers of a(z)
and no logarithmic term. In fact, we have the following result.
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Theorem 17.8 For k v 1 there are rational numbers wks such that

Wk(z) =
1

(1 – a(z))k

2k–1∑
s=0

wks

(
a(z)

1 – a(z)

)2k–s

.

Since 1 – a(z) ~
√

2
√

1 – ez as z → 1/e, the transfer theorems of Flajolet
and Odlyzko [21] can be used to obtain asymptotic expressions for f(n, n + k).
Note that using the first term suffices, since this is clearly the dominant one.
Equation (17.12) allows an approach by Langrange’s inversion formula as
well and one obtains exact expressions. Asymptotic results were given by
Wright as well. The next two theorems summarize these results.

Theorem 17.9 For k v 1 there are rational numbers pks and qks such that

f(n, n + k) = (–1)k

⎛⎝h(n)
�3k/2�–1∑

s=0

pksns – (n – 1)nn–2
�(3k+1)/2�∑

s=0

qksns

⎞⎠ ,

where

h(n) =
n∑

s=0

(
n
s

)
ss(n – s)n–s.

Theorem 17.10 For k v 0 there are rational numbers wk such that

f(n, n + k) ~ wknn– 1
2 + 3

2 k, as n→∞.

Furthermore, the constants wk satisfy, as k→∞,

wk ~
(

e
12(k + 1)

(1 + o(1))
)(k+1)/2

.

17.4.2

Emergence of the Giant Component

As mentioned at the beginning of this section, the component structure un-
dergoes a phase transition when a graph acquires more and more edges. In
order to describe this, we have to define a suitable graph evolution model.
Two models are considered in the literature. First, the classical model is the
graph process. Start with an empty graph with n vertices and a permutation
of the N =

(n
2

)
possible edges, which is chosen uniformly at random among

all N! permutations. Then add succesively the edges according to the order
given by the permutation. In this way, the graph at “time” m has exactly m
edges and is distributed as G(n, m). The second, which was introduced and
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analyzed by Janson et al. [27] in their thorough investigation of the evolu-
tion of random graphs, is the multigraph model. Here, at each instance an
edge 〈x, y〉 is generated uniformly at random among all n2 possible edges
and then added to the graph. Obviously, in general this process produces
multiple edges and self-loops. With respect to the component structure this
process behaves very similarly to the graph process but is simpler to analyze.

The evolution process has three stages. First, the stage where the graph
has few edges, precisely m = o(n) or c < 1, is called the subcritical range.
There the maximal component consists of O(log n) vertices. Second is the
critical range at m = n/2, where one component dominates and has Θ(n2/3)
vertices while all other component sizes are of logarithmic order. Third is the
supercritical range with many edges, n = o(m). Such a graph typically has one
component with const·n vertices and several small components. In this range
the giant component constantly grows and swallows the small components
until the graph becomes connected.

In the first stage the component structure can be analyzed by choosing
a vertex v and determining its component by a greedy algorithm. First, mark
v and look for all neighbors of v and mark them, too. Then look for the neigh-
bors of neighbors that are not already marked and mark them. Continuing
like this eventually leads the component containing v. It turns out that this
procedure almost behaves like a branching process. Therefore, the theory
of branching processes can be used to obtain the results such as that there
are only small components of size O(log n) and most of them are trees (for
details see Spencer [35]).

Now let us turn to the critical range where the phase transition occurs.
The critical range was first studied by Erdős and Rényi [19, 20] in the region
m = 1

2 n + ω(n)
√

n (ω(n) → ∞ arbitrarily slowly), which turned out to be the
wrong scaling. In fact, the correct parameterization is

m =
1
2

n + λn2/3. (17.14)

One of the first detailed studies of the behavior of the component sizes in-
side the phase transition was done by Łuczak [30]. The method uses the enu-
meration formulae of trees (Cayley’s formula) and those of Theorem 17.10 in
conjunction with probabilistic arguments resembling ideas of the so-called
probabilistic method (see [2]). Indeed, if we fix λ and some κ > 0 and let
Y denote the number of tree components of size k = κn2/3 in G(n, p) with
p = n–1 + λn–4/3 (which corresponds to (17.14)), then

EY =
(

n
k

)
kk–2pk–1(1 – p)k(n–k)+(k

2)–(k–1).

This holds, since we have to choose the k vertices of the components first.
Then there are kk–2 possibilities to construct a tree with these vertices. If
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we fix one of these trees, then each of the k – 1 edges must be in G(n, p)
and each of the k(n – k) pairs of a node of the tree and some node outside
the tree, as well as all the

(k
2

)
– (k – 1) pairs of nodes of the tree that are

not neighbors, must not be connected by an edge in G(n, p). Evaluating this
expression asymptotically we obtain

EX→ 1√
2π

∫ b

a
exp

(
–

t3

6
–

λ2t
2

+
λt2

2
+ o(1)

)
dt

t5/2 , as n→∞, (17.15)

where X denotes the number of tree components of size between an2/3 and
bn2/3. If we look at components with excess �, that is, components where
the number of edges exceeds the number of vertices by exactly �, a similar
formula holds. Let X� denote the number of components of excess � and with
size between an2/3 and bn2/3 (hence X = X–1). Then

EX� →
1√
2π

∫ b

a
exp

(
–

t3

6
–

λ2t
2

+
λt2

2
+ o(1)

)
w�t3(�+1)/2 dt

t5/2 , (17.16)

as n→∞, where w� is the constant of Theorem 17.10. Note that with setting
w–1 = 1 (17.16) and (17.15) coincide. Note that

g(t) =
∑
�v–1

w�t
3
2 (�+1)

converges for all t and is related to the number of all components. In
fact, the probability that a random component of size tn2/3 has excess � is
w�t3(�+1)/2/g(t). In particular, if t is very close to zero, then g(t) W 1 and the prob-
ability of having excess –1 (and thus being a tree component) is 1/g(t) W 1.
Thus small components are likely to be trees.

A more detailed study can be done with GFs, which were the key tool
in [27], to which we refer the reader for details. The paper contains a wealth
of profound results on the phase transition that cannot even be mentioned
here. We can only excerpt the paper very briefly.

It turns out that it is useful to decompose a graph into its simple part and
its complex part. The simple part consists of all components that are trees or
unicyclic (excess –1 or 0) while components with an excess of at least 2 are
called complex components. If G(w, z) is the GF for graphs (w and z keeping
track of the number of edges and the number of vertices, respectively) and
F(w, z) the GF of cyclic graphs, that is, graphs without tree components, and
E(w, z) the GF of complex graphs, then the identities

G(w, z) = eW–1(wz)/wF(w, z) and F(w, z) = eW0(wz)E(w, z)

hold. Further relations can be obtained by looking at the graph process:
adding an edge means choosing two vertices that are not connected by an
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edge and then connecting them with the new edge. Equivalently, this can be
regarded as a graph with a marked edge that is not counted. In the world
of GFs this corresponds to the derivative w.r.t. w. On the other hand, we can
distinguish two vertices and add a new edge if they are not connected and
mark the edge otherwise. We then have to subtract these cases afterwards.
Again this corresponds to differential operators for GFs. We get

1
w

ϑwG(w, z) =
(

ϑ2
z – ϑz

2
– ϑw

)
G(w, z)

with ϑw = d/dw and ϑz = d/dz. Using these techniques it is possible to derive
a differential equation for E(z):

1
w

(
ϑw – a(z)ϑz

)
E(w, z) = e–W0(wz)

(
ϑ2

z – ϑz

2
– ϑw

)
eW0(wz)E(w, z).

Solving this equation and the one for the analogous GF for the multigraph
process and splitting the functions according to the excess of the graphs
counted, that is, letting E(w, z) = 1 +

∑
�v1 w�E�(wz), we get formulae sim-

ilar to those of Wright (Theorem 17.8):

E�(z) = 1 +
∑
sv0

e�s
a(z)5�–s

(1 – a(z))3�–s and E(M)
� (z) =

2�∑
s=0

e(M)
�s

a(z)2�–s

(1 – a(z))3�–s , (17.17)

where E(M)
� (z) is the GF for the multigraph process. The coefficients e(M)

�s
turn out to have nice algebraic properties. For instance, they satisfy a fairly
simple recurrence relation that allows for the derivation of exact expressions
involving only polynomials and factorials. Moreover, they are asymptotically
equal to Wright’s coefficients of Theorem 17.10, that is, w�s ~ e(M)

�s , as �→∞.
The expansions (17.17) are amenable to contour integration à la Flajolet and
Odlyzko [21]. In this respect, it is obvious that the first terms are the domi-
nant ones. Fortunately, it can be shown that e(M)

�0 = e�0. Therefore, the analysis
of components is the same for graphs and multigraphs. The following the-
orem gives the joint distribution of all kinds of components (according to
excess).

Theorem 17.11 The probability that a random graph (or multigraph) with n ver-
tices and n

2 +O
(
n1/3

)
edges has exactly ri components with excess i (i = 1, 2, . . . , q)

and no components of higher excess is(
4
3

)r √2
3

wr1
10

r1!
wr2

20

r2!
· · ·

wrq
q0

rq!
(r1 + 2r2 + · · · + qrq)!

(2(r1 + 2r2 + · · · + qrq))!
+ O

(
n–1/3) .

The excess is one of the crucial concepts in the analysis of the phase tran-
sition. The theorem above tells us the probability that a random graph has
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the configuration [r1, r2, . . . , rq]. The evolution process induces a stochastic
process with state space equal to the set of all possible configurations. With
the help of the following theorem it is possible to compute the transition
probabilities of this process (see Figure 17.3 as well).

Theorem 17.12 Set r = r1 +2r2 + · · ·+qrq and let δ1 +2δ2 + · · ·+qδq = 1. Then the
probability that a random graph (or multigraph) of configuration [r1, r2, . . . , rq]
with n vertices and having no tree components will change to configuration [r1 +
δ1, r2 + δ2, . . . , rq + δq, δq+1, . . . ] when a random edge is added can be computed
as follows:

Probability If the nonzero δs are

5
(6r + 1)(6r + 5)

+ O
(
n–1/2) δ1 = 1

36j(j + 1)rj

(6r + 1)(6r + 5)
+ O

(
n–1/2) δj = –1, δj+1 = 1

36j2rj(rj – 1)
(6r + 1)(6r + 5)

+ O
(
n–1/2) δj = –2, δ2j+1 = 1

72jkrjrk

(6r + 1)(6r + 5)
+ O

(
n–1/2) δj = –1, δk = –1, δj+k+1 = 1, j < k

0 otherwise

It can be further shown that the evolution process is nearly a Markov pro-
cess. The Markov process on the set of possible configurations with tran-
sition probabilities as stated in the previous theorem describes in a certain
sense almost all evolutions of random graphs. This gives a precise picture of
the phase transition. Looking at these numbers shows that the evolution of
the form [0] → [1] → [0, 1] → [0, 0, 1] → . . . is the most probable one. If
the Markov process were to reflect the exact behavior, the probability of this
evolution would be∏

rv1

36r(r + 1)
(6r + 1)(6r + 5)

=
5π
18

W 0.8726646 .

Janson et al. [27] showed that the probability that a graph on n vertices evolves
like this tends to 5π/18 as n→∞. This means that a typical graph never has
more than one complex component during its evolution.
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[0] [1]

[0,1]

[0,0,1]

[2]

[1,0,1]

[0,0,0,1]

[1,1]

[4]

[0,2]

[2,1][3]
5/221

5/221

216/221

5/77

72/77

144/221

72/221

216/437

5/437

432/437

216/437

5/437

5/437

72/437

216/437
144/437

1

Figure 17.3 The Markov process on the set of configura-
tions closely related to the graph evolution process. The
edges are labeled with the transition probabilities.

17.5

Planar Graphs

The counting problem of several classes of planar graphs resp. planar maps
goes back to Tutte [8, 36, 37]. Interestingly enough, the study of random ver-
tex labeled planar graphs is a recent one. Random planar graphs were intro-
duced by Denise et al. [13], and since then they have been widely studied. Sev-
eral natural parameters defined on Rn have been studied, starting with the
number of edges, which is probably the most basic one. Partial results were
obtained in [7, 13, 25, 34], until it was shown by Giménez and Noy [26] that
the number of edges in random planar graphs obeys asymptotically a normal
limit law with linear expectation and variance. The expectation is asymptoti-
cally κn, where κ W 2.21326 is a well-defined analytic constant. This implies
that the average degree of the vertices is 2κ W 4.42652. McDiarmid et al.
showed that with high probability a planar graph has a linear number of
vertices of degree k, for each k v 1 [32].

In what follows we present here an approach to random (vertex) labeled
planar graphs that is based on GFs and indicate how corresponding counting
problems and distributional results can be obtained. We recall that a graph
is 2-connected if it is connected and one has to remove at least two vertices
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(and all incident edges) to disconnect it. Similarly, a graph is 3-connected if
it is 2-connected and one has to remove at least three vertices to disconnect.

We first provide a system of equations for the corresponding GFs (see
[4, 26]).

Theorem 17.13 Let bn,m denote the number of 2-connected labeled planar graphs,
cn,m the number of connected labeled planar graphs, and gn,m the number of all
labeled planar graphs with n vertices and m edges. Furthermore, let

B(x, y) =
∑

m,nv0

bn,m
xn

n!
ym, C(x, y) =

∑
m,nv0

cn,m
xn

n!
ym,

G(x, y) =
∑

m,nv0

gn,m
xn

n!
ym

be the corresponding GFs. Then these functions are determined by the following
system of equations:

G(x, y) = exp
(
C(x, y)

)
,

∂C(x, y)
∂x

= exp
(

∂B
∂x

(
x
∂C(x, y)

∂x
, y
))

,

∂B(x, y)
∂y

=
x2

2
1 + D(x, y)

1 + y
, (17.18)

M(x, D(x, y))
2x2D(x, y)

= log
(

1 + D(x, y)
1 + y

)
–

xD(x, y)2

1 + xD(x, y)
, (17.19)

M(x, y) = x2y2
(

1
1 + xy

+
1

1 + y
– 1 –

(1 + U)2(1 + V)2

(1 + U + V)3

)
,

U(x, y) = xy(1 + V(x, y))2,

V(x, y) = y(1 + U(x, y))2.

Note that the number of edges have to be taken into account, too, as Equa-
tions 17.18 and 17.19 could not be stated without the variable y. Neverthe-
less, we can set y = 1 after all and obtain GFs for the numbers bn =

∑
kv0 bn,m

etc. [4, 26].

Theorem 17.14 The numbers bn, cn, and gn of labeled 2-connected resp. connected
resp. all planar graphs are asymptotically given by

bn = b · n– 7
2 ρn

1 n!
(

1 + O
(

1
n

))
,

cn = c · n– 7
2 ρn

2 n!
(

1 + O
(

1
n

))
,

gn = g · n– 7
2 ρn

2 n!
(

1 + O
(

1
n

))
,
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where ρ1 = 0.03819..., ρ2 = 0.03672841... and

b = 0.3704247487 . . . · 10–5,

c = 0.4104361100 . . . · 10–5,

g = 0.4260938569 . . . · 10–5

are positive constants.

It is much more difficult to get a precise description of the singular behav-
ior of the above GFs than in previous examples. Nevertheless, it turns out
that B(x, y), C(x, y), and G(x, y) have a respresentation of the form

g(x, y) + h(x, y)
(

1 –
x

ρ(y)

)5/2

with certain analytic functions g(x, y), h(x, y), ρ(y). Of course, this implies
Theorem 17.14. Furthermore, we directly obtain a central limit theorem for
the number Xn of edges where the expected value and variance are asymptot-
ically proportional to n:

E Xn = μn + O(1) and V Xn = σ2n + O(1).

For example, for connected resp. all planar graphs we have μ = 2.2132652 . . .

and σ2 = 0.4303471 . . . (compare with [26]).
By extending the above procedure one can also get a description of the

degree distribution of planar graphs. This has been worked out recently by
Drmota, Giménez, and Noy [14].

Theorem 17.15 Let dn,k be the probability that a random node in a random planar
graphRn has degree k. Then the limit

dk := lim
n→∞

dn,k

exists. The probability GF p(w) =
∑

kv1 dkwk can be explicitly computed. The first
few values are given in the following table, and asymptotically we have

dk ~ ck–1/2qk,

where c W 3.0826285 and q W 0.6734506 are computable constants.

d1 d2 d3 d4 d5 d6

0.0367284 0.1625794 0.2354360 0.1867737 0.1295023 0.0861805

The proof is based on the GFs B•(x, y, w), C•(x, y, w), and G•(x, y, w) that
correspond to 2-connected, connected, resp. all planar graphs, where one
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vertex is marked and the exponent of w counts the degree of the rooted vertex.
The corresponding system of equations is now the following one (see [14]):

G•(x, y, w) = exp
(
C(x, y, 1)

)
C•(x, y, w) ,

C•(x, y, w) = exp
(
B•

(
xC•(x, y, 1), y, w

))
,

w
∂B•(x, y, w)

∂w
= xyw exp

(
S(x, y, w) +

1
x2D(x, y, w)

~ T•
(

x, D(x, y, 1),
D(x, y, w)
D(x, y, 1)

))
D(x, y, w) = (1 + yw) exp

(
S(x, y, w) +

1
x2D(x, y, w)

~ T•
(

x, D(x, y, 1),
D(x, y, w)
D(x, y, 1)

))
– 1

S(x, y, w) = xD(x, y, 1)
(
D(x, y, w) – S(x, y, w)

)
,

T•(x, y, w) =
x2y2w2

2

(
1

1 + wy
+

1
1 + xy

– 1

–
(U + 1)2

(
–w1(U, V, w) + (U – w + 1)

√
w2(U, V, w)

)
2w(Vw + U2 + 2U + 1)(1 + U + V)3

⎞⎠ ,

U(x, y) = xy(1 + V(x, y))2, V(x, y) = y(1 + U(x, y))2

with polynomials w1 = w1(U, V, w) and w2 = w2(U, V, w) given by

w1 = – UVw2 + w(1 + 4V + 3UV2 + 5V2 + U2 + 2U + 2V3

+ 3U2V + 7UV) + (U + 1)2(U + 2V + 1 + V2) ,

w2 =U2V2w2 – 2wUV(2U2V + 6UV + 2V3 + 3UV2 + 5V2 + U2

+ 2U + 4V + 1) + (U + 1)2(U + 2V + 1 + V2)2 .

It turns out that the singular behavior of the functions B•(x, y, w), C•(x, y, w),
and G•(x, y, w) is of the form

g(x, y, w) + h(x, y, w)
(

1 –
x

ρ(y)

) 3
2

,

that is, the singularity does not depend on w. With the help of these kinds of
representations the degree distributions can be characterized.
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19 P. Erdős and A. Rényi. On random
graphs. I. Publ. Math. Debrecen, 6:290–
297, 1959. Reprinted in P. Erdős, The Art
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Index

a
A*-based optimal GED

computation 119
Ackermann’s function 188
activity spreading 254
acyclic cubical complex 342
addition 354
adjacency matrix 4ff., 25ff., 145
AIDS database 127
Albert–Barabasi limit 35
algorithm
– breadth-first search (BES) 236
– Dijkstra’s 190
– dynamic programming (DP) 278
– Hungarian 122f.
– Kuhn-Munkres’ 122f.
– minimum cost dynamic

multicommodity flow problem
394

– optimal 118
– optimal dynamic flow 377ff.
– spanning peripheral arcs 201
– spanning peripheral edge 186
– suboptimal 121
Alon–Milman theorem 64
analytic combinatorics 425ff.
m-antiprism 359ff.
arc 199, 247, 386
– downward 199
– kernel 199
– lateral 199
– peripheral 199
– reflexive 199
– upward 199
assignment problem 121
authority, network 13
automatic protein prediction 114
automorphism 1ff., 352
– computation 7
automorphism group 4, 352
– abelian 5

average shortest path (ASP) 247,
256ff.

b
BABEL 231f.
Bacillus subtilis 282ff.
balanced incomplete block design

(BIBD) 153
base graph 387
basic interval 302
basis problem 318
basis system
– complete 318
– problem 296
batch machine 301
batch machine scheduling (BMS)

problem 301f.
Beamsearch(s), Beam(s) 121, 133
benzenoid hydrocarbon 154
betweenness 206
betweenness centrality (BC) 15ff.,

52, 58
– vector 17f.
binary choice model 413
biological network 68
biometric person identification 114
bipartite edit distance 133
bipartite graph 149
bipartite graph matching 121
bipartite (BP) method 125ff.
bipartite model 213
bipartite network, community 409
bipartite substructure, complex

network 77
bipartite wheel 341
Boltzmann factor, generalized 40
bound
– graph energy 147
– lower 154
– upper 147
Bourgas Indices (BI) 49ff.



452 Index

bow-tie model 176
m-bracelet 363
branching process 427, 441
breadth-first search (BES) algorithm

236
bridge 353
Brownian excursion 431
Buneman graph 346
bypass deletion 281

c
C-block graph 337
CACTVS 231f.
Caenorhabditis elegans 245ff.
cage-amalgamation graph 337ff.
Cahn-Ingold-Prelog 223
canonical discriminant analysis

(CDA) 68
canonical metric representation

328
capacity function 378
cardiac defibrillation 261
cardiac system 261
cardioversion 261
CARMEN Neuroinformatics project

266
Cartesian product 3, 327f.
Cauchy’s integral formula 433
Cauchy–Schwarz inequality 147
Cayley graph 87ff.
Cayley tree 435ff.
Cayley’s formula 438
CCDC 232
centrality 58
centrality measure 52
– integrated 52
ChEBI 232
Chebyshev’s inequality 99
chemical database 232
chemical graph format 231
Chemical Markup Language (CML)

231
chemical software package 232
Chemistry Development Kit (CDK)

232
chemoinformatics, graph theory

221ff.
Cheng, Harrison, and Zelikovsky

theorem 278
chordal graph 336
chromatic decomposition 19
chromatic information content 20
chromatic number 19
circular split system 345

class
– CLC(X ) 304
– complex network 66
classification
– elementary ({2,3},4)-polycycle 359
– elementary ({2,3},5)-polycycle 359
– elementary ({2,3,4,5},3)-polycycle

356
– GED-based nearest-neighbor 129
classifier
– k-nearest-neighbor 129
– NN 133f.
CLC, see connected list coloring
closed walk (CW) 57, 77
closeness centrality (CC) 19, 52, 58
cluster 247
clustering coefficient 15, 30
cogwheel 341
– convex 341
collaboration model 419
color
– initial 311
– label 316
color class 19
coloring
– complete 19
– connected 301
– graph 19
– proper 301
– proper interval edge 301
communicability 70
– complex network 69
– function 77f.
– network community 71
communicability graph 73ff.
community 71f.
– detection 73
– identification 75
– structure 407
– topical profile 411
complementary geraph 181, 199
complete basis system 318f.
complex network 23, 65
– class 66
– communicability 69
– global topological organization 62
– relational 48
– statistical mechanics 23ff.
– structure 55
complexity 304
component 209f.
computation, graph edit distance

118f.
computational geometry 61
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computational tractability 295ff.
computing minimum cost

homomorphism 277
concave cost function on arcs 386
conceptual domain 204
conceptual graph (CG) 209ff.
– semiotic system 212
conceptual space 204ff., 216
conceptualistic interpretation 213
connected graph 151ff., 182, 326,

345, 438ff.
connected group 66
connected list coloring (CLC) 296
Connected List Coloring (CLC)

problem 295ff.
– CLC(X ) problem 296
– CLL-negative input 312
– CLL-positive input 312
connected list labeling (CLL) 309
– problem 309
connected service area, problem

298
connected solution 299
connection 253
connectivity 49, 90
– average nearest-neighbor 30
– local 110
– neutral network 90
– peripheral 195
constraint satisfaction problem (CSP)

234
– finite domain (FCSP) 234
convex amalgamation 327
convex cost function on arcs 386
convex excess 336
convex expansion 328
core-periphery 66
correspondence 381
cortical network 245
– property 246
cortical system 264
cost function 378f., 393
cost matrix 123
Coulson integral formula 162f.
counting connected graph 438
cover 328
– cubical 338
cross reference 193
crossing graph 332
crystal graph 230
crystal packing 231
cube
– counting 323ff.
– spectrum 347

n-cube 85ff., 324
– binary 94
cube polynomial 324ff., 337ff.
– root 340
cycle
– graph 235
– handling in pattern 280

d
Daylight 232
defibrillation shock (DS) 261
degree centrality (DC) 52, 58
degree distribution 25f., 39ff.
– cumulative 26
– Poissonian 36
degree vector 13
deletion 116
demand–supply function 378, 393
density matrix 40
dependency tree (DT) 202
depth-first search (DFS) 279
digraph 8, 200
– functional 436
Dijkstra’s algorithm 190
dimension, isometric 328
directed generalized dependency tree

(DiGDT) 202
directed generalized spanning tree

(DiGST) 200
directed generalized tree (DGT)

198ff.
directed minimum spanning

generalized tree (DiMSGT) 202
directed spanning tree 200
discrete mathematical model 295
discrete optimization problem 295
disjoint hole 351
dissimilarity computation 114
dissimilarity embedding graph

kernel 132ff.
– suboptimal GED 136
distance 34, 49
– computation 116
– n-cube 105
– geodesic 179
– graph 114
– graph energy 169
– matrix 169
– shortest path 325
distortion operation 116
distribution, linking probability 30
Djokoviæ–Winkler relation 327
domain formation 216
domain networking 216
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dynamic flow 385ff.
dynamic model, flow storage at node

384
dynamic multicommodity flow 394
dynamic network 378ff., 393
– uncapacitated 387
dynamic programming (DP)
– algorithm 278
– table 279
dynamics, structural and functional

245

e
EC (Enzyme Commission) number 275
eccentricity 51
ecological network 68
edge
– coloring 301
– cross-reference 196
– disengaged 230
– engaged 230
– kernel 181ff.
– lateral 181ff.
– open 353
– peripheral 190
– proper interval 301
– reflexive 181
– removal 256
– short cut 196
– transverse 196
– vertical 181ff.
edit distance 117
edit path 117
eigenvalue 57
– principal 64
eigenvector 57
– centrality (EC) 58
– principal 64
elementary elliptic (R,q)-polycycle

351ff.
elementary ({2,3},4)-polycycle 359
elementary ({2,3},5)-polycycle 359
– sporadic 371ff.
elementary ({2,3,4,5},3)-polycycle

356
– sporadic 364ff.
empirical model 413
energy, graph 146
ensemble
– canonical 32ff.
– random network 39
ensemble average 28
entropy 2, 37
– graph 20

– group-based 4
– network 25ff.
– nonextensive 31
– principle 25
epilepsy 254
epileptogenesis 254
equidistance 207
equienergetic noncospectral

connected graph 158
Erdős–Rényi classical random graph

28
– model 438
Erdős–Rényi (ER) network 30, 39
Escherichia coli 282ff.
essential set of essential rings (ESER)

235
estimation result 417
Estrada index 59
Euclidean distance 133, 259
Euler-type inequality 324, 330, 332
– partial cube 335
European Bioinformatics Institute

(EBI) 222
European Nomenclature of

Territorial Units for Statistics
(NUTS)

classification 403
European Union’s framework

program (FP) 401ff.
excitable medium, spreading 260
expansion factor 63f.
expansion procedure 328
expansion property 339
extended set of smallest rings (ESSR)

235

f
face-regular two faced map 354
family
– chain 300
– CLC(X ) 296
– fixed 107
– induced 106
– parameterized 318ff.
– problem 320
FCSP, see constraint satisfaction

problem
feasible dynamic flow 379f.
feasible dynamic multicommodity

flow 393
finite probability scheme 2
fingerprint database 126
Fisher’s linear discriminant analysis

(LDA) 131ff.
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flexible graph distance measure
114

flow correspondence 385
flow storage at nodes 384
food web of Canton Creek 80
framework program (FP) network
– community 409
frieze group 352
functional brain network 248
functional dynamics 260
fundamental group 352

g
GABA (γ-aminobutyric acid) receptor

254
Galton–Henry classification system

127
Galton–Watson process 427f.
Galton–Watson tree 430
– scaled 430
general embedding procedure 130
generalized forest (GF) 208ff.
generalized shortest path tree

(GSPT) 175ff., 190ff., 212
generalized shortest paths tree

(GPST) 175ff., 195, 212
generalized spanning tree 184
– directed 200
generalized subtree 207
– type-restricted 183
generalized tree (GT) 175ff., 204
– directed 199
– minimum spanning (MSGT)

186ff.
– orientating 197
– undirected 180
– weighted undirected 181, 199
geodesic 361
geodesic betweenness 206
geodesic distance 179
geodesic equidistance 207
geodesic path 179
giant component 438ff.
global corticocortical connectivity

263
i-gon 351ff.
good expansion (GE) 63
graph 115, 295
– 2-connected 446
– 3-connected 446
– acyclic 50f.
– automorphism group 11
– bipartite 76, 149ff., 326
– bipartite unicyclic 166

– class 175ff.
– complexity 47ff.
– centrality 19
– characteristic polynomial 145
– chordal 336, 345
– circulant 156
– coloring 19
– complementary 181, 199
– connected 151ff., 182, 326, 345,

438ff.
– connected (px,py)-pseudo-

semiregular bipartite graph 151
– cycle 237
– cyclic 50f.
– data set 125
– data set characteristics 128
– distance 114
– embedding 129
– entropy 20
– equienergetic 157
– equienergetic noncospectral 158
– extremal 162
– H-free 324
– Hamming, see Hamming graph
– hyperenergetic 156f
– hypoenergetic 157
– information content 2
– isometric dimension 329
– maximum-energy unicyclic n-vertex

167
– minimum energy 166f.
– minimum-energy n-vertex 162
– non-bipartite connected 151
– non-bipartite connected

p-pseudoregular 151
– non-isomorphic 157
– non-trivial with identity group 3
– planar 445
– polynomial 6, 145
– quasi-median 334
– quasi-semimedian 335
– second-minimum energy 166
– semiregular bipartite 149
– k-th spectral moment 155
– third-minimum energy 166
– tree-like 178
– type 302
– underlying 200
– unicyclic 166f.
– n-vertex noncospectral

equienergetic 159
– n-vertex regular 168
(n, m)-graph, minimum energy

167
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graph edit distance (GED) 113ff.
– computation 118ff., 133
– dissimilarity embedding graph

kernel based on suboptimal graph
edit distance 136

– optimal and suboptimal 133ff.
– optimal and suboptimal algorithm

118ff.
graph element 47
– weighted distribution 47
graph energy 145ff.
– bound 147
graph kernel
– dissimilarity-based embedding

129ff.
– method 131
graph matching method 116, 226
– erroro-tolerant 116
graph matching paradigm 116
graph spectral theory 81
graph spectrum 4, 55ff.
– background 56
graph structure 47
– analysis 295ff.
graph theoretic approaches 221
graph theory
– bioinformatics 221ff.
– chemoinformatics 221ff.
graph vertices 2
Green’s function, thermal 71
group 4

h
H-theorem 25
Hamiltonian 27ff., 60
Hamming distance 86, 110, 324
Hamming graph 325
Hamming polynomial 324, 343f.
Hankel contour 434
Heaviside step function 73
height 430
Heuristic-A* 120, 133f.
hexagonal system 154
hidden variable distribution 40ff.
high-cost edge 190
hole 351
homeomorphism 276
homomorphism 276f.
hub 48
Hückel graph 156
Hückel molecular orbital (HMO) 145
Hungarian algorithm 122f.
Hurwitz generalized zeta function 42
hypercube 323ff.

– n-dimensional 324
hyperenergetic graph 156
hypoenergetic graph 157
hypotactic unfolding 216

i
ictiogenesis 254
identity graph 7
idleness 301
INChi 224
incompatibility graph 332
independence 318
– number 297
individual capacity function 393
information
– mean 47
– sequence specific 106
– total 47
information content, graph 2
information measure 49
information-theoretic entropy 60
informational network 68
initial color 311
initial vertex 311
– CLL-negative 312
– CLL-positive 312
insertion 116
integral constant demand–supply

function 384
integral dimension 205
integral schedule 302
integrated centrality index 52
interaction 60
– strength 60
intercluster communicability 72
internal metric 32
interval 301, 325
– basic 302
interval edge coloring problem 301
– hypergraph 301
intracluster communicability 72
isometric expansion 328
isomorphism 352

j
Janson’s inequality 90ff.
Jordan canonical form 4

k
KEGG 232
kernel 181, 361
– geodesic 357
– propeller 357
kernel edge 181ff.
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kernel elementary polycycle 355
kernel function 132
kernel machine 132
kernel minimum spanning tree 188f.
key parameter 296
Kim et al. limits 35
Kneser graph 156
Kolmogorov complexity 1
König theorem 76f.
Koolen-Moulton upper bound 168
Kuhn-Munkres’ algorithm 122f.
Kullback distance 411
Kuratowski’s theorem 237

l
label 309
labeling 309
– connected list 309
– tentative 310
Laguerre polynomial 42
Laplacian graph energy 169
Laplacian matrix 169
Laplacian spectrum of graph 57
largest component 93
letter database 125
limit probability 89
line, covered and uncovered 122
linear chain 55
linear cost function on arcs 386
linear discriminant analysis (LDA) 131ff.
– Fisher 136
link 35ff.
linking probability 33ff.
– distribution 40
– microscopic 42
list 358ff.
local expansion 429
lopsided set 348
low-price edge 190

m
macro-level structure 210
macromolecular assembly
– crystal packing 229
Macromolecular Structure Database

(MSD) 222
macroscopics 31
majority rule 327
mapping
– formylTHF biosynthesis 284ff.
– glutamate degradation VII pathway

288f.
– interconversion of arginine, or-

nithine, and proline pathway 288

– metabolic pathway 282
– pentose phosphate pathway 284
– statistical significance 283
Markov process 444
Markov’s inequality 102
maximum flow 383
maximum dynamic flow problem

380
maximum matching problem 307
median 52
median closure 347
median graph 321ff.
– cube polynomial 339
– cube-free 332ff.
– maximal cube 345
– Q4-free 333
median grid graph 333
median network 346
median vertex 325
medical diagnosis 114
meso-level coherence 210
metabolic pathway 271ff.
– filling hole 286
metric basic structure 210
metric space 32, 205
micro-level coherence 210
microscopics 35
microstate 60
middle complexity problem 319
minimality 206
minimum cost dynamic flow

problem 378
minimum cost dynamic

multicommodity flow problem
392

minimum cost homomorphism
problem 277

minimum spanning generalized tree
(MSGT) 186ff.

– revisited 187
minimum spanning tree (MST)

187
– kernel 188
modelling metabolic pathway

mappings 275
modularity 247, 408
molecular graph 222
– common problem 223
Moon–Moser graph 73
Mulder’s convex expansion 328
multicommodity flow 395
multidimensional conceptual space

211
multidomain conceptual space 208
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multiparametric complexity analysis
296

multiple cluster 259
multiple dicriminant analysis (MDA)

136
– MDA* 139
– transformation 138
multisource tree 276ff.
– pattern 278
Munkres’ algorithm 122f.
mutual capacity function 393

n
Nagelkerke (R)-squared 418
nearest-neighbor, GED-based 129
k-nearest-neighbor, classifier 129
neighbor connectivity 30
neighborhood degree vector,

point-deleted 13
neighborhood betweenness centrality

vector, point-deleted 18
network, see also graph
– almost bipartite 76
– bipartivity 76f.
– broad-scale 65
– complexity 47ff.
– connectivity 49
– definition 404
– distance 49
– entropy 25ff.
– growing 26ff.
– homogeneous 65
– macroscopic parameter 23ff.
– measure 30
– microscopic rule 23
– modular 63
– non-growing 26
– nonhomogeneous 65
– optimal dynamic flow 377ff.
– random, see random network
– real-world 24, 65
– scale-free 23f., 65
– single-scale 65
– small-world 23f., 258ff.
– state 25
– structure 405
– thermodynamics 25, 35
– time-expanded 381ff., 394
– universal topological class 65
– universality class 29
network change, development 258
network cluster 259
network community 71
– communicability 71

network ensemble 28
network generation model
– generalization 32
– unification 32
network Hamiltonian 27ff.
network mapping 271ff.
– method 273
network model
– spectral scaling approach 67
– unified 32ff.
network optimization problem

(NOP) 175ff.
network organization, universal

law 176
network science 265
neural connectivity 252
– prediction 252
neural network 251
neuron, inhibitory 254
neuronal network 245
– property 246
neuronal system 264
neutral network 110f.
Nikiforov’s theorem 156
no-idle requirement 301
no-wait requirement 301
node 24ff., 39, 58, 247, 259, 379
– flow storage 384
– merging 116
– random 447
– removal 257
– splitting 116
node centrality 47ff., 58
node degree 48
node-repulsion graph 80
nonextensivity 31
normal distribution 438ff.
NP-complete problem 319
NP-complete subproblem 304
null model 408
NUTS (Nomenclature of Territorial

Units for Statistics) 403

o
object classification, graph-based

115
offspring distribution 429
OPEN 119ff.
open edge 353
open reading frame (ORF) 272
open shop problem 301
OpenBabel 232
OpenEyes 232
optical character recognition 114
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optimal dynamic flow 377ff.
optimal dynamic multicommodity

flow problem 392
optimal dynamic single-commodity

flow problem 378ff.
orbit 2ff.
– approximating 11
– graph 12
– size 9
– vertex 12
order relation, path 179
organization projection property

406
orientation 198

p
parallel machine (PM) 300
– problem 300
parameter 414
partial cube 325, 335
partial Hamming graph 325
particle 427
partition function 36, 60
– subgraph centrality 60
partitioning 184
path 175ff.
– disjoint 102f.
– edit 117
– geodesic 179
pathway
– identifying conserved pathways 285
– mapping 285
– visible and hidden holes 286
pattern 271ff.
– handling cycle 280
pattern graph ordering 279
pattern vertex deletion 281ff.
p-batch machine 301f.
PDB, see Protein Data Base
PDB ligands 232
periphery 181, 199
Perron–Frobenius eigenvalue 57
phase, network 28
phylogenetic validation 285
phylogenetics 346
PISA (Protein Interfaces, Surfaces,

and Assemblies) 231
planar graph 445
planar subgraph 237
Plant Location Problem (PL problem,

PLP) 298f.
(R,q)-polycycle 351ff.
– boundary 353
– elementary 351ff.

– elliptic 351
– fixed-point-free 352
– hyperbolic 351ff.
– kernel-elementary 355
– nonextensible 354
– parabolic 351ff.
– simply connected 352
– with holes 352
(R,q)simp-polycycle 352ff.
– kernelable 356
({2,3},4)-polycycle
– elementary 359
({2,3},5)-polycycle
– elementary 359
– sporadic elementary 371ff.
({2,3},5)simp -polycycle 361f.
({2,3,4,5},3)-polycycle
– elementary 356
– sporadic elementary 364ff.
polymorphic categorization 196
polynomial 6ff.
– solvability 318
– time 306ff.
polynomial-time solvable

subproblem 305
posteromedial suprasylvian arean

(PMSL) 255
prescription 296
principal component analysis (PCA)

131ff.
probability 33, 60, 88, 100, 414
probability distribution 20f.
probability space 88
problem formulation 277
product graph 342
product median graph 342
profile 431
project projection property 407
projection length distribution 251
proper faces 351
Protein Data Base (PDB) 222ff.
protein quaternary structure (PQS)

229
protein secondary structure network

68
protein structure, comparison and

3D alignment 225
protein-protein interaction network

56
prototype selection 131
provider 298
PS-completeness 318
pseudo-median 334
pseudograph
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– edge 181
– rooted 181
PubChem 232

q
quality dimension 204
quasi-clique cluster 78
quasi-bipartite cluster 78
quasi-median graph 334
quasi-semimedian graph 335

r
R&D (research and development) 402
random graph 28, 425
– model of Erdős and Rényi 438
random mapping 436
random network 23f.
– degree distribution 39
– ensemble 39
– superstatistics 39
random tree 432
real-world network 24, 65, 401
relation 327
relation database management sys-

tem (RDBMS) 234
relative 302
removal
– edge 256
– node 257
Riemann zeta function 430
RNA string 85, 106
RNA structure 85, 110
– induced subcube 85
root
– cube polynomial 340
– rational 340
– real 341
RQA (recurrence quantification

system) 261
runtime analysis 279

s
Saccharomyces cerevisiae 282ff.
3-SAT problem 305
scale-free feature 248
scale-freeness 65
scanning, vertex 314
scheduling 301
– feasible 302
– no-idle 300
– unit job 301
scheduling problem 295ff.
secondary structure element (SSE)

225ff.

semantic space 204
semicube 326
semiotic network 175
semiotic system 211f.
– conceptual graph 212
semiregular bipartite graph 149
sequence, binary 346
set of smallest cycles at edges (SSCE)

235
Shannon equation 47
Shannon expression 60
short cut 193
short cut edge 196
shortest path generalized tree

(SPGT) 193
shortest path tree (SPT) 190ff.
single source problem 190
skeleton 181
small-world connectivity descriptor

49
small-world connectivity index B2

49
small-world feature 247
small-world network 23f., 258ff.
small-worldness 65
smallest set of smallest rings (SSSR)

235
SMARTS 225
SMILES 224
Soares et al. limit 35
social network 16, 68, 401ff.
social tagging 215
solution, connected 299
spanning peripheral edge algorithm

186
spanning peripheral arcs algorithm

201
sparse graph 190
spatial growth 258
spatial layout 250
spatial range 259
spectral scaling method 63
spectral graph theory 56
spectral measure 58
spectrum 145
split 326, 345
– compatible 330
– incompatible 330
split system 326, 345
– full circular 346
sporadic elementary ({2,3},5)-

polycycle 371ff.
sporadic elementary ({2,3,4,5},3)-

polycycle 364ff.
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spreading, topological inhibition 262
SQL (Structured Query Language) 232ff.
star 55
state 31
static network 389ff.
statistical mechanics 23ff.
strength 60
– interaction 60
stress centrality 19
string edit distance 133
strong deletion 281
structural brain network 249
structural complexity 19
structural damage 255
structural dynamics 255
structuralistic interpretation 213
structured value 205
subcomponent (sc) 95
subcube 85
subgraph
– convex 325
– isometric 325
– isomorphism solution 232
– planar 237
– random induced 85ff.
subgraph centrality 59
– partition function 60
submatrix, visual cortex 253
substitution 116
Sudarshan–Glauber representation 40
support vector machine (SVM) 136
symmetry 1, 206
– group 354
syncytium 260
sysres EUPRO database 402

t
technological system 68
temperature 29
– superposition 29
text 271
text graph 274
– preprocessing 278
text networking 214
thematic centralization 216
thematic condensation 216
thematic progression 216
thematic shortcut 216
theory of graph energy 146
thermodynamics of network 25
Thermus thermophilus 282ff.
time window 259
time-expanded network 381ff.,

394ff.

total cost
– dynamic flow 380
– dynamic multicommodity flow

394
total wiring length 251
transit function 390
transit time function 378, 393
transition 36
tree 55, 161ff., 426ff.
– (p,q)-bipartition 166
– equienergetic 161
– height 430
– induced 95
– initial 311
– maximum energy 164
– minimum energy 164f.
– planted plane 426ff.
– profile 431
– n-regulated 100
– second minimum energy 164
– simply generated 427f.
– n-vertex 164
tree-like equality 330
triangle inequality 206
triangulated graph 336
Tsallis entropy 26ff.

u
unified model, limit 35
unipartite model 213
unit job 301
– scheduling 301
utility 36

v
variable
– construction 415
– dependent 415
– FP experience of organization

415
– geographical effect 415
– relational effect 416
ventricular fibrillation (VF) 261
vertex 12ff., 63, 275, 361
– betweenness centrality 15
– bipartition 149
– boundary 87ff.
– degree 13, 47ff., 155
– degree distribution 48
– dependency matrix 17
– disjoint 97ff.
– disjoint path 102ff.
– distance 51
– distance distribution 48f.



462 Index

– feedback set 278
– geodesically equidistant 207
– independent 19
– interior 351
– intermediate 300
– orbit 12
– point-deleted neighborhood 14
– rooted 448
– scanning 314
– top-level 210
vertex-to-vertex mapping 290

w
walk 69
web page database 127
width 434
Wright’s method 438

z
Zachary karate club 74
zero
– primed 122
– starred 122
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