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Preface

This book presents a broad panorama of the algorithmic methods used for
processing texts. For this reason it is a book on algorithms, but whose object
is focused on the handling of texts by computers. The idea of this publication
results from the observation that the rare books entirely devoted to the subject
are primarily monographs of research. This is surprising because the problems
of the field have been known since the development of advanced operating
systems, and the need for effective solutions becomes essential because the
massive use of data processing in office automation is crucial in many sectors
of the society. In 1985, Galil pointed out several unsolved questions in the field,
called after him, Stringology (see [12]). Most of them are still open.

In a written or vocal form, text is the only reliable vehicle of abstract
concepts. Therefore, it remains the privileged support of information systems,
despite of significant efforts toward the use of other media (graphic interfaces,
systems of virtual reality, synthesis movies, etc.). This aspect is still reinforced
by the use of knowledge databases, legal, commercial, or others, which develop
on the Internet. Thanks, in particular, to the Web services.

The contents of the book carry over into formal elements and technical bases
required in the fields of information retrieval, of automatic indexing for search
engines, and more generally of software systems, which includes the edition, the
treatment, and the compression of texts. The methods that are described apply
to the automatic processing of natural languages, to the treatment and analysis
of genomic sequences, to the analysis of musical sequences, to problems of
safety and security related to data flows, and to the management of the textual
databases, to quote only some immediate applications.

The selected subjects address pattern matching, the indexing of textual data,
the comparison of texts by alignment, and the search for local regularities. In
addition to their practical interest, these subjects have theoretical and combi-
natorial aspects that provide astonishing examples of algorithmic solutions.

vii



viii Preface

The goal of this work is principally educational. It is initially aimed at grad-
uate and undergraduate students, but it can also be used by software designers.

We warmly thank the researchers who took time to read and comment on the
preliminary outlines of this book. They are Said Abdeddaim, Marie-Pierre Béal,
Christian Charras, Raphaél Clifford, Christiane Frougny, Gregory Kucherov,
Sabine Mercier, Laurent Mouchard, Johann Pelfréne, Bruno Petazzoni, Mathieu
Raffinot, Giuseppina Rindone, and Marie-France Sagot. Remaining flaws are
ours.

Finally, extra elements to the contents of the book are accessible on the site
http://chl.univ-mlv.fr or from the Web pages of the authors.

MaxXiME CROCHEMORE
CHRISTOPHE HANCART

THIERRY LECROQ
Marne-la-Vallée, London, Rouen
June 2006



Tools

This chapter presents the algorithmic and combinatorial framework in which
are developed the following chapters. It first specifies the concepts and notation
used to work on strings, languages, and automata. The rest is mainly devoted
to the introduction of chosen data structures for implementing automata, to the
presentation of combinatorial results, and to the design of elementary pattern
matching techniques. This organization is based on the observation that efficient
algorithms for text processing rely on one or the other of these aspects.

Section 1.2 provides some combinatorial properties of strings that occur in
numerous correctness proofs of algorithms or in their performance evaluation.
They are mainly periodicity results.

The formalism for the description of algorithms is presented in Section 1.3,
which is especially centered on the type of algorithm presented in the book, and
introduces some standard objects related to queues and automata processing.

Section 1.4 details several methods to implement automata in memory, these
techniques contribute, in particular, to results of Chapters 2, 5, and 6.

The first algorithms for locating strings in texts are presented in Section 1.5.
The sliding window mechanism, the notions of search automaton and of bit vec-
tors that are described in this section are also used and improved in Chapters 2,
3, and 8, in particular.

Section 1.6 is the algorithmic jewel of the chapter. It presents two fundamen-
tal algorithmic methods used for text processing. They are used to compute the
border table and the prefix table of a string that constitute two essential tables
for string processing. They synthesize a part of the combinatorial properties of
a string. Their utilization and adaptation is considered in Chapters 2 and 3, and
also punctually come back in other chapters.

Finally, we can note that intuition for combinatorial properties or algorithms
sometimes relies on figures whose style is introduced in this chapter and kept
thereafter.
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1.1 Strings and automata

In this section, we introduce notation on strings, languages, and automata.

Alphabet and strings

An alphabet is a finite nonempty set whose elements are called letters. A string
on an alphabet A is a finite sequence of elements of A. The zero letter sequence
is called the empty string and is denoted by ¢. For the sake of simplification,
delimiters, and separators usually employed in sequence notation are removed
and a string is written as the simple juxtaposition of the letters that compose it.
Thus, ¢, a, b, and baba are strings on any alphabet that contains the two letters
a and b. The set of all the strings on the alphabet A is denoted by A*, and the
set of all the strings on the alphabet A except the empty string ¢ is denoted
by AT,

The length of a string x is defined as the length of the sequence as-
sociated with the string x and is denoted by |x|. We denote by x[i], for

i=0,1,...,]x] — 1, the letter at index i of x with the convention that in-
dices begin with 0. When x # &, we say more specifically that each index
i=0,1,...,|x| — 1is a position on x. It follows that the ith letter of x is the

letter at position i — 1 on x and that:
x = x[0]x[1]...x[|x] = 1].
Thus an elementary definition of the identity between any two strings x and y
is:
xX=Yy
if and only if
|x| = |yl and x[i] = y[i]fori =0, 1, ..., |x] — 1.

The set of letters that occur in the string x is denoted by alph(x). For instance,
if x = abaaab, we have |x| = 6 and alph(x) = {a, b}.

The product — we also say the concatenation — of two strings x and y is the
string composed of the letters of x followed by the letters of y. It is denoted by
xy or also x - y to show the decomposition of the resulting string. The neutral
element for the product is ¢. For every string x and every natural number n, we
define the nth power of the string x, denoted by x", by x° = ¢ and x* = x*¥~1x
fork = 1,2, ..., n. We denote respectively by zy~! and x !z the strings x and
y when z = xy. The reverse — or mirror image — of the string x is the string
x~ defined by:

x7 =x[|x] — 1]x[|x] —2]...x[0].
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babaababa‘

Figure 1.1. An occurrence of string aba in string babaababa at (left) position 1.

A string x is a factor of a string y if there exist two strings u and v such that
y = uxv. Whenu = ¢, x is a prefix of y; and when v = ¢, x is a suffix of y. The
string x is a subsequence' of y if there exist |x| + 1 strings wo, wy, ..., Wiy
such that y = wox[O]Jwx[1]...x[|x| — 1]w)y; in a less formal way, x is a
string obtained from y by deleting |y| — |x| letters. A factor or a subsequence x
of a string y is proper if x # y. We denote respectively by X =gt ¥, X <tact Vs
X Zpref Y> X <pref ¥> X Ssuff Vo X <suff ¥> X Zsseq V> and x <sseq Y when x is
a factor, a proper factor, a prefix, a proper prefix, a suffix, a proper suffix, a
subsequence, and a proper subsequence of y. One can verify that <fact, <pref,
suff» and Xeq are orderings on A¥*,

The lexicographic ordering, denoted by <, is an ordering on strings induced
by an ordering on the letters and denoted by the same symbol. It is defined as
follows. For x, y € A*, x < y if and only if, either x =pref ¥, OF x and y can
be decomposed as x = uav and y = ubw with u, v, w € A*, a,b € A, and
a < b. Thus, ababb < abba < abbaab assuming a < b.

Let x be a nonempty string and y be a string, we say that there is an
occurrence of x in y, or, more simply, that x occurs in y, when x is a factor
of y. Every occurrence, or every appearance, of x can be characterized by a
position on y. Thus we say that an occurrence of x starts at the left position i on
y when y[i..i + |x| — 1] = x (see Figure 1.1). It is sometimes more suitable
to consider the right position i 4+ |x| — 1 at which this occurrence ends. For
instance, the left and right positions where the string x = aba occurs in the
string y = babaababa are:

i 0o 1 2 3 4 5 6 7 8
y[i] b a b a a b a b a
left positions 1 4 6

right positions 3 6 8

The position of the first occurrence pos(x) of x in y is the minimal (left)
position at which starts the occurrence of x in yA*. With the notation on the
languages recalled thereafter, we have:

pos(x) = min{|u| : ux A* N yA* +£ ¢},

1 We avoid the common use of “subword” because it has two definitions in literature: one of
them is factor and the other one is subsequence.
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The square bracket notation for the letters of strings is extended to factors.
We define the factor x[i .. j] of the string x by:

x[i..j]=x[ilxli + 11...x[j]

forall integers i and j satisfying0 <i < |x|,—1 < j < |x| —1l,andi < j + 1.
When i = j + 1, the string x[i .. j] is the empty string.

Languages

Any subset of A* is a language on the alphabet A. The product defined on
strings is extended to languages as follows:

XY=X-Y={xy:(x,y) e X xY}

for every languages X and Y. We extend as well the notion of power as follows
X% = {¢} and X* = X*¥~1X for k > 1. The star of X is the language:

X* = UX

n>0

We denote by X the language defined by

xt=Jx"
n>1
Note that these two latter notation are compatible with the notation A* and
A™. In order not to overload the notation, a language that is reduced to a single
string can be named by the string itself if it does not lead to any confusion. For
instance, the expression A*abaaab denotes the language of the strings in A*
having the string abaaab as suffix, assuming {a, b} C A.
The notion of length is extended to languages as follows:

X] =" lxl.
xeX
In the same way, we define alph(X) by
alph(X) = U alph(x)

xeX

and X~ by
X" ={x":x€eX}.

The sets of factors, prefixes, suffixes, and subsequences of the strings of
a language X are particular languages that are often considered in the rest
of the book; they are respectively denoted by Fact(X), Pref(X), Suff(X), and
Subs(X).
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The right context of a string y relatively to a language X is the language:
y X ={y'x:xeX).

The equivalence relation defined by the identity of right contexts is denoted
by =y, or simply?> =. Thus

y=zifandonlyif y'X =z7'X

for y, z € A*. For instance, when A = {a, b} and X = A*{aba}, the relation =
admits four equivalence classes: {g, b} U A*{bb}, {a} U A*{aa, bba}, A*{ab},
and A*{aba}. For every language X, the relation = is an equivalence rela-
tion that is compatible with the concatenation. It is called the right syntactic
congruence associated with X.

Regular expressions and languages

The regular expressions on an alphabet A and the languages they describe, the
regular languages, are recursively defined as follows:

¢ 0 and 1 are regular expressions that respectively describe # (the empty set)
and {e},

* for every letter a € A, a is a regular expression that describes the singleton
{a},

¢ if x and y are regular expressions respectively describing the regular
languages X and Y, then (x)+(y), (x) - (y), and (x)* are regular
expressions that respectively describe the regular languages X UY, X - Y,
and X*,

The priority order of operations on the regular expressions is *, -, then +.
Possible writing simplifications allow one to omit the symbol - and some
parentheses pairs. The language described by a regular expression x is denoted
by Lang(x).

Automata

An automaton M on the alphabet A is composed of a finite set Q of states, of an
initial state > gy, of aset T C Q of terminal states, and ofaset F € Q x A x Q

2 As in all the rest of the book, the notation is indexed by the object to which they refer only
when it could be ambiguous.

3 The standard definition of automata considers a set of initial states rather than a single initial
state as we do in the entire book. We leave the reader to convince himself that it is possible to
build a correspondence between any automaton defined in the standard way and an automaton
with a single initial state that recognizes the same language.
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of arcs — or transitions. We denote the automaton M by the quadruplet:

(Q.q0. T, F).

We say of an arc (p, a, ¢) that it leaves the state p and that it enters the state
q; state p is the source of the arc, letter a its label, and state ¢ its farget. The
number of arcs outgoing a given state is called the outgoing degree of the state.
The incoming degree of a state is defined in a dual way. By analogy with graphs,
the state ¢ is a successor by the letter a of the state p when (p, a, ¢) € F; in
the same case, we say that the pair (a, q) is a labeled successor of the state p.

A path of length n in the automaton M = (Q, qo, T, F) is a sequence of n
consecutive arcs

<(p0’ ap, pé))v (Pl: ai, p/l)s e (pnflv an—1, p;l71)>7
that satisfies
Pr = P+

for k =0,1,...,n — 2. The label of the path is the string apa; . ..a,_1, its
origin the state py, its end the state p) . By convention, there exists for each
state p a path of null length of origin and of end p; the label of such a path is
&, the empty string. A path in the automaton M is successful if its origin is the
initial state go and if its end is in 7. A string is recognized — or accepted — by
the automaton if it is the label of a successful path. The language composed of
the strings recognized by the automaton M is denoted by Lang(M).

Often, more than its formal notation, a diagram illustrates how an automaton
works. We represent the states by circles and the arcs by directed arrows from
source to target, labeled by the corresponding letter. When several arcs have the
same source and the same target, we merge the arcs and the label of the resulting
arc becomes an enumeration of the letters. The initial state is distinguished by
a short incoming arrow and the terminal states are double circled. An example
is shown in Figure 1.2.

A state p of an automaton M = (Q, qo, T, F) is accessible if there exists
a path in M starting at go and ending in p. A state p is co-accessible if there
exists a path in M starting at p and ending in T'.

An automaton M = (Q, qo, T, F) is deterministic if for every pair (p, a) €
0O x A there exists at most one state ¢ € Q such that (p, a, g) € F. In such a
case, it is natural to consider the transition function

5:0xA— Q
of the automaton defined for every arc (p, a, g) € F by

3(p,a)=gq
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Figure 1.2. Representation of an automaton on the alphabet A = {a, b, c}. The states of the
automaton are numbered from O to 4, its initial state is 0, and its terminal states are 2 and 4.
The automaton possesses 3 x 5 = 15 arcs. The language that it recognizes is described by the
regular expression (a+b+c)*(aa+aba), that is, the set of strings on the three letter alphabet
a, b, and c ending by aa or aba.

and not defined elsewhere. The function § is easily extended to strings. It
is enough to consider its extension §: Q x A* — Q recursively defined by
8(p,e) = p and §(p, wa) = 8(8(p, w),a) for pe Q, w € A*, anda € A. It
follows that the string w is recognized by the automaton M if and only if
8(qo, w) € T. Generally, the function § and its extension § are denoted in the
same way.

The automaton M = (Q, qo, T, F) is complete when for every pair (p, a)
€ O x A there exists at least one state ¢ € Q such that (p,a,q) € F.

Proposition 1.1
For every automaton, there exists a deterministic and complete automaton that
recognizes the same language. [ ]

To complete an automaton is not difficult: it is enough to add to the automaton
a sink state, then to make it the target of all undefined transitions. It is a bit more
difficult to determinize an automaton, that is, to transform an automaton M =
(0, qo, T, F) into a deterministic automaton recognizing the same language.
One can use the so-called method of construction by subsets: let M’ be the
automaton whose states are the subsets of (), the initial state is the singleton
{qo}, the terminal states are the subsets of Q that intersect T, and the arcs are the
triplets (U, a, V') where V is the set of successors by the letter a of the states p
belonging to U; then M’ is a deterministic automaton that recognizes the same
language as M. In practical applications, we do not construct the automaton
M’ entirely, but only its accessible part from the initial state {go}.
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A language X is recognizable if there exists an automaton M such that
X = Lang(M). The statement of a fundamental theorem of automata theory
that establishes the link between recognizable languages and regular languages
on a given alphabet follows.

Theorem 1.2 (Kleene’s Theorem)
A language is recognizable if and only if it is regular. [ ]

If X is a recognizable language, the minimal automaton of X, denoted
by M(X), is determined by the right syntactic congruence associated with
X. It is the automaton whose set of states is {w™'X : w € A*}, the initial
state is X, the set of terminal states is {w™'X : w € X}, and the set of arcs is
{(w™'X, a,(wa)™ ' X) : (w,a) € A* x A).

Proposition 1.3

The minimal automaton M(X) of a language X is the automaton having the
smallest number of states among the deterministic and complete automata that
recognize the language X . The automaton M(X) is the homomorphic image
of every automaton recognizing X . ]

We often say of an automaton that it is minimal though it is not complete.
Actually, this automaton is indeed minimal if one takes care to add a sink
state.

Each state of an automaton, or even sometimes each arc, can be associated
with an output. It is a value or a set of values associated with the state or the
arc.

1.2 Some combinatorics

We consider the notion of periodicity on strings for which we give the basic
properties. We begin with presenting two families of strings that have interesting
combinatorial properties with regard to questions of periodicities and repeats
examined in several chapters.

Some specific strings
Fibonacci numbers are defined by the recurrence:
Fo=0,
F =1,
F,=F,_+F,, forn=>2.
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These famous numbers satisfy properties all more remarkable than the others.
Among those, we just give two:

e for every natural number n > 2, gcd(F,, F,,—1) =1,
« for every natural number n, F,, is the nearest integer of ®” /+/5, where
o = %(1 +4/5) = 1,61803.. . . is the golden ratio.

Fibonacci strings are defined on the alphabet A = {a, b} by the following
recurrence:

fo=¢,
fi=D,
Hh=a,

Jo = fum1fu—2 forn=>3.

Note that the sequence of lengths of the strings is exactly the sequence of
Fibonacci numbers, that is, F,, = | f,,|. Here are the first ten Fibonacci numbers
and strings:

n F, Jn

0 0 £

1 1 b

2 1 a

3 2 ab

4 3 aba

5 5 abaab

6 8 abaababa

7 13 abaababaabaab

8 21 abaababaabaababaababa
9 34 abaababaabaababaababaabaababaabaab

The interest in Fibonacci strings is that they satisfy many combinatorial
properties and they contain a large number of repeats.

The de Bruijn strings considered here are defined on the alphabet A = {a, b}
and are parameterized by a non-null natural number. A nonempty string x € A
is a de Bruijn string of order k if each string on A of length k£ occurs once
and only once in x. A first example: ab and ba are the only two de Bruijn
strings of order 1. A second example: the string aaababbbaa is a de Bruijn
string of order 3 since its factors of length 3 are the eight strings of A3, that is,
aaa, aab, aba, abb, baa, bab, bba, and bbb, and each of them occurs exactly
once in it.
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Figure 1.3. The order 3 de Bruijn automaton on the alphabet {a, b}. The initial state of the
automaton is not specified.

The existence of a de Bruijn string of order £ > 2 can be verified with the
help of the automaton defined by

e states are the strings of the language A*~!,
e arcs are of the form (av, b, vb) witha, b € A and v € A2,

the initial state and the terminal states are not given (an illustration is shown in
Figure 1.3). We note that exactly two arcs exit each of the states, one labeled by
a, the other by b; and that exactly two arcs enter each of the states, both labeled
by the same letter. The graph associated with the automaton thus satisfies the
Euler condition: the outgoing degree and the incoming degree of each state are
identical. It follows that there exists an Eulerian circuit in the graph. Now, let

<(u07 a()? I/ll), (ula ala “2), ) (un—la an—l’ M0)>

be the corresponding path. The string upaopa; . .. a,—; is a de Bruijn string of
order k, since each arc of the path is identified with a factor of length k. It
follows in the same way that a de Bruijn string of order k has length 2% + &k — 1
(thus n = 2% with the previous notation). It can also be verified that the number
of de Bruijn strings of order k is exponential in k.

The de Bruijn strings are often used as examples of limit cases in the sense
that they contain all the factors of a given length.

Periodicity and borders

Let x be a nonempty string. An integer p such that 0 < p < |x| is called a
period of x if:

x[i] = x[i + p]

fori =0,1,...,|x| — p — 1. Note that the length of a nonempty string is a
period of this string, such that every nonempty string has at least one period.
We define thus without any ambiguity the period of a nonempty string x as the
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smallest of its periods. It is denoted by per(x). For instance, 3, 6, 7, and 8 are
periods of the string x = aabaabaa, and the period of x is per(x) = 3.

We note that if p is a period of x, its multiples kp are also periods of x when
k is an integer satisfying 0 < k < [|x|/p].

Proposition 1.4
Let x be a nonempty string and p an integer such that 0 < p < |x|. Then the
five following properties are equivalent:

1. The integer p is a period of x.
2. There exist two unique strings u € A* and v € A" and an integer k > 0
such that x = (uv)*u and luv) = p.
3. There exist a string t and an integer k > 0 such that x =<pf t* and |t| = p.
4. There exist three strings u, v, and w such that x = uw = wv and
lul = [v| = p.
5. There exists a string t such that x <pref tx and |t| = p.

Proof 1= 2:ifv # ¢ and k > 0, then £ is the quotient of the integer division
of |x| by p. Now, if the triplet (1/, V', k) satisfies the same conditions than the
triplet (u, v, k), we have k' = k then, due to the equality of length, |u'| = |u|.
It follows immediately that ¥’ = u and v’ = v. This shows the uniqueness of
the decomposition if it exists. Let k and r be respectively the quotient and the
remainder of the Euclidean division of |x| by p, then u and v be the two factors
of x definedby u = x[0..r —1]and v = x[r..p — 1]. Thus x = (uv)fu and
|luv| = p. This demonstrates the existence of the triplet (u, v, k) and ends the
proof of the property.

2 = 3: it is enough to consider the string t = uv.

3 = 4: let w be the suffix of x defined by w = 1~'x. As x <pper 15, w is
also a prefix of x. Thus the existence of two strings u (= t) and v such that
x =uw = wv and |u| = |v| = |t| = p.

4 = 5: since uw =prer uwv, We have x <per £x with [f| = p by simply
setting t = u.

5 = 1:leti be an integer such that 0 <i < |x| — p — 1. Then:

x[i + P] = (x)[i + P] (since x pref tx)
= x[i] (since [t]| = p).

This shows that p is a period of x. ]

We note, in particular, that property 3 can be expressed in a more general
way by replacing <prf by < (Exercise 1.4).
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laabaabaa‘

%{aabaabaa‘

6

Figure 1.4. Duality between the notions of border and period. String aa is a border of string
aabaabaa; it corresponds to period 6 = |aabaabaa| — |aal.

A border of a nonempty string x is a proper factor of x that is both a prefix
and a suffix of x. Thus, €, a, aa, and aabaa are the borders of the string
aabaabaa.

The notions of border and of period are dual as shown by property 4 of the
previous proposition (see Figure 1.4). The proposition that follows expresses
this duality in different terms.

We introduce the function Border: A* — A* defined for every nonempty
string x by

Border(x) = the longest border of x.

We say of Border(x) that it is the border of x. For instance, the border of every
string of length 1 is the empty string and the border of the string aabaabaa is
aabaa. Also note that, when defined, the border of a border of a given string x
is also a border of x.

Proposition 1.5
Let x be a nonempty string and n be the largest integer k for which Border* (x)
is defined (thus Border" (x) = ¢). Then

(Border(x), Border?(x), . .., Border"(x)) (1.1)
is the sequence of borders of x in decreasing order of length, and
(|x] — |Border(x)|, |x| — |Border?(x)|, ..., |x| — |Border" (x)|) (1.2)
is the sequence of periods of x in increasing order.

Proof We proceed by recurrence on the length of strings. The statement of the
proposition is valid when the length of the string x is equal to 1: the sequence
of borders is reduced to (¢) and the sequence of periods to (|x|).

Let x be a string of length greater than 1. Then every border of x different
from Border(x) is a border of Border(x), and conversely. It follows by recur-
rence hypothesis that the sequence (1.1) is exactly the sequence of borders of x.
Now, if p is a period of x, Proposition 1.4 ensures the existence of three strings
u, v, and w such that x = uw = wv and |u| = |v| = p. Then w is a border of x
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and p = |x| — |w]|. It follows that the sequence (1.2) is the sequence of periods
of x. ]

Lemma 1.6 (Periodicity Lemma)
If p and q are periods of a nonempty string x and satisfy

p+q—ged(p,g) < x|,

then gcd(p, q) is also a period of x.

Proof By recurrence on max{p, ¢q}. The result is straightforward when p =
g = 1 and, more generally when p = ¢g. We can then assume in the rest that
p>q.

From Proposition 1.4, the string x can be written both as uy with |u| = p
and y a border of x, and as vz with |v| = ¢ and z a border of x.

The quantity p — g is a period of z. Indeed, since p > ¢, y is a border of
x of length less than the length of the border z. Thus, y is a border of z. It
follows that |z| — |y]| is a period of z. And |z| — |y| = (x| — ¢q¢) — (|x] — p) =
pP—q.

But ¢ is also a period of z. Indeed, since p > ¢ and gcd(p,q) < p —gq,
we have g < p — ged(p, q). On the other hand we have p — ged(p, q) = p +
q —gcd(p, q) — q < |x| —q = |z|. It follows that ¢ < |z|. This shows that the
period g of x is also a period of its factor z.

Moreover, we have (p —q) + g — ged(p — g, q) = p — ged(p, q), which,
as can be seen above, is a quantity less than |z].

We apply the recurrence hypothesis to max{p — g, ¢} relatively to the string
z, and we obtain thus that gcd(p, ¢) is a period of z.

The conditions on p and g (those of the lemma and gcd(p,q) < p — ¢q)
give ¢ < |x|/2. And as x = vz and z is a border of x, v is a prefix of z. It has
moreover a length that is a multiple of gcd(p, ¢g). Let ¢ be the prefix of x of
length ged(p, ¢). Then v is a power of ¢ and z is a prefix of a power of 7. It
follows then by Proposition 1.4 that x is a prefix of a power of ¢, and thus that
|t| = ged(p, g) is a period of x. Which ends the proof. [ ]

To illustrate the Periodicity Lemma, let us consider a string x that admits
both 5 and 8 as periods. Then, if we assume moreover that x is composed of at
least two distinct letters, gcd(5, 8) = 1 is not a period of x, and, by application
of the lemma, the length of x is less than 5 4+ 8 — gcd(5, 8) = 12. It is the case,
for instance, for the four strings of length greater than 7 which are prefixes
of the string abaababaaba of length 11. Another illustration of the result is
proposed in Figure 1.5.
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labaab|abaab|abaab|abaab‘

labaababaab al

|abaababa|abaababa|abaababa|

Figure 1.5. Application of the Periodicity Lemma. String abaababaaba of length 11 pos-
sesses 5 and 8 as periods. It is not possible to extend them to the left nor to the right while
keeping these two periods. Indeed, if 5 and 8 are periods of some string, but 1, the greatest
common divisor of 5 and 8, is not, then this string is of length less than 5 + 8 — gcd(5, 8) = 12.

We wish to show in what follows that one cannot weaken the condition
required on the periods in the statement of the Periodicity Lemma. More
precisely, we give examples of strings x that have two periods p and g such
that p + g — ged(p, g) = |x| + 1 but which do not satisfy the conclusion of
the lemma. (See also Exercise 1.5.)

Let B: A* — A* be the function defined by

B(uab) = uba
for every string u € A* and every letters a, b € A.

Lemma 1.7
For every natural number n > 3, B(f,) = fu_2fn_1-

Proof By recurrence on n. The result is straightforward when 3 <n < 4. If
n > 5, we have:

B(fn) = B(fu=1fu-2) (by definition of f,,)
= fa1B(fu-2) (since | fy—2| = Fy—2 > 2)
= fustfo—afu3 (by recurrence hypothesis)
= fo—2fu-3fu-afu—3 (by definition of f,_)
= fu2fu-2fn-3 (by definition of f,_»)
= fu—2fu-1 (by definition of f,_). n

For every natural number n > 3, we define the string g, as the prefix of
length F,, — 2 of f,, that is, f,, with its last two letters chopped off.

Lemma 1.8
For every natural number n > 6, g, = fn_zzgn_3.
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Proof We have:

o = a1 fu2 (by definition of f;,)
= fo—2Sn-3n—2 (by definition of f,_;)
= fu—2B(fn-1) (from Lemma 1.7)

= fu—2B(fu—2fa—3) (by definition of f,_)
= fu2’B(fa=3) (since | fy—3| = F,—3 > 2).

The stated result immediately follows. ]

Lemma 1.9
For every natural number n > 3, 8, Zpref fa— 2 and g, = pref fua®.

Proof We have:

8n fpref fnfn—3 (Since 8n 5pref fn)
fnflfn72fn73 (by definition of fn)
fuet® (by definition of f,_1).

The second relation is valid when 3 < n < 5. When n > 6, we have:

g = fn_zzg,,_3 (from Lemma 1.8)
<pret fo-2" fa—3fo—a (sinC€ gy—3 <pref fr—3)
= fio’ (by definition of £,_,). -

Now, let n be a natural number, n > 5, so that the string g, is both defined
and of length greater than 2. It follows then:

lgnl = F —2 (by definition of g,,)
= F,_1+ F,—» —2 (by definition of F},)
> F, (since F,_» > 2).

It results from this inequality, from Lemma 1.9, and from Proposition 1.4
that F,_; and F,_, are two periods of g,. In addition note that, since
ged(F,—1, F,—2) = 1, we also have:

Fn—l + Fn—2 - ng(Fn—l» Fn—Z) = Fn -1
=gl + 1.
Thus, if the conclusion of the Periodicity Lemma applied to the string g, and
its two periods F,_; and F,_;, g, would be the power of a string of length 1.

But the first two letters of g, are distinct. This indicates that the condition of
the Periodicity Lemma is in some sense optimal.
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Powers, primitivity, and conjugacy

Lemma 1.10
Let x and y be two strings. If there exist two positive integers m and n such
that x™ = y", x and y are powers of some string z.

Proof 1t is enough to show the result in the nontrivial case where neither
X nor y are empty strings. Two subcases can then be distinguished, whether
min{m, n} is equal to 1 or not.

If min{m, n} = 1, it is sufficient to consider the string z = y if m = 1 and
z=xifn=1.

Otherwise, min{m, n} > 2. Then we note that |x| and |y| are periods of
the string + = x™ = y" which satisfy the condition of the Periodicity Lemma:
[x] 4+ |y — ged(x], [y]) < |x| 4+ |y| — 1 < |¢]. Thus it is sufficient to consider
the string z defined as the prefix of ¢ of length ged(|x|, |y]) to get the stated
result. ]

A nonempty string is primitive if it is not the power of any other string. In
other words, a string x € A™ is primitive if and only if every decomposition of
the form x = u" with u € A* and n € N implies n = 1, and then u = x. For
instance, the string abaab is primitive, while the strings ¢ and bababa = (ba)?
are not.

Lemma 1.11 (Primitivity Lemma)
A nonempty string is primitive if and only if it is a factor of its square only as
a prefix and as a suffix. In other words, for every nonempty string x,

X primitive
if and only if
YX =pref x% implies y = ¢ or y = x.

An illustration of this result is proposed in Figure 1.6.

lababab‘ababab

abbabalabbabal

(a) ()

Figure 1.6. Application of the Primitivity Lemma. (a) String x = abbaba does not possess
any “nontrivial” occurrence in its square x> — that is, neither a prefix nor a suffix of x> —
since x is primitive. (b) String x = ababab possesses a “nontrivial” occurrence in its square

x2 since x is not primitive: x = (ab)’.
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Proof 1f x is a nonempty nonprimitive string, there exist z € A* and n > 2
such that x = z". Since x? can be decomposed as z - z" - z"~!, the string x
occurs at the position |z| on x2. This shows that every nonempty nonprimitive
string is a factor of its square without being only a prefix and a suffix of it.

2 can be written

Conversely, let x be a nonempty string such that its square x
as yxz with y, z € A™. Due to the length condition, it first follows that | y| < |x|.
Then, and since x <prr yX, we obtain from Proposition 1.4 that |y]| is a period
of x. Thus, |x| and |y| are periods of yx. From the Periodicity Lemma, we
deduce that p = ged(]x|, |y|) is also a period of yx. Now, as p < |y| < |x|, p
is also a period of x. And as p divides |x|, we deduce that x is of the form ¢"

with |t| = p and n > 2. This shows that the string x is not primitive. ]

Another way of stating the previous lemma is that the primitivity of x is
equivalent to saying that per(x?) = |x|.

Proposition 1.12
For every nonempty string, there exists one and only one primitive string which
it is a power of.

Proof The proof of the existence comes from a trivial recurrence on the length
of the strings. We now have to show the uniqueness.

Let x be anonempty string. If we assume thatx = u™ = v" for two primitive
strings # and v and two positive integers m and n, then u and v are necessarily
powers of a string z € A" from Lemma 1.10. But their primitivity implies
z = u = v, which shows the uniqueness and ends the proof. L]

If x is a nonempty string, we say of the primitive string z which x is the
power of that it is the root of x, and of the natural number » such that x = 7"
that it is the exponent* of x.

Two strings x and y are conjugate if there exist two strings u and v such that
x = uv and y = vu. For instance, the strings abaab and ababa are conjugate.
It is clear that conjugacy is an equivalence relation. It is not compatible with
the product.

Proposition 1.13
Two nonempty strings are conjugate if and only if their roots also are conjugate.

Proof The proof of the reciprocal is immediate.
For the proof of the direct implication, we consider two nonempty conjugate
strings x and y, and we denote by z and ¢ then m and n their roots and exponents

4 More generally, the exponent of x is the quantity |x|/per(x) which is not necessarily an integer
(see Exercise 9.2).
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respectively. Since x and y are conjugate, there exist 7/, z” € At and p,q € N
such that z = 7’7", x = zP7 - 7'z9, y=7"29 - zP7, and m = p+q + 1. We
deduce that y = (z"z")™. Now, as ¢ is primitive, Lemma 1.10 implies that 7”7’
is a power of 7. This shows the existence of a natural non-null number k such
that |z| = k|¢|. Symmetrically, there exists a natural non-null number ¢ such
that || = £|z|. It follows that k = £ = 1, that |¢| = |z|, then that ¢ = z”Z’. This
shows that the roots z and ¢ are conjugate. ]

A consequence of Proposition 1.13 and of the Primitivity lemma is that, for
any primitive string x, each of its conjugates occurs exactly once in xx A~! (or
A xx).

Proposition 1.14
Two nonempty strings x and y are conjugate if and only if there exists a string
z such that xz = zy.

Proof =>:x andy canbe decomposedasx = uvandy = vu withu, v € A*,
then the string z = u suits since xz = uvu = zy.

«=: in the nontrivial case where z € A", we obtain by an immediate recur-
rence that x¥z = zy* for every k € N. Let n be the (non-null) natural number
such that (n — 1)|x| < |z| < n|x|. There exist thus u, v € A* such that x = uv,
7z = x""u, and vz = y". It follows that y" = vx"~'u = (vu)". Finally, since
|y| = |x|, we have y = vu, which shows that x and y are conjugate. ]

1.3 Algorithms and complexity

In this section, we present the algorithmic elements used in the rest of the
book. They include the writing conventions, the evaluation of the algorithm
complexity, and some standard objects.

Writing conventions of algorithms

The style of the algorithmic language used here is relatively close to real pro-
gramming languages but at a higher abstraction level. We adopt the following
conventions:

* Indentation means the structure of blocks inherent to compound
instructions.

* Lines of code are numbered in order to be referenced in the text.

* The symbol I> introduces a comment.
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* The access to a specific attribute of an object is signified by the name of the
attribute followed by the identifier associated with the object between
brackets.

* A variable that represents a given object (table, queue, tree, string,
automaton) is a pointer to this object.

* The arguments given to procedures or to functions are managed by the “call
by value” rule.

* Variables of procedures and of functions are local to them unless otherwise
mentioned.

* The evaluation of boolean expressions is performed from left to right in a
lazy way.

We consider, following the example of a language like the C language,
the iterative instruction do-while — used instead of the traditional instruction
repeat-until — and the instruction break which produces the termination of the
most internal loop in which it is located.

Well adapted to the sequential processing of strings, we use the formulation:

1 for each letter a of u, sequentially do
2 processing of a

for every string u. It means that the letters u[i], i =0, 1, ..., |u| — 1, com-
posing u are processed one after the other in the body of the loop: first u[0],
then u[1], and so on. It means that the length of the string u is not necessarily
known in advance, the end of the loop can be detected by a marker that ends the
string. In the case where the length of the string u is known, this formulation is
equivalent to a formulation of the type:

1 fori < Oto|u|—1do
2 a < uli]
3 processing of a

where the integer variable i is free (its use does not produce any conflict with
the environment).

Pattern matching algorithms

A pattern represents a nonempty language not containing the empty string. It
can be described by a string, by a finite set of strings, or by other means. The
pattern matching problem is to search for occurrences of strings of the language
in other strings — or in texts to be less formal. The notions of occurrence, of
appearance, and of position on the strings are extended to patterns.
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According to the specified problem, the input of a pattern matching algorithm
is a string x or a language X and a text y, together or not with their lengths.
The output can take several forms. Here are some of them:

* Boolean values: to implement an algorithm that tests whether the pattern
occurs in the text or not, without specifying the positions of the possible
occurrences, the output is simply the boolean value TRUE in the first
situation and FALSE in the second.

* A string: during a sequential search, it is appropriate to produce a string y
on the alphabet {0, 1} that encodes the existence of the right positions of
occurrences. The string y is such that |y| = |y| and y[i] = 1 if and only if i
is the right position of an occurrence of the pattern on y.

* A set of positions: the output can also take the form of a set P of left — or
right — positions of occurrences of the pattern on y.

Let e be a predicate having value TRUE if and only if an occurrence has just
been detected. A function corresponding to the first form and ending as soon
as an occurrence is detected should integrate in its code an instruction:

1 if e then
2 return TRUE

in the heart of its searching process, and return the value FALSE at the termination
of this process. The second form needs to initialize the variable y with ¢, the
empty string, then to modify its value by an instruction:

1 if e then
2 y<«—y-1
3 else y <~ y-0

then to return it at the termination. It is identical for the third form, where the
set P is initially empty, then augmented by an instruction:

1 if e then
2 P < P U {the current position on y}

and finally returned.
To present only one variant of the code for an algorithm, we consider the
following special instruction:

OUuUTPUT-IF(e) means, at the location where it appears, an occurrence of the
pattern at the current position on the text is detected when the predicate
e has value TRUE.
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Expression of complexity

The model of computation for the evaluation of the algorithm’s complexity is
the standard random access machine model.

In a general way, the algorithm complexity is an expression including the
input size. This includes the length of the language represented by the pattern,
the length of the string in which the search is performed, and the size of the
alphabet. We assume that the letters of the alphabet are of size comparable to
the machine word size, and, consequently, the comparison between two letters
is an elementary operation that is performed in constant time.

We assume that every instruction OUTPUT-IF(e) is executed in constant time>
once the predicate e has been evaluated.

We use the notation recommended by Knuth [78] to express the orders of
magnitude. Let f and g be two functions from N to N. We write “ f(n) is
O(g(n))” to mean that there exists a constant K and a natural number n( such
that f(n) < Kg(n) for every n > ng. In a dual way, we write “ f(n) is 2(g(n))”
if there exists a constant K and a natural number nq such that f(n) > Kg(n)
for every n > ngy. We finally write “ f (n) is ®(g(n))” to mean that f and g are
of the same order, that is to say that f(n) is both O(g(n)) and Q(g(n)).

The function f: N — Nis linearif f(n)is ©(n), quadratic if f(n)is On?),
cubic if f(n) is O(n’), logarithmic if f(n) is ©(logn), exponential if there
exists a > 0 for which f(n)is ®(a").

We say that a function with two parameters f:N x N — N is linear when
f(m, n)is ®(m + n) and quadratic when f(m, n) is ®(m x n).

Some standard objects

Queues, states, and automata are objects often used in the rest of the book.
Without telling what their true implementations are — they can actually differ
from one algorithm to the other — we indicate the minimal attributes and
operations defined on these objects.

For queues, we only describe the basic operations.

EMPTY-QUEUE() creates then returns an empty queue.
QUEUE-IS-EMPTY(F') returns TRUE if the file F' is empty, and FALSE
otherwise.

3 Actually we can always come down to it even though the language represented by the pattern is
not reduced to a single string. For that, it is sufficient to only produce one descriptor —
previously computed — of the set of strings that occur at the current position (instead for
instance, of producing explicitly the set of strings). It then remains to use a tool that develops
the information if necessary.
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ENQUEUE(F, x) adds the element x to the tail of the queue F.

HEAD(F) returns the element located at the head of the queue F.

DEQUEUE(F) deletes the element located at the head of the queue F.

DEQUEUED(F) deletes the element located at the head of the queue F' then
returns it;

LENGTH(F) returns the length of the queue F.

States are objects that possess at least the two attributes terminal and Succ.
The first attribute indicates if the state is terminal or not and the second is
an implementation of the set of labeled successors of the state. The attribute
corresponding to an output of a state is denoted by output. The two standard
operations on the states are the functions NEW-STATE and TARGET. While
the first creates then returns a nonterminal state with an empty set of labeled
successors, the second returns the target of an arc given the source and the label
of the arc, or the special value NIL if such an arc does not exist. The code for
these two functions can be written in a few lines:

NEW-STATE()
1 allocate an object p of type state
2 terminal[p] < FALSE
3 Succ[p]l < @
4 return p

TARGET(p, a)
1 if there exists a state g such that (a, g) € Succ[p] then
2 return g
3 else return NIL

The objects of the type automaton possess at least the attribute initial that
specifies the initial state of the automaton. The function NEW-AUTOMATON
creates then returns an automaton with a single state. It constitutes its initial
state and has an empty set of labeled successors. The corresponding code is the
following:

NEW-AUTOMATON()
1 allocate an object M of type automaton
2 go < NEW-STATE()
3 initiallM] < qo
4  return M
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1.4 Implementation of automata

Some pattern matching algorithms rely on specific implementations of the
deterministic automata they consider. This section details several methods,
including the data structures and the algorithms, that can be used to implement
these objects in memory.

Implementing a deterministic automaton (Q, qo, T, F') consists in setting in
memory, either the set F of its arcs, or the sets of the labeled successors of
its states, or its transition function 8. Those are equivalent problems that fit in
the general framework of representing partial functions (Exercise 1.15). We
distinguish two families of implementations:

¢ the family of full implementations in which all the transitions are
represented,

¢ the family of reduced implementations that use more or less elaborate
techniques of compression in order to reduce the memory space of the
representation.

The choice of the implementation influences the time necessary to compute
a transition, that is to execute TARGET(p, a), for a state p € Q and a letter
a € A. This computation time is called the delay since it measures also the
time necessary for going from the current letter of the input to the next letter.
Typically, two models can be opposed:

* The branching model in which § is implemented with a Q x A matrix and
where the delay is constant (in the random access model).

* The comparisons model in which the elementary operation is the
comparison of letters and where the delay is typically O(logcard A) when
any two letters can be compared in one unit of time (general assumption
formulated in Section 1.3).

We also consider in the next section an elementary technique known as the “bit-
vector model” whose application scope is restricted: it is especially interesting
when the size of the automaton is very small.

For each of the implementation families, we specify the orders of magnitude
of the necessary memory space and of the delay. There is always a trade-off to
be found between these two quantities.

Full implementations

The most simple method for implementing the function § is to store its values
in a Q x A matrix, known as the transition matrix (an illustration is given
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Figure 1.7. The transition matrix of the automaton of Figure 1.2.

in Figure 1.7) of the automaton. It is a method of choice for a deterministic
complete automaton on an alphabet of relatively small size and when the letters
can be identified with indices on a table. Computing a transition reduces to a
mere table look-up.

Proposition 1.15
In an implementation by transition matrix, the necessary memory space is
O(card Q x card A) and the delay O(1). [

In the case where the automaton is not complete, the representation remains
correct except that the execution of the automaton on the text given as an input
can now stop on an undefined transition. The matrix can be initialized in time
O(card F') only if we implement partial functions as proposed in Exercise 1.15.
The above-stated complexities for the memory space as well as for the delay
remain valid.

An automaton can be implemented by means of an adjacency matrix as it
is classical to do for graphs. We associate then with each letter of the alphabet
a boolean Q x Q matrix. This representation is in general not adapted for the
applications developed in this book. It is, however, related to the method that
follows.

The method by list of transitions consists in implementing a list of triplets
(p, a, q) that are arcs of the automaton. The required space is only O(card F).
Having done this, we assume that this list is stored in a hash table in order to
allow a fast computation of the transitions. The corresponding hash function
is defined on the pairs (p, a) € Q x A. Given a pair (p, a), the access to the
transition (p, a, q), if it is defined, is done in average constant time with the
usual assumptions specific to this type of technique.

These first types of representations implicitly assume that the alphabet is
fixed and known in advance, which opposes them to the representations in the
comparison model considered by the method described below.

The method by sets of labeled successors consists in using a table ¢ indexed
on Q for which each element #[ p] gives access to an implementation of the set of
the labeled successors of the state p. The required space is O(card Q + card F).
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This method is valuable even when the only authorized operation on the letters
is the comparison. Denoting by s the maximal outgoing degree of the states,
the delay is O(log s) if we use an efficient implementation of the sets of labeled
successors.

Proposition 1.16

In an implementation by sets of labeled successors, the space requirement is
O(card Q + card F) and the delay O(logs) where s is the maximal outgoing
degree of states. [ ]

Note that the delay is also O(logcard A) in this case: indeed, since the
automaton is assumed to be deterministic, the outgoing degree of each of the
states at most than card A, thus s < card A with the notation used above.

Reduced implementations

When the automaton is complete, the space complexity can, however, be re-
duced by considering a successor by default for the computation of the transi-
tions from any given state — the state occurring the most often in a set of labeled
successors is the best possible candidate for being the successor by default.
The delay can also be reduced since the size of the sets of labeled successors
becomes smaller. For pattern matching problems, the choice of the initial state
as successor by default suits perfectly. Figure 1.8 shows an example where
short gray arrows mean that the state possesses the initial state as successor by
default.

Figure 1.8. Reduced implementation by adjunction of successors by default. We consider
the automaton of Figure 1.2 and we chose the initial state as unique successor by default
(this choice perfectly suits for pattern matching problems). States that admit the initial state
as successor by default (indeed all of them in this case) are indicated by a short gray arrow.
For example, the target of the transition from state 3 by letter a is state 4, and by every other
letter, here b or c, the target is the initial state 0.
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Another method to reduce the implementation space consists in using a
failure function. The idea is here to reduce the necessary space for implementing
the automaton, by redirecting, in most cases, the computation of the transition
from the current state to the one from another state but by the same letter.
This technique serves to implement deterministic automata in the comparison
model. Its principal advantage is generally to provide linear size representations
and to simultaneously get a linear time computation of series of transitions
even when the computation of a single transition cannot be done in constant
time.

Formally, let

y:OxA—> Q
and
10— 0

be two functions. We say that the pair (y, f) represents the transition function
8 of a complete automaton having § as transition function if and only if y is a
subfunction of §, f defines an ordering on elements of Q, and for every pair
(p,a)e Q@ x A

y(p,a) if y(p, a) is defined,
§(p,a) =

3(f(p),a) otherwise.

When it is defined, we say of the state f(p) that it is the failure state of the
state p. We say of the functions y and f that they are respectively, and jointly,
a subtransition and a failure function of §.

We indicate the link state-failure state by a directed dash arrow in figures
(see the example in Figure 1.9).

The space needed to represent the function § by the functions y and f
is O(card Q + card F’) in the case of an implementation by sets of labeled
successors where

F' ={(p,a,q) € F:y(p,a)is defined}.

Note that y is the transition function of the automaton (Q, qo, T, F’).

A complete example

The method presented here is a combination of the previous ones together with
a fast computation of transitions and a compact representation of transitions due
to the joint use of tables and of a failure function. It is known as “compression
of transition table.”
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(@) (b)

Figure 1.9. Reduced implementation by adjunction of a failure function. We take again the
example of the automaton of Figure 1.2. (a) A failure function given under the form of a
directed graph. As this graph does not possess any cycle, the function defines an ordering
on the set of states. (b) The corresponding reduced automaton. Each link from a state to its
failure state is indicated by a dashed arrow. The computation of the transition from state 4 by
the letter c is transferred to state 1, then to state 0. State O is indeed the first among states 4,
1, and 0, in this order, to possess a transition defined by c. Finally, the target of the transition
from state 4 by c is state 0.

Two extra attributes, fail and base, are added to states, the first has values in
Q and the second in N. We consider also two tables indexed by N and with values
in Q: target and control. For each pair (p, a) € Q x A, base[ p] + rank[a] is an
index on both target and control, denoting by rank the function that associates
with every letter of A its rank in a fixed ordered sequence of letters of A.

The computation of the successor of astate p € Q by alettera € A proceeds
as follows:

1. If controllbasel p] 4 ranklal] = p, target[base[ p] + rank[a]] is the target
of the arc of source p and labeled by a.

2. Otherwise the process is repeated recursively on the state fail[ p] and the
letter a (assuming that fail is a failure function).

The (nonrecursive) code of the corresponding function follows.

TARGET-BY-COMPRESSION(p, )
1 while control[base[ p] + rank[a]] # p do
2 p < fail[ p]
3 return rarget[base[ p] + rank[a]]

In the worst case, the space required by the implementation is O(card Q x
card A) and the delay is O(card Q). This method allows us to reduce the space
in O(card Q + card A) with a constant delay in the best case.
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ylaabaa|babaabE|bbbaaabb

X |aabbaaa

Figure 1.10. An attempt to locate string x = aabbaaa in text y = aabaababaababbbaaabb.
The attempt takes place at position 5 on y. The content of the window and the string matches
in four positions.

1.5 Basic pattern matching techniques

In this section, we present elementary approaches for the pattern matching
problem. It includes the notion of sliding window common to many searching
algorithms, the utilization of heuristics in order to reduce the computation time,
the general method based on automata when the texts are to be processed in a
sequential order, and the use of techniques that rely on the binary encoding of
letters realized by machine words.

Notion of sliding window

When the pattern is a nonempty string x of length m, it is convenient to consider
that the text y of length n in which the search is performed, is examined through
a sliding window. The window delimits a factor of the text, called the content
of the window, which has, in most cases, the length of the string x. It slides
along the text from the beginning to the end, from left to right.

The window being at a given position j on the text, the algorithm tests
whether the string x occurs or not at this position, by comparing some letters
of the content of the window with aligned letters of the string. We speak of an
attempt at the position j (see an example in Figure 1.10). If the comparison is
successful, an occurrence is signaled. During this phase of test, the algorithm
acquires some information on the text which can be exploited in two ways:

* to set up the length of the next shift of the window according to rules that
are specific to the algorithm,

* to avoid comparisons during next attempts by memorizing a part of the
collected information.

When the shift slides the window from the position j to the position j + d
(d = 1), we say that the shift is of length d. To answer to the given problem, a
shift of length d for an attempt at the position j must be valid, that is it must
ensure that, when d > 2, there is no occurrence of the searched string x from
positions j + 1to j +d — 1 on the text y.
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The naive algorithm

The simplest implementation of the sliding window mechanism is the so-called
naive algorithm. The strategy consists here in considering a window of length
m and in sliding it one position to the right after each attempt. This leads,
if the comparison of the content of the window and of the string is correctly
implemented, to an obviously correct algorithm.

We give below the code of the algorithm. The variable j corresponds to
the left position of the window on the text. It is clear that the comparison of
the strings in line 2 is supposed to be performed letter by letter according to a
pre-established order.

NAIVE-SEARCH(X, m, y, 1)
1 forj < Oton—mdo
2 OuTPUT-IF(Y[j .. +m — 1] = x)

In the worst case, the algorithm NAIVE-SEARCH executes in time ®(m x n),
as for instance when x and y are powers of the same letter. In the average case,®
its behavior is rather good, as claimed by the following proposition.

Proposition 1.17

With the double assumption of an alphabet nonreduced to a single letter and
of both a uniform and independent distribution of letters of the alphabet, the
average number of comparisons of letters performed by the operation NAIVE-
SEARCH(x, m, y, n) is ®(n — m).

Proof Let c be the size of the alphabet. The number of comparisons of letters
necessary to determine if two strings u and v of length m are identical on
average is

14+1/c+- -+ 1/,

independently of the permutation of positions considered for comparing letters
of the strings. When ¢ > 2, this quantity is less than 1/(1 — 1/¢), which is itself
no more than 2.

It follows that the average number of comparisons of letters counted during
the execution of the operation is less than 2(n — m + 1). Thus the result holds
since at least n — m + 1 comparisons are performed. ]

6 Even when the patterns and the texts considered in practice have no reason to be random, the
average cases express what one can expect of a given pattern matching algorithm.
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Heuristics

Some elementary processes sensibly improve the global behavior of pattern
matching algorithms. We detail here some of the most significant. They are
described in connection with the naive algorithm. But most of the other al-
gorithms can include them in their code, the adaptation being more or less
easy. We speak of heuristics since we are not able to formally measure their
contribution to the complexity of the algorithm.

When locating all the occurrences of the string x in the text y by the naive
method, we can start by locating the occurrences of its first letter, x[0], in the
prefix y[0..n — m + 1] of y. It then remains to test, for each occurrence of x[0]
at a position j on y, the possible identity between the two strings x[1..m — 1]
and y[j + 1..j + m — 1]. As the searching operation for the occurrence of a
letter is generally a low level operation of operating systems, the reduction of
the computation time is often noticeable in practice. This elementary search
can still be improved in two ways:

* by positioning x[0] as a sentinel at the end of the text y, in order to have to
test less frequently the end of the text,

* by searching, non-necessarily x[0], but the letter of x which has the smallest
frequency of appearance in the texts of the family of y.

It should be noted that the first technique assumes that such an alteration of
the memory is possible and that it can be performed in constant time. For the
second, besides the necessity of having to know the frequency of letters, the
choice of the position of the distinguished letter requires a precomputation
on x.

A different process consists in applying a shift that takes into account only
the value of the rightmost letter of the window. Let j be the right position of
the window. Two antagonist cases can be envisaged whether or not the letter
y[j] occurs in x[0..m — 2]:

¢ in the case where y[j] does not occur in x[0 . .m — 2], the string x cannot
occur at right positions j + 1to j +m — lon y,

* in the other case, if k is the maximal position of an occurrence of the letter
y[jlon x[0..m — 2], the string x cannot occur at right positions j + 1 to
j+m—1—k—1ony.

Thus the valid shifts to apply in the two cases have lengths: m for the first, and
m — 1 — k for the second. Note that they do not depend on the letter y[j] and
in no way on its position j on y.
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ylcbb|cacba£|acada‘

v EBoaad

ylcbbcacb|abacad|a‘

a a b ¢ d
last-occla] 1 4 3 6 X
(@) (b)

Figure 1.11. Shift of the sliding window with the table of the last occurrence, /ast-occ, when
Xx = bbcaac. (a) The values of the table /ast-occ on the alphabet A = {a, b, c, d}. (b) The
window on the text y is at right position 8. The letter at this position, y[8] = b, occurs at
the maximal position k = 1 on x[0. . |x| — 2]. A valid shift consists in sliding the window of
|x] =1 —k =4 = last-occ[b] positions to the right.

To formalize the previous observation, we introduce the table
last-occ: A — {1,2,...,m}
defined for every letter a € A by
last-occla] = min((m}U{m —1 —k :0 <k <m — 2 and x[k] = a}).

We call last-occ the table of the last occurrence. It expresses a valid shift,
last-occ[y[j]], to apply after the attempt at the right position j on y. An
illustration is proposed in Figure 1.11. The code for the computation of last-occ
follows. It executes in time ®(m + card A).

LAST-OCCURRENCE(x, m)
1 for each lettera € A do
2 last-occla] < m
3 fork < Otom —2do
4 last-occ[x[k]] < m—1—k
5 return last-occ

We give now the complete code of the algorithm FAST-SEARCH obtained
from the naive algorithm by adding the table last-occ.

FAST-SEARCH(x, m, y, n)
1 last-occ <— LAST-OCCURRENCE(x, m)
j<—m—1
while j < n do
OuTPUT-IF(Y[j —m +1..j] =x)
J < J +last-occly[j]]

WA
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If the comparison of the strings in line 4 starts at position m — 1, the search-
ing phase of the algorithm FAST-SEARCH executes in time ®(n/m) in the best
case. As for instance when no letter at positions congruent modulo m tom — 1
on y occurs in x; in this case, a single comparison between letters is performed
during each attempt’ and the shift is always equal to m. The behavior of the
algorithm on natural language texts is very good. One can show, however, that
in the average case (with the double assumption of Proposition 1.17 and for
a set of strings having the same length), the number of comparisons per text
letter is asymptotically lower bounded by 1/ card A. The bound is independent
of the length of the pattern.

Search engine

Some automata can serve as a search engine for the online processing of texts.
We describe in this part two algorithms based on an automaton for locating
patterns. We assume the automata are given; Chapter 2 presents the construction
of some of these automata. Section 6.6 considers another automation.

Let us consider a pattern X € A* and a deterministic automaton M that
recognizes the language A*X (Figure 1.12(a) displays an example). The au-
tomaton M recognizes the strings that have a string of X as a suffix. For locating
the strings of X that occur in a text y, it is sufficient to run the automaton M on
the text y. When the current state is terminal, this means that the current prefix
of y — the part of y already parsed by the automaton — belongs to A*X; or, in
other words, that the current position on y is the right position of an occurrence
of a string of X. This remark leads to the algorithm whose code follows. An
illustration of how the algorithm works is presented in Figure 1.12(b).

DET-SEARCH(M, y)
1 r < initial[M]
2 for each letter a of y, sequentially do
3 r < TARGET(r, a)
4 OuTtPUT-IF(terminal[r])

Proposition 1.18

When M is a deterministic automaton that recognizes the language A*X for a
pattern X C A*, the operation DET-SEARCH(M, y) locates all the occurrences
of strings of X in the text y € A*.

7 Note that it is the best case possible for an algorithm detecting a string of length m in a text of
length n; at least |n/m] letters of the text must be inspected before the nonappearance of the
searched string can be determined.
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(@)
j ylj] state r
0
0 c 0
1 b 3
(®) 2 a 4
3 b 5 occurrence of ab
4 b 6 occurrences of babb and bb
5 a 4

Figure 1.12. Search for occurrences of a pattern with a deterministic automaton (see also
Figure 1.13). (a) With alphabet A = {a, b, c} and pattern X = {ab, babb, bb}, the determin-
istic automaton represented above recognizes language A*X. The gray arrows exiting each
state stand for arcs having for source these same states, for target the initial state 0, and
labeled by a letter that is not already present. To locate occurrences of strings of X in a text
y, it is sufficient to operate the automaton on y and to signal an occurrence each time that a
terminal state is reached. (b) Parsing example with y = cbabba. From the utilization of the
automaton, it follows that there is at least one occurrence of a string of X at positions 3 and
4 on y, and none at other positions.

Proof Let § be the transition function of the automaton M. As the automaton
is deterministic, it follows immediately that

r = 8(initial[M ], u), (1.3)

where u is the current prefix of y, is satisfied after the execution of each of the
instructions of the algorithm.

If an occurrence of a string of X ends at the current position, the current
prefix u belongs to A*X. And thus, by definition of M and after property (1.3),
the current state r is terminal. As the initial state is not terminal (since ¢ ¢ X),
it follows that the operation signals this occurrence.

Conversely, assume that an occurrence has just been signaled. The current
state r is thus terminal, which, after property (1.3) and by definition of M,
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implies that the current prefix u belongs to A*X. An occurrence of a string of
X ends thus at the current position, which ends the proof. L]

The execution time and the extra space needed for running the algorithm
DET-SEARCH uniquely depend on the implementation of the automaton M. For
example, in an implementation by transition matrix, the time to parse the text
is ©(]y]), since the delay is constant, and the extra space, in addition to the
matrix, is also constant (see Proposition 1.15).

The second algorithm of this part applies when we dispose of an automaton
N recognizing the language X itself, and no longer A*X. By adding to the
automaton an arc from its initial state to itself and labeled by a, for each letter
a € A, we simply get an automaton N’ that recognizes the language A*X. But
the automaton N’ is not deterministic, and therefore the previous algorithm
cannot be applied. Figure 1.13(a) presents an example of automaton N’ for the
same pattern X as the one of Figure 1.12(a).

(b)

2,4, 6} occurrence of ab
,5,6,7} occurrences of babb and bb
3

N R W= O
P oo T O

Figure 1.13. Search for occurrences of a pattern with a nondeterministic automaton (see
also Figure 1.12). (a) The nondeterministic automaton recognizes the language A*X, with
alphabet A = {a, b, c} and pattern X = {ab, babb, bb}. To locate the occurrences of strings
of X that occur in a text y, it is sufficient to operate the automaton on y and to signal an
occurrence each time that a terminal state is reached. (b) Example when y = cbabba. The
computation amounts to simultaneously follow all possible paths. It results that the pattern
occurs at right positions 3 and 4 on y and nowhere else.
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In such a situation, the retained solution usually consists in simulating the
automaton obtained by the determinization of N’, following in parallel all the
possible paths having a given label. Since only states that are the ends of paths
may perform the occurrence test, we simply keep the set R of reached states.
It is what realizes the algorithm NON-DET-SEARCH below. Actually, it is even
not necessary to modify the automaton N since the loops on its initial state
can also be simulated. This is realized in line 4 of the algorithm by adding
systematically the initial state to the set of states. During the execution of the
automaton on the input y, the automaton is not in a single state, but in a set of
states, R. This subset of the set of states is recomputed after the analysis of the
current letter of y. The algorithm calls the function TARGETS that performs a
transition on a set of states, which function is an immediate extension of the
function TARGET.

NON-DET-SEARCH(N, y)
1 go < initial[N]
2 R < {q0)
3 for each letter a of y, sequentially do
4 R < TARGETS(R, a) U {qo}
5 t < FALSE
6 for each state p € R do
7 if rerminal[ p] then
8 t < TRUE
9 OUTPUT-IF(t)

TARGETS(R, a)
1 S« 40
2 for each state p € R do
3 for each state g such that (a, q) € Succ[p] do
4 S <~ SU{q}
5 return S

Lines 5-8 of the algorithm NON-DET-SEARCH give the value TRUE to the boolean
variable ¢ when the intersection between the set of states R and the set of
terminal states is nonempty. An occurrence is then signaled, line 9, if the case
arises. Figure 1.13(b) illustrates how the algorithm works.

Proposition 1.19

When N is an automaton that recognizes the language X for a pattern X C A*,
the operation NON-DET-SEARCH(N, y) locates all the occurrences of strings of
X inthe text y € A*.
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Proof Letus denote by g the initial state of the automaton N and, for every
string v € A*, R, the set of states defined by

R, = {q : q end of a path of origin g( and of label v}.
One can verify, by recurrence on the length of the prefixes of y, that the assertion

R = U R,, (1.4)

V= uff U

where u is the current prefix of y, is satisfied after the execution of each of the
instructions of the algorithm, except in line 1.

If an occurrence of a string of X ends at the current position, one of the
suffixes v of the current prefix u belongs to X. Therefore, by the definition of
N, one of the states g € R, is terminal, and by property (1.4), one of the states
of R is terminal. It follows that the operation signals this occurrence since no
string of X is empty.

Conversely, if an occurrence has just been signaled, it means that one of
the states ¢ € R is terminal. Property (1.4) and the definition of N imply the
existence of a suffix v of the current prefix u that belongs to X. It follows that
an occurrence of a string of X ends at the current position. This ends the proof
of the proposition. ]

The complexity of the algorithm NON-DET-SEARCH depends both on the
implementation retained for the automaton N and the realization chosen for
manipulating the sets of states. If, for instance, the automaton is deterministic,
its transition function is implemented by a transition matrix, and the sets of
states are implemented by boolean vectors which indices are states, the function
TARGETS executes in time and space O(card Q), where Q is the set of states.
In this case, the analysis of the text y runs in time O(|y| x card Q) and utilizes
O(card Q) extra space.

In the following paragraphs, we consider an example of realization of the
above simulation adapted to the case of a very small automaton that possesses
a tree structure.

Bit-vector model

The bit-vector model refers to the possibility of using machine words for
encoding the states of the automata. When the length of the language associated
with the pattern is not larger than the size of a machine word counted in bits,
this technique gives algorithms that are efficient and easy to implement. The
technique is also used in Section 8.4.
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Here, the principle is applied to the method that simulates a deterministic
automaton and described in the previous paragraphs. It encodes the set of
reached states into a bit vector, and executes a transition by a simple shift
controlled by a mask associated with the considered letter.

Let us start with specifying the notation used in the rest for bit vectors. We
identify a bit vector with a string on the alphabet {0, 1}. We denote respectively
by Vv and A the “or” and “and” bitwise operators. These are binary operations
internal to the sets of bit vectors of identical lengths. The first operation, Vv,
puts to 1 the bit of the result if one of the two bits at the same position of
the two operands is equal to 1, and to O otherwise. The second operation,
A, puts to 1 the bits of the result if the two bits at the same position of the
two operands are equal to 1, and to O otherwise. We denote by — the shift
operation defined as follows: with a natural number k£ and a bit vector the result
is the bit vector of same length obtained from the first one by shifting the bits
to the right by k positions and by completing it to the left with £ 0’s. Thus,
1001 v 0011 = 1011, 1001 A 0011 = 0001, and 2 4 1101 = 0011.

Let us consider a finite nonempty set X of nonempty strings. Let N be the
automaton obtained from the card X elementary deterministic automata that
recognizes the strings of X by merging their initial states into a single one, say
qo- Let N’ be the automaton built on N by adding the arcs of the form (qq, @, qo),
for each letter a € A. The automaton N’ recognizes the language A*X. The
search for the occurrences of strings of X in a text y is realized here as in the
above paragraphs by simulating the deterministic automaton equivalent to N’
by means of N (see Figure 1.13(a)).

Let us set m = |X| and let us number the states of N from —1 to m — 1
using a depth-first traversal of the structure from the initial state gy — it is the
numbering used in the example of Figure 1.13(a). Let us encode now each set
of states R \ {—1} by a vector r of m bits with the following convention:

p € R\ {—1}ifand only if r[p] = 1.

Let r be the vector of m bits that encodes the current state of the search,
a € A be the current letter of y, and s be the vector of m bits that encodes
the next state. It is clear that the computation of s from r and a observes the
following rule: s[p] = 1 if and only if there exists an arc of label a, either
from the state —1 to the state p, or from the state p — 1 to the state p with
r[p — 1] = 1. Let us consider init the vector of m bits defined by init[p] = 1
if and only if there exists an arc with state —1 as its source and state p as its
target. Let us consider also the table masq indexed on A and with values in the
set of vectors of m bits, defined for every letter b € A by masq[b][p] = 1 if
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and only if there exists an arc of label b and of target the state p. Then r, a, and
s satisfy the identity:

s = (init v (1 4r)) A masqla].

This latter expression translates the transition performed in line 4 of algorithm
NON-DET-SEARCH in terms of bitwise operations, except for the initial state.
The bit vector init encodes the potential transitions from the initial state, and
one-bit right shift from reached states. The table masq validates the transitions
labeled by the current letter.

It only remains to indicate how to test whether one of the states represented
by a vector r of m bits that encodes the current state of the search is terminal
or not. To this goal, let term be the vector of m bits defined by term[p] = 1 if
and only if the state p is terminal. Then one of the states represented by r is
terminal if and only if:

r Aterm # 0™,

The code of the function SMALL-AUTOMATON that computes the vectors init
and term, and the table masq follows, then the code of the pattern matching
algorithm is given.

SMALL-AUTOMATON(X, m)

1 init < O™

2 term < Q0"

3 for each lettera € A do

4 masqla] < 0"

5 p<«—1

6 for each string x € X do

7 init[p+1] < 1

8 for each letter a of x, sequentially do
9 p<p+1
10 masqlal]lp] < 1
11 term[p] < 1

12 return (init, term, masq)

SHORT-STRINGS-SEARCH(X, m, y)
1 (init, term, masq) <— SMALL-AUTOMATON(X, m)

2 r< o™

3 for each letter a of y, sequentially do
4 r < (init v (1 4 r)) A masqla)
5 OUTPUT-IF(r A term # 0™)



1.5 Basic pattern matching techniques 39

k o 1 2 3 4 5 6 17
init[k] 1 0 1 0 0 0 1 0
@ termfk] 0 1 0 0 O 1 0 1
masqla]lk] 1 0O O 1 O O O o0
masq[b][k] 0o 1 1 0 1 1 1 1
masq[clk] o 0 0O O o o o0 o
J ylj] bit vector r

00000000

00000000

00100010

(®) 10010000

01101010 occurrence of ab
00100111 occurrences of babb and bb
10010000

NN )
p oo T O

Figure 1.14. Using bit vectors to search for the occurrences of the pattern X = {ab, babb, bb}
(see Figure 1.13). (a) Vectors init and term, and table of vectors masq on the alphabet
A = {a, b, c}. These vectors are of length 8 since |X| = 8. The first vector encodes the
potential transitions from the initial state. The second encodes the terminal states. The
vectors of the table masq encode the occurrences of letters of the alphabet in the strings of X.
(b) Successive values of the vector r that encodes the current state of the search for strings of
X in the text y = cbabba. The gray area that marks some bits indicates that a terminal state
has been reached.

An example of computation is treated in Figure 1.14.

Proposition 1.20
Running the operation SHORT-STRINGS-SEARCH(X, m, y) takes a ®(m x
card A 4+ m x |y|) time. The required extra memory space is @(m x card A).

Proof The time necessary for initializing the bit vectors init, term, and
masqla],fora € A, is linear in their size, thus ®(m x card A). The instructions
in lines 4 and 5 execute in ®(m) time each. The stated complexities follow. m

Once this is established, when the length m is no more than the number of
bits of a machine word, every bit vector of m bits can be implemented with the
help of a machine word whose first m bits only are significant. This gives the
following result.

Corollary 1.21

When m = |X| is no more than the length of a machine word, the opera-
tion SHORT-STRINGS-SEARCH (X, m, y) executes in time O(|y| 4 card A) withan
extra memory space ®(card A). ]
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1.6 Borders and prefixes tables

In this section, we present two fundamental methods for locating efficiently
patterns or for searching for regularities in strings. There are two tables, the
table of borders and the table of prefixes, that both store occurrences of prefixes
of a string that occur inside itself. The tables can be computed in linear time.
The computation algorithms also provide methods for locating strings that are
studied in details in Chapters 2 and 3 (a prelude is proposed in Exercise 1.24).

Table of borders
Let x be a string of length m > 1. We define the table
border:{0,1,...,m—1} - {0,1,...,m — 1}
by
border[k] = |Border(x[0. . k])|

for k=0,1,...,m — 1. The table border is called the table of borders
for the string x, meaning that they are borders of the nonempty prefixes
of the string. Here is an example of the table of borders for the string
x = abbabaabbabaaaabbabbaa:

k 0 1 2 3 4 5 6 7 8 9 10 11
x[k] a b b a b a a b b a b a
border[k] 0O 0 O 1 2 1 1 2 3 4 5 6

k 12 13 14 15 16 17 18 19 20 21
x[k] a a a b b a b b a a
border[k] 7 1 1 2 3 4 5 3 4 1

The following lemma provides the recurrence relation used by the function
BORDERS, given thereafter, for computing the table border.

Lemma 1.22
For every (u,a) € AT x A, we have
Border(u)a if Border(u)a <pret U,

Bord =
order(ua) {Border(Border(u)a) otherwise.

Proof We first note that if Border(ua) is a nonempty string, it is of the form
wa where w is a border of u.
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| — ]

l Border(u) ‘ Border(u) ‘

i

J

Figure 1.15. Schema showing the correspondence between variables i and j considered in
line 3 of the function BORDERS and in Lemma 1.22.

If Border(u)a <pef u, the string Border(u)a is then a border of ua, and the
previous remark shows that it is the longest string of this kind. It follows that
Border(ua) = Border(u)a in this case.

Otherwise, Border(ua) is both a prefix of Border(x) and a suffix of
Border(u)a. As it is of maximal length with this property, it is indeed the
string Border(Border(u)a). [

Figure 1.15 schematizes the correspondence between the variables i and j
of the function Borders, which code follows, and the statement of Lemma 1.22.

BORDERS(x, m)

1 i«<0

2 forj < 1tom—1do

3 border[j — 1] < i

4 while i > 0 and x[j] # x[i] do
5 if i = 0 then

6 i<~ —1

7 else i < border[i — 1]
8 i<—i+1

9  border[m — 1] < i
10 return border

Proposition 1.23
The function BORDERS applied to a string x and its length m produces the table
of borders for x.

Proof The table border is computed by the function BORDERS sequentially:
it runs from the prefix of x of length 1 to x itself. During the execution
of the while loop of lines 4-7, the sequence of borders of x[0..j — 1]
is inspected following Proposition 1.5. When exiting this loop, we have
|Border(x[0.. j])| = |x[0..i]| =i + 1, in accordance with Lemma 1.22. The
correctness of the code follows. ]
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Proposition 1.24

The operation BORDERS(x, m) executes in time ®(m). The number of compar-
isons between letters of the string x is within m — 1 and 2m — 3 when m > 2.
These bounds are tight.

We say, in the rest, that the comparison between two given letters is positive
when these two letters are identical, and is negative otherwise.

Proof Let us note that the execution time is linear in the number of compar-
isons performed between the letters of x. It is thus sufficient to establish the
bound on the number of comparisons.

The quantity 2j — i increases by at least one unit after each comparison of
letters: the variables i and j are both incremented after a positive comparison;
the value of i is decreased by at least one and the value of j remains unchanged
after a negative comparison. When m > 2, this quantity is equal to 2 for the first
comparison (i = 0 and j = 1) and at most 2m — 2 during the last (i > 0 and
j = m — 1). The overall number of comparisons is thus bounded by 2m — 3 as
stated.

The lower bound of m — 1 is tight and is reached for x = ab™~'. The upper
bound of 2m — 3 comparisons is tight: it is reached for every string x of the
form a”~'b witha, b € A and a # b. This ends the proof. ]

Another proof of the bound 2m — 3 is proposed in Exercise 1.22.

Table of prefixes

Let x be a string of length m > 1. We define the table
pref:{0,1,....m—1} - {0, 1,...,m — 1}
by
preflk] = |lep(x, x[k ..m — 1])]

for k =0,1,...,m — 1, where Icp(u, v) is the longest common prefix of
strings u and v.

The table pref is called the table of prefixes for the string x. It memorizes
the prefixes of x that occur inside the string itself. We note that pref[0] =
|x]. The following example shows the table of prefixes for the string x =
abbabaabbabaaaabbabbaa.

k 0 1 2 3 4 5 6 7 8 9 10 11
x[k] a b b a b a a b b a b a
preflk] 22 0 0 2 0 1 7 o 0 2 o0 1
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k 12 13 14 15 16 17 18 19 20 21
x[k] a a a b b a b b a a
preflk] 1 1 5 0 0 4 0 O 1 1

Some string matching algorithms (see Chapter 3) use the table suff which is
nothing but the analogue of the table of prefixes obtained by considering the
reverse of the string x.

The method for computing pref that is presented below proceeds by deter-
mining pref[i] by increasing values of the position i on x. A naive method
would consist in evaluating each value pref[i] independently of the previous
values by direct comparisons; but it would then lead to a quadratic-time com-
putation, in the case where x is the power of a single letter, for example. The
utilization of already computed values yields a linear-time algorithm. For that,
we introduce, the index i being fixed, two values g and f that constitute the
key elements of the method. They satisfy the relations

g =max{j +pref[jl: 0 < j < i} (1.5)
and
fel{j:0<j<iandj+ preflj]l =g} (1.6)

We note that g and f are defined when i > 1. The string x[f .. g — 1] is then
a prefix of x, thus also a border of x[0..g — 1]. It is the empty string when
f = g. We can note, moreover, that if g < i we have then g =i — 1, and that
on the contrary, by definition of f, we have f <i < g.

The following lemma provides the justification for the correctness of the
function PREFIXES.

Lemma 1.25
Ifi < g, we have the relation
prefli — f1 ifprefli — f1 < g —1i,
preflil=18g—1i ifprefli — f1>¢g—1i,
g—i+¢ otherwise,

where £ = |lcp(x[g —i..m — 1], x[g..m — 1])|.

Proof Let us set u = x[f..g — 1]. The string u is a prefix of x by the
definition of f and g. Letus also set k = pref[i — f]. By the definition of pref,
the string x[i — f..i — f +k—1]isaprefix of x but x[i — f..i — f + k]
is not.

In the case where pref[i — f] < g —i,anoccurrenceof x[i — f..i — f +
k] starts at the positioni — f on u —thus also at the position i on x —which shows
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labbabaiabbabaaiaiabbabibaa‘

Figure 1.16. Illustration of the function PREFIXES. The framed factors x[6..12] and
x[14..18], and the gray factors x[9..10] and x[17..20] are prefixes of string x =
abbabaabbabaaaabbabbaa. Fori = 9, we have f = 6 and g = 13. The situation at this posi-
tion is the same as at position 3 = 9 — 6. We have pref[9] = pref[3] = 2 which means that ab,
of length 2, is the longest factor at position 9 that is a prefix of x. Fori = 17, we have f = 14
and g = 19. As pref[17 — 14] = 2 = 19 — 17, we deduce that string ab = x[i..g — 1] isa
prefix of x. Letters of x and x[i ..m — 1] have to be compared from respective positions 2
and g for determining pref[i] = 4.

g—f f i g
| u |a] | u 5] |

Figure 1.17. Variablesi, f, and g of the function PREFIXES. The main loop has for invariants:
u=lep(x,x[f..m—1])and thus a # b witha, b € A, then f < i when f is defined. The
schema corresponds to the situation in which i < g.

that x[i — f..i — f 4+ k — 1] is the longest prefix of x starting at position i.
Therefore, we get pref[i] = k = pref[i — f].

In the case where pref[i — f1>g—i,x[0..g—i—1]=x[i—f..g —
f—11=x[i..g—1], and x[g —i]=x[g — f]# x[g]. We have thus
preflil =g —i.

In the case where pref[i — f] = g — i, we have x[g —i] # x[g — f] and
x[g — f]# x[g], therefore we cannot decide on the result of the comparison
between x[g — i] and x[g]. Extra letter comparisons are necessary and we
conclude that prefli] =g — i + ¢. ]

In the computation of pref, we initialize the variable g to 0 to simplify the
writing of the code of the function PREFIXES, and we leave f initially undefined.
The first step of the computation consists thus in determining pref[1] by letter
comparisons. The utility of the above statement comes for computing next
values. An illustration of how the function works is given in Figure 1.16. A
schema showing the correspondence between the variables of the function and
the notation used in the statement of Lemma 1.25 and its proof is given in
Figure 1.17.
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PREFIXES(x, m)
1 pref[0] <~ m
2 g<0
3 fori < 1tom—1do

4 ifi < g and pref[i — f] # g — i then

5 prefli] < min{pref[i — f1, g — i}

6 else (g, f) < (max{g,i},i)

7 while ¢ < m and x[g] = x[g — f] do
8 g<—g+1

9 preflil < g — f

10 return pref

Proposition 1.26
The function PREFIXES applied to a string x and to its length m produces the
table of prefixes for x.

Proof We can verify that the variables f and g satisfy the relations (1.5) and
(1.6) at each step of the execution of the loop.

‘We note then that, for i fixed satisfying the condition i < g, the function ap-
plies the relation stated in Lemma 1.25, which produces a correct computation.
It remains thus to check that the computation is correct when i > g. But in this
situation, lines 6-8 compute |lcp(x, x[i ..m — 1| = |x[f..g—1l|l=¢g— f
which is, by definition, the value of pref|i].

Therefore, the function produces the table pref. ]

Proposition 1.27
The execution of the operation PREFIXES(x, m) runs in time ®(m). Less than
2m comparisons between letters of the string x are performed.

Proof Comparisons between letters are performed in line 7. Every compar-
ison between equal letters increments the variable g. As the value of g never
decreases and that it varies from O to at most m, there are at most m positive
comparisons. Each negative comparison leads to the next step of the loop. Then
there are at most m — 1 of them. Thus less than 2m comparisons on the overall.

The previous argument also shows that the total time of all the executions
of the loop of lines 7-8 is ®(m). The other instructions of the loop 3-9 take
a constant time for each value of i giving again a global time ®(m) for their
execution and that of the function. [

The bound of 2m on the number of comparisons performed by the function
PREFIXES is relatively tight. For instance, we get 2m — 3 comparisons for a
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labbabaabbabaaaabbabbaa‘

Figure 1.18. Relation between borders and prefixes. Considering the string x =
abbabaabbabaaaabbabbaa, we have the equality pref[9] = 2 but border[9 +2 — 1] =5 #
2. We also have both border[15] = 2 but pref[15 — 2+ 1] =5 # 2.

string of the form a" b withm >2,a,b e A, and a # b. Indeed, it takes
m — 1 comparisons to compute pref[1], then one comparison for each of the
m — 2 values pref[i] with 1 <i < m.

Relation between borders and prefixes

The tables border and pref , whose computation is described above, both mem-
orize occurrences of prefixes of x. We explicit here a relation between these
two tables.

The relation is not immediate for the reason that follows, which is illustrated
in Figure 1.18. When pref[i] = ¢, the factor u = x[i ..i + £ — 1] is a prefix
of x but it is not necessarily the border of x[0..i + £ — 1] because this border
can be longer than u. In the same way, when border[j] = £, the factor v =
x[j — €+ 1..j]is aprefix of x but it is not necessarily the longest prefix of x
occurring at position j — £ 4 1.

The proposition that follows shows how the table border is expressed using
the table pref. One can deduce from the statement an algorithm for computing
the table border knowing the table pref.

Proposition 1.28
Let x € A" and j be a position on x. Then:

0 if1 =0,

border[j] = { j—minl +1 otherwise,

where I ={i :0 <i < jandi+ pref[i]— 1> j}.

Proof We first note that, for 0 <i < j, i € [ if and only if x[i .. j] <prer
x. Indeed, if i € I, we have x[i .. j] <pef x[i ..7 + prefli] — 1] <per X, thus
x[i..j] Zpret x. Conversely, if x[i .. j] <prer X, we deduce, by definition of
preflil, prefli] > j —i + 1. And thus i + pref[i] — 1 > j. Which shows that
i € I. We also note that border[j] = 0 if and only if I = .

It follows that if border[j] # 0 (thus border[j] > 0) and k= j —
border[j]+ 1, we have k < j and x[k .. j] <pef x. No factor x[i .. jl,i <k,
satisfies the relation x[i . . j] <prer x by definition of border| j]. Thus k = min /
by the first remark, and border[j] = j — k + 1 as stated. [
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The computation of the table pref from the table border can lead to an
iteration, and does not seem to give a simple expression, comparable to the one
of the previous statement (see Exercise 1.23).

Notes

The chapter contains the basic elements for a precise study of algorithms on
strings. Most of the notions that are introduced here are dispersed in different
books. We cite here those that are often considered as references in their
domains.

The combinatorial aspects on strings are dealt with in the collective books of
Lothaire [79-81]. One can refer to the book of Aho, Hopcroft, and Ullman [69]
for algorithmic questions: expression of algorithms, data structures, and com-
plexity evaluation. We were inspired by the book of Cormen, Leiserson, and
Rivest [75] for the general presentation and the style of algorithms. Concerning
automata and languages, one can refer to the book of Berstel [73] or the one of
Pin [82]. The books of Berstel and Perrin [74] and of Béal [71] contain elements
on the theory of codes (Exercises 1.10 and 1.11). Finally, the book of Aho, Sethi,
and Ullman [70] describes methods for the implementation of automata.

Section 1.5 on basic techniques contains elements frequently selected for
the final development of software using algorithms that process strings. They
are, more specifically, heuristics and utilization of machine words. This last
technique is also tackled in Chapter 8 for approximate pattern matching. This
type of technique has been initiated by Baeza-Yates and Gonnet [99] and by
Wu and Manber [218]. The algorithm FAST-SEARCH is from Horspool [156].
The search for a string by means of a hash function is analyzed by Karp and
Rabin [166].

The treatment of notions in Section 1.6 is original. The computation of the
table of borders is classical. It is inspired by an algorithm of Morris and Pratt
of 1970 (see [10]) that is at the origin of the first string matching algorithm
running in linear time. The table of prefixes synthesizes differently the same
information on a string as the previous table. The dual notion of table of suffixes
is used in Chapter 3. Gusfield [6] makes it a fundamental element of string
matching methods. (His Z algorithm corresponds to the algorithm SUFFIXES of
Chapter 3).

The inverse problem related to borders is to test whether an integer array
is the border array of a string or not, and to exhibit a corresponding string if
it is. This question is solved in linear time by Franiek, Gao, Lu, Ryan, Smyth,
Sun, and Yang in [140] for an unbounded alphabet and by Duval, Lecroq, and
Lefebvre [132] for a bounded alphabet.
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Exercises

1.1 (Computation)
What is the number of prefixes, suffixes, factors, and subsequences of a given
string? Discuss if necessary.

1.2 (Fibonacci morphism)
A morphism f on A* is an application from A* into itself that satisfies the
rules:

fle) =s¢,
fx-y)=f(x)- f(y) forx,ye A*.

For every natural number n and every string x € A*, we denote by f"(x) the
string defined by f°(x) = x and f*(x) = f*'(f(x)) fork =1,2,...,n.

Let us consider the alphabet A = {a, b}. Let ¢ be the morphism on A*
defined by ¢(a) = ab and ¢(b) = a. Show that the string ¢"(a) is identical to
fu+2, the Fibonacci string of index n + 2.

1.3 (Permutation)
We call a permutation on the alphabet A a string u that satisfies the condition
card alph(u) = |u| = card A. This is thus a string in which all the letters of the
alphabet occur exactly once.

For k = card A, show that there exists a string of length less than k> — 2k + 4
that contains as subsequences all the permutations on A. Design a construction
algorithm for such a string. (Hint: see Mohanty [187].)

1.4 (Period)
Show that the condition 3 of Proposition 1.4 can be replaced by the following
condition: there exists a string 7 and an integer k > 0 such that x <p,. X and

lt] = p.

1.5 (Limit case)
Show that the string (ab)*a(ab)*a with k > 1 is the limit case for the Periodicity
Lemma.

1.6 (Periods)
Let p be a period of x that is not a multiple of per(x). Show that p > |x| —
per(x).
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Let p and g be two periods of x such that p < g. Show that:

* g — pisaperiod of first|,_,(x) and of (ﬁrstp(x))’lx,
* pand g + p are periods of first,(x)x.

(The definition of first, is given in Section 4.4.)

Show that if x = uvw, uv, and vw have period p and |v| > p, then x has
period p.

Let us assume that x has period p and contains a factor v of period r with r
divisor of g. Show that r is also a period of x.

1.7 (Three periods)
On the triplets of sorted positive integers (p1, p2, p3), p1 < p2 < p3, we define
the derivation by: the derivative of (p;, p», p3) is the triplet made of the integers
P1, P2 — p1,and p3 — py.Let(qi, q2, g3) be the first triplet obtained by iterating
the derivation from (p;, p2, p3) and such that g; = 0.

Show that if the string x € A* has py, ps, and p; as periods and that

1
lx| > 5(191 + p2 + p3 — 2ged(p1, p2, p3) + g2 + q3),

then it has also gcd(p, p2, p3) as period. (Hint: see Mignosi and Restivo [80],
or Constantinescu and Ilie [117].)

1.8 (Three squares)

Let u, v, and w be three nonempty strings. Show that we have 2|u| < |w| if we
assume that u is primitive and that u? <pref v? =< pref w? (see Proposition 9.17
for a more precise consequence).

1.9 (Conjugates)
Show that two nonempty conjugate strings have the same exponent and conju-
gate 1oots.

Show that the conjugacy class of every nonempty string x contains |x|/k
elements where £ is the exponent of x.

1.10 (Code)
Alanguage X C A*is a code if every string of X has a unique decomposition
in strings of X.

Show that the ASCII codewords of characters on the alphabet {0, 1} form a
code according to this definition.

Show that the languages {a, b}*, ab*, {aa,ba, b}, {aa, baa,ba}, and
{a, ba, bb} are codes. Show that this is not the case of the languages {a, ab, ba}
and {a, abbba, babab, bb}.
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A language X C A* is prefix if the condition
U Zpref U implies u = v

is satisfied for every strings u, v € X. The notion of a suffix language is defined
in a dual way.
Show that every prefix language is a code. Do the same for suffix languages.

1.11 (Default theorem)

Let X € A* be a finite set that is not a code. Let Y € A* be a code for which
Y * is the smallest set of this form that contains X*. Show that card Y < card X.
(Hint: every string x € X can be written in the form y,;y, ...y, with y; € Y
fori =1, 2, ..., k; show that the function o: X — Y defined by a(x) = y; is
surjective but is not injective; see [79].)

1.12 (Commutation)
Show by the default theorem (see Exercise 1.11), then by the Periodicity Lemma
that, if uv = vu, for two strings u, v € A*, u and v are powers of a same string.

1.13 (nlogn)
Let f:N — N be a function defined by

f) =a,
f) = f(n/2])+ f([n/21) +bn forn =12,
witha € Nand b € N\ {0}. Show that f(n) is ®(n logn).

1.14 (Filter)

We consider a code for which characters are encoded on 8 bits. We want to
develop a pattern matching algorithm using an automaton for strings written
on the alphabet {A, C, G, T}.

Describe data structures to realize the automaton with the help of a transition
matrix of size 4 x m (and not 256 x m), where m is the number of states of
the automaton, possibly using an amount of extra space which is independent
of m.

1.15 (Implementation of partial functions)

Let f: E — F be a partial function where E is a finite set. Describe an im-
plementation of f able to perform each of the four following operations in
constant time:
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e initialize f, such that f(x) is undefined for x € E,
e set the value of f(x)toy € F,forx € E,

e test whether f(x) is defined or not, for x € E,

¢ produce the value of f(x), forx € E.

One can use O(card E) space. (Hint: simultaneously use a table indexed by
E and a list of elements x for which f(x) is defined, with cross-references
between the table and the list.)

Deduce that the implementation of such a function can be done in linear
time in the number of elements of £ whose images by f are defined.

1.16 (Not so naive)

We consider here a slightly more elaborate implementation for the sliding
window mechanism that the one described for the naive algorithm. Among
the strings x of length m > 2, it distinguishes two classes: one for which the
first two letters are identical (thus x[0] = x[1]), and the antagonist class (thus
x[0] # x[1]). This elementary distinction allows us to shift the window by two
positions to the right in the following cases: string x belongs to the first class
and y[j + 1] # x[1]; string x belongs to the second class and y[j + 1] = x[1].
On the other hand, if the comparison of the string x with the content of the
window is always performed letter by letter, it considers positions on x in the
following order 1,2, ...,m — 1,0.

Give the code of an algorithm that applies this method.

Show that the number of comparisons between text letters is on the average
less than 1 when the average is evaluated on the set of strings of same length,
that this length is more than 2 and that the alphabet contains at least four letters.
(Hint: see Hancart [148].)

1.17 (End of window)
Let us consider the method that, as the algorithm FAST-SEARCH using the
rightmost letter in the window for performing a shift, uses the two rightmost
letters in the window (assuming that the string is of length at least 2).

Give the code of an algorithm that applies this method.

In which cases does it seem efficient? (Hint: see Zhu and Takaoka [220] or
Baeza-Yates [98].)

1.18 (After the window)

Same statement than the one of Exercise 1.17, but with using the letter located
immediately to the right of the window (beware of the overflow at the right
extremity of the text). (Hint: see Sunday [211].)
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1.19 (Sentinel)
We come back again to the string matching problem: locating occurrences of a
string x of length m in a text y of length n.

The sentinel technique can be used for searching the letter x[m — 1] by
performing the shifts with the help of the table last-occ. Since the shifts can
be of length m, we set y[n..n +m — 1] to x[m — 1]™. Give a code for this
sentinel method.

To speed up the process and decrease the number of tests on letters, it is
possible to chain several shifts without testing the letters of the text. For that,
we back up the value of /ast-occ[x[m — 1]] in a variable, let say d, then we
fix the value of last-occ[x[m — 1]] to 0. We can then chain shifts until one of
them is of length 0. We then test the other letters of the window, signaling an
occurrence when it arises, and we apply a shift of length d. Give a code for this
method. (Hint: see Hume and Sunday [157].)

1.20 (InC)
Give an implementation in C language of the algorithm SHORT-STRINGS-
SEARCH. The operators Vv, A, and - are encoded by |, &, and <<. Extend
the implementation so that it accepts any parameter m (possibly greater than
the number of bits of a machine word).

Compare the obtained code to the source of the Unix command agrep.

1.21 (Short strings)

Describe a pattern matching algorithm for short strings in a similar way to the
algorithm SHORT-STRINGS-SEARCH, but in which the binary values 0 and 1 are
swapped.

1.22 (Bound)

Show that the number of positive comparisons and the number of negative
comparisons performed during the operation BORDERS(x, m1) are at mostm — 1.
Prove again the bound 2m — 3 of Proposition 1.24.

1.23 (Table of prefixes)
Describe a linear time algorithm for the computation of the table pref, given
the table border for the string x.

1.24 (Location by the borders or the prefixes)

Show that the table of borders for the string x$y can be directly used in order

to locate all the occurrences of the string x in the string y, where $ ¢ alph(xy).
Same question with the table of prefixes for the string xy.
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1.25 (Cover)

A string u is a cover of a string x if for every position i on x, there exists a

position j on x for which0 < j<i<j+ |u|<|x|and u=x[j..j+|u|—1].
Design an algorithm for the computation of the shortest cover of a string.

State its complexity.

1.26 (Long border)
Let u be a nonempty border of the string x € A*.

Let v € A* be such that |v| < |u|. Show that v is a border of u if and only
if it is a border of x.

Show that x has another nonempty border if u satisfies the inequality |x| <

2|u|. Show that x has no other border satisfying the same inequality if per(x) >
|x[/4.

1.27 (Border free)
We say that a nonempty string u is border free if Border(u#) = ¢, or, equivalently,
if per(u) = |u].

Let x € A*. Show that C = {u : u =pret X and u is border free} is a suffix
code (see Exercise 1.10).

Show that x uniquely factorizes into xzxi_; . ..x; according to the strings
of C (x; e Cfori =1,2,...,k). Show that x; is the shortest string of C that
is a suffix of x and that x; is the longest string of C that is a prefix of x.

Design a linear time algorithm for computing the factorization.

1.28 (Maximal suffix)
We denote by MS(<, u) the maximal suffix of u € A for the lexicographic
ordering where, in this notation, < denotes the ordering on the alphabet. Let
x € AT,

Show that x| — [MS(<, x)| < per(x).

We assume that MS(<, x) = x and we denote by wi, wy, ..., wi the bor-
ders of x in decreasing order of length (we have k > 0 and w; = ¢). Let
ai,a,...,ar € Aand zq, 22, . .., zx € A* be such that

X =wWiai121 = wWaas2y = -+ - = WdpZk.

Show thata; <a, < --- < ay.

Design a linear-time algorithm that computes the maximal suffix (for the lex-
icographic ordering) of a string x € A™. (Hint: use the algorithm that computes
the borders of Section 1.6 or see Booth [108]; see also [4].)
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1.29 (Local periods)
Let x € A*. For each position i on x, we denote by

rep(i) = min{lu| 1 u € AT, A*u U A*x[0..i — 1] # ¥ and
uA*¥Ux[i..|x| — 1]A* £ @)

the local period of x at position i. Design a linear-time algorithm for computing
the table of local periods associated with rep. (Hint: see Duval, Kolpakov,
Kucherov, Lecroq, and Lefebvre [133].)

1.30 (Critical factorization)

Let x € AT and w = MS(<, x) (MS is defined in Exercise 1.28). Assume
that |w| < |[MS(<~!, x)| and show that rep(|x| — |w|) = per(x), where rep
is defined in the previous exercise. (Hint: note that the intersection of the
two orderings on strings induced by < and <~! is the prefix ordering, and
use Proposition 1.4; see Crochemore and Perrin [128] and Crochemore and
Rytter [4].)
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Pattern matching automata

In this chapter, we address the problem of searching for a pattern in a text
when the pattern represents a finite set of strings. We present solutions based
on the utilization of automata. Note first that the utilization of an automaton
as solution of the problem is quite natural: given a finite language X C A*,
locating all the occurrences of strings belonging to X in a text y € A* amounts
to determine all the prefixes of y that ends with a string of X; this amounts to
recognize the language A*X; and as A*X is a regular language, this can be
realized by an automaton. We additionally note that such solutions particularly
suit to cases where a pattern has to be located in data that have to be processed
in an online way: data flow analysis, downloading, virus detection, etc.

The utilization of an automaton for locating a pattern has already been
discussed in Section 1.5. We complete here the subject by specifying how to
obtain the deterministic automata mentioned at the beginning of this section.
Complexities of the methods exposed at the end of Section 1.5 and that are
valid for nondeterministic automata are also compared with those presented in
this chapter.

The plan is decomposed as follows. We exhibit a type of deterministic and
complete automata recognizing the language A*X. We consider two reduced
implementations of this type of automata. The first utilizes a failure function
and the second the initial state as successor by default (notions introduced in
Section 1.4). Each of the two implementations possesses its own advantage:
while the first realizes an implementation of size linear in the sum of the lengths
of the strings of X, the second naturally ensures a detection in real time when
the alphabet is considered as fixed. We consider the particular case where the
set X is reduced to a single string and we show that the delay of the search
algorithm is logarithmic in the length of the string for the two considered
implementations.

55
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2.1 Trie of a dictionary

Let X C A* be a dictionary (on A), that is, a finite nonempty language not
containing the empty string ¢, and let y € A* be the text in which we want to
locate all the occurrences of strings of X.

The methods described in the rest of the chapter are based on an automaton
that recognizes X. We denote it by 7 (X). It is an automaton whose:

e set of states is Pref(X),

* initial state is the empty string ¢,
¢ set of terminal states is X,

e arcs are of the form (u, a, ua).

Proposition 2.1
The automaton T (X) is deterministic. It recognizes X .

Proof Immediate. ]

We call 7 (X) the trie of the dictionary X (we identify it with the tree whose
distinguished vertex, the root, is the initial state of the automaton). Figure 2.1
illustrates the situation.

The function TRIE, whose code is given below, produces the trie of any
dictionary X. It successively considers each string of X in the for loop of
lines 2-10 and inserts them inside the structure letter by letter during the
execution of the for loop of lines 4-9.

TRrRIE(X)
1 M < NEW-AUTOMATON()

2 for each string x € X do
3 t < initial[M]

4 for each letter a of x, sequentially do
5 p < TARGET(?, a)
6 if p = NIL then
7 p < NEW-STATE()
8 Succ[t] < Succ[t] U {(a, p)}
9 t<p

10 terminal(t] < TRUE

11 return M

Proposition 2.2

The operation TRIE(X) produces the automaton T (X). [
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(@)

aa

a abaa abaaa

(b)

ab —— aba

abab

Figure 2.1. (a) The trie 7 (X) when X = {aa, abaaa, abab}. The language recognized by
the automaton 7 (X) is X. The states are identified with the prefixes of strings in X. For
instance, state 3 corresponds to the prefix of length 2 of abaaa and abab. (b) Tree representa-
tion of X.

2.2 Searching for several strings

In this section, we present a deterministic and complete automaton that recog-
nizes the language A*X. The particularity of this automaton is that its states
are the prefixes of the strings of X: during a sequential parsing of the text, it is
indeed sufficient, as we are going to see, to memorize only the longest suffix of
the part of text already parsed that is a prefix of a string of X. The automaton
that we consider is not minimal in the general case, but it is relatively simple
to build. It is also at the basis of different constructions of the next sections.
The automaton possesses the same states as 7 (X) and the same initial state. It
contains the terminal states and the arcs of 7 (X).

In the rest, we indicate a construction of the automaton dissociated from
the searching phase. One can also consider to build it in a “lazy” way, that is
to say when needed during the search. This construction is left as an exercise
(Exercise 2.4).
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Figure 2.2. The dictionary automaton D(X) when X = {aa, abaaa, abab} and A = {a, b}.
The automaton D(X) recognizes the language A*X. Compared to the trie of the same
dictionary illustrated in Figure 2.1, we note that state 5 is terminal: it corresponds to abaa
whose suffix aa belongs to X.

Dictionary automaton

To formalize the pattern matching automaton of the dictionary X C A*, we
introduce the function

h: A* — Pref(X)
defined by
h(u) = the longest suffix of u that belongs to Pref(X)
for every string u € A*. Let D(X) be the automaton whose:

e set of states is Pref(X),

* initial state is the empty string ¢,

* set of terminal states is Pref(X) N A*X,
¢ arcs are of the form (u, a, h(ua)).

The proof of the next proposition, that relies on Lemma 2.4, is postponed
after the proof of this lemma.

Proposition 2.3
The automaton D(X) is deterministic and complete. It recognizes A*X.

We call D(X) the dictionary automaton of X. An illustration is given in
Figure 2.2. The proof of the proposition relies on the following result.
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Lemma 2.4
The function h satisfies the following properties:

1. u € A*X if and only if h(u) € A*X, for every u € A*.
2. h(e) = e.
3. h(ua) = h(h(u)a), for every (u, a) € A* x A.

Proof letu € A*anda € A.

Let us assume that u € A*X. The string u then decomposes into vx with
v € A*¥and x € X. Now, by definition of &, x < h(u). It follows that h(u) €
A*X. Conversely, let us assume that h(u) € A*X. As h(u) < u, u € A*X.
This proves property 1.

Property 2 is clearly satisfied.

It remains to show property 3. Strings 2 (ua) and h(u)a being both suffixes of
ua, one of these two strings is a suffix of the other. We consecutively consider
the two possibilities.

First possibility: h(u)a < h(ua). Let v be the string defined by

v = h(ua)a™".

Then h(u) <gutr v <suir #. And as h(ua) € Pref(X), v € Pref(X). It follows that
v is a string that contradicts the maximality of & (u). This first possibility is thus
impossible.

Second possibility: h(ua) <gs h(u)a. Then h(ua) <g h(h(u)a). And as
h(u)a < ua, h(h(u)a) <z h(ua). Thus h(ua) = h(h(u)a).

This establishes property 3 and ends the proof. [ ]

Proof of Proposition 2.3 Letz € A*. After properties 2 and 3 of Lemma 2.4,
it comes that the sequence of arcs of the form

(h(z[0..i —1]), z[i], A(z[0..i]))

fori =0,1,...,|z] — 1 1is a path in D(X) from state ¢ to h(z) labeled by z.
Then, as h(z) € Pref(X), it comes after Lemma 2.4 that z € A*X if and only
if h(z) € Pref(X) N A*X. This shows that D(X) recognizes the language A*X
and ends the proof. ]

Construction of the dictionary automaton

The construction algorithm of the dictionary automaton D(X) from the trie
T (X) proposed in the rest uses a breadth-first search of the trie. Together with
the function £ defined above, we introduce the function

f: A* — Pref(X)
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defined by
f(u) = the longest proper suffix of u that belongs to Pref(X)

for every string u € A" and not defined for ¢.

The three results that follow show that it is sufficient to know the state f (i)
for each of the states u # ¢ reached during the scan of the trie, in order to
ensure a correct construction of D(X).

Lemma 2.5
For every (u, a) € A* x A we have
ua if ua € Pref(X),
h(ua) = ! h(f(w)a) ifu # e andua ¢ Pref(X),
e otherwise.

Proof The identity is trivial when ua € Pref(X) or when u = ¢ and ua ¢
Pref(X). It remains to examine the case where u # ¢ and ua ¢ Pref(X). If
we assume the existence of a suffix v of ua for which v € Pref(X) and |v| >
| f(u)al, it comes that va~! is a proper suffix of u that belongs to Pref(X); this
contradicts the maximality of f(u). It follows that 2( f (u)a) is the longest suffix
of ua that belongs to Pref(X), which validates the last identity that remained
to establish and ends the proof. ]

Lemma 2.6
For every (u,a) € A* x A we have
flua = | h(fa) ifu e,
€ otherwise.

Proof Let us examine the case where u € A™. If we assume the existence of
a suffix v of ua such that v € Pref(X) and |v| > | f(u)a|, it comes that va~" is
a proper suffix of u that belongs to Pref(X), which contradicts the maximality
of f(u). It follows that f(ua), the longest proper suffix of ua that belongs to
Pref(X), is a suffix of f(u)a. By the maximality of %, the mentioned suffix is
also h( f(u)a), which ends the proof. [ ]

Lemma 2.7
For every u € A* we have:

u€ A*X ifand only ifu € X or (u # ¢ and f(u) € A*X).
Proof 1t is clearly sufficient to show that

u € (A*X)\ X implies f(u) € A*X,
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since then u # ¢ because ¢ ¢ X. Thus, let u € (A*X) \ X. The string x is of
the form vw where v € A* and w is a proper suffix of u belonging to X. It
follows that, by definition of f, w is a suffix of f(u). Thus f(u«) € A*X. This
ends the proof. ]

The function DMA-COMPLETE, whose code follows, implements the con-
struction algorithm of D(X). The first three letters of its identifier mean “Dic-
tionary Matching Automaton.” A running step of the function is illustrated in
Figure 2.3.

DMA-COMPLETE(X)
1 M <« TrIE(X)
2 qo < initial[M]
3 F < EmMPTY-QUEUE()
4 for each lettera € A do
5 q < TARGET(qo, a)
6 if ¢ = NIL then
7 Succlqo] < Succlgo] U {(a, qo)}
8 else ENQUEUE(F, (¢, q0))
9  while not QUEUE-IS-EMPTY(F') do

10 (p,r) < DEQUEUED(F)

11 if terminal(r] then

12 terminal[ p] <— TRUE

13 for each letter a € A do

14 q < TARGET(p, a)

15 s < TARGET(r, a)

16 if ¢ = NIL then

17 Succ[p] < Succ[p] U {(a, s)}
18 else ENQUEUE(F, (g, 5))

19 return M

The function DMA-COMPLETE proceeds as follows. It begins by building
the automaton 7 (X) in line 1. It then initializes, from line 3 to line 8, the
queue F with the pairs of states that correspond to pairs of the form (a, &) with
a € A N Pref(X). In the meantime, it adds to the initial state g the arcs of the
form (qo, a, qo) for a € A \ Pref(X). One can then assume that to each pair
of states (p, r) in the queue F corresponds a pair of the form (u, f(u)) with
u € Pref(X) \ {e}, that the set of the labeled successors of each of the already
visited states is the set that it has in D(X), and that it is the set it has in 7 (X)
for the others. This constitutes an invariant of the while loop of lines 9—18.
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(1,0
2,1
3. 0)
4.1
(5,2
(7,3)

(1, 0)
@, 1)
(3.0
4, 1)
(5,2)
(7.3)
(6,2)

Figure 2.3. A step during the execution of the operation DMA-COMPLETE(X) with X =
{aa, abaaa, abab} and A = {a, b}. (a) States 0, 1, 2, 3, and 4 of the automaton have already
been visited. The structure in construction matches with D(X) on these states, and with 7 (X)
on those that are still to be visited. The queue contains two elements: pairs (5, 2) and (7, 3).
(b) The step. The element (5, 2) is deleted from the queue. As state 2 is terminal, state 5 is
made terminal. This corresponds to the fact that aa, that belongs to X, is a suffix of abaa,
string associated with state 5. Function DMA-COMPLETE considers then the two arcs that exit
state 2, arcs (2, a, 2) and (2, b, 3). For the first arc, and since there already exists a transition
by the letter a from state 5 having target state 6, it adds pair (6, 2) to the queue. While for the
second, it adds arc (5, b, 3) to the structure.

Indeed, to each of the card A arcs (7, a, s) considered in line 15 corresponds an
arc of the form (f(u), a, h(f(u)a)). At this point, two cases can arise:

* If there is not already a transition defined with source p and label a in
the structure, it means that ua ¢ Pref(X). Lemma 2.5 indicates then that
h(ua) = h(f(u)a). It is sufficient thus to add the arc (p, a, s) as realized in
line 17.
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Figure 2.4. Version with outputs of the dictionary automaton of Figure 2.2 obtained by
numbering the strings of the dictionary: O for aa, 1 for abaaa, and 2 for abab. The output of
each state corresponds to the set of strings of X that are suffixes of the prefix associated with
the state. The terminal states are those that possess a nonempty output.

¢ Otherwise ua € Pref(X), thus h(ua) = ua, string that corresponds to state
q. The instruction in line 18 adds then the pair (g, s) to the queue F in order
to be able to continue the breadth-first search. Besides, Lemma 2.6 indicates
that h(f(u)a) = f(ua). This shows that the pair (g, s) is of the expected
form.

For the terminal states specific to D(X), they are marked by the conditional if
of lines 11-12 in accordance with Lemma 2.7. This proves the following result.

Proposition 2.8
The operation DMA-COMPLETE(X) produces the automaton D(X). [ ]

Output of the occurrences

To operate the automaton D(X) on the text y, we can use the algorithm DET-
SEARCH described in Section 1.5. This latter algorithm signals an occurrence
each time an occurrence of one of the strings of X ends at the current position.
The marking of terminal states can, however, be sharper in order to allow us to
locate which are the strings of X that occur at a given position on the text. To
do this, we associate an output with each state.

Let us denote by xo, X1, ..., xx—1 the k (= card X) strings of X. We define
the output of a state u of D(X) as the set of indices i for which x; is a suffix
of u (see the illustration given in Figure 2.4). Thus an occurrence of the string
x; of X ends at the current position on the text if and only if the index i is
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an element of the output of the current state. By noting that only terminal
states have a nonempty output, the computation of the outputs — instead of the
terminal states — can proceed as follows:

1. The instruction in line 2 of the function NEW-STATE is replaced by the
assignment output[ p] <— @ (function NEW-STATE is called in line 7 of
function TRIE; its code is given in Section 1.3).

2. The instruction in line 10 of the function TRIE is replaced by the
assignment output[t] < {i} where i is the index of the string of X dealt
with during the execution of the for loop of lines 2—10.

3. The instruction in line 12 of the function DMA-COMPLETE is replaced by
the assignment output[ p] < output[p] U output|[r].

The occurrence test in line 4 of algorithm DET-SEARCH becomes output[r] # 0.
In the case where this test happens to be positive, occurrences of strings of X
can then be signaled (see Note 5, Chapter 1).

Implementation by transition matrix

The automaton D(X) being complete, it is natural to implement its transition
function by a transition matrix.

Proposition 2.9

When the automaton D(X) is implemented with the help of a transition matrix,
the size of the implementation is O(|X| x card A), and the time for building it
by the function DMA-COMPLETE is O(|X| x card A). The extra space required
for the execution of the function DMA-COMPLETE is O(card X).

Proof The number of states of D(X) is equal to card Pref(X), number itself
no more than |X| 4 1. On the other hand, the transition function being imple-
mented by a matrix, each of the look-ups (function TARGET) or modifications
(adds to the sets of labeled successors) takes a time O(1). Finally, the queue —
that constitutes the essential of the space required by the computation — con-
tains always no more elements than branches in the tree, thus at most card X
elements. The announced complexities follow. ]

The algorithm DET-SEARCH of Section 1.5 can be used to operate the au-
tomaton D(X) on the text y. We have then the following result, which is an
immediate consequence of Proposition 1.15.

Proposition 2.10

The detection of the occurrences of strings of X in a text y can be performed
in time O(|y|) if we utilize the automaton D(X) implemented with the help of
a transition matrix. The delay and the extra memory space are constant. ]
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Note that, by comparison with the results of Section 1.5, using the au-
tomaton D(X) allows one to gain a factor O(|X]) in the space and time
complexities of the searching phase: if this latter is realized by the algo-
rithm NON-DET-SEARCH applied with the automaton 7 (X) considered in the
same model (the branching model, with implementation by transition matrix)
and if the sets of states of 7(X) are encoded with the help of boolean vec-
tors, the time is indeed O(]X| x |y|), the delay and the extra memory space
are O(|X|).

The memory space and the time necessary to memorize and build the au-
tomaton can lead to disregard such an implementation when the size of the
alphabet A is relatively large comparing to X. We show in the next two sections
two methods that implement the automaton in time and in space independent
of the alphabet in the comparison model.

2.3 Implementation with failure function

In this section, we present a reduced implementation of the automaton D(X)
in the comparison model with the help of a failure function (see Section 1.4).
This function is nothing but the function f, defined in Section 2.2, that asso-
ciates with every nonempty string its longest proper suffix belonging to the set
Pref(X).

We begin by specifying the implementation. We are interested then in its
utilization for the detection of the occurrences of the strings of X in a text, then
in its construction. Finally, we indicate a possible optimization of the failure
function.

Definition of the implementation
Let
y:Pref(X) x A — Pref(X)

be the function partially defined by

ua if ua € Pref(X),

)/(I/t, a)= {8 ifu=¢e¢and a ¢ Pref(X).

Proposition 2.11
The functions y and f are respectively a subtransition and a failure function
of the transition function of D(X).

Proof For every nonempty prefix u of Pref(X), f(u) is defined and we have
| f(w)] < |u|. It follows that f defines an order on Pref(X), the set of the states
of D(X). The function §: Pref(X) x A — Pref(X) defined by 6(u, a) = h(ua)
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Figure 2.5. Implementation Dr(X) of the dictionary automaton D(X) when X =
{aa, abaaa, abab}. (Refer to Figure 2.3 where the failure states, computed during the breadth-
first search of the trie 7 (X), are also indicated in the margin.)

for every pair (u, a) € Pref(X) x A is the transition function of the automaton.
One can easily check with the help of Lemma 2.5 that:

S(u. a) = y(u,a) if y(u, a) is defined,

DN 8(f (), a)  otherwise.
This shows that y and f are indeed a subtransition and a failure function of §
as expected (see Section 1.4). -

Let D(X) be the structure made of

* the automaton 7 (X) whose transition function is implemented by sets of
labeled successors,

* the initial state of 7 (X) as successor by default of itself,

¢ the failure function f.

An illustration is given in Figure 2.5.

Theorem 2.12
Let X be a dictionary. Then Dy(X) is an implementation of the dictionary
automaton D(X) of size O(|X)).

Proof The fact that Dy(X) is an implementation of D(X) is a consequence
of the definitions of 7(X) and y, and of Proposition 2.11. For the size of the
implementation, it is linear in the number of states of 7 (X), which number is
bounded by | X| + 1. [ ]
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Searching phase

The detection of the occurrences of strings of X in a text y with the help
of the implementation Dg(X) requires the simulation of the transitions of the
automaton D(X) with the successor by default and the failure function. We
consider the attribute fail added to each of the state objects. For the initial state
of the automaton object M, we set

faillinitial[M]] = NIL

to signify that the failure state is not defined for this state. The code given below
realizes the simulation. The object automaton M is global.

TARGET-BY-FAILURE(p, a)
1 while p # NIL and TARGET(p, a) = NIL do

2 p < fail[p]
3 if p = NiL then
4 return initial[ M ]

5 else return TARGET(p, a)

The while loop of lines 1-2 and the return of the function in lines 3-5 are
correct since they agree with the notion of failure state.

We adapt the algorithm DET-SEARCH (Section 1.5) for locating the occur-
rences by modifying its code: the construction of the automaton is performed
inside the algorithm by the function DMA-BY-FAILURE given further; line 3, that
corresponds to line 4 in the code below, calls the function TARGET-BY-FAILURE
instead of the function TARGET; this gives the following code.

DET-SEARCH-BY-FAILURE(X, y)
1 M < DMA-BY-FAILURE(X)
2 r <« initiallM]
3 for each letter a of y, sequentially do
4 r < TARGET-BY-FAILURE(F, a)
5 OuUTPUT-IF(terminal[r])

Lemma 2.13
The number of tests TARGET(p, a) = NIL realized during the searching phase
of the operation DET-SEARCH-BY-FAILURE(X, y) is at most 2|y| — 1.

Proof Let us denote by u the current prefix of y and by |p| the level in 7 (X)
of parameter p of the function TARGET-BY-FAILURE (by setting |p| = —1 when
p = NIL). Then, the quantity 2|u| — | p| increases by at least one unit after each
of the mentioned tests. Indeed, the quantities | p| and |u| are incremented after
a positive result of the test; the quantity | p| is decreased by at least one unit and
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the quantity |u| remains unchanged after a negative result of the test. Moreover,
the quantity 2|u| — | p| isequalto2 x 0 — 0 = O during the first test and at most
2 x (Jy] — 1) — 0 = 2|y| — 2 during the last test. It follows that the number of
tests is thus bounded by 2|y| — 1 as stated. [

Lemma 2.14
The maximal outgoing degree of the states of the automaton T (X) is at most
min{card alph(X), card X}.

Proof The automaton being deterministic, the outgoing arcs of any of its
states are labeled by pairwise distinct letters that occur in the strings of X.
Moreover, it possesses at most card X external states (nodes), thus each state
possesses at most card X outgoing arcs. The bound follows. ]

Theorem 2.15

The running time of the searching phase for the occurrences of the strings of X
in a text y with the algorithm DET-SEARCH-BY-FAILURE is O(|y| x logs) and
the delay O(£ x logs) where

s < min{card alph(X), card X}

is the maximal outgoing degree of the states of the trie T (X) and € the maximal
length of the strings of X.

Proof As the cost of each test TARGET(p, a) = NIL is O(logs) (Proposi-
tion 1.16), the number of these tests is linear in the length of y (Lemma 2.13),
and the execution time of these tests is representative of the total time of the
search, this latter is O(]y| x logs).

During the execution of the operation TARGET-BY-FAILURE(p, a), the num-
ber of executions of the body of the while loop of lines 1-2 cannot exceed the
level of the state in the trie, thus the bound of the delay follows, by application
of Proposition 1.16.

It remains to add that the bound on s comes after Lemma 2.14. ]

We conclude the part devoted to the searching phase by showing that the
bound of the number of tests given in Lemma 2.13 is optimal on every alphabet
having at least two letters.

Proposition 2.16

When card A > 2, there exists a dictionary X and a nonempty text y for which
the number of tests TARGET(p, a) = NIL realized during the detection of the
occurrences of the strings of X in y by the algorithm DET-SEARCH-BY-FAILURE
is equal to 2|y| — 1.
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Proof Leta and b be any two distinct letters of A. Let us consider a dictionary
X whose set Pref(X) contains the string ab but not the string aa. Let us
assume, moreover, that y € {a}*. Then the mentioned test is executed once
on the first letter of y, and twice on each of the next letters. The stated result
follows. [ ]

Construction of the implementation
The implementation D(X) is built during a breadth-first search of the trie
T (X). But the process is simpler than the one given for D(X) since:

* no arc needs to be added to the structure,
* there is no need to put in the queue the failure states.

The code of the function DMA-BY-FAILURE that produces the implementation
Dr(X) follows.

DMA-BY-FAILURE(X)
1 M <« TrRIE(X)

2 faillinitial[M]] < NIL

3 F < EMPTY-QUEUE()

4 ENQUEUE(F, initial[M])

5 while not QUEUE-IS-EMPTY(F) do

6 t < DEQUEUED(F)

7 for each pair (a, p) € Succ[t] do
8 r < TARGET-BY-FAILURE(fail[t], a)
9 faillp] < r
10 if terminal(r)] then

11 terminal[ p] <— TRUE
12 ENQUEUE(F, p)

13 return M

The only delicate part of the code is located in lines 89 in the case where ¢
is the initial state of the automaton. Note now that the function TARGET-BY-
FAILURE produces the initial state when its input parameter state is NIL. It is
then sufficient to show that the instructions in lines 8-9 agree with Lemma 2.6,
which yields the following statement.

Proposition 2.17
The operation DMA-BY-FAILURE(X) produces D(X), implementation of D(X)
by failure function. ]
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Theorem 2.18

The running time for the operation DMA-BY-FAILURE(X) is O(|X]| x
log min{card alph(X), card X}). The extra memory space required for this op-
eration is O(card X).

Proof Runningtime: letus rename by s the input state of the function TARGET-
BY-FAILURE; we proceed in the same way as for the proof of Lemma 2.13, but
by looking this time to values of the expression 2|¢| — |s| considered along
each of the different branches of the trie 7 (X); we then note that the sum of
the lengths of the branches is bounded by | X |; then we use Lemma 2.14. Extra
space: see proof of Proposition 2.9. ]

Optimization of the failure function

The searching phase can be sensibly improved if the useless calls to the failure
function are eliminated.

Let us come back to the example given in Figure 2.5 and let us study two
cases.

* Let us assume that state 6 is reached. Whatever the value of the current
letter of the text is, the failure function is called twice in a row, before
finally reaching state 1. It is thus preferable to choose 1 as failure state of 6.

e Let us assume now that state 4 is reached. If the current letter is neither a,
nor b, it is useless to transit by states 1 then O for finally come back to the
initial state O and proceed to the next letter. The computation here can also
be done in a single step by considering the initial state as successor by
default of state 4.

By following an analogue reasoning for each state, we get the optimized rep-
resentation given in Figure 2.6.

Formally, the implementation D(X) of automaton D(X) can be optimized
for the searching phase by considering another failure function than the func-
tion f. Let us denote by Next(u) the set defined for every string u € Pref(X)
by

Next(u) ={a : a € A, ua € Pref(X)}.

Let now f’ be the function from Pref(X) to itself defined by f'(u) = f*(u) for
every string u € Pref(X) \ {e} for which the natural number

k = min{¢ : Next(f*(u)) € Next(u)}
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Figure 2.6. The optimized representation of the implementation Dr(X) when X =
{aa, abaaa, abab} (the original implementation is given in Figure 2.5).

is defined, and undefined everywhere else. Then the searching structure made
of

* the automaton 7 (X), as for the implementation Dg(X),

* the initial state of 7 (X) as successor by default for each state whose image
by f’ is not defined,

e the failure function f’,

is an implementation of the dictionary automaton D(X) in the comparison
model.

Even though f’ is substituted to f for the searching phase, the improvement
is not quantifiable in term of the “O” notation. In particular, the delay remains
proportional to the maximal length of the strings of the dictionary in the worst
case. This is what shows the following example.

Let us assume that the alphabet A contains (at least) the three letters a, b,
and c. Let L(m) be the language defined for an integer m, m > 1, by

L(m) — {am—lb}
Ufa* ba:1 <k < [m/2])
Uf{a*bb:0 <k < [m/2]}.

For some integer m > 1, let us set X = L(m). Then, if the string a" lpcisa
factor of the text, m calls to the failure function (line 2 of the function TARGET-
BY-FAILURE) are performed when c is the current letter. And m is exactly the
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Figure 2.7. Inthe worst case, the delay of the algorithm DET-SEARCH-BY-FAILURE is propor-
tional to the maximal length of the strings of the dictionary X. This remains true even if we
consider the optimized version f” of the failure function f of the implementation Dr(X) of
D(X). As for instance when X = L(4) = {aaab, aabb, aba, bb} and that aaabc is a factor of
the text: four successive calls to f’ are performed, the current state taking successively the
values 4, 5,7, 9, then 0.

length of the string a”~'b, one of the longest strings of X. (See the illustration
proposed in Figure 2.7.)

2.4 Implementation with successor by default

In this section, we study the implementation D,(X) obtained from the automa-
ton D(X) by deleting any arc whose target is the initial state and by adding the
initial state as successor by default (see the illustration proposed in Figure 2.8).
This reduced implementation of D(X) in the comparison model turns out to
be particularly interesting, regarding its initialization as well as its utilization,
when the sets of labeled successors are sorted according to the alphabet.

The plan is the following: we start by showing that the size of the im-
plementation Dy,(X) is both reasonable and independent of the size of the
alphabet; we are interested then in the construction of this particular imple-
mentation; then we express the complexities of the searching phase; we finally
compare the different implementations of D(X) exposed in the first part of the
chapter.
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Figure 2.8. Implementation Dp(X) of the dictionary automaton D(X) when X =
{aa, abaaa, abab}. Every state has the initial state as successor by default. This representation
has to be compared with the one given in Figure 2.2.

Size of the implementation

In the implementation D,(X), let us call forward arc an arc of the form
(u, a,ua) — in other words an arc of the trie 7 (X) — and backward arc ev-
ery other arc. The automaton represented in Figure 2.8 possesses thus seven
forward arcs and six backward arcs. More generally now, we have the following
result.

Proposition 2.19
The number of forward arcs in Dp(X) is at most |X|, and the number of
backward arcs is at most | X| x card X.

The proof of this result will be established after the one of the following
lemma. Before, let us call shift of an arc (u, a, u’) in Dy(X) the integer |ua| —
|u'|, and let us say of an arc that it is directed from x € X to x" € X if its source
is a prefix of x and its target a prefix of x’.

Lemma 2.20
If x and x’ are strings of X, then the shifts of distinct backward arcs directed
from x to x’ are distinct.

Proof By contradiction. Let us assume the existence of two distinct backward
arcs (u, a,u’) and (v, b, v') directed from x to x” and having identical shifts,
that is, so that

lua| — |u'| = |vb| — |V']. 2.1
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If we assume u = v, we get, after (2.1), |u'| = |v/|, then, as u’ and V'
are prefixes of x’, u" = v’. On the other hand, since the two arcs are back-
ward arcs, they do not enter the initial state; thus, x'[|u’| — 1] =a and
x'[|v'| — 1] = b. It follows that a = b. This contradicts the assumption of two
distinct arcs.

We can from now on assume without loss of generality that v <pgs u. For
questions of length, it comes after (2.1) that [v'| < |u'|, then, as u’ and v’ are
prefixes of x’, v/ <prer . Now, since u’ <q 5 ua, we compute with the help of
Q.1): xX'[|v| — 1] = x[|V'| — 1 + |ua| — |v'|] = x[|v|]. This is impossible: on
one hand x'[|v'| — 1] = b, the arc (v, b, v") does not enter the initial state since
it is a backward arc; on the other hand x[|v|] # b, or otherwise this arc would
be a forward arc. Thus the result holds. [ ]

Proof of Proposition 2.19 In D,(X), each forward arc is identified by its
target, which belongs to Pref(X) \ {¢}. The first stated bound follows.

If x and x’ are two strings of X, the shifts of the possible backward arcs
directed from x to x’ are distinct after Lemma 2.20 and are within 1 and |x|. It
follows that the number of backward arcs directed from x to x’ is bounded by
|x]. The total number of backward arcs of the implementation D, (X) is thus
bounded by ) _y |x| x card X, this establishes the second bound. [

We just established the bounds on the total number of arcs in D, (X). Let us
now note that locally, in each of the states, we have the following result.

Lemma 2.21
The maximal outgoing degree of the states in Dy (X) is at most card alph(X).

Proof This results from the fact that the arcs exiting from a same state are
labeled by letters of alph(X). ]

Theorem 2.22
The implementation Dyp(X) of the dictionary automaton D(X) is of size O (| X| x
min{card alph(X), card X}).

Proof The total space necessary for memorizing the automaton D(X) under
the form D,(X) is linear in the number of states and the number of arcs in
Dp(X). The first of these numbers is no more than | X| + 1. For the second, it is
no more than | X| x (1 + card X) after Proposition 2.19. This yields the bound
O(|X| x card X). For the bound O(|X| x card alph(X)), it is an immediate
consequence of Lemma 2.21. ]
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Figure 2.9. An implementation Dy (X) with a maximal number of arcs with card X and | X|
fixed, thus with (| X| x (1 + card X) = 16 arcs. Here X = {ad, b, c}.

When the number and the sum of the lengths of the strings of X are fixed,
the bound of the number of arcs given in Proposition 2.19 can be reached. That
is what suggests the example of Figure 2.9,

and this is what establishes the proposition that follows for the general case.

Proposition 2.23

For every non-null integer k < card A, for every integer m > k, there exists a
dictionary X such that card X = k and | X| = m, for which the number of arcs
in Dp(X) is equal to m x (k + 1).

Proof Letus choose k + 1 pairwise distinct letters ag, ay, . .., a; in A. Then
let us consider the dictionary X composed of the string apa;™* on the one
hand, and of the strings a, as, ..., ax—; on the other hand. In the imple-
mentation D,(X), exactly k backward arcs labeled each by one of the let-
ters ap, ai, . .., ay— go out from each of the m states different from the ini-
tial state. As the implementation possesses also m forward arcs, it possesses
k xm+m =m x (k + 1) arcs on the overall. [ ]

Construction of the implementation

To build the implementation Dy,(X), we take the code of function DMA-
COMPLETE that produces the automaton D(X). We modify it (lines 4-8 and
17 correspond here to lines 45 and 14—15) in order not to generate the arcs of
D(X) that have the initial state for target.
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DMA-BY-DEFAULT(X)

1 M <« TrIE(X)

2 qo < initial[M]

3 F < EmPTY-QUEUE()

4 for each pair (a, q) € Succlqo] do

5 ENQUEUE(F, (¢, q0))

6 while not QUEUE-1S-EMPTY(F') do

7 (p,r) < DEQUEUED(F)

8 if terminal[r] then

9 terminal[ p] <— TRUE
10 for each letter a € A do
11 q < TARGET(p, a)
12 s < TARGET-BY-DEFAULT(r, a)
13 if ¢ = N1L then
14 if s # qo then
15 Succ[p] < Succ[p] U {(a, s)}
16 else ENQUEUE(F, (g, 5))
17 return M

Line 12 calls function TARGET-BY-DEFAULT that simulates the transitions to
the initial state in the part already built of the implementation. The code of this
function is specified below. The object automaton M is assumed to be global.

TARGET-BY-DEFAULT(p, a)
1  if there exists a state g such that (a, g¢) € Succ[p] then
2 return g
3 else return initial[M]

Proposition 2.24
The operation DMA-BY-DEFAULT(X) produces Dy(X), implementation with
successor by default of D(X).

Proof Immediate after Proposition 2.8. ]

The theorem that follows establishes the complexities of function DMA-
BY-DEFAULT. It specifies, in particular, that maintaining the sets of the labeled
successors sorted according to the alphabet ensures an efficient execution.

Theorem 2.25

Assume that we consider sets of the labeled successors as lists sorted according
to the alphabet during the execution of the operation DMA-BY-DEFAULT(X).
Then, the running time of this operation is of the same order as the size of
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the implementation Dy(X) of the automaton D(X) that it produces, that is,
O(|X| x min{card alph(X), card X}). The extra memory space necessary to
the execution is O(card X).

Proof During the construction of the trie 7 (X), each call to the function
TARGET and each addition in a list of labeled successors has a cost at most linear
in the maximum of the outgoing degrees of the states. As the number of each
of these two operations is at most equal to | X|, it follows after Lemma 2.14 that
the total cost of the execution of line 1 is O(] X| x min{card alph(X), card X}).

Then, the lists of labeled successors of p (as in 7(X)) and of r (as in
Dp(X)) being sorted according to the alphabet, the for loop of lines 10-16
is implemented as a merge operation of the two lists (where only one copy
of each element is kept). It is thus realized in linear time in the length of
the list coming from p (as in D,(X) now). It comes then, by application of
Theorem 2.22, that the running time of the execution of lines 6-16 is also
O(|X| x min{card alph(X), card X}).

The total running time of function DMA-BY-DEFAULT follows. For the jus-
tification of the size of the space necessary to the computation, it has already
been given during the proof of Proposition 2.9. ]

Searching phase

To locate the occurrences of the strings of the dictionary X in the text y with the
implementation Dy(X), we utilize, as for the automaton D(X), the algorithm
DET-SEARCH. We, however, modify its code since we have here to simulate
the transitions to the initial state. Line 3, that corresponds to line 4 in the
code below, henceforth calls the function TARGET-BY-DEFAULT instead of the
function TARGET. The code of the associated searching algorithm follows.

DET-SEARCH-BY-DEFAULT(X, y)
1 M < DMA-BY-DEFAULT(X)
2 r < initial[M]
3 for each letter a of y, sequentially do
4 r <— TARGET-BY-DEFAULT(r, a)
5 OUTPUT-IF(terminal(r])

Lemma 2.26

The number of comparisons between letters performed during the searching
phase of operation DET-SEARCH-PAR-DEFAULT(X, y) is at most (1 4+ card X) x
|y| — 1 when the text y is nonempty, whatever the order in which the elements
of the sets of labeled successors are examined during the computation of the
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transitions (each of the elements being inspected at most once during one
computation).

Proof During the computation of a transition, the result of a comparison
between the current letter of the text and the letter of the current element in the
current set of labeled successors is either positive or negative. In the latter case,
the computation is pursued. It can stop in the first case, but this is not important
regarding the result that we want to establish.

Let us note that since we want to get a bound, we always can assume — even
if it means to extend the alphabet with one letter — that the last letter of y occurs
in no string of X. The number of positive comparisons is bounded by |y| — 1
in such a case. We further show that the number of negative comparisons is
bounded by card X x |y, this will end the proof.

Let us first note that if (a, u) is an element of the current set of the labeled
successors inspected with a negative result at position i on the text y (thus
y[i] # a), the value i — |u| + 1 is also a position on Yy, that is, it satisfies the
double inequality

O<i—|ul+1=<]|yl—-1, (2.2)

since u # &, ua™" Zper y[0..i — 1],and i < [y|.
Let us now assume the existence of two elements (a, «) and (b, v) negatively
inspected at respective positions i and j. Then, if we have

= ul+1=j—[v]+1, (2.3)

u and v are prefixes of two distinct strings of X. To prove this assertion, we
successively consider the two possibilities i = j and i < j (the possibility
i > j being symmetrical to the second).

First possibility: i = j. From (2.3) it comes then that |u| = |v|. As a and
b are the last letters of u and v, respectively, we necessarily have a # b. This
shows that u # v, then that the assertion is satisfied in this case.

Second possibility: i < j. From (2.3) it follows that |u| < |v|. To show that
the assertion is satisfied, it is sufficient to show that u is not a prefix of v. By
contradiction, assume that u < v. We then have:

ylil=vli — j+ vl =11 (since v[0..|v] = 2] Zqe y[0..j — 1])
= v[|u| — 1] (after (2.3))
=a (since u <pref V).

Thus there is a contradiction with the assumption of a negative comparison at
i for the element (a, u), which ends the proof of the assertion.
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In other words, for each string x € X, the values of the expressioni — |u| + 1
with u <per x that are associated with negative comparisons are pairwise dis-
tinct. It then comes, with the help of (2.2), that at most | y| negative comparisons
are associated with each string of X. Overall, the number of negative compar-
isons is thus bounded by card X x |y|, as stated. [ ]

Theorem 2.27
The operation DET-SEARCH-PAR-DEFAULT(X, y) has a searching phase that

executes in time O(|y| x min{log card alph(X), card X}) and a delay that is
O(log card alph(X)).

Proof The bound for the delay is a consequence of Lemma 2.21 and Proposi-
tion 1.16, because the sets of the labeled successors can be built and sorted ac-
cording to the alphabet without extra cost. The bound O(|y| x log card alph(X))
for the searching time follows. The bound O(]y| x card X) comes from
Lemma 2.26. ]

To complete the result of Lemma 2.26, we show below that the bound of the
number of comparisons is reached when card X and |y| are fixed.

Proposition 2.28

For every non-null integer k < card A, for every non-null integer n, there exists
a dictionary X of k strings and a text y of length n such that the number
of comparisons between letters performed during the searching phase of the
operation DET-SEARCH-PAR-DEFAULT(X, y) is equal to (k + 1) x n — 1, the
order in which the sets of the labeled successors are examined being irrelevant.

Proof Let us choose an integer m > k + 1, let us consider the dictionary X
defined in the proof of Proposition 2.23, then the text y = a¢". During the
search, the first letter of y is compared with letters ag, ay, . . ., ax—, which are
the labels of the outgoing arcs of the initial state ¢; and the other letters of y are
compared with letters ay, ay, .. ., ai, labels of the outgoing arcs of state ay. In
the worst case, kK comparisons are performed on the first letter of y and k + 1
on the next letters. Thus (k + 1) x n — 1 comparisons on the overall. ]

An example that illustrates the worst case that has just been mentioned in
the proof: for k =3 and m = 4, we take X = {ad, b, c} and y € {a}*; the
implementation D,(X) is shown in Figure 2.9.

Challenge of implementations

The implementations Dx(X) and D,(X) are two concurrent implementations
of the dictionary automaton D(X) in the comparison model. The results
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established in this section and in the previous section plead rather in favor
of the first: smaller size of the implementation, faster construction, and faster
searching phase (Theorems 2.12, 2.18, and 2.15 vs. Theorems 2.22, 2.25, and
2.27). Only the order of the delay of the searching phase is smaller for the
second implementation (Theorems 2.15 and 2.27 once again). It is however
possible, by giving up this result on the delay, to improve the implementa-
tion Dp(X) in such a way that never more comparisons between letters are
performed during the searching phase than with Dy(X) (original version or
optimized version), and without increasing the order of the other complexities.
This is what express the next paragraph and Figure 2.10.

The drawback with the implementation D,(X), is that, for computing a
transition during the searching phase, the set of successors of the source state
may have to be considered entirely. Whereas if it is considered by parts (disjoint
of course, in order not to do twice the same comparison), the part with the
targets of larger level first, the one with the targets of immediately inferior level
then, and so on, the considered parts are all of cardinal at most equal to their
homologous in the implementation Dg(X). It follows that with this particular
scanning of the sets of successors, the number of comparisons between letters
for Dp(X) is at most equal to the number of comparisons between letters
for Dp(X). To build the partition in the same time and with the same space
that the one required for the original version of D,(X), it is sufficient, for
instance, to maintain for each state p the following elements: a list of labeled
successors, let us say So(p), sorted according to the alphabet; a partition of
labeled successors, let us say S;(p), sorted by decreasing levels; the pointers
of each element of Sy(p) to its correspondent in S;(p). The pointers allow us
to delete in constant time doubles in a copy of S;(r) during the fusion of Sy(r)
and Sy(p) (to give So(p), see lines 10—16 of function DMA-BY-DEFAULT). The
partition S;(p) is then obtained by appending to the sequence of its original
value (the set of labeled successors of p in 7 (X)) the possibly modified copy
of S (r) (the elements of S;(r) being of strictly inferior levels to the one of the
previous).

For the two implementations now, and comparing with a search of nondeter-
ministic type using the trie of the dictionary (or from an even more rudimentary
automaton that recognizes also X, as the one mentioned in Section 1.5), the
factor of the time complexity that multiplies the length of the text is linked to
the number of strings in the dictionary, while it presents at least a factor linked
to the sum of the lengths of the strings of the dictionary in the second case
(because of the management of the sets of states); this shows the interest of the
two reduced implementations when | X| is large.
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Figure 2.10. Two optimizations for the implementations D(X) and D (X) of the dictionary
automaton D(X). Here with X = {aab, aba, bb} (or X = L(3) with the notation of the end
of Section 2.3). (a) Implementation Dr(X) with the optimized version f’ of failure function
f. On the right, the sequences of sets of labeled successors that can be scanned for the
computation of a transition from the state current. The scanning ends as soon as the current
letter occurs in one of the elements belonging to the current set or when the list is empty.
(b) In order to never perform more comparisons than with the implementation Dr(X), the
implementation Dp(X) can consider sequences of sets of labeled successors as follows:
for each state, the partition of the set of its labeled successors are obtained by sorting the
labeled successors in decreasing order of their levels in the trie 7 (X) (the states with the
same level are located on a same vertical line on the picture). Such an optimization can be
obtained without altering the order of magnitude of the complexities for the construction of
the implementation.
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If we consider the alphabet as fixed, the time of the construction and the
space necessary for the memorization of the implementations (with failure
function, initial state as successor by default or even by transition matrix) is
linear in the sum of the lengths of the strings and the time of the searching
phase linear in the length of the text.

Let us add that the implementations Dp(X) and Dy(X) can be realized in
a memory space O(]X| x card A) but with construction times dependent only
on X by using a standard technique for implementing partial functions (see
Section 1.4 and Exercise 1.15); the time of the searching phase is then also
linear in the length of the text.

2.5 Locating one string

In all the rest of the chapter (Sections 2.5 to 2.7), we study the particular case
where the dictionary X is only constituted of a single string. We consider a
nonempty string x, and we set X = {x}. We adapt some of the results established
previously. We complete them by giving notably:

* the methods for constructing the dictionary automaton and its
implementations more suited to the particular case considered here,

* the tight bounds of the delay for the reduced implementations
(implementation with failure function of Section 2.6 and implementation
with the initial state as successor by default of Section 2.7).

In the present section, we essentially come back to the construction of the
dictionary automaton by showing that it can be performed sequentially on
the considered string. Besides, it produces without modification a minimal
automaton.

Let us start by rewriting the functions 4 and f with the notion of border. For
every pair (u, a) € A* x A we have:

ua if ua <prer X,
Border(ua) otherwise.

h(ua) = {
And for every string u € A, we have:

f(u) = Border(u).

For the equality concerning the function f, it is a consequence of its definition
and of that of Border. For the equality concerning the function 4, it is a
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consequence of Lemmas 2.5 and 2.6, and of the rewriting of f. The automaton
D({x}) of Section 2.2 is defined by

D({x}) = (Pref(x), &, {x}, F\) 2.4)
with

Fy ={(u,a,ua):u € A¥,a € A, ua <per x} U

{(u, a, Border(ua)) : u € A*, u Zpref X, a € A, ua Zprer X}

Let us note—we need it to simply establish some of the results that follow—
that the Identity (2.4) can be extended to the empty string, the automaton
(Pref(e), €, {€}, F¢) recognizing the empty string.

The construction of the automaton D({x}) can be done in a sequential
way on x, this means that it requires neither the preliminary construction of
the automaton 7 ({x}) as in Section 2.2, nor of the function Border. This is
suggested by the next result.

Proposition 2.29
We have F, = {(s, b, €) : b € A}. Moreover, for every pair (u,a) € A* x A,
we have F,, = F' U F" with

F' = (F, \ {(u, a, Border(ua))}) U {(u, a, ua)}
and
F” = {(ua, b, v) : (Border(ua), b, v) € F'}.

Proof The property is clearly satisfied for F,. Then, let u, a, F’, and F” be
as in the statement of the proposition.

Each arc in F,, that exits a state of length at most |u| is in F’. The converse
is also true.

It remains to show that every arc in F),, exiting the state ua belongs to F”,
and conversely. This amounts to show that, for every letter b € A, the targets
v and v’ of the arcs (ua, b, v) and (Border(ua), b, v') are identical. Now, by
definition of D({ua}), we have v = Border(uab); and if Border(ua)b <yt ua,
v’ = Border(ua)b, and v = Border(Border(ua)b) otherwise. Thus we deduce,
by application of Lemma 1.22, that v = v/, which ends the proof. ]

It is nice to “visually” interpret the previous result: we get D({ua}) from
D({u}) by “unwinding” the arc of source u and of label a; the target is duplicated
with its outgoing arcs. An illustration is proposed in Figure 2.11.
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Figure 2.11. The automaton D({ua}), for u € A* and a € A, can be obtained from the
automaton D({u}) by “unwinding” the arc (u, a, Border(ua)) in this latter automaton. For
instance, from the automaton D({abaa}) (a), we get the automaton D({abaab}) (b) by creating
a new state, 5, by “redirecting” the arc (4, b, 2) to state 5, then by giving to state 5 the same
set of labeled successors that the one of state 2 once the operation is performed. The order of
execution of these operations matters.

The code of function SMA-COMPLETE that constructs then returns the au-
tomaton D({x}) follows. The first three letters of the identifier of the function
means “String Matching Automaton.”

SMA-COMPLETE(xX)
1 M < NEW-AUTOMATON()

2 qo < initial[M]
3 for each letter b € A do
4 Succlqo] < Succlgo] U {(b, q0)}
5 t<qo
6 for each letter a of x, sequentially do
7 p < NEW-STATE()
8 r < TARGET(¢, a)
9 Succ(t] < Succ[t] \ {(a, r)}
10 Succ(t] < Succl[t] U {(a, p)}
11 Succ[p] < Succ[r]

12 t<p
13 terminal[t] < TRUE
14  return M
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An invariant property of the for loop of lines 612 is that the structure already
built coincides with the string matching automaton of the current prefix of
the string x, except in what concerns the terminal state. This detail is fixed in
line 13.

Proposition 2.30
The operation SMA-COMPLETE(x) produces D({x}).

Proof 1tis sufficient to check that the code correctly applies Proposition 2.29.
[

2.6 Locating one string and failure function

We study the implementations of the dictionary automaton D({x}) with the
failure function f and its optimized version f’ introduced in Section 2.3. We
start by establishing some properties satisfied by f’. These properties show
that the function f’ can directly be used during the construction phase of
the implementation Dg({x}), though it is deduced from the function f in the
general case of any dictionary. We then tackle precisely the construction phase,
to finally come to the analysis of the searching phase. In this last subdivision,
we show, in particular, that the delay is logarithmic in the length of the searched
string when the failure function f” is used.

Properties of the optimized failure function

The function f’:Pref(x) — Pref(x) — as done above for functions # and f —
can be more simply rewritten with the notion of border. It can be reformulated
in

f'(x) = Border(x)
for x, then in
fw)y=v
for every u <t x for which there exists a string v such that
v = the longest border of u with x[|u|] # x[|v]],

and it is not defined everywhere else.
From this reformulation, we deduce the two properties that follow.

Lemma 2.31
For every string u <peer X for which f'(u) is defined, we have:

s _ | Border(u) if x[|u|] # x[|Border(u)|],
Flw = f'(Border(u)) otherwise.
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Proof The string f’(u) is a border of u. If the longest border of u does
not suit, that is, when x[|u|] = x[|Border(u)|], f'(u) is exactly f'(Border(u)),
which string ensures that the two letters x[| f'(Border(u))|] and x[|Border(u)|]
are distinct. Thus, the equality holds. ]

Lemma 2.32

Let ua <pref x withu # € and a € A. If a # x[|Border(u)|], then Border(ua)
is, either the longest of the strings of the form x[0.. |f’k(Border(u))|], with
k > 1, satisfying x[|f’k(Border(u))|] = a, or € when no natural k suits.

Proof Analogous to the second part of the proof of Lemma 1.22. ]

Implementation of the failure functions with tables

We choose for all the rest a data structure particularly well adapted to the
studied case, in which each state in the trie 7 ({x}) is represented by its level.
It is thus sufficient for representing 7 ({x}), its terminal state and one of the
failure functions (f or f”) to store:

¢ the string x,
¢ its length m = |x]|,
* atable indexed from O to m having values in {—1,0, ..., m — 1},

the value NIL for the states being replaced, by convention, by the integer
value —1. The tables corresponding respectively to failure functions f and f’
are denoted by good-pref and best-pref. The first is called the table of good
prefixes, the second the table of best prefixes. They are thus defined by

|Border(x[0..i — 1])| ifi # 0,

good-prefli] = { 1 otherwise,

and

|F/(x[0..i — 1| if f/(x[0..i — 1]) is defined,
—1

best-pref[i] = { otherwise

fori =0,1,..., m. We note that
good-pref|i] = border[i — 1]

fori = 1,2, ..., m (the table border is introduced in Section 1.6). An example
is shown in Figure 2.12.

The two following codes produce the table good-pref and the table best-pref
respectively. The first code is an adaptation of the code of the function BORDERS
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(©)

i o 1 2 3 4 5 6 7 8
x[i] a b a a b a b a
borderli] o o 1 1 2 3 2 3
good-prefli] -1 0 O 1 1 2 3 2 3
best-prefli] -10 -11 0 —-13 -13

Figure 2.12. Table representation of the failure functions f and f’ for the implementation
Dr({x}) of the dictionary automaton D({x}) when x = abaababa. (a) The implementation
Dr({x}) and its failure function f (this is nothing else but the function Border). (b) The
implementation Dg({x}) and its optimized failure function f’. (c) Tables border, good-pref,
and best-pref. The second corresponds to f, and the third to f”.

that produces the table border. The “shift” of one unit on the indices allows
a more simple algorithmic formulation, notably at the level of the loop of
lines 67 on the borders of the prefix x[0.. j — 1]. We follow the same schema
for the second function, by applying the results of Lemmas 2.31 and 2.32.

GOOD-PREFIX(x, m)

[y

good-pref[0] < —1
i <0
for j < 1tom —1do
> Here, x[0..i — 1] = Border(x[0..j — 1])
good-pref[jl < i
while i > 0 and x[j] # x[i] do
i < good-prefTi]
i<—i+1
good-pref[m] < i
10 return good-pref

O 00 1 O Lt B W
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BEST-PREFIX(x, m)
best-pref[0] < —1

—

2 i<«0

3 forj <« 1tom—1do

4 > Here, x[0..i — 1] = Border(x[0..j — 1])
5 if x[j] = x[i] then

6 best-pref|j] < best-prefli]

7 else best-pref[j] < i

8 do i < best-prefli]

9 while i > 0 and x[j] # x[i]

10 i<—i+1

11 best-pref[m] < i
12 return best-pref

Theorem 2.33

The operations GOOD-PREFIX(x, m) and BEST-PREFIX(x, m) produce respec-
tively the table of good prefixes and the table of best prefixes of the string x of
non-null length m.

Proof This is a consequence of the definitions of tables good-pref and
best-pref, of Proposition 1.23, and of Lemmas 2.31 and 2.32. ]

Theorem 2.34

The execution of the operation GOOD-PREFIX(x, m) takes a time ©(m) and
requires at most 2m — 3 comparisons between letters of the string x. Same
result for the operation BEST-PREFIX(X, m).

Proof See proof of Proposition 1.24. ]

Let us recall that the bound of 2m — 3 comparisons has been established by
reasoning on the local variables of function BORDERs (i and j) and not by a
combinatorial study on the strings of length m. We showed that it is reached in
the case of the computation of the table border. So it is for good-pref. But it is
not that tight for best-pref. One can indeed show that it is never reached when
m > 3, and that only strings of the form aba™~? or aba™ *c with a, b, c € A
and a # b # c # a require 2m — 4 comparisons. Establishing this tight bound
is proposed as an exercise (Exercise 2.8).

Searching phase

The code of the algorithm that realizes the search for the nonempty string x of
length m with the help of one of the two tables good-pref or best-pref in a text
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y is given below. The parameter 7 represents any one of the two tables. The
conditional instruction® in lines 4—5 remains to set x[0..i — 1] as the longest
proper prefix of the string x that is also a suffix of the scanned part of y; as an
occurrence of x has just been located, this prefix is the border of x.

PREFIX-SEARCH(x, m, 7, ¥)

1 i<0
2 for each letter a of y, sequentially do
3 > Here, x[0..i — 1] is the longest prefix of x

>  which is also a suffix of y

4 if i = m then

5 i < m[m]

6 while i > 0 and ¢ # x[i] do

7 i < mli]

8 i <—i+1

9 OUTPUT-IF(i = m)
Theorem 2.35

Whether the parameter i represents the table good-pref or the table best-pref,
the operation PREFIX-SEARCH(x, m, 7, ¥) executes in time ©(|y|) and the num-
ber of comparisons performed between letters of x and letters of y never exceeds
2[yl - L

Proof The bound of the number of comparisons can be established by con-
sidering the quantity 2|u| — i where u is the current prefix of y (refer to the
proof of Lemma 2.13). The linearity in |y| for the time complexity follows. m

As indicated in the proof of Proposition 2.16, the worst case of 2|y| — 1
comparisons is reached when, for a, b € A with a # b, ab is a prefix of x
while y is only composed of a’s.

If it does not translate on the bound of the worst case of the number of
comparisons, the utilization of the optimized failure function is qualitatively
appreciable: a letter of the text y is never compared to two identical letters of
the string x consecutively. An example is given in Figure 2.13. We use this
illustration to show that the search for a string with an automaton (or of one of
its implementations) can very well be interpreted with the help of the sliding
window mechanism. In the present case, the assignment i <— 7 [i] in line 7 of
PREFIX-SEARCH corresponds to a shift of the window by i — ' [i] positions to

! Note that this instruction can be deleted if we can put a letter that does not occur in y at the
end of x, at the index m.
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ylbabababiabaabbaaibaababaa‘

x‘abaababa‘

ylbababababaiabbaabaaibabaa‘

o

x [abaaba a‘

ylbababababaabizaab abaibaa‘
beaababa‘

»

ylbababababaabbiaabaababiaa‘

xlabaababa‘

Figure 2.13. Local behaviors for the implementation Dg({x}) whether the failure function
f is used or its optimized version f” is, with x = abaababa. (Refer to Figure 2.12 to see
the values of the two corresponding tables good-pref and best-pref.) The illustration uses
artifacts used elsewhere for string matching algorithms using a sliding window. The suffix of
length 5 of the current prefix of the text (its already scanned portion, top line of the picture)
and the prefix of length 5 of x are identical (light gray areas). The comparison of the letters
at the next positions is negative (dark gray areas). With the failure function f, the window
is shifted by 5 — good-pref[5] = per(abaab) = 3 positions; the next two comparisons being
still negative, the window is shifted by 2 — good-pref[2] = per(ab) = 2 positions, then by
0 — good-pref[0] = 1 position. Thus, 3 comparisons overall on the same letter of the text,
for an eventual shift by 6 positions. On the contrary, if the optimized version f” is used, the
window is directly shifted by 5 — best-pref[5] = 6 positions, after only one comparison.

the right; and the assignment i <— 7 [m] in line 5, corresponds to a shift by the
period of the string x.

More generally now, if the number of comparisons on a same letter of the
text can reach m with the failure function f (when x = a™ with a € A and
a different letter of a is aligned with the last letter of x), it is no more than
logg,(m + 1) with the failure function f’. This is what indicates Corollary 2.38,
established after Lemma 2.36 and Theorem 2.37.

Lemma 2.36
We have

F*(u) defined implies |u| > | f'(w)| + | f*u)| + 2
for every u <prer x.

Proof Since the strings f'(u) and f "(u) are borders of u, the integers p =
lu| — | f'(u)| and g = |u| — |f’2(u)| are periods of u. By contradiction, if we
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assume that [u| < | f'(u)| + |f’2(u)| + 1, we have also (|u] — | f'(w)]) + (Ju| —
|f’2(u)|) — 1 <|u|, thus p+q — 1 < |u|. The Periodicity Lemma indicates
then that ¢ — p is a period of u. As a consequence the two letters x[| f ’2(u)|]
and x[| f'(u)|] of u are identical since they are located at distance ¢ — p, which
contradicts the definition of f ’2(14) and ends the proof. [ ]

Theorem 2.37

During the operation PREFIX-SEARCH(x, m, best-pref, y), the number of con-
secutive comparisons performed on a same letter of the text y is no more than
the largest integer k that satisfies the inequality |x| + 1 > Fyy».

Proof Let k be the largest integer associated with the sequences

(, £'@), £, ..., £ w)

where u <t x and f ’k(u) is not defined. This integer k bounds the number
of comparisons considered in the statement of the theorem. We now show by
recurrence on k that:

lul = Fir — 2. (2.5)

Inequality (2.5) is satisfied when k = 1 (since F3 — 2 = 0) and k = 2 (since
Fy —2 = 1, and itis necessary that u is nonempty in order that f'(u) is defined).
Let us assume for the rest k > 3. In this case, f'(u) and f/z(u) exist, and the
recurrence applies to these two strings. It follows thus that:

| = £/ @]+ £ @) +2 (after Lemma 2.36)
> (Fre1 —2) + (Fr —2) + 2 (recurrence)
= Fip — 2.

This ends the proof by recurrence of Inequality (2.5).
Finally, since u <pr x, it follows that |x| + 1 > |u| + 2 > Fj >, which is
the stated result. ]

Corollary 2.38

During the operation PREFIX-SEARCH(x, m, best-pref, y), the number of con-
secutive comparisons performed on a same letter of the text y is no more than
logg,(|x| 4 1). The delay of the operation is O(log |x|).

Proof If k is the maximal number of consecutive comparisons performed on
a same letter of the text, we have, after Theorem 2.37:

x| + 1> Fipo.
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yl. .abaababaabajc

xlabaababaabaababa

xlabaababaabaababa‘

xlabaababaabaababa‘

xlabaababaabaababa‘

beaababaabaababa‘

Figure 2.14. When the string x is a prefix of a Fibonacci string and k is the integer such
that Fr» < |x| + 1 < Fy43, the number of consecutive comparisons performed on one letter
of the text y during a search with the implementation Dr({x}) can be equal to k. Here,
X = abaababaabaababa. It is a prefix of fs; F7 = 13, |x|+1 =17, Fs =21, thus k = 5;
and five comparisons are effectively performed on the letter c of y.

From the classical inequality
Fn+2 = CDn»

it comes |x| + 1 > @, which leads to logg(|x| + 1) > k. The stated results
follow. ]

The bound on the length of x given in the statement of Theorem 2.37 is very
tight: it is reached when x is a prefix of a Fibonacci string. An example is given
in Figure 2.14.

2.7 Locating one string and successor by default

We again consider the implementation of the dictionary automaton with the
initial state as successor by default (see Section 2.4) by applying it in the
particular case of a dictionary composed of a single nonempty string x. We
show that, contrary to the general case, it is not necessary to maintain the sets
of labeled successors sorted according to the alphabet in order to ensure the
linearity of the construction of the implementation D,({x}) according to the
length of the string x to locate. We also show that the delay is logarithmic in
the length of the searched string, independently of a possible order in the sets
of labeled successors.

Construction of the implementation

The following result comes directly from the definition of D({x}) and from
Propositions 2.19 and 2.23.
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Theorem 2.39
The size of Dp({x}) is O(|x|). More precisely, D,({x}) possesses |x| + 1 states,
|x| forward arcs, and at most |x| backward arcs. [ ]

The construction method of the implementation follows the one developed
for the complete automaton (Section 2.2). It consists here in not generating
the arcs of D({x}) that enter the initial state. To this aim, we adapt the code of
function SMA-CcOMPLETE by deleting the for loop of lines 3—4 and by inserting,
after line 8, instructions for simulating the return to the initial state of some
arcs. We get the code that follows:

SMA-BY-DEFAULT(X)
1 M < NEW-AUTOMATON()
2 qo < initial[M]
3 t<«qo
4 for each letter a of x, sequentially do

5 p < NEW-STATE()
6 r < TARGET(Z, a)
7 if » = NIL then
8 r < qo
9 else Succ[t] < Succ[t]\ {(a, r)}
10 Succ[t] < Succ[t] U {(a, p)}
11 Succ[p] <« Succ|r]
12 t<p
13 terminal[t] < TRUE
14 return M
Proposition 2.40
The operation SMA-BY-DEFAULT(x) produces Dy({x}), implementation of the
automaton D({x}) by successor by default. ]

We establish now a result on the construction of the implementation that is
more than an immediate adaptation of Theorem 2.25.

Theorem 2.41

The operation SMA-BY-DEFAULT(x) runs in time O(|x|) using a constant extra
space, whether the sets of labeled successors is sorted according to the alphabet
or not.

Proof The operations on the set of labeled successors of a state that is neither
the initial state, nor the terminal state of the automaton are those of lines 11, 5, 6,
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possibly 9, then 10 of function SMA-BY-DEFAULT. Each of them is realized in
time at most linear in the final size of the set. It is clear that it is the same for the
initial state and the terminal state. Overall, it comes that the construction time
is at most linear in the sum of the cardinals of the sets of labeled successors,
which is O(|x|) after Theorem 2.39. ]

Searching phase

The next theorem directly follows after Lemma 2.26 and Proposition 2.28.

Theorem 2.42

For the operation DET-SEARCH-BY-DEFAULT({x}, ), the searching phase ex-
ecutes in time O(|y|). More precisely, the number of comparisons performed
between letters of x and of y is at most equal to 2|y| — 1 when y # ¢, what-
ever the order in which the elements of the sets of labeled successors are
examined is. L]

It remains to specify the order of magnitude of the delay. Let us recall
that it depends directly on the maximal outgoing degree of the states of the
implementation Dy({x}). Furthermore, we denote by deg, the function that
associates with every state v in Dp({u}) its outgoing degree. Lemmas 2.43 and
2.44 express the recurrence relations on the outgoing degrees.

Lemma 2.43
Let (u, a) € A* x A. Then, for every w =pref Ua, we have:

deg,(Border(ua)) if w = ua,

deg,,(w) = { deg,(u) + 1 if w = u and Border(ua) = ¢,
deg,(w) otherwise.
Proof This is a direct consequence of Proposition 2.29. ]
Lemma 2.44
We have:

deg,(x) = deg (Border(x)).

Moreover, for every va <pret X, With v <pret X and a € A, we have:

deg (Border(v)) + 1 ifv # ¢ and Border(va) = ¢,

deg.(v) = { deg,.(Border(v)) if v # ¢ and Border(va) # ¢,
1 ifv=e.
Proof This is a direct consequence of Lemma 2.43. ]

The result that follows is the “cornerstone” of the proof of the logarithmic
bound that will be given in Lemma 2.46.
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Lemma 2.45
For every nonempty prefix u of x, we have:

2|Border(u)| > |u| implies deg, (Border(u)) = degx(Borderz(u)).

Proof Let us set k = 2|Border(u)| — |u|, then w = u[0..k — 1] and a =
w([k]. Let us note that, since wa is a border of Border(u)a, the border
of Border(u)a is not empty. We apply then Lemma 2.44 to the prefix
va = Border(u)a of x and we get the result. [ ]

Lemma 2.46
For every u <.t x, we have:
P

deg,(u) < [logy(Jul + )] + 1.

Proof We show the property by recurrence on the length |u| of the proper
prefixes u of x. If |u| = 0, the property holds since deg,(g) = 1. For the recur-
rence step, |u| > 1, let us set that the property holds for all the prefixes of x of
length at most |u|. Let i € N be such that

20 < |ul+1 <2 (2.6)
and let j € N be such that
|Border’ ™' ()] + 1 < 2 < |Border’ (u)| + 1. (2.7)
Fork=0,1,...,j — 1, we have

2|Border* ! ()| > 21t — 2 (after Inequality (2.7))
> |u| (after Inequality (2.6))
> |Border* (u)|.

It follows then, by applying Lemma 2.45, that:
deg (|Border* ™ (u)|) = deg, (|Border* "*(u)|)
fork =0,1,...,j — 1. This leads to
deg,(|Border(u)|) = degx(|B0rderj+1(u)|). (2.8)

As a consequence, we have:

deg . (u) < deg (Border(u)) + 1 (after Lemma 2.44)
= deg, (Border’ ™' (u)) + 1 (after Equality (2.8))
< [log,(|Border’ ™ (u)| + 1)] +2 (recurrence),
<i+1 (by definition of j)

log,(Jul + D] + 1 (by definition of 7).
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The property is thus true for every string of length |u|, which ends the proof by
recurrence. ]

Theorem 2.47
The degree of any state of the implementation Dy({x}) is no more than
min{card alph(x), 1 + [log, |x|]}.

Proof The bound that depends on the alphabet of the string results from
Proposition 2.21. For the bound that depends on the length of the string, this is
a direct consequence of Lemmas 2.44 (for the state x) and 2.46 (for the other
states). [

A consequence of Theorem 2.47 is the following corollary.

Corollary 2.48
For the operation DET-SEARCH-BY-DEFAULT({x}, y), the delay is O(s) where

s = min{card alph(x), 1 + [log, |x|]}

whatever the order in which the elements of the sets of labeled successors are
examined is. When these sets are sorted according to the alphabet, the delay
becomes O(logs). [ ]

The bound on the degree given in Theorem 2.47 is optimal for | x| fixed (and
by taking the alphabet into account). Let us consider the function on strings

E:A* — A*
defined by the recurrence
E(e)=c¢
Ewa)=£Ew)-a-Eu) for(u,a) e A* x A.
Then, when the string £(ajas . .. ar—1)a; is a prefix of the string x with k =
min{card A, 1 + |log, |x|]} and a;, ay, ..., a; are pairwise distinct letters, the
outgoing degree of the state £(a;a; . . . ar—1) is exactly k. An example is shown

in Figure 2.15 on an alphabet containing at least the letters a, b, c, and d, and
with x = &(abc)d.

Challenge of implementations for searching for
one string

The observations made at the end of Section 2.4 concerning the two implemen-
tations with failure function and with successor by default have to be partially
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Figure 2.15. The implementation Dp({x}) when x = abacabad. The maximal outgoing de-
gree of states is equal to 4 (state 7), this is the maximum possible for a string that, as x, has
a length within 23 and 2* — 1, and is formed of at least four distinct letters.

ababac.......‘ yl..ababac

«[babal
¢ [baladl  [baladl
v Blabadl  Ebabadl
v Ebavadl

(@) (b)

ababac

v fbalagl

(©

Figure 2.16. Behavior of three sequential string matching algorithms when the last letter of
the pattern x = ababaa is aligned with the letter c that occurs in the text y. (a) Implementation
Dr({x}) with failure function f; 4 comparisons between the letters of x and the current letter
of y, with 2 redundant comparisons. (b) Its version with f’; 3 comparisons, the last one being
redundant. (¢) Implementation Dp({x}) when the elements of the sets of labeled successors
are scanned in order of decreasing level; 2 comparisons only, and it cannot be done better.
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amended here. In the case of the search for a single string, the time and space
complexities are all linear, either in the length of the string to locate for the
structures to memorize, or in the length of the text in which is performed the
search of the string. The implementation with the initial state as successor by
default presents, however, some extra advantages:

1. It runs in real time on an alphabet considered as constant (i.e., the delay is
bounded by a constant).

2. It has a logarithmic-based 2 delay, which is better than a logarithmic-based
® delay.

3. It makes a smaller number of comparisons between letters of the string and
of the text when the labeled successors of the states are inspected in
decreasing order of level (see the example in Figure 2.16).

4. The order of inspection of the successors is modifiable, without any
consequence on the linearity of the complexities.

Notes

The results presented in this chapter come initially from the works of Knuth,
Morris, and Pratt [170], and of Aho and Corasick [87].

The search with failure function for a dictionary described in Section 2.3
is adapted from Aho and Corasick [87]. Based on the result of Section 4.5
and other techniques, Dori and Landau [131] designed a linear-time pre-
processing of the dictionary automaton that is independent of the alphabet
size.

The treatment of Section 2.4 is original; it pursues the works of Simon [207],
and of Hancart [149] for locating a single string with an automaton.

The search algorithm by the prefixes (Section 2.6) is of Morris and
Pratt [188]. Its optimized version (same section) is an adaptation of the one
given by Knuth, Morris, and Pratt [170]. The linearity of the size of the imple-
mentation D,({x}) (Section 2.7) is due to Simon [207] (see [32]). He simulta-
neously showed the linearity of the construction and of the associated searching
phase. The fact that the order of inspection does not modify the linearity of
the construction and of the searching phases is due to Hancart [149]. He gave
the exact bound on the delay. The exact bound on the number of comparisons
for the sequential search for a string in the comparison model was then given
by Hancart [149] (see Exercise 2.10) and, for a close problem, by Breslauer,
Colussi, and Toniolo [110] (see Exercise 2.14).
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Exercises

2.1 (Regular)

Compare the complexities of the algorithms searching for the occurrences of
the strings of a dictionary described in this chapter with the standard algorithms
having a regular expression describing the dictionary as input.

2.2 (Determinization)

Show that if we consider the construction by subset to determinize the au-
tomaton 7 (X) augmented with a loop on the initial state, the states of the
deterministic automaton are of the form

{u, f@), f2u),... e
with u € Pref(X).

2.3 (Failure)
Show that the function f can be expressed independently of function #, that is,
it satisfies for every (u, a) € A* x A the relation:
fwa if u # ¢ and f(u)a € Pref(X),
f(ua) = { f(fw)a) ifu+e¢and f(u)a ¢ Pref(X),

e otherwise.

2.4 (Laziness)

Design for each of the pattern matching algorithms of the chapter a lazy version
that constructs the associated automaton, or one of its particular implementa-
tions, when needed during the search.

2.5 (Fast loop)

Code the implementation of Dp(X) with a fast loop on the initial state with
the help of a table on the alphabet. (Hint: it actually consists of the original
algorithm of Aho and Corasick [87].)

2.6 (Truly linear)

Algorithms of the chapter that are meant for the construction of dictionary
automata have a running time that depends on the alphabet size. Show that it is
possible to get a linear-time algorithm on a bounded integer alphabet by using
the suffix array construction of Section 4.5 to build the tree, and the suffix tree
of reverse strings of the dictionary to set up the failure function. (Hint: see Dori
and Landau [131].)
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2.7 (Blindly ahead)

We consider that the sets of labeled successors of the implementation D,(X)
are lists. We apply to these lists the technique of autoadaptative search which,
for each successful search of a particular element in a list, reorganizes the
list by putting the found element at the head. What is the complexity of the
construction of this implementation? What is the complexity of the searching
phase (including the updating of the lists)?

2.8 (Bound)

Show that 2m — 4 is the exact bound of the maximal number of comparisons
between letters performed during the computation of the table of best prefixes
of strings x of length m > 3 during the operation BEST-PREFIX(x, m). (Hint:
possibly show that the bound of 2m — 3 comparisons is only reached for strings
of the form a”™ ‘b withm > 2,a,b € Aand a = b during the operation GOOD-
PREFIX(x, m11). Show then that only strings of the form aba™ 2 or aba™ 3¢ with
m=>3,a,b,c € A,and a # b # ¢ # a require 2m — 4 comparisons.)

2.9 (The worst case unveiled)
Show that some prefixes of the Fibonacci strings reach the bound on the number
of consecutive comparisons of Corollary 2.38.

2.10 (The first at the end)
Show that the number of comparisons performed during the search for every
string x of non-null length m in a text of length n is at most (2 — 1/m)n if
we utilize the implementation D,{x} by inspecting the forward arc at the end
during the computation of each transition.

Show that the bound (2 — 1/m)n is a lower bound of the worst case of the
sequential search in the comparison model. (Hint: see Hancart [149].)

2.11 (Real time)
Show that the search for a string or for several strings can be performed in real
time when the letters of the alphabet are binary encoded.

2.12 (Conjugates)
Give an algorithm that tests if two strings # and v are conjugate of each others
and that runs in time O(|u| + |v]).

2.13 (Palindromes)

We denote by P the set of palindromes of even length. Show that we can test if
a string x belongs or not to P* — called palstars, for even palindromes starred —
in time and in space O(|x|). (Hint: see Knuth, Morris, and Pratt [170].)
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2.14 (Prefix-matching)

The problem of prefix-matching consists, for a given string x and a given text y,
in determining at each of the positions on the text the longest prefix of x whose
occurrence ends here. Show that this problem admits solutions and bounds (see
Exercise 2.10) identical to the sequential search for a string in a text in the
comparison model. (Hint: see Breslauer, Colussi, and Toniolo [110].)

2.15 (Codicity test)
We consider a dictionary X C A* and the associated graph G = (Q, F) in
which Q = Pref(X) \ {€} and F is the set of pairs (u, v) of strings of Q such
that uv € X (crossing arc) or, both, v ¢ X and uz = v for a string z € X
(forward arc).

Show that X is a code (see Exercise 1.10) if and only if the graph G has no
path that links two elements of X.

Write a construction algorithm of G that uses the dictionary automaton
associated with X.

Complete the algorithm to get a codicity test of X.

What is the complexity of the algorithm? (Hint: see Sardinas and
Patterson [204].)
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String searching with a sliding window

In this chapter, we consider the problem of searching for all the occurrences of
a fixed string in a text. The methods described here are based on combinatorial
properties. They apply when the string and the text are in central memory or
when only a part of the text is in a memory buffer. Contrary to the solutions
presented in the previous chapter, the search does not process the text in a
strictly sequential way.

The algorithms of the chapter scan the text through a window having the
same length as the pattern length. The process that consists in determining if
the content of the window matches the string is called an attempt, following
the sliding window mechanism described in Section 1.5. After the end of each
attempt the window is shifted toward the end of the text. The executions of
these algorithms are thus successions of attempts followed by shifts.

We consider algorithms that, during each attempt, perform the comparisons
between letters of the string and of the window from right to left, that is to
say, in the opposite direction of the usual reading direction. These algorithms
match thus suffixes of the string inside the text. The interest of this technique is
that during an attempt the algorithm accumulates information on the text that
is possibly processed later on.

We present three more and more efficient versions in terms of number
of letter comparisons performed by the algorithms. The first memorizes no
information, the second memorizes the match of the previous attempt, and
the third keeps track of all the matches of previous attempts. The number of
comparisons is an indicator used to evaluate the obtained gains. In the last
section, we consider a method that generalizes the process for searching a text
for strings of a dictionary.

102
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3.1 Searching without memory

Let x be a string of length m that we want to search for all the occurrences in a
text y of length n. In the rest, we say of x that it is periodic when per(x) < m/2.

We first present a method that realizes the search by mean of the principle
recalled in the introduction. When the string x is nonperiodic, it performs
less than 3n comparisons between letters. One of the characteristics of this
algorithm is that it keeps no memory of the previous attempts.

This section contains, moreover, a weak version of the method, which anal-
ysis is given thereafter. The preprocessing phase of this version, that executes
in time and in space O(m), is more simple; it is developed in Section 3.3. The
preprocessing of the initial version, based on an automaton, is described in
Section 3.4.

In this chapter, we consider that when an attempt takes place at position j
on the text y, the window contains the factor y[j —m + 1.. j] of the text y.
The index j is thus the right position of the factor. The longest common suffix
of two strings u and v being denoted by

lesuff (u, v),

for an attempt 7 at position j on the text y, we set

7z = lesuff(y[0. . j], x),

and d the length of the shift applied just after the attempt T'.

The general situation at the end of the attempt 7 is the following: the
suffix z of x has been identified in the text y and, if |z| < |x|, a negative
comparison occurred between the letter a = x[m — |z| — 1] of the string and
the letter b = y[j — |z|] of the text. In other words, by settingi = m — |z| — 1,
wehavez =x[i+1..m—1]=y[j—m+i+2..j]and,eitheri = —1, or
i >0witha =x[i]l,b=y[j —m+ i+ 1] and a # b (see Figure 3.1).

v | o[ = | |

LB

1

Figure 3.1. General situation at the end of an attempt at position j. The comparison of the
content of the window y[j —m + 1.. j] with the string x proceeds by letter comparisons,
from right to left. The string z is the longest common suffix of y[0.. j] and x (positive
comparison area, indicated in light gray). When this suffix of the string x is not x itself, the
position on x in which occurs a negative comparison (in dark gray) satisfiesi = m — |z| — 1.
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ylbaibabababaiaabaababab‘
x [abablaab a
(@) P )
ylbabab|ababaaab|aababab‘
xlababaaba‘
ylbababaibabaaabaiababab‘
x [abalbaab a
(b)

ylbababababaaiabaababaib‘

xlababaaba‘

Figure 3.2. Shifts following attempts. (a) During the attempt at position 9, the suffix aba
of the string is detected in the text. A negative comparison occurs between x[4] = a and
y[6] = b. The shift to apply consists in aligning the factor baba of the text with its (rightmost)
occurrence in x. We apply here a shift of length 3. (b) During the attempt at position 13, the
suffix aaba of the string matches the text. A negative comparison occurs between x[3] = b
and y[9] = a. The factor aaaba does not occur in x; the shift to apply consists in aligning a
longest prefix of the string matching with a suffix of the factor aaaba of the text. Here, this
prefix is aba and the length of the shift is 5.

Taking into account the information collected on the text y during the
attempt, the natural shift to apply consists in aligning the factor bz of the text
with its rightmost occurrence in x. If bz is not a factor of x, we must then
perform the alignment (to the right) considering the longest prefix of x that is
also a suffix of z. These two cases are illustrated in Figure 3.2.

In the two situations that have just been examined, the computation of
the shift following T is rather independent of the text. It can be previously
computed for each position of the string and for each letter of the alphabet. To
this aim, we define two conditions that correspond to the case where the string
z is the suffix x[i + 1..m — 1] of x. They are the suffix condition Sc and the
occurrence condition of letter Oc. They are defined, for every position i on x,
every shift d of x, and every letter b € A, by

O<d<i+4landx[i—d+1..m—d —1] Zqug x
Sc(i,d) = { or
i+1<dandx[0..m —d — 1] <t x
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and

O<d<iandx[i —d]=0b
Oc(b,i,d) = { or
i<d.

Then, the function of the best factor, denoted by best-fact, is defined in the
following way: for every position i on x and every letter b € A,

best-fact(i, b) = min{d : Sc(i, d) and Oc(b, i, d) hold}.

We note that best-fact(i, b) is always defined since the conditions are satisfied
ford = m.

A direct implementation of the function of the best factor requires a memory
space O(m x card A). Actually, a finer solution based on an automaton only
requires a space O(m). It is presented in Section 3.4. We further introduce a
weak version of the function for which the space linearity of the implementation
is immediate.

Searching phase

During an attempt at position j on the text y, and when a negative comparison is
performed between the letter x[i] of the string and the letter y[j —m + 1 4 i]
of the text, we apply a shift of length

d = best-fact(i, y[j —m + 1 +i]).

Once the shift is performed, the first condition, Sc(i, d), ensures that the factor
yl[j—m+2+i..j] of the text and the factor (or prefix) of the string with
which it is aligned are identical. Whereas the second condition Oc(y[j — m +
1 4 i], i, d) ensures that if a letter of the string is aligned with y[j — m + 1 +{]
then it matches this one.

We note that, if during an attempt, an occurrence of the string is discovered
in the text (which corresponds to i = —1), the shift to apply is of length per(x).
‘We moreover note that

best-fact(0, b) = per(x)

for every letter b € A.
The algorithm MEMORYLESS-SUFFIX-SEARCH, whose code is given below,
implements the method that has just been described.
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ababal

ylaaacabiaaacabacaiaacababa‘

xlaaacababa‘

ylaaacabaaaciabacaaacaibaba‘

xlaaacababa‘

ylaaacabaaacabaclaaacabab al

x [aaacabab a

Figure 3.3. Running example of algorithm MEMORYLESS-SUFFIX-SEARCH. In this case, 15
comparisons between letters of the string and letters of the text are performed.

MEMORYLESS-SUFFIX-SEARCH(x, m, y, n)
1 j<«<m—1
2 while j < ndo

3 i< m-—1

4 whilei > Oand x[i]=y[j —m+ 1+ i] do

5 i<~—i—1

6 OuTPUT-IF(i < 0)

7 if i < 0 then

8 J < J +per(x)

9 else j <« j + best-fact(i, y[j —m + 1 +1i])

An example of execution is given in Figure 3.3. The values of the strings x and y
considered in this example will be used again thereafter. They serve to illustrate
the difference of behavior of the diverse searching algorithms presented in the
chapter.

Theorem 3.1
The algorithm MEMORYLESS-SUFFIX-SEARCH finds all the occurrences of the
string x in the text y.

Proof By definition of the functions best-fact and per, all the shifts applied
by the algorithm MEMORYLESS-SUFFIX-SEARCH are valid. The algorithm cannot
thus miss any occurrence of x in y. ]

We easily find cases for which the behavior of the algorithm MEMORYLESS-
SUFFIX-SEARCH is quadratic, O(m x n), for instance when x = a” and y = a".
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Weak version

It is possible to approximate the function of the best factor in order to avoid
the requirement of having to use an automaton, which simplifies the realization
of the whole algorithm. The approximation is given by a function called good
suffix implemented by a table. It is traditional to add to it the table last-occ
introduced in Section 1.5.
We define the new weak-occurrence condition WOc by
0 <d <iandx[i —d] # x[i]
WOc(i,d) = { or
i<d.

The table of the good suffix is then defined, for a position i on x, by
good-suff[i] = min{d : Sc(i, d) and WOc(i, d) are satisfied}.

The condition WOc(i, d) ensures that if a letter ¢ of the string is aligned with
the letter b = y[j — m + 1 + i] after the shift, then c is different from the letter
a = x[i] which was aligned with b just before the shift and caused a mismatch.
This weakens the condition Oc(b, i, d) that imposes the identity of the letters
c and b (line 9 of algorithm MEMORYLESS-SUFFIX-SEARCH). We note that in
the case of a binary alphabet the utilization of the table of the good suffix in
the searching algorithm is equivalent to using the function of the best factor
because the two functions are identical.

The preprocessing phase of the algorithm W-MEMORYLESS-SUFFIX-SEARCH
thus comes down to the computation of the table good-suff only. It is pre-
sented in Section 3.3. As previously, we note that good-suff [0] has for value
per(x).

In the code that follows, we only utilize the table good-suff, the addition of
the heuristic last-occ being an immediate variant. An example of execution of
the algorithm is shown in Figure 3.4.

W-MEMORYLESS-SUFFIX-SEARCH(X, m, good-suff , y, n)
1 j<m—1
2 while j <ndo
3 i< m-—1
whilei > Oand x[i]=y[j —m+ 1+ i]do
i <—i—1
OuTpPUT-IF(I < 0)
if i < O then
J < J+per(x)
else j < j 4+ good-suffli]

O 00 3 N L B
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Figure 3.4. Execution, on the example of Figure 3.3, of the algorithm W-MEMORYLESS-
SUFFIX-SEARCH that uses the good suffix table. With this algorithm, 19 comparisons between
letters of the string and of the text are performed.

Theorem 3.2
The algorithm W-MEMORYLESS-SUFFIX-SEARCH finds all the occurrences of the
string x in the text y.

Proof By definition of the table good-suff and of the function per, all the
shifts applied by the algorithm W-MEMORYLESS-SUFFIX-SEARCH are valid. The
algorithm cannot thus miss any occurrence of the string x in the text y. ]

3.2 Searching time

We show, in this part, that the algorithm W-MEMORYLESS-SUFFIX-SEARCH per-
forms at most 4n comparisons between letters of the string and letters of the
text when it is used for searching a text of length n for a string x that satisfies
the condition per(x) > m /3. We start by showing three technical results that
serve as a basis for the proof of the result.

The first statement is illustrated in Figure 3.5.

Lemma 3.3

Let x be a string, y be a text, v be a primitive string, and k be an integer such
that vV2 <gg x, ¥y = V¥, and k > 2. During the execution of the operation W-
MEMORYLESS-SUFFIX-SEARCH(X, m, good-suff, y, n), if there exists an attempt
Ty at a position jy on y that is not of the form £|v| — 1 (£ € N), this attempt is



3.2 Searching time 109

yiaaabaaabEiaabaaab‘

xlaaaabaaaE

ylaiaabaaabaEiabaaab‘

xlaaaabaaaE

ylaaiabaaabaaEibaaab‘

xlaaaabaaaE

ylaaaibaaabaaabiaaab‘

xlaaaabaaab‘

Figure 3.5. Example in support of Lemma 3.3. We search for x = a(aaab)’ in y = (aaab)*.
After the attempt at the (right) position 8, 3 shifts (each of length 1) happen, and the window
reaches position 11 that corresponds to a right position of a factor aaab in y. This adjusts the
search according to the period of y.

followed, immediately or not, by an attempt at the position
j=min{h:h=~Lv]|—1,h > jy, £ € N}.

Proof Since v is primitive, from the Primitivity Lemma, it comes that at most
|v| comparisons are performed during the attempt 7. Let a = x[i] be the letter
of the string that caused the mismatch (b = y[jo —m + 1 +i]and a # b). Let
dy = j — jo. The condition Sc(i, dp) is satisfied: dp < iandx[i —dy+1..m —
do — 1] <t x. Same for WOc(i, dy): dp < i and b = x[i — dp] # x[i] =a. It
follows that good-suff [i] < dp.

If good-suff[i] < dy, let j; be the (right) position of the window during
the attempt 7} that immediately follows Ty. We have 0 < d| = j — ji < dp.
The argument applied to the attempt Tp also applies to the attempt 7;. There-
fore, a finite sequence of such attempts leads eventually to the attempt at posi-
tion j. ]

Let T be an attempt at position j on y. We assume that the follow-
ing properties hold: bz <y ¥[0.. j1, az g X, a # b, z = Wk, w < v,
aw < X, k > 2, and v primitive. These properties are assumptions of the
next two lemmas and also of their corollary. Figure 3.6 illustrates the following
statement.

Lemma 3.4
Under the above assumptions there is no attempt at positions j — £|v], 1 <
{ <k — 1, before the attempt T .
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y | [ aaabaabaaba] |
xlaaabaabaabaaba‘

(@)

yl |aaabaabaaba |‘
xlaaabaabaabaaba‘

yi.........aaabaiabaaba....‘
xlaaabaabaabaaba‘

(b)

yl.........iaaabaabaaba...i.‘

xlaaabaabaabaabai

Figure 3.6. Illustration of Lemma 3.4. (a) Let j be the position on y of the current attempt.
We detect the suffix a(aba)® of x in y. A negative comparison occurs between the letters b and
a that precede this factor in the string and the text respectively. The shift to apply is of length 3.
(b) If the attempt described here would have existed previously, it would have led to the same
final situation that the one of part (a). This would contradict the existence of the attempt at
position j.

Proof Let us assume, by contradiction, that there has been an attempt at a
position jy = j — £y|v| for some £, such that 1 < ¢y < k — 1. We would have
bwvk=% < v[0. . joland awvk~% <y x. Forig defined by io = m — |w| —
(k — £o)|v|, we have then dy = good-suff [ig] > £o|v|.

The existence of any shift having a smaller length nonmultiple of |v| would
contradict the fact that v is primitive. Any shift having a smaller length multiple
of |v| would align a letter a of the string with the letter b of the text. It follows
that the shift applied after an attempt at position j, = j — £o|v| has a length
greater than £,. Thus the contradiction. L]

Lemma 3.5
Under the above assumptions, before the attempt T, there is no attempt at
positions £ such that j — |z| + |[v| <€ < j — |v].

Proof From Lemma 3.4, we deduce that there cannot exist an attempt at
positions j — £|v| for 1 < ¢ <k — 1. And from Lemma 3.3, we deduce that
every attempt at another position between j — |z| 4 |v| and j — |v] is followed
(immediately or not) by an attempt at a position j — £|v| with 1 <€ <k — 1.
This gives the result. ]
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Corollary 3.6
Under the above assumptions, before the attempt T, at most 3|v| — 3 letters of
the factor z of y have been compared to letters of x.

Proof AfterLemma 3.5, the attempts preceding the attempt 7" and in which the
letters of z have been compared could only have taken place at positions in the
intervals [j — |z| + 1, j — |z] + |v] — 1]onone hand,and [j — |v| + 1, j — 1]
on the other hand. For the first interval, the prefix of z submitted to comparisons
is of maximal length |v| — 1. For the second that contains |v| — 1 positions,
the factor of z possibly submitted to comparisons is z[|z] — 2|v| + 1..|z| — 2].
Indeed, the number of comparisons performed during an attempt at a position
in the interval [j — |v]| 4+ 1, j — 1] is less than |v| since v is primitive. The
number of occurrences of letters compared is thus bounded by the sum of the
lengths of the two considered factors of z, that is to say 3(Jv| — 1). This is what
we wanted to prove. ]

Theorem 3.7

During the localization of a string x of length m satisfying per(x) > m/3 ina
text y of length n, the algorithm W-MEMORYLESS-SUFFIX-SEARCH performs less
than 4n comparisons between letters of x and letters of y.

Proof For an attempt T at position j, we denote by ¢ the number of occur-
rences of letters compared for the first time during this attempt, and by d the
length of the shift that follows. We are to bound the number of comparisons
performed during attempt 7 by 3d + t.

Let us set z = lesuff (x, y[0.. j]).

If |z| < 3d, the number of comparisons performed during the attempt T is
at most |z| 4+ 1 and the letter y[j] had not been compared before the attempt
T.Thus |z| +1 < 3d + 1.

If |z| > 3d, this implies the conditions z = wvk, bz < ¥[0.. j1, az <eusr
X,a#b, k>1, w <g v, and v primitive, due to the assumption per(x) >
m/3. Moreover k > 2, aw < v, and d > |v|. Thus, by Corollary 3.6, at
most 3|v| — 3 letters of z have been compared before the attempt 7. It follows
that? > |z| — 3|v| 4+ 3 > |z| — 3d + 3. The number of comparisons performed
during attempt 7', |z| 4+ 1, which is less than 3d + |z| —3d + 3 = |z]| + 3, is
thus less than 3d + ¢.

Since the sum of the lengths of all the shifts is less than » and that the
number of letters that can be compared for the first time is less than 7, the result
follows. ]

The 4n bound of the previous theorem is not optimal. Actually, we can show
the following result that we state without proof.
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Theorem 3.8

During the search for a nonperiodic string x of lengthm (i.e., a string for which
per(x) > m/2) in a text y of length n, the algorithm W-MEMORYLESS-SUFFIX-
SEARCH performs at most 3n comparisons between letters of x and letters

of y. [ ]

The theorem does not apply to the case where the string x is periodic. For
these strings, it is sufficient to slightly modify the algorithm W-MEMORYLESS-
SUFFIX-SEARCH in order to get a linear-time algorithm. Indeed, the index i
can continue to run from m — 1 to 0 except when an occurrence has just
been signaled in which case it rather runs from m — 1 to m — per(x). The
algorithm WL-MEMORYLESS-SUFFIX-SEARCH below implements this technique,
called “prefix memorization.”

WL-MEMORYLESS-SUFFIX-SEARCH(x, m, good-suff , y, n)

1 £<+0

2 j<em—1

3 while j <ndo

4 i< m-—1

5 whilei > fand x[i]=y[j —m+ 1+i]do
6 i<i—1

7 OUTPUT-IF(i < £)

8 if i < ¢ then

9 £ < m — per(x)

10 Jj < j +per(x)

11 else £ <0

12 Jj < j 4 good-suffi]

The bound given in Theorem 3.8 is quasi optimal as shows the following
example. Let x = a*~'ba*~! and y = a*~!(aba*~!)¢ with k > 2 (we then have
m=2k—1and n = £(k + 1)+ (k — 1)). On each of the first £ — 1 factors
aba*~! (of length k + 1) of y, the number of comparisons performed by the
algorithm W-MEMORYLESS-SUFFIX-SEARCH is (k — 1)+ (k+ 1)+ (k —2) =
3k — 2. On the rightmost factor of this kind, (k — 1) 4+ (k + 1) = 2k com-
parisons are done. And on the prefix of length k — 1 of y, kK — 2 comparisons
are executed. On the overall, the algorithm W-MEMORYLESS-SUFFIX-SEARCH
performs

3k —2 m—1 10
kD= (n— 3
kpr kD (” 2 )( m+3)

comparisons. Figure 3.7 illustrates the bound with the values k = 5 and £ = 4.
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Figure 3.7. Illustration of the bound of Theorem 3.8 with x = a*ba* and y = a*(aba*)*.
The string x is of length 9, the text y of length 28, and 52 comparisons are performed. For
each factor abaaaa (of length 6) of the text, 13 comparisons are performed.

Corollary 3.9
The algorithm W-MEMORYLESS-SUFFIX-SEARCH finds the first occurrence of a
string of length m in a text of length n in time O(n) and in space O(m).

Proof The result is a consequence of Theorem 3.2 and of Theorem 3.7 (or of
Theorem 3.8). [

3.3 Computing the good suffix table

In this section, we consider the preprocessing on the pattern that is required by
the searching algorithm W-MEMORYLESS-SUFFIX-SEARCH. The preprocessing
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consists in computing both the good suffix table, good-suff, and the period of
x. This latter computation is contained in the first one since we already noticed
that per(x) = good-suff [0]. Two other computations of the table good-suff are
proposed as exercises (Exercises 3.10 and 3.11).

Algorithm

Let us recall that the table of the good suffix used in the algorithm W-
MEMORYLESS-SUFFIX-SEARCH is defined, for a position i on x, by

good-suff[i] = min{d : Sc(i, d) and WOc(i, d) are satisfied}.

To compute it, we utilize the table of suffixes, suff, defined on the string x as
follows. Fori =0,1,...,m — 1,

suffli] = |lesuff (x, x[0..i])|,

that is to say, suff[i] is the maximal length of suffixes of x that occur at the
right position i on x. The table suff is the analogue, obtained by reversing
the reading direction, of the table pref of Section 1.6. This latter provides the
maximal lengths of prefixes of x beginning at each of its positions. Figure 3.8
gives the two tables suff and good-suff for the string x = aaacababa.

The computation of table suff is performed by the algorithm SUFFIXES below
that is directly adapted from algorithm PREFIXES computing the table pref (see
Section 1.6).

i o 1 2 3 4 5 6 7 8
@) x[i] a a a ¢ a b a b a
suffi] 1 1.1 0 1 O 3 0 9
good-suff(i] 8 8 8 8 8 2 8 4 1
X laaacababa‘
(b)

xlaaacababa‘

Figure 3.8. We consider the string x = aaacababa. (a) Values of tables suff and good-suff .
(b) We have suff[6] = 3. This indicates that the longest suffix of x ending at position 6 is
aba, string that has length 3. As suff[6] = 3, we have good-suff[9 — 1 —-3]=9—-1-6=2,
value that is computed in line 8 of Algorithm GOOD-SUFFIX.
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g i f j
5] v | |a] v |

Figure 3.9. Variables i, j, f, and g of Algorithm SUFFIXES. The main loop admits for
invariants: v = lesuff (x, x[0.. f])and thusa # b (a, b€ A), j=g+m—1— f,andi <
f. The schema corresponds to the situation in which g < i.

SUFFIXES(x, m)
1 g«m-—1
2 sufflm —1] < m
3 fori < m — 2 downto 0 do

4 ifi > gandsuffli +m—1— f]#i— gthen

5 suffli] < min{suff[i +m — 1 — f1,i — g}

6 else g < min{g, i}

7 f<i

8 while g > Oand x[g] = x[g+m — 1 — f]do
9 g<g—1

10 sufflil < f—g

11  return suff

The schema of Figure 3.9 describes the variables of algorithm SUFFIXES and
the invariants of its main loop. The correctness proof of the algorithm is similar
to the one of PREFIXES (see Section 1.6).

Now, we can describe the algorithm GoOoOD-SUFFIX that computes the table
good-suff by means of the table suff.

GOOD-SUFFIX(x, m, suff)

1 j<0
2 fori < m — 2 downto —1 do
3 ifi = —1 orsuff[i] =i + 1 then

4 while j <m — 1 —i do

5 good-suff[jl < m—1—1i

6 j<—j+1

7 fori <~ Otom —2do

8 good-suff [m — 1 — suff[i]] < m—1—1i
9 return good-suff

The schema of Figure 3.10 presents the invariants of the second loop of Goob-
SUFFIX. We show that this algorithm computes the table good-suff. For that, we
start by stating two intermediate lemmas.
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i j
[ w | la]

Figure 3.10. Variables i and j of the algorithm GooD-SUFFIX. Situation where suff[i] <
i + 1. The loop of lines 7-8 admits the following invariants: v = lesuff(x, x[0..i]) and
thus a # b (a, b € A), and suff[i] = |v|. We deduce good-suff[j] <m — 1 —i with j =
m — 1 — suff[i].

Lemma 3.10
For 0 <i<m—=2, if sufflil=i+1 then, for 0 < j <m —1—1i, good-
suff[jl<m —1—1i.

Proof The assumption suff[i] =i + 1 is equivalent to x[0..i] <y x. Thus
m — suff[i] =m — 1 —1i is a period of x. Let j be an index that satisfies
0 < j <m —1—1.The condition Sc(j, m — 1 — i) is satisfied sincem — 1 —
i>jandx[0..m —(m—1—1i)— 1] = x[0..i] Ze x.Itis the same for the
condition WOc(j,m — 1 — i) since m — 1 —i > j. This shows, by definition
of good-suff , that good-suff[j] <m — 1 — i as stated. ]

Lemma 3.11
For 0 <i <m — 2, we have good-suff[m — 1 — suff[i]] <m —1—1.

Proof 1If suffi] < i + 1, the condition Sc(m — 1 — suff[i],m — 1 — i) is sat-
isfied since we have on one hand m — 1 —i <m — 1 — suff[i] and on the
other hand x[i — suff[i]+ 1..i]=x[m — 1 — suff[i]+ 1..m — 1]. More-
over, the condition WOc(m — 1 — suff[i],m — 1 — i) is also satisfied since
x[i — sufflil] # x[m — 1 — suff[i]] by definition of suff. Thus good-suff [m —
1 —suffli]] <m—1-—i.

Now, if suff[i] = i + 1, by Lemma 3.10, we have in particular, for j = m —
1 — suff[i] = m — i — 2, the inequality good-suff[j] < m — 1 —i. This ends
the proof. ]

Proposition 3.12
The algorithm GOOD-SUFFIX computes the table good-suff of the string x by
means of the table suff of the same string.

Proof We have to show, for each index j, 0 < j < m, that the final value d
assigned to good-suff[j] by GOOD-SUFFIX is the minimal value that satisfies
the conditions Sc(j, d) and WOc(j, d).

Let us first assume that d results from an assignment during the execution
of the loop of lines 2—6. Thus the first part of the condition Sc is not satisfied.
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We check then using Lemma 3.10 that d is the minimal value that satisfies the
second part of condition Sc(j, d). In this case,d = m — 1 — i for a value i that
both satisfies suff[i] =i+ 1 and j < m — 1 —i. This last inequality shows
that the condition WOc(j, d) is also satisfied. This proves the result in this
situation, that is to say, d = good-suff|[j].

Let us now assume that d results from an assignment during the execution
of the loop of lines 7-8. We thus have j = m — 1 — suff[i]andd =m — 1 — i,
and, after Lemma 3.11, good-suff[j] < d. We also have 0 < d < i, this shows
that the second parts of conditions Sc(j, d) and WOc(j, d) cannot be satisfied.
As the quantity m — 1 — i decreases during the execution of the loop, d is
the smallest value of m — 1 — i for which j = m — 1 — suff[i]. We thus have
d = good-suff[j]. This ends the proof. ]

Complexity of the computation

The preparation time of the table good-suff, used by the algorithm W-
MEMORYLESS-SUFFIX-SEARCH, is linear. We can note that this time does not
depend on the size of the alphabet.

Proposition 3.13
The algorithm SUFFIXES applied to a string of length m executes in time O(m)
and requires a constant extra space.

Proof The proof comes from the one that concerns algorithm PREFIXES in
Section 1.6. Let us recall that all the executions of the loop of lines 8-9
takes a time O(m) since the values of g always decreases. The execution of
the other instructions takes a constant time for each value of i, thus globally
O (m).

The algorithm needs an extra space only for some integer variables, thus a
constant space. [

Proposition 3.14

The algorithm GOOD-SUFFIX applied to a string of length m executes in time
O(m) (even if the computation time of the intermediate table suff is included)
and requires an extra space O(m).

Proof The space necessary for the computation (in addition to the string x
and the table suff) is composed of the table good-suff and of some integer
variables. Thus a space O(m).
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The execution of the loop in lines 2—6 takes a time O (m) since each operation
executes in constant time for each value of i and for each value of j, and since
these variables take m + 1 distinct values.

The loop of lines 7-8 executes also in time O (m), which shows the result.
Including the computation time of table suff gives the same conclusion after
Proposition 3.13. ]

3.4 Automaton of the best factor

In this section, we show that the shift function of the best factor — function
used in the string searching algorithm MEMORYLESS-SUFFIX-SEARCH presented
in Section 3.1 — can be implemented in space O(m). The implementation uses
an automaton. Beyond the theoretical complement, we do not show any saving
on the asymptotic complexities.

We call automaton of the best factor of the string x the automaton whose

* states are the empty string ¢ and the factors of x of the form cz withc € A
and 7 <gufr X,

* initial state is the empty string ¢,

e terminal state is x,

e arcs are of the form (z, ¢, cz).

Moreover, each state is provided with an output that corresponds to the length
of a shift of the window to be applied during the search for x. The defini-
tion of the output is given below. It differs whether the state is a suffix of x
or not:

1. The output of a state z with z <y x is the length of the shortest nonempty
suffix z’ of x for which x < 27’

2. The output of a state of the form cz, ¢ € A, and z <t X, With ¢z Zgsr X,
is the length of the shortest suffix z’ of x for which czz’ <y X.

An example of automaton of the best factor is shown in Figure 3.11.

With the notation of Section 3.1 in the case of a negative comparison for an
attempt at a position j on the text, that is, by denoting i the current position
onx (i >0),b=y[j—m+1+i]l(#x[i]),z=x[i +1..m — 1], and by
calling 8 the transition function of the automaton, we have:

output of 6(z, b) if §(z, b) is defined,

best-fact(i, b) = { output of z otherwise.

The searching algorithm that utilizes the automaton can be written as follows.
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5

Figure 3.11. The automaton of the best factor for x = abacbaaba. The outputs of the states
indicate the length of the shift to apply to the window either when the state does not possess
any successor or when no outgoing transition of the current state has an identical label to the
current letter of the window.

BEST-FACT-SEARCH(X, m, y, 1)
1 let M be the automaton of the best factor of x

2 j<em—1

3 while j <ndo

4 p < initiallM]

5 k< m—1

6 while Succ[p] # @

and TARGET(p, y[j —m + 1 4+ k]) # NIL do

7 p < TARGET(p, y[j —m + 1 +k])

8 k<—k—1

9 OuTPUT-IF(terminall p])
10 Jj < j +output[p]

The advantage of the automaton of the best factor is triple: it perfectly
synthesizes attempts and shifts; its size is linear, O (m); its construction can be
realized in time O(m). For the size, we can directly show that the number of
states of the automaton that are not suffixes of x (or, equivalently, arcs that enter
these states, since the incoming degree of all the states, except of the initial
state, are equal to 1) is at most equal to m — 1 (see Exercise 3.5). Another proof
of this bound is included in the proof of Theorem 3.16.

Theorem 3.15
The size of the automaton of the best factor of any string x of length m is O (m).
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Proof The automaton has m + 1 states that are suffixes of x and at most
m — 1 states that are not (see Exercise 3.5). It also has m arcs that enter states
that are suffixes of x and at most m — 1 arcs that enter states that are not suffixes
of x. Its total size is thus O(m). [ ]

In the next paragraphs, we detail a construction method of the automaton
for which we show that it can be implemented to run in time O (m).

Let us denote by M, the structure that corresponds to the automaton of the
best factor of x but in which the output of any state z that is a suffix of x (state
of type 1) is not defined. Let us now note that for these states, the output is
the smallest period of x greater than or equal to |x| — |z|. It follows that if
we have M, and, for instance, the table of the lengths of the borders of the
nonempty suffixes (analogue to the table of borders of prefixes of Section 1.6),
the computation of the outputs of states of type 1 can be done in time O(m). It
thus remains to build M, .

The construction of M, can be done in a sequential way on x, by processing
the suffixes by increasing length. The structure M, reduces to the state &, that
is both an initial and terminal state. Let at be a suffix of x with a € A and
t <qff X, and assume that M, is built. The structure M,; contains

* the states and the arcs of M,, the state ¢ not bearing the mark of terminal
states,

* the terminal state at, of type 1, and the arc (¢, a, at),

* every state of type 2 of the form az, with z < #, whose output is |¢| — |z,
and the associated arcs of the form (z, a, az).

Let us focus on the computation of objects of the last point. The state az being
of type 2, z is a border of . Moreover, the length of z is necessarily not less than
the length of the string Border(at). Indeed, in the contrary case, the output of
az would be of length no more than |Border(at)| — 1 — |z|, quantity less than
|t] — |z|; which is contrary to the assumption. Now, among all the borders z of
t of length not less than |Border(at)|, only those for which the state az is not
already in the structure are to be inserted in this one, with |z| — |z| as output,
the associated arcs (z, a, az) being inserted in the same way. Let us note that
testing the presence of such states in M,, comes down to test if there exits a
transition labeled by a from z. Let us also add that the access to the borders of
t is immediate as soon as, in parallel to the construction of M,,, the table of
border lengths of the suffixes of x is computed.

Theorem 3.16
The construction of the automaton of the best factor of any string x of length
m can be realized in time O(m) if we use an extra space O(m + card A).
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Proof The construction of the automaton proposed above utilizes the table
of border lengths of the suffixes of x. This table is computed in parallel to the
construction. The extra space used to store it is O (m).

With the previous notation, the only borders z of ¢ that are kept as can-
didates for a possible insertion of the state az in the structure M,, are the
suffixes of ¢ that are preceded by a letter distinct from a. They correspond
thus to the negative comparisons between letters performed during the com-
putation of the table; we know that their number is at most equal to m — 1
(see Exercise 1.22). This confirms the bounds given above for the number of
states that are not suffixes of x, and for the number of arcs that enter these
states.

In the comparison model, a test prior to each insertion, and, if necessary,
the insertion itself take O(logm) time; but this would give a time complexity
O(m x logm). We can, on the contrary, add states and arcs without test in a
first step: the overstructure of M, thus obtained is always of size O(m) after
the previous result. Then, with the help of a table on the alphabet, we prune the
structure by removing the undesirable arcs (for a given letter, only the arc with
minimal output is kept). This is performed in time O (m).

Finally, as mentioned above, the computation of the outputs of states that
are suffixes of x can be done in time O(m) with the table of border lengths of
the suffixes of x. This ends the proof. ]

The effective construction of the function best-fact by means of the automa-
ton of the best factor of x is left as an exercise (Exercise 3.9). We deduce from
the above proof another computation of the table of the good suffix than the
one presented in Section 3.3 (see Exercise 3.10).

3.5 Searching with one memory

This section presents a less “oblivious” algorithm than the one of Section 3.1.
During the search, it remembers at least one information on the previous
matches: the last suffix of the string met in the text. It is a technique named
“factor memorization” that extends the technique of prefix memorization imple-
mented by the algorithm WL-MEMORYLESS-SUFFIX-SEARCH. It requires a con-
stant extra space with respect to the algorithm MEMORYLESS-SUFFIX-SEARCH.
The behavior of the algorithm is not quadratic anymore and no more than 2n
comparisons are performed in order to search for all the occurrences of a string
in a text of length n. Besides, the preprocessing phase of this algorithm is the
same as the one of the algorithm MEMORYLESS-SUFFIX-SEARCH or of its version
W-MEMORYLESS-SUFFIX-SEARCH.
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yiababaabababibabba‘
x [aababababab]
ylababiaabababbabbia‘

x laababababab‘

Figure 3.12. Conditions of a turbo-shift. During the attempt at position 10, we recognize the
suffix ababab of the string. We shift by 4 positions as would the algorithm MEMORYLESS-
SUFFIX-SEARCH do (we note that the suffix ababababab of the string has period 4). Thus
the factor aababab of y matches the factor of x aligned with it. During the next attempt,
we recognize the suffix b. The letters y[9] = a and y[13] = b show that this portion of the
text does not have 4 as period. Thus the suffix ababababab of the string, that admits 4 as
period, cannot be simultaneously aligned with y[9] and y[13]. This leads to a shift of length
|ababab| — |b| = 5.

Searching phase

After each of its shifts, the algorithm MEMORYLESS-SUFFIX-SEARCH wastes all
the information gathered during previous attempts. We improve the behavior
of this algorithm by taking into account the last occurrence of a suffix of the
string x recognized in the text y. The memorization of this factor of the text
recognized during the previous attempt presents two advantages for the current
attempt:

* it possibly allows to perform a “jump” above this factor,
* it possibly allows to lengthen the next shift.

These possibilities are partially exploited in the algorithm of this section. The
memorization of a single factor is performed in a precise case and the length-
ening of the shift is realized by what we call a turbo-shift.

We describe more precisely the technique. The general situation during
an attempt 7 of the searching phase of algorithm TURBO-SUFFIX-SEARCH is
illustrated in Figure 3.12. During the previous attempt 7’, at position j', a
suffix z’ of the string has been recognized in the text and a shift of length
d' = best-fact(im — 1 — |Z’|, y[j' — |Z’|]) has been applied.

During the current attempt T at position j = j’ 4 d’, a jump above the factor
z' of y can be done if the suffix of the string of length d’ is recognized in y at
this position. In this case, it is useless to compare the factors z’ of the string
and of the text since, by the definition of the shift, it is sure that they match. A
turbo-shift can be applied if the suffix z recognized during the current attempt
is shorter than z’. The length of the turbo-shift is |z/| — |z].
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mem shift

y | |
o | |

i

Figure 3.13. Variables i, mem, and shift when executing the instruction in line 10 of the
algorithm TURBO-SUFFIX-SEARCH. The light gray areas refer to matches, while the dark gray
area refers to a mismatch.

In the case where the value of the turbo-shift is greater than best-fact(m —
|z|, ¥[j — |z|]), we note that the shift to apply after the current attempt can,
moreover, be longer than |z|. The memorization of a factor can only be done
after a shift given by best-fact, the correctness of the method being based on
periodicity arguments.

‘We now give the code of algorithm TURBO-SUFFIX-SEARCH. The code makes
reference to the function best-fact of Section 3.4. But it is also possible to use
the table good-suff for computing the lengths of shifts.

TURBO-SUFFIX-SEARCH(X, m, y, 1)

1 shift <0
2 mem <0
3 j«<m-—1
4 while j <ndo
5 i< m-—1
6 whilei > Oand x[i]=y[j —m+ 1+ i] do
7 if i = m — shift then
8 i< i—mem—1 > Jump
9 else i <—i—1
10 OutprUT-IF(I < 0)
11 if i < 0 then
12 shift < per(x)
13 mem <— m — shift
14 else turbo < mem —m+1+1i
15 if rurbo < best-fact(i, y[j —m + 1 4+ i]) then
16 shift < best-fact(i, y[j —m + 1 +1i])
17 mem <— min{m — shift,m — i}
18 else shift < max{turbo,m — 1 — i}
19 mem < 0
20 Jj < j + shift > Shift

The schema of Figure 3.13 gives an indication on the meaning of variables.
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Theorem 3.17
The algorithm TURBO-SUFFIX-SEARCH applied to strings x and y finds all the
occurrences of x in y.

Proof The differences between the algorithms MEMORYLESS-SUFFIX-SEARCH
and TURBO-SUFFIX-SEARCH concern essentially the computation of shifts since
the correctness of jumps comes from the above discussion. Thus, it is sufficient
to show that the shift computed in line 18 is valid. We first show that the turbo-
shift of length turbo is valid. We then show that the shift of lengthm — 1 —i
is also valid. Note that the instruction in line 18 is executed when we have
turbo > best-fact(i, y[j —m + 1 4 i]), which implies turbo > 1.

The value of the variable mem is the length of the suffix z’ recognized
during the previous attempt 7”. The length of the suffix z = x[i +1..m — 1]
recognized during the current attempt 7 is m — 1 — i. The value of the variable
turbois |7'| — |z|. Leta = x[i] be the letter that precedes the suffix z in the string
and let b = y[j —m + 1 +i] be the letter that precedes the corresponding
occurrence of z in the text. Let u = x[m — d ..i] (we have z'uz <z x). Since
z is shorter than 7/, az is a suffix of z’. It follows that the letters a and b occur
at a distance d = |uz| in the text. But as the suffix z'uz of the string has a
period d = |uz| (because 7’ is a border of 7'uz), the shifts of length less than
|Z'| — |z| = turbo lead to mismatches. Thus the shift of length rurbo is valid
(see Figure 3.12).

We now show that a shift of length |z| = m — 1 — i is valid. Indeed, let us
set £ = best-fact(i, b). By definition of best-fact, we have x[i — €] # x[i]. As
the integer £ is a period of z, the two letters x[i — ¢] and x[i] cannot both be
aligned with letters of the occurrence of z in y. We thus deduce that the shift
of length |z] =m — 1 — i is valid.

In conclusion of the above two points, the shift of line 18 whose length is
the maximum of the lengths of two valid shifts, is itself also valid. This ends
the proof. ]

Two examples of execution of the algorithm TURBO-SUFFIX-SEARCH, one
using the function best-fact, the other the table good-suff, are shown in
Figure 3.14.

Running time of the searching phase

We show that the algorithm TURBO-SUFFIX-SEARCH has a linear behavior in the
worst case.
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(b)

yIaaacabaaaicabacaaacababa‘
x [aaacabalbal
ylaaacabiaaacabacaiaacababa‘
x laaacababa
(a) . ,
ylaaacabaaac|abacaaaca|baba‘
x [aaacabalbal
ylaaacabaaacabaciaaacaba ai
x laaacabab a
yiaaacabaaaicabacaaacababa‘
xlaaacababa
ylaaaciabaaacabaicaaacababa‘
x [aaacalbab a
ylaaacabiaaacabacaiaacababa‘
x laaacababa
ylaaacabaaaciabacaaacaibaba‘
x [aaacabalbal
ylaaacabaaacabaciaaacababai
x laaacabab a
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Figure 3.14. Examples of two runs of the algorithm TURBO-SUFFIX-SEARCH. (a) Using func-
tion best-fact. In this case, 14 letter comparisons are performed. (b) Using table good-suff.

In this case, 18 letter comparisons are performed.

Theorem 3.18

During the search for all the occurrences of a string x of length m in a
text y of length n the algorithm TURBO-SUFFIX-SEARCH performs at most 2n

comparisons of letters.

Proof Using the notation of the proof of Theorem 3.17, we say that the shift
of length d applied after the attempt 7', is short if 2d < |z| + 1, and long

otherwise.
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We consider three types of attempts:

1. The attempts followed by an attempt performing a “jump.”
2. The attempts that are not of type 1 and that are followed by a long shift.
3. The attempts that are not of type 1 and that are followed by a short shift.

The idea of the proof is to amortize the comparisons with the shifts. For
that, let us define the cost of an attempt T, cost(T'), as follows:
1 if T is of type 1,

cost(T) = { 1+ |z| if T is of type 2 or 3.

In the case of an attempt of type 1, the cost corresponds to the test that
produces the mismatch. The costs of the other comparisons are postponed to
the next attempt. As a consequence, the total number of comparisons performed
during the execution of the algorithm TURBO-SUFFIX-SEARCH is equal to the sum
of the costs of all the attempts. We prove that ) . cost(T) <2, d < 2n.

For an attempt Tj of type 1: cost(Ty) = 1 < 2dy since dy > 1.

For an attempt Tj of type 2: cost(To) = |z0| + 1 < 2dy by definition.

It remains to consider an attempt 7 of type 3 at a position jj on y. Since in
this case dy < |zo|, we have dy = best-fact(m — |zol, y[jo — |zo|1). This means
that during the next attempt 7} at position j; on y, there can be a turbo-shift.

Let us consider the two following cases:

a. |zo| + dp < m. Then, by definition of the turbo-shift, we have:

di > |zo|l — |z1l. Thus: cosi(To) = |zol + 1 < |z1l +di1 + 1 < dp + di.
b. |zo| + dop > m. Then, by definition of the turbo-shift, we have:

|z1| + do + di = m. Thus: cost(Ty) < m < 2dy — 1 + d;.

We can always assume that case b happens during the attempt 7} since it
gives a larger bound on the value of cost(Ty).

When the attempt 7} is of type 1, we have cost(Ty) = 1 and cost(Ty) +
cost(Ty) < 2dy + d;. Which is better than the expected result.

When the attempt 7; is of type 2 or when |z;| < d;, we have cost(Ty) +
cost(Ty) < 2dy + 2d,.

It remains to consider the case where both the attempt 7} is of type 3 and
|z1| > d;. This means that, as after the attempt Ty, we have d; = best-fact(m —
|z1l, y[ji — |z1]]). The argument applied to the attempt 7} applies also to the
next attempt 7,. The case a only can happen during the attempt 75. It results
that cost(Ty) < d) + d,. Finally, cost(Ty) + cost(Ty) < 2dy + 2d, + d>.

This last argument gives the step of a proof by induction: if all the attempts
Ty, Ty, . .., Ty are of type 3 with |z;| > d; for j =0, 1, ..., k, then

cost(Ty) + cost(Ty) + - - - + cost(Ty) < 2dy + 2dy + - - - + 2dy + dyy1.
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Let T be the first attempt after the attempt Ty such that |zy/| < dj. This at-
tempt exists since, in the contrary case, this would mean that there exists an in-
finite sequence of attempts leading to shorter and shorter shifts, which is impos-
sible. Therefore, cost(Ty) + cost(Ty) + - - - + cost(Ty) < 2dy + 2d, + - - - +
2d and ) cost(T) < 2) ", dr < 2n as stated. L]

The bound of 2n comparisons of Theorem 3.18 is quasi optimal, as shows
the following example. Let us set x = a*baf and y = (a**'b)¢ with k > 1. We
have m = 2k + 1 and n = £(k + 2). Except on the first and the last occurrence
of a¥*1pb (of length k + 2) in y, the algorithm TURBO-SUFFIX-SEARCH performs
2k + 2 comparisons. On the first, it performs k + 2 comparisons and on the
last it performs k comparisons. We thus get the overall

m+1
—DRk+2)=2n|——)—m—1
( )2k +2) =2n (m n 3> m
number of letter comparisons. Figure 3.15 illustrates this example with the
values k =3 and £ = 6.

Corollary 3.19

The algorithm TURBO-SUFFIX-SEARCH finds all the occurrences of a string in
a text of length n in time O(n) with a constant extra space with respect to the
algorithm MEMORYLESS-SUFFIX-SEARCH.

Proof This is a direct consequence of Theorems 3.17 and 3.18. ]

3.6 Searching with several memories

In this section, we consider an algorithm of the same type as the previous ones
but that works by memorizing more information. It requires an extra workspace
O (m) with respect to the algorithm MEMORYLESS-SUFFIX-SEARCH, but this leads
to a reduction of the number of letter comparisons that drops down to 1.5n
(vs. 3n and 2n respectively for the algorithms MEMORYLESS-SUFFIX-SEARCH
and TURBO-SUFFIX-SEARCH).

The algorithm of this section, called MEMORY-SUFFIX-SEARCH, stores all the
occurrences of suffixes of the string found in the text during the attempts. It
uses this information, together with the table suff (Section 3.3), to perform
“jumps,” in the same way as algorithm TURBO-SUFFIX-SEARCH does, and for
increasing the length of some shifts. Those shifts are computed by means of
the function of the best factor, best-fact, but they can also be determined with
the help of the table of the good suffix (see Section 3.1).
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————)
yIaaaabaa|aabaaaabaaaabaaaabaaaab‘

———

X |aaablaaa

y|a|aaabaaE|abaaaabaaaabaaaabaaaab‘

| E———

x |laaabaaa

laaaab|aaaabaa|aabaaaabaaaabaaaab‘

3

X |aaablaaa

ylaaaaba|aaabaaE|abaaaabaaaabaaaab‘

——————F

X |laaabaaa

ylaaaabaaaab|aaaabaa|aabaaaabaaaab‘

| e |

X |laaabaaa

ylaaaabaaaaba|aaabaaE|abaaaabaaaab‘

X |aaabaaa

ylaaaabaaaabaaaab|aaaabaa|aabaaaab‘

X |aaablaaa

ylaaaabaaaabaaaaba|aaabaa€|abaaaab‘

X |laaabaaa

ylaaaabaaaabaaaabaaaab|aaaabaa|aab‘

| E——

X |aaablaaa

ylaaaabaaaabaaaabaaaaba|aaabaaE|ab‘

————————

X |aaabaaa

Figure 3.15. Worst case example for the algorithm TURBO-SUFFIX-SEARCH. Illustration of
the bound of Theorem 3.18 with strings x = aaabaaa and y = (aaaab)®. The string x is
of length 7, the text y of length 30, and 40 comparisons are performed. For each of the
four consecutive central factors aaaab of length 5 of the text, eight letter comparisons are
performed.

<

Searching phase

We describe the essential elements of the method. After each attempt at a
position j' on the text y, the length of the longest suffix of x recognized at
the right position j’, |7’|, is stored in the table denoted by S (S[;j'] = |Z’]).
During the current attempt at the position j on the text y, if we have to
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ylaibaaababaiabaabaaba‘

xlbaabaaba|

ylabaaabaibaabaabaiaba‘

xlbaabaaba|

Figure 3.16. During the attempt at position 14, we recognize, by letter to letter comparisons,
the suffix abaaba of length 6 of the string. We arrive at position 8 on y where we know (with
the help of the attempt at position 8) that the longest suffix of x that ends at this position
is of length 3. Besides, we know that the longest suffix of x ending at position 1 on x is of
length 2. The assumptions of Lemma 3.20 hold. An occurrence of the string is thus detected
at position 14, without comparing y[7 . . 8] again.

examine the position j’, j' < j, (we have y[j' + 1..j] < x) for which
the value k = S[j’] is defined, we know that y[j/ — k + 1.. '] < x. Let
i =m —1— j+ j'. Itis then sufficient to know the length s = suff[i], of the
longest suffix of x ending at position i on x, to conclude the attempt in most
situations.

Four cases can arise. We detail them in Lemmas 3.20 to 3.23 associated with
Figures 3.16 to 3.19.

Lemma 3.20
When s <k and s =i + 1, an occurrence of x occurs at right position j on
the text y. We have S[j] = m and the shift of length per(x) is valid.

Proof If s=i+1 and s <k (see Figure 3.16), y[j'—k+1..j'] and
x[0..i] are suffixes of x, and x[0..i] is of length 5. As s < k, we deduce
that x[0..i] <gug y[j ' —k+1..j'] and thus y[j'—s+1..j']=x[0..{].
Thus, y[j —m + 1.. j] = x as announced. The value of S[j] is then m and
the shift of length per(x) is valid. L]

Lemma 3.21
When s <i and s < k, we have S[j1=m — 1 —i + s and, by setting j =
Jj —m+ 1+, the shift of length best-fact(i — s, y[j' — s]) is valid.

Proof 1Ifs <iands < k (see Figure 3.17), we have x[i —s + 1..i] <qu X
and x[i —s..i] Zsr X, and thus x[i — s] # y[j/ — s]. The value of S[j]
is then m — 1 —i+s (since x[i —s+1..m —1]=y[j/—s+1..j] and
x[i —s] # y[j' —s]) and the shift of length best-fact(i — s, y[j' — s]) is
valid. [ ]
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y[abablbaalbaaab a

X |abablaaa

yla|babbaa£|aaaba‘

x |lababaala

y [abablbaabaaalbal
r framass

Figure 3.17. During the attempt at position 10, we recognize the suffix baaa of length 4
of the string. We arrive at position 6 on y, where we know (with the help of the attempt
at position 6) that the longest suffix of x that ends at this position is of length 2. Besides,
we know that the longest suffix of x ending at position 2 on x is of length 1. Thus, without
comparing y[4 .. 6] again, we know that there is a mismatch between x[1] = b and y[5] = a.

»
o
»
o
o
»

yiab aibaaaba‘

xlbbaaabaaa‘

o]

y lalb
X lb

babbaablaaaba‘
aaabaaa

o

ylababiabbaabaaaiba‘

xlbbaaabaaa‘

Figure 3.18. During the attempt at position 12, we recognize the suffix of length 4 of the
string, and we arrive at position 8, where we know (with the help of the attempt at position
8) that the longest suffix of the string that ends at this position is of length 2. Besides, we
know that the longest suffix of the string ending at position 4 on the string is of length 4.
Thus, without any letter comparison, we know that there is a mismatch between x[2] = a
and y[6] = b.

Lemma 3.22
Whenk < s,we have S[j1=m — 1 —i + kand, by setting j' = j —m + 1 +
i, the shift of length best-fact(i — k, y[j' — k]) is valid.

Proof 1f k <s (see Figure 3.18), we have x[i —k+1..i] < x and
x[i —k..i] Zsuir x, and thus x[i — k] # y[j’ — k]. The value of S[;j] is then
m—1—i+k (since x[i —k+1..m—1]1=y[j/—k+1..j] and x[i —
k] # y[j' — k]) and the shift of length best-fact(i — k, y[j/ — k]) is valid. m
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<

Ibabaa|baaaaba‘

X |bajaaa

lba|baaba|aaaba‘

x |b aalaa

lbabaaEaaaa|ba‘

X |baaaa

Figure 3.19. During the attempt at position 9, we recognize the suffix of length 3 of the
string, and we arrive at position 6, where we know (with the help of the attempt at position 6)
that the longest suffix of the string that ends at this position is of length 1. Besides, we know
that the longest suffix of the string ending at position 1 on the string is also of length 1. We
can thus perform a “jump” above y[6], and resume the comparisons between x[0] and y[5].

~

<

Lemma 3.23
Whenk = s,we have x[i —s+1..m —1]=y[j  —s+1..j]and

Sjl=m—1—i+s+ |lesuff(x[0..i —s],y[j —m+1..j —s])| (B.1)

withj'=j—m+1+1i.

Proof Ifk = s (see Figure 3.19), the two strings x[i —s + 1..i] and y[j" —
s + 1..j'] of same length are suffixes of x. We have thus x[i —s + 1..i] =
y[j'—s+1..j']. And since we assume that we have x[i +1..m — 1] =
ylj'’+1..j],itfollows x[i —s+1..m—1]=y[j ' —s+1..J].

In the case where s =i + 1, we have S[j] =m — 1 —i + s on one hand,
and lesuff (x[0..i — s], y[j —m + 1..j  — s]) = € on the other hand.

When s < i now, we moreover know that x[i —s] # x[m — 1 — 5] and
ylj" — s] # x[m — 1 — 5], this does not allow to conclude on the comparison
between x[i — s] and y[j" — s]. Equality (3.1) is a direct consequence of the
previous inequality. ]

The code of the algorithm MEMORY-SUFFIX-SEARCH is given thereafter. It
utilizes the function best-fact of Section 3.4 and the table suff of Section 3.3.

The memorization of suffixes of x that occur in the text is performed by
the table S. The values of this table are initialized to O prior to the searching
phase.
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MEMORY-SUFFIX-SEARCH(xX, m, y, 1)
1 forj<«<Oton—1do

2 S[j1<0
3 j«<m-—1
4 while j <ndo
5 i< m-—1
6 while i > 0 do
7 if S[j —m 4+ 14 i] > 0 then
8 k< S[j—m+1+4i]
9 s < suffli]
10 if s # k then
11 i < i —min{s, k}
12 break
13 else i < i — k> Jump
14 elseif x[i] = y[j —m + 1 + i] then
15 i<—i—1
16 else break
17 OuTpPUT-IF(i < 0)
18 if i < O then
19 S[j] < m
20 Jj < j + per(x)
21 else S[jl«m—1—i
22 Jj < J + best-fact(i, y[j —m + 1+ i])
Theorem 3.24
The algorithm MEMORY-SUFFIX-SEARCH finds all the occurrences of a string x
inatexty.
Proof The proof is essentially a consequence of Lemmas 3.20 to 3.23. ]

Two examples of execution of the algorithm MEMORY-SUFFIX-SEARCH are
shown in Figure 3.20. The first utilizes the function of the best factor, and the
second the table of the good suffix instead.

Complexity of the searching phase

We successively examine the space complexity then the running time of the
algorithm MEMORY-SUFFIX-SEARCH.
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yIaaacabaaa|cabacaaacababa‘

=
(o]
»
»
o
»
o
»
o

]

ylaaacabiaaacabacaiaacababa‘

aaacabalba

(a) .

ylaaacabaaaciabacaaaca|baba‘

xlaaacababa‘

ylaaacabaaacabaciaaacababai

=
[ ]
w
o
o
o
o’
o
o’
o

ylaaacabiaaacabacaiaacababa‘

(b

xlaaacababa‘

ylaaacabaaaciabacaaacaibaba‘

1 ' )

aaacabalba

ylaaacabaaacabaciaaacababai

xlaaacababa‘

Figure 3.20. Two runs of the algorithm MEMORY-SUFFIX-SEARCH. (a) With the function
best-fact. In this case, 13 comparisons between letters of the string and of the text are
performed. (b) With the table good-suff. In this case, 17 letter comparisons are performed.

Proposition 3.25
To locate a string x of length m in a text, the algorithm MEMORY-SUFFIX-SEARCH
can be implemented in space O(m).

Proof The workspace is used for memorizing the table suff, for implementing
the function best-fact or the table good-suff, and for storing the table S in
addition to some other variables. The first three elements occupy a space O (m)
(see Section 3.4 for the function best-fact). For the table S, we note that only



134 3 String searching with a sliding window

yabaaab]aaaabaaaaabaaabaaaabaa|aaaaa

X[babaabaaabaaaabaaaaaaa\

yabaaabaaaab]aaaaabaaabaaaabaaaaaaa|

X[babaabaaabaaaabaaaaaaa‘

Figure 3.21. Intuition of the proof of Lemma 3.26. During the attempt at position j on the
text (top line), we recognize the suffix of the string of length 1, then we shift by six positions.
We recognize then the suffix of length 3, we shift by four positions. Then we recognize the
suffix of length 2 and we shift by five positions. During the attempt at position j + 15, we
recognize the suffix of the string of length 19, performing three re-comparisons on letters
v[j + 81, y[j + 3], and y[j — 1]. The shift that follows this attempt cannot be of length less
than or equal to 3 after Lemma 3.26. Indeed the suffix aabaaabaaaabaaaaaaa of the string
cannot have a period less than or equal to 3.

its portion S[j —m + 1.. j] is useful when the search window is at the right
position j. Managing the table as a circular list or realizing it as a list of useful
elements of S[¢] reduces the space to O(m) (without penalizing the running
time). This gives the announced result. |

We then show that the algorithm MEMORY-SUFFIX-SEARCH has a running
time O(n). It performs at most 1.5n comparisons of letters for finding all the
occurrences of x in y.

Let us first note that, if during the searching phase, an occurrence of a letter
of the text is compared positively, then this letter will never be compared again
in the rest of the execution of the algorithm. Therefore there are at most n
comparisons of this kind (it is for instance the case when we search a” for a”,
a € A). The only letters that are possibly re-compared are thus those that have
previously been involved in a mismatch with a letter of the pattern.

Figure 3.21 illustrates the next lemma.

Lemma 3.26

During an attempt of the algorithm MEMORY-SUFFIX-SEARCH, if k positive
comparisons are done on letters of the text that have already been compared,
the shift that follows this attempt is of length at least k.
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Proof Let T be an attempt of the algorithm MEMORY-SUFFIX-SEARCH during
which k letters of the text having already been compared are compared again
positively. According to the remark done before the statement, these letters
have been compared negatively during k previous attempts. Let us denote by

b0U0b1M1U1b2M2U2 e bkukvk
the factor of the text examined during the attempt 7" with

* by is the letter that causes a mismatch during the attempt 7',

* vobiuv1byus vy . . . brug vy is a suffix of the string x,

¢ the letters by, | < £ < k, are the k letters that are compared again positively
during the attempt 7',

e the factors uy, 1 < £ < k, are the suffixes (possibly empty) of the string that
have been recognized during those k attempts during which the b;’s have
been compared negatively. These factors are “jumped over” during attempt
T,

¢ the factors vy, 1 < € < k, are the factors of the text that are positively
compared (for the first time) during attempt 7.

By their definition, the strings b,u,, 1 < € < k, are not suffixes of the string x.

The proof is by contradiction. Assume that the shift d applied just after
attempt T is of length less than k. Let w be the suffix of x of length d. By
definition, the string

v0b1u1 v1b2u2v2 .. bkukvkw

is a suffix of x and has period d = |w|.

For two different indices £’ # £”, uy and u, are aligned with the same
position on a factor w, since there are at most k — 1 possible positions. This
implies that by uy = bgrugr. The shifts applied after the two attempts where by
and b, have been compared are of same length. This implies that by jup 4 =
byrquery 1. Thus there exists an index £ < k such that byuy = byuy, which
contradicts the fact that the string x would have been previously aligned as
during the attempt 7.

It follows that the length of the shift applied after the attempt T is at
least k. ]

Lemma 3.27
The algorithm MEMORY-SUFFIX-SEARCH performs no more than n/2 compar-
isons concerning letters of the text having already been compared.

Proof We group the attempts into packets, two attempts being in the same
packet when they perform comparisons on common letters of the text. A packet
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p of attempts that perform k positive re-comparisons of letters of the text
contains at least k£ + 1 attempts. Among these attempts at least k apply a shift
of length at least 1 and one applies a shift of length at least k after Lemma 3.26.
Thus, the total length of all the shifts of the attempts of the packet p is at least
equal to 2k.

The total sum of all the shifts applied during the algorithm MEMORY-SUFFIX-
SEARCH is no more than n. The total number of re-comparisons is thus no more
than n/2. ]

Theorem 3.28

During the search for all the occurrences of a string in a text y of length n,
the algorithm MEMORY-SUFFIX-SEARCH performs at most 1.5n comparisons
between string and text letters.

Proof The result directly comes from Lemma 3.27 and from the fact that
there are at most n positive comparisons. ]

Corollary 3.29

The algorithm MEMORY-SUFFIX-SEARCH performs the search for all the occur-
rences of a string of length m in a text of length n in time O(n) with an extra
space O(m) with respect to the algorithm MEMORYLESS-SUFFIX-SEARCH.

Proof 1tis aconsequence of Theorem 3.24, by noting that the running time is
asymptotically equivalent to the number of comparisons, and of Theorem 3.28.
]

The bound of 1.5n letter comparisons of Theorem 3.28 is almost reached
when searching for the string x = a*~'ba*b in the text y = (a*~'bafb)¢, with
k > 1. The algorithm then performs exactly

2k+14+@Gk+ 1D —-1) Skt k
J— = —n —
2k +1
comparisons between letters of the string and of the text. Figure 3.22 illustrates

this bound with the values £k = 3 and £ = 4.

3.7 Dictionary searching

With the sliding window technique, it is possible to efficiently solve the prob-
lem of the search for all the occurrences of strings belonging to a dictionary of
k strings X = {xg, x1, ..., Xx—1} in a text y. In this section, we denote respec-
tively by m’ and m” the length of the shortest string and of the longest string
of X.
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<

|aabaaab|aabaaabaabaaabaabaaab‘

X |laabaaahb

laaba|aabaabE|aabaabaaabaabaaab‘

———————— 7

x |laabaaab

 —

ylaabaa|abaabaElabaabaaabaabaaab‘

X |aabaaalb

ylaabaaa|baabaaE|b

c[febaaal

ylaabaaab|aabaaab|aabaaabaabaaab‘

| —— |

X |[aabaaab

ylaabaaabaaba|aabaabE|aabaabaaab‘

X |aabaaalb

ylaabaaabaabaa|abaabaE|abaabaaab‘

x |laabaaab

ylaabaaabaabaaa|baabaaE|baabaaab‘

< [ravacad

—

ylaabaaabaabaaablaabaaablaabaaab‘

| E——

x laabaaab

ylaabaaabaabaaabaaba|aabaabE|aab‘

X |aabaaalb

ylaabaaabaabaaabaabaa|abaabaE|ab‘

X |laabaaalb

ylaabaaabaabaaabaabaaa|baabaa€|b‘

——————

X |aabaaalb

—

ylaabaaabaabaaabaabaaablaabaaab|

——————

X laabaaahb

Figure 3.22. Illustration of the bound of Theorem 3.28 with x = aabaaab and y =
(aabaaab)*. The string is of length 7, the text of length 28, and 37 letter comparisons
are performed. For each of the last three occurrences of the factor aabaaab of length 7 of y,
the algorithm MEMORY-SUFFIX-SEARCH performs 10 comparisons.
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The scanning of the text during an attempt consists in determining the
longest factor of strings of X that is a suffix of the content of the window. Doing
so lengthen the suffix of the window that is scanned with respect to the suffix
considered in the methods of previous sections. This allows one to gather more
information on the text and often leads to shifts having a larger length. To
implement this method, we utilize a suffix automaton of the reverse strings
of X (see Chapter 5). During the scanning of the text y, the automaton
contains enough information to detect positions of occurrences of strings
of X.

The local goal of the algorithm is to detect the strings of X that are suffixes
of the content of the window of length m”. The principle of the computation
consists in determining during each attempt the prefixes of strings of X that are
suffixes of the content of the window. In the same time, we detect the strings of
X that occur in the window and we keep the minimal length of the valid shifts,
knowing that this length cannot be greater than m'.

We describe now the technique used to this aim. Let X~ be the set of the
reverse strings of X. We consider a (deterministic) automaton N that recognizes
the suffixes of strings in X ™. Its associated transition function is denoted by &.
The automaton accepts the language

Suff( X)) ={ve A* :uv=x",u € A* x € X}.

In other words, N recognizes in a deterministic way the prefixes of the strings of
X by scanning them from right to left. For each terminal state of the automaton,
reached with a string of X, we set

outputlg] ={i :0<i <k—1and S(qo, xi7) =q},

where 3 is the extension to strings of the transition function § of the automaton,
and g is its initial state (see Section 1.1).

An attempt at position j on the text y consists in analyzing the letters of y
from right to left from y[j] with the help of N. Each time a state ¢ is reached
with a letter y[j'], we check if output[q] is nonemptys; if it is the case, the string
x; occurs in the text y at position j’ when

i € output[gland j — j' + 1 = |x;].

Besides, if the state g is a terminal state, no valid shift can be of length greater
than m’ — (j — j' 4+ 1) when this quantity is positive. We can thus compute
meanwhile the minimal length d of valid shifts. Finally, the attempt ends when
there exists no more transition defined for the current letter from the current
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state. An example of search is shown in Figure 3.23. The algorithm that follows
implements this method.

MULTIPLE-SUFFIX-SEARCH(X, m’, y, n)

1 let N be a (deterministic) automaton accepting the suffixes of the reverse
strings of X

2 j<«m—1
3 while j <ndo
4 q < initial[N]
5 J o<~
6 d<~m
7 while j/ > 0 and TARGET(q, y[j']) # NIL do
8 q < TARGET(q, y[j'])
9 if terminal(q] then
10 for each i € output[q] do
11 OutpuT-1F(|x;| = j — j' + 1)
12 ifm"—j+ j — 1> 0then
13 d < min{d, m' — j + j — 1}
14 else d <1
15 J— =1
16 j<«j+d
Theorem 3.30

The algorithm MULTIPLE-SUFFIX-SEARCH locates all the occurrences of the
strings of a dictionary X in a text y.

Proof Let us note that the algorithm detects only occurrences of strings of X
(lines 10-11). Let us check that it does not forget any.

Let € be the right position on y of an occurrence of a string x; € X. Let j
be the right position of the window. We show in the rest that if j < ¢, the
occurrence of x; is detected. Let us note that we can, moreover, assume £ <
J -+ m' since, the length of shifts being bounded by m’, the variable j takes a
value that satisfies the two conditions. We prove it by recurrence on the quantity
£—j.

If j = ¢, the automaton N recognizing the prefixes of the strings of X,
it accepts x;. At position j' = j — |x;| + 1, the current state is terminal, its
output contains i, and the condition |x;| = j — j’ + 1 in line 11 holds, thus the
occurrence is signaled.

Let us now assume that j < ¢, and let x; = uv where v is of length ¢ —
Jj. In this situation, u is a suffix of the content of the window. At position
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() vy [pabalclbabbbabab. . ]

© y[Pabacbabbblabab. . .|

d y[PabacbabBbabalb...|

@ y[PabacblabBbabab|l...|

Figure 3.23. A run of the algorithm MULTIPLE-SUFFIX-SEARCH in the case where X =
{abaabaab, babab, bbabba} and y starts with babacbabbbabab. We have m’ = 5. (a) An
automaton that recognizes the prefixes of X ™. (b) First attempt. The length of the window is
equal to the length of the longest string of X, thus 8, but the first attempt must start adjusted
on the smallest string of X, thus y[0..4]. The scanning starts in the initial state 0. There
is no transition defined from state 0 with the letter y[4] = c, thus the attempt ends and a
shift of length 5 is applied. (¢) Second attempt. The window of length 8 is positioned on the
factor of the text y[2 . . 9] = bacbabbb. From the initial state 0, we reach the terminal state 14
after parsing string bb. There is no transition defined from this state with the letter y[7] = b,
thus the attempt ends and a shift of length m’ — |bb| = 3 is applied. (d) Third attempt. We
transit by states 0, 12, 13, 17, and 11. A shift of length m’ — |baba| = 1 is applied. (¢) Fourth
attempt. We transit by states 0, 1, 2, 9, 10, and 11. An occurrence is signaled and a shift of
length 1 is applied.

j''=j — |lu| + 1, the current state is terminal, since u is a prefix of x;, and
the condition j — j'4+ 1 < m’ holds. This limits the length of the shift to
m’ — j + j — 1 < |v|. The next value of j, let us say j”, will be thus such that
Jj” <€ with £ — j” < € — j. The recurrence hypothesis leads to conclude that
the occurrence of x; is detected, which ends the recurrence.

Finally, we note that initially we have j < £ for every right position of a
string of X since j is initialized to m’ — 1. Therefore, every occurrence of a
string of X is signaled. ]
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Though the algorithm MULTIPLE-SUFFIX-SEARCH has a very good behavior
on common texts and patterns, its running time is O(k x m” x n) in the worst
case. Indeed, instructions of the while loop in lines 3—16 may be executed n
times (at most), those in lines 7-15 m” times, and those of the for loop of lines
10-11 & times. Its running time can, however, be made linear by application of
standard techniques.

Notes

The algorithm MEMORYLESS-SUFFIX-SEARCH has been first proposed by Boyer
and Moore [109]. Theorems 3.7 and 3.8 have been established by Cole [114].

The idea of searching for the occurrences of a string using a window of
length equal to the period of the string was exposed by Galil [142]. Hancart
[148] designed the computation of the automaton of the best factor and the
computation of the function of the best factor as reported in Section 3.4.

The algorithm TURBO-SUFFIX-SEARCH, also known as Turbo-BM, is from
Crochemore, Czumaj, Gasieniec, Jarominek, Lecroq, Plandowski, and Rytter
[121].

Apostolico and Giancarlo [95] presented the idea of the algorithm MEMORY-
SUFFIX-SEARCH. The version that is given here, and the proof of Theorem 3.28,
were given by Crochemore and Lecroq [125].

The algorithm MULTIPLE-SUFFIX-SEARCH of the last section is from
Crochemore et al. [122]. These authors also proposed a linear-time version
of it. Raffinot [198] described a variant of this last algorithm implemented by
the command vfgrep under the UNIX system.

The Boyer-Moore automata (see Exercise 3.6) were introduced by Knuth,
Morris, and Pratt [170]. It is still unknown if the size of these automata is
polynomial.

Precise lower bounds on the number of letter comparisons for locating
a string in a text are established by Cole, Hariharan, Paterson, and Zwick
in [116]. The expected running time of string matching algorithms is analyzed
by Yao in [219] (see Exercise 3.7).

An animation of exact string matching algorithms (including those of this
chapter) is proposed on the site [51], developed by Charras and Lecroq.

Exercises

3.1 (Implementation)

Write the algorithm MEMORYLESS-SUFFIX-SEARCH using two variables that have
for values those of i and of j — m + 1 4 i in the code of Section 3.1. Redefine
best-fact accordingly. Do the same for the other versions of the algorithm.
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3.2 (Period)

Give the code of an algorithm that finds all the occurrences of x in y using a
window of length per(x) and that performs less than 3n comparisons between
letters of the string and of the text. (Hint: see Galil [142].)

3.3 (Better)

Give an example of a string and of a text for which the algorithm MEMORYLESS-
SUFFIX-SEARCH performs less comparisons when using the table good-suff than
when using the function best-fact.

3.4 (Worse)
Give examples of strings and of texts for which all the algorithms of this chapter
perform more comparisons than the algorithm FAST-SEARCH of Section 1.5.

3.5 (Number of arcs)

Show with a direct argument — that is to say without using a construction
method — that the number of arcs of the automaton of the best factor of any
nonempty string x that enter a state that is not a suffix of x is at most equal to
|x| — 1. (Hint: as for the proof of Proposition 2.19, show that the outputs of
these states are pairwise distinct and are between 1 and |x| — 1.)

3.6 (Boyer—-Moore automaton)

The Boyer-Moore automaton is a deterministic automaton of the configurations
of the window encountered during the execution of the algorithm MEMORYLESS-
SUFFIX-SEARCH. The states bear the information on the content of the window
collected during the previous comparisons.

We denote by B the automaton associated with the string x € A of length
m. Its set of states is denoted by Q, its set of arcs by F. It possesses a shift
function d that gives the length of the shift to execute, and a boolean output
function s that signals an occurrence of x, both defined on F.

The states are defined as follows:

* (O is the part of (A U {#})™ accessible from the initial state. The letter # that
does not belong to the alphabet A represents the absence of information on
the corresponding letter of the window.

* The initial state is the string #".

The set of arcs F and the functions d and s are defined as follows, for
uec (AU #D* v <ui x, w € {#}*and a € A:

* f = (u#v,a,uav) € F if av <y x and uav # x; we have d(f) = 0 and
s(f) = FALSE.
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e f = (u#v, a, Border(x)w’) € F if uav = x; we have d(f) = |w'| = per(x)
and s(f) = TRUE.

e the triplet f = (u#v, a, ww’) € F if av £g x and w is the longest string
for which w < uav and, fori =0, 1, ..., |w| — 1, w[i] = x[i] or
w[i] = #; we have d(f) = |w'| and s(f) = FALSE.

For g € Q, q[i] = # means that the letter of the text aligned with x[i] has
never been inspected. The strategy used to compare the letters is similar to
that of the searching algorithms of the chapter: scanning from right to left, but
starting with the first noninspected letter.

Give the Boyer—Moore automaton of the string x = aabbabb. Design an
algorithm searching for x with the automaton B. Design an algorithm that
builds the automaton B. Give a tight bound of the size of B.

3.7 (Optimal)
Design a string matching algorithm (for a string of length m and a text of
length n) using shifts based on O(logn) letters of the pattern and running in

average time O (n log n/m). Show that the algorithm is time optimal. (Hint: see
Yao [219].)

3.8 (Proof!)
Adapt the complexity proof of the algorithm W-MEMORYLESS-SUFFIX-SEARCH
to the algorithm MEMORYLESS-SUFFIX-SEARCH.

3.9 (Best factor)

Deduce from Section 3.4 an implementation of the function best-fact. Design
an algorithm that constructs the automaton of the best factor of every string x
in time and space O(]x]).

3.10 (Good suffix)
Design an algorithm that computes the table good-suff only with the help of
the table rbord (and of m) defined for x by

rbord[i] = |Border(x[i .. m — 1])|,

for every position 7 on x.

3.11 (Bis)
Let GooD-SUFFIX-BIS be the algorithm whose code follows.
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GOOD-SUFFIX-BIS(x, m)

1 fori < Otom — 1do

2 good-suff[i] < 0

3 flm—1]<«<m

4 j<«—m—1

5 fori <— m — 2 downto 0 do

6 flil < j

7 while j < m and x[i] # x[j] do
8 if good-suff[j] = O then

9 good-suff [j] < j —1i
10 j < fIjl

11 j—j—1

12 fori < Otom — 1do
13 if good-suff [i] = O then
14 good-suff [i] < j+1
15 ifi = j then
16 j < Ul
17 return good-suff

Show that we have f[i] =m — 1 — rbord[i + 1] for every position i on x
at the end of the execution of the algorithm (table rbord is defined in Exer-
cise 3.10).

Show that the algorithm effectively computes the table good-suff. What is
its running time?

3.12 (Quadratic)

Modify the algorithm GOOD-SUFFIX(x, m, suff) in order to obtain, for a string

x of length m, an algorithm that runs in time and space O(m x card A), and

that computes the table best-fact-quad of size O(m x card A) defined by
best-fact-quadli, al = best-fact(i, a)

forO<i<m-—1landa € A.

3.13 (Witnesses)
Let y € AT and w be a proper prefix of x € A™. We assume that w is periodic,
that is to say

lw| > 2per(w).
Show that the string
w[0. . 2per(w) — 2]

is not periodic.
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Let p = |w| — per(w) and ¢ = |w|, and assume that x[p] # x[g] (the inte-
gers p and g are witnesses of nonperiodicity ¢ — p of x). Show that if simulta-
neously y[j + p] = x[p] and y[j + ¢g] = x[q] then the string x possesses no
occurrence at positions j + 1, j +2,...,j+ pony.

From the previous property, deduce an algorithm for locating the occurrences
of x in y that performs at most 2|y| comparisons between letters of x and of y
during the search and that uses only a constant extra space. (Hint: distinguish
the three cases: no prefix of x is periodic; w is the longest periodic prefix of
x and x is not periodic; x is periodic. See also Gasieniec, Plandowski, and
Rytter [145].)

3.14 (Heuristic)
Show that, in the algorithm TURBO-SUFFIX-SEARCH, if we utilize the heuristic
last-occ and the table good-suff, and if the shift is given by the heuristic, then
the length of the shift must be at least |z| (the string z is the suffix of the string
recognized during the attempt).

Give the complete code of the algorithm modified by incorporating the
heuristic and using the above property.

3.15 (Lonely)

Adapt the algorithm MULTIPLE-SUFFIX-SEARCH to the case of the search of a
single string. (Hint: see Crochemore, Czumaj, Gasieniec, Jarominek, Lecroq,
Plandowski, and Rytter [121].)

3.16 (Linear)

Combine the techniques of the search for a dictionary presented in Chapter 2
with those implemented in algorithm MULTIPLE-SUFFIX-SEARCH in order to get
a searching algorithm working in linear time. (Hint: see Crochemore, Czumaj,
Gasieniec, Lecroq, Plandowski, and Rytter [122].)
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Suffix arrays

This chapter addresses the problem of searching a fixed text. The associated
data structure described here is known as the Suffix Array of the text. The
searching procedure is presented first for a list of strings in Sections 4.1 and
4.2, and then adapted to a fixed text in the remaining sections.

The first three sections consider the question of searching a list of strings
memorized in a table. The table is supposed to be fixed and can thus be
preprocessed to speed up later accesses to it. The search for a string in a
lexicon or a dictionary that can be stored in central memory of a computer is
an application of this question.

We describe how to lexicographically sort the strings of the list (in maximal
time proportional to the total length of the strings) in order to be able to apply
a binary search algorithm. Actually, the sorting is not entirely sufficient to
get an efficient search. The precomputation and the utilization of the longest
common prefixes between the strings of the list are extra elements that make
the technique very efficient. Searching for a string of length m in a list of n
strings takes O (m + logn) time.

The suffix array of a text is a data structure that applies the previous technique
to the n (nonempty) suffixes of a text of length n. It allows to determine all
the occurrences of a factor of the text, in time O(m + logn) as above, and
provides a solution complementary to the ones described in Chapters 2 and
3. The text is fixed and its preprocessing provides an efficient access to its
suffixes. In this case, the preparation of the text, lexicographic sorting of its
suffixes and computation of their common prefixes, can be adapted to run
respectively in time O(n x logn) and in time O(n) though the sum of suffix
lengths is quadratic.

In Section 4.5, we consider that the alphabet is a bounded segment of
integers, as it can be considered in most real applications. Having this condition
it is not necessary to sort individual letters of the text before sorting its suffixes.

146
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This eliminates the bottleneck of the O(n x log n) running time. Indeed, under
this condition, the suffixes can be sorted in linear time.

Globally, the chapter presents an algorithmic solution to the problem of
searching for a string in a fixed list and in the factors of a fixed text. Chapter 5
completes the study by proposing a solution based on data structures adapted to
the memorization of the text suffixes. Finally, Chapter 9 presents an alternative
solution to the preparation of a suffix array.

The interest to consider the suffixes of a string resides essentially in the
applications to pattern matching and to index implementation that are described
in Chapter 6. Indeed, the technique for searching a list allows one to compute
the interval of strings of the list that possess a given prefix, and this is the reason
why it adapts to pattern matching.

All this assumes the existence of an ordering on the alphabet. But this is
not a constraint in practice because the data stored in a computer memory are
encoded in binary and consequently we can use the lexicographic ordering of
binary sequences.

4.1 Searching a list of strings

We consider a list L of n strings of A* assumed to be stored in a table:
Lo, Ly, ..., L,_;. In this section and the next one, we assume that the strings
are in increasing lexicographic order, Ly < L; < --- < L,_;. Sorting the list
is studied in Section 4.3.

The basic problem considered in the chapter is the search for a string x € A*
in the list. In the applications, it is often more interesting to answer a more
precise question that takes into account the structure of the elements of the list,
that is to say, determine what are the strings of the list having x as a prefix.
This problem is at the origin of an index implementation presented in Chapter 6
and it yields an efficient solution for string searching in a fixed text. We state
formally the two problems considered in the section.

Interval problem

Let n>0 and Lo, Ly,...,L, | € A*, satisfying the condition Ly <
Ly <---<L, {.Forx € A* compute the indicesd and f,—1 <d < f <n,
for which: d < i < f if and only if x <per L;.

The choice of the bounds —1 and z in the statement simplifies the algorithm
(algorithm INTERVAL of Section 4.2). We proceed as if the list is preceded by
a string smaller (in the lexicographic order) than every other, and as if it is
followed by a string larger that every other.
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We can state the membership test of x in the list L in terms that simplify
the previous problem and make the design of algorithm more direct. Besides,
in addition to membership, solutions of the problem are able to locate x with
respect to the sorted elements of the list even if does not belong to it.

Membership problem

Let n>0 and Lo, Ly,...,L, | € A*, satisfying the condition Ly <
L <---<L,_ . For x € A*, compute an index i, —1 < i < n, for which
x = L; if x occurs in the list L, or otherwise indicesd and f,—1 <d < f <n,
for whichd +1= fand Ly; <x < Ly.

The search for x in the list L can be done in a sequential way without any
preparation of the list, without even requiring that it is sorted. The execution
time is then the sorting time O(m x n). By applying this method, we do not
get any gain from the fact that the list is sorted and that it can be prepared
before the search. A second solution consists in applying a binary search as it is
classical to do on sorted tables of elements. The searching algorithm can easily
be written as below. It provides a rather efficient answer to the membership
problem, solution that is improved in the next section. The code of the algorithm
calls the function Icp that is defined, for u, v € A*, by

lep(u, v) = the longest prefix common to # and v.

In the code below, we note that L;[£] is the letter at position £ on the string
having index i in the list L. We also note that the initialization of d and f
amounts to consider, as we already mentioned, that the list possesses two extra
strings L_; and L, of length 1, the string L_; consists of a letter smaller than
all the letters of the strings x, Lo, L1, ..., L,—1, and the string L, consists of a
letter greater than all of them.

SIMPLE-SEARCH(L, n, x, m)
1 d<« -1
2 f<«n
3 whiled+1 < fdo

4 > Invariant: Ly < x < Ly
5 i< [(d+ f)/2]

6 £ <« |lep(x, Ly)|

7 if £ =m and £ = |L;| then
8 return i

9

elseif (¢ = |L;|) or (£ = m and L;[£] < x[£]) then
10 d<~i

11 else f <1

12 return (d, f)
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(1,0
(-1,2)
©, 1
0.2 <
(1,2)
(—1,6)
2.3)
2,4) <
3.4
2,6)

Figure 4.1. Tree of the binary search inside a list of six elements. The tree possesses 2 x
6 + 1 = 13 nodes, 6 are internal and 7 are external.

The algorithm SIMPLE-SEARCH considers a set of pairs of integers (d, f) that
is structured as a tree, the binary search tree. The execution of the algorithm
corresponds to a scan along a branch of the tree, from the root (—1, n). The
scan stops on an external node of the tree when the string x does not belong to
the list, otherwise it stops before. Figure 4.1 shows the tree of the binary search
when n = 6.

The set N of nodes of the tree is inductively defined by the conditions:

e (—1,n) €N,
e if(d, f)e Nandd + 1 < f, then both (d, [(d + f)/2]) € N and
(ld+ /2], ) e N.

The external nodes of the tree are all the pairs (d, f), —1 <d < f <n, for
which d + 1 = f. An internal node (d, f), —1 <d + 1 < f < n, of the tree
possesses two children: (d, |(d + f)/2]) and ([(d + f)/2], ).

Lemma 4.1
The binary search tree associated with a list of n elements possesses 2n + 1
nodes.

Proof The tree of the binary search possesses the n 4 1 external nodes
(—=1,0),(0,1),...,(n — 1, n). Since the tree is binary and complete, the num-
ber of internal nodes is one unit less than the number of external nodes (simple
proof by recurrence on the number of nodes). There are thus n internal nodes,
which gives the result. |
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Proposition 4.2

The algorithm SIMPLE-SEARCH locates a string x of length m in a sorted list
of size n (membership problem) in time O(m x logn) with a maximum of
m x [log,(n + 1)1 comparisons of letters.

Proof The algorithm stops because the difference f — d decreases strictly at
each execution of lines 5 to 11, which eventually makes the condition of the
loop, the inequality d + 1 < f, false. We can also verify that the property of
line 4 is invariant. Indeed, the test in line 7 controls the equality of strings x
and L;. And in the case of an inequality, the test in line 9 determines which one
of the two strings is greater in the lexicographic order. We then deduce that the
algorithm solves correctly the membership problem.

Each comparison of strings requires at most m letter comparisons counting
the comparisons done for computing |/cp(x, L;)|. The length of the interval of
integers (d, f) goes from n + 1 to at most 1. This length (minus one unit) is
divided by two at each step, thus there are at most [log,(n + 1)] steps. We
deduce the result on the number of comparisons that is representative of the
execution time.

The example below shows that the bound on the number of comparisons is
tight, which ends the proof. |

The result of the proposition is not surprising and the bound on the execution
time is tight when x is not longer than the elements of the list. Indeed, the
maximal number of comparisons is reached with the following example. We
choose for list of n strings

L= (" 'p,a" c,a"q,...)

and for string x = a™. We assume the usual order on the letters: a < b, b < c,
etc. The result of the algorithm SIMPLE-SEARCH is the pair (—1, 0), which in-
dicates that x is smaller than all the strings of L. If the comparisons between
strings are done by letter comparisons from left to right (by increasing posi-
tions), exactly m letter comparisons are performed at each step; as their number
is [log,(n 4 1)1, this gives the bound of the proposition.

When x is longer than the elements of L, a more suited expression of the
executiontimeis O (£ x logn), where £ is the maximal length of the strings of L.

4.2 Searching with the longest common prefixes

The binary method of the previous section can be completed in order to speed up
the search for x in the list L. This is done with the help of an extra information
on the strings of the list: their longest common prefixes. The searching time
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goes from O(m x logn) (algorithm SIMPLE-SEARCH of the previous section)
down to O(m + logn) for the algorithm SEARCH below. The storage of the
lengths of common prefixes requires an extra memory space O (n).

The idea of the improvement is contained in Proposition 4.3 which is a
remark on the common prefixes. In the statement of the proposition, the values
£4 and £ and those of the associated variables in the algorithm SEARCH are
defined by

Ly = |lep(x, La)l
and
L = |lcp(x, Ly)l.

The proposition focuses on two situations met during the execution of the
algorithm SEARCH and that are illustrated by Figure 4.2. A third case is described

~
L

aaaca X |aabbbaa

aaachba

(a) L; ‘aabbiaba

aabb}abb

Lfiaabbébab‘ x|aabbbaa‘

L, |aaaca x l[aabach

aaacba

(b) L; |aabbiaba

aabbiabb

Lfiaabbibab‘ x l[aabach

Figure 4.2. Illustration for the proof of Proposition 4.3 in the case £; < {;. (a) Let
u =lcp(L;, Ly) and a, b be the distinct letters for which ua <yt L; and ub <per L.
The list being ordered, we have a < b. Then, if |u| = |lcp(L;, Ly)| < €7, ub is also
a prefix of x, thus L; < x and |lcp(x, L;)| = |lcp(L;, L)|. Here, we have u = aabb =
Icp(aabbaba, aabbbab) = [cp(aabbbaa, aabbaba). The argument adapts to the case where
u = L; and gives the same result. (b) Let v = lcp(x, L) and a, b be the distinct letters
for which va <per x and vb <yer Ly. Asx < Ly, we have a < b. Then, if |lcp(L;, L )| >
£y = |v|,vbisalsoaprefixof L;,thusx < L; and |lcp(x, L;)| = |lcp(x, L s)|. Here, we have
v = aab = Icp(aabacb, aabbbab) = /cp(aabacb, aabbaba). The argument adapts to the case
where v = x and gives the same result.
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L, |aaaca x |laabbac

L [sabblaba

aabbiabb

Figure 4.3. Illustration of how the algorithm SEARCH works for a complementary case
to those of Proposition 4.3. We still consider that the condition £; < £; holds. Let
u=Icep(L;, Ly) and a, b be the distinct letters for which ua <prer L; and ub <peer L.
The list being ordered, we deduce a < b. If |u| = £f, ua’ is a prefix of x for a letter a’,
a’ < b. In this situation, we have to compare letters of x and L; in order to locate x in the list.
The letter comparisons, performed from left to right, are only necessary from position £,
where the letters a and a’ occur in their respective strings. The algorithm takes into account
the possibilities u = x and u = L;.

in Figure 4.3; it is the one for which more letter comparisons are necessary.
Three other symmetrical cases are to be considered when we assume £; > €.

Proposition 4.3
Let d, f,i be three integers, 0 <d <i < f < n. Under the assumptions
Ly <Ljy1=<---<Lyand Ly <x <Ly, let £5=|lcp(x,Ly)| and £y =
llep(x, L ¢)| satisfying £y < £r. Then we have:

llep(L;, Ly)| < £y implies L; < x < Ly and |lcp(x, L;)| = |lcp(L;, Ly)l,
and

llep(Li, Ly)| > £y implies Ly < x < L; and |lcp(x, L;)| = |lep(x, L)l
Proof The proof can be deduced from the caption of Figure 4.2. ]

The code of the algorithm that exploits Proposition 4.3 is given below. It

calls the function Lcp defined as follows. For (d, f), —1 <d < f < n, pair of
indices of the binary search tree, we denote by

Lep(d, f) = |lecp(Lyg, L)

the maximal length of the prefixes common to L and L.
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Ly |[a aabaa

aabbbhb

Ls

5
o
ElIE
)
o

Figure 4.4. When searching for the string x = aaabb in the list, the algorithm SEARCH
performs six comparisons of letters (gray letters). The output is the pair (0, 1), which indicates
that Lo <x < L;.

SEARCH(L, n, Lcp, x, m)
I (d,ty) < (—1,0)

2 (fily) < (n,0)
3 whiled +1 < f do

4 > Invariant: Ly < x < Ly
5 i< [(d+ f)/2]
6 if £ < Lcp(, f)and Lep(i, f) < £ then
7 (d, ;) < (@, Lep(, f)) > Figure 4.2(a)
8 elseif £; < £ and £y < Lcp(i, f) then
9 f<i > Figure 4.2(b)
10 elseif £, < Lcp(d, i) and Lep(d, i) < £4 then
11 (f, €y) < (i,Lep(d, i))
12 elseif £, < {5 and £; < Lcp(d, i) then
13 d<i
14 else ¢ < max{{y, £} > Figure 4.3
15 <0+ |lepx[€..m — 1], L;[£..|L;| — 1])]
16 if { =m and £ = |L;| then
17 return ;
18 elseif (¢ = |L;|) or (£ = m and L;[£] < x[£]) then
19 d,ly) < (i,0)
20 else (f,47) < (i,0)

21 return (d, f)

An example of how the algorithm works is given in Figure 4.4.

We evaluate the complexity of the algorithm SEARCH under the assumption
that sorting the list and computing the longest common prefixes are performed
beforehand. This preparation is studied in the next section and it results that the
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computation of Lep(r, s) (—1 <r < s < n) amounts to a mere table look-up
and can thus be executed in constant time, property that is used in the proof of
the next proposition.

Proposition 4.4

The algorithm SEARCH locates a string x of length m in a sorted list of n
strings (membership problem) in time O(m + logn) with a maximum of m +
[log,(n + 1)] letter comparisons. The algorithm requires an extra memory
space O(n).

Proof The code of the algorithm SEARCH is a modification of the code of the
algorithm SIMPLE-SEARCH. It takes into account the result of Proposition 4.3.
The correctness of the algorithm results essentially from Propositions 4.2 and
4.3, and from the caption of Figure 4.3.

For the evaluation of the execution time, we note that each positive letter
comparison strictly increases the value of max{¢,, £ s} that goes from 0 to m at
most. There are thus at most m comparisons of this kind. Besides, each letter
mismatch leads to divide by two the quantity f —d — 1. The comparisons
between €4, £, and the precomputed Lcp values have the same effect when
they do not lead to comparisons of letters. There are thus at most [log,(n +
1)] comparisons of this kind. Therefore, we get the announced result on the
execution time when the computation of Lep(r, s), —1 < r < s < n, executes
in constant time. This condition is realized by the implementation described in
the next section.

The extra memory space is used to store the information on the order-
ing of the list and on the common prefixes necessary to the computations
of the Lep(r, s), —1 <r < s < n. The implementation described in the next
section shows that a space O(n) is sufficient, result that essentially comes
from the fact that only 2n + 1 pairs (r, s) come up in the binary search after
Lemma 4.1. ]

The algorithm SEARCH provides a solution to the membership problem. It
easily transforms into a solution to the interval problem: the algorithm INTER-
VAL. Since we search now the strings of the list for which x is a prefix, we
have to detect the case where x <prr L;. It can be done by changing the test in
line 16. This being done, it remains to determine the bounds of the wanted in-
terval. We proceed by dichotomy before (resp. after) the string L; for which x is
a prefix, by determining the largest index j < i (resp. smallest index j > i) for
which Lep(i, j) < |x|. The principle of the computation relies on Lemma 4.6
of Section 4.3.
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The algorithm INTERVAL is obtained by replacing lines 16—17 of the algo-
rithm SEARCH by the lines that follow.

1 > The following lines replace lines 16—17 of SEARCH
2 if £ = m then
3 e <1

4 whiled +1 < e do

5 Jj < ld+e)/2]

6 if Lcp(j, e) < m then
7 d<~j

8 else ¢ < j

9 if Lcp(d, e) > m then

10 d < max{d — 1, —1}
11 e <1

12 whilee + 1 < f do

13 j <L+ N/l

14 if Lcp(e, j) < m then
15 f<jJ

16 else ¢ < j

17 if Lep(e, f) = m then

18 f < min{f + 1, n}
19 return (d, f)

The letter comparisons performed by the algorithm INTERVAL are also done
by the algorithm SEARCH. The asymptotic bound of the execution time is not
modified by the above change. We thus get the following result.

Proposition 4.5

The algorithm INTERVAL solves the interval problem for a string of length
m and a sorted list of n strings in time O(m + logn) with a maximum of
m + [log,(n + 1)] letter comparisons. The algorithm requires an extra memory
space O(n). [

It is obvious that the time complexity of the algorithms SEARCH and INTER-
VAL is also O(€ 4 logn) with £ = max{|L;| : i =0, 1, ..., n — 1}. This bound
is a better expression when x is longer than the strings of the list.

4.3 Preprocessing the list

The algorithm SEARCH (as well as the algorithm INTERVAL) of the previous
section works on a list of strings L lexicographically sorted and for which we



156 4 Suffix arrays

f 0 1 2 3 4 5 6 7 8 9 10 11 12
LCP[f] 0O 2 3 1 0 1 0 0 2 0

Figure 4.5. Table LCP associated with the list of strings in Figure 4.4, L =
{aaabaa, aab, aabbbb, ab, baaa, bb} of length 6. For example, LCP[2] = |lcp(L,, Ly)| =
|lcp(aab, aabbbb)| = |aab] = 3. And LCP[8] = |lcp(Lo, L1)| = |lcp(aaabaa, aabbbb)| =
laa| = 2 because 8 =6+ 1 + [(0+2)/2].

know their longest common prefixes. We show, in this section, how to perform
these operations on the list.

Sorting such a list is usually realized by means of a series of radix sorting
(bucket sort) analogue to the method used by the algorithm SORT of the next
section. Doing so, the sorting executes in time O(|L|), where |L| is the sum of
the lengths of the strings of the list.

We describe an implementation of the lengths of the common prefixes
that is needed for the algorithm SEARCH. The implementation is realized by
memorizing the values in a table. The algorithm SEARCH accesses the table
through calls to the function Lcp below. We denote by

LCP:{0,1,...,2n} - N

the table used for storing the lengths of the longest common prefixes. It is
defined by:

* LCP[f1=llep(Ly—1,Ly)|,for0 < f <n,
* LCP[n+1+1i] = |lcp(Lg, Ly)|, fori = [(d + f)/2] middle of a pair
d, £),0 <d+1 < f < n, of the binary search tree,

assuming that /cp(L,, Ly) = ¢ when r = —1 or s = n. The representation of
the values in the table LCP does not cause any ambiguity since each index i on
the table only refers to one pair (d, f) coming up from the binary search. An
example of LCP table is shown in Figure 4.5.

The equality that follows establishes the link between the table LCP and the
function Lcp.

LCP[ f] ifd+1=f,
Lepd, f) = / - !

LCPIn+ 1+ [(d+ f)/2]] otherwise.
We deduce an implementation of the function Lcp that executes in constant
time. This result is an assumption used in the previous section to evaluate the
execution time of the algorithm SEARCH.
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Lcre(d, f)
1 ifd+ 1= f then
2 return LCP[ f]

3 else return LCP[n+ 1+ |(d + f)/2]]

Computing the table LCP is done by scanning the list L in increasing order
of the strings. The computation of LCP[ f] for 0 < f < n results from mere
letter comparisons. The following lemma provides a property that serves to
compute the other values.

Lemma 4.6
We assume that Lo < Ly <---<L,_1. Let d, i, and [ be integers such
that —1 <d <i < f < n.Then

llep(La, L )| = min{|lcp(La, LI, |lep(Li, Lp)l}

Proof Letu =Icp(Ly, L;) and v = lcp(L;, L ). Without loss of generality,
we assume |u| < |v| because the other case is analogue. The strings u and v
being prefixes of L;, we have then u <prer v and u <prer L.

Ifu = Ly, we getu = Icp(Lg, Ly), which gives the stated equality.

Otherwise, there exist three letters a, b, ¢ such that ua <prer Lg, ub <prer Li,
and uc <per L. We have a # b by definition of u, and even a < b since the
sequence is in increasing order. If moreover b = ¢, we get u = lcp(Lg4, L),
which gives the conclusion. If on the other hand b # c, the sequence being in
increasing order, we have b < ¢, which gives again the same conclusion and
ends the proof. ™

The algorithm LCP-TABLE implements the computation of the table LCP.
The execution starts by the call LCP-TABLE(—1, n), for n > 0, which has for
effect to compute all the inputs of the table. The resulting table corresponds to
its above definition, and the computation uses the previous lemma in line 8.

LCP-TABLE(d, f)
1 > Wehaved < f

else i < [(d+ f)/2]
LCP[n + 1+ i] < min{LCP-TABLE(d, i), LCP-TABLE(, f)}
return LCP[n + 1 +i]

2 ifd+ 1= f then

3 ifd =—1or f =nthen

4 LCP[f] <0

5 else LCP[f] < |lcp(La, L)l
6 return LCP[ f]

7

8

9
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We can check that the execution time of LCP-TABLE(—1, n) is O(|L|) as a
consequence of Lemma 4.1. The proposition that follows sums up the elements
discussed in the section.

Proposition 4.7
Preprocessing the list L for the algorithms SEARCH and INTERVAL, that is,
sorting it and computing its LCP table, takes O(|L|) time. [ ]

4.4 Sorting suffixes

The technique of the previous sections can be applied to the list of the suf-
fixes of a string and it is the basis of an index implementation described in
Chapter 6. The interval problem and its solution, the algorithm INTERVAL, are
particularly interesting in this type of application to which they adapt without
any modification.

In this section, we show how to sort in lexicographic order the suffixes
of a string y of length n, preliminary condition for executing the algorithm
INTERVAL on the list of the suffixes of y. In the next section, we complete the
preparation of the string y by showing how to efficiently compute the longest
prefixes common to the suffixes of y. The permutation that results from the
sorting and the table of the longest common prefixes make up the suffix array
of the string that is to index.

The goal of the sorting is to compute a permutation p of the indices on y
that satisfies the condition

y[plO]..n — 1] < ylp[l]..n—1] < --- < y[pln —1]..n —1]. “.1)

We note that the inequalities are strict since two suffixes occurring at distinct
positions cannot be identical.

The implementation of a standard lexicographic sorting method, as the one
that is suggested in Section 4.3, leads to an algorithm whose running time is
O(n?) because the sum of the lengths of the suffixes of y is quadratic. The
sorting method that we use here relies on a technique of partial identification
of the suffixes of y by means of their first £ letters. The values of k increase
in an exponential way, which produces a sorting in [log, n] steps. Each step is
realized in linear time with the help of a lexicographic sort on pairs of integers
of limited size, sorting that can be realized by radix sort.

Let k be an integer, k > 0. We denote, for u € A*:

u if |u| <k,
ul0..k — 1] otherwise,

first (u) = {
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labaabbabbaaabbabbba‘

Figure 4.6. Doubling. The rank of the factor aabbab, Rs[2], is determined by the ranks
R3[2] and R3[5] of aab and bab respectively. In particular, aabbab occurs at positions 2 and
10 since aab occurs at positions 2 and 10, and bab occurs at positions 5 (= 2 + 3) and 13
(= 10+ 3).

the beginning of order k of the string u. We define, for the positions
0,1,...,n — 1 ony, asequence of rank functions, denoted by Ry, in the fol-
lowing way. The value Ry [i] is the rank (counted from 0) of first, (y[i ..n — 1])
in the sorted list of the strings of the set {first, (1) : u <qs y and u # ¢}. This
set contains in general less than n elements for small values of k, which implies
that different positions can be assigned the same value according to R;. The
function R; induces an equivalence relation among the positions on y. It is
denoted by =, and defined by

=
if and only if

Rilil = RilJj).

When k = 1, the equivalence =; amounts to identify the letters of y. For any
k € N, two suffixes of length at least k are equivalent for =; if their prefixes of
length k are equal. When k > n, the equivalence =; is discrete: each suffix is
only equivalent to itself.

To simplify the statement of the property that is at the origin of the sorting
algorithm SUFFIX-SORT thereafter, we extend the definition of R; by setting
Ri[i] = —1 fori > n. The property is illustrated in Figure 4.6

Lemma 4.8 (Doubling Lemma)
Fortwo integers k andi withk > 0and 0 <i < n, Ry[i] is the rank of the pair
(Rili], Reli + k]) in the lexicographically increasing list of all these pairs.

Proof Setting R[i] = —1 foranintegeri > n amounts to consider the infinite
string ya®°, where a is a letter smaller than all those that occur in y. Thus, when
i > n, the factor of length k occurring at position i, a*, is smaller than all the
other strings of the same length occurring at a position on y. Its rank is thus
less than the other ranks, which is compatible with the agreement to give it the
value —1.
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By definition, Ry[i] is the rank of first, (y[i ..i 4+ 2k — 1]) in the sorted
list of the factors of length 2k of the string ya®. Let

u@@) = firsty(yli ..i +k—1])
and
v(i) = first,(y[i + k..i + 2k — 1]).
From the equality
Sirsty, (Yli .. i + 2k — 1]) = u(@) - v(i)
we deduce, for 0 < i # j < n, that the inequality
firsty i .. +2k — 11) < firsty (VLj .. j + 2k — 1])

is equivalent to
(u(@), v(D)) < (u()), v(j))
that is itself equivalent to
(Reli], Reli + k1) < (Ri[j], Rlj + k1)

by definition of Ry. Thus, the rank Ry [i] of firsty, (y[i .. i + 2k — 1]) is equal
to the rank of (R [i], R¢[i + k]) in the increasing sequence of these pairs, which
ends the proof. ]

Relatively to the parameter k, we finally denote by p; a permutation of the
positions on y that satisfies, for0 <r < s < n,

Ri[pr(1)] < Rilpr(s)].

The permutation is associated with the sorted sequence of the beginning of
length k of the suffixes of y. When k > n, the strings first, (1) (where u is a
nonempty suffix of y) being pairwise distinct, the previous inequality becomes
strict. We get then a unique permutation satisfying the condition, it is the
permutation defined by the table p and used in Section 6.1 for searching the
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string y. The algorithm SUFFIX-SORT computes this permutation by means of
the tables R;.

SUFFIX-SORT(y, 1)
1 forr < Oton —1do

2 plr] < r
3 k<1
4 fori < Oton—1do
5 R [i] < rank of y[i] in the sorted list of letters of alph(y)
6 p < Sort(p, n, Ry, 0)
7 i < cardalph(y) —1
8 whilei <n—1do
9 p < SORT(p, n, Ry, k)
10 p < SORT(p, n, R, 0)
11 i <0
12 Ror[plO]] < i
13 forr < 1ton —1do
14 if R[plr]l # Rlplr — 111
or Ri[p[r] + k] # Ry[p[r — 1] + k] then
15 i<i+1
16 Rorlplr]l < i
17 k < 2k

18 returnp

An illustration of how the algorithm SUFFIX-SORT works is given in Figure 4.7.

The algorithm uses the property stated in Lemma 4.8 by calling the sorting
algorithm Sort described below. The algorithm SorTt has for inputs: p is a
permutation of the integers 0, 1,...,n — 1, R is a table on these integers with
values in the set {—1,0,...,n — 1}, and k is an integer. The algorithm SOrRT
sorts the sequence of integers

plOl+k,p[1]l+k,....,pln —1]1+k

in increasing order of their key R. This is to say that the value p’ produced by
SORT(p, n, R, k) is a permutation of {0, 1, ..., n — 1} that satisfies the inequal-
ities

R[P'[0]+ k] < R[P'[11+kl <--- <R[p'[n — 1] +k].

Moreover, SORT satisfies a stability condition that makes it appropriate to
lexicographic sorting: the algorithm does not modify the relative position in
the list of two elements that possess the same key. In other words, if » and ¢,
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@ i 0 1 2 3 5 6 7 8 9 10

a yli] a a b a a b a a b b a
k=1 {0,1,3,4,6,7, 10} {2,5,8,9}
k=2 {10} {0, 3, 6} {1,4,7} {2,5,9} {8}

(b) ‘ /\ /\ /\ ‘

k=4 {10} {0,3} {6} ({L4} {7} {9 {25} ({8}

VAN VAN N AN

k=8 {10} {0} {3} {6} {1} {4 {7} {9 {2} {5} {8}

i 0 1 2 3 4 5 6 7 8 9 10

© SE 10 0 3 6 1 4 7 9 2 5

Figure 4.7. Computation by doubling of the partitions associated with equivalences =; on
the string y = aabaabaabba. (a) The positions on the string y. (b) The classes of positions
according to =; are given from left to right in increasing order of the common rank of
their elements. Thus, line k = 2, R;[10] = 0, R;[0] = R,[3] = R,[6] = 1, R;[1] = Ry [4] =
R,[7] = 2, etc. For k = 8, the sequence of positions provides the suffixes in increasing order.
(c¢) Permutation p corresponding to the sorted suffixes of y.

0 <r #t < n,are two integers for which R[p[r] + k] = R[p[t] + k], we have
plr] < plt]if and only if p’[r] < p'[t]. The implementation below satisfies the
required properties.

SorT(p, n, R, k)
1 fori < —1ton—1do

2 Bucket[i] < EMPTY-QUEUE()

3 forr < Oton—1do

4 if p[r] + k < n then

5 i < R[p[r]+k]

6 else i < —1

7 ENQUEUE(Bucket[i], p[r])

8 r <« —1

9 fori < —1ton—1do
10 while not QUEUE-IS-EMPTY(Bucket[i]) do
11 j < DEQUEUED(Bucket[i])
12 r<r+1
13 plrl < j
14 returnp’
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Proposition 4.9
The algorithm SUFFIX-SORT applied to the string y sorts its suffixes in lexico-
graphic increasing order.

Proof The instructions of the while loop serve to sort the integers

plOl], p[1], ..., pln — 1] on one hand, then to define the new ranks that are

associated with them, on the other hand. This second part is done by the inter-

nal for loop and can be easily checked. The main part is the sorting phase.
We show below that the condition

(first,(yIplr]..n —1]) :r =0,1,...,n — 1) is increasing 4.2)

is invariant by the while loop.

Let p’ = SorT(p, n, Ry, k) and p” = SorT(p', n, Ry, 0) during an execution
of instructions of the while loop. The stability condition imposed to SORT leads
to the consequence, for 0 <r <nand 0 <t < n, that

p'lrl < p"lt]
implies
(Re[plr]l, Relplr] + k1) < (Rilpl]), Relplt] + k).

Thus, after Lemma 4.8, the rank attributed to p”[r], 0 < r < n, is Ry [p[r]].
This means that just before the execution of the instruction of line 17 we
have: (firsty,(y[p"[r]..n —1]):r =0, 1,...,n — 1) is increasing. Just after
the execution of the instruction of line 17 the Condition (4.2) thus holds, which
proves its invariance.

It can be directly checked that the Condition (4.2) is satisfied before the
execution of the while loop thanks to the instruction of line 6. Thus, it still
holds after the execution of this loop (for the termination, see the proof of
Proposition 4.10). We then have i > n — 1 and, more exactly, i = n — 1, since
the final value of i is the maximal rank of the factors first, (1), for u a nonempty
suffix of y, that cannot be greater than n — 1.

We show that the suffixes are in increasing order relatively to the permuta-
tion p after the execution of the while loop. Let u#, w be two nonempty suffixes
of y (u # w) of respective positions p[r] and p[¢], p[r] < p[t]. By the Con-
dition (4.2) we get the inequality Ri[p[r]] < Ri[plt]]. But the ranks being
pairwise distinct, we even deduce R [p[r]] < Ri[pl[t]], which is equivalent to
first, (u) < first,(w). This inequality means that, either first, (1) is a proper pre-
fix of first,(w), or first,(u) = vau' and first,(w) = vbw’ with v, u’, w' € A%,
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a,b e A,and a < b. In the first case, we have necessarily first, (u) = u, which
is thus a proper prefix of first,(w), and therefore of w. Then u < w. In the
second case, we have u = vau” and w = vbw” for two strings u” and w”,
which shows that we still have u < w.

The permutation p that is produced by the algorithm SUFFIX-SORT satisfies
the Condition (4.1) and corresponds therefore to the increasing sequence of the
suffixes of y. ]

Proposition 4.10

The running time of the algorithm SUFFIX-SORT applied to a string y of length
nis O(n x logn). The algorithm works in space O(n x logn) when the tables
Ry have to be stored, and in space O(n) otherwise.

Proof Lines 4-5 that refer implicitly to an ordering on the set of letters of y
execute in time O(n x logn). The other instructions located before the while
loop, internal to this loop, and after this loop execute in time O(n). The global
execution time thus depends on the number of iterations of this loop.

As for k > n the strings first, (1) (u a nonempty suffix of y) are pairwise
distinct, their maximal rank is exactly n — 1, which is the condition that stops
the while loop. The successive values of k are 2, 2!, 22, .. ., until 2M°&:(*=DT 4¢
most, which limits the number of iterations of the loop to [log,(n — 1)]. Thus
the bound on the running time of SUFFIX-SORT holds.

Another consequence is that the number of tables R; used by the algorithm is
bounded by [log,(n — 1)] + 1 (a new table for each iteration). Which requires
a space O(n x logn) if they must all be stored. In the contrary case, we notice
that a single table R is sufficient to the computation, thus an extra space O(n)
for this table. The same quantity is necessary to implement the buckets used by
the algorithm SORT. L]

The suffix sorting described in this section heavily uses the bucket sort
technique implemented by the algorithm SORT. But the global algorithm cannot
be improved because of instructions in lines 45 of the algorithm SUFFIX-SORT
that sort the letters. In the next section, we consider that this step is already
done, or equivalently that the string is drawn from a bounded integer alphabet,
leaving some space for improvement.

4.5 Sorting suffixes on bounded integer alphabets

In this section, we consider that the alphabet is a bounded segment of integers,
as it can be considered in most real applications. The bound may depend on
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the length of the string y, and a common hypothesis is that the alphabet is
included in an interval of integers of the form [0, |y|[, where ¢ is a constant.
Having this condition the alphabet can be sorted in O(n) time. This eliminates
the bottleneck of the O(n x log n) running time that appears in the algorithm of
the previous section. Indeed with such an alphabet the suffixes can be sorted in
linear time by using techniques different from those presented in the previous
section. In the rest of the section, we assume that the letters of the string are
already sorted.

For the fixed text y of length n we consider the sets of positions Py; and P,
defined by
if n is a multiple of 3

Py={i:0<i<nand(imod3 =0o0rimod3=1)}
but if  is not a multiple of 3
Pyp=1{i:0<i<nand(imod3 =0o0rimod3=1)},
and
P,={i:0<i<nandi mod3 = 2}.

Note that n € Py; only when n is a multiple of 3. Also, note that the size of Py,
is |2n/3] + 1 and that card Py; N {i : i mod 3 = 0} = |n/3] + 1.

The present algorithm for sorting the suffixes of y proceeds in four steps as
follows.

Step 1: Positions i of Py; are sorted according to first;(y[i ..n — 1]).
Let ¢[i] be the rank of i in the sorted list.
Step 2: Suffixes of the 2/3-shorter string

z =t[0]¢[3] - - - ¢[3k] - - - t[1]¢[4] - - - ¢[Bk 4+ 1] - - -

are recursively sorted. Let s[i] be the rank of the suffix at position i on y in
the sorted list of them (i € Py;) derived from the sorted list of suffixes of z.
Step 3: Suffixes y[j..n — 1], for j € P», are sorted using the table s.
Step 4: The final step consists in merging the sorted lists obtained after the
second and third steps.

A careful implementation of the algorithm leads to a linear running time. It
is based on the following elements. The first step can be executed in linear time
by using three radix sort (see the algorithm SoRT of Section 4.4). Since the
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rank of suffixes y[j + 1..n — 1] is already known from s, the third step can
be done in linear time by just radix sorting pairs (y[j], s[j + 1]). Comparing
suffixes at positions i (i € Py;) and j (j € P,) remains to compare pairs of
the form (y[i], s[i + 1]) and (y[j], s[j + 1]) if i = 3k, or to compare pairs of
the form (first,(y[i .. n — 1]), sli + 2]) and (first,(y[j .. n — 1]), s[j + 2]) if
i = 3k + 1. This is done in constant time and the merge at the fourth step can
thus be realized in linear time. Two examples are shown in Figures 4.8. and 4.9.

The next algorithm describes the method presented above in a more precise
way. To shorten the presentation of the algorithm, we extend the definition of
s (see line 11) to positions n and n + 1 that are considered in lines 12 and 13
(call to Comp).

SKEW-SUFFIX-SORT(Y, 1)
1 ifn <3 then

2 return permutation of the sorted suffixes of y
3 else Pjy < {i:0<i<nand(@mod3 =0orimod3=1)}
4 if n mod 3 = O then
5 Po1 < Por U {n}
6 t < table of ranks of positions i in Py; according to
firstz(yli . .n —1])
7 7z < t[0)e[3]---t[3k]- - - ¢[1]e[4] - - t[Bk + 1] - - -
8 g < SKEW-SUFFIX-SORT(z, |2n/3] + 1)
9 Loy < (3qljlif 0 < gq[j] < [n/3] + 1,3q[j] + 1 otherwise
with j =0,1,...,]z| = 1)
10 s < table of ranks of positions in L,
11 (s[n], sln + 1]) < (-1, —-1)
12 L, < list of positions j,0 < j <nand j mod3 =2,
sorted according to (y[j], s[j + 1])
13 L < merge of Ly; (without n) and L, using ComPp()
14 return permutation of positions on y corresponding to L
Cowmp(i, j)

1 if i mod 3 = O then
2 if (v[i], sli + 11) < (7[j]. s[j + 1]) then
3 return —1

4 else return 1

5 else u <« first,(y[i..n —1])

6 v <« firsty(y[j..n —1])

7 if (u, s[i +2]) < (v, s[j + 2]) then

8 return —1

9 else return 1
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i 0 1 2 3 4 5 6 7 8 9 10
yli] a a b a a b a a b b a

Py =1{0,1,3,4,6,7,9, 10}
P, =1{2,5,8}

\ imod3 =0 imod3 =1
i 0 3 6 9 [1 4 7 10

firsty(y[i..n—1]) | aab aab aab ba | aba aba abb a

1[i] 1 1 1 4 |2 2 3 0

7=11142230 and L = (10,0,3,6,1,4,7,9)

s[il /12 3 7 |4 5 6 0
‘ imod3 =2

j 2 5 8
Ol sl +1D | (6,2)  ®,3) (b, 7)

L,=(2,5,8)

imod3=0orimod3 =1 imod3 =2
i 10 0 3 6 1 4 7 9 2 5 8
(u, s[i +2]) (a, =1 (ab, 2)(ab, 3)(ab, 7) (ba, 5)
O[], sli +11) (a,4)(a, 5)(a, 6) (b,0) | (b,2)
i 0 1 2 3 4 5 6 7 8 9 10

plil 10 0 3 6 1 4 7 9 2 5 8

Figure 4.8. (a) String y = aabaabaabba (see Figure 4.7) and its two sets of positions Py
and P,. (b) Step 1. Strings first;(y[i ..n — 1]) for i € Py, and their ranks: ¢[i] is the rank
of i in the sorted list. Note that the rank 4 of position 9 is unique. (¢) Step 2. Positions
in Py sorted according to their associated suffixes in z, resulting in Ly; and the table of
ranks s. (d) Step 3. Positions j in P, sorted according to pairs (y[j], s[j + 1]) resulting in
L,. (e) Step 4. Pairs used for comparing positions when merging the sorted lists L(; and
Ly (u is firsty(y[i . .n — 1])). Here, position 2 is compared to all positions in Py;; positions
5 and 8 are not compared to any. (f) Permutation p corresponding to the sorted suffixes
of y.

Proposition 4.11
The algorithm SKEW-SUFFIX-SORT applied to a string of length n runs in time
O(n).

Proof The recursion of the algorithm (line 8) yields the recurrence relation
T(n) =T(2n/3)+ O(n) with T(n) = O(1) for n < 3 because all other lines
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i 0 1 2 3 4 5 6 7 8
yli] a b a a a a a a
(@)
P =1{0,1,3,4,6,7,9}
P, =1{2,5,8}
\ imod3 =0 imod3 =1
(b) i 0 3 6 9 1 4 7
first;(y[i..n—1]) | aba aaa aaa ¢ baa aaa aa
t[i] 3 2 2 0 4 2 1
7=3220421 and Ly =(9,7,6,4,3,0,1)
(c)
sli] | 5 4 2 0 |6 3 1
imod3=2

J
(d) OLLsli+1D | 24 (@2 (a,0)

‘ 2 5 8
L,=(8,5,2)

imod3=0orimod3 =1 imod3 =2
] 7 6 4 3 0 118 5 2

@ (u, s[i +2]) ‘ (aa, 0) (aa, 2) ‘ (a, —1)(aa, 1)
Olil, sli +1D) (a, 1) (a, 3)(a, 6) (a,2) (a,4)
® i 0 1 2 3 4 5 6 71 8

plil 8 7 6 5 4 3 2 0 1

Figure 4.9. (a) String y = abaaaaaaa and its two sets of positions Py; and P,. Position 9
is in Py; because |y| is a multiple of 3. (b) Step 1. Strings firstz(y[i ..n — 1]) for i € Py,
and their ranks: #[i] is the rank of i in the sorted list. Note that the rank O of position 9 is
unique. Without position 9 this condition would not hold for position 6. (¢) Step 2. Positions
in Py sorted according to their associated suffixes in z, resulting in Ly, and the table of
ranks s. (d) Step 3. Positions j in P, sorted according to pairs (y[j1, s[j + 1]) resulting
in L. (e) Step 4. Pairs used for comparing positions when merging the sorted lists Lo
and Ly (u is first,(y[i ..n — 1])). (f) Permutation p corresponding to the sorted suffixes
of y.

execute in constant time or in O(n) time. The recurrence has solution 7'(n) =
O(n), which gives the result. [ ]

The crucial point in the correctness proof of the algorithm is to show that
the sorted list of suffixes of z transposes to a sorted list of the corresponding
suffixes of y. This is the subject of the next lemma.
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Lemma 4.12
Using the notation of the algorithm, let zo and 7, be such that 7 = zpz, with
zo = t[01¢[3] - - - t[3k]- - - and zy = t[11¢[4] - - - ¢[3k + 1] - -. Let i}, and i| be
two positions on 7. Let

: 3 x i ifiy <|n/3]+1,

0= {3 x iy + 1 otherwise,

and let

.3 xq ifiy <|n/3]+1,
= 3xi;+1 otherwise.

Ifz[if . 1zl — 1] < z[iy . . |z| = Ll then y[iy..n — 1] < y[i;..n — 1]

Proof Let us recall that |z9| = card Py; N{i :i mod 3 =0} = |n/3] + 1.
First, note that the last letter of zg, z[|n/3]], is unique because it corresponds
to a unique factor of length 1 or 2 of y when n mod 3 # 0, and to the empty
string otherwise due to line 5.

We assume that z[ij .. |z| — 1] < z[i] .. |z| — 1] and we consider the length
£ of their longest common prefix. The uniqueness of z[|n/3]] implies that this
letter can appear in only one of the two words z[ij. .i; + €] and z[i}..i] + €],
and only as the last letter of it. Then each string is a factor of either zo or
z1 (none of them overlap the frontier between zy and z; in z). Therefore,
as letters of zo and of z; are associated with consecutive factors of length
3 of y, they both correspond to factors of y at respective positions iy and
i1. The assumption implies the inequality z[i;. .i; + €] < z[i]..i] + €], which
transfers to their corresponding factors in y and eventually to the suffixes
ylip..n — 1] < y[iy ..n — 1]. Which proves the lemma. [

Theorem 4.13
The algorithm SKEW-SUFFIX-SORT sorts the suffixes of a string of length n in
time O(n).

Proof The correctness of the algorithm is essentially a consequence of Lemma
4.12. The bound of the running time comes from Proposition 4.11. L]

4.6 Common prefixes of the suffixes

In this section, we describe the second element that constitutes a suffix array of
a text: the table of lengths of the longest common prefixes of its suffixes. These
data complete the permutation of suffixes studied in the two previous sections,
and allow the utilization of algorithms SEARCH and INTERVAL of Section 4.2.
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i 0 1 2 3 4 5 6 7 8 9 10 11
() yli] a a b a a b a a b b a

pli] 10 O 3 6 1 4 7 9 2 5 8

LCP[i] O 1 6 3 1 5 2 0 2 4 1 0

i 12 13 14 15 16 17 18 19 20 21 22

(b)

LCP[i] O 1 0 1 1 0 0 0 0 0 0

Figure 4.10. Suffix array of the string y = aabaabaabba composed of tables p and LCP.
(a) Table p gives the list of suffixes in increasing lexicographic order: the first suffix
starts at position 10, the second at position 0, etc. Table LCP contains the lengths of
the longest common prefixes. For example, LCP[6] = 2 because p[6] = 7, p[5] = 4, and
|lep(y[7..10], y[4..10])| = |abl = 2. (b) Other values of the LCP table corresponding to
pairs of nonconsecutive positions of the binary search. For example, LCP[15] = 1 because
15 =124 |2+ 5)/2], p[2] = 3, p[5] = 4, and |lcp(y[3..10], y[4..10])| = |a| = 1.

The computation of the longest common prefixes goes over the method
of Section 4.3, realized by the algorithm LCP-TABLE, adapting it however to
reduce its execution time. The algorithm LCP-TABLE applies to a sorted list of
strings. The list L that we consider here is the sorted list of the suffixes of y,
that is to say,

ylplO]..n — 11, y[p(1]..n =11, ..., y[pln — 1]..n — 1],

where p is the permutation computed by the algorithm SUFFIX-SORT or the
algorithm SKEW-SUFFIX-SORT and that satisfies Condition (4.1):

ylpl0]..n —1] < y[p[l]..n — 1] < --- < y[p[n —1]..n — 1].
The definition of the LCP table adapted to the sorted list of suffixes of y is

* LCP[i] = |lep(ylpli]..n — 1], y[pli = 1]..n = 1])|,for 0 <i < n,

* LCPn+ 1+4i] = |lep(ylpld]..n — 11, y[p[f]..n — 1])], for
i = |(d+ f)/2] middle of a segment (d, f),0 <d+ 1 < f <n,of the
binary search tree.

The goal of this section is to show how we can compute the table LCP
associated with the list L as in Section 4.3. Figure 4.10 illustrates the expected
result for the string aabaabaabba.

The direct utilization of LCP-TABLE (Section 4.3) to perform the compu-
tation leads to an execution time O(n?) since the sum of the suffix lengths
is quadratic. We describe an algorithm, LCP-TABLE-SUFF, that do it in linear
time. The modification of LCP-TABLE lies in an optimization of the computa-
tion of the longest common prefix of two suffixes that are consecutive in the
lexicographic order. In LCP-TABLE (line 5) the computation is supposed to
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@) 9 b a
(b) 3 a a b a a b b a

0 a a b a a b a a b b a
© 4 a b a a b b a

1 a b a a b a a b b a

Figure 4.11. Illustration of Lemma 4.14 on the string y = aabaabaabba of Figure 4.10.
We consider the longest common prefixes between the suffixes at positions 2, 3, and 4
and their predecessors in the lexicographic order. (a) p[8] = 2, p[7] =9, and LCP[8] =
|lep(y[2..10], y[9..10])| = 2. (b) With the notation of the lemma, choosing j =3 we
get i =2 since p[2] =3, and i’ =8 since p[8] =3 — 1 =2. In this case LCP[2] =
|lep(y[3..10], y[0..10])| = 6, quantity that is greater than LCP[8] — 1 = 1. (¢) Choosing
Jj =4 we geti =5 since p[5] =4, and i’ = 2 since p[2] =4 — 1 = 3. We have LCP[5] =
|lep(y[4..10], y[1..10])| = 5. In this case, we have the equality LCP[5] = LCP[2] — 1.

be done by straight letter comparisons that start from scratch for each pair of
strings. Besides, it is difficult to proceed in another way without other informa-
tion on the strings of the list. The situation is different for the suffixes of y since
they are not independent of each others. The dependence allows to reduce the
computation time by means of a quite simple algorithm, based on the following
lemma illustrated by Figure 4.11.

Lemma 4.14
Let i, i, j be positions on y for which pli'] = j — 1 and pli] = j. Then
LCP[i"] — 1 < LCP[i].

Proof Let u be the longest common prefix between y[j —1..n — 1] and
its predecessor in the lexicographic order, let us say y[k..n — 1]. We have
LCP[i’] = |u| by the definition of i’.

If u is the empty string the result is satisfied since LCP[i] > 0. Otherwise, u
can be written cv where ¢ = y[j — 1]and v € A*. The string y[j — 1..n — 1]
admits then for prefix cvb for some letter b, and its predecessor admits for prefix
cva for some letter a such that a < b, unless the predecessor is equal to cv.

Therefore, v is acommon prefix between y[j..n — 1]Jand y[k + 1..n — 1].
Moreover, y[k + 1..n — 1], that starts by va or is equal to v, is smaller than
y[j..n — 1] that starts by vb. Thus LCP[i], which is the maximal length of
the prefixes common to y[j..n — 1] and its predecessor in the lexicographic
order cannot be less than |u| (consequence of Lemma 4.6). We thus have
LCP[i] > |v| = |lu| — 1 = LCP[i’] — 1, which gives the result also when u is
nonempty. ]
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Using the previous lemma, in order to compute LCP[i] when 0 < i < n, that
is to say, to compute |lcp(y[pli]..n — 1], y[pli — 1]..n — 1])|, we can start
the letter comparisons exactly at the position where the previous computation
stopped, position LCP[i']. Proceeding that way, it is sufficient to consider the
suffixes from the longest to the shortest, and not in the lexicographic order
despite this seems more natural. This is what is realized by the algorithm DEF-
HALF-LCP that computes the values LCP[i] for 0 <i < n. Other values of
the table may be determined with the algorithm LCP-TABLE-SUFF thereafter.
Note that to determine the position i associated with position j, the algorithm
DEF-HALF-LCP utilizes the inverse of the permutation p which is computed in
a first step (lines 1-2). This function is represented by the table denoted by R.
Indeed, it indicates the rank of each suffix in the sorted list of suffixes of y. The
second step of the algorithm applies Lemma 4.14.

DEF-HALF-LCP(y, n, p)
1 fori < Oton—1do
2 R[pli]] < i
3 £<«0
4 forj < Oton—1do
5 { < max{0, £ — 1}
6 i < R[Jj]

7 if i # 0 then

8 j < pli —1]

9 while j +¢ <nand j'+ ¢ <n

and y[j + ¢] = y[j' + €] do

10 L<—L+1
11 else £ <~ 0 > optional instruction
12 LCP[i] < ¢

13 LCP[n] <0

Proposition 4.15

Applied to string y of length n and to the permutation p of its suffixes, the
algorithm DEF-HALE-LCP computes LCP[i] for all positions i, 0 <i <n, in
time O(n).

Proof Let us first consider the execution of instructions in lines 5-12 for
j =0.Ifi = 0in line 7, the value of £ is null and it is by definition the one of
LCPli] since y is its own minimal suffix. Otherwise, as £ = 0 before the execu-
tion of the while loop, just after, we have £ = |lcp(y[0..n — 1], y[j'..n — 1])].
After the computation of the table R performed in lines 1-2, and as p is
bijective, we have p[i] = 0. And after line 8, we have also j' = p[i — 1].
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Thus, the value of ¢ is indeed the one of LCP[i], that is, |lcp(y[p[i]..n — 1],
ylpli = 1]..n —1])I.

Let us consider then a position j, 0 < j < n. If i = 0, the argument used
previously is also valid here since y[j ..n — 1] is then the minimal suffix of y.
Let us assume now that i = R[j] is non-null, thus, i > 0. By definition
LCP[i] = |lep(y[pli]..n — 1], y[pli — 1]..n — 1])| and thus, after the equal-
ity j = p[i] and the value of ;' computed in line 8, LCP[i] = |lcp(y[j ..n — 1],
y[j’..n — 1])|. The comparisons performed during the execution of the while
loop computes thus the maximal length of the prefixes commonto y[j..n — 1]
and y[j’..n — 1] from the position £ on y[j ..n — 1] (i.e., from position j + ¢
on y) by application of Lemma 4.14. The result is correct provided that the
initial value of ¢ at this step is equal to LCP[i'] for the position i’ such that
pli’l = j — 1. But this comes from an iterative argument that starts with the
validity of the computation for j = 0 that is shown above.

Finally, the value of LCP[n] is correctly computed in line 13 since this one
is null by definition.

Most of the instructions of the algorithm execute once for each of the n
values of i or of j. It remains to check that the execution time of the while loop
is also O(n). This comes from the fact that each positive comparison of letters in
line 9 increases by one unit the value of j 4 £ that never decreases afterwards,
and that these values run from O to at most n. This ends the proof. ]

Let us note that the instruction of line 11 of the algorithm DEF-HALF-LCP is
optional. We can prove this remark by an argument analogue to the one used in
the proof of Lemma 4.14 and by noting that y[j ..n — 1] is the minimal suffix
of y in this situation.

The algorithm LCP-TABLE-SUFF below completes the computation of the
table LCP (values LCP[i] for n + 1 <i < 2n). It applies to the table LCP
partially computed by the previous algorithm. With respect to the algorithm
LCP-TABLE, lines 3-5 are deleted since the considered value of LCP[f] is
already known. For lightening the writing of the algorithm, the permutation p

is extended by setting p[—1] = —1 and p[n] = n.
LCP-TABLE-SUFF(d, f)

1 > Wehaved < f

2 ifd+ 1= f then

3 return LCP[ f] > already computed by DEF-HALF-LCP

4 else i < [(d+ f)/2]

. . | LCP-TABLE-SUFF(d, i)

5 LCP[n+1+i] < min { LCP-TABLE-SUFF(, )

6

return LCP[n + 1 +i]
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Proposition 4.16

The successive executions of DEF-HALF-LPC(y, n, p) and of LCP-TABLE-
SUFF(—1, n) applied to the increasing list of suffixes of the string y of length n
produce the table of their common prefixes, LCP, in time O(n).

Proof The correctness of the computation relies on the validity of DEF-HALF-
LCP (Proposition 4.15) and on the validity of LCP-TABLE-SUFF (Lemma 4.6).

The running time of DEF-HALF-LPC(y, n, p) is linear after Proposition 4.15.
Except for the recursive calls, the execution of LCP-TABLE-SUFF(d, f) takes
a constant time for each pair (d, f). As there are 2n + 1 pairs of this kind
(Lemma 4.1) we still get a linear time for the total execution, which gives the
announced result. [

With this section ends the presentation of algorithms for building a suf-
fix array, data structure that is a basis for implementing a text index (see
Chapter 6).

Notes

The suffix array of a string, as well as the associated searching algorithm based
on the knowledge of the longest common prefixes (Section 4.2), is from Manber
and Myers [182]. It gives a method for the realization of indexes (see Chapter 6)
which, without being optimal, is rather light to implement and memory space
economical compared to the structures of Chapter 5.

The suffix sorting presented in Section 4.4 is a variation on a process intro-
duced by Karp, Miller, and Rosenberg [165]. This technique, called naming,
that essentially includes the utilization of the rank functions and the Doubling
Lemma, was one of the first efficient methods for computing repeats and for
matching patterns in textual data. The naming adapts also to nonsequential
data, like images and trees.

The algorithm SKEW-SUFFIX-SORT of Section 4.5 is from Kirkkdinen and
Sanders [164]. Two other sorting methods having the same performance are
from Kim, Sim, Park, and Park [169], and from Ko and Aluru [171].

The method used in Section 4.6 to compute the common prefixes to the sorted
suffixes is from Kasai, Lee, Arimura, Arikawa, and Park [167]. Chapter 9
presents another procedure for preparing a suffix array that is closer to the
method originally proposed by Manber and Myers.

The inverse problem related to the sorted suffixes of a string is to construct
a string on the smallest possible alphabet, whose permutation of suffixes p is
a given permutation of the integer 0, 1,...,n — 1. A linear-time solution is
given by Bannai, Inenaga, Shinohara, and Takeda in [100].
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Of course, it is possible to build a suffix array by using one of the data struc-
tures developed in the next chapter. But doing so we lose a part of the advantages
of the method since the structures have more greedy memory requirements. Be-
sides, the suffix array can also be viewed as a particular implementation of the
suffix tree of the next chapter.

Exercises

4.1 (All the common prefixes)

Let L be a sorted list of n strings, Lo < L; < --- < L,,_;, of common length
n. Describe an algorithm for computing the values [lcp(L;, L;)|,0 <1i,j <n
and i # j, that runs in (optimal) time O(n?).

4.2 (Save memory)

Study the possibility of reducing the space necessary for storing the table LCP
without changing the running time bounds of the algorithms that use or compute
the table.

4.3 (Cheat)

Describe the computation of tables p and LCP by means of one of the automaton
structures of the next chapter, suffix tree or suffix automaton. What are the time
and space complexities of your algorithm? What become these values when the
alphabet is fixed? Show that, in particular in this latter situation, the construction
of the tables can be done in linear time.

4.4 (Tst!)
Let X = (xg, x1, ..., xx—1) be a sequence of k pairwise distinct strings on the
alphabet A, provided with an ordering. Denoting by a = x([0] the first letter of
X0, we define L as the subsequence of strings of X that start with a letter smaller
than a, and R as the subsequence of strings that start with a letter greater than
a. Moreover, we denote by C = (ug, uy, ...,u,—1) the sequence for which
(aug, auy, ..., aue_1) is the subsequence of all the strings of X that start with
the letter a.
The ternary search tree associated with X and denoted by A(X) is the
structure 7 defined as follows:
empty if k=0,
T =1 (1) ifk =1,
(t, &(T), (a,c(T)), r(R)) otherwise,

where ¢ is the root of T'; £(T), its left subtree, is A(L); ¢(T'), its central subtree,
is A(C); and r(T), its right subtree, is A(R). The leaves of the tree are labeled
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by strings: in the previous definition, if £ = 1, the tree consists of a single leaf
t whose label is the string xo. We note that 7 = A(X) is a ternary tree, and
that the link between its root and the root of its central subtree bears the label
a = xo[0], first letter of the first string of X.

Design algorithms for the management of ternary search trees (search, in-
sertion, deletion, ...). Evaluate the complexity of the operations. (Hint: see the
Ternary Search Trees of Bentley and Sedgewick [103, 104].)

4.5 (On average)

Show that the mean length of the longest prefixes common to the suffixes of a
string y is O(log |y|). What can we deduce on the average time of the search for
x in y with the suffix array of y? What can we deduce on the average times for
sorting the suffixes and for computing the common prefixes by the algorithms
of Sections 4.4 and 4.6?

4.6 (Doubling of images)
Adapt the function first, on images (matrices of letters) and prove a corre-
sponding Doubling Lemma.

4.7 (Image suffixes)
Introduce an ordering on images that enables to use the methodology presented
in this chapter.

4.8 (Small difference, big consequence)
Run the example of Figure 4.9 with the algorithm SKEW-SUFFIX-SORT but
without executing line 5. Do you get the correct answer?

4.9 (Optional)

Show that the instruction of line 11 of the algorithm DEF-HALF-LCP can be
deleted without altering neither the algorithm correctness nor its execution
time.

4.10 (LCP)
Let y be a nonempty string of length , and let y[j . . n — 1] be its lexicographi-
cally minimal nonempty suffix. Let k be an integer and assume that 0 < k < j.
Let i be such p[i] = j — k.

Show that LCPJ[i] < k. In addition, show that if LCP[i] = k then both
ylj—k..j—1l=y[ln—k..n—1] and y[n — k..n — 1] immediately pre-
cedes y[j — k..n — 1] in the sorted list of suffixes.
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Structures for indexes

In this chapter, we present data structures for storing the suffixes of a text. These
structures are conceived for providing a direct and fast access to the factors of
the text. They allow to work on the factors of the string in almost the same
way as the suffix array of Chapter 4 does, but the more important part of the
technique is put on the structuring of data rather than on algorithms to search
the text.

The main application of these techniques is to provide the basis of an index
implementation as described in Chapter 6. The direct access to the factors of a
string allows a large number of other applications. In particular, the structures
can be used for matching patterns by considering them as search machines (see
Chapter 6).

Two types of objects are considered in this chapter, trees and automata,
together with their compact versions. Trees have for effect to factorize the
prefixes of the strings in the set. Automata additionally factorize their common
suffixes. The structures are presented in decreasing order of size.

The representation of the suffixes of a string by a trie (Section 5.1) has the
advantage to be simple but can lead to a quadratic memory space according
to the length of the considered string. The (compact) suffix tree (Section 5.2)
avoids this drawback and admits a linear memory space implementation.

The minimization (in the sense of automata) of the suffix trie gives the min-
imal suffix automaton described in Section 5.4. Compaction and minimization
together give the compact suffix automaton of Section 5.5.

Most of the construction algorithms presented in this chapter run in time
O(n x logcard A) on a text of length n assuming that the alphabet is provided
with an ordering relation. Their running time is thus linear when the alphabet
is finite and fixed.

177
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5.1 Suffix trie

The suffix trie of a string is the deterministic automaton that recognizes the set
of suffixes of the string and in which two different paths of same source always
have distinct ends. Thus, the underlying graph structure of the automaton is a
tree whose arcs are labeled by letters. The methods of Section 1.4 can be used
for the implementation of these automata. However, the tree structure allows a
simplified representation.

Considering a tree implies that the terminal states of the tree are in one-to-
one correspondence with the strings of the recognized language. The tree
is thus finite only if its language is. As a consequence, the explicit rep-
resentation of such a tree has an algorithmic interest only for finite lang-
uages.

Sometimes one imposes trees to only have terminal states on external nodes
of the tree (leaves). With this constraint, a language L is representable by a tree
only if no proper prefix of a string of L is in L. It results from this remark that if
y is a nonempty string, only Suff(y) \ {¢} is representable by a tree possessing
this property, and this only happens when the last letter of y occurs only once
in y. This is the reason why one sometimes adds a special letter at the end
of the string. We prefer to assign an output to nodes of the trie, which fits
better with the notion of automaton. Only nodes whose output is defined are
considered as terminal nodes. Besides, there are just a few differences between
the implementations of the two structures.

The suffix trie of a string y is the tree 7 (Suff(y)) with the notation of
Section 2.1. Its nodes are the factors of y, ¢ is the initial state, and the suffixes
of y are the terminal states. The transition function § of 7 (Suff(y)) is defined
by 8(u, a) = ua if ua is a factor of y and a € A. The output of a terminal state,
which is then a suffix, is the position of this suffix in y. By convention, the
initial state (the root) is assigned the length of the string as output. An example
of automaton is presented in Figure 5.1.

The construction of 7 (Suff(y)) is generally performed by successively
adding the suffixes of y in the tree, starting from the longest suffix, y itself, to
the shortest one, the empty string.

The current situation consists in inserting the suffix at position i,
y[i ..n — 1], in the structure that already contains all the longer suffixes. We
call head of the current suffix its longest prefix common to a suffix occurring
at a smaller position. It is also the longest prefix of y[i ..n — 1] which is the
label of a path of the automaton exiting the initial state. The end state of this
path is called a fork (two paths diverge from this state). If y[i ..k — 1] is the
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Figure 5.1. Suffix trie of the string ababbb, 7 (Suff(ababbb)). With each terminal state —
double circled —is associated an output which is the position of the suffix in the string ababbb.

Figure 5.2. The trie 7 (Suff(ababbb)) (see Figure 5.1) during its construction, just after the
insertion of the suffix abbb. The fork, state 2, corresponds to the head ab of this suffix. It is
the longest prefix of abbb occurring before the position of the current suffix. The tail of the
suffix is bb, label of the path grafted from the fork at this step of the construction.

head of the suffix at position 7, the string y[k..n — 1] is called the tail of the
suffix. Figure 5.2 illustrates these notions.

More precisely, we call fork of the automaton every state that is of (outgoing)
degree at least 2, or that is both of degree 1 and a terminal state. A fork
corresponds to at least one of the longest common prefixes of the suffix array of
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babbb

bb

bbb

Figure 5.3. Correspondence between the forks of the suffix trie 7 (Suff(ababbb)) and the
longest prefixes common to consecutive suffixes in the lexicographic order. The number of
forks is 4, and it is always less than n for a string of length n.

the string. Its depth in the trie is the length of some or several common prefixes.
Figure 5.3 illustrates the relation.

The algorithm SUFFIX-TRIE builds the suffix trie of y. Its code is given
below. We assume that the automaton is represented by means of sets of labeled
successors (see Section 1.4). The states of the automaton possess the attribute
output which value, when it is defined, is a position on the string y. When
the function NEwW-STATE() creates a new state, the value of the attribute is
undefined. Only the output of a terminal state is defined by the algorithm.
The insertion of the current suffix y[i ..n — 1] in the automaton, denoted by
M, starts by the determination of its head y[i ..k — 1], and of the associated
fork p = §(initiallM], yli ..k — 1]), from which we have to connect the tail
of the suffix (§ is the transition function of M). The value returned by the
function SLOW-FIND-ONE applied to the pair (initial[M], i) is precisely the
searched pair (p, k). Creating the path of origin p and of label y[k..n — 1]
together with the definition of the output of its end is realized in lines 5-9 of the
code.

The end of the execution of the algorithm, that is to say the insertion of the
empty suffix, consists just in defining the output of the initial state, whose value
is n = |y| by definition (line 10).
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SUFFIX-TRIE(Y, 1)

1 M < NEW-AUTOMATON()
2 fori < Oton—1do

3 (fork, k) <— SLOW-FIND-ONE(initial[M], i)
4 p <« fork

5 for j < kton —1do

6 q < NEW-STATE()

7 Succlp] < Succ[p]U{(y[j1, ¢)}

8 p<q

9 output[p] < i

10  outputlinitiallM]] <— n

11 return M

SLOW-FIND-ONE(p, k)
1 while k < n and TARGET(p, y[k]) # NIL do
2 (p, k) < (TARGET(p, ylk]), k + 1)
3 return (p, k)

Proposition 5.1
The algorithm SUFFIX-TRIE builds the suffix trie of a string of length n in time
Qn?).

Proof The correctness proof can be easily checked on the code of the algo-
rithm.

For the evaluation of the running time, let us consider step i. Let us assume
that y[i ..n — 1] has for head y[i ..k — 1] and for tail y[k..n — 1]. We can
check that the call to SLow-FIND-ONE (line 3) executes k — i operations
and that the for loop of lines 5-8 executes n — k operations, thus a total
of n — i operations. Thus the for loop of lines 2-9 indexed by i executes
n+ (n — 1)+ ---+ 1 operations, which gives a total running time Qn?). =

Suffix links

It is possible to speed up the previous construction by improving the search for
the forks. The technique described here is taken up in the next section where it
leads to a gain in the running time, measurable by the asymptotic bound.

Let av be a suffix of y that has a nonempty head az with a € A. The prefix z
of v occurs thus in y before the considered occurrence. This implies that z
is a prefix of the head of the suffix v. The search for this head, and for the
corresponding fork, can thus be done from the state z instead of systematically
starting from the initial state as it is done in the previous algorithm. However,
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Figure 5.4. The automaton 7 (Suff(ababbb)) with suffix links of the forks and of their
ancestors indicated by dashed arrows.

this assumes that, given the state az, we have a fast access to the state z. For
this, we introduce a function on the states of the automaton, called suffix link.
It is denoted by s and defined by s(az) = z for each state az (a € A, z € A®).
The state s(az) is called the suffix target of az. Figure 5.4 shows the suffix
links of the trie of Figure 5.1.

The algorithm SUFFIX-TRIE-BIS whose code follows implements and utilizes
the suffix link for the computation of the suffix trie of y. The link is realized by
means of an attribute, denoted by s¢, for each state; the attribute is supposed to
be initially given the value NIL. The suffix targets are effectively computed by
the algorithm SLOW-FIND-ONE-BIS below only for the forks and their ancestors
(except for the initial state) since the targets of the other nodes are not useful
for the construction. The code is a mere adaptation of the algorithm Srow-
FIND-ONE integrating the definition of the suffix targets.

SLOW-FIND-ONE-BIS(p, k)
1 while k < n and TARGET(p, y[k]) # NIL do

q < TARGET(p, y[k])

(e, f) < (p,q)

while e # initial[M] and s¢[ f] = NIL do
s[ f] < TARGET(s¢[e], y[k])
(e, f) < (slle], sCLf])

if s¢[ f] = NIL then
sC[f] < initial[M]

9 (p, k) < (g, k+1)

10 return (p, k)

0NN Bk W
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SUFFIX-TRIE-BIS(y, 1)
1 M < NEW-AUTOMATON()

2 sllinitiallM]] < initial[M]
3 (fork, k) < (initial[M], 0)
4 fori < Oton—1do
5 k < max{k, i}
6 (fork, k) <— SLOW-FIND-ONE-BIS(s{[fork], k)
7 p < fork
8 for j < kton —1do
9 q < NEW-STATE()
10 Succ[p] < Succ[plU{(y[jl, ¢)}
11 p<q
12 output[p] < i
13 outputlinitiallM]] <— n
14 return M
Proposition 5.2

The algorithm SUFFIX-TRIE-BIS builds the suffix trie of y in time Q(card Q),
where Q is the set of states of T (Suff(y)).

Proof The operations of the main loop, except for line 6 and for the for loop
of lines 8—11, execute in constant time, this gives a time O(|y|) for their global
execution.

Each operation of the internal loop of the algorithm SLOW-FIND-ONE-BIS
that is called in line 6 has for effect to create a suffix target. The total number
of targets being bounded by card Q, the cumulated time of all the executions
of line 6 is O(card Q).

The running time of the loop of lines 8—11 is proportional to the number of
states that it creates. The cumulated time of all the executions of lines 8—11 is
thus again O(card Q).

Finally, as |y| < card Q and card Q states are effectively created, the total
time of the construction is Q(card Q) as announced. [ ]

The size of 7 (Suff(y)) can be quadratic. It is, for instance, the case for
a string whose letters are pairwise distinct. For this category of strings the
algorithm SUFFIX-TRIE-BIS is actually not faster than SUFFIX-TRIE.

For some strings, it is sufficient to prune the dropping branches (below
the forks) of 7 (Suff(y)) to get a structure whose size is linear. This kind of
pruning gives the position tree of y (an example is shown in Figure 5.5), which
represents the shortest factors occurring at a single position in y and the suffixes
that identify the other positions. However, the consideration of the position tree
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Figure 5.5. Position tree of the string ababbb. It recognizes the shortest factors or suffixes
that identify uniquely the positions of the string.

does not totally solves the memory space drawback since this structure can
also have a quadratic size. We notice, for instance, that the string afb*a*b*
(k € N) of length 4k possesses a pruned suffix trie that contains more than k>
nodes.

The compact tree of the next section is a solution for obtaining a structure
of linear size. The automata of Sections 5.4 and 5.5 provide another type of
solution.

5.2 Suffix tree

The suffix tree of y, denoted by 7.(y), is obtained by deleting the nodes of
degree 1 that are not terminal in its suffix trie 7 (Suff(y)). It is what we call the
compaction of the trie. The tree only keeps the forks and the terminal nodes of
the suffix trie (note that external nodes are terminal nodes as well). The labels
of arcs become then strings of variable positive length. We note that if two arcs
exiting a same node are labeled by strings u and v, then their first letters are
distinct, that is to say #[0] # v[0]. This comes from the fact that the suffix trie
is a deterministic automaton.

Figure 5.6 shows the suffix tree obtained by compaction of the suffix trie of
Figure 5.1. Figure 5.7 presents a suffix tree adapted to the case where the string
ends with a special letter.

Proposition 5.3
The suffix tree of a string of length n > 0 possesses between n + 1 and 2n
nodes. Its number of forks is between 1 and n.
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Figure 5.6. The suffix tree 7c(ababbb) with its suffix links.

Figure 5.7. Adaptation of the suffix tree for the string ababbb of Figure 5.1 right-end marked
with a special letter. Only external nodes are terminal states. They correspond to all the suffixes
of the string (without the marker).

Proof The tree contains n + 1 distinct terminal nodes corresponding to the
n + 1 suffixes that it represents. This gives the lower bound.

Each fork of the tree that is not terminal possesses at least two children.
For a fixed number of external nodes, the maximal number of these forks is
obtained when each of these nodes possesses exactly two children. In this case,
we get at most 7 (terminal or not) forks. As for n > 0 the initial state is both a
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Figure 5.8. Representation of the labels in the suffix tree Z-(ababbb) (see Figure 5.6). For
example, the label (2, 4) of the arc (3, 1) represents the factor of length 4 and occurring at
position 2 on Yy, that is, the string abbb.

fork and a terminal node, we get the bound (n + 1) +n — 1 = 2n of the total
number of nodes. [ ]

The fact that the suffix tree of y has a linear number of nodes does not imply
the linearity of its representation, since it depends also on the total size of the
labels of arcs. The example of a string of length n that possesses n pairwise
distinct letters shows that this size can be quadratic. However, the labels of
the arcs being all factors of y, each one can be represented by a pair position-
length (or also start position-end position), provided that the string y resides in
memory together with the tree in order to allow an access to the labels. If the
string u is the label of an arc (p, g), it is represented by the pair (i, |u|) where
i is the position of an occurrence of u# in y. We denote by label(p, q) = (i, |u|)
and we assume that the implementation of the tree gives a direct access to this
label (in constant time). This representation of labels is illustrated in Figure 5.8
for the tree of Figure 5.6.

Proposition 5.4
When labels of arcs are represented by pairs of integers, the total size of the
suffix tree of a string is linear in its length, that is, O(]y|).

Proof The number of nodes of 7.(y) is O(|y|) after Proposition 5.3. The num-
ber of arcs of 7.(y) is one unit less than the number of nodes. The assumption
on the representation of the arcs has for consequence that each arc requires a
constant space, which gives the result. ]
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The suffix link introduced in the previous section finds its actual usefulness
in the construction of the suffix tree. It allows a fast construction when, in
addition, the slow find algorithm of the previous section is replaced by the fast
find algorithm thereafter that has an analogue role. The possibility of keeping
only the forks of the suffix trie in addition to the terminal states relies on
the following lemma. It implies that the suffix links are unchanged by the
compaction process.

Proposition 5.5
In the suffix trie of a string, the suffix target of a (nonempty) fork is a fork.

Proof For a nonempty fork, there are two cases to consider whether the fork,
let us say au (a € A, u € A¥*) is of degree at least 2, or simultaneously of
degree 1 and terminal.

Let us assume first that the degree of au is at least 2. For two distinct letters, b
and ¢, aub and auc are factors of y. The same property holds also for u = s(au)
that is then of degree at least 2 and is thus a fork.

Now, if the fork au is of degree 1 and is a terminal state, for some letter b the
string aub is a factor of y and simultaneously au is a suffix of y. Thus, ub is a
factor of y and u is a suffix of y, which shows that u = s(au) is also a fork. m

The following property serves as a basis to the computation of the suffix
targets in the construction algorithm of the suffix tree, SUFFIX-TREE. We denote
by & the transition function of 7.(y).

Lemma 5.6
Let (p, q) be an arc of T.(y) and y[j ..k — 1], j <k, its label. When q is a
fork of the tree:
8(p,ylj+1..k—1]) if pisthe initial state,
@)= { 8(s(p), ylj..-k—1]1)  otherwise.

Proof As q is a fork, s(q) is defined after Proposition 5.5. If p is the initial
state of the tree, that is to say if p = ¢, we have s(q) = 8(e, y[j +1..k —1])
by definition of s.

In the contrary case, there exists a unique path from the initial state to the
state p since 7.(y) is atree. Let av be the nonempty label of this path witha € A
and v € A* (i.e., p = av). We thus have §(¢, v) = s(p) and 8(e, v - y[j ..k —
1]) = s(g). It follows that s(g) = 6(s(p), y[j ..k — 1]) since the automaton is
deterministic, as announced. [

The strategy for building the suffix tree of y consists in successively inserting
the suffixes of y in the structure, from the longest to the shortest, as done for
the construction of the suffix trie in the previous section. As for the algorithm
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SUFFIX-TRIE-BIS, the insertion of the tail of the current suffix is done after a
slow find process from the suffix target of the current fork.

SUFFIX-TREE(Y, n)
1 M <« NEW-AUTOMATON()
2 sllinitial|M]] <« initial[M]
3 (fork, k) < (initial[M], 0)
4 fori < Oton —1do
5 k < max{k, i}
6 if s¢[fork] = NIL then
7 t < parent of fork
8 (J, £) < label(t, fork)
9 if + = initial[M] then

10 L«—L—1

11 st[fork] <— FAST-FIND(s£[t], k — £, k)

12 (fork, k) <— SLow-FIND(s{[fork], k)

13 if k£ < n then

14 q < NEW-STATE()

15 Succfork] < Succ[fork] U {((k,n — k), q)}
16 else g <« fork

17 output[q] < i

18  outputlinitiallM]] < n

19 return M

When this link does not exist, it is created (lines 6-11) using the property of the
previous statement. The computation is realized by the algorithm FAST-FIND,
that satisfies

FAST-FIND(7, j, k) = 8(r, y[j ..k — 1])
for a state r of the tree and positions j, k on y for which
r }’[Jk— 1] ffacl y.

Line 7, the access to the parent of fork must be understood as making explicit
the value of ¢. This one can be recovered by means of a chaining to parent
nodes. But we prefer a permanent memorization of the parent of the fork (this
can lead to consider an artificial node, parent of the initial state). The schema
for the insertion of a suffix inside the tree is presented in Figure 5.9.

The code of the slow find algorithm is adapted with respect to the algorithm
SLow-FIND-ONE for taking into account the fact that labels of arcs are strings.
When the searched target falls in the middle of an arc, this arc must be cut.
Let us note that TARGET(p, a), if it exists, is the state g for which a is the first
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initial fork
state t a-u-v
O O——=0
la] ] v |
i j k
la] w ] v [ w | z
[ u ] v [ w |
fast slow
O O O O
initial s(t) p fork
state u-v-w

Figure 5.9. Schema for the insertion of the suffix y[i..n — 1] =u - v - w -z in the suffix
tree of y during its construction when the suffix link of the fork @ - u - v is not defined. Let ¢ be
the parent of this fork and v be the label of the associated arc. We first compute p = 8(s(¢), v)
by fast find, then the fork of the suffix by slow find as in Section 5.1.

letter of the label of the arc (p, ¢). Labels can be strings of length greater than
1, therefore we do not have in general TARGET(p, a) = §(p, a).

SLOW-FIND(p, k)
1 while £k < n and TARGET(p, y[k]) # NIL do

2 q < TARGET(p, y[k])

3 (J, &) < label(p, q)

4 i< j

5 do i <«<i—+1

6 k<—k+1

7 whilei < j + ¢ and k < n and y[i] = y[k]
8 ifi < j+ ¢ then

9 Succ[p] < Succ[p]\ {((j, D), )}
10 r <— NEW-STATE()
11 Succ[p] < Succ[p] U{((j,i — j), )}
12 Succlr] < Succ[rl]U{((i, € —i+ j), q)}
13 return (r, k)
14 p<q

15 return (p, k)

The improvement on the running time of the computation of a suffix tree
by the algorithm SUFFIX-TREE relies, in addition to the compaction of the
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data structure, on an extra algorithmic element: the implementation of FAST-
FIND. The utilization of this particular algorithm described by the code below is
essential for obtaining the linear running time of the tree construction algorithm
in Theorem 5.9.

The algorithm FAST-FIND is used while computing a fork. It applies to a
state r and to a factor y[j ..k — 1] only when the condition

r-y[j..k—l] <fact Y

is satisfied. In this situation, there exists a path starting from the state » and
whose label has y[j..k — 1] for prefix. Moreover, as the automaton is de-
terministic, the shortest of these paths is unique. The algorithm utilizes this
property for determining the arcs of the path by a single scan of the first let-
ter of their label. The code below, or at least its main part, implements the
recurrence relation given in the proof of Lemma 5.7.

The algorithm FAST-FIND serves more precisely for the evaluation of
8(r, y[j - k — 1]) (or 8(r, v) using the notation of Lemma 5.7). When the end
of the scanned path is not the searched state, a new state p is created and takes
place between the last two encountered states.

FAST-FIND(r, J, k)
1 > Computation of §(r, y[j ..k — 1])
2 if j > k then
3 return r
4 else g <— TARGET(r, y[j])
5 (j', &) < label(r, q)
6 if j + ¢ <k then
7 return FAST-FIND(q, j + £, k)
8 else Succ[r] < Succ[r]\ {((j', £), q)}
9 p < NEW-STATE()

10 Succlr] < Succ[rlU{((j', k — ), p)}
11 Succ[p] < Succ[plU{((j' +k—j, €L—k+}),q)}
12 return p

Figure 5.10 illustrates how the slow find and fast find algorithms work.

The lemma that follows serves for the evaluation of the running time of
FAST-FIND(r, j, k). It is an element of the proof of Theorem 5.9. It indicates
that the computation time is proportional (with a multiplicative coefficient that
comes from the computation time of transitions) to the number of nodes of the
scanned path and not to the length of the label of the path. We would get this
result immediately by applying the algorithm SLOW-FIND-ONE (Section 5.1).
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abababbb

(@)
bababbb 1
(b)
bababbb
(©
(d

Figure 5.10. During the construction of 7c(abababbb), insertion of the suffixes ababbb and
babbb. (a) Automaton obtained after the insertion of the suffixes abababbb and bababbb. The
current fork is the initial state 0. (b) We add the suffix ababbb by straight letter comparisons
(slow find) from state 0. This leads to create fork 3. The suffix target of 3 is not yet defined.
(c) The first step of the insertion of the suffix babbb starts with the definition of the suffix
target of state 3 that is state 5. We proceed by fast find from state O with the string bab.
(d) The second step of the insertion of babbb leads to the creation of state 6. State 5, that is
the fork of the suffix babbb, becomes the current fork for the rest of the insertion.



192 5 Structures for indexes

For a state r of 7.(y) and a string v <, y satisfying the inequality 7 - v gy
y, we denote by end(r, v) the end of the shortest path starting from state » and
whose label is prefixed by v. We note that end(r, v) = §(r, v) only if v is the
label of the path.

Lemma 5.7
Let v be a node of 1.(y) and v be a string for which r - v =g y. Let
(r,r1, ..., 1e) be the path starting from state r and ending at state ry = end(r, v)

in7:(y). The computation of end(r, v) can be realized in time O (£ x log card A)
in the comparison model.

Proof We note that the path (r, rq, ..., r¢) exists by the condition 7 - v <g¢¢ ¥
and is unique since the tree is a deterministic automaton.

If v = &, we have end(r, v) = r. Otherwise, we have r; = TARGET(r, v[0])
and let v’ be the label of the arc (r, ;). We notice that

r if [v]| < V'] (ie. v =pref V'),

d(r, v) = i
end(r, v) {end(h,v/_lv) otherwise.

This relation shows that each step of the computation takes a time « +  where
o is a constant, that includes the time to access the label of the arc (r, ry),
and B is the computation time of TARGET(r, v[0]). It is O(logcard A) in the
comparison model.

The computation of r, that includes the scan of the path (r, ry, ..., r¢) thus
takes a time O (£ x logcard A) as announced. [ ]
Corollary 5.8

Let r be a node of 1.(y) and j, k be the two positions on y, j < k, such that
r-ylj..k— 1] Ztact y. Let £ be the number of states of the tree inspected
during the computation of FAST-FIND(r, j, k). Then the running time of FAST-
FIND(r, j, k) is O(€ x logcard A) in the comparison model.

Proof Letussetv = y[j..k — 1]and letusdenote by (r, ry, ..., r) the path
whose end is end(r, v). The computation of end(r, v) is performed by FAsT-
FIND that implements the recurrence relation of the proof of Lemma 5.7. It takes
thus a time O(¢ x logcard A). During the last recursive call, there is a possible
creation of the state p and modification of the arcs. This operation takes again
the time O(logcard A), which gives the global time O(¢ x logcard A) of the
statement. u

Theorem 5.9
The operation SUFFIX-TREE(Y, n), that produces T.(y), takes a time O(n X
log card A) in the comparison model.
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Proof The fact that the operation SUFFIX-TREE(y, 1) produces the automaton
T.(y) relies essentially on Lemma 5.6 by checking that the algorithm uses the
elementary technique of Section 5.1.

The evaluation of the running time relies on the following observations (see
Figure 5.9):

e each step of the computation performed by FAST-FIND, except maybe the
last one, leads to the scan of a state and increases strictly the value of k — ¢
(j on the figure),

¢ each step of the computation performed by SLOW-FIND, except maybe the
last one, increases strictly the value of k,

* each other instruction of the for loop leads to an incrementation of the value
of i.

Since the values of the three above-mentioned expressions never decrease, the
number of steps executed by FAST-FIND is thus bounded by n, which gives
a total O(n x logcard A) time for these steps after Corollary 5.8. The same
argument holds for the number of steps executed by SLow-FIND and for the
other steps, giving again a time O(n x logcard A).

Therefore, we get a total running time O(n x logcard A). L]

5.3 Contexts of factors

In this section, we present the formal basis of the construction of the minimal
automaton that accepts the suffixes of a string. Some properties go into the
proof of the automaton construction (Theorems 5.19 and 5.28 further).

The (minimal) suffix automaton of a string y is denoted by S(y). Its states
are the classes of the syntactic equivalence (or congruence) associated with
the set Suff(y), that is to say of the sets of factors of y having the same right
context inside y (see Section 1.1). These states are in bijection with the (right)
contexts of the factors of y in y itself. Let us recall that the (right) context of a
string u relatively to the suffixes of y is ! Suff(y). We denote by = Suff(y) the
equivalence (syntactic congruence) that is defined, for u, v € A*, by

U =suff(y) V
if and only if
u~'Suff(y) = v 'Suff(y).

We can also identify the states of S(y) to the sets of indices on y that are right
positions of occurrences of equivalent factors.
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The right contexts satisfy some properties stated below and that are used in
the rest. The first remark concerns the link between the relation <, and the
inclusion of contexts. For every factor u of y, we denote by

rpos(u) = min{lw| — 1 : w pref ¥ and u Xt w},
the right position of the first occurrence of u in y.

Lemma 5.10
Let u, v <gaer y with |u| < |v|. Then

u <t Vimplies v_lSuff(y) C u_lSuff(y)
and
v_ISuff(y) = u_ISuff(y) implies both rpos(u) = rpos(v) and u < v.

Proof Letus assume u <g v. Let z € v™'Suff(y). By definition, vz <gf ¥
and, as u =g v, we have also uz <qg y. Thus, z € u~!Suff(y), this proves
the first implication.

Let us assume now v~ 'Suff(y) = u~'Suff(y). Let w, z be such that y =
w - z with |w| = rpos(u) + 1. By definition of rpos, u is a suffix of w and z
is the longest string of u~!Suff(y). The assumption implies that z is also the
longest string of v~!Suff(y), this leads to |w| = rpos(v) + 1 and rpos(u) =
rpos(v). The strings u and v are thus both suffixes of w, and as u is shorter than
v, we get u <g v. This ends the proof of the second implication. [

Another very useful property of the congruence is that it partitions the
suffixes of a factor of y in intervals relatively to their length.

Lemma 5.11
Let u, v, W Zgact Y. If U Zguit U, ¥ Squip W, and u =gy W, then u =g,p(y) v
and v =gy W.

Proof By Lemma 5.10, the assumption implies:
wSuff(y) € v !Suff(y) € u~'Suff(y).

Then, the equivalence u =g,(,, w that means u~'Suff(y) = w™'Suff(y) leads
to the conclusion. ]

The following property has for consequence that the inclusion induces a tree
structure on the right contexts. In this tree, the parent link consists of the proper
set inclusion. This important link for the fast construction of the automaton
corresponds to the suffix function defined then.
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Corollary 5.12
Let u,v € A*. The contexts of u and v are comparable for the inclusion or
disjoint, that is to say one at least of the three following conditions holds:

1. u='Suff(y) € v~ !Suff(y),
2. v~ 'Suff(y) € u~'Suff(y),
3. u”'Suff(y) N v~ !Suff(y) = @.

Proof We prove the property by showing that the condition
u~'Suff(y) N v~ 'Suff(y) # @
implies
u~'Suff(y) € v~'Suff(y) or v~ !Suff(y) € u~'Suff(y).

Let z € u~'Suff(y) N v~'Suff(y). Then the strings uz and vz are suffixes of y,
and thus u and v are suffixes of yz~'. As a consequence one of the two strings
u or v is a suffix of the other. We finally get the conclusion by Lemma 5.10. =

Suffix function

On the set Fact(y), we consider the function denoted byl s, called suffix
Jfunction relatively to y. It is defined, for every v € Fact(y) \ {¢}, by

s(v) = the longest string u < v for which u #g,z(,) v.
After Lemma 5.10, we deduce the equivalent definition:
s(v) = the longest string u <g. v for which v_lSuff(y) C u_lSuff(y).

We note that, by definition, s(v) is a proper suffix of v (that is to say, |s(v)| <
|[v]). The lemma that follows shows that the suffix function s induces a failure
function (see Section 1.4) on the states of S(y).

Lemma 5.13
Letu, v € Fact(y) \ {e}. If u =sup(y) v, then s(u) = s(v).

Proof ByLemmab5.10we can assume without loss of generality that u <gu v.
Thus, u and s(v) are suffixes of v, and then one is a suffix of the other. The
string u cannot be a suffix of s(v) since Lemma 5.11 would imply s(v) =g,z v,
which contradicts the definition of s(v). As a consequence, s(v) is a suffix of u.

! Though we use the same notation, the definition of the suffix function is syntactic in the sense
that it uses the language of reference, while the one of the suffix link of Section 5.1 is only of
algorithmic nature.
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Since, by definition, s(v) is the longest suffix of v that is not equivalent to v
and since it is not equivalent to u, it is also s(u). Therefore, s(u) = s(v). [ ]

Lemma 5.14
Let y € A*. The string s() is the longest suffix of y that occurs at least twice
in y itself.

Proof The context y~'Suff(y) is {€}. As y and s(y) are not equivalent,
s(y)~'Suff(y) contains a nonempty string z. Then, s(y)z and s(y) are suffixes
of y, this shows that s(y) occurs at least twice in y.

Every suffix w of y, longer that s(y), is equivalent to y by definition of s(y).
It satisfies then w~'Suff(y) = y~'Suff(y) = {¢}. Which shows that w occurs
only once in y as a suffix and that s(y) is the longest suffix occurring at least
twice. ]

The next lemma shows that the image of a factor of y by the suffix function
is a string of maximal length in its equivalence class.

Lemma 5.15
Let u € Fact(y) \ {€}. Then, every string equivalent to s(u) is a suffix of s(u).

Proof We denote by w = s(u) and let v =g,(,) w. The string w is a proper
suffix of u. If the conclusion of the statement is wrong, we get w < v after
Lemma 5.10. Let then z € u~'Suff(y). As w is a suffix of u equivalent to v,
we have z € w™'Suff(y) = v~ !Suff(y). Then, u and v are suffixes of yz~!,
this implies that one is a suffix of the other. But this contradicts either the
definition of w = s(u) or the conclusion of Lemma 5.11, which proves that v

is necessarily a suffix of w = s(u). ]

The previous property is used in Section 6.6 where the automaton is used for
pattern matching. We can check that the property of s is not satisfied in general
on the minimal automaton that accepts the factors (and not only the suffixes) of
a string, or, more exactly, is not satisfied by the similar function defined from
the congruence =gycq(y)-

Evolution of the congruence

The online aspect of the suffix automaton construction of Section 5.4 relies on
relations between =g,(wa) and =g,z ) that we examine here. By doing this,
we consider that the generic string y is equal to wa for some letter a. The stated
properties yield tight bounds on the size of the automaton in the next section.
The first relation (Lemma 5.16) states that =g,z i a refinement

of =gufr(uw)-
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Lemma 5.16
Let w € A* and a € A. The congruence =suff(wa) 1S a refinement of =gy,
that is to say, for every strings u, v € A*, u =gyga) v implies u =g,f ) v-

Proof Letus assume u =g, (uq) v, that is, u~'Suff(wa) = v='Suff(wa), and
let us show u =g, v, that is, u~'Suff(w) = v~ !Suff(w). We only show
that u~'Suff(w) C v=!Suff(w) since the opposite inclusion can be deduced by
symmetry.

If the set u~'Suff(w) is empty, the inclusion is trivial. Otherwise, let
z € u~'Suff(w). We then have uz <qs w, which implies uza <q wa. The
assumption gives vza =g wda, and thus vz <gg worz € v~ Suff(w), which
ends the proof. ]

The congruence =g,y partitions A* into equivalence classes. The
Lemma 5.16 amounts to say that these classes are unions of classes rela-
tively to =g, wa) (@ € A). It turns out that only one or two classes relatively to
=suff(w) SPlit into two subclasses to produce the partition induced by =g,g(wa)-
One of these two classes is the one that comes from strings that do not occur in
w. It contains the string wa itself that produces a new class and a new state of
the suffix automaton (see Lemma 5.17). Theorem 5.19 and its corollaries give
conditions for the splitting of another class and indicate how this one splits.

Lemma 5.17
Letw € A* and a € A. Let 7 be the longest suffix of wa that occurs in w. If u
is a suffix of wa longer than z, the equivalence u =g,fwwa) wa holds.

Proof 1tis a direct consequence of Lemma 5.14 since z occurs at least twice
in wa. ]

Before stating the main theorem we give another relation concerning right
contexts.

Lemma 5.18
Let w € A* and a € A. Then, for each string u € A*:

{e}Uu™'Suff(w)a ifu < wa,

u”'Suff(wa) = { ', :
u~ Suff(w)a otherwise.

Proof We first note that ¢ € u~'Suff(wa) is equivalent to u < wa. It is
sufficient thus to show u~!Suff(wa) \ {¢} = u~'Suff(w)a.

Let z be a nonempty string of u~'Suff(wa). We have uz <qr wa. The
string uz can be written uz'a with uz’ <gg w. Then, 7' € u~'Suff(w), and thus
z € u~'Suff(w)a.
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Conversely, let z be a (nonempty) string of #~!Suff(w)a. It can be written
Z'a for 7 € u~'Suff(w). Thus, uz’ < w. This implies uz = uz'a <y wa,
that is, z € u~'Suff(wa), which proves the reciprocity and ends the proof. m

Theorem 5.19

Let w € A* and a € A. Let z be the longest suffix of wa that occurs in w.
Let 7' be the longest factor of w for which 7' =gy z. Then, for each u,
U Sfact W,

U =suff(w) V and u iSuﬂ(w) Z lmply U =guff(wa) V-
Moreover, for each u such that u =g,y 2,

_ z iflul <zl
U =Suff (wa) /

7' otherwise.

Proof Letu,v =g w be such that u =g,z v. By definition of the equiva-
lence, we have 1~ ! Suff(w) = v~ !Suff(w). We first assume u Zsuff(w) < and we
show u~'Suff(wa) = v~'Suff(wa), which gives the equivalence u =Suff(wa) V-

After Lemma 5.18, we simply have to show that u < wa is equivalent to
v <qff wa. Actually, it is sufficient to show that u <, wa implies v < wa
since the opposite implication can be deduced by symmetry.

Let us assume thus u <g5 wa. We deduce from u <p w and from the
definition of z that u is a suffix of z. We can, thus, consider the largest index
j = 0 for which |u| < |s,7(z)|. Let us note that s,,7 (z) is a suffix of wa (in the
same way as z is), and that Lemma 5.11 ensures that u =g, w) S’ (2). Thus,
V =suf(w) w7 (z) by transitivity.

As u Fg5w) 2, we have j > 0. Lemma 5.15 implies that v is a suffix of
Sw’ (2), and then also of wa as wanted. This shows the first part of the statement.

Let us consider now a string u such that u =g, 2.

When |u| < |z|, in order to show u =g, wa) 2 using the above argument, we
only have to check that u < wa since z <gs wa. This is actually a simple
consequence of Lemma 5.10.

Let us assume |u| > |z|. The existence of such a string u implies 7’ # z
and |7'| > |z| (z <sufr 7). Consequently, by the definition of z, # and 7’ are not
suffixes of wa. Using again the above argument, this proves u =g, (q) 2’ and
ends the proof. ]

The two corollaries of the previous theorem stated below refer to simple
situations to manage during the construction of the suffix automaton.
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Corollary 5.20

Let w € A* and a € A. Let 7 be the longest suffix of wa that occurs in w. Let
7' be the longest string such that 7’ =g,y z. Let us assume 7' = z. Then, for
each u, v <gq W,

U =suff(w) V lm[)lleS U =suff(wa) V-

Proof Let u, v =g w be such that u =g, v. We show the equivalence
U =suf(wa) V- The conclusion comes directly after Theorem 5.19 if u #g,pw) 2.
Otherwise, u =g,pw) z; by the assumption done on z and Lemma 5.10, we get
|u| < |z|. Finally, Theorem 5.19 gives the same conclusion. ]

Corollary 5.21
Letw € A*and a € A. Ifthe letter a does not occur in w, for eachu, v <gae W,

U =suff(w) V lmplles U =suff(wa) V-

Proof As a does not occur in w, the string z of Corollary 5.20 is the empty
string. It is of course the longest of its class, which allows to apply Corollary 5.20
and gives the same conclusion. ]

5.4 Suffix automaton

The suffix automaton of a string y, denoted by S(y), is the minimal automaton
that accepts the set of suffixes of y. The structure is intended to be used as an
index on the string but constitutes also a machine to search for factors of y inside
another text (see Chapter 6). The most surprising property of this automaton is
that its size is linear in the length of y though the number of factors of y can
be quadratic. The construction of the automaton takes also a linear time on a
fixed alphabet. Figure 5.11 shows an example of such automaton.

As we do not force the automaton to be complete, the class of strings that
do not occur in y, whose right context is empty, is not a state of S(y).

Figure 5.11. The suffix automaton S(ababbb), minimal automaton accepting the suffixes of
the string ababbb.



200 5 Structures for indexes

Figure 5.12. A suffix automaton with the maximal number of states for a string of length 7.

Size of the automaton

The size of an automaton is expressed both by the number of its states and
by the number of its arcs. We show that S(y) possesses less than 2|y| states
and less than 3|y| arcs, for a total size O(|y|). This result is a consequence of
Theorem 5.19 of the previous section. Figure 5.12 shows an automaton that
possesses the maximal number of states for a string of length 7.

Proposition 5.22

Let y € A* be a string of length n and e(y) be the number of states of S(y).
Forn =0, we have e(y) = 1; for n = 1, we have e(y) = 2; for n > 1 finally,
we have

n+1=<e(y)<2n-1,

and the upper bound is met if and only if y is of the form ab" ', for two distinct
letters a, b.

Proof The equalities concerning the short strings can be checked directly.
Let us assume that n > 1 for the rest. The minimal number of states of S(y)
is obviously n 4 1 (otherwise the path having label y would contain a cycle
leading to an infinite number of strings recognized by the automaton), minimum
that is reached with y = a" (a € A).

Let us show the upper bound. By Theorem 5.19, each letter y[i],2 <i <
n — 1, increases by at most two the number of states of S(y[0..i — 1]). As
the number of states of S(y[0]y[1]) is 3, it follows that e(y) <3 +2(n — 2) =
2n — 1, as announced.

The construction of a string of length » whose suffix automaton possesses
2n — 1 states is again a simple application of Theorem 5.19 noting that each of
the letters y[2], y[3], ..., y[n — 1] must effectively lead to the creation of two
states during the construction. We notice that after the choice of the first two
letters that must be different, the other letters are forced and this produces the
only possible form given in the statement. L]

Lemma 5.23
Lety € AT and f(y) be the number of arcs of S(y). Then

f) <ey)+lyl =2
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Figure 5.13. A suffix automaton with the maximal number of arcs for a string of length 7.

Proof Let us denote by g the initial state of S(y), and let us consider the
spanning tree of the longest paths having origin ¢o in S(y). The tree contains
e(y) — 1 arcs of S(y) since exactly one arc enters each state except the initial
state qo.

With each other arc (p, a, q) of the automaton, we associate the suffix uav
of y defined as follows: u is the label of the path of the tree starting from gy and
ending in p; v is the label of the longest path from ¢ and ending in a terminal
state. In this way, we get an injection of the set of the mentioned arcs into the
set of suffixes of y. The suffixes y and ¢ are not considered since they are labels
of paths of the spanning tree. This shows that there are at most |y| — 1 arcs of
the automaton that are not in the spanning tree.

Thus a total of e(y) + |y| — 2 arcs at most. [ ]

Figure 5.13 shows an automaton that possesses the maximal number of arcs
for a string of length 7, as the next proposition shows.

Proposition 5.24

Let y € A* of length n and f(y) be the number of arcs of S(y). For n = 0, we
have f(y) =0, forn =1, we have f(y) = 1, forn = 2, we have f(y) =2 or
f(y) = 3; for n > 2 finally, we have

n<f(y)<3n-4,

and the upper bound is met when y is of the form ab">c, where a, b, and c are
three pairwise distinct letters.

Proof We can directly check the results for short strings. Let us consider that
n > 2. The lower bound is immediate and met for the string y = a” (a € A).

Let us examine the upper bound. By Proposition 5.22 and Lemma 5.23, we
get f(y) <(2n —1)+4+n —2 =3n — 3. The quantity 2n — 1 is the maximal
number of states obtained only if y = ab"~! (a,b € A, a # b). But for this
string the number of arcs is only 2n — 1. Thus, f(y) < 3n —4.
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Figure 5.14. The suffix automaton S(aabbabb). The suffix targets of the states are: F[1] = 0,
F[21=1,F[3]1=3",F[3'1=3,F[3]1=0,F[4 =4", F[4'1=3,F[5] =1, F[6] = 3",
F[7] = 4", where F is the table implementing the suffix function f. The suffix path of
7 is (7,4”,3,0), it contains all the terminal states of the automaton and only them (see
Corollary 5.27).

We can check that the automaton S(ab”_zc) (a,b,c € A,card{a, b, c} =3)
possesses 2n — 2 states and 3n — 4 arcs. ]

The statement that follows is an immediate consequence of Propositions
5.22 and 5.24.

Theorem 5.25
The total size of the suffix automaton of a string is linear in the length of the
String. ]

Suffix link and suffix paths

Theorem 5.19 and its two corollaries provide the framework for the online
construction of the suffix automaton S(y). The algorithm controls the conditions
that occur in these statements by means of a function defined on the states of
the automaton, the suffix link, and of a classification of the arcs in solid arcs
and non-solid arcs. We define these two notions thereafter.

Let p be a state of S(y), different from the initial state. The state p is a class
of factors of y equivalent with respect to the equivalence =g,z (). Let u be any
string of the class (1 # ¢ since p is not the initial state). We define the suffix
target of p, denoted by f(p), as the equivalence class of s(u). The function
f is called the suffix link of the automaton. Lemma 5.13 shows that the value
of s(u) is independent of the string u chosen in the class p, which makes the
definition of f consistent. The suffix link is a failure function in the sense of
Section 1.4, that is, f(p) is the failure state of p. The link is used with this
meaning in Section 6.6. An example is given in Figure 5.14.

For a state p of S(y), we denote by /g(p) the maximal length of strings u« in
the equivalence class p. It is also the length of the longest path from the initial
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state reaching p, path that is labeled by u. The longest paths from the initial
state form a spanning tree of S(y) (consequence of Lemma 5.10). The arcs that
belong to this tree are qualified as solid. In a equivalent way,

the arc (p, a, q) is solid
if and only if

lg(q) = Ig(p) + 1.

This notion of solidity of arcs is used in the construction of the automaton for
testing the condition of Theorem 5.19.

The suffix targets induce by iteration suffix paths in S(y) (see Figure 5.14).
We can note that

q = f(p) implies Ig(q) < Ig(p).

Thus, the sequence

(P, F(P) L2(P)s )

is finite and ends with the initial state (that has no suffix target). It is called the
suffix path of p in S(y), and denoted by SP(p).

Let last be the state of S(y) that is the class of y itself. This state is charac-
terized by the fact that it is the origin of no arc (otherwise S(y) would accept
strings longer than y). The suffix path of /ast,

(last, f(last), f*(las?), ..., f*last) = q0),

where qq is the initial state of the automaton, plays an important role in the
sequential construction algorithm. It is used for testing efficiently the conditions
of Theorem 5.19 and of its corollaries. In the next proposition, § is the transition
function of S(y).

Proposition 5.26
Let u € Fact(y) \ {e} and p = §(qo, u). Then, for each integer j > 0 for which
s’ (u) is defined, we have

F1(p) = 8(qo, s/ (w)).

Proof We prove the result by recurrence on j. If j =0, f/(p) = p, and
s/(u) = u, thus the equality is satisfied by assumption. Let then j > 0
such that s/(u) is defined and assume by the recurrence assumption that
f7=Y(p) =83, s7~'(u)). By definition of f, f(f/~!(p)) is the equivalence
class of the string s(s/~!(u)). Consequently, f/(p) = 8(qo, s/ (1)), which ends
the recurrence and the proof. ]
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Corollary 5.27
The terminal states of S(y) are the states of the suffix path of the state last,
SP(last).

Proof We first show that the states of the suffix path are terminal. Let p be
a state of the suffix path of last. We have p = f/(last) for an integer j > 0.
As last = 8(qo, y), Proposition 5.26 implies p = 8(go, s/(y)). And as s/(y) is
a suffix of y, p is a terminal state.

Conversely, let p be a terminal state of S(y). Let then u <q,g y be such that
p = 8(qo, u). As u =g y, we can consider the largest integer j > 0 for which
lu| < |s/(y)|. By Lemma 5.11, we get u =5 (y) s7(y). Thus, p = 8(qo, s/ ()
by definition of S(y). Thus, Proposition 5.26 applied to y implies p = f/(last),
which proves that p occurs in SP(last). This ends the proof. ]

Online construction

It is possible to build the suffix automaton of y by application of standard
minimization algorithms applied to the suffix trie of Section 5.1. But since
the suffix trie can be of quadratic size, this gives a procedure having the same
space complexity to the best. We present a sequential construction algorithm
that avoids this problem, runs in time O(]y| x logcard A), and requires only a
linear memory space.

The algorithm processes the prefixes of y from the shortest, ¢, to the longest,
y itself. At each step, just after having processed the prefix w, we have the
following information:

* the suffix automaton S(w) with its transition function §,

* the attribute F, defined on the states of S(w), that implements the suffix
function f,,

* the attribute L, defined on the states of S(w), that implements the function
of length lg,,

e the state last.

The terminal states of S(w) are not explicitly marked, they are implicitly given
by the suffix path of /ast (Corollary 5.27). The implementation of S(w) with
these extra elements is discussed below just before the complexity analysis of
the computation.

The construction algorithm SUFFIX-AUTO is based on the utilization of the
procedure EXTENSION given further. This procedure processes the current letter
a of the string y. It transforms the suffix automaton S(w) already built into the
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suffix automaton S(wa) (wa =<prf ¥, a € A). An example of how it works is
given in Figure 5.15.

SUFFIX-AUTO(Y, 1)

1

O 00 N L B W

—_— = =
[\ ]

M < NEW-AUTOMATON()

LlinitiallM]] < 0

FlinitiallM]] < NIL

last[M] < initial[M]

for each letter a of y, sequentially do
> Extension of M by the letter a
EXTENSION(a)

p < last[M]

do terminal[p] <— TRUE
p < Flp]

while p £ NIL

return M

EXTENSION(a)

1

O 00 3 N W

—_
— O

12
13
14
15
16
17
18
19
20
21
22
23

new <— NEW-STATE()
Llnew] < L[last|M]] + 1

p < last[M]
do Succ[p] < Succ[p]U {(a, new)}
p < Flp]

while p # NIL and TARGET(p, @) = NIL
if p = NIL then
Flnew] < initial[M]
else g < TARGET(p, a)
if (p, a, g) is solid, i.e. L[p] + 1 = L[q] then
Flnew] < ¢
else clone <— NEW-STATE()
L[clone] < L[p] +1
for each pair (b, ¢') € Succ[q] do
Succ[clone] < Succ[clone] U {(b, q')}
Flnew] <« clone
Flclone] < Flq]
Flq] < clone
do Succ[p] < Succ[p]\ {(a, 9)}
Succ[p] < Succ[p] U {(a, clone)}
p < Flpl
while p # NIL and TARGET(p, a) = ¢
last| M| < new
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@

-

Figure 5.15. Illustration of how the procedure EXTENSION(a) works on the suffix automa-
ton S(ccccbbecc) according to three cases. (a) The automaton S(ccccbbecc). (b) Case
where a = d. During the execution of the first loop of the procedure, the state p goes over
the suffix path (9, 3, 2, 1, 0). In the same time, arcs labeled by the letter 4 are created, ex-
iting these states and arriving on 10, the last created state. The loop stops on the initial
state. This situation corresponds to Corollary 5.21. (¢) Case where @ = c. The first loop of
the procedure stops on state 3 = F[9] because an arc labeled by c exits this state. More-
over, the arc (3, c, 4) is solid. We directly get the suffix target of the newly created state:
F[10] = é(3, c) = 4. There is nothing more to do according to Corollary 5.20. (d) Case
where a = b. The first loop of the procedure stops on state 3 = F[9] because an arc la-
beled by b exits this state. In the automaton S(ccccbbecc), the arc (3, b, 5) is not solid.
The string cccb is suffix of ccccbbeeeb but cceceb is not, though these two strings lead, in
S(cceebbecec), to state 5. In order to get S(ccccbbeccb), this state is duplicated into the
terminal state 5” that is the class of factors cccb, ccb, and cb. The arcs (3, b, 5), (2, b, 5),
and (1, b, 5) of S(ccccbbecce) are redirected to 5” in accordance with Theorem 5.19. And
F[10] =5",F[5]=5",F[5"1=75.
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©

Figure 5.15. (Continued)

Theorem 5.28
The algorithm SUFFIX-AUTO builds a suffix automaton, that is to say that the
operation SUFFIX-AUTO(y, n) produces the automaton 8(y), for y € A*.

Proof We show by recurrence on |y| that the automaton is correctly com-
puted and that the attributes L and F and the variable last also are. We show
at the end of the proof that the terminal states are correctly computed. If
|y| = 0, the algorithm builds an automaton with a single state that is both
initial and terminal. No transition is defined. The automaton recognizes the
language {¢}, which is Suff(y). The elements F, L, and last are also correctly
computed.

We consider now that |y| > 0, and let y = wa, fora € A and w € A*. We
assume, by recurrence, that the current automaton M is S(w) with its transition
function §,,, that go = initial[M], last = §,,(qo, w), that the attribute L satisfies
L[p] = lg,,(p) for every state p, and that the attribute F' satisfies F[p] = f,,(p)
for every state p different from the initial state.

We first show that the procedure EXTENSION correctly performs the trans-
formation of the automaton M, of the variable last, and of the attributes L
and F.
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The values of the variable p of the procedure EXTENSION run through the
states of the suffix path SP(last) of S(w). The first loop creates transitions la-
beled by a and of the target new, the new state, in accordance with Lemma 5.17.
We also have the equality L{new] = Ig(new).

When the first loop stops, three disjoint cases arise:

1. p is not defined.
2. (p,a,q)is asolid arc.
3. (p,a, q) is anon-solid arc.

Case 1. This situation happens when the letter a does not occur in w; we
have then f,(new) = go. Thus, after the instruction of line 8, we have the
equality F[new] = fy(new). For the other states r, we have f,(r) = f,(r)
after Corollary 5.21, which gives the equalities F[r] = f,(r) at the end of the
execution of the procedure EXTENSION.

Case 2. Let u be the longest string for which §,,(go, #) = p. By recurrence
and by Lemma 5.15, we have |u| = Ig, (p) = L[ p]. The string ua is the longest
suffix of y that is a factor of w. Thus, f,(new) = g, this shows F[new] =
fy(new) after the instruction of line 11.

As the arc (p, a, q) is solid, by recurrence again, we have |ua| = L[g] =
Ig(g), this shows that the strings equivalent to ua according to =g,z are
not longer than ua. Corollary 5.20 applies with z = ua. And as in Case 1,
F[r] = f,(r) for every states different from the state new.

Case 3. Let u be the longest string for which §,,(qo, u) = p. The string ua
is the longest suffix of y that is a factor of w. As the arc (p, a, ¢) is not solid,
ua is not the longest string of its equivalence class according to =g, ).
Theorem 5.19 applies with z = ua, and 7' the longest string for which
8w(qo, 2') = g. The class of ua according to =g, (w) splits into two subclasses
according to =g,y corresponding to states g and clone.

The strings v shorter than ua and such that v =g,y ua are of the form v'a
with v" < u (consequence of Lemma 5.10). Before the execution of the last
loop, all these strings v satisfy g = 8,,(qo, v). Consequently, after the execution
of the loop, they satisfy clone = §,(qo, v), as indicated by Theorem 5.19. The
strings v longer than ua and such that v =g, ua satisty g = 8,(qo, v) after
the execution of the loop as indicated by Theorem 5.19 again. We can check
that the attribute F' is updated correctly.

In each of the three cases, we can check that the value of last is correctly
computed at the end of the execution of the procedure EXTENSION.

Finally, the recurrence shows that the automaton M, the state last, as well
as the attributes L and F are correct after the execution of the procedure
EXTENSION.
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It remains to check that the terminal states are correctly marked during
the execution of the last loop of the algorithm SUFFIX-AUTO. But this is a
consequence of Corollary 5.27 since the values of the variable p are the elements
of the suffix path of the state last. ]

Complexity

To analyze the complexity of the algorithm SUFFIX-AUTO, we start by describing
a possible implementation of the elements required by the construction.

We assume that the automaton is represented by sets of labeled successors.
By doing this, the operations add, access, and update concerning an arc exe-
cute in time O(logcard A) with an efficient implementation of the sets in the
comparison model (see Section 1.4). The function f is realized by the attribute
F that gives access to f(p) in constant time.

To implement the solidity of the arcs, we utilize the attribute L, represent-
ing the function /g, as suggests the description of the procedure EXTENSION
(line 10). Another way of doing it consists in using a boolean value per arc
of the automaton. This leads to a slight modification of the algorithm that can
be described as follows: each first arc created during the execution of loops of
lines 4—6 and of lines 19-22 must be marked as solid, the other created arcs are
marked as being non-solid. This type of implementation does not require the
utilization of the attribute L that can then be deleted; this saves some memory
space. However, the attribute L finds its usefulness in applications as those of
the Chapter 6. But we note that any chosen implementation provide a constant
time access to the quality of an arc (solid or non-solid).

Theorem 5.29
The algorithm SUFFIX-AUTO can be implemented in such a way that the con-
struction of S(y) runs in time O(]y| x log card A) with a memory space O(]y|).

Proof We choose an implementation of the transition function by sets of
labeled successors. The states of S(y) and the attributes F and L require a space
O(e(y)), the sets of labeled successors a space O(f(y)). Thus, the complete
implementation takes a space O(]y|), as a consequence of Propositions 5.22
and 5.24.

Another consequence of these propositions is that all the operations executed
once per state or once per arc of the final automaton take a total time O(]y| x
log card A). The same result holds for the operations that are executed once per
letter of y. It remains to show that the time spent for the execution of the two
loops of lines 4—6 and 19-22 of the procedure EXTENSION is of the same order,
that is to say O(|y| x logcard A).
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We first examine the case of the loop of lines 4-6. Let us consider the
execution of the procedure EXTENSION during the transformation of S(w) into
S(wa) (wa <per ¥, a € A). Let u be the longest string of the state p during
the test in line 6. The initial value of u is s,,(w), and its final value satisfies
ua = syq(wa) (if p is defined). Let k = |w| — |u|, be the position of the suffix
occurrence of 1 in w. Then, each test strictly increases the value of k during a
call to the procedure. Moreover, the initial value of k at the beginning of the
execution of the next call is not smaller than its final value reached at the end
of the execution of the current call. Thus, the tests and instructions of this loop
are executed at most |y| times during all the calls to EXTENSION.

A similar argument holds for the second loop of lines 19-22 of the procedure
EXTENSION. Let v be the longest string of the state p during the test of the
loop. The initial value of v is sp! (), for Jj =2, and its final value satisfies
va = Sya>(wa) (f p is defined). Then, the position of v as a suffix of w
increases strictly at each test during successive calls of the procedure. Again,
tests and instructions of the loop are executed at most |y| times.

Consequently, the cumulated time of the executions of the two loops is
O(]y| x logcard A), which ends the proof. ]

On a small alphabet, we can choose an implementation of the automaton by
transition table that is even more efficient than by sets of labeled successors.
It is sufficient then to manage the table as a sparse matrix. But the memory
space requirement becomes larger. With this particular management, the op-
erations on the arcs execute in constant time, which leads to the following
result.

Theorem 5.30
In the branching model, the construction of S(y) by the algorithm SUFFIX-AUTO
takes a time O(|y|).

Proof To implement the transition matrix, we can use the technique for rep-
resenting sparse matrices that gives a direct access to each of its inputs but
avoids to completely initialize each of them (see Exercise 1.15). ]

5.5 Compact suffix automaton

In this section, we succinctly describe a method for building a compact suffix
automaton, denoted by S.(y) for y € A*. This automaton can be viewed as
the compact version of the suffix automaton of the previous section, that is to
say, obtained from it by deletion of states that possess only one successor and
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Figure 5.16. The compact suffix automaton Sc(ababbb).

are not terminal. This is the process that is used on the suffix trie of Section 5.2
for getting a structure of linear size.

The compact suffix automaton is also the minimized version, in the sense of
the automata, of the suffix tree. It is obtained by identifying the subtrees that
recognize the same strings.

Figure 5.16 presents the compact suffix automaton of ababbb that can be
compared to the tree of Figure 5.6 and to the automaton of Figure 5.11.

Exactly as for the trie 7 (Suff(y)), we call fork in the automaton S(y) every
state that is of (outgoing) degree at least 2, or that is both of degree 1 and
terminal. The forks of the suffix automaton satisfy the same property as that of
forks of the suffix tree. This property allows the compaction of the automaton.
The proof of the proposition that follows is an immediate adaptation of the
proof of Proposition 5.5 and is left to the reader.

Proposition 5.31
In the suffix automaton of a string, the suffix target of a fork (different from the
initial state) is a fork. [ ]

When we delete the states that have an outgoing degree of 1 and that are
not terminal, the arcs of the automaton must be labeled by (nonempty) strings
and not only by letters. To get a structure of size linear in the length of y, it is
necessary to store these labels in an implicit form. We proceed as for the suffix
tree by representing them in constant space by means of pairs of integers. If
the string u is the label of the arc (p, g), it is represented by the pair (7, |u|)
for which i is the position of an occurrence of u in y. We denote the pair by
label(p, q) and we assume that the implementation of the automaton gives a
direct access to this label. This imposes to store the string y with the structure.
Figure 5.17 indicates how are represented the labels of the compact suffix
automaton of ababbb.

The size of the compact suffix automaton can be evaluated quite directly
from those of the suffix tree and of the suffix automaton.
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Figure 5.17. Representation of labels of arcs in the compact suffix automaton Sc(ababbb)
(see Figure 5.16 for explicit labels).

Proposition 5.32
Let y € A* of length n and e.(y) be the number of states of Sc(y). For n = 0,
we have e.(y) = 1, for n > 0, we have

2<e(y)=n+1,
and the upper bound is reached for y = a",a € A.

Proof The result can be directly verified for the empty string.
Letusassumen > 0.Let $ be aspecial letter, $ ¢ alph(y), and let us consider
the tree 7.(y$). This tree possesses exactly n + 1 external nodes and on each
of them arrives an arc whose label ends precisely by the letter $. It possesses
at most n internal nodes since those nodes are of degree at least 2. When we
minimize the tree in order to get a compact automaton, all the external nodes
are identified in a single state, which reduces the number of states to n + 1 at
most. The deletion of the letter $ does not increase this value and thus we get
the upper bound on e.(y). It is immediate to check that S.(a™) possesses exactly
n + 1 states and that the obvious lower bound is reached when the alphabet of
y is of size n, card alph(y) = n, forn > 0. ]

Proposition 5.33
Lety € A* be of length n and f.(y) be the number of arcs of Sc(y). Forn = 0,
we have f.(y) =0, for n = 1, we have f.(y) = 1, for n > 1 finally, we have

fe(y) =2(n — 1),
and the upper bound is reached for y = a"~'b, a, b being two distinct letters.

Proof After verification of the results for the short strings, we note that if y
is of the form a”, n > 1, we have f.(y) =n — 1, whose quantity is no more
than 2(n — 1).
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Let us assume now that card alph(y) > 2. We go on the proof of the previous
lemma by considering the string y$, $ ¢ alph(y). Its compact tree possesses
at most 2n nodes, its root being of degree at least 3. It possesses thus at most
2n — 1 arcs which after compaction give 2n — 2 arcs since the arc that is labeled
by $ and that starts from the initial state disappears. This gives the announced
bound. Finally, we can directly check that the automaton S.(a"~'b) possesses
exactly n states and 2n — 2 arcs. ]

The construction of S¢(y) can be performed from the tree 7.(y) or from
the automaton S(y) (see Exercises 5.15 and 5.16). However, for saving the
memory space during the construction, we rather use a direct construction. It
is the schema of this construction that we describe here.

The construction borrows elements from algorithms SUFFIX-TREE and
SurrFIx-AuTO. Thus, the arcs of the automaton are marked as solid or non-
solid. The created arcs to new leaves of the tree become arcs to the state /ast.
We use also the notions of slow find and fast find from the construction of
the suffix tree. It is on these two procedures that the changes are essential and
that we find the duplications of states and the redirections of arcs during the
construction of the suffix automaton.

During the execution of a slow find, the attempt to traverse a non-solid arc
leads to the cloning of its target, that is to say, to a duplication of it analogue to
the one that happens during the execution of the procedure EXTENSION in lines
12-22. We can note that some arcs can be redirected by this process.

The second important point in the adaptation of the algorithms of the previ-
ous sections focuses on the fast find procedure. The algorithm uses the definition
of a suffix target as the algorithm SUFFIX-TREE does. The difference happens
here during the creation of the suffix target of a newly created fork (see lines
8—11 in the procedure FAST-FIND). If the new state must be created by cutting
a solid arc, the same process applies. On the other hand, if the arc is non-solid,
in a first time, there is a redirection of the arc to the fork, with an update of
its label. This leaves undefined the suffix target and leads to an iteration of the
same process.

The phenomena that are just described occur in any online construction of
this type of automaton. Their taking into account is necessary for the correctness
of the algorithm of the sequential computation of Sc(y). They are present in the
construction of S.(ababbb) (see Figure 5.16) for which three steps are detailed
in Figure 5.18.

As a conclusion of this section, we state the result on the direct construction
of the compact suffix automaton. The description and the formal proof of the
algorithm are left to the reader.
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Figure 5.18. Three steps of the construction of Sc(ababbb). (a) The automaton just after the
insertion of the three longest suffixes of the string ababbb. The suffix link on the state 2 has
still to be defined. (b) The computation by fast find of the suffix link of the state 2 leads
to transform the arc (0, babbb, 1) in (0, b, 2). Meanwhile the suffix bbb has been inserted.
(c) The insertion of the next suffix, bb, is done by slow find from state 0. The arc (0, b, 2)
being non-solid, its target, state 2, is duplicated into 2" that possesses the same transitions
than 2. For ending the insertion of the suffix bb, it remains to cut the arc (2’, bb, 1) in order to
create state 3. Finally, the rest of the construction consists in determining the terminal states,
and we get the automaton of Figure 5.16.

Proposition 5.34

The computation of the compact suffix automaton Sc(y) can be realized in time
O(|y| x logcard A) ina space O(|y|).Inthe branching model, the computation
executes in time O(]y|). [

Notes

The notion of position tree is from Weiner [216] who presented a computation
algorithm of its compact version. The algorithm of Section 5.2 is from Mc-
Creight [184]. A strictly sequential version of the construction of the suffix tree
was described by Ukkonen [214].
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Apostolico in [93] describes the many applications of suffix trees, which are
also valid for suffix automata after possible adaptations.

Among the many variants of suffix tree representations, let us quote the use
of binary search trees by Irving and Love [162], or the notion of ternary search
tree by Bentley and Sedgewick [103] (see Exercise 4.4).

As far as space requirements are concerned, there exist succinct represen-
tation of trees in which the structure is encoded with a linear number of bits
without loosing much efficiency for searching a string. The reader can refer
to Munro, Raman, and Rao [189] for its adaptation to suffix trees. See also
Sadakane and Grossi [202] and references therein.

Kurtz [173] describes implementations of suffix trees that are tuned for
reducing the memory space usage.

In situation where suffix links are not realizable, Cole and Hariharan [115]
designed a randomized algorithm constructing a suffix tree in linear time with
high probability.

For questions related to formal languages, as the notions of syntactic con-
gruences and of minimal automata, we refer to the books of Berstel [73] and
of Pin [82].

The suffix automaton of a text is also known under the name of DAWG that
stands for Directed Acyclic Word Graph. Its linearity was discovered by Blumer
et al. (see [105]), who gave a linear-time construction (on a fixed alphabet).
The minimality of the structure as an automaton is from Crochemore [119]
who showed how to build with the same complexity the factor automaton of a
text (see Exercises 5.12, 5.13, and 5.14).

A compaction algorithm of the suffix automaton and a direct construction
algorithm of the compact suffix automaton were presented by Crochemore and
Vérin [130].

For the average analysis of the size of the different structures presented in
the chapter, we refer to the articles of Blumer, Ehrenfeucht, and Haussler [107]
and of Raffinot [198], that use methods described in the book of Sedgewick
and Flajolet [83].

When the alphabet is potentially infinite, the construction algorithms of the
suffix tree and of the suffix automaton are optimal since they imply a sorting on
the letters of the alphabet. On particular integer alphabets, Farach-Colton [134]
showed that the construction can be done in linear time. This result is also a
consequence of the linear-time construction of a suffix array (Section 4.5) that
further produces a suffix tree (see Exercise 5.4).

Besides, Allauzen, Crochemore, and Raffinot [88], introduced a reduced
structure, called “suffix oracle,” that has applications close to those of suffix
automata.
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Exercises

5.1 (Guess)

We consider the suffix tree built by the algorithm SUFFIX-TREE. Let (p, q)
be an arc of the tree and (i, £) = label(p, q) be its label. Does the equality
pos(yli ..i + € — 1]) = i always hold?

5.2 (Time)
Check that the execution of SUFFIX-TREE(a") (a € A) takes a time $2(n). Check
that the one of SUFFIX-TREE(Y) is done in time 2(n log n) when card alph(y) =

ly| = n.

5.3 (In particular)

How many nodes are there in the suffix tree of a de Bruijn string and in the one
of a Fibonacci string? Same question for their compact and noncompact suffix
automata.

5.4 (Array to tree)
Design an algorithm that transforms the suffix array of a string into its suffix
tree and that runs in linear time independently of the alphabet size.

5.5 (Common factor)

Give a computation algorithm of LCF(x, y) (x, y € A*), maximal length of
the common factors to x and y, knowing the tree 7.(x - ¢ - y), where ¢ € A and
c ¢ alph(x - y). What are the time and space complexities of the computation
(see another solution in Section 6.6)?

5.6 (Cubes)

Give a tight bound of the number of cubes of primitive strings that can occur
in a string of length n. Same question for squares. (Hint: use the suffix tree of
the string.)

5.7 (Merge)
Design an algorithm for merging two suffix trees, both compact, or both
noncompact. Same question for suffix automata.

5.8 (Several strings)

Describe a linear time and space algorithm (on a fixed alphabet) for the con-
struction of the suffix tree of a finite set of strings. Show that the strings can be
incorporated one after the other in the structure.
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5.9 (Compaction)

Describe a compact version of the digital search tree A(X) associated with
a finite set of strings X (see Exercise 4.4). Adapt the search, insertion, and
deletion operations to the new structure.

5.10 (Sparse suffixes)

Given two integers k and p,0 < k < p, and a string y, we consider the set X =
{u:u =g yand posy(u) = k mod p}}. Design a linear-time algorithm (on a
finite and fixed alphabet) that builds the minimal (deterministic) automaton
accepting X. (Hint: see Béal, Crochemore, and Fici [101].)

5.11 (Ternary)

Describe an implementation of suffix automata using the technique considered
for ternary search trees in Exercise 4.4. Design the corresponding algorithms
for building the structure and for searching it. (Hint: see Miyamoto, Inenaga,
Takeda, and Shinohara [186].)

5.12 (Factor automaton)

Let y be a string in which the last letter occurs nowhere else. Show that F(y),
the minimal deterministic automaton that recognizes the factors of y, possesses
the same states and the same arcs as S(y) (only the terminal states differ).

5.13 (Bounds)
Give tight bounds on the number of states and on the number of arcs of the
factor automaton F(y).

5.14 (Construction)
Design a sequential algorithm running in linear time and space (on a finite and
fixed alphabet) for the construction of the factor automaton F(y).

5.15 (Other)
Describe a construction algorithm of S.(y) from 7.(y).

5.16 (Again)
Describe a construction algorithm of S.(y) from S(y).

5.17 (Program)
Write the detailed code of the direct construction of the compact suffix automa-
ton S¢(y), informally described in Section 5.5.

Design an on-line construction of the automaton. (Hint: see Inenaga,
Hoshino, Shinohara, Takeda, Arikawa, Mauri, and Pavesi [161].)
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5.18 (Several strings, again)

Describe a linear time and space algorithm (on a fixed alphabet) for the con-
struction of the suffix automaton of a set finite of strings. (Hint: see Blumer,
Blumer, Haussler, McConnell, and Ehrenfeucht [106].)

5.19 (Bounded factors)

Let 7.(y, k, £) be the compact tree that accepts the factors of the string y that
have a length between k and ¢ (k, £ integers, 0 < k < £ < |y|). Describe a
construction algorithm of Z¢(y, k, £) that uses a memory space proportional to
the size of the tree (and not O(|y|)) and that executes in the same asymptotic
time as the construction of the suffix tree of y.
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Indexes

The techniques introduced in the two previous chapters find immediate appli-
cations for the realization of the index of a text. The utility of considering the
suffixes of a text for this kind of application comes from the obvious remark
that every factor of a string can be extended in a suffix of the text (see Fig-
ure 6.1). By storing efficiently the suffixes, we get a kind of direct access to all
the factors of the text or of a language, and this is certainly the main interest of
these techniques. From this property comes quite directly an implementation
of the notion of index on a text or on a family of texts, with efficient algorithms
for the basic operations (Section 6.2) such as the membership problem and the
computation of the positions of occurrences of a pattern. Section 6.3 gives a
solution under the form of a transducer. We deduce also quite directly solutions
for the detection of repetitions (Section 6.4) and for the computation of for-
bidden strings (Section 6.5). Section 6.6 presents an inverted application of the
previous techniques by using the index of a pattern in order to help searching
fro itself. This method is extended in a particularly efficient way to the search
for the conjugates (or rotations) of a string.

6.1 Implementing an index

The aim of an index is to provide efficient procedures for answering questions
related to the content of a fixed text. This text is denoted by y (y € A*) and
its length by n (n € N). An index on y can be considered as an abstract data
type whose basic set is the set of factors of y, Fact(y), and that possesses
operations giving access to information relative to these factors. The notion is
analogue to the notion of index of a book that refers to the text from selected
keywords. We rather consider what is called a generalized index in which all the
factors of the text are present. We are interested in the index of a single string,

219
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laababbabaabbaabab‘

baabbaabab‘

Figure 6.1. Every factor of a text is the prefix of a suffix of the text.

but the extension to a finite set of strings does not pose extra difficulties in
general.

We consider four main operations on the index of a text. They concern a string
x that we search for inside y: membership, position, number of occurrences, and
list of positions. This list is generally extended in real applications, according to
the nature of the data represented by y, in order to produce documentary search
systems. But the four mentioned operations constitute the technical basis from
which can be developed larger query systems.

We choose to present two main implementation methods that lead to effi-
cient if not optimal algorithms. The first method utilizes the suffix array of the
string y, the second relies on a data structure for representing the suffixes of
y. The choice of the structure produces variants of the second method. In this
section, we recall for each of these implementations the elements that must
be available for realizing the operations of the index and that are described
in Chapters 4 and 5. The operations themselves are considered in the next
section.

The technique of suffix array (Chapter 4) is the first considered method. It
focuses on a binary search in the set of suffixes of y. It provides a solution to the
interval problem, which is extended in a method for locating patterns. To get it,
it is necessary to sort the suffixes in lexicographic order and to compute their
corresponding LCP table. Though card Fact(y) is O(n?), sorting the suffixes
and computing LCP’s can be realized in time and space O(nlogn) or even
O(n) on bounded integer alphabets (see Sections 4.4 to 4.6).

The permutation of suffixes of y that provides their lexicographic order is a
table denoted by p and defined, forr =0, 1,...,n — 1, by

plrl=i
if and only if
y[i ..n — 1] is the rth smaller nonempty suffix of y

for the lexicographic ordering. In other words, r is the rank of the suffix
y[li..n —1] in L, sorted list of the nonempty suffixes of y. The search for
patterns inside y is based on the following remark: the suffixes of y starting
with a same string u are consecutive in the list L.
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The data structures for using the suffix array of the string y are made up of

¢ the string y itself, stored in a table,

e thetable p: {0, 1,...,n — 1} — {0, 1, ..., n — 1} that provides the indices
of the suffixes in the increasing lexicographic order of these strings,

e the table LCP: {0, 1, ...,2n} — {0, 1, ..., n — 1} that gives the maximal
length of the prefixes common to some suffixes, as indicated in Sections 4.3
and 4.6.

The computation of the tables p and LCP is presented in Sections 4.4 to 4.6.

The second method for the implementation of an index relies on the struc-
tures of suffix automata (Chapter 5). Thus, the suffix tree of y, 7c(y), provides
a basis for the realization of an index. Let us recall that the data structures
necessary for its utilization are composed of

¢ the string y itself stored in a table,

¢ an implementation of the automaton under the form of a transition matrix or
of a set of labeled successors for representing the transition function 8, the
access to the initial state, and a marking of the terminal states, for instance,

¢ the attribute s¢, defined on the states, that realizes the suffix link of the tree.

We note that the string must be stored in memory because the labeling of arcs
refers to it (see Section 5.2). The suffix link is only used for some applications,
it can, of course, be deleted when the implemented operations do not use it.

We can also use the suffix automaton of y, S(y), that produces in a natural
way an index on the factors of the text. The structure contains

¢ an implementation of the automaton as for the above tree,

¢ the attribute F that realizes the failure function defined on the states,

¢ the attribute L that indicates for each state the maximal length of the strings
that lead to this state.

For this automaton, it is not necessary to memorize the string y. It is contained
in the automaton as the label of the longest path starting from the initial state.
The attributes F' and L can be omitted if they are not useful for the considered
operations.

Finally, the compact version of the suffix automaton can be used in order to
save even more of the memory space necessary to store the structure. Its im-
plementation uses in a standard way the same elements as the suffix automaton
does (in a noncompact version) but with additionally the string y for the access
to labels of arcs, as for the suffix tree. We get a noticeable gain in storage space
when using this structure rather that the previous ones.
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In the section that follows, we examine several types of solutions for the
realization of the basic operations on the index.

6.2 Basic operations

In this section, we consider four operations relative to the factors of a text y: the
membership (to Fact(y)), the first position, the number of occurrences, and the
list of positions. The corresponding algorithms are presented after the global
description of these four operations.

The first operation on an index is the membership of a string x to the index,
that is to say the question to know whether x is a factor of y or not. This
question can be specified in two complementary ways whether we expect to
find an occurrence of x in y or not. If x does not occur in y, it is often interesting
in applications to compute the longest beginning of x that is a factor of y. This
is the type of usual answer necessary for the sequential search tools found for
instance in a text editor.

Problem of the membership to the index: given x € A*, find the longest
prefix of x that belongs to Fact(y).

In the contrary case (x =g, ¥), the methods produce without much
modification the position of an occurrence of x, and even the position of the
first or last occurrences of x in y.

Problem of the position: given x <, y, find the (left) position of its first
(respectively last) occurrence in y.

Knowing that x is in the index, another relevant information is the number of
times x occurs in y. This information can differently direct the further
searches.

Problem of the number of occurrences: given x <y, y, find how many
times x occurs in y.

Finally, with the same assumption than previously, a complete information on
the location of x in y is supplied by the list of positions of its occurrences.

Problem of the list of positions: given x <g, v, produce the list of positions
of the occurrences of x in y.

The suffix array of a string presented in Chapter 4 provides a simple and
elegant solution for the realization of the above operations. The suffix array
of y consists of the pair of tables p and LCP as recalled in the previous
section.
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Proposition 6.1
By means of the suffix array of y (pair of tables p and LCP) that occupies a
memory space O(|y|) we can compute the longest prefix u of a string x € A*
for which u =gy y in time O(|u| + log|y]).

When x =gt ¥, we can compute the position of the first occurrence of x in
y and its number of occurrences in time O(|x| + log|y|), and produce all the
positions of the occurrences in extra time proportional to their number.

Proof The algorithm can be obtained from the algorithm INTERVAL (Sec-
tion 4.6). Let (d, f) be the result of this algorithm applied to the sorted list
of suffixes of y (order provided by p) and using the table LCP. By con-
struction of the algorithm (problem of the interval and Proposition 4.5), if
d + 1 < f the string x possesses f —d — 1 occurrences in y; they are at po-
sitions p[d + 1], pl[d + 2], ..., p[f — 1]. On the other hand, if d + 1 = f, the
string x does not occur in y and we notice by a simple look at the proof of
Proposition 4.4 that the search time is O(|u| + log |y]).

To produce the positions p[d + 1], p[d + 2], ..., p[f — 1], it takes a time
proportional to their number, f — d — 1. This ends the proof. ]

We tackle then the solutions obtained by using the data structures of Chap-
ter 5. The memory space occupied by the trees or automata is a bit larger than
that necessary for the suffix array, although still O(]y|). It can also be noted
that the structures require sometimes to be enlarged to guarantee an optimal
execution of the algorithms. However, the running times of the operations are
different, and the structures allow other applications that are the subject of the
next sections. The solutions use the basic algorithms designed below.

Proposition 6.2

Whether it is by means of 7.(y), S(y), or Sc(y), the computation of the longest
prefix u of x that is factor of y (u =g ¥) can be realized in time O(|lu| X
logcard A) in a memory space O(|y)).

Proof By means of S(y), in order of determine the string u, it is sufficient
to follow a path of label x from the initial state of the automaton. We stop
the scan when a transition misses or when x is exhausted. This produces the
longest prefix of x that is also prefix of the label of a path from the initial
state, that is to say that occurs in y since all the factors of y are labels of
the considered paths. Overall, we perform thus |u| successful transitions and
possibly one unsuccessful transition (when u <p¢ x) at the end of the test. As
each transition requires a time O(logcard A) for an implementation in space
O(]y]) (Section 1.4), we get a global time O(Ju| x logcard A).
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The same process works with Z¢(y) and Sc(y). ]

When taking into account the representation of the compact structures, some
transitions are done by mere letter comparisons. This somehow speeds up the
execution of the considered operation even if this does not modify its asymptotic
bound.

Position

We examine now the operations for which it is assumed that x is a factor
of y. The membership test that can be realized separately as in the previous
proposition, can also be integrated to solutions to the other problems that we are
interested in here. The utilization of transducers, which extend suffix automata,
for this type of problem is tackled in the next section.

The computation of the position of the first occurrence of x in y, pos(x),
amounts to find its right position rpos(x) (see Section 5.3) since

pos(x) = rpos(x) — |x| + 1.

Moreover, this is also equivalent to computing the maximal length of the right
contexts of x in y,

le(x) = max({|z| : z € x~'Suff(y)},
since
pos(x) = |y| — le(x) — |x].

In a symmetrical way, the search for the position /pos(x) of the last occurrence
of x in y amounts to compute the minimal length sc(x) of its right contexts
since

Ipos(x) = |y| — sc(x) — |x].

To quickly answer to queries on the first or the last positions of factors of y,
the index structures alone are not sufficient, at least if we want to get optimal
running times. Therefore, we precompute two attributes on the states of the
automaton, which represent the functions /c and sc. We thus get the result that
follows.

Proposition 6.3

The automata 1.(y), S(y), and S.(y) can be processed in time O(|y|) so that
the first (or last) position in y of a string x < ¥, and also the number of
occurrences of x, can be computed in time O(|x| x logcard A) in memory
space O(]yl).
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Proof Letus denote by M the chosen automaton, by 4 its transition function,
by E its set of arcs (or edges), by gy its initial state, and by T the set of its
terminal states.

Let us first consider the computation of pos(x). The preprocessing of the
automaton focuses on the computation of an attribute LC (longest context)
defined on the states of M for representing the function Ic. For a state p and a
string u € A* with p = 8(qo, u), we set

LC[p] = lc(u),

this quantity is independent of the string u that leads to the state p (see
Lemma 5.10). This value is also the maximal length of the paths starting
from p and ending in a terminal state in the automaton S(y). For 7.(y) and
Sc(y) this remark still holds if the length of an arc is defined as the length of
its label.

The attribute LC satisfies the recurrence relation:

LCIp] = { 0 ‘ - if deg(].)) =0,

max{f + LC[q] : (p, v, q) € E and |v]| = £} otherwise.

The relation shows that the computation of the values LC|p], for all the states
of the automaton M, is done during a simple depth-first traversal of the graph
of the structure. As its number of nodes and its number of arcs are linear
(see Sections 5.2, 5.4, and 5.5) and as the access to the length of the label of
an arc can be done in constant time after the representation described in Sec-
tion 5.2, the computation of the attribute takes a time O(|y|) (independent of the
alphabet).

Once the computation of the attribute LC is performed, the computation
of pos(x) is done by the search for p = §(qo, x), then by the computation of
|y| — LC[p] — |x|. We get then the same asymptotic execution time as for the
membership problem, that is, O(]x| x logcard A). Let us note that if

end(qo, x) = 8(qo, xw)

with w nonempty, the value of pos(x) is then |y| — LC[p] — |xw|, which does
not modify the asymptotic evaluation of the execution time.

The computation of the position of the last occurrence of x in y solves in an
analogue way by considering the attribute SC (shortest context) defined by

SC[p] = sc(u),

with the above notation. The relation

SClp] = 0 ifpeT,
pi= min{f + SC|q] : (p,v,q) € E and |v| = £} otherwise,
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shows that the preprocessing of SC requires a time O(|y|), and that the com-
putation of Ipos(x) requires then the time O(|x| x logcard A).

Finally, for the access to the number of occurrences of x we precompute an
attribute NB defined by

NB[p] = card{z € A* : 8(p,z) € T},

that is precisely the searched quantity when p = end(qo, x). The linear pre-
computation can be deduced from the relation

I+ Z(ILU.,q)eE NBlgq] ifpeT,

NB[p] = { Z(p’v,q)eE NBI[q] otherwise.

Then, the number of occurrences of x is obtained by computing the state
p = end(qo, x) and accessing NB[p], which can be done in the same time as
for the above operations.

This ends the proof. ]

Number of factors

A similar argument to the last element of the previous proof allows an efficient
computation of the number of factors of y, that is to say of the size of Fact(y).
To do this we evaluate the quantity CS[ p], for all the states p of the automaton,
using the relation:

1 if deg(p) =0,
CSlpl = { 14 Y er(v] = 1 +CS[g])  otherwise.

If p = 8(qo, u) for a factor u of y, CS[p] is the number of factors of y starting
by u. This gives a linear computation of card Fact(y) = CS[qo], that is to
say in time O(|y|) independently of the alphabet A, the automaton being
given.

List of positions

Proposition 6.4

By means of either the tree T.(y), or the automaton Sc(y), the list L of positions
on y of the occurrences of a string x <gt y can be computed in time O(|x| X
log card A + k) in a memory space O(|y|), where k is the number of elements
of L.

Proof We consider the tree 7.(y) which we denote by ¢y the initial state. Let
us recall from Section 5.1 that a state g of the tree is a factor of y, and that, if
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it is terminal, it possesses an output that is the position of the suffix occurrence
of ¢ in y (we have in this case ¢ <y y and output[q] = pos(q) = |y| — |ql).
The positions of the occurrences of x in y are those of the suffixes prefixed
by x. Therefore, we get these positions by searching the terminal states of the
subtree rooted at p = end(qo, x) (see Section 5.2). The scan of this subtree
takes a time proportional to its size or also to its number of terminal nodes
since each nonterminal node possesses at least two children by definition of
the tree. Finally, the number of terminal nodes is precisely the number k of
elements of the list L.

To summarize, the computation of L requires the computation of p, then
the scan of the subtree. The first phase executes in time O(|x| x logcard A),
the second in time O (k), this gives the announced result for the utilization of
T(y).

An analogue argument holds for S.(y). From state p = end(qo, x), we per-
form a depth-first scan of the automaton while memorizing the length of the
current path (the length of an arc is the length of its label). A terminal state g to
which we access by a path of length £ corresponds to a suffix of length ¢ that is
thus at position | y| — £. This quantity is then the position of an occurrence of x
in y. The complete scan takes a time O (k) since it is equivalent to the scan of
the subtree of 7.(y) described above. We thus get the same result as with the
suffix tree. |

Let us note that the result on the computation of the lists of positions
is obtained without preprocessing of the automata. On the other hand, the
utilization of the (noncompact) suffix automaton of y requires a preprocessing
that consists in creating short-cuts for superimposing to it the structure of Sc(y)
if we wish to obtain a computation having the same complexity.

6.3 Transducer of positions

Some of the problems related to the locations of factors inside the string y can
be described by means of transducers, that is to say, automata in which the arcs
possess an output in addition to the output of terminal states. For example, the
function pos can be realized by the transducer of positions of y, denoted by
T (y). Figure 6.2 illustrates the transducer 7' (aabbabb).

The transducer 7'(y) is defined from S(y) by adding outputs to the arcs and
by changing the outputs associated with terminal states. The arcs of T'(y) are
of the form (p, (a, s), g) where p and ¢ are states, and (a, s) the label of the
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Figure 6.2. Transducer of positions T (aabbabb) that realizes in a sequential way the function
pos of y = aabbabb. Each arc is labeled by a pair (a, s), where a is the input of the arc and s
its output. When reading abb, the transducer produces the integer 1 (= 0 + 1 + 0) that is the
position of the first occurrence of abb in y. The target state having the output 3, we deduce
that abb is a suffix at position 4 (= 1 + 3) of y.

arc. The letter a € A is the input of the arc and the integer s € N is its output.
The path

(po, (ao, 50), p1), (p1, (a1, $1), p2), - - ., (Pk—1, (@k—1, Sk—1), Pk)

of the transducer has for input label the string apa; . ..ax—;, concatenation
of the inputs of the labels of the arcs of the path, and for output the sum
so+ 81+ -+ Sk

The transducer of positions T'(y) has for basis the automaton S(y). The
transformation of S(y) into T (y) is done as follows. When (p, a, ¢) is an arc
of S(y) it becomes the arc (p, (a, s), ¢) of T(y) with output

s = rpos(v) — rpos(u) — 1,

where u € p and v € g (or equivalently §(qg, ) = p and §(qo, v) = ¢q), value
that is also

LC[p] —LC[q] —1

with the notation LC (that stands for Longest Context) used in the proof of
Proposition 6.3. The output associated with a terminal state p is defined as
LC[p].

Proposition 6.5
Let v be the input label of a path from the initial state in the transducer T (y).
Then, the output label of the path is pos(v).
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Moreover, if the end of the path is a terminal state having output t, v is a
suffix of y and the position of this occurrence of v is pos(v) + t.

Proof We prove the statement by recurrence on the length of v. The seed of
the recurrence, for v = ¢, is immediate. Let us assume v = ua with u € A*
and a € A. The output label of the path of input label ua is r 4+ s where r and
s are respectively the output labels corresponding to the inputs u and a. By
recurrence hypothesis, we have r = pos(v). By definition of the labels in 7'(y),
we have

s = rpos(v) — rpos(u) — 1.
Thus the output associated with v is
pos(u) + rpos(v) — rpos(u) — 1
and since rpos(w) = pos(w) + |w| — 1,
pos(v) + v — Ju| — 1

which is pos(v) as expected. This ends the proof of the first part of the
statement.

If the end of the considered path is a terminal state, its output ¢ is, by
definition, LC[u] which is |y| — rpos(u) — 1 or also |y| — pos(u) — |u|. Thus
pos(u) +t = |y| — |u|, which is indeed the position of the suffix u as an-
nounced. ]

We have seen in the proof of Proposition 6.3 how to compute the attribute
LC that serves to the definition of the transducer 7 (y). We deduce from that
a computation of the outputs associated with the arcs and with the terminal
states of the transducer. As a result, the transformation is performed in linear
time.

Proposition 6.6
The computation of the transducer of positions T (y) from the suffix automaton
S(y) can be realized in linear time, O(]y|). [

The existence of the transducer of the positions described above shows that
the position of a factor of y can be computed sequentially as the factor is
read. The computation can even be done in real time when the transitions are
executed in constant time.
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6.4 Repetitions

In this section, we examine two problems concerning the repetitions of factors
inside the text y. There are two dual problems that can be solved efficiently by
the utilization of a suffix array or of a suffix automaton:

* compute a longest repeated factor of y,
* find a shortest factor of y that occurs only once in y.

We can also generalize the problem by searching factors that occur at least k
times in y, for a given integer k > 0.

Problem of the longest repetition: find a longest string possessing at least
two occurrences in y.

The suffix array of y being given (pair of tables p and LCP), a longest
repetition is also a string that is the longest prefix common to two distinct
suffixes. Two of these suffixes are then consecutive in the lexicographic order as
a consequence of Lemma 4.6. Recalling that LCP[ f] = |lcp(y[plf — 1]..n —
11, yIplf]1..n — 1])|,for O < f < n, the length of the longest repetition is thus

max{LCP[f]: f=1,2,...,n—1}.
Let r be this value and f an index for which LCP[ f] = r. We deduce

yiplf —1..plf —11+r—1=ylplf]..p[f1+r —1],

and that this string is a longest repetition in y.

Let us consider now the utilization of a suffix automaton, S(y) for instance.
If the table NB defined in the proof of Proposition 6.3 is available, the problem
of the longest repetition reduces to find a state p of S(y) that is the deepest in
the automaton, and for which NB[p] > 1. The label of the longest path from
the initial state to p is then a solution to the problem. Actually, the problem can
be solved without the help to the attribute NB in the following way. We simply
search a state, the deepest possible, that satisfies one of the two conditions:

* at least two arcs leave p,
* one arc leaves p and p is terminal.

The state p is then a fork and its search can be done by a simple traversal of the
automaton. Proceeding in this way, no preprocessing of S(y) is necessary and
we keep nevertheless a linear computation time. We can note that the running
time does not depend on the branching time in the automaton since no transition
is performed, the search only uses existing arcs.

The two above descriptions are summarized in the next proposition.
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Proposition 6.7
By means of the suffix array of y or of the automata 1.(y), S(y) or Sc(y), the
computation of a longest repeated factor of y can be realized in time O(|y|). m

The second problem dealt with, in this section, is the search for a marker.
Such a factor is called a marker because it marks a precise position on y.

Problem of the marker: find a shortest string occurring exactly once in y.

The utilization of the suffix automaton provides a solution to the problem
of the same kind as the search for a repetition. It consists in searching the
automaton for a state, the least deep possible, and that is the origin of a single
path to a terminal state. Again, a simple traversal of the automaton solves the
question, which gives the following result.

Proposition 6.8
By means of the suffix automaton S(y), the computation of a marker, a shortest
string occurring only once in y, can be realized in time and space O(|y|). m

6.5 Forbidden strings

The search for forbidden strings is complementary to the problems of the
previous section. The notion is used, in particular, in the description of some
text compression algorithms.

A string u € A* is said to be forbidden in the string y € A* if it is not a
factor of y. And the string u is said to be minimal forbidden if, in addition,
all its proper factors are factors of y. In other words, the minimality is relative
to the ordering relation <. This notion is actually more relevant than the
previous one. We denote by /(y) the set of minimal forbidden strings in y.

We can note that, if u is a string of length k,

u€l(y)
if and only if
ull..k — 1] Zface y, u[0. .k — 2] Zpace ¥, and u Zpace ¥,
which translates into
1(y) = (A - Fact(y)) N (Fact(y) - A) N (A% \ Fact(y)).

The identity shows, in particular, that the language I(y) is finite. It is thus
possible to represent /(y) by a (finite) trie in which only the external nodes are
terminal nodes because of the minimality condition of the strings.
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Figure 6.3. Trie of the minimal forbidden strings of the string aabbabb on the alphabet
{a, b, c} as it is built by algorithm FORBIDDEN. The states that are not terminal are those of
the automaton S(aabbabb) of Figure 5.14. We note that states 3 and 4 and the arcs that enter
them can be deleted. The string babba recognized by the trie is forbidden because it does not
occur in aabbabb, and it is minimal because babb and abba are factors of aabbabb.

The algorithm FORBIDDEN, whose code is given below, builds the trie ac-
cepting I(y) from the automaton S(y).

FORBIDDEN(S(Y))
1 M < NEW-AUTOMATON()

2 L < EMPTY-QUEUE()
3 ENQUEUE(L, (initial[S(y)], initiallM]))
4 while not QUEUE-IS-EMPTY(L) do
5 (p, p') < DEQUEUED(L)
6 for each letter a € A do
7 if TARGET(p, a) = NIL and
(p = initial[S(y)] or TARGET(F|[p], a) # NIL) then
8 q' < NEW-STATE()
9 terminal[q'] < TRUE
10 Succ[p’] < Succ[p’1U {(a, q")}
11 elseif TARGET(p, a) # NIL
and TARGET(p, a) not yet reached then
12 q' < NEW-STATE()
13 Succ[p’] < Succ[p’1U {(a, q")}
14 ENQUEUE(L, (TARGET(p, a), q'))
15 return M

In the algorithm, the queue L is used to traverse the automaton S(y) in a width-
first manner. Figure 6.3 presents the example of the trie of strings forbidden in
the string aabbabb that is obtained from the automaton of Figure 5.14.
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Proposition 6.9

For y € A*, the algorithm FORBIDDEN produces, from the automaton S(y),
a trie that accepts the language 1(y). The execution can be realized in time
O(ly| x logcard A).

Proof We note that the arcs created in line 13 duplicate the arcs of the
spanning tree of the shortest paths of the graph of S(y), since the traversal of
the automaton is performed in increasing order of levels (the queue L is used
to this aim). The other arcs are created in line 10 and are of the form (p’, a, ¢’)
with ¢’ € T’, denoting by T’ the set of terminal states of M. Let us denote
by &’ the transition function associated with the arcs of M computed by the
algorithm. By construction, the string u for which &' (initial{M], u) = p’ is the
shortest string that leads to the state p = §(initial[S(y)], u) in S(y).

We start by showing that every string recognized by the trie produced by
the algorithm is a minimal forbidden string. Let ua be such a string that cannot
be the empty string (v € A*, a € A). By assumption, the arc (p/, a, ¢’) has
been created in line 10 and ¢’ € T'. If u = ¢, we have p’ = initial[M] and we
note that, by construction, a ¢ alph(y) thus ua is indeed minimal forbidden. If
u # &, let us denote it by bv with b € A and v € A*. We have

s = 8(initial[S(y)], v)

and s # p because |v| < |u| and, by construction, u is the shortest string
that satisfies p = 8(initial[M], u). Thus F[p] = s, by definition of the suffix
link. Then, again by construction, §(s, a) is defined, which implies va <y,
y. The string ua = bva is thus minimal forbidden, since bv, va < ¥y and
ua Lpact y-

Conversely, we show that every forbidden string is recognized by the trie
built by the algorithm. Let ua be such a string that cannot be the empty
string (u € Fact(y), a € A). If u = ¢, the letter a does not occur in y, and
thus S8(initial[S(y)], a) is not defined. The condition in line 7 is satisfied
and has for effect to create an arc that leads to the recognition of the string
ua by the automaton M. If u # ¢, let us write it bv with b € A and v € A*.
Let

p = 8(initial[S(y)], u).
AS U <guif # and va Zper y While ua Zgoer y, if we let

s = 8(initial[S(y)], v),
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we have necessarily p # s and thus s = F[p] by definition of the suffix link.
The condition in line 7 is thus still satisfied in this case and has the same effect
as above. As a conclusion, ua is recognized by the trie created by the algorithm,
which ends the second part and the proof. ]

We note that y € {a, b}* possesses at most |y| minimal forbidden strings
(essentially because for every prefix za of y, there exists at most one minimal
forbidden string of the form ub with u < z and a # b). A noticeable and
unexpected consequence of the existence of the trie of forbidden strings, given
by the previous construction, is a bound on the number of minimal forbidden
strings of a string on any alphabet. If the alphabet is reduced to two letters,
the bound is |y| + 1 essentially because forbidden strings are associated with
positions on y.

Proposition 6.10

Astringy € A* of length|y| > 2 possesses no more thancard A + (2|y| — 3) x
(card alph(y) — 1) minimal forbidden strings. It possesses card A of them if
Iyl < 2.

Proof After the previous proposition, the number of minimal forbidden
strings in y is equal to the number of terminal states of the trie recognizing
1(y), which is also the number of incoming arcs in these states.

There are exactly card A — « such outgoing arcs from the initial state, by
denoting o = card alph(y). There are at most « outgoing arcs from the state
corresponding to the unique state of S(y) that has no successor. From the other
states there exit at most o« — 1 arcs. Since, for |y| > 2, S(y) possesses at most
2|y| — 1 states (Proposition 5.22), we get

cardI(y) < (card A —a) + o + 2|y| —3) x (¢ — 1),
thus
card I(y) <card A + (2|y| —3) x (¢ — 1),

as announced.
Finally, we have I(¢) = A and, for a € A, I(a) = (A \ {a}) U {aa}. Thus
card I(y) = card A when |y| < 2. [

6.6 Search machine

A suffix automaton can be used as a search machine for locating occurrences
of patterns. We consider, in this section, the automaton S(x) in order to search
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for x in a string y. The other structures, the compact tree 7.(x) and the compact
automaton Sc(x), can be used as well.

The algorithm relies on the consideration of a transducer represented by
a failure function (Section 1.4). The transducer computes sequentially the
lengths ¢; defined below. It is based on the automaton S(x), and the failure
function is nothing else but the suffix link f defined on the states of the
automaton. The searching method works as described in Section 1.4 and
used in the string searching algorithms of Sections 2.3 and 2.6. The
search is executed sequentially along the string y. The adaptation and the anal-
ysis of the algorithm to the tree 7.(x) are not totally immediate since the suffix
link of this structure is not a failure function with the precise sense of this
notion.

The advantage that brings the algorithm on the algorithms of Section 2.6
resides in a reduced processing time for each letter of y and a more direct
analysis of the complexity of the process. The price for this improvement is a
more important need of memory space used to store the automaton instead of
a simple table.

Lengths of the common factors

The search for the string x is based on a computation of the lengths of factors
of x occurring at every position of y. More accurately, the algorithm computes,
at every position i on y, the length

£; = max{|u| : u € Fact(x) N Suff(y[0..i])}

of the longest factor of x ending at this position. The detection of the occurrences
of x follows then the remark:

X occurs at positioni — |x| 4+ liny
if and only if

6 = |xI.

The algorithm that computes the lengths £o, €1, ..., £}, is given below. It
uses the attributes F and L defined on the states of the automaton (Section 5.4).
The attribute F is used to reset the current length of the recognized factor, after
the computation of a suffix target (line 8). The correctness of this instruction is
a consequence of Lemma 5.15.
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i o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
yli] a a a b b b a b b a a b b a b b b
£ 1 2 2 3 4 2 3 4 5 4 2 3 4 5 6 7 2
pi 1 2 2 3 4 45 6 7 5 2 3 4 5 6 7 47

Figure 6.4. With the automaton S(aabbabb) (refer to Figure 5.14), the algorithm Fact-
LENGTHS determines the common factors between aabbabb and y. Values ¢; and p; are the
respective values, relative to position 7, of the variables ¢ and p of the algorithm. At position
8 for instance, we have ¢g = 5, which indicates that the longest factor of aabbabb ending
there is of length 5; it is bbabb; the current state is 7. We detect an occurrence of the pattern
when ¢; = 7 = |aabbabb], as in position 15.

FACT-LENGTHS(S(x), v, n)
1 (&, p) < (0, initial[S(x)])
2 fori < Oton—1do
3 if TARGET(p, y[i]) # NIL then

4 £, p) < (£ + 1, TARGET(p, y[i]))

5 else do p <« F[p]

6 while p = NIL and TARGET(p, y[i]) = NIL
7 if p # NIL then

8 (¢, p) < (LIp] + 1, TARGET(p, y[i]))
9 else (¢, p) < (0, initial[S(x)])
10 output £

A simulation of the algorithm is shown in Figure 6.4.

Theorem 6.11
The algorithm FACT-LENGTHS applied to the automaton S(x) and to the string
vy (x,y € A*) produces the lengths £y, {1, . . ., Ly-1.

It performs less than 2|y| transitions in S(x) and executes in time O(]y| X
log card A) in space O(|x|).

Proof The correctness of the algorithm is proved by recurrence on the length
of the prefixes of y. We show more exactly that the equalities

=1
and
p = 8(initiallS(x)], y[i — €+ 1..i])

are invariants of the for loop, by letting § be the transition function of S(x).
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Let i > 0. The prefix already processed is of length i and the current letter
is y[i]. We assume that the condition is satisfied for i — 1. Thus, u = y[i —
£..i — 1] is the longest factor of x ending at position i — 1.

Let w be the suffix of y[0..i] of length ¢;. Let us first assume w # ¢&; thus
w can be written v - y[i] for v € A*. We note that v cannot be longer than u
since this would contradict the definition of u. Therefore v is a suffix of u.

If v=u, 6(p, y[i]) is defined and provides the next value of p. More-
over, {; = £ + 1. These two points correspond to the update of the pair (¢, p)
performed in line 4, which shows that the condition is satisfied for i in this
situation.

When v < u, we consider the largest integer k, k > 0, for which v <
s, (1) where s, is the suffix function relatively to x (Section 5.3). Lemma 5.15
has for consequence that v = s,%(u) and that the length of this string is /g, (q)
where g = 8(initial[S(x)], v). The new value of p is thus 8(g, y[i]), and the
new value of £ is Ig.(q) + 1. This is the result of the instruction in line 8
because F' and L implement respectively the suffix function and the function of
length of the automaton, and after Proposition 5.26 that makes the link with
the function s,.

When w = ¢, this means that the letter y[i] ¢ alph(x). We should thus reset
the pair (¢, p), which is done in line 9.

Finally, we note that the proof holds also for the processing of the first letter
of y, this ends the proof of the invariance of the condition which proves the
correctness of the algorithm.

For the complexity of the algorithm, we note that each computation of
transition, successful or unsuccessful, leads to an incrementation of i or to
a strict increasing of the value of i — ¢. As each of these two expressions
varies from O to |y|, we deduced that the number of transitions performed by
the algorithm is not larger than 2|y|. Moreover, as the execution time of the
transitions is representative of the total execution time, this one is O(]y| x
logcard A).

The memory space required for running the algorithm is principally used
for the automaton S(x) that has a size O(|x|) after Theorem 5.25. This gives
the last stated result and ends the proof. ]

The algorithm FACT-LENGTHS allows, for instance, an efficient computation
of LCF(x, y), the maximal length of the common factors to strings x and y.
This quantity occurs, for instance, in the definition of the distance, known as
factor distance:

d(x,y) = |x| + |y| = 2LCF(x, y).
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Corollary 6.12

The computation of the longest common factor to two strings x and y such that
|x] < |y| can be realized in time O((|x| + |y|) x logcard alph(x)) in a space
O(|x|), or in time O(|x| + |y|) in a space O(|x| x card A).

Proof We perform the computation in two steps. The first step produces S(x),
the suffix automaton of x. In the second step, we execute the operation FACT-
LENGTHS on S(x) and y memorizing during the computation the largest value
of the variable ¢ and the corresponding position on y. The execution provides
thus a longest common factor between x and y, after the previous theorem. Its
(left) position is deduced from its length and its right position.

The complexity of the computation results from the computation of the
automaton S(x) (Theorems 5.29 and 5.30) and from the computation of the
lengths (Theorem 6.11), noting for this latter execution that, if the automaton is
implemented by a transition matrix, the running time is O(|x| 4 |y|) in a space
O(]x| x card A). [ ]

Optimization of the suffix link

When we want to compute the delay of the algorithm FACT-LENGTHS that works
in a sequential way, we quickly figure out that it is possible to modify the suffix
function in order to reduce this delay. We follow a method close to the method
applied in Section 2.3.

The optimization is based on the sets of letters, labels of the outgoing arcs
of a state. We define, for p state of S(x), the set

Next(p) = {a : a € A and §(p, a) is defined}.

Then, the new suffix link F” is defined, for a state p of S(x), by the relation:

Flp] = {F[p] if Next(p) C Next(F[p]),
F’[F[p]]l otherwise, if this value is defined.
The relation can leave F’ [ p] undefined (in which case we can give to it the value
NIL). The idea of this definition is similar to what is done for the optimization
realized on the failure function of the dictionary automaton of a single string
(Section 2.3).
We note that in the automaton S(x) we always have

Next(p) € Next(F|[p]).

We can then reformulate the definition of F’ in

F[p] if deg(p) # deg(F[p]),

Fipl= {F’ [F[p]] otherwise, if this value is defined.



6.7 Searching for conjugates 239

The computation of F’ can thus be realized in linear time by a simple consid-
eration of the outgoing degrees (deg) of the states of the automaton.

The optimization of the suffix link leads to a reduction of the delay of
the algorithm FACT-LENGTHS. The delay can be evaluated by the number of
executions of the instruction in line 5. We get the next result that shows that
the algorithm processes the letters of y in a time independent of the length of
x and even in real time when the alphabet is fixed.

Proposition 6.13
For the algorithm FACT-LENGTHS using the suffix link F’, instead of F, the
processing of a letter of y takes a time O(card alph(x)).

Proof The result is an immediate consequence of the inclusions
Next(p) C Next(F'[p]) C A

for each state p for which F’[p] is defined. [

6.7 Searching for conjugates

The sequence of the lengths £y, £1, ..., £}, of the previous section is a very
rich information on the resemblances between the strings x and y. It can be
exploited in various ways by string comparison algorithms.

We are interested here in the search for a conjugate of a string inside a text.
The solution presented in this section is another consequence of the computation
of the lengths of the factors common to two strings. We recall that a conjugate
of the string x is a string of the form v - u where u and v satisfy x = u - v.

Problem of searching for a conjugate: let x € A*. Find all the occurrences
of conjugates of x that occur in a string y.

A first solution consists in applying the search algorithm for a finite set of
strings (Section 2.3) after having built the dictionary of conjugates of x. The
search time is then proportional to |y| (depending also on the branching time),
but the dictionary can have a quadratic size, O(|x|?), as can be the size of the
suffix trie of x.

The solution based on the utilization of a suffix automaton does not have
this drawback while conserving an equivalent execution time. The technique
derives from the computation of the lengths of the previous section. We consider
the suffix automaton of the string x2, noting that every conjugate of x is factor
of x2. We could even consider the string x - wA~! where w is the primitive
root of x, but that does not change the following statement.
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Proposition 6.14
Let x,y € A*. The search for the conjugates of x in y can be performed in
time O(]y| x logcard A) within space O(|x]).

Proof We consider a variant of the algorithm FACT-LENGTHS that produces
the positions of the occurrences of factors having a length not smaller than
a given integer k. The transformation is immediate since at each step of the
algorithm the length of the current factor is memorized in the variable ¢.

The modified algorithm is applied to the automaton S(x?) and to the string y
with k = |x| for parameter. The algorithm determines thus the factors of length
|x| of x? that occur in y. The conclusion follows by noting that the set of factors
of length |x| of x? is exactly the set of conjugates of x. ]

Notes

The notion of index is very useful in information retrieval. We refer to the book
of Frakes and Baeza-Yates [58] or to the book of Baeza-Yates and Ribeiro-
Neto [56] in order to initiate to this subject, or also to the book of Salton [65].

The individual indexing systems or the search robots on the Web often use
more simple techniques such as the elaboration of lexicons containing manually
selected strings, rare strings, or g-grams (factors of length ¢g) with g relatively
small.

Most of the subjects treated in this chapter are classical. The book of Gusfield
[6] contains a long list of problems whose algorithmic solutions rely on the
utilization of an index structure.

The notion of repetition considered in Section 6.4 is close to the notion of
“special factor”: such a factor can be extended in at least two different ways in
the text. The special factors occur in combinatorial questions on strings.

The forbidden strings of Section 6.5 are used in the text compression algo-
rithm DCA by Crochemore, Mignosi, Restivo, and Salemi [127].

The utilization of the suffix automaton as a search machine is from
Crochemore [120]. The use of the suffix tree produces an immediate but less
efficient solution (see Exercise 6.9).

For the implementation of index structures in external memory, we refer to
Ferragina and Grossi [136].

Combining indexing and text compression, Grossi and Vitter [147]
designed a text index based upon compressed representations of suffix arrays
and suffix trees. For any constant ¢, 0 < ¢ < 1, their data structure achieves
O(m/10og g4 1 + 108,44 1) search time and uses at most '+ oM)n
log card A bits of storage.
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In the same vein, Ferragina and Manzini developed a compressed full-
text index data structure called FM-Index based on the methods described
in the previous sections as well as on text compression techniques (see for
example [137] and references therein).

Exercises

6.1 (Several occurrences)
Let k be an integer, k > 0. Implement an algorithm, based on the suffix array
of y € A*, that determines the factors occurring at least k times in y.

6.2 (Idem)
Let k be an integer, kK > 0. Implement an algorithm, based on a suffix automaton
of y € A*, that determines the factors occurring at least k times in y.

6.3 (Overlap free)

For y € A*, write an algorithm for computing the maximal length of factors
of y that possess two nonoverlapping occurrences (that is to say, if u is a such
factor, it occurs in y at two positions, i and j, such that i + |u| < j).

6.4 (Marker)
Design an algorithm for computing a marker for y € A* and based on the suffix
array of y.

6.5 (Forbidden code)
Show that 1(y), y € A*, is a code (see Exercise 1.10).

6.6 (Avoid)

We say that a language M C A* avoids a string u € A* if u is not a factor of
any string of M. Let L be the language that avoids all the strings of a finite
set I € A*. Show that L is recognized by an automaton. Give a construction
algorithm of an automaton that accepts L from the trie of the strings of /. (Hint:
follow the computation of the failure function given in Section 2.3.)

6.7 (Factor automaton)

Design an algorithm for the construction of the automaton F(y) (determinis-
tic and minimal automaton that recognizes the factors of y) from the trie of
forbidden strings I(y). (Hint: see Crochemore, Mignosi, and Restivo [126].)

6.8 (Delay)
Give a tight bound of the delay of the algorithm FACT-LENGTHS using the
nonoptimized suffix link F on the suffix automaton.
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6.9 (Length of the factors)

Describe an algorithm, based on the utilization of the suffix tree, that computes
the lengths of the factors common to two strings as done by the algorithm FACT-
LENGTHS of Section 6.6. Analyze the computation time and the delay of this
algorithm. Indicate how to optimize the suffix link and analyze the complexity
of the algorithm using this new link.

6.10 (Distance)
Show that the function d introduced in Section 6.6 is a distance on A* (the
notion of distance on strings is defined in Section 7.1).

6.11 (Document mining)

Consider a set of d documents (texts), yo, ¥1, - - - , Ya—1 on a fixed finite alphabet.
The aim of the problem is to answer efficiently queries of the form: list the
documents (their set of indices) containing a given string x.

Show that each query can be answered in time O(|x| + doc), where doc is
the size of the set of indices, output of the query, after preprocessing the texts
in time and space O(|yol + [y1| + - -+ + [ya-1D.

Adapt your method for listing all documents that contain at least k occur-
rences of the pattern x.

Adapt your method for listing all documents that contain two occurrences of
x at positions i and j for which |j — i| < k. (Hint: store the texts in a common
suffix tree and use colored-range queries data structures on the list of leaves of
the tree, see Muthukrishnan [190].)

6.12 (Large dictionary)
Give an infinite family of strings for which each string possesses a dictionary
automaton of its conjugates that is of quadratic size in the length of the string.

6.13 (Conjugate)

Design an algorithm for locating the conjugates of x in y (with x, y € A¥),
given the tree 7o(x - x - ¢ - y), where ¢ € A and ¢ ¢ alph(x - y). What are the
time and space complexities of the computation?



7

Alignments

Alignments constitute one of the processes commonly used to compare strings.
They allow to visualize the resemblance between strings. This chapter deals
with several methods that perform the comparison of two strings in this sense.
The extension to comparison methods of more than two strings is delicate, leads
to algorithms whose execution time is at least exponential, and is not treated
here.

Alignments are based on notions of distance or of similarity between strings.
The computations are usually realized by dynamic programming. A typical ex-
ample used for the design of efficient methods is the computation of the longest
subsequence common to two strings. It shows the algorithmic techniques that
are to implement in order to obtain an efficient computation and to extend pos-
sibly to general alignments. In particular, the reduction of the memory space
obtained by one of the algorithms is a strategy that can often be applied in the
solutions to close problems.

After the presentation of some distances defined on strings, notions of align-
ment and of edit graph, Section 7.2 describes the basic techniques for the
computation of the edit (or alignment) distance and the production of the asso-
ciated alignments. The chosen method highlights a global resemblance between
two strings using assumptions that simplify the computation. The method is
extended in Section 7.4 to a close problem. The search for local similarities
between two strings is examined in Section 7.5.

The possible reduction of the memory space required by the computations
is presented in Section 7.3 concerning the computation of the longest common
subsequences. Finally, Section 7.6 presents a method that is at the basis of
one of the most commonly used software (Blast) for comparing biological
sequences and searching data banks of sequences. This approximate method
contains heuristics that speed up the execution on real data, since exact methods
are often too slow for searching analogies in large data banks.

243
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7.1 Comparison of strings

In this section, we introduce the notions of distance on strings, of edit operations,
of alignment, and of edit graph.

Edit distance and edit operation

We are interested in the notion of resemblance or of similarity between two
strings x and y of respective lengths m and n, or in a dual way, to the distance
between these two strings.

We say that a function d: A* x A* — R is a distance on A* if the four
following properties are satisfied for every u, v € A*:

Positivity: d(u, v) > 0.

Separation: d(u, v) = 0 if and only if u = v.

Symmetry: d(u, v) = d(v, u).

Triangle inequality: d(u, v) < d(u, w) + d(w, v) for every w € A*.

Several distances on strings can be considered following factorizations of
strings. These are the prefix, suffix, and factor distances. Their interest is
essentially theoretical.

Prefix distance: defined, for every u, v € A*, by
dprep(u, v) = |u| + |v] — 2 x |lep(u, v)|,

where Icp(u, v) is the longest prefix common to « and v.
Suffix distance: distance defined symmetrically to the prefix distance, for
every u, v € A*, by

Aoy (u, v) = lu| + v — 2 x |lesuff (u, v)|,

where Ilcsuff (u, v) is the longest suffix common to u and v.
Factor distance: distance defined in a way analogue to the two previous
distances (see also Section 6.6), for every u, v € A*, by

dface(u, v) = lu| + |v| =2 X LCF(u, v),
where LCF(u, v) is the maximal length of factors common to # and v.

The Hamming distance provides a simple although not always relevant
mean for comparing two strings. It is defined for two strings of same length as
the number of positions in which the two strings possess different letters (see
also Chapter 8).
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Operation Resulting string Cost

replace A by A ACGA 0
replace C by T ATGA 1
replace G by G ATG A 0
insert C ATGCA 1
insert T ATGCT A 1

0

replace A by A ATGCTA

Figure 7.1. Notion of edit distance. Sequence of elementary operations for changing string
ACGA into string ATGCTA. If, for all letters a,b € A, we have the costs Sub(a,a) =0,
Sub(a, b) =1 when a # b, and Del(a) = Ins(a) = 1, the total cost of the sequence of edit
operationsis 0 + 1 + 0+ 1 + 1 4+ 0 = 3. We easily check that we cannot do better with such
costs. In other words, the edit distance between the strings, Lev(ACGA, ATGCTA), is equal to 3.

The distances that are dealt with in the rest of the chapter are defined from
operations that transform x into y. Three types of elementary operations are
considered. They are called the edit operations:

* substitution for a letter of x at a given position by a letter of y,
¢ deletion of a letter of x at a given position,
* insertion of a letter of y in x at a given position.

A cost (having a positive integer value) is associated with each of the
operations. For a, b € A, we denote by

* Sub(a, b) the cost of substituting the letter b for the letter a,
* Del(a) the cost of deleting the letter a,
¢ Ins(b) the cost of inserting the letter b.

We implicitly assume that these costs are independent of the positions at which
the operations are realized. A different assumption is examined in Section 7.4.
From the elementary costs, we set

Lev(x,y) = min{costof o : 0 € Xy ,},

where X, , is the set of sequences of elementary edit operations that transform
x into y, and the cost of an element o € X, , is the sum of the costs of the
edit operations of the sequence o . In the rest of the chapter, we assume that the
conditions stated in the proposition that follows are satisfied. The function Lev
is then a distance on A*, it is called the edit distance or alignment distance.
Figure 7.1 illustrates the notions that have just been introduced.

The Hamming distance mentioned above is a particular case of edit distance
for which only the operation of substitution is considered. This amounts to set
Del(a) = Ins(a) = 400, for each letter a of the alphabet, recalling that for this
distance, the two strings are assumed to be of the same length.
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Proposition 7.1
The function Lev is a distance on A* if and only if Sub is a distance on A and
Del(a) = Ins(a) > 0 for everya € A.

Proof =>:we assume that Lev is a distance and show the assumptions on the
elementary operations. As Lev(a, b) = Sub(a, b) for a, b € A, we notice that
Sub satisfies the conditions for being a distance on the alphabet. And, from the
factthat Del(a) = Lev(a, ¢) = Lev(e, a) = Ins(a), we get Del(a) = Ins(a) > 0,
for a € A, which shows the direct implication.

«: we show that the four properties of positivity, separation, symmetry, and
triangle inequality are satisfied with the assumptions made on the elementary
operations.

Positivity. The elementary costs of the operations of substitution, deletion,
and insertion being all nonnegative, the cost of every sequence of edit operations
is nonnegative. It follows that Lev(u, v) is itself nonnegative.

Separation. It is clear that if u = v, then Lev(u, v) = 0, the substitution of
a letter by itself having a null cost since Sub is a distance on A. Conversely,
if Lev(u, v) = 0, then u = v, since the only edit operation of null cost is the
substitution of a letter by itself.

Symmetry. As Sub is symmetrical and the costs of deletion and of insertion of
any given letter are identical, the function Lev is also symmetrical (the sequence
of minimal cost of the operations that transform v into « is the sequence obtained
from the sequence of minimal cost of the operations that transform u into v by
reversing it and exchanging operations of deletion by insertion.

Triangle inequality. By contradiction, assume the existence of w € A* such
that Lev(u, w) 4+ Lev(w, v) < Lev(u, v). Then the sequence obtained by con-
catenating the two sequences of minimal cost of edit operations transforming u
into w and w into v, in this order, has a cost strictly less than the cost of every
sequence of operations transforming u into v, which contradicts the definition
of Lev(u, v).

This ends the converse part and the proof. ]

The problem of computing Lev(x, y) consists in determining a sequence of
edit operations for transforming x into y that minimizes the total cost of the used
operations. Computing the resemblance between x and y amounts generally
also to maximize some notion of similarity between these two strings. Any
solution, that is not necessarily unique, can be stated as a sequence of elementary
operations of substitution, deletion, and insertion. It can also be represented in
a similar way under the form of an alignment.
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Operation Aligned pair Cost

replace A by A (A, A) 0
replace C by T (C,T) 1
replace G by G (G, G) 0
insert C (-, 0) 1
insert T -, 7T) 1

0

replace A by A (A, B)

Figure 7.2. Example of Figure 7.1 followed. The aligned pairs are indicated above. The
corresponding alignment is:

A C G - - A

AT G C T A

This alignment is optimal since its cost,0 + 1 4+ 0+ 1 4+ 1 + 0 = 3, is the edit distance
between the two strings.

Alignments

An alignment between two strings x, y € A*, whose respective lengths are
m and n, is a way to visualize their similarities. An illustration is given in
Figure 7.2. Formally an alignment between x and y is a string z on the alphabet
of pairs of letters, more accurately on

(AU {eh) x (AU {eD \ {(e, &)},

whose projection on the first component is x and the projection on the second
component is y. Thus, if z is an alignment of length p between x and y, we have

z = (Xo, Yo)(X1, Y1) ... (Xp—1, Yp—1)s
X = )_CQ)_Cl .. .)_Cp_l,
Yy =¥oyi-.-¥p-1,
withx; € AU{e}and y € AU{e} fori =0, 1,..., p — 1. An alignment
(%o, o)(X1, ¥ - .. (Xp—1, Yp—1)

of length p is also denoted by

GGG

()'co ¥o... fcp1>
Yo Vio-.o Yp-i

or by
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An aligned pair of type (a, b) with a,b € A denotes the substitution of the
letter b for the letter a. An aligned pair of type (a, €) with a € A denotes the
deletion of the letter a. Finally, an aligned pair of type (¢, b) with b € A denotes
the insertion of the letter b. In the alignments or the aligned pairs, the symbol
“=” is often substituted for the symbol ¢, it is called a hole.

We define the cost of an aligned pair by

cost(a, b) = Sub(a, b),
cost(a, &) = Del(a),
cost(e, b) = Ins(b),

for a, b € A. The cost of an alignment is then defined as the sum of the costs
associated with each of its aligned pairs.

The number of alignments between two strings is exponential. The following
proposition specifies this quantity for a particular type of alignments and gives
thus a lower bound on the total number of alignments.

Proposition 7.2
Let x, y € A of respective lengths m and n with m < n. The number of align-
ments between x and y that contain no consecutive deletions of letters of x is

e

Proof We can check that each alignment of the considered type is uniquely
characterized by the places of the substitutions at the n positions on y and
by the ones of the deletions between the letters of y. There are exactly n + 1
places of this second category counting one possible deletion before y[0] and
one after y[n — 1].

The alignment is thus characterized by the choice of the m substitutions or
deletions at the 2n 4 1 possible places, this gives the announced result. ]

Edit graph

An alignment translates in terms of graph. For this, we introduce the edit graph
G(x,y) of two strings x, y € A* of respective lengths m and n as follows.
Figure 7.3 illustrates the notion.

We denote by Q the set of vertices of G(x, y) and F its set of arcs. Arcs
are labeled by the function label, whose values are aligned pairs, and valued
by the cost of these pairs.
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Figure 7.3. Sequel of the example of Figures 7.1 and 7.2. We show here the edit graph
G(ACGA, ATGCTA) without the costs. Every path from vertex (—1, —1) to vertex (3, 5) cor-
responds to an alignment between ACGA and ATGCTA. The path in gray corresponds to the
optimal alignment of Figure 7.2.

The set Q of vertices is
0={-1,0,....m—1} x {=1,0,....,n— 1},
the set F of arcs is
F={(~1j-1.Gj):Gj)eQandi#—1land j# —1)
UG —1,/),G j):0G, Jj)€ Qandi # —1}
UG, J =1, @G )G j)e Qand j # —1},
and the function
label: F — (AU {e}) x (AU {eD)\ {(&, &)}
is defined by
label((i — 1, j — 1), (@, j)) = (x[i], y[jD,

label((i — 1, j), (i, j)) = (x[i], ),
label((i, j — 1), (i, j)) = (&, y[jD-
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Every path of origin (—1, —1) and of end (m — 1,n — 1) is labeled by an
alignment between x and y. Thus, by choosing (—1, —1) for initial state and
(m — 1, n — 1) for terminal state, the edit graph G(x, y) becomes an automaton
that recognizes all the alignments between x and y. The cost of an arc f of
G(x, y) is the one of its label, that is to say, cost(label( f)).

The computation of an optimal alignment or the computation of Lev(x, y)
amounts to determine a path of minimal cost starting from (—1, —1) and ending
in(m — 1, n — 1) in the graph G(x, y). These paths of minimal cost are in one-
to-one correspondence with the optimal alignments between x and y. Since
the graph G(x, y) is acyclic, it is possible to find a path of minimal cost by
considering once and only once each vertex. It is sufficient for this to consider
the vertices of G according to a topological order. Such an order can be obtained
by considering the vertices column by column from left to right, and from top
to bottom inside each column. It is also possible to get the result by considering
the vertices line by line from top to bottom, and from left to right inside
each line, or by scanning them according the antidiagonals, for example. The
problem can be solved by dynamic programming as explained in the next
section.

Dotplot

There exists a very simple method to highlight the similarities between two
strings x and y of respective lengths m and n. We define for this a table Dot of
size m X n, called the dotplot between x and y. The values of the table Dot are
defined for every position i on x and every position j on y by

TRUE if x[i] = y[jl,

Dotli, j] = { ,
FALSE otherwise.

To visualize the dotplot, we put tokens on a grid to signify the value TRUE
(an example is given in Figure 7.4). The areas of similarities between the two
strings appear then as sequences of tokens on the diagonals of the grid.

It is possible to deduce a global alignment between the two strings, from a
dotplot, by linking sequences of tokens. Diagonal links correspond to substitu-
tions, horizontal links correspond to insertions and vertical links correspond to
deletions. The global alignments correspond then to paths starting close to the
upper left corner and ending close to the lower right corner.

It is worth to note that when we utilize this technique with x = y, the borders
of x appear as diagonals of tokens starting and ending on the frames of the grid.
Figure 7.5 illustrates this.
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J 3
i T G C G
0| A .
1] ¢ . .
21 G . 1
3T ' .

Figure 7.4. Dotplot between x = ACGT and y = ATGCTACG. A (black) token occurs in (i, j)
if and only if x[i] = y[j]. The table highlights diagonals of tokens that signal similarities.
Thus, the diagonal ((0, 5), (1, 6), (2, 7)) indicates that prefix ACG of x is a suffix of y. The
antidiagonal ((3, 1), (2, 2), (1, 3)) shows that the factor CGT of x occurs in reverse order in y.

J 0 2 3 5 7
I a b a b a b a
0] a
1| 0b . . .
2| a . . . . .
3| a . . . . .
4 | b . . .
5| a [ 3 . . . °
6| D . . °
7| a 3 . . . °

Figure 7.5. Dotplot of the string abaababa against itself. Among other elements occur the
borders of the string: they correspond to the diagonals of tokens going from the top of the
grid to its right border (except for the main diagonal). We distinguish the nonempty borders
a and aba. The antidiagonals centered on the main diagonal indicate factors of x that are
palindromes: the antidiagonal ((7, 3), (6, 4), (5, 5), (4, 6), (3, 7)) corresponds to palindrome
ababa.

7.2 Optimal alignment

In this section, we present the method at the basis of the computation of an
optimal alignment between two strings. The process utilizes a very simple
technique called dynamic programming. It consists in memorizing the results
of intermediate computations in order to avoid to have to recompute them.
The production of an alignment between two strings x and y is based on
the computation of the edit distance between the two strings. We start thus by
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Tl —1,j—1] Tl —1,j]

Tl j—1] Tli, j]

Figure 7.6. The value T[i, j] only depends on the values at the three neighbor positions:
Tli—1,j—11,Tli —1,jl,and T[i, j — 1] (when i, j > 0).

explaining how to perform this computation. We then describe how to determine
the associated optimal alignments.

Computation of the edit distance

For the two strings x, y € A* of respective lengths m and n, we define the table
T having m + 1 lines and n + 1 columns by

Tli, j1= Lev(x[0..i], y[0.. j])

fori =—1,0,...,m—1and j = —1,0,...,n — 1. Thus, T[i, j] is also the
minimal cost of a path from (—1, —1) to (7, j) in the edit graph G(x, y).

To compute T'[i, j], we utilize the recurrence formula stated in the next
proposition and whose proof is given further.

Proposition 7.3
Fori=0,1,....m—1land j=0,1,...,n— 1, we have

T[-1,-1]1=0,
Tli,—1]1=T[i — 1, —1]+ Del(x[i]),

T[-1,j1=TI[-1,j — U+ Ins(yLjD,
T[i —1, j— 114 Sub(x[il, y[j1),
Tli,jl=min{ T[i — 1, j] + Del(x[i]),
T, j— 11+ Ins(y[jD.

The value at position [, j] in the table T, with i, j > 0, does only depend on
the values at positions [i — 1, j — 1],[i — 1, jl, and [i, j — 1] (see Figure 7.6).
An illustration of the computation is presented in Figure 7.7.

The algorithm GENERIC-DP, whose code is given below, performs the
computation of the edit distance using the table 7. The searched value is
T[m — 1,n — 1] = Lev(x, y) (Corollary 7.5).
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Subp | A C D E G XK L P Q R W Y Del Ins

A o 3 3 3 3 3 3 3 3 3 3 3 Al 1

¢ 30 3 3 3 3 3 3 3 3 3 3 c|1 1

D 33 0 3 3 3 3 3 3 3 3 3 D |1 1

E 3 3 3 0 3 3 3 3 3 3 3 3 E |1 1

G 3 3 3 30 3 3 3 3 3 3 3 G |1 1

K 3 3 3 3 3 0 3 3 3 3 3 3 K |1 1

L 3 3 3 3 3 3 0 3 3 3 3 3 L |1 1

P 3 3 3 3 3 3 3 0 3 3 3 3 P |1 1

Q 33 3 3 3 3 3 3 0 3 3 3 Q|1 1

R 3 3 3 3 3 3 3 3 3 0 3 3 R |1 1

W 3 3 3 3 3 3 3 3 3 3 0 3 Wl 1

Y 3 3 3 3 3 3 3 3 3 3 3 0 Y |1 1

T J -1 0 1 2 3 4 5 6 7 8 10 11
i y[jl E R D A W C Q P G K W Y
—1 | x[i] 0\1 2 3 4 5 6 7 8 9 10 11 12
0 E 1 0—1—2\3 4 5 6 7 8 9 10 11
1 A 2 1 2 3 2\3 4 5 6 7 8 9 10
2 W 3 2 3 4 3 % 3 4 5 6 7 8 9
3 A 4 3 4 5 4 3\4 5 6 7 8 9 10
4 C 5 4 5 6 5 4 3\4 5 6 7 8 9
5 Q 6 5 6 7 6 5 4 3—4\5 6 7 8
6 G 7 6 7 8 7 6 5 4 5 4\5 6 7
7 K 8 7 8 9 8 7 6 5 6 5 4‘1—5‘—?
8 L 9 8 9 10 9 8 7 6 7 6 5—6—17
(E - A WA CQ -G XK - -

E AW - CQ G K

(E - AW cQ-GX - 1L —)

E D AW - CQ G K W - Y

E - AWACQ-GXL - -

(E D AW - CQ G K - W Y)
Figure 7.7. Computation of the edit distance between the strings EAWACQGKL and

ERDAWCQPGKWY, and the corresponding alignments. (a) Substitution matrix: values of the
costs of the edit operations that are Sub(a, b) = 3 for a # b and Del(a) = Ins(a) = 1. (b) Ta-
ble 7', computed by the algorithm GENERIC-DP. We get Lev(EAWACQGKL, ERDAWCQPGKWY) =
T[8, 11] = 7. The three paths of minimal cost between positions [—1, —1] and [8, 11] are also
given on the table. They can be computed by the algorithm ALIGNMENTS. (¢) The three associ-
ated optimal alignments. We note that they highlight the subsequence EAWCQGK common to the
two strings that is actually of maximal length as a common subsequence. We notice more-
over that the above distance is also |EAWACQGKL| + |ERDAWCQPGKWY| — 2 x |EAWCQGK| = 7
(see Section 7.3).
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GENERIC-DP(x, m, y, n)
1 T[-1,—-1]<«0
2 fori < Otom —1do

3 Tli,—1]1 <« T[i — 1, —1]+ Del(x[i])
4 forj < Oton—1do

5 T[-1,j] < T[-1,j — 11+ Ins(y[jD
6 fori < Otom — 1do

Tli—1,j— 114 Sub(x[i], y[j])
Tli, j1 < min{ T[i — 1, j] + Del(x[i])
Tli, j— 11+ 1Ins(y[j])

|

8 return7'[m—1,n—1]

We will now prove the validity of the computation process by first stating
an intermediate result.

Lemma 7.4
Foreverya,b € A, u,v € A*, we have

Lev(ua, €) = Lev(u, €) + Del(a),
Lev(e, vb) = Lev(e, v) + Ins(b),
Lev(u, v) + Sub(a, b),
Lev(ua, vb) = min { Lev(u, vb) + Del(a),
Lev(ua, v) + Ins(b).

Proof The sequence of edit operations that transforms the string ua into the
empty string can be arranged in such a way that it ends with the deletion of the
letter a. The rest of the sequence transforms the string u into the empty string.
We thus have

Lev(ua, ¢) = min{costof o : 0 € Xy}
= min{cost of 6’ - (a, &) : 0’ € T}
= min{cost of 0’ : 0’ € X, .} + Del(a)
= Lev(u, &) + Del(a).

Thus the first identity holds. The validity of the second identity can be estab-
lished according to the same schema. For the third, it is sufficient to distinguish
the case where the last edit operation is a substitution, a deletion, or an inser-
tion. ]

Proof of Proposition 7.3 Itis a direct consequence of the equality Lev(e, €) =
0 and of Lemma 7.4 by setting a = x[i], b = y[j], u = x[0..i — 1], and
v=y[0..j—1]. ]
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Corollary 7.5
The algorithm GENERIC-DP produces the edit distance between x and y.

Proof 1tis a consequence of Proposition 7.3: the computation performed by
the algorithm applies the stated recurrence relation. ]

While a direct programming of the recurrence formula of Proposition 7.3
leads to an algorithm of exponential running time, we immediately see that the
execution time of the operation GENERIC-DP(x, m, y, n) is quadratic.

Proposition 7.6
The algorithm GENERIC-DP, applied to two strings of length m and n, executes
in time O(m x n) in a space O(min{m, n}).

Proof The computation of the value at each position of the table 7" only
depends on the three neighbor positions and this computation executes in
constant time. There are m x n values computed in this way in the table T,
after an initialization in time O(m + n), which gives the result on the execution
time. For the space, it is sufficient to note that only a space for two columns (or
two lines) of the table T is sufficient for realizing the computation. L]

We get a result analogue to the statement of the proposition by performing
the computation of the values of the table T according to the antidiagonals. It
is sufficient in this case to memorize only three consecutive antidiagonals to
correctly perform the computation.

Computation of an optimal alignment

The algorithm GENERIC-DP only computes the cost of the transformation of
x into y. To get a sequence of edit operations that transforms x into y, or
the corresponding alignment, we can perform the computation by tracing back
the table 7 from the position [m — 1, n — 1] to the position [—1, —1]. From
a position [, j], we visit, among the three neighbor positions [i — 1, j — 1],
[i — 1, j],and [i, j — 1], the position whose associated value produces T'[i, j].
The algorithm ONE-ALIGNMENT, whose code is given further, implements this
method that produces an optimal alignment.

The validity of the process can be explained by means of the notion of active
arc in the edit graph G(x, y). They are the arcs that are considered for getting
an optimal alignment. With the example of Figures 7.1 and 7.2, the algorithm
GENERIC-DP computes the table 7 that is given in Figure 7.8. The associated
edit graph is presented in Figure 7.3, and Figure 7.9 displays the subgraph of
the active arcs that is deduced from the table. Formally, we say that the arc
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T j -1 0 1 2 3 4 5

i yljl A T G C T A

—1 | x[i] O 1 2 3 4 5 6
@ O A 1\0 1 2 3 4 5
a o

1 c 2 1\1 2\2 3 4

2 G 3 2 2\172>3\4

3 A 4 3 3 2 2 3 3

A - - C G A A C G - - A
(b)(ATGCTA) (ATGCTA)
Figure 7.8. Example of Figure 7.3 followed. Computation of the edit distance between the
two strings ACGA and ATGCTA and corresponding alignments. (a) Table T, as computed
during the execution of the algorithm GENERIC-DP with the elementary costs Sub(a, b) = 1
fora # band Del(a) = Ins(a) = 1. We get Lev(ACGA, ATGCTA) = T'[3, 5] = 3. The two paths

of minimal cost between positions [—1, —1] and [3, 5] are also given. (b) The two associated
optimal alignments.

(', 71, (@, J)) of label (a, b) is active when

Tli, j1=TL', j' 1+ Sub(a,b)ifi —i' = j— j' =1,
Tli, j1 = TIli', j'] + Del(a) ifi —i’ = 1 and j = j,
Tli, j1=TIi', j'1+ Ins(b)ifi =i’ and j — j' = 1,

withi,i’ € {—=1,0,...,m — 1}, j,j’ € {~=1,0,...,n — 1},and a, b € A.

Lemma 7.7

The label of a path (not reduced to a single vertex) of G(x, y) linking (k, £) to
(i, j) is an optimal alignment between x|k ..i] and y[€ .. j] if and only if all
its arcs are active. We have

Lev(x[k..il,yl£..j)) =TI, jl1—TIlk, £].

Proof We note that the alignment is optimal, by definition, if the cost of the
path is minimal. Moreover, we have in this case

Lev(x[k..il,y[£..j) =TI, jl - Tlk, £].

Let us show the equivalence by recurrence on the positive length of the path
(counted in number of arcs). Let (i’, j’) be the vertex that precedes (i, j) along
the path.

Let us first consider that the path has length 1, that is, (k, £) = (i’, j’). If the
cost of the path is minimal, its value is

Lev(x[k..il, y[e.. j]) = TIi, j] — TIk, €],
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A ay\

Figure 7.9. Active arcs of the edit graph of Figure 7.3. The gray paths link vertices (—1, —1)
and (3, 5); they correspond to optimal alignments (see Figure 7.8). The arcs of these paths
and their corresponding vertices constitute the automaton of optimal alignments.

and, as this cost is also Sub(x[i], y[j]), Del(x[i]) or Ins(y[j]) depending on the
considered case, we deduce that the arc is active, by definition.

Conversely, if the arc of the path is active we have by definition
either T[i, j]1 — T[k, €] = Sub(x[i], y[j1), Tli, j1 — Tlk, £] = Del(x[i]), or
Tli, j1 — Tk, £] = Ins(y[j]), according to the considered case. But these val-
ues are also the distance between the two strings that are of length no more
than 1. Thus the path is of minimal cost.

Let us assume then that the path is of length greater than 1.

If the path is of minimal cost, it is the same for its segment linking (k, £)
to (i’, j’) and of the arc ((i’, j'), (i, j)). The recurrence hypothesis applied to
the first segment indicates then that it consists of active arcs. The minimality
of the cost of the last arc amounts also to say that it is an active arc (see
Proposition 7.3).

Conversely, assume that the arcs of the path are all active. By applying the
recurrence hypothesis to the segment of the path linking (k, £) to (i’, j'), we
deduce that this one is of minimal cost and

Tli', j'1 — Tlk, €] = Lev(x[k ..i'], y[£.. j']).
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As the last arc is active, its cost is minimal and is equal to T'[i, j] — T[i’, j']
after Proposition 7.3. The complete path is thus of minimal cost:
Lev(x[k..il, y[€.. j1) = (Tli, j1 =TI, j'D+(TU', j'1 = Tk, £1)
=TI, jl1—Tlk, ¢].
This ends the proof. L]

We note that for every vertex of the edit graph, except for (—1, —1), it
enters at least one active arc after the recurrence relation satisfied by the table
T (Proposition 7.3). The work performed by the algorithm ONE-ALIGNMENT
consists thus in going up along the active arcs, and stopping when the vertex
(=1, —1) is reached. We consider that the variable z of the algorithm is a
string on the alphabet (A U {e}) x (A U {€}), and that, on this alphabet, the
concatenation is done component by component.

ONE-ALIGNMENT(x, m, y, i)

1 z<(e8)

2 (,j)«<(m—-1,n-1)

3 whilei £ —1and j # —1do

4 ifT[i,jl1=T[L —1,j — 1]+ Sub(x[i], y[j]) then
5 z < (x[i], y[jD -z

6 i, jH)«<~G@—-1,j-1

7 elseif T'[i, j] = T[i — 1, j] 4+ Del(x[i]) then
8 z < (x[il,e) -z

9 i<—i—1

10 else z < (g, y[j] -z

11 j<—j—1

12 whilei # —1 do

13 z < (x[il,e) -z

14 i<—i—1

15 while j # —1do

16 z< (e yljD -z

17 je—j—1

18 return z

Proposition 7.8

The execution of ONE-ALIGNMENT(x, m, y, n) produces an optimal alignment
between x and y, that is to say an alignment of cost Lev(x, y). The computation
executes in time and extra space O(m + n).

Proof The formal proof relies on Lemma 7.7. We notice that the conditions
in lines 4 and 7 test the activity of arcs of the edit graph associated with the
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computation. The third case treated in lines 10-11 corresponds to the third
condition of the definition of an active arc, since it always enters at least one
active arc for each vertex different from (—1, —1) of the graph. The complete
computation produces thus the label of a path of origin (—1, —1) and of end
(m — 1, n — 1) consisting uniquely of active arcs. After Lemma 7.7, this label
is an optimal alignment between x and y.

Each operation significant of the execution time of the algorithm leads to
decrease the value of i or the value of j that vary from m — 1 and n — 1,
respectively, to —1. This gives the time O(m + n). The extra space is used for
storing the string z that is of maximal length m + n. This achieves the proof. m

We note that the validity tests of the three arcs coming in the vertex (i, j) of
the edit graph can be performed in any order. There exist thus 3! = 6 possible
writings of lines 4—11. The one that is presented favors a path containing
diagonal arcs. For instance, we get the highest path (relatively to the drawing
of the edit graph as in Figure 7.9) by swapping lines 4-6 with lines 7-9. We
can also program the computation in a way to get a random alignment among
the optimal alignments.

To compute an alignment, it is also possible to store the active arcs under
the form of “return arcs” in an extra table during the computation of the values
of the table 7. The computation of an alignment amounts then to follow these
arcs from position [m — 1, n — 1] to position [—1, —1] in the table of return
arcs. This requires a space O(m x n) like the space occupied by the table T'.
It should be noted that it is sufficient to store, for each position, one return
direction among the three possible, which can be encoded with only two bits.

The process presented in this section to compute an optimal alignment uses
the table 7' and requires thus a quadratic space. It is, however, possible to
find an optimal alignment in linear space using the divide-and-conquer method
described in Section 7.3.

Computation of all the optimal alignments

If all the optimal alignments between x and y must be exhibited, we can use the
algorithm ALIGNMENTS whose code is given thereafter. It calls the recursive
procedure AL whose code is given just after and for which the variables x, y,
and T are assumed to be global. It is based on the notion of active arc, as for
the previous algorithm.

ALIGNMENTS(X, m, y, n)
1 ALim—1,n—1, (e, ¢))
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AL(, j, 2)
1 ifi#—landj# —1
and T[i, j1=Tli — 1, j — 1]+ Sub(x[i], y[j]) then

2 AL( — 1, j = 1, (x[i], y[jD - 2)
3 ifi #£-1
and T'[i, jl1 =T[i — 1, j] + Del(x[i]) then
4 AL(G — 1, j, (x[i], &) - 2)
5 ifj# -1
and T'[i, jl1 =Tli, j — 11+ Ins(y[j]) then
6 AL, j — 1, (&, y[JD - 2)
7 ifi =—1and j = —1 then
8 signal that z is an alignment

Proposition 7.9

The algorithm ALIGNMENTS produces all the optimal alignments between its
input strings. Its execution time is proportional to the sum of the lengths of all
the produced alignments.

Proof We notice that the tests in lines 1, 3, and 5 are used for checking
the activity of an arc. The test in line 7 produces the current alignment when
it is complete. The rest of the proof is similar to the proof of the algorithm
ONE-ALIGNMENT.

The execution time of each test is constant. Moreover, each test leads to
increase one pair of the current alignment. Thus the result on the total execution
time holds. L]

The memorization of return arcs mentioned above can also be used for the
computation of all the alignments. It is nevertheless necessary here to store
three arcs at most by position, which can be encoded with three bits.

Producing all the alignments is not sound if there are too many of them
(see Proposition 7.2). It is more pertinent to produce a graph containing all the
information, graph that can then be queried later on.

Automaton of the optimal alignments

The optimal alignments between the string x and the string y are represented
in the graph of alignment by the paths having origin (—1, —1) and ending
in (m — 1,n — 1) that are made up of active arcs. The graph of the active
arcs occurring on these paths and their associated vertices form a subgraph
of G(x, y). When we choose (—1, —1) for initial state and (m — 1, n — 1) for
terminal state, it becomes an automaton that recognizes the optimal alignments
between x and y (see Figure 7.9).
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The construction of the automaton of optimal alignments is given by the

algorithm whose code follows. The computation amounts to determine the co-

accessible part (from vertex (m — 1, n — 1)) of the graph of the active arcs. The

table E used in the algorithm provides a direct access to the state associated with

each position on the table 7 considered during the execution of the algorithm.

OPT-ALIGN-AUT(x, m, y,n, T)

1
2

M < NEW-AUTOMATON()
initialize E

E[—1, —1] < initial[M]

E[m —1,n — 1] <~ NEW-STATE()
terminal[E[m — 1,n — 1]] < TRUE
Aa(m —1,n—1)

return M

AA(, j)

1

[ BSOS I \S]

@)}

7
8
9
10
11

12
13
14
15

ifi #—1landj # —1
and T[i, j1=T[i — 1, j — 1] 4+ Sub(x[i], y[j]) then
if E[i — 1, j — 1] = NIL then
E[i —1,j — 1] <~ NEW-STATE()
Aai—1,j—1)
SucclE[i — 1, j — 1]] <
Succ[E[i — 1, j — 1T U{((x[i], y[J D, ELi, jD}
ifi £ —1
and T[i, j1 =T[i — 1, j]1 + Del(x[i]) then
if E[i — 1, j] = NiL then
E[i — 1, j] < NEW-STATE()
Aa( —1,7)
SucclE[i — 1, j1] <= Succ[E[i — 1, jIIU{((x[i], &), E[i, jD}
if j #—1
and T[i, j1 = T[i, j — 1] + Ins(y[j]) then
if E[i, j — 1] = NIL then
Eli, j — 1] < NEW-STATE()
Aa(i,j—1)
Succ[Eli, j — 111 <= Succ[E[i, j — 11U {((e, y[jD, Eli, jD}

The arguments for proving the validity of the process are identical to those
used for the algorithms producing optimal alignments. We note the utilization
of the table E of size O(m x n) that allows to process each vertex of G(x, y)
only once (it is possible to replace it by a table of linear size, see Exercise 7.5).
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Proposition 7.10

Let e be the number of states of the automaton of the optimal alignments be-
tween x and y, and let f be its number of arcs. The operation OPT-ALIGN-
AUT(x,m, y,n, T) builds the automaton by means of the table T in time
O(e+ f).

Proof The three tests performed in the procedure AA serve to check the
activity of arcs. It is sufficient then to check that the arcs of the automaton
correspond to the active arcs of G(x, y) which are on a path from (—1, —1) to
m—1,n-—1).

Concerning the execution time, the only delicate point is the time for the
initialization of the table E (line 2). This can be Q(m x n) if it is performed
without care. But using a technique for implementing the partial functions (see
Exercise 1.15) the table is initialized in constant time. [ ]

We note that the automaton of the optimal alignments can be of linear size
O(m + n), in the case where the optimal alignments are in small number for
instance. In this situation the algorithm OPT-ALIGN-AUT produces them all in
linear time. We also note that the execution time of the algorithm is O(m x n)
in contrast to the execution time of the algorithm ALIGNMENTS.

7.3 Longest common subsequence

In this section, we are interested in the computation of a longest subsequence
common to two strings. This problem is a specialization of the notion of edit
distance in which we do not consider the operation of substitution. Two strings
x and y can have several longest common subsequences. The set of these
strings is denoted by Lcs(x, y). The (unique) length of the strings of Les(x, y)
is denoted by lcs(x, y).

If we set

Sub(a,a) =0
and
Del(a) = Ins(a) = 1
fora € A, and if we assume
Sub(a, b) > Del(a) + Ins(b) = 2

fora,b € Aanda # b, the value T[m — 1, n — 1] (see Section 7.2) represents
what we call the subsequence distance between x and y denoted by dy,ps(x, y).
The computation of this distance is a dual problem of the computation of the
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length of the longest common subsequences between x and y due to the next
proposition (see Figure 7.7). This is why we consider the computation of the
longest common subsequences.

Proposition 7.11
The subsequence distance satisfies the equality

dyups(x, y) = |x] + |y] — 2 x les(x, y). (7.1)

Proof By definition, dy,s(x, y) is the minimal cost of the alignments between
the two strings, counted from elementary costs Sub, Del, and Ins that satisfy
the above assumptions. Let z be an alignment having cost dy,;s(x, y). The
inequality

Sub(a, b) > Del(a) + Ins(b)

means that z does not contain any substitution of two different letters since
a deletion of @ and an insertion of b costs less than a substitution of b for
a when a # b. As Del(a) = Ins(a) = 1, the value dg,s(x, y) is the number
of insertions and of deletions contained in z. The other aligned pairs of z
correspond to matches, their number is lcs(x, y) (it cannot be smaller otherwise
we would get a contradiction with the definition of dg,;;(x, ¥)). If each of these
pairs is replaced by an insertion followed by a deletion of the same letter,
we get an alignment that contains only insertions and deletions; it is then of
length |x| + |y|. The cost of z is thus |x| + |y| — 2 x les(x, y), which gives the
equality of the statement. ]

A naive method for computing lcs(x, y) consists in considering all the
subsequences of x, in checking if they are subsequences of y and in keeping the
longest ones. As the string x of length m can possess 2™ distinct subsequences,
this method by enumeration is inapplicable for large values of m.

Computation by dynamic programming

Using the dynamic programming method, in a way analogue to the process of
Section 7.2, it is possible to compute Les(x, y) and les(x, y) in time and space
O(m x n). The method naturally leads to compute the lengths of the longest
common subsequences between longer and longer prefixes of the two strings x
and y.

For this, we consider the two-dimensional table S having m + 1 lines and
n 4+ 1 columns and defined, for i = —1,0,...,m — 1 and j = —1,0,...,
n—1,by

- ]0
S[i, j1 = {lcs(x[0~-i]’ y[0..jI) otherwise.

ifi=—1lorj=-—1,
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Computing
les(x,y)=S[m —1,n — 1]

relies on a simple observation that leads to the recurrence relation of the next
statement (see also Figure 7.7).

Proposition 7.12
Fori=0,1,....m—1and j=0,1,...,n— 1, we have

Sii—1,j=11+1 if x[i] = y[jl,

Sli, j1 = {maX{S[i — 1,1, 8li,j— 11} otherwise.

Proof Letua =x[0..i]and vhb = y[0..j] (u,v € A* a,bc A).Ifa =b,
a longest common subsequence between ua and vb ends necessarily with a
(otherwise we could extend it by a, which would contradict the maximality of
its length). It results that it is of the form wa where w is a longest subsequence
common between u# and v. Thus, S[i, j] = S[i — 1, j — 1]+ 1 in this case.

If a # b and if ua and vb possess a longest common subsequence that
does not end with a, we have S[i, j] = S[i — 1, j]. In a symmetrical way, if
it does not end with b, we have S[i, j] = S[i, j — 1]. That is to say S[i, j] =
max{S[i — 1, jl, S[i, j — 1]} as stated. [

The equality given in the previous statement is used by the algorithm
LCS-sIMPLE in order to compute all the values of the table S and to produce
les(x,y) = S[m —1,n —1].

LCS-siMPLE(x, m, y, n)
1 fori < —1tom — 1do
2 Sli,—1]1 <0
3 forj < Oton—1do
4 S[—1,j] <0
5 fori < Otom — 1do
6 if x[i] = y[j] then
7 S, jl<Sli—1,j—1]1+1
8 else S[i, j] < max{S[i — 1, j], S[i, j — 11}
9 return S[m — 1,n — 1]

Figure 7.10 shows how the algorithm works.

Proposition 7.13
The algorithm LCS-SIMPLE computes the maximal length of subsequences com-
mon to x and y. It executes in time and space O(m X n).



7.3 Longest common subsequence 265

N J -1 0 1 2 3 4 5 6 7 8 9

i yljl € A G A T C A G A G

=1 | x[i] 0—0\0 0 0 0 0 0 0 0 0

0 A 0 0 1 1 1 1 1 1 1 1 1

N
(a) 1 G 0 0 1 %—%—2\2 2 2 2 2
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(— AG-CT - -G A —) (- AG--C- TG A —)
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Figure 7.10. Computation of the longest common subsequences between strings x = AGCTGA
and y = CAGATCAGAG. (a) Table S and paths of maximal cost between positions [—1, —1]
and [5, 9] on the table. (b) The four associated alignments. It results that the strings AGCGA
and AGTGA are the longest common subsequences between x and y.

Proof The algorithm correctness results from the recurrence relation of
Proposition 7.12.

It is immediate that the computation time and the memory space are both
O(m x n). [

It is possible, after the computation of the table S, to find a longest common
subsequence between x and y by tracing back the table S from position [m —
1,n — 1] (see Figure 7.10), as done in Section 7.2. The code that follows
performs this computation in the same way as the algorithm ONE-ALIGNMENT
does.

ONE-LCS(x,m, y, n, S)

1 z<«¢

2 (,j)«<m—-1,n-1)

3 whilei # —1land j # —1do

4 if x[i] = y[j] then

5 z < x[i]-z

6 G, H«<G—-1,j-1

7 elseif S[i — 1, j] > S[i, j — 1] then
8 i<—i—1

9 else j <« j—1

10 return z
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It is of course possible to compute, as done in Section 7.2, all the longest
subsequences common to x and y by extending the technique used in the
previous algorithm.

Computation of the length in linear space

If only the length of the longest common subsequences is desired, it is easy
to see that the memorization of two columns (or two lines) of the table S
are sufficient for performing the computation (it is even possible to only use
one single column or one single line for performing this computation; see
Exercise 7.3). It is precisely what realizes the algorithm LCS-coLUmMN whose
code appears thereafter.

LCS-coLumN(x, m, y, n)
1 fori < —1tom — 1do
2 Ci[i] <0
3 forj<«<Oton—1do
4 Cy[—1]1 <0
5 fori < Otom — 1do
6 if x[i] = y[j] then
7 Glil< Cili —11+1
8 else C,[i] < max{C[i], C,[i — 1]}
9 C1 < C2
10 return C,

Proposition 7.14

The operation LCS-COLUMN(x, m, y, n) produces a table C whose value C[i],
fori=—1,0,...,m —1,is equal to lcs(x[0..i], y). The computation is real-
ized in time O(m x n) and in space O(m).

Proof The table produced by the algorithm is the table C;. We get the stated
result by showing, by recurrence on the value of j, that C[i] = S[i, j],
for i = —1,0,...,m — 1. Indeed, when j =n — 1 at the end of the ex-
ecution of the algorithm, we get C[i] = S[i,n — 1] = les(x[0..i], y), for
i =-—1,0,...,m — 1, by definition of the table S, which is stated.

Just before the execution of the loop of lines 3-9, what precedes can be
identified with the processing of the case j = —1; we have C;[i] = 0 for each
value of i. We also have S[i, —1] = 0, this proves that the relation holds for
j=-—1

Let us now assume that j has a positive value. The corresponding value of
the table C is computed in lines 4-9 of the algorithm. After the instruction in
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line 9, it is sufficient to show that the table C, satisfies the above relation when,
by recurrence hypothesis, C; satisfies it for the value j — 1. We assume thus
that Ci[i] = S[i, j — 1] fori = —1,0,...,m — 1 and we show that after the
execution of lines 4-8, we have C;[i] = S[i, j] fori = —1,0,...,m — 1.
The proof is done by recurrence on the value of i. For i = —1, this
corresponds to the initialization of the table C, in line 4 and we have
C[—1] =0 = S[—1, j]. Wheni > 0, two cases are considered. If x[i] = y[j],
the associated instruction leads to set C,[i] = C{[i — 1] + 1, which is equal
to S[i — 1, j — 1]+ 1 by application of the recurrence hypothesis on j. This
value is also S[i, j] after Proposition 7.12, which gives finally C,[i] = S[i, j].
If x[i] # y[j], the instruction in line 8 gives C;[i] = max{C[i], Co[i — 1]}. It
is equal to max{S[i, j — 1], C,[i — 1]}, after the recurrence hypothesis on j,
then to max{S[i, j — 1], S[i — 1, j]} after the recurrence hypothesis on i. We
finally get the searched result, C,[i] = S[i, j], again by Proposition 7.12.
This ends the recurrences on i and j, and gives the result. ]

The utilization of the algorithm LCS-coLumN for computing the maximal
length of the subsequences common to x and y does not in a simple way allow
to produce a longest common subsequence as previously described (because
the table S is not completely memorized). But the algorithm is used in an
intermediate computation of the method that follows.

Computation of a longest subsequence in linear space

We now show how to exhibit a longest common subsequence by an approach
of the type divide-and-conquer. The method executes entirely in linear space.
The idea of the computation can be described on the associated edit graph of
x and y. It consists in determining a vertex of the form (k — 1, |[n/2] — 1),
with 0 < k < m, through which goes a path of maximal cost from (—1, —1) to
(m — 1,n — 1) in the graph G(x, y). Once this vertex is known, it only remains
to compute the two segments of the path, from (—1, —1)to (k — 1, [n/2] — 1),
and from (k — 1, [n/2] — 1) to (m — 1, n — 1). This amounts to find a longest
subsequence u common to x[0..k — 1] and y[0.. [n/2] — 1] on the one hand,
and a longest subsequence v common to x[k ..m — 1]and y[|n/2]..n — 1]on
the other hand. These two computations are performed by recursively applying
the same method (see Figure 7.11). The string z = u - v is then a longest
common subsequence between x and y. Recursive calls stop when one of the
two strings is empty or reduced to a single letter. In this case, a simple test
allows to conclude.
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(—=1,-1) ln/2]

m—-1,n-1)

Figure 7.11. Schema of the divide-and-conquer method used to compute a longest common
subsequence between two strings in linear space. The computation time of each step is
proportional to the surface of the considered rectangles. As this surface is divided by two at
each level of the recurrence, we get a total time O(m X n).

(=1,-1 [n/2]

m—-1,n-1)

Figure 7.12. During the computation of the second half of the table (gray area), we memorize
for each position (i, j) a position on the middle column through which goes a path of maximal
cost from (—1, —1) to (i, j). Only the pointer from (m — 1, n — 1) is used for the rest of the
computation.

It remains to describe how to get the index k that identifies the searched
vertex (k — 1, [n/2] — 1). The integer k is, by definition, an index within O and
m for which the quantity

les(x[0..k — 1], y[0..|n/2] — 1))
+ les(x[k..m — 1], y[[n/2]..n —1])

is maximum (Figure 7.12). To find it, the algorithm LCS whose code is given
further, starts by computing the column of index |[n/2]| — 1 of the table S by
calling (line 7) LCS-COLUMN(x, m, y, |n/2]). For the rest of the computation
of this step (lines 8—18), and before the recursive calls, the algorithm processes
the second half of the table S as the algorithm LCS-coLUMN does on the first
half, but storing, in addition, pointers to the middle column. The computation
utilizes two tables C; and C; in order to compute the values of S, and also two
extra tables P; and P, to store the pointers.
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These last two tables implement the table P defined, for j = |n/2] —
1,|n/2),...,n—1landi =—-1,0,...,m — 1, by

Pli, jl1=k
if and only if
O0<k=<i+1
and

les(x[0..1], y[0..j]) =
les(x[0..k—1],y[0..|n/2] — 1))
+ les(x[k .. i], y[ln/2] .. jD. (7.2)

The proposition that follows provides the mean used by the algorithm LCS,
for computing the values of the table P. We notice that the stated recurrence
allows a computation column by column as for the computation of the table
S performed by LCS-coLumN. This is partly this property that leads to a
computation of a longest common subsequence in linear space. We show in
Figure 7.13 an example of execution of the method.

Proposition 7.15
The table P satisfies the following recurrence relations:

Pli,[n/2] = 1]=i+1
fori=-1,0,...,m—1,
P[-1,j1=0

for j > |n/2], and

Pli—1,j—11 ifx[i]l=yljl

Pli,j1=14 Pli — 1, ] if x[i] # yljland S[i — 1, j1 > S[i, j — 11,

Pli,j—1] otherwise,

fori=0,1,....m—1landj=|n/2], | n/2]+1,...,n—1.

Proof We show the property by recurrence on the pair (7, j) (using the lexi-
cographically ordering of pairs).

If j = |n/2] — 1, by definition of P, k =i + 1 since the second term of
the sum in Equation (7.2) is null from the fact that y[|n/2] .. j] is the empty
string. The initialization of the recurrence is thus correct.

Let us consider now that j > |[n/2]. If i = —1, by definition of P, k =0
and Equation (7.2) is trivially satisfied since the considered factors of x are
empty.
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x = AGCTGA
y = CAGATCAGAG

x = AG x = CTGA
y = CAGAT y = CAGAG
(a) /\ /\
x=A x=G x =CT x =GA
y=CA y = GAT y=CA y = GAG
! : /\ /\
X = x=T x=G x=A
c & G A
i j=5 j=6 j=7 j=28 j=9
-1 0 0 0 0 0
0 1 0 0 0 0
1 2 2 0 0 0
®) 2 2 2 2 2 2
3 2 2 2 2 2
4 2 2 2 2 2
5 2 2 2 2 2

Figure 7.13. Illustration of the execution of algorithm LCS with strings AGCTGA and
CAGATCAGAG. (a) Tree of the recursive calls. The longest common subsequence, AGCGA,
produced by the algorithm is obtained by concatenating the results obtained on the leaves
of the tree visited from left to right. (b) Values of the table P, of pointers after each of the
iterations of the for loop of lines 10-18 during the initial call. The value of k computed
during this call is P;[5] = 2 obtained after the processing of j = 9, this corresponds to the
decomposition /cs(AGCTGA, CAGATCAGAG) = lcs(AG, CAGAT) + lcs(CTGA, CAGAG).

It remains to deal with the general case j > |n/2] and i > 0. Let us
assume that we have x[i] = y[j]. There exists then in the edit graph a
path of maximal cost, from (—1, —1) to (i, j), going through (i — 1, j — 1).
Thus there exists a path of maximal cost going through (k — 1, [n/2] —
1) where k= P[i — 1, j — 1]. In other words, we have after Proposi-
tion 7.12 les(x[0..i], y[0..j]) = les(x[0..i — 1], y[0..j — 1]) + 1, and by
recurrence, les(x[0..7i — 1], y[0..j — 1]) = les(x[0..k — 1], ¥[0.. |n/2] —
1) + les(x[k..i — 1], y[[n/2] .. j — 1]). The assumption x[i] = y[j] imply-
ing also les(x[k..i], y[ln/2]..j]) =les(x[k..i — 1], y[n/2]..j —1]) +
1, we deduce les(x[0..i], ¥[0..j]) =les(x[0..k — 1], ¥[0.. |n/2] — 1]) +
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les(x[k..i], y[[n/2] .. j]), this gives, by definition of P, P[i, j] =k = P[i —
1, j — 1], as indicated in the statement.
The last two cases are handled in a similar way. ]

The code of the algorithm LCS is given below in the form of a recursive
function.

LCS(x,m, y,n)
1 if m = 1 and x[0] € alph(y) then

2 return x[0]

3 elseif n = 1 and y[0] € alph(x) then

4 return y[0]

5 elseifm =0orm =1orn=0o0rn =1 then

6 return &

7 C; < LCS-coLumN(x,m, y, |n/2])

8 fori < —1tom—1do

9 Plil]«<i+1

10 for j < |n/2] ton —1do

11 (Co[—1], P[—1]) < (0,0)

12 fori < Otom — 1do

13 if x[i] = y[j] then

14 (Goli], Poli]) < (Cili — 1]+ 1, P[i — 1])
15 elseif C1[i] > C,[i — 1] then

16 (Gali], Poli]) < (Cili], PiliD)

17 else (Cy[i], Poli]) < (Coli — 11, Py[i — 1])
138 (C1, P)) < (C2, Py)

19 k <« Pi[m—1]
20 u < LCS(x[0..k —1],k,y[0..[n/2] — 1], [n/2])
21 v <« LCS(x[k..m —1],m —k,y[|n/2]..n—1],n — [n/2])
22 returnu - v

Proposition 7.16
The operation LCS(x, m, y, n) produces a longest subsequence common to
strings x and y of respective lengths m and n.

Proof The proof is done by recurrence on the length n of the string y. It
consists in a simple verification whenn =0 orn = 1.

Let us consider then that n > 1. If m = 0 or m = 1, we simply check that
the operation provides indeed a longest common subsequence to x and y. We
can thus assume now that m > 1.
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We notice that the instructions in lines 10—18 carry on the computation of
the table C; started by the call to the algorithm LCS-cOLUMN in line 7 by
applying the same recurrence relation. We, moreover, notice that the table P;
that implements the table P is computed by means of the recurrence relations
of Proposition 7.15, which results from the correct computation of the table
C;. We thus have immediately after the execution of line 19 the equality
k = Pi[m — 1] = P[m — 1,n — 1], this means that lcs(x, y) = les(x[0. .k —
11, y[0.. |n/2] — 1) + les(x[k ..m — 1], y[|n/2] ..n — 1]) by definition of
P. As, by recurrence hypothesis, the calls to the algorithm in lines 20 and
21 provide a longest common subsequence to their input strings (that are cor-
rectly chosen), their concatenation is a longest common subsequence to x
and y.

This ends the recurrence and the proof of the proposition. ]

Proposition 7.17
The operation LCS(x, m, y, n) executes in time ®(m x n). It can be realized
in space ©(m).

Proof During the initial call to the algorithm, the instructions in lines 1-19
execute in time O(m x n).

The instructions in the same lines during immediate successive calls of lines
20 and 21 take respectively times proportional to k x |n/2] and to (m — k) X
(n — |n/2]), thus globally (m x n)/2 (see Figure 7.11).

It follows that the global execution time is O(m x n)since Y ,(m x n)/ 2l <
2m x n. But it is also Q(m x n) because of the first step, which gives the first
result of the statement.

The memory space is used by the algorithm LCS for storing the tables C,
C», P;, and P,, plus some variables that occupy a constant space. Altogether
they occupy a space O(m). And as the recursive calls to the algorithm do not
require to keep the information stored in the tables, their space can be reused
for the rest of the computation. Thus the result holds. L]

The following theorem provides the conclusion of the section.
Theorem 7.18
It is possible to compute a longest common subsequence between two strings

of lengths m and n in time O(m x n) and space O(min{m, n}).

Proof 1t is a direct consequence of Propositions 7.16 and 7.17 choosing for
string x the shortest of the two input strings of the algorithm LCS. ]
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7.4 Alignment with gaps

A gap is a consecutive sequence of holes in an alignment. The utilization of
alignments on genetic sequences shows that it is sometimes desirable to penalize
globally the formation of long gaps, in the computation of an alignment, instead
of penalizing individually the deletion or the insertion of letters. Doing so,
holes are not accounted for independently of their position. But no information
external to the strings is used in the definition of the question.

In this context, the minimal cost of a sequence of edit operations is a
distance under conditions analogue to those of Proposition 7.1, essentially
since the symmetry between deletion and insertion is respected. We introduce
the function

gap:N — R,

whose value gap(k) indicates the cost of a gap of length k. The algorithm
GENERIC-DP of Section 7.2 does not directly apply to the computation of
a distance taking into account the above assumption, but its adaptation is
relatively immediate.

To compute an optimal alignment in this situation, we utilize three tables:
D, I, and T. The value DIi, j] indicates the cost of an optimal alignment
between x[0..i] and y[0.. j] ending with deletions of letters of x. The value
I[i, j]indicates the cost of an optimal alignment between x[0..i] and y[0.. j]
ending with insertions of letters of y. Finally, the value T'[i, j] gives the cost
of an optimal alignment between x[0..7] and y[0.. j]. The tables are linked
by the recurrence relations of the proposition that follows.

Proposition 7.19
The cost T[i, j] of an optimal alignment between x[0..i] and y[0.. j]is given
by the following recurrence relations:

D[-1,—1] = D[i, —1] = D[-1, j] = oo,
I[-1,—-1]1= I[i,—1]= I[-1, ] = o0,
and
T[-1,—-1]1=0,
Tli,—1] = gap(i + 1),
T(—1,jl = gap(j + D),
D[i, jl =min{T[{, j14+gap(i =€) : £ =0,1,...,i — 1},
I[i, jl=min{T[i, k] +gap(j — k) : k=0,1,...,j—1},
Tli, jl = min{T[i — 1, j — 1]+ Sub(x[i], y[jD, DU, j1. Ili, j1},

fori=0,1,....m—1land j=0,1,...,n— 1.
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Proof The proof can be obtained using arguments similar to those of Proposi-
tion 7.3. It decomposes then in three cases, since an optimal alignment between
x[0..i] and y[0.. j] can only end in three different ways: either by a substi-
tution of y[j] for x[i]; or by the deletion of ¢ letters at the end of x; or by the
insertion of k letters at the end of y with0 < ¢ <iand0 <k < j. ]

If no restriction is done on the function gap, we can check that the problem
of the computation of an optimal alignment between x and y solves in time
O(m x n x (m + n)). On the other hand, we show that the problem solves in
time O(m x n) if the function gap is an affine function, that is to say, is of the
form

gapky=g+h x(k—1)

with g and & two positive integer constants (in previous sections, g = h, and
the function is linear in the number of holes). This type of function amounts
to penalize the opening of a gap by a quantity g and to penalize differently the
extension of a gap by a quantity /4. In real applications, we usually choose the
two constants so that 7 < g. The recurrence relations of the above proposition
becomes:

D[, jl=min{D[i — 1, j1+h, Tli — 1, j1+ g},
Ili, jl=min{I[i, j — 1]+ h,T[i, j — 1]+ g},
T[li, j1 = min{T[i — 1, j — 11+ Sub(x[i], y[j]), Dli, j1, I[i, j1},
fori =0,1,...,m—1land j =0,1,...,n — 1. We moreover set
D[-1,—1] = D[i, —1] = D[—1, j] = oo,
I[-1,—-1]1= I[i,—-1]= I[-1, j] = o0,

fori =0,1,...,m—1and j =0,1,...,n—1,and

T[—1,—1] =0,
T[Oa _1] = g’
Ir-1,0l =g,

T, =11=TL —1,=1]+h,
T-1,j1=T[-1,j—1]+h,

fori=1,2,....m—1land j=1,2,...,n— 1.

The algorithm GAP, whose code follows, utilizes these recurrence relations.
The tables D, I, and T considered in the code are of dimension (m + 1) x
(n 4+ 1). An example of execution of the algorithm is shown in Figure 7.14.
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D J -1 0 1 2 3 4 5 6 7 8 9 10 11
i yjJE R D A W C Q P G K W Y
—1 | x[i]] c0 00 0 00 00 0O 00 o0 o0 o0 00 00 00
0 E oo 6 7 8 9 10 11 12 13 14 15 16 17
1 A oo 3 6 7 8 9 10 11 12 13 14 15 16
2 W o 4 6 8 7 10 11 12 13 14 15 16 17
3 A oo 5 7 9 8 7 10 11 12 13 14 15 16
4 C © 6 8 10 9 8 100 12 13 14 15 16 17
5 Q oo 7 9 11 10 9 10 13 14 15 16 17 18
6 G oo 8 10 12 11 10 11 10 13 14 15 16 17
7 K o 9 11 13 12 11 12 11 13 13 16 17 18
8 L co 10 12 14 13 12 13 12 14 14 13 16 17
I Jj -1 0 1 2 3 4 5 6 7 8 9 10 11
i vyjqJE R D A W C Q P G K W Y
—1 | x[i] c0o c© o0 0O 0 0O o0 0O OO 00 00 00 00
0 E oo 6 3 4 5 6 7 8 9 10 11 12 13
1 A oo 7 6 6 7 7 8 9 10 11 12 13 14
2 W o 8 7 8 9 10 7 8 9 10 11 12 13
3 A o 9 8 9 10 9 10 10 11 12 13 14 15
4 C oco 10 9 10 11 12 11 10 11 12 13 14 15
5 Q oco 11 10 11 12 13 12 13 10 11 12 13 14
6 G co 12 11 12 13 14 13 14 13 13 13 14 15
7 K co 13 12 13 14 15 14 15 14 15 16 13 14
8 L oo 14 13 14 15 16 15 16 15 16 17 16 16
T j -1 0 1 2 3 4 5 6 7 8 9 10 11
i yj]JE R D A W C Q P G XK W Y
—1 | x[i] O 3 4 5 6 7 8 9 10 11 12 13 14
0 E 3 0 3 4 5 6 7 8 9 10 11 12 13
1 A 4 3 3 6 4 7 8 9 10 11 12 13 14
2 W 5 4 6 6 7 4 7 8 9 10 11 12 13
3 A 6 5 7 9 6 7 7 10 11 12 13 14 15
4 C 7 6 8 10 9 8 7 10 11 12 13 14 15
5 Q 8 7 9 11 10 9 10 7 10 11 12 13 14
6 G 9 8 0o 12 11 10 11 10 10 10 13 14 15
7 K 10 9 1 13 12 11 12 11 13 13 10 13 14
8 L 11 10 12 14 13 12 13 12 14 14 13 13 16
<1-: - - AW ACQ G K - L)
E A W - C Q G K W Y
(E - - AW c Q G K L —)
E RD AW - C Q G K W Y

Figure 7.14. Computation performed with the algorithm GaP on the strings of Figure 7.7,
EAWACQGKL and ERDAWCQPGKWY. We consider the values g =3, h = 1, Sub(a,a) =0, and
Sub(a, b) = 3 forall letters a, b € A suchthata # b. (a)—(c) Tables D, I, and T'. (d) The two
optimal alignments obtained with a method similar to that of the algorithm ALIGNMENTS.
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Gar(x,m, y, n)
1 fori < —1tom —1do

2 (D[i, =11, Ii, —1]) < (00, o0)

3 T[-1,—-1]1<«0

4 T[0,—1] < g

5 fori < 1tom—1do

6 Tli,—11<T[i—1,-1]1+h

7 T[-1,0] < g

8 forj < l1ton—1do

9 T[—1,j]1 <« T[-1,j—1]1+h

10 for j <~ Oton —1do

1 (D[—1, j1. I[~1, j]) < (00, 0)

12 fori < Otom — 1do

13 Dli, jl < min{D[i — 1, j14+h,T[i — 1, j] + g}
14 I[i, j] < min{l[i, j — 1]+ h,T[i, j — 1]+ g}
15 t < T[i—1,j— 114 Subx[i], y[jD

16 Tli, j] < min{¢, D[i, j1, I[i, j1}

17 return T[m — 1,n — 1]

The tables D, I, and T used in the algorithm can be reduced to occupy
a linear space by adapting the technique of Section 7.3. The statement that
follows summarizes the result of the section.

Proposition 7.20
With an affine cost function of gaps, the optimal alignment of strings of lengths
m and n can be computed in time O(m x n) and space O(min{m, n}). [ ]

7.5 Local alignment

Instead of considering a global alignment between x and y, it is often more
relevant to determine a best alignment between a factor of x and a factor of
y. The notion of distance is not appropriate for stating this question. Indeed,
when we try to minimize a distance, the factors that lead to the smallest values
are the factors that occur simultaneously in the two strings x and y, factors
that may be reduced to just a few letters. We thus rather utilize a notion of
similarity between strings, for which equalities between letters are positively
valued, and inequalities, insertions, and deletions are negatively valued. The
search for a similar factor consists then in maximizing a quantity representative
of the similarity between the strings.
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Similarity
To measure the degree of similarity between two strings x and y, we utilize
a score function. This function, denoted by Subs, measures the degree of
resemblance between two letters of the alphabet. The larger the value Subs(a, b)
is, the more similar the two letters a and b are. We assume that the function
satisfies

Subg(a,a) > 0
fora € A and
Subgs(a, b) <0

for a,b € A with a # b. The function Subs is symmetrical. But it is not a
distance since it does not satisfy the conditions of positivity, neither of sep-
aration, nor even of the triangle inequality. Indeed, we can attribute different
scores to several equalities of letters: we can have Subg(a, a) # Subg(b, b).
This allows a better control of the equalities that are more greatly desired. The
insertion and deletion functions must also be negatively valued (their values are
integers):

Insg(a) < 0O
and
Dels(a) < 0

fora € A.
We define then the similarity sim(u, v) between the strings u and v by

sim(u, v) = max{score of o : 0 € ¥, ,},

where X, , is the set of sequences of edit operations transforming u into v. The
score of an element o € X, , is the sum of the scores of the edit operations
ofo.

We can show the following property that establishes the relation between
the notions of distance and of similarity (see notes).

Proposition 7.21

Given Sub, a distance on the letters, Ins, and Del, two functions on the letters, a
constant value g, and a constant £, we define a system of score in the following
way:

Subg(a, b) = £ — Sub(a, b)
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and

£
Inss(a) = Dels(a) = —g + 3

for all the letters a, b € A. Then we have
. £
Lev(u, v) + sim(u, v) = E(Iul + v

for every strings u, v € A¥*. ]

Computation of an optimal local alignment

An optimal local alignment between the strings x and y is a pair of strings (u, v)
for which u <g X, V =gaer ¥, and sim(u, v) is maximum. For performing its
computation by a process analogue to what is done in Section 7.2, we consider a
table S defined, fori = —1,0,...,m — land j = —1,0,...,n — 1,by S[i, j]
is the maximum similarity between a suffix of x[0. . ] and a suffix of y[0.. j].
Or also

S[i, j1 = max{sim(x[€..i], y[k..j):0 <€ <iand 0 <k < j}U {0},

is the score of the local alignment in [i, j]. An optimal local alignment itself is
then computed by tracing back the table from a maximal value.

Proposition 7.22
The table S satisfies the recurrence relations:

0,
Sli = 1, j — 1] + Subs(x[i], y[j D,
S[i — 1, j1+ Dels(x[i]),

S[i, j] = max

and

S[-1,—-1] = S[i, —1]1 = S[-1,j]=0
fori=0,1,....m—1and j=0,1,...,n— 1.
Proof The proof is analogue to the proof of Proposition 7.3. ]

The following algorithm LOCAL-ALIGNMENT implements directly the recur-
rence relation of the previous proposition.
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LOCAL-ALIGNMENT(x, m, y, n)
1 fori < —1tom —1do

2 Sli,—1]1 <0
3 forj<«<Oton—1do
4 S[—1,j] <0
5 fori < Otom — 1do

0

.. Sli —1, j — 1]+ Subs(x[i], y[j])

° SUTTEmEA i — 11+ Delyali)

S, j — 1+ Inss(y[jD
7 return S

Proposition 7.23
The algorithm LOCAL-ALIGNMENT computes the scores of all the local align-
ments between x and y.

Proof This is an immediate application of Proposition 7.22, since the algo-
rithm utilizes the relations of this proposition. ]

For finding an optimal local alignment, it is sufficient to locate a larger value
in the table S. We trace back then the path from the position of this value by
going up in the table (see Section 7.2). We stop the scan, in general, on a null
value. An example is displayed in Figure 7.15.

7.6 Heuristic for local alignment

The alignment methods are often used for comparing selected strings. But they
are also invaluable to search for resemblance between a chosen string (query)
and strings of a data bank. In this case, we want to search for the similarities
between a string x € A* and each of the strings of a finite set Y C A*. It is
essential to perform each alignment in a reasonable time, since the process
must be repeated on every strings y € Y. We thus have to find faster solutions
than those provided by the dynamic programming method. The usual solutions
generally use heuristics and are approximate methods: they can miss some
good answers to the given problem and can also give some erroneous answers.
But they have a satisfactory behavior on real examples.

The method described here finds a good local alignment between a factor of
x and a factor of y without allowing insertions nor deletions. This assumption
simplifies the problem. The comparison is iterated on each strings y of the
bank Y.
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s |j -to 1 2 3 4 5 6 7 8 9 10 Il
i JVJIE R D A W C Q P G K W Y
1|{xil0 0 0O O O O O 0O 0 0 0 0 0
o lE o0 1 0o ©.0 0 0 0O O 0O 0O 0 0
1 la 0 0 0o oM. 0 0 0 0 0 0 0 o0
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@ 3 0y 0 0 0 0 1 1.0 0 0 0 0 0 0
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s g o 0o 0o 0o 0o 0 1>M—2 1 0 0 o0
6 lc o o 0o 0o 0o 0o 0o 2 13 2 1 o0
70k o 0o 0 0o 0o 0 0o 1 0o 224 3 2
8§ |t o o o o o 0 0 0 0 1 3 2 1

A WA CNQ - GK
(b) (Aw—CQPGK)
Figure 7.15. Computation of an optimal local alignment between the strings EAWACQGKL
and ERDAWCQPGKWY when Subs(a, a) = 1, Subs(a, b) = —3, and Dels(a) = Inss(a) = —1 for

a,b € A, a # b. (a) Table S of the costs of all the local alignments, and the path ending on
the position containing the largest value. (b) The corresponding optimal local alignment.

For two given integers £ and k, we consider the set of strings of length £
that are at distance at most k of a factor of length ¢ of the string x. We consider
here a generalization of the Hamming distance that takes into account the cost
of a substitution. The strings thus defined from all the factors of length ¢ of x
are called the frequentable neighbors of the factors of length ¢ of x.

The analysis of the text y consists in locating in it the longest sequence of
occurrences of frequentable neighbors; it produces a factor of y that is likely
to be similar to a factor of x. To locate the factor of y, we utilize an automaton
that recognizes the set of the frequentable neighbors. The construction of the
automaton is an important element of the method.

We consider the distance d defined by

lu|—1
d(u,v) =Y Sub(uli], vli])
i=0
for two strings # and v of the same length (we assume that Sub is a distance
on the alphabet). For every natural integer £, we denote by Fact,(x) the set of
factors of length ¢, called the £-grams of the string x, and Vi (Facty(x)) its set
of frequentable neighbors:

Vi(Fact,(x)) = {z € A® : d(w, z) < k for w € Facty(x)}.



7.6 Heuristic for local alignment 281

a Lla,0] Lla,11 Lla,2] L[a,3] Lla,4] L[a,5]
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¢ GO &3 O3 E3) @3 Kb
K &0 @2 &3 E3) @3 ®3
L o (3 &4 @4 W4 O3
Q. QO 02 &3 E3I) G3) K3
VoW ®2 (3 OwdH K> @5
(@)
a Lla,6] Lla,7] Lla,8] Lla,9] Lla,]10]
A c4 w4 ®4 ({5 W06
¢c &5 @%» ®5 @6 MW7)
E ®,3) (€5 5 ({5 W06
G 5 (@S ®S5 ({5 W06
K G,4 (€5 L5 W5 ({5
L (E,5 G5 K5 @5 (06
Qe ®3 @©4H €5 @3 ({53
W (4,6) (D,6) (E,6) (G6) (C7)
factor frequentable neighbors
EAW EAW, EAR, EDW, EEW, AAW, DAW
AWA AWA, AWD, AWE, ARA, DWA, EWA
(b) WAC WAC, WAY, WDC, WEC, RAC
ACQ ACQ, ACD, AYQ, DCQ, ECQ
CQG CQG, CDG, YQG
QGK QGK, QGD, DGK
GKL GKL, GDL

Figure 7.16. Illustration of the heuristic method for local alignment. (a) Table L that im-
plements, for each letter a, the lists of pairs of the form (b, Sub(a, b)), for b € A, sorted
according to the second component of the pair. The alphabet is composed of the letters of the
strings x = EAWACQGKL and y = ERDAWCQPGKWY. (b) The frequentable neighbors at maximal
distance k = 2 of the 3-grams of x.

For building the set Vj(Fact;(x)) in time O(card Vj(Fact,(x))), we assume that
we have, for each letter a € A, the list of letters of the alphabet sorted in
increasing order of the cost of their substitution to a. The elements of these
lists are pairs of the form (b, Sub(a, b)). We access to the first element of such
objects by the attribute letter, and to the second element by the attribute cost.
These lists are stored in a two-dimensional table, denoted by L. For a € A
andi =0,1,...,card A — 1, the object L[a, i] is the pair corresponding to the
(i + Drth nearest letter of the letter a. An example is given in Figure 7.16.
The algorithm GENERATE-NEIGHBORS produces the set V;(Fact,(x)). It calls
the recursive procedure GN. The call GN(i, ¢, 0, 0, 0) (line 6 of the algorithm)
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computes all the frequentable neighbors of x[i ..i 4+ £ — 1] and store them in
the set implemented by the global variable V. At the beginning of the operation
GN(, v, j, p, 1), p=d[0..j — 1], x[i’ — j'..i" — 1]) < k and we try to
extend v with the letter of the pair L[x[i'], 7] in the case where j' < £.

GENERATE-NEIGHBORS({)
1 V<@
2 threshold[l — 1] < k
3 fori < Otom — ¢ do

4 for j < ¢ — 1 downto 1 do

5 threshold[j — 1] < threshold|j] — cost(L[x[i + j], 0])
6 GN(, &,0,0,0)

7 return V

GNG/, v, j/, p, 1)
1 if j/ = ¢ then
2 V < VU {v}
3 elseif t < card A then
c < L[x[i'], ]
if p + cost[c] < threshold[ '] then
v < v - letter[c]
GN(@' + 1,v[0.. '], j 4+ 1, p + cost[c], 0)
GN(@,v[0..j — 1], j, p,t + 1)

00 N O B

When the set of all the frequentable neighbors of the £-grams of the string
x has been computed, we can build an automaton recognizing the language
defined by Vi (Facty(x)). We can also build it during the production of the
frequentable neighbors. The text y is then analyzed with the help of the au-
tomaton for finding positions of elements of V;(Fact,(x)). The method detects
the longest sequence of such positions. It then tries to extend, by dynamic
programming, to the left or to the right, the found segment of strong similarity.
We deduce eventually a local alignment between x and y.

Notes

The techniques described, in this chapter, are overused in molecular biology
for comparing sequences of chains of nucleic acids (DNA or RNA) or of amino
acids (proteins). The most well-known substitution matrices (Suby) are the PAM
matrices and BLOSUM matrices (see Attwood and Parry-Smith [55]). These
score matrices, empirically computed, witness physicochemical or evolutive
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properties of the studied molecules. The books of Waterman [68], of Setubal
and Meidanis [67], of Pevzner [63], and of Jones and Pevzner [60] constitute
excellent introductions to problems of the domain. The book of Sankoff and
Kruskal [66] contains applications of alignments to various fields.

The subsequence distance of Section 7.3 is often attributed to Leven-
shtein [176]. The notion of the longest subsequences common to two strings is
used for file comparison. The command diff of the UNIX system implements
an algorithm based on this notion by considering that the lines of the files are
letters of the alphabet. Among the algorithms at the basis of this command
are those of Hunt and Szymanski [158] (Exercise 7.7) and of Myers [191]. A
general presentation of the algorithms for searching for common subsequences
can be found in an article by Apostolico [94]. Wong and Chandra [217] have
shown that the algorithm LCS-SIMPLE is optimal in a model where we limit
the access to letters to equality tests. Without this condition, Hirschberg [153]
gave a (lower) bound 2(n x logn). On a bounded alphabet, Masek and Pa-
terson [183] gave an algorithm running in time O(n?/logn). A sub-quadratic
sequence alignment algorithm for unrestricted cost functions has been designed
by Crochemore, Landau, and Ziv-Ukelson [124].

The initial algorithm of global alignment, from Needleman and Wun-
sch [194], runs in cubic time. The algorithm of Wagner and Fischer [215],
as well as the algorithm for local alignment of Smith and Waterman [209],
run in quadratic time (see [6], page 234). The method of dynamic program-
ming was introduced by Bellman (1957, see [75]). Sankoff [203] discusses
the introduction of the dynamic programming in the processing of molecular
sequences.

The algorithm LCS is from Hirschberg [152]. The presentation given here
refers to the book of Durbin, Eddy, Krogh, and Mitchison [57]. A generalization
of this method has been proposed by Myers and Miller [192]. An implemen-
tation of the algorithm in the bit-vector model was proposed by Allison and
Dix [89], later improved by Crochemore, Iliopoulos, and Pinzon [123].

The algorithm GAP is from Gotoh [146]. A survey of the methods for
alignment with gaps was presented by Giancarlo in 1997 (see [1]). The proof
of Proposition 7.21 is presented in [67].

The heuristic method of Section 7.6 is the core of the software Blast (see
Altschul, Gish, Miller, Myers, and Lipman [90]). The parameters £ and k of
the section correspond respectively to parameters W (word size) and T (word
score threshold) of the software.

Charras and Lecroq created and maintains the site [52], accessible on the
Web, where animations of alignment algorithms are available.
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Exercises

7.1 (Distances)
Show that d,,.f, dsyp, dpaci, and dyp, are distances.

7.2 (Transposition)

Conceive a distance between strings that, in addition to the elementary edit
operations, takes into account the transposition of two consecutive letters.
Describe a computation algorithm for this distance.

7.3 (One column)
Give a version of the algorithm GENERIC-DP that uses a single table of size
min{m, n} in addition to the strings and to constant memory space.

7.4 (Distinguished)

Given two different strings x and y, give an algorithm that finds a shortest
subsequence that distinguishes them, that is to say, finds a string z of minimal
length that satisfies, either both z <geq X and z Zgseq ¥, O both z Ageq x and
7 Zsseq ¥+ (Hint: see Lothaire [79], Chapter 6.)

7.5 (Automaton)

Give a method for producing the automaton of optimal alignments between
two strings x and y from the table T of Section 7.2 using only a linear extra
space (in contrast with the algorithm OPT-ALIGN-AUT that utilizes the table E
of size O(|x| x |y])). (Hint: memorize a list of current vertices belonging to
one or two consecutive antidiagonals.)

7.6 (Alternative)
There exists another method than the one used by the algorithm LCS (Sec-
tion 7.3) for finding the index k of Equation (7.2). This method consists in com-
puting the values of the last column C| of the table T for x and y[0.. [n/2] — 1]
and in computing the values of the last column C; of the table for the reverse
of x and the reverse of y[|n/2]..n — 1]. The index k is then a value such that
—1 < k < m — 1 and that maximizes the sum C;[k] + C[m — 2 — k].

Write an algorithm that computes a longest subsequence common to two
strings, in linear space, using this method. (Hint: see Hirschberg [152].)

7.7 (Abacus)

There exists a method for computing efficiently a longest common subsequence
between two strings x and y when they share few letters in common. The
letters of y are sequentially processed from the first to the last. Let us consider
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the situation where y[0..j — 1] has already been processed. The algorithm
maintains a partition of the positions on x into classes Iy, Iy, ..., I, ... defined
by

I = {i : les(x[0..i], y[0..j — 1]) = k).

In other words, the positions in the class /; correspond to prefixes of x that
have a longest common subsequence of length k£ with y[0..j — 1].

The analysis of y[j] consists then in considering the positions £ on x such
that x[¢] = y[j], positions that are processed in decreasing order. Let £ be such
a position and [I; be its class. If £ — 1 belongs also to the class I, we slide
all the positions of I; greater than or equal to £ to the class [z (imagine an
abacus where each bowl represents a position on x and where each cluster of
bowls represents a class).

Implement this method for computing a longest subsequence common to
two strings. Show that we can realize it in time O(m X n x logm) and space
O(m). Give a condition on x and y that reduces the time to O(m + n x logm).
(Hint: see Hunt and Szymanski [158].)

7.8 (Subsequence automaton)
Give the number of states and of arcs of the automaton SM(x), minimal
automaton recognizing Subs(x), the set of subsequences of x (x € A*).
Design a sequential algorithm for building SM(x), then a second algo-
rithm doing it by scanning the string from right to left instead. What are the
complexities of the two algorithms?
How and with what complexity can we compute with the help of the automata
SM(x) and SM(y) (x,y € A*) a shortest subsequence distinguishing x and
y, if it exists, or a longest subsequence common to these two strings?

7.9 (Three strings)
Write an algorithm for aligning three strings in quadratic space.

7.10 (Restricted subsequence)
Letx € A*beastring and let ugu; ... u,_; be afactorization of x withu; € A*

for j =0,1,...,r — 1. A string z of length k is a restricted subsequence of x
together with its factorization ugu; . .. u,_; if there exists a strictly increasing
sequence {po, P1, - - - » Pk—1) Of positions on x such that

e x[pil=z[i]fori =0,1,...,k—1;
* if two positions p; and p; are such that

|u0u1...uj_1| < pi, pir < |MQM1...Mj
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for j =1,2,...,r — 1, then z[i] # z[i’]. This means that two equal letters
of a u; cannot occur in the restricted subsequence.

A string z is a longest restricted subsequence of a string x factorized into
uouy ...u,—1 and of a string y factorized into vov; ... vy_; if z is a restricted
subsequence of x, z is a restricted subsequence of y, and the length of z is
maximum.

Design an algorithm that finds a longest restricted subsequence common to
two factorized strings x and y. (Hint: see Andrejkova [92].)

7.11 (Less frequentable neighbors)
Design an algorithm for the construction of a deterministic automaton recog-
nizing the frequentable neighbors considered in Section 7.6.

Generalize the notion of frequentable neighbors obtained by considering
the three edit operations (and not only the substitution). Write up an associated
local alignment program.
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Approximate patterns

In this chapter, we are interested in the approximate search for fixed strings.
Several notions of approximation on strings are considered: jokers, differences,
and mismatches.

A joker is a symbol meant to represent all the letters of the alphabet. The
solutions to the problem of searching a text for a pattern containing jokers use
specific methods that are described in Section 8.1.

More generally, approximate pattern matching consists in locating all the
occurrences of factors inside a text y that are similar to a string x. It consists in
producing the positions of the factors of y that are at distance at most k from
x, for a given natural integer k. We assume in the rest that k < |x| < |y|. We
consider two distances for measuring the approximation: the edit distance and
the Hamming distance.

The edit distance between two strings u and v, that are not necessarily
of the same length, is the minimum cost of a sequence of elementary edit
operations between these two strings (see Section 7.1). The method at the
basis of approximate pattern matching is a natural extension of the alignment
method by dynamic programming of Chapter 7. It can be improved by using
a restricted notion of distance obtained by considering the minimum number
of edit operations rather than the sum of their costs. With this distance, the
problem is known as the approximate pattern matching with k differences.
Section 8.2 presents several solutions of it.

The Hamming distance between two strings # and v of the same length is
the number of positions where mismatches occur between the two strings. With
this distance, the problem is known as the approximate pattern matching with
k mismatches. It is treated in Section 8.3.

We examine then (Section 8.4) the case of searching for short patterns
for which we extend the bit-vector model of Section 1.5. The solution gives

287
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excellent practical results and is very flexible as long as the conditions of its
utilization are fulfilled.

We finally tackle (Section 8.5) a heuristic method for finding quickly in a
dictionary some occurrences of approximate factors of a fixed string.

8.1 Approximate pattern matching with jokers

In this section, we assume that the string x and the text y can contain occurrences
of the letter §, called joker, special letter that does not belong to the alphabet
A. The joker! matches with itself as well as with all the letters of the alphabet
A.

More precisely, we define the notion of correspondence on A U {§} as
follows. Two letters a and b of the alphabet A U {§} correspond, what we
denote by

axb,

if they are equal or if at least one of them is the joker. We extend this notion of
correspondence to strings: two strings # and v on the alphabet A U {§} and of
the same length m correspond, what we denote by

u=xv,

if, at each position, their respective letters correspond, that is to say if, for
i=0,1,....m—1,

uli] ~ vli].

The search for all the occurrences of a string with jokers x of length m in
a text y of length n consists in detecting all the positions j on y for which
xxy[j..j+m—1].

Jokers only in the string

When only the string x contains jokers, it is possible to solve the problem by
using the same techniques as those developed for the search for a dictionary
(see Chapter 2).

Let us assume for the rest that the string x is not empty and that at least one
of its letters is in A. It decomposes then in the form

X = §i°x0§i‘x1 .. §i"“xk_1§i"

! Let us add that several distinct jokers can be considered. But the assumption is that, from the
point of view of the search, they are not distinguishable.
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where k > 1,ip > 0,i;, >0forg =1,2,...,k—1,i; >0, and x, € AT for
q=0,1,...,k— 1. Let us denote by X the set of strings xg, X1, ..., Xg—1
(these strings are not necessarily all distinct). Then, let M = D(X) be the
dictionary automaton of X (see Section 2.2) whose outputs are defined by: the
output of the state u is the set of right positions on x of the occurrences of those
strings x, that are suffixes of u.

The searching algorithm utilizes the automaton M in order to analyze the
text y. Moreover, a counter is associated with each position on the text, the
initial value of the counter being null. When an occurrence of a factor x, is
discovered at right position j on y, the counters associated with positions j — p
for which p is an element of the current output are incremented. When a counter
at a position £ of the text reaches the value k, it indicates that x occurs at the
(left) position £ on y. The following code applies this method.

JOKER-SEARCH(M , m, k, ig, i, y, 1)
1 forj <« —m+1ton—1do
Cljl1<0
r < initial[M]
for j < ipton — i, do
r < TARGET(r, y[j])
for each p € output[r] do
Clj—pl<Clj—pl+1
OutpPUT-IF(C[j — p] = k)

(e <IN Bie NNV, RN SOV )

We note that the values C[£] with £ < j — m are not useful when the current
position on y is j. So, only m counters are necessary for the computation. This
allows to state the following result.

Proposition 8.1

The search for the occurrences of a string with jokers, x of length m, of the form
x = §°x08" x; ... §% ' x,_18%, in a text of length n can be done in time O(k x
n)and space O(m), with the help of the automaton D({x¢, X1, . . ., Xx—1}) having
the adequate outputs.

Proof After the results of Chapter 2, and if, for the moment, we omit the loop
in lines 6-8, the execution time of the algorithm JOKER-SEARCH is O(k X n)
whatever the implementation for the automaton M is. Now, as the number
of elements of each output of the automaton is less than k, the loop in lines
6-8 takes a time O(k), whatever the value of j is. We thus get the total time
O(k x n) as announced.
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The memory space necessary for the execution of the algorithm is O(m),
since it essentially consists in storing m values of the table C after the remark
that precedes the statement. ]

The preliminary phase of the execution of the algorithm JOKER-SEARCH
consists in producing the automaton D({xg, xy, ..., xx—1}) with its outputs.
And, to be consistent, this computation must be done in time O(k x m) and
space O(m). This is realized by the implementation of the automaton with
failure function (see Section 2.3). The outputs of the states are generated as in
Section 2.2.

Jokers in the text and in the string

The problem of the search for x in y when the two strings can contain jokers
does not solve in the same terms than for a classical string searching. This
comes from the fact that the relation ~ is not transitive: for a, b € A, the re-
lations a &~ § and § &~ b does not necessarily imply a & b. Moreover, if the
comparisons of letters (using the relation =) constitute the only access to the
text, there exists a minimal quadratic bound to the problem, which additionally
proves that this problem is different from the other string matching problems.

Theorem 8.2

Let us assume card A > 2. If the comparisons of letters constitute the only
access to the text y, finding all the occurrences of a string with jokers x of
length m in a text with jokers y of length n can require a time Q(m X n).

Proof Thelength m being fixed, let us consider the case where n = 2m. Let us
assume that during its execution, an algorithm does not perform the comparison
x[i]vs. y[j]lforsomei =0,1,...,m —1landsome j =i, i +1,...,i +m.
Then the output of this algorithm is the same in the case x = §” and y =
§2", than in the case x = §'a§” '~! and y = §/b§?”" /!, though there is
one occurrence less in the second case. This shows that such an algorithm is
erroneous. It follows that at least m x (m + 1) comparisons must be performed.

When n > 2m, we factorize y into factors of length 2m (except maybe at
the end of y where the factor can be shorter). The previous argument applies
to each factor and leads to the bound of Q(m? x L5,,]) comparisons. [ ]

Let us expose now a method that allows to find all the occurrences of a string
with jokers in a text with jokers using bit vectors. We assume thatn > m > 1.

For any bit vectors p and ¢ of at least one bit, we denote by p ® g the
product of p and g that is the vector of |p| + |g| — 1 bits defined by

(pegltl=\/ plil Aqljl,

itj=t
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for =0,1,...,|p| + |g] — 2. For every string u on A U {§} and every letter
a € A, we denote by A(u, a) the characteristic vector of the positions of a on u
defined as the vector of |u| bits satisfying

1 ifuli]=a,

0 otherwise,

AMu, a)li] = {

fori =0,1,...,|ul —1.
Now, if r is the vector of m + n — 1 bits such that

r= \/ Ay, a) ® A(x", b),
a,beA and a#b

we have, for{ =m —1,m,...,n —1,
rif] =0
if and only if
x~yl—-—m+1..¢2].

An example is shown in Figure 8.1.

The computation time of the bit vector r is ®((card A)*> x m x n) if the
computation of the terms A(y, a) ® A(x™, b) is performed directly on the bit
vectors. This time complexity can, however, be sensibly improved if the prod-
ucts @ are realized with the help of a fast implementation of integer product.
This idea is developed in the proof of the result that follows.

Theorem 8.3
The occurrences of a string with jokers, x of length m, in a text with jokers, y
of length n, can be found in time

O((card A)2 X n X (logm)2 x loglog m).

Proof Let first note that if p and g are two bit vectors, their product p ® g
can be realized as a product of polynomials: it is sufficient to associate V with
+, A with x, the bit O with the null value, and the bit 1 with every non-null
value. Let us add that the coefficients of the polynomial thus associated with
p ® g are all smaller than min{|p|, |¢|}. But the product of the polynomials
associated with p and g can itself be realized as the product of two integers if
we take care to encode the coefficients on a sufficient number of bits, that is to
say on t = [log,(1 + min{| p|, |g|})] bits.

It follows that for realizing the product s = p ® ¢, it is sufficient to have
three memory cells for storing integer: P of ¢ x |p| bits, Q of ¢ x |g] bits,
and S of r x (|p| + |g| — 1) bits. Then to initialize P and Q to zero, to set
the bits P[¢ x i] to 1 if p[i] = 1, to set the bits Q[t x i] to 1 if g[i] = 1, to
perform the product § = P x Q, then to set the bits s[i] to 1 if one of the bits of
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0001 1 0 0 0 1 0 <«Aya)
0 0 1 1 0 <« A(x",b)
0O 0 0 0 0 00 0 O
@ 0O 0 0 1 1 0 O O 1 O
0O 0 0 1 1 0 0O O 1 O
0O 0 0 0 0O 0O OO 0 O
0O 0 0 00O 0 0 O
00 01 1 1 00 1 1 0 0 —Ay,a®Arx",b)
0 1 0 0 001 0 0 1 <«A(y,b)
1 0 0 0 1 <« A1x7,a)
0 1 0 0 001 0 0 1
(b) O 0 0 0 0O 0O 00O O O
0O 0 0 000 OO 0 O
0O 0 0 000 OO 0 O
1 0 0 0 01 0 O 1
1.0 001 1 0 0 1 1 0 0 1 —>Ay,b®ArAx",a)
0 0 0 1 1 1 0o 1 1 0 <~ AMy,2) @ A(x7,b)
¢ 01 0 00 1 1 0 0 1 1 1 < Ay,b)®A(x",a)
01 0 0 0111 011 1 0 1 —r
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@ s Erosal rGpbE§a

Figure 8.1. Search for the string with jokers x = abb§a of length m = 5 in the text with jok-
ers y = §b§aa§b§ab of length n = 10. (a) Computation of the product A(y, a) ® A(x~, b).
(b) Computation of the product A(y, b) ® A(x™, a). (¢) Computation of the bit vector r of
length m +n — 1 = 14, disjunction of two previous vectors. The positions £ on r within
m —1=4and n — 1 =9 for which r[£] = 0, positions 4 and 8 in gray, are the right posi-
tions of an occurrence of x in y. (d) The two occurrences of x in y, at right positions 4 and
8.
St xi..t x (@ +1)—1]is non-null and to 0 otherwise. The time required to
realize the product is thus O(¢t x (|p| + |gq|)) for the initializations and settings,
to which we must add the time for performing the product of two numbers of
t X |plandt x |g| bits.

We know that it is possible to multiply a number of M digits by a number of
N digits in time O(N x log M x loglog M), for N > M (see notes). If we set
p =A(y,a)and g = A(x"~, b), we have |p| =m, |q| = n, t = [log,(m + 1)1,
M =t xm, and N =t x n. The time necessary for the computation of the
product A(y,a) @ A(x™, b) is thus O(n x logm) for the initializations and
settings, plus O(n x (logm)? x loglogm) for the multiplication. There are
(card A — 1)? products of this type to perform. The computation of the bit
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vector r can be done jointly with those of the products; this requires a time
O((card A)?> x n). The announced total complexity follows. ]

8.2 Approximate pattern matching with differences

In this section, we consider the approximate pattern matching with differences:
locating all the factors of y that are at a given maximal distance k of x. We
setm = |x| and n = |y|, and we assume k € N and k < m < n. The distance
between two strings is defined here as the minimal number of differences
between these two strings. A difference can be one of the edit operations:
substitution, deletion or insertion (see Section 7.1). The problem corresponds
to the utilization of a simplified notion of edit distance. The standard solutions
designed to solve the problem consist in using the dynamic programming
technique introduced in Chapter 7. We describe three variations around this
technique.

Dynamic programming

We first examine a problem a bit more general for which the cost of the edit
operations is not necessarily the unit. It consists thus of the ordinary edit
distance (see Chapter 7). Aligning x with a factor of y amounts to align x with
a prefix of y considering that the insertion of any number of letters of y at the
beginning of x is not penalizing. With the table T of Section 7.2 we can check
that, in order to solve the problem, it is sufficient then to initialize to zero the
values of the first line of the table. The positions of the occurrences are then
associated with all the values of the last line of the table that are not greater
than k.

To be more formal, to search for approximate factors we utilize the table R
defined by

R[i, j] = min{Lev(x[0..i],y[£..j]D:€£=0,1,...,j+ 1},

fori =—-1,0,...,m—1and j=—1,0,...,n — 1, where Lev is the edit
distance of Section 7.1. The computation of the values of the table R utilizes
the recurrence relations of the next proposition.

Proposition 8.4
Fori=0,1,....m—1and j=0,1,...,n— 1, we have:
R[—1,—-1]1=0,

R[i, —1] = R[i — 1, —1] + Del(x[i]),
R[-1,j1=0,
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R[i — 1, j — 11+ Sub(x[i], y[j]),
R[i, j1 =min { R[i — 1, j1+ Del(x[i]),
R[i, j — 11+ Ins(y[j]).

Proof Analogue to the proof of Proposition 7.3. ]

The searching algorithm K-DIFr-DP whose code is given thereafter and that
translates the recurrence of the previous proposition performs the approximate
search. An example is given in Figure 8.2.

K-pDIrr-DP(x, m, y, n, k)

1 R[-1,—-1]<«0
2 fori < Otom —1do

3 R[i, —1] < R[i — 1, —1] + Del(x[i])
4 forj < Oton—1do
5 R[—1,j]1 <0
6 fori < Otom — 1do
R[i —1, j — 114 Sub(x[i], y[j])
7 R[i, j1 < min{ R[i — 1, j]+ Del(x[i])
R[i, j — 1]+ Ins(y[j])
8 OuTpUT-IF(R[m — 1, j] < k)

We note that the space used by the algorithm K-DIFF-DP can be reduced
to a single column by reproducing the technique of Section 7.3. Besides this
technique is implemented further by the algorithm K-DIFF-CUT-OFF. As a con-
clusion, we get the following result.

Proposition 8.5

The operation K-DIFF-DP(x, m, y, n, k) finds the factors u of y for which
Lev(u, x) < k (Lev is the edit distance with general costs) and executes in
time O(m x n). It can be implemented to use O(m) space. ]

Diagonal monotony

In the rest of the section, we consider that the costs of the edit operations are
units. This is a simple case for which we can describe more efficient computa-
tion strategies than those described above. The restriction allows to state a prop-
erty of monotony on the diagonals that is at the core of the presented variations.

Since we assume that Sub(a, b) = Del(a) = Ins(b) = 1 fora,b € A,a # b,
the recurrence relation of Proposition 8.4 simplifies and becomes

R[-1,-1]1=0,
R[i,-1]=i+1,
R[-1,j1=0,
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R|j -1o0o 1 2 3 4 5 6 7 8 9 10 11
i yjlC A G A T A A G A G A A
—-1|xi10 0o 0 O O O O O O O 0 0 O
(a)OG1110111101011
1 |/a 2 2 1 1 0o 1 1 1 1 0 1 0 1
2 |/t 3 3 2 2 1 0 1 2 2 1 1 1 1
3 |A 4 4 3 3 2 1 o0 1 2 2 2 1 1
4 |a 5 5 4 4 3 2 1 0 1 2 3 2 1
G A T A A
(CAGAT—AAGAGAA)
G A T A A
(CAGATAAGAGAA)
G A T A A
(CAGATA—AGAGAA)
- G A T A A
(b)(CGATAAGAGAA)
( G A T A A )
C AG - A T A A G A G A A
(GATAA- )
C A G A T A A G A G A A
G A T A A
(CAGATAAGAGAA)

Figure 8.2. Search for x = GATAA in y = CAGATAAGAGAA with one difference, considering
unit costs for the edit operations. (a) Values of table R. (b) The seven alignments of x with
factors of y ending at positions 5, 6, 7, and 11 on y. We note that the fourth and sixth
alignments give no extra information compared to the second alignment.

Rli —1,j—1] if x[i] = y[Jj],
o RI L -1 # Y
RU.J¥=ming a1 7141, @)
R[i, j—1]+1. )

fori =0,1,...,.m—1land j =0,1,...,n— 1.

A diagonal d of the table R consists of the positions [i, j] for which
j—i=d (—m <d < n). The property of diagonal monotony expresses that
the sequence of values on each diagonal of the table R is increasing and
that the difference between two consecutive values is at most one (see Fig-
ure 8.2). Before formally stating the property, we show intermediate results.
The first result means that two adjacent values on a column of the table R
differ by at most one unit. The second result is symmetrical considering the
lines of R.
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Lemma 8.6
For each position j on the string y, we have

-1 <R[, jl-R[li—-1,j]l=<1
fori=0,1,...,m—1.

Proof From the recurrence on R stated above we deduce, fori > Oand j > 0,

R[i—-1,j—-1]
Rli, j1=>min{ R[i — 1, j]+ 1 (8.2)
Rl j—11+1

and R[i, j] < R[i — 1, j]1+ 1. Thus R[i, j]— R[i — 1, j] < 1. This proves
one of the inequalities of the statement.
The inequality

R[i, jl = R[i,j —1]1+1, (8.3)

that can be obtained by symmetry, is used in the rest.

We show that R[i, j] — R[i — 1, j] > —1 by recurrence on j, fori > 0 and
j = 0. This property is satisfied for j = —1 since R[i, —1] — R[i — 1, —1] =
i+l—-i=1>-1.

Let us assume that the inequality is satisfied until j — 1, thus

Rli,j—11+1>R[i—1,j—1] 8.4
Equation (8.3) gives, after substituting i — 1 for i,

Ri—1,j—11>R[li—1,j]—-1. (8.5)
By combining the Relations (8.2), (8.4), and (8.5), we get

R[i, j1 =z min{R[i — 1, j1+ 1, R[i = 1, j1—1}
that is to say R[i, j1 > R[i — 1, j] — 1, and thus R[i, j] — R[i — 1, j] > —1.
This ends the recurrence and the proof of the inequalities of the statement. m
Lemma 8.7
For each position i on the string x, we have
—1 <R[, jlI-R[L j—-11=1

forj=0,1,...,n—1.

Proof Symmetrical to the one of Lemma 8.6 by swapping the roles of x
and y. ]
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We now can state the proposition concerning the property of monotony on
the diagonals announced above.

Proposition 8.8 (monotony on the diagonals)
Fori=0,1,....m—1and j=0,1,...,n — 1, we have

Rli —1,j—=1] <R[ jl<R[—1j—-11+1

Proof After Relation (8.1), the inequality R[i — 1, j — 1] < R[i, j] is valid
if R[i —1,j—11<R[i—1,jl+1and R[i —1,j —1] <R[, j— 1]+ 1:
this is a consequence of Lemmas 8.6 and 8.7. Moreover, Equation (8.1) gives
R[i, j1 < R[i — 1, j — 1] + 1. The stated result follows. n

Partial computation

The property of monotony on diagonals is exploited in the following way in
order to avoid to compute some values in the table R that are greater than k, the
maximal number of allowed differences. The values are still computed column
by column in the increasing order of positions on y, and for each column in
the increasing order of positions on x, following the algorithm K-DIFF-DP.
When a value equal to k + 1 is found in a column, it is useless to compute
the next values in the same diagonal since those are all greater than k after
Proposition 8.8. For pruning the computation, we keep on each column the
lowest position at which is found an admissible value. If g; is this position, for
a given column j, only the values of lines —1 to g; + 1 are computed in the
next column (of index j + 1).
The algorithm K-DIFF-CUT-OFF below implements this method.

K-DIFF-CcUT-OFF(x, m, y, n, k)
1 fori < —1tok—1do

2 Cili] < i+1

3 p<k

4 for j < Oton —1do

5 Cy[—1] <0

6 fori < Oto p do

7 if x[i] = y[/] then

8 Coli] < Cqli — 1]
9 else C[i] < min{C,[i — 1], C,[i — 1], C{[i]} + 1
10 C, < (G,

11 while C[p] > k do

12 p<p—1

13 OUTPUT-IF(p = m — 1)

14 p < min{p+1,m —1}
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RJ|j -10 1 2 3 4 5 6 7 8 9 10 11
i yvj1¢ A G A T A A G A G A A
—-1|x@go o o o0 O 0O O O O 0 0 0 0
0 |l¢ 1 1 1 o 1 1 1 1 0 1 0 1 1
1 A 2 1 1 o0 1 1 1 1 0 1 o0 1
2 |T 2 1 0 1 2 2 1 1 1 1
3 A 1 0 1 2 2 2 1 1
4 | a 1 0o 1 2 1

Figure 8.3. Pruning of the computation of the dynamic programming table when searching
for x = GATAA in y = CAGATAAGAGAA with one difference (see Figure 8.2). We notice that 17
values of table R (those that are not shown) are not useful for the computation of occurrences
of approximate factors of x in y.

The column —1 is initialized until line k£ — 1 that corresponds to the value k.

For the next columns of index j =0, 1,...,n — 1, the values are computed
until line
. l+max{i :0<i<m—1land R[i,j — 1] <k},
pj = min m— 1

The table R is implemented via the two tables C, and C; that memorize
respectively the values of the current column during the computation and of
its previous column. The process is the same as the one used in the algorithm
LCS-coLuMN of Section 7.3. At each iteration of the loop in lines 6-9, we have

Cili—11=R[li—-1,j—1],
Cli —11=RI[i — 1, j1,
Cilil = R[i, j — 1].

We compute then the value C,[i] that is also R[i, j]. We find thus at this line
an implementation of Relation (8.1). An example of computation is given in
Figure 8.3.

We note that the memory space used by the algorithm is O(m). Indeed,
only two columns are memorized. This is possible since the computation of the
values for one column only needs those of the previous column.

Diagonal computation

The variant of the search with differences that we consider now consists in
computing the values of the table R according to the diagonals, and in taking
into account the monotony property. The interesting positions on diagonals
are those where changes happen. These changes are incrementations by one
because of the chosen distance.



8.2 Approximate pattern matching with differences 299

R 1|j -1o 1 2 3 4 5 6 7 8 9 10 11
i yj1¢ & G T A A G A G A
—1 | x[i] 0

0 |@ 1

1 A 1

2 |T 2

3 | A 2

4 | a 3

Figure 8.4. Values of table R on diagonal 5 for the approximate search for x = GATAA in
y = CAGATAAGAGAA. The last occurrences of each value on the diagonal are in gray. The lines
where they occur are stored in table L by the algorithm based on diagonal computation. We
thus have L[0,5] = —1, L[1,5] =1, L[2,5] =3, L[3,5] = 4.

For a number of differences ¢ and a diagonal d, we denote by L[q, d]
the index i of the line on which R[i, j] = g for the last time on the diagonal
Jj — i = d.Theidea of the definition of L[g, d]is shown in Figure 8.4. Formally,
forg =0,1,...,kandd = —m,—m +1,...,n — m, we have

Lig.d1=i

if and only if i is the maximal index, —1 <i < m, for which there exists an
index j, —1 < j < n, with

Rli,jl<gand j —i =d.

In other words, for ¢ fixed, the values L[g, d] mark the lowest borderline of
the values not greater than ¢ in the table R (gray values in Figure 8.5).

The definition of L[q, d] implies that ¢ is the smallest number of differences
between x[0. . L[g, d]] and a factor of the text ending at positiond + L[g, d] on
y. It, moreover, implies that the letters x[L[q, d] + 1] and y[d + L[gq, d] + 1]
are different when they are defined.

The values L[g, d] are computed by iteration on d, for ¢ running from 0
to k + 1. The principle of the computation relies on Recurrence (8.1) and the
above statements. A simulation of the computation on the table R is presented
in Figure 8.5.

For the problem of approximate pattern matching with k differences, only the
values L[q, d] for which g < k are needed. If L[g, d] = m — 1, it means that
there is an occurrence of the string x at the diagonal d with at most g differences.
The occurrence ending at position d + m — 1, this is only valid if d + m < n.
We get other approximate occurrences at the end of y when L[g,d] =i and
d + i = n — 1; in this case the number of differencesis g +m — 1 —i.
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R j -1 0 1 2 3 4 5 6 7 8 9 10 11
i yljl C A G A T A A G G A A
—1 | x[i] O 0 0 0 0 0 0 0 0
@) 0 G 0 0
1 A 0 0
2 T 0
3 A 0
4 A 0
R j -1 0 1 2 3 4 5 6 7 8 9 10 11
i yljl C A G A T A A G A G A A
—1 | x[i] O 0 0 0 0 0 0 0 0
0 G 1 1 1 0 1 1 1 1 0
®) 1 A 1 1 0 1 1 1 1
2 T 1 0 1 1 1
3 A 1 0 1 1
4 A 1 0 1 1
Figure 8.5. Simulation of the diagonal computation for the search for x = GATAA in y =
CAGATAAGAGAA with one difference (see Figure 8.2). (a) Values computed during the first step
(lines 7-11 for g = 0 of the algorithm L-DIFF-DIAG); they show an occurrence of x at right
position 6 on y (since R[4, 6] = 0). (b) Values computed during the second step (lines 7—11
for ¢ = 1); they indicate the approximate factors of x with one difference at right positions
5,7,and 11 on y (since R[4, 5] = R[4,7] = R[4, 11] = 1).
d |-2 -1 0 1 2 3 4 5 6 1 8 9
qg=-—1 -2 -2 -2 -2 -2 =2 -2 =2 =2 =2 =2
qg=0 -1 -1 -1 -1 4 -1 -1 -1 -1 1 -1
qg=1 0 1 4 4 4 1 1 2 4

Figure 8.6. Values of the table L of the diagonal computation when x = GATAA, y =
CAGATAAGAGAA, and k = 1. Lines ¢ = 0 and ¢ = 1 correspond to a state of the computa-
tion simulated on the table R of Figure 8.5. Values 4 = |GATAA| — 1 on line ¢ = 1 indicate
occurrences of x with at most one difference ending at positions 1 +4=5,2+4 =06,
3+4=7,and7+4=11ony.

The algorithm K-DIFF-DIAG performs the approximate search for x in y by
computing the values L[g, d]. Let us note that the first possible occurrence of
an approximate factor of x in y can end at position m — 1 — k on y, which
corresponds to diagonal —k. The last possible occurrence starts at position
n —m + k on y, which corresponds to diagonal n — m + k. Thus, only diago-
nals going from —k to n — m + k are considered during the computation (the
initialization is also done on the diagonals —k — 1 and n — m 4+ k + 1 in order
to simplify the writing of the algorithm). Figure 8.6 shows the table L obtained
on the example of Figure 8.2.
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K-DIFF-DIAG(x, m, y, n, k)
1 ford < —1ton—m+k+1do

2 L[—1,d] < -2
3 forg < Otok—1do
4 Llg,—q —1] < g —1
5 Llg,—q—2] < q—1
6 forg < Otokdo
7 ford < —gton—m+k—gqdo

Llg—1,d—1]
8 ¢ <« max{ Llg —1,d]+1

Llg—1,d+1]+1
9 { < min{{,m — 1}
10 Llg,d] < ¢

+ lepx[€+1..m— 1], y[d+ €+ 1..n—1])]

11 OutpUT-IF(L[g,d] =m — lord + L[g,d]=n —1)
Lemma 8.9

The algorithm K-DIFF-DIAG computes the table L.

Proof Let us show that L[q, d] is correctly computed by assuming that all
the values of line ¢ — 1 of L are exact. Let i be the value of £ computed in
line 8 of the algorithm, and let j = d +i.

Itcanhappenthati = mifi = L[g — 1,d]+ lori = L[g — 1,d + 1]+ 1.
In the first case, we have R[i, j] < g — 1 by recurrence hypothesis and thus
also R[i, j] < g, this gives L[q, d] =i as performed by the algorithm after
the instruction in line 9. In the second case, we also have L[g,d] =i by
Lemma 8.6, and the algorithm correctly performs the computation.

In each of the three cases that happen when i < m, we note that R[i, j] > g
since the maximality of i implies that R[i, j] has not been previously computed.
Ifi = L[g — 1,d — 1], the fact that R[i, j] = g results from Lemma 8.6. If
i=L[lg—1,d+ 1]+ 1, the equality comes from Lemma 8.7, and finally
if i = L[g —1,d] + 1 it comes from the diagonal monotony. The maximal
searched index line is obtained after the instruction in line 10 as a consequence
of the recurrence relation (8.1) on R.

We end the recurrence on g by checking that the table L is correctly
initialized. ]

Proposition 8.10

For a string x of length m, a string y of length n, and an integer k such that
k < m < n, the operation K-DIFF-DIAG(x, m, y, n, k) computes the approxi-
mate occurrences of x in 'y with at most k differences.
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Proof After the previous lemma, the table computed by the algorithm is the
table L.

If L{g,d] = m — 1, by definition of L, R[m — 1,d +m — 1] < g. By def-
inition of R, this means that x possesses an approximate occurrence at the
diagonal d with at most ¢ differences. The occurrences signaled via this
condition in line 11 are thus correct since ¢ <k. If d + L[g,d] =n — 1,
the algorithm signals an approximate occurrence of x at the diagonal d.
The number of differences is no more than ¢ +m — 1 — L[q, d], that is
g+m—1+d—n+1,thusg+m+d—n.Asd <n—m+k—q (line7),
we get a number of differences nomorethang +m —n+n—m+k —qg =k
as desired. The occurrences signaled after this second test in line 11 are thus also
correct.

Conversely, an approximate occurrence of x in y with k differences can
be detected on the table R when one of the conditions R[m — 1, j] < k or
Rli,n —1]4+m — 1 —i <k is satisfied. The first is equivalent to L[k, j —
m + 1] = m — 1, and the algorithm signals it in line 11. For the second, by
denoting g = R[i, n — 1], we have, by definitionof L, L[g,n — 1 —i] =i and
thusn — 1 —i+ L[g,n — 1 —i] =n — 1. The occurrence is thus signaled if
q <k, which is immediate after the above inequality, and if the diagonal
is examined, that is to say if n — 1 —i <n —m + k — q. The inequality is
equivalent to ¢ +m — 1 —i <k, which shows that the second condition is
satisfied. This ends the proof. ]

As the algorithm K-DIFF-DIAG is described, the memory space for its execu-
tion is principally used by the table L. We note that it is sufficient to memorize
a single line in order to correctly perform the computation, which gives an
implementation in space O(n). It is, however, possible to reduce the space to
O(m) obtaining a space comparable to that of the algorithm K-DIFF-CUT-OFF
(see Exercise 8.5).

Execution time of the diagonal computation

The method of diagonal computation highlights the longest common prefixes.
When these prefixes are computed by mere letter comparisons during each call
to the function /cp, the algorithm is not faster than the previous ones. This is
the result stated in the following proposition. But a preprocessing of the strings
x and y leads to implement the computation of the longest common prefixes in
such a way that each call executes in constant time. We then get the result stated
in Theorem 8.12. In a schematically way on the example of Figure 8.5, the first
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implementation takes a time proportional to the number of values that occur in
the second table, while the second implementation takes a time proportional to
the number of gray values.

Proposition 8.11
If the computation of lcp(u, v) is realized in time O(|lcp(u, v)|), the algorithm
K-DIFF-DIAG executes in time O(m X n).

Proof The proof relies on the observation that, if the longest common prefix
computed in line 10 is of length p > 0, the instructions of the loop (lines
8—11) amounts to define p + 1 new values in the table R. The cumulated
time of these computations of the longest common prefixes is thus O(m x n).
The other instructions of the loop execute in constant time (including the
computations of /cp that produce the empty string). As the instructions are
executed (k + 1) x (n — m + k + 1) times, they take the global time O (k x n).
As a consequence, the complete computation is done in time O(m X n). ]

The previous proof highlights the fact that if the computation of lcp(u, v) can
be done in constant time, the algorithm K-DIFF-DIAG executes in time O (k X n).
Actually, it is possible to prepare the strings x and y in such a way to obtain
this condition. For this, we utilize the suffix tree, 7.(z), of the string z = x#y$
where # ¢ alph(y) and $ ¢ alph(y) (see Chapter 5). The string

w=Ilepx[f+1.. m—1],y[d+£2+1..n—1])

is nothing else but Iep(x[€ + 1..m — 1]#y$, y[d + £ + 1..n — 1]$) since # ¢
alph(y). Let f and g be the external nodes of the tree 7.(z) associated with the
suffixes x[£ + 1..m — 1J#y$ and y[d + € + 1..n — 1]$ of the string z. Their
common prefix of maximal length is then the label of the path leading from
the initial state to the lowest node that is a common ancestor to f and g. This
reduces the computation of w to the computation of this node.

The problem of the lowest common ancestor that we are interested in here
is the one for which the tree is static. A linear-time preprocessing of the tree
leads to get constant-time response to the queries (see notes). The consequence
of this result is the next theorem.

Theorem 8.12
On a fixed alphabet, after preprocessing the strings x and y in linear time, it is
possible to execute the algorithm K-DIFF-DIAG in time O(k X n).

Proof The preprocessing first consists of the construction of the suffix tree
T.(z) of the string z = x#y$, then in the preparation of the tree in order to answer
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in constant time each query for the lowest common ancestor corresponding to
two of its external nodes. We associate also with each node of the tree the length
of this node (let us recall that the nodes of the tree are factors of z). The total
preparation time is linear since the alphabet is fixed (see Chapter 5 and notes).

The computation of |lep(x[€+1..m — 1], y[d + £+ 1..n — 1])| during
the execution of the algorithm K-DIFF-DIAG can then be realized in constant
time. It follows, using the proof of the previous proposition, that the global
execution time is O(k x n). [ ]

8.3 Approximate pattern matching
with mismatches

In this section, we restrict the approximate pattern matching to the search for all
the occurrences of a string x of length m in a string y of length n with at most k
mismatches (k € N, k < m < n). We recall from Chapter 7 that the Hamming
distance between two strings u# and v of the same length is the number of
mismatches between u and v, and is defined by

Ham(u, v) = card{i : u[i] # v[i],i =0,1,..., |u| — 1}.

The problem can then be expressed as the search for all the positions j =
0, 1,...,n — mony thatsatisfy the inequality Ham(x, y[j .. j + m — 1]) < k.

Search automaton

A natural solution to this problem consists in using an automaton that recognizes
the language A*{w : Ham(x, w) < k}. This extends the method developed in
Chapter 2. To do this, we can consider the nondeterministic automaton defined
as follows:

* each state is a pair (¢, i) where £ is the level of the state and i is its depth,
with0 <l <k,—1<i<m-—1l,and? <i+1,

e the initial state is (0, —1),

e the terminal states are of the form (¢, m — 1) with 0 < £ < k,

e the arcs are, for0 < ¢ <k,0<i <m —1,and a € A, either of the form
(0, —1), a, (0, —1)), or of the form ((¢, i), x[i + 1], (£, i + 1)), or finally of
the form ((¢,i),a, @+ 1,i + 1)) ifa#x[i +1]and0 <€ <k — 1.

The automaton possesses k 4 1 levels, each level £ allowing to recognize the
prefixes of x with £ mismatches. The arcs of the form ((¢,i),a, ({,i 4+ 1))
correspond to matches while those of the form ((¢,i),a,({ 4+ 1,i+ 1))
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Figure 8.7. The (nondeterministic) automaton for approximate pattern matching with two
mismatches corresponding to the string abcd on the alphabet A = {a, b, c, d}.

correspond to mismatches. The loop on the initial state is for finding all the
occurrences of the searched factors. During the analysis of a text with the au-
tomaton, if a terminal state (£, m — 1) is reached, this indicates the presence of
an occurrence of x with exactly £ mismatches.

It is clear that the automaton possesses (k + 1) x (m + 1 — '5) states and
that it can be build in time O(k x m). An example is shown in Figure 8.7.
Unfortunately, the total number of states of the equivalent deterministic au-
tomaton is

O(min{m**!, (k + D!(k + 2)" 1}

(see notes), and no method indicated in Chapter 2 can reduce simply the size
of the representation of the automaton.

We can check that a direct simulation of the automaton produces a search
algorithm whose execution time is O(m x n) using dynamic programming as
in the previous chapter. Actually, by using a method adapted to the problem
we get, in the rest, an algorithm that performs the search in time O(k X n).
This produces a solution of the same complexity as the one of the algorithm
K-DIFF-DIAG that, however, solves a more general problem. But the solution
that follows is based on a simple management of lists without using the lowest
common ancestor algorithm nor sophisticated processing.

Specific implementation

We show how to reduce the execution time of the simulation of the previous
automaton. To obtain the desired time O(k x n), during the search we make



306 8 Approximate patterns

v ] : |

Figure 8.8. Variables of the algorithm K-MISMATCHES. During the attempt at position j, vari-
ables f and g spot a previous attempt. The mismatches between y[f .. g] and x[0..g — f]
are stored in the queue F.

use of a queue F of positions that stores detected mismatches. Its update is
done by letter comparisons, but also by merging it with queues associated with
string x. The sequences that they represent are defined as follows.

For a shift ¢ of x, 1 <g <m — 1, G[q] is the increasing sequence, of
maximal length 2k + 1, of the positions on x of the leftmost mismatches
between x[0..m — g — 1] and x[¢q ..m — 1]. The sequences are determined
during a preprocessing phase that is described at the end of the section.

The searching phase consists in performing attempts at all the positions
j=0,1,...,n —m on y. During the attempt at position j, we scan the factor
y[j..j+m — 1] of the text and the generic situation is the following (see
Figure 8.8): the prefix y[j .. g] of the window has already been scanned during
a previous attempt at position f, f < j, and no comparison happened yet on
the suffix y[g + 1 ..n — 1] of the text. The process used here is similar to the
one realized by the algorithm PREFIXES of Section 1.6. The difference occurs
during the comparison of the already scanned part of the text, y[j .. g], since
it is not possible anymore to conclude with the help of a single test. Indeed,
around k tests can be necessary to perform the comparison. Figure 8.9 shows a
computation example.

The positions of the mismatches detected during the attempt at position f
are stored in a queue F. Their computation is done by scanning the positions
in increasing order. For the search with k mismatches, we only keep in F at
most k + 1 mismatches (the leftmost ones). Considering a possible (k + 1)th
mismatch amounts to compute the longest prefix of x that possesses exactly k
mismatches with the aligned factor of y.

The code of the search algorithm with mismatches, K-MISMATCHES, is given
below. The processing at position j proceeds in two steps. It first starts by
comparing the factors x[0..g — j] and y[j..g] using the queues F and
G[j — f]. The comparison amounts to perform a merge of these two queues
(line 7); this merge is described further. The second step is only applied when
the obtained sequence contains less than k positions. It resumes the scanning
of the window by simple letter comparisons (lines 10—16). This is during this
step that an occurrence of an approximate factor can be detected.
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yiababcbbaibabaacbabababbbab‘
(@ x [abachbab al

x [albacbab al
(b)

x [@bachab a

yla‘lbabcbbabl‘abaacbabababbbab
© E 4

x [abachbab al

Figure 8.9. Search with mismatches for the string x = abacbaba in the text y =
ababcbbababaacbabababbbab. (a) Occurrence of the string with exactly three mismatches at
position 0 on y. The queue F of mismatches contains positions 3,4,and 5on x, F = (3,4, 5).
(b) Shift of length 1. There are seven mismatches between x[0..6] and x[1..7], stored in
G[1]=(1,2,3,4,5,6,7) (see Figure 8.10). (c) Attempt at position 1: the factor y[1..7]
has already been considered but the letter y[8] = b has never been compared yet. The mis-
matches at positions 0, 1, 5, and 6 on x can be deduced from the merge of the queues F
and G[1]. Three letter comparisons are necessary at positions 2, 3, and 4 in order to detect
the mismatch at position 2 since these three positions are simultaneously in F" and G[1]. An
extra comparison provides the sixth mismatch at position 7.

K-MISMATCHES(x, m, G, y, n, k)
1 F < EMPTY-QUEUE()

2 (fig) < (=1,-D
3 forj < Oton—mdo

4 if LENGTH(F) > 0 and HEAD(F) = j — f — 1 then
5 DEQUEUE(F)
6 if j < g then
7 J < MIs-MERGE(f, J, g, F, G[j — f]
8 else J < EMPTY-QUEUE()
9 if LENGTH(J) < k then
10 F <« J
11 f<J
12 do g« g—+1
13 if x[g — j] # ylg] then
14 ENQUEUE(F, g — j)
15 while LENGTH(F) <kand g < j+m — 1
16 OuTPUT-IF(LENGTH(F') < k)

An example of table G and of successive values of the queue F of the mis-
matches is presented in Figure 8.10.
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J | YUl F
0 |a (3,4,5)
1 | b 0,1,2,5)
2 | a (2,3)
3 |b 0,1,2,3)
4 |c (0,2,3)
5 |b (0,3,4,5)
6 |b 0,1,2,3)
7 | a (3,4,6,7)
8 | b 0,1,2,3)
i | x[il Gli] 9 | a (3,4,5,6)
0|a 0 10 | b (0,1)
1|b (1,2,3,4,5,6,7) 11 | a (1,2,3,4)
2| a (3,4,5) 12 | a (1,2,3)
3] ¢ (3,6,7) 13| c (3,4,5,7)
4 |b (4,5,6,7) 14 | b 0,1,2,3)
5| a 0 15| a (3,4,5,7)
6| b (6,7) 16 | b 0,1,2,3)
7] a 0 17 | a (3,5,6,7)
(@) (b)

Figure 8.10. Queues used for the approximate search with three mismatches for x =
abacbaba in y = ababcbbababaacbabababbbab. (a) Values of table G for the string
abacbaba. For example, the queue G[3] contains 3, 6, and 7, positions on x of the mis-
matches between its suffix cbaba and its prefix abacb. (b) Successive values of the queue
F of mismatches as it is computed by the algorithm K-mMisMATCHES. The values at positions
0, 2, 4, 10, and 12 on y have no more than three elements, which reveals occurrences of
x with at most three mismatches at these positions. At position 0, for instance, the fac-
tor ababcbba of y possesses exactly three mismatches with x: they are at positions 3, 4,
and 5 on x.

In the algorithm K-MISMATCHES, the positions stored in the queues F or J are
positions on x. They indicate mismatches between x and the factor aligned with
it at position f on y. Thus, if p occurs in the queue, we have x[p] # y[f + p].
When the variable f is updated, the origin of the factor of y is replaced by
j, and we should thus translates the positions, that is to say, to decrease the
positions by the quantity j — f. This is realized in the algorithm MIis-MERGE
during the addition of a position in the output queue.

Complexity of the searching phase

Before examining the proof of the algorithm K-MISMATCHES, we discuss the
complexity of the searching phase. The running time depends on the function
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Mis-MERGE considered further (Lemma 8.14). The preprocessing of the string
comes next.

Theorem 8.13
If the merge realized by the algorithm MIS-MERGE executes in linear time,

the execution time of the algorithm K-MISMATCHES is O(k x n) in space
Ok x m).

Proof At each iteration of the loop in lines 3—16, the execution time of the
merge instruction in line 7 is O(k) after the assumption since the queue F
contains at most k + 1 elements and G[j — f] contains at most 2k + 1 of
them. The contribution to the total time is thus O(k x n).

The other operations of each of the n —m + 1 iterations of the loop in
lines 3-16, excluding the loop in lines 12—15, execute in constant time, this
contributes for O(n) to the global time.

The total number of iterations performed by the loop in lines 12—15 is O (n)
since the instructions increase the value of the variable g of one unit at each
iteration and this value never decreases.

It follows that the execution time of the algorithm K-MISMATCHES is
O(k x n).

The space occupied by the table G is O(k x m) and the space occupied
by the queues F and J is O(k), this shows that the total space used for the
computation is O(k x m). ]

Merge

The aim of the operation Mis-MERGE(f, j, g, F, G[j — f]) (line 7 of the algo-
rithm K-MISMATCHES) is to produce the sequence of positions of the mismatches
between the strings x[0.. g — j]and y[j .. g], relying on the knowledge of the
mismatches stored in the queues F and G[j — f].

The positions p in F mark the mismatches between x[0..g — f] and
y[f..gl, but only those that satisfy the inequality f + p > j (by defi-
nition of F we already have f 4 p < g) are useful to the computation.
The objective of the test in line 4 of the algorithm K-MISMATCHES is pre-
cisely to delete from F the useless values. The positions ¢ of G[j — f] de-
note the mismatches between x[j — f..m — 1] and x[0..m — j + f — 1].
Those that are useful must satisfy the inequality f +¢g < g (we already
have f 4 ¢ > j). The test in line 18 of the algorithm MIs-MERGE takes
into account this constraint. Figure 8.11 illustrates the merge (see also
Figure 8.9).
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ylababicbbababaiaababababbbab

@ x [abacbab al
xlabacbaba|
(b)
x|abacbaba‘
ylababcbibababaacibabababbbab
(©) : 4

x|abacbaba‘

Figure 8.11. Merge during the search with three mismatches for x = abacbaba in y =
ababcbbababaacbabababbbab. (a) Occurrence of x at position 4 on y with three mismatches
at positions 0, 2, and 3 on x; F = (0, 2, 3). (b) There are three mismatches between x[2 .. 7]
and x[0..5]; G[2] = (3,4,5). (¢) The sequences conserved for the merge are (2, 3) and
(3,4, 5), and this latter produces the sequence (2, 3,4,5) of positions of the first four
mismatches between x and y[6.. 13]. A single letter comparison is necessary at position 3,
to detect the mismatch between x[1] and y[7], since the other positions occur in only one of
the two sequences.

Let us consider a position p on x such that j < f 4+ p < g. If p occurs
in F, this means that y[ f + p] # x[p]. If p is in G[j — f], this means that
x[p] # x[p — j + f]. Four situations can arise for a position p whether it
occurs or not in F and G[j — f] (see Figures 8.9 and 8.11):

1. The position p is not in F nor in G[j — f]. We have y[ f + p] = x[p] and
x[pl=x[p—j+ fl.thus y[f + p] = x[p—j + f].

2. The position p is in F but not in G[j — f]. We have y[ f + p] # x[p] and
x[pl=x[p—j+ fl.thus y[f + pl#x[p—j+ f]

3. The position p is in G[j — f] but not in F. We have y[ f + p] = x[p] and
x[pl#x[p—Jj+ fl.thus y[f + pl#x[p—j+ f]

4. The position p isin F and in G[j — f]. We have y[ f + p] # x[p] and
x[p] # x[p — j + f], this does not allow to conclude on the equality
between y[f + pland x[p — j + f].

Among the enumerated cases, only the last three can lead to a mismatch
between the letters y[ f + p] and x[p — j + f]. Only the last case requires an
extra comparison of letters. Cases are processed in this respective order in lines
67, 9-10, and 11-14 of the merge algorithm.

Mis-MERGE( f, J, g, F, G)
1 J < EMPTY-QUEUE()
2 while LENGTH(J) < k
and LENGTH(F') > 0 and LENGTH(G) > 0 do
3 p < HEAD(F)
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4 q < HEAD(G)

5 if p < g then

6 DEQUEUE(F)

7 ENQUEUE(J, p — j + f)

8 elseif ¢ < p then

9 DEQUEUE(G)
10 ENQUEUE(J,q — j + f)
11 else DEQUEUE(F)
12 DEQUEUE(G)
13 ifx[p—j+ f1# ylf + pl then
14 ENQUEUE(J, p — j + f)

15 while LENGTH(J) < k and LENGTH(F) > 0 do
16 p < DEQUEUED(F)

17 ENQUEUE(J, p — j + f)

18 while LENGTH(J) < k and LENGTH(G) > 0
and HEAD(G) < g — f do

19 q < DEQUEUED(G)

20 ENQUEUE(J, ¢ — j + f)

21 return J

The next lemma provides the result used as an assumption in Theorem 8.13
for stating the execution time of the algorithm of approximate pattern matching
with mismatches.

Lemma 8.14
The algorithm MIS-MERGE executes in linear time.

Proof The structure of the algorithm Mis-MERGE is composed of three while
loops. We notice that the iteration of each of these loops leads to delete one
element from the queues F or G (or from both). As the execution time of one
iteration is constant, we deduce that the total time required by the algorithm is
linear in the sum of the lengths of the two queues F and G. ]

Correctness proof

The proof of correctness of the algorithm K-MISMATCHES relies on the proof of
the function Mis-MERGE. One of the main arguments of the proof is a property
of the Hamming distance that is stated in the next lemma.

Lemma 8.15
Let u, v, and w be three strings of the same length. Let us set d = Ham(u, v),
d’ = Ham(v, w), and assume d' < d. We then have

d—d <Ham(u,w)<d+d'.
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Proof The strings being of the same length, they have the same set of posi-
tions P. Let us consider the sets Q = {p € P : u[p]l # v[pl}, R={p e P:
v[pl # wlpl},and S = {p € P : u[p] # w[pl}. A position p € § satisfies the
inequality u[p] # w[p] and we have thus u[p] # v[p] or v[p] # w[p] (or
both). It follows that S € Q U R.

Besides, p € O \ R implies p € S since the condition gives u[p] # v[p]
and v[p] = w[p]; thus u[p] # w[p]. Also, by symmetry, p € R\ Q implies
peSs.

As a conclusion, Ham(u, w) = card S is upper bounded by card(Q U R)
which is a maximum when Q and R are disjoint; so, Ham(u, w) <d +d'.
Moreover, Ham(u, w) is lower bounded by card((Q U R) \ (Q N R)) which is
minimum when R C Q (since d’ < d). We thus have Ham(u, w) >d —d'. =

When the operation Mis-MERGE(f, j, g, F, G[j — f]) is executed in the
algorithm K-MISMATCHES, the next conditions are satisfied:

L f<j=g=f+m-1,

2. F=(p:xlpl#ylf +pland j < f + p < g)),

3. xlg — f1# ylgl

4. LENGTH(F) <k + 1,

5.G=(p:x[pl#x[lp—j+ fland j < f + p < g’) for an integer g’
suchthat j < g' < f+m—1.

Moreover, if ¢’ < f +m — 1, LENGTH(G) = 2k + 1 by definition of G. By
taking these conditions as assumptions we get the following result.

Lemma 8.16
Let J = Mis-MERGE(f, j, g, F, G[j — f]). If LENGTH(J) < k,

J={(p:xlpl#ylj+plandj<j+p=<g),

and, in the contrary case,

Ham(y[j..gl,x[0..g — j]) > k.

Proof Lletussetu=y[j..gl,v=x[j—f..g— f],and w=x[0..g —
j]. Let us assume g’ < g and let us set v  =x[j — f..g' — f] and w' =
x[0..g" — j]. We have LENGTH(G) = 2k + 1, that is to say Ham(x[j — f ..
g —f1.x[0..¢g —j) =2k + 1. Besides, Ham(y[j..g'l.x[j — f..& —
f1 < ksince g’ < g. AfterLemma8.15, we deduce Ham(y[j .. g'], x[0..g" —
JiD=k+1.

We deduce from this result that if LENGTH(J) < k, we necessarily have
g < g, otherwise the merge performed by the algorithm Mis-MERGE would
produce at least k + 1 elements. A simple verification then shows that the
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algorithm merges the sequences F and (g : ¢ in G[j — f] and f 4+ g < g) into
a sequence S. And the algorithm produces the sequence J = (g :q + j —
f in S) that satisfies the equality of the statement.

When LENGTH(J) > k, we actually have LENGTH(J) = k + 1| since the
merge algorithm limits the length of J to k + 1. If g’ < g, we have seen above
that the conclusion is satisfied. Otherwise, the algorithm effectively finds k + 1
positions ¢ that satisfy x[q] # y[j +¢q] and j < j + g < g. This gives the
same conclusion and ends the proof. ]

The proposition that follows is on the correctness of the algorithm K-
MISMATCHES. It assumes that the sequences G[q] are computed in accordance
with their definition.

Proposition 8.17
If x,ye A*¥, m=|x|, n=|y|, k€N, and k <m <n, the algorithm K-
MISMATCHES detects all the positions j =0,1,...,n—m on y for which

Ham(x,y[j..j+m—1]) <k.

Proof We start by checking that after each iteration of the main loop (lines
3-16) the queue F contains the longest increasing sequence of positions of
mismatches between y[f ..g] and x[0..g — f] having a length limited to
k+1.

We check it directly for the first iteration with the help of instructions of the
loop in lines 12—15, by noting that the initialization of the variable g implies that
the test in line 6 is not satisfied, whose consequence is a correct initialization
of J then of F.

Let us assume that the condition is satisfied and let us prove that it is still
satisfied at the next iteration. We note that the instructions in lines 4-5 have
for effect to delete from F' the positions less than j — f. If the inequality in
line 6 is not satisfied, the proof is analogue to the proof of the first iteration.
In the contrary case, the queue J is determined by the function MIS-MERGE. If
LENGTH(J) > k, the variables f, g, and F are unchanged thus the condition re-
mains satisfied. Otherwise, the value of J thus computed initializes the variable
F. After Lemma 8.16, the queue contains the increasing sequence of positions
of the mismatches between y[f .. g] and x[0..g — f]. The maximality of its
length is obtained after execution of the instructions of the loop in lines 12—15.
This ends the induction and the proof of the condition on F.

Let j be a position on y for which an occurrence is reported (line 16). The
condition in line 15 indicates that g = j + m — 1. The above proof shows that
LENGTH(F) = Ham(x, y[j .. j + m — 1]), quantity less than k. There is thus
one occurrence of an approximate factor at position j.
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Conversely, if Ham(x, y[j .. j + m — 1]) < k, the instruction in line 16 is
executed after Lemma 8.16. The condition on F proved above shows that the
occurrence is detected. [

Preprocessing

The aim of the preprocessing phase is to compute the values of the table G
that is required by the algorithm K-misSMATCHES. Let us recall that for a shift
g of x, 1 <q <m — 1, G[q] is the increasing sequence of positions on x of
the leftmost mismatches between x[g ..m — 1]and x[0..m — g — 1], and that
this sequence is limited to 2k 4 1 elements.

The computation of the sequences G[qg] is realized in an elementary way by
the function whose code follows.

PRE-K-MISMATCHES(x, m, k)
1 forqg < 1tom—1do

2 Glq] < EMPTY-QUEUE()

3 i <—gq

4 while LENGTH(G[g]) < 2k + 1 andi < m do
5 if x[i] # x[i — ¢] then

6 ENQUEUE(G|q], i)

7 i <—i+1

8 return G

The execution time of the algorithm is O(m?), but it is possible to prepare
the table in time O(k x m x logm) (see Exercise 8.6).

8.4 Approximate matching for short patterns

The algorithm presented in this section is a method both very fast in practice
and very simple to implement for short patterns. The method solves the prob-
lems presented in the previous sections in the bit-vector model introduced in
Section 1.5. We first describe the method for the exact string searching, then
we show how we can adapt it for dealing with the approximate string searching
with mismatches and with the approximate string searching with differences.
The principal advantage of this method is that it is flexible and so adapts to a
large range of problems.

Exact string matching

We first present a technique for solving the problem of the exact search for
all the occurrences of a string x in a text y, that is different from the methods
already encountered in Chapters 1, 2, and 3.
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y [CAAATAAG|

x[0] 0

x[0..1] 0
x[0..2] 1
x[0..3] 1
; 0

Figure 8.12. Bit vector Rg for the search for x = AATAA in y = CAAATAAG. We have Rg =
00110. The only nonempty prefixes of x that end at position 6 on y are A, AA, and AATAA.

We consider n + 1 vectors of m bits, R® , R), ..., R?_,. The vector R?
corresponds to the processing of the letter y[j] of the text. It contains the
information relative to the search on all the prefixes of x when their last
position is aligned with the position j on the text (see Figure 8.12). It is defined
by

oOr. 0 ifx[0..i] = y[max{0, j —i}..jl,
Rili] = .
J 1 otherwise,
fori =0,1,...,m —1.So0, R?[m — 1] = 0ifand only if x occurs at position j.

The vector R®, corresponds to the prefix of y of null length; consequently, all
its components are equal to 1:

R% [i] =1.
fori =0,1,...,m — 1.
For j =0,1,...,n — 1, the vector R? is function of the vector RSLI in the
following way:
. 0 O _ . _ .
Rq[i] _ 0 if Rj_l.[l 1] = 0 and x[i] = y[j],
J 1 otherwise,

fori =1,2,...,m—1,and

R?[0]=[0 if x[0] = y[/j1,
1 otherwise.

The passage from the vector R;Ll to the vector R? can be computed by the
equality given in the next lemma, which amounts to the computation to two
operations on bit-vectors. We denote by S,, for every a € A, the vector of m
bits defined by

0 ifx[i]=a,
1 otherwise.

Sali1 = |
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i x[i] Salil  Sclil  Sgli]  Stli]
0| aA 0 1 1 1
1|4 0 1 1 1
@ 5l 1 1 1 0
314 0 1 1 1
4| A 0 1 1 1
j o 1 2 3 4 5 6 7 8 9 10 11
yI/] C A A A T A A T A G A A
RY[0] i o o o 1 o o 1 o0 1 o0 O
(b) RO[1] i 1 o o 1 1 o 1 1 1 1 o0
Rf27 ¢+ 1+ 1 1 o 1 1 0 1 1 1 1
RY[3] 1 1 1 1 1 0 1 1 0 1 1 1
RY[4] 1 1 1 1 1 1 0 1 1 1 1 1

Figure 8.13. Illustration of the search for string x = AATAA in text y = CAAATAATAGAA.
(a) Vectors S. (b) Vectors R°. Each vector R is obtained by shift-or: for example, Rg = 00111
produces by shift 00011, and then by disjunction with A = 00100 because y[3] = A the next
vector Rg = 00111. The string x occurs at position 6 in the text y since R2[4] = 0. It only
occurs at this position since the other values R;’[4] (for j # 6) are equal to 1.

The vector S, is the characteristic vector? of the positions of the letter a on the
string x. It can be computed prior to the searching phase.

Lemma 8.18
For j =0,1,...,n— 1, the computation of R? reduces to two logical opera-
tions, a shift and a disjunction:

R} =(1HRY_ )V Sy,

Proof Fori=0,1,...,m—1, R?[i] = 0 means that x[0..i] is a suffix of
y[0.. j], which is true when the two following conditions hold: x[0..i — 1]
is a suffix of y[0..j — 1], which is equivalent to R?fl[i — 1] =0; x[i] is
equal to y[j], which is equivalent to Sy;;[i] = 0. Moreover, R?[O] = 0 when
Sy1j1[0] = 0. This implies R? =14 R?fl) V 8,11 since the operation 1 -
R971 introduces one 0 in the first position of R?q- n

The algorithm SHORT-PATTERN-SEARCH below performs the search for x in
y. A single variable, denoted by R° in the code, represents the sequence of
bit-vectors R |, R), ..., R®_,. Figure 8.13 shows how the algorithm SHORT-
PATTERN-SEARCH works.

2 The “opposite” characteristic vector has been introduced in Section 8.1.
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SHORT-PATTERN-SEARCH(xX, m, y, 1)
1 for eachlettera € A do

2 S, <« 1™

3 fori < Otom — 1do

4 Sx[i][i] <~ 0

5 RO« 1™

6 forj < Oton—1do

7 R < (14 RV Sy

8 OUTPUT-IF(R[m — 1] = 0)
Proposition 8.19

The algorithm SHORT-PATTERN-SEARCH finds all the occurrences of a string x
inatexty.

Proof The proof is a consequence of Lemma 8.18. ]

The operations on bit-vectors used in the algorithm SHORT-PATTERN-SEARCH
are performed in constant time when the length m of the string x is smaller
than the number of bits of a machine word (bit-vector model). Thus the next
result follows.

Proposition 8.20

When the length m of the string x is smaller than the number of bits of a
machine word, the preprocessing phase of the algorithm SHORT-PATTERN-
SEARCH executes in time ®(card A) in memory space ®(card A). The searching
phase executes in time O (n).

Proof The preprocessing phase consists in computing the vectors S,, which
is done by the loops in lines 1-2 and 3—4. The loop in lines 1-2 requires a space
O(card A) and executes in time O(card A). The loop in lines 3—4 executes in
time O(m), thus in constant time after the assumption.

The searching phase performed by the loop in lines 6-8 executes in time
O(n) since the scan of each letter of the text y implies only two operations on
bit vectors. [

One mismatch

The previous algorithm can easily be adapted for solving the approximate
pattern matching with £ mismatches or substitutions (Section 8.3). To simplify
the presentation, we describe the case where at most one substitution is allowed.

We utilize the vectors R® |, R), ..., RY_,, and the vectors S, witha € A as
done above, and we introduce the m-bit vectors R |, R, ..., R}_, for taking
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[CAAATAAGAGAA] y [CAGATAAGAGAA

x[0..1] x[0..3]
0.2 (0.4

(a) b)

Figure 8.14. Elements of the proof of Lemma 8.21. (a) The prefix of length 2 of x is a suffix
of y[0..2], which translates into Rg [1] = 0. Thus, substituting A for T gives an occurrence
with one mismatch of the prefix of length 3 of x when aligned at the end of y[0..3]. Thus
R; [2] = 0. (b) The prefix of length 4 of x occurs with one mismatch when aligned at the
end of y[0..5], this is given by R; [3] = 0. Moreover x[4] = y[6]: the prefix of length 5
of the string occurs with one mismatch when aligned at the end of y[0..6], which gives
Ri[4]=o.

mismatches into account. The aim of vectors R} is to detect all the occurrences
of x in y with at most one substitution. They are defined by

Lo 0 ifHam(x[0..i],y[j—i..jD) <1,
R:[i] = .
J 1 otherwise,
fori =0, 1,...,m — 1 (for the sake of simplicity of the expression, we assume

that a negative position on y correspond to a letter that is not in the alphabet
when j —i < 0).

Lemma 8.21
For j=0,1, — 1, the vectors R] corresponding to the approximate
pattern matchmg wzth one mismatch satlsfy the relation

R} = (AR )V Sy A (LR ).

Proof Three cases can arise; they are dealt with separately.

Case I: The first i letters of x match the last i letters of y[0.. j — 1] (thus
R(])_] [i — 1] = 0). In this case, substituting y[j] for x[i] creates an occurrence
with at most one substitution between the firsti + 1 letters of x and the lasti + 1
letters of y[0. . j] (see Figure 8.14(a)). Thus, R [i] = 0 when RO_l[l —1]=0.

Case 2: There is an occurrence with one substltutlon between the first i
letters of x and the last i letters of y[0..j — 1] (thus R}_l[l —1]=0). If
x[i] = y[j], then there is one occurrence with one substitution between the
first i + 1 letters of x and the last i + 1 letters of y[0.. j] (see Figure 8.14(b)).
Therefore le. [[] = 0 when le._l[i — 1] =0and y[j] = x[i].

Case 3: If neither the condition of Case 1 nor the condition of Case 2 are
satisfied, we have RJI- [i1=1.
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It comes from the analysis of the three cases that the expression given in the
statement is correct. L]

The algorithm K-MISMATCHES-SHORT-PATTERN performs the approximate
pattern matching with k mismatches using a relation that generalizes that of
Lemma 8.21. Its code is given below. The algorithm requires k + 1 bit-vectors,
denoted by RO, R', ..., R*. The vectors R?, for j =—-1,0,...,n—1, are
updated as in the algorithm performing the exact search. The values of the
other vectors are computed in accordance with the previous lemma.

K-MISMATCHES-SHORT-PATTERN(X, m, y, 1, k)
1 for eachlettera € A do

2 S, <~ 1"

3 fori < Otom — 1do

4 Sypiplil < 0

5 RO« 1m

6 for{ <« 1tokdo

7 Rt — (14 R"Y

8§ forj < Oton—1do

9 T < RO

10 RO~ (14RYv Sy

11 for £ < 1tok do

12 T' < R*

13 R — (IHARHV S, A HT)
14 T < T’

15 OUTPUT-IF(R¥[m — 1] = 0)

Figure 8.15 shows the vectors R' for the example of Figure 8.13, as they are
computed by the algorithm K-MISMATCHES-SHORT-PATTERN.

One insertion

We show how to adapt the method of the beginning of the section to the case
where only one insertion or only one deletion is allowed. The generalization to
k differences and the complete algorithm are given at the end of the section.
We adapt the vectors R}. The vector R}_l indicates here all the occurrences
with one insertion between a prefix of x and a suffix of y[0..j — 1]: R}_, [i —
1] = 0 when the first i letters of x (prefix x[0..i — 1]) match at least i of
the last i 4+ 1 letters of y[0..j — 1] (suffix y[j —i..j — 1]). The vector R°
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J
Yl
R}[0]
Rj[1]
R}[2]
R}[3]
R}[4]

[ N N o B @ T )
R P, R, O O |-
= =, B, O O = |
= = O O O = |Ww
= = O O O H|+&
B O B O O ®&|Wwn
O B B O O = | O
= = O O O 1|
P O B»r O O |
O B, B, O O @|\©
R P, P, O O =

= B, B, O O |-

Figure 8.15. The string x = AATAA occurs twice, at positions 6 and 9, with at most one
mismatch in the text y = CAAATAATAGAA. This can be checked on the table R! since R}[4] =
Ri[4]=o.

9

J
yljl
R}[0]
Rjl1]
Rj[2]
R![3]
RI[4]

[ N N o N e
[ T R~ o B N
= = = O O =N
, P, P, O O =W
= = O O O H|+&
=, O O O O m=|Wwn
©O O B O O = |
O B O O O H1|2
, O O O O = |
~ O B Rk, O Q|
O B B O O =

P P, P, O O | =

Figure 8.16. The factors AAATAA, AATAAT, and AATAGA of y = CAAATAATAGAA match the
string x = AATAA with one insertion. They appear at respective positions 6, 7, and 10 on y
because R}[4] = Ri[4] = R} [4] = o.

is updated as previously, and we now show how to update R'. An example is
given in Figure 8.16.

Lemma 8.22
For j =0,1,...,n—1, the vectors R} corresponding to the approximate
pattern matching with one insertion satisfy the relation

Ri=(1HR;_)VSy)AR),.

Proof The three cases that can arise are dealt with separately.

Case 1: The strings x[0..i] and y[j —i — 1..j — 1] are identical (thus
R?_l[i] = 0). Then inserting y[j] creates one occurrence with one insertion
between x[0..i] and y[j —i — 1.. j] (see Figure 8.17(a)). Thus, R}[i] =0
when R?_l[i] =0.

Case 2: There is one occurrence with one insertion between x[0..i — 1]
andy[j —i —1..j — 1] (thus R} ,[i — 1] = 0). Then, if y[j] = x[i], there is
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y [CEGATT y CAGATTAR
0.2 0.3
0.2 W04

(a) (b)

Figure 8.17. Elements of the proof of Lemma 8.22. (a) The prefix of length 3 of x occurs
at the end of y[0..4], this is given by Rg [2] = 0. Inserting y[5] gives an occurrence of the
prefix of length 3 of x with one insertion at the end of y[0. . 5], thus RSl [2] = 0. (b) The prefix
of length 4 of x occurs with one insertion at the end of y[0. . 6], this is given by R6‘[3] =0.
Moreover, as x[4] = y[7], the prefix of length 5 of x occurs with one insertion at the end of
y[0..7], thus R%[4] =0.

J
vl
R![0]
Rj11]
Rj12]
Rj13]
RI[4]

R R, R, R, O QO
= = =, O O ==
P P, O O O = |
=, O O O O =W
_, O O r O H|hN
O O B O O m®=|Wn
O B O O O =&
= O O VB O 1|
O O » O O = |
R, R R, R, O Q|0
, P, P, O O =

P P, O O O ==

Figure 8.18. The factors AATA, ATAA, and AATA of y = CAAATAATAGAA match the string
x = AATAA with one deletion. They occur at respective positions 5, 6, and 8 on y because
RI[4] = Ri{[4] = Ri[4]1 = 0.

one occurrence with one insertion between x[0..i]and y[j —i — 1.. j] (see
Figure 8.17(b)). Thus, R} [i] = 0 when R_}_l[i — 1] =0and y[j] = x[i].
Case 3: If neither the condition of Case 1 nor the condition of Case 2 are
satisfied, we have R} [i1=1.
As a conclusion, the expression given in the statement holds. ]

One deletion

We assume now that R} signals all the occurrences with at most one dele-
tion between prefixes of x and suffixes of y[0.. j]. An example is given in
Figure 8.18.

Lemma 8.23
For j=0,1,...,n—1, the vectors R; corresponding to the approximate
pattern matching with one deletion satisfy the relation

Ri=(1~R}_)VSy)Al—R).
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y y
x[0..1] x[0..3]
0.2 (0.4

(a) b)

Figure 8.19. Elements of the proof of Lemma 8.23. (a) The prefix of length 2 of x occurs
at the end of y[0.. 3], this is given by Rg)[l] = 0. Deleting x[2] gives an occurrence of the
prefix of length 3 of x with one deletion at the end of y[0. . 3] thus R31 [2] = 0. (b) The prefix
of length 4 of x occurs with one deletion at the end of y[0..4], this is given by Ri[3] =0.
Moreover, as x[4] = y[5], the prefix of length 5 of x occurs with one deletion at the end of
y[0..5] thus R[4] = 0.

Proof The three cases that can arise are dealt with separately.

Case I: The strings x[0..7 — 1] and y[j — i — 1 .. j] match (thus R?[i —
1] = 0). Deleting x[i] creates an occurrence with one deletion between x[0 . . 7]
andy[j —i — 1.. j](seeFigure 8.19(a)). Thus, le.[i] = OwhenR?[i —1]=0.

Case 2: There is an occurrence with one deletion between x[0..i — 1] and
ylj—i+1..j—1] (thus le;][i — 1] = 0). Then, if y[j] = x[i], there is
an occurrence with one deletion between x[0..i] and y[j —i 4+ 1..j] (see
Figure 8.19(b)). Thus, R_} [i] = 0 when le._l[i — 1] =0and y[j] = x[i].

Case 3: If neither the condition of Case 1 nor the condition of Case 2 are
satisfied, we have R_} [i1=1.

The correctness of the expression given in the statement thus holds. ]

Short patterns with differences

We present now an algorithm for approximate pattern matching of short pat-
terns with at most k differences of the type insertion, deletion, and substitution.
This algorithm cumulates the methods described above for each operation taken
separately. The algorithm requires k + 1 bit-vectors R°, R, ..., R*. The vec-
tors R?, for j = —1,0,...,m — 1, are updated as in the algorithm performing
the exact search. The values of the other vectors are computed with the relation
of the proposition below. An example of pattern matching with one difference
is shown in Figure 8.20.

Proposition 8.24
Fori=1,2,...,kwehave

Ri=(QAR_DVSDAA—A4®RT AR AR
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J
yljl
R}[0]
Ri[1]
R}[2]
R}[3]
R}[4]

R, Bk, B, O QO
B =, B, O O |-
= = O O O = |
, O O O O = |Ww
=, O O O O H|+&
O O O O O =W
O O O © O =]
O O O O © H1|3
O O O O O = | X
O O B O O @|\©
O B B O O =

, P, O O O =|=—

Figure 8.20. The factors AATA, AATAA, ATAA, AATAAT, AATA, AATAG, and AATAGA of the text
y = CAAATAATAGAA match the string x = AATAA with at most one difference. They occur at
respective positions 5, 6, 6, 7, 8,9, and 10 on y because R51 [4] = Ré 4] = R71 [4] = R}{ [4] =
R91[4] = Rllo[4] =0.

Proof The proof of Proposition 8.24 is a direct consequence of Lemmas 8.21,

8.22, and 8.23. The relation
Ri=(QAR_DVSAAARTYAMARZ) AR

can be rewritten in to the one given in the statement. ]

K-DIFF-SHORT-PATTERN(X, m, y, 1, k)
1 for eachlettera € A do

2 S, «— 1"
3 fori < Otom —1do
4 Sx[i][i] <~ 0
5 RO« 17
6 fortl < 1tokdo
7 Rt «— (14 R"Y
8 forj < Oton—1do
9 T < R
10 RO « (4 RO) \% Sy[j]
11 for { < 1tok do
12 T' « Rt
13 Rt —« (14 RYHv Syip A1 AT A REWAT
14 T < T’
15 OUTPUT-IF(R*[m — 1] = 0)
Theorem 8.25

When the length m of the string x is smaller than the number of bits of a ma-
chine word, the preprocessing phase of the algorithm K-DIFF-SHORT-PATTERN
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executes in time O(k 4 card A) within memory space ©(k 4 card A). The
searching phase executes in time ©(k x n).

Proof The proof of Theorem 8.25 is similar to that of Proposition 8.20. m

8.5 Heuristic for approximate pattern matching
with differences

The heuristic method described in this section finds a prefix of x, a suffix of x,
or the entire string x in a text y with k differences. It partially uses dynamic
programming techniques.

We refer to the diagonals of the set

{0,1,...,m—1} x{0,1,...,n — 1}
by means of an integer d. The diagonal d is the set of pairs (7, j) for which
j—i=d.

The pattern matching method is parameterized by two integers ¢, k > 0. It
proceeds in three phases. In the first phase, all the positions of factors of length
£ of the string that occur in y are found. This phase is realized with the help of
a hashing technique. During the second phase, the diagonal d containing the
largest number of factors of length ¢ of the string is selected. The third phase
consists in finding an alignment by dynamic programming in a strip of width
2k around the diagonal d.

We now describe the details of each phase of the computation.

We define the set Z, by

Zo=1{G,j):i=0,1,....m—C€and j=0,1,...,n—¢
andx[i..i+€—1=y[j..j+¢— 1]}

In other words, the set Z, contains all the pairs (i, j) for which the factor
of length £ starting at position i on x is identical to the factor of length ¢
starting at position j on y. With the notation of Section 4.4, we thus have

Sfirst,(x[i ..m — 1]) = first,(y[j .. n — 1]).
For each diagonal

d=-m+1,-m,...,n—1,
we consider the number of elements of Z, located on this diagonal:

counter|d] = card{(i, j) e Z,: j —i =d}.
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To perform an efficient counting, each factor of length ¢ is encoded by an
integer. A factor of length ¢ is considered as the representation in base card A
of an integer. Formally, in a bijective way, we associate a rank with each letter
a of the alphabet A. The integer rank(a) is within 0 and card A — 1. We set
-1
code(w[0..¢ —1]) = Zrank(w[ﬂ — i —1]) x (card AY
i=0
for every string w of length greater or equal to £. Thus, the codes of all the
factors of length £ of the string and of the text can be computed in linear time
using the following relation (for i > 0):

code(wli +1..i + £]) = (code(w[i ..i + £ — 1]) mod (card A)*"!) x card A
+ rank(wli + £]).

The codes of the factors of length £ of the string x are computed in one pass and

we accumulate the positions of the factors in a table position of size (card A)¢.

More precisely, the value of position[c] is the set of right positions of the factor

of x of length £ whose code is c¢. The computation of the table is realized by
the function HASHING.

HASHING(x, m, £)

1 forc <« Oto (card A)Y — 1 do
2 position[c] < 0
3 (exp, code) < (1,0)
4 fori < 0tof —2do
5 exp < exp x card A
6 code < code x card A + rank(x[i])
7 fori < ¢—1tom —1do
8 code < (code mod exp) x card A + rank(x[i])
9 position[code] < position[code] U {i}
10 return position

Second phase: after the initialization of the table position, the codes of the
factors of the text y are computed. Each time that an equality, between the code
of a factor of length £ of the string and the code of a factor of length £ of the
text, is found on a diagonal, the counter of this diagonal is incremented. This
is precisely what realizes the function DIAGONAL.

DIAGONAL(x, m, y, n, £, position)
1 ford < —mtondo
2 counter[d] < 0
3 (exp, code) < (1,0)
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4 forj < Otol—2do

5 exp < exp x card A

6 code < code x card A + rank(y[j])

7 forj<«<£—1ton—1do

8 code < (code mod exp) x card A + rank(y[j])
9 for each i € position[code] do
10 counter[j —i] <= counter[j —i]+ 1
11 return counter

Third phase: for realizing the last phase of the method, it is finally sufficient
to detect the diagonal d having the largest counter. We can then produce an
alignment between the string x and the text y using a restricted dynamic
programming algorithm, called a strip alignment. It considers only paths in
the edit graph that are distant from the diagonal d by at most k positions
(insertions and deletions are penalized by g). In this final phase also, there is
an approximation because other diagonals are discarded during the alignment.
The approximation is even stronger when k is small. Figure 8.21 shows how
the algorithm works.

STRIP-ALIGNMENT(X, m, y, n, d, k)
1 (,i") < (max{—1,—d — 1 —k},min{—d — 1 +k,m—1})

2 (j,j) <« (max{—1,d — 1 —k},min{d — 1 +k,n — 1})

3 c<«g

4 fori < i toi” do

5 Tli,—1] < ¢

6 c<c+g

7T c<g

8 for j < j' to ;" do

9 T[-1,j]l«<c

10 c<c+g

11 fori <~ Otom — 1do

12 forj < i+d—ktoi+d+kdo

13 if 0 < j <n — 1 then

14 T[i, j1 < Tli — 1, j — 1]+ Sub(x[i1, y[j1)
15 if|j—i —1—d| <k then

16 Tli, j1 < min{T[i, j1, Tli, j — 1]+ g)
17 if|j—i+1—d| <kthen

18 Tli, j] < min{T[i, j1, T[i — 1, j1+ g}

19 return T
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T |j -1 0 1 2 3 4 5 6 7 8 9 10
i yjlL A W Y Q Q K P G K A
—1 | x[i] 3 6 9 12 15
0 |vY 5 8 9 12 15
@ 1 W 5 8 11 14 17
2 |c 7 10 13 16 19
3 Q 7 10 13 16 19
4 | P 9 12 13 16 19
5 G 11 14 13 16 19
6 | X 13 16 13 16
(Y w ccQ - - P G K) (Y w - Q - P G K)
b) A W Y Q Q P G K A WY Q Q K P G K
( (Y W - C Q P G K)
A W Q Q P G K

Figure 8.21. Illustration of the heuristic method of approximate pattern matching with
differences. We consider the case where x = YWCQPGK, y = LAWYQQKPGKA, £ =2, k = 2,
card A = 20, and where the rank of the letters that occur in x and y is

a A C G K L P Q W Y
rank(a) o 1 5 8 9 12 13 18 19

We get code(YW) =19 x 20" + 18 x 20° =398, then, for i =2, code(WC) =
(code(YW) mod 20) 4+ 1 = 361, and so on. This gives the following codes for the factors
of length ¢ of x:

i 0 2 3 4 5 6

x[i—1..i] YW WC CQ QP PG GK
code(x[i — 1..i]) 398 361 33 272 245 108

Thus the values of the table position, for which we only give those that are distinct from
the empty set, are:

code 33 108 245 272 361 398
position[code] {3} {6} {5} {4} {2} {1}

The codes associated with the factors of length £ of y are:

j 1 2 3 4 5 6 7 8 9 10
ylj—1..]] LA AW WY YQ QQ QK KP PG GK KA
code(y[j —1..j) 180 18 379 393 273 268 172 245 108 160

The only indices j on code corresponding to a nonempty position are 8 and 9. For
these two indices, we increment the elements counter[8 — 5] and counter[9 — 6], which
gives counter[3] = 2 after the processing. It follows that the diagonal that possesses the
largest counter is diagonal 3. (a) Then, with the values g = 3, k = 2, Sub(a, a) = 0, and
Sub(a, b) =2 for a, b € A with a # b, we compute an alignment far from diagonal 3
by at most two positions. (b) The three corresponding alignments.
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Let us finally note that the utilization of a divide-and-conquer technique, as
in Section 7.3, yields an implementation of the function STRIP-ALIGNMENT that
executes in time O(m x k) and in space O(n).

Notes

Theorem 8.3 is from Fischer and Paterson [138]. The result used in the proof
of the theorem stating that it is possible to multiply a number with M digits
by a number with N digits in time O(N x log M x loglog M) for N > M is
from Schonhage and Strassen [206].

The algorithm K-DIFF-CUT-OFF is from Ukkonen [212]. The algorithm K-
DIFF-DIAG together with its implementation with the help of the computation
of common ancestors was described by Landau and Vishkin [175]. Harel and
Tarjan [150] presented the first algorithm running in constant time that solves
the problem of the lowest ancestor common to two nodes of a tree. An improved
solution is from Schieber and Vishkin [205].

Landau and Vishkin [174] conceived the algorithm K-MiSMATCHES. The size
of the automaton of Section 8.3 was established by Melichar [185]. Extension
and improvement on the string matching algorithm for k& mismatches are by
Abrahamson [85] and by Amir, Lewenstein, and Porat [91].

The approximate pattern matching for short strings as reported by the al-
gorithm K-DIFF-SHORT-PATTERN is from Wu and Manber [218] and also from
Baeza-Yates and Gonnet [99].

Another method that uses the bit-parallelism technique and is optimal con-
sists actually of a filtration method. It considers sparse g-grams and thus avoids
scanning many text positions. It is due to Fredriksson and Grabowski [141].

A notion of seeds for searching genomic sequences speed-up dramatically
approximate matching algorithms. It helps filter the data and accelerate their
screening. Introduced by Ma, Tromp, and Li [177] for the software Pattern-
Hunter, it is an active track of research. The reader can refer to the result of
Farach-Colton, Landau, Sahinalp, and Tsur [135], or to the work of Noe and
Kucherov [195] on the software YASS.

A synthesis on the approximate pattern matching appears in the book of
Navarro and Raffinot [7], with an extensive exposition of techniques based on
the bit-vector model. Large experimental results are reported by Navarro [193].

The method of global comparison with insertion and deletion is at the
origin of the software FastA (see Pearson and Lipman [197]). The parameter £
introduced in Section 8.5 corresponds to parameter KTup of the software; its
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value is commonly set to 6 for processing nucleic acid sequences and to 2 for
processing amino acid sequences.

Exercises

8.1 (Action!)
Find all the occurrences of the string with jokers ab§§bg§ab in the text
bababbaabbaba.

Find all the occurrences of the string with jokers ab§§b§a in the text with
jokers bababb§abgaba.

8.2
Find all the occurrences with at most two mismatches of the string ACGAT in
the text GACGATATATGATAC.

8.3 (Costs)
What costs should we attribute to the edit operations for realizing the following
operations? For x,y € AT and y € N:

¢ find the string x in the text y,

e search for the subsequences of y that are equal to x,

¢ search for the subsequences of y of the form xouoxiu; ... ux_1xr—1 Where
X =XxoX1...X¢—1,and |u;| <y fori =0,1,...,k— 1.

84
Find all the occurrences with at most two differences of the string ACGAT in the
text GACGATATATGATAC using the algorithm K-DIFF-DP.

Solve the same question using the algorithms K-DIFF-cUT-OFF and K-DIFF-
DIAG.

8.5 (Savings)
Describe an implementation of the algorithm K-DIFF-DIAG that runs in space
O(m). (Hint: swap the loops on ¢ and d in the text of the algorithm.)

8.6 (Mismatches)

Design an algorithm for preprocessing the queues of the table G (see Sec-
tion 8.3) that runs in time O(k x m x logm). (Hint: apply the searching phase
with mismatches to blocks of indices running from 2¢~! — 1 to 2¢ — 2, for
£=1,2,..., [logm]; see Landau and Vishkin [174].)
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8.7 (Anagrams)
Write a linear-time algorithm that finds all the permutations of a string x in a
text y. (Hint: use a counter for each letter of alph(x).)

8.8
Find all the occurrences with at most two differences of the “short string”
x = ACGAT in the text y = GACGATATATGATAC.

8.9 (Classy)

Propose an extension of the algorithm K-DIFF-SHORT-PATTERN taking as in-
put a class of strings. A class of strings is an expression of the form
X[0]X[1]..X[m — 1] with X[i] € Afori =0,1,...,m — 1.

8.10 (Gamma-delta)
We consider a distance between letters d: A x A — R, two positive reals § and
y, a string x of length m, and a text y of length n.

The string x possesses a §-approximate occurrence in the text y if there
exists a position j =0, 1,...,n —m on y for which d(x[i], y[i + j]) < § for

i=0,1,...,m — 1. The string x possesses an y-approximate occurrence in
the text y if there exists a position j =0, 1,...,n —m on y for which

m—1

D dlil, yli + jD < .

i=0

The string x possesses an (8, y)-approximate occurrence in the text y if x
possesses an occurrence that is both §-approximate and y -approximate, that is to

say, if there exists a position j =0, 1,...,n — m on y for which d(x[i], y[i +
jh <éfori=0,1,...,m — 1 and

m—1

D dlil, yli + jD < .

i=0

Write an algorithm that finds all the &-approximate (respectively y-
approximate, (8, y)-approximate) occurrences of the string x in the text y.
Evaluate its complexity. (Hint: see Cambouropoulos, Crochemore, Iliopoulos,
Mouchard, and Pinzon [112].)

8.11 (Distributed patterns)
Let X be a list of k strings of length m and Y be a list of £ texts of length n. We
say that the list X possesses a distributed occurrence in the list Y if for some
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position j =0, 1,...,n — mwehave: foreachi =0, 1, ..., m — 1, there exist
pand g forwhich0 < p<k—-1,0<qg <€—1,and X,[i] =Y, [i + jl.

Write an algorithm finding all the distributed occurrences of the list X in
the list Y. Study the particular cases for which X is reduced to a single string
(k =1) and Y is reduced to a single text (¢ = 1). (Hint: see Holub, Iliopoulos,
Melichar, and Mouchard [154].)



9

Local periods

This chapter is devoted to the detection of local periodicities that can occur
inside a string.

The method for detecting these periodicities is based on a partitioning of
the suffixes that also allows to sort them in lexicographic order. The process is
analogue to the one used in Chapter 4 for the preparation of the suffix array of
a string and achieves the same time and space complexity, but the information
on the string collected during its execution is more directly useful.

In Section 9.1, we introduce a simplified partitioning method that is adapted
to different questions in the rest of the chapter. The detection of periods is dealt
with immediately after in Section 9.2.

In Section 9.3, we consider squares. Their search in optimal time uses
algorithms that require combinatorial properties together with the utilization
of the structures of Chapter 5. We discuss also the maximal number of squares
that can occur in a string, which gives upper bounds on the number of local
periodicities.

Finally, in Section 9.4, we come back to the problem of lexicographically
sorting the suffixes of a string and to the computation of their common prefixes.
The solution presented there is another adaptation of the partitioning method;
it can be used with benefit for the construction of a suffix array (Chapter 4).

9.1 Partitioning factors

The method described in this section is at the basis of algorithms for detecting
local periodicities in a string. It consists in partitioning the suffixes of the string
with respect to their beginnings of length k. The equivalences used for the
partitioning are those of Section 4.4, but the computation method is different.

332
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The adaptation of the method to sorting the suffixes of a string is presented in
Section 9.4. The string is denoted by y and its length by n.

We start by recalling some notation introduced in Section 4.4. The beginning
of order k, k > 0, of a string u is defined by

if lu| <k,

u
firsty(u) = {u[O ..k —1] otherwise.

The equivalence relation =; on the positions on y is defined by
=
if and only if

Sirst,(Yli ..n —1]) = first, (y[j . .n — 1]).

The equivalence =; induces a partition of the set of positions in equivalence
classes that are numbered from 0. And we denote by E;[i] the number of the
class according to = that contains position i.

In Section 4.4, the equivalence =, is computed from =; in application of
the Doubling Lemma, which induces at most [log, n] steps for the computation
of all the considered equivalences, and produces a total time O(n logn). Here,
the computation of the equivalences is incremental on the values of k, but
another technique for the computation of the successive equivalences is used.
It leads to processing each position at most [log, n] times, which yields the
same asymptotic execution time O (n logn).

We describe now the partitioning technique that works on the partitions
associated with the equivalences =; (k > 0). For a class P of the partition
we denote by P — 1 the set {i — 1:i € P}. Partitioning with respect to a
class P consists in replacing each equivalence class C by C N (P — 1) and
C \ (P — 1), and by discarding the empty sets that result from these operations.
The algorithm PARTITIONING below computes the equivalences =, =;, ... in
this order. The central step of the computation consists in partitioning all the
classes of the current equivalence with respect to a same class P. The following
lemma is used for the correctness of the algorithm and it essentially relies on
the remark illustrated by Figure 9.1. Its refinement (Lemma 9.2) is used in the
algorithm PARTITIONING.

Lemma 9.1

For every integer k > 0, the equivalence classes of =41 are of the form G =
CN(P — 1)with G # @, where C is a class of =¢,and P = {n} or P is a class
OfEk.
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y|laabaabaabbal

Figure 9.1. Element of the proof of Lemma 9.1. In the case where y = aabaabaabba,
string baaba is firsts(y[2..10]). It is uniquely identified by its two factors baab, that is
Sirsty(y[2..10]), and aaba, that is first,(y[3 .. 10]).

Proof First, let i and j be two positions equivalent according to =, that
is, i =41 j. By definition

firsty (i ..n —1]) = firsty  (y[j . .n — 1]).
We thus have the equality

Sfirst,(Yli ..n —1]) = first,(y[j . .n — 1]),

which amounts to say that i, j € C for some class C according to =;. But we
have also

first, i +1..n—=11) = first,(y[j +1..n = 1])

(see Figure 9.1), which means thati 4+ 1, j + 1 € P for aclass P according to
=, ifi+1<nand j+ 1 <n. Wethenhavei,j e (P —1).Ifi+1=nor
Jj + 1 = n, we notice that the only possibility is indeed to have i = j =n — 1.
So, a class according to =, is of the form C N (P — 1) as announced.

Conversely, let us consider a nonempty set of the form C N (P — 1) where
C and P satisfy the conditions of the statement, and let i, j € C N (P — 1).
If P={n},wehavei =j=n—1andthusi =, j. If P # {n}, C and P
are classes according to =; by assumption, and we have i + 1, j + 1 < n. By
definition of the equivalence =, we deduce the equality:

Sfirst,(Yli ..n —1]) = first,(y[j . .n — 1]).
But we deduce also the equality:
firsty(yli +1..n —11) = first,(y[j +1..n — 1]).
This implies
firsty (Qli..n—1]) = firsty ,,(y[j..n —1])

(see Figure 9.1), that is to say i =;,1 j as expected. This ends the converse
part and the whole proof. ]

The computation of equivalences that directly deduces from the previous
lemma can be realized in quadratic time (O(n?)) using a radix sorting as in
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i o 1 2 3 4 5 6 7 8 9 10
b

yli] a a a b a a b b a
k=1 {0,1,3,4,6,7, 10} {2,5,8,9}
k=2 {10} {0, 3, 6} {1,4,7} {2,5,9} {8}

N A NN

k=3 {10} {0.3.6} .4 {7 9 {25 {8

V0 U T R

k=4 {10} {0,3} {6} {14 {7} {9 {25} {8}

I A T R AN

k=5 {10} {0,3} {6} (1.4} {7} {9} {2} {5} {8}

U 2 N N

k=6 {10} {0,3} {6} {1} {4 {7} {9 {2} {5} {8}

2N A A A

k=7 {10} {0}y {3} {6} {1} {4 {7} {9} {2} {5} {8}

Figure 9.2. Incremental computation of the partitions associated with the equivalences =, on
the string y = aabaabaabba. The classes of positions according to = are given from left to
right in increasing order of their number. Thus, in line k = 2, E»;[10] = 0, E,[0] = Ez[3] =
Es[6] =1, Ex[1] = Ex[4] = Ex[7] =2, Ex[2] = Ex[5] = Ex[9] = 3, and E5[8] = 4.

the algorithm SUFFIX-SORT of Section 4.4. Figure 9.2 shows how the algorithm
works. We recognize on the schema the structure of the suffix trie of the
string. The algorithm for computing the equivalences works, in some sense, by
traversing the trie in a width-first manner from its root.

To speed up the partitioning of positions, we consider a notion of difference
between the equivalences =; and =;_; when k > 1. For this, we define the
small classes of the equivalence =;. The definition is relative to a choice
function of subclasses, denoted by ¢, defined on the set of classes according
to =¢_; and with value in the set of classes according to =;. If C is a class
relatively to =_;, cx(C) is a class according to = for which ¢ (C) C C, that
is to say cx(C) is a subclass of C. We call small class of = relatively to the
choice function c; of subclasses, every equivalence class according to = that
is not in the image of the function ¢;. For k = 1, we consider by convention
that all the classes according to = are small classes.

Small classes induce a notion of difference between equivalences. Relatively
to ¢, we denote by = the equivalence defined on the positions on y by

= j
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if and only if
i, j € C and C is a small class according to =

or
i € ci(F)and j € cx(G) for F, G classes according to =;_.

The partition of positions induced by =; consists of the small classes of =, on
the one hand, and of the extra class obtained by the union of all classes chosen
by the function ¢, on the other hand.

We note that the equivalence = is coarser than = (that is, = is a refinement
of =), which means thati =; j impliesi = j, or equivalently that every class
according to =; is contained in a class according to =.

In the example of Figure 9.2, defining c¢3 by ¢3({10}) = {10}, ¢3({0, 3, 6}) =
{0,3,6}, c3({1,4,7}) = {1,4}, ¢3({2,5,9}) = {2, 5}, and c3({8}) = {8}, the
equivalence =3 partitions the set of positions into three classes: {7}, {9}, and
{0,1,2,3,4,5,6,8, 10}. The small classes are {7} and {9} (see also Figure 9.3).

The next lemma has for consequence that the computation of the partition
induced by =4 can be done from =; and from its small classes only. This
property is used for the correctness of the algorithm PARTITIONING.

Lemma 9.2

For every integer k > 0, the equivalence classes =y, are of the form G =
CN(P —1) with G # @, where C is a class according to =, and P = {n}
or P is a class according to =.

Proof The first part of the proof of Lemma 9.1 also holds for this lemma
since | = j implies i = j.

Conversely, let us consider a set C N (P — 1) for which C and P satisfy to
the conditions of the statement, and leti, j e CN (P — 1).If P = {n}orif P is
a small class, thus a class according to =, we get the conclusion as in the proof
of Lemma 9.1. The remaining case occurs when P is the union of the c;(F), F
class accordingto=;_;. Asi, j € C,wehavei =; j.Andasi +1,j+ 1 <n,
we deducei + 1 =4 j+ 1. Asaresult,i + 1 and j + 1 belong to P and to
the same class G according to =;_;. By definition of =, they belong thus to
¢ (G) that is a class of =;. Finally, fromi =, jandi + 1 =, j + 1, we deduce
i =p41 Jj, which ends the converse part and the proof. ]

The code of the algorithm PARTITIONING explicits a large part of the com-
putation method. It is given below. The variable Small stores the list of small
classes of the current equivalence. This equivalence is represented by the set
of its classes, each of them being implemented as a list. During the execution,
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some positions are transferred to a class called a twin class. Each twin class is
empty before the execution of the for loop in lines 11-18. It is done similarly
for the set of subclasses associated with each class.

The management of equivalence classes as lists is not an essential element
of the partitioning. It is used here for allowing a simple description of the
algorithm POWERS of the next section that really requires such an organization.
Figure 9.3 illustrates how the algorithm PARTITIONING works.

PARTITIONING(y, 1)
1 for r < 0 to cardalph(y) — 1 do

2 C, <)
3 fori < Oton—1do
4 r < rank of y[i] in the sorted list of letters of alph(y)
5 C, <~ C,-{i)
6 Small < {C,:r=0,1,...,cardalph(y) — 1}
7 k<1
8 while Small # ¢ do
9 > Invariant: i, j € C, iff i =; j iff E¢[i] = E[J]
10 > Partitioning
11 for each P € Small do
12 for each i € P \ {0}, sequentially do
13 let C be the class of i — 1
14 let Cp be the twin class of C
15 remove i — 1 of C
16 Cp«<Cp-(i—1)
17 for each considered pair (C, Cp) do
18 add Cp to the subclasses of C
19 > Choice of the small classes
20 Small < @
21 for each class C considered during the previous step do
22 if C is nonempty then
23 add C to the subclasses of C
24 replace C by its subclasses
25 G <« one subclass of C of maximal size
26 Small < Small U ({subclasses of C} \ {G})
27 k<—k+1

The analysis of the execution time, which is O(nlogn), is detailed in the
three statements that follow. Lemma 9.3 essentially corresponds to the study
of lines 12—18 of the algorithm.
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k=1 {0,1,3,4,6,7, 10} {2,5,8,9}
k=2 {10} {0, 3, 6} {1,4,7} {2,5,9}

\\/\/\\

k=3 {10} {03, 6} {14y {7} 9 (2.5} {8}

V0 N T R N

k=4 {10} {0,3} {6} (L4} {7} {9 {25} ({8}

A A S T R AN

k=5 {10} {0,3} {6} (1,4} {7} {9} {2} {5} {8}

I A AN e R A

k=6 {10} {0,3} {6} {1} {4 {7} {9 {2} {5} ({8}

2N e R R R R

k=7 {10} {0} {3} {6} {1} {4 {7} {9 {2} {5} (8}

k=38 {10} {0}y {3} {6} {1} {4 {7} {9 {2} {5} ({8}

Figure 9.3. Incremental computation of the partitions induced by the equivalences =; on the
string y = aabaabaabba as in Figure 9.2. The small classes are indicated by a gray area. The
number of operations executed by the algorithm PARTITIONING is proportional to the total
number of elements of the small classes.

An efficient implementation of the manipulated partitions consists in rep-
resenting each equivalence class by a linked list assigned with a number, and
simultaneously to associate with each position the number of its class. In this
way, the operations performed on a position for partitioning a class execute in
constant time. The operations on a position are composed of access to its class,
extraction from its class, and insertion into a class.

Lemma 9.3
The partitioning with respect to a class P can be realized in time Q(card P).

Proof The partitioning of a class C with respect to P consists in computing
CN(P—1)and C \ C N (P — 1). This is realized by means of an operation of
transfer (of position) from one class to another class. With the implementation
described before the statement, this operation takes a constant time. The card P
transfers take thus a time Q(card P).

All the concerned classes C are processed during the partitioning. The empty
sets are eliminated after the scan of all the elements of the class P. As there
are at most card P concerned classes C, this step also takes a time O(card P).
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It follows that the total time of the partitioning with respect to P is 2(card P)
as announced. ]

Corollary 9.4
For every integer k > 0, the computation of =y from both the equivalence
=y and its small classes can be realized in time Q(Y_p, =, €a1d P).

Proof The result is a direct consequence of Lemma 9.3. ]

Let us consider the example of Figure 9.3 and the computation of =4 (line
k = 4). The small classes of =3 are {7} and {9}. Thus the computation of =4
consists in simply extracting 6 and 8 from their respective classes. This has for
effect to split the class {0, 3, 6} into {0, 3} and {6} (8 being alone in its class),
and to produce {6} as a small class for the next step.

The algorithm PARTITIONING utilizes a specific choice function. This one
selects for each C, class according to the equivalence =;_, a subclass c;(C)
of maximal size among the subclasses of C. This is precisely this particular
choice of subclasses that leads to an O(n log n) running time.

Theorem 9.5

Let K > 0 be the smallest integer for which the equivalences =g and
=g11 match. The algorithm PARTITIONING computes the equivalences
=|,=,..., =g, defined on the positions on a string of length n, in time
O(nlogn).

Proof The for loops in lines 1-2 and 3-5 compute =,. The instructions in
lines 11-27 of the while loop compute =, | from =; according to Lemma 9.2,
after having checked that the small classes are selected correctly. The execution
stops as soon as there is no more small class, that is to say when the equivalences
=; and =, match for the first time. This happens for k = K by definition of
K. The algorithm PARTITIONING computes thus the sequence of equivalences
of the statement.

Let us evaluate now its execution time. The running time of the loop
in lines 1-2 is Q(cardalph(y)). The one of the loop in lines 3-5 is
O(n x logcard alph(y)) using an efficient data structure to store the alpha-
bet. The execution time of the loop in lines 8-27 is proportional to the sum of
the sizes of all the small classes used during the partitioning after Corollary 9.4.

With the particular choice of small classes, the size of the class of a position
that is located in a small class decreases (at least) by half during the partitioning:
ifi € C, class according to =;_,and i € C’, C’ small class of =; (C’ subclass
of C), we have card C’ < card C/2. As a result, each position belongs to a
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k=1 {0,1,2,3,4}
N

k=2 0,1,2,3} {4}
SN

k=3 0,1,2) {3} {4

N

k=4 0.3 {2} (3} 4

/N

k=5 {0} {1} 2} {3} {4}

k=6 {0} {1} {2} {3} {4

Figure 9.4. Operation PARTITIONING applied to the string y = aaaaa. After the initial phase,
the computation is done in four steps, each taking a constant time.

small class at most 1 + [log, n] times. This gives the time O(n logn) for the
execution of the loop in line 8.

The global running time of the algorithm is thus O(nlogn) because
card alph(y) < n. [

When the algorithm PARTITIONING is applied to the string y = a”, the
execution time is indeed O(n). Figure 9.4 illustrates the computation on the
string aaaaa. Each step executes in constant time since, after the initial phase,
there is a single small class per step and it is a singleton.

We meet a totally different situation when y is a de Bruijn string (see
Section 1.2). The example of the string babbbaaaba is described in Figure 9.5.
For these strings, after the initial phase, each step takes a time O(n) since the
small classes contain globally around n/2 elements. But the number of steps
is only |log, n|. We get thus examples for which the number of operations is
Q(nlogn).

In a general way, we check that the number K of steps executed by the
algorithm PARTITIONING is also £ + 1 where £ is the maximal length of factors
that possess at least two occurrences in y.

9.2 Detection of powers

In this section, we present a quite direct adaptation of the algorithm PARTITION-
ING of the previous section. It computes the factors of a string that are powers.
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i o 1 2 3 4 5 6 7 8 9
b b b

ylil b a b a a a b

k=1 {1,5,6,7,9} {0,2,3,4,8}
ﬂ\

k=2 {9y {5,6} {1,7} {0, 4, 8} {2,3}
| RN

k=3 {9 {5} {6y {7t {1} {8} {4} {0} {3} {2}
[N A O A O

k=4 {9} {5} {6} {7} {1} (8 {4} {0} {3} {2}

Figure 9.5. Operation PARTITIONING applied to the de Bruijn string y = babbbaaaba. After
the initial phase, the computation is done in two steps, each requiring five processings of
elements.

We discuss then the number of occurrences of powers that can exist in a string,
element that leads to the optimality of the algorithm.

A local power of a string y of length n is a factor of y of the form u°.
More precisely, u®
yli..n — 1] with u € A, u primitive, and e integer, e > 1. This is a (right)
maximal local power at i if moreover u¢*! is not a prefix of y[i ..n — 1]. We
can also consider the left maximal local powers (requiring that u is not a suffix
of y[0..7 — 1]) and the two-sided maximal local powers. Their detection in y
is a simple adaptation of the algorithm described for the detection of the right
maximal local powers.

An occurrence of a local power u° is identified by the triplet (i, p, e) where
i is its position, p = |u| its period, and e its exponent.

is a local power at position i on y if u¢ is a prefix of

Computation of local powers

The detection of the local powers is done with the help of a notion of distance
on positions that is associated with the equivalence =;. For every position i on
v, we define this distance by

minL if L #0,

00 otherwise,

Dyli] = {

where
L={{:¢=1,2,....,n—i—1and E/[i] = E[i + £]}.

In other words, Dy[i] is the distance from i to the nearest superior position of
its class according to =, when this position exists.
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Lemma 9.6
The triplet of integers (i, p, e), withQ <i < n, p > 0,and e > 1, identifies the
occurrence of a maximal local power at position i if and only if

Dp[i] = Dp[i +pl=---= Dp[i +(e—-2pl=p
and
Dyli + (e — 1)p] # p.

Proof Wesetu =yl[i..i +p—1].

First, by definition of a maximal local power, the string u# occurs at po-
sitions i,i + p,...,i + (e — 1)p on y but not at position i + ep. We de-
duce, by definition of D,, the inequalities D,[i] < p, D,[i + p] < p,...,
D,li + (e —2)p] < p,and D,[i + (e — 1)p] # p. If some inequality is strict,
this implies that u? possesses an internal occurrence of u. But this contradicts
the primitivity of u after the Primitivity Lemma (see Section 1.2). Therefore,
the e — 1 inequalities are actually equalities, which proves that the conditions
of the statement are satisfied.

Conversely, when the conclusion of the statement holds, by definition of
D, the string u occurs at positions i, i + p, ..., i + (e — 1)p on y since these
positions are equivalent relatively to =, but does not occur at position i + ep.
It remains thus to check that u is primitive. If this is not the case, y possesses
an occurrence of u at a position j, i < j < i+ p. But this implies D,[i] <
J —i < p and contradicts the equality D,[i] = p. Thus, u is primitive and
(i, p, e) corresponds to a maximal local power. n

The detection algorithm for all the occurrences of the maximal local powers
occurring in y is called POWERS. It is obtained from the algorithm PARTITIONING
by adding extra elements that are described here.

We utilize a table D that implements the table D; at each step k. We
simultaneously maintain the partition of positions associated with the values
of the table D. That is to say i and j belong to a same class of this partition if
and only if D[i] = D[j]. The classes are represented by lists in order to realize
transfers in constant time.

The additions to the algorithm PARTITIONING are essentially on the computa-
tion of the table D, and also on the simultaneous management of the associated
lists, which does not pose any extra difficulty.

The update of D occurs when there is a transfer of a position i to another
equivalence class. We strongly utilize the fact that the equivalence classes
according to =; are managed as lists and that the positions are stored in
increasing order. If i possesses a predecessor i’ in its starting class, the new
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value of D[i'] is D[i'] + D[i]. There is no other change for the elements of the
class since they are in increasing order. In its target class, i is the last added
element, since the partitioning relative to a class P is done in the increasing
order of the elements of P (see line 12). We define thus D[i] = co. Moreover,
if i has a predecessor i” in its new class, we define D[i"] =i —i".

Finally, at each step k, we obtain the powers of exponent k by scanning
the list for positions i satisfying D[i] = k in application of Lemma 9.6. The
algorithm can then produce the expected triplets (i, p, e). We just have to be
sure, during the implementation, that the triplets

@@, p,e,i+p pe—1),...

corresponding to maximal local powers at positions
ihi+p,...

are produced in time proportional to their number, and not in quadratic time.

The above description of POWERS shows that the computation of the maxi-
mal local powers can be realized in the same time as the partitioning. We also
notice that the extra operations that produce the maximal powers have an exe-
cution time proportional to this number of powers. Referring to Proposition 9.8
thereafter, we then deduce the next result.

Theorem 9.7
The algorithm POWERS computes all the occurrences of maximal local powers
of a string of length n in time O(n logn). ]

Let us consider the example y = aabaabaabba of Figure 9.3. When the
partition associated with =3 is computed (line k = 3), the elements that are
at distance 3 from their successors are 0, 1, 2, and 3 (D[0] = D[1] = D[2] =
D[3] = 3). These elements correspond to the maximal powers (aab)® at 0,
(aba)? at 1, (baa)? at 2, and (aab)® at 3.

Number of occurrences of local powers

The execution time of the algorithm POwWERS depends upon the size of its
output, the number of maximal powers. The example of y = a” shows that a
string can contain a quadratic number of local powers. But, with this example,
we only get n — 1 maximal local powers. Proposition 9.8 gives an upper bound
to this quantity, while Proposition 9.9 implies the optimality of the computation
time of the algorithm Powgrs. The optimality also holds for the detection of
the two-sided maximal powers.
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Proposition 9.8
There are at most nlogg, n occurrences of maximal local powers in a string of
length n.

Proof The number of maximal local powers occurring at a given position i on
y is equal to the number of squares of primitive strings occurring at position i.
As this quantity is bounded by logg, n after Corollary 9.16 below, we get the
result. ]

Proposition 9.9

For every integer ¢ > 6, the Fibonacci string f. contains at least éFC log, F;
occurrences of squares (of primitive strings) and of (right) maximal powers,
and at least 1_12Fc log, F. occurrences of the two-sided maximal powers.

Proof Letusdenote by &(y) the number of occurrences of squares of primitive
strings that are factors of y. We show by recurrence on ¢, ¢ > 6, that £(f.) >
%Fc log, F..
For ¢ = 6, we have f; = abaababa, £(fg) =4, and ; x 8 x 3 = 4. For
¢ = 7,wehave f; = abaababaabaab, £(f7) = 11, and é x 13 x log, 13 < 9.
Let ¢ > 8. The string f, is equal to f._; f.—». We have the equality

E(f) =&(fe-) + E(fe2) + 1e

where r, is the number of occurrences of squares of f, that are neither counted
by &£(f.—1) nor by &£( f.—»), that is to say the occurrences of squares that overlap
the separation between the prefix f,_; and the suffix f,._, of f.. The recurrence
hypothesis implies

1 1
§(f) = ch—l log, Fe_1 + ch—z log, Fen + 7.
To obtain the stated result it is sufficient to show
1 1 1
EFH log, Fe_1 + chfz log, Fep +rc > EFC log, F.,

which is equivalent to

> Lp log, ¢ +1F log, <
re 2 —re—110 I —rIc210 )
6 ! 253 F., 6 2108, Fo
using the equality F, = F,._; + F,._,. As, for ¢ > 4,
F. Fs 5
< == )
F.., F, 3

it is sufficient to show

1 8
e > = (F._ F. )1 —
r _6( 1+ Fen) 0% 3
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or also
re > 1F
c — 4 [end

We first show that f. contains F._4 + 1 occurrences of squares of pe-
riod F,_, that contribute thus to r.. By rewriting from the definition of Fi-
bonacci strings, we get fo = fe_a fe—a fesfe—a,and fo_s fe_a = fe_afeq fezs,
for ¢ > 7. Thus the string f._, f.—» occurs in f,. But as f._4 is a prefix of
both f._, and f._sf.—4, we also get F._4 other occurrences of squares of
period F,_;.

We show then that f. contains F._4 4+ 1 occurrences of squares of period
F,_5 that contribute again to .. From the equality f. = f.— fe—3 fe—3 fe—a, We
see that the occurrence of f._j3 f._3 contributes to r., as it is for the F._4 other
occurrences of squares of period F,_3 that can be deduced from the fact that
fe—a 18 a prefix of f._s.

As a conclusion, for ¢ > 7 we get the inequality

re = 2Fc—47
thus

1
re = _Fc,

which ends the recurrence and the proof of the lower bound on the number of
occurrences of squares.

There are as many occurrences of right maximal powers as occurrences of
squares (a maximal power of exponent e, e > 1, contains e — 1 occurrences of
squares but also e — 1 occurrences of right maximal powers that are suffixes
of it), which gives the same bound for this quantity.

The second lower bound that refers on the number of occurrences of the two-
sided maximal powers is obtained by means of a combinatorial property of the
Fibonacci strings: f, has no factor of the form u* with u # & (see Exercise 9.10).
Thus each occurrence of a two-sided maximal power can contain at most two
occurrences of squares, which gives the second bound of the statement. ]

9.3 Detection of squares

In this section, we consider powers of exponent 2, namely squares. Locating
all the occurrences of squares in a string can be realized with the algorithm of
Section 9.2. We cannot hope to find an asymptotically faster algorithm (with the
considered representation of powers) because of the result of Proposition 9.9
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whose consequence is that the algorithm POWERS is still optimal even if we
restrict it to produce squares only. Nevertheless, this does not show its optimality
for the detection of all the squares (and not of their occurrences) since a string
of length n contains less than 2n squares after Lemma 9.17 given further. We
start by examining the problem of detecting a square in a string and show that
the question can be answered in linear time when the alphabet is fixed. We
study then bounds on the number of squares of primitive strings that can occur
in a string.

Existence of a square

One of the essential problems in the following is the detection of a square
inside the concatenation of two square-free strings. An algorithm for testing
the existence of a square by the divide-and-conquer strategy is then deduced.
This method is further improved by the utilization of a special factorization of
the string to be tested.

We recall from Section 3.3 the definition of the table suff,, for every string
u € A*

suff i1 = |lesuff (u, ul0. . 7])| = max{|s| : s Zsur u and s <gur u[0..7]},

fori =0,1,...,|u| — 1. It gives the maximal length of the suffixes of u that
end at each of the positions on u itself. For u, v € A*, we denote by p,, the
table defined, for j =0, 1, ..., |u| — 1, by

Pouljl = max{|t] : ¢ pref U and ¢ pref ulj..lul =1}

This second table provides the maximal length of the prefixes of v
that start at each position on u. When, for instance, u = cabacbabcbac
and v = babcbab (see Figure 9.6) we get the tables that follow.

i o 1 2 3 4 5 6 7 8 9 10 11
uli] c a b a ¢c b a b ¢ b a c
suff , il 1 0 0 0 3.0 0 0 1 0 O 12
DPouli] 0O 0 2 0 0 6 01 0 2 O 0

Considering two strings « and v, we say of a square w? occurring at position

i on the string u - v that it is a square centered on u when i + |w| < |u|. In the
contrary case, we say that it is centered on v.

Lemma 9.10
Let two strings u, v € A™. The string u - v contains a square centered on u if
and only if for a position i on u we have
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lcabacbabcbac|babcbab‘

lbabcba‘ lbabcba‘

Figure 9.6. Support of the proof of Lemma 9.10. A square in uv whose center is in u
is of the form stst with s a suffix of u and ¢ a prefix of v. Here u = cabacbabcbac
and v = babcbab. The square (acbabcb)? is centered on u. We have suff ,[4] = |bac| =3,
DPv.ul5] = |babcba| = 6,i =5, and |u| — i = 7. As the inequality suff,[i — 11+ py..li] >
|u| — i holds, we deduce the squares (bacbabc)?, (acbabcb)?, and (cbabcba)?.

suff [i =11+ poulil = ful —i.
Proof The proof builds with the help of Figure 9.6. ]

The tables of the above example indicate the existence of at least two squares
centered on u in u - v since suff ,[4] + py.,[5] > 7 and suff ,[8] + p, .[9] = 3.
Actually, there are four squares in this situation: (bacbabc)?, (acbabcb)?,
(cbabcba)?, and (cba)?.

The computation of the table suff , is described in Section 3.3 and that of the
table p, , comes from an algorithm of Section 2.6. The total time of these two
computations is O(Ju|) when, for the second, the preprocessing on v is limited
to its prefix of length |u| if |u| < |v|. Thus the result that follows.

Corollary 9.11
Letu,v € A" Testing if u - v contains a square centered on u can be realized
in time O(|u)).

Proof Using Lemma 9.10, it is sufficient to compute the table suff,, and the
table p, , limited to the prefix of v of length |u|. The computation of these two
tables is done in time O(|u|) as recalled above. The rest of the computation
consists in testing the inequality of Lemma 9.10, for each position i on u, this
takes again a time O(|u|). The result thus holds. [ ]

We define the boolean functions ltest and rtest, that take as arguments the
square-free strings u and v, by

Iltest(u, v) = u - v contains a square centered on u,

and

rtest(u, v) = u - v contains a square centered on v.



348 9 Local periods

Corollary 9.11 indicates that the computation of /fest(u, v) can be realized in
time O(|u]), and, by symmetry, the one of rtest(u, v) is done in time O(|v]).
This result is used in the analysis of the execution time of the algorithm
SQUARE-IN whose code is given thereafter. For a string y € A*, the operation
REC-SQUARE-IN(y) returns TRUE if and only if y contains a square. The principle
of the computation is a divide-and-conquer strategy based on the utilization of
the functions Ilfest and rtest. These functions are supposed to be realized by the
algorithms LTEST and RTEST respectively.

REC-SQUARE-IN(Y)
I n <yl

if n < 1 then
return FALSE

elseif REC-SQUARE-IN(y[0.. |n/2]]) then
return TRUE

elseif REC-SQUARE-IN(y[[n/2] 4+ 1..n — 1]) then
return TRUE

elseif LTEST(y[0.. [n/2]], y[ln/2] + 1..n — 1]) then
return TRUE

elseif RTesT(y[0.. |n/2]], y[ln/2] + 1..n — 1]) then
return TRUE

12 else return FALSE

O 00 1 O Lt &AW

—_— =
— O

Proposition 9.12
The operation REC-SQUARE-IN(y) returns TRUE if and only if y contains a
square. The computation is done in time O(|y| x log|y|).

Proof The correctness of the algorithm comes from a simple recurrence on
the length n of y.

Denoting by T'(n) the execution time of REC-SQUARE-IN on a string of
length n, we get, with the help of Corollary 9.11, the recurrence formulas
T(l)=«aand, forn > 1,T(n) =T(n/2])+ T([n/2]) + pn, where @ and B
are constants. The solution of this recurrence gives the announced result (see
Exercise 1.13). ]

It is possible to reduce the execution time of square testing using a more
subtle strategy than the previous one. Though the strategy is still of the kind
divide-and-conquer, it does not balance the sizes of the subproblems, which
is quite nonintuitive. The strategy is based on a factorization of y called its
f-factorization.

The f-factorization of y € A" is the sequence of factors ug, uy, ..., u; of
y defined iteratively as follows. We first have uy = y[0]. Then we assume that
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ug, Uy, ..., u;_1 are already defined, with ugu; ... uj_; <per y and j > 0. Let
i =|uouy...uj_1| (wehave 0 <i < n —1)and let w be the longest prefix of
y[i ..n — 1] that occurs at least twice in y[0..i — 1] - w. Then
Jw ifw # ¢,
“i= {y[i] otherwise.

We note that the second case of the definition happens when y[i] is a letter
that does not occur in y[0..i — 1]. We also note that all the factors of the
f-factorization are nonempty strings.

With the string y = abaabbaabbaababa, we obtain for f-factorization
the sequence a, b, a, ab, baabbaab, aba, which is a decomposition of y:
y=a-b-a-ab-baabbaab - aba.

Lemma 9.13

Let (ug, uy, ..., uy) be the f-factorization of y € A™. The string y contains a
square if and only if one of the three following conditions is satisfied for some
index j,0 < j <k:

L. Juouy . cujr| < posy(uj) + |uj| < luouy ...u;l,
2. Itest(uj_1,u;) orrtest(u;_y, u;) is true,
3. j > landrtestQuouy ... uj_o, uj_1u;) is true.

Proof We start by showing that if one of the conditions is satisfied, y contains
a square. Let j be the smallest index for which one of the conditions is satisfied.
If Condition 1 is satisfied, the current occurrence of u; and its first occurrence
in y overlap or are adjacent without matching. We deduce the existence of a
square at position pos, (u ;).

If Condition 1 is not satisfied, the string u ; does not contain a square since it
is of length 1 or is a factor of uou; ... u;_; that does not contain any (which can
be shown by recurrence on j using this remark). By definition of the functions
Itest and rtest, and since u;_; and u; are square-free, if lfest(u;_i,u;) or
rtest(uj_y, uj) is true, the string u ;_ju; contains a square, which is thus also a
square of y. On the other hand, if ltest(u;_y, u;) and rtest(u;_y, u;) are false,
uj_iu; does not contain any square; but Condition 3 indicates the existence of
a square in y since the arguments of ltest are square-free strings.

Conversely, let j be the smallest integer for which wuou; ...u; contains a
square, and let ww, w # ¢, be this square. We have 0 < j < n since ug is
square-free, and the string uou; ...u;_; is square-free by definition of the
integer j. If Condition 1 is not satisfied, as in this case u; is of length 1 or is a
factor of uouy ...u;_y, it is square-free. If Condition 2 is not satisfied u; _ju;
is also square-free. It remains then to show that the square ww is centered
on u;_u;. In the contrary situation, the occurrence of the second half of the
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square ww completely covers u;_;, which implies that this string possesses
an occurrence that is not a suffix of w. But this contradicts the maximality of
the length of u;_; in the definition of the f-factorization. Condition 3 is thus
satisfied, which ends the proof. ]

The algorithm SQUARE-IN directly implements the square testing from the
conditions stated in Lemma 9.13. The f-factorization can be computed by
means of the suffix tree of y (Section 5.2) or of its suffix automaton (Section 5.4).
We get thus a linear-time test when the alphabet is fixed.

SQUARE-IN(Y)

1 (uo,uy,...,ux) < f-factorization of y

2 for j < 1tokdo

3 if [wouy ... uj_1| < pos(u;) + |uj| < luouy ...u;| then
4 return TRUE

5 elseif LTEST(1;_1, u;) then

6 return TRUE

7 elseif RTEST(u;_1, u;) then

8 return TRUE

9 elseifj > 1 and RTEST(M()L{] o Ujo2, uj_luj) then

10 return TRUE
11 return FALSE

Theorem 9.14
The operation SQUARE-IN(y) returns TRUE if and only if the string y contains
a square. The computation is done in time O(|y| x logcard A).

Proof The correctness of the algorithm is a direct consequence of
Lemma 9.13.

It can be checked that we can compute the f-factorization of y by means of
its suffix automaton, or even during the construction of this structure. Besides,
the test in line 3 can be performed during this computation, without changing
the asymptotic bound of the construction time. The running time of this step is
thus O(|y| x logcard A) (Section 5.4).

The sum of the execution times of the tests performed in lines 5, 7, and 9 is
proportional to Z];:l(|uj,1| + |uj| + |uj—1u;|) after Corollary 9.11, which is
bounded by 2|y|.

The total time is thus O(|y| x logcard A). ]
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The lemma shows that square testing is linear on a fixed alphabet, result that
is also true on a bounded integer alphabet due to the results of Section 4.5 and
Exercise 5.4.

Number of prefix or factor squares

We call prefix square of a string a square that is a prefix of this string.

The lemma that follows presents a combinatorial property that is at the
origin of an upper bound on the number of prefix squares (see Corollary 9.16).
The upper bound is used in the previous section for bounding the number of
occurrences of maximal powers in a string (Proposition 9.8) and for bounding
the execution time of the algorithm POWERS.

Lemma 9.15 (Three Prefix Square Lemma)
Letu,v,w € A" be three strings such that u? ~<pref v? ~<pref w2 and u is prim-
itive. Then |u| + |v| < |w|.

Proof We assume by contradiction that |u| 4 |v| > |w|, which, with the as-

Lw satisfies

sumption, implies v <pret W <pref VU <pref v2. The string t = v~
then ¢ <prer u, and |z] is a period of v (since v occurs at positions |v| and |w]
on w? and that |w| — |v] = |¢] < |v)).

We consider two cases, whether u is a prefix of v or not (see Figure 9.7).

Case 1. In this situation, u2, which is a prefix of v, admits two different
periods |u| and [¢| that satisfy |u| + || < |u2|. The Periodicity Lemma applies
and shows that gcd(|u], |¢]) is also a period of u?. But, as ged(ul, |t]) < Jt] <
|u|, this implies that u is not primitive, in contradiction with the assumptions.

Case 2. In this case, v is a prefix of u>. The string v possesses two distinct
periods: |u| and |t]. If |u| + |¢| < |v], the Periodicity Lemma applies to v and
we get the same contradiction as in the previous case. We can thus assume that
the converse holds, that is, |u| + |f] > |v].

The string s = u~'v is both a prefix of u and a suffix of v. Its length satisfies
|s| < |t| because of the previous inequality, and is a period of u (since u
occurs at positions |u| and |v| on w? and that |s| = |v| — |u| < |u|). Let finally
r =t"'u. We thus have v = ¢ - r - 5. We get a contradiction by showing again
below that u possesses a period that strictly divides its length.

As |t] is a period of v, the string 7 - s is also a prefix of v (Proposition 1.4).
And as |r - s| < |r| + |t] = |u]|, r - s is even a proper prefix of u. It occurs thus
in w? at positions |¢| and |u|. This proves that it has for period |u| — |t| = |r|.
It also has for period |s| that is a period of u. The Periodicity Lemma applies



352 9 Local periods
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Figure 9.7. Illustration for the two impossible situations considered in the proof of
Lemma 9.15. (a) Case 1. The string u? is a prefix of the string v. (b) Case 2. The string
v is a prefix of the string u2.

to r - s, which has thus period p = gcd(|r|, |s|). Indeed, p is also a period of u
since p divides |s| that is a period of u.

Let us consider now the string u. It has for periods p and |¢| with the
inequality p + |t| < |r| 4 |¢t| = |u|. The Periodicity Lemma applies to u, which
has thus period ¢ = gcd(p, |¢]). But ¢ divides |¢| and |r|, thus also their sum
|t| + |r| = |u|. This contradicts the primitivity of # and ends Case 2.

As Cases 1 and 2 are impossible, the assumption |u| + |v| > |w| leads to a
contradiction, which proves the inequality of the statement. ]

Let us consider, for instance, the string aabaabaaabaabaabaaab that has
for prefixes the squares a?, (aab)?, (aabaaba)?, and (aabaabaaab)?. The three
strings a, aab, and aabaaba satisfy the assumptions of Lemma 9.15, and their
lengths satisfy the inequality: 1 4+ 3 < 7. The three strings aab, aabaaba, and
aabaabaaab also satisfy the assumptions of Lemma 9.15, and we have the
equality: 3 4+ 7 = 10. This example shows that the inequality of the statement
of the lemma is tight.

Corollary 9.16
Every string y, |y| > 1, possesses less than logg, |y| prefixes that are squares
of primitive strings, that is to say

card{u : u primitive and u* <yt y} < logg |yl.
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Proof Let us set ¢(y) = card{u : u primitive and u> =pref ¥}. Let us first
show by recurrence on c, ¢ > 1, that

¢(y) = cimplies |y| = 2Fc4.

For ¢ = 1, we have |y| > 2 = 2F,. For ¢ = 2, we can check that |y| > 6 >
2F; = 4 (for instance, we have ¢ (aabaab) = 6).

Let us assume ¢(y) > ¢ > 3. Letu, v, w € A" be the three longest distinct
primitive strings whose squares are prefixes of y. We have u? <prer 02 <prer w?.
The strings «? and v? satisfy thus respectively ¢ (4?) > ¢ — 2and ¢ (v?) > ¢ — 1.
By recurrence hypothesis, we get |u?| > 2F._; and |v?| > 2F..

Lemma 9.15 gives the inequality |u| + |v| < |w]|, which implies |y| >
|w?| > |u?| + |v?| = 2F,_; +2F. = 2F,,, and ends the recurrence.

AsF.y; > @ land ® < 2, weget|y| > 20! > @ thatis,c < logg |yl,
which means that y possesses less than logg, |y| prefixes, squares of primitive
strings, as announced. =

The Fibonacci string f; = abaababaabaab has two prefix squares of
lengths 3 and 5. We can check, for i > 5, that f; has i — 5 prefix squares
and that f;_,? is the longest one. Exercise 9.11 provides another sequence of
strings that have the maximal possible number of prefix squares for a given
length.

A direct application of the previous lemma shows that a string of length
n cannot contain as factors more than nlogg n squares of primitive strings.
Actually, this bound can be refined as stated in the next proposition.

Proposition 9.17
Any string y, |y| > 4, contains at most 2|y| — 6 factors that are squares of
primitive strings, that is,

card{u : u primitive and u* <ge v} < 2|y| — 6.
Proof Let
E = {u? : u primitive and u? <ge y}.

Let us consider three strings u?, v?, and w? of E, u? <per v? <prer . After
Lemma 9.15, we have |u| + |v| < |w| and thus 2|u| < |w|, which implies
M2 <pref W.

Let us assume that i is a position of 2, v, and w? on y. Then i is not the
largest position of #? on y. Thus, a position i cannot be the largest position of
more than two strings of E. This shows that card £ < 2|y|.

We note then that the position |y| — 1 is not the position of a string of E, and
that each positions |y| — 2, |y| — 3, |y| — 4, |y| — 5, can be the largest position
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of at most one string of E. This reduces the previous upper bound and gives
the bound 2|y| — 6 of the statement. [ ]

9.4 Sorting suffixes

An adaptation of the algorithm PARTITIONING (see Section 9.1) yields a lex-
icographic sorting of the suffixes of the string y. It simultaneously computes
the prefixes common to the suffixes of y with the aim of realizing a suffix
array (Chapter 4). With this method, the computation requires a linear memory
space.

Incremental computation of the ranks of the suffixes

Let us recall, for k > 0, that we denote by Ry[i] the rank (counted from position
0) of first,(y[i ..n — 1]) in the sorted list of the strings of the set {first,(u) :
u nonempty suffix of y}, and that we set i =; j if and only if Ri[i] = Ri[j]
(see Section 4.4). This equality is also equivalent to Ey[i] = Ei[j] with the
notation of Section 9.1.

For sorting the suffixes of y, we transform the algorithm PARTITIONING
into the algorithm RANKS. The code of this latter algorithm is given thereafter.
The modification consists in maintaining the classes of the current partition in
increasing lexicographic order of the beginnings of length k of the suffixes. For
this, the classes of the partition are organized as a list and the order of the list
is an essential element for obtaining the final order on suffixes. The number
of the position i class, denoted by Ej[i] in Section 9.1 and whose value can
be chosen relatively freely, is replaced here by the rank of the class in the list
of classes, Ri[i], that has a value independent of the implementation of the
algorithm.

Another element of the algorithm PARTITIONING is modified in order to
get the algorithm RANKS: it concerns the management of the small classes.
Among the subclasses of a class C that is split during the partitioning, it is
necessary to distinguish the classes that are before the chosen class of maximal
size, and those that are after this latter class, in the list of the subclasses
of C. They are stored respectively in two lists called Before and After, their
union making the set of small classes, Small, considered in the algorithm
PARTITIONING.

Finally, as for the algorithm PARTITIONING, the algorithm RANKS is not
given in all its details; in particular, it is understood that the lists of subclasses
and the twin classes are reset to the empty list after each step.
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RANKS(y, n)
1 forr < 0 to cardalph(y) — 1 do
2 C, <0
3 fori < Oton—1do
4 r < rang of y[i] in the sorted list of letters of alph(y)
5 C, < C,U{i}
6 Before < ()
7 After < {Co, C1, ..., Ceardaiph(y)—1)
8 k<1
9 while Before - After # () do
10 > Invariant: i € C, if and only if Ri[i] =r
11 for each P € Before - After, sequentially do
12 for eachi € P\ {0} do
13 let C be the class of i — 1
14 let Cp be the twin class of C
15 transfer i — 1 of C in Cp
16 for each considered pair (C, Cp) do
17 if P € Before then
18 SbCIBe[C] < SbCIBe[C] - (Cp)
19 else SHCIAf[C] < SbCIAf[C] - (Cp)
20 Before < ()
21 After < ()
22 for each class C considered in the previous step,
in the order of the list of classes do
23 if C # () then
24 SbCI[C] < SbCIBe[C] - (C) - SBCIAf[C]
25 else SHCI[C] < SbCIBe[C] - SDCIAf[C]
26 in the list of classes, replace C by
the elements of ShCI[C] in the order of this list
27 G < one class of maximal size in SbCI[C]
28 Before < Before - (classes before G in SbCI[C])
29 After < After - (classes after G in ShCI[C])
30 k<—k+1
31 return permutation of positions associated with the list of classes
Theorem 9.18

The algorithm RANKS sorts the suffixes of y € A* of length n in lexicographic
order, that is, the permutation p = RANKS(y, n) satisfies the condition

ylpl0]..n — 1] < y[p[l]..n—1] < --- < y[p[n—1]..n — 1].
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Proof We start by showing that the equivalence
i € C, if and only if Ry[i] =r

is an invariant of the while loop. This amounts to show that the class of i is
before the class of j in the list of classes at step k if and only if Ri[i] < Ri[j],
at each step. It is sufficient to show the direct implication since i and j belong
to the same class at step k if and only if i = j after the proof of the algorithm
PARTITIONING that applies here.

We assume the condition is satisfied at the beginning of step k and we
examine the effect of the instructions of the while loop.

Let i, j be two positions such thati € C,, j € Cy, and r < s where C, and
Cy are classes according to =;41. If i % j, the relative order of the classes
of i and j being conserved because of the instruction in line 26, the class of i
precedes the one of j at step k. By assumption, we have thus R;[i] < Ri[j].
This inequality implies R4+ 1[i] < Ry+1[j] by the definition of R.

We assume now i =; j. Let C be the class common to i and j according to
the equivalence =;.

Let us assume that C, and C; are two before subclasses of C (in ShCIBe[C]).
Then i 4+ 1 and j + 1 belong to two classes P’ and P” that are in this order in
the list Before. By assumption we have thus

Rili + 1] < Rel[j + 1]
(thus first,(y[i +1..n —1]) < first,(y[j + 1..n — 1])), and also

Riq1li] < Riqalj]

(thus first,  (y[i ..n — 1]) < first, . (y[j .. n — 1]), see Figure 9.1), consider-
ing the way in which the list Before is made up in line 28. The argument is the
same if i is placed in a before subclass of C and j in an after subclass of C, or
if both i and j are placed in two after subclasses of C.

Let us assume for finishing that i is not touched and that j is placed in
an after class at step k. Then, i + 1 € G where G is a subclass of maximal
size of its original class, or i + 1 = n. The position j + 1 belongs to an after
subclass of the same original class since i =;_; j. As the subclass of j + 1 is
located after G due to the constitution of After (line 29), we have as previously
Rili + 1] < R[j + 1], then Ry 1[i] < Ri+1[j]- The argument is analogue
when i is placed in a before class and j is untouched.

This ends the proof of the invariant.

For k = 1, we notice that the condition is fulfilled after the initialization. The
algorithm stops when Before - After is empty, that is to say when the partition
is stabilized, this occurs only when each class is reduced to a singleton. In
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i o 1 2 3 4 5 6 7 8 9
b b b

yli] b a b a a a b
k=1 {1,5,6,7,9} {0,2,3,4,8)
ﬂ\o /\0
k=2 {9} s, 6} {1, 7} (0,4, 8} 2, 3}

VANNANPZN AN

k=3 {9} 5} {6} {7} 1} {8} {4} {0} {3} {2}
0 2 2

Figure 9.8. Operation RANKs applied to babbbaaaba for sorting its suffixes and computing
the longest prefixes common to consecutive suffixes. The final sequence 9, 5, 6, . .. gives the
suffixes in increasing lexicographic order: a < aaaba < aaba < - - -. For each class C, the
value LCP[C] is denoted by an index of C. Value LCP[{1}] = 2 indicates, for example, that
the longest common prefix to the suffixes at positions 7 and 1, namely aba and abbbaaaba,
has length 2.

this situation it comes from the condition that the obtained permutation of
positions corresponds to the increasing sequence of values of R, that is to say
the increasing sequence of the suffixes in the lexicographic order. Which ends
the whole proof. n

The example of Figure 9.8 follows the example of Figure 9.5. At line k = 2
we have one small before class, {9}, and two small after classes, {1, 7} and
{2, 3}. The partitioning at this step is done by taking the small classes in this
order. The partitioning according to {9} has for effect to extract 8 from its class
{0, 4, 8} that splits into {8} and {0, 4} in this order since {9} is a before class.
With {1, 7}, 0 is extracted from its class {0, 4} that splits into {4} and {0} in
this order since {1, 7} is an after class. The positions 7, 2, and 3 are used in
the same way. This leads respectively to split {5, 6} into {5} and {6}, {1, 7} into
{7} and {1}, and finally {2, 3} into {3} and {2}. We get thus the partition of line
k = 3 that is the final partition.

Computation of the common prefixes

We indicate how to extend the algorithm RANKS for obtaining a simultaneous
computation of the longest common prefixes of the suffixes that are consecutive
in the sorted sequence.

For this, we assign to each class C a value denoted by LCP(C) that is the
maximal length of the common prefixes between the elements of C and those
of the previous class in the list of classes. These values are all initialized to 0.
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We know that at step & all the elements of a same class have the same prefix of
length k.

The computation of LCP(C’) occurs when C’ is a new class, subclass of a
class C for which LCP(C) is defined. The definition of LCP(C’) can be done
during the instruction in line 26 using the relation

LCP[C] if C’ is the first class of SbCI[C],

LCP[C] =
€] { k for the other classes of SECI[C].

It is easy to see that this rule leads to a correct computation of LCP.

Figure 9.8 illustrates the computation of the common prefixes. At step
k = 2, the class {0, 4, 8} splits into {8}, {4}, {0}. We thus get LCP[{8}] =
LCP[{0, 4, 8}] = O for the first subclass, then LCP[{4}] = LCP[{0}] =k =2
for the other two subclasses.

At the end of the execution of the algorithm RANKS, each class contains
a single element. If C = {i}, we have LCP[C] = LCP[i] with the notation
of Section 4.3. The rest of the computation of the table LCP, which is the
computation of the other components needed for the suffix array, can be done
as in Chapter 4.

The analysis of the execution time of the algorithm PARTITIONING also holds
for Ranks. The previous description shows that the computation of the prefixes
common to the suffixes does not modify the asymptotic upper bound on the
running time of the algorithm. We thus get the next result analogue to the results
of Sections 4.4 and 4.6 put together and valid on any alphabet.

Theorem 9.19
The preparation of the suffix array of a string of length n can be performed in
time O(nlogn) and linear space by adapting the algorithm RANKS. [ ]

Notes

The partitioning method described in this chapter finds its origin in an algorithm
for minimizing deterministic automata by Hopcroft [155]. The algorithm of
Section 9.1 is a variant of it that applies not only to strings but also to graphs
(see Cardon and Crochemore [113]). Extensions of the method have been
proposed by Paige and Tarjan [196].

The utilization of the partitioning of positions on a string for determining
the local powers is from Crochemore [118]. Apostolico and Preparata [97]
show that the computation can be performed by means of a suffix tree.
Slisenko [208] also proposed a method that relies on a data structure similar
to the suffix automaton.
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The algorithm SQUARE-IN is from Main and Lorentz [179] who gave a direct
algorithm to implement the function /test (see Exercise 9.8). The algorithm is
also a basic element of a method for finding all the occurrences of squares pro-
posed by the same authors (see [180]) and whose complexity is the same as the
two above methods. They also show that the algorithm is optimal among those
that only use letter comparisons of the type = and #. The algorithm SQUARE-IN
(see Crochemore [119]) is also optimal in the class of algorithms that compare
letters by means of <, =, and > assuming an ordering on the alphabet. A
method based on naming (see Chapter 4) reaches the same computation time
(see Main and Lorentz [181]).

For the utilization of the suffix tree to the detection of squares in a string, we
refer to Stoye and Gusfield [210] who designed a linear-time algorithm. The
detection of powers in genomic sequences, called tandem repeats, where an
approximate notion is necessary was designed by Benson [102] and generated
many software implementations.

The Three-Prefix-Square Lemma is from Crochemore and Rytter [129].
Another proof from Diekert can be found in the chapter of Mignosi and Restivo
in [80]. This chapter deals in a deeply way on periodicities in strings.

The bound of 27 on the number of squares in a string of length n (Proposi-
tion 9.17) was established by Fraenkel and Simpson [139]. The exact number
of squares in the Fibonacci string, that inspired the previous authors, was eval-
uated by Iliopoulos, Moore, and Smyth [160]. A simple and direct proof of
the result from Dean Hickerson was communicated to us in 2003 by Gusfield.
Another simple proof is by Ilie [159]. See also Lothaire [81], Chapter 8.

Kolpakov and Kucherov [172] have extended the previous result by showing
that the number of occurrences of the two-sided maximal periodicities, called
runs in [160], is still linear. In the meantime they proposed a linear-time algo-
rithm (on a fixed alphabet) to detect these occurrences, improving the result of
Main in [178]. They also conjectured that a string of length »n has less than n
runs. Rytter [201] proved that it is less than 5n.

The algorithm of Section 9.4 is close to the one described by Manber and
Myers [182] for the preparation of a suffix array.

Exercises

9.1 (Tree of squares)
Indicate how to transform the suffix tree of a string y for storing all the factors
of y that are squares of a primitive string.

Give a linear-time algorithm that performs the transformation. (Hint: see
Stoye and Gusfield [210].)
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9.2 (Fractional power)
We call fractional exponent of a nonempty string x the quantity

exp(x) = |x|/per(x).

Show, for every integer k > 1, that exp(x) = k if and only if x = u* for
a primitive string u. (In other words the notion of exponent introduced in
Chapter 1 and the notion of fractional exponent match in this case.)

Write a linear-time algorithm that computes the fractional exponents of all
the prefixes of a string y.

Describe an algorithm running in time O (n log n) for the computation of the
maximal fractional powers of a string of length n. (Hint: see Main [178].)

9.3 (Maximal power)

Show that a string of length n contains O(n) occurrences of maximal fractional
powers. Give an algorithm that computes them all in time O(n x logcard A).
(Hint: see Kolpakov and Kucherov [172].)

9.4 (Thue-Morse morphism)
An overlap is a string of the form auaua witha € A and u € A*. Show that a
string x contains (as factor) an overlap if and only if it possesses a nonempty
factor v for which exp(v) > 2.

On the alphabet A = {a, b}, we consider the morphism (see Exercise 1.2)
g: A* — A* defined by g(a) = ab and g(b) = ba. Show that, for every integer
k > 0, the string gk (a) contains no overlap. (Hint: see Lothaire [79].)

9.5 (Overlap-free string)
On the alphabet A = {a, b} we consider the substitution g of Exercise 9.4 and
the sets:

E = {aabb, bbaa, abaa, babb},
F = {aabab, bbaba},
G = {abba, baab, baba, abab},
H = {aabaa, bbabb}.

Let x € A* be an overlap-free string. Show that, if x has a prefix in E U F,
then x[j] # x[j — 1] for each odd integer j satisfying the condition 3 < j <
|x] — 2. Show that, if x has a prefix in G U H, then x[j] # x[j — 1] for each
even integer j satisfying the condition 4 < j < |x| — 2.

Show that, if |x| > 6, x decomposes in a unique way into d, - u - f, with
dy, fc € {e,a,b,aa,bb}and u € A*.
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Show that the string x decomposes in a unique way into

didy...dy - g fr.. fofi

with |u| < 7,r € N and

ds, f; € {e, 87 (a), g7 (b), &' (aa), g (b))

Deduce that the number of overlap-free strings of length n grows polynomially
according to n. (Hint: see Restivo and Salemi [200].)

9.6 (Overlap test)

Deduce from the decomposition of the overlap-free strings of Exercise 9.5
a linear-time algorithm that tests if a string contains an overlap. (Hint: see
Kfoury [168].)

9.7 (No square)

On the alphabet A = {a, b, c}, we consider the morphism (see Exercise 1.2)
h: A*¥ — A*defined by h(a) = abc, h(b) = ac, and h(c) = b. Show, for every
integer k > 0, that the string /4 (a) contains no square. (Hint: see Lothaire [79].)

9.8 (Left test)
Detail the proof of Lemma 9.10.

Give an implementation of the function /fest that computes /test(u, v) in
time O(|u|) using only an extra constant space. (Hint: compute sequentially
Pv.u[i] for well chosen values of i; see Main and Lorentz [179].)

9.9 (Only three squares)
Show that 3 is the smallest integer for which there exist arbitrarily long strings
y € {a, b}* satisfying

card{u : u # & and u® <pe y) = 3.

(Hint: see Fraenkel and Simpson [139].)

9.10 (Forth power)
Show that b2, a3, babab, and aabaabaa are not factors of Fibonacci strings.
Show that if u? <gu Jx» u is a conjugate of a Fibonacci string. (Hint: when
|u| > 2 study the case u € a{a, b}™, and then check that the case u € b{a, b}
amounts to the previous one.)
Deduce that no Fibonacci string contains forth powers (factor of exponent
4). (Hint: see Karhumiki [163].)
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9.11 (Prefix squares)
We consider the sequence {g; : i € N) of strings of {a, b}* defined by go = a,
g1 = aab, g, = aabaaba, and, fori > 3, g; = g;_18i 2.

Check that g; possesses i + 1 prefix squares.

Show thatif y € {a, b}* possessesi + 1 prefixes that are squares of primitive
strings, then |y| > 2|g;|.

For i > 3, show that if y € {a, b}* possesses i + 1 prefixes that are squares
of primitive strings and |y| = 2|g;|, then, up to a permutation of the letters a
and b, y = g;%. (Hint: see Crochemore and Rytter [129].)

9.12 (Non primitive)

Letu, v, w € A" be three strings that satisfy the conditions: u? ~<pref v? ~pref
w?. Show directly, that is, without using the Three Prefix Square Lemma, that
u is a suffix of v; deduce Proposition 9.17. Show indeed that u, v, and w are
powers of the same string. (Hint: see Ilie [159] and Lothaire [80].)

9.13 (Prefix powers)

Let k be an integer, k > 2, and let u, v, w € A" be three strings that satisfy
the conditions: u* =< pref vk < pref wk, and u, v are primitive strings. Show that
lu| + (k — D)|v| < |w]|. (Hint: for k > 3 we can use the Primitivity Lemma.)

9.14 (Prefix powers, again)
Letaninteger k > 2. Show thatastring y, |y| > 1, possesses less thanlog,,, | y|
prefixes that are kth powers of primitive strings, that is to say

card{u : u primitive and u* <prer ¥} < log, |y,

where

k—1+4+(k—-12+4
5 .

a(k) =

9.15 (Lot of squares)
Give an infinite family of strings that contain as factor the maximal possible
number of squares of primitive strings.

9.16 (Ranks)
Implement the algorithm RANKS.

9.17 (Perfect factorization)

Let x € AT. Show that there exists a position i on x that satisfies the two
properties: i < 2 x per(x), and at most one prefix of x[i..|x| — 1] is of the
form u?, u primitive. (Hint: see Galil and Seiferas [144], or [4].)
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9.18 (Prefix periodicities)
Let u, v € A" be two primitive strings such that |u| < [v].
Show that

\lep(uu, vo)| < fu| + [v| — ged(lul, [v]).
Show that there exists a conjugate v’ of v for which
1.7 2
|lep(u™, v'v")| < 3l +[ol).

Show that each inequality is tight. (Hint: use the Periodicity Lemma and see
Breslauer, Jiang, and Jiang [111]; see also Mignosi and Restivo in [80].)
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