

Lattice Basis Reduction
An Introduction to the LLL Algorithm and Its Applications

© 2012 by Taylor & Francis Group, LLC

PURE AND APPLIED MATHEMATICS

A Program of Monographs, Textbooks, and Lecture Notes

EXECUTIVE EDITORS

EDITORIAL BOARD

Earl J. Taft
Rutgers University

Piscataway, New Jersey

Zuhair Nashed
University of Central Florida

Orlando, Florida

M. S. Baouendi
University of California,

San Diego

Jane Cronin
Rutgers University

Jack K. Hale
Georgia Institute of Technology

S. Kobayashi
University of California,

Berkeley

Marvin Marcus
University of California,

Santa Barbara

W. S. Massey
Yale University

Anil Nerode
Cornell University

Freddy van Oystaeyen
University of Antwerp,
Belgium

Donald Passman
University of Wisconsin,
Madison

Fred S. Roberts
Rutgers University

David L. Russell
Virginia Polytechnic Institute
and State University

Walter Schempp
Universität Siegen

© 2012 by Taylor & Francis Group, LLC

MONOGRAPHS AND TEXTBOOKS IN
PURE AND APPLIED MATHEMATICS

Recent Titles

Santiago Alves Tavares, Generation of Multivariate Hermite Interpolating Polynomials
(2005)

Sergio Macías, Topics on Continua (2005)

Mircea Sofonea, Weimin Han, and Meir Shillor, Analysis and Approximation of Contact
Problems with Adhesion or Damage (2006)

Marwan Moubachir and Jean-Paul Zolésio, Moving Shape Analysis and Control:
Applications to Fluid Structure Interactions (2006)

Alfred Geroldinger and Franz Halter-Koch, Non-Unique Factorizations: Algebraic,
Combinatorial and Analytic Theory (2006)

Kevin J. Hastings, Introduction to the Mathematics of Operations Research
with Mathematica®, Second Edition (2006)

Robert Carlson, A Concrete Introduction to Real Analysis (2006)

John Dauns and Yiqiang Zhou, Classes of Modules (2006)

N. K. Govil, H. N. Mhaskar, Ram N. Mohapatra, Zuhair Nashed, and J. Szabados,
Frontiers in Interpolation and Approximation (2006)

Luca Lorenzi and Marcello Bertoldi, Analytical Methods for Markov Semigroups (2006)

M. A. Al-Gwaiz and S. A. Elsanousi, Elements of Real Analysis (2006)

Theodore G. Faticoni, Direct Sum Decompositions of Torsion-Free Finite
Rank Groups (2007)

R. Sivaramakrishnan, Certain Number-Theoretic Episodes in Algebra (2006)

Aderemi Kuku, Representation Theory and Higher Algebraic K-Theory (2006)

Robert Piziak and P. L. Odell, Matrix Theory: From Generalized Inverses to
Jordan Form (2007)

Norman L. Johnson, Vikram Jha, and Mauro Biliotti, Handbook of Finite
Translation Planes (2007)

Lieven Le Bruyn, Noncommutative Geometry and Cayley-smooth Orders (2008)

Fritz Schwarz, Algorithmic Lie Theory for Solving Ordinary Differential Equations (2008)

Jane Cronin, Ordinary Differential Equations: Introduction and Qualitative Theory,
Third Edition (2008)

Su Gao, Invariant Descriptive Set Theory (2009)

Christopher Apelian and Steve Surace, Real and Complex Analysis (2010)

Norman L. Johnson, Combinatorics of Spreads and Parallelisms (2010)

Lawrence Narici and Edward Beckenstein, Topological Vector Spaces, Second Edition (2010)

Moshe Sniedovich, Dynamic Programming: Foundations and Principles, Second Edition (2010)

Drumi D. Bainov and Snezhana G. Hristova, Differential Equations with Maxima (2011)

Willi Freeden, Metaharmonic Lattice Point Theory (2011)

© 2012 by Taylor & Francis Group, LLC

Murray R. Bremner
University of Saskatchewan
Saskatoon, Canada

Lattice Basis Reduction
An Introduction to the LLL Algorithm and Its Applications

© 2012 by Taylor & Francis Group, LLC

The author is very grateful to Chris Applegate for the cover art, which is a photograph of an Islamic
mosaic at the Alcazar in Seville.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20110615

International Standard Book Number-13: 978-1-4398-0704-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2012 by Taylor & Francis Group, LLC

Contents

List of Figures xi

Preface xiii

About the Author xvii

1 Introduction to Lattices 1

1.1 Euclidean space Rn . 1

1.2 Lattices in Rn . 5

1.3 Geometry of numbers . 13

1.4 Projects . 15

1.5 Exercises . 15

2 Two-Dimensional Lattices 21

2.1 The Euclidean algorithm . 21

2.2 Two-dimensional lattices . 25

2.3 Vallée’s analysis of the Gaussian algorithm 31

2.4 Projects . 37

2.5 Exercises . 38

3 Gram-Schmidt Orthogonalization 41

3.1 The Gram-Schmidt theorem 41

3.2 Complexity of the Gram-Schmidt process 47

3.3 Further results on the Gram-Schmidt process 49

3.4 Projects . 52

3.5 Exercises . 53

4 The LLL Algorithm 55

4.1 Reduced lattice bases . 55

4.2 The original LLL algorithm 62

4.3 Analysis of the LLL algorithm 67

4.4 The closest vector problem 78

4.5 Projects . 80

4.6 Exercises . 83

vii

© 2012 by Taylor & Francis Group, LLC

viii CONTENTS

5 Deep Insertions 87
5.1 Modifying the exchange condition 87
5.2 Examples of deep insertion 91
5.3 Updating the GSO . 94
5.4 Projects . 98
5.5 Exercises . 99

6 Linearly Dependent Vectors 103
6.1 Embedding dependent vectors 103
6.2 The modified LLL algorithm 106
6.3 Projects . 111
6.4 Exercises . 112

7 The Knapsack Problem 115
7.1 The subset-sum problem . 115
7.2 Knapsack cryptosystems . 117
7.3 Projects . 122
7.4 Exercises . 123

8 Coppersmith’s Algorithm 131
8.1 Introduction to the problem 131
8.2 Construction of the matrix 133
8.3 Determinant of the lattice 137
8.4 Application of the LLL algorithm 140
8.5 Projects . 143
8.6 Exercises . 143

9 Diophantine Approximation 145
9.1 Continued fraction expansions 145
9.2 Simultaneous Diophantine approximation 148
9.3 Projects . 152
9.4 Exercises . 153

10 The Fincke-Pohst Algorithm 155
10.1 The rational Cholesky decomposition 155
10.2 Diagonalization of quadratic forms 158
10.3 The original Fincke-Pohst algorithm 159
10.4 The FP algorithm with LLL preprocessing 168
10.5 Projects . 175
10.6 Exercises . 175

11 Kannan’s Algorithm 179
11.1 Basic definitions . 179
11.2 Results from the geometry of numbers 182
11.3 Kannan’s algorithm . 183

11.3.1 Procedure COMPUTEBASIS 184

© 2012 by Taylor & Francis Group, LLC

CONTENTS ix

11.3.2 Procedure SHORTESTVECTOR 187
11.3.3 Procedure REDUCEDBASIS 189

11.4 Complexity of Kannan’s algorithm 191
11.5 Improvements to Kannan’s algorithm 193
11.6 Projects . 194
11.7 Exercises . 195

12 Schnorr’s Algorithm 197
12.1 Basic definitions and theorems 197
12.2 A hierarchy of polynomial-time algorithms 202
12.3 Projects . 206
12.4 Exercises . 207

13 NP-Completeness 209
13.1 Combinatorial problems for lattices 209
13.2 A brief introduction to NP-completeness 212
13.3 NP-completeness of SVP in the max norm 213
13.4 Projects . 218
13.5 Exercises . 219

14 The Hermite Normal Form 221
14.1 The row canonical form over a field 222
14.2 The Hermite normal form over the integers 225
14.3 The HNF with lattice basis reduction 229
14.4 Systems of linear Diophantine equations 231
14.5 Using linear algebra to compute the GCD 234
14.6 The HMM algorithm for the GCD 239
14.7 The HMM algorithm for the HNF 250
14.8 Projects . 257
14.9 Exercises . 258

15 Polynomial Factorization 261
15.1 The Euclidean algorithm for polynomials 262
15.2 Structure theory of finite fields 264
15.3 Distinct-degree decomposition of a polynomial 267
15.4 Equal-degree decomposition of a polynomial 270
15.5 Hensel lifting of polynomial factorizations 275
15.6 Polynomials with integer coefficients 283
15.7 Polynomial factorization using LLL 290
15.8 Projects . 294
15.9 Exercises . 295

Bibliography 299

Index 311

© 2012 by Taylor & Francis Group, LLC

List of Figures

2.1 The Euclidean algorithm Euclid(a, b) for the greatest common
divisor . 22

2.2 The two-dimensional lattice L generated by x = [2, 0] and y =
[3, 2]. The vectors v = [0,−4] and w = [−1, 2] form another
basis of the same lattice. 26

2.3 The Gaussian algorithm Gauss(x,y) for a minimal basis of a
lattice in R2 . 27

2.4 The centered Gaussian algorithm CGauss(x,y) 32
2.5 The parameterized Gaussian algorithm PGauss[t](x, y) . . . 35

3.1 The Gram-Schmidt algorithm to compute an orthogonal basis 52

4.1 The original LLL algorithm for lattice basis reduction 63
4.2 Reduce and exchange operations for Example 4.9 66
4.3 Maple code for the LLL algorithm: part 1 68
4.4 Maple code for the LLL algorithm: part 2 69
4.5 Reduce and exchange operations for Example 4.25 78

5.1 LLL algorithm with deep insertions 90

6.1 Reduce and exchange procedures for the MLLL algorithm . . 108
6.2 Main loop of the MLLL algorithm 109
6.3 Trace of the execution of the MLLL algorithm for Example 6.4 112

7.1 Encrypted message for Example 7.7 120
7.2 The original lattice basis for block 1 122
7.3 The reduced basis (α = 3/4) for block 1 126
7.4 The reduced basis (α = 3/4) for block 4 127
7.5 The reduced basis (α = 3/4) for block 5 128
7.6 The reduced basis (α = 99/100) for block 4 129

8.1 Block structure of the Coppersmith matrix 134
8.2 Small examples of the Coppersmith matrix 135
8.3 Row operations transforming C to C′ 136
8.4 Coppersmith matrices for d = 3 and h = 2 137

10.1 Algorithm for the rational Cholesky decomposition 157

xi

© 2012 by Taylor & Francis Group, LLC

xii List of Figures

10.2 Maple code for the Fincke-Pohst algorithm: part 1 162
10.3 Maple code for the Fincke-Pohst algorithm: part 2 163
10.4 Output of Maple code in Figures 10.2 and 10.3: trial 1 164
10.5 Output of Maple code in Figures 10.2 and 10.3: trial 2 165
10.6 Output for Example 10.7 . 173
10.7 The Fincke-Pohst algorithm with LLL preprocessing 174

11.1 Kannan’s procedure COMPUTEBASIS 185
11.2 Kannan’s procedure REDUCEDBASIS 190

12.1 Schnorr’s algorithm for semi-k-reduction 204
12.2 Schnorr’s algorithm for semi-block-2k-reduction 205

14.1 Algorithm for the row canonical form 223
14.2 Algorithm for the Hermite normal form 228
14.3 The matrices U and F from Example 14.15 233
14.4 HMM algorithm for GCD: Maple code, part 1 245
14.5 HMM algorithm for GCD: Maple code, part 2 246
14.6 HMM algorithm for HNF: Maple code, part 1 252
14.7 HMM algorithm for HNF: Maple code, part 2 253
14.8 HMM algorithm for HNF: Maple code, part 3 254

15.1 The Euclidean algorithm Euclid(f, g) for f, g ∈ F[x] 263
15.2 The extended Euclidean algorithm XEuclid(f, g) 265
15.3 Algorithm DDD(f): distinct-degree decomposition in Fq[x] . 269
15.4 Algorithm TrialSplit(h) for h ∈ Fq[x] where q = pn (p 6= 2) . 273
15.5 Algorithm Split(h, s) for h ∈ Fq[x] where q = pn (p 6= 2) . . . 273
15.6 Algorithm EDD(h, s) for h ∈ Fq[x] where q = pn (p 6= 2) . . . 274
15.7 Algorithm Factor(f, s) for f ∈ Fq[x] where q = pn (p 6= 2) . . 275
15.8 The Hensel lifting algorithm Hensel(m, f, g1, h1, s1, t1) 279
15.9 The Sylvester matrix S(f, g) of polynomials f, g ∈ Z[x] 286
15.10 The Zassenhaus factorization algorithm ZFactor(f) 289

© 2012 by Taylor & Francis Group, LLC

Preface

This book is intended to be an introductory textbook on lattice algorithms
for advanced undergraduate students or beginning graduate students. It is
designed to be either the principal text for a one- or two-semester course
on lattice basis reduction, or a secondary reference for courses on computer
algebra, cryptography, and computational algebraic number theory. It could
also be used as a source of topics for presentations in an undergraduate sem-
inar. The book will be useful for graduate students and researchers in many
branches of pure and applied mathematics who need a user-friendly introduc-
tion to lattice algorithms, suitable for self-instruction, in order to apply these
algorithms in their own work. This book is not intended as a state-of-the-art
research monograph for experts in the field. All of the algorithms and theo-
rems presented in this book are at least a few years old, and most of them
were first published in the the last two decades of the 20th century. Most of
these algorithms were originally published in an “unstructured” form; I have
rewritten them without the use of “goto” statements.

The goal of the book is to present the essential concepts that should be
familiar to all users of lattice algorithms. The book is based primarily on
a number of fundamental papers in the area, including of course the paper
of Lenstra, Lenstra and Lovász which introduced the LLL algorithm. I have
developed the topic following these papers, but using consistent notation,
providing numerous computational examples (primarily using Maple), and
including suggested projects and exercises.

The most important prerequisite for the book is a knowledge of basic linear
algebra; the essential facts are reviewed briefly in Chapter 1. Some knowledge
of elementary number theory would also be helpful, but not essential. For
the chapters on polynomial factorization, some familiarity with basic abstract
algebra (especially the theory of polynomial rings) is assumed.

In the following paragraphs I give a summary of the contents chapter by
chapter; many of these topics have not previously appeared in a textbook.

Chapter 1 is introductory; it first recalls basic facts about Euclidean vector
spaces, then introduces the concepts of lattice, sublattice, and lattice basis,
and concludes by summarizing without proof some results from the geometry
of numbers which are necessary for an understanding of lattice algorithms.

Chapter 2 presents a detailed analysis of the Gaussian algorithm (at-
tributed by some authors to Lagrange) for lattice basis reduction in two di-
mensions; an understanding of this algorithm is essential for all the other
topics discussed later in the book. Chapter 3 provides details of the Gram-

xiii

© 2012 by Taylor & Francis Group, LLC

xiv PREFACE

Schmidt orthogonalization process: the main theorem is proved in detail, and
the complexity of the algorithm is analyzed. Chapter 4 presents a detailed
exposition of the original paper by Lenstra, Lenstra and Lovász [88] which
used lattice basis reduction to provide an efficient algorithm for polynomial
factorization; this material depends fundamentally on the results of the pre-
vious two chapters. (The application to polynomial factorization is postponed
to the last chapter of the book.) Chapter 5 discusses a modification of the
LLL algorithm which uses “deep insertions”; Chapter 6 discusses the version
of the LLL algorithm which allows the input vectors to be linearly dependent.

Chapter 7 introduces the first application of lattice basis reduction to cryp-
tography: it shows how the LLL algorithm can be used to break a knapsack
cryptosystem. Chapter 8 discusses the second application to cryptography:
the famous algorithm of Coppersmith which uses the LLL algorithm to find
small roots of a modular polynomial, and which has important consequences
for the security of RSA cryptosystems. Chapter 9 presents a brief discussion
of an application of lattice basis reduction to a problem in algebraic number
theory, namely simultaneous Diophantine approximation.

The LLL algorithm has polynomial running time, and produces a good
basis for the input lattice, but unfortunately it does not in general produce
the best basis, or even a basis containing a shortest nonzero vector. Chapter
10 presents the Fincke-Pohst algorithm which performs an exhaustive search
to find a shortest nonzero vector in the input lattice. Chapter 11 discusses
Kannan’s algorithm, which recursively calls an exhaustive search procedure
in order to produce (in exponential time) a very good basis for the input
lattice, which is guaranteed to contain a shortest nonzero lattice vector, and
which is “reduced” in a much stronger sense than the output of the LLL
algorithm. Chapter 12 presents Schnorr’s hierarchy of algorithms, which use
the concept of block reduction to modify Kannan’s algorithm in such a way
that polynomial-time complexity is restored.

The algorithms in Chapters 10 to 12 compute a strongly reduced lattice
basis, which in particular contains a nonzero lattice vector which is as short
as possible with respect to the Euclidean norm on Rn. Chapter 13 considers
instead the max norm, and presents the proof by van Emde Boas that the
problem of finding a shortest nonzero vector in a lattice with respect to the
max-norm (not the Euclidean norm) is NP-complete.

Chapter 14 forms a short course on algorithms for the Hermite normal
form of an integer matrix. It begins by reviewing Gaussian elimination over a
field, and the generalization to matrices with integer entries, and then shows
how the LLL algorithm can be used to find a basis consisting of relatively short
vectors for the nullspace lattice of an integer matrix. The remaining sections
of the chapter present the algorithm of Havas, Majewski and Matthews which
uses linear algebra to efficiently compute the greatest common divisor of a
set of integers, and then uses this algorithm to efficiently compute the Her-
mite normal form of an integer matrix. (The author’s own interest in lattice
basis reduction originated in computational problems related to polynomial

© 2012 by Taylor & Francis Group, LLC

PREFACE xv

identities for nonassociative algebras. One can represent such identities as the
nonzero vectors in the nullspace of a large integer matrix. Finding the simplest
identities is equivalent to finding the shortest vectors in the nullspace.)

Chapter 15 forms a short course on polynomial factorization. It first
presents the necessary background material on polynomial factorization over
finite fields, and on Hensel lifting to a p-adic factorization. The remaining
sections of the chapter apply these results to give the polynomial-time algo-
rithm (from the original paper by Lenstra, Lenstra, and Lovász) for factoring
polynomials with rational coefficients.

Each chapter includes two supplements: a section of Projects which would
be suitable as substantial programming assignments or as topics for written
reports and class presentations; and a section of Exercises which would be
suitable for inclusion in problem sets. Roughly 60% of the material in the
book has been classroom-tested in graduate courses on computer algebra and
lattice basis reduction that I have taught at the University of Saskatchewan.

There are a number of other textbooks on various aspects of the theory of
lattices, but they are all fall into two categories: theoretical monographs on
the pure mathematical theory, or research-level monographs on a special topic
in the computational theory. Examples of the former category are the classical
texts on the geometry of numbers by Cassels [22] and Lekkerkerker [87] (see
also Gruber and Lekkerkerker [52]), and the more recent book by Martinet [93].
Also worth mentioning is the book by Conway and Sloane [27], which deals
with the interplay between the geometry of numbers and finite simple groups.
The primary example of the latter category is the book by Micciancio and
Goldwasser [100] which gives a cryptographic perspective on the complexity
of lattice algorithms. Two other monographs which deserve special mention,
since one of the authors is a co-discoverer of the LLL algorithm, are Lovász
[91] and Grötschel et al. [51]. Many textbooks on computer algebra contain
at least one chapter on lattice algorithms; this author’s personal favorites
are von zur Gathen and Gerhard [147], Cohen et al. [25], and Cohen [26].
There is also a very recent conference proceedings edited by Nguyen and
Vallée [110] , which contains many articles by experts on special topics in the
theory of lattice algorithms and their applications. However, none of these
references does what I have attempted to do in the present book: to survey
the entire topic of lattice basis reduction at a level suitable to anyone with a
good background in undergraduate linear algebra.

This book concentrates on the computational aspects of the theory of lat-
tices, and seems to be the only complete introduction for non-specialists. I
hope that this textbook will fill a gap in the existing literature on lattice algo-
rithms, and encourage many more people to learn about lattice basis reduction
and its applications throughout pure and applied mathematics. This seems to
be the first book that attempts to give a broad survey of the field, covering
the essential topics, but not developing the material in the specialized detail
that would be expected from a research monograph.

As usual in a project of this nature, many people made indirect but im-

© 2012 by Taylor & Francis Group, LLC

xvi PREFACE

portant contributions. The anonymous referees of the original proposal gave
me the idea to include the chapters on Coppersmith’s algorithm and on
NP-completeness. The students in my graduate classes on computer algebra
pointed out a number of errors and inconsistencies. My research collaborators
Luiz Peresi (University of São Paulo, Brazil) and Irvin Hentzel (Iowa State
University, USA), and my graduate students Hader Elgendy and Jiaxiong Hu,
assisted me with the application of the LLL algorithm to problems in nonasso-
ciative algebra. Cristina Draper and her colleagues at the University of Málaga
in Spain kindly invited me to give a short course on lattice basis reduction in
the summer of 2009. Earl Taft of Rutgers University was very encouraging at
an early stage of the project. The staff at CRC Press responded promptly to
my questions; in particular, I would like to thank David Grubbs, Bob Stern,
Amber Donley, and Shashi Kumar.

No doubt there remain some errors in the book, either typographical or
otherwise, for which I take full responsibility; I hope that they are not numer-
ous. I would be very happy to receive comments, suggestions, and corrections
from readers, by email at the address below.

Murray R. Bremner (March 2011)

bremner@math.usask.ca

Department of Mathematics and Statistics
University of Saskatchewan
McLean Hall, Room 142
106 Wiggins Road
Saskatoon, Saskatchewan
Canada S7N 5E6

(306) 966-6122

© 2012 by Taylor & Francis Group, LLC

About the Author

Murray R. Bremner received a Bachelor of Science from the University of
Saskatchewan in 1981, a Master of Computer Science from Concordia Univer-
sity in Montreal in 1984, and a Doctorate in Mathematics from Yale Univer-
sity in 1989. He spent one year as a Postdoctoral Fellow at the Mathematical
Sciences Research Institute in Berkeley, and three years as an Assistant Pro-
fessor in the Department of Mathematics at the University of Toronto. He
returned to the Department of Mathematics and Statistics at the University
of Saskatchewan in 1993 and was promoted to Professor in 2002. His research
interests focus on the application of computational methods to problems in
the theory of linear nonassociative algebras, and he has had more than 50
papers published or accepted by refereed journals in this area.

xvii

© 2012 by Taylor & Francis Group, LLC

1

Introduction to Lattices

CONTENTS

1.1 Euclidean space Rn
. 1

1.2 Lattices in Rn
. 5

1.3 Geometry of numbers . 13

1.4 Projects . 15

1.5 Exercises . 15

In this chapter we begin with a review of elementary linear algebra, and in
particular the geometry of Euclidean vector space Rn. The main purpose of
this first section is to fix our conventions on notation and terminology. We then
introduce the concept of a lattice, the main object of study throughout this
book, and prove some basic lemmas about these structures. The last section
of the chapter recalls some essential facts from the geometry of numbers, by
which is meant the interplay between Euclidean geometry and the theory of
numbers. Throughout this book we will use the following standard notation:

Z the domain of integers

Q the field of rational numbers

R the field of real numbers

C the field of complex numbers

Fp the field of congruence classes modulo the prime number p

1.1 Euclidean space Rn

We regard n-tuples of elements from a field F as either column vectors or as
row vectors, and denote them by boldface roman letters:

x =




x1

x2

...
xn


 ∈ Fn, x =

[
x1, x2, · · · , xn

]
∈ Fn.

1

© 2012 by Taylor & Francis Group, LLC

2 Lattice Basis Reduction

We use the column format when we consider an n×n matrix acting as a linear
operator on Rn by left multiplication on column vectors. However, we will be
primarily concerned with operations on a basis of Rn, and for this reason it is
convenient to represent the basis vectors x1, x2, . . . , xn as the rows of an n×n
matrix X . We can then represent operations on the basis as elementary row
operations on the matrix. More generally, we can represent a general change
of basis as left multiplication of X by an invertible n× n matrix C.

Definition 1.1. For any field F, and any positive integer n, the vector space
Fn consists of all n-tuples of elements from F, with the familiar operations of
vector addition and scalar multiplication defined by

x + y =




x1

x2

...
xn


+




y1
y2
...
yn


 =




x1 + y1
x2 + y2

...
xn + yn


 , ax = a




x1

x2

...
xn


 =




ax1

ax2

...
axn


 ,

for any x,y ∈ Fn and any a ∈ F.

Throughout this book, we will be primarily concerned with the vector
space Rn.

Definition 1.2. The Euclidean space Rn consists of all n-tuples of real
numbers. We use dot notation for the scalar product of vectors x,y ∈ Rn:

x · y =




x1

x2

...
xn


 ·




y1
y2
...
yn


 = x1y1 + x2y2 + · · ·+ xnyn =

n∑

i=1

xiyi.

We use single vertical bars for the length (or norm) of a vector x ∈ Rn:

|x| =
√

x · x =
√
x2

1 + x2
2 + · · ·+ x2

n =

(n∑

i=1

x2
i

)1/2

.

We often use the square-length instead of the length of a vector x ∈ Rn:

|x|2 = x2
1 + x2

2 + · · ·+ x2
n =

n∑

i=1

x2
i .

We usually do computations for which the input consists of vectors in Qn

or Zn: the components are rational numbers or integers. We want to store the
intermediate results as exact rational numbers, in order to avoid the issue of
rounding error with floating-point arithmetic, and so we use the square-length
(which is rational) instead of the length (which is usually irrational).

© 2012 by Taylor & Francis Group, LLC

Introduction to Lattices 3

Definition 1.3. The angle θ between nonzero vectors x,y ∈ Rn is given by

x · y = |x| |y| cos θ, cos θ =
x · y
|x| |y| , θ = arccos

(
x · y
|x| |y|

)
.

Lemma 1.4. Two vectors x,y ∈ Rn are orthogonal if and only if x · y = 0.

Proof. The cosine is 0 if and only if the angle is an odd multiple of π/2.

The angle formulas of Definition 1.3 are closely related to the following
famous inequality.

Lemma 1.5. Cauchy-Schwarz inequality. For any two vectors x,y ∈ Rn,

|x · y| ≤ |x| |y|.

(On the left side, the vertical bars denote the absolute value of the scalar
product; on the right side, they denote the lengths of the vectors.)

Given a vector x ∈ Rn and a nonzero vector y ∈ Rn, it is often convenient
to express x as a sum of two vectors, x = u + v, where u is parallel to y (we
write u ‖ y) and v is orthogonal to y (we write v ⊥ y). If we write u = λy
where λ ∈ R, then v = x− u = x− λy is orthogonal to y, and hence

(x− λy) · y = 0.

Using the bilinearity of the scalar product we can solve for the scalar λ:

λ =
x · y
y · y =

x · y
|y|2 .

It is important for computational reasons to note that if x,y ∈ Qn then λ ∈ Q.

Definition 1.6. Given vectors x,y ∈ Rn with y 6= 0, we write u and v for
the components (or projections) of x parallel and orthogonal to y:

u =

(
x · y
y · y

)
y, v = x−

(
x · y
y · y

)
y.

Example 1.7. Consider the triangle in R3 with these points as its vertices:

A = (6, 2,−4), B = (−8,−6, 6), C = (1,−3, 9).

The two sides of the triangle originating at vertex A are

x =
−−→
AB =



−14
−8
10


 , y =

−→
AC =



−5
−5
13


 .

The scalar product of these vectors is

x · y = 240.

© 2012 by Taylor & Francis Group, LLC

4 Lattice Basis Reduction

The lengths of these vectors are

|x| =
√

360, |y| =
√

219.

The cosine of the angle θ at vertex A is

cos θ =
240√

360
√

219
≈ 0.8547476863.

Therefore
θ ≈ 0.5457317946 radians≈ 31.26812857 degrees.

The projection coefficient for x in the direction of y is

λ =
x · y
y · y =

80

73
.

We obtain the decomposition x = u + v where

u =
80

73



−5
−5
13


 , v =

2

73



−311
−92
−155


 .

We have u ‖ y and v ⊥ y, and hence u · v = 0.

Definition 1.8. The vectors x1,x2, . . . ,xk ∈ Rn are linearly dependent if
one of the vectors is a linear combination of the other k−1 vectors; equiva-
lently, if there is a non-trivial solution (not all the coefficients are zero) of the
equation

a1x1 + a2x2 + · · ·+ akxk = 0 (a1, a2, . . . , ak ∈ R).

The vectors x1, x2, . . . , xk are linearly independent if this equation has
only the trivial solution ai = 0 for i = 1, 2, . . . , k. This implies that k ≤ n.

The vectors x1,x2, . . . ,xk ∈ Rn span Rn if every vector y ∈ Rn is a linear
combination of the vectors; equivalently, for every y ∈ Rn, the equation

a1x1 + a2x2 + · · ·+ akxk = y,

has a solution a1, a2, . . . , ak ∈ R. This implies that k ≥ n.
The vectors x1,x2, . . . ,xk ∈ Rn form a basis of Rn if they are linearly

independent and they span Rn. This implies that k = n.
The standard basis vectors in Rn will be denoted e1, e2, . . . , en; by

definition, ei has 1 as its i-th component and 0 as its other components.

There are many excellent modern textbooks on elementary linear algebra;
we mention in particular those by Anton [11] and Nicholson [112]. At a more
advanced level, two standard classical references are Hoffman and Kunze [64]
and Jacobson [68]. Computational methods are presented in Golub and van
Loan [49] and Trefethen and Bau [137].

© 2012 by Taylor & Francis Group, LLC

Introduction to Lattices 5

1.2 Lattices in Rn

We now introduce the main objects of study in the remainder of this book.

Definition 1.9. Let n ≥ 1 and let x1, x2, . . . , xn be a basis of Rn. The
lattice with dimension n and basis x1, x2, . . . , xn is the set L of all linear
combinations of the basis vectors with integral coefficients:

L = Zx1 + Zx2 + · · ·+ Zxn =
{ n∑

i=1

aixi | a1, a2, . . . , an ∈ Z
}
.

The basis vectors x1, x2, . . . , xn are said to generate or span the lattice.
For i = 1, 2, . . . , n we write xi = (xi1, . . . , xin) and form the n × n matrix
X = (xij). The determinant of the lattice L with basis x1, x2, . . . , xn is

det(L) = | det(X) |.

Note that in this definition we regard the basis vectors as row vectors. We
do this so that operations on the basis vectors can be expressed in terms of
elementary row operations on the matrix X ; equivalently, left multiplication
of the matrix X by an integer matrix C with determinant ±1.

We will prove shortly (Corollary 1.11) that the determinant of the lattice L
does not depend on which basis we use. In fact, det(L) has a natural geometric
interpretation: it is the n-dimensional volume of the parallelipiped in Rn whose
edges are the basis vectors x1, x2, . . . , xn.

In the trivial case n = 1, the lattice L generated by the nonzero real
number x consists of all integral multiples of x. The lattice L = Zx has only
two bases, namely x and −x.

If n ≥ 2, then every lattice has infinitely many different bases. Let L ⊂ Rn

be the lattice with basis x1, x2, . . . , xn. Let C = (cij) be any n×nmatrix with
entries in Z and det(C) = ±1; then C−1 also has entries in Z (see Exercise
1.7). Define vectors y1, y2, . . . , yn by

yi =

n∑

j=1

cijxj (i = 1, 2, . . . , n),

and let Y be the n×n matrix with yi in row i. We have the matrix equations

Y = CX, X = C−1Y.

It follows that any integral linear combination of x1, x2, . . . , xn is also an
integral linear combination of y1, y2, . . . , yn, and conversely. Hence y1, y2,
. . . , yn is another basis for the same lattice L. In fact any two bases for the
same lattice are related in this way, as the next lemma shows.

© 2012 by Taylor & Francis Group, LLC

6 Lattice Basis Reduction

Lemma 1.10. Let x1, x2, . . . , xn and y1, y2, . . . , yn, be two bases for the
same lattice L ⊂ Rn. Let X (respectively Y) be the n × n matrix with xi

(respectively yi) in row i for i = 1, 2, . . . , n. Then Y = CX for some n × n
matrix C with integer entries and determinant ±1.

Proof. Every yi belongs to the lattice with basis x1, x2, . . . , xn, and every xi

belongs to the lattice with basis y1, y2, . . . , yn. It follows that

xi =

n∑

j=1

bijyj , yi =

n∑

j=1

cijxj (i = 1, 2, . . . , n),

where B = (bij) and C = (cij) are n×n matrices with integer entries. Writing
these two equations in matrix form gives X = BY and Y = CX , and hence
X = BCX and Y = CBY . Since both x1, x2, . . . , xn and y1, y2, . . . , yn

are bases of Rn, the corresponding matrices X and Y are invertible, and can
be canceled from the equations. Therefore BC = I and CB = I, and so
det(B) det(C) = 1. Since B and C have integer entries, it follows that either
det(B) = det(C) = 1 or det(B) = det(C) = −1.

Corollary 1.11. The determinant of a lattice does not depend on the basis.

Proof. Suppose the lattice L ⊂ Rn has two bases x1, x2, . . . , xn and y1, y2,
. . . , yn. Using the notation in the proof of Lemma 1.10, we have

| det(Y) | = | det(CX) | = | det(C) det(X)| = | ± det(X)| = | det(X)|.

Since the two bases are arbitrary, this completes the proof.

Definition 1.12. An n× n matrix with integer entries and determinant ±1
will be called unimodular.

Definition 1.13. A unimodular row operation on a matrix is one of the
following elementary row operations:

• multiply any row by −1;

• interchange any two rows;

• add an integral multiple of any row to any other row.

To generate examples of n × n unimodular matrices, we start with the
identity matrix In, and then apply any finite sequence of unimodular row
operations. The result will be an n × n unimodular matrix, and in fact any
such matrix can be obtained in this way.

If we apply unimodular row operations to the matrixX whose rows contain
a basis of the lattice L, then we obtain another basis of the same lattice.

© 2012 by Taylor & Francis Group, LLC

Introduction to Lattices 7

Example 1.14. Start with the 2×2 identity matrix, and apply this sequence
of unimodular row operations: add 4 times row 2 to row 1, add 9 times row
1 to row 2, change the sign of row 1, add −4 times row 2 to row 1, change
the sign of row 1, change the sign of row 2. We obtain this 2× 2 unimodular
matrix:

C =

[
37 152
−9 −37

]
, det(C) = −1.

Let L be the lattice in R2 spanned by the rows of this matrix:

X =

[
7 9
6 −5

]
, det(X) = −89.

Applying the same sequence of row operations to X gives this matrix Y :

Y = CX =

[
1171 −427
−285 104

]
.

Writing the the basis vectors as column vectors gives

x1,x2 =

[
7
9

]
,

[
6
−5

]
and y1,y2 =

[
1171
−427

]
,

[
−285

104

]
.

It is far from obvious that these two bases generate the same lattice in R2.
We can perform any number of further row operations; a pseudorandom

sequence of 100 operations provides this third basis for the same lattice:

z1, z2 =

[
91202814184
−26536463447

]
,

[
10682859399
−3108295621

]
.

We can clearly continue this process as long as we want and find bases for the
same lattice consisting of arbitrarily long vectors.

The last example shows how easy it is to start with a basis for a lattice
consisting of short vectors, and then produce other bases for the same lattice
consisting of much longer vectors. Of course, it is much more interesting and
important to do exactly the opposite: Given a basis for a lattice, which in
general consists of long vectors, we want to find another “reduced” basis for
the same lattice, that is, a basis consisting of short vectors. This is the problem
of lattice basis reduction, the fundamental problem that we will be studying
throughout this book.

We now generalize the concept of lattice basis and lattice determinant to
any set of m linearly independent vectors in Rn (m ≤ n).

Definition 1.15. Let n ≥ 1 and let x1, x2, . . . , xm (m ≤ n) be a set of m
linearly independent vectors in Rn. The m-dimensional lattice spanned by
these vectors in n-dimensional Euclidean space is defined to be

L = Zx1 + Zx2 + · · ·+ Zxm =
{ m∑

i=1

aixi | a1, a2, . . . , am ∈ Z
}
.

© 2012 by Taylor & Francis Group, LLC

8 Lattice Basis Reduction

For i = 1, . . . ,m we write xi = (xi1, . . . , xin) and form the m × n matrix
X = (xij). The Gram matrix ∆(L) of the lattice L is the m×m matrix in
which the (i, j) entry is the scalar product of the i-th and j-th basis vectors:

∆(L) =
(
xi · xj

)
= XXt.

The determinant of the Gram matrix is always positive (see Exercise 1.11),
and we define the determinant of the lattice L to be its square root:

det(L) =
√

det(XXt).

If m = n then X is a square matrix, and so

(
det(L)

)2
= det(XXt) = det(X) det(Xt) =

(
det(X)

)2
,

which agrees with the previous definition of lattice determinant.
As before, it can easily be shown that the determinant of a lattice does

not depend on the choice of basis (see Exercise 1.12). The geometric interpre-
tation is also the same: the determinant is the m-dimensional volume of the
parallelipiped in Rn whose edges are the lattice basis vectors.

Example 1.16. Consider the 3-dimensional lattice L in 5-dimensional Eu-
clidean space spanned by the rows of this matrix:

X =



−7 −7 4 −8 −8

1 6 −5 8 −1
−1 1 4 −7 8




We compute the Gram matrix:

∆(L) = XXt =



−7 −7 4 −8 −8

1 6 −5 8 −1
−1 1 4 −7 8







−7 1 −1
−7 6 1

4 −5 4
−8 8 −7
−8 −1 8




=




242 −125 8
−125 127 −79

8 −79 131



 .

The Gram matrix has determinant 618829, and so det(L) =
√

618829.

In the rest of this section, we consider the problem of extending a linearly
independent set of lattice vectors to a basis for the lattice. Our exposition
follows Cassels [22], pages 11–14, but we express the results in matrix form as
much as possible.

Definition 1.17. Let L ⊂ Rn be the lattice with basis x1,x2, . . . ,xn. Suppose
that y1,y2, . . . ,yn ∈ L are linearly independent, and letM ⊂ Rn be the lattice
generated by y1,y2, . . . ,yn. We call M a sublattice of L and write M ⊆ L.

© 2012 by Taylor & Francis Group, LLC

Introduction to Lattices 9

Each basis vector yi for the sublattice M belongs to the lattice L, and so

yi =

n∑

j=1

cijxj (i = 1, 2, . . . , n),

where cij ∈ Z for all i, j. As a matrix equation, this says that

Y = CX,

where C = (cij) is the non-singular n × n matrix of integer coefficients, and
X (respectively Y) is the n× n matrix containing xi (respectively yi) in row
i. Taking the determinant on both sides of this equation gives

det(Y) = det(C) det(X), det(C) =
det(Y)

det(X)
.

Definition 1.18. The index ρ of a sublattice M in a lattice L is defined by

ρ = | det(C) | = | det(Y) |
| det(X) | =

det(M)

det(L)
.

The index is an integer, since the determinant of the sublatticeM is an integral
multiple of the determinant of the lattice L. (The basis vectors for M span a
larger parallelipiped than the basis vectors for L.) It is clear from the above
equations that the index depends only on L and M , not on the choice of bases.

Definition 1.19. For any n×n matrix C, the (i, j) minor is the determinant
det(Cij) of the (n−1) × (n−1) matrix Cij obtained by deleting row i and
column j, and the (i, j) cofactor is (−1)i+j det(Cij). The adjoint matrix is
the transpose of the matrix of cofactors:

(
adj(C)

)
ij

= (−1)i+j det(Cji).

Lemma 1.20. The inverse of any non-singular matrix C can be expressed in
terms of its adjoint matrix and its determinant:

C−1 =
1

det(C)
adj(C).

Proof. See any textbook on elementary linear algebra.

Returning to the above discussion of the sublattice M (with matrix Y) of
the lattice L (with matrix X), we see that the equation Y = CX implies

X = C−1Y =
1

det(C)
adj(C)Y,

and hence
ρX = | det(C) |X = ± adj(C)Y.

Since the entries of C are integers, so are the entries of adj(C), and hence
every row of the matrix ρX is an integer linear combination of the rows of the
matrix Y . We conclude that the lattice ρL, consisting of all multiples by the
integer ρ of the vectors in L, is a sublattice of the lattice M .

© 2012 by Taylor & Francis Group, LLC

10 Lattice Basis Reduction

Lemma 1.21. If L is a lattice and M is a sublattice of index ρ then

ρL ⊆M ⊆ L.

We now prove a theorem relating the bases of a lattice L and the bases
of a sublattice M . As a corollary we will obtain a necessary and sufficient
condition for extending a set of linearly independent lattice vectors to a basis
for the lattice.

Theorem 1.22. (Cassels [22], Theorem I, page 11) Let L be a lattice in Rn

and let M be a sublattice of L. If x1,x2, . . . ,xn is a basis of L, then there exists
a basis y1,y2, . . . ,yn of M such that Y = CX where C is a lower-triangular
n× n integer matrix with nonzero entries on the diagonal. That is, we have

y1 = c11x1

y2 = c21x1 + c22x2

...
yn = cn1x1 + cn2x2 + · · ·+ cnnxn





where cij ∈ Z, cii 6= 0 for all i, j.

Conversely, if y1,y2, . . . ,yn is any basis of M then there exists a basis
x1,x2, . . . ,xn of L satisfying the same conditions.

Proof. Lemma 1.21 shows that ρL ⊆ M , and hence ρxi ∈ M for all i. It
follows that there exist vectors yi ∈M (not necessarily forming a basis for M)
and integers cij satisfying the conditions of the theorem (in fact, we can take
cii = ρ for all i, and cij = 0 for all i 6= j). Thus the set of all n-tuples of vectors
yi ∈M satisfying the conditions of the theorem is non-empty, and so for each
i we may take yi ∈M to be the vector for which the coefficient cii is positive
and as small as possible. We will show that the resulting vectors y1,y2, . . . ,yn

form a basis of the sublattice M . Suppose to the contrary that there is a vector
z ∈ M which is not an integral linear combination of y1,y2, . . . ,yn. Writing
z as an integral linear combination of x1,x2, . . . ,xn gives

z = t1x1 + t2x2 + · · ·+ tkxk, where k ≤ n and tk 6= 0.

We choose z so that the index k is as small as possible. By assumption ckk 6= 0,
and so we may perform integer division with remainder of tk by ckk, obtaining

tk = qckk + r, 0 ≤ r < ckk.

We now consider the vector

z− qyk = (t1x1 + t2x2 + · · ·+ tkxk)− q(ck1x1 + ck2x2 + · · ·+ ckkxk)

= (t1 − qck1)x1 + (t2 − qck2)x2 + · · ·+ (tk − qckk)xk.

Since z and yk are in M and q is an integer, we have z− qyk ∈M . Since z is
not an integral linear combination of y1,y2, . . . ,yn neither is z−qyk. But the

© 2012 by Taylor & Francis Group, LLC

Introduction to Lattices 11

index k was chosen as small as possible, and so we must have tk − qckk 6= 0.
This implies that the vector z− qyk ∈M is an integral linear combination of
x1, x2, . . . , xk whose coefficient of xk, namely tk − qckk = r, is nonzero and
strictly less than ckk. But this contradicts the choice of yk. It follows that such
a vector z does not exist, and hence every vector in M must be an integral
linear combination of y1,y2, . . . ,yn.

For the converse, let y1,y2, . . . ,yn be a basis of M . By Lemma 1.21 we
know that ρL ⊆ M , and so we may apply the first part of the proof to the
sublattice ρL of the lattice M . We obtain a basis ρx1, ρx2, . . . , ρxn of ρL such
that

ρx1 = d11y1

ρx2 = d21y1 + d22y2

...
ρxn = dn1y1 + dn2y2 + · · ·+ dnnyn





where dij ∈ Z, dii 6= 0 for all i, j.

We can write these equations in matrix form as ρX = DY where D = (dij) is
a lower-triangular n× n integer matrix with nonzero entries on the diagonal.
Solving for Y we obtain Y = ρD−1X . It is clear that x1,x2, . . . ,xn form a
basis of L, and since y1,y2, . . . ,yn ∈ M ⊆ L, we see that the entries of the
matrix ρD−1 must be integers, by the uniqueness of the representation of each
lattice vector as an (integral) linear combination of basis vectors.

We note an especially interesting and attractive feature of the last proof: it
clearly illustrates the principle that reduction of lattice bases can be naturally
regarded as a generalization of integer division with remainder.

We now consider a sequence of corollaries of Theorem 1.22. Recall that
Eij is the n× n matrix in which the (i, j) entry is 1 and the other entries are
0.

Corollary 1.23. In the first part of Theorem 1.22 we may assume that

cii > 0 (1 ≤ i ≤ n) and 0 ≤ cij < cjj (1 ≤ j < i ≤ n).

In the second part of Theorem 1.22 we may assume that

cii > 0 (1 ≤ i ≤ n) and 0 ≤ cij < cii (1 ≤ j < i ≤ n).

Proof. Consider the matrix form of the equations, namely Y = CX . If cii < 0
for some i then we left-multiply both sides of the matrix equation by −Eii;
this corresponds to the unimodular row operation “multiply row i by −1”. If
cij < 0 or cij ≥ cjj for some i, j then we do integer division with remainder
to write cij = qcjj + r with 0 ≤ r < cjj (we are now assuming that cjj > 0)
and then left-multiply both sides of the matrix equation by In−qEij ; this
corresponds to the unimodular row operation “subtract q times row j from row
i”. We can express the result of all these operations by the matrix equation
UY = UCX where U is a unimodular matrix. In fact it is clear that U

© 2012 by Taylor & Francis Group, LLC

12 Lattice Basis Reduction

is lower-triangular, and hence so is UC. We can therefore replace the basis
y1,y2, . . . ,yn of M , consisting of the rows of the matrix Y , by the new basis
consisting of the rows of the matrix UY . The second part of the proof is left
to the reader (see Exercise 1.16).

Corollary 1.24. Let L be an n-dimensional lattice in Rn, and let
y1,y2, . . . ,ym (m ≤ n) be linearly independent vectors in L. There is a basis
x1,x1, . . . ,xn of L satisfying the equations

y1 = c11x1

y2 = c21x1 + c22x2

...
ym = cm1x1 + cm2x2 + · · ·+ cmmxm





where





cij ∈ Z for all i, j
cii > 0 for all i
0 ≤ cij < cii for all i, j

Proof. We can find another n−m vectors ym+1, . . . ,yn in L such that the
vectors y1,y2, . . . ,yn are linearly independent. We now apply the second part
of Corollary 1.23 to the lattice M with basis y1,y2, . . . ,yn.

Corollary 1.25. Let L be an n-dimensional lattice in Rn and let
y1,y2, . . . ,ym (m < n) be linearly independent vectors in L. These condi-
tions are equivalent:

(1) There exist another n−m vectors ym+1, . . . ,yn in L such that
the vectors y1,y2, . . . ,yn form a basis of L.

(2) Any vector z ∈ L which is a (real) linear combination of
y1,y2, . . . ,ym is in fact an integral linear combination.

Proof. The implication (1) =⇒ (2) is clear. To prove (2) =⇒ (1), assume that
y1,y2, . . . ,ym satisfy condition (2). Since y1,y2, . . . ,ym are linearly indepen-
dent vectors in L, we may apply Corollary 1.24 to obtain a basis x1,x1, . . . ,xn

of L satisfying the given equations. Considering only the first m basis vectors
x1,x1, . . . ,xm we have the matrix equation Y = CX where now the matrix
C has size m × m. Hence X = C−1Y , and now condition (2) implies that
the entries of C−1 are integers. But C is lower-triangular with diagonal en-
tries c11, c22, . . . , cmm, and hence C−1 is lower-triangular with diagonal entries
c−1
11 , c

−1
22 , . . . , c

−1
mm. Thus for all i = 1, 2, . . . ,m we see that cii is an integer for

which c−1
ii is also an integer, and hence cii = ±1. Corollary 1.23 now implies

that cii = 1 for 1 ≤ i ≤ m and cij = 0 for 1 ≤ j < i ≤ m. Thus C = Im, and
so yi = xi for i = 1, 2, . . . ,m. To complete the proof we simply set yi = xi

for i = m+1, . . . , n.

Corollary 1.26. Let L be an n-dimensional lattice in Rn with basis
x1,x2, . . . ,xn. Consider an arbitrary vector z ∈ L and write

z = a1x1 + a2x2 + · · ·+ anxn (a1, a2, . . . , an ∈ Z).

These conditions are equivalent for any integer m = 1, 2, . . . , n:

© 2012 by Taylor & Francis Group, LLC

Introduction to Lattices 13

(1) There are vectors ym+1, . . . ,yn ∈ L such that the following n
vectors form a basis of L:

x1, x2, . . . , xm−1, z, ym+1, . . . , yn.

(2) The greatest common divisor of the integers am+1, . . . , an is 1.

Proof. This follows directly from Corollary 1.25 (see Exercise 1.17).

Up to this point we have been considering “full-rank” sublattices; the di-
mension of the sublattice M is equal to the dimension of the lattice L. For
the next definition and theorem we consider a more general situation.

Definition 1.27. Let L be an n-dimensional lattice in Rn, and let M be an
m-dimensional sublattice for some m < n: that is, M is the set of all integral
linear combinations of m linearly independent vectors in L. We say that M is
a primitive sublattice if M = L ∩ V where V is a subspace of Rn.

Theorem 1.28. (Nguyen [105], Lemma 4, page 28) The m-dimensional sub-
lattice M of the n-dimensional lattice L ⊂ Rn is primitive if and only if every
basis of M can be extended to a basis of L; that is, if the vectors y1,y2, . . . ,ym

form a basis of M , then there are vectors xm+1, . . . ,xn in L such that the vec-
tors y1,y2, . . . ,ym,xm+1, . . . ,xn form a basis of L.

Proof. Exercise 1.18.

1.3 Geometry of numbers

In this final section, we recall some definitions that will be used in the rest of
the book, and state some results without proof.

Definition 1.29. Let L be an m-dimensional lattice in n-dimensional Eu-
clidean space Rn. The first minimum of the lattice, denoted Λ1(L), is the
length of a shortest nonzero vector x1 ∈ L. The second minimum of the
lattice, denoted Λ2(L), is the smallest real number r such that there exist two
linearly independent vectors x1,x2 ∈ L such that |x1|, |x2| ≤ r. In general, for
i = 1, 2, . . . ,m, the i-th successive minimum of the lattice, denoted Λi(L),
is the smallest real number r such that there exist i linearly independent vec-
tors x1,x2, . . . ,xi ∈ L such that |x1|, |x2|, . . . , |xi| ≤ r. This quantity can be
expressed more concisely by the equation

Λi(L) = min
x1,...,xi∈L

max
(
|x1|, . . . , |xi|

)
,

where the minimum is over all sets of i linearly independent vectors in L.

© 2012 by Taylor & Francis Group, LLC

14 Lattice Basis Reduction

It is easy to see that the successive minima are weakly increasing:

Λ1(L) ≤ Λ2(L) ≤ · · · ≤ Λm(L).

The best possible basis for an m-dimensional lattice L consists of vectors

x1,x2, . . . ,xm ∈ L such that |xi| = Λi(L) for i = 1, 2, . . . ,m.

However, such a basis is in general very hard to compute. It is interesting to
note that a set of m vectors x1,x2, . . . ,xm ∈ L which satisfy the conditions
|xi| = Λi(L) for i = 1, 2, . . . ,m do not necessarily form a basis of L; for an
example with m = 4 see Nguyen [105], page 32.

In order to understand better the size of the first minimum Λ1(L), we scale
it by the determinant of the lattice. More precisely, we consider

Λ1(L)
m
√

det(L)
.

Definition 1.30. Hermite’s lattice constant, denoted γm, is the supre-
mum of the following quantities as L ranges over all m-dimensional lattices:

Λ1(L)2
(
det(L)

)2/m
.

The quantities γm are very difficult to compute, and are known only for
1 ≤ m ≤ 8 and m = 24. The following table is from Nguyen [105], page 33:

m 1 2 3 4 5 6 7 8 · · · 24

γm 1
(

4
3

)1/2
21/3 21/2 81/5

(
64
3

)1/6
641/7 2 · · · 4

Definition 1.31. Let S be an arbitrary subset of n-dimensional Euclidean
space Rn. We say that S is symmetric about the origin if x ∈ S implies
−x ∈ S. We say that S is convex if x,y ∈ S implies αx + (1−α)y ∈ S for
0 ≤ α ≤ 1; that is, S contains the line segment joining x and y.

Theorem 1.32. Minkowski’s convex body theorem. Let L be an n-
dimensional lattice in n-dimensional Euclidean space Rn with determinant
det(L). Let S be a subset of Rn which is convex and symmetric about the
origin; let vol(S) denote the volume of S. If vol(S) > 2n det(L) then S contains
a nonzero vector x ∈ L.

Proof. Cassels [22], Theorem II, page 71.

© 2012 by Taylor & Francis Group, LLC

Introduction to Lattices 15

1.4 Projects

Project 1.1. Write a computer program that takes as input three points
A,B,C in Rn, verifies that the points are the vertices of a triangle (that is,
the points are not collinear), and then calculates:

(i) the lengths of the sides of the triangle,

(ii) the angles at the vertices of the triangle,

(iii) for each ordered pair of sides, the components of the first side
parallel and orthogonal to the second side.

Test your program on 10 pseudorandom choices of the points A,B,C having
coordinates with 1, 2 or 3 digits in the Euclidean space Rn for n = 2, 3, . . . , 10.

Project 1.2. Write a computer program that takes as input an operation
count k, a range parameter r, and a basis x1, x2, . . . , xn of Rn spanning a
lattice L, and then applies k unimodular row operations to the corresponding
matrix X to obtain another basis of the same lattice. The range parameter is
used to limit the scalars: the multiplier m in the third type of row operation
(“add an integral multiple of any row to any other row”) is a nonzero integer
in the range −r ≤ m ≤ r. Test your program for various values of k and r on
pseudorandom integral bases of Rn for n = 2, 3, . . . , 10. (You will also need a
parameter to limit the components of the pseudorandom basis vectors.)

Project 1.3. Write a computer program that takes as input a basis x1, x2,
. . . , xn of the n-dimensional lattice L ⊂ Rn together with m vectors y1, y2,
. . . , ym in L (1 ≤ m < n), and determines whether there exist vectors ym+1,
. . . , yn in L such that y1, y2, . . . , yn form a basis of L. Extend your program
to find vectors ym+1, . . . , yn satisfying this condition (if they exist).

Project 1.4. Write a survey report on algorithmic aspects of the geometry of
numbers and its applications, and give a seminar presentation based on your
report. The following survey papers will be useful references: Kannan [72],
Vallée [138], and Aardal [1].

1.5 Exercises

Exercise 1.1. Consider the triangle in R2 with these points as its vertices:

A = (−5,−4), B = (−5,−1), C = (5,−8).

Find the lengths of the sides of this triangle. Calculate the angles at the
vertices and verify that their sum is 180 degrees. For each ordered pair of

© 2012 by Taylor & Francis Group, LLC

16 Lattice Basis Reduction

sides, find the components of the first side parallel and orthogonal to the
second side.

Exercise 1.2. Same as Exercise 1.1 for these points in R2:

A = (45,−81), B = (−50,−22), C = (−16,−9).

Exercise 1.3. Same as Exercise 1.1 for these points in R3:

A = (2,−9, 0), B = (−8, 2,−5), C = (−9, 7, 7).

Exercise 1.4. Same as Exercise 1.1 for these points in R3:

A = (77, 9, 31), B = (20,−61,−48), C = (24, 65, 86).

Exercise 1.5. Same as Exercise 1.1 for these points in R4:

A = (4,−9,−2,−5), B = (1, 7, 8,−1), C = (−6,−8,−2,−2).

Exercise 1.6. Same as Exercise 1.1 for these points in R4:

A = (−62,−33,−68,−67), B = (42, 18,−59, 12), C = (52,−13, 82, 72).

Exercise 1.7. Let C be an n×n matrix with integer entries and determinant
±1. Prove that C−1 also has integer entries.

Exercise 1.8. Show that these three bases of R2 generate the same lattice.
For each ordered pair of bases, find a sequence of unimodular row operations
which converts from the first basis to the second:

{x1,x2 } =

{ [
−41
−82

]
,

[
1

−99

] }
,

{y1,y2 } =

{ [
−79
−461

]
,

[
−198
−1103

] }
,

{ z1, z2 } =

{ [
26080957
43756088

]
,

[
3875510
6501953

] }
.

Exercise 1.9. Same as Exercise 1.8 for these three bases of R3:

{x1,x2,x3 } =








4
−2

0



 ,




3
−3
−3



 ,




−1
−6
−1







 ,

{y1,y2,y3 } =








143
−20

19



 ,




−241
−64
−45



 ,




110
−5
16







 ,

{ z1, z2, z3 } =







−26357

13270
2307


 ,




4836
−2438
−424


 ,



−105971

53351
9275






 .

© 2012 by Taylor & Francis Group, LLC

Introduction to Lattices 17

Exercise 1.10. Same as Exercise 1.8 for these three bases of R4:







5
0
−5
−1


 ,




−7
0
−6

7


 ,




1
−2
−7

4


 ,




−1
7
−3

1







,








82
−371

271
−129


 ,




−101
425
−303

149


 ,




−705
2915
−2090

1039


 ,




−2100
8689
−6240

3102







,









21463771
1248392

−30241207
−775616


 ,




79458521
4621448

−111952377
−2871329


 ,




−2726297
−158475
3841129

98526


 ,




7377273
428791

−10393946
−266612








.

Exercise 1.11. Let X be any m×n matrix (m ≤ n) with real entries. Prove
that the determinant of the matrix XXt is always non-negative, and equals 0
if and only if the rows of X are linearly dependent.

Exercise 1.12. Let x1,x2, . . . ,xm be m linearly independent vectors in Rn

spanning the lattice L, and let X be the m × n matrix with xi as row i.
Let y1,y2, . . . ,ym be another basis for L with corresponding matrix Y . Prove
that there exists a unimodular matrix C such that Y = CX and X = C−1Y .
Deduce that det(XXt) = det(Y Y t), and hence the determinant of L does not
depend on the choice of basis.

Exercise 1.13. In each case, find the Gram matrix and the determinant of
the m-dimensional lattice L in n-dimensional Euclidean space Rn spanned by
the rows x1,x2, . . . ,xm of the m× n matrix X :

(a) X =

[
−5 −4 6
−1 1 −5

]
,

(b) X =

[
25 62 58
53 17 −37

]
,

(c) X =

[
−156 −142 27

901 560 −733

]
,

(d) X =

[
5166 3296 −1487
−7461 7833 −5023

]
.

Exercise 1.14. Same as Exercise 2.6 for these matrices:

(a) X =




7 0 6 3 7
8 −1 −2 −9 −2
9 6 1 −8 −6


 ,

(b) X =




−59 −23 −2 −31 29

99 −73 −83 38 17
58 30 −84 −77 −63



 ,

© 2012 by Taylor & Francis Group, LLC

18 Lattice Basis Reduction

(c) X =




−932 −95 −672 −139 784

989 −504 193 −489 334
−978 −312 −712 −39 −19



 .

Exercise 1.15. Same as Exercise 2.6 for these matrices:

(a) X =




−9 −6 7 4 2 3 −8
−6 2 −4 9 −2 1 −8
−8 −2 7 −8 7 2 5

7 −7 −3 6 −9 1 9


 ,

(b) X =




−46 −42 12 76 −51 −97 37
−77 −84 85 92 −34 88 92
−51 65 41 −59 −4 88 23
−77 54 −78 −89 0 −63 47


 ,

(c) X =




323 209 −629 480 889 91 −104
−894 205 691 768 281 −242 63
−842 137 −399 730 353 586 56
−227 −605 130 89 −769 −409 −236


 .

Exercise 1.16. Complete the proof of Corollary 1.23.

Exercise 1.17. Complete the proof of Corollary 1.26.

Exercise 1.18. Prove Theorem 1.28.

Exercise 1.19. (Cassels [22], Lemma 2, page 15). Let x1, x1, . . . , xn be a
basis for the n-dimensional lattice L ⊂ Rn. Consider m lattice vectors,

yi =

n∑

j=1

aijxj , aij ∈ Z, i = 1, 2, . . . ,m.

Let A = (aij) be the m× n matrix of coefficients. Prove that the vectors y1,
y2, . . . , ym can be extended to a basis of L if and only if the

(
n
m

)
determinants

of size m×m obtained by taking m columns of A have no common factor.

Exercise 1.20. Let C be an n × n matrix with integer entries, and sup-
pose that only the first m rows of C are known for some m = 1, 2, . . . , n−1.
Find necessary and sufficient conditions on the first m rows in order that the
remaining n−m rows can be filled in (with integers) to give a unimodular
matrix.

Exercise 1.21. Consider the lattice L ⊂ R2 with basis x1, x2 and the vector
y1 ∈ L. Determine whether there exists a vector y2 ∈ L such that y1, y2 is a
basis of L, and find such a vector if it exists:

x1,x2 =

[
4
−7

]
,

[
−7
−8

]
; y1 =

[
−79
−44

]
.

© 2012 by Taylor & Francis Group, LLC

Introduction to Lattices 19

Exercise 1.22. Same as Exercise 1.21 for

x1,x2 =

[
−72
−32

]
,

[
−2
−74

]
; y1 =

[
−632

304

]
.

Exercise 1.23. Consider the lattice L ⊂ R3 with basis x1, x2, x3 and the
vectors y1,y2 ∈ L. Determine whether there exists a vector y3 ∈ L such that
y1, y2, y3 is a basis of L, and find such a vector if it exists:

x1,x2,x3 =



−6
−5
−4


 ,




5
−1

1


 ,



−8
−5
−3


 ; y1,y2 =




33
33
15


 ,



−54
−16
−15


 .

Exercise 1.24. Same as Exercise 1.23 for

x1,x2,x3 =




31
43
12


 ,



−50

25
−2


 ,



−80

94
50


 ; y1,y2 =



−795

267
74


 ,




317
−712
−392


 .

Exercise 1.25. Consider the lattice L ⊂ R3 with basis x1, x2, x3 and the
vector y1 ∈ L. Determine whether there exist vectors y2,y3 ∈ L such that y1,
y2, y3 is a basis of L, and find such vectors if they exist:

x1,x2,x3 =




7
4
−5



 ,




8
−9

5



 ,




−1
−2
−4



 ; y1 =




−31

8
−4



 .

Exercise 1.26. Same as Exercise 1.25 for

x1,x2,x3 =




18
−62
−67



 ,




−59
−33

22



 ,




12
−68

14



 ; y1 =




178
46

−678



 .

© 2012 by Taylor & Francis Group, LLC

2

Two-Dimensional Lattices

CONTENTS

2.1 The Euclidean algorithm . 21

2.2 Two-dimensional lattices . 25

2.3 Vallée’s analysis of the Gaussian algorithm . 31

2.4 Projects . 37

2.5 Exercises . 38

In this chapter we introduce the simplest case of lattice basis reduction: a lat-
tice in the plane generated by two linearly independent vectors. The algorithm
we discuss goes back to Legendre and Gauss in the 19th century. (Scharlau
and Opolka [122] provide a very useful history of developments in this area.)
This algorithm has a striking resemblance to the classical Euclidean algorithm
for computing the greatest common divisor (GCD) of two integers.

2.1 The Euclidean algorithm

We start with a brief review of the Euclidean algorithm, which efficiently
computes the GCD (greatest common divisor) of two integers by repeated
division with remainder. (One could, at least in principle, compute the GCD
by comparing the prime factorizations of the integers, but integer factorization
is a hard problem in general.)

Recall that for any two integers a and b with b 6= 0, there are unique
integers q (quotient) and r (remainder) such that

a = qb+ r, 0 ≤ r < |b|.
The Euclidean algorithm Euclid(a, b) for the GCD is given in Figure 2.1.

Example 2.1. We compute the greatest common divisor of a = 7854 and
b = 2145. Set r0 = a and r1 = b. Dividing r0 by r1 gives

7854 = 3 · 2145 + 1419 r0 = q2r1 + r2 q2 = 3 r2 = 1419

Now dividing r1 by r2 gives

2145 = 1 · 1419 + 726 r1 = q3r2 + r3 q3 = 1 r3 = 726

21

© 2012 by Taylor & Francis Group, LLC

22 Lattice Basis Reduction

• Input : Nonzero integers a and b.

• Output : The (positive) greatest common divisor of a and b.

(1) Set r0 ← max(|a|, |b|) and r1 ← min(|a|, |b|).
(2) Set i← 1.

(3) While ri 6= 0 do:

(a) Perform integer division with remainder of ri−1 by ri: compute
the unique integers qi+1 and ri+1 such that

ri−1 = qi+1ri + ri+1, 0 ≤ ri+1 < ri.

(b) Set i← i+1.

(4) Return ri−1.

FIGURE 2.1
The Euclidean algorithm Euclid(a, b) for the greatest common divisor

Repeating this process, adding 1 to the subscripts at each step, we obtain

1419 = 1 · 726 + 693 r2 = q4r3 + r4 q4 = 1 r4 = 693

726 = 1 · 693 + 33 r3 = q5r4 + r5 q5 = 1 r5 = 33

693 = 21 · 33 + 0 r4 = q6r5 + r6 q6 = 21 r6 = 0

We now have a remainder of 0, so the algorithm terminates. The last nonzero
remainder, r5 = 33, is the greatest common divisor of a = 7854 and b = 2145.

Lemma 2.2. Let n be the number of iterations of step (3) of the Euclidean
algorithm. Writing log for the logarithm to the base 2, we have

n < 1 + 2 logmin(|a|, |b|).

Proof. It is clear that

r0 ≥ r1 > r2 > · · · > rn > rn+1 = 0,

and hence that qi ≥ 1 for all i. From this it follows that

ri−1 = qi+1ri + ri+1 ≥ ri + ri+1 > 2ri+1,

and therefore
r1 · · · rn−2 > 2n−2 r3 · · · rn.

This implies

2n−2 <
r1r2
rn−1rn

.

© 2012 by Taylor & Francis Group, LLC

Two-Dimensional Lattices 23

But r1r2 < r21 , and rn−1rn ≥ 2, so we obtain

2n−2 <
r21
2
.

Taking logarithms to the base 2 gives

n− 2 < −1 + 2 log r1,

and hence
n < 1 + 2 log r1.

Since r1 = min(|a|, |b|), this completes the proof.

Remark 2.3. The number of bits (binary digits) required to encode c ∈ Z is

1 + (⌊ log |c| ⌋+1) = ⌊ log |c| ⌋+ 2;

the first bit is for the ± sign and ⌊x⌋ is the greatest integer ≤ x. For example,

−4←→ 1|100, +7←→ 0|111.

Thus the binary string c0c1 · · · ck represents the integer

c = (−1)c0

k∑

i=1

ci2
k−i.

Hence the number s of bits required to encode the input integers a and b for
the Euclidean algorithm satisfies the inequality

s =
(
⌊ log |a| ⌋+ 2

)
+
(
⌊ log |b| ⌋+ 2

)
≥ 2⌊log min(|a|, |b|)⌋+ 4.

Starting from the inequality in Lemma 2.2 we now obtain

n < 1 + 2 logmin(|a|, |b|)
< 1 + 2

(
⌊log min(|a|, |b|)⌋+ 1

)

= 2⌊log min(|a|, |b|)⌋+ 3

< s.

Hence the number of divisions with remainder performed by the Euclidean
algorithm is no greater than the bit size of the input.

The worst case of the Euclidean algorithm occurs when all the quotients
qi are equal to 1; this implies that the remainders ri decrease as slowly as
possible. In this case the equation in step 3(a) of Figure 2.1 becomes

ri−1 = ri + ri+1, 0 ≤ ri+1 < ri.

This is essentially the recurrence relation for the Fibonacci numbers Fn:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2).

In particular, if rn = 1 and rn+1 = 0 then a = r0 = Fn+1 and b = r1 = Fn.

© 2012 by Taylor & Francis Group, LLC

24 Lattice Basis Reduction

Theorem 2.4. (Knuth [78], page 343) For n ≥ 1, let a and b be integers
with a > b > 0 such that the Euclidean algorithm applied to a and b requires
exactly n division steps, and such that a is the smallest integer satisfying these
conditions. Then a = Fn+2 and b = Fn+1.

Note that we don’t take a = Fn+1 and b = Fn, since when we input
consecutive Fibonacci numbers, the Euclidean algorithm terminates one step
sooner than expected: the Fibonacci sequence begins 0, 1, 1, 2, 3 and division
with remainder gives 3 = 1 · 2 + 1 but 2 = 2 · 1 + 0.

There is an exact formula for the Fibonacci numbers (Exercise 2.5):

Fn =
1√
5

(
φn

+ − φn
−
)
, φ± =

1

2

(
1±
√

5
)
.

Since φ+ ≈ 1.618 and φ− ≈ −0.618, we get the approximation

Fn ≈
1√
5
φn

+, hence φn
+ ≈
√

5Fn.

Therefore
n ≈ logφ+

(√
5Fn

)
.

It follows that on the inputs a = Fn+2 and b = Fn+1 the Euclidean algorithm
terminates after n steps where

n ≈ logφ+
(
√

5 b)− 1 =
log(
√

5 b)

logφ+
− 1 =

1

logφ+
log b+

(
log
√

5

logφ+
− 1

)
.

¿From this we get the estimate

n ≈ 1.441 logmin(|a|, |b|) + 0.673, (2.1)

which improves the result of Lemma 2.2. This approximate calculation shows
that we can get a good estimate on the number of steps required by an algo-
rithm by considering the worst case of the algorithm.

An important variant of the Euclidean algorithm uses symmetric remain-
ders. This means that we modify the inequality on ri+1 in step 3(a) of Figure
2.1 as follows:

ri−1 = qi+1ri + ri+1, −
∣∣∣
ri
2

∣∣∣ < ri+1 ≤
∣∣∣
ri
2

∣∣∣ .

Definition 2.5. We call this modified algorithm the centered Euclidean
algorithm and denote it by CEuclid(a, b). (Other names are the Euclidean
algorithm with symmetric remainders, or the Euclidean algorithm with least
absolute remainders.)

Example 2.6. We redo Example 2.1 using the centered Euclidean algorithm.
For r0 = 7854 and r1 = 2145 we obtain

7854 = 4 · 2145− 726.

© 2012 by Taylor & Francis Group, LLC

Two-Dimensional Lattices 25

For r1 = 2145 and r2 = −726 we obtain

2145 = (−3) · (−726)− 33.

For r2 = −726 and r3 = −33 we obtain

−726 = (−22) · (−33) + 0.

Algorithm Euclid takes 5 steps to compute the gcd, but algorithm CEuclid
takes only 3 steps.

For the centered Euclidean algorithm, it can be shown that |qi| ≥ 2 for
i ≥ 3. In this case the equation in step 3(a) of Figure 2.1 becomes

ri−1 = 2ri + ri+1, −
∣∣∣
ri
2

∣∣∣ < ri+1 ≤
∣∣∣
ri
2

∣∣∣ .

Hence the worst case corresponds to the recurrence relation

G0 = 0, G1 = 1, Gn = 2Gn−1 +Gn−2 (n ≥ 2).

An exact formula for the numbers Gn is as follows (Exercises 2.6–2.8):

Gn =
1

2
√

2

(
ψn

+ − ψn
−
)
, ψ± = 1±

√
2.

We can formulate the computation of the greatest common divisor in terms
of lattices. Regard R as the one-dimensional real vector space, and let a and
b be nonzero integers which we regard as vectors in R. The lattice L ⊂ R
generated by a and b is the set of all integral linear combinations of a and b:

L = { sa+ tb | s, t ∈ Z }.

In elementary number theory, it is shown that d = gcd(a, b) is the least positive
element of L, and that every element of L is an integral multiple of d. In other
words, d is a basis of the lattice generated by a and b, and hence d is a shortest
vector in this lattice. Therefore, the following problems are equivalent:

• Compute a greatest common divisor of a and b.

• Determine a shortest vector in the lattice generated by a and b.

A very attractive introduction to elementary number theory is Stillwell [134].

2.2 Two-dimensional lattices

Let x and y form a basis of R2. The lattice L ⊂ R2 generated by x and y is
the set of all integral linear combinations of x and y:

L = { ax + by | a, b ∈ Z }.

© 2012 by Taylor & Francis Group, LLC

26 Lattice Basis Reduction

v�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
��3y

-
x

?
v

A
A

AKw

FIGURE 2.2
The two-dimensional lattice L generated by x = [2, 0] and y = [3, 2]. The
vectors v = [0,−4] and w = [−1, 2] form another basis of the same lattice.

Figure 2.2 shows a region near the origin of the lattice in the plane R2 gen-
erated by the vectors x = [2, 0] and y = [3, 2]. (The origin is indicated by a
large dot.) If we change basis by unimodular matrix multiplication,

[
3 −2
−2 1

] [
2 0
3 2

]
=

[
0 −4
−1 2

]
,

we see that the vectors v = [0,−4] and w = [−1, 2] form another basis.
Suppose that L is a lattice in R2 generated by the vectors x and y. A basic

problem is to find a shortest (nonzero) vector in this lattice; that is, a vector
v for which |v| ≤ |w| for all w ∈ L, w 6= 0. This is achieved by the algorithm
in Figure 2.3, usually attributed to Gauss (but see also the discussion of the
earlier contributions of Lagrange in Scharlau and Opolka [122], Chapter 4).
In fact this “Gaussian algorithm” finds a minimal basis of a two-dimensional
lattice, in the following sense.

Definition 2.7. We say that a basis x, y of a lattice L in R2 is minimal if
x is a shortest nonzero vector in L and y is a shortest vector in L which is
not a multiple of x.

© 2012 by Taylor & Francis Group, LLC

Two-Dimensional Lattices 27

• Input : A basis x, y of a lattice L in R2 such that |x| ≤ |y|.

• Output : A minimal basis v1, v2 of the lattice L.

(1) Set v1 ← x and v2 ← y. Set finished← false.

(2) While not finished do:

(a) Set m←
⌈
v2 · v1

v1 · v1

⌋
.

(b) Set v2 ← v2 −mv1.

(c) If |v1| ≤ |v2| then

(i) set finished← true

else

(ii) set u← v1, v1 ← v2, v2 ← u (interchange v1 and v2).

(3) Return v1 and v2.

FIGURE 2.3
The Gaussian algorithm Gauss(x,y) for a minimal basis of a lattice in R2

Definition 2.8. We write ⌈µ⌋ = ⌈µ− 1
2⌉ for the nearest integer to µ ∈ R.

Note that the nearest integer to n+ 1
2 (n ∈ Z) is n, not n+1.

In step 2(a) of the Gaussian algorithm we must use the nearest integer m
to the orthogonal projection coefficient µ = (v2 · v1)/(v1 · v1) instead of µ
itself, because in step 2(b) the vector v2 must remain in the lattice L.

Example 2.9. Let L be the lattice in R2 generated by the vectors

v1 = [−56, 43], |v1| ≈ 70.60, v2 = [95, −73], |v2| ≈ 119.8.

The first iteration calculates

m =

⌈
v2 · v1

v1 · v1

⌋
=

⌈−8459

4985

⌋
≈ ⌈−1.697⌋ = −2.

We now set
v2 = v2 + 2v1 = [−17, 13], |v2| ≈ 21.40.

Since |v2| < |v1| we interchange the vectors; we now have

v1 = [−17, 13], v2 = [−56, 43].

The second iteration calculates

m =

⌈
v2 · v1

v1 · v1

⌋
=

⌈
1511

458

⌋
≈ ⌈3.299⌋ = 3.

© 2012 by Taylor & Francis Group, LLC

28 Lattice Basis Reduction

We now set
v2 = v2 − 3v1 = [−5, 4], |v2| ≈ 6.403.

Interchanging the vectors gives

v1 = [−5, 4], v2 = [−17, 13].

The third iteration calculates

m =

⌈
v2 · v1

v1 · v1

⌋
=

⌈
137

41

⌋
≈ ⌈3.341⌋ = 3.

We now set
v2 = v2 − 3v1 = [−2, 1], |v2| ≈ 2.236.

Interchanging gives

v1 = [−2, 1], v2 = [−5, 4].

The fourth iteration calculates

m =

⌈
v2 · v1

v1 · v1

⌋
=

⌈
14

5

⌋
= ⌈2.8⌋ = 3.

We now set
v2 = v2 − 3v1 = [1, 1], |v2| ≈ 1.414.

Interchanging gives

v1 = [1, 1], v2 = [−2, 1].

The fifth iteration calculates

m =

⌈
v2 · v1

v1 · v1

⌋
=

⌈−1

2

⌋
= ⌈−0.5⌋ = −1.

We now set
v2 = v2 + v1 = [−1, 2], |v2| ≈ 2.236.

Since |v2| ≥ |v1| we terminate with this minimal basis:

v1 = [1, 1], |v1| ≈ 1.414, v2 = [−1, 2], |v2| ≈ 2.236.

It is instructive to compare the Euclidean and Gaussian algorithms. Al-
gorithm Euclid repeatedly performs division with remainder, replacing the
pair (ri−1, ri) of integers with the pair (ri, ri+1) determined by the equation
ri+1 = ri−1 − qi+1ri. Algorithm Gauss repeatedly performs orthogonal pro-
jection (rounded to the nearest integer), replacing the pair (v1,v2) of vectors
by the pair (v1,v

′
2) determined by the equation v′

2 = v2−mv1, and then inter-
changing the vectors (if necessary). The arithmetic operation of division with
remainder in the Euclidean algorithm corresponds to the geometric operation
of (rounded) orthogonal projection in the Gaussian algorithm.

Our next goal is to prove that the Gaussian algorithm does indeed produce
a minimal basis of the input lattice. The next lemma shows that the new
second vector v′

2 is “nearly orthogonal” to the old first vector v1.

© 2012 by Taylor & Francis Group, LLC

Two-Dimensional Lattices 29

Lemma 2.10. After the execution of step (2)(b) of Figure 2.3 we have

|v′
2 · v1| ≤

1

2
|v1|2 ,

where v′
2 is the new second vector in the basis.

Proof. From the definition of nearest integer, we have

m =

⌈
v2 · v1

v1 · v1

⌋
=⇒ m− 1

2
<

v2 · v1

v1 · v1
≤ m+

1

2
.

Multiplying this inequality by v1 · v1 gives

m(v1 · v1)−
1

2
(v1 · v1) < v2 · v1 ≤ m(v1 · v1) +

1

2
(v1 · v1).

Subtracting m(v1 · v1) from all parts gives

−1

2
(v1 · v1) < v2 · v1 −m(v1 · v1) ≤

1

2
(v1 · v1).

Rewriting the middle term using bilinearity of the scalar product gives

−1

2
(v1 · v1) < (v2 −mv1) · v1 ≤

1

2
(v1 · v1),

and therefore

| (v2 −mv1) · v1 | ≤
1

2
|v1|2,

as required.

Theorem 2.11. The Gaussian algorithm terminates, and upon termination
v1 is a shortest nonzero vector in the lattice, and v2 is a shortest vector in
the lattice which is not a multiple of v1.

Proof. The proof follows Beukers [16]. Regarding v1 and v2 as row vectors,
we can express step (2)(b) in matrix form as

[
v′

1

v′
2

]
=

[
1 0
−m 1

] [
v1

v2

]
.

Since the matrix has determinant 1, it is clear that step (2) preserves the
property that v1, v2 is a basis of the lattice L.

The algorithm interchanges v1 and v2 in step (2)(c)(ii) when |v2| < |v1|,
and so the length of v1 strictly decreases from one execution of step (2) to
the next. For any real number r > 0, there are only finitely many elements
of the lattice in the disk {u ∈ R2 | |u| ≤ r }. It follows that the algorithm
terminates after a finite number of executions of step (2).

© 2012 by Taylor & Francis Group, LLC

30 Lattice Basis Reduction

Upon termination, step (2)(c) and Lemma 2.10 guarantee that

|v1| ≤ |v2|, −1

2
|v1|2 ≤ v2 · v1 ≤

1

2
|v1|2.

Let u be any nonzero vector in L, so that u = av1 + bv2 for some a, b ∈ Z,
not both zero. We have

|u|2 = (av1 + bv2) · (av1 + bv2)

= a2|v1|2 + 2ab(v1 · v2) + b2|v2|2 bilinearity

≥ a2|v1|2 − |ab||v1|2 + b2|v2|2 Lemma 2.10

≥ a2|v1|2 − |ab||v1|2 + b2|v1|2 |v2| ≥ |v1|
= (a2 − |ab|+ b2)|v1|2.

Since a, b are not both zero, we have a2b2 < (a2+b2)2 and hence |ab| < a2+b2.
Therefore |u|2 ≥ |v1|2, and so v1 is a shortest vector in L.

Now suppose that u = av1 + bv2 is linearly independent of v1, or equiva-
lently that b 6= 0. We have

|u|2 ≥ a2|v1|2 − |ab||v1|2 + b2|v2|2 previous calculation

= a2|v1|2 − |ab||v1|2 +
1

4
b2|v2|2 +

3

4
b2|v2|2 splitting the last term

= a2|v1|2 − |ab||v1|2 +
1

4
b2|v1|2 +

3

4
b2|v2|2 |v1| ≤ |v2|

=
(
|a| − 1

2
|b|
)2

|v1|2 +
3

4
b2|v2|2. completing the square

Hence |u|2 ≥ |v2|2 if |b| 6= 1. If b = ±1 then we have

|u|2 ≥ a2|v1|2 − |a||v1|2 + |v2|2 = |a|(|a| − 1)|v1|2 + |v2|2.

Since a ∈ Z we have |a|(|a|− 1) = 0 for |a| ≤ 1 and |a|(|a|− 1) > 0 for |a| ≥ 2,
and so it follows that |u|2 ≥ |v2|2 in this case also. Therefore v2 is a shortest
vector in L linearly independent of v1.

The Gaussian algorithm can be applied to any two linearly independent
vectors v1, v2 in the Euclidean vector space Rn for any n ≥ 2. The vectors
v1, v2 span a subspace of Rn linearly isomorphic to R2, and generate a two-
dimensional lattice L in R2 (as before, this is the set of all integral linear
combinations of v1, v2).

Example 2.12. Let n = 3 and consider the vectors

v1 = [−49, −70, 35], |v1| ≈ 92.34,

v2 = [58, 89, −48], |v2| ≈ 116.6.

© 2012 by Taylor & Francis Group, LLC

Two-Dimensional Lattices 31

The first iteration calculates

m =

⌈
v2 · v1

v1 · v1

⌋
=

⌈−256

203

⌋
≈ ⌈−1.261⌋ = −1.

We now set

v2 ← v2 + v1 = [9, 19, −13], |v2| ≈ 24.72.

Since |v2| < |v1| we interchange the vectors; we now have

v1 = [9, 19, −13], v2 = [−49, −70, 35].

The second iteration calculates

m =

⌈
v2 · v1

v1 · v1

⌋
=

⌈−2226

611

⌋
≈ ⌈−3.643⌋ = −4.

We now set

v2 ← v2 + 4v1 = [−13, 6, −17], |v2| ≈ 22.23.

Since |v2| < |v1| we interchange the vectors; we now have

v1 = [−13, 6, −17], v2 = [9, 19, −13].

The third iteration calculates

m =

⌈
v2 · v1

v1 · v1

⌋
=

⌈
109

247

⌋
≈ ⌈0.4413⌋ = 0.

Thus v2 does not change, and the algorithm terminates.

2.3 Vallée’s analysis of the Gaussian algorithm

In this section, we consider lattices in Z2; that is, we assume that the compo-
nents of the vectors are integers. We follow Vallée [139] and consider a slightly
modified version of the Gaussian algorithm. Just as the Euclidean algorithm
comes in two variants, the original algorithm and its centered version, so the
Gaussian algorithm also comes in two variants, the original algorithm and the
centered version displayed in Figure 2.4. The centered Gaussian algorithm
permits a more natural and geometric proof that the output consists of a
minimal basis.

Definition 2.13. For α ∈ R we define sign(α) = 1 if α ≥ 0 and sign(α) = −1
if α < 0. (Note in particular that sign(0) = 1.)

© 2012 by Taylor & Francis Group, LLC

32 Lattice Basis Reduction

• Input : A basis x, y of a lattice L in Z2 such that |x| ≤ |y|.

• Output : A minimal basis v1, v2 of the lattice L.

(1) Set v1 ← x and v2 ← y. Set finished← false.

(2) While not finished do:

(a) Set µ← v2 · v1

v1 · v1
. Set m← ⌈µ⌋. Set ǫ← sign(µ−m).

(b) Set v2 ← ǫ(v2 −mv1).

(c) If |v1| ≤ |v2| then

(i) set finished← true

else

(ii) set u← v1, v1 ← v2, v2 ← u (interchange v1 and v2).

(3) Return v1 and v2.

FIGURE 2.4
The centered Gaussian algorithm CGauss(x,y)

The factor ǫ in step (2)(b) of Figure 2.4 guarantees that the new v2 makes
an acute angle with the old v1. To see this, let v′

2 = ǫ(v2 −mv1) be the new
value of v2. It suffices to show that v′

2 · v1 > 0. We have

v′
2 · v1 = ǫ(v2 −mv1) · v1 = ǫ(v2 · v1 −mv1 · v1)

= ǫ

(
v2 · v1

v1 · v1
−m

)
(v1 · v1) = ǫ(µ−m)|v1|2,

and the last quantity is clearly positive by the definition of ǫ.

Theorem 2.14. The output vectors v1, v2 of the centered Gaussian algorithm
form a minimal basis of the lattice generated by the input vectors x, y.

Proof. It is clear that v1 and v2 satisfy |v1| ≤ |v2|. Furthermore,

0 ≤ v2 · v1 ≤
1

2
|v1|2, (2.2)

by the calculation preceding the statement of the Theorem, since

−1

2
< µ−m ≤ 1

2
, ǫ(µ−m) = |µ−m|.

Hence

0 ≤ v2 · v1

v1 · v1
≤ 1

2
.

© 2012 by Taylor & Francis Group, LLC

Two-Dimensional Lattices 33

Let w be the component of v2 orthogonal to v1. We have

v2 =
v2 · v1

v1 · v1
v1 + w, v1 ·w = 0,

and therefore

|v2|2 =

∣∣∣∣
v2 · v1

v1 · v1

∣∣∣∣
2

|v1|2 + |w|2.

Dividing all terms by |v2|2 gives

1 =

∣∣∣∣
v2 · v1

v1 · v1

∣∣∣∣
2 |v1|2
|v2|2

+
|w|2
|v2|2

.

The first term on the right side is ≤ 1
4 · 1, so we see that

|w|2
|v2|2

≥ 3

4
, hence |w| ≥

√
3

2
|v2|. (2.3)

Consider the following three subsets of the lattice L generated by v1 and v2:

V+ = { av1 + v2 | a ∈ Z },
V0 = { av1 | a ∈ Z },
V− = { av1 − v2 | a ∈ Z }.

Thus V0 consists of all integral multiples of v1, and V+ (respectively V−) is
the translation of V0 in the v2 direction (respectively the −v2 direction). It
follows from inequality (2.3) that all the vectors z in the lattice L generated
by v1 and v2, which do not belong to the subset V+ ∪ V0 ∪ V−, satisfy

|z| ≥
√

3 |v2| > |v2| ≥ |v1|.

(To understand these inequalities, the reader should draw a diagram of the
lattice L and the subsets V+, V0, V−.) From these inequalties it is clear that
v1 and v2 form a minimal basis of the lattice L.

Example 2.15. Consider these two vectors in Z2:

v1 = [−67, 16], |v1| ≈ 68.88, v2 = [93, −25], |v2| ≈ 96.30.

The first iteration calculates

µ =
−6631

4745
≈ −1.397, m = −1, ǫ = −1.

Therefore
v′

2 = −(v2 + v1) = [−26, 9], |v′
2| ≈ 27.51.

Interchanging the vectors gives

v1 = [−26, 9], v2 = [−67, 16].

© 2012 by Taylor & Francis Group, LLC

34 Lattice Basis Reduction

The second iteration calculates

µ =
1886

757
≈ 2.491, m = 2, ǫ = 1.

Therefore

v′
2 = v2 − 2v1 = [−15, −2], |v′

2| ≈ 15.13.

Interchanging the vectors gives

v1 = [−15, −2], v2 = [−26, 9].

The third iteration calculates

µ =
372

229
≈ 1.624, m = 2, ǫ = −1.

Therefore

v′
2 = −(v2 − 2v1) = [−4, −13], |v′

2| ≈ 13.60.

Interchanging the vectors gives

v1 = [−4, −13], v2 = [−15, −2].

The fourth iteration calculates

µ =
86

185
≈ 0.4649, m = 0, ǫ = 1.

Therefore v′
2 = v2 and the algorithm terminates.

In order to analyze the centered Gaussian algorithm, we will consider the
parameterized Gaussian algorithm displayed in Figure 2.5. This third version
of the algorithm depends on a parameter t ≥ 1: the termination condition
|v1| ≤ |v2| is replaced by |v1| ≤ t|v2|. Since the centered Gaussian algorithm
is the same as the parameterized Gaussian algorithm for t = 1, we are pri-
marily interested in t > 1. At first sight, the parameterized algorithm seems
to be merely a weakened form of the centered algorithm. But we will see
that comparing these two algorithms leads to a very natural analysis of the
centered algorithm. Furthermore, the parameterized algorithm is an essential
ingredient in the LLL algorithm which we will consider in Chapter 4.

Proposition 2.16. For the lattice basis x,y ∈ Z2, let n be the number of
iterations performed by the centered Gaussian algorithm on input x,y. For
1 < t ≤

√
3, let n[t] be the number of iterations performed by the parametrized

Gaussian algorithm on input x,y. We have

n[t] ≤ n ≤ n[t] + 1.

© 2012 by Taylor & Francis Group, LLC

Two-Dimensional Lattices 35

• Input : A basis x, y of a lattice L in Z2 such that |x| ≤ |y|.

• Output : A “weakly minimal” basis v1, v2 of the lattice L.

(1) Set v1 ← x and v2 ← y. Set finished← false.

(2) While not finished do:

(a) Set µ← v2 · v1

v1 · v1
. Set m← ⌈µ⌋. Set ǫ← sign(µ−m).

(b) Set v2 ← ǫ(v2 −mv1).

(c) If |v1| ≤ t|v2| then

(i) set finished← true

else

(ii) set u← v1, v1 ← v2, v2 ← u (interchange v1 and v2).

(3) Return v1 and v2.

FIGURE 2.5
The parameterized Gaussian algorithm PGauss[t](x, y)

Proof. The left-hand inequality is clear, since CGauss has a stronger termi-
nation condition than PGauss[t], and so the centered algorithm terminates
no later than the parameterized algorithm. (This holds for all t ≥ 1.)

For the right-hand inequality, we consider the last iteration of PGauss[t],
and assume that this is not the last iteration of CGauss. It suffices to show
that CGauss terminates at the next iteration. We have

0 ≤ v2 · v1

v1 · v1
≤ 1

2
, hence v1 · v1 − 2v2 · v1 ≥ 0.

Since CGauss does not terminate at this iteration, we have

|v2| < |v1|.

The third edge of the triangle built from v1 and v2 is v2 − v1. We have

|v2−v1|2 = (v2−v1) · (v2−v1) = v2 ·v2−2v2 ·v1 +v1 ·v1 ≥ v2 ·v2 = |v2|2,

and so v2 is the shortest edge of this triangle. The algorithm interchanges the
vectors, and so we now have

|v1| < |v2|, 0 ≤ v2 · v1 ≤
1

2
|v2|2,

where v1 is the shortest side of the triangle built from v1 and v2. Since
PGauss[t] terminates at this point, we have (using the interchanged vectors)

|v2| ≤ t|v1|.

© 2012 by Taylor & Francis Group, LLC

36 Lattice Basis Reduction

Therefore

0 ≤ v2 · v1

v1 · v1
=

(
v1 · v2

v2 · v2

)(
v2 · v2

v1 · v1

)
≤ 1

2
t2 ≤ 3

2
.

The new value of v2 is therefore either v′
2 = v2 or v′

2 = ±(v2 − v1). Since
v1 is shorter than both of these vectors, the centered algorithm terminates at
the next iteration.

Definition 2.17. We define the length L and the inertia I of the lattice
basis x, y in Z2 as follows:

L(x,y) = max(|x|, |y|), I(x,y) = |x|2 + |y|2 ≥ L2.

Lemma 2.18. For t > 1, the number n[t] of iterations of the parameterized
Gaussian algorithm on the input basis x, y of inertia I satisfies

n[t] ≤ 1

2
logt(I) + 1.

Proof. After each iteration, if the algorithm does not terminate, then we have

|v1| > t|v2|, hence |v2| <
1

t
|v1|, hence |v′

1| <
1

t
|v1|,

where v′
1 is the new value of v1. Therefore, after n iterations, the shorter

vector satisfies

|v1| <
1

tn
|x|.

Since all vectors are in Z2, the lattice contains no vectors of length < 1, and
so the algorithm terminates as soon as

1

tn
|x| ≤ 1 ⇐⇒ tn ≥ |x| ⇐⇒ n ≥ logt |x|.

Therefore

n[t] ≤
⌈
logt |x|

⌉
≤ logt |x|+ 1 ≤ logt L+ 1 ≤ 1

2
logt I + 1.

This completes the proof.

Corollary 2.19. The number of iterations n of the centered Gaussian algo-
rithm on the input basis x, y of inertia I satisfies

n ≤ log I
log 3

+ 2.

Proof. For t =
√

3, combining Propositions 2.16 and 2.18 gives

n ≤ n
[√

3
]
+ 1 ≤ 1

2
log√3(I) + 2,

and this gives the result.

© 2012 by Taylor & Francis Group, LLC

Two-Dimensional Lattices 37

2.4 Projects

Project 2.1. Write a report and present a seminar talk on the analysis by
Vallée [139] of the “Gauss-acute algorithm”. Explain in detail how this is used
to determine the worst case configuration of the centered Gaussian algorithm.

Project 2.2. Write a report and present a seminar talk on the analysis of
the Euclidean algorithm for the greatest common divisor of two integers. A
detailed discussion of this algorithm (over Z and also over the polynomial ring
F[x] where F is a field) may be found in von zur Gathen and Gerhard [147],
Chapter 3; see also Knuth [78], Section 4.5.3. The first complete analysis of
the running time of this algorithm is traditionally assigned to Lamé [86]. The
first complete proof of precise upper bounds for the number of steps taken
by both versions of the algorithm (original and centered) was given by Dupré
[40]. A historical discussion of research on the Euclidean algorithm may be
found in Shallit [128]. The first complete analysis of the average number of
steps taken by several variants of the algorithm was given by Vallée [140].

Project 2.3. Another interesting topic for a written report and/or a semi-
nar presentation: Daudé et al. [36] show that “the average-case complexity of
the Gaussian algorithm, measured in the number of iterations performed, is
asymptotically constant, and thus essentially independent of the size of the
input vectors”. The proofs involve continued fractions, continuant polynomi-
als, complex analysis, and functional operators. This paper establishes that
the average-case complexity of the algorithm is asymptotic to the constant
1.3511315744. . . , which can be expressed in terms of the tetralogarithm and
the Riemann zeta function.

Project 2.4. Another interesting topic for a written report and/or a seminar
presentation: B. Vallée and A. Vera [141] establish a connection between the
Gaussian algorithm and Eisenstein series from the theory of modular forms.
They study three main parameters related to the output basis: the first mini-
mum, the Hermite constant, and the projection of a second minimum orthog-
onal to the first minimum. They obtain sharp estimates for the distribution of
these quantities by relating them to the hyperbolic geometry of the complex
plane. They also provide a dynamical analysis of parameters which describe
the execution of the algorithm in a more precise way than the number of
iterations, in particular the additive costs and the bit complexity.

Project 2.5. Another interesting topic for a written report and/or a seminar
presentation: Kaib and Schnorr [69] generalize the Gaussian algorithm, which
uses the Euclidean norm on R2, to the case of an arbitrary norm on R2, and
extend Vallée’s analysis [139] of the algorithm to this more general case.

Project 2.6. Another interesting topic for a written report and/or a seminar
presentation: P. Q. Nguyen and D. Stehlé [106] study a “greedy” algorithm

© 2012 by Taylor & Francis Group, LLC

38 Lattice Basis Reduction

for lattice basis reduction in dimensions ≥ 3 with respect to the Euclidean
norm; their algorithm is a natural generalization of the Gaussian algorithm.
For dimensions 3 and 4, the output of their algorithm is optimal, and the
bit-complexity is quadratic without fast integer arithmetic.

2.5 Exercises

Exercise 2.1. Use the original Euclidean algorithm to compute the greatest
common divisor of

a = 10946, b = 3840.

Exercise 2.2. Repeat Exercise 2.1 using the centered Euclidean algorithm.

Exercise 2.3. Use the original Euclidean algorithm to compute the greatest
common divisor of

a = F21 = 10395, b = F20 = 6765.

Exercise 2.4. Repeat Exercise 2.3 using the centered Euclidean algorithm.

Exercise 2.5. (a) Explain why |qi| ≥ 1 for all i in the original Euclidean algo-
rithm. (b) Prove the exact formula for the Fibonacci numbers. Hint: Express
the Fibonacci recurrence as the matrix equation,

[
Fn+1

Fn

]
=

[
1 1
1 0

] [
Fn

Fn−1

]
.

From this it follows that
[
Fn+1

Fn

]
= An

[
1
0

]
, A =

[
1 1
1 0

]
.

Diagonalize the matrix A: find a diagonal matrix D and an invertible matrix
C such that A = C−1DC. Then use the fact that An = C−1DnC.

Exercise 2.6. (a) Explain why |qi| ≥ 2 for all i ≥ 2 in the centered Euclidean
algorithm. (b) Prove an exact formula for the numbers Gn defined by the
recurrence relation

G0 = 0, G1 = 1, Gn = 2Gn−1 +Gn−2 (n ≥ 2).

Hint: See the hint for Exercise 2.5.

Exercise 2.7. Lemma 2.2 gives an upper bound for the number of divisions
in the original Euclidean algorithm. Prove an analogous upper bound for the
centered Euclidean algorithm.

© 2012 by Taylor & Francis Group, LLC

Two-Dimensional Lattices 39

Exercise 2.8. Equation (2.1) gives a better upper bound for the number of
divisions in the original Euclidean algorithm. Use the results of Exercise 2.6 to
prove an analogous better upper bound for the centered Euclidean algorithm.

Exercise 2.9. Prove that the following three bases of R2 all generate the
same two-dimensional lattice:

basis 1: x = [0, 2] y = [5, 1]

basis 2: x = [85, −31] y = [−60, 22]

basis 3: x = [−230, 84] y = [545, −199]

Exercise 2.10. Apply the original Gaussian algorithm to these vectors in R2:

x = [69, 11], y = [88, 14].

Exercise 2.11. Apply the original Gaussian algorithm to these vectors in R3:

x = [1, −38, 86], y = [0, −27, 61].

Exercise 2.12. Apply the original Gaussian algorithm to these vectors in R4:

x = [40, −82, −74, −5], y = [29, −58, −45, −12].

Exercise 2.13. Apply the centered Gaussian algorithm to these vectors:

x = [60, −33], y = [97, −53].

Exercise 2.14. Apply the centered Gaussian algorithm to these vectors:

x = [16, −26, 31], y = [−42, 67, −80].

Exercise 2.15. Apply the centered Gaussian algorithm to these vectors:

x = [−98, −40, 59, −92], y = [73, 22, −35, 69].

Exercise 2.16. Redo Exercise 2.13 using the parameterized Gaussian algo-
rithm with t =

√
3.

Exercise 2.17. Redo Exercise 2.14 using the parameterized Gaussian algo-
rithm with t =

√
3.

Exercise 2.18. Redo Exercise 2.15 using the parameterized Gaussian algo-
rithm with t =

√
3.

Exercise 2.19. Suppose that x and y are in R2, but not necessarily in Z2. Let
ℓ be the length of the shortest (nonzero) vector in the lattice generated by x
and y. Prove that for t > 1, the number n[t] of iterations of the parameterized
Gaussian algorithm satisfies (see Definition 2.17)

n[t] ≤ 1

2
logt

(I
ℓ

)
+ 1.

Exercise 2.20. Prove that for fixed t > 1, the number of iterations of the
parameterized Gaussian algorithm is bounded by a polynomial in the size of
the input.

© 2012 by Taylor & Francis Group, LLC

3

Gram-Schmidt Orthogonalization

CONTENTS

3.1 The Gram-Schmidt theorem . 41

3.2 Complexity of the Gram-Schmidt process . 47

3.3 Further results on the Gram-Schmidt process . 49

3.4 Projects . 52

3.5 Exercises . 53

In this chapter we review the classical Gram-Schmidt algorithm for converting
an arbitrary basis of Rn into an orthogonal basis. This is a standard topic in
elementary linear algebra, but we develop this material with a view to its
application to the LLL algorithm.

3.1 The Gram-Schmidt theorem

Definition 3.1. Let x1, . . . ,xn be a basis of Rn. The Gram-Schmidt or-
thogonalization (GSO) of x1, . . . ,xn is the following basis x∗

1, . . . ,x
∗
n:

x∗
1 = x1,

x∗
i = xi −

i−1∑

j=1

µijx
∗
j (2 ≤ i ≤ n), µij =

xi · x∗
j

x∗
j · x∗

j

(1 ≤ j < i ≤ n).

We do not normalize the vectors. We note that if the vectors x1, . . . , xn are
in Qn, then so are the vectors x∗

1, . . . , x∗
n.

It is important to note that the Gram-Schmidt basis vectors x∗
1, . . . , x∗

n

are usually not in the lattice generated by x1, . . . ,xn: in general x∗
1, . . ., x∗

n

are not integral linear combinations of x1, . . . , xn.

Remark 3.2. If we set µii = 1 for 1 ≤ i ≤ n then we have

xi =

i∑

j=1

µijx
∗
j .

41

© 2012 by Taylor & Francis Group, LLC

42 Lattice Basis Reduction

We write xi = (xi1, . . . , xin) and form the matrix X = (xij) in which row i is
the vector xi, and similarly X∗ = (x∗ij). If we set µij = 0 for 1 ≤ i < j ≤ n
then Definition 3.1 can be written as the matrix equation

X = MX∗ , M = (µij) .

The matrix M is lower triangular with µii = 1 for all i, so it is invertible, and
hence we also have X∗ = M−1X .

Example 3.3. A basis of R3 consists of the rows x1,x2,x3 of the matrix

X =




3 −1 5
−5 2 −1
−3 9 2


 .

Gram-Schmidt orthogonalization gives the orthogonal rows of this matrix

X∗ =




3 −1 5
−109
35

48
35

15
7

1521
566

1859
283

−169
566


 .

The corresponding matrix equation X = MX∗ is




3 −1 5
−5 2 −1
−3 9 2



 =




1 0 0
−22
35 1 0

−8
35

909
566 1







3 −1 5
−109
35

48
35

15
7

1521
566

1859
283

−169
566


 .

Inverting this gives the equation X∗ = M−1X :




3 −1 5
−109
35

48
35

15
7

1521
566

1859
283

−169
566


 =




1 0 0
22
35 1 0

−221
283

−909
566 1







3 −1 5
−5 2 −1
−3 9 2



 .

Theorem 3.4. Gram-Schmidt Theorem. Let x1, . . . ,xn be a basis of Rn

and let x∗
1, . . . ,x

∗
n be its Gram-Schmidt orthogonalization. Let X (respectively

X∗) be the n × n matrix in which row i is the vector xi (respectively x∗
i) for

1 ≤ i ≤ n. We have:

(a) x∗
i · x∗

j = 0 for 1 ≤ i < j ≤ n.
(b) span(x∗

1, . . . ,x
∗
k) = span(x1, . . . ,xk) for 1 ≤ k ≤ n.

(c) For 1 ≤ k ≤ n, the vector x∗
k is the projection of xk onto the

orthogonal complement of span(x1, . . . ,xk−1).

(d) |x∗
k| ≤ |xk| for 1 ≤ k ≤ n.

(e) det(X∗) = det(X).

© 2012 by Taylor & Francis Group, LLC

Gram-Schmidt Orthogonalization 43

Proof. (a) Induction on j. For j = 1 there is nothing to prove. Assume that
the claim holds for some j ≥ 1. For 1 ≤ i < j+1 we have

x∗
i · x∗

j+1 = x∗
i ·
(
xj+1 −

j∑

k=1

µj+1,kx
∗
k

)
definition of x∗

j+1

= x∗
i · xj+1 −

j∑

k=1

µj+1,k(x∗
i · x∗

k) bilinearity of scalar product

= x∗
i · xj+1 − µj+1,i(x

∗
i · x∗

i) inductive hypothesis

= x∗
i · xj+1 −

xj+1 · x∗
i

x∗
i · x∗

i

(x∗
i · x∗

i) definition of µj+1,i

= 0 symmetry of scalar product

(b) By Remark 3.2 we have xi ∈ span(x∗
1, . . . ,x

∗
k) for 1 ≤ i ≤ k, and hence

span(x1, . . . ,xk) ⊆ span(x∗
1, . . . ,x

∗
k) .

For the reverse inclusion we use induction on k. For k = 1 we have x∗
1 = x1

and so the claim is obvious. Assume that the claim holds for some k ≥ 1.
Using Definition 3.1 again we get

x∗
k+1 = xk+1 −

k∑

j=1

µk+1,jx
∗
j = xk+1 + y, y ∈ span(x∗

1, . . . ,x
∗
k) .

The inductive hypothesis gives span(x∗
1, . . . ,x

∗
k) ⊆ span(x1, . . . ,xk), and so

the last equation implies x∗
k+1 ∈ span(x1, . . . ,xk+1). Therefore

span(x∗
1, . . . ,x

∗
k+1) ⊆ span(x1, . . . ,xk+1) .

(c) To simplify notation we write U = span(x1, . . . ,xk−1); then U⊥ is the
subspace of Rn consisting of all vectors y such that y · x = 0 for every vector
x ∈ U . There is a unique decomposition xk = x′

k + y where x′
k ∈ U⊥ and

y ∈ U ; here x′
k is the projection of xk onto the orthogonal complement of U .

Remark 3.2 gives

xk = x∗
k +

k−1∑

j=1

µkjx
∗
j .

By part (b) we have U = span(x∗
1, . . . ,x

∗
k−1), and therefore x∗

k = x′
k.

(d) Using part (a) we see that

xk = x∗
k +

k−1∑

j=1

µkjx
∗
j implies |xk|2 = |x∗

k|2 +

k−1∑

j=1

µ2
kj |x∗

j |2 .

Since every term in the sum is nonnegative, this proves the claim.
(e) By Remark 3.2 we have X = MX∗ where M = (µij) is a lower triangular
matrix with µii = 1 for 1 ≤ i ≤ n. Hence det(M) = 1 and therefore det(X) =
det(M) det(X∗) = det(X∗).

© 2012 by Taylor & Francis Group, LLC

44 Lattice Basis Reduction

A direct consequence of Theorem 3.4 is the following famous inequality for
the determinant of a matrix.

Corollary 3.5. Hadamard’s Inequality. Let X = (xij) be an n×n matrix
over R, and let B = maxi,j |xij | be the maximum of the absolute values of its
entries. Then

| det(X)| ≤ nn/2Bn.

Proof. Let xi = (xi1, . . . , xin) for 1 ≤ i ≤ n be the row vectors of X . If the
rows are linearly dependent, then det(X) = 0 and the result is clear. If the
row vectors are linearly independent, then let X∗ be the matrix whose rows
are the Gram-Schmidt orthogonal basis vectors x∗

1, x∗
2, . . . , x∗

n. By Theorem
3.4(e),

| det(X)| = | det(X∗)|.
Since | det(X∗)| is the volume of the n-dimensional parallelepiped spanned by
the orthogonal vectors x∗

1, x∗
2, . . . , x∗

n, Theorem 3.4(a) implies

| det(X∗)| = |x∗
1||x∗

2| · · · |x∗
n|.

Theorem 3.4(d) now gives

| det(X)| ≤ |x1||x2| · · · |xn|.

For 1 ≤ i ≤ n we have

|xi| =
√
x2

i1 + · · ·+ x2
in ≤

(
nB2

)1/2
= n1/2B.

Therefore | det(X)| ≤
(
n1/2B

)n
, which completes the proof.

Let the rows of the matrix X = (xij) be a basis x1, x2, . . . , xn of Rn.
Let the rows x∗

1, x∗
2, . . . , x∗

n of the matrix X∗ = (x∗ij) be the Gram-Schmidt
orthogonalization. The matrix X∗ is orthogonal in the sense that X∗(X∗)t

is a diagonal matrix; its diagonal entries are |x∗
1|2, . . . , |x∗

n|2. We obtain an
orthonormal basis x∗

1, . . . , x∗
n by setting

x∗
i =

x∗
i

|x∗
i |

(1 ≤ i ≤ n).

Let X
∗

= (x∗ij) be the matrix in which row i contains the vector x∗
i . Let D be

the diagonal matrix with dii = |x∗
i | for 1 ≤ i ≤ n. Since x∗

i is nonzero for all i,

we know that D is invertible. We have X
∗

= D−1X∗, and X
∗

is orthonormal

in the sense that X
∗(
X

∗)t
= In. From X = MX∗ we obtain

X =
(
MD

)(
D−1X∗) .

This is the LQ decomposition of the matrixX , since we have a lower triangular

© 2012 by Taylor & Francis Group, LLC

Gram-Schmidt Orthogonalization 45

matrix L = MD on the left and an orthonormal matrix Q = D−1X∗ on the
right. If we transpose the matrices in the last equation, we get

Xt =
(
D−1X∗)t(MD

)t
.

This is the QR decomposition ofXt, with an orthonormal matrixQ =
(
DX∗)t

on the left and an upper triangular matrix R =
(
MD−1

)t
on the right.

Example 3.6. Continuing from Example 3.3, we see that the norms of the
orthogonal basis vectors x∗

1, x∗
2, x∗

3, are the diagonal entries of D:

D =




|x∗

1| 0 0
0 |x∗

2| 0
0 0 |x∗

3|



 =




√
35 0 0

0
√

566
35 0

0 0 169√
566




Floating point arithmetic gives an approximate LQ decomposition of X :

X = MD ≈




5.916079783 0 0
−3.718678721 4.021371480 0
−1.352246808 6.458351016 7.103599844




Q = D−1X∗ ≈




0.5070925528 −0.1690308509 0.8451542550
−0.7744337302 0.3410350371 0.5328672455

0.3782982166 0.9247289739 −0.0420331352




Considering Hadamard’s inequality, we have det(X) = −169 and

|x∗
1| |x∗

2| |x∗
3| =

√
35

√
566

35

169√
566

= 169 = | det(X)| ,

|x1| |x2| |x3| =
√

35
√

30
√

94 ≈ 314.1655614 .

Since n = 3 and B = 9 for the matrix X , we get

nn/2Bn = 33/293 ≈ 3787.995117 .

The inequalities in the proof of Corollary 3.5 can be summarized as

| det(X)| ≤ |x1| |x2| |x3| ≤ nn/2Bn or 169 ≤ 314.166 ≤ 3787.995 .

In this example the upper bound on | det(X)| is very weak.

We reformulate the definition of the Gram matrix of a basis of Rn.

Definition 3.7. Let x1, . . . , xn be a basis of Rn, and let X be the n × n
matrix with xi in row i for 1 ≤ i ≤ n. For 1 ≤ k ≤ n, let Xk be the k × n
matrix consisting of the first k rows of F . The k-th Gram matrix of this
basis is the k × k symmetric matrix

Gk = XkX
t
k.

© 2012 by Taylor & Francis Group, LLC

46 Lattice Basis Reduction

The k-th Gram determinant of this basis is

dk = det(Gk).

For convenience we set d0 = 1. If xi ∈ Zn for all i then dk ∈ Z for 0 ≤ k ≤ n.
This fact will be important later in our analysis of the LLL algorithm.

Proposition 3.8. Let x1, . . ., xn be a basis of Rn, and let x∗
1, . . ., x∗

n be its
Gram-Schmidt orthogonalization. For 1 ≤ k ≤ n the k-th Gram determinant
of the basis is the product of the square-lengths of the GSO vectors:

dk =

k∏

i=1

|x∗
i |2 .

Proof. By Remark 3.2 we can express the Gram-Schmidt orthogonalization
as the matrix equation X = MX∗. Let Mk be the upper left k× k submatrix
of M , and let X∗

k be the k×n matrix consisting of the first k rows of X∗. We
have the factorization Xk = MkX

∗
k where det(Mk) = 1. Therefore

dk = det
(
XkX

t
k

)
definition of dk

= det
(
(MkX

∗
k)(MkX

∗
k)t
)

factorization of Xk

= det
(
Mk

(
X∗

k(X∗
k)t
)
M t

k

)
apply transpose and associativity

= det(Mk) det
(
X∗

k (X∗
k)t
)
det(M t

k) det(ABC) = det(A) det(B) det(C)

= det
(
X∗

k (X∗
k)t
)

det(Mk) = 1.

Since the rows x∗
1, x∗

2, . . . , x∗
k of the matrix X∗

k are orthogonal by Theorem
3.4(a), we see that X∗

k (X∗
k)t is a diagonal matrix with diagonal entries |x∗

1|2,
|x∗

2|2, . . . , |x∗
k|2, and this completes the proof.

Example 3.9. Continuing from Example 3.6, for k = 1 we get

X1 =
[

3 −1 5
]
, X1X

t
1 =

[
35
]
, d1 = 35 = |x∗

1|2.

For k = 2 we get

X2 =

[
3 −1 5
−5 2 −1

]
, X2X

t
2 =

[
35 −22
−22 30

]
,

and so d2 = 566 = |x∗
1|2|x∗

2|2. For k = 3 we get

X3 =




3 −1 5
−5 2 −1
−3 9 2


 , X3X

t
3 =




35 −22 −8
−22 30 31
−8 31 94


 ,

and so d3 = 28561 = |x∗
1|2|x∗

2|2|x∗
3|2.

© 2012 by Taylor & Francis Group, LLC

Gram-Schmidt Orthogonalization 47

3.2 Complexity of the Gram-Schmidt process

The next lemma is a familiar result from elementary linear algebra.

Lemma 3.10. Cramer’s Rule. Let A be an n × n matrix over R with
det(A) 6= 0, let y ∈ Rn be a column vector, and let x = [x1, . . . , xn]t be
the unique solution of the linear system Ax = y. For 1 ≤ i ≤ n we have

xi =
det(Ai)

det(A)
,

where Ai is the matrix obtained from A by replacing column i by y.

We can now give bounds on the denominators of the rational numbers
that appear in the Gram-Schmidt orthogonalization of vectors with integral
components. This will be important in our analysis of the LLL algorithm.

Proposition 3.11. Let x1, . . . ,xn be a basis of Rn with xi ∈ Zn for 1 ≤ i ≤ n.
Let x∗

1, . . . ,x
∗
n ∈ Qn be its Gram-Schmidt orthogonalization with coefficients

µij ∈ Q. For 1 ≤ k ≤ n, let dk be the corresponding Gram determinant. Then:

(a) The vector dk−1x
∗
k has integral components for 1 ≤ k ≤ n.

(b) The quantity djµkj is an integer for 1 ≤ j ≤ k.
(c) We have |µkj | ≤ d1/2

j−1 |xk| for 1 ≤ j ≤ k.

Proof. (a) We can express the Gram-Schmidt orthogonalization by the matrix
equation X = MX∗, or equivalently, X∗ = M−1X , where M−1 (like M) is a
lower triangular matrix with every diagonal entry equal to 1. Therefore

x∗
k = xk −

k−1∑

j=1

λkjxj , λkj ∈ Q . (3.1)

Here, unlike in Definition 3.1, all the vectors on the right side are “unstarred”;
the λkj are the “inverse Gram-Schmidt coefficients”. Consider the vector xi

for 1 ≤ i ≤ k−1. By Theorem 3.4(a,b) we have xi · x∗
k = 0. Taking the scalar

product of both sides of equation (3.1) with xi we get

0 = xi · xk −
k−1∑

j=1

λkj(xi · xj).

Rearranging this equation gives

k−1∑

j=1

(xi · xj)λkj = xi · xk.

© 2012 by Taylor & Francis Group, LLC

48 Lattice Basis Reduction

For fixed k, there are k−1 choices for i, and so we have a linear system of
k−1 equations in k−1 variables λk1, λk2, . . . , λk,k−1. The coefficient matrix
of this system is the Gram matrix Gk−1, and the determinant of Gk−1 is dk−1.
Cramer’s Rule implies that dk−1λkj ∈ Z for 1 ≤ j ≤ k−1. We now have

dk−1x
∗
k = dk−1

(
xk −

k−1∑

j=1

λkjxj

)
= dk−1xk −

k−1∑

j=1

(
dk−1λkj

)
xj .

Thus for 1 ≤ k ≤ n the vector dk−1x
∗
k is a linear combination with integral

coefficients of vectors with integral components.
(b) From Proposition 3.8 we see that |x∗

j |2 = dj/dj−1, and so using the formula
for µkj from Definition 3.1 we have

djµkj = dj

xk · x∗
j

x∗
j · x∗

j

= dj

xk · x∗
j

|x∗
j |2

= dj−1

(
xk · x∗

j

)
= xk ·

(
dj−1x

∗
j

)
.

By assumption xk ∈ Zn, and by part (a), dj−1x
∗
j ∈ Zn; hence djµkj ∈ Z.

(c) Using the formula for µkj from Definition 3.1 and the Cauchy-Schwarz
inequality, we get

|µkj | =
∣∣∣∣
xk · x∗

j

x∗
j · x∗

j

∣∣∣∣ =
|xk · x∗

j |
|x∗

j |2
≤
|xk||x∗

j |
|x∗

j |2
=
|xk|
|x∗

j |
.

Since x1, . . . ,xj ∈ Zn, we see by Definition 3.7 that dj ∈ Z, and since dj > 0
we get dj ≥ 1. Using this and Proposition 3.8 we get

|x∗
j |2 =

dj

dj−1
≥ 1

dj−1
, hence |x∗

j | ≥
1

d
1/2
j−1

.

This completes the proof.

Example 3.12. Continuing from Example 3.9, part (a) of Proposition 3.11
says that if we multiply row k of X∗ by dk−1, then we clear the denominators
in the orthogonal basis vectors:

d0 = 1 =⇒ d0f
∗
1 = [3,−1, 5],

d1 = 35 =⇒ d1f
∗
2 = [−109, 48, 75],

d2 = 566 =⇒ d2f
∗
3 = [1521, 3718,−169].

Part (b) of Proposition 3.11 says that if we multiply column j of the matrix
M by dj , then we clear denominators in the µkj :

d1



µ11

µ21

µ31


 = 35




1
−22
35

−8
35


 =




35
−22
−8


 ,

© 2012 by Taylor & Francis Group, LLC

Gram-Schmidt Orthogonalization 49

d2



µ12

µ22

µ32


 = 566




0
1

909
566


 =




0
566
909


 .

This is trivial for k = 3.

3.3 Further results on the Gram-Schmidt process

An important part of the LLL algorithm is the repeated exchange of consecu-
tive basis vectors. The next proposition shows how these exchanges affect the
Gram-Schmidt orthogonalization of the basis.

Proposition 3.13. Let x1,x2, . . . ,xn be a basis of Rn, and let x∗
1,x

∗
2, . . . ,x

∗
n

be its Gram-Schmidt orthogonalization. Let j be in the range 1 ≤ j ≤ n−1,
and let x̂1, x̂2, . . . , x̂n be the new basis obtained by exchanging xj and xj+1:

x̂j = xj+1, x̂j+1 = xj , x̂i = xi (i 6= j, j+1).

Let x̂∗
1, x̂

∗
2, . . . , x̂

∗
n be the Gram-Schmidt orthogonalization of the new basis.

Then x̂∗
i = x∗

i for i 6= j, j+1 but

x̂∗
j = x∗

j+1 + µj+1,jx
∗
j , x̂∗

j+1 =
|x∗

j+1|2
|x̂∗

j |2
x∗

j − µj+1,j

|x∗
j |2
|x̂∗

j |2
x∗

j+1.

Proof. Since x̂i = xi for i 6= j, j+1 it is clear that x̂∗
i = x∗

i for i < j, and
Theorem 3.4(c) implies the same result for i > j+1. For x̂∗

j we have

x̂∗
j = x̂j −

j−1∑

i=1

x̂j · x̂∗
i

x̂∗
i · x̂∗

i

x̂∗
i Definition 3.1

= xj+1 −
j−1∑

i=1

xj+1 · x∗
i

x∗
i · x∗

i

x∗
i definition of x̂1, . . . , x̂n

= xj+1 −
j−1∑

i=1

µj+1,ix
∗
i Definition 3.1

= xj+1 −
j∑

i=1

µj+1,ix
∗
i + µj+1,jx

∗
j add and subtract term

= x∗
j+1 + µj+1,jx

∗
j Definition 3.1

Since x∗
j and x∗

j+1 are orthogonal, it follows that

|x̂∗
j |2 = |x∗

j+1|2 + µ2
j+1,j |x∗

j |2. (3.2)

© 2012 by Taylor & Francis Group, LLC

50 Lattice Basis Reduction

We also have

xj · x̂∗
j = xj ·

(
x∗

j+1 + µj+1,jx
∗
j)

= xj · x∗
j+1 + µj+1,j xj · x∗

j bilinearity of scalar product

= µj+1,j

(j∑

k=1

µkjx
∗
k

)
· x∗

j xj · x∗
j+1 = 0 and Remark 3.2

= µj+1,j

j∑

k=1

µkj

(
x∗

k · x∗
j

)
bilinearity of scalar product

= µj+1,j x∗
j · x∗

j xk · x∗
j = 0 for k < j, and µjj = 1

Therefore

xj · x̂∗
j = µj+1,j |x∗

j |2. (3.3)

For x̂∗
j+1 we have

x̂∗
j+1 = x̂j+1 −

j∑

i=1

x̂j+1 · x̂∗
i

x̂∗
i · x̂∗

i

x̂∗
i Definition 3.1

= xj −
j∑

i=1

xj · x̂∗
i

x̂∗
i · x̂∗

i

x̂∗
i definition of x̂j+1

= xj −
j−1∑

i=1

xj · x̂∗
i

x̂∗
i · x̂∗

i

x̂∗
i −

xj · x̂∗
j

x̂∗
j · x̂∗

j

x̂∗
j separate last term

= xj −
j−1∑

i=1

xj · x∗
i

x∗
i · x∗

i

x∗
i −

xj · x̂∗
j

x̂∗
j · x̂∗

j

x̂∗
j since x̂∗

i = x∗
i for i < j

= x∗
j −

xj · x̂∗
j

x̂∗
j · x̂∗

j

x̂∗
j definition of x∗

j

= x∗
j −

xj · x̂∗
j

x̂∗
j · x̂∗

j

(
x∗

j+1 + µj+1,jx
∗
j

)
by the result for x̂∗

j

= x∗
j −

µj+1,j |x∗
j |2

|x̂∗
j |2

(
x∗

j+1 + µj+1,jx
∗
j

)
equation (3.3)

=

(
1−

µ2
j+1,j |x∗

j |2
|x̂∗

j |2
)
x∗

j −
µj+1,j |x∗

j |2
|x̂∗

j |2
x∗

j+1 rearranging

=
|x∗

j+1|2
|x̂∗

j |2
x∗

j − µj+1,j

|x∗
j |2
|x̂∗

j |2
x∗

j+1 equation (3.2)

This completes the proof.

Note that we can use equation (3.2) to write x̂∗
j+1 entirely in terms of

© 2012 by Taylor & Francis Group, LLC

Gram-Schmidt Orthogonalization 51

“unhatted” vectors:

x̂∗
j+1 =

|x∗
j+1|2

|x∗
j+1|2 + µ2

j+1,j |x∗
j |2

x∗
j − µj+1,j

|x∗
j |2

|x∗
j+1|2 + µ2

j+1,j |x∗
j |2

x∗
j+1.

The next result connects Gram-Schmidt orthogonalization with short vectors
in lattices: it gives a lower bound for the length of a nonzero lattice vector in
terms of the Gram-Schmidt orthogonalization of the lattice basis.

Proposition 3.14. Let x1, x2, . . . , xn be a basis of Rn, and let x∗
1, x∗

2, . . . ,
x∗

n be its Gram-Schmidt orthogonalization. Let L be the lattice generated by
x1, x2, . . . , xn. For any nonzero y ∈ L we have

|y| ≥ min
{
|x∗

1|, |x∗
2|, . . . , |x∗

n|
}
.

That is, any nonzero lattice vector is at least as long as the shortest vector in
the Gram-Schmidt orthogonalization.

Proof. Let y be any nonzero element of L:

y =

n∑

i=1

rixi,

where ri ∈ Z for 1 ≤ i ≤ n. Since y 6= 0 we have ri 6= 0 for some i; let k be the
largest index with rk 6= 0. Using Definition 3.1, we can express x1, x2, . . . , xn

in terms of x∗
1, x∗

2, . . . , x∗
n:

y =

k∑

i=1

ri

i∑

j=1

µijx
∗
j =

k∑

i=1

i∑

j=1

riµijx
∗
j .

Reversing the order of summation, and using µkk = 1, we obtain

y =

k∑

j=1

(k∑

i=j

riµij

)
x∗

j = rkx
∗
k +

k−1∑

j=1

νjx
∗
j ,

for some ν1, . . . , νk−1 ∈ R. Since x∗
1, x∗

2, . . . , x∗
n are orthogonal, we obtain

|y|2 = r2k|x∗
k|2 +

k−1∑

j=1

ν2
j |x∗

j |2.

Since rk is a nonzero integer, we have r2k ≥ 1, and so

|y|2 ≥ |x∗
k|2 +

k−1∑

j=1

ν2
j |x∗

j |2 .

All the terms in the sum are non-negative, and hence

|y|2 ≥ |x∗
k|2 ≥ min

{
|x∗

1|2, . . . , |x∗
n|2
}
.

Taking square roots completes the proof.

© 2012 by Taylor & Francis Group, LLC

52 Lattice Basis Reduction

• Input : A basis x1, . . ., xn of Rn.

• Output : An orthogonal basis x∗
1, . . ., x∗

n of Rn satisfying Theorem 3.4.

(1) For i = 1, 2, . . . , n do:

(a) Set x∗
i ← xi.

(b) For j = 1, 2, . . . , i−1 do:

(i) Set µij ←
xi · x∗

j

x∗
j · x∗

j

.

(ii) Set x∗
i ← x∗

i − µijx
∗
j .

FIGURE 3.1
The Gram-Schmidt algorithm to compute an orthogonal basis

In Figure 3.1 we reformulate Gram-Schmidt orthogonalization (Definition
3.1) in the algorithmic form that we will need in the next chapter. (Note that
step (1)(b) does nothing when i = 1.)

3.4 Projects

Project 3.1. The Hadamard inequality, combined with the Chinese remain-
der theorem, is a useful tool in modular computations of large integer deter-
minants. (See for example, von zur Gathen and Gerhard [147], Chapter 5.)
Write a report and present a seminar talk on this topic.

Project 3.2. Study the behavior of the Gram-Schmidt algorithm when float-
ing point arithmetic is used instead of exact rational arithmetic. Useful refer-
ences are Golub and van Loan [49] and Trefethen and Bau [137].

Project 3.3. Study the application of Gram-Schmidt and other orthogonal-
ization methods to least squares solutions of overdetermined linear systems.
Useful references are Golub and van Loan [49] and Trefethen and Bau [137].

© 2012 by Taylor & Francis Group, LLC

Gram-Schmidt Orthogonalization 53

3.5 Exercises

Exercise 3.1. Consider this matrix:

X =




4 5 1
4 8 2
6 2 6




Let x1,x2,x3 be the rows of X .

(a) Compute the Gram-Schmidt orthogonalization x∗
1,x

∗
2,x

∗
3.

(b) Express the GSO in matrix form: X = MX∗ where M = (µij).

(c) Verify that |x∗
i | ≤ |xi| for i = 1, . . . , n.

(d) Verify Hadamard’s inequality for X .

Exercise 3.2. Same as Exercise 3.1, but for n = 4 and the matrix

X =




8 6 2 6
2 4 8 4
1 −1 −6 −8
2 6 −9 6




Exercise 3.3. Same as Exercise 3.1, but for n = 5 and the matrix

X =




−6 −5 −8 −4 −1
5 −4 −6 9 4
−8 1 6 2 −7
−5 −3 6 0 −7
−1 9 2 0 −8




Exercise 3.4. Let x1,x2, . . . ,xn be a basis of Rn, and let X be the n × n
matrix with xi as row i for 1 ≤ i ≤ n. Let X = MX∗ be a factorization of X
satisfying these two conditions:

(a) M = (µij) is lower triangular and µii = 1 for 1 ≤ i ≤ n,

(b) X∗(X∗)t is a diagonal matrix.

Prove that X = MX∗ is the Gram-Schmidt orthogonalization of X . In other
words, the GSO is uniquely determined by conditions (a) and (b).

Exercise 3.5. Find the LQ decomposition of the matrix X in Exercise 3.1.

Exercise 3.6. Find the LQ decomposition of the matrix X in Exercise 3.2.

Exercise 3.7. Find the LQ decomposition of the matrix X in Exercise 3.3.

Exercise 3.8. Find the Gram matrices and Gram determinants for the matrix
X in Exercise 3.1.

© 2012 by Taylor & Francis Group, LLC

54 Lattice Basis Reduction

Exercise 3.9. Find the Gram matrices and Gram determinants for the matrix
X in Exercise 3.2.

Exercise 3.10. Find the Gram matrices and Gram determinants for the
matrix X in Exercise 3.3.

Exercise 3.11. Prove Cramer’s Rule.

Exercise 3.12. Verify the claims of Proposition 3.11 for the matrix X of
Exercise 3.1.

Exercise 3.13. Verify the claims of Proposition 3.11 for the matrix X of
Exercise 3.2.

Exercise 3.14. Verify the claims of Proposition 3.11 for the matrix X of
Exercise 3.3.

Exercise 3.15. For the matrix X of Exercise 3.1, transpose rows 2 and 3,
and recompute the GSO. Verify the claims of Proposition 3.14 in this case.

Exercise 3.16. For the matrix X of Exercise 3.2, transpose rows 3 and 4,
and recompute the GSO. Verify the claims of Proposition 3.14 in this case.

Exercise 3.17. For the matrix X of Exercise 3.3, transpose rows 4 and 5,
and recompute the GSO. Verify the claims of Proposition 3.14 in this case.

Exercise 3.18. Find a lower bound for the length of the shortest nonzero
vector in the set of all integral linear combinations of the rows of the matrix
X from Exercise 3.1.

Exercise 3.19. Find a lower bound for the length of the shortest nonzero
vector in the set of all integral linear combinations of the rows of the matrix
X from Exercise 3.2.

Exercise 3.20. Find a lower bound for the length of the shortest nonzero
vector in the set of all integral linear combinations of the rows of the matrix
X from Exercise 3.3.

Exercise 3.21. Let x1, x2, . . . , xn be a basis of Rn, and let L be the set of
all integral linear combinations of x1, x2, . . . , xn. Prove that for any vector
z ∈ Rn there is a vector y ∈ L for which

|z− y|2 ≤ 1

4

(
|x1|2 + |x2|2 + · · ·+ |xn|2

)
.

Exercise 3.22. Proposition 3.13 shows what happens to the Gram-Schmidt
basis vectors after an exchange of two consecutive vectors in the original basis.
Derive the corresponding result for the Gram-Schmidt coefficients µij .

Exercise 3.23. What happens if the input vectors to the Gram-Schmidt
process are linearly dependent?

© 2012 by Taylor & Francis Group, LLC

4

The LLL Algorithm

CONTENTS

4.1 Reduced lattice bases . 55

4.2 The original LLL algorithm . 62

4.3 Analysis of the LLL algorithm . 67

4.4 The closest vector problem . 78

4.5 Projects . 80

4.6 Exercises . 83

This chapter provides a detailed exposition of the first section of the famous
paper Factoring polynomials with rational coefficients [88] by A. K. Lenstra,
H. W. Lenstra Jr. and L. Lovász. This paper introduced the most important
algorithm for lattice basis reduction. This algorithm is called the LLL algo-
rithm after the initials of its authors. For a historical paper on the origins of
the LLL algorithm, see Smeets [132].

4.1 Reduced lattice bases

We start with an example.

Example 4.1. The rows x1,x2,x3,x4 of the following 4× 4 matrix X form
a basis of a lattice L in R4:

X =




−2 7 7 −5
3 −2 6 −1
2 −8 −9 −7
8 −9 6 −4


 , det(F) = 632.

We can find another basis of the same lattice using a unimodular matrix C:

C =




−13071 −5406 −9282 −2303
−20726 −8571 −14772 −3651
−2867 −1186 −2043 −505
−14338 −5936 −10216 −2525


 , det(C) = −1.

55

© 2012 by Taylor & Francis Group, LLC

56 Lattice Basis Reduction

The rows y1,y2,y3,y4 of the matrix Y = CX form another basis ofL:

Y = CX =




−27064 14298 −54213 144947
−43013 23095 −85466 230209
−5950 3192 −11828 31842
−29764 15959 −59188 159238


 , det(G) = −632.

Suppose we are given a “bad” basis (such as y1,y2,y3,y4) of a lattice L. How
do we find a “good” basis (such as x1,x2,x3,x4) of L, assuming of course
that we do not know the change of basis matrix C? This is the fundamental
problem of lattice basis reduction, that we can solve using the LLL algorithm.

Remark 4.2. The matrix C in Example 4.1 was obtained by starting with the
identity matrix I4 and applying 50 pseudorandom unimodular row operations:

(i) choose i, and multiply row i by −1,

(ii) choose an unordered set {i, j}, and interchange rows i and j,

(iii) choose an ordered pair (i, j) and an integer m with |m| ≤ 9, and
add m times row i to row j.

Definition 4.3. The reduction parameter is a real number α such that

1

4
< α < 1.

The standard value of the parameter is

α =
3

4
.

Let x1,x2, . . . ,xn be an ordered basis of the lattice L in Rn, and let
x∗

1,x
∗
2, . . . ,x

∗
n be its Gram-Schmidt orthogonalization. We write X = MX∗

where X (respectively X∗) is the matrix with xi (respectively x∗
i) as row i,

and M = (µij) is the matrix of GSO coefficients. The basis x1,x2, . . . ,xn is
called α-reduced (or LLL-reduced with parameter α) if it satisfies

(1) |µij | ≤ 1
2 for 1 ≤ j < i ≤ n,

(2) |x∗
i + µi,i−1x

∗
i−1|2 ≥ α|x∗

i−1|2 for 2 ≤ i ≤ n.

Condition (2) is called the exchange condition. Since x∗
1,x

∗
2, . . . ,x

∗
n are

orthogonal, condition (2) can be written as

(2′) |x∗
i |2 ≥ (α− µ2

i,i−1)|x∗
i−1|2 for 2 ≤ i ≤ n.

Condition (1) says that each basis vector xi is “almost orthogonal” to the
span of the previous vectors, since by Theorem 3.4 we have

span(x1, . . . ,xi−1) = span(x∗
1, . . . ,x

∗
i−1).

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 57

Conditions (2) and (2′) say that exchanging xi−1 and xi and then recomputing
the GSO can produce a new shorter vector

x̂∗
i−1 = x∗

i + µi,i−1x
∗
i−1,

but not “too much” shorter; this uses Proposition 3.13.

We will prove that, for any lattice L in Rn, any basis x1, x2, . . . , xn of L,
and any α ∈ (1

4 , 1), the LLL algorithm produces an α-reduced basis of L in a
number of steps which is bounded by a polynomial in the size of the input.
We may also consider α = 1, the “limiting case” of Definition 4.3, but for this
value of the reduction parameter we cannot prove that the LLL algorithm
terminates in polynomial time.

Definition 4.4. We define the auxiliary parameter β as follows:

β =
4

4α− 1
so that β >

4

3
and

1

β
= α− 1

4
.

For the standard value α = 3
4 we obtain β = 2.

Example 4.5. Let L be the lattice of Example 4.1; the rows x1, x2, x3, x4

of the matrix X form a basis of L. The Gram-Schmidt orthogonalization can
be written as the rows x∗

1, x∗
2, x∗

3, x∗
4 of the matrix X∗. The matrices X and

X∗ are related by the equation X = MX∗ where M = (µij):

X =




−2 7 7 −5
3 −2 6 −1
2 −8 −9 −7
8 −9 6 −4




=




1 0 0 0
27
127 1 0 0

− 88
127 − 799

5621 1 0

− 17
127

10873
5621

350695
765183 1







−2 7 7 −5
435
127 − 443

127
573
127

8
127

6189
5621 − 20491

5621 − 19720
5621 − 58771

5621

153576
255061

271760
765183 − 139672

765183
632

765183




= MX∗.

¿From the matrix M it is clear that the basis x1, x2, x3, x4 is not α-reduced
for any α, since even the first condition in Definition 4.3 does not hold:

|µ31|, |µ42| >
1

2
.

Now consider the matrix C with entries in Z and det(C) = −1, and the new

© 2012 by Taylor & Francis Group, LLC

58 Lattice Basis Reduction

basis y1, y2, y3, y4 for the lattice L given by the rows of the matrix Y = CX :

Y = CX =




1 −8 −2 4
1 −6 −1 3
0 4 1 −2
0 1 0 0







−2 7 7 −5
3 −2 6 −1
2 −8 −9 −7
8 −9 6 −4




=




2 3 1 1
2 0 −2 −4
−2 2 3 −3

3 −2 6 −1


 .

The Gram-Schmidt orthogonalization of y1, y2, y3, y4 can be written as the
rows y∗

1 , y∗
2 , y∗

3 , y∗
4 of the matrix Y ∗ which satisfies the matrix equation

Y = M̂Y ∗ where M̂ = (µ̂ij):

Y = M̂Y ∗ =




1 0 0 0

− 2
15 1 0 0

2
15

17
178 1 0

1
3 − 5

89
931
2271 1







2 3 1 1
34
15

2
5 − 28

15 − 58
15

− 221
89

139
89

271
89 − 246

89

7900
2271 − 8216

2271
9796
2271 − 316

757



.

From this equation we can verify that the basis y1, y2, y3, y4 is α-reduced for
all α < 1. The first condition of Definition 4.3 clearly holds since µ̂ij ≤ 1

2 for
all 1 ≤ j < i ≤ 4. For the second condition, it suffices to consider the limiting
value α = 1, since it is easy to see that if a lattice basis is α-reduced then it
is α′-reduced for any α′ < α. We now calculate as follows:

|y∗
1 |2 = 15,

|y∗
2 |2 = 356

15 ≈ 27.73, µ̂2
21 = 4

225 ,
(
1− µ̂2

21

)
|y∗

1 |2 = 221
15 ≈ 14.73,

|y∗
3 |2 = 2271

89 ≈ 25.52, µ̂2
32 = 289

31684 ,
(
1− µ̂2

32

)
|y∗

2 |2 = 2093
89 ≈ 23.52,

|y∗
4 |2 = 99856

2271 ≈ 43.97, µ̂2
43 = 866761

5157441 ,
(
1− µ̂2

43

)
|y∗

3 |2 = 4290680
202119 ≈ 21.23.

From this it is clear that for i = 2, 3, 4 we have

|y∗
i |2 ≥

(
1− µ̂2

i,i−1

)
|y∗

i−1|2.

Thus the basis y1, y2, y3, y4 is α-reduced for any α with 1
4 < α < 1.

Part (c) of the next result (Proposition 4.6) gives an upper bound for
the length |x1| of the first vector in an α-reduced lattice basis in terms of
the determinant of the lattice. The subsequent result (Theorem 4.7) gives an
upper bound for |x1| in terms of the length of a shortest (nonzero) vector in
the lattice.

Proposition 4.6. If x1, x2, . . . , xn is an α-reduced basis of the lattice L in
Rn, and x∗

1, x∗
2, . . . , x∗

n is its Gram-Schmidt orthogonalization, then

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 59

(a) |xj |2 ≤ βi−j |x∗
i |2 for 1 ≤ j ≤ i ≤ n,

(b) det(L) ≤ |x1| |x2| · · · |xn| ≤ βn(n−1)/4 det(L),

(c) |x1| ≤ β(n−1)/4
(
det(L)

)1/n
,

where β is the auxiliary parameter from Definition 4.4.

Proof. The two conditions in Definition 4.3 imply that for 1 < i ≤ n we have

|x∗
i |2 ≥

(
α− µ2

i,i−1

)
|x∗

i−1|2 ≥
(
α− 1

4

)
|x∗

i−1|2 =
1

β
|x∗

i−1|2.

Therefore |x∗
i−1|2 ≤ β|x∗

i |2, and so an easy induction gives

|x∗
j |2 ≤ βi−j |x∗

i |2 (1 ≤ j ≤ i ≤ n). (4.1)

The definition of x∗
i in the GSO can be rewritten as

xi = x∗
i +

i−1∑

j=1

µijx
∗
j ,

and since x∗
1, . . . ,x

∗
n are orthogonal, we get

|xi|2 = |x∗
i |2 +

i−1∑

j=1

µ2
ij |x∗

j |2.

Definition 4.3 and equation (4.1) now give

|xi|2 ≤ |x∗
i |2 +

i−1∑

j=1

1

4
βi−j |x∗

i |2 =

(
1 +

1

4

i−1∑

j=1

βi−j

)
|x∗

i |2.

Using the summation formula for a geometric sequence, we obtain

|xi|2 ≤
(

1 +
1

4
· β

i−β
β−1

)
|x∗

i |2.

We show by induction on i that

1 +
1

4
· β

i−β
β−1

≤ βi−1.

The basis i = 1 is trivial. For the inductive step it suffices to show that

1 +
1

4
· β

i+1−β
β−1

≤ β
(

1 +
βi−β

4(β−1)

)
.

Since β > 4
3 , multiplying by 4(β−1) gives an equivalent inequality; simplifi-

cation then gives
(β − 1)(3β − 4) ≥ 0,

© 2012 by Taylor & Francis Group, LLC

60 Lattice Basis Reduction

which is clear since β > 4
3 . We now have

|xi|2 ≤ βi−1|x∗
i |2. (4.2)

Using this and equation (4.1) gives

|xj |2 ≤ βj−1|x∗
j |2 ≤ βi−1|x∗

i |2 (1 ≤ j ≤ i ≤ n),

which proves (a). From Theorem 3.4 we know that

det(L) = |x∗
1| |x∗

2| · · · |x∗
n| ≤ |x1| |x2| · · · |xn|,

which proves the left inequality in (b). Equation (4.2) implies

|x1|2 |x2|2 · · · |xn|2 ≤ β0+1+2+···+(n−1) |x∗
1|2 |x∗

2|2 · · · |x∗
n|2,

and therefore

|x1| |x2| · · · |xn| ≤ βn(n−1)/4|x∗
1| |x∗

2| · · · |x∗
n| = βn(n−1)/4 det(L),

which proves the right inequality in (b). Setting j = 1 in (a) gives

|x1|2 ≤ βi−1|x∗
i |2 (1 ≤ i ≤ n),

and taking the product over i = 1, 2, . . . , n gives

|x1|2n ≤ β0+1+2+···+(n−1) |x∗
1|2 |x∗

2|2 · · · |x∗
n|2 = βn(n−1)/2

(
det(L)

)2
.

Now taking 2n-th roots proves (c).

The upper bound for |x1| in the next result is exponential, but it depends
only on the reduction parameter α and the dimension n, so it applies uniformly
to all lattices of dimension n.

Theorem 4.7. LLL Theorem. If x1, x2, . . . , xn is an α-reduced basis of
the lattice L in Rn, and y ∈ L is any nonzero lattice vector, then

|x1| ≤ β(n−1)/2|y|.

In particular, the first vector in the α-reduced basis is no longer than β(n−1)/2

times the shortest nonzero vector in L.

Proof. Let x∗
1, x∗

2, . . . , x∗
n be the Gram-Schmidt orthogonalization of x1, x2,

. . . , xn. From the definition of an α-reduced basis, for 2 ≤ i ≤ n we have

|x∗
i |2 ≥

(
α− µ2

i,i−1

)
|x∗

i−1|2 ≥
(
α− 1

4

)
|x∗

i−1|2 =
1

β
|x∗

i−1|2.

Since x∗
1 = x1 this gives

|x1|2 = |x∗
1|2 ≤ β|x∗

2|2 ≤ β2|x∗
3|2 ≤ · · · ≤ βn−1|x∗

n|2,

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 61

and hence for 1 ≤ i ≤ n we have

|x∗
i |2 ≥ β−(i−1)|x1|2.

Proposition 3.14 now shows that for any nonzero vector g ∈ L we have

|y| ≥ min{|x∗
1|, . . . , |x∗

n|} ≥ β−(n−1)/2|x1|2,

and this completes the proof.

The previous result is the case m = 1 of the next result, which gives upper
bounds for the lengths of all the vectors in an α-reduced basis.

Theorem 4.8. If x1, x2, . . . , xn is an α-reduced basis of the lattice L in Rn,
and y1, y2, . . . , ym ∈ L are any m linearly independent lattice vectors, then
for 1 ≤ j ≤ m we have

|xj | ≤ β(n−1)/2 max
{
|y1|, . . . , |ym|

}
.

Proof. We start by writing y1, y2, . . . , ym as integral linear combinations of
x1, x2, . . . , xn:

yj =

n∑

i=1

rijxi (rij ∈ Z, 1 ≤ i ≤ n, 1 ≤ j ≤ m).

Let i(j) denote the largest index i for which rij 6= 0; we think of i(j) as a
function i of a variable j. The definition of the GSO gives

yj =

i(j)∑

i=1

rijxi =

i(j)∑

i=1

rij

i∑

k=1

µikx
∗
k =

i(j)∑

i=1

i∑

k=1

rijµikx
∗
k (1 ≤ j ≤ m).

Considering the term in x∗
i(j), and observing that ri,i(j) ∈ Z with ri,i(j) 6= 0,

and µi(j),i(j) = 1, we get

|yj |2 ≥ |x∗
i(j)|2 (1 ≤ j ≤ m). (4.3)

Since {y1,y2, . . . ,ym} is an unordered set, we may assume without loss of
generality that

i(1) ≤ i(2) ≤ · · · ≤ i(m).

We claim that j ≤ i(j) for 1 ≤ j ≤ m: if i(j) < j for some j then y1, y2, . . . ,
yj all belong to the linear span of x1, x2, . . . , xi(j), contradicting the linear
independence of y1, y2, . . . , yj . Hence we may take i = i(j) in part (a) of
Proposition 4.6, and then use equation (4.3) to obtain

|xj |2 ≤ βi(j)−1|x∗
i(j)|2 ≤ βn−1|x∗

i(j)|2 ≤ βn−1|yj |2

≤ βn−1 max{|y1|2, . . . , |ym|2},

for 1 ≤ j ≤ m. This completes the proof.

© 2012 by Taylor & Francis Group, LLC

62 Lattice Basis Reduction

Recall Definition 1.29 of the successive minima of a lattice. Let x1, x2, . . . ,
xn be an α-reduced basis of the lattice L in Rn, and let x∗

1, x∗
2, . . . , x∗

n be its
GSO. Part (a) of Proposition 4.6 states

|xj |2 ≤ βi−1|x∗
i |2 (1 ≤ j ≤ i ≤ n),

and hence
β1−i|xj |2 ≤ |x∗

i |2 ≤ |xi|2 (1 ≤ j ≤ i ≤ n),

using Theorem 3.4. Hence

β1−i max
{
|x1|2, |x2|2, . . . , |xi|2

}
≤ |xi|2 (1 ≤ i ≤ n).

Since x1, x2, . . . , xi are linearly independent vectors in L, Theorem 4.8 gives

|xi|2 ≤ βn−1 max
{
|x1|2, |x2|2, . . . , |xi|2

}
(1 ≤ i ≤ n).

Combining the last two inequalities shows that for 1 ≤ i ≤ n we have

β1−i max
{
|x1|2, . . . , |xi|2

}
≤ |xi|2 ≤ βn−1 max

{
|x1|2, . . . , |xi|2

}
. (4.4)

Now suppose that y1, y2, . . . , yi are linearly independent lattice vectors which
achieve the i-th minimum of the lattice; clearly

max
{
|y1|2, |y2|2, . . . , |yi|2

}
≤ max

{
|x1|2, |x2|2, . . . , |xi|2

}
.

Using this for the leftmost term in the inequality (4.4), and the general case
of Theorem 4.8 for the rightmost term, we obtain

β(1−i)/2 max{|y1|, . . . , |yi|} ≤ |xi| ≤ β(n−1)/2 max{|y1|, . . . , |yi|}.

This can also be written as

β(1−n)/2|xi| ≤ max{|y1|, . . . , |yi|} ≤ β(i−1)/2|xi|.

This shows that |xi| can be regarded as an approximation to the i-th sucessive
minimum of the lattice.

4.2 The original LLL algorithm

The original LLL algorithm for lattice basis reduction, rewritten in a more
“structured” form (without “goto” statements), appears in Figure 4.1. The
input consists of a basis x1, x2, . . . , xn of the lattice L ⊂ Rn, and a reduction
parameter α ∈ R in the range 1

4 < α < 1. The output consists of an α-reduced
basis y1, y2, . . . , yn of the lattice L.

Step (1) of the main loop simply makes a copy y1,y2, . . . ,yn of the input

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 63

• Input : A basis x1, x2, . . . , xn of the lattice L ⊂ Rn, and a reduction pa-
rameter α ∈ R in the range 1

4 < α < 1.

• Output : An α-reduced basis y1, y2, . . . , yn of the lattice L.

• Procedure reduce(k, ℓ):

If |µkℓ| > 1
2 then

(1) Set yk ← yk − ⌈µkℓ⌋yℓ.

(2) For j = 1, 2, . . . , ℓ−1 do: Set µkj ← µkj − ⌈µkℓ⌋µℓj.

(3) Set µkℓ ← µkℓ − ⌈µkℓ⌋.

• Procedure exchange(k):

(1) Set z← yk−1, yk−1 ← yk, yk ← z (exchange yk−1 and yk).

(2) Set ν ← µk,k−1. Set δ ← γ∗k + ν2γ∗k−1.

(3) Set µk,k−1 ← νγ∗k−1/δ. Set γ∗k ← γ∗kγ
∗
k−1/δ. Set γ∗k−1 ← δ.

(4) For j = 1, 2, . . . , k−2 do: Set t ← µk−1,j , µk−1,j ← µkj , µkj ← t
(exchange µk−1,j and µkj).

(5) For i = k+1, . . . , n do:

(a) Set ξ ← µik. Set µik ← µi,k−1 − νµik.
(b) Set µi,k−1 ← µk,k−1µik + ξ.

• Main loop:

(1) For i = 1, 2, . . . , n do: Set yi ← xi.

(2) For i = 1, 2, . . . , n do:

(a) Set y∗
i ← yi.

(b) For j = 1, 2, . . . , i−1 do:
Set µij ← (yi · y∗

j)/γ∗j and y∗
i ← y∗

i − µijy
∗
j .

(c) Set γ∗i ← y∗
i · y∗

i .

(3) Set k ← 2.

(4) While k ≤ n do:

(a) Call reduce(k, k−1).
(b) If γ∗k ≥

(
α− µ2

k,k−1

)
γ∗k−1 then

(i) For ℓ = k−2, . . . , 2, 1 do: Call reduce(k, ℓ).
(ii) Set k ← k+1.

else
(iii) Call exchange(k).
(iv) If k > 2 then set k ← k−1.

FIGURE 4.1
The original LLL algorithm for lattice basis reduction

© 2012 by Taylor & Francis Group, LLC

64 Lattice Basis Reduction

vectors x1,x2, . . . ,xn. Step (2) computes the Gram-Schmidt orthogonalization
of the vectors y1,y2, . . . ,yn.

Step (3) initializes the index k of the vector yk currently being processed.
Step (4) performs the basis reduction; it repeatedly calls two procedures which
reduce and exchange the vectors y1,y2, . . . ,yn.

Procedure reduce(k, ℓ) makes yk almost orthogonal to yℓ. If |µkℓ| ≤ 1
2

then the procedure does nothing; otherwise, it reduces yk by subtracting the
integral multiple ⌈µkℓ⌋ of yℓ. Since ⌈µkℓ⌋ is the nearest integer to the Gram-
Schmidt coefficient µkℓ, this is the best possible reduction we can perform,
given that yk must remain in the lattice generated by x1, x2, . . . , xn. The
procedure then updates the GSO basis and coefficients.

Procedure exchange(k) interchanges the vectors yk−1 and yk, and then
updates the GSO basis and coefficients according to Proposition 3.13.

The vectors y1,y2, . . . ,yn are modified continually throughout the algo-
rithm, but in such a way that they always form a basis for the lattice L. Step
4(a) of the main loop reduces yk using yk−1; this is done before testing the re-
duction condition in Step 4(b) since that condition depends only on these two
vectors. In Step 4(b), if the reduction condition is satisfied, yk is completely
reduced using yk−2, . . . , y2, y1, and then the index k is increased; otherwise,
an exchange is performed, and the index k is decreased (if it does not already
have the minimum value k = 2).

It is not immediately clear that the LLL algorithm terminates. In the rest
of this chapter, we prove termination, verify that on termination the output
is an α-reduced basis, and then analyze the complexity of the algorithm to
demonstrate that the running time is bounded by a polynomial in the size of
the input. But first an example.

Example 4.9. We start with the vectors x1, x2, x3, x4 from Example 4.5
which form a basis of the lattice L in R4. We will trace the LLL algorithm
using the limiting value α = 1 of the reduction parameter.

Step (1) makes a copy y1, y2, y3, y4 of the lattice basis vectors, and Step
(2) computes its Gram-Schmidt orthogonalization y∗

1 , y
∗
2 , y

∗
3 , y

∗
4 . Throughout

this example we will write the current state of the algorithm as a triple

Y, M, γ∗,

where Y is the matrix with y1, y2, y3, y4 as its rows, M = (µij) is the matrix
of Gram-Schmidt coefficients, and γ∗ is the column vector of squared-lengths
of the GSO vectors y∗

1 , y∗
2 , y∗

3 , y∗
4 .

The initial state (iteration 0) is




−2 7 7 −5
3 −2 6 −1
2 −8 −9 −7
8 −9 6 −4


 ,




1 0 0 0
27
127 1 0 0

− 88
127 − 799

5621 1 0

− 17
127

10873
5621

350695
765183 1



,




127
5621
127

765183
5621

399424
765183



.

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 65

Step (3) sets k = 2.
Step (4)(a) calls reduce(2,1); since |µ21| = 27/127 < 1/2 the procedure

performs no action. Step (4)(b) tests the exchange condition; we have

γ∗2 =
5621

127
<

15400

127
= (1− µ2

21)γ
∗
1 .

Hence Step (4)(b)(iii) calls exchange(2); the current state (iteration 1) is




3 −2 6 −1
−2 7 7 −5

2 −8 −9 −7
8 −9 6 −4


 ,




1 0 0 0
27
50 1 0 0

− 1
2 − 3725

5621 1 0

41
25 − 3064

5621
350695
765183 1



,




50
5621
50

765183
5621

399424
765183



.

Since k = 2 we do not decrement k in Step (4)(b)(iv); we return to the top of
the loop with k = 2.

Step (4)(a) calls reduce(2,1); since |µ21| = 27/50 > 1/2 and ⌈µ21⌋ = 1,
the procedure reduces y2 by subtracting y1. The current state (iteration 2) is




3 −2 6 −1
−5 9 1 −4

2 −8 −9 −7
8 −9 6 −4


 ,




1 0 0 0

− 23
50 1 0 0

− 1
2 − 3725

5621 1 0

41
25 − 3064

5621
350695
765183 1



,




50
5621
50

765183
5621

399424
765183



.

Step (4)(b) tests the exchange condition; we have

γ∗2 =
5621

50
≥ 1971

50
= (1 − µ2

21)γ
∗
1 .

Since k = 2, Step (4)(b)(i) does nothing, and Step (4)(b)(ii) increments k; we
now return to the top of the loop with k = 3.

Step (4)(a) calls reduce(3,2); since |µ32| = 3725/5621 > 1/2 and ⌈µ32⌋ =
−1, the procedure reduces y3 by adding y2. The current state (iteration 3) is




3 −2 6 −1
−5 9 1 −4
−3 1 −8 −11

8 −9 6 −4


 ,




1 0 0 0

− 23
50 1 0 0

− 24
25

1896
5621 1 0

41
25 − 3064

5621
350695
765183 1



,




50
5621
50

765183
5621

399424
765183



.

Step (4)(b) tests the exchange condition; we have

γ∗3 =
765183

5621
≥ 1120033

11242
= (1− µ2

32)γ
∗
2 .

Step (4)(b)(i) calls reduce(3, 1); since |µ31| = 24/25 > 1/2 and ⌈µ31⌋ = −1,

© 2012 by Taylor & Francis Group, LLC

66 Lattice Basis Reduction

iteration 5 exchange k = 4
iteration 6 reduce k = 3 ℓ = 2 ⌈µkℓ⌋ = −1
iteration 7 exchange k = 3
iteration 8 reduce k = 2 ℓ = 1 ⌈µkℓ⌋ = 1
iteration 9 reduce k = 3 ℓ = 2 ⌈µkℓ⌋ = 1
iteration 10 reduce k = 3 ℓ = 1 ⌈µkℓ⌋ = −1
iteration 11 reduce k = 4 ℓ = 3 ⌈µkℓ⌋ = −1
iteration 12 exchange k = 4
iteration 13 reduce k = 3 ℓ = 2 ⌈µkℓ⌋ = 1
iteration 14 exchange k = 3
iteration 15 exchange k = 2
iteration 16 exchange k = 3
iteration 17 reduce k = 2 ℓ = 1 ⌈µkℓ⌋ = 1
iteration 18 exchange k = 2
iteration 19 exchange k = 4
iteration 20 reduce k = 3 ℓ = 2 ⌈µkℓ⌋ = 1
iteration 21 exchange k = 3
iteration 22 reduce k = 2 ℓ = 1 ⌈µkℓ⌋ = −1
iteration 23 exchange k = 2

FIGURE 4.2
Reduce and exchange operations for Example 4.9

the procedure reduces y3 by adding y1. The current state (iteration 4) is




3 −2 6 −1
−5 9 1 −4

0 −1 −2 −12
8 −9 6 −4


 ,




1 0 0 0

− 23
50 1 0 0

1
25

1896
5621 1 0

41
25 − 3064

5621
350695
765183 1



,




50
5621
50

765183
5621

399424
765183



.

Step (4)(b)(ii) increments k, and we return to the top of the loop with k = 4.
After another 19 iterations, the algorithm terminates. Figure 4.2 gives a

summary of the remaining reduce and exchange operations performed.
The final state of the algorithm is




2 3 1 1
2 0 −2 −4
−2 2 3 −3

3 −2 6 −1


 ,




1 0 0 0

− 2
15 1 0 0

2
15

17
178 1 0

1
3 − 5

89
931
2271 1



,




15
356
15

2271
89

99856
2271



.

This is how the matrix Y in Example 4.5 was obtained. The squared lengths

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 67

of the original basis vectors x1, x2, x3, x4 are 127, 50, 198, 197; the squared
lengths of the reduced basis vectors y1, y2, y3, y4 are 15, 24, 26, 50. Even
in this small example of four vectors with single-digit components, the LLL
algorithm has substantially improved the basis vectors: the longest reduced
vector has the same length as the shortest original vector.

Remark 4.10. We can easily modify the LLL algorithm so that it also com-
putes the matrix C for which Y = CX . In Step (1) we initialize C to the n×n
identity matrix In. In Step (1) of procedure reduce, we apply the same ele-
mentary row operation to C as to Y : adding −⌈µkℓ⌋ times row ℓ to row k. In
Step (1) of procedure exchange, we apply the same elementary row operation
to C as to Y : interchanging rows k−1 and k.

Maple code for the LLL algorithm is presented in two parts (but one pro-
cedure) in Figures 4.3 and 4.4. This code uses procedures from the Maple
package LinearAlgebra. It takes two arguments: the original lattice basis as
the rows of the matrix Y , and the reduction parameter α. The code accepts
a non-square matrix Y : it can apply the LLL algorithm to an m-dimensional
lattice in n-dimensional space. The reduce and exchange procedures are in-
cluded in the main procedure. In other respects, including variable names, the
structure of the code is very similar to the algorithm of Figure 4.1.

4.3 Analysis of the LLL algorithm

In order to study the complexity of the LLL algorithm, we must first determine
how the Gram-Schmidt basis and coefficients change during the reduction in
Step (4)(b)(i) and during the exchange in Step (4)(b)(iii).

Lemma 4.11. Reduction Lemma. Consider one call to reduce in Step
(4)(b)(i) with given k and ℓ, and write ν = ⌈µkℓ⌋. Let Y = MY ∗ and
Z = NZ∗ be the matrix equations for the GSO before and after the call to
reduce(k, ℓ). Let E = In − νEkℓ be the elementary matrix which represents
subtracting ν times row ℓ from row k (thus Eii = 1 for 1 ≤ i ≤ n, Ekℓ = −ν,
Eij = 0 otherwise). We have

Z = EY, N = EM, Z∗ = Y ∗.

In particular, the Gram-Schmidt orthogonal basis does not change. Before the
call to reduce(k, ℓ) we have

|µkj | ≤ 1
2 (ℓ < j < k).

After the execution of the loop on ℓ in Step (4)(b)(i) we have

|µkj | ≤ 1
2 (1 ≤ j < k).

© 2012 by Taylor & Francis Group, LLC

68 Lattice Basis Reduction

with(LinearAlgebra):

LLL := proc(X, alpha)

local Y, Ystar, gstar, delta, mu, nu, xi,

i, j, k, l, m, n, r, t:

Y := copy(X):

m := RowDimension(Y):

n := ColumnDimension(Y):

Ystar := Matrix(m, n):

mu := Matrix(m, m):

gstar := Vector(m):

for i to m do

for t to n do Ystar[i,t] := Y[i,t] od:

for j to i-1 do

mu[i,j] :=

DotProduct(Row(Y,i), Row(Ystar,j)) / gstar[j]:

Ystar := RowOperation(Ystar,[i,j], -mu[i,j])

od:

gstar[i] := DotProduct(Row(Ystar,i), Row(Ystar,i))

od:

FIGURE 4.3
Maple code for the LLL algorithm: part 1

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 69

k := 2:

while k <= m do

if abs(mu[k,k-1]) > 1/2 then

r := ceil(mu[k,k-1]-1/2):

Y := RowOperation(Y, [k,k-1], -r):

for j to k-2 do mu[k,j] := mu[k,j] - r*mu[k-1,j] od:

mu[k,k-1] := mu[k,k-1] - r

fi:

if gstar[k] >= (alpha-mu[k,k-1]^2) * gstar[k-1] then

for l from k-2 to 1 by -1 do

if abs(mu[k,l]) > 1/2 then

r := ceil(mu[k,l]-1/2):

Y := RowOperation(Y, [k,l], -r):

for j to l-1 do mu[k,j] := mu[k,j] - r*mu[l,j] od:

mu[k,l] := mu[k,l] - r

fi

od:

k := k + 1

else

nu := mu[k,k-1]:

delta := gstar[k] + nu^2*gstar[k-1]:

mu[k,k-1] := nu*gstar[k-1]/delta:

gstar[k] := gstar[k-1]*gstar[k]/delta:

gstar[k-1] := delta:

Y := RowOperation(Y, [k-1,k]):

for j to k-2 do

t := mu[k-1,j]: mu[k-1,j] := mu[k,j]: mu[k,j] := t

od:

for i from k+1 to m do

xi := mu[i,k]:

mu[i,k] := mu[i,k-1] - nu*mu[i,k]:

mu[i,k-1] := mu[k,k-1]*mu[i,k] + xi

od:

if k > 2 then k := k - 1 fi

fi

od:

RETURN(Y)

end:

FIGURE 4.4
Maple code for the LLL algorithm: part 2

© 2012 by Taylor & Francis Group, LLC

70 Lattice Basis Reduction

Proof. Since Z is obtained from Y by subtracting ν times row ℓ from row k,
we have Z = EY . Since ℓ < k, the span of the vectors y1, y2, . . . , yi remains
the same for all i, and hence the orthogonal basis y∗

1 , y∗
2 , . . . , y∗

n does not
change. Therefore Z∗ = Y ∗, and this gives

(EM)Y ∗ = E(MY ∗) = EY = Z = NZ∗ = NY ∗,

and since Y ∗ is invertible we get EM = N . At the beginning of the loop
in Step (4)(a)(i) we have ℓ = k−1, so there are no values of j in the range
ℓ < j < k; hence the condition |µkj | ≤ 1

2 for ℓ < j < k is trivially satisfied.
Suppose the condition holds before the call to reduce(k, ℓ). The operation
Z = EY changes only row k of Y , and so for ℓ < j < k the old coefficient

µkj =
yk · y∗

j

y∗
j · y∗

j

becomes the new coefficient

µ′
kj =

(yk − νyℓ) · y∗
j

y∗
j · y∗

j

=
yk · y∗

j

y∗
j · y∗

j

− ν
yℓ · y∗

j

y∗
j · y∗

j

= µkj − νµℓj = µkj .

since j > ℓ implies µℓj = 0. As for µkℓ, it becomes

µkℓ − νµℓℓ = µkℓ − ⌈µkℓ⌋,

since µℓℓ = 1, and by definition of ⌈µkℓ⌋ we have

∣∣µkℓ − ⌈µkℓ⌋
∣∣ ≤ 1

2 .

This completes the proof.

The next lemma shows that the product of the squared lengths of the
orthogonal basis vectors decreases by a factor of at least the reduction param-
eter α during every execution of Step (4)(b)(iii). This will be the key fact in
the proof that the LLL algorithm terminates, and also explains why we need
to assume that α is strictly less than 1.

Lemma 4.12. Exchange Lemma. Consider the call to exchange with a
given value of k in Step (4)(b)(iii). Let Y = MY ∗ and Z = NZ∗ be the
matrix equations for the GSO before and after the exchange. We have

z∗i = y∗
i (i 6= k−1, k), |z∗k−1|2 < α|y∗

k−1|2, |z∗k| ≤ |y∗
k−1|.

Proof. For all i except i = k−1, k we have yi = zi and the span of y1, y2,
. . . , yi−1 equals the span of z1, z2, . . . , zi−1. Since y∗

i (respectively z∗i) is
the projection of yi (respectively zi) onto the orthogonal complement of the
span of y1, . . . , yi−1 (respectively z1, . . . , zi−1), the first claim follows. Since

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 71

zk = yk−1 and zk−1 = yk, the vector z∗k−1 is the component of yk orthogonal
to the span of y1, y2, . . . , yk−2. By definition of the coefficients µij we have

yk = y∗
k +

k−1∑

ℓ=1

µkℓy
∗
ℓ , hence z∗k−1 = y∗

k + µk,k−1y
∗
k−1.

Since y∗
k and y∗

k−1 are orthogonal, we get

|z∗k−1|2 = |y∗
k|2 + µ2

k,k−1|y∗
k−1|2.

Since by assumption the exchange condition γ∗k ≥ (α − µ2
k,k−1)γ

∗
k−1 in Step

(4)(b) is false, we have

|y∗
k|2 < (α− µ2

k,k−1)|y∗
k−1|2,

and therefore
|z∗k−1|2 < α|y∗

k−1|2.
This proves the second claim. As for z∗k, it is the component of yk−1 orthogonal
to the span of y1, . . . , yk−2, yk (note that yk−1 is omitted). We write U for
the span of y1, y2, . . . , yk−2. We have

yk−1 = y∗
k−1 +

k−2∑

ℓ=1

µk−1,ℓy
∗
ℓ = y∗

k−1 + u, where u =

k−2∑

ℓ=1

µk−1,ℓy
∗
ℓ .

Therefore z∗k is the component of y∗
k−1+u orthogonal to the subspace U+Ryk.

Using Theorem 3.4, we get

u ∈ span(y∗
1 , . . . ,y

∗
k−2) = span(y1, . . . ,yk−2) = U ⊂ U + Ryk.

Hence z∗k is the component of y∗
k−1 orthogonal to the subspace U + Ryk, and

this completes the proof.

Lemma 4.13. At the start of each iteration of Step (4)(b), the following
conditions hold:

|µij | ≤ 1
2 (1 ≤ j < i < k), |y∗

i + µi,i−1y
∗
i−1|2 ≥ α|y∗

i−1|2 (2 ≤ i < k).

If the algorithm terminates, then the output y1, y2, . . . , yn is a reduced basis
of the lattice.

Proof. Exercise 4.13.

Our next goal is to find an upper bound for the number of iterations of the
loop in Step 4 of the LLL algorithm. To simplify the argument, we assume that
the original basis x1, x2, . . . , xn consists of vectors with integral components;
that is, xi ∈ Zn for i = 1, 2, . . . , n. (Remark 4.24 below explains how this
assumption may be removed.)

© 2012 by Taylor & Francis Group, LLC

72 Lattice Basis Reduction

Recall the definition of the Gram determinant (Definition 3.7): for any
k = 1, 2, . . . , n we consider the first k basis vectors y1, y2, . . . , yn and let
Gk be the k × n matrix with yi as row i for 1 ≤ i ≤ k. Since we are now
assuming that yi ∈ Zn for all i, the Gram matrix GkG

t
k is a k×k matrix with

integer entries, and the Gram determinant dk = det(GkG
t
k) is an integer. By

Proposition 3.8 we have

dk =

k∏

ℓ=1

|g∗ℓ |2. (4.5)

Lemma 4.14. During the calls to reduce(k, ℓ) in the LLL algorithm, the
Gram determinants di do not change. During the calls to exchange(k), the
Gram determinants di do not change for i 6= k−1, but dk−1 changes to a new
value d′k−1 ≤ αdk−1, where α is the reduction parameter.

Proof. Lemma 4.11 shows that the orthogonal basis y∗
1 , y∗

2 , . . . , y∗
n does not

change during calls to reduce, so the first claim follows from equation (4.5).
For i < k−1, the call to exchange(k) has no effect on the Gam matrix Gi,

and hence no effect on di. For i > k−1, the call to exchange(k) transposes
two rows of Gi and two columns of Gt

i, multiplying det(GiG
t
i) by (−1)2, so

again there is no effect on di. For i = k−1 we write y∗
ℓ and z∗ℓ for the vectors

before and after the call to exchange(k). We have

d′k−1 =
k−1∏

ℓ=1

|z∗ℓ |2 equation (4.5)

= |z∗k−1|2
k−2∏

ℓ=1

|z∗ℓ |2 separate last factor

≤ α|y∗
k−1|2

k−2∏

ℓ=1

|z∗ℓ |2 Lemma 4.12

= α|y∗
k−1|2

k−2∏

ℓ=1

|y∗
ℓ |2 z∗ℓ = y∗

ℓ for 1 ≤ ℓ ≤ k−2

= α

k−1∏

ℓ=1

|y∗
ℓ |2 include last factor

= αdk−1 equation (4.5)

This completes the proof.

Definition 4.15. The loop invariant is the quantity

D =
n−1∏

k=1

dk.

We write D0 for the value of D at the start of the algorithm. The assumption

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 73

that the original basis vectors x1, x2, . . . , xn are in Zn implies that D is a
positive integer throughout the algorithm. (The term “invariant” is perhaps
unfortunate; our goal is to prove that this quantity strictly decreases during
the execution of the LLL algorithm.)

Lemma 4.16. We have

D0 ≤ Bn(n−1) where B = max
(
|x1|, |x2|, . . . , |xn|

)
.

Proof. We have

D0 =

n−1∏

k=1

dk Definition 4.15

=

n−1∏

k=1

k∏

ℓ=1

|x∗
ℓ |2 equation (4.5)

=
(
|x∗

1|2
)(
|x∗

1|2|x∗
2|2
)
· · ·
(
|x∗

1|2|x∗
2|2 · · · |x∗

n−1|2
)

expand products

=

n−1∏

k=1

|x∗
k|2(n−k) collect factors

≤
n−1∏

k=1

|xk|2(n−k) Theorem 3.4

≤
n−1∏

k=1

B2(n−k) definition of B

=
n−1∏

k=1

B2k reverse order

= Bn(n−1)
n−1∑

k=1

2k = n(n−1)

This completes the proof.

Definition 4.17. We write E for the total number of calls to exchange

performed throughout the LLL algorithm.

Lemma 4.18. We have

E ≤ − logB

logα
n(n−1).

(A ratio of logarithms to the same base does not depend on the base.)

Proof. Lemma 4.14 implies that D decreases to at most αD after each call to
exchange. Since D is a positive integer throughout the algorithm, we have

1 ≤ αED0, equivalently, α−E ≤ D0.

© 2012 by Taylor & Francis Group, LLC

74 Lattice Basis Reduction

Lemma 4.16 implies

α−E ≤ Bn(n−1), equivalently, −E logα ≤ n(n−1) logB.

We divide by − logα (which is > 0 since α < 1) to complete the proof.

From the last lemma, it follows that the LLL algorithm terminates: the last
call to exchange is the last time the index k decreases; every subsequent pass
through the loop will call reduce and increase k. Since 2 ≤ k ≤ n throughout
the algorithm, there will be at most n−1 more passes through the loop.

Theorem 4.19. Termination Theorem. The total number of passes
through the loop in Step (4) of the LLL algorithm is at most

− 2 logB

logα
n(n−1) + (n−1).

Proof. By definition, E is the number of times the algorithm passes through
Steps (4)(b)(iii) and (4)(b)(iv). We write E′ for the number of times the
algorithm passes through Steps (4)(b)(i) and (4)(b)(ii). Thus E + E′ is the
total number of passes through the loop in Step (4). Every time E increases
by 1, the index k decreases by 1; every time E′ increases by 1, the index
k increases by 1. It follows that the integer k + E − E′ remains constant
throughout the algorithm. At the start, we have k = 2 and E = E′ = 0, so
k + E − E′ = 2. At the end, we have k = n+ 1, so n + 1 + E − E′ = 2, and
hence E′ −E = n− 1. This gives E′ +E = 2E + n− 1, and now Lemma 4.18
completes the proof.

Example 4.20. If n = 4 and the components of the original lattice basis
vectors x1, x2, x3, x4 are single-digit integers (−9 ≤ xij ≤ 9 for 1 ≤ i, j ≤ 4)

then B ≤
√

4 · 92 = 18. We get this upper bound on the number of passes
through the loop in Step (4) of the LLL algorithm:

−24 log 18

logα
+ 3.

For α = 0.75, 0.9, 0.99, 0.999 we obtain the upper bounds 244, 661, 6905,
69337 (taking the floor of the real number). Comparing these numbers to the
23 iterations with α = 1 required by the 4 pseudorandom vectors in Example
4.9, we see that the upper bound of Theorem 4.19 is very weak.

Definition 4.21. We recall the big O notation. Suppose that f(x) and g(x)
are functions with the same domain, which is a subset of the real numbers.
The statement f(x) = O(g(x)) means that for sufficiently large values of x, the
quantity f(x) is at most a constant multiple of the quantity g(x), in absolute
value. That is, f(x) = O(g(x)) if and only if there exists a real number c > 0
and a real number x0 such that |f(x)| ≤ c|g(x)| for all x ≥ x0. For further
information, see Graham et al. [50].

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 75

Theorem 4.22. For a fixed value of the parameter α, the number of times
the LLL algorithm passes through the loop in Step (4) is O(n2 logB), and the
number of arithmetic operations performed by the algorithm is O(n4 logB).

Proof. The first claim follows immediately from Theorem 4.19. For the second
claim, we observe that

• The initial computation of the Gram-Schmidt orthogonalization in Step (2)
requires O(n3) arithmetic operations.

• The initial reduction in Step (4)(a) requiresO(n) operations, the k−2 reduc-
tions in Step (4)(b)(i) require O(n2) operations, and the exchange in Step
(4)(b)(iii) requires O(n) operations. Thus one pass through the loop in Step
(4) requires O(n2) operations, and so the entire loop in Step (4) requires
O(n4 logB) operations.

Since O(n3) is dominated by O(n4 logB), this completes the proof.

Theorem 4.23. The binary lengths of the integers arising in the LLL algo-
rithm are O(n logB).

Proof. We will find upper bounds on the quantities |yi|, |y∗
i | and |µij |. At

the start of the algorithm, we have yi = xi for 1 ≤ i ≤ n. After the initial
computation of the Gram-Schmidt orthogonalization, Theorem 3.4 shows that

|y∗
i | ≤ |yi| = |xi| ≤ B.

Equation (4.5) implies

di ≤ B2i ≤ B2n and so log di = O(n logB).

Using Proposition 3.11 we see that B2n is an upper bound for the denomina-
tors of the components of the vectors y∗

i and the quantities µij , and so these
denominators are also O(n logB). (Recall that by assumption the components
of the vectors yi are integers.)

It remains to find upper bounds for the numerators. We first show that
during the reduction, Steps (4)(a) and (4)(b)(i), we have

|yℓ| ≤ n1/2B (1 ≤ ℓ ≤ k − 1), |yk| ≤ n(2B)n. (4.6)

These bounds hold at the start of the algorithm; and the exchange in Step
(4)(b)(iii) does not affect the lengths |yi| for 1 ≤ i ≤ n. It will therefore follow
that these bounds hold throughout the algorithm. So we may assume that
these bounds hold immediately before the reduction. The vectors yi for i 6= k
are not changed by the reduction, so it suffices to consider yk. We write

µk = max
1≤ℓ≤k

|µkℓ|.

© 2012 by Taylor & Francis Group, LLC

76 Lattice Basis Reduction

Since

yk =

k∑

ℓ=1

µkℓy
∗
ℓ ,

we get

|yk|2 =

k∑

ℓ=1

|µkℓ|2|y∗
ℓ |2 ≤ nµ2

kB
2,

and hence
|yk| ≤ n1/2µkB. (4.7)

At the end of the reduction, we have µkk = 1 and |µkℓ| ≤ 1
2 for 1 ≤ ℓ ≤ k− 1,

so we have proved the first part of equation (4.6). Part (c) of Proposition 3.11
says that at the start of the reduction we have

|µkℓ| ≤ d1/2
ℓ−1 |yk| (1 ≤ ℓ < k).

Therefore

1 ≤ µk ≤
(

max
1≤ℓ<k

d
1/2
ℓ−1

)
|yk| ≤ Bk−2 n1/2B ≤ n1/2Bn−1. (4.8)

We now get
∣∣µkj − ⌈µkℓ⌋µℓj

∣∣ ≤
∣∣µkj

∣∣+
∣∣⌈µkℓ⌋

∣∣ ∣∣µℓj

∣∣ ≤ µk +
(
µk + 1

2

)
1
2 ≤ 2µk,

since |µℓj| ≤ 1
2 for 1 ≤ j < ℓ. Thus for each ℓ in Step (4)(b)(i), the value of

µk increases by at most a factor of 2; hence during the reduction µk increases
by at most 2k−1 ≤ 2n−1. Combining this with equation (4.8) we see that
throughout the algorithm we have

µk ≤ n1/2(2B)n−1. (4.9)

Now using equation (4.7) we get

|yk|2 ≤ n(2B)n,

so we have proved the second part of equation (4.6).
We can now complete the proof. Recall that |z|∞ ≤ |z| for any vector

z ∈ Rn, where |z|∞ is the max-norm (the maximum of the absolute values
of the components). That is, the Euclidean norm is an upper bound for the
absolute values of the components. Equation (4.6) already gives bounds on
|yi|, and these imply that the (integral) components of yi are O(n logB).
Proposition 3.11 states that the vector di−1y

∗
i has integral components for

1 ≤ i ≤ n, and that the quantity diµij is an integer for 1 ≤ j ≤ i ≤ n.
At the start of this proof we noted that |y∗

i | ≤ B and that di ≤ B2n; hence
the integral components of di−1y

∗
i are less than or equal to B2n+1, which has

binary length O(n logB). Equation (4.9) implies that

|diµij | ≤ B2nn1/2(2B)n−1 = 2n−1n1/2B3n−1,

which is also O(n logB). This completes the proof.

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 77

Remark 4.24. In our analysis of the LLL algorithm, we have made the
simplifying assumption that the original lattice basis vectors have integral
components. This assumption can be removed, as follows. In view of the proof
of Lemma 4.18, it suffices to show that the Gram determinants di have a
positive lower bound which depends only on the lattice L. This is implied
by a basic theorem in the geometry of numbers: by Cassels [22] (Chapter II,
Theorem I, page 31) the lattice L contains a nonzero vector z with

|z|2 ≤
(

4

3

)(i−1)/2

d
1/i
i (1 ≤ i ≤ n),

and hence

di ≥
(

3

4

)i(i−1)/2

|z|2 (1 ≤ i ≤ n),

where z is a shortest nonzero vector in L.

The LLL algorithm can be applied with only trivial modifications (see the
Maple code in Figures 4.3 and 4.4) to arbitrary linearly independent vectors
x1, x2, . . . , xm in Rn with m ≤ n. We conclude this section with an example.

Example 4.25. Let L be the 6-dimensional lattice in R9 whose original basis
consists of the rows x1, x2, . . . , x6 of the matrix X :

X =




4 9 3 −5 −5 −1 7 −1 −5
−2 −8 −7 −1 −3 6 −3 9 8

1 −3 −2 3 9 7 2 7 −2
−5 6 4 −2 −2 −7 −2 −9 1

1 −2 −2 7 7 −3 −9 −5 −4
7 1 −4 3 −2 9 9 7 6




The squared lengths of these original basis vectors are

232, 317, 210, 220, 238, 326.

The LLL algorithm with α = 1 performs the 25 reduce and exchange steps
summarized in Figure 4.5. The final basis consists of the rows y1, y2, . . . , y6

of the matrix Y :

Y =




−4 3 2 1 7 0 0 −2 −1
3 −1 −6 1 −1 2 −5 3 −1
−2 4 −2 −5 −1 5 4 6 2

1 9 −4 3 2 4 2 −1 5
2 −5 2 1 3 5 7 6 0
3 11 −1 −3 1 1 2 0 −7




The squared lengths of these reduced basis vectors are

84, 87, 131, 157, 153, 195.

This is an especially impressive example of the power of the LLL algorithm:
the longest reduced vector is shorter than the shortest original vector.

© 2012 by Taylor & Francis Group, LLC

78 Lattice Basis Reduction

iteration 1 reduce k = 2 ℓ = 1 ⌈µkℓ⌋ = −1
iteration 2 exchange k = 3
iteration 3 exchange k = 2
iteration 4 exchange k = 4
iteration 5 exchange k = 3
iteration 6 reduce k = 2 ℓ = 1 ⌈µkℓ⌋ = −1
iteration 7 exchange k = 2
iteration 8 exchange k = 4
iteration 9 exchange k = 3
iteration 10 reduce k = 2 ℓ = 1 ⌈µkℓ⌋ = −1
iteration 11 reduce k = 4 ℓ = 3 ⌈µkℓ⌋ = −1
iteration 12 reduce k = 4 ℓ = 2 ⌈µkℓ⌋ = 1
iteration 13 exchange k = 5
iteration 14 exchange k = 4
iteration 15 reduce k = 3 ℓ = 2 ⌈µkℓ⌋ = −1
iteration 16 exchange k = 3
iteration 17 reduce k = 2 ℓ = 1 ⌈µkℓ⌋ = 1
iteration 18 reduce k = 4 ℓ = 2 ⌈µkℓ⌋ = 1
iteration 19 reduce k = 4 ℓ = 1 ⌈µkℓ⌋ = 1
iteration 20 reduce k = 5 ℓ = 4 ⌈µkℓ⌋ = 1
iteration 21 reduce k = 5 ℓ = 3 ⌈µkℓ⌋ = −1
iteration 22 exchange k = 6
iteration 23 reduce k = 5 ℓ = 4 ⌈µkℓ⌋ = 1
iteration 24 exchange k = 5
iteration 25 reduce k = 4 ℓ = 1 ⌈µkℓ⌋ = −1

FIGURE 4.5
Reduce and exchange operations for Example 4.25

4.4 The closest vector problem

In this section we follow Babai [12] to show how the LLL algorithm can be
used to find a good approximate solution to the closest vector problem (CVP):
Given a vector z ∈ Rn and a lattice L ⊂ Rn with basis vectors x1, x2, . . . ,
xn, find a vector y ∈ L for which the distance |z− y| is as small as possible.

We consider Babai’s “nearest plane” algorithm. Let x∗
1, x∗

2, . . . , x∗
n be

the Gram-Schmidt orthogonalization of the lattice basis x1, x2, . . . , xn. Let
U ⊂ Rn be the hyperplane (subspace of dimension n−1) with basis x1, x2,
. . . , xn−1; note that we omit the last vector xn. Let L(n−1) = U ∩ L be the
corresponding sublattice of L; thus L(n−1) ⊂ U is the lattice with basis x1,
x2, . . . , xn−1. We consider translations of the hyperplane U by lattice vectors

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 79

y ∈ L; that is, subsets of Rn of the form

U + y = {u + y | u ∈ U } (y ∈ L).

Given an arbitrary vector z ∈ Rn, the nearest plane algorithm says that we
should find the vector y ∈ L for which the (orthogonal) distance from z to
the translated hyperplane U + y is as small as possible.

For this we use the following recursive procedure. We write z as a linear
combination (with real coefficients) of the GSO vectors:

z = a1x
∗
1 + a2x

∗
2 + · · ·+ an−1x

∗
n−1 + anx∗

n (a1, a2, . . . , an−1, an ∈ R).

We write ⌈an⌋ ∈ Z for the nearest integer to an, and define

w = ⌈an⌋xn, z∗ = a1x
∗
1 + a2x

∗
2 + · · ·+ an−1x

∗
n−1 + w.

Then z∗ is the orthogonal projection of z onto the translated hyperplane U+w.
We clearly have z∗−w ∈ U , and we recursively find the vector y(n−1) ∈ L(n−1)

closest to z∗ −w. (We have reduced the dimension of the problem from n to
n−1.) We then set y = y(n−1) + w. For the case n = 1, which is the basis of
the recursion, we are simply finding the closest integer multiple of one nonzero
real number to another real number.

Theorem 4.26. Babai’s Theorem. (Babai [12], page 4) Suppose that the
basis x1, x2, . . . , xn of the lattice L ⊂ Rn is LLL-reduced with standard
reduction parameter α = 3

4 . Let z ∈ Rn be an arbitrary vector. Then the lattice
vector y ∈ L produced by the nearest plane algorithm on input z satisfies

|z− y| ≤ 2n/2|z− u|,

where u ∈ L is the closest lattice vector to z ∈ Rn.

Proof. For n = 1, the nearest plane algorithm clearly finds the closest lattice
vector; as mentioned above, this is simply the closest multiple of one nonzero
real number to another real number.

Now suppose that n ≥ 2; we use induction on n. We have

|z− z∗| ≤ 1

2
|x∗

n|, (4.10)

|z− z∗| ≤ |z− u|, (4.11)

since |x∗
n| is the distance between two consecutive hyperplanes U + y, and

|z − z∗| is the distance from z to the nearest such hyperplane. Inequality
(4.10) trivially implies

|z− z∗|2 ≤ 1

4
|x∗

n|2,

and then induction (corresponding to the recursion in the algorithm) implies

|z− y|2 ≤ 1

4

(
|x∗

1|2 + |x∗
2|2 + · · ·+ |x∗

n|2
)
.

© 2012 by Taylor & Francis Group, LLC

80 Lattice Basis Reduction

Proposition 4.6 (with β = 2 since α = 3
4) gives

1

4

(
|x∗

1|2 + |x∗
2|2 + · · ·+ |x∗

n|2
)
≤ 1

4

(
2n−1 + 2n−2 + · · ·+ 1

)
|x∗

n|2

=
1

4

(
2n − 1

)
|x∗

n|2

< 2n−2|x∗
n|2.

Combining these inequalities gives

|z− y| ≤ 2n/2−1|x∗
n|. (4.12)

We now consider two cases, corresponding to whether the closest lattice vector
u ∈ L does or does not belong to the translated hyperplane U + w.

Case 1 (u ∈ U+w): In this case u−w is the closest vector in the sublattice
L(n−1) to the vector z∗ −w ∈ U . Therefore the inductive hypothesis gives

|z∗ − y| = |z∗ −w − y(n−1)|
≤ 2(n−1)/2|z∗ −w − (u−w)|
= 2(n−1)/2|z∗ − u|
≤ 2(n−1)/2|z− u|.

Combining this with inequality (4.11) gives

|z− y|2 = |z− z∗|2 + |z∗ − y|2

≤ |z− u|2 + 2n−1|z− u|2

≤ 2n|z− u|2.

Hence |z− y| ≤ 2n/2|z− u|, as required.
Case 2 (u /∈ U + w): In this case we must have

|z− u| ≥ 1

2
|x∗

n|.

Comparing this with inequality (4.12) we again obtain |z− y| ≤ 2n/2|z − u|,
and this completes the proof.

4.5 Projects

Project 4.1. Write a report and give a seminar talk on Cassels [22], Chapter
II, Theorem I, page 31: If L is any lattice in Rn with basis x1, x2, . . . , xn

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 81

(we do not assume that the basis vectors have integral components), then L
contains a nonzero vector z for which

|z|2 ≤
(

4

3

)(i−1)/2

d
1/i
i (1 ≤ i ≤ n),

where di is the i-th Gram determinant for the basis x1, x2, . . . , xn.

Project 4.2. Choose a set A of reduction parameters for the LLL algorithm;
for example,

A = { 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 }.

Fix a dimension n ≥ 3 and let L be the lattice in Rn with basis x1, x2, . . . , xn.
Apply the LLL algorithm to L for each value α ∈ A and denote the resulting

α-reduced basis of L by y
(α)
1 , y

(α)
2 , . . . , y

(α)
n . Let s(α) be the length of the

shortest vector in this α-reduced basis:

s(α) = min
(
|y(α)

1 |, |y
(α)
2 |, . . . , |y(α)

n |
)
.

Let s(L) be the length of the shortest vector obtained over all values α ∈ A:

s(L) = min
α∈A

s(α).

Define α(L) to be the smallest α ∈ A which produces the shortest vector:

α(L) = min {α ∈ A | s(α) = s(L) }.

We can think of α(L) as the “optimal value of the reduction parameter” for
the lattice L: that is, the smallest α which produces the shortest vector.

Choose a set of Λ of lattices in Rn; for example, 1000 executions of the
Maple command

X := LinearAlgebra[RandomMatrix](n, n, generator = -9..9);

will produce 1000 lattice bases in Rn with single-digit components. (The rows
of the matrix are the basis vectors; there is a small chance that some of these
matrices will be singular, and these matrices should be ignored.) For each
L ∈ Λ compute α(L), and the expected value of α(L) over all L ∈ Λ:

E(Λ) =
1

|Λ|
∑

L∈Λ

α(L).

We can think of E(Λ) as the “expected value of the reduction parameter”
for lattices of dimension n (of course, this is relative to the chosen set A of
parameter values and the chosen set Λ of n-dimensional lattices).

Study the behavior of the quantity E(Λ) as a function of the dimension n.

© 2012 by Taylor & Francis Group, LLC

82 Lattice Basis Reduction

Project 4.3. Lovász and Scarf [92] have generalized the LLL algorithm by
replacing the Euclidean norm on Rn by an arbitrary norm. For example,
one might want to reduce a lattice basis with respect to the max-norm (the
maximum of the absolute values of the components of the vectors) or the one-
norm (the sum of the absolute values of the components of the vectors). Write
a report and present a seminar talk on this paper. Implement this algorithm
on a computer and test it on numerous examples.

Project 4.4. Write a report and present a seminar talk on the average-case
behavior of the LLL algorithm, based on the papers by Daudé and Vallée [35]
and Nguyen and Stehlé [107]; see also the survey by Vallée and Vera [142].

Project 4.5. Study the behavior of the LLL algorithm with the limiting value
α = 1 of the reduction parameter, based on the paper by Akhavi [10]. Write
a report and present a seminar talk on this topic.

Project 4.6. Two recent survey papers on floating-point versions of the LLL
algorithm are Schnorr [126] and Stehlé [133]. Write a report and present a
seminar talk on this topic.

Project 4.7. Write a computer program to implement Babai’s nearest plane
algorithm for the closest vector problem discussed in Section 4.4.

Project 4.8. The paper of Babai [12] discusses another algorithm which
provides a good approximate solution to the closest vector problem. In the
notation of Section 4.4, we first write the arbitrary vector z ∈ Rn as a linear
combination (with real coefficients) of the lattice basis vectors:

z = a1x1 + a2x2 + · · ·+ anxn (a1, a2, . . . , an ∈ R).

We then replace each real coefficient ai by the nearest integer ⌈ai⌋ to obtain
a lattice vector w:

w = ⌈a1⌋x1 + ⌈a2⌋x2 + · · ·+ ⌈an⌋xn (⌈a1⌋, ⌈a2⌋, . . . , ⌈an⌋ ∈ Z).

The proof that w is a good approximation to the closest lattice vector to z
requires a geometric result on the shape of certain “Lovász-reduced” paral-
lelipipeds in Rn. Write a report and present a seminar talk on this second
solution to the closest vector problem.

Project 4.9. Write a report and present a seminar talk on the applications
of the LLL algorithm to integer programming, based on the survey paper by
Aardal and Eisenbrand [2].

Project 4.10. Write a report and present a seminar talk on the applications
of the closest vector problem in wireless communication. Basic references are
the papers by Viterbo and Boutros [146], Agrell et al. [4], and Mow [104].

© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 83

4.6 Exercises

Exercise 4.1. Let X be an n×n matrix with integer entries and determinant
±1. Prove that the rows of X span the same lattice in Rn as the rows of the
identity matrix In.

Exercise 4.2. Let L (respectively M) be the lattice in R3 with basis consist-
ing of the rows of the matrix X (respectively Y) below. Prove that L 6= M :

X =



−9 −9 −1

7 6 −7
6 −5 −4


 , Y =



−8 3 7

6 2 −2
−2 8 −8


 .

Exercise 4.3. Let L (respectively M) be the lattice in R3 with basis consist-
ing of the rows of the matrix X (respectively Y) below. Prove that L = M :

X =




4 2 −9
−1 8 6

6 −6 4


 , Y =



−168 602 58

157 −564 −57
594 −2134 −219


 .

Exercise 4.4. Find lattices L,M in R2 with det(L) = det(M) but L 6= M .
Do the same for R3 and R4.

Exercise 4.5. Find a 4 × 4 matrix C = (cij) simultaneously satisfying the
following conditions:

cij ∈ Z for all i, j; |cij | ≥ 100 for all i, j; det(C) = 1.

Exercise 4.6. (a) For the matrices X and Y below, find a matrix C such
that det(C) = ±1 and Y = CX :

X =




3 −5 9 4
1 −3 5 4
2 −1 −1 6
3 2 2 5


 , Y =




3 0 −2 2
−1 −1 1 4

1 3 3 −1
−2 2 −4 0


 .

(b) Show that the rows of X and Y are bases for the same lattice in R4.
(c) Show that the basis X is not α-reduced for any α (1

4 < α < 1).
(d) Show that the basis Y is α-reduced for every α (1

4 < α < 1).

Exercise 4.7. (a) Trace the LLL algorithm with the standard value α = 3
4

on the lattice L consisting of all integral linear combinations of the rows x1,
x2, x3 of the matrix X :

X =




4 5 1
4 8 2
6 2 6





© 2012 by Taylor & Francis Group, LLC

84 Lattice Basis Reduction

(b) Verify that the longest vector in the reduced basis is shorter than the
shortest vector in the original basis.
(c) Are the results any different for α = 1

2?
(d) Are the results any different for α = 1?

Exercise 4.8. Trace the LLL algorithm with α = 1 on the lattice M consist-
ing of all integral linear combinations of the rows y1, y2, y3, y4 of the matrix
F of Example 4.1. Compare the results with the matrix X of Example 4.1.

Exercise 4.9. (a) Write a computer program (in a language other than
Maple) to implement the LLL algorithm of Figure 4.1.
(b) Test your program with α = 3

4 on the lattice consisting of all integral
linear combinations of the rows of the matrix X :

X =




8 −3 −3 −9 1 9 −3 −9
−7 5 1 1 9 −3 −4 −2
−5 2 1 −3 −4 5 5 4
−4 9 −6 −5 −7 2 −1 5
−5 0 2 2 0 5 6 −5
−8 −2 3 5 −1 7 7 4

3 −9 3 −7 3 2 −3 2
−4 −2 −8 6 0 4 −9 7




(c) Are the results any different for α = 1
2? What can you say about the

shortest and longest vectors in the reduced basis?
(d) Are the results any different for α = 1? What can you say about the
shortest and longest vectors in the reduced basis?

Exercise 4.10. Redo Exercise 4.7, keeping track of the loop invariant D at
each step of the algorithm.

Exercise 4.11. Redo Exercise 4.8, keeping track of the loop invariant D at
each step of the algorithm.

Exercise 4.12. Redo Exercise 4.9, keeping track of the loop invariant D at
each step of the algorithm.

Exercise 4.13. Prove Lemma 4.13.

Exercise 4.14. Make the necessary changes in the LLL algorithm of Figure
4.1 so that it applies to m linearly independent vectors in Rn for any m ≤ n.

Exercise 4.15. Trace the algorithm of Exercise 4.14 with α = 1 on the lattice
L consisting of all integral linear combinations of the rows of the matrix X :

X =




4 2 7 −4 −3 −6
−9 2 −7 9 −3 −4

3 −2 8 −6 5 −2




© 2012 by Taylor & Francis Group, LLC

The LLL Algorithm 85

Exercise 4.16. Write a computer program (in a language other than Maple)
to implement the algorithm of Exercise 4.14. Test your program for various
values of α on the lattice consisting of all integral linear combinations of the
rows of the matrix X :

X =




8 8 7 5 1 2 6 0 6 3 1 4 5 9 3 4
5 7 8 3 2 2 1 5 5 3 5 3 9 2 7 0
4 9 0 3 0 9 6 5 9 4 5 9 2 6 8 2
1 4 6 5 4 1 2 7 5 2 7 9 8 9 9 9
3 8 1 3 6 5 2 9 3 4 4 6 1 4 0 5
6 1 1 5 1 4 1 7 5 2 0 7 6 2 8 2
2 5 5 1 1 5 7 0 5 0 6 3 9 7 8 1
1 7 3 3 8 6 4 3 8 4 4 6 4 1 8 4




Exercise 4.17. Modify the discussion of the closest vector problem in Section
4.4 so that the general reduction paramater α is used in place of the standard
value α = 3

4 . In particular, how does Theorem 4.26 change?

© 2012 by Taylor & Francis Group, LLC

5

Deep Insertions

CONTENTS

5.1 Modifying the exchange condition . 87

5.2 Examples of deep insertion . 91

5.3 Updating the GSO . 94

5.4 Projects . 98

5.5 Exercises . 99

In this chapter we consider a modification of the exchange step of the
original LLL algorithm: instead of transposing the vectors in positions k and
k−1, we cyclically permute the vectors in positions i, i+1, . . . , k where i is
the smallest index for which vectors i and k satisfy the exchange condition.
In other words, we put vector k into position i, and put vectors i to k−1 into
positions i+1 to k. (If i = k−1 then we have the exchange step of the original
LLL algorithm.) This idea, called a deep insertion of vector k into position
i, was introduced in 1994 by Schnorr and Euchner [127]. A more detailed
exposition is given in Cohen [26], Section §2.6.2.

5.1 Modifying the exchange condition

One problem with the method of deep insertions compared to the original
LLL algorithm is that it is more difficult to keep track of the Gram-Schmidt
orthogonalization of the lattice basis vectors. Recall that in the original LLL
algorithm, we compute the GSO once at the start of the computation, and
thereafter we merely update the GSO data after each reduce or exchange
step by modifying the square lengths γ∗i of orthogonal basis vectors and the
projection coefficients µij . This is possible since, as we saw in Chapter 3, there
are simple formulas for calculating the effect on γ∗i and µij of size-reducing a
basis vector or transposing the basis vectors in positions k and k−1, so there
is no need to recompute the GSO. However, with a deep insertion of vector
k into position i for i < k−1, the formulas become much more complicated;
see Section 5.3. Therefore, in the LLL algorithm with deep insertions, we
recompute the Gram-Schmidt orthogonalization of the lattice basis vectors
up to vector k at the start of each iteration of the main loop.

87

© 2012 by Taylor & Francis Group, LLC

88 Lattice Basis Reduction

To start, let’s recall the exchange condition in the original LLL algorithm.
The basic idea is to check whether transposing the vectors in positions k and
k−1 and then recomputing the GSO will give us a shorter vector x∗

k−1. The
exchange is performed if and only if

|x∗
k|2 + µ2

k,k−1|x∗
k−1|2 < α|x∗

k−1|2; (5.1)

that is, the exchange produces a new GSO vector x̂∗
k−1 which is substantially

shorter (depending on the parameter α) than the old GSO vector x∗
k−1.

Suppose that at some point in the computation, the current ordered basis
of the lattice consists of the following m vectors in Rn:

x1, . . . , xi−1, xi, xi+1, . . . , xk−1, xk, xk+1, . . . , xm.

Computing the Gram-Schmidt orthogonalization produces

x∗
i = xi −

i−1∑

j=1

µijx
∗
j (i = 1, . . . ,m),

or equivalently,

xi = x∗
i +

i−1∑

j=1

µijx
∗
j (i = 1, . . . ,m),

which gives

|xi|2 = |x∗
i |2 +

i−1∑

j=1

µ2
ij |x∗

j |2 (i = 1, . . . ,m), (5.2)

since x∗
1, . . . ,x

∗
m are orthogonal. If we now perform a deep insertion of xk into

position i, then the new ordered basis of the lattice consists of the vectors

x1, . . . , xi−1, xk, xi, . . . , xk−2, xk−1, xk+1, . . . , xm.

Computing the GSO of this ordered basis gives the same vectors x∗
1, . . . ,x

∗
i−1

but a new vector in position i:

x̂∗
i = xk −

i−1∑

j=1

µkjx
∗
j ,

or equivalently,

xk = x̂∗
i +

i−1∑

j=1

µkjx
∗
j ,

which gives

|xk|2 = |x̂∗
i |2 +

i−1∑

j=1

µ2
kj |x∗

j |2.

© 2012 by Taylor & Francis Group, LLC

Deep Insertions 89

In particular, for the GSO vector in position i we have

|x̂∗
i |2 = |xk|2 −

i−1∑

j=1

µ2
kj |x∗

j |2. (5.3)

In the special case i = k−1 we obtain

|x̂∗
k−1|2 = |xk|2 −

k−2∑

j=1

µ2
kj |x∗

j |2 = |x∗
k|2 +

k−1∑

j=1

µ2
kj |x∗

j |2 −
k−2∑

j=1

µ2
kj |x∗

j |2

where we have used equation (5.2) with i = k. This simplifies to

|x̂∗
k−1|2 = |x∗

k|2 + µ2
k,k−1|x∗

k−1|2,

which is the quantity we have seen before in the exchange condition of the
original LLL algorithm: the left side of the inequality (5.1). In the special
cases i = 1, 2, . . . , k−1 equation (5.3) gives the following results:

|x̂∗
1|2 = |xk|2,
|x̂∗

2|2 = |xk|2 − µ2
k1|x∗

1|2,
|x̂∗

3|2 = |xk|2 − µ2
k1|x∗

1|2 − µ2
k2|x∗

2|2,
...

|x̂∗
k−1|2 = |xk|2 − µ2

k1|x∗
1|2 − · · · − µ2

k,k−2|x∗
k−2|2.

These equations tells us that in order to determine the position i into which we
should do a deep insertion of xk, we should initialize a new variable C = |xk|2,
repeatedly subtract µ2

ki|x∗
i |2 for i = 1, 2, . . . , and stop as soon as soon as the

deep exchange condition is satisfied:

C < α|x∗
i |2, equivalently |x̂∗

i |2 < α|x∗
i |2.

This means that the new GSO vector x̂∗
i in position i is sufficiently shorter

(depending on the parameter α) than the old GSO vector x∗
i in position i. It

is important to note that the initial value of C is the squared length of the
lattice basis vector in position k, not the GSO vector in position k.

If the deep exchange condition is not satisfied for any value 1 ≤ i ≤ k−1
then we do not perform a deep insertion; just as in the original LLL algorithm,
we increment the index variable k and return to the top of the main loop.

We can now present the complete LLL algorithm with deep insertions; see
Figure 5.1. There is a separate reduce procedure but not a separate exchange
procedure: the original exchange procedure, which transposed two consecutive
vectors and updated the GSO, has been replaced by a deep insertion and a
recomputation of the GSO inside the main loop. Furthermore, the algorithm
performs a complete size-reduction of xk before starting to test the deep ex-
change condition; since this condition depends on all xi for i < k, it is not

© 2012 by Taylor & Francis Group, LLC

90 Lattice Basis Reduction

• Input: An m × n (m ≤ n) integer matrix X of rank m, and a reduction
parameter α ∈ R in the range 1

4 < α < 1. The rows of X form a basis for
an m-dimensional lattice L in Rn.

• Output : An m× n integer matrix Y containing an α-reduced basis of L.

• Procedure reduce(k, ℓ):

If |µkℓ| > 1/2 then

(1) Set r ← ⌈µkℓ⌋.
(2) Set yk ← yk − ryℓ.

(3) For j = 1, 2, . . . , ℓ−1 do: Set µkj ← µkj − rµℓj .

(4) Set µkℓ ← µkℓ − r.

• Main loop:

(1) Set Y ← X .

(2) Set k ← 2.

(3) While k ≤ m do:

(recompute the GSO up to index k)
(a) For i = 1, 2, . . . , k do:

Set y∗
i ← yi.

For j = 1, 2, . . . , i−1 do:
Set µij ← (yi · y∗

j)/γ∗j . Set y∗
i ← y∗

i − µijy
∗
j .

Set γ∗i ← y∗
i · y∗

i .
(perform complete size-reduction of yk)

(b) For ℓ = k−1, . . . , 2, 1 do: Call reduce(k, ℓ).
(find position i for deep insertion of yk)

(c) Set C ← yk · yk. Set i← 1. Set startagain← false.
(d) While i < k and not startagain do:

(check deep exchange condition)
If C ≥ αγ∗i then

Set C ← C − µ2
kiγ

∗
i . Set i← i+ 1.

(deep insertion of yk into position i)
else

Set z← yk. For j = k, . . . , i+1 do: Set yj ← yj−1.
Set yi ← z.
Set k ← max(i−1, 2).
Set startagain← true.

(e) Set k ← k+1.

FIGURE 5.1
LLL algorithm with deep insertions

© 2012 by Taylor & Francis Group, LLC

Deep Insertions 91

sufficient to merely reduce xk using xk−1 as in the original LLL algoritmhm.
The “goto” statements of the original algorithms presented by Schnorr and
Euchner [127] and Cohen [26] (§2.6.2) have been removed, and a new Boolean
variable startagain has been introduced.

5.2 Examples of deep insertion

We now consider some examples. When we say exchange(k) we simply mean
a “deep insertion” of vector k into position k−1. We use the notation k → i
to indicate a deep insertion of vector k into position i.

Example 5.1. Consider the lattice in R3 spanned by the rows of the matrix




9 2 7
8 6 1
3 2 6




The original LLL algorithm with α = 3
4 does 5 passes through the main loop:

reduce(2, 1), exchange(2)



−1 4 −6

9 2 7
3 2 6




reduce(2, 1)



−1 4 −6

8 6 1
3 2 6




exchange(3)



−1 4 −6

3 2 6
8 6 1




reduce(2, 1)



−1 4 −6

2 6 0
8 6 1




reduce(3, 2), reduce(3, 1)




−1 4 −6

2 6 0
3 −2 −5





Row 3 is the shortest reduced lattice vector with square length 38.
The LLL algorithm (α = 3

4) with deep insertions also does 5 passes through
the main loop, but performs one deep insertion:

reduce(2, 1), exchange(2)




−1 4 −6

9 2 7
3 2 6





© 2012 by Taylor & Francis Group, LLC

92 Lattice Basis Reduction

reduce(3, 1), exchange(3)




−1 4 −6

2 6 0
9 2 7





reduce(3, 2), reduce(3, 1), deep insertion 3→ 1




3 −2 −5
−1 4 −6

2 6 0





reduce(3, 2), reduce(3, 1), exchange(3)




3 −2 −5
6 0 1
−1 4 −6




reduce(3, 2), reduce(3, 1)




3 −2 −5
6 0 1
2 6 0




Row 3 is the shortest reduced lattice vector with square length 37.

Example 5.2. Consider the lattice in R3 spanned by the rows of the matrix




83 29 21
99 45 96
2 65 31




The original LLL algorithm with α = 3
4 does 2 passes through the main

loop; the first pass does reduce(2,1) and the second pass does nothing. We
obtain the following reduced basis, in which row 3 (squared length 5190) is
the shortest lattice vector; this has not changed from the original basis:




83 29 21
16 16 75
2 65 31





The LLL algorithm (α = 3
4) with deep insertions does 4 passes through the

main loop, including one deep insertion:

reduce(2, 1)




83 29 21
16 16 75
2 65 31





deep insertion 3→ 1




2 65 31

83 29 21
16 16 75





reduce(3, 1), exchange(3)




2 65 31

14 −49 44
83 29 21





reduce(3, 1)




2 65 31
14 −49 44
81 −36 −10




© 2012 by Taylor & Francis Group, LLC

Deep Insertions 93

Row 2 (squared length 4533) is the shortest lattice vector; its squared length is
≈ 87.34% of that of the shortest vector found by the original LLL algorithm.

Example 5.3. Consider the lattice in R3 spanned by the rows of the matrix




−270 983 −834
−725 −979 143

929 −612 −27





The original LLL algorithm with α = 3
4 does 2 passes through the main loop;

the first does reduce(2,1) and the second does nothing. We obtain the fol-
lowing reduced basis, in which row 3 (squared length 1238314) is the shortest
vector; this has not changed from the original basis:



−270 983 −834
−995 4 −691

929 −612 −27




The LLL algorithm (α = 3
4) with deep insertions does 4 passes through the

main loop, including two deep insertions:

reduce(2, 1)



−270 983 −834
−995 4 −691

929 −612 −27




deep insertion 3→ 1




929 −612 −27
−270 983 −834
−995 4 −691





reduce(2, 1), deep insertion 3→ 1




−66 −608 −718
929 −612 −27
−270 983 −834





reduce(3, 2)




−66 −608 −718
929 −612 −27
659 371 −861





Row 1 (squared length 889544) is the shortest lattice vector; its squared length
is ≈ 71.84% of that of the shortest vector found by the original LLL algorithm.

Example 5.4. Consider the lattice in R4 spanned by the rows of the matrix




84 3 34 17
20 48 66 19
69 14 63 78
28 72 36 57




The original LLL algorithm (α = 3
4) does 3 passes through the main loop,

© 2012 by Taylor & Francis Group, LLC

94 Lattice Basis Reduction

involving 6 reductions and no exchanges. We obtain the following reduced
basis, in which row 4 (squared length 5635) is the shortest vector:




84 3 34 17
−64 45 32 2
−35 −37 −37 42

43 61 7 −4




The LLL algorithm (α = 3
4) with deep insertions does 7 passes through the

main loop, including 9 reductions, 2 exchanges, and 2 deep insertions; it pro-
duces the following reduced basis, in which row 1 (squared length 2984) is the
shortest vector: 



8 24 −30 38
−15 11 29 61

43 61 7 −4
−41 58 −27 −21




Deep insertion gives a shortest vector whose length is ≈ 52.95% of that of the
shortest vector found by the original LLL algorithm.

5.3 Updating the GSO

For the original LLL algorithm, we worked out formulas for updating the
Gram-Schmidt orthogonalization after the exchange of lattice basis vectors yk

and yk−1: the GSO data consists of the squared lengths γ∗i of the orthogonal
basis vectors y∗

i , and the orthogonal projection coefficients µij . We expressed
the GSO data for the new lattice basis (after the exchange) in terms of the old
lattice basis (before the exchange). Recall that the exchange of yk and yk−1

can be regarded as the simplest case of deep insertion: the insertion of vector
yk into position k−1. In this section, we extend the formulas for updating the
GSO data to the next case: the insertion of vector yk into position k−2.

Before the insertion, the lattice basis consists of the vectors denoted by

y1, . . . , yk−2, yk−1, yk, . . . , ym.

After the insertion, the lattice basis consists of the vectors

y1, . . . , yk, yk−2, yk−1, . . . , ym.

To make it easier to distinguish this new lattice basis from the old lattice
basis, we will also denote the new basis by

z1, . . . , zk−2, zk−1, zk, . . . , zm.

© 2012 by Taylor & Francis Group, LLC

Deep Insertions 95

That is,

zk−2 = yk, zk−1 = yk−2, zk = yk−1, zi = yi (i 6= k−2, k−1, k).

We use asterisks for the Gram-Schmidt orthogonal basis: before the insertion,
the Gram-Schmidt basis is y∗

1 , . . . , y∗
m with coefficients µij ; after the insertion,

the Gram-Schmidt basis is z∗1, . . . , z∗m with coefficients νij . Since zi = yi for
i < k−2, it is clear that z∗i = y∗

i for i < k−2. Since zi = yi for i > k, and
the subspaces spanned by y1, . . . ,yi and z1, . . . , zi are the same for i > k, it
is clear that z∗i = y∗

i for i > k. So we only have to find formulas for the three
vectors z∗k−2, z∗k−1, z∗k in terms of the vectors y∗

1 , . . . ,y
∗
m.

Although the following calculations are not necessary for understanding
and implementing the LLL algorithm with deep insertions, working out these
formulas is an excellent way to develop a better understanding of how much
the Gram-Schmidt process depends on the order of the original basis vectors.

Vector z∗k−2. By definition of the Gram-Schmidt basis, we have

z∗k−2 = zk−2 −
k−3∑

i=1

zk−2 · z∗i
z∗i · z∗i

z∗i . (5.4)

Rewriting this in terms of the yi and y∗
i we get

z∗k−2 = yk −
k−3∑

i=1

yk · y∗
i

y∗
i · y∗

i

y∗
i = yk −

k−3∑

i=1

µkiy
∗
i .

Subtracting and adding two more terms gives

z∗k−2 = yk −
k−1∑

i=1

µkiy
∗
i + µk,k−1y

∗
k−1 + µk,k−2y

∗
k−2,

and this gives the formula for z∗k−2 in terms of the y∗
i :

z∗k−2 = y∗
k + µk,k−1y

∗
k−1 + µk,k−2y

∗
k−2. (5.5)

Since the Gram-Schmidt basis vectors are orthogonal, we get

|z∗k−2|2 = |y∗
k|2 + µ2

k,k−1|y∗
k−1|2 + µ2

k,k−2|y∗
k−2|2. (5.6)

Equation (5.5) gives

yk−2 · z∗k−2 = yk−2 · y∗
k + µk,k−1yk−2 · y∗

k−1 + µk,k−2yk−2 · y∗
k−2.

Since yj · y∗
i = 0 for j < i we have

yk−2 · z∗k−2 = µk,k−2yk−2 · y∗
k−2.

© 2012 by Taylor & Francis Group, LLC

96 Lattice Basis Reduction

But yk−2 = y∗
k−2 + · · · where the dots represent a linear combination of the

y∗
j for j < k−2, and so

yk−2 · z∗k−2 = µk,k−2|y∗
k−2|2. (5.7)

From equation (5.4) we also find that

νk−2,i =
zk−2 · z∗i
z∗i · z∗i

=
yk · y∗

i

y∗
i · y∗

i

= µki (i < k−2).

Vector z∗k−1. By definition of the Gram-Schmidt basis, we have

z∗k−1 = zk−1 −
k−2∑

i=1

zk−1 · z∗i
z∗i · z∗i

z∗i . (5.8)

Since zk−1 = yk−2 we get

z∗k−1 = yk−2 −
k−3∑

i=1

yk−2 · z∗i
z∗i · z∗i

z∗i −
yk−2 · z∗k−2

z∗k−2 · z∗k−2

z∗k−2.

Rewriting the sum in terms of the y∗
i gives

z∗k−1 = yk−2 −
k−3∑

i=1

yk−2 · y∗
i

y∗
i · y∗

i

y∗
i −

yk−2 · z∗k−2

z∗k−2 · z∗k−2

z∗k−2,

and this simplifies to

z∗k−1 = y∗
k−2 −

yk−2 · z∗k−2

z∗k−2 · z∗k−2

z∗k−2,

Using equations (5.5) and (5.7) we obtain

z∗k−1 = y∗
k−2 −

µk,k−2|y∗
k−2|2

z∗k−2 · z∗k−2

(
y∗

k + µk,k−1y
∗
k−1 + µk,k−2y

∗
k−2

)
,

and this simplifies to

z∗k−1 =

(
1−

µ2
k,k−2|y∗

k−2|2
z∗k−2 · z∗k−2

)
y∗

k−2 −
µk,k−2|y∗

k−2|2
z∗k−2 · z∗k−2

(
y∗

k + µk,k−1y
∗
k−1

)
.

Rewriting this gives

z∗k−1 =
1

z∗k−2 · z∗k−2

×
((

z∗k−2 · z∗k−2 − µ2
k,k−2|y∗

k−2|2
)
y∗

k−2 − µk,k−2|y∗
k−2|2

(
y∗

k + µk,k−1y
∗
k−1

))
.

© 2012 by Taylor & Francis Group, LLC

Deep Insertions 97

Using equation (5.6) we obtain

z∗k−1 =
1

z∗k−2 · z∗k−2

×
((
|y∗

k|2 + µ2
k,k−1|y∗

k−1|2
)
y∗

k−2 − µk,k−2|y∗
k−2|2

(
y∗

k + µk,k−1y
∗
k−1

))
.

Another application of equation (5.6) gives the formula we want expressing
z∗k−1 in terms of the y∗

i :

z∗k−1 =






1

|y∗
k|2 + µ2

k,k−1|y∗
k−1|2 + µ2

k,k−2|y∗
k−2|2

×
((
|y∗

k|2 + µ2
k,k−1|y∗

k−1|2
)
y∗

k−2

−µk,k−2|y∗
k−2|2

(
y∗

k + µk,k−1y
∗
k−1

))
.

(5.9)

From this we can easily write down the formula for |z∗k−1|2. Equation (5.8)
also shows that for i ≤ k−2 we have

νk−1,i =
zk−1 · z∗i
z∗i · z∗i

=
yk−2 · z∗i
z∗i · z∗i

=






yk−2 · y∗
i

y∗
i · y∗

i

(i < k−2)

yk−2 · z∗k−2

z∗k−2 · z∗k−2

(i = k−2)

Using equations (5.6) and (5.7) we obtain

νk−1,i =





µk−2,i (i < k−2)

µk,k−2|y∗
k−2|2

|y∗
k|2 + µ2

k,k−1|y∗
k−1|2 + µ2

k,k−2|y∗
k−2|2

(i = k−2)

Vector z∗k. By definition of the Gram-Schmidt basis, we have

z∗k = zk −
k−1∑

i=1

zk · z∗i
z∗i · z∗i

z∗i . (5.10)

Since zk = yk−1 and zi = yi for i < k−2, we get

z∗k = yk−1 −
k−3∑

i=1

yk−1 · y∗
i

y∗
i · y∗

i

y∗
i −

yk−1 · z∗k−2

z∗k−2 · z∗k−2

z∗k−2 −
yk−1 · z∗k−1

z∗k−1 · z∗k−1

z∗k−1.

Subtracting and adding the same term gives

z∗k = yk−1 −
k−2∑

i=1

yk−1 · y∗
i

y∗
i · y∗

i

y∗
i +

yk−1 · y∗
k−2

y∗
k−2 · y∗

k−2

y∗
k−2

© 2012 by Taylor & Francis Group, LLC

98 Lattice Basis Reduction

− yk−1 · z∗k−2

z∗k−2 · z∗k−2

z∗k−2 −
yk−1 · z∗k−1

z∗k−1 · z∗k−1

z∗k−1.

By definition of y∗
k−1 we have

z∗k = y∗
k−1 +

yk−1 · y∗
k−2

y∗
k−2 · y∗

k−2

y∗
k−2 −

yk−1 · z∗k−2

z∗k−2 · z∗k−2

z∗k−2 −
yk−1 · z∗k−1

z∗k−1 · z∗k−1

z∗k−1.

Since yk−1 = y∗
k−1 + µk−1,k−2y

∗
k−2 + · · · where the dots represent a linear

combination of the y∗
i for i < k−2, we get

yk−1 · y∗
k−2 = µk−1,k−2|y∗

k−2|2,

and hence

z∗k = y∗
k−1 + µk−1,k−2y

∗
k−2 −

yk−1 · z∗k−2

z∗k−2 · z∗k−2

z∗k−2 −
yk−1 · z∗k−1

z∗k−1 · z∗k−1

z∗k−1. (5.11)

Using equation (5.5) we find that

yk−1 · z∗k−2 =
[
y∗

k−1 +µk−1,k−2y
∗
k−2 + · · ·

]
·
[
y∗

k +µk,k−1y
∗
k−1 +µk,k−2y

∗
k−2

]
,

and hence

yk−1 · z∗k−2 = µk,k−1|y∗
k−1|2 + µk−1,k−2µk,k−2|y∗

k−2|2. (5.12)

Using equation (5.9) we can obtain a similar expression for yk−1 · z∗k−1. If
we use this expression and equation (5.12) in equation (5.11), and then use
equations (5.5) and (5.9) for z∗k−2 and z∗k−1, together with the corresponding
equations for |z∗k−2|2 and |z∗k−1|2, then we obtain a (very complicated) formula
for z∗k, from which we can derive a formula for |z∗k|2. The remaining details
of this calculation, together with the formulas for νki (i < k), are left to the
reader (Exercise 5.16).

5.4 Projects

Project 5.1. Implement the LLL algorithm with deep insertions on a com-
puter, and test your program on a number of examples. For example, generate
1000 pseudorandom 10-dimensional lattices in R10. For each lattice, compare
the results produced by three basis reduction algorithms:

(i) the original LLL algorithm with α = 1

(ii) the original LLL algorithm with α = 3
4 and deep insertions

(iii) the original LLL algorithm with α = 1 and deep insertions

© 2012 by Taylor & Francis Group, LLC

Deep Insertions 99

Discuss the following questions:

(a) Which algorithm gives the shortest lattice vectors in general?

(b) Which algorithm uses the least running time in general?

(c) Which algorithm is the best in general assuming that shorter
vectors are better but longer running times are worse?

Extend your computations to dimensions 20, 30, 40, 50,

Project 5.2. A number of papers provide experimental data on the perfor-
mance of the LLL algorithm, including the version with deep insertions. Write
a report and present a seminar talk on this topic, based on the following ref-
erences: Backes and Wetzel [13], Gama and Nguyen [45], Schnorr [126].

5.5 Exercises

For Exercises 5.1 to 5.14, use the LLL algorithm (α = 3
4) with deep insertions

to find a reduced basis of the lattice spanned by the rows of the matrix, and
compare the results with those obtained from the original LLL algorithm.

Exercise 5.1. 


8 0 7
4 8 3
0 4 8




Exercise 5.2. 


1 5 2
2 1 5
4 8 0




Exercise 5.3. 


7 −5 −1
7 3 1
−1 6 −4





Exercise 5.4. 


5 −9 −4
2 4 9
2 4 −7




Exercise 5.5. 


85 56 42
55 15 5
63 60 57




© 2012 by Taylor & Francis Group, LLC

100 Lattice Basis Reduction

Exercise 5.6. 

−68 36 69

58 54 −50
38 −47 51




Exercise 5.7. 


4 8 5 6
3 7 8 1
4 8 0 3
4 3 9 5




Exercise 5.8. 


5 −1 6 4
−4 8 6 2

4 0 −6 −3
−1 −3 6 −2




Exercise 5.9. 


58 75 53 76
68 93 4 47
84 85 62 32
62 49 23 21




Exercise 5.10. 


87 58 5 55
82 −26 57 −72
44 −76 −62 −37
49 −60 −9 66




Exercise 5.11. 


933 416 972 709
505 857 375 213
622 473 540 558
181 765 407 503




Exercise 5.12. 


−592 221 −280 −596
446 403 580 164
869 −734 456 −707
454 214 244 −755




Exercise 5.13. 


6 7 3 1 9
9 2 9 1 1
1 4 9 4 3
4 6 1 8 1
1 5 3 6 2




© 2012 by Taylor & Francis Group, LLC

Deep Insertions 101

Exercise 5.14. 


−2 −1 1 0 3
1 9 −1 9 −2
−5 −7 3 0 3

1 5 0 −2 −1
−7 1 5 2 −2




Exercise 5.15. For 2-dimensional lattices, show that the LLL algorithm with
deep insertions never finds a shorter vector than the original LLL algorithm.

Exercise 5.16. Complete the calculations in Section 5.3: work out an explicit
formula for z∗k in terms of the y∗

i , the corresponding formula for |z∗k|2, and the
equations for νki (i < k).

© 2012 by Taylor & Francis Group, LLC

6

Linearly Dependent Vectors

CONTENTS

6.1 Embedding dependent vectors . 103

6.2 The modified LLL algorithm . 106

6.3 Projects . 111

6.4 Exercises . 112

In this chapter we consider a modification of the LLL algorithm in which the
input vectors are allowed to be linearly dependent. This algorithm, called the
modified LLL algorithm, or MLLL algorithm for short, was introduced
by Pohst [118] in 1987. In the simplest case, we are given m vectors x1, x2,
. . . , xm in an (m−1)-dimensional lattice L ⊂ Rn where we assume that the
first m−1 vectors x1, x2, . . . , xm−1 are linearly independent. This special
case, which is essentially the inductive step in the general case, is discussed in
Pohst and Zassenhaus [119], §3.3. A similar algorithm is discussed in Cohen
[26], §2.6.4. One drawback of these original presentations is the large num-
ber of “goto” statements, which make the logical structure of the algorithm
difficult to follow. The discussion in this chapter follows the more structured
version of Pohst’s original algorithm given by Sims [131], §8.7; his single “goto”
statement is easily replaced by a Boolean variable. Other closely related algo-
rithms are presented in Grötschel et al. [51], §5.4; Buchmann and Pohst [20];
Schnorr and Euchner [127]; and Hobby [63].

6.1 Embedding dependent vectors

Following Pohst [118], pages 123–124, we first describe how the original LLL
algorithm can be adapted to process linearly dependent vectors.

Let L be a lattice in Rn; hence dim(L) ≤ n. The elements of L will be
regarded as row vectors. We define

M = min { |x|2 ∈ L | x 6= 0 }.
We consider m vectors x1, x2, . . . , xm in L, which are assumed to be linearly
dependent. We use the following trick of converting these vectors into linearly

103

© 2012 by Taylor & Francis Group, LLC

104 Lattice Basis Reduction

independent vectors by embedding them in a vector space of higher dimension.
Let e1, e1, . . . , em be the standard basis vectors in Rm; then the vectors
[e1,x1], [e2,x2], . . . , [em,xm] in Rm+n are linearly independent (Exercise
6.1). We also introduce a positive integral exponent ℓ; this is a scaling factor
whose significance will be made clear shortly.

As usual, α is the reduction parameter and β = 4/(4α−1). We define
vectors y1, y2, . . . , ym in Rm+n by the formula

yi = [ei, β
ℓxi] (1 ≤ i ≤ m).

Since y1, y2, . . . , ym are linearly independent, we consider the lattice L̂ in
Rm+n with y1, y2, . . . , ym as basis. We define

N = min { |y|2 ∈ L̂ | y 6= 0 }.

We apply the LLL algorithm to the basis y1, y2, . . . , ym of the lattice L̂, and
obtain a reduced basis z1, z2, . . . , zm of L̂. By Theorem 4.7 we have

|z1|2 ≤ βm−1N. (6.1)

(For the standard value α = 3
4 we obtain |z1|2 ≤ 2m−1N .)

Since z1 ∈ L̂ we have

z1 = [c, βℓx], c ∈ Zm, x ∈ L.

Therefore
|z1|2 = |c|2 + β2ℓ|x|2,

and this gives
|c|2 + β2ℓ|x|2 ≤ βm−1N.

We want to choose the exponent ℓ large enough so that this last inequality
will imply x = 0; that is, so that x 6= 0 gives a contradiction. Now x 6= 0
implies |x|2 ≥M , and so it suffices to choose ℓ so that

β2ℓM ≥ βm−1N.

Since x1, x2, . . . , xm in L are linearly dependent, there is a nontrivial linear
dependence relation, say

c1x1 + c2x2 + · · ·+ cmxm = 0, [c1, c2, . . . , cm] 6= 0.

We write
C = max{|c1|, . . . , |cm|}, C ≥ 1.

Then clearly L̂ contains the nonzero vector

[c1, c2, . . . , cm, 0, . . . , 0] ∈ L̂,

© 2012 by Taylor & Francis Group, LLC

Linearly Dependent Vectors 105

and considering the length of this vector shows that

N ≤ mC2.

The condition on ℓ now becomes

β2ℓM ≥ βm−1mC2. (6.2)

Solving this inequality for ℓ gives (Exercise 6.2)

ℓ ≥ 1

2

(
m− 1 + logβ

mC2

M

)
. (6.3)

If ℓ satisfies this inequality, then x = 0 and so z1 = [c, 0, . . . , 0].
This approach has one major disadvantage: it may be very difficult to

determine the numbers M and C, the length of a shortest nonzero vector in
the original lattice L, and the length of the coefficient vector of a shortest
nontrivial linear dependence relation among x1, x2, . . . , xm. If we cannot
determine M and C, then we cannot calculate the lower bound on ℓ from
inequality (4.3).

We present one example to illustrate this approach; further examples may
be found in Exercises 6.3 to 6.5.

Example 6.1. One simple way to choose m linearly dependent vectors in Rn

is to fix m > n and then use a computer algebra system to generate random
vectors. For example, if we set m = 6 and n = 4, and use the Maple command

LinearAlgebra[RandomMatrix](6, 4, generator = -9..9);

then we obtain a matrix such as

X =




x1

x2

x3

x4

x5

x6




=




5 1 6 0
−8 −3 2 −1
−5 9 −4 4
−1 −8 9 −7
−5 −6 2 −7
−4 6 0 −8




We use the standard parameters α = 3
4 and β = 2. We scale the dependent

vectors x1, . . . ,x6 in R4 and embed them as independent vectors in R10:



1 0 0 0 0 0 5 · 2ℓ 2ℓ 6 · 2ℓ 0
0 1 0 0 0 0 −8 · 2ℓ −3 · 2ℓ 2 · 2ℓ −2ℓ

0 0 1 0 0 0 −5 · 2ℓ 9 · 2ℓ −4 · 2ℓ 4 · 2ℓ

0 0 0 1 0 0 −2ℓ −8 · 2ℓ 9 · 2ℓ −7 · 2ℓ

0 0 0 0 1 0 −5 · 2ℓ −6 · 2ℓ 2 · 2ℓ −7 · 2ℓ

0 0 0 0 0 1 −4 · 2ℓ 6 · 2ℓ 0 −8 · 2ℓ




These vectors form a basis of the lattice L̂ in R10. We use a trial-and-error

© 2012 by Taylor & Francis Group, LLC

106 Lattice Basis Reduction

approach to find the smallest value of ℓ that produces a zero row in the right
block after the LLL algorithm is used to reduce the basis.

For ℓ = 5 the LLL algorithm takes 73 steps (reduce and exchange) and

gives this α-reduced basis of L̂:




−12 −4 3 13 −12 1 0 32 32 32
23 15 −13 −28 16 2 0 32 0 32
−19 −6 4 20 −19 2 0 32 0 −32
−4 9 −10 −1 −13 6 0 32 −32 32

1 −18 19 8 17 −10 32 0 0 −32
9 −12 14 −2 22 −9 −32 32 0 0




None of the rows in the right block is zero.
For ℓ = 6 the LLL algorithm takes 76 steps and gives this α-reduced basis:




35 19 −16 −41 28 1 0 0 −64 0
−27 −6 3 27 −29 4 0 0 −64 0

23 15 −13 −28 16 2 0 64 0 64
19 6 −4 −20 19 −2 0 −64 0 64
24 −3 6 −20 33 −8 64 64 0 0
29 −24 29 −14 58 −21 0 0 0 0




One row in the right block is zero, but it is not the first row.
For ℓ = 7 the LLL algorithm takes 87 steps and gives this α-reduced basis:




29 −24 29 −14 58 −21 0 0 0 0
−33 −49 48 54 1 −18 0 0 0 0
−27 −6 3 27 −29 4 0 0 −128 0

23 15 −13 −28 16 2 0 128 0 128
−19 −22 21 28 −5 −7 128 0 0 128

5 −21 23 6 25 −13 −128 −128 0 0




Now the first row, in fact the first two rows, in the right block are zero: we
have found the minimal value of the exponent ℓ.

6.2 The modified LLL algorithm

We now present Pohst’s modified LLL algorithm following the more structured
approach of Sims [131], §8.7. As in the original LLL algorithm, we have a
reduction parameter α satisfying 1

4 < α < 1. As before, the nearest integer to
the real number x will be denoted ⌈x⌋; recall that if x has the form x = n+ 1

2
for some n ∈ Z then we round down, not up: ⌈x⌋ = n.

The original spanning vectors x1, x2, . . . , xm for the lattice L ⊂ Rn are

© 2012 by Taylor & Francis Group, LLC

Linearly Dependent Vectors 107

the rows of the m × n matrix X . The reduced set of spanning vectors y1,
y2, . . . , ym are the rows of the m × n matrix Y ; when the MLLL algorithm
terminates, the nonzero rows of Y are a basis for the lattice L. The rows of the
m× n matrix Y ∗ contain the Gram-Schmidt orthogonalization of the rows of
Y . As before, the m×m lower-triangular matrix µ contains the Gram-Schmidt
coefficients µij , and the m × 1 vector γ∗ contains the squared lengths of the
rows of Y ∗.

The fundamental difference between the LLL and MLLL algorithms is that
the latter algorithm has a more complicated control structure resulting from
the necessity of dealing with linearly dependent vectors. This requires that
the single index variable from LLL must be replaced by more than one index
variable in MLLL. We cannot compute the Gram-Schmidt orthogonalization of
the original lattice basis all at once at the start of the algorithm, for the simple
reason that we do not start with a linearly independent set. This means that we
must perform one step of the GSO at a time, checking at each step whether one
of the GSO vectors has become 0, which indicates a linear dependence relation
among the lattice vectors. If the current GSO vector is not zero, then we
perform lattice basis reduction on the current subset of linearly independent
vectors. We distinguish the following indices:

g = row index in Y for the current vector in the GSO computation,

k = row index in Y for the current vector in the LLL computation,

ℓ = row index in Y for the last vector in the current LLL computation,

z = row index in Y for last vector not known to be zero.

Apart from this change of notation, the reduce and exchange procedures are
essentially the same as in the original LLL algorithm; see Figure 6.1. The most
important new features are that the exchange procedure has two arguments,
and the quantities ν and δ are calculated in the main loop of the algorithm,
which is displayed in Figure 6.2. To make it easier to trace the execution,
we adopt an idea of Sims [131] and indicate the positions in the algorithm
where the vectors yi are modified by the symbols (P1), (P2), (P3), (P4), (P5).
(Note also that an alternative method of computing the new Gram-Schmidt
coefficients using 2×2 matrices has been used in the exchange procedure.) To
save space but to keep the logical structure clear, we have occasionally used
“fi” and “od” to indicate the end of an “if” or a “do” statement.

Example 6.2. If we let n = 1 then the MLLL algorithm computes the GCD
of a set of integers using the version of the Euclidean algorithm with least
absolute remainders. For example, let m = 3 and consider the integers 6, 10,
15. At the start of the MLLL algorithm, we have

Y =




6

10
15





© 2012 by Taylor & Francis Group, LLC

108 Lattice Basis Reduction

• Procedure reduce(k, p):

If |µkp| > 1
2 then

– Set r ← ⌈µkp⌋.
– Set yk ← yk − ryp.

– For j = 1, 2, . . . , p−1 do: Set µkj ← µkj − rµpj .

– Set µkp ← µkp − r.

• Procedure exchange(k, ℓ):

– Set µk,k−1 ← νγ∗k−1/δ.

– Set γ∗k ← γ∗k−1γ
∗
k/δ.

– For j = k+1, . . . , ℓ do:

Set

[
µj,k−1

µjk

]
←
[

1 µk,k−1

0 1

] [
0 1
1 −ν

] [
µj,k−1

µjk

]
.

FIGURE 6.1
Reduce and exchange procedures for the MLLL algorithm

The first modification occurs at (P2) where row 2 is reduced using row 1:

Y =




6
−2
15





The next modification occurs at (P5) where rows 1 and 2 are exchanged:

Y =




−2

6
15





At (P2) row 2 is reduced using row 1:

Y =



−2

0
15




A zero row has appeared and so (P4) swaps rows 2 and 3:

Y =




−2
15
0





© 2012 by Taylor & Francis Group, LLC

Linearly Dependent Vectors 109

• Input : An m × n integer matrix X whose rows x1, x2, . . . xm, which are
not necessarily linearly dependent, span a lattice L ⊂ Rn.

• Output : An m × n integer matrix Y in which the nonzero rows yi form a
basis for the lattice L.

• Set Y ← X , z ← m, g ← 1.

• While g ≤ z do:

– If yg = 0 then

If g < z then swap yg and yz fi. Set z ← z−1. (P1)

else

Set y∗
g ← yg.

For j = 1, . . . , g−1 do: Set µgj ← (yg · y∗
j)/γ∗j , y∗

g ← y∗
g − µgjy

∗
j .

Set γ∗g ← y∗
g · y∗

g .

– If g = 1 then set g ← 2 else

∗ Set ℓ← g, k ← g, startagain← false.

∗ While k ≤ ℓ and not startagain do:

· reduce(k, k−1). Set ν ← µk,k−1, δ ← γ∗k + ν2γ∗k−1. (P2)

· If δ ≥ αγ∗k−1 then

For p = k−2, . . . , 1 do: reduce(k, p) od. Set k ← k+1. (P3)

else

If yk = 0 then

If k < z then swap yk and yz . (P4)

Set z ← z−1, g ← k, startagain← true.

else

If δ 6= 0 then exchange(k, ℓ) fi. Set γ∗k−1 ← δ.

Swap yk and yk−1. If γ∗k−1 = 0 then set ℓ← k−1 fi. (P5)

For j = 1, . . . , k−2 do swap µk−1,j and µkj .

Set y∗
k−1 ← yk−1.

For j = 1, . . . , k−2 do set y∗
k−1 ← y∗

k−1 − µk−1,jy
∗
j .

If k ≤ ℓ then

Set y∗
k.← yk. For j = 1, . . . , k−1 do: Set y∗

k ← y∗
k−µkjy

∗
j .

If k > 2 then set k ← k−1.

· If not startagain then set g ← g+1.

FIGURE 6.2
Main loop of the MLLL algorithm

© 2012 by Taylor & Francis Group, LLC

110 Lattice Basis Reduction

At (P2) row 2 is reduced using row 1:

Y =



−2
−1

0




At (P5) rows 1 and 2 are exchanged:

Y =



−1
−2

0




At (P2) row 2 is reduced using row 1:

Y =




−1

0
0





Another zero row has appeared, and the algorithm terminates. The nonzero
entry in row 1 is the GCD of 6, 10, 15 (up to a sign).

Example 6.3. We consider these three row vectors in R2:

Y =




5 2
4 1
−9 6





(P2) reduces row 2 using row 1:

Y =




5 2
−1 −1
−9 6





(P5) exchanges rows 1 and 2:

Y =



−1 −1

5 2
−9 6




(P2) reduces row 2 using row 1:

Y =



−1 −1

1 −2
−9 6




(P2) reduces row 3 using row 2:

Y =




−1 −1

1 −2
−4 −4





© 2012 by Taylor & Francis Group, LLC

Linearly Dependent Vectors 111

(P5) exchanges rows 2 and 3:

Y =



−1 −1
−4 −4

1 −2




(P2) reduces row 2 using row 1:

Y =




−1 −1

0 0
1 −2





A zero row has appeared, and (P4) swaps it to the last row:

Y =



−1 −1

1 −2
0 0




Finally, (P2) reduces row 2 using row 1; this changes Y ∗ and µ but not Y .
The two nonzero rows of the last matrix form a reduced basis of the lattice
spanned by the rows of the original matrix.

Example 6.4. In the previous two examples, the operations in positions (P1)
and (P4) were never executed. This example uses all five positions (P1), (P2),
(P3), (P4), (P5). We start with five vectors in R3:

Y =




0 0 3
2 0 1
3 1 0
0 0 0
0 2 3




The trace of the execution of the MLLL algorithm is displayed in Figure 6.3.

6.3 Projects

Project 6.1. Implement the MLLL algorithm in your favorite computer lan-
guage, and test your program on a large number of pseudorandom integer
matrices of many different sizes.

Project 6.2. An algorithm similar to the MLLL algorithm has been proposed
by Hobby [63], with an application to electronic typesetting. Write a report
and give a seminar talk on this paper.

© 2012 by Taylor & Francis Group, LLC

112 Lattice Basis Reduction

row 1 row 2 row 3 row 4 row 5
P2 reduce 2, 1 [0, 0, 3] [2, 0, 1] [3, 1, 0] [0, 0, 0] [0, 2, 3]
P5 exchange 2, 1 [2, 0, 1] [0, 0, 3] [3, 1, 0] [0, 0, 0] [0, 2, 3]
P2 reduce 2, 1 [2, 0, 1] [−2, 0, 2] [3, 1, 0] [0, 0, 0] [0, 2, 3]
P2 reduce 3, 2 [2, 0, 1] [−2, 0, 2] [3, 1, 0] [0, 0, 0] [0, 2, 3]
P5 exchange 3, 2 [2, 0, 1] [3, 1, 0] [−2, 0, 2] [0, 0, 0] [0, 2, 3]
P2 reduce 2, 1 [2, 0, 1] [1, 1,−1] [−2, 0, 2] [0, 0, 0] [0, 2, 3]
P5 exchange 2, 1 [1, 1,−1] [2, 0, 1] [−2, 0, 2] [0, 0, 0] [0, 2, 3]
P2 reduce 2, 1 [1, 1,−1] [2, 0, 1] [−2, 0, 2] [0, 0, 0] [0, 2, 3]
P2 reduce 3, 2 [1, 1,−1] [2, 0, 1] [−2, 0, 2] [0, 0, 0] [0, 2, 3]
P5 exchange 3, 2 [1, 1,−1] [−2, 0, 2] [2, 0, 1] [0, 0, 0] [0, 2, 3]
P2 reduce 2, 1 [1, 1,−1] [−1, 1, 1] [2, 0, 1] [0, 0, 0] [0, 2, 3]
P2 reduce 3, 2 [1, 1,−1] [−1, 1, 1] [2, 0, 1] [0, 0, 0] [0, 2, 3]
P3 reduce 3, 1 [1, 1,−1] [−1, 1, 1] [2, 0, 1] [0, 0, 0] [0, 2, 3]
P1 swap 4, 5 [1, 1,−1] [−1, 1, 1] [2, 0, 1] [0, 2, 3] [0, 0, 0]
P2 reduce 4, 3 [1, 1,−1] [−1, 1, 1] [2, 0, 1] [−2, 2, 2] [0, 0, 0]
P5 exchange 4, 3 [1, 1,−1] [−1, 1, 1] [−2, 2, 2] [2, 0, 1] [0, 0, 0]
P2 reduce 3, 2 [1, 1,−1] [−1, 1, 1] [0, 0, 0] [2, 0, 1] [0, 0, 0]
P4 swap 3, 4 [1, 1,−1] [−1, 1, 1] [2, 0, 1] [0, 0, 0] [0, 0, 0]
P2 reduce 3, 2 [1, 1,−1] [−1, 1, 1] [2, 0, 1] [0, 0, 0] [0, 0, 0]
P3 reduce 3, 1 [1, 1,−1] [−1, 1, 1] [2, 0, 1] [0, 0, 0] [0, 0, 0]

FIGURE 6.3
Trace of the execution of the MLLL algorithm for Example 6.4

6.4 Exercises

Exercise 6.1. Let e1, e2, . . . , em be the standard basis vectors in Rm, and
let x1, x2, . . . , xm be arbitrary vectors in Rn. Prove that the vectors [e1,x1],
[e2,x2], . . . , [em,xm] are linearly independent in Rm+n.

Exercise 6.2. Prove that inequality (6.2) implies inequality (6.3), and con-
versely.

Exercise 6.3. Consider these three row vectors in R2:



x1

x2

x3



 =




1 −8
−3 −6

9 6





Apply the method of Section 6.1 to embed these vectors as linearly indepen-
dent vectors in R5. Using α = 3

4 (β = 2), and following Example 6.1, show

© 2012 by Taylor & Francis Group, LLC

Linearly Dependent Vectors 113

that ℓ = 2 does not make any row of the right block equal to zero, but that
ℓ = 3 makes the first row of the right block equal to zero.

Exercise 6.4. Use a computer algebra system to redo Example 6.1 with the
limiting value α = 1 (β = 4

3). Show that ℓ = 13 does not make any row of the
right block equal to zero, that ℓ = 14 makes the second row equal to zero but
not the first, and that ℓ = 15 makes the first and third rows equal to zero.

Exercise 6.5. Consider these four row vectors in R3:



x1

x2

x3

x4


 =




−32 8 44
−74 69 92
−4 99 −31
27 29 67




Following the method of Section 6.1 with α = 3
4 (β = 2), find

(i) the smallest ℓ which makes one row of the right block zero,

(ii) the smallest ℓ which makes the first row equal to zero.

Does there exist a sufficiently large value of ℓ which makes two rows of the
right block equal to zero? Why or why not?

Exercise 6.6. Following Example 6.2, use the MLLL algorithm to calculate
the GCD of 6, 10 and 14.

Exercise 6.7. Repeat Exercise 6.6 for the other five permutations, namely




6

14
10



 ,




10
6

14



 ,




10
14
6



 ,




14
6

10



 ,




14
10
6



 .

How does the trace of the algorithm change for the different permutations?

Exercise 6.8. Use MLLL to calculate the GCD of 105, 70, 42 and 30.

Exercise 6.9. Apply the MLLL algorithm to these three vectors in R2:




1 −8
−3 −6

9 6





Exercise 6.10. Use the MLLL algorithm to show that every integer vector
in R2 is an integral linear combination of the four rows of this matrix:




−3 −4
−6 −8
−7 5

5 9




© 2012 by Taylor & Francis Group, LLC

114 Lattice Basis Reduction

Exercise 6.11. Use the MLLL algorithm to find a reduced basis for the
lattice in R3 spanned by the rows of this matrix:




7 5 7
5 1 6
3 3 2
0 4 4




Exercise 6.12. Use the MLLL algorithm to find a reduced basis for the
lattice in R3 spanned by the rows of this matrix:




1 2 3
2 3 4
3 4 5
4 5 6




Exercise 6.13. Prove or disprove: Position (P1) of the MLLL algorithm is
executed if and only if the original set of vectors contains the zero vector.

Exercise 6.14. Prove that the MLLL algorithm terminates in polynomial
time. (See Cohen [26], page 96, and Sims [131], page 374.)

Exercise 6.15. The original version of the MLLL algorithm in Pohst [118]
(see also Pohst and Zassenhaus [119], §3.3, and Cohen [26], §2.6.4) kept track of
linear dependence relations among the original vectors. That is, if the original
m× n matrix A has rank r, then the algorithm also outputs an n× n integer
matrix H such that

(i) the first n−r rows of H are linearly independent,

(ii) the last r rows of H are zero,

(iii) HA = O.

Modify the MLLL algorithm so that it computes such a matrix H . Explain
how this can be used to produce a basis of integer vectors for the nullspace of
an integer matrix.

Exercise 6.16. Show how the MLLL algorithm can be used to solve the
following problem: Let U be a subspace of Qn, and let L = U ∩ Zn be the
lattice of integer vectors in U . Find a basis for L. (See Hobby [63].)

© 2012 by Taylor & Francis Group, LLC

7

The Knapsack Problem

CONTENTS

7.1 The subset-sum problem . 115

7.2 Knapsack cryptosystems . 117

7.3 Projects . 122

7.4 Exercises . 123

In this chapter we present our first application of lattice basis reduction to
cryptography: we use the LLL algorithm to break a knapsack cryptosystem.

7.1 The subset-sum problem

Definition 7.1. Suppose that we are given a set of n distinct positive integers

A = { a1, a2, . . . , an },

together with another positive integer s. The subset-sum problem (also
called the knapsack problem) asks whether there exists a subset

I ⊆ { 1, 2, . . . , n },

for which the sum of the corresponding elements of A is exactly s:

∑

i∈I

ai = s. (7.1)

We think of s as the size of a knapsack, and the numbers ai as the sizes of
items to be placed in the knapsack; the question is then whether the knapsack
can be filled exactly by some subset of the items.

We reformulate this problem as follows. We define

xi =

{
1 if i ∈ I
0 if i /∈ I (i = 1, 2, . . . , n).

115

© 2012 by Taylor & Francis Group, LLC

116 Lattice Basis Reduction

This is the characteristic function of the subset I. Equation (7.1) becomes

n∑

i=1

xiai = s. (7.2)

The subset-sum problem then asks whether there exists a vector

[x1, x2, . . . , xn] ∈ {0, 1}n,

which satisfies equation (7.2). This general problem is NP-complete (see Garey
and Johnson [46]) but some special cases are easy to solve.

Example 7.2. If ai = 2i−1 for i = 1, 2, . . . , n then it is easy to see that a
solution exists if and only if 0 ≤ s ≤ 2n−1, and the vector [x1, x2, . . . , xn] is
just the binary representation of s in reverse order:

s = x1 + 2x2 + 4x3 + · · ·+ 2n−1xn =

n∑

i=1

xi2
i−1.

Definition 7.3. The sequence a1, a2, . . . , an is called superincreasing if

ai >

i−1∑

j=1

aj (i = 2, 3, . . . , n).

That is, each term is greater than the sum of the previous terms. The sequence
ai = 2i−1 from Example 7.2 is superincreasing.

The subset-sum problem is easy to solve recursively for any superincreasing
sequence, starting with xn and working backwards. Since

an > a1 + a2 + · · ·+ an−1,

we must set

xn =

{
1 if s > a1 + a2 + · · ·+ an−1

0 if s ≤ a1 + a2 + · · ·+ an−1

Put more simply,

xn = 1 ⇐⇒ s >
n−1∑

j=1

aj .

We can now remove an and reduce the problem to a smaller subset-sum prob-
lem in which the sequence is a1, a2, . . . , an−1 and the sum is s− xnan:

n−1∑

i=1

xiai = s− xnan.

© 2012 by Taylor & Francis Group, LLC

The Knapsack Problem 117

Reasoning as before we see that

xn−1 = 1 ⇐⇒ s− xnan >

n−2∑

j=1

aj .

Repeating this process quickly produces the entire solution xn, xn−1, . . . , x1.
More precisely, we have

xi = 1 ⇐⇒ s−
n∑

j=i+1

xjaj >

i−1∑

j=1

aj (i = n, n−1, . . . , 1).

Example 7.4. Let n = 15, and define the superincreasing sequence
b1, b2, . . . , bn as follows:

• let b1 be the smallest prime number greater than 2n;

• for i = 2, 3, . . . , n, let bi be the smallest prime number greater than 2bi−1.

We obtain the following superincreasing sequence:

b1 = 32771, b2 = 65543, b3 = 131101,

b4 = 262187, b5 = 524387, b6 = 1048759,

b7 = 2097523, b8 = 4195057, b9 = 8390143,

b10 = 16780259, b11 = 33560539, b12 = 67121039,

b13 = 134242091, b14 = 268484171, b15 = 536968403.

Consider the subset-sum problem with sequence b1, b2, . . . , bn and sum

s = 891221976.

Using the algorithm given above, we easily compute

x1x2 · · ·x15 = 100111000101011,

which corresponds to the solution

b1 + b4 + b5 + b6 + b10 + b12 + b14 + b15 = s.

7.2 Knapsack cryptosystems

Definition 7.5. Merkle and Hellman [95] used the subset-sum problem as
the basis for a cryptographic scheme known as a knapsack cryptosystem.

© 2012 by Taylor & Francis Group, LLC

118 Lattice Basis Reduction

The receiver of the encrypted message secretly chooses a private key, which
is a superincreasing sequence b1, b2, . . . , bn satisfying

b1 ≈ 2n, bi >
i−1∑

j=1

bj (i = 2, 3, . . . , n), bn ≈ 22n.

The receiver also secretly chooses positive integers m (the modulus) and w
(the multiplier) satisfying

m >

n∑

j=1

bj, 0 < w < m, gcd(m,w) = 1.

The last condition guarantees that w is invertible modulo m. Finally, the
receiver chooses a permutation π of the integers 1, 2, . . . , n and then computes
the public key, which is the sequence a1, a2, . . . , an defined by

ai ≡ wbπ(i) (mod m), 0 < ai < m. (7.3)

Note that ai 6= 0 for all i, since otherwise

bπ(i) ≡ w−1ai ≡ 0 (mod m),

contradicting the choice of m. The quantities m,w, b1, b2, . . . , bn and π are
kept private, whereas the quantities a1, a2, . . . , an are made public.

Example 7.6. We continue from Example 7.4. For the modulus m, we take
the smallest prime greater than b1 + b2 + · · ·+ bn:

m = 1073903977.

For the multiplier, we take ⌈m/n⌋, the nearest integer to m/n; this is (almost)
the average of b1, b2, . . . , bn:

w = 71593598.

We randomly choose a permutation π of the integers 1, 2, . . . , 15:

π = [7, 12, 1, 15, 9, 14, 2, 8, 11, 5, 10, 4, 13, 6, 3].

We then apply equation (7.3) to obtain the following public key:

a1 = 929737936, a2 = 970987227, a3 = 787514290,

a4 = 322163533, a5 = 926801380, a6 = 662236970,

a7 = 572718201, a8 = 499197496, a9 = 270712809,

a10 = 142942483, a11 = 994479591, a12 = 143064843,

a13 = 724883274, a14 = 285884973, a15 = 71532418.

© 2012 by Taylor & Francis Group, LLC

The Knapsack Problem 119

We continue with the general discussion. Suppose that the sender has
divided the message to be encrypted into blocks, each of which is represented
as a bit string (0-1 vector) of length n: x1x2 · · ·xn. The sender uses the public
key to encrypt each block of the message as a positive integer:

s =

n∑

i=1

xiai.

The receiver uses the private quantities m and w to compute

t = w−1s (mod m), 0 ≤ t < m.

We now observe that

t = w−1s = w−1
n∑

i=1

xiai =

n∑

i=1

xiw
−1ai =

n∑

i=1

xibπ(i).

This is a subset-sum problem with a superincreasing sequence (permuted, but
easily unpermuted). The receiver of the encrypted message can easily solve
this subset-sum problem and recover the block of the original message.

Example 7.7. We continue from Example 7.6. There are 26 letters in the
English alphabet, and so there are 263 = 17576 triples of letters, which we
order lexicographically:

aaa, aab, aac, . . . , aba, abb, abc, . . . , zza, zzb, zzc, . . . , zzz.

More precisely, the triple αβγ precedes the triple α′β′γ′ if and only if

• α precedes α′ (in alphabetical order), or

• α = α′ and β precedes β′, or

• α = α′ and β = β′ and γ precedes γ′.

If αβγ is a triple of letters then we define the corresponding triple of integers
(δ1, δ2, δ3) with 1 ≤ δ1, δ2, δ3 ≤ 26 to be the indices of α, β, γ in the alphabet.
The index ∆ of the triple αβγ in the list of all triples is given by this formula:

∆ = (δ1−1)262 + (δ2−1)26 + (δ3−1) + 1.

Since 214 = 16384 < 263 < 32768 = 215, every triple αβγ can be represented
by a bit string of length 15, namely the binary numeral for its index:

αβγ 7−→ ∆ =

15∑

i=1

xi 215−i 7−→ x1x2 · · ·x15

We now convert the binary strings into subset sums using the public key:

s =
15∑

i=1

xiai.

© 2012 by Taylor & Francis Group, LLC

120 Lattice Basis Reduction

α β γ δ1 δ2 δ3 ∆ x1x2 · · ·x14x15

i t h 9 20 8 5909 001011100010101
i n k 9 14 11 5756 001011001111100
c o m 3 15 13 1728 000011011000000
p u t 16 21 20 10679 010100110110111
e r a 5 18 1 3146 000110001001010
l g e 12 7 5 7596 001110110101100
b r a 2 18 1 1118 000010001011110
i s r 9 19 18 5893 001011100000101
e a l 5 1 12 2715 000101010011011
l y n 12 25 14 8073 001111110001001
i c e 9 3 5 5464 001010101011000

FIGURE 7.1
Encrypted message for Example 7.7

For example, consider the message

i think computer algebra is really nice

We ignore the spaces and break this message into 3-letter blocks:

ith, ink, com, put, era, lge, bra, isr, eal, lyn, ice

Applying the encryption algorithm, we obtain the results in Figure 7.1.
The original message has been transformed into the following ciphertext
s1, s2, . . . , s11:

4740166124, 4652635640, 2358948655, 4584789196,

1948627538, 4119285500, 3345826870, 3745686533,

2978559824, 3985229131, 3695291114.

The receiver can now decrypt the message using the modulusm, the multiplier
w, and the private key b1, b2, . . . , b15.

The problem with knapsack cryptosystems is that they can be easily bro-
ken; this was demonstrated by Shamir [129]. A method for breaking this cryp-
tosystem using the LLL algorithm was given by Lagarias and Odlyzko [85].

Given the public key a1, a2, . . . , an and the ciphertext s, we construct the
following (n+1)× (n+1) matrix M :

M =




1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2

0 0 1 · · · 0 −a3

...
...

...
...

...
...

0 0 0 · · · 1 −an

0 0 0 · · · 0 s




© 2012 by Taylor & Francis Group, LLC

The Knapsack Problem 121

It is clear that the rows M1, . . . ,Mn+1 of the matrix M are linearly indepen-
dent, and so they form a basis of a lattice L ⊂ Rn. By assumption, we know
that there must exist x1, x2, . . . , xn ∈ {0, 1} for which

x1a1 + x2a2 + · · ·+ xnan = s.

Therefore the lattice L contains the vector

V = x1M1 + x2M2 + · · ·+ xnMn +Mn+1 = [x1, x2, . . . , xn, 0].

This is a very short vector, since its length is at most
√
n, whereas the orig-

inal lattice basis vectors M1, . . . ,Mn+1 are very long. (In Example 7.6 the
numbers a1, a2, . . . , an each have 8 or 9 digits.) So we can apply the LLL algo-
rithm to the rows of the matrix M , and look for a reduced basis vector with
components in the set {0, 1}. If we find such a vector, we need to check that
the corresponding subset sum does indeed equal the ciphertext. We also need
to consider the possibility that the LLL algorithm might produce a reduced
basis vector with the opposite sign; that is,

V = − x1M1 − x2M2 − · · · − xnMn −Mn+1 = [−x1, −x2, . . . , −xn, 0].

In this case we replace each component by its negative, and check that the
subset sum equals the ciphertext. The LLL algorithm does not necessarily
produce a reduced basis vector of the required form, even though we know
that such a vector must exist. In this case, the decryption attempt fails.

Example 7.8. We continue from Example 7.7. The first block of the message
is represented by the ciphertext 4740166124. The corresponding matrix M
is displayed in Figure 7.2. We apply the LLL algorithm with the standard
parameter α = 3

4 to the rows of M , and obtain the reduced basis consisting of
the rows of the matrix displayed in Figure 7.3. Row 10 of the reduced matrix
gives the 0-1 vector 0010111000101010, which corresponds to the triple ith,
the first block of the message.

The next two blocks are decrypted correctly: for the second block, row
14 of the reduced matrix is 0010110011111000, corresponding to ink; for the
third block, row 1 of the reduced matrix is 0000110110000000, corresponding
to com.

The fourth block of the message is represented by the ciphertext
4584789196. We apply the LLL algorithm with α = 3

4 to the rows of the
corresponding matrix M , and obtain the reduced basis consisting of the rows
of the matrix in Figure 7.4. None of the rows of the reduced matrix has all of
its entries either in {0, 1} or in {0,−1}. The decryption attempt fails.

For the fifth block, row 14 of the reduced matrix in Figure 7.5 is the
negative of the 0-1 vector 0001100010010100, corresponding to era.

Continuing, we obtain the following results for the 11 blocks of the message:
success for blocks 1, 2, 3, 5, 6, 7, 9, 11 and failure for blocks 4, 8, 10.

© 2012 by Taylor & Francis Group, LLC

122 Lattice Basis Reduction




1 −929737936
. 1 −970987227
. . 1 −787514290
. . . 1 −322163533
. . . . 1 −926801380
. 1 −662236970
. 1 −572718201
. 1 −499197496
. 1 −270712809
. 1 −142942483
. 1 −994479591
. 1 . . . −143064843
. 1 . . −724883274
. 1 . −285884973
. 1 −71532418
. 4740166124




FIGURE 7.2
The original lattice basis for block 1

Example 7.9. We repeat the same computations as in Example 7.8, except
that we use the reduction parameter α = 99

100 in the LLL algorithm. We now
obtain success in all 11 blocks: lattice basis reduction has correctly decrypted
the entire message. The new reduced matrix for block 4 (which produced a
decryption failure for α = 3

4) is displayed in Figure 7.6; now row 3 is the 0-1
vector 0101001101101110 corresponding to put.

7.3 Projects

Project 7.1. Write a report and present a seminar talk on the “rise and
fall” of knapsack cryptosystems, based on the original papers by Merkle and
Hellman [95], Shamir [129], Lagarias and Odlyzko [85], and Odlyzko [113].
There is also a very readable survey paper by Odlyzko [114].

Project 7.2. Write your own a software package to encrypt and decrypt
messages using the methods described in this chapter.

© 2012 by Taylor & Francis Group, LLC

The Knapsack Problem 123

7.4 Exercises

Exercise 7.1. Consider the following knapsack cryptosystem. Start with the
extended alphabet consisting of the 26 letters together with the space, for
a total of 27 symbols. There are 272 = 729 ordered pairs of symbols; these
pairs are ordered lexicographically and identified with the binary represen-
tations (using ten bits) of the numbers from 1 to 729. Messages are broken
into a sequence of pairs and each pair is treated separately. Encryption and
decryption are performed as described in this chapter. Suppose that you are
an eavesdropper who knows the public key:

747852, 315290, 551065, 108243, 157491,

526441, 105165, 735540, 524902, 321446.

You have intercepted the following ciphertext:

1919750, 1264751, 1841466, 2989048, 1638010,

1707060, 1480519, 1377919, 971520, 3669902,

1427372, 2255047, 2872802, 581024, 2534735,

1501039, 1069298, 2077241, 2458503, 1815303,

1819407, 1292966, 2392531, 1682436, 526441,

2713977, 429689, 1069298.

Use lattice basis reduction to recover the original message.

Exercise 7.2. Same as Exercise 7.1 for this ciphertext:

1477954, 1759386, 948435, 1946631, 1585684,

840705, 2458503, 1873785, 2132953, 840705,

1556443, 2236579, 1174463, 2637027, 2337948,

2392531, 1319642, 1427885, 2423619, 1841466,

2458503, 1184210, 1407160, 1372789, 2137262,

1833771, 581024, 1129011, 846348, 899392,

213408, 1930523, 1274293, 3345583, 2288597,

1218786.

Exercise 7.3. Same as Exercise 7.1 for this ciphertext:

2715516, 2686275, 2077241, 2397148, 1104387,

2175737, 1895126, 1632367, 1657504, 2302756,

2610043, 1523098, 551065, 2255047, 1331954,

2772767, 2131106, 1739379, 1218786, 1069298.

© 2012 by Taylor & Francis Group, LLC

124 Lattice Basis Reduction

Exercise 7.4. Same as Exercise 7.1 for this ciphertext:

213408, 1930523, 1272754, 581024, 948435,

1377919, 956130, 1261981, 1272754, 429689,

1069298, 971520, 2458503, 1184210, 2358673,

1010508, 1377919, 1345292, 2137262, 1261981,

2182406, 2132953, 1682436, 526441, 2713977,

429689, 1728606, 1867629, 1450457, 2028506,

2776871, 2008294, 2637027.

Exercise 7.5. Consider the following knapsack cryptosystem. Start with the
extended alphabet consisting of the 26 letters together with the space, for a
total of 27 symbols. There are 273 = 19683 ordered triples of symbols; these
triples are ordered lexicographically and identified with the binary represen-
tations (using 15 bits) of the numbers from 1 to 19683. Messages are broken
into a sequence of triples and each triple is treated separately. Encryption and
decryption are performed as described in this chapter. Suppose that you are
an eavesdropper who knows the public key:

644824022, 644404566, 653213142, 680058326, 286344257,

286619525, 646501846, 286409797, 644273486, 644266932,

286357365, 304236677, 290814085, 287458437, 644299702.

You have intercepted the following ciphertext:

4326972602, 4357553566, 4109958741, 2866800403, 2471727472,

2439743952, 1610872689, 4074853333, 3066083510, 3025999246,

2370505312, 3764062656, 4686854923, 2734162737, 3392933671.

Use lattice basis reduction to recover the original message. You may need to
increase the value of the reduction parameter α.

Exercise 7.6. Same as Exercise 7.5 for this ciphertext:

3475549025, 3545757657, 3738488948, 5358661763, 2512239930,

4123768019, 4423967432, 1610872689, 2435418312, 4370316388,

2154356579, 864892047, 4427985034, 3115470084, 2799724583,

3205707740, 878314639, 3205832266.

Exercise 7.7. Same as Exercise 7.5 for this ciphertext:

3092943986, 2439743952, 2818881925, 5008112338, 2901595589,

2489279084, 4071189647, 3814393006, 3851226486, 1581589417,

3205707740, 878314639, 2901595589, 2202095915, 3478924335,

© 2012 by Taylor & Francis Group, LLC

The Knapsack Problem 125

3491350719, 3832154346, 2902696661, 3152436828, 2514868084,

3120129978, 3084010884, 3822152942, 4325681464, 4036125747,

3392933671.

Exercise 7.8. Same as Exercise 7.5 for this ciphertext:

3475549025, 3545757657, 4383856952, 2165885065, 2507049162,

3854555918, 3397390391, 1586072353, 4370316388, 2154356579,

864892047, 4427985034, 3115470084, 2799724583, 3205707740,

878314639, 2901595589, 4066739481, 3785291062, 3146463950,

3192534200.

© 2012 by Taylor & Francis Group, LLC

1
2
6

L
a
ttice

B
a
sis

R
ed

u
ctio

n




2 −1 −2 0 −1 0 1 1 2 0 0 0 0 0 0 0
1 0 0 −1 0 −2 1 0 1 0 −1 1 1 0 0 1
−1 0 −1 0 1 −1 0 2 −1 −1 0 1 1 0 0 −1

0 1 2 1 −2 −1 0 1 0 1 −1 0 0 0 0 2
−2 0 3 −1 −1 −1 0 0 1 1 1 0 0 0 0 2

0 1 1 −1 −1 −2 0 2 2 0 0 0 −1 0 0 0
0 0 1 −1 1 −1 0 −2 −1 0 2 0 −2 0 0 0
1 0 −2 0 0 0 1 −1 0 2 0 0 0 1 0 0
1 0 1 0 0 0 1 −1 0 −1 −1 0 −1 0 1 −1
0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0
1 0 0 −1 1 −1 1 2 1 1 −2 −1 −1 0 0 1
0 −2 1 0 1 0 −1 1 −1 1 0 1 0 1 0 −1
1 0 1 0 0 1 −2 0 1 0 −1 1 −1 0 1 1
1 0 1 0 0 0 1 −1 0 1 −1 1 −1 −1 −1 −1
−1 1 1 0 −1 0 0 −1 −1 2 0 0 1 −1 2 1
−133 −99 −15 528 272 −278 −63 −129 302 78 0 −78 −17 −122 102 −40




FIGURE 7.3
The reduced basis (α = 3/4) for block 1

© 2012 by Taylor & Francis Group, LLC

T
h
e

K
n
a
p
sa

ck
P
ro

blem
1
2
7




2 −1 −2 0 −1 0 1 1 2 0 0 0 0 0 0 0
1 0 0 −1 0 −2 1 0 1 0 −1 1 1 0 0 1
−1 0 −1 0 1 −1 0 2 −1 −1 0 1 1 0 0 −1

0 1 2 1 −2 −1 0 1 0 1 −1 0 0 0 0 2
−2 0 3 −1 −1 −1 0 0 1 1 1 0 0 0 0 2

0 1 1 −1 −1 −2 0 2 2 0 0 0 −1 0 0 0
0 0 1 −1 1 −1 0 −2 −1 0 2 0 −2 0 0 0
1 0 −2 0 0 0 1 −1 0 2 0 0 0 1 0 0
1 0 1 0 0 0 1 −1 0 −1 −1 0 −1 0 1 −1
1 0 1 −1 1 0 1 −1 2 −1 1 0 1 0 1 0
1 0 0 −1 1 −1 1 2 1 1 −2 −1 −1 0 0 1
0 −2 1 0 1 0 −1 1 −1 1 0 1 0 1 0 −1
1 0 1 0 0 1 −2 0 1 0 −1 1 −1 0 1 1
1 0 1 0 0 0 1 −1 0 1 −1 1 −1 −1 −1 −1
−1 1 1 0 −1 0 0 −1 −1 2 0 0 1 −1 2 1
−181 −148 −60 486 208 −303 −91 −155 273 67 −58 −83 −57 −133 92 −37




FIGURE 7.4
The reduced basis (α = 3/4) for block 4

© 2012 by Taylor & Francis Group, LLC

1
2
8

L
a
ttice

B
a
sis

R
ed

u
ctio

n




2 −1 −2 0 −1 0 1 1 2 0 0 0 0 0 0 0
1 0 0 −1 0 −2 1 0 1 0 −1 1 1 0 0 1
−1 0 −1 0 1 −1 0 2 −1 −1 0 1 1 0 0 −1

0 1 2 1 −2 −1 0 1 0 1 −1 0 0 0 0 2
−2 0 3 −1 −1 −1 0 0 1 1 1 0 0 0 0 2

0 1 1 −1 −1 −2 0 2 2 0 0 0 −1 0 0 0
0 0 1 −1 1 −1 0 −2 −1 0 2 0 −2 0 0 0
1 0 −2 0 0 0 1 −1 0 2 0 0 0 1 0 0
1 0 1 0 0 0 1 −1 0 −1 −1 0 −1 0 1 −1
1 0 0 −1 1 −1 1 2 1 1 −2 −1 −1 0 0 1
−1 1 −2 0 1 0 0 0 1 0 2 −1 1 −1 0 −2

2 0 1 1 0 −1 −1 1 1 0 −1 0 1 −1 0 −1
0 0 1 1 −1 0 0 1 2 0 0 1 1 −1 2 1
0 0 0 −1 −1 0 0 0 −1 0 0 −1 0 −1 0 0
1 0 1 0 0 0 1 −1 0 1 −1 1 −1 −1 −1 −1

−176 −169 −118 117 −48 −180 −101 −113 54 3 −141 −44 −109 −79 21 −14




FIGURE 7.5
The reduced basis (α = 3/4) for block 5

© 2012 by Taylor & Francis Group, LLC

T
h
e

K
n
a
p
sa

ck
P
ro

blem
1
2
9




1 0 1 0 0 0 1 −1 0 −1 −1 0 −1 0 1 −1
0 0 0 0 0 0 0 0 0 −2 0 −1 0 1 2 0
0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0
1 0 −2 0 0 0 1 −1 0 2 0 0 0 1 0 0
0 2 1 1 1 0 −1 0 −1 0 0 0 2 0 0 1
0 −2 0 0 0 0 2 0 0 −1 0 1 1 0 1 0
1 1 −1 1 0 −1 −1 0 −2 1 1 0 −1 0 −1 1
2 1 0 0 1 −1 0 −1 0 0 2 0 0 0 0 1
1 0 1 0 −1 1 0 −2 1 1 0 −1 −1 0 0 1
1 0 0 −1 0 −2 1 0 1 0 −1 1 1 0 0 1
2 1 −1 1 0 0 0 1 1 0 0 0 2 0 0 1
0 1 1 1 0 −1 0 0 −1 1 −1 0 −1 2 −2 1
2 −2 0 0 0 0 0 −1 0 −1 0 −2 1 1 0 0
1 0 1 0 0 1 −2 0 1 0 −1 1 −1 0 1 1
0 1 −1 0 −2 −1 0 −1 1 1 2 1 0 1 0 −1

−182 −150 −59 485 207 −303 −91 −154 274 65 −58 −83 −59 −134 92 −38




FIGURE 7.6
The reduced basis (α = 99/100) for block 4

© 2012 by Taylor & Francis Group, LLC

8

Coppersmith’s Algorithm

CONTENTS

8.1 Introduction to the problem . 131

8.2 Construction of the matrix . 133

8.3 Determinant of the lattice . 137

8.4 Application of the LLL algorithm . 140

8.5 Projects . 143

8.6 Exercises . 143

At a cryptography conference in 1996, Coppersmith [30] (see also [31]) showed
how lattice basis reduction could be used to find small roots of modular poly-
nomial equations in one variable. Coppersmith’s algorithm implies that RSA
cryptosystems with low public exponents can be broken in polynomial time
using the LLL algorithm. In this chapter, we present the basic ideas underly-
ing this algorithm, following Coppersmith [32, 33] and Howgrave-Graham [66].
The great impact of these ideas on cryptography is discussed in the survey
papers by Coupé et al. [34], Nguyen and Stern [108, 109], and May [94].

8.1 Introduction to the problem

We consider a monic integer polynomial p(x) of degree d in the variable x:

p(x) = xd + pd−1x
d−1 + · · ·+ p1x+ p0 (p0, p1, . . . , pd−1 ∈ Z). (8.1)

(The term “monic” simply means that pd = 1.) We consider a modulus M ;
this is a large composite integer, and we make no assumptions about its prime
factors. Our goal is to find integer solutions x0 of this modular equation:

p(x0) ≡ 0 (modM). (8.2)

If there is a solution x0 ∈ Z for which |x0| < M1/d then Coppersmith’s
algorithm finds this solution, and does so in polynomial time in logM and 2d.
The basic idea is to construct a matrix C using the coefficients of p(x), and
then to apply lattice basis reduction to the rows of C. From the reduced basis
we construct another (non-modular) equation which has x0 as a root.

131

© 2012 by Taylor & Francis Group, LLC

132 Lattice Basis Reduction

We fix the reduction parameter in the LLL algorithm at its standard value
α = 3

4 . We write x1,x2, . . . ,xn for an LLL-reduced basis of the lattice L in
Rn, and x∗

1,x
∗
2, . . . ,x

∗
n for its Gram-Schmidt orthogonalization. We know that

the determinant det(L) of the lattice L can be expressed as

det(L)2 =

n∏

i=1

|x∗
i |2 = |x∗

1|2|x∗
2|2 · · · |x∗

n|2,

and that the output of the LLL algorithm satisfies

|x∗
i |2 ≤ 2|x∗

i+1|2 (i = 1, 2, . . . , n−1).

From these two results (and induction on i) it follows that

det(L)2 ≤
(
2n−1|x∗

n|2
)
· · ·
(
22|x∗

n|2
)(

2|x∗
n|2
)

= 2n(n−1)/2|x∗
n|2n.

Rearranging this inequality and taking the 2n-th root gives

|x∗
n| ≥ 2−(n−1)/4 det(L)1/n. (8.3)

This is a lower bound on the length of the last vector in an LLL-reduced basis.
Now consider an arbitrary vector v in the lattice L:

v =

n∑

i=1

vixi = v1x1 + v2x2 + · · ·+ vnxn (v1, v2, . . . , vn ∈ Z).

Each basis vector of the lattice can be written in terms the Gram-Schmidt
orthogonalization of the basis:

xi = x∗
i +

i−1∑

j=1

µijx
∗
j .

From this we see that if we express v as a linear combination of the orthogonal
basis vectors x∗

i then the coefficient of x∗
n is simply vn, and hence

|v| ≥ |vn| |x∗
n|. (8.4)

Lemma 8.1. Coppersmith’s Lemma. (Coppersmith [32], page 236) Let
L ⊂ Rn be a lattice of dimension n with determinant det(L), and let
x1,x2, . . . ,xn be an LLL-reduced basis of L (with α = 3

4). If an element v ∈ L
satisfies

|v| < 2−(n−1)/4 det(L)1/n,

then v belongs to the hyperplane spanned by x1,x2, . . . ,xn−1.

Proof. Using inequality (8.3), the hypothesis of the Lemma implies |v| < |x∗
n|.

Using equation (8.4), this implies vn = 0.

© 2012 by Taylor & Francis Group, LLC

Coppersmith’s Algorithm 133

8.2 Construction of the matrix

We start with the polynomial p(x) of equation (8.1). In addition to the degree
d of the polynomial, we use an auxiliary integer h ≥ 1 to be determined later.

Definition 8.2. We introduce a family of dh polynomials qij(x) as follows:

qij(x) = xi p(x)j (i = 0, 1, . . . , d−1; j = 1, 2, . . . , h−1).

Congruence (8.2) is equivalent to

p(x0) = y0M (y0 ∈ Z), (8.5)

and hence
qij(x0) ≡ 0 (modM j).

We use the coefficients of the polynomials qij(x) to construct a matrix C.
The entries of this matrix depend on an approximation factor ǫ > 0, and the
quantity

X =
1

2
M (1/d)−ǫ, (8.6)

which will be an upper bound for the absolute values |x0| of the solutions
x0 ∈ Z of congruence (8.2). For notational convenience, we write

t =
1√
dh
.

We will also use the symbols X and t to denote rational approximations of
the exact values of these quantities; this slight abuse of notation needs to be
kept in mind but should not cause any confusion.

Definition 8.3. The Coppersmith matrix C is upper triangular with
d(2h−1) rows and columns, and has the block structure given in Figure 8.1:

• The upper left block of size dh×dh is a diagonal matrix containing (rational
approximations to) the quantities t/Xk−1 for k = 1, 2, . . . , dh.

• The lower right block of size d(h−1)×d(h−1) is a diagonal matrix containing
the entries M j for j = 1, 2, . . . , h−1 where each entry occurs d times (in
Figure 8.1, Id denotes the d× d identity matrix).

• The upper right block of size dh × d(h−1) contains the coefficients of the
polynomials qij(x) as follows: The coefficient of xk−1 in qij(x) is the entry
in row k and column d(h+j−1)+i+1 of the matrix C. That is, column
d(j−1)+i+1 of the upper right block contains the coefficients of qij(x).

• The lower left block of size d(h−1)× dh is zero.

© 2012 by Taylor & Francis Group, LLC

134 Lattice Basis Reduction




t 0 · · · 0 0
0 t/X · · · 0 0 coefficient of xk−1 in qij(x) is in
...

...
. . .

...
...

0 0 · · · t/Xdh−2 0 row k, column d(h+j−1)+i+1
0 0 · · · 0 t/Xdh−1

MId O · · · O O
O M2Id · · · O O

O
...

...
. . .

...
...

O O · · · Mh−2Id O
O O · · · O Mh−1Id




FIGURE 8.1
Block structure of the Coppersmith matrix

We write L for the lattice in Qd(2h−1) spanned by the rows of C.

The structure of the Coppersmith matrix will be made clearer by consid-
ering a few small examples; see Figure 8.2.

Definition 8.4. We consider the row vector r of dimension d(2h−1) in which
the first dh components are increasing powers of x0 and the last d(h−1) com-
ponents are the negatives of products of powers of the integers x0 and y0 from
equation (8.5):

r =

[1, x0, x
2
0, . . . , x

dh−1
0 , −y0,−y0x0, . . . ,−y0xd−1

0 , . . . ,−yh−1
0 , . . . ,−yh−1

0 xd−1
0].

We also consider the vector-matrix product s = rC. Since every component r
is an integer, the vector s belongs to the Coppersmith lattice L.

Lemma 8.5. We have |s| < 1.

Proof. The first dh components of s are

t, t
(x0

X

)
, t

(x0

X

)2

, . . . , t
(x0

X

)dh−1

.

The last d(h−1) components of s are all zero, by equation (8.5):

qij(x0)− xi
0y

j
0M

j = xi
0p(x0)

j − xi
0y

j
0M

j = xi
0(y0M)j − xi

0y
j
0M

j = 0.

Hence the Euclidean length of s satisfies

|s|2 =
dh∑

k=1

(
t
(x0

X

)k−1
)2

.

© 2012 by Taylor & Francis Group, LLC

Coppersmith’s Algorithm 135

For d = 3 and h = 2 we write p(x) = x3 + ax2 + bx+ c and obtain



t 0 0 0 0 0 c 0 0
0 t/X 0 0 0 0 b c 0
0 0 t/X2 0 0 0 a b c
0 0 0 t/X3 0 0 1 a b
0 0 0 0 t/X4 0 0 1 a
0 0 0 0 0 t/X5 0 0 1

0 0 0 0 0 0 M 0 0
0 0 0 0 0 0 0 M 0
0 0 0 0 0 0 0 0 M




For d = 2 and h = 3 we write p(x) = x2 + ax+ b and obtain



t 0 0 0 0 0 b 0 b2 0
0 t/X 0 0 0 0 a b 2ab b2

0 0 t/X2 0 0 0 1 a a2 + 2b 2ab
0 0 0 t/X3 0 0 0 1 2a a2 + 2b
0 0 0 0 t/X4 0 0 0 1 2a
0 0 0 0 0 t/X5 0 0 0 1

0 0 0 0 0 0 M 0 0 0
0 0 0 0 0 0 0 M 0 0
0 0 0 0 0 0 0 0 M2 0
0 0 0 0 0 0 0 0 0 M2




For d = 3 and h = 3 the upper right block of the matrix C is



c 0 0 c2 0 0
b c 0 2bc c2 0
a b c 2ac+ b2 2bc c2

1 a b 2ab+ 2c 2ac+ b2 2bc
0 1 a a2 + 2b 2ab+ 2c 2ac+ b2

0 0 1 2a a2 + 2b 2ab+ 2c
0 0 0 1 2a a2 + 2b
0 0 0 0 1 2a
0 0 0 0 0 1




FIGURE 8.2
Small examples of the Coppersmith matrix

© 2012 by Taylor & Francis Group, LLC

136 Lattice Basis Reduction




t ∗
. . . 1

. . .
. . .

. . . ∗
t/Xdh−1 1

M

O
. . .

Mh−1




7−→




C0 O

1

∗ . . .

1




C 7−→ C′

FIGURE 8.3
Row operations transforming C to C′

By the definition of X we have |x0| < X and hence

|s|2 <
dh∑

k=1

t2 = dht2 = 1,

since t = 1/
√
dh.

Since p(x) is a monic polynomial, so is qij(x) for all i and j. It follows
that the bottom d(h−1) rows of the upper right block of C form an upper
triangular matrix with every diagonal entry equal to 1. Therefore we can
perform elementary row operations on C and obtain a new matrix C′ in which
the upper right dh × d(h−1) block is the zero matrix and the lower right
d(h−1) × d(h−1) block is the identity matrix; see Figure 8.3. We write C0

for the upper left dh × dh block of C′. (We usually multiply C0 by the least
common multiple of the denominators of its entries, in order to obtain a matrix
of integers.)

Definition 8.6. The Coppersmith lattice L0 is the lattice in Qdh spanned
by the rows of C0. Since the last d(h−1) components of the vector s are zero,
it follows that s belongs to L0; in fact, s is a short nonzero element of L0.

Example 8.7. For d = 3 and h = 2, Figure 8.4 shows the Coppersmith matric
C, the reduced matrix C′, and the matrix C0 whose rows (after clearing the
denominators) span the Coppersmith lattice.

© 2012 by Taylor & Francis Group, LLC

Coppersmith’s Algorithm 137

C =




t 0 0 0 b 0
0 t/X 0 0 a b
0 0 t/X2 0 1 a
0 0 0 t/X3 0 1

0 0 0 0 M 0
0 0 0 0 0 M




C′ =




t 0 −bt/X2 abt/X3 0 0

0 t/X −at/X2 (a2−b)t/X3 0 0

0 0 −tM/X2 atM/X3 0 0

0 0 0 −tM/X3 0 0

0 0 t/X2 −at/X3 1 0

0 0 0 t/X3 0 1




C0 =




t 0 −bt/X2 abt/X3

0 t/X −at/X2 (a2−b)t/X3

0 0 −tM/X2 atM/X3

0 0 0 −tM/X3




FIGURE 8.4
Coppersmith matrices for d = 3 and h = 2

8.3 Determinant of the lattice

The elimination process which starts with C and ends with C′ requires only
two types of elementary row operation: interchanging two rows, and adding a
multiple of one row to another row; it does not require multiplying a row by
a nonzero scalar. It follows that the determinant of the matrix can change by
at most a sign; that is, det(C′) = ± det(C).

Lemma 8.8. The lattice L0 has the same determinant as the lattice L, namely

det(L0) = det(L) =
(
tX−(dh−1)/2M (h−1)/2

)dh

.

Proof. The block structure of C′ in Figure 8.3 shows that

det(C0) = det(C0) · det(Id(h−1)) = detC′ = ± detC.

© 2012 by Taylor & Francis Group, LLC

138 Lattice Basis Reduction

It follows that

det(L0) = | det(C0) | = | det(C) | = det(L).

Since C is upper triangular, its determinant is the product of its diagonal
entries:

det(C) =

dh∏

k=1

t

Xk−1

h−1∏

j=0

(
M j
)d

= tdhX−(dh−1)dh/2Md(h−1)h/2.

This quantity is clearly positive.

The lattice L0 has dimension dh, and so the inequality of Lemma 8.1 says

|v| < 2−(dh−1)/4 det(L0)
1/dh.

Using Lemma 8.8 we obtain

|v| < 2−(dh−1)/4 tX−(dh−1)/2M (h−1)/2.

Lemma 8.5 gives |s| < 1, and so the hypothesis of Lemma 8.1 applies to s if

1 ≤ 2−(dh−1)/4 tX−(dh−1)/2M (h−1)/2.

This inequality is equivalent to

X(dh−1)/2 ≤ 2−(dh−1)/4 tM (h−1)/2,

which gives the condition

X ≤ 2−1/2 t2/(dh−1)M (h−1)/(dh−1).

Recalling that t = 1/
√
dh, we obtain

X ≤ 2−1/2(dh)−1/(dh−1) ·M (h−1)/(dh−1). (8.7)

We use this inequality to determine the auxiliary integer h ≥ 1; recall that h
is the upper bound in Definition 8.2 for the powers of p(x0) in qij(x).

We consider separately the two factors on the right side of inequality (8.7).
We first want to ensure that

2−1/2(dh)−1/(dh−1) ≥ 1

2
, (8.8)

which is equivalent to

(dh)1/(dh−1) ≤
√

2 ≈ 1.414.

Consider the following table of approximate values of n1/(n−1):

n 2 3 4 5 6 7 8 9 10
n1/(n−1) 2 1.732 1.587 1.495 1.431 1.383 1.346 1.316 1.292

© 2012 by Taylor & Francis Group, LLC

Coppersmith’s Algorithm 139

Lemma 8.9. If n ≥ 7 then n1/(n−1) <
√

2, and conversely for integers n ≥ 2.

Proof. Exercise 8.7.

It follows that condition (8.8) holds if and only if dh ≥ 7, or equivalently

h ≥ 7

d
.

Referring to equation (8.6), we also want to ensure that

M (h−1)/(dh−1) ≥M (1/d)−ǫ, (8.9)

which (taking logarithms to the base M) is equivalent to

h− 1

dh− 1
≥ 1

d
− ǫ.

Lemma 8.10. Inequality (8.9) holds if and only if

h ≥ d(ǫ+ 1)− 1

d2ǫ
.

Proof. Exercise 8.8.

Inequalities (8.8) and (8.9) both hold if and only if we define h as follows.

Definition 8.11. We choose an integer h such that

h ≥ max

(
7

d
,
d(ǫ+ 1)− 1

d2ǫ

)
.

To give a rough idea of the behavior of the quantity on the right side,
we include a short table of its ceiling (the smallest integer larger than the
quantity):

ǫ\d 1 2 3 4 5 6 7 8 9 10

0.1 7 4 3 3 2 2 2 2 2 1
0.01 7 26 23 19 17 15 13 12 10 10
0.001 7 251 223 188 161 140 123 110 99 91
0.0001 7 2501 2223 1876 1601 1390 1225 1094 988 901

To summarize, we have the following situation. We start with a polynomial
p(x) of degree d and a modulus M . We choose an approximation factor ǫ > 0,
and we then choose the auxiliary integer h according to Definition 8.11. We
construct the d(2h−1) × d(2h−1) matrix C according to Definition 8.3. We
perform unimodular elementary row operations on C to obtain the matrix C′,
and extract its upper left dh×dh block C0 (and clear the denominators). The
rows of C0 span a dh-dimensional lattice L0 in Qdh, and this lattice contains
a certain nonzero vector s. If we then choose the upper bound X for the

© 2012 by Taylor & Francis Group, LLC

140 Lattice Basis Reduction

(absolute values of the) solutions x0 of the congruence p(x0) ≡ 0 (mod M) so
that

X ≤ 1

2
M1/d−ǫ,

then we will have
|s| < 1 ≤ 2−(dh−1)/4 det(L0)

1/dh,

according to Lemma 8.1.

8.4 Application of the LLL algorithm

We now apply the LLL algorithm (still assuming α = 3
4) to the dh-dimensional

Coppersmith lattice L0 ⊂ Qdh spanned by the rows of the dh× dh matrix C0.
We obtain an LLL-reduced basis of L0 which we denote by x1,x2, . . . ,xdh. Let
s0 be the vector obtained from the first dh components of the vector s = rC
of Definition 8.4; recall that the remaining d(h−1) components of s are zero.
By the previous sections, we know that s0 belongs to L0. In fact, s0 is a short
nonzero element of L0 which belongs to the hyperplane spanned by the first
dh−1 basis vectors x1,x2, . . . ,xdh−1. This is the hyperplane orthogonal to the
Gram-Schmidt vector x∗

dh; we can easily compute the components of x∗
dh, say

x∗
dh = [ν0, ν1, . . . , νdh−1].

The same components give an equation for the hyperplane containing s0. From
the proof of Lemma 8.5 we know that the components of s0 are

t, t
(x0

X

)
, t

(x0

X

)2

, . . . , t
(x0

X

)dh−1

,

and so we obtain the equation

dh−1∑

k=0

νk t
(x0

X

)k

= 0 (ν0, ν1, . . . , νdh−1 ∈ Q).

This is a polynomial with rational coefficients and the root x0, the desired
integral solution of the original congruence (8.2). We clear denominators and
cancel common factors to obtain a primitive polynomial with integral coeffi-
cients which has x0 as a root:

dh−1∑

k=0

nkx
k
0 = 0; n0, n1, . . . , ndh−1 ∈ Z; gcd(n0, n1, . . . , ndh−1) = 1.

We have thus reduced our original problem to the well-understood problem
of solving a polynomial equation in one variable with integer coefficients. (See
for example the discussion of polynomial division over principal ideal domains
in Knuth [78], §4.6.1.) We have proved the main result of this chapter.

© 2012 by Taylor & Francis Group, LLC

Coppersmith’s Algorithm 141

Theorem 8.12. Coppersmith’s Theorem. (Coppersmith [32], page 243)
Let p(x) be a monic polynomial of degree d with integer coefficients, and let M
be a given modulus of unknown factorization. Let X be a known upper bound
on the absolute value of the desired solution x0 to the modular equation

p(x0) ≡ 0 (modM).

If ǫ > 0 is an approximation factor, and if

X <
1

2
M1/d−ǫ,

then we can determine x0 in time polynomial in (logM,d, 1/ǫ).

Corollary 8.13. We make the same assumptions as in Theorem 8.12, but
without the approximation factor ǫ > 0. If

X < M1/d,

then we can determine x0 in time polynomial in (logM, 2d).

Proof. Coppersmith [32], Corollary 1, page 243.

Example 8.14. We present the details of an example from Howgrave-Graham
[66], §4. We take d = 2 and consider the quadratic polynomial

p(x) = x2 + 14x+ 19.

We take M = 35 as the modulus, and to simplify the computations we set
t = 1 and X = 2. With these values we obtain the following Coppersmith
matrix C:

C =




1 0 0 0 0 0 19 0 361 0
0 1/2 0 0 0 0 14 19 532 361
0 0 1/4 0 0 0 1 14 234 532
0 0 0 1/8 0 0 0 1 28 234
0 0 0 0 1/16 0 0 0 1 28
0 0 0 0 0 1/32 0 0 0 1

0 0 0 0 0 0 35 0 0 0
0 0 0 0 0 0 0 35 0 0
0 0 0 0 0 0 0 0 1225 0
0 0 0 0 0 0 0 0 0 1225




© 2012 by Taylor & Francis Group, LLC

142 Lattice Basis Reduction

A sequence of unimodular elementary row operations produces the matrix C′:

C′ =




1 0 −19/4 133/4 −3363/16 10507/8 0 0 0 0
0 1/2 −7/2 177/8 −553/4 27605/32 0 0 0 0
0 0 −35/4 245/4 −2765/8 3675/2 0 0 0 0
0 0 0 −35/8 245/4 −9625/16 0 0 0 0
0 0 0 0 −1225/16 8575/8 0 0 0 0
0 0 0 0 0 −1225/32 0 0 0 0

0 0 1/4 −7/4 79/8 −105/2 1 0 0 0
0 0 0 1/8 −7/4 275/16 0 1 0 0
0 0 0 0 1/16 −7/8 0 0 1 0
0 0 0 0 0 1/32 0 0 0 1




We clear denominators in the upper left block and obtain the matrix C0:

C0 =




32 0 −152 1064 −6726 42028
0 16 −112 708 −4424 27605
0 0 −280 1960 −11060 58800
0 0 0 −140 1960 −19250
0 0 0 0 −2450 34300
0 0 0 0 0 −1225




We apply the LLL algorithm to the Coppersmith lattice L0 spanned by the
rows of C0; the Maple command

convert(IntegerRelations[LLL](convert(C0,listlist)), Matrix):

produces the reduced basis of L0 given by the rows of this matrix:



0 160 0 −60 0 −100
−64 −64 −88 80 −72 −51

64 −48 32 4 −180 16
128 −80 −48 16 116 −13
−32 −96 −16 −132 90 −108
−64 −32 248 96 −30 −141




We apply Gram-Schmidt orthogonalization to the rows x1,x2, . . . ,x6 of this
matrix, and obtain x∗

1,x
∗
2, . . . ,x

∗
6. We retain only the last vector:

x∗
6 =

[
−117600

17929
, −627200

17929
,

3763200

17929
,

2508800

17929
,

627200

17929
, −2508800

17929

]
.

We multiply x∗
6 by 17929/39200 to obtain a vector of relatively prime integers:

[−3, −16, 96, 64, 16, −64].

Since t = 1 and X = 2 we now form the polynomial

−3− 16
(x

2

)
+ 96

(x
2

)2

+ 64
(x

2

)3

+ 16
(x

2

)4

− 64
(x

2

)5

,

© 2012 by Taylor & Francis Group, LLC

Coppersmith’s Algorithm 143

which simplifies to the integer polynomial

−3− 8x+ 24x2 + 8x3 + x4 − 2x5.

Using a floating-point algorithm to approximate the roots, we obtain

3, 0.5, −0.2294, −1.386+1.563 i, −1.386−1.563 i.

For our purposes, the only meaningful root is x0 = 3, and this satisfies the
original congruence:

p(3) = 32 + 14 · 3 + 19 = 70 ≡ 0 (mod 35).

8.5 Projects

Project 8.1. Write a report and present a seminar talk on the applications of
the LLL algorithm to cryptography. There are many excellent survey papers
on this topic; some examples are Coupé et al. [34], Nguyen and Stern [108, 109],
May [94], Hoffstein et al. [65], and Gentry [48].

Project 8.2. Write a report and present a seminar talk on algorithms for
finding the roots of polynomials in one variable with integral coefficients. Start
by reading Section 4.6.1 of Knuth [78].

Project 8.3. Study the paper by Howgrave-Graham [66] which presents an
alternative technique for finding small roots of modular polynomial equa-
tions in one variable: “It will be proved, via a general result on dual lattices,
that these two algorithms [Coppersmith’s and Howgrave-Graham’s] are in fact
equivalent, though the present approach may be preferred for computational
efficiency.” Implement both algorithms in a computer algebra system.

8.6 Exercises

Exercise 8.1. Generalize Lemma 8.1 to an LLL-reduced lattice basis for an
arbitrary reduction parameter 1

4 < α < 1.

Exercise 8.2. Let L ⊂ Rn be a lattice of dimension n with determinant
det(L), and let x1,x2, . . . ,xn be an LLL-reduced basis of L. Prove that if an
element y ∈ L satisfies |y| < |x∗

j | for j = i+1, . . . , n then y belongs to the
subspace spanned by x1,x2, . . . ,xi. (Coppersmith [32], Lemma 2, page 236.)

© 2012 by Taylor & Francis Group, LLC

144 Lattice Basis Reduction

Exercise 8.3. Write the Coppersmith matrix for d = 3 and h = 3.

Exercise 8.4. Same as Exercise 8.3, but for d = 3 and h = 4.

Exercise 8.5. Same as Exercise 8.3, but for d = 4 and h = 3.

Exercise 8.6. Write a computer program to construct the matrix C of Defi-
nition 8.3 (see Figure 8.1) for general d and h.

Exercise 8.7. Prove Lemma 8.9.

Exercise 8.8. Prove Lemma 8.10.

Exercise 8.9. Generalize Example 8.7 to the case d = 3 and h = 2.

Exercise 8.10. Generalize Example 8.7 to the case d = 2 and h = 3.

Exercise 8.11. Generalize Example 8.7 to the case d = 3 and h = 3.

Exercise 8.12. For general d and h, write a computer program to transform
the matrix C into the matrix C′ and then extract the submatrix C0.

Exercise 8.13. Apply the program of Exercise 8.12 to the Coppersmith ma-
trix of Exercise 8.3.

Exercise 8.14. Apply the program of Exercise 8.12 to the Coppersmith ma-
trix of Exercise 8.4.

Exercise 8.15. Apply the program of Exercise 8.12 to the Coppersmith ma-
trix of Exercise 8.5.

Exercise 8.16. What happens to the computations in Example 8.14 if X =
3? X = 4? X = 5? Why does the algorithm break down for higher values of
X?

Exercise 8.17. Redo the computations in Example 8.14 with t = 1 replaced
by a better rational approximation to 1/

√
dh = 1/

√
6, such as the partial

convergents obtained from the continued fraction representation (see Section
9.1):

2

5
,

5

12
,

7

17
,

9

22
,

Why do we always obtain the same polynomial at the end of the calculation?

Exercise 8.18. Make up your own example of a modular polynomial equation
with a small solution similar to Example 8.14. Solve your equation using
Coppersmith’s algorithm.

© 2012 by Taylor & Francis Group, LLC

9

Diophantine Approximation

CONTENTS

9.1 Continued fraction expansions . 145

9.2 Simultaneous Diophantine approximation . 148

9.3 Projects . 152

9.4 Exercises . 153

This chapter provides a brief introduction to one application of lattice basis
reduction to number theory. We begin by reviewing the classical algorithm
for computing the continued fraction expansion of a real number; the partial
convergents give good rational approximations to an irrational number. We
then consider the more general problem of computing simultaneous rational
approximations (all with the same denominator) to a finite set of real numbers;
this is where the LLL algorithm can be applied.

9.1 Continued fraction expansions

We first recall the Euclidean algorithm for the GCD of integers r0, r1 ≥ 1:

(2) r0 = q2r1 + r2 (0 < r2 < r1)

(3) r1 = q3r2 + r3 (0 < r3 < r2)

...

(i) ri−2 = qiri−1 + ri (0 < ri < ri−1)

...

(n) rn−2 = qnrn−1 + rn (0 < rn < rn−1)

(n+1) rn−1 = qn+1rn (rn+1 = 0)

The last nonzero remainder is rn = gcd(r0, r1). For i = 2, 3, . . . , n+1 we divide
equation (i) by ri−1 and obtain the following equations:

(2)′
r0
r1

= q2 +
r2
r1

(0 <
r2
r1
< 1)

145

© 2012 by Taylor & Francis Group, LLC

146 Lattice Basis Reduction

(3)′
r1
r2

= q3 +
r3
r2

(0 <
r3
r2
< 1)

...

(i)′
ri−2

ri−1
= qi +

ri
ri−1

(0 <
ri
ri−1

< 1)

...

(n)′
rn−2

rn−1
= qn +

rn
rn−1

(0 <
rn
rn−1

< 1)

(n+1)′
rn−1

rn
= qn+1 (rn+1 = 0)

Note that for i = 2, 3, . . . , n, the second term on the right side of equation (i)′

is the reciprocal of the term on the left side of equation (i+1)′.

Definition 9.1. The (finite) continued fraction expansion of r0/r1 ∈ Q
is obtained from equations (2)′ to (n+1)′ and denoted by [q1, q2, . . . , qn]:

r0
r1

= [q2, q3, . . . , qn+1] = q2 +
1

q3 +
1

q4 +
1

.. . +
1

qn+1

We want to generalize this so that the rational number r0/r1 can be re-
placed by any real number. We introduce auxiliary quantities γi (i = 2, 3, . . .)
and express the qi as follows, using the fact that the second term on the right
side of equation (i)′ is strictly less than 1:

γ2 =
r0
r1
, q2 = ⌊γ2⌋, γ3 =

1

γ2 − q2
, q3 = ⌊γ3⌋, . . .

These equations make sense for any positive real number γ2.

Definition 9.2. The (infinite) continued fraction expansion of γ ∈ R is
given by the sequence of integers q2, q3, . . . and real numbers γ2, γ3, . . . defined
by the following formulas:

γ2 = γ, qi = ⌊γi⌋, γi+1 =
1

γi − qi
(i = 2, 3, . . .)

Example 9.3. Applying these formulas to γ = π for i = 2, 3, . . . , 10 we obtain

i = 2 γ2 ≈ 3.1415926535897932385 . . . q2 = 3

i = 3 γ3 ≈ 7.0625133059310457679 . . . q3 = 7

i = 4 γ4 ≈ 15.996594406685720373 . . . q4 = 15

i = 5 γ5 ≈ 1.0034172310133721161 . . . q5 = 1

© 2012 by Taylor & Francis Group, LLC

Diophantine Approximation 147

i = 6 γ6 ≈ 292.63459101443720781 . . . q6 = 292

i = 7 γ7 ≈ 1.5758180895247281647 . . . q7 = 1

i = 8 γ8 ≈ 1.7366595773769201739 . . . q8 = 1

i = 9 γ9 ≈ 1.3574791270084020524 . . . q9 = 1

i = 10 γ10 ≈ 2.7973661241947040540 . . . q10 = 2

Taking the corresponding finite initial sequences of the continued fraction
expansion, we obtain the following rational approximations to π:

[3]
3

1
3

[3, 7]
22

7
3.1428571428571428571 . . .

[3, 7, 15]
333

106
3.1415094339622641509 . . .

[3, 7, 15, 1]
355

113
3.1415929203539823009 . . .

[3, 7, 15, 1, 292]
103993

33102
3.1415926530119026041 . . .

[3, 7, 15, 1, 292, 1]
104348

33215
3.1415926539214210447 . . .

[3, 7, 15, 1, 292, 1, 1]
208341

66317
3.1415926534674367055 . . .

[3, 7, 15, 1, 292, 1, 1, 1]
312689

99532
3.1415926536189366234 . . .

[3, 7, 15, 1, 292, 1, 1, 1, 2]
833719

265381
3.1415926535810777712 . . .

We can use the continued fraction expansion to find good rational approx-
imations to irrational numbers. One obvious but unsatisfactory way to find
a rational approximation of a real number is to take the first n digits to the
right of the decimal point; for example, for γ = π and n = 10 we obtain

γ ≈ 3.1415926535 =
31415926535

10000000000
=

6283185307

2000000000
=
p

q
.

Using this method, the original denominator is q = 10n, and for this the error
in the approximation satisfies the weak inequality

∣∣∣∣γ −
p

q

∣∣∣∣ <
1

q
.

We can do much better; we can increase the denominator from q to q2. The
accuracy of a rational approximation p/q to an irrational number γ is then

© 2012 by Taylor & Francis Group, LLC

148 Lattice Basis Reduction

described by an inequality involving a parameter c ∈ R, c > 0:

∣∣∣∣γ −
p

q

∣∣∣∣ ≤
1

cq2
. (9.1)

It can be shown that for every γ, every finite initial sequence [q2, q3, . . . , qn] of
the continued fraction expansion satisfies (9.1) with c = 1. Furthermore, for
every γ, at least one of the three consecutive approximations

[q2, q3, . . . , qn], [q2, q3, . . . , qn, qn+1], [q2, q3, . . . , qn, qn+1, qn+2],

satisfies (9.1) with c =
√

5 ≈ 2.236. In 1891, Hurwitz [67] (see also LeVeque
[89], Chapter 9) showed that this is the best possible result: for any c >

√
5,

there exists a real number γ which has only finitely many approximations that
satisfy (9.1).

9.2 Simultaneous Diophantine approximation

Suppose we are given n distinct real numbers x1, x2, . . . , xn for which we want
to find rational approximations using the same denominator. That is, given a
rational number ǫ for which 0 < ǫ < 1, we want to find integers p1, p2, . . . , pn

and an integer q such that

∣∣∣∣xi −
pi

q

∣∣∣∣ < ǫ for all i.

In 1842, Dirichlet [39] (see also Cassels [22], §V.10) showed that there are
infinitely many approximations satisfying the inequality

∣∣∣∣xi −
pi

q

∣∣∣∣ <
1

q1+
1
n

for all i. (9.2)

Multiplying both sides by q we obtain the equivalent inequality

| qxi − pi| <
1

q1/n
for all i.

In this section we show how lattice basis reduction can be used to find si-
multaneous approximations satisfying a weaker inequality following Lenstra,
Lenstra and Lovász [88], pages 524–525. Recall that we write α for the reduc-
tion parameter in the LLL algorithm, and set β = 4/(4α−1).

We are given a positive integer n and real numbers x1, x2, . . . , xn. For
i = 1, 2, . . . , n, let yi be a rational approximation to xi; we do not assume that
these rational approximations have the same denominator. Consider the lattice

© 2012 by Taylor & Francis Group, LLC

Diophantine Approximation 149

L of dimension n+1 spanned by the rows x1,x2, . . . ,xn+1 of the (n+1)×(n+1)
upper triangular matrix X :

X =




β−n(n+1)/4ǫn+1 y1 y2 · · · yn

0 −1 0 . . . 0
0 0 −1 . . . 0
...

...
...

. . .
...

0 0 0 . . . −1




(Note that the entry in the upper left corner may not be rational.) Applying
the LLL algorithm to the lattice L, we obtain in polynomial time a reduced
basis y1,y2, . . . ,yn+1. In our analysis of the LLL algorithm we proved that

|y1| ≤ β(n−1)/4
[
det(L)

]1/n
.

(Note that here we have n+1 in place of n.) From this we obtain

|y1| ≤ βn/4
[
det(L)

]1/(n+1)
= βn/4

∣∣det(X)
∣∣1/(n+1)

= βn/4
(
β−n/4ǫ

)
= ǫ.

Since y1 ∈ L there exist integers q, p1, p2, . . . , pn such that

y1 = qx1 +

n∑

i=1

pixi+1 =
[
qβ−n(n+1)/4ǫn+1, qy1−p1, . . . , qyn−pn

]
.

If q = 0 then at least one pi 6= 0, and so y1 = [0,−p1, . . . ,−pn] satisfies
|y1| ≥ 1, which contradicts |y1| ≤ ǫ < 1. Hence q 6= 0, and if q < 0 then we
may replace y1 by −y1 to obtain q > 0. From the first component of y1 we
obtain

qβ−n(n+1)/4ǫn+1 ≤ |y1| < ǫ,

and therefore

q < βn(n+1)/4ǫn.

From the other components of y1 we obtain

∣∣qyi − pi

∣∣ ≤ |y1| < ǫ (1 ≤ i ≤ n).

This proves the following result from Lenstra, Lenstra and Lovász [88], Propo-
sition 1.39, page 525.

Proposition 9.4. There exists a polynomial-time algorithm that, on input
consisting of a positive integer n and rational numbers y1, y2, . . . , yn, ǫ with
0 < ǫ < 1, computes integers p1, p2, . . . , pn, q such that

∣∣∣∣yi −
pi

q

∣∣∣∣ <
ǫ

q
, 0 ≤ q < βn(n+1)/4ǫ−n.

© 2012 by Taylor & Francis Group, LLC

150 Lattice Basis Reduction

Example 9.5. Using the method of continued fractions to find rational ap-
proximations for the square roots of the first four prime numbers, we obtain

√
2 ≈ 1

1
,

3

2
,

7

5
,

17

12
,

41

29
,

99

70
,

239

169
,

577

408
,

1393

985
, . . .

√
3 ≈ 1

1
,

2

1
,

5

3
,

7

4
,

19

11
,

26

15
,

71

41
,

97

56
,

265

153
, . . .

√
5 ≈ 2

1
,

9

4
,

38

17
,

161

72
,

682

305
,

2889

1292
,

12238

5473
,

51841

23184
,

219602

98209
, . . .

√
7 ≈ 2

1
,

3

1
,

5

2
,

8

3
,

37

14
,

45

17
,

82

31
,

127

48
,

590

223
, . . .

Note that the only denominator that appears in every list of the first 9 ap-
proximations is the trivial denominator 1.

We now consider simultaneous approximation of these four square roots.
We start with the first rational approximation in each list in which the de-
nominator has three digits:

√
2 ≈ 239

169
,

√
3 ≈ 265

153
,

√
5 ≈ 682

305
,

√
7 ≈ 590

223
.

The least common multiple of the denominators of these approximations is

1758663855 = 32 · 5 · 132 · 17 · 61 · 223.

It is trivial to obtain a simultaneous approximation with this LCM as the
denominator, but we want a much smaller denominator. We use lattice basis
reduction with parameter α = 3/4, so that β = 2.

For the first attempt, we choose ǫ = 1/10, and obtain the matrix

X =




1

3200000

239

169

265

153

682

305

590

223

0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1




Applying the LLL algorithm to the rows of the matrix X , we obtain the

© 2012 by Taylor & Francis Group, LLC

Diophantine Approximation 151

reduced basis in the rows of the matrix Y :

Y =




6189

1600000

−3

169

1

51

6

305

−7

223

−15411

800000

−3

169

−1

51

−8

305

2

223

169

8000
0

−5

153

2

61

4

223

−33783

3200000

7

169

−2

51

−1

305

−7

223

5129

100000

2

169

−2

153

−9

305
0




The Euclidean norms of the rows of Y are approximately

0.04568236, 0.04288470, 0.05395326, 0.06603817, 0.06174401.

The second row is the shortest basis vector. The matrix C with Y = CX is

C =




12378 17505 21439 27678 32749
−61644 −87177 −106769 −137840 −163094

67600 95600 117085 151158 178852
−33783 −47776 −58513 −75541 −89381
164128 232110 284274 367001 434240




The first row has the smallest first entry, which is the denominator q in the
simultaneous approximation; this is much smaller than the LCM of the original
denominators. From the first row of C we obtain the following simultaneous
approximations with denominator 12378; we have canceled common factors:

√
2 ≈ 5835

4126
≈ 1.414202618,

√
3 ≈ 21439

12378
≈ 1.732024560,

√
5 ≈ 4613

2063
≈ 2.236063984,

√
7 ≈ 32749

12378
≈ 2.645742446.

For the second attempt, we choose ǫ = 1/100, and obtain the matrix

X =




1

320000000000

239

169

265

153

682

305

590

223

0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1




Applying the LLL algorithm to the rows of the matrix X , we obtain the

© 2012 by Taylor & Francis Group, LLC

152 Lattice Basis Reduction

reduced basis in the rows of the matrix Y :

Y =




363264993

320000000000
0 0

1

305
0

74132019

32000000000
0 0 0

1

223

697699431

160000000000
0 0

−1

305
0

−147769389

64000000000

1

169
0 0 0

52874861

64000000000
0

1

153
0 0




The Euclidean norms of the rows of Y are approximately

0.003469651, 0.005047350, 0.005455714, 0.006351675, 0.006587956.

The first row is the shortest basis vector. The change of basis matrix C is



363264993 513729783 629184465 812284345 961104690
741320190 1048375890 1283985950 1657640556 1961340413

1395398862 1973374722 2416867310 3120203357 3691862460
−738846945 −1044878224 −1279702225 −1652110218 −1954796850

264374305 373878455 457903208 591158282 699465650




The last row has in fact the smallest first entry, but the first entry in the first
row is still smaller than the LCM of the original denominators. From the first
row of C we obtain the following simultaneous approximations; only one of
these differs from the original approximations:

√
2 ≈ 239

169
≈ 1.414201183,

√
3 ≈ 265

153
≈ 1.732026144,

√
5 ≈ 812284345

363264993
≈ 2.236065574,

√
7 ≈ 590

223
≈ 2.645739910.

For the third attempt, we choose ǫ = 1/1000; but now the first row of C
merely gives us back all of the four original approximations.

9.3 Projects

Project 9.1. This chapter has just scratched the surface of the problem
of simultaneous Diophantine approximation. Write a report and present a
seminar talk on the paper by Lagarias [83] which provides a detailed analysis
of the computational complexity of this problem. See also the recent survey
by Hanrot [53] on applications of LLL to Diophantine approximation.

© 2012 by Taylor & Francis Group, LLC

Diophantine Approximation 153

Project 9.2. The famous Riemann Hypothesis in analytic number theory is
closely related to the Mertens Conjecture, which states that for all real x > 1,

|M(x)| < √x.

The function M(x) is defined by

M(x) =
∑

n≤x

µ(n),

where µ(n) is the Möbius function defined by

µ(n) =





0 if n is divisible by p2 for some prime p

1 if n is the product of an even number of distinct primes

−1 if n is the product of an odd number of distinct primes

Odlyzko and te Riele [115] used the LLL algorithm to provide a computa-
tional disproof of this conjecture. (Truth of the Mertens Conjecture would
have implied the Riemann Hypothesis.) Their approach depends on numeri-
cal computation to 100 decimal digits of the first 2000 zeros of the Riemann
ζ-function with real part 1

2 , combined with simultaneous Diophantine ap-
proximation. Write a report and present a seminar talk on this disproof of
the Mertens Conjecture. Two further references are te Riele [136] and Pintz
[117]. Numerous further applications of the LLL algorithm in number theory
are discussed in a recent survey paper by Simon [130].

9.4 Exercises

Exercise 9.1. Use continued fractions to find the first ten rational approxi-
mations to the square roots of the first five prime numbers: 2, 3, 5, 7, 11. Then
use lattice basis reduction to find simultaneous rational approximations.

Exercise 9.2. Same as Exercise 9.1 for 2, 3, 5, 7, 11, 13.

Exercise 9.3. Same as Exercise 9.1 for 2, 3, 5, 7, 11, 13, 17.

Exercise 9.4. Same as Exercise 9.1 for 2, 3, 5, 7, 11, 13, 17, 19.

Exercise 9.5. Same as Exercises 9.1–9.4 for the cube roots.

Exercise 9.6. Same as Exercises 9.1–9.4 for the binary logarithms (base 2).

Exercise 9.7. Same as Exercises 9.1–9.4 for the natural logarithms (base e).

© 2012 by Taylor & Francis Group, LLC

10

The Fincke-Pohst Algorithm

CONTENTS

10.1 The rational Cholesky decomposition . 155

10.2 Diagonalization of quadratic forms . 158

10.3 The original Fincke-Pohst algorithm . 159

10.4 The FP algorithm with LLL preprocessing . 168

10.5 Projects . 175

10.6 Exercises . 175

In this chapter we study an algorithm for finding not merely one short vector
in a lattice, but for enumerating all vectors in a lattice with length less than
a given upper bound. In particular, this allows us to determine a shortest
nonzero lattice vector. This algorithm was introduced by Fincke and Pohst
[43] in 1985; it originated in their earlier work on algebraic number theory [42].
Before the work of Fincke and Pohst, the standard methods for calculating
short vectors in a lattice relied on enumerating all vectors in a suitable box.
The contribution of Fincke and Pohst was to show that it suffices to consider
only those vectors in a suitable ellipsoid of much smaller volume than the box;
searching through this ellipsoid is in many cases much more efficient. The two
papers of Fincke and Pohst also provide a detailed analysis of the complexity
of their algorithm, which will not be discussed in this chapter. Of course, the
decision version of the shortest vector problem is known to be NP-complete,
and so we should expect that any algorithm to find a shortest vector in a
lattice will have exponential time complexity with respect to the dimension.

10.1 The rational Cholesky decomposition

Suppose that B = (bij) is an n × m matrix (m ≤ n) with real entries, and
suppose that B has full rank; that is, rank(B) = m. We regard the m columns
b1,b2, . . . ,bm of B as a basis for the lattice L in Rn. (In this chapter we will
put the lattice basis vectors into the columns of the matrix, to be consistent
with the conventional notation for the Cholesky decomposition.)

Recall that the Gram matrix G = BtB is the m×m matrix in which the

155

© 2012 by Taylor & Francis Group, LLC

156 Lattice Basis Reduction

(i, j) entry gij is the scalar product bi · bj . Clearly G is symmetric, since

Gt = (BtB)t = Bt(Bt)t = BtB = G.

Furthermore, since B has full rank, we know that G is positive definite: for
any column vector x ∈ Rm we have

xtGx = xtBtBx = (xtBt)(Bx) = (Bx)t(Bx),

and so xtGx = 0 if and only if Bx = 0; but Bx = 0 if and only if x = 0. Any
symmetric positive definite matrix G has a factorization G = U tU where U is
an upper triangular matrix with nonzero entries on the diagonal; this is the
Cholesky decomposition of G. Standard references for this topic are the
textbooks by Golub and van Loan [49] and Trefethen and Bau [137].

We first give an algorithm for computing the Cholesky decomposition of
a symmetric positive definite matrix G. This is a slightly modified version of
Gaussian elimination: at each step, we use the diagonal entry in the current
row to eliminate the entries below it in the same column. The assumptions on
the matrix guarantee that the leading nonzero entry in each row will occur
along the diagonal. We then write the resulting upper triangular matrix in the
form DU where D is a diagonal matrix with positive entries d1, d2, . . . , dm on
the diagonal, and U is an upper triangular matrix with ones on the diagonal.
(This algorithm is presented in Figure 10.1.) The output of this algorithm is
the rational Cholesky decomposition,

G = U tDU.

By the word “rational” we mean that if the entries of the input matrix G
are rational numbers, then so are the entries of the output matrices D and U .
From this we can obtain the ordinary Cholesky decomposition by the equation

G =
(
D1/2U

)t(
D1/2U

)
.

Example 10.1. Consider the lattice L in R3 with the rows of Bt as a basis:

Bt =




2 2 −1
3 −1 −1
2 −2 −2





The corresponding Gram matrix G is

G = BtB =




9 5 2
5 11 10
2 10 12




Apply these elementary row operations to G, where Ri denotes row i:

R2 ← R2 −
5

9
R1, R3 ← R3 −

2

9
R1, R3 ← R3 −

40

37
R2.

© 2012 by Taylor & Francis Group, LLC

The Fincke-Pohst Algorithm 157

• Input: A positive definite symmetric m×m matrix G.

• Output: A diagonal m×m matrix D and an upper triangularm×m
matrix U with ones on the diagonal such that G = U tDU .

(1) Create an m×m matrix U . Set U ← G.

(2) For j = 1, 2, . . . ,m−1 do:

For i = j+1, . . . ,m do:

Add − uij

ujj
times row j of U to row i.

(3) Create an m×m matrix D.

(4) For i = 1, 2, . . . ,m do:

For j = 1, 2, . . . ,m do:

If i = j then set dij ← uij else set dij ← 0.

(5) For i = 1, 2, . . . ,m do:

Multiply row i of U by d−1
ii .

FIGURE 10.1
Algorithm for the rational Cholesky decomposition

We obtain the following upper triangular matrix and its factorization DU :




9 5 2

0 74
9

80
9

0 0 72
37


 =




9 0 0

0 74
9 0

0 0 72
37







1 5
9

2
9

0 1 40
37

0 0 1




We now have the rational Cholesky decomposition G = U tDU :




9 5 2
5 11 10
2 10 12


 =




1 0 0
5
9 1 0
2
9

40
37 1







9 0 0

0 74
9 0

0 0 72
37







1 5
9

2
9

0 1 40
37

0 0 1




Example 10.2. Consider the lattice in R4 with the rows of Bt as a basis,
and its Gram matrix G = BtB:

Bt =




1 3 4 −4
2 2 −3 −3
1 −1 0 −4
−1 3 3 2


 , G =




42 8 14 12
8 26 12 −11

14 12 18 −12
12 −11 −12 23


 .

© 2012 by Taylor & Francis Group, LLC

158 Lattice Basis Reduction

We have the rational Cholesky decomposition G = U tDU where

D =




42 0 0 0

0 514
21 0 0

0 0 2512
257 0

0 0 0 81
628


 , U =




1 4
21

1
3

2
7

0 1 98
257 − 279

514

0 0 1 − 1405
1256

0 0 0 1


 .

Example 10.3. In this case, the lattice has dimension 3 but it is contained
in a vector space of dimension 4:

Bt =




−4 −3 −1 −2

1 4 0 −1
2 3 −2 −1



 , G =




30 −14 −13
−14 18 15
−13 15 18



 .

We have the rational Cholesky decomposition G = U tDU where

D =




30 0 0

0 172
15 0

0 0 465
86


 , U =




1 − 7
15 − 13

30

0 1 67
86

0 0 1


 .

10.2 Diagonalization of quadratic forms

A symmetric m ×m matrix G = (gij) defines a symmetric bilinear form on
column vectors x,y ∈ Rm by the formula

(x,y) = xtGy.

More explicitly, if we write x = [x1, . . . , xm]t and y = [y1, . . . , ym]t then

(x,y) =

m∑

i=1

m∑

j=1

gijxiyj .

The corresponding quadratic form is then defined by

(x,x) =

m∑

i=1

m∑

j=1

gijxixj .

If the matrix G is positive definite, then the corresponding quadratic form can
be diagonalized; this means that, by a suitable change of basis, the quadratic
form can be written as a linear combination of squares,

(x,x) =

m∑

i=1

di

(
xi +

m∑

j=i+1

uijxj

)2

, (10.1)

© 2012 by Taylor & Francis Group, LLC

The Fincke-Pohst Algorithm 159

where d1, d2, . . . , dm > 0. This diagonalization process is essentially the same
as computing the rational Cholesky decomposition of the matrix G. Indeed,
if G = U tDU is the rational Cholesky decomposition of G then

(x,x) = xtGx = xtU tDUx = (Ux)tD(Ux),

and this is clearly just the matrix form of equation (10.1).

Example 10.4. Recall the Gram matrix G from Example 10.1:

G =




9 5 2
5 11 10
2 10 12





Writing x = [x, y, z]t, the corresponding positive definite quadratic form is

(x,x) = 9x2 + 10xy + 4xz + 11y2 + 20yz + 12z2.

It is easy to verify that

(x,x) = 9
(
x+ 5

9y + 2
9z
)2

+ 74
9

(
y + 40

37z
)2

+ 72
37z

2.

The coefficients come directly from the matrices D and U of Example 10.1.

Example 10.5. The positive definite quadratic form on R4 corresponding to
the Gram matrix from Example 10.2 is

42w2 + 16wx+ 28wy + 24wz + 26x2 + 24xy − 22xz + 18y2 − 24yz + 23z2.

It can be verified by direct calculation that this quadratic form can be written
as the following linear combination of squares:

42
(
w+ 4

21x+ 1
3y+ 2

7z
)2

+ 514
21

(
x+ 98

257y− 279
514z

)2

+ 2512
257

(
y− 1405

1256z
)2

+ 81
628z

2.

The coefficients come directly from the matrices D and U of Example 10.2.

10.3 The original Fincke-Pohst algorithm

Any vector in the lattice L ⊂ Rn is an integral linear combination of the basis
vectors b1,b2, . . . ,bm which are the columns of the n ×m matrix B. Hence
any lattice vector can be written uniquely in the form

Bx = x1b1 + x2b2 + · · ·+ xmbm for some x = [x1, x2, . . . , xm]t ∈ Zm.

© 2012 by Taylor & Francis Group, LLC

160 Lattice Basis Reduction

The squared Euclidean length of Bx is given by this quadratic form:

|Bx|2 = (Bx)t(Bx) = xt(BtB)x = xtGx,

where G is the Gram matrix of the basis b1,b2, . . . ,bm. Computing the ra-
tional Cholesky decomposition G = U tDU corresponds to expressing this
quadratic form as a positive linear combination of squares:

xtGx = xt(U tDU)x = (Ux)tD(Ux).

Hence the squared Euclidean length of the lattice vector Bx is equal to

|Bx|2 =

m∑

i=1

di

(
xi +

m∑

j=i+1

uijxj

)2

,

where d1, d2, . . . , dm > 0. Suppose we are given an upper bound C > 0, and
we want to find all lattice vectors Bx ∈ L satisfying the inequality

|Bx|2 ≤ C.

Equivalently, we want to find all x = [x1, . . . , xm]t ∈ Zm for which

m∑

i=1

di

(
xi +

m∑

j=i+1

uijxj

)2

≤ C. (10.2)

We consider the last term (i = m) in the summation (10.2) and obtain

dmx
2
m ≤ C or equivalently |xm| ≤

⌊√
C

dm

⌋
.

It follows that the only possible values for xm are the integers in the range

⌈
−
√

C

dm

⌉
≤ xm ≤

⌊√
C

dm

⌋
.

(As usual, we write ⌈x⌉ for the smallest integer ≥ x, and ⌊x⌋ for the largest
integer ≤ x.) For each of these values of xm, we consider the last two terms
(i = m−1 and i = m) in the summation (10.2) and obtain

dm−1

(
xm−1 + um−1,mxm

)2
+ dmx

2
m ≤ C.

It follows that the only possible values for xm−1 are the integers in the range

⌈
−
√
C − dmx2

m

dm−1
− um−1,mxm

⌉
≤ xm−1 ≤

⌊√
C − dmx2

m

dm−1
− um−1,mxm

⌋
.

© 2012 by Taylor & Francis Group, LLC

The Fincke-Pohst Algorithm 161

Assuming that the m−k values xk+1, . . . , xm have been determined, we con-
sider the last m−k+1 terms in the summation (10.2) to obtain a range of
possible values for xk. To simplify the notation, we first define

Sk =

m∑

i=k+1

di

(
xi +

m∑

j=i+1

uijxj

)2

, Tk =

m∑

j=k+1

ukjxj .

We then calculate as follows:

m∑

i=k

di

(
xi +

m∑

j=i+1

uijxj

)2

≤ C

=⇒ dk

(
xk +

m∑

j=k+1

ukjxj

)2

+

m∑

i=k+1

di

(
xi +

m∑

j=i+1

uijxj

)2

≤ C

=⇒ dk

(
xk + Tk

)2
+ Sk ≤ C

=⇒
(
xk + Tk

)2 ≤ C−Sk

dk

=⇒ −
√
C−Sk

dk
≤ xk + Tk ≤

√
C−Sk

dk

=⇒ −
√
C−Sk

dk
− Tk ≤ xk ≤

√
C−Sk

dk
− Tk

=⇒
⌈
−
√
C−Sk

dk
− Tk

⌉
≤ xk ≤

⌊√
C−Sk

dk
− Tk

⌋
.

If we define Sm = 0 and Tm = 0 then we obtain the range of possible values
for xk as k decreases from m down to 1:

⌈
−
√
C−Sk

dk
− Tk

⌉
≤ xk ≤

⌊√
C−Sk

dk
− Tk

⌋
. (10.3)

This is the essential inequality of the Fincke-Pohst algorithm.
Maple code implementing this algorithm is given in Figures 10.2 (initializa-

tion and procedures) and 10.3 (main loop). In addition to the LinearAlgebra
package, this code uses two procedures: NORM2 computes the squared length
of a vector, and PRINT outputs a vector in the specified format. The program
performs a specified number of trials; for each trial, a random matrix is gen-
erated whose columns contain the basis of the lattice. The Gram matrix and
its rational Cholesky decomposition are then computed. The main loop on k
then begins: for each k, the quantities Sk and Tk are calculated, and then the
lower and upper bounds for xk. The list of partial results from the previous
step is extended by including each possible value of the new coefficient. A
nonzero vector is included only if its last nonzero entry is positive. (The zero
vector is also included.)

Two examples of the output of this Maple code are given in Figures 10.4

© 2012 by Taylor & Francis Group, LLC

162 Lattice Basis Reduction

M,N := 5,5: # dimension of lattice, dimension of vector space

C := 80: # upper bound on square length of lattice vectors

with(LinearAlgebra):

NORM2 := proc(v) Norm(convert(v, Vector), 2)^2 end:

PRINT := proc(v, flag) local x:

printf(" ["):

for x in v do printf("%3d", x) od:

printf("]"):

if flag then printf("\n") fi

end:

FIGURE 10.2
Maple code for the Fincke-Pohst algorithm: part 1

and 10.5. Each line contains an index number, the square length, the lattice
vector, and the coordinate vector for the lattice vector with respect to the
original lattice basis. The output vectors have been sorted by increasing square
length.

Example 10.6. We trace the execution of the Maple code of Figures 10.2
and 10.3 on the lattice in R5 with basis given by the columns of the matrix

B =




1 −4 9 −7 9
−3 2 0 5 −5

9 −8 −1 −4 −5
6 6 −3 −8 8
4 3 −6 5 −8




The Gram matrix for this basis is

G =




143 −34 −42 −86 −5
−34 129 −64 37 18
−42 −64 127 −65 110
−86 37 −65 179 −172
−5 18 110 −172 259




The matrices D and U in the rational Cholesky decomposition are

D = diagonal

[
143,

17291

143
,

1199889

17291
,

38978575

1199889
,

137545984

38978575

]

© 2012 by Taylor & Francis Group, LLC

The Fincke-Pohst Algorithm 163

for trial to 2 do

printf("\n"): printf(" trial %d \n", trial):

B := Matrix(N, M):

while Rank(B)<M do B := RandomMatrix(N,M,generator=-9..9) od:

printf("\n"): printf(" lattice basis \n"): printf("\n"):

for v in convert(Transpose(B),listlist) do PRINT(v,true) od:

G := Transpose(B).B: U := copy(G):

for j to M-1 do for i from j+1 to M do

U := RowOperation(U, [i,j], -U[i,j]/U[j,j])

od od:

DD := Matrix(M, M, (i,j) -> if i=j then U[i,i] else 0 fi):

U := MatrixInverse(DD) . U:

resultold := [[]]:

for k from M to 1 by -1 do

resultnew := []:

for r in resultold do

xvalue := [seq(0,j=1..k), op(r)]:

S := add(DD[i,i]*add(U[i,j]*xvalue[j],j=i..M)^2,i=k+1..M):

T := add(U[k,j]*xvalue[j],j=k+1..M):

lowerbound := ceil(-sqrt((C-S)/DD[k,k]) - T):

upperbound := floor(sqrt((C-S)/DD[k,k]) - T):

for x from lowerbound to upperbound do

xr := [x, op(r)]:

mm := 0:

for m to nops(xr) do if xr[m] <> 0 then mm := m fi od:

if mm = 0 then ok := true else ok := evalb(xr[mm]>0) fi:

if ok then resultnew := [op(resultnew), xr] fi

od

od:

resultold := resultnew

od:

printf("\n"): printf(" short vectors \n"): printf("\n"):

result :=

[seq([v,convert(B.convert(v,Vector),list)], v in resultnew)]:

result :=

sort(result, proc(v1,v2) NORM2(v1[2]) < NORM2(v2[2]) end):

for i to nops(result) do

v,vv := op(result[i]):

printf(" %2d: %3d", i, NORM2(vv)):

PRINT(vv, false): printf(" from"): PRINT(v, true)

od

od:

FIGURE 10.3
Maple code for the Fincke-Pohst algorithm: part 2

© 2012 by Taylor & Francis Group, LLC

164 Lattice Basis Reduction

trial 1

lattice basis

[-6 5 -8 -5 -1]

[-5 -4 1 -3 9]

[-8 -6 6 6 2]

[-4 9 2 0 0]

[-1 4 -7 -7 -8]

short vectors

1: 0 [0 0 0 0 0] from [0 0 0 0 0]

2: 58 [0 -5 2 -5 2] from [-1 1 0 0 1]

3: 77 [-4 4 4 -5 2] from [-1 1 0 1 1]

4: 80 [5 -1 1 -2 -7] from [-1 0 0 0 1]

FIGURE 10.4
Output of Maple code in Figures 10.2 and 10.3: trial 1

U =




1 − 34

143
− 42

143
− 86

143
− 5

143

0 1 −10580

17291

2367

17291

2404

17291

0 0 1 −1385539

1199889

2054480

1199889

0 0 0 1 −48123482

38978575

0 0 0 0 1




We use C = 80 as the upper bound on the square lengths of the lattice vectors.

For k = 5 we have S5 = 0 and T5 = 0, and we obtain

√
C

d5
≈ 4.76

Hence x5 must satisfy the inequalities −4 ≤ x5 ≤ 4. Since we exclude any
coordinate vector which has a negative number as its last nonzero component,
we assume 0 ≤ x5 ≤ 4. At this point, the list of partial coefficient vectors is

[x5] = [0], [1], [2], [3], [4]

© 2012 by Taylor & Francis Group, LLC

The Fincke-Pohst Algorithm 165

trial 2

lattice basis

[-2 -5 5 -4 -5]

[-3 8 3 3 -7]

[2 -9 7 7 -8]

[2 -5 2 -9 0]

[-1 -3 -4 -6 5]

short vectors

1: 0 [0 0 0 0 0] from [0 0 0 0 0]

2: 18 [-1 -2 -3 2 0] from [-1 1 1 0 2]

3: 30 [4 1 -2 3 0] from [-2 1 1 1 1]

4: 36 [-5 -3 -1 -1 0] from [1 0 0 -1 1]

5: 49 [0 6 -3 0 -2] from [-2 2 1 1 2]

6: 55 [-5 3 -4 -1 -2] from [-1 2 1 0 3]

7: 55 [2 -4 3 -1 -5] from [-1 1 1 1 1]

8: 55 [-4 5 -1 -3 -2] from [0 1 0 0 1]

9: 58 [2 2 0 -1 -7] from [-3 3 2 2 3]

10: 60 [1 0 -3 1 -7] from [-4 4 3 2 5]

11: 60 [3 -1 -5 5 0] from [-3 2 2 1 3]

12: 61 [-1 4 -6 2 -2] from [-3 3 2 1 4]

13: 63 [1 -6 0 1 -5] from [-2 2 2 1 3]

14: 64 [-3 -1 -1 -2 -7] from [-2 3 2 1 4]

15: 71 [1 -1 -4 -7 -2] from [-3 3 2 2 4]

16: 72 [-2 -4 -6 4 0] from [-2 2 2 0 4]

17: 73 [1 8 0 -2 -2] from [-1 1 0 1 0]

18: 74 [-2 1 2 -4 -7] from [-1 2 1 1 2]

19: 75 [6 -3 1 2 -5] from [-3 2 2 2 2]

20: 75 [4 0 -3 -5 5] from [-1 0 0 1 0]

21: 78 [-6 -5 -4 1 0] from [0 1 1 -1 3]

FIGURE 10.5
Output of Maple code in Figures 10.2 and 10.3: trial 2

© 2012 by Taylor & Francis Group, LLC

166 Lattice Basis Reduction

We repeat the main loop with k = 4. For each partial vector we compute

S4 = d5x
2
5 =

137545984

38978575
x2

5, T4 = u45x5 = −48123482

38978575
x5,

and then use inequality (10.3),

⌈
−
√
C−S4

d4
− T4

⌉
≤ x4 ≤

⌊√
C−S4

d4
− T4

⌋
, d4 =

38978575

1199889
,

to obtain the lower and upper bounds for x4:

x5 = 0: S4 = 0,

√
C−S4

d4
≈ 1.57, T4 = 0, −1 ≤ x4 ≤ 1

x5 = 1: S4 ≈ 3.53,

√
C−S4

d4
≈ 1.54, T4 ≈ −1.23, 0 ≤ x4 ≤ 2

x5 = 2: S4 ≈ 14.1,

√
C−S4

d4
≈ 1.42, T4 ≈ −2.47, 2 ≤ x4 ≤ 3

x5 = 3: S4 ≈ 31.8,

√
C−S4

d4
≈ 1.22, T4 ≈ −3.70, 3 ≤ x4 ≤ 4

x5 = 4: S4 ≈ 56.5,

√
C−S4

d4
≈ 0.855, T4 ≈ −4.94, 5 ≤ x4 ≤ 5

At this point, the list of partial coefficient vectors is

[
x4

x5

]
=

[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]
,

[
2
1

]
,

[
2
2

]
,

[
3
2

]
,

[
3
3

]
,

[
4
3

]
,

[
5
4

]

We repeat the main loop with k = 3. For each partial vector we compute

S3 = d4(x4 + u45)
2 + d5x

2
5, T3 = u34x4 + u35x5,

and then use inequality (10.3) to obtain the lower and upper bounds for x3.
We obtain the following table (in which some values are approximate):

x4, x5 S3

√
(C−S3)/d3 T3 minx3 maxx3

0, 0 0.0 1.07 0.0 −1 1
1, 0 32.5 0.825 −1.15 1 1
0, 1 53.0 0.624 1.71 −2 −2
1, 1 5.32 1.04 0.558 −1 0
2, 1 22.6 0.908 −0.597 0 1
2, 2 21.3 0.920 1.12 −2 −1
3, 2 23.3 0.906 −0.0397 0 0
3, 3 47.9 0.682 1.67 −2 −1
4, 3 34.6 0.809 0.518 −1 0
5, 4 56.6 0.583 1.08 −1 −1

© 2012 by Taylor & Francis Group, LLC

The Fincke-Pohst Algorithm 167

At this point, the list of partial coefficient vectors is as follows:




x3

x4

x5



 =




0
0
0








1
0
0








1
1
0








−2

0
1








−1

1
1








0
1
1








0
2
1








1
2
1








−2

2
2








−1

2
2








0
3
2








−2

3
3








−1

3
3








−1

4
3








0
4
3








−1

5
4





We repeat the main loop with k = 2. We obtain the following table:

x3, x4, x5 S2

√
(C−S2)/d2 T2 minx2 maxx2

0, 0, 0 0.0 0.813 0.0 0 0
1, 0, 0 69.4 0.296 −0.612 1 0
1, 1, 0 34.1 0.614 −0.475 0 1
−2, 0, 1 58.8 0.419 1.36 −1 −1
−1, 1, 1 18.9 0.711 0.888 −1 −1

0, 1, 1 26.9 0.661 0.276 0 0
0, 2, 1 47.3 0.520 0.413 0 0
1, 2, 1 33.8 0.618 −0.199 0 0
−2, 2, 2 75.6 0.191 1.78 −1 −2
−1, 2, 2 22.2 0.693 1.16 −1 −1

0, 3, 2 23.4 0.683 0.689 −1 −1
−2, 3, 3 55.3 0.451 2.05 −2 −2
−1, 3, 3 79.2 0.0795 1.44 −1 −2
−1, 4, 3 50.7 0.491 1.58 −2 −2

0, 4, 3 53.2 0.471 0.965 −1 −1
−1, 5, 4 57.0 0.435 1.85 −2 −2

This is the first time we have the situation that the lower bound on x2 is greater
than the upper bound, and so extending the partial vector is impossible. This
causes the number of partial coefficient vectors to decrease; the previous list
of 16 partial vectors becomes the following list of 14 partial vectors:




x2

x3

x4

x5


 =




0
0
0
0







0
1
1
0







1
1
1
0







−1
−2

0
1







−1
−1

1
1







0
0
1
1







0
0
2
1







0
1
2
1







−1
−1

2
2







−1
0
3
2







−2
−2

3
3







−2
−1

4
3







−1
0
4
3







−2
−1

5
4




We repeat the main loop with k = 1, and the number of partial vectors

© 2012 by Taylor & Francis Group, LLC

168 Lattice Basis Reduction

decreases further. We obtain the following final list of 13 coefficient vectors:



x1

x2

x3

x4

x5




=




0
0
0
0
0







1
0
1
1
0







1
1
1
1
0







0
−1
−1

1
1







1
0
0
1
1







1
0
0
2
1







1
0
1
2
1







2
0
1
2
1







1
−1
−1

2
2







2
−1

0
3
2







1
−2
−2

3
3







2
−1

0
4
3







2
−2
−1

5
4




These coefficient vectors correspond to the following short lattice vectors with
square length at most C = 80:




0
0
0
0
0







−3
−2

0
−3

0







0
−5

0
3
1







3
−3

4
−2

4







3
−3

0
6
1







−3
−7

0
0
1







3
2
4
−5

3







5
−3
−5
−2

1







6
−1

4
1
4







−1
4
−4

1
6







−4
2
−4
−2

6







5
2
−5
−5

0







2
−5
−5
−5

1




10.4 The FP algorithm with LLL preprocessing

Fincke and Pohst [43] showed how to combine their algorithm with the LLL
algorithm to produce a more efficient hybrid. This involves two insights:

(1) We can use the LLL algorithm to modify the quadratic form ob-
tained from the Gram matrix of the lattice basis; this will diminish
the ranges for the components of the partial coordinate vectors.

(2) We can reorder the vectors in the computation of the rational
Cholesky decomposition of the Gram matrix; this will decrease the
chance that a partial coordinate vector cannot be extended.

We start as before with anm-dimensional lattice L in n-dimensional Euclidean
space defined by a basis b1,b2, . . . ,bm stored in the columns of an n × m
matrix B. The Gram matrix is the m×m matrix G defined by the equation

G = BtB.

© 2012 by Taylor & Francis Group, LLC

The Fincke-Pohst Algorithm 169

The rational Cholesky decomposition of the Gram matrix has the form

G = U tDU,

where U is an upper triangular matrix and D is a positive diagonal matrix.
We define D1/2 to be the (unique) positive diagonal matrix for which

(D1/2)2 = D,

and we define the upper triangular matrix R by the equation

R = D1/2U.

We then have the classical Cholesky decomposition of the Gram matrix:

G = RtR.

We consider the inverse matrix R−1 and the m-dimensional lattice in Rm

with basis consisting of the rows (not columns) of R−1. We apply the LLL
algorithm to this basis, and obtain a reduced basis which we regard as the
rows of the matrix S−1. The change of basis matrix from the rows of R−1

to the rows of S−1 will be denoted by X−1. This application of lattice basis
reduction can be expressed by the matrix equation

S−1 = X−1R−1.

We have the following formulas for the matrices X and S:

X =
(
S−1R

)−1
, S = RX.

Let P−1 be the permutation matrix for which the matrix P−1S−1 = (SP)−1

has rows of decreasing (that is, non-increasing) Euclidean norm. We apply the
same permutation to the columns of S, and obtain the matrix SP . We now
consider the new Gram matrix H , which is the symmetric positive definite
matrix defined by the equation

H = (SP)t(SP).

We compute the rational Cholesky decomposition of H :

H = V tEV.

We apply the original Fincke-Pohst algorithm to the quadratic form corre-
sponding to the new Gram matrix H . If z is one of the coefficient vectors, we
first permute the components by calculating

y = Pz.

We then apply the change of basis matrix and obtain

x = Xy.

© 2012 by Taylor & Francis Group, LLC

170 Lattice Basis Reduction

A final step gives the short lattice vectors as elements of Rn:

w = Bx.

This procedure will be made clearer by an example.

Example 10.7. The rows of this matrix form a basis for the lattice L in R5:

Bt =




7 7 −1 −9 3
8 −2 −7 7 6
−5 −5 0 −1 6
−6 −8 −2 −2 1

7 8 −1 4 −9




We find all vectors in L with squared length at most C = 100. The Gram
matrix of this basis is

G =




189 4 −43 −75 43
4 202 −1 −26 21

−43 −1 87 78 −133
−75 −26 78 109 −121

43 21 −133 −121 211




The rational Cholesky decomposition of G = U tDU is given by the following
diagonal matrix D and upper triangular matrix U :

D = diagonal

[
189,

38162

189
,

2946751

38162
,

83142434

2946751
,

164019249

83142434

]

U =




1
4

189
− 43

189
−25

63

43

189

0 1 − 17

38162
− 2307

19081

3797

38162

0 0 1
2325044

2946751
−4701863

2946751

0 0 0 1 −12653409

83142434

0 0 0 0 1




We now use floating point arithmetic; we somewhat arbitrarily choose to use
six significant decimal digits. The classical Cholesky decomposition G = RtR
where R = D1/2U is given by the following upper triangular matrix R:

R ≈




13.7477 0.290957 −3.12778 −5.45544 3.12778
0 14.2097 −0.00632999 −1.71803 1.41382
0 0 8.78734 6.93338 −14.0212
0 0 0 5.31179 −0.808399
0 0 0 0 1.40455




© 2012 by Taylor & Francis Group, LLC

The Fincke-Pohst Algorithm 171

We compute the inverse matrix R−1:



0.0727394 −0.00148941 0.0258899 0.0404312 0.121238
0 0.0703745 0.0000506945 0.0226955 −0.0572703
0 0 0.113800 −0.148541 1.05054
0 0 0 0.188260 0.108355
0 0 0 0 0.711972




We apply the LLL algorithm to the rows of R−1, and obtain a new lattice
basis given by the rows of S−1:



0 0.0703745 0.0000506945 0.0226955 −0.0572703
0.0727394 0.0688851 0.0259406 0.0631267 0.0639677
−0.0727394 0.00148941 −0.0258899 0.147829 −0.0128830

0.145479 −0.0733533 −0.0620709 0.0184479 −0.147177
−0.0727394 0.0718639 −0.139639 −0.0574547 0.0865407




This application of the LLL algorithm was performed by the Maple command

convert(IntegerRelations[LLL](convert(RI,listlist)),Matrix);

where RI represents R−1. The change of basis matrix corresponding to this
application of the LLL algorithm is

X =




−1 1 0 0 0
1 0 0 0 0
−7 4 −1 −2 1
−1 1 1 0 0
−5 3 0 −1 1




The matrix S is the inverse of S−1:

S ≈




−1.74574 5.16448 −2.32766 3.12778 0
8.90294 2.49811 −1.71170 −1.40116 1.40749
1.66124 0.0191400 −1.85396 −3.55348 −5.23386
−1.26980 2.88659 5.31179 0.808399 −0.808399
−7.02275 4.21365 0 −1.40455 1.40455




We sort the rows of S−1 by decreasing norm and obtain the matrix P−1S−1:



0.145479 −0.0733533 −0.0620709 0.0184479 −0.147177
−0.0727394 0.0718639 −0.139639 −0.0574547 0.0865407
−0.0727394 0.00148941 −0.0258899 0.147829 −0.0128830

0.0727394 0.0688851 0.0259406 0.0631267 0.0639677
0 0.0703745 0.0000506945 0.0226955 −0.0572703




The permutation π−1 = 45321 is represented by the matrix

P−1 =




0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0




© 2012 by Taylor & Francis Group, LLC

172 Lattice Basis Reduction

We apply this permutation to the columns of S and obtain the matrix SP :

SP =




3.12778 0 −2.32766 5.16448 −1.74574
−1.40116 1.40749 −1.71170 2.49811 8.90294
−3.55348 −5.23386 −1.85396 0.0191400 1.66124
0.808399 −0.808399 5.31179 2.88659 −1.26980
−1.40455 1.40455 0 4.21365 −7.02275




From this we obtain the new Gram matrix H = (SP)t(SP):

H =




27 14 6 9 −15
14 32 3 7 −5
6 3 40 −1 −21
9 7 −1 59 −20

−15 −5 −21 −20 136




(The floating-point entries of H are nearly integers; we have rounded them
off.) It is important to observe that the entries of H are significantly smaller
than the entries of the original Gram matrix G: we have |G|∞ = 1888 and
|H |∞ = 496, where | |∞ denotes the sum of the absolute values of the entries.

The rational Cholesky decomposition of the new Gram matrix H = V tEV
is given by the diagonal matrix E and the upper triangular matrix V :

E = diagonal

[
27,

668

27
,

25829

668
,

1434770

25829
,

164019249

1434770

]

V =




1
14

27

2

9

1

3
−5

9

0 1 − 3

668

63

668

75

668

0 0 1 − 1997

25829
−11793

25829

0 0 0 1 − 429457

1434770

0 0 0 0 1




We now apply the original Fincke-Pohst algorithm to this decomposition of
the corresponding quadratic form. We obtain the results in Table 10.6, in
which the vectors are sorted by increasing Euclidean norm:

• Column z gives the coefficient vectors from the application of the original
Fincke-Pohst algorithm to the reduced Gram matrix H .

• Column y gives the permuted coefficient vectors y = Pz.

• Column x gives the coefficient vectors x = Xy before the LLL algorithm.

• Column w gives the short lattice vectors w = Bx.

The Fincke-Pohst algorithm with LLL preprocessing is presented in pseu-
docode in Figure 10.7.

© 2012 by Taylor & Francis Group, LLC

T
h
e

F
in

cke-P
o
h
st

A
lgo

rith
m

1
7
3

|w|2 w x y z

1 0
2 27 3 2 1 −2 −3 0 0 −2 0 −1 0 0 0 1 0 1 0 0 0 0
3 31 −1 1 −2 5 0 0 0 3 0 2 0 0 0 −1 1 −1 1 0 0 0
4 32 2 3 −1 3 −3 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0
5 40 −1 −3 −2 −1 −5 0 0 −1 1 0 0 0 1 0 0 0 0 1 0 0
6 55 −4 −5 −3 1 −2 0 0 1 1 1 0 0 1 −1 0 −1 0 1 0 0
7 59 2 3 −6 −3 1 1 0 4 1 3 0 1 0 0 0 0 0 0 1 0
8 65 −2 −2 −4 4 −5 0 0 2 1 2 0 0 1 −1 1 −1 1 1 0 0
9 66 −3 −6 −1 −4 −2 0 0 −2 1 −1 0 0 1 0 −1 0 −1 1 0 0

10 68 −1 1 −7 −1 4 1 0 6 1 4 0 1 0 −1 0 −1 0 0 1 0
11 77 0 0 −5 −6 4 1 0 3 1 2 0 1 0 0 −1 0 −1 0 1 0
12 77 0 −4 0 −6 −5 0 0 −4 1 −2 0 0 1 1 −1 1 −1 1 0 0
13 78 1 0 −3 2 −8 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0
14 79 2 −1 −1 −3 −8 0 0 −3 1 −1 0 0 1 1 0 1 0 1 0 0
15 84 −4 −1 −3 7 3 0 0 5 0 3 0 0 0 −2 1 −2 1 0 0 0
16 86 1 4 −8 2 1 1 0 7 1 5 0 1 0 −1 1 −1 1 0 1 0
17 87 5 5 0 1 −6 0 0 −1 0 0 0 0 0 1 1 1 1 0 0 0
18 94 −2 −2 −9 −2 −1 1 0 5 2 4 0 1 1 −1 0 −1 0 1 1 0
19 94 3 2 −4 −8 1 1 0 1 1 1 0 1 0 1 −1 1 −1 0 1 0
20 97 1 0 −8 −4 −4 1 0 3 2 3 0 1 1 0 0 0 0 1 1 0
21 99 1 4 −3 8 −3 0 0 4 0 3 0 0 0 −1 2 −1 2 0 0 0

FIGURE 10.6
Output for Example 10.7

© 2012 by Taylor & Francis Group, LLC

174 Lattice Basis Reduction

• Input: An n×m matrix B of rank m ≤ n, and an upper bound C.

• Output: All vectors of squared length ≤ C in the lattice L spanned
by the columns of B.

(1) Set G← BtB and set Q← G.

(2) For j = 1, 2, . . . ,m−1 do:

For i = j+1, . . . ,m do: Add −Qij

Qjj
(row j) of Q to row i.

(3) Create the m×m matrix D. For i = 1, 2, . . . ,m do: Set Dii ← Qii.

(4) Set U ← D−1Q and set R← D1/2U . Calculate R−1.

(5) Apply LLL to the rows of R−1 to obtain S−1 = X−1R−1.

(6) Sort the rows of S−1 by decreasing norm to obtain P−1S−1.

(7) Set S ← RX and P ← (P−1)−1.

(8) Set H ← (SP)t(SP) and Q← H .

(9) For j = 1, 2, . . . ,m−1 do:

For i = j+1, . . . ,m do: Add −Qij

Qjj
(row j) of Q to row i.

(10) Create the m×m matrix E. For i = 1, 2, . . . ,m do: Set Eii ← Qii.

(11) Set V ← E−1Q.

(12) Set old← [[]] (a list containing one element, the empty list).

(13) For k = m,m−1, . . . , 1 do:

(a) Set new← [] (the empty list).

(b) For r in old do:

• For j = 1, 2, . . . , k do: Set xj ← 0. For j = k+1, . . . ,m do:
Set xj ← rj−k.

• Set S ←∑m
i=k+1 Eii

(∑m
j=i Vijxj

)2
and T ←∑m

j=k+1 Vkjxj .

• Set ℓ←
⌈
−
√

C−S
Ekk
− T

⌉
and u←

⌊√
C−S
Ekk
− T

⌋
.

• For xk = ℓ, . . . , u do:

– If all xj = 0, or xj > 0 where j is maximal for xj 6= 0,
then: Append [xk, xk+1, . . . , xm] to new.

(c) Set old← new.

(14) For z in old do: Set w ← BXPz and output w.

FIGURE 10.7
The Fincke-Pohst algorithm with LLL preprocessing

© 2012 by Taylor & Francis Group, LLC

The Fincke-Pohst Algorithm 175

10.5 Projects

Project 10.1. Implement a recursive version of the Fincke-Pohst algorithm:
replace the main loop by a recursive procedure call. Compare the time and
space usage of the two algorithms on a number of examples.

Project 10.2. Implement on a computer the two versions of the Fincke-
Pohst algorithm: the first (original) version, and the second version with LLL
preprocessing. Run both versions on the same sample of lattices of dimensions
up to 20 (or higher, if sufficient computer time and memory are available).
Keep track of the execution times; for the second algorithm, keep track of both
the time for LLL preprocessing and the time for the application of the original
Fincke-Pohst algorithm to the reduced Gram matrix. Estimate the dimension
at which the second algorithm becomes preferable to the first algorithm.

Project 10.3. Following the original papers of Fincke and Pohst [42, 43],
write a report giving a detailed analysis of the complexity of the original
Fincke-Pohst algorithm. Extend this to a detailed analysis of the complexity
of the Fincke-Pohst algorithm with LLL preprocessing.

Project 10.4. Before the LLL algorithm and the Fincke-Pohst algorithm,
other authors had developed methods for finding short vectors in lattices.
Two of the most important contributions are by Deiter [38] and Knuth [78].
Study these references, implement these algorithms on a computer, and write
a report comparing these algorithms with the Fincke-Pohst algorithm.

10.6 Exercises

Exercise 10.1. Consider the lattice L in R3 with the rows of Bt as a basis:

Bt =



−3 −2 1

2 3 −1
−2 −3 2




Calculate the rational Cholesky decompositionG = U tDU of the Gram matrix
G = BBt. Diagonalize the quadratic form on R3 defined by G.

Exercise 10.2. Same as Exercise 10.1, but for the matrix

Bt =



−2 0 3

1 −1 −2
4 2 −1




© 2012 by Taylor & Francis Group, LLC

176 Lattice Basis Reduction

Exercise 10.3. Same as Exercise 10.1, but for the matrix

Bt =



−2 5 −3

1 5 5
−1 −2 −5




Exercise 10.4. Consider the lattice in R4 with the rows of Bt as a basis:

Bt =




−2 −4 1 2
4 −3 4 3
3 −1 0 −2
−2 −2 −1 −1




Calculate the rational Cholesky decompositionG = U tDU of the Gram matrix
G = BBt. Diagonalize the quadratic form on R3 defined by G.

Exercise 10.5. Same as Exercise 10.4, but for the matrix

Bt =




1 1 5 −5
1 3 3 1
−4 −2 −1 −5
−5 0 −2 −1




Exercise 10.6. Same as Exercise 10.4, but for the matrix

Bt =




1 2 −1 5
0 −4 −3 3
3 2 5 0
−1 1 3 −5




Exercise 10.7. Consider the lattice in R4 spanned by the three rows of Bt:

Bt =




4 −4 0 2
1 −5 −1 4
5 −3 −2 −1




Calculate the rational Cholesky decompositionG = U tDU of the Gram matrix
G = BBt. Diagonalize the quadratic form on R3 defined by G.

Exercise 10.8. Same as Exercise 10.7, but for the matrix

Bt =




2 5 0 −2
3 −3 4 1
−4 −4 −3 5




Exercise 10.9. Same as Exercise 10.7, but for the matrix

Bt =



−2 −4 0 3
−2 3 4 −1
−1 3 −1 −3




© 2012 by Taylor & Francis Group, LLC

The Fincke-Pohst Algorithm 177

Exercise 10.10. Diagonalize the positive definite quadratic forms corre-
sponding to the Gram matrices from Exercises 10.1 to 10.9.

Exercise 10.11. In each case, consider the lattice in R3 with basis consist-
ing of the columns of the matrix. Trace the execution of the Fincke-Pohst
algorithm as it finds all lattice vectors of square length at most 80:




9 0 −7
2 −1 −7
0 4 −8


 ,




1 −8 6
−3 −6 2

9 6 −4


 ,



−6 5 −1

5 −8 −5
−6 −5 −4


 ,



−8 2 −1

2 −9 −3
−5 0 −4


 ,



−3 3 −9

8 −7 7
3 2 7


 ,




8 −9 5
−1 −2 −4

4 −5 −5


 ,




0 −6 −2
−1 −8 1

6 −2 7


 ,



−9 −2 6

3 −7 −5
8 7 −5


 .

Exercise 10.12. In each case, consider the lattice in R4 with basis consist-
ing of the columns of the matrix. Trace the execution of the Fincke-Pohst
algorithm as it finds all lattice vectors of square length at most 60:




9 6 2 4
−8 2 0 −7
−6 −4 0 −7

6 9 −1 −8


 ,




−9 −4 5 −5
0 −6 −8 −4
−1 5 −5 1
−3 −6 −1 −3


 ,




5 8 2 −8
−4 3 −9 2
−5 3 7 −5
−3 −7 7 2


 ,




−5 −6 1 4
0 −8 7 −9
−1 −2 8 −2

6 −2 −1 −5


 ,




7 −1 −9 −7
6 7 3 7
9 7 8 6
−5 −1 −2 −5


 ,




8 0 −8 3
−1 −3 −8 6

5 −9 3 2
−9 −7 1 −9


 .

Exercise 10.13. In each case, consider the lattice in R5 with basis consist-
ing of the columns of the matrix. Trace the execution of the Fincke-Pohst
algorithm as it finds all lattice vectors of square length at most 100:




9 6 4 −6 −1
8 6 −4 −1 8
7 −7 −1 −3 9
−2 −6 8 −4 −3

5 −8 −5 5 −3



,




−1 −5 1 1 −2
7 8 −1 7 0
−1 6 −3 8 6

7 −4 −8 2 −2
−4 −2 2 −2 −5



,




−3 −4 −2 0 8
−1 3 4 6 6
−6 −4 −2 3 −1

2 −1 −9 −5 −5
−2 1 −2 −6 1



,




1 −9 8 6 −1
−9 −3 −4 2 −2

5 −9 −6 8 −3
−6 −2 −9 4 −6
−4 2 7 3 0



.

© 2012 by Taylor & Francis Group, LLC

178 Lattice Basis Reduction

Exercise 10.14. In each case, consider the lattice in R6 with basis consist-
ing of the columns of the matrix. Trace the execution of the Fincke-Pohst
algorithm as it finds all lattice vectors of square length at most 50:




−4 8 8 −9 3 9
−8 −8 −1 −7 6 −5

5 −5 5 −8 2 −1
9 −2 −9 −8 −9 7
−5 3 0 3 7 7
−5 −5 −3 1 6 −1



,




7 8 3 6 −4 0
−9 −9 7 1 2 −1

1 −7 5 −3 −8 −3
1 9 1 9 6 −6
4 7 −3 6 3 −7
−7 −3 −8 4 9 5



,




8 −7 8 5 −9 2
7 −6 −5 −1 2 −3
−2 −8 −6 8 4 −3

5 4 −1 9 −1 −2
6 −4 −3 −3 −5 −1
6 −1 −4 −3 −4 −2



,




0 6 −1 −4 2 −2
6 −1 7 −2 1 0
3 −5 −4 1 7 6
−5 1 −5 −1 8 −2
−6 −1 8 −3 2 −5

8 7 6 −8 −2 9



.

Exercise 10.15. Use the Fincke-Pohst algorithm with LLL preprocessing as
in Example 10.7 to redo Exercises 10.12, 10.13 and 10.14.

© 2012 by Taylor & Francis Group, LLC

11

Kannan’s Algorithm

CONTENTS

11.1 Basic definitions . 179

11.2 Results from the geometry of numbers . 182

11.3 Kannan’s algorithm . 183

11.3.1 Procedure COMPUTEBASIS . 184

11.3.2 Procedure SHORTESTVECTOR . 187

11.3.3 Procedure REDUCEDBASIS . 189

11.4 Complexity of Kannan’s algorithm . 191

11.5 Improvements to Kannan’s algorithm . 193

11.6 Projects . 194

11.7 Exercises . 195

In this chapter we present the algorithm of Kannan [70, 71] which finds a
lattice basis which is reduced in the strong sense of Definition 11.9 below; in
particular, the first vector in the basis is a shortest (nonzero) lattice vector.

11.1 Basic definitions

We recall the Gram-Schmidt orthogonalization process , and introduce some
further notation. Suppose that the vectors b1,b2, . . . ,bn ∈ Rn form a basis
of the lattice L. The orthogonal vectors b∗

1,b
∗
2, . . . ,b

∗
n are defined by

b∗
1 = b1, b∗

i = bi −
i−1∑

j=1

µijb
∗
j (i = 2, 3, . . . , n), µij =

bi · b∗
j

|b∗
j |2

.

We define µii = 1 for all i, and rewrite these equations in the form

bi =

i∑

j=1

µijb
∗
j (i = 1, 2, . . . , n).

We introduce the following normalized vectors (that is, vectors of length 1):

ui =
1

|b∗
i |

b∗
i (i = 1, 2, . . . , n).

179

© 2012 by Taylor & Francis Group, LLC

180 Lattice Basis Reduction

Definition 11.1. We define real numbers bi(j) for 1 ≤ j ≤ i ≤ n by

bi =
i∑

j=1

bi(j)uj .

That is, bi(j) = µij |b∗
j |, and in particular bi(i) = |b∗

i |.

Lemma 11.2. If b1,b2, . . . ,bn ∈ Qn then bi(j)
2 ∈ Q for 1 ≤ j ≤ i ≤ n.

Proof. Exercise 11.1.

Definition 11.3. We define vectors b(i, j) for 1 ≤ j ≤ i ≤ n by the equations

b(i, j) =

i∑

k=j

bi(k)uk.

Geometrically speaking, b(i, j) is the component of bi orthogonal to the sub-
space spanned by b1,b2, . . . ,bj−1.

Consider a vector v in Rn and a basis b1, b2, . . . , bn of Rn. We express
v with respect to the Gram-Schmidt orthonormalization u1, u2, . . . , bn:

v =
n∑

j=1

(v · uj)uj . (11.1)

Definition 11.4. For any j = 1, 2, . . . , n we obtain from equation (11.1) an
expression for v as the sum of two orthogonal components:

v =

j−1∑

k=1

(b · uk)uk +

n∑

k=j

(v · uk)uk.

The first sum is the projection of v to the subspace spanned by b1, b2, . . . ,
bj−1, and the second sum is the projection of v orthogonal to this subspace.
The projection of a set of vectors to a subspace is the set of projections of its
elements. The projection of a lattice to a subspace is a lattice in that subspace;
but in general the projected vectors do not belong to the original lattice.

Definition 11.5. Suppose that L ⊂ Rn is a lattice with basis b1, b2, . . . ,
bn. To avoid ambiguity, we sometimes write L = L(b1,b2, . . . ,bn). For j =
1, 2, . . . , n we write Lj = Lj(b1,b2, . . . ,bn) for the projection of L orthogonal
to the subspace spanned by b1,b2, . . . ,bj−1. In particular, L1 = L since the
subspace spanned by the empty set is {0}.

© 2012 by Taylor & Francis Group, LLC

Kannan’s Algorithm 181

Lemma 11.6. The change of basis matrix from the basis b1, b2, . . . , bn to
the corresponding orthonormal basis u1,u2, . . . ,un has the form




b1(1) 0 0 · · · 0 0 · · · 0
b2(1) b2(2) 0 · · · 0 0 · · · 0

...
...

...
. . .

...
...

. . .
...

bi(1) bi(2) bi(3) · · · bi(i) 0 · · · 0
bi+1(1) bi+1(2) bi+1(3) · · · bi+1(i) bi+1(i+1) · · · 0

...
...

...
. . .

...
...

. . .
...

bn(1) bn(2) bn(3) · · · bn(i) bn(i+1) · · · bn(n)




In this matrix, the (i, j) entry is the coefficient of uj in the expression for bi.

Proof. Exercise 11.2.

Let L be a lattice in Rn and let v be a nonzero vector in L. Let L′ be the
projection of L orthogonal to v; that is, for all u ∈ L, the lattice L′ contains
the component of u orthogonal to v:

L′ =
{
u− u · v

|v|2 v
∣∣∣u ∈ L

}
.

If w ∈ L′ then there are infinitely many u ∈ L such that u projects to w:
given any such u, the vectors u + nv for n ∈ Z also project to w.

Definition 11.7. With the previous notation, the lifting of w ∈ L′ is the
unique vector u ∈ L which projects to w and satisfies

−1

2
<

u · v
|v|2 ≤

1

2
.

Geometrically speaking, the lifting of w is the vector u ∈ L which projects to
w and is closest to the hyperplane orthogonal to v.

Definition 11.8. If L is an n-dimensional lattice in Rn, then Λ1(L) denotes
the first minimum of L; that is, the length of a shortest nonzero vector in L.

We now give the definition of reduced lattice basis used in this chapter.

Definition 11.9. We say that the basis v1, v2, . . . , vn of the lattice L ⊂ Rn

is Hermite-reduced if it satisfies the following two conditions:

(a) vj(j) = Λ1(Lj) for 1 ≤ j ≤ n; that is, the projection of vj or-
thogonal to v1,v2, . . . ,vj−1 is the shortest vector in the projection
of the lattice L orthogonal to v1,v2, . . . ,vj−1.

(b) |vi(j)| ≤ 1
2vj(j) for 1 ≤ j < i, or equivalently |µij | ≤ 1

2 ; that is,
vi is nearly orthogonal to v1,v2, . . . ,vi−1.

© 2012 by Taylor & Francis Group, LLC

182 Lattice Basis Reduction

Some authors call such a basis Korkine-Zolotareff-reduced. These two
conditions were introduced by Hermite [60] and Korkine and Zolotareff [79].

Lemma 11.6, which gives a lower triangular representation of a lattice basis,
shows that condition (a) in Definition 11.9 means that for all j = 1, 2, . . . , n,
the j-th diagonal entry of the matrix is the length of the shortest vector
in the (n−j+1)-dimensional lattice generated by the rows of the lower right
(n−j+1)×(n−j+1) block. In contrast, the definition of reduced basis used by
the LLL algorithm includes the much weaker condition that the j-th diagonal
entry of the matrix is the length of the shortest vector in the 2-dimensional
lattice generated by the 2× 2 block in rows j, j+1 and columns j, j+1.

11.2 Results from the geometry of numbers

The analysis of Kannan’s algorithm depends on some results from the geom-
etry of numbers, which we now recall. The first result tells us when a set of
linearly independent lattice vectors can be extended to a basis of the lattice
(see also Corollary 1.25).

Proposition 11.10. (Cassels [22], page 14) Let L be an n-dimensional lattice
and let a1,a2, . . . ,am ∈ L (m < n) be linearly independent. The following two
conditions are equivalent:

(a) There exist am+1, . . . ,an ∈ L such that a1,a2, . . . ,an is a basis
of L.

(b) If c = x1a1 + x2a2 + · · · + xmam ∈ L with x1, x2, . . . , xm ∈ R
then x1, x2, . . . , xm ∈ Z.

If m = 1 then we obtain the following special case.

Proposition 11.11. Let L be a lattice and let v ∈ L be nonzero. There exists
a basis of L containing v if and only if xv ∈ L for x ∈ R implies x ∈ Z.

This result can be restated as follows.

Proposition 11.12. (Kannan [71], page 419) Suppose that v is a nonzero
element of the lattice L such that xv does not belong to L for 0 < x < 1. Then
there is a basis of L containing v.

The second result is Minkowski’s famous Convex Body Theorem.

Theorem 11.13. (Cassels [22], page 71) Let S be a subset of Rn which is
convex and symmetric about the origin, and let vol(S) be its volume. Let L be
a lattice in Rn with determinant det(L). Let m be a positive integer. If

vol(S) > m2n det(L),

then S contains at least m pairs ±x1, ±x2, . . . , ±xm ∈ L which are distinct
from each other and from 0.

© 2012 by Taylor & Francis Group, LLC

Kannan’s Algorithm 183

If m = 1 then we obtain the following special case (see also Theorem 1.32).

Proposition 11.14. Let S be a subset of Rn which is convex and symmetric
about the origin, and let vol(S) be its volume. Let L be a lattice in Rn with
determinant det(L). If vol(S) > 2n det(L) then S contains a nonzero x ∈ L.

Lemma 11.15. Let Sn be the n-dimensional sphere of radius r > 0 in Rn:

Sn = {x ∈ Rn | |x| ≤ r }.

The n-dimensional volume of Sn equals

vol(Sn) =
πn/2

Γ(n
2 +1)

rn,

where Γ is the Gamma function.

Proof. Exercise 11.3.

Corollary 11.16. (Kannan [71], page 420) If L ⊂ Rn is an n-dimensional
lattice with determinant det(L) then there is a nonzero x ∈ L such that

|x| ≤ n1/2
(
det(L)

)1/n
.

Proof. Let S be the n-dimensional sphere in Rn with center 0 and radius

r = n1/2
(
det(L)

)1/n
.

By Lemma 11.15 and Exercise 11.4 we have

vol(S) =
πn/2

Γ(n
2 +1)

nn/2 det(L) ≥ 2n det(L).

Since S is clearly convex and symmetric about the origin, the result follows
from Proposition 11.14.

11.3 Kannan’s algorithm

Let L ⊂ Rn be a lattice with ordered basis b1,b2, . . . ,bn ∈ Zn (the vec-
tor components are integers). Kannan’s algorithm recursively finds a shortest
vector in L by computing shortest vectors in lattices of lower dimension.

Definition 11.17. The first stage of the algorithm finds a new lattice basis
a1,a2, . . . ,an ∈ Zn satisfying the following conditions:

© 2012 by Taylor & Francis Group, LLC

184 Lattice Basis Reduction

(1) For 2 ≤ j ≤ n we have aj(j) = Λ1(Lj(a1,a2, . . . ,an)). In terms
of the lower triangular representation of a1,a2, . . . ,an as in Lemma
11.6, this means that for j ≥ 2, the j-th diagonal entry is the length
of the shortest vector in the lattice generated by the rows of the
lower right (n−j+1)× (n−j+1) block.

(2) |a1|2 ≤ 4
3 |a2|2.

(3) |a2(1)|2 ≤ 1
4 |a1|2; recall that a2(1) is the component of a2 par-

allel to a1.

It follows from these conditions that

|a1|2 ≤ 2n
(
det(L)2/n

)
,

where det(L) is the determinant of the lattice L. If we compare this with the
inequality achieved by the LLL algorithm in polynomial time, namely

|a1|2 ≤ 2n
(
det(L)2/n

)
,

we see that Kannan’s algorithm finds a much shorter vector, but uses su-
perexponential time. (We will see that the complexity is O(nns) arithmetic
operations where s is the length of the input.)

The second stage of the algorithm uses the fact that, given a basis
a1,a2, . . . ,an satisfying conditions (1) to (3) of Definition 11.17, a shortest
lattice vector must have the form

x =

n∑

i=1

xiai, [x1, x2, . . . , xn] ∈ T ⊂ Zn,

where the number of elements in the set T satisfies the inequality

|T | ≤ 3n|a1|n
det(L)

.

The algorithm then enumerates all the elements of T and finds the shortest
corresponding lattice vector x.

The main procedure of Kannan’s algorithm is REDUCEDBASIS; this
calls itself recursively as well as two other procedures, COMPUTEBASIS and
SHORTESTVECTOR. We discuss these last two procedures first.

11.3.1 Procedure COMPUTEBASIS

In Kannan [70, 71] this procedure is called SELECTBASIS. This algorithm
is similar to the special case of the MLLL algorithm which takes as input
n+1 linearly dependent vectors spanning a lattice L of dimension n, and pro-
duces as output n linearly independent vectors forming a basis of L. However,
COMPUTEBASIS preserves the direction of the first vector: the first vector in

© 2012 by Taylor & Francis Group, LLC

Kannan’s Algorithm 185

• Input: A list of n+1 linearly dependent vectors b1,b2, . . . ,bn+1 ∈ Qn which
generate the n-dimensional lattice L ⊂ Rn.

• Output: A basis of L in which the first vector is a scalar multiple of b1.

• If b1 = 0 then

Set basis← [] (the empty list)

else

(1) If b1 is not a linear combination of b2, . . . ,bn+1 then

Set a1 ← b1

else

(a) Compute x2, . . . , xn+1 ∈ Q such that

b1 = x2b2 + · · ·+ xn+1bn+1.

(b) For i = 2, . . . , n+1 do:
Write xi = yi/zi with yi, zi ∈ Z and GCD(yi, zi) = 1.

(c) Set m← LCM(z2, . . . , zn+1).
(d) Set d← GCD(mx2, . . . ,mxn+1).
(e) Write m/d = p/q with p, q ∈ Z and GCD(p, q) = 1.
(f) Set a1 ← (1/q)b1.

(2) For i = 2, . . . , n+1 do:

Set bi equal to the projection of bi orthogonal to a1.

(3) Set [c2, . . . , cn]← COMPUTEBASIS(b2, . . . ,bn+1).

(4) For i = 2, . . . , n do: Set ai equal to the unique minimal lifting of ci

(see Definition 11.7) to the lattice generated by b1,b2, . . . ,bn+1.

(5) Set basis← [a1,a2, . . . ,an].

• Return basis.

FIGURE 11.1
Kannan’s procedure COMPUTEBASIS

© 2012 by Taylor & Francis Group, LLC

186 Lattice Basis Reduction

the output is always a scalar multiple of the first vector in the input. This
procedure is presented in Figure 11.1.

To explain and justify this procedure, consider the computation of a1 in
the case that b1 is a rational linear combination of b2, . . . ,bn+1:

b1 = x2b2 + · · ·+ xn+1bn+1

(
xi =

yi

zi
; yi, zi ∈ Z; GCD(yi, zi) = 1

)
.

Multiplying both sides of this equation by the least common multiple m
of the denominators zi expresses mb1 as an integral linear combination of
b2, . . . ,bn+1:

mb1 = mx2b2 + · · ·+mxn+1bn+1.

Dividing both sides of this equation by the greatest common divisor d of the
integral coefficients mx2, . . . ,mxn+1 expresses a rational multiple of b1 as an
integral linear combination of b2, . . . ,bn+1:

m

d
b1 =

mx2

d
b2 + · · ·+ mxn+1

d
bn+1.

Cancelling any common factors in m and d gives the equation

p

q
b1 =

px2

q
b2 + · · ·+ pxn+1

q
bn+1,

where m/d = p/q with GCD(p, q) = 1. Since p and q are relatively prime,
we have rp + sq = 1 for some r, s ∈ Z. By assumption b1 ∈ L, and the last
displayed equation shows that (p/q)b1 ∈ L. But we have

sb1 + r
(p
q
b1

)
=

1

q

(
sqb1 + rpb1

)
=

1

q
(sq + rp)b1 =

1

q
b1.

Thus (1/q)b1 is an integral linear combination of b1,b2, . . . ,bn+1 and hence

a1 =
1

q
b1 ∈ L.

In fact, since GCD(p, q) = 1, it follows that this is the shortest (nonzero)
multiple of b1 which belongs to the lattice L (see Exercise 11.5).

The projection bi of bi orthogonal to a1 is easily computed by the formula

bi = bi −
bi · ai

|ai|2
.

Computation of the minimal lifting of a vector ci to the lattice generated by
b1,b2, . . . ,bn+1 is left as an exercise for the reader (Exercise 11.6).

© 2012 by Taylor & Francis Group, LLC

Kannan’s Algorithm 187

11.3.2 Procedure SHORTESTVECTOR

In Kannan [70, 71] this procedure is called ENUMERATE. This procedure
is similar to the Fincke-Pohst algorithm, in the sense that it uses a complete
enumeration to find a shortest vector in a lattice with a given basis. However,
the Fincke-Pohst algorithm is more sophisticated, since it uses the Cholesky
decomposition of the Gram matrix to limit the search to the integer points
in a certain ellipsoid; on the other hand, SHORTESTVECTOR relies on a naive
search over a rectangular parallelipiped. The bounds on each coordinate in
the Fincke-Pohst algorithm depend dynamically on the coordinates already
computed, whereas the bounds on the coordinates in SHORTESTVECTOR are
computed once and for all at the start of the procedure.

Let b1,b2, . . . ,bm ∈ Qn be a basis for the m-dimensional lattice L ⊂ Qn,
and let b∗

1,b
∗
2, . . . ,b

∗
m ∈ Qn be its Gram-Schmidt orthogonalization. Suppose

that a shortest nonzero vector y ∈ L has the form

y =

m∑

i=1

yibi (yi ∈ Z).

If we are given an index i ≤ m−1 and values yi+1, . . . , ym ∈ Z then we want
to find a range of possible values of yi. We write y in the form

y =

i−1∑

j=1

yjbj + yibi + y′, y′ =

m∑

j=i+1

yjbj .

Since y is a shortest vector in the lattice, we have |y| ≤ |b1|, and the same
inequality is satisfied by the component of y in the direction of b∗

i , namely

yib
∗
i + tb∗

i (t ∈ Q),

where tb∗
i is the component of y′ in the direction of b∗

i . We have

|(yi + t)b∗
i | ≤ |b1| =⇒ |yi + t| ≤ |b1|

|b∗
i |

=⇒ −t− |b1|
|b∗

i |
≤ yi ≤ −t+

|b1|
|b∗

i |
.

Using these inequalities, it is not difficult to write an algorithm to enumerate
all possible coefficient vectors [y1, y2, . . . , ym] which provide candidates for
the shortest nonzero vector in the lattice L. (This algorithm is similar to, but
simpler than, the Fincke-Pohst algorithm; see Exercise 11.8.)

Let T denote the set of all coefficient vectors [y1, y2, . . . , ym] ∈ Zm satisfy-
ing the above inequalities. Since |b∗

i | = |bi(i)| it is clear that

|T | ≤
m∏

i=1

(
1 + 2

|b1|
|bi(i)|

)
.

Proposition 11.18. (Kannan [71], page 423) We have |T | ≤ (18n)n/2.

© 2012 by Taylor & Francis Group, LLC

188 Lattice Basis Reduction

Proof. When we call SHORTESTVECTOR from the main procedure REDUCEDBASIS
(see below), the index m = k−1 is chosen so that |bi(i)| ≤ |b1| for all
i = 1, 2, . . . ,m. Hence

|T | ≤
m∏

i=1

|bi(i)|+ 2|b1|
|bi(i)|

≤
m∏

i=1

3|b1|
|bi(i)|

=
3m|b1|m∏m
i=1 |bi(i)|

.

The denominator
∏m

i=1 |bi(i)| is the determinant det(L) of the lattice L gen-
erated by b1,b2, . . . ,bm and so we have

|T | ≤ 3m|b1|m
det(L)

.

Consider the lattice L2: the projection of L orthogonal to b1. Apply Corollary
11.16 to the (m−1)-dimensional lattice L2 to obtain

|x| ≤ (m−1)1/2
(
det(L2)

)1/(m−1)
,

where x is a shortest nonzero element of L2. At this point in the procedure
REDUCEDBASIS, we have performed a recursive call to REDUCEDBASIS, and so
|b2(2)| = Λ1(L2) which gives

|b2(2)| ≤ (m−1)1/2
(
det(L2)

)1/(m−1)
.

Conditions (2) and (3) in Definition 11.17 imply that

|b2|2 ≥
3

4
|b1|2, |b2(1)|2 ≤ 1

4
|b1|2.

Considering the 2-dimensional lattice spanned by b1 and b2 shows that

|b2|2 = |b2(1)|2 + |b2(2)|2,

and hence
|b1|2 ≤ 2|b2(2)|2.

We have
det(L) = |b∗

1| det(L2) = |b1| det(L2).

Combining this with the previous inequalities gives

|b1| ≤ 21/2|b2(2)| ≤ 21/2(m−1)1/2
(
det(L2)

)1/(m−1)

=
(
2(m−1)

)1/2
(

det(L)

|b1|

)1/(m−1)

.

Hence

|b1|m−1 ≤
(
2(m−1)

)(m−1)/2 det(L)

|b1|
,

© 2012 by Taylor & Francis Group, LLC

Kannan’s Algorithm 189

which gives

|b1|m ≤
(
2(m−1)

)(m−1)/2
det(L) ≤ (2m)m/2 det(L).

Returning to our upper bound for |T | we obtain

|T | ≤ 3m|b1|m
det(L)

≤ 3m(2m)m/2 = (18m)m/2.

Since m ≤ n this completes the proof.

11.3.3 Procedure REDUCEDBASIS

In Kannan [70, 71] this procedure is called SHORTEST. The preceding dis-
cussion provides a theoretical justification of the algorithm; some additional
explanatory comments follow. This procedure is presented in Figure 11.2.

The algorithm begins in step (1) by reducing the input basis using the LLL
algorithm. (The reduction parameter can be given its standard value α = 3

4
or any value in the range 1

4 < α < 1.) The importance of this initial LLL
reduction will be clear from the proof of Proposition 11.20 below.

The loop in steps (2) and (3) first projects the n-dimensional lattice L
spanned by b1,b2, . . . ,bn to the (n−1)-dimensional lattice L1 in the hyper-
plane orthogonal to b1, then calls REDUCEDBASIS recursively on this lattice of
lower dimension, and finally lifts the reduced basis of L1 back to L. Once the
execution of this loop is complete, the lattice L satisfies conditions (1), (2)
and (3) in Definition 11.17.

Steps (4) and (5) determine the value of k needed for Proposition 11.18;
in the proof of that result, m corresponds to k−1 in REDUCEDBASIS. Step
(6) finds a shortest vector v1 in the lattice generated by b1,b2, . . . ,bk−1;
by Proposition 11.19 (see below), this is also a shortest vector in the lattice
generated by b1,b2, . . . ,bn. Step (7) replaces the basis b1,b2, . . . ,bn by a
new basis in which the first vector is a multiple of the shortest vector v1.

Finally, steps (8), (9) and (10) repeat the computation inside the loop of
step (3); see Exercise 11.11.

Proposition 11.19. (Kannan [71], page 422) If k is defined as in steps (4)
and (5) of REDUCEDBASIS then a shortest vector of the lattice generated by
b1,b2, . . . ,bk−1 is a shortest vector of the lattice generated by b1,b2, . . . ,bn.

Proof. Consider a shortest nonzero vector x of the lattice L(b1,b2, . . . ,bn):

x =
n∑

i=1

xibi (xi ∈ Z).

If this vector does not belong to the lattice L(b1,b2, . . . ,bk−1) then at least
one of the coefficients xk, xk+1, . . . , xn is not zero. Let Vk be the subspace of

© 2012 by Taylor & Francis Group, LLC

190 Lattice Basis Reduction

• Input: A basis b1,b2, . . . ,bn of the lattice L.

• Output: A Hermite-reduced basis of L in the sense of Definition 11.9.

• If n = 1 then

Set reduced← [b1]

else

(1) Set [b1,b2, . . . ,bn]← LLL(b1,b2, . . . ,bn).

(2) Set done← false.

(3) While not done do:

(a) For i = 2, 3, . . . , n do:

Set b
′
i to the projection of bi orthogonal to b1.

(b) Set [b2,b3, . . . ,bn]← REDUCEDBASIS(b
′
2,b

′
3, . . . ,b

′
n).

(c) For i = 2, 3, . . . , n do:
Set bi to the unique lifting of bi (see Definition 11.7).

(d) If |b2|2 ≥ 3
4 |b1|2

then set done← true

else interchange b1 ↔ b2.

(4) Set indexset← { j | j ≥ 2, bj(j) ≥ |b1| }.
(5) If indexset = ∅ then set k ← n+1 else set k ← min(indexset).

(6) Set v1 ← SHORTESTVECTOR([b1,b2, . . . ,bk−1]).

(7) Set [b1,b2, . . . ,bn]← COMPUTEBASIS(v1,b1,b2, . . . ,bn).

(8) For i = 2, 3, . . . , n do:

Set b
′
i to the projection of bi orthogonal to b1.

(9) Set [b2,b3, . . . ,bn]← REDUCEDBASIS(b
′
2,b

′
3, . . . ,b

′
n).

(10) For i = 2, 3, . . . , n do:

Set bi to the unique lifting of bi (see Definition 11.7).

(11) Set reduced← [b1,b2, . . . ,bn].

• Return reduced.

FIGURE 11.2
Kannan’s procedure REDUCEDBASIS

© 2012 by Taylor & Francis Group, LLC

Kannan’s Algorithm 191

Rn spanned by b1,b2, . . . ,bk−1 and let V ⊥
k be its orthogonal complement.

Since xℓ 6= 0 for some ℓ ≥ k, it follows that the projection x′ of x to V ⊥
k is

not 0. Hence x′ is no shorter than the shortest nonzero vector in the lattice
Lk(b1,b2, . . . ,bn) obtained by projecting L(b1,b2, . . . ,bn) to V ⊥

k :

|x′| ≥ Λ1

(
Lk(b1,b2, . . . ,bn)

)
.

Condition (1) in Definition 11.17 implies that at this stage we have

Λ1

(
Lk(b1,b2, . . . ,bn)

)
= bk(k).

By the choice of k we have |b1| ≤ bk(k), and therefore

|x| ≥ |x′| ≥ bk(k) ≥ b1.

Since b1 6= 0, it follows that b1 is a shortest nonzero vector of the lattice
L(b1,b2, . . . ,bn), and b1 clearly belongs to L(b1,b2, . . . ,bk−1).

11.4 Complexity of Kannan’s algorithm

In this section we establish an upper bound on the number of arithmetic
operations performed by Kannan’s algorithm. We assume without proof some
basic results about the size of the rational numbers appearing during the
execution of the algorithm expressed in terms of the size of the input. Some
of these results can be proved in a manner similar to the complexity analysis
of the LLL algorithm. The remaining details may be found in Kannan’s paper
[71] (see especially §3, pages 425–428).

Proposition 11.20. (Kannan [71], page 423) The recursive call in step (3)(b)
of procedure REDUCEDBASIS is performed at most 5n/2 times where n is the
dimension of the input lattice L.

Proof. After the LLL reduction in step (1) of REDUCEDBASIS, the basis
b1,b2, . . . ,bn of the input lattice L satisfies the inequality

|b1| ≤ 2n/2Λ1(L),

that is, b1 is no longer than 2n/2 times the length of a shortest nonzero vector
in L. Each execution (except the first) of the loop in step (3) of REDUCEDBASIS
multiplies the length of the first basis vector b1 by a factor no greater than√

3/2. Hence every 5 executions of the loop multiply |b1| by a factor no greater
than 9

√
3/32 < 1/2. Thus once the loop has been executed 5n/2 times, the

length of b1 will have become no greater than Λ1(L), at which point the length
of b1 cannot be reduced any further.

© 2012 by Taylor & Francis Group, LLC

192 Lattice Basis Reduction

In our analysis of the LLL algorithm, we saw that the number of arithmetic
operations performed depends on the sizes of the input and of the intermediate
results. However, it is not hard to see that the number of arithmetic operations
performed by procedure REDUCEDBASIS, excluding the operations performed
by the calls to the LLL algorithm in step (1), depends only on the dimension
n of the input lattice and not on the size of the components of the lattice basis
vectors b1,b2, . . . ,bn.

Theorem 11.21. (Kannan [71], page 424) If X(n) is the number of arithmetic
operations performed by procedure REDUCEDBASIS, excluding the calls to the
LLL algorithm in step (1), then X(n) ≤ cnn for some constant c ≥ 1.

Proof. Excluding the calls to the LLL algorithm, we consider the recur-
sive calls to REDUCEDBASIS (Proposition 11.20), the calls to SHORTESTVECTOR

(Proposition 11.18), and the calls to COMPUTEBASIS. Therefore

X(n) ≤ (18n)n/2 p(n) +
5n

2
X(n−1), (11.2)

where p(n) is a polynomial in n alone. Recall the well-known limit

lim
n→∞

(n−1)n−1

nn−1
= lim

n→∞

(
1− 1

n

)n−1

=
1

e
. (11.3)

Hence

lim
n→∞

5n

2
· (n−1)n−1

nn
=

5

2e
≈ 0.9196986.

Since the sequence in (11.3) is strictly decreasing, there exists an integer P
such that

n ≥ P =⇒ 5n

2
· (n−1)n−1

nn
≤ 0.95.

There is also an integer Q such that

n ≥ Q =⇒ (18n)n/2p(n)

nn
≤ 0.05.

Set N = max(P,Q) and choose c ≥ 1 such that

n ≤ N =⇒ T (n) ≤ c nn.

This is the basis of our proof by induction on n that X(n) ≤ cnn for all n ≥ 1.
Assume that n > N and that the claim holds for n−1. Inequality (11.2) gives

X(n)

c nn
≤ (18n)n/2 p(n)

c nn
+

5n
2 X(n−1)

c nn
≤ 0.05

c
+

5n
2 c(n−1)n−1

c nn

≤ 0.05 + 0.95 = 1,

and this completes the proof.

© 2012 by Taylor & Francis Group, LLC

Kannan’s Algorithm 193

Proposition 11.22. The total number of arithmetic operations performed by
procedure REDUCEDBASIS during the calls to the LLL algorithm in step (1) is
bounded by a constant multiple of nn logB, where B is an upper bound on the
squared lengths of the input basis vectors b1, b2, . . . , bn.

Proof. Kannan [71], Proposition 3.8, page 427.

Corollary 11.23. The procedure REDUCEDBASIS computes a Hermite-reduced
basis of the input lattice using O(nns) arithmetic operations, where n is the
dimension of the lattice and s is the size of the input basis in binary digits.

11.5 Improvements to Kannan’s algorithm

Helfrich [58] and Schnorr [123] have suggested two improvements to Kannan’s
original algorithm:

(1) Replace the interchange of the basis vectors b1 and b2 in step (3)(d)
of procedure REDUCEDBASIS by an application of the Gaussian al-
gorithm to the 2-dimensional lattice spanned by b1 and b2.

(2) Reduce the size of the set T of coefficient vectors tested by procedure
SHORTESTVECTOR from (18n)n/2 to nn/2.

More precisely, Helfrich proves the following result.

Lemma 11.24. (Helfrich [58], page 129) Let b1,b2, . . . ,bn be a basis of the
lattice L in Rd which satisfies the following conditions:

(1) µij ≤ 1
2 for all 1 ≤ j < i ≤ n,

(2) |b1|2 ≤ 4
3 |b2|2,

(3) b(2, 2), . . . ,b(n, 2) is a Hermite-reduced basis of the lattice L2.

Let x = x1b1 + x2b2 + · · · + xnbn be a shortest nonzero vector of L. There
exists a subset T ⊂ Zn such that

(4) either |x| = |b1| or [x1, x2, . . . , xn] ∈ T , and

(5) |T | ≤ nn/2+o(1) and T can be computed in nn/2+O(1) arithmetic
operations.

Helfrich then proves the following bounds on the improved algorithm.

Proposition 11.25. (Helfrich [58], page 132) Let b1,b2, . . . ,bn ∈ Zd be a
basis of the lattice L ∈ Rd and let B = max(2, |b1|2, |b2|2, . . . , |bn|2). Hel-
frich’s improved version of Kannan’s algorithm computes a Hermite-reduced
basis of L using d(nn/2+O(1) + no(n) logB) arithmetic operations on integers
with binary length O(n2(logn+ logB).

© 2012 by Taylor & Francis Group, LLC

194 Lattice Basis Reduction

A few years ago, Hanrot and Stehlé [54] considered a different improvement
to Kannan’s algorithm:

(1) Replace the enumeration procedures of Kannan and Helfrich, which
search over all integer points in an n-dimensional paralleliped, by a
call to the Fincke-Pohst algorithm, which searches over all integer
points in an n-dimensional ellipsoid of smaller volume. (The ratio
between the two volumes tends to 0 as n increases.)

(2) Use a more sophisticated analysis to obtain a smaller upper bound
on the number of integer points in the n-dimensional ellipsoid.

This allows Hanrot and Stehlé to improve the complexity factor nn/2 = n0.5n

to nn/2e ≈ n0.184n.

11.6 Projects

Project 11.1. Write a report and give a seminar talk on the basic results
in the geometry of numbers which underlie Kannan’s algorithm, especially
Minkowski’s convex body theorem and the theory of Hermite’s lattice con-
stants. A very useful reference is Kannan’s survey paper [72].

Project 11.2. Implement Kannan’s algorithm (and/or the improved versions
by Helfrich/Schnorr and Hanrot/Stehlé). Test your implementation on a large
family of pseudorandom low-dimensional lattices.

Project 11.3. Work out all the details of a complete analysis of the com-
plexity of Kannan’s original algorithm.

Project 11.4. Work out all the details of a complete analysis of the com-
plexity of (one or both of) the improved versions of Kannan’s algorithm.

Project 11.5. Study Schnorr’s algorithm [123] (Appendix D) to compute a
Hermite-reduced basis of a lattice of dimension ≤ 5. Attempt to extend this
approach to dimensions ≥ 6.

Project 11.6. Helfrich [57, 58] gives an algorithm which takes as input
an arbitrary basis of a lattice and computes a basis b1,b2, . . . ,bn which is
Minkowski-reduced in the following sense: For all i = 1, 2, . . . , n the vector
bi is a shortest lattice vector which is linearly independent of b1,b2, . . .bi−1.
(In particular, b1 is a shortest lattice vector). Write a report and give a sem-
inar talk explaining this algorithm.

Project 11.7. The Fincke-Pohst algorithm and Kannan’s algorithm (and its
improved versions) find a shortest nonzero lattice vector given a basis of the
lattice. An alternative approach, using a randomized sieve algorithm, to this

© 2012 by Taylor & Francis Group, LLC

Kannan’s Algorithm 195

Shortest Vector Problem (SVP) has been proposed by Ajtai et al. [7, 8]; see
also Nguyen and Vidick [111]. Write a report and present a seminar talk on
this algorithm.

11.7 Exercises

Exercise 11.1. Prove Lemma 11.2.

Exercise 11.2. Prove Lemma 11.6.

Exercise 11.3. Prove Lemma 11.15.

Exercise 11.4. Prove the following inequality for n ≥ 1:

πn/2

Γ(n
2 +1)

nn/2 ≥ 2n.

Exercise 11.5. Suppose that b1,b2, . . . ,bn+1 ∈ Qn generate an n-
dimensional lattice L. Suppose that b1 is a rational linear combination of
b2, . . . ,bn+1 and that p and q are relatively prime integers such that (p/q)b1

is an integral linear combination of b2, . . . ,bn+1. Prove that (1/q)b1 is the
shortest (nonzero) multiple of b1 in L.

Exercise 11.6. Suppose that b1,b2, . . . ,bn+1 ∈ Qn, with b1 6= 0, are linearly
dependent vectors which generate an n-dimensional lattice. Let b2, . . . ,bn+1

be the projections of b2, . . . ,bn+1 orthogonal to b1, and let c be any vector in
the lattice generated by b2, . . . ,bn+1. Write down an algorithm to compute
the unique minimal lifting (in the sense of Definition 11.7) of c to the lattice
generated by b1,b2, . . . ,bn+1. Hint: See Helfrich [58] (page 128) and Kannan
[71] (page 428).

Exercise 11.7. Write a computer program to implement the procedure
COMPUTEBASIS based on the description given in subsection 11.3.1. Compare
the performance of this algorithm with the corresponding special case of the
MLLL algorithm in which the input consists of n+1 vectors generating a lat-
tice of dimension n.

Exercise 11.8. Write a computer program to implement the enumeration
procedure SHORTESTVECTOR based on the description given in subsection
11.3.2. Compare the performance of this algorithm with that of the Fincke-
Pohst algorithm.

Exercise 11.9. Work out precisely the complexity (the number of arith-
metic operations performed as a function of the size of the input) for both
the Fincke-Pohst algorithm (without LLL preprocessing) and the procedure
SHORTESTVECTOR described in subsection 11.3.2.

© 2012 by Taylor & Francis Group, LLC

196 Lattice Basis Reduction

Exercise 11.10. Using computer implementations of both the Fincke-Pohst
algorithm (without LLL preprocessing) and the procedure SHORTESTVECTOR,
compare the running times of these two methods on a set of pseudorandom
lattice bases. In particular, estimate the dimension at which the Fincke-Pohst
algorithm starts to perform better than SHORTESTVECTOR on the lattice bases
in your sample.

Exercise 11.11. Why is it necessary to perform steps (8), (9) and (10) in
the procedure REDUCEDBASIS of Figure 11.2? What would go wrong if these
steps were omitted?

Exercise 11.12. Write down the details of the proof of Lemma 11.24.

© 2012 by Taylor & Francis Group, LLC

12

Schnorr’s Algorithm

CONTENTS

12.1 Basic definitions and theorems . 197

12.2 A hierarchy of polynomial-time algorithms . 202

12.3 Projects . 206

12.4 Exercises . 207

This chapter discusses Schnorr’s paper [123] which introduced a one-parameter
family of lattice basis reduction algorithms interpolating between the LLL
algorithm [88] and Kannan’s algorithm [70, 71] for a Hermite-reduced basis.
For an n-dimensional lattice L ⊂ Zn and a fixed integer k ≥ 2, Schnorr’s
algorithm repeatedly applies Hermite reduction to blocks of length k in the
lattice basis b1,b2, . . . ,bn ∈ Zn. For k = 2, the algorithm is equivalent to
LLL reduction; for k = n, the algorithm is equivalent to Hermite reduction.
Schnorr’s algorithm outputs a (nonzero) vector x ∈ L for which

|x|2 ≤ (6k2)n/kΛ1(L)2,

where Λ1(L) is the first minimum of L. If B is an upper bound for
|b1|2, |b2|2, . . . , |bn|2 then the complexity of Schnorr’s algorithm is given by

O
(
n2(kk/2+o(k) + n2) logB

)
,

arithmetic operations on integers with O(n logB) binary digits.
The basic idea of the LLL algorithm is to repeatedly perform the Gaussian

algorithm on sublattices of dimension 2. The output of the Gaussian algorithm
is a Hermite-reduced basis of a 2-dimensional lattice (Exercise 12.1). The basic
idea of Schnorr’s algorithm is that this strategy can be generalized, using
Kannan’s algorithm for Hermite reduction, to repeatedly compute a Hermite-
reduced basis for sublattices of dimension k, where k is any integer ≥ 2.

12.1 Basic definitions and theorems

Let b1,b2, . . . ,bn ∈ Rd be a sequence of linearly independent vectors (hence
n ≤ d) forming a basis of the lattice L.

197

© 2012 by Taylor & Francis Group, LLC

198 Lattice Basis Reduction

Definition 12.1. For 1 ≤ j ≤ i 6= n we denote by bi(j) the component of
bi orthogonal to the subspace spanned by b1,b2, . . . ,bj−1. (Note the slight
difference between this notation and that of the previous chapter.) We also
write b∗

j = bj(j) so that b∗
1,b

∗
2, . . . ,b

∗
n is the Gram-Schmidt orthogonaliza-

tion of b1,b2, . . . ,bn. We write Li for the projection of L orthogonal to the
subspace spanned by b1,b2, . . . ,bi−1; this can also be expressed as

Li = Zbi(i) + Zbi+1(i) + · · ·+ Zbn(i).

Thus Li is a lattice of dimension n−i+1.

Definition 12.2. A lattice basis b1,b2, . . . ,bn is size-reduced if its Gram-
Schmidt coefficients satisfy

|µij | ≤
1

2
(1 ≤ j < i ≤ n).

The lattice basis is Hermite-reduced if it is size-reduced and also satisfies

|b∗
i | = Λ1(Li) (1 ≤ i ≤ n).

That is, b∗
i is a shortest nonzero vector in the lattice Li.

The relation between LLL-reduced bases and Hermite-reduced bases can
be clarified by recalling the definition of the successive minima of a lattice.

Definition 12.3. Let L be a lattice of dimension n in Rd. We write Λi(L) for
the i-th minimum of the lattice and define this to be the least real number
c for which there exist i linearly independent vectors x1,x2, . . . ,xi ∈ L such
that |xj | ≤ c for j = 1, 2, . . . , i. In other words, Λi(L) is the radius of the
smallest ball in Rd containing i linearly independent lattice vectors.

The next two results express the relative quality of LLL-reduced and
Hermite-reduced bases in terms of the sucessive minima of the lattice.

Theorem 12.4. (Lenstra, Lenstra, Lovász [88]) If b1,b2, . . . ,bn is an LLL-
reduced basis (with parameter α = 3

4) of an n-dimensional lattice L then

1

2i−1
≤ |bi|2

Λi(L)2
≤ 2i−1 (1 ≤ i ≤ n).

Theorem 12.5. (Lagarias et al. [84], page 336) If b1,b2, . . . ,bn is a Hermite-
reduced basis of an n-dimensional lattice L then

4

i+ 3
≤ |bi|2

Λi(L)2
≤ i+ 3

4
(1 ≤ i ≤ n).

The basic idea of Schnorr [123] is to introduce lattice bases that are locally
Hermite-reduced for arbitrary block size k ≥ 2 in the same sense that an LLL-
reduced lattice basis is locally Hermite-reduced for block size k = 2.

© 2012 by Taylor & Francis Group, LLC

Schnorr’s Algorithm 199

Definition 12.6. Assume k ≥ 2. A lattice basis b1,b2, . . . ,bn ∈ Rd is called
k-reduced if it is size-reduced and for each i = 1, 2, . . . , n−k+1 the vectors

bi(i), bi+1(i), . . . , bi+k−1(i)

form a Hermite-reduced basis of a sublattice of Li. That is, the projections
of the k consecutive basis vectors bi,bi+1, . . . ,bi+k−1 to the orthogonal com-
plement of the span of the first i−1 basis vectors b1,b2, . . . ,bi−1 form a
Hermite-reduced basis of the k-dimensional lattice that they generate.

Definition 12.7. Consider a lattice basis b1,b2, . . . ,bn ∈ Rd. If k ≥ 2 then
by a k-block we mean a sequence of k consecutive basis vectors,

bi, bi+1, . . . , bi+k−1.

We use the same term for the corresponding sequence of projected vectors,

bi(i), bi+1(i), . . . , bi+k−1(i).

Using this terminology, we can say that the LLL algorithm is based on
the idea of repeatedly applying the Gaussian algorithm to reduce 2-blocks in
the basis of an n-dimensional lattice. The 2-blocks bi(i),bi+1(i) of an LLL-
reduced basis are almost Hermite-reduced; they would be Hermite-reduced if
we used the limiting value α = 1 of the reduction parameter.

Definition 12.8. Assume k ≥ 2 and n = mk for m ≥ 1. Let b1,b2, . . . ,bn be
a basis for the n-dimensional lattice L ⊂ Rd. This basis is block 2k-reduced
if it is size-reduced and for each i = 0, 1, . . . ,m−2 the vectors

bik+1(ik+1), bik+2(ik+1), . . . , b(i+2)k(ik+1)

form a Hermite-reduced basis of a sublattice of Lik. (Note that the consecutive
2k-blocks overlap in k consecutive basis vectors.) That is, the projections of
the vectors in the i-th 2k-block, to the orthogonal complement of the span of
the preceding ik basis vectors b1,b2, . . . ,bik, form a Hermite-reduced basis
of the 2k-dimensional lattice that they generate.

We will see below that every block 2k-reduced basis contains a vector of
length at most (4k2)n/k times the length of a shortest nonzero lattice vector.

In order to describe more precisely the quality of a k-reduced lattice basis,
Schnorr [123] introduced the following lattice constants. (To justify the termi-
nology, recall that a Hermite-reduced basis is also called a Korkine-Zolotareff
reduced basis.)

Definition 12.9. (Schnorr [123], page 205) For an integer k ≥ 1 we define
the Korkine-Zolotareff constant (or KZ-constant for short) as follows:

αk = max
|b1|2
|b∗

k|2
,

where the maximum is over all Hermite-reduced bases b1,b2, . . . ,bk of lattices
of dimension k.

© 2012 by Taylor & Francis Group, LLC

200 Lattice Basis Reduction

Lemma 12.10. We have αk ≤ αk+1 for all k ≥ 1.

Proof. Suppose that the vectors b2, . . . ,bk+1 form a Hermite-reduced basis of
a k-dimensional lattice in Rd where d ≥ k+1. Let b1 ∈ Rd be such that |b1| =
|b2| and b1 ·bi = 0 for i = 2, . . . , k+1. Then b1,b2, . . . ,bk+1 form a Hermite-
reduced basis of a (k+1)-dimensional lattice in Rd (Exercise 12.2).

We now quote a sequence of results from Schnorr [123]; the proofs will
be left as exercises, but details may be found in the original paper. The first
result relates the Korkine-Zolotareff constant to the length of the first vector
in a k-reduced lattice basis.

Theorem 12.11. (Schnorr [123], page 205) If k−1 is a divisor of n−1 then
every k-reduced basis b1,b2, . . . ,bn of an n-dimensional lattice L satisfies

|b1|2 ≤ α
n−1
k−1

k Λ1(L)2.

Proof. Exercise 12.3.

Definition 12.12. For n ≥ 1 the Hermite constant is defined by

γn = max
Λ1(L)2

det(L)2/n
,

where the maximum is over all lattices L of dimension n.

Lemma 12.13. (Schnorr [123], page 206) If b1,b2, . . . ,bn is a Hermite-
reduced basis of an n-dimensional lattice then for j = 1, 2, . . . , n−1 we have

|b∗
1|2 ≤ γn/(n−1)

n

j−1∏

i=1

γ
1/(n−i−1)
n−i

(n∏

i=j+1

|b∗
i |2
)1/(n−j)

.

Proof. Exercise 12.4.

Corollary 12.14. (Schnorr [123], page 207) For k ≥ 1 we have

αk ≤ k1+ln k,

where ln k is the natural logarithm.

Proof. Exercise 12.5.

Remark 12.15. Ajtai [9] has shown that, for some ǫ > 0 and all k ≥ 1,

αk ≥ kǫ ln k.

Corollary 12.16. If b1,b2, . . . ,bn is a k-reduced basis of the lattice L then

|b1|2 ≤ (1 + ǫk)n−1Λ1(L),

where ǫk is a constant depending only on k which satisfies

lim
k→∞

ǫk = 0.

© 2012 by Taylor & Francis Group, LLC

Schnorr’s Algorithm 201

Proof. It follows from Corollary 12.14 that

lim
k→∞

α
1/k
k = 1.

Combining this with Theorem 12.11 gives the required inequality.

Definition 12.17. (Schnorr [123], page 207) For an integer k ≥ 1 we define

βk = max
(|b∗

1|2|b∗
2|2 · · · |b∗

k|2
|b∗

k+1|2|b∗
k+2|2 · · · |b∗

2k|2
)1/k

,

where the maximum is over all Hermite-reduced bases b1,b2, . . . ,b2k of lat-
tices of dimension 2k. (We call βk the Schnorr constant.)

Theorem 12.18. (Schnorr [123], page 207) If b1,b2, . . . ,bn for n = mk is
a block 2k-reduced basis of an n-dimensional lattice L then

|b1|2 ≤ γkβ
m−1
k Λ1(L)2.

Proof. Exercise 12.6.

Theorem 12.19. (Schnorr [123], page 208) For all k ≥ 1 we have

βk ≤ 4k2.

Proof. Exercise 12.7.

Remark 12.20. Ajtai [9] has shown that, for some ǫ > 0 and all k ≥ 1,

βk ≥ kǫ.

Gama et al. [44] have shown that, for all k ≥ 1,

βk ≥ 1
12k.

Corollary 12.21. For k ≥ 1 we have the following upper bound for the
Schnorr constants βk in terms of the Hermite constants γk:

βk ≤
k∏

i=1

γ
2/(2k−i)
2k−i+1 .

Proof. Combine the inequality of Lemma 12.13 with the formula in Definition
12.17. The details are left to the reader as Exercise 12.8.

The exact value of γk is known only for k ≤ 8 and k = 24; in particular,
we have the following table, taken from Nguyen [105], page 33:

k 1 2 3 4 5 6 7 8 · · · 24

γk 1
(

4
3

)1/2
21/3 21/2 81/5

(
64
3

)1/6
641/7 2 · · · 4

© 2012 by Taylor & Francis Group, LLC

202 Lattice Basis Reduction

Using these values and Corollary 12.21 we obtain

β1 ≤ γ2
2 =

4

3
≈ 1.333333333,

β2 ≤ γ2/3
4 γ3 = 22/3 ≈ 1.587401052,

β3 ≤ γ2/5
6 γ

1/2
5 γ

2/3
4 =

2

3
21/30 314/15 ≈ 1.902200296,

β4 ≤ γ2/7
8 γ

1/3
7 γ

2/5
6 γ

1/2
5 =

2

3
219/70 214/15 ≈ 2.243520558.

12.2 A hierarchy of polynomial-time algorithms

To prove that the algorithms in Schnorr’s hierarchy run in polynomial time,
we introduce the weakened concepts of semi-k-reduction and semi-block-2k-
reduction. We have already seen this weakening process before in the case
k = 2: the Gaussian algorithm for 2-dimensional lattices is modified by the
introduction of a reduction parameter. For simplicity we will follow Schnorr
[123] and base the discussion on the original version of the LLL algorithm
with parameter α = 3

4 . Similar algorithms can be developed for any value of
the reduction parameter: 1

4 < α < 1 (Project 12.2).
The complexity analysis of the LLL algorithm depends on the fact that a

reduction step changes only one of the Gram determinants

di =

i∏

j=1

|b∗
j |2. (12.1)

This determinant decreases by a scalar factor depending on the reduction
parameter; for α = 3

4 the determinant decreases by a factor of at least 4
3 .

Extending this analysis to Hermite reduction is not straightforward, since
Hermite reduction of a k-block

bs+1(s+1), bs+2(s+1), · · · , bs+k(s+1),

may change the Gram determinants di for i = s+1, s+2, . . . , s+k−1 and some
of these determinants may increase. We make the following definitions.

Definition 12.22. Let k ≥ 1, let n = mk for some m ≥ 1, and let
b1,b2, . . . ,bn be a basis of the lattice L ⊂ Rd. We generalize the Gram
determinants to the m pairwise disjoint k-blocks by defining

Ci =

k∏

j=1

|b∗
ik+j |2, Di =

i−1∏

j=0

Cj (i = 0, 1, . . . ,m−1).

© 2012 by Taylor & Francis Group, LLC

Schnorr’s Algorithm 203

Definition 12.23. Let b1,b2, . . . ,bn where n = mk be a basis of the lattice
L ⊂ Rd. This basis is semi-k-reduced if it is size-reduced and satisfies

(1) We have |b∗
ik|2 ≤ 2|b∗

ik+1|2 for i = 0, 1, . . . ,m−1.

(2) For i = 0, 1, . . . ,m−1 the i-th k-block is Hermite-reduced:

bik+1(ik+1), bik+2(ik+1), . . . , b(i+1)k(ik+1).

This basis is semi-block-2k-reduced if it is semi-k-reduced and also satisfies

(3) We have Ci ≤ 4
3β

k
kCi+1 for i = 0, 1, . . . ,m−1.

Here βk is the Schnorr constant of Definition 12.17.

Theorem 12.24. (Schnorr [123], page 209) If b1,b2, . . . ,bn for n = mk is
a semi-block-2k-reduced basis of an n-dimensional lattice L then

|b1|2 ≤ 2γkαk

(
4
3βk

)m−2
Λ1(L)2.

Proof. Consider a shortest nonzero vector in L:

x = x1b1 + x2b2 + · · ·+ xnbn.

Let ℓ be the largest index for which xℓ 6= 0:

ℓ = max{j | xj 6= 0}.

Let i be the index of the k-block containing bℓ: that is, the unique i for which

ik < ℓ ≤ (i+1)k.

Using Definition 12.12, equation (12.1), and Definition 12.22, we have

|b1|2 ≤ γkD
1/k
1 = γkC

1/k
1 .

Condition (3) of Definition 12.23 and induction on i imply that

|b1|2 ≤ γk

(
4
3βk

)i−2
C

1/k
i−1 (i ≥ 2). (12.2)

Using Definition 12.9, condition (1) of Definition 12.23, and Lemma 12.10, we
obtain

|b∗
(i−1)k+j |2 ≤ αk|b∗

ik|2 (1 ≤ j ≤ k).
Therefore

C
1/k
i−1 =

k∏

j=1

|b∗
(i−1)k+j |2/k ≤ αk|b∗

ik|2. (12.3)

Conditions (1) and (2) of Definition 12.23 imply that

|b∗
ik|2 ≤ 2|b∗

ik+1|2 ≤ 2|x|2 = 2Λ1(L)2. (12.4)

© 2012 by Taylor & Francis Group, LLC

204 Lattice Basis Reduction

• Input: A basis b1,b2, . . . ,bn (n = mk) for a lattice L ⊂ Zd.

• Output: A semi-k-reduced basis of L.

(1) For i = 0, 1, . . . ,m−1 do:

Perform Hermite reduction on the i-th k-block:

bik+1(ik+1), bik+2(ik+1), . . . , b(i+1)k(ik+1).

(2) Set i← 1.

(3) While i ≤ m−1 do:

(Check condition (1) of Definition 12.23)

If |b∗
ik|2 > 2 |b∗

ik+1|2 then

(a) (Size-reduce bik+1 as in the LLL algorithm)
For j = ik, . . . , 2, 1 do:

Set bik+1 ← bik+1 − ⌈µik+1,j⌋bj .
For ℓ = 1, . . . , j do: Set µik+1,ℓ ← µik+1,ℓ − ⌈µik+1,j⌋µj,ℓ.

(b) Exchange bik ↔ bik+1.
(c) Perform Hermite reduction on k-blocks s = i−1 and s = i:

bsk+1(sk+1), bsk+2(sk+1), . . . , b(s+1)k(sk+1).

else

(d) Set i← i+ 1.

(4) Return b1,b2, . . . ,bn (n = mk).

FIGURE 12.1
Schnorr’s algorithm for semi-k-reduction

Combining inequalities (12.2), (12.3) and (12.4) we see that for 2 ≤ i ≤ m,

|b1|2 ≤ 2γkαk

(
4
3βk

)m−2
Λ1(L)2.

If i = 1 then this argument shows that

|b1|2 ≤ 2γkαkΛ1(L)2.

If i = 0 then |b1|2 = Λ1(L)2, and this completes the proof.

Schnorr’s algorithms for semi-k-reduction and semi-block-2k-reduction are
presented in Figures 12.1 and 12.2. Both call a subroutine for Hermite reduc-
tion; for this we can use either Kannan’s algorithm or one of its improved
versions. The algorithm for semi-block-2k-reduction tests inequalities involv-
ing the unknown constants βk of Definition 12.17. However, the algorithm of
Figure 12.2 still works well if we replace these occurrences of βk by the upper
bound 4k2 of Theorem 12.19.

© 2012 by Taylor & Francis Group, LLC

Schnorr’s Algorithm 205

• Input: A basis b1,b2, . . . ,bn (n = mk) for a lattice L ⊂ Zd.

• Output: A semi-block-2k-reduced basis of L.

(1) For i = 0, 1, . . . ,m−1 do:

Perform Hermite reduction on the i-th k-block:

bik+1(ik+1), bik+2(ik+1), . . . , b(i+1)k(ik+1).

(2) Set i← 1.

(3) While i ≤ m−1 do:

(Check conditions (1) and (3) of Definition 12.23)

If |b∗
ik|2 > 2 |b∗

ik+1|2 then

(a) If |b∗
ik|2 > 2 |b∗

ik+1|2 or Ci >
4
3β

k
kCi+1 then

(i) (Size-reduce bik+1 as in the LLL algorithm)
For j = ik, . . . , 2, 1 do:

Set bik+1 ← bik+1 − ⌈µik+1,j⌋bj .
For ℓ = 1, 2, . . . , j do:

Set µik+1,ℓ ← µik+1,ℓ − ⌈µik+1,j⌋µj,ℓ.
(ii) Exchange bik ↔ bik+1.
(iii) For s = i−1 and s = i, perform Hermite reduction on

the k-block:
bsk+1(sk+1), bsk+2(sk+1), . . . , b(s+1)k(sk+1).

(b) If Ci >
4
3β

k
kCi+1 then

(i) For s = i−1, perform Hermite reduction on the 2k-block:
bsk+1(sk+1), bsk+2(sk+1), . . . , b(s+2)k(sk+1).

else

(c) Set i← i+ 1.

(4) Return b1,b2, . . . ,bn (n = mk).

FIGURE 12.2
Schnorr’s algorithm for semi-block-2k-reduction

© 2012 by Taylor & Francis Group, LLC

206 Lattice Basis Reduction

A detailed analysis of the complexity of these algorithms is presented in
Schnorr’s original paper [123]. We assume that the lattice has dimension n and
consists of vectors of dimension d where d = O(n). During the algorithm for
semi-block-2k-reduction (Figure 12.2), the number of calls to the subroutine
for Hermite reduction (of k-blocks or 2k-blocks) is

O
(n2

k
logB

)
,

where n = mk and B is an upper bound for |b1|2, |b2|2, . . . , |bn|2 (the square-
lengths of the input basis vectors). The number of arithmetical operations
performed by this algorithm is

O
(
n2(kk/2+o(k) + n2) logB

)
,

and the number of bits in the integer operands is O(n logB).
The worst-case behavior of Schnorr’s algorithm for semi-block-2k-

reduction has been analyzed by Ajtai [9]; see also the related work of Schnorr
[124]. Gama et al. [44] have reconsidered Schnorr’s algorithm for semi-block-
2k-reduction and have reformulated it as a generalization of the LLL algo-
rithm. They have also shown that the output of Schnorr’s algorithm is better
than was previously realized: they decrease Schnorr’s original complexity fac-
tors by raising them to the power ln 2 ≈ 0.6931471806.

12.3 Projects

Project 12.1. As we have seen in the last two chapters, the analysis of
algorithms for computing lattice bases of very good quality (such as Hermite-
reduced bases) depends on classical results in the geometry of numbers, and in
particular on the theory of Hermite’s constants γn. Write a report and present
a seminar talk on these constants, based on standard texts: Cassels [22], Rogers
[121], Lekkerkerker [87], Gruber and Lekkerkerker [52], Conway and Sloane
[27], and Martinet [93]. For a recent survey paper relating Hermite’s constant
to algorithms for lattice basis reduction, see Nguyen [105].

Project 12.2. Schnorr’s paper [123] is based on the original version of the
LLL algorithm with reduction parameter α = 3

4 . Generalize Schnorr’s hierar-
chy of algorithms and his complexity analysis by using the general version of
the LLL algorithm with 1

4 < α < 1.

Project 12.3. Section 4 of Schnorr’s paper [123] presents an improvement
of Kannan’s algorithm for Hermite reduction, which is different from the im-
proved algorithms of Helfrich and Hanrot-Stehlé mentioned in the previous
chapter. Compare these three modifications of Kannan’s algorithm.

© 2012 by Taylor & Francis Group, LLC

Schnorr’s Algorithm 207

Project 12.4. Work out the details of a complexity analysis of Schnorr’s
algorithm for semi-block-2k-reduction based on his original paper [123] (see
especially Sections 4 and 5). Note that Schnorr’s analysis is based on his
improved version of Kannan’s algorithm for Hermite reduction.

Project 12.5. An algorithm for lattice basis reduction similar to the algo-
rithms in Schnorr’s hierarchy is given by Schnorr and Euchner [127]. Compare
this algorithm (block Hermite reduction) with the algorithms in Schnorr [123].

Project 12.6. Koy and Schnorr [80, 81] (see also Schnorr [125]) introduced
the concept of segment LLL-reduced bases which is closely related to the block
reduction discussed in this chapter. Write a report and present a seminar talk
explaining the Koy-Schnorr algorithm.

12.4 Exercises

Exercise 12.1. Show that the output of the Gaussian algorithm applied to
a basis of a 2-dimensional lattice is a Hermite-reduced basis of the lattice.

The remaining exercises are based directly on results in Schnorr [123].

Exercise 12.2. Complete the proof of Lemma 12.10.

Exercise 12.3. Prove Theorem 12.11.

Exercise 12.4. Prove Lemma 12.13.

Exercise 12.5. Prove Corollary 12.14.

Exercise 12.6. Prove Theorem 12.18.

Exercise 12.7. Prove Theorem 12.19.

Exercise 12.8. Complete the proof of Corollary 12.21.

© 2012 by Taylor & Francis Group, LLC

13

NP-Completeness

CONTENTS

13.1 Combinatorial problems for lattices . 209

13.2 A brief introduction to NP-completeness . 212

13.3 NP-completeness of SVP in the max norm . 212

13.4 Projects . 218

13.5 Exercises . 219

In this chapter we present the proof by van Emde Boas [144] that the problem
of finding a shortest lattice vector with respect to the max norm on Rn is NP-
complete. By the max norm we mean as usual

|x|∞ = max
(
|x1|, |x2|, . . . , |xn|

)
for x = [x1, x2, . . . , xn] ∈ Rn .

Proving NP-completeness of the shortest vector problem for the Euclidean
norm is much more difficult (Project 13.2).

13.1 Combinatorial problems for lattices

We consider a family of closely related combinatorial problems. The first of
these, POSITIVE PARTITION, is famous for being among the first problems
shown to be NP-complete: see Karp [74], Garey and Johnson [46].

POSITIVE PARTITION
INSTANCE: A vector [a1, a2, . . . , an] of positive integers.
QUESTION: Does there exist a subset I ⊂ N = {1, 2, . . . , n}
such that ∑

i∈I

ai =
∑

j∈N\I

aj?

This problem is called PARTITION in Garey and Johnson [46]. We follow van
Emde Boas [144] and use the name PARTITION for the following variant, in
which the vector components are not required to be positive.

209

© 2012 by Taylor & Francis Group, LLC

210 Lattice Basis Reduction

PARTITION
INSTANCE: A vector [a1, a2, . . . , an] of integers.
QUESTION: Does there exist a subset I ⊂ N = {1, 2, . . . , n}
such that ∑

i∈I

ai =
∑

j∈N\I

aj ?

It is not difficult to show that NP-completeness of PARTITION follows from
the known NP-completeness of POSITIVE PARTITION (Exercise 13.1). We
rewrite the equation which must be satisfied in PARTITION this way:

∑

i∈I

ai −
∑

j∈N\I

aj = 0 .

The question asked by PARTITION is then equivalent to the following: Do
there exist x1, x2, . . . , xn ∈ {±1} such that

n∑

i=1

xiai = 0 ?

If we now weaken the condition on the coefficients x1, x2, . . . , xn to allow some
but not all of them to be zero, then we obtain our third problem:

WEAK PARTITION
INSTANCE: A vector [a1, a2, . . . , an] of integers.
QUESTION: Do there exist x1, x2, . . . , xn ∈ {−1, 0, 1}, not all zero,
such that

n∑

i=1

xiai = 0 ?

In PARTITION, we must partition the vector components into two comple-
mentary subsets with equal sum, but in WEAK PARTITION, it suffices to
produces two disjoint nonempty subsets with equal sum. The question asked
by WEAK PARTITION is equivalent to the following: Do there exist integers
x1, x2, . . . , xn, not all zero, with |xi| ≤ 1 for all i, such that

n∑

i=1

xiai = 0 ?

If we weaken the condition on the coefficients x1, x2, . . . , xn to allow an arbi-
trary but fixed upper bound K, then we obtain our fourth problem:

© 2012 by Taylor & Francis Group, LLC

NP-Completeness 211

BOUNDED HOMOGENEOUS LINEAR EQUATION
INSTANCE: A vector [a1, a2, . . . , an] of integers; an integer K ≥ 1.
QUESTION: Do there exist integers x1, x2, . . . , xn, not all zero,
with |xi| ≤ K for all i, such that

n∑

i=1

xiai = 0 ?

We abbreviate the name of this problem by BHLE.
We now introduce our fifth problem, the main topic of this chapter:

SHORTEST VECTOR PROBLEM IN THE MAX-NORM
INSTANCE: Vectors v1,v2, . . . ,vn in Zn, linearly independent in Rn,
which form a basis for a lattice L, together with an integer K ≥ 1.
QUESTION: Do there exist x1, x2, . . . , xn ∈ Z, not all zero, such that
the lattice vector

y = x1v1 + x2v2 + · · ·+ xnvn = [y1, y2, . . . , yn] ∈ Zn

satisfies |yi| ≤ K for all i?

We write SVP for the shortest vector problem (with respect to any norm),
and SVPM for the shortest vector problem in the max norm.

In problem SVPM we consider only vectors with integer components.
Moreover, we have assumed that the dimension n of the lattice L is equal
to the dimension of the ambient vector space Rn. This is not an essential re-
striction on the generality of the problem, for the following reasons. Suppose
that we have m vectors v1,v2, . . . ,vm in Zn:

Case 1: Suppose that m > n. Hence the vectors are linearly dependent,
and so the zero vector can be written as a linear combination

x1v1 + x2v2 + · · ·+ xmvm = 0,

where the xi are integers, not all zero. (Here y = 0 and so yi = 0 for all i,
clearly satisfying |yi| ≤ K for all i.) This can be verified in polynomial time,
and the answer to the question in SVPM is “yes”.

Case 2: Suppose that m < n, and that the vectors are linearly independent.
We can find vectors vm+1, . . . ,vn in Zn such that

(i) The vectors v1,v2, . . . ,vm,vm+1, . . . ,vn form a basis of Rn.

(ii) For m+1 ≤ i ≤ n, the vector vi is orthogonal to the other n−1
vectors v1, . . . ,vi−1,vi+1, . . . ,vn.

(iii) For m+1 ≤ i ≤ n, the vector vi has Euclidean norm at least nK.

© 2012 by Taylor & Francis Group, LLC

212 Lattice Basis Reduction

These conditions imply that none of the vectors vm+1, . . . ,vn can occur in a
linear combination

y = x1v1 + x2v2 + · · ·+ xnvn = [y1, y2, . . . , yn] ∈ Zn,

satisfying |yi| ≤ K for all i. Vectors vm+1, . . . ,vn satisfying conditions (i)–(iii)
can be computed in polynomial time, and this reduces Case 2 to SVPM.

13.2 A brief introduction to NP-completeness

The complexity classes P and NP, and the concept of NP-completeness, were
introduced by Cook [28] in 1971. One year later, Karp [74] showed that a large
number of classical combinatorial problems were NP-complete. This theory
developed very rapidly during the 1970s, culminating in the survey monograph
of Garey and Johnson [46]. The P = NP problem is now regarded as one of
the most famous unsolved problems in mathematics. The Clay Mathematics
Institute [23] has included it among their seven Millenium Prize Problems [24],
and is offering US $1 million to anyone who can resolve this question. Cook
[29] has written the official statement of the problem, which also provides a
very readable introduction to the theory of NP-completeness. There is a great
deal of information about the theory of NP-completness on the internet; see,
for example, the Wikipedia article [148], and its links to other articles.

We briefly summarize the theory of NP-completeness. Roughly speaking,
a decision problem is a precise mathematical question, depending on some
input parameters called the instance, which has a yes-or-no answer. The class
P consists of all decision problems which can be solved in polynomial time
(as a function of the size of the problem instance) by a deterministic Turing
machine. The class NP consists of all decision problems for which a “yes” in-
stance can be verified in polynomial time by a deterministic Turing machine.
It is clear that P ⊆ NP, and it is widely believed that this containment is
strict; that is, P 6= NP. A decision problem X is NP-hard if any instance of
any problem in NP can be converted into an instance ofX by a transformation
of the input data which is computable in polynomial time by a deterministic
Turing machine. A problem is NP-complete if it is NP-hard and in NP. In
order to prove that a decision problem X is NP-hard, it suffices to give an
algorithm for converting any instance of a particular NP-complete decision
problem Y into an instance of X by a polynomial-time transformation of the
input data. In order to prove that a decision problem X is NP-complete, it
suffices to prove that it is NP-hard and that a “yes” instance can be verified
in polynomial time.

© 2012 by Taylor & Francis Group, LLC

NP-Completeness 213

13.3 NP-completeness of SVP in the max norm

NP-completeness for SVPM will be proved in two steps:
(1) We first show that any instance of PARTITION, which is known to

be NP-complete, can be reduced by a polynomial-time computation to an
instance of WEAK PARTITION, thus establishing the NP-hardness of WEAK
PARTITION. A modification of this construction reduces PARTITION to
BHLE, thus establishing the NP-hardness of BHLE.

(2) We next show that any instance of BHLE can be reduced by a
polynomial-time computation to an instance of SVPM. Combining this with
step (1) shows that any instance of the NP-complete problem PARTITION
can be reduced by a polynomial-time computation to an instance of SVPM,
thus establishing the NP-hardness of SVPM. Since it is not difficult to show
that SVPM is in NP (Exercise 13.10), it follows SVPM is NP-complete.

Lemma 13.1. (van Emde Boas [144], page 3) Let [a1, a2, . . . , an] be a vector
of integers, let K,M ≥ 1 be integers, and write ai = bi +Mci for all i. If

M > K

n∑

i=1

|bi|,

then the equation

n∑

i=1

xiai = 0 with |xi| ≤ K for all i,

is equivalent to the pair of equations

n∑

i=1

xibi = 0

n∑

i=1

xici = 0





with |xi| ≤ K for all i.

Proof. We have

0 =

n∑

i=1

xiai =

n∑

i=1

xi

(
bi +Mci

)
=

n∑

i=1

xibi +M

n∑

i=1

xici,

and also ∣∣∣∣
n∑

i=1

xibi

∣∣∣∣ ≤
n∑

i=1

|xi| |bi| ≤ K
n∑

i=1

|bi| < M.

Since all quantities are integers, the claim follows.

© 2012 by Taylor & Francis Group, LLC

214 Lattice Basis Reduction

Example 13.2. Consider the integer vector

[a1, a2, . . . , a10] = [−81, 80,−2,−71, 60,−68,−78, 89,−20,−60],

and the coefficient vector

[x1, x2, . . . , x10] = [1, 0,−1, 0, 1,−1, 0,−1, 1,−1],

which satisfy
x1a1 + x2a2 + · · ·x10a10 = 0. (13.1)

Since |xi| ≤ 1 for all i, we set K = 1. If M = 10 then ai = bi +Mci for

[b1, b2, . . . , b10] = [−1, 0,−2,−1, 0, 2, 2,−1, 0, 0],

[c1, c2, . . . , c10] = [−8, 8, 0,−7, 6,−7,−8, 9,−2,−6].

We have

K

n∑

i=1

|bi| = 9 < 10 = M,

and also

x1b1 + x2b2 + · · ·x10b10 = 0, x1c1 + x2c2 + · · ·x10c10 = 0. (13.2)

In fact, for any vector [x1, x2, . . . , x10] satisfying |xi| ≤ 1 for all i, Lemma 13.1
guarantees that equation (13.1) holds if and only equations (13.2) hold.

Theorem 13.3. (van Emde Boas [144], pages 3–5) The decision problem
WEAK PARTITION is NP-hard.

Proof. We need to show that any instance of PARTITION, which is known to
be NP-complete, can be reduced in polynomial time to an instance of WEAK
PARTITION. Let [a1, a2, . . . , an] be an instance of PARTITION, and let the
integers M and d satisfy

M = 2

n∑

i=1

|ai|+ 1, d > 4.

For each ai we define new integers bij for j = 1, 2, . . . , 5 as follows. For i =
1, 2, . . . , n−1 we set

bi1 = ai + M
(
d4i−4 + d4i−3 + 0 + d4i−1 + 0

)

bi2 = 0 + M
(

0 + d4i−3 + 0 + 0 + d4i
)

bi3 = 0 + M
(
d4i−4 + 0 + d4i−2 + 0 + 0

)

bi4 = ai + M
(

0 + 0 + d4i−2 + d4i−1 + d4i
)

bi5 = 0 + M
(

0 + 0 + 0 + d4i−1 + 0
)

© 2012 by Taylor & Francis Group, LLC

NP-Completeness 215

For i = n we replace the term Md4n by Md0 = M , and so we set

bn1 = an + M
(
d4n−4 + d4n−3 + 0 + d4n−1 + 0

)

bn2 = 0 + M
(

0 + d4n−3 + 0 + 0 + 1
)

bn3 = 0 + M
(
d4n−4 + 0 + d4n−2 + 0 + 0

)

bn4 = an + M
(

0 + 0 + d4n−2 + d4n−1 + 1
)

bn5 = 0 + M
(

0 + 0 + 0 + d4n−1 + 0
)

(That is, in the d-ary representation of the quotient of bn2 and bn4 by M , we
wrap around the 4n-th digit from the 4n-th position to the 0-th position.)

We now consider the following instance of WEAK PARTITION:

n∑

i=1

5∑

j=1

xijbij = 0 where xij ∈ {−1, 0, 1} for all i, j.

Lemma 13.1 (with K = 1) shows that this single equation is equivalent to two
equations: the first involves only the original integers ai,

n∑

i=1

(xi1 + xi4)ai = 0, (13.3)

and the second contains only terms of the form xijd
ℓ. In this second equation,

for each ℓ there exist at most four corresponding terms. Since d > 4, we can
apply Lemma 13.1 again (with M replaced by a suitable power of d) to convert
the second equation into the following 4n equations:

x11 + x13 + xn2 + xn4 = 0

xi1 + xi3 + xi−1,2 + xi−1,4 = 0 (i = 2, 3, . . . , n)

xi1 + xi2 = 0 (i = 1, 2, . . . , n)

xi3 + xi4 = 0 (i = 1, 2, . . . , n)

xi1 + xi4 + xi5 = 0 (i = 1, 2, . . . , n)

It immediately follows that for all i we have xi2 = −xi1 and xi4 = −xi3. Using
these relations in the first n equations gives

x11 + x13 − xn1 − xn3 = 0

xi1 + xi3 − xi−1,1 − xi−1,3 = 0 (i = 2, 3, . . . , n).

Hence xi1 + xi3 does not depend on i; we call this quantity the weight of the
solution. Since replacing each xij by −xij does not change the solution set,
we may assume that the weight is non-negative. Solutions for which x13 = 0
can be regarded as solutions to the problem instance obtained by discarding
b13 from the 5n components bij and considering only the remaining 5n−1

© 2012 by Taylor & Francis Group, LLC

216 Lattice Basis Reduction

components. The weight of a solution is then equal to x11, and hence the
weight is either 0 or 1. We consider these two cases separately.

Weight 0: In this case, xi1 + xi3 = 0 for all i. Since we already know that
xi3 + xi4 = 0, it follows that xi1 = xi4. But now xi1 + xi4 + xi5 = 0 implies
xi5 = −xi1 − xi4 = −2xi1. Since |xi5| ≤ 1, we obtain xi5 = 0 for all i, and
combining this with the previous equations shows that xij = 0 for all i, j. But
this is not a valid solution by the definition of WEAK PARTITION.

Weight 1: In this case, xi1 + xi3 = 1 for all i. Since xi3 + xi4 = 0, we get
xi4 = xi1 − 1, and so

xi5 = −xi1 − xi4 = −xi1 − (xi1 − 1) = 1− 2xi1.

There are two subcases:

(a) xi1 = 0, which gives xi2 = 0, xi3 = 1, xi4 = −1, xi5 = 1.

(b) xi1 = 1, which gives xi2 = −1, xi3 = 0, xi4 = 0, xi5 = −1.

In subcase (a), we have xi1 + xi4 = −1; in subcase (b), we have xi1 + xi4 = 1.
Using this in equation (13.3), we see that we have a solution of PARTITION
for the original problem instance [a1, a2, . . . , an]. Conversely, a solution to this
instance of PARTITION corresponds by the above construction to a solution
of WEAK PARTITION for [b11, b12, b14, b15, b21, . . . , bn5], recalling that b13 has
been omitted from the problem instance.

The construction which converts the given instance of PARTITION to the
corresponding instance of WEAK PARTITION is computable in polynomial
time (Exercise 13.6), and this completes the proof.

Theorem 13.4. (van Emde Boas [144], page 5) The decision problem BHLE
is NP-hard.

Proof. This is a modification of the proof of Theorem 13.3. Let [a1, a2, . . . , an]
be an instance of PARTITION, let K be a positive integer, and let the integers
M and d be as before. For each ai we define bij as follows; note that d is
replaced by Kd, and M is replaced by KM for 1 ≤ j ≤ 4 but not for j = 5.
For 1 ≤ i ≤ n−1 we set

bi1 = ai + KM
(

(Kd)4i−4 + (Kd)4i−3 + 0 + (Kd)4i−1 + 0
)

bi2 = 0 + KM
(

0 + (Kd)4i−3 + 0 + 0 + (Kd)4i
)

bi3 = 0 + KM
(

(Kd)4i−4 + 0 + (Kd)4i−2 + 0 + 0
)

bi4 = ai + KM
(

0 + 0 + (Kd)4i−2 + (Kd)4i−1 + (Kd)4i
)

bi5 = 0 + M
(

0 + 0 + 0 + (Kd)4i−1 + 0
)

For i = n we set

bn1 = an + KM
(

(Kd)4n−4 + (Kd)4n−3 + 0 + (Kd)4n−1 + 0
)

bn2 = 0 + KM
(

0 + (Kd)4n−3 + 0 + 0 + 1
)

© 2012 by Taylor & Francis Group, LLC

NP-Completeness 217

bn3 = 0 + KM
(

(Kd)4n−4 + 0 + (Kd)4n−2 + 0 + 0
)

bn4 = an + KM
(

0 + 0 + (Kd)4n−2 + (Kd)4n−1 + 1
)

bn5 = 0 + M
(

0 + 0 + 0 + (Kd)4n−1 + 0
)

Consider this instance of BHLE:

n∑

i=1

5∑

j=1

xijbij = 0 where xij ∈ Z, |xij | ≤ K for all i, j.

Repeated application of Lemma 13.1 shows that this is equivalent to

n∑

i=1

(xi1 + xi4)ai = 0,

together with these 4n equations (note the change in the last n equations):

x11 + x13 + xn2 + xn4 = 0

xi1 + xi3 + xi−1,2 + xi−1,4 = 0 (i = 2, 3, . . . , n)

xi1 + xi2 = 0 (i = 1, 2, . . . , n)

xi3 + xi4 = 0 (i = 1, 2, . . . , n)

K(xi1 + xi4) + xi5 = 0 (i = 1, 2, . . . , n)

Since |xi5| ≤ K we have |xi1+xi4| ≤ 1. The rest of the argument is similar.

Theorem 13.5. (van Emde Boas [144], page 7) The decision problem SVPM
is NP-hard.

Proof. By Theorem 13.4 we know that BHLE is NP-hard. It suffices to show
that any instance of BHLE can be reduced in polynomial time to an instance
of SVPM. Consider the instance of BHLE given by a = [a1, a2, . . . , an] and
K ≥ 1. Define integers K ′ and K ′′ by

K ′ = K + 1, K ′′ = K ′
(
K

n∑

i=1

|ai|+ 1

)
.

We introduce n+1 linearly independent integer vectors v1,v2, . . . ,vn+1 in
Rn+1 given by the rows of the following (n+1)× (n+1) matrix (vij):




v1

v2

...
vn

vn+1




=




1 0 . . . 0 K ′a1

0 1 . . . 0 K ′a2

...
...

. . .
...

...

0 0 . . . 1 K ′an

0 0 . . . 0 K ′′




=

[
In K ′at

O K ′′

]

© 2012 by Taylor & Francis Group, LLC

218 Lattice Basis Reduction

Consider the instance of SVPM given by v1,v2, . . . ,vn+1 and K. Suppose
that the vector

y = x1v1 + x2v2 + · · ·+ xn+1vn+1 = [y1, y2, . . . , yn+1] ∈ Zn+1,

satisfies |yi| ≤ K for all i = 1, 2, . . . , n+1. We have

y =
[
x1, x2, . . . , xn, K

′
n∑

i=1

xiai +K ′′xn+1

]
,

Hence

yi = xi for i = 1, 2, . . . , n, yn+1 = K ′
n∑

i=1

xiai +K ′′xn+1.

It follows that |xi| ≤ K for i = 1, 2, . . . , n and therefore

∣∣∣∣K
′

n∑

i=1

xiai

∣∣∣∣ ≤ K ′
n∑

i=1

|xi| |ai| ≤ KK ′
n∑

i=1

|ai|.

On the other hand, if xn+1 6= 0 then

∣∣K ′′xn+1

∣∣ ≥ K ′′ = KK ′
n∑

i=1

|ai|+K ′.

This implies |yn+1| ≥ K ′, contradicting |yn+1| ≤ K. Hence xn+1 = 0 and so

yn+1 = K ′
n∑

i=1

xiai,

but this implies that
n∑

i=1

xiai = 0.

Therefore the given instance of SVPM is solvable if and only if the original
instance of BHLE is solvable, and this completes the proof.

13.4 Projects

Project 13.1. Write a report and present a seminar talk based on the orig-
inal papers of Cook [28] and Karp [74] which introduced the theory of NP-
completeness. A useful reference is the book of Garey and Johnson [46].

© 2012 by Taylor & Francis Group, LLC

NP-Completeness 219

Project 13.2. Write a report and present a seminar talk on the NP-
completeness of the problem of finding a shortest nonzero lattice vector for
the Euclidean norm,

|y|2 =
(
|y1|2 + |y2|2 + · · ·+ |yn|2

)1/2
for y = [y1, y2, . . . , yn] ∈ Rn.

A very readable introduction to this topic is Kumar and Sivakumar [82] (es-
pecially §3). The fundamental results were first proved by Ajtai [5, 6]; see
also Blömer and Seifert [17]. The original proof by Ajtai has been simplified
by Micciancio [97, 98], whose Ph.D. thesis from MIT is available online [96].
The book by Micciancio and Goldwasser [100] develops this material from the
point of view of its applications to cryptography.

Project 13.3. Write a report and give a seminar presentation on the com-
plexity of lattice algorithms. There are many excellent survey papers on this
topic; some examples are Micciancio [99], Khot [76], and Regev [120].

Project 13.4. A recent serious attempt to prove P 6= NP was circulated in
August 2010 by Vinay Deolalikar, a research scientist at HP Labs in Palo
Alto, California. Write a report and present a seminar talk giving the basic
ideas in Deolalikar’s strategy, and discussing the objections that experts have
made to his arguments. There is a lot of information about this available on
the internet which can easily be found by googling “Vinay Deolalikar”.

13.5 Exercises

Exercise 13.1. It is clear that PARTITION is at least as hard as POSITIVE
PARTITION, since the latter is a special case of the former. Use this fact
to show that the NP-completeness of POSITIVE PARTITION implies the
NP-completeness of PARTITION.

Exercise 13.2. Suppose that v1,v2, . . . ,vm are vectors in Zn with m > n.
Verify that integers x1, x2, . . . , xm, not all zero, satisfying

x1v1 + x2v2 + · · ·+ xmvm = 0,

can be found in polynomial time in the size of the input.

Exercise 13.3. Suppose that m < n and that v1,v2, . . . ,vm are vectors in
Zn, linearly independent in Rn, and let K be a positive integer. Verify that
vectors vm+1, . . . ,vn in Zn satisfying the following conditions can be found
in polynomial time in the size of the input:

(i) The vectors v1,v2, . . . ,vm,vm+1, . . . ,vn form a basis of Rn.

© 2012 by Taylor & Francis Group, LLC

220 Lattice Basis Reduction

(ii) For m+1 ≤ i ≤ n, the vector vi is orthogonal to the other n−1
vectors v1, . . . ,vi−1,vi+1, . . . ,vn.

(iii) For m+1 ≤ i ≤ n, the Euclidean norm |vi| is at least nK.

Exercise 13.4. Verify that the following pairs of integer vectors A and co-
efficient vectors X provide further examples of Lemma 13.1 for K = 1 and
M = 10:

A = [a1, a2, . . . , a10] : X = [x1, x2, . . . , x10] :

[61, 48,−30, 0,−12, 80,−8,−90, 0,−62] [0,−1, 0, 0, 1, 1,−1, 1, 0,−1]
[−78,−80,−60, 0, 12, 90, 11, 90, 70,−2] [0, 1, 0, 0, 1, 0, 0, 0, 1, 1]
[18, 12, 69, 2,−10,−30,−61, 51,−30,−80] [1, 0, 0, 1, 0,−1, 0, 0,−1, 1]
[22, 31,−70, 40, 70, 22,−10, 1,−58,−41] [0, 0, 1, 1,−1, 0, 0, 1,−1,−1]
[59, 80,−12,−80,−71, 82, 40, 30, 19, 70] [1, 0,−1, 0,−1,−1, 1,−1, 0,−1]
[90, 52, 22, 48, 12, 20,−50, 20, 21,−30] [0, 0, 0, 0, 0,−1,−1, 0, 0, 1]

Exercise 13.5. Write a computer program to generate further examples of
integer vectors A and X satisfying the condition of Lemma 13.1:

M > K

n∑

i=1

|bi|.

Exercise 13.6. Verify that the construction given in the proof of Theorem
13.3, which converts a given instance of PARTITION to a corresponding in-
stance of WEAK PARTITION, is computable in polynomial time.

Exercise 13.7. Complete the proof of the NP-completeness of WEAK PAR-
TITION by showing directly that this problem is in NP; that is, a “yes”
instance can be verified in polynomial time on a deterministic Turing ma-
chine.

Exercise 13.8. Fill in the details in the proof of Theorem 13.4.

Exercise 13.9. Complete the proof of the NP-completeness of BHLE by
showing that this problem is in NP: that is, a “yes” instance can be verified
in polynomial time on a deterministic Turing machine.

Exercise 13.10. Complete the proof of the NP-completeness of SVPM by
showing that this problem is in NP: that is, a “yes” instance can be verified
in polynomial time on a deterministic Turing machine.

© 2012 by Taylor & Francis Group, LLC

14

The Hermite Normal Form

CONTENTS

14.1 The row canonical form over a field . 222

14.2 The Hermite normal form over the integers . 225

14.3 The HNF with lattice basis reduction . 229

14.4 Systems of linear Diophantine equations . 231

14.5 Using linear algebra to compute the GCD . 234

14.6 The HMM algorithm for the GCD . 239

14.7 The HMM algorithm for the HNF . 250

14.8 Projects . 257

14.9 Exercises . 258

Our goal in this chapter is to present two different applications of lattice basis
reduction to the problem of computing the Hermite normal form (HNF) of an
arbitrary rectangular matrix with integer entries.

We begin by reviewing the algorithm, familiar from elementary linear al-
gebra, which uses Gaussian elimination to compute the row canonical form
(RCF) of a matrix with entries in a field. If we replace divisions in the field by
computations of greatest common divisors in the integers, then we obtain an
algorithm for the HNF of a matrix A with integer entries. This algorithm can
be easily extended to compute also a transform matrix U for which UA = H ,
where H is the Hermite normal form of A. If instead we compute the HNF
of the transpose At, then the bottom rows of the transform matrix U provide
a lattice basis for the nullspace of A. Following an idea of Sims [131], we can
then apply the LLL algorithm to this lattice basis to obtain a reduced basis
for the nullspace of the integer matrix A, and then a transform matrix U with
small entries.

We then consider two algorithms of Havas, Majewski and Matthews [56].
The first uses a modification of the LLL algorithm to compute short multiplier
vectors for the greatest common divisor of a set of integers. The second applies
the first to provide an alternative approach to computing a transform matrix
with small entries for the Hermite normal form of an integer matrix.

221

© 2012 by Taylor & Francis Group, LLC

222 Lattice Basis Reduction

14.1 The row canonical form over a field

We begin be recalling the familiar algorithm which uses Gaussian elimina-
tion to convert an arbitrary m × n matrix A with entries in a field F into a
row-equivalent matrix R which is in row canonical form (RCF). This matrix
canonical form is also called the reduced row-echelon form, or the Gauss-
Jordan form.

Definition 14.1. Let A and B be m × n matrices over the field F. We say
that A and B are row-equivalent over F if there exists an invertible m×m
matrix U with entries in F for which B = UA.

It is easy to verify that the relation of row-equivalence is reflexive, sym-
metric, and transitive; hence it is an equivalence relation on the set of all m×n
matrices over F. We now introduce representatives of the equivalence classes.

Definition 14.2. Let R be an m× n matrix over the field F. We say that R
is in row canonical form (reduced row-echelon form, Gauss-Jordan form) if
the following conditions are satisfied:

(1) For some r with 0 ≤ r ≤ m we have Rij = 0 for r < i ≤ m and
1 ≤ j ≤ n. (Any zero rows are at the bottom of the matrix.)

(2) For some j1, j2, . . . , jr with 1 ≤ j1 < j2 < · · · < jr ≤ n we have
Rij = 0 for 1 ≤ j < ji and Riji

= 1. (Each nonzero row has 1 as
its leftmost nonzero entry, and these leading ones go from left to
right.)

(3) For all i and k with 1 ≤ k < i ≤ r we have Rkji
= 0. (In any

column which contains the leading one of some row, all the other
entries are zero.)

The integer r is the rank of the matrix A.

The following result is well-known from elementary linear algebra.

Theorem 14.3. If A is any m × n matrix over the field F then there is a
unique m× n matrix R over F satisfying these two conditions:

(1) R is row-equivalent to A.

(2) R is in row canonical form.

Definition 14.4. The matrix R of Theorem 14.3 is the row canonical form
(RCF) of the matrix A, and is denoted RCF(A).

The row canonical form of a matrix with entries in a field can be efficiently
computed using Gaussian elimination. This procedure uses three types of
elementary row operation:

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 223

• Input: An m× n matrix A with entries in a field F.

• Output: The m× n matrix R = RCF(A) and an m×m matrix U for which
UA = R.

(1) Set R← A and set U ← Im (identity matrix).

(2) Set i← 1 and set j ← 1.

(3) While i ≤ m and j ≤ n do:

If Rkj = 0 for all k = i, . . . ,m then

(a) Set j ← j+1

else

(b) Set k ← min{ k | Rkj 6= 0, i ≤ k ≤ m }.
(c) If k 6= i then Ri ↔ Rk and Ui ↔ Uk.

(d) If Rij 6= 1 then 1
Rij

Ri and 1
Rij

Ui.

(e) For k = i+1 to m do:

If Rkj 6= 0 then Rk −RkjRi and Uk −RkjUi.

(f) For k = 1 to i−1 do:

If Rkj 6= 0 then Rk −RkjRi and Uk −RkjUi.

(g) Set i← i+1 and j ← j+1.

(4) Return R and U .

FIGURE 14.1
Algorithm for the row canonical form

(1) For 1 ≤ i < j ≤ m, interchange rows i and j.

Notation: Ri ↔ Rj .

(2) For 1 ≤ i ≤ m and a ∈ F \ {0}, multiply row i by a.

Notation: aRi.

(3) For 1 ≤ i 6= j ≤ m and a ∈ F \ {0}, add a times row i to row j.

Notation: Rj + aRi.

The algorithm for computing the row canonical form R of a matrix A over a
field F is displayed in Figure 14.1. This algorithm also computes a transform
matrix U for which UA = R. If X is a matrix then Xi denotes the i-th row
of X .

We can use the row canonical form of A to find a basis of the nullspace of
A. We regard A as the coefficient matrix of the homogeneous linear system
AX = O where X = [x1, x2, . . . , xn]t is the column vector of variables. Let
r be the rank of A and suppose that the leading ones in rows 1, 2, . . . , r of

© 2012 by Taylor & Francis Group, LLC

224 Lattice Basis Reduction

RCF(A) occur in columns j1 < j2 < · · · < jr. Define k1 < k2 < · · · < kn−r by

{ k1, k2, . . . , kn−r } = { 1, 2, . . . , n } \ { j1, j2, . . . , jr }.

For ℓ = 1, 2, . . . , n−r we set the vector of free variables,

[xk1 , xk2 , . . . , xkn−r
],

equal to the ℓ-th standard basis vector in Fn−r (xkℓ
= 1 and the other free

variables are 0) and then use RCF(A) to solve for the leading variables,

[xj1 , xj2 , . . . , xjr
].

More precisely, for i = 1, 2, . . . , r we set

xji
=

{
−Rikℓ

if ji < kℓ

0 otherwise

where Rikℓ
denotes the (i, kℓ) entry of R = RCF(A).

If F = Q then we take each basis vector for the nullspace, multiply it by
the least common multiple of the denominators of its components to obtain
an integer vector, and divide the result by the greatest common divisor of its
components. In this way we obtain a basis of integer vectors for the nullspace
as a vector space over Q.

Example 14.5. Consider this 3× 6 matrix A with entries in the field Q:

A =




0 9 −8 −3 8 4
0 −9 −2 −2 −7 3
5 3 1 −1 −5 4




Gaussian elimination produces the following matrices R and U :

R =




1 0 0 −11

30
−73

50

157

150

0 1 0
1

9

4

5
− 8

45

0 0 1
1

2
− 1

10
− 7

10




U =




1

150

11

150

1

5

1

45
− 4

45
0

− 1

10
− 1

10
0




From the matrix R we obtain a basis for the nullspace of A, by setting the
free variables equal to the standard basis vectors, and solving for the leading
variables. If we consider instead the transpose of A,

At =




0 0 5
9 −9 3
−8 −2 1
−3 −2 −1

8 −7 −5
4 3 4



,

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 225

then Gaussian elimination produces the following matrices R and U :

R =




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0




U =




1

150

1

45
− 1

10
0 0 0

11

150
− 4

45
− 1

10
0 0 0

1

5
0 0 0 0 0

11

30
−1

9
−1

2
1 0 0

73

50
−4

5

1

10
0 1 0

−157

150

8

45

7

10
0 0 1




The last three rows of U are the same basis of the nullspace of A.

Example 14.6. This example illustrates the limitations of using the row
canonical form over Q to solve problems over Z. Consider the matrix A with
entries in Z and its RCF over Q:

A =

[
1 0 1 2
0 2 3 5

]
, R =




1 0 1 2

0 1
3

2

5

2



 .

We want to find integer vectors X1 and X2 which form a lattice basis of the
integer nullspace of A. From R we obtain a basis for the nullspace of A as a
vector space over Q; we then clear denominators to obtain integer vectors:
[
−1, −3

2
, 1, 0

]
,

[
−2, −5

2
, 0, 1

]
−→ [−2, −3, 2, 0], [−4, −5, 0, 2].

However, the nullspace of A also contains the vector [−1,−1,−1, 1], which is
not an integer linear combination of the integer basis vectors. Using the RCF
over Q does not provide a satisfactory solution to this problem.

14.2 The Hermite normal form over the integers

We now consider matrices with integer entries. We modify the definition of
the RCF over a field to obtain a canonical form for matrices over Z.

Definition 14.7. Let A and B be m× n matrices with entries in Z. We say
that A and B are row-equivalent over Z if there exists an m×m matrix U
which is invertible over Z and which satisfies B = UA.

© 2012 by Taylor & Francis Group, LLC

226 Lattice Basis Reduction

By invertible over Z we mean that U is invertible and that both U and
U−1 have entries in Z. This is equivalent to the condition that det(U) = ±1.

Definition 14.8. Let H be an m × n matrix over Z. We say that H is in
Hermite normal form (or HNF) if the following conditions are satisfied:

(1) For some r with 0 ≤ r ≤ m we have Hij = 0 for r < i ≤ m and
1 ≤ j ≤ n.

(2) For some j1, j2, . . . , jr with 1 ≤ j1 < j2 < · · · < jr ≤ n we have
Hij = 0 for 1 ≤ j < ji and Hiji

≥ 1.

(3) For all i and k with 1 ≤ k < i ≤ r we have 0 ≤ Hkji
< Hiji

.

Theorem 14.9. If A is an m×n matrix over Z then there is a unique m×n
matrix H over Z satisfying these two conditions:

(1) H is row-equivalent to A over Z.

(2) H is in Hermite normal form.

Proof. Adkins and Weintraub [3, §5.2].

Definition 14.10. The matrix H of Theorem 14.9 is the Hermite normal
form of the matrix A, and is denoted HNF(A).

This canonical form obtains its name from a paper of Hermite in 1851,
which refers to the existence of such a canonical form in the following terms:

. . . “La définition précédente peut être simplifiée, en observant que toute
forme Φ a une équivalente, dans laquelle le système:

m1 p1 . . . r1 s1
m2 p2 . . . r2 s2
...

...
...

mn pn . . . rn sn

dont le déterminant a p′ valeurs ∆, est remplacée par le suivant:

δ g h . . . l
0 δ1 h′ . . . l′

0 0 δ2 . . . l′′

...
...

...
...

0 0 0 . . . δn−1

Les nombres entiers, désignés par les lettres g, h, . . . , l, sont positifs et
vérifient tous les conditions

g < δ1, h < δ2, . . . , l < δn−1,

et on a toujours
δ · δ1 · δ2 · · · δn−1 = ∆.”

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 227

In order to compute the HNF, we modify the process of Gaussian elimi-
nation so that it preserves the property that the matrix entries are integers.
We therefore use repeated division with remainder in Z instead of division in
Q. This amounts to using the Euclidean algorithm to compute the greatest
common divisor of the matrix entries at and below the current position (i, j).
To explain this in more detail, consider the following matrix:




a1j

H ′ ... · · ·
ai−1,j

aij

ai+1,j

O
... · · ·

am−1,j

amj




We assume that the upper left block H ′ has already been reduced to Hermite
normal form, and that the lower left block O is the zero matrix. If the entry aij

and the entries below it in column j are all 0, then we increment the column
index j to j+1. Otherwise, we determine which of the elements aij , . . . , amj

has the least positive absolute value; suppose this akj . We then we exchange
rows i and k. If the new entry aij (the old entry akj) is negative, then we
multiply row i by −1. At this point, the new entry aij is equal to the absolute
value of the old entry akj . We then use division with remainder to replace
each entry ai+1,j , . . . , amj by its remainder after division by aij . We continue
processing column j in this way until aij > 0 and ai+1,j , . . . , amj are 0. We
then replace the entries above aij by their remainders after division by aij .
After we have finished processing column j, we increment both the row index
i and the column index j.

This procedure is often called integer Gaussian elimination. The basic
operations performed are the integer elementary row operations:

(1) For 1 ≤ i < j ≤ m, interchange rows i and j.

(2) For 1 ≤ i ≤ m, multiply row i by −1.

(3) For 1 ≤ i 6= j ≤ m and a ∈ Z \ {0}, add a times row i to row j.

A formal statement of this algorithm is displayed in Figure 14.2.

Example 14.11. For the matrix A from Example 14.5, the algorithm of
Figure 14.2 produces the following matrices H and U :

H =




5 3 1 −1 −5 4
0 9 2 2 7 −3
0 0 10 5 −1 −7



 U =




0 0 1
0 −1 0
−1 −1 0





© 2012 by Taylor & Francis Group, LLC

228 Lattice Basis Reduction

• Input: An m× n matrix A with entries in Z.

• Output: The m × n matrix H = HNF(A) and an m ×m integer matrix U
for which det(U) = ±1 and UA = H .

(1) Set H ← A and set U ← Im.

(2) Set i← 1 and set j ← 1.

(3) While i ≤ m and j ≤ n do:

If Hkj = 0 for all k = i, . . . ,m then

(a) Set j ← j+1

else

(b) While not
(
Hij > 0 and Hkj = 0 for k = i+1, . . . ,m

)
do:

(i) Set s← min{ |Hkj | | Hkj 6= 0, i ≤ k ≤ m }.
(ii) Set k ← min{ k | |Hkj | = s, i ≤ k ≤ m }.
(iii) If i 6= k then Hi ↔ Hk and Ui ↔ Uk.

(iv) If Hij < 0 then −Hi and −Ui.

(v) For k = i+1, . . . ,m do:

Compute q, r ∈ Z such that Hkj = qHij + r with 0 ≤
r < Hij .

If q 6= 0 then Hk − qHi and Uk − qUi.

(c) For k = 1, 2, . . . , i−1 do:

Compute q, r ∈ Z such that Hkj = qHij+r with 0 ≤ r < Hij .

If q 6= 0 then Hk − qHi and Uk − qUi.

(d) Set i← i+1 and j ← j+1.

(4) Return H and U .

FIGURE 14.2
Algorithm for the Hermite normal form

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 229

If we consider the transpose At, then we obtain these matrices H and U :

H =




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0




U =




0 0 −111 317 −28 72
0 0 32 −92 8 −21
0 0 −4 12 −1 3
1 0 20 −60 5 −15
0 0 −91 260 −23 59
0 1 25 −77 5 −20




Since UAt = H , and the last three rows of H are zero, we see that the last
three rows of U are in the nullspace of A. We will see in the next section that
these rows of U in fact form a lattice basis of the integer nullspace of A.

The Hermite normal formH is uniquely determined by the original matrix,
but the transform matrix U is not unique: it depends on which sequence of row
operations was used to obtain H . In many applications U is more important
than H , and we often want to make the entries of U as small as possible. For
example, the following matrix U ′ also satisfies the equation U ′At = H , where
A is the matrix from Example 14.11:

U ′ =




1 0 0 −3 0 −2
1 −2 2 2 3 4
−1 1 1 −5 −1 −2

3 1 −6 3 −3 −6
7 −2 −1 −6 2 −6
5 −4 0 8 5 5




(14.1)

The matrix U ′ was found using lattice basis reduction.

14.3 The HNF with lattice basis reduction

Definition 14.12. If A is an m × n matrix A with integer entries then its
nullspace lattice is the set of all integer vectors in its nullspace:

N(A) = {X ∈ Zn | AX = O }.

It is easy to verify that N(A) is a lattice in Zn, since it is closed under taking
integral linear combinations.

Lemma 14.13. Let A be an m × n matrix over Z, let H be the Hermite
normal form of At, and let U be an n × n matrix over Z with det(U) = ±1
and H = UAt. If r is the rank of H, then the last n−r rows of U form a
lattice basis for N(A).

© 2012 by Taylor & Francis Group, LLC

230 Lattice Basis Reduction

Proof. The last n−r rows of H are zero, and so V At = O where V is the
(n−r)× n matrix consisting of the last n−r rows of U . Hence AV t = O, and
so the rows of V are in N(A). It remains to show that any vector X ∈ N(A)
is an integral linear combination of the last n−r rows of U ; for this we follow
Cohen [26], Proposition 2.4.9. Suppose that XAt = O for some row vector
X ∈ Zn, and set Y = XU−1. We have

Y H = (XU−1)(UAt) = XAt = O.

Solving the linear system Y H = O from left to right for the components of the
row vector Y , using the fact that H is in Hermite normal form, we find that
the first r components are zero, and the last n−r components are arbitrary:

Y H = [y1, y2, . . . , yr, yr+1, . . . , yn]




h11 h1j2 · · · h1jr
· · · h1m

0 h2j2 · · · h2jr
· · · h2m

...
...

. . .
...

...
0 0 · · · hrjr

· · · hrm

0 0 · · · 0 · · · 0
...

...
...

...
0 0 · · · 0 · · · 0




It follows that the last n−r standard basis vectors in Zn form a lattice basis
for the solutions of Y H = O, which is equivalent to HtY t = O. Thus these
standard basis vectors form a lattice basis for for N(Ht). Since X = UY , the
vector X is an integral linear combination of the last n−r rows of U .

It follows from Lemma 14.13 that we can apply lattice basis reduction to
the last n−r rows of the transform matrix U to obtain a reduced basis for
the nullspace lattice N(A). Using an idea from Sims [131], Chapter 8, we can
then use this reduced lattice basis to size-reduce the first r rows of U .

Example 14.14. Consider the second matrix U from Example 14.11:

U =




0 0 −111 317 −28 72
0 0 32 −92 8 −21
0 0 −4 12 −1 3
1 0 20 −60 5 −15
0 0 −91 260 −23 59
0 1 25 −77 5 −20




The last three rows of U form the matrix V containing a basis for N(A):

V =




1 0 20 −60 5 −15
0 0 −91 260 −23 59
0 1 25 −77 5 −20





© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 231

Applying the LLL algorithm (α = 3/4) to the rows of V gives the following
matrix U2 containing a reduced basis for N(A):

U2 =




3 1 −6 3 −3 −6
7 −2 −1 −6 2 −6
5 −4 0 8 5 5





We write U1 for the matrix formed by the first three rows of U :

U1 =




0 0 −111 317 −28 72
0 0 32 −92 8 −21
0 0 −4 12 −1 3





We stack U2 on top of U2 to obtain the matrix F :

F =

[
U2

U1

]
=




3 1 −6 3 −3 −6
7 −2 −1 −6 2 −6
5 −4 0 8 5 5
0 0 −111 317 −28 72
0 0 32 −92 8 −21
0 0 −4 12 −1 3




We compute the Gram-Schmidt orthogonalization of the rows of F . We use
procedure reduce from the LLL algorithm to size-reduce the bottom three
rows of F using the top three rows of F in reverse order. Finally, we interchange
the upper and lower 3 × 6 blocks; the result is the matrix U ′ from equation
(14.1). We now verify that this matrix satisfies the equation U ′At = H .

14.4 Systems of linear Diophantine equations

We return to the question raised in Example 14.6: Given an m × n matrix
A with integer entries and nonzero nullspace, find a basis for the nullspace
lattice N(A) consisting of short vectors. In other words, find a set of short and
linearly independent solutions of the system of linear Diophantine equations
with coefficient matrix A, such that every solution is a linear combination of
these basic solutions. We have already seen one example of this: for the matrix
A of Example 14.5, a reduced basis for the nullspace lattice consists of the
rows of the matrix U2 of Example 14.14.

Example 14.15. Consider the 5× 10 matrix A:

A =




5 3 −8 1 −8 −7 4 8 −8 −8
−9 −9 0 7 −6 9 0 3 9 5
−5 −3 0 −4 0 5 −1 −7 3 3

7 9 −4 −6 −9 −7 −7 −2 −6 8
−4 6 1 5 −1 7 6 8 −1 1




© 2012 by Taylor & Francis Group, LLC

232 Lattice Basis Reduction

Applying the algorithm of Figure 14.2 to At, we obtain the matrix U in Figure
14.3 which satisfies UAt = H . In the Hermite normal form of At, the upper
5× 5 block is I5, and the lower 5× 5 block is zero. So we take rows 6 to 10 of
U and apply the LLL algorithm, obtaining the following reduced basis of the
nullspace lattice N(A):

U2 =




5 1 1 1 −2 7 −5 −1 0 −5
−2 −5 1 0 2 1 −2 2 −9 3

0 3 −8 4 4 3 −6 −1 1 −2
7 −4 −4 6 2 3 6 −5 −5 6

15 −8 −10 −14 8 11 2 13 4 7




We stack U2 on top of the first five rows of the original matrix U , obtaining the
matrix F in Figure 14.3. We compute the Gram-Schmidt orthogonalization
of the rows of F , and call procedure reduce from the LLL algorithm to size-
reduce the bottom five rows of F using the top five rows of F in reverse order.
Finally, we interchange the upper and lower 5× 10 blocks. The result of this
computation is another transform matrix U ′ with much smaller entries:

U ′ =




−2 6 0 10 −3 −1 −2 −9 1 −5
−2 0 5 0 −3 −2 1 −1 −1 −1
−2 2 1 0 −1 0 −3 0 1 −3

4 −3 2 −1 −1 2 3 0 −2 2
−2 2 −2 8 0 −4 4 −7 −1 2

5 1 1 1 −2 7 −5 −1 0 −5
−2 −5 1 0 2 1 −2 2 −9 3

0 3 −8 4 4 3 −6 −1 1 −2
7 −4 −4 6 2 3 6 −5 −5 6

15 −8 −10 −14 8 11 2 13 4 7




Example 14.16. This example comes from a computational study of poly-
nomial identities for nonassociative algebras. We consider a matrix E of size
120×250; each column contains 36 nonzero entries from the set {±1,±5,±25}.
(For the precise definition of E, see Bremner and Peresi [19].) We compute
RCF(E) over Q and find that the rank is 109, so the nullspace has dimension
141. We use the RCF to find the canonical basis for the nullspace, and then
clear denominators and cancel common factors to find integral basis vectors
for the nullspace as a vector space over Q. These integral basis vectors are
very long; their squared Euclidean lengths have between 8 and 12 digits.

We now apply the algorithm of Figure 14.2 for the Hermite normal form,
together with the LLL algorithm for lattice basis reduction, to find an inte-
gral basis of the nullspace with much smaller coefficients. The following table
summarizes the results:

© 2012 by Taylor & Francis Group, LLC

T
h
e

H
erm

ite
N

o
rm

a
l
F
o
rm

2
3
3

U =




295789 0 190416 −1035744 435 1341232 −1856352 1128732 0 −1108473
−42822 0 −27567 149947 −63 −194173 268748 −163409 0 160476
−2013 0 −1296 7049 −3 −9128 12634 −7682 0 7544

732 0 471 −2562 1 3318 −4592 2792 0 −2742
61 0 39 −212 0 275 −380 231 0 −227

316 0 169 −971 0 1307 −1771 1061 0 −1061
58 1 34 −191 0 254 −349 209 0 −209

−153 0 −95 521 0 −680 937 −568 0 560
26 0 14 −81 0 107 −145 88 1 −87

263 0 136 −779 −2 1060 −1427 851 0 −857




F =




5 1 1 1 −2 7 −5 −1 0 −5
−2 −5 1 0 2 1 −2 2 −9 3

0 3 −8 4 4 3 −6 −1 1 −2
7 −4 −4 6 2 3 6 −5 −5 6

15 −8 −10 −14 8 11 2 13 4 7
295789 0 190416 −1035744 435 1341232 −1856352 1128732 0 −1108473
−42822 0 −27567 149947 −63 −194173 268748 −163409 0 160476
−2013 0 −1296 7049 −3 −9128 12634 −7682 0 7544

732 0 471 −2562 1 3318 −4592 2792 0 −2742
61 0 39 −212 0 275 −380 231 0 −227




FIGURE 14.3
The matrices U and F from Example 14.15

© 2012 by Taylor & Francis Group, LLC

234 Lattice Basis Reduction

α x xx xxx xxxx shortest longest min:sec
3/4 4 5 22 110 8 2138 9:19
9/10 17 11 113 − 8 380 22:14
99/100 15 11 115 − 8 320 37:35
1 52 89 − − 8 68 57:41

In this table,

• Column α gives the reduction parameter from the LLL algorithm.

• Columns x, xx, xxx, xxxx give the number of reduced basis vectors whose
squared Euclidean lengths have 1, 2, 3, 4 digits (respectively).

• Columns ‘shortest’ and ‘longest’ give the squared Euclidean lengths of the
shortest and longest reduced basis vectors.

• Column ‘min:sec’ gives the total computation time in minutes and seconds,
using Maple 11 on an IBM ThinkCentre M55 Tower 8811V2D with Intel
Core 2 CPU 6700 at 2.66 GHz and 3 GB of memory.

Especially significant improvement occurred between α = 3/4 and α = 9/10,
and again between α = 99/100 and α = 1. Increasing α from 3/4 to 1 did
not improve the shortest vector, but it made the squared Euclidean length
of the longest vector decrease to ≈ 3.18% of its original value, at the cost of
increasing the computation time by a factor of ≈ 6.18.

14.5 Using linear algebra to compute the GCD

Consider a column vector of m integers:

V =




v1
v2
...
vm


 (v1, v2, . . . , vm ∈ Z).

To compute the greatest common divisor of v1, v2, . . . , vm, we can use the
Euclidean algorithm repeatedly: first compute

gcd(v1, v2),

then use this result to compute

gcd(gcd(v1, v2), v3),

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 235

and finally, after m−1 applications of the Euclidean algorithm, we obtain

gcd(gcd(· · · gcd(gcd(v1, v2), v3), . . . , vm−1), vm) = gcd(v1, v2, . . . , vm).

We can express the Euclidean algorithm in terms of matrix multiplication.
Each step in the Euclidean algorithm involves an integer division with re-
mainder,

ri−1 = qi+1ri + ri+1,

or equivalently,
ri+1 = ri−1 − qi+1ri.

Considering consecutive remainders, we can express this as a matrix equation:

[
−qi+1 1

1 0

] [
ri
ri−1

]
=

[
ri+1

ri

]
.

To compute gcd(v1, v2) we set r0 = v2, r1 = v1 (note the reverse order here)
and calculate r2, r3, . . . , rt where rt = gcd(v1, v2) is the last nonzero remain-
der:

[
−qt+1 1

1 0

]
· · ·

[
−q3 1
1 0

] [
−q2 1
1 0

] [
v1
v2

]
=

[
0
rt

]
.

We can write this equation more concisely as

Q1

[
v1
v2

]
=

[
0

gcd(v1, v2)

]
,

where Q1 is a 2× 2 matrix of determinant (−1)t = ±1.

Example 14.17. We use the Euclidean algorithm to compute gcd(546, 220):

546 = 2 · 220 + 106, 220 = 2 · 106 + 8, 106 = 13 · 8 + 2, 8 = 4 · 2.

The matrix form of this calculation is
[
−4 1

1 0

] [
−13 1

1 0

] [
−2 1

1 0

] [
−2 1

1 0

] [
220
546

]
=

[
0
2

]
.

Multiplying together the 2× 2 matrices gives

[
273 −110
−67 27

] [
220
546

]
=

[
0
2

]
.

Using this matrix form of the Euclidean algorithm, we can express the
computation of gcd(gcd(v1, v2), v3) as follows:

[
1 0
0 Q2

] [
Q1 0
0 1

]


v1
v2
v3



 =

[
1 0
0 Q2

]


0

gcd(v1, v2)
v3





© 2012 by Taylor & Francis Group, LLC

236 Lattice Basis Reduction

=




0
0

gcd(gcd(v1, v2), v3)



 .

This generalizes to the computation of d = gcd(v1, v2, . . . , vm); we have

U




v1
v2
...
vm


 =




0
...
0
d


 ,

where U is the m×m matrix of determinant ±1 defined by

U =

[
Im−2 O
O Qm−1

]
· · ·



Ii−1 O O
O Qi O
O O Im−i−1


 · · ·

[
Q1 O
O Im−2

]
.

We can express this computation concisely as the equation

UV =
[

0 · · · 0 d
]t
. (14.2)

Example 14.18. We use this method to compute gcd(105, 70, 42, 30):



1 0 0 0
0 1 0 0
0 0 −30 7
0 0 13 −3







1 0 0 0
0 6 −5 0
0 −1 1 0
0 0 0 1







−2 3 0 0
1 −1 0 0
0 0 1 0
0 0 0 1







105
70
42
30


 =




0
0
0
1




Multiplying together the three 4× 4 matrices gives



−2 3 0 0
6 −6 −5 0

30 −30 −30 7
−13 13 13 −3







105
70
42
30


 =




0
0
0
1




From the last row of the matrix we obtain a multiplier vector; that is, a row
vector whose scalar product with the original column vector gives the gcd:

[
−13 13 13 −3

]



105
70
42
30


 = 1.

However, there exists a much shorter multiplier vector:

[
1 1 −2 −3

]



105
70
42
30


 = 1.

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 237

Example 14.18 leads us to the application of lattice basis reduction to
GCD computation. The last row of the transform matrix U gives a multi-
plier vector expressing gcd(v1, v2, . . . , vm) as an integral linear combination of
v1, v2, . . . , vm. The next result explains the significance of the first m−1 rows
of U .

Lemma 14.19. Consider the m× 1 integer column vectors V,D ∈ Zm:

V =




v1
v2
...
vm


 , D =




0
...
0
d


 , d = gcd(v1, v2, . . . , vm).

If U is an m ×m integer matrix with det(U) = ±1 and UV = D, then the
first m−1 rows of U form a basis for the lattice

Λ = {X ∈ Zm | XtV = O }.

Proof. This is essentially a special case of Lemma 14.13, since D is the ‘upside-
down’ Hermite normal form of V . However, repeating the (simplified) proof
may clarify the argument. We haveNV = O where N is the (m−1)×mmatrix
consisting of the first m−1 rows of U , and hence the (transposes of the) rows
of N belong to Λ. It remains to show that if X ∈ Λ then Xt is an integral
linear combination of the rows of N . Suppose that XtV = O for some column
vector X ∈ Zm. Setting Y = (U−1)tX so that Y t = XtU−1, and noting that
V = U−1D, we obtain Y tD = XtU−1D = XtV = O. It follows that the first
m−1 components of Y are arbitrary and the last component is 0. Hence the
first m−1 standard basis vectors in Zm form a basis for the lattice of solutions
of Y tD = O. Since Xt = Y tU , the claim follows.

Lemma 14.19 shows that the general multiplier vector has the form

x1U1 + · · ·+ xm−1Um−1 + Um,

where x1, . . . , xm−1 ∈ Z and U1, . . . , Um−1, Um are the rows of U . In order
to obtain a multiplier vector of short Euclidean length, we first use the LLL
algorithm to compute a reduced basis of the lattice spanned by the first m−1
rows of U , and then use this reduced basis to size-reduce the last row of U .

Example 14.20. Continuing from Example 14.18, we apply the LLL algo-
rithm with α = 3

4 to the first three rows of the matrix U :




−2 3 0 0
6 −6 −5 0

30 −30 −30 7
−13 13 13 −3




LLL−−−−−−→




−2 3 0 0
2 0 −5 0
−2 0 0 7
−13 13 13 −3




We now size-reduce the last row using the first three rows, and obtain the
much shorter multiplier vector [1, 1,−2,−3].

© 2012 by Taylor & Francis Group, LLC

238 Lattice Basis Reduction

Example 14.21. We use the Euclidean algorithm with least absolute remain-
ders; that is, at each step we take

qi+1 =

⌈
ri−1

ri

⌋
,

where as usual ⌈x⌋ = ⌈x − 1
2⌉, the smallest integer greater than or equal to

x− 1
2 . Consider Example 7.1 from Havas, Majewski and Matthews [56]:

V =




v1
v2
v3
v4


 =




116085838
181081878
314252913
10346840


 .

We obtain the following transform matrix U :



1 0 0 0
0 1 0 0
0 0 −10346840 1
0 0 1 0







1 0 0 0
0 314252913 −2 0
0 −157126456 1 0
0 0 0 1


×




−90540939 58042919 0 0
−14327851 9185130 0 0

0 0 1 0
0 0 0 1


 =




−90540939 58042919 0 0
−4502568913779963 2886453858783690 −2 0

−23293679995803545263040 14932838074590182275200 −10346840 1
2251284449726056 −1443226924799280 1 0




We have UV =
[

0 0 0 1
]t

, showing that gcd(v1, v2, v3, v4) = 1. This
result is unsatisfactory: the entries of U are extremely large compared to the
components of V . In particular, the last row of U gives a multiplier vector
expressing gcd(v1, v2, v3, v4) as a linear combination of v1, v2, v3, v4:

2251284449726056 v1− 1443226924799280 v2 + v3 = 1. (14.3)

In contrast, the algorithm of Havas, Majewski and Matthews [56] produces
this transform matrix U ,

U =




−103 146 −58 362
−603 13 220 −144

15 −1208 678 381
−88 352 −167 −101


 ,

and the last row expresses gcd(v1, v2, v3, v4) as this linear combination,

−88 v1 + 352 v2 − 167 v3 − 101 v4 = 1. (14.4)

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 239

14.6 The HMM algorithm for the GCD

In this section we will explain, following Havas, Majewski and Matthews [56],
another way to use lattice basis reduction to compute a transform matrix U
with very small entries satisfying equation (14.2). This approach is based on
the following idea. We are given m integers v1, v2, . . . , vm and we consider the
lattice L ⊂ Zm+1 spanned by the rows of the following matrix which depends
on the parameter γ, a positive integer:

Cγ =




1 0 · · · 0 γv1
0 1 · · · 0 γv2
...

...
. . .

...
...

0 0 · · · 1 γvm


 =

[
Im γV

]
, V =




v1
v2
...
vm


 .

Lemma 14.22. Let α (1
4 < α < 1) be the reduction parameter of the LLL

algorithm and let β = 4/(4α−1). Let Cγ be the matrix obtained by applying
the LLL algorithm with parameter α to the rows of Cγ . If

γ > β(m−2)/2|V |,

where |V | is the Euclidean length of V , then the last column of Cγ has the
form




0
...
0
±γd


 , d = gcd(v1, v2, . . . , vm).

Proof. Exercise 14.3.

The first m entries of the last row of the matrix Cγ provide a multiplier
vector of small Euclidean length. It is interesting to consider the limiting
behavior of this approach as γ becomes arbitrarily large. (The reader will
notice a similarity between this algorithm for the greatest common divisor
and the MLLL algorithm for linearly dependent vectors; see Project 14.3.)

Example 14.23. We take m = 6 and consider the integer vector

V =




133
43

−277
−46
−617
−833




© 2012 by Taylor & Francis Group, LLC

240 Lattice Basis Reduction

We use the Maple procedure IntegerRelations[LLL] to apply the LLL algo-
rithm with α = 3

4 to Cγ for γ = 1, 2, . . . , 6. We obtain the following matrices:

C1 =




1 −2 0 1 0 0 1
−1 1 0 −2 0 0 2

2 1 0 2 −1 1 1
0 −1 −3 −1 0 1 1
2 1 0 −2 2 −1 0
0 0 1 −2 −3 2 0




C2 =




1 −2 0 1 0 0 2
1 3 0 1 −1 1 0
−1 1 −3 −2 0 1 0
−1 2 3 −1 0 −1 2

2 1 0 −2 2 −1 0
0 0 1 −2 −3 2 0




C3 =




1 −2 0 1 0 0 3
1 3 0 1 −1 1 0
−1 1 −3 −2 0 1 0

2 1 0 −2 2 −1 0
0 0 1 −2 −3 2 0
−1 2 3 −1 0 −1 3




C4 =




1 3 0 1 −1 1 0
1 −2 0 1 0 0 4
−1 1 −3 −2 0 1 0

2 1 0 −2 2 −1 0
0 0 1 −2 −3 2 0
3 −1 −3 3 −1 2 0




C5 =




1 3 0 1 −1 1 0
−1 1 −3 −2 0 1 0

2 1 0 −2 2 −1 0
0 0 1 −2 −3 2 0
1 −2 0 1 0 0 5
3 −1 −3 3 −1 2 0




C6 =




1 3 0 1 −1 1 0
−1 1 −3 −2 0 1 0

2 1 0 −2 2 −1 0
0 0 1 −2 −3 2 0
3 −1 −3 3 −1 2 0
1 −2 0 1 0 0 6




For γ ≥ 7, the matrix Cγ is the same as C6, except that the entry in the
bottom right corner is γ.

As γ → ∞, the matrices Cγ eventually converge (except for the entry in

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 241

the bottom right corner), and in fact the reduce and exchange steps performed
by the LLL algorithm also settle down to the same sequence of operations.
Our next task is to identify this limiting sequence of operations, and perform
them not on the matrix Cγ but instead on the matrix

[
Im V

]
. In this way,

we will achieve the same result but without the complications introduced by
multiplying the input vector V by an arbitrarily large integer γ.

Recall that we are given an input vector

V =
[
v1 v2 · · · vm

]t
.

We define the (m−1)-dimensional lattice Λ ⊂ Zm as follows:

Λ = {X ∈ Zm | V tX = 0 }.

For each positive integer γ, we define the m-dimensional lattice Lγ ⊂ Zm+1 to
be the lattice spanned by the (transposes of the) rows of the following matrix:

Cγ =
[
Im γV

]
.

Thus Lγ consists of all (column) vectors of the form

[
X
a

]
=




x1

...
xm

γ
∑m

i=1 xivi


 (x1, . . . , xm ∈ Z).

It is clear that

X ∈ Λ ⇐⇒
[
X
0

]
∈ Lγ .

Furthermore, if [
X
a

]
∈ Lγ , X /∈ Λ,

then a 6= 0 and so the Euclidean length of
[
X a

]t
is at least γ.

From our analysis of the LLL algorithm we know that if b1, b2, . . . , bm−1

are the first m−1 vectors in an LLL-reduced basis (with parameter α) for
the m-dimensional lattice L, and X1, X2, . . . , Xm−1 are any m−1 linearly
independent vectors in L, then for j = 1, 2, . . . ,m−1 we have

|bj | ≤ β(m−2)/2 max
(
|X1|, |X2|, . . . , |Xm−1|

)
.

But it is clear that these m−1 vectors belong to L:

X1 =
[
−v2 v1 0 · · · 0 0

]
,

X2 =
[
−v3 0 v1 · · · 0 0

]
,

...

© 2012 by Taylor & Francis Group, LLC

242 Lattice Basis Reduction

Xm−1 =
[
−vm 0 0 · · · v1 0

]
.

For j = 1, 2, . . . ,m−1 we have |Xj | ≤ |V | and so

|bj | ≤ β(m−2)/2|V |.

From the last two paragraphs it follows that if

γ > β(m−2)/2|V |,

then the first m−1 vectors in an LLL-reduced basis for Lγ must belong to Λ.
The last row of the reduced matrix Cγ then has the form

[
bm1 · · · bmm γg

]
(g ∈ Z).

But we know that for some unimodular matrix U we have

Cγ = UCγ = U
[
Im γV

]
=
[
U γUV

]
=
[
U γD

]
,

where
D =

[
0 · · · 0 d

]t
, d = gcd(v1, v2, . . . , vm).

Hence g = ±d.
We now verify that the sequence of operations performed by the LLL

algorithm on the rows of Cγ converges to a limiting sequence as γ tends to
infinity. The following argument closely follows Section 3 of Havas, Majewski
and Matthews [56]. We apply the LLL algorithm to the rows of the matrix

Cγ =
[
Im γV

]

At an intermediate stage of the computation, we have the matrix

C =
[
B γA

]
,

where B is an m×m integer matrix and A is an m× 1 integer vector:

A =
[
a1 a2 · · · am

]t
.

The rows of C = (cij) will be denoted c1, c2, . . . , cm so that

ci =
[
ci1 · · · cim ci,m+1

]
.

At the end of the computation, we have the matrix described above,

Cγ =
[
U γD

]
.

We proceed by induction on k, the index variable in the LLL algorithm. We
assume that 2 ≤ k ≤ m and that the first k rows of C are LLL-reduced. As we
have already seen, this implies that the first k−2 components of A are zero:

a1 = · · · = ak−2 = 0.

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 243

Recall the Gram-Schmidt orthogonalization,

c∗i = ci −
i−1∑

j=1

µijc
∗
j , µij =

ci · c∗j
c∗j · c∗j

.

This implies that

c∗i,m+1 = 0 (i = 1, . . . , k−2), c∗k−1,m+1 = γak−1.

Using this and ck,m+1 = γak we see that for j = 1, . . . , k−2 we have

µkj =
ck · c∗j
c∗j · c∗j

=

∑m
ℓ=1 ckℓc

∗
jℓ + γakc

∗
j,m+1∑m

ℓ=1(c
∗
jℓ)

2 + (c∗j,m+1)
2

=

∑m
ℓ=1 ckℓc

∗
jℓ∑m

ℓ=1(c
∗
jℓ)

2
.

Thus in the range 1 ≤ j ≤ k−2, the Gram-Schmidt coefficients µkj for C
are the same as those for the submatrix B (that is, C with the last column
deleted); they do not depend on γ. For j = k−1 the equation c∗k−1,m+1 =
γak−1 gives

µk,k−1 =
ck · c∗k−1

c∗k−1 · c∗k−1

=

∑m
ℓ=1 ckℓc

∗
k−1,ℓ + γ2ak−1ak∑m

ℓ=1(c
∗
k−1,ℓ)

2 + γ2a2
k−1

.

From this we see that as γ →∞ we have

µk,k−1 →
ak

ak−1
(assuming ak−1 6= 0).

Therefore, as γ →∞ we have

⌈µk,k−1⌋ ∈ { t, t+1 }, t =

⌈
ak

ak−1

⌋
(assuming ak−1 6= 0).

Hence the reduce step of the LLL algorithm performs either ck ← ck − tck−1

or ck ← ck − (t+1)ck−1. If ak−1 = 0 then the reduce step is the same as that
for the submatrix B; it does not depend on γ.

We next consider the exchange step of the LLL algorithm. This takes place
if the exchange condition is satisfied:

|c∗k|2 < (α − µ2
k,k−1) |c∗k−1|2.

There are three cases:

(1) If ak−1 = ak = 0 then the exchange condition for C is the same as
that for the submatrix B; it does not depend on γ.

(2) If ak−1 = 0 but ak 6= 0 then c∗k,m+1 = γak, and hence the exchange
condition fails for γ sufficiently large; no exchange is performed.

© 2012 by Taylor & Francis Group, LLC

244 Lattice Basis Reduction

(3) If ak−1 6= 0 then we consider the equation

c∗k = ck −
k−2∑

j=1

µkjc
∗
j − µk,k−1c

∗
k−1.

The orthogonal vectors c∗j do not change during the reduce step,
and so

ck,m+1 = γak, c∗j,m+1 = 0 (j = 1, . . . , k−2), c∗k−1,m+1 = γak−1.

Combining this with the previous estimate for µk,k−1 gives

c∗k,m+1 = γak − µk,k−1γak−1 ≈ γak −
(

ak

ak−1

)
γak−1 = 0.

Therefore the exchange condition will be satisfied for large γ, and
an exchange will be performed.

This completes the proof that the LLL algorithm applied to the matrix Cγ

converges to a limiting sequence of operations as γ becomes arbitrarily large.
Maple code for the Havas-Majewski-Matthews (HMM) algorithm for the

GCD is given in Figures 14.4 and 14.5. The structure of the algorithm is
very similar to that of the original LLL algorithm, except that the initial
computation of the Gram-Schmidt orthogonalization is not required, since the
original lattice basis is given by the rows of a matrix of the very special form[
Im V

]
. Furthermore, following an idea of de Weger [37], the algorithm

exclusively uses integer arithmetic: the Gram-Schmidt coefficients are stored
in terms of the integers di and νij defined by

|b∗
i |2 = di/di−1 (d0 = 1), νij = djµij .

Similarly, the reduction parameter is stored as the rational number

α = a1/a2 (a1, a2 ∈ Z).

Example 14.24. We conclude this section with a detailed example of the
execution of the Havas-Majewski-Matthews algorithm for the GCD. We com-
pute the greatest common divisor of the five integers 561, 909, 258, 549, 756.
At the start of the computation, the variables are initialized as follows:

[
U V V ν

d

]
=




1 0 0 0 0 561 0 0 0 0 0
0 1 0 0 0 909 0 0 0 0 0
0 0 1 0 0 258 0 0 0 0 0
0 0 0 1 0 549 0 0 0 0 0
0 0 0 0 1 756 0 0 0 0 0

1 1 1 1 1




© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 245

with(LinearAlgebra):

a1 := 3: a2 := 4: # reduction parameter: alpha = a1/a2

near := proc(x) ceil(x - 1/2) end:

reducegcd := proc(k, i)

global d, nu, U, VV:

local j, q:

if VV[i] <> 0 then

q := near(VV[k]/VV[i])

else

if 2*abs(nu[k,i]) > d[i] then

q := near(nu[k,i]/d[i])

else

q := 0

fi

fi:

if q <> 0 then

VV[k] := VV[k] - q*VV[i]:

U := RowOperation(U, [k,i], -q):

nu[k,i] := nu[k,i] - q*d[i]:

for j to i-1 do nu[k,j] := nu[k,j] - q*nu[i,j] od

fi

end:

swapgcd := proc(k)

global d, m, nu, U, VV:

local i, j, t:

t := VV[k]: VV[k] := VV[k-1]: VV[k-1] := t:

U := RowOperation(U, [k,k-1]):

for j to k-2 do

t := nu[k,j]: nu[k,j] := nu[k-1,j]: nu[k-1,j] := t

od:

for i from k+1 to m do

t := nu[i,k-1]*d[k] - nu[i,k]*nu[k,k-1]:

nu[i,k-1] :=

(nu[i,k-1]*nu[k,k-1] + nu[i,k]*d[k-2]) / d[k-1]:

nu[i,k] := t/d[k-1]

od:

d[k-1] := (d[k-2]*d[k] + nu[k,k-1]^2) / d[k-1]

end:

FIGURE 14.4
HMM algorithm for GCD: Maple code, part 1

© 2012 by Taylor & Francis Group, LLC

246 Lattice Basis Reduction

HMMGCD := proc(V)

global a1, a2, d, m, nu, U, VV:

local i, k:

VV := copy(V):

m := Dimension(VV):

U := IdentityMatrix(m):

nu := Matrix(m, m):

for i from 0 to m do d[i] := 1 od:

k := 2:

while k <= m do

reducegcd(k, k-1):

if (VV[k-1] <> 0) or

(VV[k-1] = 0 and VV[k] = 0 and

a2*(d[k-2]*d[k]+nu[k,k-1]^2) < a1*d[k-1]^2)

then

swapgcd(k):

if k > 2 then k := k - 1 fi

else

for i from k-2 to 1 by -1 do reducegcd(k, i) od:

k := k + 1

fi

od:

if VV[m] < 0 then

VV[m] := -VV[m]: U := RowOperation(U, m, -1)

fi

end:

FIGURE 14.5
HMM algorithm for GCD: Maple code, part 2

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 247

The upper left block is the (current state of the) transform matrix U , the
next column is the copy V V of the input vector V , the upper right block is
the integral Gram-Schmidt coefficient matrix ν, and the bottom row is the
denominator vector d. We will display this data after each call to swapgcd.

At the start of the computation, the index variable has the value k = 2.
After calls to reducegcd(2, 1) and swapgcd(2), we have

[
U V V ν

d

]
=




−2 1 0 0 0 −213 0 0 0 0 0
1 0 0 0 0 561 −2 0 0 0 0
0 0 1 0 0 258 0 0 0 0 0
0 0 0 1 0 549 0 0 0 0 0
0 0 0 0 1 756 0 0 0 0 0

5 1 1 1 1




The same procedures are called five more times, giving these results:

[
U V V ν

d

]
=




−5 3 0 0 0 −78 0 0 0 0 0
−2 1 0 0 0 −213 13 0 0 0 0

0 0 1 0 0 258 0 0 0 0 0
0 0 0 1 0 549 0 0 0 0 0
0 0 0 0 1 756 0 0 0 0 0

34 1 1 1 1




[
U V V ν

d

]
=




13 −8 0 0 0 21 0 0 0 0 0
−5 3 0 0 0 −78 −89 0 0 0 0

0 0 1 0 0 258 0 0 0 0 0
0 0 0 1 0 549 0 0 0 0 0
0 0 0 0 1 756 0 0 0 0 0

233 1 1 1 1




[
U V V ν

d

]
=




47 −29 0 0 0 6 0 0 0 0 0
13 −8 0 0 0 21 843 0 0 0 0
0 0 1 0 0 258 0 0 0 0 0
0 0 0 1 0 549 0 0 0 0 0
0 0 0 0 1 756 0 0 0 0 0

3050 1 1 1 1




[
U V V ν

d

]
=




−128 79 0 0 0 3 0 0 0 0 0
47 −29 0 0 0 6 −8307 0 0 0 0
0 0 1 0 0 258 0 0 0 0 0
0 0 0 1 0 549 0 0 0 0 0
0 0 0 0 1 756 0 0 0 0 0

22625 1 1 1 1




© 2012 by Taylor & Francis Group, LLC

248 Lattice Basis Reduction

[
U V V ν

d

]
=




303 −187 0 0 0 0 0 0 0 0 0
−128 79 0 0 0 3 −53557 0 0 0 0

0 0 1 0 0 258 0 0 0 0 0
0 0 0 1 0 549 0 0 0 0 0
0 0 0 0 1 756 0 0 0 0 0

126778 1 1 1 1




At this point the algorithm has computed the GCD of the first two input
values.

After one more call to reducegcd(2, 1), we increase the index to k = 3,
call reducegcd(3, 2) and swap(3), and obtain




303 −187 0 0 0 0 0 0 0 0 0
11008 −6794 1 0 0 0 4605902 0 0 0 0
−128 79 0 0 0 3 −53557 −86 0 0 0

0 0 0 1 0 549 0 0 0 0 0
0 0 0 0 1 756 0 0 0 0 0

126778 134174 1 1 1




The algorithm has now computed the GCD of the first three input values.
The index now decreases to k = 2; the algorithm calls reducegcd(2, 1) and

swapgcd(2) twice, giving




100 −62 1 0 0 0 0 0 0 0 0
303 −187 0 0 0 0 41894 0 0 0 0
−128 79 0 0 0 3 −17698 −56653 0 0 0

0 0 0 1 0 549 0 0 0 0 0
0 0 0 0 1 756 0 0 0 0 0

13845 134174 1 1 1







3 −1 −3 0 0 0 0 0 0 0 0
100 −62 1 0 0 0 359 0 0 0 0
−128 79 0 0 0 3 −463 −170045 0 0 0

0 0 0 1 0 549 0 0 0 0 0
0 0 0 0 1 756 0 0 0 0 0

19 134174 1 1 1




The algorithm calls reducegcd(2, 1) again, increases the index to k = 3, calls
reducegcd(3, 2) and reducegcd(3, 1), increases the index to k = 4, and then
calls reducegcd(4, 3) and swapgcd(4):




3 −1 −3 0 0 0 0 0 0 0 0
43 −43 58 0 0 0 −2 0 0 0 0

2379 −2196 2562 1 0 0 1647 6564393 0 0 0
−13 12 −14 0 0 3 −9 −35871 −183 0 0

0 0 0 0 1 756 0 0 0 0 0

19 134174 167663 1 1




© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 249

The algorithm has now computed the GCD of the first four input values.

The index now decreases to k = 3, and after calls to reducegcd(3, 2) and
swapgcd(3) we have




3 −1 −3 0 0 0 0 0 0 0 0
272 −89 −280 1 0 0 1745 0 0 0 0
43 −43 58 0 0 0 −2 −10133 0 0 0
−13 12 −14 0 0 3 −9 2709 −44838 0 0

0 0 0 0 1 756 0 0 0 0 0

19 789 167663 1 1




The index now decreases to k = 2. The algorithm calls reducegcd(2, 1), in-
creases the index to k = 3, calls reducegcd(3, i) (i = 2, 1), increases the index
to k = 4, calls reducegcd(4, i) (i = 3, 2, 1), increases the index to k = 5, and
then calls reducegcd(5, 4) and swapgcd(5). The current state is now




3 −1 −3 0 0 0 0 0 0 0 0
−4 3 −4 1 0 0 −3 0 0 0 0
−3 −6 0 13 0 0 −3 124 0 0 0
252 −756 504 756 1 0 0 −86184 11299176 0 0
−1 3 −2 −3 0 3 0 342 −44838 −252 0

19 789 167663 231167 1




At this point the algorithm has computed the GCD of all five input values,
but the transformation matrix U requires further reduction.

The index decreases to k = 4, and reducegcd(4, 3) and swapgcd(4) pro-
duce




3 −1 −3 0 0 0 0 0 0 0 0
−4 3 −4 1 0 0 −3 0 0 0 0
453 −354 504 −115 1 0 201 −94492 0 0 0
−3 −6 0 13 0 0 −3 124 65755 0 0
−1 3 −2 −3 0 3 0 342 −17586 −61722 0

19 789 26876 231167 1




The algorithm decreases the index to k = 3, calls reducegcd(3, i) (i = 2, 1),
increases the index to k = 4, and calls reducegcd(4, 3) and swapgcd(4):




3 −1 −3 0 0 0 0 0 0 0 0
−4 3 −4 1 0 0 −3 0 0 0 0

3 −2 0 3 −2 0 11 −252 0 0 0
−3 −2 0 5 1 0 −7 188 12003 0 0
−1 3 −2 −3 0 3 0 342 −9666 −123696 0

19 789 12147 231167 1




© 2012 by Taylor & Francis Group, LLC

250 Lattice Basis Reduction

The index decreases to k = 3, and reducegcd(3, 2) and swapgcd(3) produce:




3 −1 −3 0 0 0 0 0 0 0 0
3 −2 0 3 −2 0 11 0 0 0 0
−4 3 −4 1 0 0 −3 −252 0 0 0
−3 −2 0 5 1 0 −7 229 6728 0 0
−1 3 −2 −3 0 3 0 −342 2178 −123696 0

19 373 12147 231167 1




The index now decreases to k = 2. The algorithm calls reducegcd(2, 1), in-
creases the index to k = 3, calls reducegcd(3, i) (i = 2, 1), increases the index
to k = 4, calls reducegcd(4, i) (i = 3, 2, 1), increases the index to k = 5,
and then calls reducegcd(5, i) (i = 4, 3, 2, 1). At this point the algorithm
terminates:




3 −1 −3 0 0 0 0 0 0 0 0
0 −1 3 3 −2 0 −8 0 0 0 0
−1 1 −4 4 −2 0 8 121 0 0 0

1 −4 1 1 3 0 4 108 −5419 0 0
0 −2 2 1 1 3 −4 139 −3241 107471 0

19 373 12147 231167 1




We have gcd(v1, v2, v3, v4, v5) = 3 and the transformation matrix is

U =




3 −1 −3 0 0
0 −1 3 3 −2
−1 1 −4 4 −2

1 −4 1 1 3
0 −2 2 1 1




The last row gives the short multiplier vector −2v2 + 2v3 + v4 + v5 = 3.

14.7 The HMM algorithm for the HNF

We can regard a column vector of dimension m as a matrix of size m× 1:

V =




v1
v2
...
vm


 .

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 251

If the matrix entries are integers, then its Hermite normal form is

H =




d
0
...
0


 , D = gcd(v1, v2, . . . , vm).

If we turn this vector upside down, then we have the vector computed by
the GCD algorithms described in the previous sections. Therefore, using ele-
mentary row operations to compute the greatest common divisor of the com-
ponents of an m × 1 column vector is equivalent to computing the Hermite
normal form of an m× 1 matrix.

In this section, we consider an integer matrix of size m × n, and follow
Havas, Majewski and Matthews [56] to extend the algorithm for the GCD to
an algorithm for the HNF. In the previous section, we considered the limiting
behavior of the LLL algorithm applied to a matrix of this form:

Cγ =
[
Im γV

]
.

We replace the single column V by n columns V1, V2, . . . , Vn, and consider
the limiting behavior of the LLL algorithm applied to a matrix of this form:

Cγ =
[
Im γnV1 γn−1V2 · · · γVn

]
.

This approach leads to the Maple code for the HMM algorithm for the HNF
given in Figures 14.6–14.8.

Example 14.25. We use the Maple program of Figures 14.6–14.8 to compute
the Hermite normal form of this 4× 4 matrix:

M =




9 6 2 4
−8 2 0 −7
−6 −4 0 −7

6 9 −1 −8




We display the current state of the computation as follows:

[
U MM ν

d

]
=




1 0 0 0 9 6 2 4 0 0 0 0
0 1 0 0 −8 2 0 −7 0 0 0 0
0 0 1 0 −6 −4 0 −7 0 0 0 0
0 0 0 1 6 9 −1 −8 0 0 0 0

1 1 1 1




In this representation of the initial values of the variables, U is the transfor-
mation matrix, MM is a copy of the input matrix, ν is the matrix of integral
Gram-Schmidt coefficients, and d is the vector of denominators.

© 2012 by Taylor & Francis Group, LLC

252 Lattice Basis Reduction

with(LinearAlgebra):

a1 := 3: a2 := 4: # alpha = a1/a2 (reduction parameter)

near := proc(x) ceil(x - 1/2) end:

plusminus := proc(ij)

global m, nu: local i, j:

for i from 2 to m do for j to i-1 do

if i = ij or j = ij then nu[i,j] := -nu[i,j] fi

od od

end:

reducehnf := proc(k, i)

global c1, c2, d, m, MM, n, nu, U: local j, jj, q:

jj := 0:

for j from n to 1 by -1 do if MM[i,j]<>0 then jj := j fi od:

if jj = 0 then c1 := n + 1 else

c1 := jj:

if MM[i,c1] < 0 then

plusminus(i):

MM := RowOperation(MM, i, -1):

U := RowOperation(U, i, -1)

fi

fi:

jj := 0:

for j from n to 1 by -1 do if MM[k,j]<>0 then jj := j fi od:

if jj = 0 then c2 := n + 1 else c2 := jj fi:

if c1 <= n then q := floor(MM[k,c1]/MM[i,c1]) else

if 2*abs(nu[k,i]) > d[i] then

q := near(nu[k,i]/d[i])

else

q := 0

fi

fi:

if q <> 0 then

MM := RowOperation(MM, [k,i], -q):

U := RowOperation(U, [k,i], -q):

nu[k,i] := nu[k,i] - q*d[i]:

for j to i-1 do nu[k,j] := nu[k,j] - q*nu[i,j] od

fi

end:

FIGURE 14.6
HMM algorithm for HNF: Maple code, part 1

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 253

swaphnf := proc(k)

global d, m, MM, n, nu, U: local i, j, t:

MM := RowOperation(MM, [k,k-1]):

U := RowOperation(U, [k,k-1]):

for j to k-2 do

t := nu[k,j]: nu[k,j] := nu[k-1,j]: nu[k-1,j] := t

od:

for i from k+1 to m do

t := nu[i,k-1]*d[k] - nu[i,k]*nu[k,k-1]:

nu[i,k-1] :=

(nu[i,k-1]*nu[k,k-1]+nu[i,k]*d[k-2]) / d[k-1]:

nu[i,k] := t / d[k-1]

od:

d[k-1] := (d[k-2]*d[k] + nu[k,k-1]^2) / d[k-1]

end:

FIGURE 14.7
HMM algorithm for HNF: Maple code, part 2

The algorithm calls reducehnf(2, 1) and swaphnf(2) twice, giving




1 1 0 0 1 8 2 −3 0 0 0 0
1 0 0 0 9 6 2 4 1 0 0 0
0 0 1 0 −6 −4 0 −7 0 0 0 0
0 0 0 1 6 9 −1 −8 0 0 0 0

2 1 1 1







−8 −9 0 0 0 −66 −16 31 0 0 0 0
1 1 0 0 1 8 2 −3 −17 0 0 0
0 0 1 0 −6 −4 0 −7 0 0 0 0
0 0 0 1 6 9 −1 −8 0 0 0 0

145 1 1 1




After another call to reducehnf(2, 1), the index increases to k = 3, and the
algorithm calls reducehnf(3, 2) and swaphnf(3):




8 9 0 0 0 66 16 −31 0 0 0 0
6 6 1 0 0 44 12 −25 102 0 0 0
1 1 0 0 1 8 2 −3 17 6 0 0
0 0 0 1 6 9 −1 −8 0 0 0 0

145 181 1 1




The index is now k = 2; reducehnf(2, 1) and swaphnf(2) are called three

© 2012 by Taylor & Francis Group, LLC

254 Lattice Basis Reduction

HMMHNF := proc(M)

global a1, a2, c1, c2, d, m, MM, n, nu, U:

local i, j, jj, k, nz:

MM := copy(M):

m := RowDimension(MM):

n := ColumnDimension(MM):

U := Matrix(m, m, (i,j) -> if i=j then 1 else 0 fi):

nu := Matrix(m, m):

for i from 0 to m do d[i] := 1 od:

jj := 0:

for j from n to 1 by -1 do

if not Equal(Column(MM,j), Vector(m)) then jj := j fi

od:

if jj <> 0 then

nz := 0:

for i to m do

if MM[i,jj] <> 0 then nz := nz+1 fi

od:

if nz = 1 and i = m and MM[m,jj] < 0 then

MM := RowOperation(MM, m, -1):

U[m,m] := -1

fi

fi:

k := 2:

while k <= m do

reducehnf(k, k-1):

if (c1 <= min(c2,n)) or

(c1 = n+1 and c2 = n+1 and

a2*(d[k-2]*d[k]+nu[k,k-1]^2) < a1*d[k-1]^2)

then

swaphnf(k):

if k > 2 then k := k - 1 fi

else

for i from k-2 to 1 by -1 do reducehnf(k,i) od:

k := k+1

fi

od

end:

FIGURE 14.8
HMM algorithm for HNF: Maple code, part 3

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 255

times:




6 6 1 0 0 44 12 −25 0 0 0 0
8 9 0 0 0 66 16 −31 102 0 0 0
1 1 0 0 1 8 2 −3 12 17 0 0
0 0 0 1 6 9 −1 −8 0 0 0 0

73 181 1 1







2 3 −1 0 0 22 4 −6 0 0 0 0
6 6 1 0 0 44 12 −25 29 0 0 0
1 1 0 0 1 8 2 −3 5 23 0 0
0 0 0 1 6 9 −1 −8 0 0 0 0

14 181 1 1







2 0 3 0 0 0 4 −13 0 0 0 0
2 3 −1 0 0 22 4 −6 1 0 0 0
1 1 0 0 1 8 2 −3 2 63 0 0
0 0 0 1 6 9 −1 −8 0 0 0 0

13 181 1 1




The algorithm calls reducehnf(2, 1), increments to k = 3, calls
reducehnf(3, i) (i = 2, 1), increments to k = 4, calls reducehnf(4, 3) and
then swaphnf(4):




2 0 3 0 0 0 4 −13 0 0 0 0
0 3 −4 0 0 22 0 7 −12 0 0 0
−6 −6 0 1 0 −39 −13 10 −12 −378 0 0

1 1 0 0 1 8 2 −3 2 63 −6 0

13 181 217 1




The index is now k = 3; the algorithm calls reducehnf(3, 2) and then
swaphnf(3):




2 0 3 0 0 0 4 −13 0 0 0 0
−6 0 −8 1 0 5 −13 24 −36 0 0 0

0 3 −4 0 0 22 0 7 −12 −16 0 0
1 1 0 0 1 8 2 −3 2 −6 75 0

13 17 217 1




The index is now k = 2; the algorithm calls reducehnf(2, 1), increments to
k = 3, calls reducehnf(3, 2) and then swaphnf(3):




2 0 3 0 0 0 4 −13 0 0 0 0
−8 3 −20 −4 0 2 −12 119 −76 0 0 0

2 0 4 1 0 5 3 −28 16 −84 0 0
1 1 0 0 1 8 2 −3 2 87 294 0

13 581 217 1




© 2012 by Taylor & Francis Group, LLC

256 Lattice Basis Reduction

The same operations are repeated twice more, giving




2 0 3 0 0 0 4 −13 0 0 0 0
6 −6 26 9 0 1 3 −188 90 0 0 0
−2 3 −11 −4 0 2 0 80 −37 −1246 0 0

1 1 0 0 1 8 2 −3 2 −180 663 0

13 2677 217 1







2 0 3 0 0 0 4 −13 0 0 0 0
−14 15 −63 −22 0 0 −6 456 −217 0 0 0

6 −6 26 9 0 1 3 −188 90 −6600 0 0
1 1 0 0 1 8 2 −3 2 447 1620 0

13 16273 217 1




The index is now k = 2; reducehnf(2, 1) and swaphnf(2) are called twice:




−10 15 −57 −22 0 0 2 430 0 0 0 0
2 0 3 0 0 0 4 −13 −191 0 0 0
6 −6 26 9 0 1 3 −188 −1830 15690 0 0
1 1 0 0 1 8 2 −3 5 9071 1620 0

4058 16273 217 1







22 −30 117 44 0 0 0 −873 0 0 0 0
−10 15 −57 −22 0 0 2 430 −8307 0 0 0

6 −6 26 9 0 1 3 −188 3750 24780 0 0
1 1 0 0 1 8 2 −3 −8 18589 1620 0

17009 16273 217 1




After reducehnf(2, 1), reducehnf(3, i) (i = 2, 1), and reducehnf(4, i) (i =
3, 2, 1), we obtain the final result:




−22 30 −117 −44 0 0 0 873 0 0 0 0
−10 15 −57 −22 0 0 2 430 8307 0 0 0
−6 9 −34 −13 0 1 1 255 4952 8507 0 0
−3 4 −16 −6 1 0 0 120 2322 −648 −116 0

17009 16273 217 1




We now turn the matrices U and H upside down, to obtain




−3 4 −16 −6
−6 9 −34 −13
−10 15 −57 −22
−22 30 −117 −44







9 6 2 4
−8 2 0 −7
−6 −4 0 −7

6 9 −1 −8


 =




1 0 0 120
0 1 1 255
0 0 2 430
0 0 0 873




The computation is complete.

© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 257

14.8 Projects

Project 14.1. Consider the product of 2× 2 matrices of the form occurring
in the computation of the GCD of two integers:

[
b 1
1 0

] [
a 1
1 0

]
=

[
ab+1 b
a 1

]

[
c 1
1 0

] [
b 1
1 0

] [
a 1
1 0

]
=

[
abc+a+c bc+1
ab+1 b

]

[
d 1
1 0

] [
c 1
1 0

] [
b 1
1 0

] [
a 1
1 0

]
=

[
abcd+ab+ad+cd+1 bcd+b+d

abc+a+c bc+1

]

The entries of the matrices on the right sides of these equations are called
‘continuants’: these polynomials are important in the theory of continued frac-
tions. See Graham et al. [50], §6.7; Knuth [78], §4.5.3; von zur Gathen and
Gerhard [147], Exercise 3.20. In particular, the entry in the upper left corner
is obtained from the product of the variables by deleting adjacent pairs of
letters in all possible ways and adding the results. Write a report and present
a seminar talk on the theory of continuant polynomials.

Project 14.2. In the algorithm of Figure 14.2, the entries of H and U tend to
increase exponentially during the calculation. For the worst-case complexity of
this problem, see Fang and Havas [41]. An active area of research in computer
algebra is the search for HNF algorithms which control the space required for
storage of the intermediate results. A famous paper on this topic is Kannan
and Bachem [73] (see also Sims [131]). For recent work see Storjohann [135],
Micciancio and Warinschi [101], Pernet and Stein [116]. Write a report and
present a seminar talk on algorithms for computing the Hermite normal form.

Project 14.3. Compare the MLLL algorithm for linearly dependent vectors
with the algorithm for the greatest common divisor outlined in the statement
of Lemma 14.22. Both are based on the idea of embedding linearly dependent
vectors into a space of higher dimension as linearly independent vectors.

Project 14.4. Write a report on the complexity of the Havas-Majewski-
Matthews algorithm for the HNF, based on the paper of van der Kallen [143].

© 2012 by Taylor & Francis Group, LLC

258 Lattice Basis Reduction

14.9 Exercises

Exercise 14.1. Consider the following matrix A:

A =




−7 −6 −4 −3 −5 3 −2 2 −2 7
2 7 5 8 1 4 1 6 −4 9
−5 −2 5 2 −9 4 −3 6 8 −2

0 −6 3 2 −2 −6 −8 −1 1 −2
5 7 9 −9 6 7 −8 −2 7 −7




(a) Find a transform matrix U for which UAt = H is the Hermite normal
form of the transpose of A.

(b) Apply lattice basis reduction to the result of part (a) to find a reduced
basis of the nullspace lattice of A.

(c) Use the result of part (b) to find a transform matrix U ′ with much
smaller entries for which U ′At = H .

Exercise 14.2. Apply the LLL algorithm to the first three rows of the matrix
U in Example 14.21, and then use the reduced basis to size-reduce the last
row of U . Compare the resulting multiplier vector with equations (14.3) and
(14.4).

Exercise 14.3. Prove Lemma 14.22.

Exercise 14.4. For each of the following integer column vectors, compute
the greatest common divisor in two ways: first, using the method of Example
14.21; second, using the Havas-Majewski-Matthews algorithm of Figures 14.4
and 14.5:

(a) V =




2
3
5


 (b) V=




46
52
64


 (c) V =




243
704
337


 (d) V=




3650
5985
6781




(e) V =




2
3
5
7


 (f) V=




70
67
35
53


 (g) V =




671
272
391
826


 (h) V=




9009
7458
5049
6156




(i) V =




2
3
5
7

11




(j) V=




96
68
81
25
21




(k) V =




112
771
312
605
836




(l) V=




7047
7478
2418
3929
7909




Exercise 14.5. For each of the following integer matrices, compute the HNF
using the Havas-Majewski-Matthews algorithm of Figures 14.6–14.8:

(a) V =




5 9 1
9 2 7
4 4 1



 (b) V =




36 31 67
41 16 35
92 70 53





© 2012 by Taylor & Francis Group, LLC

The Hermite Normal Form 259

(c) V =




836 891 909
726 295 258
698 561 549



 (d) V =




3 6 8 4
2 4 6 6
2 3 5 6
8 9 7 2




(e) V =




14 52 90 47
27 76 42 16
18 52 99 49
76 85 36 40


 (f) V =




691 877 512 326
479 725 602 113
461 901 952 291
294 652 608 606




(g) V =




8 8 7 7 6
9 1 1 8 8
7 2 6 8 9
3 3 6 7 1
9 3 4 3 7




(h) V =




35 40 56 17 14
65 98 80 51 85
87 31 19 50 90
87 44 60 21 81
26 26 86 62 81




(i) V =




415 655 857 638 635
837 100 308 256 994
306 842 570 372 385
479 898 774 382 207
670 146 103 133 161




© 2012 by Taylor & Francis Group, LLC

15

Polynomial Factorization

CONTENTS

15.1 The Euclidean algorithm for polynomials . 262

15.2 Structure theory of finite fields . 264

15.3 Distinct-degree decomposition of a polynomial . 267

15.4 Equal-degree decomposition of a polynomial . 270

15.5 Hensel lifting of polynomial factorizations . 275

15.6 Polynomials with integer coefficients . 283

15.7 Polynomial factorization using LLL . 290

15.8 Projects . 294

15.9 Exercises . 295

Our goal in this chapter is to present the first important application of the LLL
algorithm, which explains the title of the original paper by Lenstra, Lenstra
and Lovász [88]: a polynomial-time algorithm for factoring polynomials in one
variable with coefficients in the field of rational numbers.

The first few sections of this chapter provide an brief introduction to the
general problem of polynomial factorization. We begin with the case of co-
efficients in a finite field; the most important original references are Knuth
[78] (§4.6), Berlekamp [14, 15], and Cantor and Zassenhaus [21]. We then use
Hensel lifting to extend a factorization over the field with p elements to a
factorization over the ring of congruence classes modulo pn; the classic paper
is by Hensel [59], and the modern algorithmic treatment is by Zassenhaus
[149]. We conclude by showing how the LLL algorithm can be used to provide
a polynomial-time algorithm for factoring (squarefree) primitive polynomi-
als with integer coefficients. Our presentation of these topics mostly ignores
complexity questions in favor of providing the clearest possible description of
the basic algorithms. We also assume familiarity with the basic concepts of
abstract algebra, especially the theory of polynomial rings.

Most of the topics in this chapter are discussed in standard textbooks on
computer algebra; we mention in particular von zur Gathen and Gerhard [147],
especially Chapters 14, 15 and 16. For background material on polynomial
rings and finite fields, there are many suitable textbooks; a classic reference
is the book by Herstein [61].

261

© 2012 by Taylor & Francis Group, LLC

262 Lattice Basis Reduction

15.1 The Euclidean algorithm for polynomials

Let F be an arbitrary field, and let F[x] be the ring of polynomials in one
variable x with coefficients in F.

Definition 15.1. The polynomial ring F[x] consists of the zero polynomial
together with the elements of the form

f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (n ≥ 0), (15.1)

where an, an−1, . . . , a1, a0 ∈ F and an 6= 0. Addition and multiplication of
polynomials are defined as usual. The integer n is the degree of the poly-
nomial f , and we write deg(f) = n. The element an ∈ F is the leading
coefficient of f , and we write ℓ(f) = an. If ℓ(f) = 1 then f is monic. We
say f is irreducible if any factorization f = gh has either g ∈ F or h ∈ F.

Theorem 15.2. The polynomial algebra F[x] is a unique factorization domain
(UFD): every monic polynomial f ∈ F[x] is the product of monic irreducible
factors, and this factorization is unique up to the order of the factors.

The Euclidean algorithm for the GCD of two integers a, b generalizes
directly to the case of two polynomials f, g ∈ F[x]. The main difference is that
the absolute value |a| of the integer a is replaced by the degree deg(f) of the
nonzero polynomial f . The polynomial version of the Euclidean algorithm is
presented in Figure 15.1.

Example 15.3. Let F3 = {0, 1, 2} be the field with 3 elements, and consider
these two polynomials in F3[x]:

r0 = x12 + x8 + x6 + x4 + x2 + 1, r1 = x3 + 2x.

Dividing r0 by r1 gives

r0 = q2r1 + r2, q2 = x9 + x7 + 2x5 + x, r2 = 2x2 + 1.

We divide r2 by its leading coefficient, replacing r2 by a monic polynomial:

r2 = x2 + 2.

Dividing r1 by r2 gives

r1 = q3r2 + r3, q3 = x, r3 = 0.

From the last nonzero remainder we obtain gcd(r0, r1) = x2 + 2.

Definition 15.4. A polynomial f ∈ F[x] is called squarefree if f is not
divisible by the square of any irreducible polynomial; in other words, every
irreducible factor of f occurs with multiplicity 1.

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 263

• Input: Nonzero polynomials f, g ∈ F[x].

• Output: The monic GCD of f and g.

(1) If deg(f) ≥ deg g then

Set r0 ←
1

ℓ(f)
f and r1 ←

1

ℓ(g)
g

else

Set r0 ←
1

ℓ(g)
g and r1 ←

1

ℓ(f)
f .

(2) Set i← 1.

(3) While ri 6= 0 do:

(a) Compute the unique polynomials qi+1 and ri+1 such that

ri−1 = qi+1ri + ri+1,

such that

ri+1 = 0 or deg(ri+1) < deg(ri).

(b) If ri+1 6= 0 then set ri+1 ←
1

ℓ(ri+1)
ri+1.

(c) Set i← i+ 1.

(4) Return ri−1.

FIGURE 15.1
The Euclidean algorithm Euclid(f, g) for f, g ∈ F[x]

© 2012 by Taylor & Francis Group, LLC

264 Lattice Basis Reduction

Definition 15.5. We can write equation (15.1) more compactly as follows:

f =

n∑

i=0

aix
i.

The (formal) derivative of f is the polynomial f ′ defined by

f ′ =
n∑

i=1

iaix
i−1.

Lemma 15.6. If f ∈ F[x] and gcd(f, f ′) = 1 then f is squarefree.

Proof. Suppose that f is not square free; then some irreducible factor g occurs
with multiplicity ≥ 2. Hence f = g2h for some polynomial h. Since the formal
derivative satisfies the product rule, we have

f ′ = 2gg′h+ g2h′ = g
(
2g′h+ gh′

)
.

Hence g is a factor of both f and f ′, and so gcd(f, f ′) 6= 1.

The Euclidean algorithm of Figure 15.1 can be extended to compute not
only the monic GCD h of the polynomials f and g but also polynomials s and
t satisfying sf + tg = h; see Figure 15.2. This algorithm does not normalize
the polynomials; that is, none of the polynomials are assumed to be monic.
We initialize si and ti for i = 0, 1 by

s0 = 1, t0 = 0, s1 = 0, t1 = 1.

We then verify by induction on i that sif + tig = ri for all i:

s0f + t0g = f = r0,

s1f + t1g = g = r1,

si+1f + ti+1g = (si−1 − qisi)f + (ti−1 − qiti)g
= (si−1f + ti−1g)− qi(sif + tig)

= ri−1 − qiri
= ri+1.

It can also be shown that deg(s) < deg(g) and deg(t) < deg(f).

15.2 Structure theory of finite fields

To understand polynomial factorization over the field Q of rational numbers,
we first need to understand polynomial factorization over the finite field Fp

where p is a prime number. In this section we recall the basic theory of finite
fields; a detailed exposition may be found in most introductory textbooks on
abstract algebra, and a specialized reference is Lidl and Niederreiter [90].

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 265

• Input: Polynomials f, g ∈ F[x], where F is a field.

• Output: A gcd h of f and g, and polynomials s, t ∈ F[x] for which sf+tg = h.

(1) Set r0 ← f , r1 ← g.

(2) Set s0 ← 1, t0 ← 0; set s1 ← 0, t1 ← 1; set i← 1.

(3) While ri 6= 0 do:

(a) Compute qi and ri+1 in F[x] such that

ri−1 = qiri + ri+1, deg(ri+1) < deg(ri).

(b) Set si+1 ← si−1 − qisi.

(c) Set ti+1 ← ti−1 − qiti.
(d) Set i← i+ 1.

(4) Return h = ri−1, s = si−1, t = ti−1.

FIGURE 15.2
The extended Euclidean algorithm XEuclid(f, g)

Theorem 15.7. A finite field with q elements exists if and only if q = pn for
some prime number p and some positive integer n. For each such q there is,
up to isomorphism, a unique field with q elements, denoted Fq. Furthermore,
Fpm is isomorphic to a subfield of Fpn if and only if m is a divisor of n.

Finite fields may be constructed as follows. For each prime number p and
positive integer n there exists at least one irreducible polynomial f ∈ Fp with
deg(f) = n. Let 〈f〉 be the principal ideal generated by f ; that is, the set
of all multiples of f by elements of Fp[x]. We recall that the quotient ring
Fp[x]/〈f〉 can be identified with the set of cosets g + 〈f〉 where either g = 0
or deg(g) < n. Addition and multiplication in Fp[x]/〈f〉 are defined by

(
g + 〈f〉

)
+
(
h+ 〈f〉

)
= (g + h) + 〈f〉,

(
g + 〈f〉

)(
h+ 〈f〉

)
= k + 〈f〉,

where k is the remainder obtained after dividing gh by f . The quotient ring
Fp[x]/〈f〉 is a field with pn elements.

Lemma 15.8. Let q = pn as above. In the polynomial ring Fq[x] we have

xq − x =
∏

a∈Fq

(x− a).

The last lemma is the special case i = 1 of the next theorem.

© 2012 by Taylor & Francis Group, LLC

266 Lattice Basis Reduction

Theorem 15.9. Let q = pn as above, and let i ≥ 1. In Fq[x] the polynomial

xqi −x is the product of all monic irreducibles whose degrees are divisors of i:

xqi − x =
∏

d | i

∏

deg(f) = d

f monic irreducible

f . (15.2)

Proof. We write g = xqi−x for the left side of equation (15.2). We first observe
that g is squarefree by Lemma 15.6: clearly g′ = −1 and so gcd(g, g′) = 1.

Suppose that f ∈ Fq[x] is a monic irreducible with deg(f) = d. We will
show that if f is a divisor of g then d is a divisor of i. Since g is squarefree,
this will imply that g is a divisor of the right side of equation (15.2). If f is a
divisor of g then Lemma 15.8 applied to qi (in place of q) shows that

f =
∏

a∈S

(x− a) for some subset S ⊆ Fqi .

We choose some a ∈ S and write Fq(a) for the smallest subfield of Fqi

which contains Fq and a. Since f is irreducible, this subfield is isomorphic
to Fq[x]/〈f〉; since deg(f) = d, we see that Fq(a) has qd elements. Since Fqi

has qi elements, and is a field extension of Fq(a), it follows that qi = (qd)j for
some j ≥ 1. Hence d is a divisor of i, as required.

We next show that if d is a divisor of i then f is a divisor of xqi − x; this
implies that the right side of equation (15.2) is a divisor of g. Since d | i we
know that Fqi has a subfield isomorphic to Fqd . Since f is irreducible of degree
d, we know that Fq[x]/〈f〉 is a field with qd elements, which we may identify
with Fqd . We have

qi − 1 = (qd − 1)(qi−d + qi−2d + · · ·+ qd + 1). (15.3)

If r, s, t are positive integers with r = st, then

xr − 1 = (xs − 1)
(
xs(t−1) + xs(t−2) + · · ·+ xs + 1

)
.

Combining this with equation (15.3) we see that xqd−1 − 1 is a divisor of

xqi−1 − 1, and hence that xqd − x is a divisor of xqi − x. Let a ∈ Fqd ⊆ Fqi

be a root of f , so that x − a is a divisor of f in Fqd [x]. Lemma 15.8 implies

that aqd

= a and hence x− a is a divisor of xqd − x in Fqd [x]. Let h ∈ Fqi [x]
be the monic GCD of f and g; we have just shown that x − a is a divisor of
h. Since x − a is a divisor of f , and f is irreducible, it follows that f |h. But
h|f , so f = h. Hence f is a divisor of g, as required.

Example 15.10. For p = 3 we have F3 = {0, 1, 2} and

x3 − x = x(x + 1)(x+ 2),

x9 − x = x(x + 1)(x+ 2)(x2 + 1)(x2 + x+ 2)(x2 + 2x+ 2),

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 267

x27 − x = x(x + 1)(x+ 2)(x2 + 1)(x3 + 2x+ 1)(x3 + 2x+ 2) ·
(x3 + x2 + 2)(x3 + x2 + x+ 2)(x3 + x2 + 2x+ 1) ·
(x3 + 2x2 + 1)(x3 + 2x2 + x+ 1)(x3 + 2x2 + 2x+ 2).

Remark 15.11. Let I(d, q) denote the number of distinct monic irreducible
polynomials of degree d over the field with q elements. Taking the degree of
both sides of Theorem 15.9 we obtain the equation

qi =
∑

d | i
d I(d, q).

We can apply Möbius inversion to this equation; this gives

d I(d, q) =
∑

i | d
µ

(
d

i

)
qi,

where µ is the Möbius function. Dividing by d gives a formula for I(d, q).

15.3 Distinct-degree decomposition of a polynomial

Theorem 15.9 and the Euclidean algorithm of Figure 15.1 are the crucial ingre-
dients in the computation of the distinct-degree decomposition of a squarefree
polynomial over a finite field. We consider a squarefree monic nonconstant
polynomial f ∈ F[x] where F is any field, not necessarily finite. Since F[x] is
a unique factorization domain, we know that

f =

k∏

i=1

gi,

where the factors gi ∈ F[x] are distinct, monic and irreducible. Let δ be the
maximum of the degrees of the irreducible factors:

δ = max{ deg(g1), deg(g2), . . . , deg(gk) }.

For each degree d = 1, 2, . . . , δ we write ℓd for the number of distinct irre-
ducible factors of degree d, and we collect these factors according to degree:

f =

δ∏

d=1

hd, hd =

ℓd∏

j=1

hdj,

where deg(hdj) = d. Thus hd is the product of the irreducible factors of f of
degree d; if ℓd = 0 then the product is empty and hd = 1.

© 2012 by Taylor & Francis Group, LLC

268 Lattice Basis Reduction

Definition 15.12. The distinct-degree decomposition of f is the se-
quence

ddd(f) =
[
h1, h2, . . . , hδ

]
.

Now suppose that F is the finite field Fq. Theorem 15.9 implies that

h1 = gcd(f, xq − x).

We remove the irreducible factors of degree 1 from f by setting

f1 =
f

h1
.

(Here we use the assumption that f is squarefree; otherwise, f1 could still
contain irreducible factors of degree 1, namely those with multiplicity ≥ 2.)
Applying Theorem 15.9 again we obtain

h2 = gcd(f1, x
q2 − x).

We then define

f2 =
f1
h2
,

and compute

h3 = gcd(f2, x
q3 − x).

We continue until we have removed all the irreducible factors from f .
A formal statement of this algorithm is given in Figure 15.3. During each

iteration of step (2) we consider irreducible factors of degree d; we set gd = xqd

so that gd−x is the left side of equation (15.2). We use the Euclidean algorithm
to compute the product hd of the irreducible factors of f of degree d; we then
set fd equal to the product of the remaining factors of degree > d.

Example 15.13. Choosing two irreducible polynomials in each degree ≤ 3
from Example 15.10 we consider the following polynomial in F3[x]:

f = (x+ 1)(x+ 2)(x2 + x+ 2)(x2 + 2x+ 2)(x3 + 2x+ 1)(x3 + 2x+ 2).

For this polynomial we have

h1 = (x+ 1)(x+ 2) = x2 + 2,

h2 = (x2 + x+ 2)(x2 + 2x+ 2) = x4 + 1,

h3 = (x3 + 2x+ 2)(x3 + 2x+ 1) = x6 + x4 + x2 + 2.

Consider the complete expansion f0 of the factored polynomial f :

f0 = x12 + x8 + x6 + x4 + x2 + 1.

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 269

• Input: A squarefree monic nonconstant polynomial f ∈ Fq[x].

• Output: The distinct-degree decomposition ddd(f).

(1) Set f0 ← f , set g0 ← x, set d← 0.

(2) While fd 6= 1 do:

(a) Set d← d+ 1,

(b) Set gd ← gq
d−1.

(c) Set hd ← Euclid(fd−1, gd − x).

(d) Set fd ← fd−1/hd.

(3) Return h1, h2, . . . , hd.

FIGURE 15.3
Algorithm DDD(f): distinct-degree decomposition in Fq[x]

We show how to recover h1, h2, h3 from f0 using Algorithm DDD(f). To find
h1 we follow Example 15.3 and obtain

h1 = gcd(f0, x
3 − x)

= gcd(x12 + x8 + x6 + x4 + x2 + 1, x3 + 2x) = x2 + 2.

We now divide f0 by h1 to find f1:

f1 =
f0
h1

= x10 + x8 + 2x6 + x2 + 2.

To find h2 we apply Algorithm Euclid(f, g) again:

h2 = gcd(f1, x
9 − x)

= gcd(x10 + x8 + 2x6 + x2 + 2, x9 + 2x) = x4 + 1.

We now divide f1 by h2 to find f2:

f2 =
f1
h2

= x6 + x4 + x2 + 2.

To find h3 we apply Algorithm Euclid(f, g) one more time:

h3 = gcd(f2, x
27 − x)

= gcd(x6 + x4 + x2 + 2, x27 + 2x) = x6 + x4 + x2 + 2.

Since h3 = f2, we have f3 = 1, and so the algorithm terminates and returns
the discrete-degree decomposition:

ddd(f0) =
[
x2 + 2, x4 + 1, x6 + x4 + x2 + 2

]
.

© 2012 by Taylor & Francis Group, LLC

270 Lattice Basis Reduction

15.4 Equal-degree decomposition of a polynomial

Our next algorithm splits each of the polynomials hd from the distinct-degree
decomposition into its irreducible factors. The result is the equal-degree de-
composition of a squarefree polynomial all of whose irreducible factors have
the same degree. We consider a squarefree monic nonconstant polynomial
hd ∈ F[x], and assume that every irreducible factor of hd has degree d:

hd =

ℓd∏

j=1

hdj , deg(hdj) = d,

where ℓd ≥ 1 is the number of distinct monic irreducible factors.

Definition 15.14. The equal-degree decomposition of hd is the sequence

edd(hd) =
[
hd1(x), . . . , hdℓd

]
.

To compute the equal-degree decomposition we use a probabilistic algo-
rithm based on the following lemma; note that here we assume p 6= 2.

Lemma 15.15. Let q = pn (p 6= 2) and let Fq be the field with q elements. Let
F×

q be the multiplicative group of nonzero elements, and let S = { a2 | a ∈ F×
q }

be the set of squares in F×
q . We have:

(a) S is a subgroup of F×
q of order (q−1)/2.

(b) S = { a ∈ F×
q | a(q−1)/2 = 1 }.

(c) For every a ∈ F×
q we have a(q−1)/2 = ±1.

Proof. Since F×
q is an Abelian group, the squaring map F×

q → F×
q (a 7→ a2)

is a homomorphism; since the image of this map is S, it follows that S is
a subgroup of F×

q . The kernel of this map is the set of all a ∈ F×
q for which

a2 = 1; that is, the set of roots of the polynomial x2−1 in Fq[x]. A polynomial
of degree d over a field has at most d roots, and so the kernel of the squaring
map has 1 or 2 elements. We need to show that the kernel has 2 elements.

Let e = (q−1)/2 and consider the e-power map F×
q → F×

q (a 7→ ae).
As before, this is a homomorphism, and the same reasoning shows that its
kernel has ≤ e elements. Since F×

q has order q−1, for every a ∈ F×
q we have

(a2)e = aq−1 = 1; in particular, S is a subset of the kernel, and so |S| ≤ e.
The First Isomorphism Theorem implies that any homomorphism satisfies

|kernel| |image| = |domain|.

Applying this to the squaring map, we obtain

q − 1 = |domain| = |kernel| |image| = |kernel| |S| ≤ 2|S| ≤ q − 1.

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 271

It follows that the two inequalities must be equalities. In particular, the kernel
has 2 elements, which proves (a). Furthermore, S has e elements, and so it
equals the kernel of the e-power map, which proves (b). Finally, we see that
the image of the e-power map has two elements; it clearly contains ±1, and
these elements are distinct since p 6= 2, and which proves (c).

Let q = pn (p 6= 2). Suppose that d ≥ 1 and that h ∈ Fq[x] has ℓ ≥ 2
distinct monic irreducible factors each of degree d:

h =

ℓ∏

j=1

hj , deg(hj) = d, deg(h) = dℓ.

We consider the quotient ring Fq[x]/〈h〉. Since h1, h2, . . . , hℓ are relatively
prime, the Chinese Remainder Theorem gives the isomorphism

Fq[x]/〈h〉 ≈ Fq[x]/〈h1〉 × Fq[x]/〈h2〉 × · · · × Fq[x]/〈hℓ〉. (15.4)

Since each hi is irreducible, each factor Fq[x]/〈hj〉 is isomorphic to the field
Fqd with qd elements. We have |Fq[x]/〈h〉| = qdℓ, and we identify the elements
with their coset representatives from the set of polynomials of degree < dℓ:

g =

dℓ−1∑

k=0

akx
k + 〈h〉 ∈ Fq[x]/〈h〉.

An explicit form of the isomorphism (15.4) is given by the following equations:

ǫ : Fq[x]/〈h〉 → Fqd × Fqd × · · · × Fqd

︸ ︷︷ ︸
ℓ factors

,

ǫ(g) =
(
ǫ1(g), . . . , ǫ2(g), . . . , ǫℓ(g)

)
,

ǫj(g) = g + 〈hj〉 ∈ Fq[x]/〈hj〉 ∼= Fqd (j = 1, 2, . . . , ℓ).

Clearly hj is a divisor of g if and only if ǫj(g) = 0. A proper factor of h
corresponds to a polynomial g for which ǫj(g) = 0 for some j and ǫj(g) 6= 0
for some other j. We do not actually compute ǫ (this would require knowing
h1, h2, . . . , hℓ already); we merely use ǫ to prove the following lemma.

Lemma 15.16. Let h be as above, and let g be a uniformly distributed pseu-
dorandom nonconstant polynomial with deg(g) < deg(h). If gcd(g, h) 6= 1 then
gcd(g, h) is a proper factor of h. If gcd(g, h) = 1 then

g̃ = gcd(ge − 1, h), e = (qd − 1)/2,

where the bar denotes the remainder modulo h, is a proper factor of h with
probability ≥ 1

2 .

© 2012 by Taylor & Francis Group, LLC

272 Lattice Basis Reduction

Proof. As before we represent g as (the coset of) a polynomial of degree < dℓ.
The statement for the case gcd(g, h) 6= 1 is clear. If gcd(g, h) = 1 then Lemma
15.15 with qd (in place of q) and the isomorphism (15.4) imply that

ǫ(ge) = (±1, ±1, . . . , ±1) (ℓ components),

where each component ǫj(ge) is a uniformly distributed element of {±1}.
Since ǫ is a ring isomorphism, we have

ǫ(ge − 1) = (±1−1, ±1−1, . . . , ±1−1),

and so g̃ = gcd(ge−1, h) is a proper factor of h except when all the compo-
nents of ǫ(ge) are equal. (If all components are 1, then ge = 1 and g̃ = h; if
all components are −1, then ge = −1 and g̃ = 1.) These two exceptional cases
occur with probability

2
(

1
2

)ℓ
= 21−ℓ ≤ 1

2 since ℓ ≥ 2.

Thus we obtain a proper factor of h with probability ≥ 1
2 .

A formal statement of this probabilistic algorithm is given in Figure 15.4.

Example 15.17. Suppose q = 5. In F5[x] we consider the product of ℓ = 6
from the 10 distinct irreducible polynomials of degree d = 2:

h = (x2 + 2)(x2 + 3)(x2 + x+ 2)(x2 + x+ 1)(x2 + 2x+ 3)(x2 + 2x+ 4)

= x12 + x11 + 3x10 + 4x8 + 2x7 + 4x5 + 2x4 + x3 + 2x2 + 4x+ 4.

We consider three separate calls to TrialSplit(h) to illustrate the three pos-
sible cases. The first call generates the pseudorandom polynomial

g1 = 2x11 + 2x9 + x7 + 3x6 + 3x5 + x3 + 2x+ 3.

We have
g2 = gcd(g1, h) = x2 + 2x+ 4.

The algorithm returns the proper factor g2. The second call generates the
pseudorandom polynomial

g1 = 3x11 + 4x10 + 4x8 + 2x7 + 3x5 + 3x4 + 4x3 + x.

We have
g2 = gcd(g1, h) = 1.

Since (qd − 1)/2 = 12, the algorithm computes

g3 = g12
1 = 3x10 + 4x8 + x7 + x5 + 2x4 + x3 + 2x2 + x+ 2.

From this we obtain

g4 = gcd(g3 − 1, h) = x6 + x4 + 4x3 + 2x2 + x+ 2.

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 273

• Input: A squarefree monic nonconstant polynomial h ∈ Fq[x] of degree dℓ
which is the product of ℓ monic irreducible factors of degree d.

• Output: If ℓ ≥ 2 then with probability ≥ 1
2 the algorithm returns a proper

factor g of h (in case of failure the algorithm returns g = 0).

(1) If deg(h) = 1 then

(a) Set g ← 0.

else

(b) Set g1 ← 0.

(c) While g1 ∈ Fq do:

Generate pseudorandom g1 ∈ Fq[x] with deg(g1) < deg(h).

(d) Set g2 ← gcd(g1, h).

(e) If g2 6= 1 then

Set g ← g2.

else

Set e← (qd − 1)/2.
Set g3 ← ge

1 where the bar denotes remainder modulo h.
Set g4 ← gcd(g3 − 1, h).
If 0 < deg(g4) < deg(h) then set g ← g4 else set g ← 0.

(2) Return g.

FIGURE 15.4
Algorithm TrialSplit(h) for h ∈ Fq[x] where q = pn (p 6= 2)

• Input: A squarefree monic nonconstant polynomial h ∈ Fq[x] of degree dℓ
which is the product of ℓ monic irreducible factors of degree d, and an
integral termination parameter s ≥ 1.

• Output: With probability ≥ 1− 2−s, a proper factor g of h.

(1) Set g ← 0, set k ← 0.

(2) While g = 0 and k < s do

(a) Set g ← TrialSplit(h).

(b) Set k ← k + 1.

(3) Return g.

FIGURE 15.5
Algorithm Split(h, s) for h ∈ Fq[x] where q = pn (p 6= 2)

© 2012 by Taylor & Francis Group, LLC

274 Lattice Basis Reduction

• Input: A squarefree monic nonconstant polynomial h ∈ Fq[x] of degree dℓ
which is the product of ℓ ≥ 2 monic irreducible factors each of degree d, and
an integral termination parameter s ≥ 1.

• Output: The equal-degree decomposition of h.

• Remark: Before this procedure is called, the global variable factorlist is
initialized to the empty list.

(1) Set g1 ← Split(h, s).

(2) If g1 = 0 then

(a) Append h to factorlist.

else

(b) Recursively call EDD(g1, s).

(c) Recursively call EDD(h/g1, s).

FIGURE 15.6
Algorithm EDD(h, s) for h ∈ Fq[x] where q = pn (p 6= 2)

The algorithm returns the proper factor g4. The third call generates the pseu-
dorandom polynomial

g1 = 3x10 + 2x9 + x8 + x7 + 2x6 + x5 + 2x4 + 2x3 + 2x2 + 4x+ 3.

We have
g2 = gcd(g1, h) = 1.

The algorithm computes
g3 = g12

1 = 1.

From this we obtain
g4 = gcd(g3 − 1, h) = h.

The algorithm returns g = 0 indicating failure.

If we make s calls to TrialSplit, the probability of failure is ≤ 2−s, and
the probability of finding a proper factor is ≥ 1 − 2−s, which converges to 1
very rapidly as s increases. To increase the probability that we find a proper
factor of h, we use algorithm Split(h, s) displayed in Figure 15.5. The input to
Split(h, s) includes a termination parameter s ≥ 1; this is the upper bound on
the number of trials Split will perform before concluding that h is irreducible.
Algorithm Split does not provide the complete equal-degree decomposition
of h, it merely splits h into the product of two proper factors. To find the
complete equal-degree decomposition, we use the algorithm EDD(h) given in
Figure 15.6 which recursively calls Split until no further splitting is possible.

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 275

• Input: A monic nonconstant polynomial f ∈ Fq[x], and an integral termina-
tion parameter s to control the calls to Split(h, s).

• Output: The complete factorization of f into monic irreducible factors.

(1) Set complete← [].

(2) Set f0 ← f , set g0 ← x, set d← 0.

(3) While fd 6= 1 do:

(a) Set d← d+1.

(b) Set gd ← gq
d−1.

(c) Set hd ← Euclid(fd−1, gd − x).

(d) If hd 6= 1 then

- Set factorlist← [] (empty list).
- Call EDD(hd, s).
- For k in factorlist do

Set m← 0.
While k | f do: Set m← m+1, set f ← f/k.
Append [k,m] to complete.

(4) Return complete.

FIGURE 15.7
Algorithm Factor(f, s) for f ∈ Fq[x] where q = pn (p 6= 2)

We now give an algorithm which finds the complete factorization of a
polynomial f (not necessarily squarefree) in one variable x with coefficients
in the finite field Fq where q = pn (p 6= 2). The last step is to compute the
multiplicity of each irreducible factor. We start as in algorithm DDD, but
after step 2(c) which determines the factor hd, we check whether hd 6= 1; if
so, we call algorithm EDD to find the irreducible factors of hd, and then use
repeated division to eliminate the correct power of each of these irreducible
factors from f . The algorithm Factor(f) is given in Figure 15.7.

15.5 Hensel lifting of polynomial factorizations

We now begin our study of polynomials with integer coefficients. Suppose
that f ∈ Z[x] and that p is a prime number which does not divide the leading
coefficient ℓ(f). Let f denote the polynomial in Fp[x] obtained by reducing
the coefficients of f modulo p. Suppose further that we have polynomials

© 2012 by Taylor & Francis Group, LLC

276 Lattice Basis Reduction

g1, h1 ∈ Z[x] such that f = g1h1 in Fp[x] and this factorization is proper in
the sense that neither g1 nor h1 is a constant. (We also need to assume that
g1 and h1 are relatively prime in Fp[x], but we ignore this for the moment.)
We want to lift this factorization from the modulus p to the modulus p2: that
is, we want to find polynomials g2, h2 ∈ Z[x] such that deg(g1) = deg(g2),
deg(h1) = deg(h2), and f ≡ g2h2 (mod p2). In other words, we want to lift
the factorization from the polynomial ring (Z/pZ)[x] to the polynomial ring
(Z/p2Z)[x]. It is important to realize that Z/p2Z is not a field, so in particular
it is not isomorphic to Fp2 . In fact, Z/p2Z is not even an integral domain, since
it has zero divisors: p2 ≡ 0 (mod p2) but p 6≡ 0 (mod p2).

Example 15.18. Consider the polynomial

f = x4 − 10x3 + 35x2 − 50x+ 24 ∈ Z[x].

Modulo p = 5 we have
f ≡ x4 + 4,

and in F5[x] we have the factorization f ≡ g1h1 (mod 5) where

g1 = x2 + 2x+ 2 ∈ Z[x], h1 = x2 + 3x+ 2 ∈ Z[x].

Modulo p2 = 25 we have

f ≡ x4 + 15x3 + 10x2 + 24,

g1h1 ≡ x4 + 5x3 + 10x2 + 10x+ 4,

and so f 6≡ g1h1 (mod 25).

We need to understand how to obtain g2, h2 ∈ Z[x] satisfying f ≡ g2h2

(mod p2) from g1, h1 ∈ Z[x] satisfying f ≡ g1h1 (mod p). We can then repeat
this process indefinitely, to obtain a lifting of the factorization f ≡ g1h1 to the
modulus pn for any n ≥ 1. This process is called Hensel lifting. We denote
the modulus by m; we may assume that m = pn. Given a factorization

f ≡ g1h1 (mod m),

we will show how to find polynomials g2, h2 ∈ Z[x] satisfying

f ≡ g2h2 (mod m2);

furthermore deg(g1) = deg(g2) and deg(h1) = deg(h2).
We assume that we have polynomials f, g1, h1, s1, t1 ∈ Z[x], and an integer

m ≥ 2 which does not divide ℓ(f), such that

f ≡ g1h1 (mod m), s1 g1 + t1 h1 ≡ 1 (mod m).

The second condition comes from the extended Euclidean algorithm for poly-
nomials over a field. If m = p is prime, as at the start of the lifting, then this

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 277

condition is equivalent to g1 and h1 being relatively prime in Fp[x]. Since the
Euclidean algorithm is not available for general m, we must use this condition
in the general case. We further assume that h1 is monic, and that

deg(f) = deg(g1) + deg(h1), deg(s1) < deg(h1), deg(t1) < deg(g1).

The basic idea is as follows. We have

f = g1h1 +mv,

for some polynomial v, and hence

e = f − g1h1 = mv.

We also have
s1g1 + t1h1 = 1 +mw,

for some polynomial w, and hence

s1g1 + t1h1 − 1 = mw.

We now calculate

(g1 + t1e)(h1 + s1e)

= g1h1 + (s1g1 + t1h1)e+ s1t1e
2

= g1h1 + (s1g1 + t1h1)(f − g1h1) + s1t1e
2

= g1h1 + (s1g1 + t1h1)f − (s1g1 + t1h1)g1h1 + s1t1e
2

= f + (s1g1 + t1h1 − 1)f − (s1g1 + t1h1 − 1)g1h1 + s1t1e
2

= f + (s1g1 + t1h1 − 1)(f − g1h1) + s1t1e
2

= f + (mw)(mv) + s1t1(mv)
2.

From this we see that (g1 + t1e)(h1 + s1e) is congruent to f modulo m2. This
suggests that we define g2 = g1 + t1e and h2 = h1 + s1e. The problem with
this definition is that the degrees of g2 and h2 are too large. We avoid this
problem as follows; in this discussion, all polynomials are in Z[x]:

Step 1: We compute
e ≡ f − g1h1 (mod m2).

Since h1 is monic, we can do division with remainder of s1e by h1 in Z[x]:

s1e ≡ qh1 + r (mod m2), deg(r) < deg(h1).

By definition, e ≡ 0 (mod m) and so s1e ≡ 0 (mod m); hence q ≡ 0 (mod m)
and r ≡ 0 (mod m). We now define

g2 ≡ g1 + t1e+ qg1 (mod m2), h2 ≡ h1 + r (mod m2).

© 2012 by Taylor & Francis Group, LLC

278 Lattice Basis Reduction

It is clear that g2 ≡ g1 (mod m) and h2 ≡ h1 (mod m). Since deg(r) < deg(h1)
we see that deg(h2) = deg(h1) and that h2 is monic. We calculate modulo m2:

f − g2h2

≡ f − (g1 + t1e+ qg1)(h1 + r)

≡ f − (g1 + t1e+ qg1)(h1 + s1e− qh1)

≡ f − (g1h1 + s1g1e− g1h1q + t1h1e+ s1t1e
2 − t1h1qe

+ g1h1q + s1g1qe− g1h1q
2)

≡ f − g1h1 − s1g1e− t1h1e− s1t1e2 + t1h1qe− s1g1qe+ g1h1q
2

≡ f − g1h1 − (s1g1 + t1h1)e− s1t1e2 − (s1g1 − t1h1)qe+ g1h1q
2

≡ e− (s1g1 + t1h1)e− s1t1e2 − (s1g1 − t1h1)qe+ g1h1q
2

≡ − (s1g1 + t1h1 − 1)e− s1t1e2 − (s1g1 − t1h1)qe+ g1h1q
2

≡ 0 (mod m2).

The conditions

ℓ(f) 6≡ 0 (mod m), h2 is monic, f ≡ g2h2 (mod m2),

together imply that

deg(g2) = deg(f)− deg(h2) = deg(f)− deg(h1) = deg(g1).

Step 2: We compute

e∗ = s1g2 + t1h2 − 1 (mod m2).

Since h2 is monic, we do division with remainder of s1e
∗ by h2 in Z[x]:

s1e
∗ ≡ q∗h2 + r∗ (mod m2), deg(r∗) < deg(h2).

By definition, e∗ ≡ 0 (mod m) and so s1e
∗ ≡ 0 (mod m); hence q∗ ≡ 0 (mod

m) and r∗ ≡ 0 (mod m). We define

s2 ≡ s1 − r∗ (mod m2), t2 ≡ t1 − t1e∗ − q∗g2 (mod m2).

It can be shown that

s2 ≡ s1 (mod m), deg(s2) < deg(h2),

t2 ≡ t1 (mod m), deg(t2) < deg(g2).

A formal statement of this algorithm is given in Figure 15.8.

Example 15.19. We continue from Example 15.18. We have

f = x4 − 10x3 + 35x2 − 50x+ 24, g1 = x2 + 2x+ 2, h1 = x2 + 3x+ 2,

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 279

• Input:

– The modulus m ∈ Z (m ≥ 2).

– Polynomials f, g1, h1 ∈ Z[x] such that h1 is monic and

f ≡ g1h1 (mod m), deg(f) = deg(g1) + deg(h1).

– Polynomials s1, t1 ∈ Z[x] such that

s1g1 + t1h1 ≡ 1 (mod m), deg(s1) < deg(h1), deg(t1) < deg(g1).

• Output:

– Polynomials g2, h2 ∈ Z[x] such that h2 is monic and

f ≡ g2h2 (mod m2), g2 ≡ g1 (mod m), deg(g2) = deg(g1),

h2 ≡ h1 (mod m), deg(h2) = deg(h1).

– Polynomials s2, t2 ∈ Z[x] such that

s2g2 + t2h2 ≡ 1 (mod m2), s2 ≡ s1 (mod m), deg(s2) < deg(h2),

t2 ≡ t1 (mod m), deg(t2) < deg(g2).

• Algorithm:

(1) Set e← f − g1h1 (mod m2).

(2) Compute q, r ∈ Z[x] such that

s1e ≡ qh1 + r (mod m2), deg(r) < deg(h1).

(3) Set g2 ← g1 + t1e+ qg1 (mod m2).

(4) Set h2 ← h1 + r (mod m2).

(5) Set e∗ ← s1g2 + t1h2 − 1 (mod m2).

(6) Compute q∗, r∗ ∈ Z[x] such that

s1e
∗ = q∗h2 + r∗ (mod m2), deg(r∗) < deg(h2).

(7) Set s2 ← s1 − r∗ (mod m2).

(8) Set t2 ← t1 − t1e∗ − q∗g2 (mod m2).

(9) Return g2, h2, s2, t2.

FIGURE 15.8
The Hensel lifting algorithm Hensel(m, f, g1, h1, s1, t1)

© 2012 by Taylor & Francis Group, LLC

280 Lattice Basis Reduction

such that f ≡ g1h1 (mod 5). The extended Euclidean algorithm gives

s1 = 3x+ 4, t1 = 2x+ 4,

such that

s1g1 + t1h1 = 5x3 + 20x2 + 30x+ 16 ≡ 1 (mod 5).

We compute

e = f − g1h1 = 10x3 + 15x+ 20,

such that e ≡ 0 (mod 5) but e 6≡ 0 (mod 25). We have

s1e = 5x4 + 15x3 + 20x2 + 20x+ 5,

and division with remainder gives

s1e = qh1 + r, q = 5x2 + 10, r = 15x+ 10.

From this we obtain

g2 = x2 + 22x+ 2, h2 = x2 + 18x+ 12,

and we verify that
f ≡ g2h2 (mod 25).

This is the lifting (mod 25) of the original factorization f ≡ g1h1 (mod 5).
We now compute

e∗ = 5x3 + 10x2 + 15x+ 5, s1e
∗ = 15x4 + 10x2 + 20,

and division with remainder gives

s1e
∗ = q∗h1 + r∗, q∗ = 15x2 + 5x+ 15, r∗ = 20x+ 15.

From this we obtain

s2 = 8x+ 14, t2 = 17x+ 4,

and we verify that
s2g2 + t2h2 ≡ 1 (mod 25).

Example 15.20. We continue for the next 3 steps beyond Example 15.19.
Modulo 252 = 625 we obtain

g3 = x2 + 622x+ 2, h3 = x2 + 618x+ 12,

together with
s3 = 208x+ 314, t3 = 417x+ 104.

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 281

Modulo 6252 = 390625 we obtain

g4 = x2 + 390622x+ 2, h4 = x2 + 390618x+ 12,

together with

s4 = 130208x+ 195314, t4 = 260417x+ 65104.

Modulo 3906252 = 152587890625 we obtain

g5 = x2 + 152587890622x+ 2, h5 = x2 + 152587890618x+ 12,

together with

s5 = 50862630208x+ 76293945314, t5 = 101725260417x+ 25431315104.

Theorem 15.21. Hensel’s Lemma. Let p be a prime number. Let
f, g1, h1, s1, t1 ∈ Z[x] be such that h1 is monic and

f ≡ g1h1 (mod p), deg(f) = deg(g1) + deg(h1),

s1g1 + t1h1 ≡ 1 (mod p), deg(s1) < deg(h1), deg(t1) < deg(g1).

Then for any n ≥ 1 there exist gn, hn, sn, tn ∈ Z[x] such that hn is monic and

f ≡ gnhn

(
mod p2n)

, gn ≡ g1 (mod p), deg(gn) = deg(g1),

hn ≡ h1 (mod p), deg(hn) = deg(h1),

sngn + tnhn ≡ 1
(
mod p2n)

, sn ≡ s1 (mod p), deg(sn) < deg(hn),

tn ≡ t1 (mod p), deg(tn) < deg(gn).

Proof. Perform n iterations of algorithm Hensel in Figure 15.8.

The next result establishes the uniqueness of the Hensel lifting.

Theorem 15.22. Suppose that m ≥ 2, n ≥ 1 and g, h, s, t, G,H ∈ Z[x] satisfy

(a) sg + th ≡ 1 (mod m)

(b) ℓ(g) and ℓ(h) are not zero-divisors modulo m

(c) ℓ(g) = ℓ(G), deg(g) = deg(G), g ≡ G (mod m)

(d) ℓ(h) = ℓ(H), deg(h) = deg(H), h ≡ H (mod m)

(e) gh ≡ GH (mod mn)

Then g ≡ G (mod mn) and h ≡ H (mod mn).

Proof. By contradiction. Suppose that g 6≡ G (mod mn) or h 6≡ H (mod mn).
Let k be the largest integer with 1 ≤ k < n such that

g ≡ G (mod mk), h ≡ H (mod mk).

© 2012 by Taylor & Francis Group, LLC

282 Lattice Basis Reduction

By assumption, this holds for k = 1. Thus for some v, w ∈ Z[x] we have

G− g = mkv, H − h = mkw,

and either v 6≡ 0 (mod m) or w 6≡ 0 (mod m). We may assume without loss
of generality that v 6≡ 0 (mod m). Calculating modulo mn we obtain

0 ≡ GH − gh ≡ G(H − h) + h(G− g) ≡ Gmkw + hmkv

≡ (Gw + hv)mk (mod mn).

Hence mn−k is a divisor of Gw + hv. Calculating modulo m we obtain

0 ≡ t(Gw + hv) ≡ tgw + thv ≡ tgw + (1− sg)v
≡ (tw − sv)g + v (mod m).

Hence g is a divisor of v, where the bar denotes reduction modulo m. Since
G − g = mkv, the assumptions ℓ(g) = ℓ(G) and deg(g) = deg(G) imply
deg(v) < deg(g). But then v must be the zero polynomial, contradicting the
assumption that v 6≡ 0 (mod m).

The Hensel lifting algorithm of Figure 15.8 applies to a factorization of f
into a product of two factors g and h. We can extend this to any number of
factors by recursively calling the algorithm for two factors, as follows.

Suppose that p ∈ Z is a prime number, and that f ∈ Z[x] is a noncon-
stant polynomial with ℓ(f) 6≡ 0 (mod p). Let f ∈ Fp[x] be the polynomial
obtained by reducing the coefficients of f modulo p. Suppose that we have a
factorization of f modulo p; that is, we have monic nonconstant polynomials
f1, f2, . . . , fr ∈ Z[x] for which

f = ℓ(f) f1 · · · fr in Fp[x].

We further assume that for all i, j with 1 ≤ i < j ≤ r we have polynomials
uij , vij ∈ Z[x] for which

uijfi + vijfj = 1 in Fp[x].

Given n ≥ 2, we want to lift this factorization of f to the modulus pn.
We first split the factorization as evenly as possible by defining

k =
⌊r
2

⌋
, g0 = ℓ(f)f1 · · · fk, h0 = fk+1 · · · fr.

Using the extended Euclidean algorithm we compute s0, t0 ∈ Z[x] for which

s0 g0 + t0 h0 = 1 in Fp[x].

We repeatedly apply Hensel lifting d times for d = ⌈logn⌉, so that pn is a

divisor of p2d

. We obtain polynomials gd, hd, sd, td ∈ Z[x] for which

f ≡ gdhd

(
mod p2d)

, sdgd + tdhd ≡ 1
(
mod p2d)

.

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 283

We now make two recursive calls to this algorithm: first, to split and lift the
factorization of gd; and second, to split and lift the factorization of hd. These
recursive calls terminate when it is no longer possible to split the factoriza-
tions; we have then obtained polynomials F1, . . ., Fr in Z[x] for which

Fi ≡ fi (mod p), f ≡ F1 · · ·Fr

(
mod p2d)

,

together with polynomials Uij , Vij ∈ Z[x] for which

Uij ≡ uij (mod p), Vij ≡ vij (mod p), Uij Fi + Vij Fj ≡ 1
(
mod p2d)

.

This gives a lifting of the original factorization into r factors modulo p to a

factorization into r corresponding factors modulo p2d

(hence modulo pn).

15.6 Polynomials with integer coefficients

Consider an arbitrary polynomial with integer coefficients, f ∈ Z[x].

Definition 15.23. The content of f is the GCD of its coefficients:

f = anx
n + · · ·+ a1x+ a0, cont(f) = gcd(an, . . . , a1, a0).

We say that f is primitive if cont(f) = 1; that is, no prime p ∈ Z divides
every coefficient of f . If we divide f by its content, then we obtain a primitive
polynomial, called the primitive part of f :

prim(f) =
1

cont(f)
f.

Lemma 15.24. Every polynomial f ∈ Z[x] can be written in the form

f = cont(f) prim(f).

Factoring a polynomial f ∈ Z[x] therefore involves two distinct steps: first,
we need to factor the integer cont(f); second, we need to factor the primitive
polynomial prim(f). The first step corresponds to the irreducible elements of
Z[x] of degree 0: these are just the primes in Z. The second step corresponds
to the irreducible elements of Z[x] with degree ≥ 1. We will be exclusively
concerned with this second step.

Factoring polynomials in Q[x] is equivalent to factoring primitive polyno-
mials in Z[x]. To prove this, we need to the following famous result.

Lemma 15.25. Gauss’s Lemma. If f, g ∈ Z[x] are primitive polynomials,
then so is their product fg.

© 2012 by Taylor & Francis Group, LLC

284 Lattice Basis Reduction

Suppose that f ∈ Z[x] is primitive. Consider the factorization of f regarded
as an element of Q[x]:

f = f1f2 · · · fr,

where fi ∈ Q[x] is irreducible for i = 1, 2, . . . , r. We multiply fi by the least
common multiple di of the denominators of its coefficients, and get difi ∈ Z[x].
We divide difi by its content ci, and get the primitive polynomial

f̃i =
di

ci
fi ∈ Z[x],

which is irreducible in Z[x]. We then have

f = af̃1f̃2 · · · f̃r,

for some a ∈ Q. But f is primitive, and by Gauss’s Lemma f̃1f̃2 · · · f̃r is also
primitive; hence a = 1. This gives the factorization in Z[x]:

f = f̃1f̃2 · · · f̃r.

Conversely, suppose that f ∈ Q[x]. Let d be the least common multiple of the
denominators of its coefficients; then df ∈ Z[x]. Let c = cont(df) ∈ Z; then
(d/c)f ∈ Z[x] is primitive, and the irreducible factors of (d/c)f in Z[x] are
also irreducible regarded as elements of Q[x].

Consider an arbitrary polynomial f ∈ Z[x]. Since Z[x] is a unique factor-
ization domain, we have the factorization of f into distinct irreducible factors
f1, f2, . . . , fr ∈ Z[x] with multiplicities e1, e2, . . . , er ≥ 1:

f = fe1
1 fe2

2 · · · f rr
r .

Computing the formal derivative of f , we obtain

f ′ =
r∑

i=1

fe1
1 · · · f

ei−1

i−1

(
eif

ei−1
i f ′

i

)
f

ei+1

i+1 · · · fer
r =

r∑

i=1

ei
f

fi
f ′

i .

Consider gcd(f, f ′). The only possible irreducible factors are f1, f2, . . . , fr. For
all i, the polynomial fei−1

i is a divisor of f/fi, and hence of f ′. The following
conditions are equivalent, since f1, f2, . . . , fr are distinct and irreducible:

fei

i divides f ′ ⇐⇒ fei−1
i divides ei

f

fi
f ′

i ⇐⇒ fi divides eif
′
i .

But since deg(f ′
i) < deg(fi) and eif

′
i 6= 0, we see that fi does not divide eif

′
i .

(In characteristic p, this argument breaks down: we may have ei = 0, and this
happens if and only if p|ei.) It follows that

gcd(f, f ′) =

r∏

i=1

fei−1
i .

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 285

Definition 15.26. The squarefree part of f ∈ Z[x] is

squarefree(f) =
f

gcd(f, f ′)
=

r∏

i=1

fi.

If we can find the irreducible factors f1, f2, . . . , fr of squarefree(f), then
we can recover the factorization of f simply by repeated division of f by each
fi in order to determine each multiplicity ei. Therefore, in order to factor a
polynomial f ∈ Z[x], if we ignore the problem of factoring the content of f ,
it suffices to factor the squarefree part of the primitive part of f . So we now
assume that f ∈ Z[x] is a squarefree primitive polynomial.

Given a squarefree primitive polynomial f ∈ Z[x], we first need to find a
prime p for which ℓ(f) 6≡ 0 (mod p) and for which the reduced polynomial
f ∈ Fp[x] is also squarefree. To do this we need to understand the discriminant
of f , and for this we need to define the resultant of two polynomials f, g ∈ Z[x]:

f =
n∑

i=0

aix
i, g =

m∑

j=0

bjx
j .

From the coefficients of f and g we construct the Sylvester matrix S(f, g)
given in Figure 15.9; it has size (m+n)×(m+n) and represents the linear map

λf,g : Pm × Pn → Pm+n, λf,g(s, t) = sf + tg,

where Pm is them-dimensional vector space over Q spanned by 1, x, . . . , xm−1.

Lemma 15.27. We have gcd(f, g) = 1 if and only if detS(f, g) 6= 0.

Proof. Suppose that h = gcd(f, g) 6= 1. For s = g/h and t = −f/h we have

deg(s) < deg(g), deg(t) < deg(f), sf + tg = 0.

Hence λf,g is not injective and so detS(f, g) = 0. Conversely, suppose that
there exists (s, t) ∈ Pm × Pn with (s, t) 6= (0, 0) and λf,g(s, t) = 0; that is,
sf + tg = 0. If s 6= 0 then tg = −sf , and gcd(f, g) = 1 would imply g|s,
contradicting deg(s) < deg(g); similarly if t 6= 0. Hence gcd(f, g) = 1.

Definition 15.28. The integer detS(f, g) is the resultant of f and g, and is
denoted res(f, g). The discriminant of a polynomial f ∈ Z[x] is the resultant
of f and its formal derivative f ′; thus disc(f) = res(f, f ′).

Example 15.29. For the quadratic polynomial f = ax2 + bx+ c we have

disc(f) = −a(b2 − 4ac).

Lemma 15.30. Suppose f, g ∈ Z[x] with n = deg(f) and m = deg(g). Then

|res(f, g)| ≤ (n+1)m/2(m+1)n/2|f |m∞ |g|n∞,

where |f |∞ is the maximum of the absolute values of the coefficients.

© 2012 by Taylor & Francis Group, LLC

286 Lattice Basis Reduction

S(f, g) =




an

an−1
. . .

...
. . . an

a0 an−1

. . .
...
a0︸ ︷︷ ︸

m columns

bm

bm−1
. . .

...
. . . bm

b0 bm−1

. . .
...
b0︸ ︷︷ ︸

n columns




FIGURE 15.9
The Sylvester matrix S(f, g) of polynomials f, g ∈ Z[x]

Proof. Apply Hadamard’s inequality to the Sylvester matrix.

If g = f ′ in Lemma 15.30, then m = n−1 and |f ′|∞ ≤ n|f |∞, and hence

|res(f, f ′)| ≤ (n+1)(n−1)/2nn/2|f |n−1
∞ |f ′|n∞

≤ (n+1)(n−1)/2nn/2|f |n−1
∞
(
n|f |∞

)n

= (n+1)(n−1)/2nn/2nn|f |2n−1
∞

≤ (n+1)n/2(n+1)n/2(n+1)n|f |2n−1
∞

= (n+1)2n|f |2n−1
∞ .

Therefore

|disc(f)| ≤ (n+1)2n|f |2n−1
∞ . (15.5)

Lemma 15.31. Let Fq (q = pn) be a finite field, and let f ∈ Fq[x] be a
nonconstant polynomial. The following conditions are equivalent:

f is squarefree ⇐⇒ gcd(f, f
′
) = 1 ⇐⇒ disc(f) 6= 0.

Proof. von zur Gathen and Gerhard [147], page 387.

Lemma 15.32. Let f ∈ Z[x] (f 6= 0) be squarefree, and let p ∈ Z be a
prime for which ℓ(f) 6≡ 0 (mod p). Then the reduced polynomial f ∈ Fp[x] is
squarefree if and only if p does not divide the discriminant of f .

Proof. von zur Gathen and Gerhard [147], page 423.

Our next task is to find a prime p which does not divide either ℓ(f) or
disc(f). This involves number-theoretic considerations based on the Prime
Number Theorem, which states that the number π(x) of primes ≤ x satisfies

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 287

π(x) ≈ x/ lnx; equivalently, the n-th prime number pn satisfies pn ≈ n lnn.
We write C for the upper bound on the discriminant in equation (15.5):

C = (n+1)2n|f |2n−1
∞ , n = deg(f).

We further define

r = ⌈ 2 logC ⌉, s = 2n ln
(
(n+1)|f |∞

)
.

There is a probabilistic algorithm for finding the required prime number.

Lemma 15.33. Using O(s log2 s log log s) word operations, we can compute
the first r primes, each of which is less than 2r ln r, and no more than half of
these primes divide disc(f).

Proof. von zur Gathen and Gerhard [147], page 516.

Definition 15.34. For s > 0, the s-norm of a polynomial f ∈ Z[x] is

|f |s =

(n∑

i=0

|ai|s
)1/s

for f =
n∑

i=0

aix
i.

In particular, the 1-norm and 2-norm are

|f |1 = |a0|+ |a1|+ · · ·+ |an|, |f |2 =
√
a2
0 + a2

1 + · · ·+ a2
n.

We need the following inequality on the factors of a polynomial.

Lemma 15.35. Mignotte’s bound. If f, g, h ∈ Z[x] satisfy f = gh then

|g|1|h|1 ≤ (n+1)1/2 2n |f |∞, n = deg(f).

Proof. von zur Gathen and Gerhard [147], page 164.

If f ∈ Z[x] is squarefree and primitive with n = deg(f) then we set

B = (n+1)1/2 2n |f |∞ |ℓ(f)|;

note the factor |ℓ(f)|. We choose a prime p such that ℓ(f) 6≡ 0 (mod p) and
disc(f) 6≡ 0 (mod p). We choose a positive integer k for which pk > 2B.
Suppose we have a factorization of f modulo pk:

f ≡ ℓ(f)g1g2 · · · gr (mod pk), g1, g2, . . . , gr ∈ Z[x].

We assume that g1, g2, . . . , gr are monic. Using symmetric representatives for
the congruence classes modulo pk, we assume that |gi|∞ < pk/2 for all i. Let
S be a nonempty proper subset of {1, 2, . . . , r}, and write S = {1, 2, . . . , r}\S.
Choose G,H ∈ Z[x] such that

G ≡ ℓ(f)
∏

i∈S

gi (mod pk), H ≡ ℓ(f)
∏

i∈S

gi (mod pk), |G|∞, |H |∞ <
pk

2
;

© 2012 by Taylor & Francis Group, LLC

288 Lattice Basis Reduction

note that both G and H include the leading coefficient of f . Suppose that

|G|1|H |1 ≤ B.

We claim that this inequality holds if and only if

ℓ(f)f = GH ;

that is, the factorization with symmetric representatives modulo pn is actually
a factorization over Z. If ℓ(f)f = GH , then Mignotte’s bound, with f replaced
by ℓ(f)f , implies that

|G|1|H |1 ≤ |ℓ(f)| (n+1)1/2 2n |f |∞ = B.

Conversely, assume that |G|1|H |1 ≤ B. We have

ℓ(f)f ≡ GH (mod pk), (15.6)

and standard inequalities relating the different norms imply that

|GH |∞ ≤ |GH |1 ≤ |G|1|H |1 ≤ B <
pk

2
.

Thus both sides of congruence (15.6) are polynomials with coefficients < pk/2
in absolute value, and hence they are equal in Z[x].

We now have all the components of our first algorithm for factoring
(squarefree primitive) polynomials in Z[x]; see Figure 15.10. The basic ideas
for this algorithm originate with Zassenhaus [149]. Our presentation is based
on von zur Gathen and Gerhard [147], page 441.

Steps 2(a)-(f) have already been discussed. Step 2(g) initializes the set
T of factor indices remaining to be considered, and the product F of those
remaining factors. The loop in Steps 2(h)-(i) is the heart of the algorithm. It
attempts to combine the lifted factors modulo pk into a subset which comes
from one irreducible factor over Z. An irreducible factor of f over Z may split
into the product of more than one irreducible factor over Fp. The algorithm
uses a exhaustive search over all subsets S of {1, 2, . . . , r} to reconstruct the
irreducible factors over Z, starting with the subsets of size s = 1 and then
increasing s. Every time a new factor is found which is irreducible over Z,
the algorithm removes the corresponding modular factors from consideration.
Since there are 2r−1 nonempty subsets of {1, 2, . . . , r}, in the worst case the
number of iterations of the loop is an exponential function of n = deg(f). In
the next section we will see how the LLL algorithm for lattice basis reduction
can be used to avoid this worst-case exponential search and to provide a
polynomial-time algorithm for factoring polynomials over Z.

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 289

• Input: A squarefree primitive nonconstant polynomial f ∈ Z[x].

• Output: The irreducible factors f1, . . . , fr ∈ Z[x] of f .

(1) Set n← deg(f).

(2) If n = 1 then

Set result← [f]

else

(a) Set C ← (n+1)2n|f |2n−1
∞ , set r ← ⌈2 logC⌉.

(b) Set B ← (n+1)1/22n|f |∞|ℓ(f)|.
(c) Find a prime p < 2r ln r such that p ∤ ℓ(f) and p ∤ disc(f).

(d) Set k ← ⌈ logp(2B+1)⌉.
(e) Call Factor to find nonconstant monic irreducible polynomials

h1, h2, . . . , hr ∈ Z[x] for which f = ℓ(f)h1 h2 · · ·hr in Fp[x].
Using symmetric representatives, |hi|∞ < p/2 for all i.

(f) Call Hensel repeatedly to find nonconstant monic irreducible
polynomials g1, g2, . . . , gr ∈ Z[x] for which f ≡ ℓ(f) g1g2 · · · gr

(mod pk) and gi ≡ hi (mod p) for all i. Using symmetric rep-
resentatives, |gi|∞ < pk/2 for all i.

(g) Set T ← {1, 2, . . . , r}, set F ← f .

(h) Set result← [] (empty list), set s← 1.

(i) While 2s ≤ |T | do

• Set done← false, set list← { s-element subsets of T }.
• Set j ← 0.

• While j < |list| and not done do

– Set j ← j + 1, set S ← list[j].

– Find G,H ∈ Z[x] such that |G|∞, |H |∞ < pk/2 and

G ≡ ℓ(F)
∏

i∈S

gi (mod pk), H ≡ ℓ(F)
∏

i∈T\S

gi (mod pk).

– If |G|1|H |1 ≤ B then

∗ Append prim(G) to result.

∗ Set T ← T \ S, set F ← prim(H). set done← true.

• Set s← s+ 1.

(h) Append F to result.

(3) Return result.

FIGURE 15.10

The Zassenhaus factorization algorithm ZFactor(f)

© 2012 by Taylor & Francis Group, LLC

290 Lattice Basis Reduction

15.7 Polynomial factorization using LLL

In this section we study how the LLL algorithm can be used to provide a
polynomial-time algorithm for factoring squarefree primitive polynomials with
integer coefficients. In fact, the LLL algorithm was originally used precisely
to provide the first polynomial-time algorithm for this factorization problem.
Our exposition follows von zur Gathen and Gerhard [147], §§16.4–16.5. To
begin, we quote from the paper of Lenstra, Lenstra, and Lovász [88]:

“First we find, for a suitable small prime number p, a p-adic irreducible
factor h of f , to a certain precision. This is done with Berlekamp’s al-
gorithm for factoring polynomials over small finite fields, combined with
Hensel’s lemma. Next we look for the irreducible factor h0 of f in Z[X]
that is divisible by h. The condition that h0 is divisible by h means that
h0 belongs to a certain lattice, and the condition that h0 divides f implies
that the coefficients of h0 are relatively small. It follows that we must look
for a “small” element in that lattice, and this is done by means of a basis
reduction algorithm. It turns out that this enables us to determine h0.”

We first make small changes to Steps 2(b) and 2(d) of the Zassenhaus
algorithm ZFactor; we redefine B and k as follows:

B ← (n+1)1/22n|f |∞, k ←
⌈
logp

(
2n2/2B2n

)⌉
.

For this new value of k, we have

pk ≥ 2n2/2Bn = 2n2/2
(
(n+1)1/22n|f |∞

)2n
= 2n2/2(n+1)n22n2 |f |2n

∞ .

The major changes to the algorithm occur in Steps 2(h)-(i): we replace the
search over all subsets of the set of modular factors by a computation which
uses lattice basis reduction. We need the following lemmas.

Lemma 15.36. Let f, g ∈ Z[x] be nonzero with deg(f) + deg(g) ≥ 1 (so at
least one of f and g is nonconstant). Then there exist s, t ∈ Z[x] such that
sf + tg = res(f, g) with deg(s) < deg(g) and deg(t) < deg(f).

Proof. von zur Gathen and Gerhard [147], page 153.

Lemma 15.37. Let f, g ∈ Z[x] with n = deg(f) and m = deg(g). Then

| res(f, g)| ≥ |f |m2 |g|n2 ≥ (n+1)m/2(m+1)n/2|f |m∞|g|n∞.

Proof. von zur Gathen and Gerhard [147], page 156.

We use these lemmas to prove the following result.

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 291

Lemma 15.38. Let f, g ∈ Z[x] with n = deg(f) > 0 and m = deg(g) > 0.
Suppose that u ∈ Z[x] is monic and nonconstant, and that f ≡ uv1 (mod m)
and g ≡ uv2 (mod m) for some v1, v2 ∈ Z[x] and some m > |f |k2 |g|n2 . Then
gcd(f, g) ∈ Z[x] is nonconstant.

Proof. We show by contradiction that gcd(f, g) ∈ Q[x], the GCD with rational
coefficients, is nonconstant. Suppose that gcd(f, g) = 1 in Q[x]. By Lemma
15.36 there exist s, t ∈ Z[x] such that sf + tg = res(f, g), and hence sf + tg ≡
res(f, g) (mod m). Since f ≡ uv1 (mod m) and g ≡ uv2 (mod m) we get

res(f, g) = u(sv1 + tv2) (mod m);

thus u is a divisor of res(f, g) modulo m. But u is monic and nonconstant,
and res(f, g) ∈ Z, so res(f, g) ≡ 0 (mod m). Lemma 15.37 implies

m > |f |k2 |g|n2 ≥ | res(f, g)|,

and hence res(f, g) = 0. But this implies that gcd(f, g) 6= 1, a contradiction.
Thus gcd(f, g) ∈ Q[x] is nonconstant, and hence so is gcd(f, g) ∈ Z[x].

Suppose that f ∈ Z[x] is squarefree and primitive, and write n = deg(f).
Suppose further that u ∈ Z[x] is monic and nonconstant with d = deg(u) < n,
and that u is a divisor of f modulo m; that is, f ≡ uv (mod m) for some
v ∈ Z[x] (where m = pk). We want to find a polynomial g ∈ Z[x] for which

|g|n2 < m|f |− deg(g)
2 ,

since this is equivalent to

m > |f |deg(g)
2 |g|deg(f)

2 .

If this inequality holds, then Lemma 15.38 implies that gcd(f, g) ∈ Z[x] is
nonconstant, and so we obtain a nontrivial factor of f in Z[x].

Suppose j ∈ {d+1, . . . , n} where d = deg(u) < n. We represent a polyno-
mial g with deg(g) < j by its coefficient vector:

(gj−1, . . . , g1, g0) ∈ Zj , g = gj−1x
j−1 + · · ·+ g1x+ g0.

Let L ⊆ Zj be the lattice with a basis consisting of the coefficient vectors of
the polynomials

{u, xu, . . . , xj−d−1u} ∪ {m,mx, . . . ,mxd−1}.

Altogether we have (j−d) + d = j vectors in this basis, and they are
linearly independent since deg(u) = d. (Since m ∈ Z, the degrees of
the polynomials in these two sets are d, . . . , j−1 and 0, . . . , d−1.) Given
q0, . . . , qj−d−1, r0, . . . , rd−1 ∈ Z, the general element g ∈ L has the form

j−d−1∑

i=0

qix
iu+

d−1∑

i=0

rimx
i =

(j−d−1∑

i=0

qix
i

)
u+m

(d−1∑

i=0

rix
i

)
= qu+mr,

© 2012 by Taylor & Francis Group, LLC

292 Lattice Basis Reduction

where we use the notation

q =

j−d−1∑

i=0

qix
i, r =

d−1∑

i=0

rix
i.

Hence g = qu +mr and so g ≡ qu (mod m); thus u is a factor of g modulo
m. Therefore g ∈ L implies deg(g) < j and u|g (mod m).

Conversely, suppose that g ∈ Z[x] with deg(g) < j and u|g (mod m). Since
u is a divisor of g modulo m, we have g = q1u +mr1 for some q1, r1 ∈ Z[x].
Recalling that u is monic, we may divide r1 by u in Z[x], obtaining r1 = q2u+r2
with deg(r2) < deg(u). We now have

(q1 +mq2)u +mr2 = q1u+m(q2u+ r2) = q1u+ r1m = g.

Hence g = qu+mr for q = q1+mq2 and r = r2. It is clear that deg(r) < deg(u);
and furthermore,

deg(q1) ≤ deg(g)− deg(u) < j − d,

which implies

deg(q2) ≤ deg(r1)− deg(u) < j − d.
Therefore g ∈ L.

This discussion establishes that

g ∈ L ⇐⇒ deg(g) < j, u|g (mod m).

This justifies the use of lattice basis reduction to find a short vector in L which
corresponds to a polynomial g ∈ Z[x] with deg(g) < j and u|g (mod m). If we
can find such a polynomial g which also satisfies the inequality

|g|n2 < m|f |− deg(g)
2 ,

then we will be able to find a nontrivial factor of f in Z[x]. Using the LLL
algorithm with α = 3

4 we know that

|g1|2 ≤ 2(j−1)/2|g|2,

where g1 is the first vector in the reduced basis, and g ∈ L is any nonzero
lattice vector. Recall that dim(L) = j ≤ n; this gives

|g1|2 ≤ 2n/2|g|2.

Let g be an irreducible factor of f which is divisible by u modulo m. Then
Mignotte’s bound Lemma 15.35 gives

|g|∞ ≤ |g|2 ≤ (n+1)1/22nA, A = max
(
|f |∞, |g|∞

)
.

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 293

Therefore
|g1|2 ≤ 2n/2B, B = (n+1)1/22nA.

We now get

|g1|j−1
2 |g|deg(g1)

2 <
(
2n/2B

)n
Bn = 2n2/2(n+1)1/222n2

A2n ≤ pk,

by our original choice of k. By Lemma 15.38, it follows that gcd(g, g1) is
nonconstant in Z[x]. In this way, we can replace the exponential-time steps
2(h)-(i) in algorithm ZFactor by polynomial-time calls to the LLL algorithm.

The proof of correctness of the resulting polynomial-time algorithm de-
pends on the following lemma.

Lemma 15.39. Let p be a prime number. Suppose that f, g ∈ Z[x] satisfy:

(1) ℓ(f) 6≡ 0 (mod p),

(2) the reduced polynomial f ∈ Fp[x] is squarefree,

(3) g divides f in Z[x].

Assume k ≥ 1. Suppose that u ∈ Z[x] is a monic polynomial. If u is a factor
of f modulo pk, and a factor of g modulo p, then u is a factor of g modulo pk.

Proof. Suppose that f = gh in Z[x]. Reducing coefficients modulo p, we obtain
f = gh in Fp[x]. Since f is squarefree, it follows that g is also squarefree.
Suppose that g = u v in Fp[x]. It follows that gcd(u, v) = 1 in Fp[x]. Applying
repeated Hensel lifting we obtain polynomials U, V ∈ Z[x] for which

U ≡ u (mod p), V ≡ v (mod p), g ≡ UV (mod pk).

Suppose that f ≡ uw (mod pk); divisibility by pk clearly implies divisibility
by p, and hence f = uw in Fp[x]. Therefore, we have

u v h = g h = f = uw, in Fp[x].

Since Fp[x] is an integral domain, we cancel u to get v h = w in Fp[x]. Hence

V h = v h = w in Fp[x].

Calculating modulo pk we obtain

U(V h) ≡ (UV)h ≡ gh ≡ f ≡ uw (mod pk).

Since V h ≡ w (mod p), and gcd(u, v) = 1 in Fp[x], the uniqueness of Hensel
lifting implies U ≡ u (mod pk), and hence

g ≡ UV ≡ uV (mod pk).

Thus u is a factor of g modulo pk, and this completes the proof.

© 2012 by Taylor & Francis Group, LLC

294 Lattice Basis Reduction

15.8 Projects

Project 15.1. Give a seminar presentation on the structure of F[x], the
polynomial ring in one variable with coefficients in a field F. In particular,
give a complete proof that F[x] is a unique factorization domain.

Project 15.2. Give a seminar presentation on the structure of finite fields.
Give complete proofs of the results quoted without proof this chapter.

Project 15.3. Give a seminar presentation on the Möbius inversion formula.
Show how this can be used to prove the formula for the number I(d, q) of
irreducible monic polynomials of degree d over the field with q elements.

Project 15.4. Write a report and give a seminar presentation on the original
papers by Berlekamp [14, 15] and Cantor and Zassenhaus [21] on algorithms
for factoring polynomials over finite fields.

Project 15.5. Write a report and give a seminar presentation on the original
paper by Zassenhaus [149] on algorithms for Hensel lifting.

Project 15.6. Write a report and give a seminar presentation on the con-
struction of the field Qp of p-adic numbers (the infinite version of Hensel
lifting).

Project 15.7. Write a report and give a seminar presentation on the original
papers by Mignotte [102, 103] on inequalities for polynomial factorizations.

Project 15.8. In this chapter we have mostly ignored the question of com-
plexity of the algorithms. Choose one of the factorization algorithms in this
chapter, and write a report on the analysis of this algorithm.

Project 15.9. Choose one of the factorization algorithms discussed in this
chapter. Implement the algorithm in a suitable computer language or com-
puter algebra system. Write a report on your implementation, providing nu-
merous examples to check its correctness.

Project 15.10. Write a report and give a seminar presentation on the fac-
torization algorithm of van Hoeij [145]. “For several decades the standard
algorithm for factoring polynomials f with rational coefficients has been the
Berlekamp-Zassenhaus algorithm. The complexity of this algorithm depends
exponentially on n, where n is the number of modular factors of f . This ex-
ponential time complexity is due to a combinatorial problem: the problem of
choosing the right subsets of these n factors. In this paper, this combinatorial
problem is reduced to a type of knapsack problem that can be solved with lat-
tice reduction algorithms. The result is a practical algorithm that can factor
polynomials that are far out of reach for previous algorithms.” See also the
survey paper by Klüners [77].

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 295

Project 15.11. Polynomial factorization can be regarded as the simplest
case of computing the Wedderburn decomposition of a finite-dimensional as-
sociative algebra. Write a report and present a seminar talk on algorithms for
computing the Wedderburn decomposition. For a recent survey paper on this
topic, see Bremner [18].

15.9 Exercises

Exercise 15.1. Use the Euclidean algorithm to compute the GCD of the
polynomials f = x32 + x and g = x8 + x over the field F2 with 2 elements.

Exercise 15.2. (a) Find all the monic irreducible quadratic polynomials over
the field F3 with 3 elements. Hint: A polynomial of degree ≤ 3 is irreducible
over a field F if and only if it has no root in F.

(b) Use one of the polynomials from (a) to construct the multiplication
table of the field F9 with 9 elements. Hint: If f ∈ F[x] is an irreducible polyno-
mial of degree n, then the quotient ring F[x]/〈f〉 is a field which has dimension
n as a vector space over F.

Exercise 15.3. (a) Write f = x3−x as a product of irreducible factors in
F3[x].

(b) Write f = x9 − x as a product of irreducible factors in F3[x].
(c) Write f = x9 − x as a product of irreducible factors in F9[x].
(d) Write f = x27 − x as a product of irreducible factors in F3[x].

Exercise 15.4. Recall the formula for the number I(d, q) of monic irreducible
polynomials of degree d over the field with q elements:

I(d, q) =
1

d

∑

i | d
µ

(
d

i

)
qi.

This formula uses the Möbius µ-function which is defined for n ≥ 1 by

µ(n) =






1 if n = 1

0 if n is divisible by p2 for some prime p

(−1)k if n is the product of k distinct primes

Calculate I(d, 5) for 1 ≤ d ≤ 9.

Exercise 15.5. Use algorithm DDD(f) to compute the distinct-degree de-
composition of this polynomial over the field F3. Give all the details:

f = x10 + x8 + x7 + 2x6 + 2x5 + x4 + x3 + x2 + 2x.

© 2012 by Taylor & Francis Group, LLC

296 Lattice Basis Reduction

Exercise 15.6. Recall that F×
q is the multiplicative group of nonzero elements

in the field Fq with q elements. Let S = { a2 | a ∈ F×
q } be the set of squares

in F×
q . Verify the following claims for q = 3, q = 5, q = 7, q = 9, and q = 11:
(a) S is a subgroup of F×

q of order (q−1)/2.

(b) S = { a ∈ F×
q | a(q−1)/2 = 1 }.

(c) For every a ∈ F×
q we have a(q−1)/2 = ±1.

Exercise 15.7. Let p be a prime number, and let h = xp − x in Fp[x].
(a) Determine the factorization h = he1

1 h
e2
2 · · ·heℓ

ℓ where h1, h2, . . . , hℓ are
distinct monic irreducible polynomials.

(b) Explain why the Chinese Remainder Theorem gives an isomorphism

φ : Fp[x]/〈h〉 → Fp[x]/〈he1
1 〉 × Fp[x]/〈he2

2 〉 × · · · × Fp[x]/〈heℓ

ℓ 〉.

(c) Determine explicitly each factor on the right side of this isomorphism.
(d) Determine explicitly the image under φ of every element of Fp[x]/〈h〉.

Exercise 15.8. Write a computer program to implement TrialSplit and
Split. Provide examples of the output of your implementation.

Exercise 15.9. Write a computer program to implement EDD. Provide ex-
amples of the output of your implementation.

Exercise 15.10. Consider the extended Euclidean algorithm for polynomials
over a field. Let f and g be the input polynomials, and let h, s and t be the
output polynomials. Prove that deg(s) < deg(g) and deg(t) < deg(f).

Exercise 15.11. Consider polynomials f, g ∈ Z[x], and assume that g is
monic. Prove that there exist unique polynomials q, r ∈ Z[x] such that f =
qg + r and deg(r) < deg(g).

Exercise 15.12. Let f , g, q and r be as in the previous Exercise. Let p ∈ Z
be a prime number, and assume that every coefficient of f is divisible by p.
Prove that every coefficient of q and every coefficient of r is divisible by p.

Exercise 15.13. In the discussion of Hensel lifting, complete the proof that

s2 ≡ s1 (mod m), t2 ≡ t1 (mod m), deg(s2) < deg(h2), deg(t2) < deg(g2).

Exercise 15.14. Consider the following polynomials with integer coefficients:

f = x2 + 6, g = x3 + 5x2 + 2x+ 6, h = x3 + 2x2 + 2x+ 1.

Verify that f ≡ gh (mod 7). Use the extended Euclidean algorithm to find
s, t ∈ Z[x] such that

deg(s) < deg(h), deg(t) < deg(g), sg + th ≡ 1 (mod 7).

Use Hensel lifting to obtain a factorization of f with the modulus 72 = 49.
Lift the factorization f ≡ gh (mod 7) to the modulus 492 = 2401.

© 2012 by Taylor & Francis Group, LLC

Polynomial Factorization 297

Exercise 15.15. Let f, g ∈ Z[x] with n = deg(f) and m = deg(g). Prove
that

|res(f, g)| ≤ (n+1)m/2(m+1)n/2|f |m∞|g|n∞.

Exercise 15.16. Let f ∈ Z[x] be nonzero and squarefree, and let p ∈ Z be a
prime with ℓ(f) 6≡ 0 (mod p). Prove that f ∈ Fp[x] is squarefree if and only if
p does not divide disc(f).

Exercise 15.17. Prove that if f, g, h ∈ Z[x] satisfy f = gh then

|g|1|h|1 ≤ (n+1)1/2 2n |f |∞, n = deg(f).

Exercise 15.18. Consider the following polynomial f ∈ Z[x]:

f = x4 + 3x2 + 2.

(a) Determine by inspection the irreducible factorization of f in Z[x].
(b) Compute the Sylvester matrix S(f, f ′) and the discriminant disc(f).
(c) Compute the following quantities from the Zassenhaus algorithm:

C = (n+1)2n|f |2n−1
∞ , r = ⌈ 2 logC ⌉.

(d) Verify that p = 3 satisfies the conditions

p < 2r ln r, ℓ(f) 6≡ 0 (mod p), disc(f) 6≡ 0 (mod p).

(e) Determine the factorization of f where bar denotes reduction mod 3.
(f) Compute the following quantities from the Zassenhaus algorithm:

B = (n+1)1/2 2n |f |∞ |ℓ(f)|, k = ⌈ logp(2B+1)⌉.

(g) Use Hensel lifting with more than two factors to lift the factorization
of f modulo p = 3 from part (e) to a factorization of f modulo pk.

(h) Explain in detail the calculations performed during the loop in Step
2(i) of the Zassenhaus algorithm.

(i) Use the results of part (h) to recover the irreducible factorization of f .

Exercise 15.19. Generalize the equal-degree decomposition algorithm to the
field with two elements. For hints, see Exercise 14.16 of von zur Gathen and
Gerhard [147].

© 2012 by Taylor & Francis Group, LLC

Bibliography

[1] K. Aardal. Lattice basis reduction in optimization: selected topics.
Proceedings of Symposia in Applied Mathematics 61 (2004) 2–19. Amer-
ican Mathematical Society, 2004.

[2] K. Aardal, F. Eisenbrand. The LLL algorithm and integer program-
ming. Pages 293–314 of Nguyen and Vallée [110].

[3] W. A. Adkins, S. H. Weintraub. Algebra: An Approach via Module
Theory. Springer, 1992.

[4] E. Agrell, T. Eriksson, A. Vardy, K. Zeger. Closest point search
in lattices. IEEE Transactions on Information Theory 48 (2002) 2201–
2214.

[5] M. Ajtai. The shortest vector problem in L2 is NP-hard for random-
ized reductions: extended abstract. STOC 98: Symposium on Theory of
Computing, 10–19. Association for Computing Machinery, 1998.

[6] M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized
reductions. Electronic Colloquium on Computational Complexity:
www.eccc.uni-trier.de/report/1997/047

[7] M. Ajtai, R. Kumar, D. Sivakumar. An overview of the sieve algo-
rithm for the shortest lattice vector problem. CaLC 2000: Cryptography
and Lattices Conference, 1–3. Lecture Notes in Computer Science, 2146.
Springer, 2001.

[8] M. Ajtai, R. Kumar, D. Sivakumar. A sieve algorithm for the short-
est lattice vector problem. STOC 2001: Symposium on Theory of Com-
puting, 601–610. Association for Computing Machinery, 2001.

[9] M. Ajtai. The worst-case behavior of Schnorr’s algorithm approximat-
ing the shortest nonzero vector in a lattice: extended abstract. STOC
2003: Symposium on Theory of Computing, 396–406. Association for
Computing Machinery, 2003.

[10] A. Akhavi. The optimal LLL algorithm is still polynomial in fixed
dimension. Theoretical Computer Science 297 (2003) 3–23.

[11] H. Anton. Elementary Linear Algebra. Tenth edition. Wiley, 2010.

299

© 2012 by Taylor & Francis Group, LLC

300 BIBLIOGRAPHY

[12] L. Babai. On Lovász’ lattice reduction and the nearest lattice point
problem. Combinatorica 6 (1986) 1–13.

[13] W. Backes, S. Wetzel: Heuristics on lattice basis reduction in prac-
tice. Journal of Experimental Algorithmics, Volume 7, December 2002.

[14] E. R. Berlekamp. Factoring polynomials over finite fields. Bell System
Technical Journal 46 (1967) 1853–1859.

[15] E. R. Berlekamp. Factoring polynomials over large finite fields. Math-
ematics of Computation 24 (1970) 713–735.

[16] F. Beukers. Lattice reduction. Pages 66–77 of Cohen, Cuypers and
Sterk [25].

[17] J. Blömer, J.-P. Seifert. On the complexity of computing short lin-
early independent vectors and short bases in a lattice. STOC 99: Sym-
posium on Theory of Computing, 711–720. Association for Computing
Machinery, 1999.

[18] M. R. Bremner: How to compute the Wedderburn decomposition of a
finite-dimentional associative algebra. Groups, Complexity, Cryptology
3 (2011) 47–66.

[19] M. R. Bremner, L. A. Peresi. An application of lattice basis reduc-
tion to polynomial identities for algebraic structures. Linear Algebra and
its Applications 430 (2009) 642–659.

[20] J. A. Buchmann, M. E. Pohst. Computing a lattice basis from
a system of generating vectors. EUROCAL ’87: European Conference
on Computer Algebra, 54–63. Lecture Notes in Computer Science, 378.
Springer, 1989.

[21] D. G. Cantor, H. Zassenhaus. A new algorithm for factoring polyno-
mials over finite fields. Mathematics of Computation 36 (1981) 587–592.

[22] J. W. S. Cassels. An Introduction to the Geometry of Numbers.
Grundlehren der Mathematischen Wissenschaften, 99. Springer, 1959.

[23] Clay Mathematics Institute (CMI): www.claymath.org

[24] CMI Millenium Prize Problems: www.claymath.org/millennium

[25] A. M. Cohen, H. Cuypers, H. Sterk (editors): Some Tapas of
Computer Algebra. Algorithms and Computation in Mathematics, 4.
Springer, 1998.

[26] H. Cohen. A Course in Computational Algebraic Number Theory.
Graduate Texts in Mathematics, 138. Springer, 1993.

© 2012 by Taylor & Francis Group, LLC

BIBLIOGRAPHY 301

[27] J. H. Conway, N. J. A. Sloane. Sphere Packings, Lattices
and Groups. Second edition. Grundlehren der Mathematischen Wis-
senschaften, 290. Springer, 1993.

[28] S. A. Cook. The complexity of theorem-proving procedures. STOC ’71:
Symposium on Theory of Computing, 151–158. Association for Comput-
ing Machinery, 1971.

[29] S. A. Cook. The P versus NP problem:
www.claymath.org/millenium/P vs NP/pvsnp.pdf

[30] D. Coppersmith. Finding a small root of a univariate modular equa-
tion. Eurocrypt 1996: Advances in Cryptology, 155–165. Lecture Notes
in Computer Science, 1070. Springer, 1996.

[31] D. Coppersmith. Finding a small root of a bivariate integer equation:
factoring with high bits known. Eurocrypt 1996: Advances in Cryptology,
178–189. Lecture Notes in Computer Science, 1070. Springer, 1996.

[32] D. Coppersmith. Small solutions to polynomial equations, and low
exponent RSA vulnerabilities. Journal of Cryptology 10 (1997) 233–260.

[33] D. Coppersmith. Finding small solutions to small degree polynomials.
CaLC: Cryptography and Lattices Conference, 20–31. Lecture Notes in
Computer Science, 2146. Springer, 2001.

[34] C. Coupé, P. Q. Nguyen, J. Stern. The effectiveness of lattice at-
tacks against low-exponent RSA. PKC 1999: Public Key Cryptography,
204–218. Lecture Notes in Computer Science, 1560. Springer, 1999.

[35] H. Daudé, B. Vallée. An upper bound on the average number of iter-
ations of the LLL algorithm. Theoretical Computer Science 123 (1994)
95–115.

[36] H. Daudé, P. Flajolet, B. Vallée. An average-case analysis of the
Gaussian algorithm for lattice reduction. Combinatorics, Probability and
Computing 6 (1997) 397–433.

[37] B. M. M. de Weger. Solving exponential Diophantine equations using
lattice basis reduction algorithms. Journal of Number Theory 26 (1987)
325–367.

[38] U. Dieter. How to calculate shortest vectors in a lattice. Mathematics
of Computation 29 (1975) 827–833.

[39] G. L. Dirichlet. Verallgemeinerung eines Satzes aus der Lehre von den
Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen.
Bericht über die Verhandlungen der Königlich Preussischen Akademie
der Wissenschaften (1842) 93–95.

© 2012 by Taylor & Francis Group, LLC

302 BIBLIOGRAPHY

[40] A. Dupré. Sur le nombre des divisions à effectuer pour obtenir le
plus grand commun diviseur entre deux nombres entiers. Journal de
Mathématiques Pures et Appliquées 11 (1846) 41-64.

[41] X. G. Fang, G. Havas. On the worst-case complexity of integer Gaus-
sian elimination. ISSAC ’97: International Symposium on Symbolic and
Algebraic Computation, 28–31. Association for Computing Machinery,
1997.

[42] U. Fincke, M. Pohst. A procedure for determining algebraic inte-
gers of given norm. Computer Algebra 1983, 194–202. Lecture Notes in
Computer Science, 162. Springer, 1983.

[43] U. Fincke, M. Pohst. Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis. Mathematics
of Computation 44 (1985) 463–471.

[44] N. Gama, N. Howgrave-Graham, H. Koy, P. Q. Nguyen.
Rankin’s constant and blockwise lattice reduction. CRYPTO 2006, 1–
20. Lecture Notes in Computer Science, 4117. Springer, 2006.

[45] N. Gama. P. Q. Nguyen: Predicting lattice reduction. Eurocrypt 2008:
Advances in Cryptology, 31–51. Lecture Notes in Computer Science,
4965. Springer, 2008.

[46] M. R. Garey, D. S. Johnson. Computers and Intractibility. A Guide
to the Theory of NP-Completeness. Freeman, 1979.

[47] K. O. Geddes, S. R. Czapor, G. Labahn. Algorithms for Computer
Algebra. Kluwer, 1992.

[48] C. Gentry. The geometry of provable security: some proofs of security
in which lattices make a surprise appearance. Pages 391–426 of Nguyen
and Vallée [110].

[49] G. H. Golub, C. F. van Loan. Matrix Computations. Johns Hopkins
University Press, 1983.

[50] R. L. Graham, D. E. Knuth, O. Patashnik. Concrete Mathematics:
A Foundation for Computer Science. Second Edition. Addison-Wesley,
1994.

[51] M. Grötschel, L. Lovász, A. Schrijver. Geometric Algorithms
and Combinatorial Optimization. Algorithms and Combinatorics, 2.
Springer, 1988.

[52] P. M. Gruber, C. G. Lekkerkerker. Geometry of Numbers. Second
edition. North-Holland, 1987.

© 2012 by Taylor & Francis Group, LLC

BIBLIOGRAPHY 303

[53] G. Hanrot. LLL: a tool for effective Diophatine approximation. Pages
215–263 of Nguyen and Vallée [110].

[54] G. Hanrot, D. Stehlé. Improved analysis of Kannan’s shortest lattice
vector algorithm: extended abstract. CRYPTO 2007, 170–186. Lecture
Notes in Computer Science, 4622. Springer, 2007.

[55] J. Håstad, B. Just, J. C. Lagarias, C. P. Schnorr. Polynomial
time algorithms for finding integer relations among real numbers. SIAM
Journal on Computing 18 (1989) 859–881.

[56] G. Havas, B. S. Majewski, K. R. Matthews. Extended GCD and
Hermite normal form algorithms via lattice basis reduction. Experimen-
tal Mathematics 7 (1998) 125–136.

[57] B. Helfrich. An algorithm to compute Minkowski-reduced lattice
bases. STACS 85: Symposium on Theoretical Aspects of Computer Sci-
ence, 173–179. Lecture Notes in Computer Science, 182. Springer, 1985.

[58] B. Helfrich. Algorithms to construct Minkowski reduced and Hermite
reduced lattice bases. Theoretical Computer Science 41 (1985) 125–139.

[59] K. Hensel. Eine neue Theorie der Algebraischen Zahlen. Mathematis-
che Zeitschrift 2 (1918) 433–452.

[60] C. Hermite. Extraits de lettres de M. Ch. Hermite à M. Jacobi sur
différents objets de la théorie des nombres: Deuxième lettre. Journal für
die Reine und Angewandte Mathematik 40 (1850) 279–315.

[61] I. N. Herstein. Topics in Algebra. Second edition. Xerox College Pub-
lishing, 1975.

[62] I. N. Herstein. Abstract Algebra. Third edition. Prentice Hall, 1996.

[63] J. D. Hobby. A natural lattice basis problem with applications. Math-
ematics of Computation 67 (1998) 1149–1161.

[64] K. H. Hoffman, R. Kunze. Linear Algebra. Second edition. Prentice-
Hall, 1971.

[65] J. Hoffstein, N. Howgrave-Graham, J. Pipher, W. Whyte.
Practical lattice-based cryptography: NTRUEncrypt and NTRUSign.
Pages 349–390 of Nguyen and Vallée [110].

[66] N. Howgrave-Graham. Finding small roots of univariate modular
equations revisited. Cryptography and Coding 1997, 131–142. Lecture
Notes in Computer Science, 1355. Springer, 1997.

[67] A. Hurwitz. Über die angenäherte Darstellung der Irrationalzahlen
durch rationale Brüche. Mathematische Annalen 39 (1891) 279–284.

© 2012 by Taylor & Francis Group, LLC

304 BIBLIOGRAPHY

[68] N. Jacobson. Lectures in Abstract Algebra, 2: Linear Algebra. Second
edition. Springer, 1984.

[69] M. Kaib, C. P. Schnorr. The generalized Gauss reduction algorithm.
Journal of Algorithms 21 (1996) 565–578.

[70] R. Kannan. Improved algorithms for integer programming and related
lattice problems. STOC 83: Symposium on Theory of Computing, 193–
206. Association for Computing Machinery, 1983.

[71] R. Kannan. Minkowski’s convex body theorem and integer program-
ming. Mathematics of Operations Research 12 (1987) 415–440.

[72] R. Kannan. Algorithmic geometry of numbers. Annual Review of Com-
puter Science 2 (1987) 231–267. Annual Reviews, 1987.

[73] R. Kannan, A. Bachem. Polynomial algorithms for computing the
Smith and Hermite normal forms of an integer matrix. SIAM Journal
on Computing 8 (1979) 499–507.

[74] R. M. Karp. Reducibility among combinatorial problems. Complexity
of Computer Computations, 85–103. Plenum, 1972.

[75] H. Kempfert. On the factorization of polynomials. Journal of Number
Theory 1 (1969) 116–120.

[76] S. Khot. Inapproximability results for computational problems on lat-
tices. Pages 453–473 of Nguyen and Vallée [110].

[77] J. Klüners. The van Hoeij algorithm for factoring polynomials. Pages
283–291 of Nguyen and Vallée [110].

[78] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms. Second edition. Addison-Wesley, 1981.

[79] A. Korkine, G. Zolotareff. Sur les formes quadratiques. Mathema-
tische Annalen 6 (1873) 366–389.

[80] H. Koy, C. P. Schnorr. Segment LLL-reduction of lattice bases.
CaLC 2001: Cryptography and Lattices Conference, 67–80. Lecture
Notes in Computer Science, 2146. Springer, 2001.

[81] H. Koy, C. P. Schnorr. Segment LLL-reduction with floating-point
orthogonalization. CaLC 2001: Cryptography and Lattices Conference,
81–96. Lecture Notes in Computer Science, 2146. Springer, 2001.

[82] R. Kumar, D. Sivakumar. Complexity of SVP – a reader’s digest.
SIGACT News 32 (2001) 40–52 (Complexity Theorem Column 33).

© 2012 by Taylor & Francis Group, LLC

BIBLIOGRAPHY 305

[83] J. C. Lagarias. The computational complexity of simultaneous Dio-
phantine approximation problems. SIAM Journal on Computing 14
(1985) 196–209.

[84] J. C. Lagarias, H. W. Lenstra Jr., C. P. Schnorr. Korkin-
Zolotarev bases and successive minima of a lattice and its reciprocal
lattice. Combinatorica 10 (1990) 333–348.

[85] J. C. Lagarias, A. M. Odlyzko. Solving low-density subset sum
problems. Journal of the Association for Computing Machinery 32
(1985) 229–246.

[86] G. Lamé. Note sur la limite du nombre des divisions dans la recherche
du plus grand commun diviseur entre deux nombres entiers. Comptes
Rendus de l’Académie des Sciences 19 (1844) 867–870.

[87] C. G. Lekkerkerker. Geometry of Numbers. North-Holland, 1969.

[88] A. K. Lenstra, H. W. Lenstra Jr., L. Lovász. Factoring poly-
nomials with rational coefficients. Mathematische Annalen 261 (1982)
515–534.

[89] W. J. LeVeque. Topics in Number Theory, Volumes I and II. Addison-
Wesley, 1956.

[90] R. Lidl, H. Niederreiter. Finite Fields. Second edition. Encyclo-
pedia of Mathematics and its Applications, 20. Cambridge University
Press, 1997.

[91] L. Lovász. An Algorithmic Theory of Numbers, Graphs, and Convexity.
Society for Industrial and Applied Mathematics, 1986.

[92] L. Lovasz, H. E. Scarf. The generalized basis reduction algorithm.
Mathematics of Operations Research 17 (1992) 751–764.

[93] J. Martinet. Perfect lattices in Euclidean Spaces. Grundlehren der
Mathematischen Wissenschaften, 327. Springer, 2003.

[94] A. May. Using LLL-reduction for solving RSA and factorization prob-
lems. Pages 315–348 of Nguyen and Vallée [110].

[95] R. C. Merkle, M. E. Hellman. Hiding information and signatures
in trapdoor knapsacks. IEEE Transactions on Information Theory 24
(1978) 525–530.

[96] D. Micciancio. On the Hardness of the Shortest Vector Problem. Ph.D.
Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1998:
groups.csail.mit.edu/cis/theses/miccianc-phd.ps

© 2012 by Taylor & Francis Group, LLC

306 BIBLIOGRAPHY

[97] D. Micciancio. The shortest vector in a lattice is hard to approxi-
mate to within some constant. FOCS 98: Symposium on Foundations of
Computer Science, 92–98. Association for Computing Machinery, 1998.

[98] D. Micciancio. The shortest vector in a lattice is hard to approximate
to within some constant. SIAM Journal on Computing 30 (2001) 2008–
2035.

[99] D. Micciancio. Cryptographic functions from worst-case complexity
assumptions. Pages 427–452 of Nguyen and Vallée [110].

[100] D. Micciancio, S. Goldwasser. Complexity of Lattice Problems: A
Cryptographic Perspective. Springer, 2002.

[101] D. Micciancio, B. Warinschi. A linear space algorithm for comput-
ing the Hermite normal form. ISSAC 2001: International Symposium on
Symbolic and Algebraic Computation, 231–236. Association for Comput-
ing Machinery, 2001.

[102] M. Mignotte. An inequality about factors of polynomials. Mathemat-
ics of Computation 28 (1974) 1153–1157.

[103] M. Mignotte. An inequality about irreducible factors of integer poly-
nomials. Journal of Number Theory 30 (1988) 156–166.

[104] W. H. Mow. Universal lattice decoding: principle and recent advances.
Wireless Communication and Mobile Computing 3 (2003) 553–569.

[105] P. Q. Nguyen. Hermite’s constant and lattice algorithms. Pages 19–69
of Nguyen and Vallée [110].

[106] P. Q. Nguyen, D. Stehlé. Low-dimensional lattice basis reduction
revisited. ACM Transactions on Algorithms 5, Article 46, October 2009.

[107] P. Q. Nguyen, D. Stehlé. LLL on the average. Algorithmic Number
Theory Symposium VII, 238–256. Lecture Notes in Computer Science,
4076. Springer, 2006.

[108] P. Q. Nguyen, J. Stern. Lattice reduction in cryptology: an up-
date. Algebraic Number Theory Symposium IV, 85–112. Lecture Notes
in Computer Science, 1838. Springer, 2000.

[109] P. Q. Nguyen, J. Stern. The two faces of lattices in cryptology.
CaLC: Cryptography and Lattices Conference, 146–180. Lecture Notes
in Computer Science, 2146. Springer, 2001.

[110] P. Q. Nguyen, B. Vallée (editors): The LLL Algorithm: Survey and
Applications. Springer, 2010.

© 2012 by Taylor & Francis Group, LLC

BIBLIOGRAPHY 307

[111] P. Q. Nguyen, T. Vidick. Sieve algorithms for the shortest vector
problem are practical. Journal of Mathematical Cryptology 2 (2008) 181–
207.

[112] W. K. Nicholson. Linear Algebra with Applications. Fifth edition.
McGraw Hill, 2006.

[113] A. M. Odlyzko. Cryptanalytic attacks on the multiplicative knapsack
cryptosystem and on Shamir’s fast signature scheme. IEEE Transactions
on Information Theory 30 (1984) 594–601.

[114] A. M. Odlyzko. The rise and fall of knapsack cryptosystems. Cryp-
tology and Computational Number Theory. Proceedings of Symposia in
Applied Mathematics 42 (1990) 75–88. American Mathematical Society,
1990.

[115] A. M. Odlyzko, H. J. J. te Riele. Disproof of the Mertens con-
jecture. Journal für die Reine and Angewandte Mathematik 357 (1985)
138–160.

[116] C. Pernet, W. Stein. Fast computation of Hermite normal forms of
random integer matrices. Journal of Number Theory 130 (2010) 1675–
1683.

[117] J. Pintz. An effective disproof of the Mertens conjecture. Astérisque
147–148 (1987) 325–333.

[118] M. E. Pohst. A modification of the LLL reduction algorithm. Journal
of Symbolic Computation 4 (1987) 123–127.

[119] M. E. Pohst, H. J. Zassenhaus. Algorithmic Algebraic Number The-
ory. Encyclopedia of Mathematics and its Applications, 30. Cambridge
University Press, 1989.

[120] O. Regev. On the complexity of lattice problems with polynomial ap-
proximation factors. Pages 475–496 of Nguyen and Vallée [110].

[121] C. A. Rogers. Packing and Covering. Cambridge University Press,
1964.

[122] W. Scharlau, H. Opolka. From Fermat to Minkowski. Lectures on
the Theory of Numbers and its Historical Development. Springer, 1985.

[123] C. P. Schnorr. A hierarchy of polynomial-time lattice basis reduction
algorithms. Theoretical Computer Science 53 (1987) 201–224.

[124] C. P. Schnorr. Lattice reduction by random sampling and birthday
methods. STACS 2003: Symposium on Theoretical Aspects of Computer
Science, 145–156. Lecture Notes in Computer Science, 2607. Springer,
2003.

© 2012 by Taylor & Francis Group, LLC

308 BIBLIOGRAPHY

[125] C. P. Schnorr. Fast LLL-type lattice reduction. Information and
Computation 204 (2006) 1–25.

[126] C. P. Schnorr. Progress on LLL and lattice reduction. Pages 145–178
of Nguyen and Vallée [110].

[127] C. P. Schnorr, M. Euchner. Lattice basis reduction: improved prac-
tical algorithms and solving subset sum problems. Mathematical Pro-
gramming 66 (1994) 181–199.

[128] J. Shallit. Origins of the analysis of the Euclidean algorithm. Historia
Mathematica 21 (1994) 401–419.

[129] A. Shamir. A polynomial-time algorithm for breaking the basic Merkle-
Hellman cryptosystem. IEEE Transactions on Information Theory 30
(1984) 699–704.

[130] D. Simon. Selected applications of LLL in number theory. Pages 265–
282 of Nguyen and Vallée [110].

[131] C. C. Sims. Computation with Finitely Presented Groups. Encyclopedia
of Mathematics and its Applications, 48. Cambridge University Press,
1994.

[132] I. Smeets. The history of the LLL algorithm. Pages 1–17 of Nguyen
and Vallée [110].

[133] D. Stehlé. Floating point LLL: theoretical and practical aspects. Pages
179–213 of Nguyen and Vallée [110].

[134] J. Stillwell. Elements of Number Theory. Springer, 2003.

[135] A. Storjohann. The modulo extended gcd problem and space efficient
algorithms for integer matrices:
www.cs.uwaterloo.ca/~astorjoh/publications.html

[136] H. J. J. te Riele. Some historical and other notes about the Mertens
conjecture and its recent disproof. Nieuw Archief voor Wiskunde 3
(1985) 237–243.

[137] L. N. Trefethen, D. Bau. Numerical Linear Algebra. Society for
Industrial and Applied Mathematics, 1997.

[138] B. Vallée. A central problem in the algorithmic geometry of numbers:
lattice reduction. CWI Quarterly 3 (1990) 95–120.

[139] B. Vallée. Gauss’ algorithm revisited. Journal of Algorithms 12 (1991)
556–572.

[140] B. Vallée. Dynamical analysis of a class of Euclidean algorithms. The-
oretical Computer Science 297 (2003) 447–486.

© 2012 by Taylor & Francis Group, LLC

BIBLIOGRAPHY 309

[141] B. Vallée, A. Vera. Lattice reduction in two dimensions: analy-
ses under realistic probabilistic models. AofA 2007: Analysis of Algo-
rithms, 181–216. Discrete Mathematics and Theoretical Computer Sci-
ence, 2007.

[142] B. Vallée, A. Vera. Probabilistic analyses of lattice reduction algo-
rithms. Pages 71–143 of Nguyen and Vallée [110].

[143] W. van der Kallen. Complexity of the Havas, Majewski, Matthews
LLL Hermite normal form algorithm. Journal of Symbolic Computation
30 (2000) 329–337.

[144] P. van Emde Boas. Another NP-complete partition problem and the
complexity of computing short vectors in a lattice. Report 81-04, April
1981, Department of Mathematics, University of Amsterdam:
staff.science.uva.nl/~peter/vectors/mi8104c.html

[145] M. van Hoeij. Factoring polynomials and the knapsack problem. Jour-
nal of Number Theory 95 (2002) 167–189.

[146] E. Viterbo, J. Boutros. A universal lattice decoder for fading chan-
nels. IEEE Transactions on Information Theory 45 (1999) 1639–1642.

[147] J. von zur Gathen, J. Gerhard. Modern Computer Algebra. Second
edition. Cambridge University Press, 2003.

[148] Wikipedia. en.wikipedia.org/wiki/NP-complete

[149] H. Zassenhaus. On Hensel factorization, I. Journal of Number Theory
1 (1969) 291–311.

© 2012 by Taylor & Francis Group, LLC

Index

Aardal, 15
Aardal and Eisenbrand, 82
abstract algebra, 261
acute angle, 32
adjoint matrix, 9
Adkins and Weintraub, 226
Agrell, 82
Ajtai, 195, 200, 201, 206, 219
Akhavi, 82
almost orthogonal, 56
alpha-reduced, 56
angle, 3
Anton, 4
arbitrary norm, 82
auxiliary parameter, 57
average-case behavior, 82
average-case complexity, 37

Babai, 78, 79, 82
Babai’s theorem, 79
Backes and Wetzel, 99
basis, 4, 5
Berlekamp, 261, 294
Beukers, 29
BHLE, 211
big O notation, 74
binary digits, 23
bits, 23
block, 197, 199
block reduced, 199
Blomer and Seifert, 219
BOUNDED HOMOGENEOUS LIN-

EAR EQUATION, 211
Bremner and Peresi, 232
Buchmann and Pohst, 103

Cantor and Zassenhaus, 261, 294

Cassels, iii, 8, 10, 14, 18, 77, 80, 148,
182, 206

Cauchy-Schwarz inequality, 3
centered Euclidean algorithm, 24
centered Gaussian algorithm, 31, 32
change of basis matrix, 181
characteristic function, 116
Chinese remainder theorem, 52, 271,

296
Cholesky decomposition, 156, 159,

187
Clay Mathematics Institute, 212
closest vector problem, 78
CMI, 212
cofactor, 9
Cohen, 87, 91, 103, 114, 230
column vector, 1
combinatorial problems, 209
complementary subsets, 210
complete factorization, 275
complex numbers, 1
components, 3
COMPUTEBASIS, 184, 185
congruence classes, 1
content, 283
continuant polynomials, 257
continued fraction expansion, 146
continued fractions, 37, 145, 257
convex, 14, 183
Conway and Sloane, iii, 206
Cook, 212, 218
Coppersmith, 131, 132, 141, 143
Coppersmith lattice, 136
Coppersmith matrix, 133–137
Coppersmith’s algorithm, 131
Coppersmith’s lemma, 132
Coppersmith’s theorem, 141

311

© 2012 by Taylor & Francis Group, LLC

312 INDEX

Coupe, 131, 143
Cramer’s rule, 47
cryptography, 143, 219
CVP, 78

Daudé, 37
de Weger, 244
decision problem, 212
deep exchange condition, 89
deep insertions, 87, 90
degree, 262
Deolalikar, 219
derivative, 264
determinant, 5, 8
deterministic Turing machine, 212
diagonalization, 159
Dieter, 175
dimension, 5
Diophantine approximation, 152
Dirichlet, 148
discriminant, 285
disjoint subsets, 210
distinct-degree decomposition, 268
distinct-degree decomposition algo-

rithm, 269
division with remainder, 227, 235
Dupre, 37

Eisenstein series, 37
electronic typesetting, 111
elementary row operation, 222
enumeration, 187
equal-degree decomposition, 270
equal-degree decomposition algorithm,

274
Euclidean algorithm, 21, 22, 145, 227,

234
Euclidean algorithm for polynomials,

262, 263
Euclidean norm, 209, 219
Euclidean space, 2
exchange condition, 56
exchange lemma, 70
exchange procedure, 64
extended Euclidean algorithm for

polynomials, 265

extending a basis, 10, 182

Factor algorithm, 275
Fang and Havas, 257
Fibonacci numbers, 23, 38
Fincke and Pohst, 155, 168, 175
Fincke-Pohst algorithm, 155, 174,

187, 195
Fincke-Pohst inequality, 161
finite field, 261, 264, 294
first isomorphism theorem, 270
first minimum, 13
floating point arithmetic, 52
floating-point algorithms, 82
formal derivative, 284, 285
FP algorithm, 155, 187, 195
free variables, 224

Gama, 201, 206
Gama and Nguyen, 99
Gamma function, 183
Garey and Johnson, 209, 212, 218
Gauss’s lemma, 283
Gauss-acute algorithm, 37
Gauss-Jordan form, 222
Gaussian algorithm, 26, 27, 197, 202,

207
Gaussian elimination, 221, 222
GCD, 21, 186
generate, 5
Gentry, 143
geometry of numbers, 182, 194, 206
Golub and van Loan, 4, 52, 156
Graham, 74, 257
Gram determinant, 46, 202
Gram matrix, 8, 45, 187
Gram-Schmidt algorithm, 52
Gram-Schmidt coefficients, 198, 243,

244
Gram-Schmidt orthogonalization, 41,

56, 94, 179, 187, 198, 231
Gram-Schmidt orthonormalization, 180
Gram-Schmidt theorem, 42
greatest common divisor, 21, 186, 221,

224, 227, 234

© 2012 by Taylor & Francis Group, LLC

INDEX 313

greedy algorithm, 37
Grotschel, 103
Gruber and Lekkerkerker, iii, 206
GSO, 41, 179, 187, 198

Hadamard’s inequality, 44, 286
Hanrot, 152
Hanrot and Stehle, 194
Havas, Majewski and Matthews, 221,

238, 239, 242, 251
Helfrich, 193–195
Hensel, 261
Hensel lifting, 261, 276, 281, 294
Hensel lifting algorithm, 279, 282
Hensel’s lemma, 281
Hermite, 182
Hermite normal form, 221, 226
Hermite normal form algorithm, 228
Hermite reduction, 202
Hermite’s lattice constant, 14, 194,

200, 206
Hermite-reduced, 181, 197, 198
Herstein, 261
hierarchy, 202
HMM GCD algorithm, 239
HMM HNF algorithm, 250
HNF, 221, 226
Hobby, 103, 111, 114
Hoffman and Kunze, 4
Hoffstein, 143
homogeneous linear system, 223
Howgrave-Graham, 131, 141, 143
Hurwitz, 148
hyperplane, 181, 189

index, 9
inertia, 36
instance, 212
integer arithmetic, 244
integer elementary row operations,

227
integer Gaussian elimination, 227
integer programming, 82
integers, 1
irreducible, 262

Jacobson, 4

Kaib and Schnorr, 37
Kannan, 15, 179, 182–184, 187, 189,

191–195, 197
Kannan and Bachem, 257
Kannan’s algorithm, 183, 191, 193,

197, 204, 206
Karp, 209, 212, 218
Khot, 219
Kluners, 294
knapsack cryptosystem, 117
knapsack problem, 115
Knuth, 24, 37, 140, 143, 175, 257, 261
Korkine and Zolotareff, 182
Korkine-Zolotareff constant, 199
Korkine-Zolotareff-reduced, 182
Koy and Schnorr, 207
Kumar and Sivakumar, 219
KZ-constant, 199

Lagarias, 152, 198
Lagarias and Odlyzko, 120, 122
Lame, 37
lattice, 5, 7
LCM, 186
leading coefficient, 262
leading variables, 224
least absolute remainders, 24
least common multiple, 186, 224
least squares, 52
Lekkerkerker, iii, 206
length, 2, 36
Lenstra, ii, 55, 148, 149, 198, 261, 290
Leveque, 148
Lidl and Niederreiter, 264
lifting of a vector, 181
limiting behavior, 239
limiting sequence, 242
limiting value, 82
linear Diophantine equation, 231
linearly dependent, 4, 211
linearly independent, 4, 211
LLL algorithm, 197, 261, 290, 293
LLL preprocessing, 168

© 2012 by Taylor & Francis Group, LLC

314 INDEX

LLL theorem, 60
LLL-reduced, 56
loop invariant, 72
Lovasz, ii, iii, 55, 148, 149, 198, 261,

290
Lovasz and Scarf, 82
low public exponents, 131
LQ decomposition, 44

Martinet, iii, 206
May, 131, 143
Merkle and Hellman, 117, 122
Mertens conjecture, 153
Micciancio, 219
Micciancio and Goldwasser, iii, 219
Micciancio and Warinschi, 257
Mignotte, 294
Mignotte’s bound, 287, 288, 292, 294
Millenium Prize Problems, 212
minimal, 26
minimal lifting, 186
Minkowski’s convex body theorem,

14, 182, 194
Minkowski-reduced, 194
minor, 9
MLLL algorithm, 103, 108, 109, 184,

195, 239, 257
Mobius function, 153, 267, 295
Mobius inversion, 267
Mobius inversion formula, 294
modified LLL algorithm, 103, 106
modular forms, 37
modular polynomial equations, 131
modulus, 118
Mow, 82
multiplier, 118
multiplier vector, 221, 236, 237

nearest integer, 27
nearest plane algorithm, 78
Nguyen, 13, 14, 201, 206
Nguyen and Stehle, 37, 82
Nguyen and Stern, 131, 143
Nguyen and Vallee, iii
Nguyen and Vidick, 195

Nicholson, 4
nonassociative algebras, 232
norm, 2
norm of a polynomial, 287
NP, 212
NP-complete, 116, 209, 212, 218
NP-hard, 212
nullspace, 221, 223
nullspace lattice, 229

Odlyzko, 122
Odlyzko and te Riele, 153
one million dollars, 212
one-parameter family, 197
original LLL algorithm, 62, 63
orthogonal, 3
orthogonal component, 180, 198
orthogonal projection, 186, 198
orthogonal projection coefficient, 27

P, 212
parallel, 3
parallelipiped, 5, 187
parameterized Gaussian algorithm,

34, 35
PARTITION, 210
Pernet and Stein, 257
Pintz, 153
Pohst, 103
Pohst and Zassenhaus, 103, 114
polynomial factorization, 261
polynomial identities, 232
polynomial ring, 262
POSITIVE PARTITION, 209
prime number theorem, 286
primitive, 13
primitive part, 283
primitive polynomial, 283
private key, 118
probabilistic algorithm, 270, 287
projection of a lattice, 180
projection of a vector, 180
projection orthogonal to a subspace,

180
projection to a subspace, 180

© 2012 by Taylor & Francis Group, LLC

INDEX 315

projections, 3
public key, 118

QR decomposition, 45
quadratic form, 158
quotient, 21
quotient ring, 265

rank, 222
rational Cholesky decomposition, 156,

157
rational numbers, 1
RCF, 221, 222
real numbers, 1
recursive FP algorithm, 175
reduce procedure, 64
reduced row-echelon form, 222
REDUCEDBASIS, 189, 190
reduction lemma, 67
reduction parameter, 56, 189, 202,

206, 244
Regev, 219
remainder, 21
resultant, 285
Riemann hypothesis, 153
Riemann zeta function, 37
Rogers, 206
row canonical form, 221–223
row canonical form algorithm, 223
row vector, 1
row-equivalent, 222, 225
RSA cryptosystems, 131

scalar product, 2
Scharlau and Opolka, 21, 26
Schnorr, 82, 99, 193, 194, 197–203,

206, 207
Schnorr and Euchner, 87, 91, 103, 207
Schnorr constant, 201, 203
Schnorr’s algorithm, 197, 206, 207
Schnorr’s hierarchy, 202
second minimum, 13
segment reduced, 207
semi-block reduced, 203
semi-block reduction, 202
semi-block reduction algorithm, 205

semi-reduced, 203
semi-reduction, 202
semi-reduction algorithm, 204
Shallit, 37
Shamir, 120, 122
shortest nonzero vector, 26
shortest vector, 187, 198, 203
SHORTEST VECTOR PROBLEM,

211
SHORTESTVECTOR, 187
sign, 31
Simon, 153
Sims, 103, 106, 107, 114, 221, 230, 257
simultaneous approximations, 148
size-reduced, 198
small roots, 131
Smeets, 55
span, 4, 5
sphere of dimension n, 183
Split algorithm, 273
square-length, 2
squarefree, 262
standard basis vectors, 4
standard value, 56
Stehle, 82
Stillwell, 25
Storjohann, 257
sublattice, 8
subset-sum problem, 115
successive minima, 13, 198
superexponential time, 184
superincreasing, 116
SVP, 211
SVPM, 211
Sylvester matrix, 285, 286
symmetric about the origin, 14, 183
symmetric bilinear form, 158
symmetric remainders, 24
symmetric representatives, 287

te Riele, 153
termination parameter, 274
termination theorem, 74
tetralogarithm, 37
transform matrix, 221, 223, 237, 239

© 2012 by Taylor & Francis Group, LLC

316 INDEX

Trefethen and Bau, 4, 52, 156
TrialSplit algorithm, 273
two-dimensional lattice, 26

UFD, 262, 294
unimodular, 6
unimodular row operation, 6
unique factorization domain, 262, 294
upside-down, 237

Vallee, 15, 31, 37
Vallee and Vera, 37, 82
van der Kallen, 257
van Emde Boas, 209, 213, 214, 216,

217
van Hoeij, 294
vector space, 2
Viterbo and Boutros, 82
volume, 183
von zur Gathen and Gerhard, iii, 37,

52, 257, 261, 286–288, 290,
297

WEAK PARTITION, 210
Wikipedia, 212
wireless communication, 82

Zassenhaus, 261, 288, 294
Zassenhaus algorithm, 290
ZFactor algorithm, 289

© 2012 by Taylor & Francis Group, LLC

	Lattice Basis Reduction: An Introduction To The Lll Algorithm And Its Applications
	Pure And Applied Mathematics
	Monographs And Textbooks Inpure And Applied Mathematics
	Lattice Basis Reduction: An Introduction To The Lll Algorithm And Its Applications
	Contents
	List Of Figures
	Preface
	About The Author
	Chapter 1 Introduction to Lattices
	CONTENTS
	1.1 Euclidean space Rn
	1.2 Lattices in Rn
	1.3 Geometry of numbers
	1.4 Projects
	1.5 Exercises

	Chapter 2 Two-Dimensional Lattices
	CONTENTS
	2.1 The Euclidean algorithm
	2.2 Two-dimensional lattices
	2.3 Vallee’s analysis of the Gaussian algorithm
	2.4 Projects
	2.5 Exercises

	Chapter 3 Gram-Schmidt Orthogonalization
	CONTENTS
	3.1 The Gram-Schmidt theorem
	3.2 Complexity of the Gram-Schmidt process
	3.3 Further results on the Gram-Schmidt process
	3.4 Projects
	3.5 Exercises

	Chapter 4 The LLL Algorithm
	CONTENTS
	4.1 Reduced lattice bases
	4.2 The original LLL algorithm
	4.3 Analysis of the LLL algorithm
	4.4 The closest vector problem
	4.5 Projects
	4.6 Exercises

	Chapter 5 Deep Insertions
	CONTENTS
	5.1 Modifying the exchange condition
	5.2 Examples of deep insertion
	5.3 Updating the GSO
	5.4 Projects
	5.5 Exercises

	Chapter 6 Linearly Dependent Vectors
	CONTENTS
	6.1 Embedding dependent vectors
	6.2 The modified LLL algorithm
	6.3 Projects
	6.4 Exercises

	Chapter 7 The Knapsack Problem
	CONTENTS
	7.1 The subset-sum problem
	7.2 Knapsack cryptosystems
	7.3 Projects
	7.4 Exercises

	Chapter 8 Coppersmith’s Algorithm
	CONTENTS
	8.1 Introduction to the problem
	8.2 Construction of the matrix
	8.3 Determinant of the lattice
	8.4 Application of the LLL algorithm
	8.5 Projects
	8.6 Exercises

	Chapter 9 Diophantine Approximation
	CONTENTS
	9.1 Continued fraction expansions
	9.2 Simultaneous Diophantine approximation
	9.3 Projects
	9.4 Exercises

	Chapter 10 The Fincke-Pohst Algorithm
	CONTENTS
	10.1 The rational Cholesky decomposition
	10.2 Diagonalization of quadratic forms
	10.3 The original Fincke-Pohst algorithm
	10.4 The FP algorithm with LLL preprocessing
	10.5 Projects
	10.6 Exercises

	Chapter 11 Kannan’s Algorithm
	CONTENTS
	11.1 Basic definitions
	11.2 Results from the geometry of numbers
	11.3 Kannan’s algorithm
	11.3.1 Procedure COMPUTEBASIS
	11.3.2 Procedure SHORTESTVECTOR
	11.3.3 Procedure REDUCEDBASIS

	11.4 Complexity of Kannan’s algorithm
	11.5 Improvements to Kannan’s algorithm
	11.6 Projects
	11.7 Exercises

	Chapter 12 Schnorr’s Algorithm
	CONTENTS
	12.1 Basic definitions and theorems
	12.2 A hierarchy of polynomial-time algorithms
	12.3 Projects
	12.4 Exercises

	Chapter 13 NP-Completeness
	CONTENTS
	13.1 Combinatorial problems for lattices
	13.2 A brief introduction to NP-completeness
	13.3 NP-completeness of SVP in the max norm
	13.4 Projects
	13.5 Exercises

	Chapter 14 The Hermite Normal Form
	CONTENTS
	14.1 The row canonical form over a field
	14.2 The Hermite normal form over the integers
	14.3 The HNF with lattice basis reduction
	14.4 Systems of linear Diophantine equations
	14.5 Using linear algebra to compute the GCD
	14.6 The HMM algorithm for the GCD
	14.7 The HMM algorithm for the HNF
	14.8 Projects
	14.9 Exercises

	Chapter 15 Polynomial Factorization
	CONTENTS
	15.1 The Euclidean algorithm for polynomials
	15.2 Structure theory of finite fields
	15.3 Distinct-degree decomposition of a polynomial
	15.4 Equal-degree decomposition of a polynomial
	15.5 Hensel lifting of polynomial factorizations
	15.6 Polynomials with integer coefficients
	15.7 Polynomial factorization using LLL
	15.8 Projects
	15.9 Exercises

	Bibliography
	Index

