
Lecture Notes in Computer Science 4288
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Tetsuo Asano (Ed.)

Algorithms
and Computation

17th International Symposium, ISAAC 2006
Kolkata, India, December 18-20, 2006
Proceedings

13

Volume Editor

Tetsuo Asano
JAIST, Japan Advanced Institute of Science and Technology
1-1, Asahidai, Nomi, Ishikawa 923-1292, Japan
E-mail: t-asano@jaist.ac.jp

Library of Congress Control Number: 2006937541

CR Subject Classification (1998): F.2, C.2, G.2-3, I.3.5, C.2.4, E.5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-49694-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-49694-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11940128 06/3142 5 4 3 2 1 0

Preface

ISAAC 2006, the 17th International Symposium on Algorithms and Computa-
tion took place in Kolkata, India, December 18–20, 2006. It has been held in
Tokyo (1990), Taipei (1991), Nagoya (1992), Hong Kong (1993), Beijing (1994),
Cairns (1995), Osaka (1996), Singapore (1997), Taejon (1998), Chennai (1999),
Taipei (2000), Christchurch (2001), Vancouver (2002), Kyoto (2003), Hong Kong
(2004), and Hainan (2005).

The symposium provided a forum for researchers working in algorithms and
the theory of computation from all over the world. In response to our call for
papers, we received 255 submissions. The task of selecting the papers in this
volume was carried out by our Program Committee and many other external
reviewers. After a thorough review process and PC meeting, the committee se-
lected 73 papers. We hope all accepted papers will eventually appear in scientific
journals in a more polished form. Two special issues, one of Algorithmica and
one of the International Journal of Computational Geometry and Applications,
with selected papers from ISAAC 2006 are in preparation.

The best paper award was given for “Algorithmic Graph Minor Theory: Im-
proved Grid Minor Bounds and Wagner’s Contraction” by Erik Demaine, Mo-
hammadTaghi Hajiaghayi and Ken-ichi Kawarabayashi. The best student paper
award was given for “Branching and Treewidth Based Exact Algorithms” by
Serge Gaspers, Fedor Fomin and Saket Saurabh. Two eminent invited speakers,
Kazuo Iwama, Kyoto University, Japan, and Tamal K. Dey, The Ohio State
University, USA, also contributed to this volume.

I would like to thank the Conference Chair, Bhargab B. Bhattacharya and
the Organizing Chair, Subhas C. Nandy, for their leadership, advice and help
on crucial matters concerning the conference. I would like to thank the Program
Committee and many external reviewers for their great efforts in the review
process. I also thank the Advisory Committee members of ISAAC for their
continuous encouragement.

Finally, I would like to acknowledge the EasyChair system, which is a free
conference management system that is flexible, easy to use, and has many fea-
tures to make it suitable for various conference models. Without the help of
EasyChair, we could not have finished our review process within the deadline of
notification.

December 2006 Tetsuo Asano
Program Chair

ISAAC 2006

Organization

Program Committee

Hee-Kap Ahn, Sejong Univ., Korea
Tetsuo Asano(Chair), JAIST, Japan
Mikhail Atallah, Purdue Univ., USA
Chanderjit Bajaj, Univ. Texas Austin, USA
Sergey Bereg, Univ. Texas Dallas, USA
Somenath Biswas, IIT Kanpur, India
Tamal K. Dey, The Ohio State Univ., USA
Benjamin Doerr, Max Planck Institute, Germany
Subir Ghosh, TIFR, India
Mordecai J. Golin, HKUST, Hong Kong
John Iacono, Polytechnic Univ., USA
Chuzo Iwamoto, Hiroshima Univ., Japan
Rolf Klein, Univ. Bonn, Germany
Sang-Ho Lee, Ewha Womens Univ., Korea
Kazuhisa Makino, Univ. Tokyo, Japan
Pat Morin, Carleton Univ., Canada
Stephan Näher, Univ. Trier, Germany
Subhas Chandra Nandy, ISI, Kolkata, India
Giri Narasimhan, Florida International Univ., USA
Ashwin Nayak, Univ. Waterloo, Canada
Kunsoo Park, Seoul National Univ., Korea
Md. Saidur Rahman, Bangladesh Univ. Eng.&Tech., Bangladesh
Desh Ranjan, New Mexico State Univ., USA
Peter Sanders, Univ. Karlsruhe, Germany
Sandeep Sen, IIT Kharagpur, India
Sung Yong Shin, KAIST, Korea
Hisao Tamaki, Meiji Univ., Japan
Akihisa Tamura, Keio Univ., Japan
Seinosuke Toda, Nihon Univ., Japan
Takeshi Tokuyama, Tohoku Univ., Japan
Ryuhei Uehara, JAIST, Japan
Gabriel Valiente, Tech. Univ. Catalonia, Spain
Alexander Wolff, Univ. Karlsruhe, Germany

Organizing Committee

Partha Bhowmik, Bengal Engineering and Science University
Arindam Biswas, Bengal Engineering and Science University

VIII Organization

Nabendu Chaki, Calcutta University
Debesh Das, Jadavpur University
Sandip Das, Indian Statistical Institute
Parthasarathi Dasgupta, Indian Institute of Management
Rajat De Indian, Statistical Institute
Partha Pratim Goswami, Kalyani University
Arobindo Gupta, Indian Institute of Technology, Kharagpur
Susmita Sur-Kolay, Indian Statistical Institute
Mandar Mitra, Indian Statistical Institute
Pabitra Mitra, Indian Institute of Technology, Kharagpur
Subhamoy Moitra, Indian Statistical Institute
Dipti Prasad Mukherjee, Indian Statistical Institute
Krishnendu Mukhopadhyaya, Indian Statistical Institute
Subhas C. Nandy (Chair), Indian Statistical Institute
Sudeb K. Pal, Indian Institute of Technology, Kharagpur
Subhashis Pal, Indian Statistical Institute

Sponsors

1. Department of Science and Technology, Govt. of India
2. Council of Scientific and Industrial Research, Govt. of India
3. Reserve Bank of India
4. Department of Information Technology of the Govt. of West Bengal
5. Capgemini Consulting India Private Limited
6. Tata Consultancy Services
7. IBM India Software Laboratory
8. Cognizant Technology Solutions
9. Anshin Software

External Referees

Ashkan Aazami Mahmoud Fouz Shashank Mehta
V. Arvind Satoshi Fujita Atsuko Miyaji
Greg Plaxton Xavier Goaoc Elena Mumford
Adam Klivans Robert Görke Mridul Nandi
Surender Baswana Masud Hasan Martin Nöllenburg
Binay Bhattacharya André Hernich Enrico Pontelli
Ai Chen Xiuzhen Huang M. Sohel Rahman
Siu-Wing Cheng Toshiya Itoh Dana Ron
Joseph Cheriyan Naoki Katoh Kouichi Sakurai
Brian Cloteaux Hartmut Klauck Thomas Schank
Daniel Delling Jochen Konemann Anil Seth
Feodor F. Dragan Martin Kutz Gurdip Singh
Sandor Fekete SN Maheshwari Steve Tate

Organization IX

Antoine Vigneron Sascha Meinert Keith Frikken
David Wood, Takaaki Mizuki Marco Gaertler
Binhai Zhu Hyeon-Suk Na Prosenjit Gupta
Manindra Agarwal Frank Neumann Sariel Har-Peled
Sang Won Bae Sudeb P. Pal Jing He
Vinay Siddahanavalli Mihai Prunescu Seok Hee Hong
Samrat Goswami Bhaskaran Raman Giuseppe Italiano
Michael Baur Sasanka Roy Md. Abul Kashem
Marina Blanton Eli Ben Sasson Akinori Kawachi
Xiaomin Chen Sandeep Sen Christian Knauer
Otfried Cheong Chan-Su Shin Amit Kumar
Taenam Cho Masakazu Soshi Hing Leung
Sandip Das Mayur Thakur Steffen Mecke
Roman Dementiev Yusu Wang Damian Merrick
Khaled Elbassioni Jian Xia Mitsuo Motoki
Stephen Fenner Martin Kutz Stefan Naeher
Tobias Friedrich Lars Arge Tetsuro Nishino
Stefan Funke Amitabha Bagchi Sangmin Park
Mordecai Golin Inderjit Dhillon Jaikumar Radhakrishnan
Michel Habib Sugata Basu Edgar Ramos
Herman Haverkort Marc Benkert Kunihiko Sadakane
Martin Holzer Peter Brass Sanjeev Saxena
H.-K. Hwang Jianer Chen Seung-Hyun Seo
Jesper Jansson Sang Won Bae Akiyoshi Shioura
Bastian Katz Sunghee Choi Andreas Spillner
Christian Klein Sajal Das Gerhard Trippen
Dariusz Kowalski Jon Derryberry Rephael Wenger
Stefan Langerman Will Evans Yan Zhang
Anil Maheshwari Henning Fernau

Message from the Conference Chair

It was our great pleasure to welcome you to the 17th Annual International
Symposium on Algorithms and Computation (ISAAC 2006), which was held
for the first time in Kolkata (formerly known as Calcutta), during December
18–20, 2006. This is the second ISAAC meeting organized in India; the first one
was held in the city of Chennai in 1999. This symposium provided an excellent
opportunity for sharing thoughts among the participants on the recent advances
in algorithm design and their manifold applications to emerging areas. Thanks
go to the members of the Advisory Committee of ISAAC for their concurrence
to hold this symposium in Kolkata.

We would like to express our sincerest thanks to the invited speakers, Kazuo
Iwama of the Kyoto University, Japan, and Tamal K. Dey of the Ohio State
University, USA, who kindly agreed to speak on the frontier topics in algorithms
and computation theory.

We are immensely grateful to Tetsuo Asano of the Japan Advanced Institute
of Science and Technology, the Program Chair of the symposium, for compiling
an outstanding technical program. On the advice of an excellent Program Com-
mittee of international experts, he followed stringent criteria for selecting only
the very best technical papers out of a large number of submissions in order to
preserve the high quality of the technical program of the symposium.

Our sincerest thanks are due to Sankar K. Pal, Director of the Indian Statis-
tical Institute, for his support in co-sponsoring the symposium and for providing
financial and infrastructural support. We also thank Anupam Basu of the De-
partment of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur, for endorsing institutional cooperation. We also acknowledge, with
thanks, the support we received from the Indian Association of Research in Com-
puting Sciences (IARCS) for co-hosting the symposium. The financial support
received from the Department of Science and Technology, Council of Scientific
and Industrial Research, Reserve Bank of India, the Department of Information
Technology of the Govt. of West Bengal, Capgemini Consulting India Private
Limited, Tata Consultancy Services, IBM India Software Laboratory, Cognizant
Technology Solutions, and Anshin Software for sponsoring various events, are
also thankfully acknowledged.

We are also grateful to the local Organizing Committee for their excellent
services that made the symposium a grand success.

We take this opportunity to extend our heartfelt thanks to all the partici-
pants, the authors, the reviewers, and the volunteers, who helped us immensely
to make this symposium a success. We earnestly hope that the participants

XII Organization

of the symposium enjoyed their stay in the wonderful and culturally vibrant city
of Kolkata.

December 2006 Bhargab B. Bhattacharya
Indian Statistical Institute, Kolkata, India

Conference Chair
ISAAC 2006

Table of Contents

Invited Talks

Stable Matching Problems . 1
Kazuo Iwama

Delaunay Meshing of Surfaces . 2
Tamal K. Dey

Best Paper 2006

Algorithmic Graph Minor Theory: Improved Grid Minor Bounds
and Wagner’s Contraction . 3

Erik D. Demaine, MohammadTaghi Hajiaghayi,
Ken-ichi Kawarabayashi

Best Student Paper 2006

Branching and Treewidth Based Exact Algorithms . 16
Fedor V. Fomin, Serge Gaspers, Saket Saurabh

Session 1A: Algorithms and Data Structures

Deterministic Splitter Finding in a Stream with Constant Storage
and Guarantees . 26

Tobias Lenz

Optimal Algorithms for Tower of Hanoi Problems with Relaxed
Placement Rules . 36

Yefim Dinitz, Shay Solomon

Flexible Word Design and Graph Labeling . 48
Ming-Yang Kao, Manan Sanghi, Robert Schweller

Session 1B: Online Algorithms

Frequency Allocation Problems for Linear Cellular Networks 61
Joseph Wun-Tat Chan, Francis Y.L. Chin, Deshi Ye, Yong Zhang,
Hong Zhu

XIV Table of Contents

Finite-State Online Algorithms and Their Automated Competitive
Analysis . 71

Takashi Horiyama, Kazuo Iwama, Jun Kawahara

Offline Sorting Buffers on Line . 81
Rohit Khandekar, Vinayaka Pandit

Session 2A: Approximation Algorithms

Approximating Tree Edit Distance Through String Edit Distance 90
Tatsuya Akutsu, Daiji Fukagawa, Atsuhiro Takasu

A 6-Approximation Algorithm for Computing Smallest Common
AoN-Supertree with Application to the Reconstruction
of Glycan Trees . 100

Kiyoko F. Aoki-Kinoshita, Minoru Kanehisa, Ming-Yang Kao,
Xiang-Yang Li, Weizhao Wang

Improved Approximation for Single-Sink Buy-at-Bulk 111
Fabrizio Grandoni, Giuseppe F. Italiano

Approximability of Partitioning Graphs with Supply and Demand 121
Takehiro Ito, Erik D. Demaine, Xiao Zhou, Takao Nishizeki

Session 2B: Graphs

Convex Grid Drawings of Plane Graphs with Rectangular Contours 131
Akira Kamada, Kazuyuki Miura, Takao Nishizeki

Algorithms on Graphs with Small Dominating Targets 141
Divesh Aggarwal, Chandan K. Dubey, Shashank K. Mehta

Efficient Algorithms for Weighted Rank-Maximal Matchings
and Related Problems . 153

Telikepalli Kavitha, Chintan D. Shah

On Estimating Path Aggregates over Streaming Graphs 163
Sumit Ganguly, Barna Saha

Session 3A: Computational Geometry

Diamond Triangulations Contain Spanners of Bounded Degree 173
Prosenjit Bose, Michiel Smid, Daming Xu

Table of Contents XV

Optimal Construction of the City Voronoi Diagram 183
Sang Won Bae, Jae-Hoon Kim, Kyung-Yong Chwa

Relations Between Two Common Types of Rectangular Tilings 193
Yusu Wang

Quality Tetrahedral Mesh Generation for Macromolecules 203
Ho-Lun Cheng, Xinwei Shi

On Approximating the TSP with Intersecting Neighborhoods 213
Khaled Elbassioni, Aleksei V. Fishkin, René Sitters

Session 3B: Computational Complexity

Negation-Limited Complexity of Parity and Inverters 223
Kazuo Iwama, Hiroki Morizumi, Jun Tarui

The Complexity of Quasigroup Isomorphism and the Minimum
Generating Set Problem . 233

VIkraman Arvind, Jacobo Torán

Inverse HAMILTONIAN CYCLE and Inverse 3-D MATCHING Are
coNP-Complete . 243

Michael Krüger, Harald Hempel

Parameterized Problems on Coincidence Graphs . 253
Sylvain Guillemot

On 2-Query Codeword Testing with Near-Perfect Completeness 267
Venkatesan Guruswami

Session 4A: Algorithms and Data Structures

Poketree: A Dynamically Competitive Data Structure with Good
Worst-Case Performance . 277

Jussi Kujala, Tapio Elomaa

Efficient Algorithms for the Optimal-Ratio Region Detection Problems
in Discrete Geometry with Applications . 289

Xiaodong Wu

On Locating Disjoint Segments with Maximum Sum of Densities 300
Hsiao-Fei Liu, Kun-Mao Chao

XVI Table of Contents

Two-Tier Relaxed Heaps . 308
Amr Elmasry, Claus Jensen, Jyrki Katajainen

Session 4B: Games and Networks

The Interval Liar Game . 318
Benjamin Doerr, Johannes Lengler, David Steurer

How Much Independent Should Individual Contacts Be to Form
a Small–World? . 328

Gennaro Cordasco, Luisa Gargano

Faster Centralized Communication in Radio Networks 339
Ferdinando Cicalese, Fredrik Manne, Qin Xin

On the Runtime and Robustness of Randomized Broadcasting 349
Robert Elsässer, Thomas Sauerwald

Session 5A: Combinatorial Optimization and
Computational Biology

Local Search in Evolutionary Algorithms: The Impact of the Local
Search Frequency . 359

Dirk Sudholt

Non-cooperative Facility Location and Covering Games 369
Martin Hoefer

Optimal Algorithms for the Path/Tree-Shaped Facility Location
Problems in Trees . 379

Binay Bhattacharya, Yuzhuang Hu, Qiaosheng Shi, Arie Tamir

Multiobjective Optimization: Improved FPTAS for Shortest Paths
and Non-linear Objectives with Applications . 389

George Tsaggouris, Christos Zaroliagis

Algorithms for Computing Variants of the Longest Common
Subsequence Problem . 399

M. Sohel Rahman, Costas S. Iliopoulos

Session 5B: Graphs

Constructing Labeling Schemes Through Universal Matrices 409
Amos Korman, David Peleg, Yoav Rodeh

Table of Contents XVII

Making Arbitrary Graphs Transitively Orientable: Minimal
Comparability Completions . 419

Pinar Heggernes, Federico Mancini, Charis Papadopoulos

Analyzing Disturbed Diffusion on Networks . 429
Henning Meyerhenke, Thomas Sauerwald

Exact Algorithms for Finding the Minimum Independent Dominating
Set in Graphs . 439

Chunmei Liu, Yinglei Song

On Isomorphism and Canonization of Tournaments
and Hypertournaments . 449

VIkraman Arvind, Bireswar Das, Partha Mukhopadhyay

Session 6A: Algorithms and Data Structures

Efficient Algorithms for the Sum Selection Problem and K Maximum
Sums Problem . 460

Tien-Ching Lin, Der-Tsai Lee

Deterministic Random Walks on the Two-Dimensional Grid 474
Benjamin Doerr, Tobias Friedrich

Improving Time and Space Complexity for Compressed Pattern
Matching . 484

Shirou Maruyama, Hiromitsu Miyagawa, Hiroshi Sakamoto

Improved Multi-unit Auction Clearing Algorithms with Interval
(Multiple-Choice) Knapsack Problems . 494

Yunhong Zhou

Session 6B: Graphs

A Simple Message Passing Algorithm for Graph Partitioning
Problems . 507

Mikael Onsjö, Osamu Watanabe

Minimal Interval Completion Through Graph Exploration 517
Karol Suchan, Ioan Todinca

Balanced Cut Approximation in Random Geometric Graphs 527
Josep Diaz, Fabrizio Grandoni, Alberto Marchetti Spaccamela

XVIII Table of Contents

Improved Algorithms for the Minmax-Regret 1-Center Problem 537
Tzu-Chin Lin, Hung-Io Yu, Biing-Feng Wang

Session 7A: Approximation Algorithms

On Approximating the Maximum Simple Sharing Problem 547
Danny Z. Chen, Rudolf Fleischer, Jian Li, Zhiyi Xie,
Hong Zhu

Approximation Scheme for Lowest Outdegree Orientation and Graph
Density Measures . 557

�Lukasz Kowalik

Improved Approximation Algorithms for Maximum Resource Bin
Packing and Lazy Bin Covering Problems . 567

Mingen Lin, Yang Yang, Jinhui Xu

Session 7B: Graphs

Partitioning the Nodes of a Graph to Minimize the Sum of Subgraph
Radii . 578

Guido Proietti, Peter Widmayer

Efficient Prüfer-Like Coding and Counting Labelled Hypertrees 588
Saswata Shannigrahi, Sudebkumar Prasant Pal

Intuitive Algorithms and t-Vertex Cover . 598
Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith

Session 8A: Combinatorial Optimization and
Quantum Computing

Politician’s Firefighting . 608
Allan E. Scott, Ulrike Stege, Norbert Zeh

Runtime Analysis of a Simple Ant Colony Optimization Algorithm 618
Frank Neumann, Carsten Witt

Lower Bounds on the Deterministic and Quantum Communication
Complexities of Hamming-Distance Problems . 628

Andris Ambainis, William Gasarch, Aravind Srinivasan,
Andrey Utis

Table of Contents XIX

Resources Required for Preparing Graph States . 638
Peter Høyer, Mehdi Mhalla, Simon Perdrix

Session 8B: Online Algorithms

Online Multi-path Routing in a Maze . 650
Stefan Rührup, Christian Schindelhauer

On the On-Line k -Truck Problem with Benefit Maximization 660
Weimin Ma, Ke Wang

Energy-Efficient Broadcast Scheduling for Speed-Controlled
Transmission Channels . 670

Patrick Briest, Christian Gunia

Online Packet Admission and Oblivious Routing in Sensor
Networks . 680

Mohamed Aly, John Augustine

Session 9A: Computational Geometry

Field Splitting Problems in Intensity-Modulated Radiation
Therapy . 690

Danny Z. Chen, Chao Wang

Shape Rectangularization Problems in Intensity-Modulated Radiation
Therapy . 701

Danny Z. Chen, Xiaobo S. Hu, Shuang Luan, Ewa Misio�lek,
Chao Wang

A New Approximation Algorithm for Multidimensional Rectangle
Tiling . 712

Katarzyna Paluch

Tessellation of Quadratic Elements . 722
Scott E. Dillard, Vijay Natarajan, Gunther H. Weber,
Valerio Pascucci, Bernd Hamann

Session 9B: Distributed Computing and
Cryptography

Effective Elections for Anonymous Mobile Agents . 732
Shantanu Das, Paola Flocchini, Amiya Nayak, Nicola Santoro

XX Table of Contents

Gathering Asynchronous Oblivious Mobile Robots in a Ring 744
Ralf Klasing, Euripides Markou, Andrzej Pelc

Provably Secure Steganography and the Complexity of Sampling 754
Christian Hundt, Maciej Lískiewicz, Ulrich Wölfel

Author Index . 765

Stable Matching Problems

Kazuo Iwama�

School of Informatics, Kyoto University, Kyoto 606-8501, Japan
iwama@kuis.kyoto-u.ac.jp

Stable matching is one of the oldest problems studied from an algorithmic point
of view, whose original version is defined as follows: An instance consists of N
men, N women, and each person’s preference list. A preference list is a totally
ordered list including all members of the opposite sex depending on his/her
preference. For a matching M between men and women, a pair of a man m and
a woman w is called a blocking pair if both prefer each other to their current
partners. A matching with no blocking pair is called stable.

The famous Gale-Shapley algorithm which finds a stable matching in linear
time was presented in 1962 and Knuth also considered several related problems
in 1976. On the other hand, it has a lot of real-world applications, including
the National Resident Matching Program in the US which started in 1952. Thus
the problem has a long history of theoretical research and application, but there
still remain many interesting problems. For example, for its most general ver-
sion, allowing both ties and incomplete lists, nothing was known until 1999 for its
complexity. Very recently, Iwama, Miyazaki and Yamauchi found its approxima-
tion algorithm whose approximation factor is strictly less than two, improving
the previous 2 − o(N).

This talk explains why this problem is so interesting and deep, from several
different angles including the newest result above mentioned, different measures
for goodness of matchings, different definitions for the stableness, related prob-
lems such as stable roommate problems and stable partition, and open problems.

� Supported in part by Scientific Research Grant, Ministry of Japan, 1609211 and
16300003.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Delaunay Meshing of Surfaces

Tamal K. Dey

Department of Computer Science and Engineering, The Ohio State University,
Columbus, Ohio 43210 USA

Abstract. Meshing of surfaces is an ubiquitous problem in many appli-
cations of science and engineering. Among different approaches available
for meshing surfaces, Delaunay meshing is often favored because of its
directional independence and good quality in general. As application
varies, so does the input form of the surface to be meshed. We present
algorithms to compute Delaunay meshes for various forms of input sur-
faces. Specifically, we consider surfaces input with (i) point cloud data,
(ii) implicit equations, and (iii) polyhedra. These algorithms come with
theoretical guarantees and some of them have been successfully imple-
mented. In this talk we detail the algorithms, provide the mathematical
reasoning behind their designs, and show the results of some experiments.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Algorithmic Graph Minor Theory: Improved

Grid Minor Bounds and Wagner’s Contraction

Erik D. Demaine1, MohammadTaghi Hajiaghayi1,2,
and Ken-ichi Kawarabayashi3

1 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA

{edemaine, hajiagha}@mit.edu
2 Department of Computer Science, Carnegie Mellon University,

Pittsburgh, PA 15213, USA
3 Graduate School of Information Sciences, Tohoku University,

Aramaki aza Aoba 09, Aoba-ku Sendai, Miyagi 980-8579, Japan
k keniti@dais.is.tohoku.ac.jp

Abstract. We explore the three main avenues of research still unsolved
in the algorithmic graph-minor theory literature, which all stem from a
key min-max relation between the treewidth of a graph and its largest
grid minor. This min-max relation is a keystone of the Graph Minor
Theory of Robertson and Seymour, which ultimately proves Wagner’s
Conjecture about the structure of minor-closed graph properties.

First, we obtain the only known polynomial min-max relation for
graphs that do not exclude any fixed minor, namely, map graphs and
power graphs. Second, we obtain explicit (and improved) bounds on
the min-max relation for an important class of graphs excluding a mi-
nor, namely, K3,k-minor-free graphs, using new techniques that do not
rely on Graph Minor Theory. These two avenues lead to faster fixed-
parameter algorithms for two families of graph problems, called minor-
bidimensional and contraction-bidimensional parameters. Third, we dis-
prove a variation of Wagner’s Conjecture for the case of graph contrac-
tions in general graphs, and in a sense characterize which graphs satisfy
the variation. This result demonstrates the limitations of a general the-
ory of algorithms for the family of contraction-closed problems (which
includes, for example, the celebrated dominating-set problem). If this
conjecture had been true, we would have had an extremely powerful tool
for proving the existence of efficient algorithms for any contraction-closed
problem, like we do for minor-closed problems via Graph Minor Theory.

1 Introduction

Graph Minor Theory is a seminal body of work in graph theory, developed
by Robertson and Seymour in a series of over 20 papers spanning the last 20
years. The original goal of this work, now achieved, was to prove Wagner’s Con-
jecture [39], which can be stated as follows: every minor-closed graph property
(preserved under taking of minors) is characterized by a finite set of forbidden mi-
nors. This theorem has a powerful algorithmic consequence: every minor-closed

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 3–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

4 E.D. Demaine, M. Hajiaghayi, and K. Kawarabayashi

graph property can be decided by a polynomial-time algorithm. A keystone in
the proof of these theorems, and many other theorems, is a grid-minor theo-
rem [37]: any graph of treewidth at least some f(r) is guaranteed to have the
r×r grid graph as a minor. Such grid-minor theorems have also played a key role
for many algorithmic applications, in particular via the bidimensionality the-
ory (e.g., [20, 13, 15, 11, 18, 17, 19]), including many approximation algorithms,
PTASs, and fixed-parameter algorithms.

The grid-minor theorem of [37] has been extended, improved, and re-proved.
The best bound known for general graphs is superexponential: every graph of
treewidth more than 202r5 has an r × r grid minor [43]. This bound is usually
not strong enough to derive efficient algorithms. Robertson et al. [43] conjecture
that the bound on f(r) can be improved to a polynomial rΘ(1); the best known
lower bound is Ω(r2 lg r). A tight linear upper bound was recently established
for graphs excluding any fixed minor H : every H-minor-free graph of treewidth
at least cH r has an r × r grid minor, for some constant cH [18]. This bound
leads to many powerful algorithmic results on H-minor-free graphs [18, 17, 19].

Three major problems remain in the literature with respect to these grid-
minor theorems in particular, and algorithmic graph-minor theory in general.
We address all three of these problems in this paper.

First, to what extent can we generalize algorithmic graph-minor results to
graphs that do not exclude a fixed minor H? In particular, for what classes
of graphs can the grid-minor theorem be improved from the general superex-
ponential bound to a bound that would be useful for algorithms? To this end,
we present polynomial grid-minor theorems for two classes of graphs that can
have arbitrarily large cliques (and therefore exclude no fixed minors). One class,
map graphs, is an important generalization of planar graphs introduced by Chen,
Grigni, and Papadimitriou [10], characterized via a polynomial recognition al-
gorithm by Thorup [45], and studied extensively in particular in the context of
subexponential fixed-parameter algorithms and PTASs for specific domination
problems [12, 9]. The other class, power graphs, e.g., fixed powers of H-minor-
free graphs (or even map graphs), have been well-studied since the time of the
Floyd-Warshall algorithm.

Second, even for H-minor-free graphs, how large is the constant cH in the
grid-minor theorem? In particular, how does it depend on H? This constant
is particularly important because it is in the exponent of the running times
of many algorithms. The current results (e.g., [18]) heavily depend on Graph
Minor Theory, most of which lacks explicit bounds and is believed to have very
large bounds. (To quote David Johnson [32], “for any instance G = (V,E) that
one could fit into the known universe, one would easily prefer |V |70 to even
constant time, if that constant had to be one of Robertson and Seymour’s.”
He estimates one constant in an algorithm for testing for a fixed minor H to

be roughly 2 ↑ 2222↑(2↑Θ(|V (H)|))
, where 2 ↑ n denotes a tower 222 ..

.

involving n
2’s.) For this reason, improving the constants, even for special classes of graphs,
and presumably using different approaches from Graph Minors, is an important
theoretical and practical challenge. To this end, we give explicit bounds for the

Algorithmic Graph Minor Theory 5

case of K3,k-minor-free graphs, an important class of apex-minor-free graphs
(see, e.g., [4, 7, 26, 27]). Our bounds are not too small but are a vast improvement
over previous bounds (in particular, much smaller than 2 ↑ |V (H)|); in addition,
the proof techniques are interesting in their own right, being disjoint from most
of Graph Minors. To the best of our knowledge, this is the only grid-minor
theorem with an explicit bound other than for planar graphs [43] and bounded-
genus graphs [13]. Our theorem also leads to several algorithms with explicit and
improved bounds on their running time.

Third, to what extent can we generalize algorithmic graph-minor results to
graph contractions? Many graph optimization problems are closed (only de-
crease) under edge contractions, but not under edge deletions (i.e., minors).
Examples include dominating set, traveling salesman, or even diameter. Bidi-
mensionality theory has been extended to such contraction-closed problems for
the case of apex-minor-free graphs; see, e.g., [11, 13, 18, 17, 23]. The basis for this
work is a modified grid-minor theorem which states that any apex-minor-free
graph of treewidth at least f(r) can be contracted into an “augmented” r × r
grid (e.g., allowing partial triangulation of the faces). The ultimate goal of this
line of research, mentioned explicitly in [16, 23], is to use this grid-contraction
analog of the grid-minor theorem to develop a Graph Contraction Theory par-
alleling as much as possible of Graph Minor Theory. In particular, the most
natural question is whether Wagner’s Conjecture generalizes to contractions: is
every contraction-closed graph property characterized by a finite set of excluded
contractions? If this were true, it would generalize our algorithmic knowledge of
minor-closed graph problems in a natural way to the vast array of contraction-
closed graph problems. To this end, we unfortunately disprove this contraction
version of Wagner’s Conjecture, even for planar bounded-treewidth graphs. On
the other hand, we prove that the conjecture holds for outerplanar graphs and
triangulated planar graphs, which in some sense provides a tight characterization
of graphs for which the conjecture holds.

Below we detail our results and techniques for each of these three problems.

1.1 Our Results and Techniques

Generalized grid-minor bounds. We establish polynomial relations between tree-
width and grid minors for map graphs and for powers of graphs. We prove in
Section 2 that any map graph of treewidth at least r3 has an Ω(r) ×Ω(r) grid
minor. We prove in Section 3 that, for any graph class with a polynomial rela-
tion between treewidth and grid minors (such as H-minor-free graphs and map
graphs), the family of kth powers of these graphs also has such a polynomial
relation, where the polynomial degree is larger by just a constant, interestingly
independent of k.

These results extend bidimensionality to map graphs and power graphs, im-
proving the running times of a broad class of fixed-parameter algorithms for
these graphs. See Section 4 for details on these algorithmic implications. Our re-
sults also build support for Robertson, Seymour, and Thomas’s conjecture that
all graphs have a polynomial relation between treewidth and grid minors [43].

6 E.D. Demaine, M. Hajiaghayi, and K. Kawarabayashi

Indeed, from our work, we refine the conjecture to state that all graphs of tree-
width Ω(r3) have an Ω(r) ×Ω(r) grid minor, and that this bound is tight. The
previous best treewidth-grid relations for map graphs and power graphs were
given by the superexponential bound from [43].

The main technique behind these results is to use approximate min-max rela-
tions between treewidth and the size of a grid minor. In contrast, most previous
work uses the seminal approximate min-max relation between treewidth and
tangles or between branchwidth and tangles, proved by Robertson and Sey-
mour [42]. We show that grids are powerful structures that are easy to work
with. By bootstrapping, we use grids and their connections to treewidth even to
prove relations between grids and treewidth.

Another example of the power of this technique is a result we obtain as a
byproduct of our study of map graphs: every bounded-genus graph has tree-
width within a constant factor of the treewidth of its dual. This is the first
relation of this type for bounded-genus graphs. The result generalizes a conjec-
ture of Seymour and Thomas [44] that, for planar graphs, the treewidth is within
an additive 1 of the treewidth of the dual, which has apparently been proved
in [35, 5] using a complicated approach. Such a primal-dual treewidth relation is
useful, e.g., for bounding the change in treewidth when performing operations
in the dual. Our proof crucially uses the connections between treewidth and grid
minors, and this approach leads to a relatively clean argument. The tools we
use come from bidimensionality theory and graph contractions, even though the
result is not explicitly about either.

Explicit (improved) grid-minor bounds. We prove in Section 5 that the constant
cH in the linear grid-minor bound for H-minor-free graphs can be bounded by an
explicit function of |V (H)| when H = K3,k for any k: for an explicit constant c,
everyK3,k-minor-free graph of treewidth at least ckr has an r×r grid minor. This
bound makes explicit and substantially improves the constants in the exponents
of the running time of many fixed-parameter algorithms from bidimensionality
theory [13, 11, 18] for such graphs. K3,k-minor-free graphs play an important role
as part of the family of apex-minor-free graphs that is disjoint from the family
of single-crossing-minor-free graphs (for which there exist a powerful decomposi-
tion in terms of planar graphs and bounded-treewidth graphs [41, 20]). Here the
family of X -minor-free graphs denotes the set of X-minor-free graphs for any
fixed graph X in the class X . K3,k is an apex graph in the sense that it has a ver-
tex whose removal leaves a planar graph. For k ≥ 7, K3,k is not a single-crossing
graph in the sense of being a minor of a graph that can be drawn in the plane
with at most one crossing: K3,k has genus at least (k−2)/4, but a single-crossing
graph has genus at most 1 (because genus is closed under minors).

There are several structural theorems concerning K3,k-minor-free graphs. Ac-
cording to Robertson and Seymour (personal communication—see [7]), K3,k-
minor-free graphs were the first step toward their core result of decomposing
graphs excluding a fixed minor into graphs almost-embeddable into bounded-
genus surfaces, because K3,k-minor-free graphs can have arbitrarily large genus.
Oporowski, Oxley, and Thomas [36] proved that any large 3-connected K3,k-

Algorithmic Graph Minor Theory 7

minor-free graph has a large wheel as a minor. Böhme, Kawarabayashi, Maharry,
and Mohar [3] proved that any large 7-connected graph has a K3,k minor, and
that the connectivity 7 is best possible. Eppstein [26, 27] proved that a subgraph
P has a linear bound on the number of times it can occur in K3,k-minor-free
graphs if and only if P is 3-connected.

Our explicit linear grid-minor bound is based on an approach of Diestel et
al. [24] combined with arguments in [4, 3] to find a K3,k minor. Using similar
techniques we also give explicit bounds on treewidth for a theorem decomposing
a single-crossing-minor-free graph into planar graphs and bounded-treewidth
graphs [41, 20], when the single-crossing graph is K3,4 or K−6 (K6 minus one
edge). Both proofs must avoid Graph Minor Theory to obtain the first explicit
bounds of their kind.

Contraction version of Wagner’s Conjecture. Wagner’s Conjecture, proved in [39],
is a powerful and very general tool for establishing the existence of polynomial-
time algorithms; see, e.g., [28]. Combining this theorem with the O(n3)-time
algorithm for testing whether a graph has a fixed minor H [38], every minor-
closed property has anO(n3)-time decision algorithm which tests for the finite set
of excluded minors. Although these results are existential, because the finite set
of excluded minors is not known for many minor-closed properties, polynomial-
time algorithms can often be constructed [14].

A natural goal is to try to generalize these results even further, to handle
all contraction-closed properties, which include the decision versions of many
important graph optimization problems such as dominating set and traveling
salesman, as well as combinatorial properties such as diameter. Unfortunately,
we show in Section 6 that the contraction version of Wagner’s Conjecture is not
true: there is a contraction-closed property that has no complete finite set of
excluded contractions. Our counterexample has an infinite set of excluded con-
tractions all of which are planar bounded-treewidth graphs. On the other hand,
we show that the contraction version of Wagner’s Conjecture holds for trees, tri-
angulated planar graphs, and 2-connected outerplanar graphs: any contraction-
closed property characterized by an infinite set of such graphs as contractions can
be characterized by a finite set of such graphs as contractions. Thus we nearly
characterize the set of graphs for which the contraction version of Wagner Con-
jecture’s is true. The proof for outerplanar graphs is the most complicated, and
uses Higman’s theorem on well-quasi-ordering [31].

The reader is referred to the full version of this paper (available from the first
author’s website) for the proofs. See also [16] for relevant definitions.

2 Treewidth-Grid Relation for Map Graphs

In this section we prove a polynomial relation between the treewidth of a map
graph and the size of the largest grid minor. The main idea is to relate the
treewidth of the map graph, the treewidth of the radial graph, the treewidth of
the dual graph, and the treewidth of the union graph.

8 E.D. Demaine, M. Hajiaghayi, and K. Kawarabayashi

Theorem 1. If the treewidth of the map graph M is r3, then it has an Ω(r) ×
Ω(r) grid as a minor.

This theorem cannot be improved from Ω(r3) to anything o(r2):

Proposition 1. There are map graphs whose treewidth is r2 − 1 and whose
largest grid minor is r × r.

Robertson, Seymour, and Thomas [43] prove a stronger lower bound of Θ(r2 lg r)
but only for the case of general graphs.

3 Treewidth-Grid Relation for Power Graphs

In this section we prove a polynomial relation between the treewidth of a power
graph and the size of the largest grid minor. The technique here is quite different,
analyzing how a radius-r neighborhood in the graph can be covered by radius-
(r/2) neighborhoods—a kind of “sphere packing” argument.

Theorem 2. Suppose that, if graph G has treewidth at least crα for constants
c, α > 0, then G has an r×r grid minor. For any even (respectively, odd) integer
k ≥ 1, if Gk has treewidth at least crα+4 (respectively, crα+6), then it has an
r × r grid minor.

We have the following immediate consequence of Theorems 1 and 2 and the
grid-minor theorem of [18] mentioned in the introduction:

Corollary 1. For any H-minor-free graph G, and for any even (respectively,
odd) integer k ≥ 1, if Gk has treewidth at least r5 (respectively, r7), then it has
an Ω(r)×Ω(r) grid minor. For any map graph G, and for any even (respectively,
odd) integer k ≥ 1, if Gk has treewidth at least r7 (respectively, r9), then it has
an Ω(r) ×Ω(r) grid minor.

4 Treewidth-Grid Relations: Algorithmic and
Combinatorial Applications

Our treewidth-grid relations have several useful consequences with respect to
fixed-parameter algorithms, minor-bidimensionality, and parameter-treewidth
bounds.

A fixed-parameter algorithm is an algorithm for computing a parameter P (G)
of a graph G whose running time is h(P (G))nO(1) for some function h. A typical
function h for many fixed-parameter algorithms is h(k) = 2O(k). A celebrated ex-
ample of a fixed-parameter-tractable problem is vertex cover, asking whether an
input graph has at most k vertices that are incident to all its edges, which admits
a solution as fast as O(kn+ 1.285k) [8]. For more results about fixed-parameter
tractability and intractability, see the book of Downey and Fellows [25].

Algorithmic Graph Minor Theory 9

A major recent approach for obtaining efficient fixed-parameter algorithms is
through “parameter-treewidth bounds”, a notion at the heart of bidimensional-
ity. A parameter-treewidth bound is an upper bound f(k) on the treewidth of a
graph with parameter value k. Typically, f(k) is polynomial in k. Parameter-
treewidth bounds have been established for many parameters; see, e.g., [1, 33,
29, 2, 6, 34, 30, 12, 20–22, 11, 15, 13]. Essentially all of these bounds can be ob-
tained from the general theory of bidimensional parameters (see, e.g., [16]). Thus
bidimensionality is the most powerful method so far for establishing param-
eter-treewidth bounds, encompassing all such previous results for H-minor-free
graphs. However, all of these results are limited to graphs that exclude a fixed
minor.

A parameter is minor-bidimensional if it is at least g(r) in the r×r grid graph
and if the parameter does not increase when taking minors. Examples of minor-
bidimensional parameters include the number of vertices and the size of various
structures, e.g., feedback vertex set, vertex cover, minimum maximal match-
ing, face cover, and a series of vertex-removal parameters. Tight parameter-
treewidth bounds have been established for all minor-bidimensional parameters
in H-minor-free graphs for any fixed graph H [18, 11, 13].

Our results provide polynomial parameter-treewidth bounds for all minor-
bidimensional parameters in map graphs and power graphs:

Theorem 3. For any minor-bidimensional parameter P which is at least g(r) in
the r× r grid, every map graph G has treewidth tw(G) = O(g−1(P (G)))3. More
generally suppose that, if graph G has treewidth at least crα for constants c, α >
0, then G has an r× r grid minor. Then, for any even (respectively, odd) integer
k ≥ 1, Gk has treewidth tw(G) = O(g−1(P (G)))α+4 (respectively, tw(G) =
O(g−1(P (G)))α+6). In particular, for H-minor-free graphs G, and for any even
(respectively, odd) integer k ≥ 1, Gk has treewidth tw(G) = O(g−1(P (G)))5

(respectively, tw(G) = O(g−1(P (G)))7).

This result naturally leads to a collection of fixed-parameter algorithms, using
commonly available algorithms for graphs of bounded treewidth:

Corollary 2. Consider a parameter P that can be computed on a graph G in
h(w)nO(1) time given a tree decomposition of G of width at most w. If P is
minor-bidimensional and at least g(r) in the r × r grid, then there is an al-
gorithm computing P on any map graph or power graph G with running time
[h(O(g−1(k))β)+2O(g−1(k))β

]nO(1), where β is the degree of O(g−1(P (G)) in the
polynomial treewidth bound from Theorem 3. In particular, if h(w) = 2O(w) and
g(k) = Ω(k2), then the running time is 2O(kβ/2)nO(1).

The proofs of these consequences follow directly from combining [11] with The-
orems 1 and 2 below.

In contrast, the best previous results for this general family of problems
in these graph families have running times [h(2O(g−1(k))5) + 22O(g−1(k))5

]nO(1)

[11, 14].

10 E.D. Demaine, M. Hajiaghayi, and K. Kawarabayashi

5 Improved Grid Minor Bounds for K3,k

Recall that every graph excluding a fixed minor H having treewidth at least cHr
has the r × r grid as a minor [18]. The main result of this section is an explicit
bound on cH when H = K3,k for any k:

Theorem 4. Suppose G is a graph with no K3,k-minor. If the treewidth is at
least 204kr, then G has an r × r grid minor.

In [43], it was shown that if the treewidth is at least f(r) ≥ 202r

, then G has an
r×r grid as a minor. Our second theorems use this result to show the following. A
separation of G is an ordered pair (A,B) of subgraphs of G such that A∪B = G
and there are no edges between A−B and B−A. Its order is |A∩B|. Suppose
G has a separation (A,B) of order k. Let A+ be the graph obtained from A by
adding edges joining every pair of vertices in V (A) ∩ V (B). Let B+ be obtained
from B similarly. We say that G is the k-sum of A+ and B+. If both A+ and
B+ are minors of G other than G itself, we say that G is the proper k-sum of
A+ and B+.

Using similar techniques as the theorem above, we prove the following two
structural results decomposing K3,4-minor-free and K−6 -minor-free graphs into
proper k-sums:

Theorem 5. Every K3,4-minor-free graph can be obtained via proper 0-, 1-, 2-,
and 3-sums starting from planar graphs and graphs of treewidth at most 20215

.

Theorem 6. Every K−6 -minor-free graph can be obtained via proper 0-, 1-, 2-,
and 3-sums starting from planar graphs and graphs of treewidth at most 20215

.

These theorems are explicit versions of the following decomposition result for
general single-crossing-minor-free graphs (including K3,4-minor-free and K−6 -
minor-free graphs):

Theorem 7. [41] For any fixed single-crossing graph H, there is a constant wH
such that every H-minor-free graph can be obtained via proper 0-, 1-, 2-, and
3-sums starting from planar graphs and graphs of treewidth at most wH .

This result heavily depends on Graph Minor Theory, so the treewidth bound wH
is huge—in fact, no explicit bound is known. Theorems 5 and 6 give reasonable
bounds for the two instances of H we consider. Our proof of Theorem 5 uses a
15×15 grid minor together with the result in [40]. The latter result says roughly
that, if there is a planar subgraph H in a non-planar graph G, then H has either
a non-planar “jump” or “cross” in G such that the resulting graph is a minor
of G. Our approach is to find a K3,4-minor in a 13 × 13 grid minor plus some
non-planar jump or cross. Similar techniques allow us to prove almost the same
result for K−6 -free graphs in Theorem 6.

Algorithmic Graph Minor Theory 11

6 Contraction Version of Wagner’s Conjecture

Motivated in particular by Kuratowski’s Theorem characterizing planar graphs
as graphs excluding K3,3 and K5 as minors, Wagner conjectured and Robertson
and Seymour proved the following three results:

Theorem 8 (Wagner’s Conjecture). [39] For any infinite sequence G0, G1,
G2, . . . of graphs, there is a pair (i, j) such that i < j and Gi is a minor of Gj.

Corollary 3. [39] Any minor-closed graph property1 is characterized by a finite
set of excluded minors.

Corollary 4. [39, 38] Every minor-closed graph property can be decided in poly-
nomial time.

The important question we consider is whether these theorems hold when the
notion of “minor” is replaced by “contraction”. The motivation for this varia-
tion is that many graph properties are closed under contractions but not under
minors (i.e., deletions). Examples include the decision problems associated with
dominating set, edge dominating set, connected dominating set, diameter, etc.

One positive result along these lines is about minor-closed properties:

Theorem 9. Any minor-closed graph property is characterized by a finite set of
excluded contractions.

For example, we obtain the following contraction version of Kuratowski’s Theo-
rem, using the construction of the previous theorem and observing that all other
induced supergraphs of K3,3 have K5 as a contraction.

Corollary 5. Planar graphs are characterized by a finite set of excluded con-
tractions.

Another positive result is that Wagner’s Conjecture extends to contractions in
the special case of trees. This result follows from the normal Wagner’s Conjecture
because a tree T1 is a minor of another tree T2 if and only if T1 is a contraction
of T2:

Proposition 2. For any infinite sequence G0, G1, G2, . . . of trees, there is a pair
(i, j) such that i < j and Gi is a contraction of Gj.

Unfortunately, the contraction version of Wagner’s Conjecture does not hold for
general graphs:

Theorem 10. There is an infinite sequence G0, G1, G2, . . . of graphs such that,
for every pair (i, j), i �= j, Gi is not a contraction of Gj.

Corollary 6. There is a contraction-closed graph property that cannot be char-
acterized by a finite set of excluded contractions.
1 A property is simply a set of graphs, representing the graphs having the property.

12 E.D. Demaine, M. Hajiaghayi, and K. Kawarabayashi

The graphs Gi = K2,i+2 that form the counterexample of Theorem 10 and
Corollary 6 are in some sense tight. Each Gi is a planar graph with faces of
degree 4. If all faces are smaller, the contraction version of Wagner’s Conjecture
holds. A planar graph is triangulated if some planar embedding (or equivalently,
every planar embedding) is triangulated, i.e., all faces have degree 3. Recall that
the triangulated planar graphs are the maximal planar graphs, i.e., planar graphs
in which no edges can be added while preserving planarity.

Theorem 11. For any infinite sequence G0, G1, G2, . . . of triangulated planar
graphs, there is a pair (i, j) such that i < j and Gi is a contraction of Gj.

Another sense in which the counterexample graphs Gi = K2,i+2 are tight is that
they are 2-connected and are 2-outerplanar, i.e., removing the (four) vertices
on the outside face leaves an outerplanar graph (with all vertices on the new
outside face). However, the contraction version of Wagner’s Conjecture holds for
2-connected (1-)outerplanar graphs:

Theorem 12. For any infinite sequence G0, G1, G2, . . . of 2-connected embedded
outerplanar graphs, there is a pair (i, j) such that i < j and Gi is a contraction
of Gj .

Corollary 7. Every contraction-closed graph property of trees, triangulated pla-
nar graphs, and/or 2-connected outerplanar graphs is characterized by a finite
set of excluded contractions.

We can use this result to prove the existence of a polynomial-time algorithm to
decide any fixed contraction-closed property for trees and 2-connected outerpla-
nar graphs, using a dynamic program that tests for a fixed graph contraction in
a bounded-treewidth graph.

7 Open Problems and Conjectures

One of the main open problems is to close the gap between the best current
upper and lower bounds relating treewidth and grid minors. For map graphs, it
would be interesting to determine whether our analysis is tight, in particular,
whether we can construct an example for which the O(r3) bound is tight. Such
a construction would be very interesting because it would improve the best
previous lower bound of Ω(r2 lg r) for general graphs [43]. We make the following
stronger claim about general graphs:

Conjecture 1. For some constant c > 0, every graph with treewidth at least cr3

has an r × r grid minor. Furthermore, this bound is tight: some graphs have
treewidth Ω(r3) and no r × r grid minor.

This conjecture is consistent with the belief of Robertson, Seymour, and Thomas
[43] that the treewidth of general graphs is polynomial in the size of the largest
grid minor.

Algorithmic Graph Minor Theory 13

We also conjecture that the contraction version of Wagner’s Conjecture holds
for k-outerplanar graphs for any fixed k. If this is true, it is particularly inter-
esting that the property holds for k-outerplanar graphs, which have bounded
treewidth, but does not work in general for bounded-treewidth graphs (as we
have shown in Theorem 10).

Acknowledgments

We thank László Lovász and Robin Thomas for helpful discussions.

References

1. J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed
parameter algorithms for dominating set and related problems on planar graphs.
Algorithmica, 33(4):461–493, 2002.

2. Jochen Alber, Henning Fernau, and Rolf Niedermeier. Parameterized complexity:
exponential speed-up for planar graph problems. Journal of Algorithms, 52(1):
26–56, 2004.

3. Thomas Böhme, Ken-ichi Kawarabayashi, John Maharry, and Bojan Mohar. Linear
connectivity forces large complete bipartite minors. Manuscript, October 2004.
http://www.dais.is.tohoku.ac.jp/∼k keniti/KakNew8.ps.

4. Thomas Böhme, John Maharry, and Bojan Mohar. Ka,k minors in graphs of
bounded tree-width. Journal of Combinatorial Theory, Series B, 86(1):133–147,
2002.

5. Vincent Bouchitté, Frédéric Mazoit, and Ioan Todinca. Treewidth of planar graphs:
connections with duality. In Proceedings of the Euroconference on Combinatorics,
Graph Theory and Applications (Barcelona, 2001), 2001.

6. Maw-Shang Chang, Ton Kloks, and Chuan-Min Lee. Maximum clique transversals.
In Proceedings of the 27th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2001), volume 2204 of Lecture Notes in Computer Science,
pages 32–43, 2001.

7. Guantao Chen, Laura Sheppardson, Xingxing Yu, and Wenan Zang. Circumference
of graphs with no K3,t-minors. Submitted manuscript. http://www.math.gatech.
edu/∼yu/Papers/k3t2-10.pdf.

8. Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: further observations and
further improvements. Journal of Algorithms, 41(2):280–301, 2001.

9. Zhi-Zhong Chen. Approximation algorithms for independent sets in map graphs.
Journal of Algorithms, 41(1):20–40, 2001.

10. Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Map
graphs. Journal of the ACM, 49(2):127–138, 2002.

11. Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M.
Thilikos. Bidimensional parameters and local treewidth. SIAM Journal on Discrete
Mathematics, 18(3):501–511, December 2004.

12. Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M.
Thilikos. Fixed-parameter algorithms for (k, r)-center in planar graphs and map
graphs. ACM Transactions on Algorithms, 1(1):33–47, 2005.

13. Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M.
Thilikos. Subexponential parameterized algorithms on graphs of bounded genus
and H-minor-free graphs. Journal of the ACM, 52(6):866–893, 2005.

14 E.D. Demaine, M. Hajiaghayi, and K. Kawarabayashi

14. Erik D. Demaine and MohammadTaghi Hajiaghayi. Quickly deciding minor-closed
parameters in general graphs. European Journal of Combinatorics. to appear.

15. Erik D. Demaine and MohammadTaghi Hajiaghayi. Equivalence of local treewidth
and linear local treewidth and its algorithmic applications. In Proceedings of the
15th ACM-SIAM Symposium on Discrete Algorithms (SODA’04), pages 833–842,
January 2004.

16. Erik D. Demaine and MohammadTaghi Hajiaghayi. Fast algorithms for hard graph
problems: Bidimensionality, minors, and local treewidth. In Proceedings of the
12th International Symposium on Graph Drawing, volume 3383 of Lecture Notes
in Computer Science, pages 517–533, Harlem, NY, 2004.

17. Erik D. Demaine and MohammadTaghi Hajiaghayi. Bidimensionality: New
connections between FPT algorithms and PTASs. In Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pages
590–601, Vancouver, January 2005.

18. Erik D. Demaine and MohammadTaghi Hajiaghayi. Graphs excluding a fixed minor
have grids as large as treewidth, with combinatorial and algorithmic applications
through bidimensionality. In Proceedings of the 16th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2005), pages 682–689, Vancouver, January
2005.

19. Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Al-
gorithmic graph minor theory: Decomposition, approximation, and coloring. In
Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, pages 637–646, Pittsburgh, PA, October 2005.

20. Erik D. Demaine, MohammadTaghi Hajiaghayi, Naomi Nishimura, Prabhakar
Ragde, and Dimitrios M. Thilikos. Approximation algorithms for classes of graphs
excluding single-crossing graphs as minors. Journal of Computer and System Sci-
ences, 69(2):166–195, September 2004.

21. Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos. A 1.5-
approximation for treewidth of graphs excluding a graph with one crossing. In
Proceedings of the 5th International Workshop on Approximation Algorithms for
Combinatorial Optimization (Italy, APPROX 2002), volume 2462 of Lecture Notes
in Computer Science, pages 67–80, 2002.

22. Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos. Ex-
ponential speedup of fixed-parameter algorithms for classes of graphs excluding
single-crossing graphs as minors. Algorithmica, 41(4):245–267, February 2005.

23. Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos. The
bidimensional theory of bounded-genus graphs. SIAM Journal on Discrete Math-
ematics, 20(2):357–371, 2006.

24. Reinhard Diestel, Tommy R. Jensen, Konstantin Yu. Gorbunov, and Carsten
Thomassen. Highly connected sets and the excluded grid theorem. Journal of
Combinatorial Theory, Series B, 75(1):61–73, 1999.

25. R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag,
1999.

26. David Eppstein. Connectivity, graph minors, and subgraph multiplicity. Journal
of Graph Theory, 17(3):409–416, 1993.

27. David Eppstein. Diameter and treewidth in minor-closed graph families. Algorith-
mica, 27(3-4):275–291, 2000.

28. Michael R. Fellows and Michael A. Langston. Nonconstructive tools for proving
polynomial-time decidability. Journal of the ACM, 35(3):727–739, 1988.

Algorithmic Graph Minor Theory 15

29. Fedor V. Fomin and Dimitiros M. Thilikos. Dominating sets in planar graphs:
Branch-width and exponential speed-up. In Proceedings of the 14th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 168–177, 2003.

30. Gregory Gutin, Ton Kloks, Chuan Min Lee, and Anders Yao. Kernels in planar
digraphs. Journal of Computer and System Sciences, 71(2):174–184, August 2005.

31. Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the
London Mathematical Society. Third Series, 2:326–336, 1952.

32. David S. Johnson. The NP-completeness column: an ongoing guide (column 19).
Journal of Algorithms, 8(3):438–448, 1987.

33. Iyad Kanj and Ljubomir Perković. Improved parameterized algorithms for planar
dominating set. In Proceedings of the 27th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS 2002), volume 2420 of Lecture
Notes in Computer Science, pages 399–410, 2002.

34. Ton Kloks, C. M. Lee, and Jim Liu. New algorithms for k-face cover, k-feedback
vertex set, and k-disjoint set on plane and planar graphs. In Proceedings of the
28th International Workshop on Graph-Theoretic Concepts in Computer Science,
volume 2573 of Lecture Notes in Computer Science, pages 282–295, 2002.

35. Denis Lapoire. Treewidth and duality in planar hypergraphs. http://www.labri.
fr/Perso/∼lapoire/papers/dual planar treewidth.ps.

36. Bogdan Oporowski, James Oxley, and Robin Thomas. Typical subgraphs of 3- and
4-connected graphs. J. Combin. Theory Ser. B, 57(2):239–257, 1993.

37. Neil Robertson and P. D. Seymour. Graph minors. V. Excluding a planar graph.
Journal of Combinatorial Theory, Series B, 41:92–114, 1986.

38. Neil Robertson and P. D. Seymour. Graph minors. XII. Distance on a surface.
Journal of Combinatorial Theory, Series B, 64(2):240–272, 1995.

39. Neil Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture.
Journal of Combinatorial Theory, Series B, 92(2):325–357, 2004.

40. Neil Robertson, P. D. Seymour, and Robin Thomas. Non-planar extensions of
planar graphs. Preprint, 2001. http://www.math.gatech.edu/∼thomas/ext.ps.

41. Neil Robertson and Paul Seymour. Excluding a graph with one crossing. In Graph
structure theory (Seattle, 1991), pages 669–675. Amer. Math. Soc., 1993.

42. Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to tree-
decomposition. Journal of Combinatorial Theory Series B, 52:153–190, 1991.

43. Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar
graph. Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994.

44. Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combina-
torica, 14(2):217–241, 1994.

45. Mikkel Thorup. Map graphs in polynomial time. In Proceedings of the 39th Annual
Symposium on Foundations of Computer Science, pages 396–407, 1998.

Branching and Treewidth Based Exact Algorithms�

Fedor V. Fomin1, Serge Gaspers1, and Saket Saurabh2

1 Department of Informatics, University of Bergen,
N-5020 Bergen, Norway

2 The Institute of Mathematical Sciences,
Chennai 600 113, India

Abstract. Branch & Reduce and dynamic programming on graphs of bounded
treewidth are among the most common and powerful techniques used in the de-
sign of exact (exponential time) algorithms for NP hard problems. In this paper
we discuss the eÆciency of simple algorithms based on combinations of these
techniques. We give several examples of possible combinations of branching and
programming which provide the fastest known algorithms for a number of NP
hard problems: M������ M������ M��	
��� and some variations, counting the
number of maximum weighted independent sets. We also briefly discuss how sim-
ilar techniques can be used to design parameterized algorithms. As an example,
we give fastest known algorithm solving k-W���
�� V����� C���� problem.

1 Introduction

It is a common belief that exponential time algorithms are unavoidable when we want
to find an exact solution of a NP hard problem. The last few years have seen an emerg-
ing interest in designing exponential time exact algorithms and we recommend recent
surveys [4, 14] for an introduction to the topic.

One of the major techniques for constructing fast exponential time algorithms is the
Branch & Reduce paradigm. Branch & Reduce algorithms (also called search tree algo-
rithms, Davis-Putnam-style exponential-time backtracking algorithms etc.) recursively
solve NP hard combinatorial problems using reduction rules and branching rules. Such
an algorithm is applied to a problem instance by recursively calling itself on smaller
instances of the problem.

Treewidth is one of the most basic parameters in graph algorithms. There is a well es-
tablished theory on the design of polynomial (or even linear) time algorithms for many
intractable problems when the input is restricted to graphs of bounded treewidth (see
[1] for a comprehensive survey). What is more important for us here is that many prob-
lems on graphs with n vertices and treewidth at most � can be solved in time O(c�nO(1)),
where c is some problem dependent constant. This observation combined with upper
bounds on treewidth was used to obtain fast exponential algorithms for NP hard prob-
lems on cubic, sparse and planar graphs [4, 5, 9]. For example, a maximum independent
set of a graph given with a tree decomposition of width at most � can be found in time

� Additional support by the Research Council of Norway.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 16–25, 2006.
c� Springer-Verlag Berlin Heidelberg 2006

{fomin, serge}@ii.uib.no

saket@imsc.res.in

Branching and Treewidth Based Exact Algorithms 17

O(2�n) (see e.g. [1]). So, a quite natural approach to solve the independent set problem
would be to branch on vertices of high degree and if a subproblem with all vertices of
small degrees is obtained, then use dynamic programming. Unfortunately, such a simple
approach still provides poor running time mainly because the best known upper bounds
on treewidth of graphs with small maximum degree are too large to be useful.

In this paper we show two di�erent approaches based on combinations of branching
and treewidth techniques. Both approaches are based on a careful balancing of these
two techniques. In the first approach the algorithm either performs fast branching, or
if there is an obstacle for fast branching, this obstacle is used for the construction of
a path decomposition of small width for the original graph. In the second approach
the branching occurs until the algorithm reaches a subproblem with a small number of
edges (and here the right choice of the size of the subproblems is crucial). We exemplify
our approaches on the following problems.

� M������ M������ M��	
��� (MMM): Given a graph G, find a maximal matching
of minimum size.

� #M������ W���
�� I�������� S�� (#MWIS): Given a weighted graph G, count
the number of independent sets in G of maximum weight.

For MMM, a number of exact algorithms can be found in the literature. Randerath
and Schiermeyer [13] gave an algorithm of time complexity O(1�44225m) 1 for MMM,
where m is the number of edges. Raman et al [12] improved the running time by giving
an algorithm of time complexity O(1�44225n) for MMM, where n is the number of
vertices. Here, using a combination of branching, dynamic programming over bounded
treewidth and enumeration of minimal vertex covers we give an O(1�4082n) algorithm
for MMM.

There was number of algorithms for #MWIS in the literature [2, 6, 7]. The current
fastest algorithm is by Fürer and Kasiviswanathan [6] and runs in O(1�2461n). All men-
tioned algorithms are complicated and use many smart tricks (like splitting of a graph
into its biconnected components and involved measure) and extensive case analysis.

In this paper we show how a combination of branching and dynamic programming
can be used to obtain a simple algorithm solving #MWIS in time O(1�2431n). This
is also the fastest known algorithm to find a maximum weighted independent set in a
weighted graph G.

Finally we apply our technique to Parameterized Complexity. Here, we apply our
technique to parameterized k-W���
�� V����� C����.

� k-W���
�� V����� C���� (k-WVC): Given a graph G � (V� E), a weight function
w : V :� R

� such that for every vertex v, w(v) � 1 and k � R
�, find a vertex cover

of weight at most k. The weight of a vertex cover C is w(C) �
�

v�C w(v).

For k-W���
�� V����� C����, also known as R��� V����� C����, Niedermeier and
Rossmanith [11] gave two algorithms, one with running time O(1�3954k

�kn) and poly-
nomial space and the other one using time O(1�3788k

� kn) and space O(1�3630k).

1 We round the base of the exponent in all our algorithms which allows us to ignore polynomial
terms and write O(cnnO(1) as O(cn).

18 F.V. Fomin, S. Gaspers, and S. Saurabh

Their dedicated paper on k-W���
�� V����� C���� is based on branching, kerneliza-
tion and the idea of memorization. Their analysis involves extensive case distinctions
when the maximum degree of the reduced graph becomes 3. Here, we give a very sim-
ple algorithm running in time O(1�3570kn) for this problem, improving the previous
O(1�3788k

� kn) time algorithm of [11].
While the basic idea of our algorithms looks quite natural, the approach is generic

and the right application of our approach improves many known results.

2 Preliminaries

In this paper we consider simple undirected graphs. Let G � (V� E) be a (weighted)
graph and let n denote the number of vertices and m the number of edges of G. We
denote by �(G) the maximum vertex degree in G. For a subset V � � V , G[V �] is the
graph induced by V �, and G � V �

� G[V � V �]. For a vertex v � V we denote the set of
its neighbors by N(v) and its closed neighborhood by N[v] � N(v) � 	v
. Similarly, for
a subset D � V , we define N[D] � �v�DN[v]. An independent set in G is a subset of
pair-wise non-adjacent vertices. A matching is a subset of edges having no endpoints in
common. A subset of vertices S � V is a vertex cover in G if for every edge e of G at
least one endpoint of e is in S .

Major tools of our paper are tree and path decompositions of graphs. We refer to [1]
for definitions of tree decomposition, path decomposition, treewidth and pathwidth of
a graph. We denote by tw(G) and pw(G), treewidth and pathwidth of the graph G.

We need the following bounds on the pathwidth (treewidth) of sparse graphs. The
proof of Lemma 1 is simple and based on the result of [5] and by induction on the
number of vertices in a graph.

Lemma 1. For any � � 0, there exists an integer n� such that for every graph G with
n � n� vertices and m � �n edges, 1�5 � � � 2, the treewidth of G is bounded by
(m � n)�3 � �n.

3 Minimum Maximal Matching

Given a graph G � (V� E), any set of pairwise disjoint edges is called a matching of
G. The problem of finding a maximum matching is well studied in algorithms and
combinatorial optimization. One can find a matching of maximum size in polynomial
time but there are many versions of matching which are NP hard. Here, we give an exact
algorithm for one such version, that is M������ M������ M��	
��� (MMM).

We need the following proposition which is a combination of two classical results
due to Moon and Moser [10] and Johnson, Yannakakis and Papadimitriou in [8].

Proposition 1 ([8, 10]). Every graph on n vertices contains at most 3n�3
� O(1�4423n)

maximal (with respect to inclusion) independent sets. Moreover, all these maximal in-
dependent sets can be enumerated with polynomial delay.

Since for every S � V , S is a vertex cover of G if and only if V � S is an independent
set of G, Proposition 1 can be used for enumerating minimal vertex covers as well.

Our algorithm also uses the following characterization of a MMM.

Branching and Treewidth Based Exact Algorithms 19

Algorithm MMM(G)
Data: A graph G.
Result: A minimum maximal matching of G or a path decomposition of G.

return findMMM(G,G, ∅)

Function findMMM(G,H,C)
Input: A graph G, an induced subgraph H of G and a set of vertices C ⊆ V(G) − V(H).
Output: A minimum maximal matching of G subject to H and C or a path decomposition of

G.
if (Δ(H) ≥ 4) or (Δ(H) = 3 and |C| > 0.17385|V(G)|) then

choose a vertex v ∈ V(H) of maximum degree
M1 ← findMMM(G,H − N[v],C ∪ N(v)) (R1)
M2 ← findMMM(G,H − {v},C ∪ {v}) (R2)
return the set of minimum size among {M1,M2}

else if (Δ(H) = 3 and |C| ≤ 0.17385|V(G)|) or (Δ(H) ≤ 2 and |C| ≤ 0.31154|V(G)|) then
output a path decomposition of G using Lemma 3
The Algorithm stops.

else
X ← E(G)
foreach minimal vertex cover Q of H do

M′ ← a maximum matching of G[C ∪ Q]
Let V[M′] be the set of end points of M′

M′′ ← a maximum matching of G[C ∪ V(H) \ V[M′]]
if M′ ∪ M′′ is a maximal matching of G and |X| > |M′ ∪ M′′ | then

X ← M′ ∪ M′′

return X

Fig. 1. Algorithm for Minimum Maximal Matching

Proposition 2 ([12]). Let G � (V� E) be a graph and M be a minimum maximal match-
ing of G. Let

V[M] � 	v � v � Vand v is an end point of some edge of M

be a subset of all endpoints of M. Let S � V[M] be a vertex cover of G . Let M� be
a maximum matching in G[S] and M�� be a maximum matching in G � V[M�], where
V[M�] is the set of the endpoints of edges of M�. Then X � M� � M�� is a minimum
maximal matching of G.

Note that in Proposition 2, S does not need to be a minimal vertex cover.
The proof of the next lemma is based on standard dynamic programming on graphs

of bounded treewidth, and we omit it.

Lemma 2. There exists an algorithm to compute a minimum maximal matching of a
graph G on n vertices in time O(3pn) when a path decomposition of width at most p is
given.

The algorithm of Figure 1 outputs either a path decomposition of the input graph G of
reasonable width or a minimum maximal matching of G. The parameter G of Function

20 F.V. Fomin, S. Gaspers, and S. Saurabh

findMMM corresponds always to the original input graph, H is a subgraph of G and C
is a vertex cover of G � V(H). The algorithm consists of three parts.

Branch. The algorithm branches on a vertex v of maximum degree and returns the
matching of minimum size found in the two subproblems created according to the
following rules:
(R1) Vertices N(v) are added to the vertex cover C and N[v] is deleted from H;
(R2) Vertex v is added to the vertex cover C and v is deleted from H.

Compute path decomposition. The algorithm outputs a path decomposition using
Lemma 3. Then the algorithm stops without backtracking. A minimum maximal
matching can then be found using the pathwidth algorithm of Lemma 2.

Enumerate minimal vertex covers. The algorithm enumerates all minimal vertex
covers of H. For every minimal vertex cover Q of H, S � C � Q is a vertex cover
of G and the characterization of Proposition 2 is used to find a minimum maximal
matching of G.

The conditions under which these di�erent parts are executed have been carefully cho-
sen to optimize the overall running time of the algorithm, including the pathwidth al-
gorithm of Lemma 2. Note that a path decomposition is computed at most once in an
execution of the algorithm as findMMM stops right after outputting the path decompo-
sition. Also note that the minimal vertex covers of H can only be enumerated in a leaf
of the search tree corresponding to the recursive calls of the algorithm, as no recursive
call is made in this part.

We define a branch node of the search tree of the algorithm to be a recursive call of
the algorithm. Such a branch node is uniquely identified by the triple (G� H�C), that is
the parameters of findMMM.

Theorem 1. A minimum maximal matching of a graph on n vertices can be found in
time O(1�4082n).

Proof. The correctness of the algorithm is clear from the above discussions. Here we
give the running time for the algorithm.

Time Analysis. In the rest of the proof we upper bound the running time of this algo-
rithm. It is essential to provide a good bound on the width of the produced path decom-
position of G. The following lemma gives us the desired bounds on the pathwidth. Its
proof is easy and is based on the bound on the pathwidth given in Lemma 1.

Lemma 3. Let G � (V� E) be the input graph and (G� H�C) be a branch node of the
search tree of our algorithm then the pathwidth of the graph is bounded by pw(H)� �C�.
In particular,
(a) If �(H) � 3, then pw(G) � (1

6 � �)�V(H)� � �C� for any � � 0.
(b) If �(H) � 2, then pw(G) � �C��1. A path decomposition of the corresponding width
can be found in polynomial time.

Set 	 � 0�17385 and � � 0�31154. First, consider the conditions under which a path
decomposition may be computed. By combining the pathwidth bounds of Lemma 3
and the running time of the algorithm of Lemma 2, we obtain that MMM can be solved

Branching and Treewidth Based Exact Algorithms 21

in time O(max(3(1�5�)�6� 3�)n) when the path decomposition part of the algorithm is
executed.

Assume now that the path decomposition part is not executed. Then, the algorithm
continues to branch when the maximum degree �(H) of the graph H is 3. And so,
�C� � 	n when �(H) first becomes 3. At this point, the set C has been obtained by
branching on vertices of degree at least 4 and we investigate the number of subproblems
obtained so far. Let L be the the set of nodes in the search tree of the algorithm that
correspond to subproblems where �(H) first becomes 3. Note that we can express �L�
by a two parameter function A(n� k) where n � �V(G)� and k � 	n. This function can
be upper bounded by a two parameter recurrence relation corresponding to the unique
branching rule of the algorithm:

A(n� k) � A(n � 1� k � 1) � A(n � 5� k � 4).
When the algorithm branches on a vertex v of degree at least 4 the function is called on
two subproblems. If v is not added to C ((R1)), then �N[v]� � 5 vertices are removed
from H and �C� increases by �N(v)� � 4. If v is added to C ((R2)), then both parameters
decrease by 1.

Let r be the number of times the algorithm branches in the case (R1). Observe that
0 � r � k�4. Let Lr be a subset of L such that the algorithm has branched exactly r
times according to (R1) in the unique paths from the root to the nodes in Lr . Thus, �L�
is bounded by

�k�4
i�0 �Li�.

To bound the number of nodes in each Li, let l � Lr and Pl be the unique path from
l to the root in the search tree. Observe that on this path the algorithm has branched
k � 4i times according to (R2) and i times according to (R1). So, the length of the path
Pl is k � 3i. By counting the number of sequences of length k � 3i where the algorithm
has branched exactly i times according to (R1), we get �Li� �

�
k�3i

i

�
. Thus if the path

decomposition is not computed, the time complexity T (n) of the algorithm is

T (n) � O

��������
k�4�
i�0

�
k � 3i

i

	
T �(n � 5i � (k � 4i))

������� � O

��������
k�4�
i�0

�
k � 3i

i

	
T �(n � i � k)

������� (1)

where T �(n�) is the time complexity to solve a problem on a branch node (G� H�C) in
L with n�

� �VH �. (Let us remind that in this case the algorithm branches on vertices
of degree 3 and enumerates minimal vertex covers of H.) Let p � (� �)n. To bound
T �(n�) we use similar arguments as before and use Proposition 1 to bound the running
time of the enumerative step of the algorithm. Thus we obtain:

T �(n�) � O

��������
p�3�
i�0

�
p � 2i

i

	
3

n��4i�(p�3i)
3

������� � O

��������3(n�
�p)�3

p�3�
i�0

�
p � 2i

i

	
3�i�3

������� � (2)

We bound T (n�) by O(3(n�
�p)�3dp) for some constant d, 1
 d
 2 (the value of d is

determined later). Substituting this in Equation (1), we get:

T (n) � O

��������
k�4�
i�0

�
k � 3i

i

	
3

n�i�k�p
3 dp

������� � O

��������3(1��)n�3dp
k�4�
i�0

�
k � 3i

i

	
3�i�3

������� �

Further suppose that
�k�4

i�0

�
k�3i

i

�
3�i�3 sums to O(ck) for a constant c, 1
 c
 2, then

the overall time complexity of the algorithm is bounded by: O((3(1��)�3d���c�)n) �

22 F.V. Fomin, S. Gaspers, and S. Saurabh

Claim. c
 1�3091 and d
 1�3697.
Proof. The sum over binomial coeÆcients

�k�4
i�0

�
k�3i

i

�
3�i�3 is bounded by (k�4)B where

B is the maximum term in this sum. Let us assume that B �

�
k�3i

i

�
3�i�3 for some i �

	1� 2� � � � � k�4
. To compute the constant c, let r :� c � 1. We obtain B �

�
k�3i

i

�
3�i�3 �

(1�r)k�3i

ri 3�i�3. Here we use the well known fact that for any x � 0 and 0 � k � n,�
n
k

�
�

(1�x)n

xk . By choosing r to be the minimum positive root of (1�r)�3

r 3�1�3 � 1� we

arrive at B
 (1 � r)k for 0�3090
 r
 0�3091. Thus c
 1�3091. The value of d is
computed in a similar way. �

Finally, we get the following running time for Algorithm MMM by substituting the
values for 	, �, c and d:

O
�
max

�
3(1��)�3d���c�� 3(1�5�)�6� 3�

�n�
� O(1�4082n) � �

4 Counting Maximum Weighted Independent Sets

In this section we give an algorithm counting the number of maximum weighted inde-
pendent sets in a graph, that is an algorithm for the #MWIS problem .

Most of the recent advances in counting maximum weighted independent sets are
based on a reduction to counting satisfiable assignments of a 2-SAT formula. All these
algorithms are based on the Branch & Reduce paradigm and involve detailed case dis-
tinctions. Here, we present a simple algorithm that combines Branch & Reduce and
dynamic programming on graphs of bounded treewidth. It is well known (see for exam-
ple [1]) that a maximum independent set can be found in time O(2�n) in a graph if a tree
decomposition of width at most � is given. This algorithm can be slightly modified to
find the total number of maximum weighted independent sets in a graph with treewidth
� without increasing the running time of the algorithm.

Proposition 3. Given a graph G with n vertices and a tree decomposition of G of width
at most �, all maximum weighted independent sets of G can be counted in time O(2�n).

Our algorithm #MWIS, to count all maximum weighted independent sets of a graph,
is depicted in Figure 2. The algorithm branches on a vertex v chosen by the following
function which returns the vertex selected by the first applicable rule.
Pivot(G)

1. If �v � V such that d(v) � 7, then return v.
2. If �v � V such that G � v is disconnected, then return v.
3. If �u� v � V such that G � 	u� v
 is disconnected and d(u) � d(v), then return v.
4. Return a vertex v of maximum degree such that

�
u�N(v) d(u) is maximized.

When �E� � 1�5185n the treewidth algorithm counts all maximum weighted inde-
pendent sets. The procedure #MWISTW is a dynamic programming algorithm solving
#MWIS of running time given in Proposition 3. When the algorithm branches on a
vertex v, two subproblems are created according to the following rules:

Branching and Treewidth Based Exact Algorithms 23

Algorithm #MWIS (G = (V, E),w)
Input: A graph G = (V, E) and a weight function w : V → R

+.
Output: A couple (size, nb) where size is the maximum weight of an independent set of G

and nb the number of different independent sets of this weight.
if G is disconnected with connected components G1, · · · ,Gk then

s′ ←
∑k

i=1 si, n′ ←
∏k

i=1 ni where (si, ni)← #MWIS(Gi,w)
return (s′, n′)

if |E| ≤ 1.5185|V | then
return #MWISTW(G)

else
v← Pivot(G)
(s1, n1)← #MWIS(G − N[v],w)
(s2, n2)← #MWIS(G − {v},w)
s1 ← s1 + w(v)
if s1 > s2 then

return (s1, n1)

else if s1 = s2 then
return (s1, n1 + n2)

else
return (s2, n2)

Fig. 2. An Algorithm to count all Maximum Weighted Independent Sets of a Graph

(R1) add v to the partially constructed independent set and delete N[v] from the graph.
(R2) delete v from the graph.

The correctness of the algorithm is clear from the presentation. Now we discuss
its time complexity in detail which is based on a careful counting of subproblems of
di�erent size. We also need the following lemma for the analysis of the time complexity.

Lemma 4 ([3, 7]). Let G � (V� E) be a graph with n vertices, m edges, average degree
a � 0 and v be a vertex chosen by Rule 4 of the function Pivot. Then the average degrees
of G � v and G � N[v] are less than a.

Theorem 2. Let G � (V� E) be a graph on n vertices.Algorithm #MWIS computes the
number of M������ W���
�� I�������� S��� of G in time O(1�2431n).

Proof. (1) If G has at most 1�5n edges, its treewidth is at most (1�6 � �)n by Lemma 1.
Since only the treewidth algorithm is executed in this case, the running time is
O(2(1�6��)n) � O(1�1225n).

(2) Assume that G has at most 2n edges. The worst case of the algorithm is when it
branches on a vertex chosen by Rule 4 of the function Pivot. In this case the algorithm
branches on vertices of degree at least 4 and executes the treewidth algorithm when
m � 1�5185n. Set � � 1�5185. Let xn be the number of times the algorithm branches.
The constant x is at least 0 and satisfies the inequality 2n � 4xn � �(n � xn) which
implies that x � (2 � �)�(4 � �).

Let s be the number of times the algorithm branches according to (R1). Then, the
algorithm branches xn � s times according to (R2). When the treewidth algorithm is

24 F.V. Fomin, S. Gaspers, and S. Saurabh

executed, the size of the remaining graph is at most n � 5s� (xn� s) � n � xn � 4s. By
Lemma 1, tw(G) is bounded by n(� � 1)�3. Let Ttw(n) � 2n(��1)�3 be the bound on the
running time of the treewidth algorithm when executed on a graph with n vertices and
�n edges. The running time of the algorithm is then bounded by

T1(n) �
xn�

s�0

�
xn
s

	
Ttw(n � xn � 4s) � 2

��1
3 (1�x)n(1 � 2�4 ��1

3)xn �

T1(n) is maximum when x � (2� �)�(4� �). By replacing x by this value, we have that
T1(n) � 1�20935n.

With an analysis similar to the one for the case when the graph has at most 2n edges,
we can show that the Algorithm #MWIS takes O(1�23724n) time or O(1�2431n) time
when the graph has at most 2�5n edges or 3n edges respectively.

(3) Now, if G has more than 3n edges then it contains vertices of degree at least 7
and hence the running time of the algorithm is smaller because the recurrence T (n) �
T (n � 8) � T (n � 1) solves to O(1�2321n). �

5 Application to Parameterized Algorithms

Here we apply our technique to design a fixed parameter tractable algorithm for the
parameterized version of W���
�� V����� C����.

We need kernelization for our algorithm for weighted vertex cover. The main idea
of kernelization is to replace a given instance (I� k) by a simpler instance (I�� k�) using
some data reduction rules in polynomial time such that (I� k) is a yes-instance if and
only if (I�� k�) is a yes-instance and �I�� is bounded by a function of k alone. We state the
kernelization proposition of [11] that we use in our algorithm.

Proposition 4 ([11]). Let G � (V� E) be a graph, w : V :� R
� such that for every

vertex v, w(v) � 1 and k � R
�. There is an algorithm that in time O(kn � k3) either

concludes that G has no vertex cover of weight � k, or outputs a kernel of size � 2k.

Our algorithm is very similar to the one presented for counting all maximum indepen-
dent sets. First we apply Proposition 4 to obtain a kernel of size at most 2k. Then, as
long as �E� � 3�2k, the algorithm branches on a vertex v chosen by the function Pivot as
in the algorithm presented in Figure 2. If �E� � 3�2k, then by Lemma 1, a tree decom-
position of small width (tw) can be found in polynomial time and we can use a O(2twn)
dynamic programming algorithm to solve k-W���
�� V����� C����.

Theorem 3. k-WVC on a graph on n vertices can be solved in time O(1�3570kn).

6 Conclusion

Branching and dynamic programming on graphs of bounded treewidth are very pow-
erful techniques to design eÆcient exact algorithms. In this paper, we combined these
two techniques in di�erent ways and obtained improved exact algorithms for #MWIS
and MMM. Other problems for which we obtain faster algorithms using this technique
include variants of MMM that are M������ E�� D��������� S�� and M����� D�����-
���� S��. We also applied the technique to design fixed parameter tractable algorithms

Branching and Treewidth Based Exact Algorithms 25

and obtained the best known algorithm for k-WVC which also shows the versatility
of our technique. The most important aspects of this technique are that the resulting
algorithms are very elegant and simple while at the same time the analysis of these
algorithms is highly non-trivial. Our improvement in the runtime for #MWIS directly
gives improved algorithms for #1-IN-k-SAT, #E��	� H������ S��, #E��	� C���� and
#W���
�� S�� C����. The definitions and reductions of these problems to #MWIS can
be found in [2]. Other parameterized problems for which we obtain the fastest known al-
gorithms using the techniques developed in this paper are the weighted and unweighted
version of parameterized minimum maximal matching and minimum edge dominating
set, which will appear in the longer version of this paper.

It would be interesting to find some other applications of the techniques presented
here in the design of exact exponential time algorithms and fixed parameter tractable
algorithms.

References

1. H. L. B�������, A partial k-arboretum of graphs with bounded treewidth, Theoretical
Computer Science, 209 (1998), pp. 1–45.

2. V. D�
���̈� �� P. J������, An algorithm for counting maximum weighted independent
sets and its applications, in 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2002), ACM and SIAM, 2002, pp. 292–298.

3. V. D�
���̈�, P. J������, �� M. W�
�����̈�, Counting models for 2SAT and 3SAT formulae,
Theoretical Computer Science, 332 (2005), pp. 265–291.

4. F. V. F����, F. G������, �� D. K����	
, Some new techniques in design and analysis of
exact (exponential) algorithms, Bulletin of the EATCS, 87 (2005), pp. 47–77.

5. F. V. F���� �� K. H���, Pathwidth of cubic graphs and exact algorithms, Information Pro-
cessing Letters, 97 (2006), pp. 191–196.

6. M. F�̈��� �� S. P. K�����������
��, Algorithms for counting 2-SAT solutions and colorings
with applications, Electronic Colloquium on Computational Complexity (ECCC), vol. 33,
2005.

7. M. K. G������, D. B�����, �� T. S���	�� A Low-Exponential Algorithm for Counting
Vertex Covers, Graph Theory, Combinatorics, Algorithms, and Applications, vol. 1, (1995),
pp. 431–444.

8. D. S. J�
����, M. Y���������, �� C. H. P�����������, On generating all maximal inde-
pendent sets, Information Processing Letters, 27 (1988), pp. 119–123.

9. J. K����, D. M�̈���, S. R�	
���, �� P. R��������
, Algorithms based in treewidth of sparse
graphs, in Proceedings of the 31st International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2005), vol. 3787 of LNCS, Springer, (2005), pp. 385–396.

10. J. W. M��� �� L. M����, On cliques in graphs, Israel Journal of Mathematics, 3 (1965),
pp. 23–28.

11. R. N��������� �� P. R��������
, On eÆcient fixed-parameter algorithms for weighted
vertex cover, Journal of Algorithms, 47 (2003), pp. 63–77.

12. V. R����, S. S�����
, �� S. S����, EÆcient exact algorithms through enumerating maxi-
mal independent sets and other techniques, Theory of Computing Systems, to appear.

13. B. R������
 �� I. S	
��������, Exact algorithms for MINIMUM DOMINATING SET,
Technical Report zaik-469, Zentrum für Angewandte Informatik Köln, Germany, 2004.

14. G. W��������, Exact algorithms for NP-hard problems: A survey, in Combinatorial Opti-
mization - Eureka, you shrink!, vol. 2570 of LNCS, Springer, (2003), pp. 185–207.

Deterministic Splitter Finding in a Stream

with Constant Storage and Guarantees

Tobias Lenz

Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany
tlenz@mi.fu-berlin.de

Abstract. In this paper the well-known problem of finding the median
of an ordered set is studied under a very restrictive streaming model
with sequential read-only access to the data. Only a constant number
of reference objects from the stream can be stored for comparison with
subsequent stream elements. A first non-trivial bound of Ω (

√
n) distance

to the extrema of the set is presented for a single pass over streams which
do not reveal their total size n. For cases with known size, an algorithm
is given which guarantees a distance of Ω

�
n1−ε

�
to the extrema, which

is an ε-approximation for the proven best bound possible.

1 Introduction

We study the problem of finding a good splitter—approximating the median—
under very rigorous restrictions. The presented algorithms are deterministic,
providing a guarantee on the quality of the output. Furthermore they should
perform the task at hand in a single pass over the data storing only a constant
number of elements.

Many applications require a good splitter. The crux of every divide-and-
conquer algorithm is finding an element which partitions a data set of size n
into two parts of roughly equal size. A simple example is quicksort which per-
forms best splitting in each recursion at the median which is the element of rank
�n

2 �, where the rank of an element is its position in the sorted order of the set.
Sensor networks typically have very small and cheap components, so the

amount of available memory on a single sensor is tiny. In a network with sev-
eral sensors, e.g. measuring the temperature every few seconds, the median and
other quantiles are significant quantities. No sensor has enough memory to store
the whole data, so the information is broadcasted and has to be processed in
real-time in the order of reception. This is modeled exactly by our approach with
constant memory and no assumptions about the order of the stream elements.

Another class of application are databases. Fast estimation of quantiles is
important for planning and executing queries, i.e. estimating the size of inter-
mediate results or partitioning the data for parallel query processing. Obviously
the estimation should be performed very fast and must happen under memory
restrictions due to the size of todays databases compared to the size of main
memory in today’s computers. Modern servers process thousands of queries per

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 26–35, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Deterministic Splitter Finding in a Stream 27

second, so obviously each single process has only limited memory available. Con-
stant memory turns out to be too little, compared to other algorithms allowing
to store logarithmically many observations.

Considering the distribution of the data as unknown, a numerical approxi-
mation of the median is not appropriate. The value of such an approximation
might be very close to the real median and simultaneously their positions in the
sorted data might be arbitrarily far apart. Depending on the actual problem,
a numerical approximation may be dissatisfying because in general no element
exists with this value.

Blum et.al. [1] showed that finding the median is possible in linear time which
is optimal. Their algorithm and all known modifications require random access
to the data and either modify the original order of the elements or need Ω(n)
addition memory. The past research for exact bounds on the number of compar-
isons needed and related information was collated by Paterson [9].

2 Counting Passes and the Streaming Model

Todays modern communication revived several models originated from storage
on tape. Data which is streamed through a network comes in a strict sequential
order forbidding random access and modification. Usually even if random ac-
cess is possible, sequential access would be multiple times faster due to caching
mechanisms. This justifies the idea of counting and minimizing the number of
sequential passes over the data or even restricting this number to one.

Furthermore a data stream might not give away its total size beforehand. It
might even be unknown throughout the network. Typically the total data will
not fit into memory, e.g. on a sensor node, and might end without premonition.
In some cases, a continuing stream has no designated end at all. An approxima-
tion algorithm for streams of unknown length must therefore maintain a good
estimate at all times and cannot use the data size n in its decisions. We discuss
streams both with known and unknown sizes in this paper.

The known optimal linear time median algorithms violate the above conditions
and are therefore not applicable in this model.

3 Previous Work

Good splitters have high probability. A simple strategy for known n would be to
pick a random element with probability 1

n . This will split the data in a ratio not
worse than 1 : 3 with a probability of 50%. Using the median over a constant
sized random sample yields even better results. Vitter overcomes the problem of
not knowing n with a special sampling technique called reservoir sampling [10].

With only five reference values Jain and Chlamtac [5] obtain good results but
they approximate the value of the median by a special formula. This depends on
the distribution and does not yield any guarantees concerning the rank of the
returned element.

28 T. Lenz

Granting more than constant memory allows a (1+ε)-approximation for find-
ing the element with rank k. Manku et.al. [6] presented a single pass algorithm
with O

(1
ε log2 εn

)
memory if n is known. This was improved to O

(1
ε log εn

)

memory, not requiring the knowledge of n by Greenwald and Khanna [2]. In the
former paper, the authors also showed a (1+ε)-approximation technique with
probability δ using O

(
1
ε log2

(
1
ε log 1

1−δ

))
memory.

Munro and Paterson [7] studied the problem under several memory restric-
tions but for constant memory they only gave a multi-pass algorithm for the
exact median without intermediate approximation results after each pass. The
authors themselves call it “intolerable in practice”. Later Munro and Raman [8]
solved the problem of finding the median with minimal data movements in
O

(
n1+ε

)
steps with constant extra space but allowed random access to the read-

only data.
Very recently Guha and McGregor [3] exploited the fact that the distribution

of the elements in a stream is not completely adversarial in expectation, although
the actual distribution might be unknown. They obtain an element with rank
n
2 ± O

(
n

1
2+ε

)
using polylogarithmic space. Guha et al. [4] analyzed the entropy

of streams even further and compared the random order model with several
oracle models.

These results are with high probability but not guaranteed or require so-
phisticated structures and more than constant memory. This paper tackles the
problem of finding a simple deterministic algorithm with constant memory which
splits a stream with more than a constant number of elements in both parts.

4 The Model

The stream must contain comparable objects with a total order defined on them.
For a weak or partial order, the median is not uniquely defined, but with a
sensible definition or by embedding the data in a strict total order, the extension
of our algorithms should be straightforward. Two cases are analyzed, one where
the total number n of elements in the stream is known in advance and in the
other case it is not known and cannot be guessed or computed from the stream.

The algorithm must not store more than a fixed number of references to
objects in the stream, later called markers. These might be used in further
comparisons. All elements from the stream which are not marked or the current
(“top”) element cannot be accessed. No arithmetic operations with the markers
are allowed (like C-style pointer arithmetic) and the return value of the algorithm
must be a marker pointing to an element.

Munro and Paterson [7] observed that there is no hope for more than a con-
stant distance to the boundary in this setting with a purely comparison-based
approach forbidding other operations. Therefore the number of markers is fixed
and additionally a constant number of “statistics” is allowed, for example count-
ing the number of elements smaller/larger than a marked element.

Deterministic Splitter Finding in a Stream 29

The measure for the quality of an algorithm is the minimum distance to the
boundary (left boundary is 1, right boundary is the number of elements) of the
index of the returned element in the sorted data d(x). The median m has optimal
distance d(m) = min

(
�n

2 �, �n
2 �

)
= �n

2 � while a trivial algorithm with storage size
s will return an element x of rank r with d(x) = min(r, n − r) ≤ s.

5 Obtaining Upper Bounds by Playing Games

We start with the following theorem, destroying all hope for very good approx-
imations.

Theorem 1. Every algorithm which finds an element in a stream of size n with
distance to the median at most n

f(n) has to store at least f(n)
4 stream elements.

Proof: Assume an algorithm wants to achieve a distance to the median of at most
n

f(n) . Stop after the first �n
2 � elements were read from the stream. We call the set

containing these elements M . None of the elements in M can be ruled out being
the median—just let the values of the following �n

2 � elements be smaller/larger
properly. Covering the sorted order of M completely with intervals of the desired
distance requires storing at least every 2 n

f(n) st element in the sorted order. This

results in a total of �n
2 � f(n)

2n ≥ n·f(n)
4n = f(n)

4 stored elements. �

This immediately implies the following result for constant storage with f(n) ∈
ω(1).

Corollary 1. An algorithm which stores only a constant number of elements
from a stream cannot achieve an approximation of the median’s position in the
sorted data which is sub-linear in the total number of elements n.

For a rather tiny memory of one or two entries, the upper bound on d over all
possible algorithms is modeled as an adversary game as follows. The adversary is
the stream which selects the next element. The algorithm knows every element
up to the current and might set a marker to the new element giving up an element
currently marked. This game continues ad infinitum to simulate the asymptotic
result on n. This might be considered as the online version of the problem.

Figure 1 shows that a single marker is arbitrarily bad: The adversary adds
new minima. The algorithm might decide to keep its marker which remains close
to the boundary (upper right). If the marker is moved to the new element, it will
be stuck at the boundary by having the adversary switch the insertion position
to the other end (lower right).

Corollary 2. A single marker will always end at the boundary in the worst case.

In this setting two markers are already sufficient to achieve a distance of �n
3 �

by always keeping the median between the two markers and their distance as
small as possible. This strength is due to the unrealistic assumption that the

30 T. Lenz

add
here

add
here

add
here

Fig. 1. The horizontal line represents the sorted order of the stream elements seen so
far, the vertical line is the marker

algorithms always know the exact position of a new element in the sorted data.
In reality nothing is known about how a new element partitions an existing
interval between two markers, so we change the rules of the game slightly for
the two marker case.

Assume that the adversary only specifies the interval between two markers or
a marker and the boundary where the next element will lie in. The algorithm
must select a marker which is set to that position or ignore the new element.
Afterwards the adversary reveals the real position. A bound for this scheme with
two markers m1, m2 is depicted in figure 2.

The adversary adds an element in the interval containing the median (top left).
Not moving the marker does not increase d (top right) leading to an arbitrarily
bad result. After one marker was set, the adversary reveals that it is next to
the other marker (middle left). This is the only increase in d(mi) in the scheme.
Now adding new extrema either keeps d (middle right) or sets a marker to the
boundary (bottom left). Now an increasing number of extreme values can be
inserted until both markers have the same distance to the boundary (bottom
right) and the whole scheme restarts.

Lemma 1. For two markers m1, m2, max(d(m1), d(m2)) ∈ O(
√

n) holds in the
worst case.

Proof: Assume d(m1) = d(m2) = c (const) in the beginning. After one round
d(mi) = c+1 either for i = 1 or i = 2 and the total number of elements inserted
is 2 (top left, middle left)+(c + 1) (bottom left). In round j d(mi) increases by
at most one while the total number of elements increases by j + c + 2. This
gives

∑k
j=1 (j + c + 2) = n for a total of n elements and k rounds. Obviously

k ∈ Θ(
√

n) and therefore d(mi) ≤ k + c ⇒ d(mi) ∈ O(
√

n). Please note that
the case distinction is not complete because obviously bad choices are omitted. �

This rule modification already fails for three markers and for an arbitrary fixed
number it is not known whether the linear bound can be reached or not. The
used adversary game seems to be a bad choice for a proof for bigger storage,
because the algorithm might always make a good decision “by accident” even
without the proper knowledge.

Deterministic Splitter Finding in a Stream 31

add
here

add
here

add
here

add
here

d d d d

d d

d+ 1 d+ 1 d+ 1

add
here

Fig. 2. Beating a two marker scheme

6 Dealing with Unknown Data Size

Every algorithm for streams with unknown total size is obviously also an algo-
rithm for streams with known size n. The following algorithm achieves a distance
of Ω (

√
n) to the boundary without using n. It uses two markers and is therefore

optimal due to lemma 1. It is the best we can achieve without using n and this
algorithm acts as a building block for the improved algorithm using n in the
next section.

The general idea is to have roughly
√

n rounds increasing the distance to the
boundary by at least one in each round. We assume the existence of two stream
operations: next provides the top element and removes it from the stream and
top provides the top element without removing it.

Algorithm 1. Achieving a distance of at least
√

2(n + 1)−3 to the boundary
with only two markers m1, m2

m1 ← next
for k = 2, 3, 4, . . . do

m2 ← top
for the upcoming k elements do

if next is end of stream then return m1
if (m2 < top < m1) or (m2 > top > m1) then m2 ← top

if last k elements were all smaller or all larger than m1 then
m1 ← m2

Theorem 2. Algorithm 1 returns an element with distance to the boundary in
the sorted data at least

√
2(n + 1) − 3 without knowing n beforehand using two

markers.

Proof: Starting with k = 2 the value of k increases by one in each round. The
algorithm consumes k elements per round, with either at least one element

32 T. Lenz

smaller and one element larger than the current approximation m1, hence in-
creasing d(m1) by at least one, or ending with the element closest to m1 in m2.
Since then all k elements were larger (symmetric: smaller) than m1 and m2 is
the minimum (maximum) of these, setting m1 to m2 guarantees an increase of
the distance of m1 by at least one to the lower (upper) boundary and a distance
of at least k − 1 to upper (lower) boundary. Therefore in round i the distance
to the boundary is at least i − 1. We compute the number of complete rounds r
for n ≥ 2 as follows:

n − r ≤
r∑

k=1

k ≤ n ⇒ n ≤ r2 + 3r

2
⇒ r ≥

√

2n +
9
4

− 3
2

>
√

2(n + 1) − 2. �

7 Improvements for Known Data Size

Knowing the number of elements, one wants to compute the median of, is a great
deal of help. It allows to process specified fractions of the input as a block, which
yields much better results than for an unknown size. The following algorithm
uses the algorithm 1 as a subroutine to compute an approximation of the median
over a block with n

t elements. The next n
t elements are used to verify the quality

of the approximation, which is then refined in the next round. This leads to a
total of nt

2n = t
2 rounds. In each round a lower and an upper filter are maintained

where the lower filter has always “enough” elements above it and the upper filter
has “enough” elements below it.

Algorithm 2. Achieving a distance of Ω
(
n

2
3

)
to the boundary with four

markers, t ∈ Θ
(
n

1
3

)
.

low ← −∞, high ← ∞
during the whole algorithm: l ← count elements smaller than low
during the whole algorithm: h ← count elements larger than high
if end of the stream is reached at any time during the algorithm then

if l ≥ h then return low else return high

for ∞ do
m1 ← use algorithm 1 on n

t elements ∈ (low; high), skipping others
p = 0, q = 0
for the next n

t elements do
if top ≤ m1 then p ← p + 1
if next ≥ m1 then q ← q + 1

if q > n
2t then low ← m1 else high ← m1

Lemma 2. While processing 3n
t elements from the stream, the number of ele-

ments known to be smaller than low plus the number of elements known to be
larger than high increases by Ω

(√
n
t

)
.

Proof: Two cases are possible.

Deterministic Splitter Finding in a Stream 33

1. More than 2n
t elements are smaller than low or larger than high and are

hence filtered out.
2. The algorithm 1 is applied to a block B of n

t elements and returns an element
m1 with distance Ω

(√
n
t

)
to both boundaries or B by theorem 2. Counting

over the next n
t elements allows two symmetric cases, so we consider only

the case that at least n
2t elements are not smaller than m1. The algorithm

sets low to m1, guaranteeing the claimed increase of low. �

Lemma 3. Algorithm 2 returns an element with distance Ω
(

n
t

)
= Ω

(
n

2
3

)
to

the boundary in the sorted data with t = n
1
3 and knowing n beforehand using

four markers.

Proof: The algorithm will only change low, if at least n
2t larger elements are

known. The symmetric holds for high, so we only have to care about pushing
low and high as far as we can.

The n input elements can be seen as t
3 blocks with 3n

t elements each. Lemma

2 gives a total distance of t
3Ω

(√
n
t

)
= Ω

(
t
√

n
t

)
= Ω

(
n

2
3

)
to the boundary in

the sorted data. At least half of this distance must be attained by low or high
which is returned respectively.

The marker m1 in this algorithm is the same as m1 in the subroutine, so two
markers are used by the subroutine plus two for low and high. �

Please observe that t was chosen to maximize the minimum of the set size used
for the estimation, n

t , and the least gain per round,
√

n
t times the number of

rounds t
2 , omitting constants:

n

t
= t

√
n

t
= t

1
2 n

1
2 ⇒ n

1
2 = t

3
2 ⇒ t = n

1
3 .

Theorem 3. A distance to the boundary of Ω
(
n1−ε

)
can be achieved with O

(1
ε

)

markers.

Proof: Instead of using algorithm 1 as a subroutine, one can use algorithm 2 and
then continue recursively needing two additional markers for the low and high
values in each recursive step. Computing the optimal value for t by the formula
above resolves to

n

t
= t

(n

t

)x

⇒ n1−x = t2−x ⇒ t = n
1−x
2−x .

Applying the proof of lemma 3 with this t yields an algorithm with distance

Ω
(n

t

)
= Ω

(
n1− 1−x

2−x

)
= Ω

(
n

1
2−x

)

for a subroutine with a guarantee of Ω(nx). In particular for a subroutine with

guarantee Ω
(
n

a
a+1

)
the guarantee is raised to Ω

(
n

1
2− a

a+1

)
= Ω

(
n

a+1
a+2

)
. Start-

ing with 1
2 , a

a+1 is reached after a−1 recursive levels, each requiring two markers,

34 T. Lenz

2a in total. For an Ω
(
n1−ε

)
distance we pick 1 − ε = a

a+1 ⇒ a = 1
ε − 1. This

requires a total of 2a ∈ O
(1

ε

)
markers. �

8 Multiple Passes

The algorithms from the prior sections give an approximation of the median in a
single pass. It is fairly easy to apply these simple algorithms repeatedly to shrink
the range of candidates for the value in question, i.e. the median or the element
of rank k, in each iteration and finally obtain the exact value after several passes.
In this section the number of required passes is analyzed. Problems of that kind
typically require Θ(log n) “passes” for random-access models.

The approximation m obtained after a single pass splits the original set into
two sets, one with values smaller than m and the others larger. Only one of these
two sets can contain the element in question, so dropping the other one reduces
the number of elements. This is repeated until the remaining set completely fits
into the constant storage and the desired element is deduced directly. Since it
is not known whether the requested element is smaller or larger than the ap-
proximation m, every second pass is used to count the number of smaller/larger
elements relative to m which reveals the rank of m and thereby determines which
set to drop. By remembering the number of discarded elements, the new position
in the reduced set can be computed.

The analysis treats the more involved case where n is known beforehand. The
other case is contained in the proof by fixing s = 2.

Theorem 4. Using algorithm 2 with constant storage of size s ≥ 2 repeatedly,
the element of rank k in a set can be found after O

(
n

1
s

)
passes.

Proof: Let the function P (n) describe the number of passes necessary for n

elements. Each pass removes c1n
1
s elements for some fixed c1 > 0 by theorem 3,

so we have P (n) ≤ P (n − c1n
1− 1

s) + 2. Guess P (n) ≤ c2n
1
s for a fixed c2 > 0.

P (n)≤P (n−c1n
1− 1

s)+2 ≤ c2

(
n − c1n

1− 1
s

) 1
s

+2 = c2n
1
s

(
1 − c1

n
1
s

) 1
s

+2
!
≤ c2n

1
s

⇔
(

1 − c1

n
1
s

) 1
s

+
2

c2n
1
s

!
≤ 1 ⇔ 1 − c1

n
1
s

!
≤

(
1 − 2

c2n
1
s

)s

For c2 = 2s
c1

this is Bernoulli’s inequality and since s and c1 are fixed, c2 is
constant. �

9 Conclusion

This is the first deterministic result for non-trivially approximating splitters
in streams storing only a constant number of reference elements. The median

Deterministic Splitter Finding in a Stream 35

problem itself occurs in many algorithms and hence is quite important in theory
and practice. Especially for tiny devices like sensor nodes in a network, the
model is appropriate and the results are novel. Although several solutions exist
using randomization and polylogarithmic memory, it is nevertheless of interest
whether the same results can be achieved in a (simple) deterministic way and/or
with less memory.

For streams with unknown size, the case for storage size two is solved asymp-
totically optimal, for streams with known size an ε-approximation algorithm is
presented. A multi-pass solution for finding the exact median or any element of
a specified rank is presented. Several results are not only asymptotic, but are
given explicitly with reasonable constants.

All the algorithms are fast and simple and have a tiny memory footprint in
practice. They have worst-case guarantees but showed a much better average
behavior tested on random streams with several distributions.

Whether a linear approximation is achievable with constant storage or not
remains an interesting open problem.

Acknowledgment. Thanks to Britta Denner-Broser and Klaus Kriegel for their
support.

References

1. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds
for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973.

2. M. Greenwald and S. Khanna. Space-efficient online computation of quantile sum-
maries. In SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, pages 58–66, New York, NY, USA, 2001. ACM
Press.

3. S. Guha and A. McGregor. Approximating quantiles and the order of the stream.
In PODS, 2006.

4. S. Guha, A. McGregor, and S. Venkatasubramanian. Streaming and sublinear
approximation of entropy and information distances. In SODA, 2006.

5. R. Jain and I. Chlamtac. The p2 algorithm for dynamic calculation of quantiles
and histograms without storing observations. Commun. ACM, 28(10):1076–1085,
1985.

6. G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate medians and other
quantiles in one pass and with limited memory. SIGMOD Rec., 27(2):426–435,
1998.

7. J. I. Munro and M. Paterson. Selection and sorting with limited storage. Theoretical
Computer Science, 12:315–323, 1980.

8. J. I. Munro and V. Raman. Selection from read-only memory and sorting with
minimum data movement. Theoretical Computer Science, 165(2):311–323, 1996.

9. M. Paterson. Progress in selection. In SWAT ’96: Proceedings of the 5th Scandi-
navian Workshop on Algorithm Theory, pages 368–379, 1996.

10. J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw.,
11(1):37–57, 1985.

Optimal Algorithms for Tower of Hanoi

Problems with Relaxed Placement Rules�

Yefim Dinitz and Shay Solomon

Dept. of Computer Science
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

{dinitz, shayso}@cs.bgu.ac.il

Abstract. We study generalizations of the Tower of Hanoi (ToH) puz-
zle with relaxed placement rules. In 1981, D. Wood suggested a variant,
where a bigger disk may be placed higher than a smaller one if their
size difference is less than k. In 1992, D. Poole suggested a natural disk-
moving strategy, and computed the length of the shortest move sequence
(algorithm) under its framework. However, other strategies were not con-
sidered, so the lower bound/optimality question remained open. In 1998,
Beneditkis, Berend, and Safro were able to prove the optimality of Poole’s
algorithm for the first non-trivial case k = 2 only. We prove it be optimal
in the general case. Besides, we prove a tight bound for the diameter of
the configuration graph of the problem suggested by Wood. Further, we
consider a generalized setting, where the disk sizes should not form a
continuous interval of integers. To this end, we describe a finite family of
potentially optimal algorithms and prove that for any set of disk sizes,
the best one among those algorithms is optimal. Finally, a setting with
the ultimate relaxed placement rule (suggested by D. Berend) is defined.
We show that it is not more general, by finding a reduction to the second
setting.

1 Introduction

The classic Tower of Hanoi (ToH) puzzle is well known. It consists of three
pegs and disks of sizes 1, 2, . . . , n arranged on one of the pegs as a “tower”, in
decreasing, bottom-to-top size. The goal of the puzzle is to transfer all disks to
another peg, placed in the same order. The rules are to move a single disk from
(the top of) one peg to (the top of) another one, at each step, subject to the
divine rule: to never have a larger disk above a smaller one.

The goal of the corresponding mathematical problem, which we denote by
HT = HTn, is to find a sequence of moves (“algorithm”) of a minimal length
(“optimal”), solving the puzzle. We denote the pegs naturally as source, target,
and auxiliary, while the size of a disk is referred as its name. The following
algorithm γn is taught in introductory CS courses as a nice example of a recursive
algorithm. It is known and easy to prove that it solves HTn in 2n −1 disk moves,
and is the unique optimal algorithm for it.
� Partially supported by the Lynn and William Frankel Center for Computer Science.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 36–47, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Optimal Algorithms for ToH Problems with Relaxed Placement Rules 37

– If n is 1, move disk n from source to target.
– Otherwise:

• recursively perform γn−1(source, auxiliary);
• move disk n from source to target;
• recursively perform γn−1(auxilary, target).

In the recent two decades, various ToH type problems were considered in the
mathematical literature. Many algorithms were suggested, and extensive related
analysis was performed. As usual, the most difficult, far not always achievable
task is showing that a certain algorithm is optimal, by providing the matching
lower bound. A distinguished example is the Frame-Stewart algorithm (of 1941),
solving the generalization of the ToH problem to four or more pegs. It is simple,
and an extensive research was conducted on its behavior, since then. However, its
optimality still remains an open problem; the proof of its approximate optimality
[6] was considered a breakthrough, in 1999. This paper contributes to the difficult
sub-area of the ToH research—optimality proofs.

In 1981, D. Wood [7] suggested a generalization of HT , characterized by the
k-relaxed placement rule, k ≥ 1: If disk j is placed higher than disk i on the same
peg (not necessarily neighboring it), then their size difference j − i is less than
k. In this paper, we refer it as the bottleneck Tower of Hanoi problem (following
D. Poole [3]), and denote it BTHn = BTHn,k. Now, there are more than one
legal way to place a given set of disks on the same peg, in general; we refer the
decreasing bottom-to-top placement of all disks on the same peg as the perfect
disk configuration. If k is 1, we arrive at the classic ToH problem.

In 1992, D. Poole [3] suggested a natural algorithm for BTHn and declared its
optimality. However, his (straightforward) proof is done under the fundamental
assumption that before the last move of disk n to the (empty) target peg, all
other n−1 disks are gathered on the spare peg. This situation is far not general,
since before the last move of disk n, from some peg X to the target peg, any set
of the disks n − 1, n − 2, . . . , n − k + 1 may be placed below disk n on peg X .

In 1998, S. Beneditkis, D. Berend, and I. Safro [1] gave a (far not trivial) proof
of optimality of Poole’s algorithm for the first non-trivial case k = 2 only.

We prove it for the general case, by different techniques. Besides, we prove
a tight bound for the diameter of the configuration graph of BTHn. In other
words, we find the length of the longest one among all shortest sequence of
moves, over all pairs of initial and final configurations, up to a constant factor.
We also prove that the average length of shortest sequence of moves, over all
pairs of initial and final configurations, is the same as the above diameter for all
values of n ≤ k and n > 3k, up to a constant factor.

X. Chen et al. [2] considered independently a few ToH problems, including the
bottleneck ToH problem. They also suggested a proof of optimality of Poole’s
algorithm; it is based on another technical approach, and is not less difficult
than our proof.

Further, we consider the “subset” setting, generalizing BTHn,k, where the
disk sizes should not form a continuous interval of integers. Here, for different
disks, there are different number of bigger disks allowed to be placed above them.

38 Y. Dinitz and S. Solomon

For this setting, we describe the finite family of potentially optimal algorithms,
and prove that for any set of disk sizes, the best one among those algorithms
is optimal. Poole’s algorithm is the simplest one in this family; all of its other
members do not obey the fundamental assumption made by Poole.

Finally, following a suggestion of D. Berend, we define the most general setting
of relaxed placement rule, where the sets of bigger disks allowed to be placed
above each disk may be arbitrary, obeying monotonicity only. We show that this
“ultimate” setting is not more difficult than the “subset” setting. This is done
in two ways: by generalizing the relevant proofs and by finding a reduction from
the “ultimate” to the “subset” setting.

The preliminary version of this paper (with results on BTHn only) was pre-
sented at the Workshop on the Tower of Hanoi and Related Problems (2005).

2 Definitions and Notation

A configuration of a disk set D is called gathered, if all disks in D are on the same
peg. Such a configuration is called perfect, if D is an initial interval of naturals,
and the order of disks (on a single peg) is decreasing. For any configuration C of
D and any D′ ⊆ D, the restriction C|D′ is C with all disks not in D′ removed.

A move of disk m from peg X to peg Y is denoted by the triplet (m, X, Y).
For a disk set D, the configuration of D \ {m} is the same before and after such
a move; we refer it as the configuration of D \ {m} during (m, X, Y).

A packet-move, P , of D is a sequence of moves transferring D from one peg
to another. W.r.t. P , the former peg is called source, the latter target, and the
third peg auxiliary. The length |P | of P is the number of moves in it. If both
initial and final configurations of P are perfect, we call P a perfect-to-perfect (or
p.t.p., for short) packet-move of D.

For better mnemonics (following [2]), the entire set of disks [1..m] is divided
into �m

k � blocks Bi = Bi(m): B1 = [(m−k+1)..m], B2 = [(m−2k+1)..(m−k)],
. . ., B�m

k � = [1..(m − (�m
k � − 1) · k)]. Note that the set of disks in any block is

allowed to be placed on the same peg in an arbitrary order. For any m ≥ 1, let
Dm denote [1..m], and Small(m) denote Dm \ B1(Dm). In the above notion,
BTHn concerns finding the shortest perfect-to-perfect packet-move of Dn.

We say that a packet-move P contains a packet-move P ′ if P ′ is a subsequence
of P . Several packet-moves Pi, 1 ≤ i ≤ r, contained in P , are called disjoint if
the last move in Pi precedes the first move in Pi+1, for each 1 ≤ i ≤ r − 1.

For any sequence of moves S of D and any D′ ⊆ D, the restriction of S to
D′, denoted by S|D′ , is the result of omission from S all moves of disks not in
D′. Note that any restriction of a legal sequence of moves is legal as well, and
a restriction of a packet-move to D′ is a packet-move of D′. Clearly, if D is
partitioned into D′ and D′′, then |P | = |P |D′ | + |P |D′′ |.

Consider a sequence of moves, S, containing two consequent moves of the same
disk: (i, X, Y) and (i, Y, Z). Their replacement by the single move (i, X, Z), if
X �= Z, or the deletion of both, if X = Z, is called a pruning of S. We denote
by Prune(S) the result of all possible prunings, at S; it is easy to see that

Optimal Algorithms for ToH Problems with Relaxed Placement Rules 39

such a result is independent on the order of particular prunings and is legal, so
Prune(S) is well defined.

3 The Shortest “Somehow” Packet-Move

In this section, we consider general, not p.t.p. packet-moves.
In the attempts of S. Beneditkis, D. Berend, and I. Safro [1] to solve BTHn,

much like in [3], another related problem of ”moving somehow”, under the k-
relaxed placement rule arose: To move m disks [1..m], placed entirely on one
peg, to another peg, in any order. For solving it, the following algorithm βm =
βm(source, target) was presented:

– If m is at most k, move all disks from source to target one by one.
– Otherwise:

• recursively perform βm−k(source, auxiliary);
• move disks [(m − k + 1)..m] from source to target one by one;
• recursively perform βm−k(auxilary, target).

Notice that the sequence βn is similar to γn, but deals with blocks, instead
of single disks. When βm is applied to the perfect disk configuration, it is legal,
and results in the configuration, different from the perfect one by the increasing
order of disks in B1(m). When βm is applied to the latter configuration, it is
legal and results in the perfect configuration.

For k = 2, it is proved in [1] that no sequence of moves shorter than βm can
transfer m disks from one peg to another. We generalize this result for general
k. Let bm denote the length of βm. By definition of βm, bm = m if m ≤ k,
and bm = 2bm−k + k, otherwise. In [3], this recurrence relation is shown to
imply the explicit formula bn = k · (2�

n
k � − 1) + r · 2�

n
k � = (k + r) · 2�

n
k � − k,

where r = n mod k. As a consequence, bn − bn−1 = 2�n/k�−1; in particular, the
sequence {bi} is strictly monotonous.

Note that during a move (m, X, Y), all disks in Small(m) are on the spare
peg Z �= X, Y . As a corollary, holds:

Fact 1. If a sequence of moves S begins from a configuration, where disk m
and Small(m) are on X, and finishes at a configuration, where they are on Y ,
X �= Y , then it contains two disjoint packet-moves of Small(m): one (from X)
before the first move of disk m in S and another (to Y) after its last move.

Theorem 2. Under the rules of BTHm, the length of any packet-move of Dm

is at least bm. (proof is omitted)

4 Optimal Solution to BTHn

Let us describe algorithm αn, presented first in [3] and independently afterwards
in [1], solving BTHn:

40 Y. Dinitz and S. Solomon

– perform βn−1(source, auxiliary);
– move disk n from source to target;
– perform βn−1(auxilary, target).

For k = 2, it is proved in [1] that αn is an optimal solution to BTHn. In this
section, we generalize this result to the case of general k.

Let an denote the length of αn. The explicit formula for an (established in
[3]) is implied strait-forwardly by that for bn−1: an = 2(r + k) · 2�n−1

k � − 2k + 1,
where r = (n − 1) mod k. The following theorem implies that αn is an optimal
algorithm that solves the puzzle.

Theorem 3. Any p.t.p. packet-move of Dn solving BTHn is of length at least
an.

The rest of this section is devoted to the proof of this Theorem. Recall that
Small(m) = [1..(m − k)], B1(m) = [(m − k + 1)..m]. In our study of a packet-
move P of Dm, m > k, we usually consider separately P |Small(m) and P |B1(m).
The reason is that any move (m, X, Y) defines completely the placement of
Small(m)—on the spare peg Z,—while the placement of disks in B1(m) \ {m}
may be arbitrary, during such a move. For the analysis of P |B1(m), we use the
following statement:

Fact 4. Any p.t.p. packet-move P of Dm contains at least two moves of any
disk i, i �= m : at least one before the first move of disk m and at least one after
its last move. Hence, for any D ⊆ Dm−1, holds |P |D| ≥ 2|D|.

4.1 Case 1: Disk n Never Moves to the Auxiliary Peg

We call a move of disk m, in a packet-move of Dm, distinguished if it is between
source and target and disk m − 1 is at auxiliary, during that move.

Lemma 1. Any packet-move P of Dm, which preserves the initial order between
disks m and m − 1, and such that disk m moves only between the source and
target pegs, contains a distinguished move of disk m.

Proof. Define P ′ := Prune(P |{m−1,m}). Note that P ′ preserves the initial order
between disks m and m−1, since P preserves it. We will study P ′, since a move
of m is distinguished in P ′ if and only if it is distinguished in P . By the definition
of Prune, moves of disks m and m − 1 must interchange, in P ′.

Claim. Under the conditions of the Lemma, the first move of disk m − 1 should
be (m − 1, source, auxiliary). (the proof is omitted)

Based on this Claim, we consider the possible scenarios of P ′. Assume that
disk m − 1 is initially above disk m. Then, necessarily, the first two moves are:
(m − 1, source, auxiliary), (m, source, target); the latter one is distinguished.
Assume that disk m−1 is initially below disk m. Then, necessarily, the first three
moves are: (m, source, target), (m − 1, source, auxiliary), (m, target, source);
the latter one is distinguished. Hence, also P contains a distinguished move. �	

Optimal Algorithms for ToH Problems with Relaxed Placement Rules 41

Proposition 1. For any m > k + 1 and any packet-move P of Dm preserving
the initial order between disks m and m − 1, s.t. disk m moves only between the
source and target pegs, P contains four disjoint packet-moves of Small(m − 1).

Proof. Let us consider the first distinguished move of disk m during P ; it exists
by Lemma 1. Clearly, during such a move, all disks in Small(m − 1) are on
auxiliary, together with disk m − 1; by the k-relaxed placement rule, they are
placed above disk m − 1. Hence, by Fact 1, the parts of P before and after that
move contain two disjoint packet-moves of Small(m − 1) each. Altogether, there
are four disjoint packet-moves of Small(m − 1), in P . �	
Corollary 1. The length of any p.t.p. packet-move of Dn, such that disk n
moves only between the source and target pegs, is at least an.

Proof. Let P be a packet-move as in the Corollary. By Fact 4, |P |B1(n−1)| ≥
2 · |B1(n−1)|. If n ≤ k+1, |P | = |P |B1(n−1)|+ |P |{n}| ≥ 2(n−1)+1 = 2 ·bn−1 +
1 = an. Otherwise, by Proposition 1 and Theorem 2, |P | = |P |Small(n−1)| +
|P |B1(n−1)| + |P |{n}| ≥ 4 · bn−k−1 + 2k + 1 = 2 · bn−1 + 1 = an. �	

4.2 Case 2: Disk n Moves to the Auxiliary Peg

Lemma 2. If m > k and a packet-move P of Dm contains a move of disk m
to auxiliary, then P |Small(m) contains three disjoint packet-moves of Small(m).
(the proof is omitted.)

Following is the central statement of this section.

Proposition 2. For any m, l ≥ 0, let P be a p.t.p. packet-move of Dm contain-
ing 2l + 1 disjoint packet-moves of Dm. Then, |P | ≥ 2l · bm + 2 · bm−1 + 1 =
2l · bm + am, and this bound is tight.

Proof. It can be easily proved that any packet-move as in the Proposition may be
divided into t, t ≥ 2l +1, packet-moves of Dm. If t > 2l +1, then, by Theorem 2
and the strict monotonicity of (bi), |P | ≥ (2l + 2) · bm ≥ 2l · bm + 2 · bm−1 + 2.
We henceforth assume that P is divided into 2l + 1 packet-moves of Dm.

We prove by a complete induction on m, for all l. Basis : m ≤ k. (Note that
in this basic case, the disks may be placed at pegs in an arbitrary order).

Lemma 3. In the case m ≤ k, the length of any p.t.p. packet-move P of Dm,
divided into 2l + 1 packet-moves of Dm, is at least (2l + 2)m − 1.

Proof. We call a disk in Dm expensive w.r.t. some packet-move P ′, if it moves to
the auxiliary peg during P ′. Let us prove that there could be at most one disk,
which is not expensive w.r.t. any one out of the 2l + 1 packet-moves as in the
Lemma. Assume to the contrary that there are two such disks, i and j. Then,
after each packet-move, their order is reversed. Since there is an odd number of
packet-moves, the order of i and j at the final configuration is inverse to that in
the initial configuration,—a contradiction.

It follows that either all m disks or some m−1 disks make at least 2l+2 moves
each, while the remained disk, if any, makes at least 2l + 1 moves. Altogether,
at least (2l + 2)m − 1 moves are made.

42 Y. Dinitz and S. Solomon

As a corollary, since br = r, for any r, 1 ≤ r ≤ k, holds |P | ≥ (2l + 2)m − 1 =
2lm + 2(m − 1) + 1 = 2l · bm + 2 · bm−1 + 1.

Induction step: m > k. We suppose that the claim holds for all lesser values
of m and for all l, and prove it for m and all l.

Note that at the initial configuration of P , as well as at its final configuration,
disk m is placed below disk m−1. Since P is a composition of an odd number of
disjoint packet-moves of Dm, there exists a packet-move among them, henceforth
denoted by P̃ , which preserves the order between disks m and m− 1. We bound
|P |Small(m)| separately, for two complementary types of P̃ .

Case 1 : During P̃ , disk m never moves to the auxiliary peg. By Propo-
sition 1, P̃ contains four disjoint packet-moves of Small(m − 1). We notice
that P̃ contains at least two moves of disk m − k : at least one before the
first move of disk m, and at least one after its last move. By Theorem 2,
P̃ |Small(m)) ≥ 4 · bm−k−1 + 2 = 2 · bm−1 − 2k + 2. By Corollary 3, the other 2l
packet-moves of Dm contain two disjoint packet-moves of Small(m) each. Hence,
their total length is at least 4l · bm−k = 2l(bm − k). Therefore, |P |Small(m)| ≥
2l · bm − 2lk + 2 · bm−1 − 2k + 2 = 2l · bm + 2 · bm−1 − (2l + 2)k + 2. We denote
this value by N .

Case 2 : P̃ contains a move of disk m to the auxiliary peg. By Lemma 2,
P̃ |Small(m) contains three disjoint packet-moves of Small(m). By Corollary 3,
the other 2l packet-moves of Dm contain two disjoint packet-moves of Small(m)
each. Thus, P |Small(m) contains 4l + 3 disjoint packet-moves of Small(m). By
the induction hypothesis, |P |Small(m)| ≥ (4l + 2) · bm−k + 2 · bm−k−1 + 1 ≥
4l · bm−k + 4 · bm−k−1 + 3 = 2l · bm + 2 · bm−1 − (2l + 2)k + 3 = N + 1 (the second
inequality holds since the sequence (bi) is strictly monotonous).

By Lemma 3, |P |B1(m)| is at least (2l + 2)k − 1. So, |P | = |P |Small(m)| +
|P |B1(m)| ≥ N + |P |B1(m)| ≥ 2l · bm + 2 · bm−1 + 1, as required.

The bound is tight, since the sequence composed from 2l βm and one αm, in
this order, is a p.t.p. packet-move of length equal to this bound. �	

Now, Theorem 3 follows from Proposition 2 with l = 0 and m = n.
The difference of 1 between bounds at Cases 1 and 2, together with the tight-

ness of the bound of Case 1, implies:

Corollary 2. 1. No optimal algorithm for BTHn contains a move of disk n
to the auxiliary peg.

2. Any optimal algorithm for BTHn contains just a single move of disk n, from
the source peg to the target peg.

3. The only difference of an arbitrary optimal algorithm for BTHn from αn

could be in choosing another optimal algorithms, for the two included optimal
“somehow” packet-moves of Dn−1, instead of βn−1.

5 Diameter of the Configuration Graph of BTHn

While the shortest perfect-to-perfect sequence of moves had been already found,
we do not know what is such a sequence for transforming an arbitrary (legal)

Optimal Algorithms for ToH Problems with Relaxed Placement Rules 43

configuration to another given (legal) one, and what is its length. We study, what
is the length of the longest one among all shortest sequences of moves, over all
pairs of initial and final configurations. In other words, what is the diameter,
denoted by D(n, k), of the directed graph of all the configurations of the disks
in [1..n], under the k-relaxed placement rule?

The proof of the following theorem is omitted.

Theorem 5.

Diam(n, k) =

⎧
⎨

⎩

Θ(n · log n) if n ≤ k
Θ(k · log k + (n − k)2) if k < n ≤ 2k
Θ(k2 · 2

n
k) if n > 2k .

Another question is what is the average length of shortest sequences of moves,
over all pairs of initial and final configurations, denoted by Avg(n, k). The fol-
lowing theorem states that it is the same as D(n, k) for all values of n ≤ k and
n > 3k, up to a constant factor (its proof is omitted).

Theorem 6.

Avg(n, k) =
{

Θ(n · log n) if n ≤ k
Θ(k2 · 2 n

k) if n > 3k .

6 “Subset” Setting

In this section, the previous study is generalized to BTHD = BTHD,k, where
the disk placement is still subject to the k-relaxed rule, but the disk set D is an
arbitrary set, not necessarily a contiguous interval of naturals.

6.1 Preliminaries

Let us generalize some of the definitions given for BTH . For a non-empty disk
set D, |D| = n, let us denote the disks of maximal and minimal size by max(D)
and min(D), respectively, and by s(D) the “stretch” max(D) − min(D) + 1.
The ith biggest disk in D is denoted by D(i). We define D− = D \ {max(D)}.
For a disk set D, its division into blocks is as follows: B1 = B1(D) = D ∩
[(max(D) − k + 1)..max(D)], and for any i > 1, s.t.

⋃
j<i Bj(D) �= D, Bi =

Bi(D) = B1(D \
⋃

j<i Bj(D)). The size of each block is between 1 and k, and
the number of blocks #(D) = #k(D) is between �n/k� and min{n, s(D)/k}. We
define Small(D) =

⋃
j≥2 Bj(D). We generalize the optimal “moving somehow”

algorithm βm to the optimal algorithm βD = βD(source, target):

– If s(D) ≤ k, move all disks from source to target one by one.
– Otherwise:

• recursively perform βSmall(D)(source, auxiliary);
• move disks in B1(D) from source to target one by one;
• recursively perform βSmall(D)(auxilary, target).

44 Y. Dinitz and S. Solomon

Denote by bD the length of βD. By definition of βD, holds bD = n, if s(D) ≤ k,
and bD = 2 · bSmall(D) + |B1(D)|, otherwise. It can be proved that the value bD

is strictly inclusion-wise monotonous in D.
The proofs of the following statements are similar to those for the correspond-

ing ones for BTHn.

Theorem 7. Any packet-move of D is of length at least bD.

Corollary 3. For any packet-move P of D, P |Small(D) contains two disjoint
packet-moves of Small(D).

Fact 8. Any p.t.p. packet-move P of D contains at least two moves of any disk
i, i �= max(D). Thus, for any D′ ⊆ D−, holds |P |D′ | ≥ 2|D′|.

6.2 The Set of Potentially Optimal Algorithms

Let us generalize algorithm αn to αD:

– perform βD−(source, auxiliary);
– move disk max(D) from source to target;
– perform βD−(auxilary, target).

We denote α0
D = αD, and define αi

D, 1 ≤ i ≤ #(D) − 1 ≤ n − 1, as follows:

– perform βSmall(D)(source, target).
– move disks in B1(D) from source to auxilary one by one;
– perform βSmall(D)(target, source);
– move disks in B1(D) from auxilary to target one by one;
– recursively perform αi−1

Small(D)(source, target).

We define ai
D = |αi

D|. Clearly, ai
D = ai−1

Small(D) +2 · bSmall(D) +2 · |B1(D)|. Let
us denote āD = min0≤i≤#(D)−1 ai

D .
It is easy to show, by induction on i, that each one of the algorithms αi

D,
0 ≤ i ≤ #(D) − 1, solves BTHD: the first and third items move out and return
Small(D) to source, the second and fourth items move B1(D) from source
to target, in the right order, and the fifth item does the same for Small(D).
The following Theorem shows that the length of the shortest sequence of moves
solving BTHD is āD.

Theorem 9. The best one out of the #(D) algorithms αi
D is optimal for BTHD.

The proof of this Theorem has the same structure as that of Theorem 3. It
is based on the following statements, whose proofs are similar to those of the
corresponding ones for BTHn. The difficulty of proofs remains approximately
the same, except for that of Proposition 4, which becomes more involved.

Proposition 3. Let P be a packet-move of disks D′, preserving the initial order
between disks max(D′) and max(D′−), and such that disk max(D′) moves only
between the source and target pegs. Then, P |Small(D′−) contains four disjoint
packet-moves of Small(D′−).

Optimal Algorithms for ToH Problems with Relaxed Placement Rules 45

Corollary 4. If P is a p.t.p. packet-move of D, such that disk max(D) moves
only between the source and target pegs, then |P | ≥ a0

D.

Lemma 4. If a packet-move P of D′ contains a move of disk max(D′) to the
auxiliary peg, then P|Small(D′) contains three disjoint packet-moves of Small(D′).

Proposition 4. Let P be a p.t.p. packet-move of D′, containing 2l + 1 disjoint
packet-moves of D′. Then, |P | ≥ 2l · bD′ + āD′ .

Proof. The proof is made by induction on #(D′), for all l. The basis of the
induction is similar to that of Proposition 2. At the induction step, the case
analysis is more involved. As in the proof of Proposition 2, we point our finger
at a ”guilty” packet-move, denoted by P̃ , among the 2l+1 disjoint packet-moves
contained in P . Due to space constraints, we show only the case satisfying the
following conditions: 1. P̃ contains a move of disk max(D′) to the auxiliary peg;
2. |B1(D′)| ≥ 2; 3. |P |B1(D′)| = (2l + 2)|B1(D′)| − 1. When considering packet-
moves forming P , we will use the names source, target, and auxiliary w.r.t. the
currently considered packet-move.

It is easy to prove that there exists a disk d �= max(D′) in B1(D′) that does
not move to auxiliary during P , and all disks in B1(D′)−{d} move to auxiliary
exactly once during P . In any packet-move other than P̃ , d and max(D′) reverse
their order. Since P is a composition of an odd number of disjoint packet-moves
of D′, d and max(D′) preserve their order in P̃ . In the initial configuration of P̃ ,
max(D′) must be placed higher than d, for otherwise they would reverse their
order. The first move of max(D′) is to auxiliary. Before that move, all disks in
Small(D′) have been moved to target. Before the move of disk d to target, all
disks in Small(D′) have been moved to auxiliary above disk max(D′), otherwise
disk max(D′) would not be able to move above disk d, on target. Before disk
max(D′) moves from auxiliary to target, all disks in Small(D′) have been
moved to source, and are due to be moved to target at some point. In total,
P̃ |Small(D′) ≥ 4 · bSmall(D′). Thus, P |Small(D′) ≥ (4l + 4) · bSmall(D′). We recall
that |PB1(D′)| = (2l+2)|B1(D′)|−1. Altogether, |P | = |P |Small(D′)|+|PB1(D′)| ≥
(4l + 4) · bSmall(D′) + (2l + 2)|B1(D′)| − 1 ≥ (details are omitted) 2lbD′ + aD′ .

6.3 Tightness and Other Related Issues

Recall that for the case k = 1, for any disk set D, αD = α0
D is the shortest p.t.p.

packet-move of D. It can be proven that it is the unique optimal algorithm.

Proposition 5. For any k ≥ 2, n, and �n
k � ≤ p ≤ �n

2 �, there exists a set D,
with |D| = n and #(D) = p, s.t. for any 0 ≤ i, j ≤ p − 1, |αi

D| = |αj
D|.

(the proof is omitted)

Theorem 10. For any k ≥ 2, n, �n−1
k �+1 ≤ p ≤ �n

2 �, and 0 ≤ j ≤ p−2, there
exists a set D, with |D| = n and #(D) = p, s.t. for each l �= j, 0 ≤ l ≤ p − 1,
holds |αj

D| < |αl
D|.

(the proof is omitted)

46 Y. Dinitz and S. Solomon

Proposition 6. For any k ≥ 2, n, �(n−4)/k�+3 ≤ p ≤ n−1, and 0 ≤ j ≤ p−1,
there exists a set D, with |D| = n and #(D) = p, s.t. for each l �= j, 0 ≤ l ≤ p−2,
holds |αj

D| > |αl
D|. (the proof is omitted)

We define the partial order “denser or equal” �d between two integer sets, D1 and
D2, of an equal cardinality, n, by D1 �d D2 ⇔ ∀1 ≤ i ≤ n−1 : D1(i+1)−D1(i) ≤
D2(i + 1) − D2(i).

Proposition 7. 1. For any D1 �d D2, holds āD1 ≤ āD2 .
2. For any D, holds a|D| ≤ āD ≤ 2|D| − 1.

(the proof is omitted)

In this paper, we considered a fixed value of k. The following statement shows
that when k grows, BTHD becomes more general.

Proposition 8. For any two values k1 < k2 and any set D1, there exists a set
D2, |D2| = |D1|, such that the instances BTHD1,k1 and BTHD2,k2 are equivalent
in the following sense. The natural bijection D1(i) ↔ D2(i) induces bijections
between the families of legal configurations of BTHD1,k1 and BTHD2,k2 and thus
between their families of legal sequences of moves. (the proof is omitted)

7 Setting with the Ultimate Placement Rule

In this paper, we study shortest p.t.p. packet-moves under different types of
relaxed placement rules. In this section, we consider the problem BTHf , defined
by the ultimate in a sense, relaxed placement rule, suggested by D. Berend. There
are n disks 1, 2, . . . , n, and an (arbitrary) monotonous non-decreasing function
f : [1..n] → [1..n], s.t. f(i) ≥ i, for all 1 ≤ i ≤ n. For each disk i, only disks of
size at most f(i) may be placed higher than i.

We consider the following restrictions natural: if some disk may be placed
above i, then any smaller disk may also be placed above i, and if i may be placed
above some disk, then i may also be placed above any larger disk. Besides, any
disk smaller than i may be placed above i, since this is so at the initial, perfect
configuration. Therefore, the free choice of f makes the above rule ultimate.

We state that BTHf is equivalent to BTHD. For this, let us first show that
BTHf is at least as general as BTHD, by a reduction. For any instance of
BTHD, we set n = |D| and consider the bijection gD : [1..n] → D, s.t. gD(i) =
D(i). It induces naturally a function f as above, and thus an instance of BTHf .
It is easy to see that gD and g−1

D induce a bijection between the families of
configurations at the two problem instances, which keeps the legality; thus, the
two instances are equivalent.

Proving that BTHD is as general as BTHf becomes more complicated. One
way is as follows. We define algorithms αi

f and the value āf , similarly to αi
D

and āD. First, we observe that Theorem 11 below, analogous to Theorem 9, and
certain analogues of Theorem 7, Proposition 5, Theorem 10, and Proposition 6
are valid, since the proofs can be generalized almost straightforwardly.

Optimal Algorithms for ToH Problems with Relaxed Placement Rules 47

Theorem 11. The best one out of the algorithms αi
f is optimal for BTHf .

Besides, we have a reduction, which for any instance of BTHf , constructs an
instance of BTHD, which is equivalent to it via the bijection gD. The size of the
instance constructed in this reduction is polynomial in n.

Hence, the theory of BTHD can be extended to BTHf .

Acknowledgment. Authors thank Daniel Berend for his suggestion to consider
the question on the optimal algorithm for the bottleneck Tower of Hanoi problem,
and for his constant willingness to help.

References

1. S. Beneditkis and I. Safro. Generalizations of the Tower of Hanoi Problem. Final
Project Report, supervised by D. Berend, Dept. of Mathematics and Computer
Science, Ben-Gurion University, 1998.

2. X. Chen, B. Tian, and L. Wang. Santa Claus’ Towers of Hanoi. Manuscript, 2005.
3. D. Poole. The Bottleneck Towers of Hanoi Problem. J. of Recreational Math. 24

(1992), no. 3, 203-207.
4. P.K. Stockmayer. Variations on the Four-Post Tower of Hanoi Puzzle. CONGRES-

SUS NUMERANTIUM 102 (1994), 3-12.
5. P.K. Stockmayer. The Tower of Hanoi: A Bibliography. (1998). Available via

http://www.cs.wm.edu/∼pkstoc/h Papers.html .
6. M. Szegedy, In How Many Steps the k Peg Version of the Towers of Hanoi Game Can

Be Solved?, Symposium on Theoretical Aspects of Computer Science 1563 (1999),
356.

7. D. Wood. The Towers of Brahma and Hanoi revisited. J. of Recreational Math. 14
(1981-1982), no. 1, 17-24.

Flexible Word Design and Graph Labeling�

Ming-Yang Kao, Manan Sanghi, and Robert Schweller

Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, IL 60208, USA

{kao, manan, schwellerr}@cs.northwestern.edu

Abstract. Motivated by emerging applications for DNA code word de-
sign, we consider a generalization of the code word design problem in
which an input graph is given which must be labeled with equal length
binary strings of minimal length such that the Hamming distance is
small between words of adjacent nodes and large between words of non-
adjacent nodes. For general graphs we provide algorithms that bound the
word length with respect to either the maximum degree of any vertex
or the number of edges in either the input graph or its complement. We
further provide multiple types of recursive, deterministic algorithms for
trees and forests, and provide an improvement for forests that makes use
of randomization.

1 Introduction

This work can be viewed either as a generalization of codeword design or a special
restricted case of the more general graph labeling problem. The problem of graph
labeling takes as input a graph and assigns a binary string to each vertex such
that either adjacency or distance between two vertices can be quickly determined
by simply comparing the two labels. The goal is then to make the labels as short
as possible (see [14] for a survey). Early work in the field [8, 9] considered the
graph labeling problem with the restriction that the adjacency between two
nodes must be determined solely by Hamming distance. Specifically, the labels
for any two adjacent nodes must be below a given threshold, while the nodes
between non-adjacent nodes must be above it.

We return to this restricted type of graph labeling motivated by growing
applications in DNA computing and DNA self-assembly which require the design
of DNA codes that exhibit non-specific hybridization. A basic requirement for
building useful DNA self-assembly systems and DNA computing systems is the
design of sets of appropriate DNA strings (code words). Early applications have
simply required building a set of n equal length code words such that there is
no possibility of hybridization between the words or Watson Crick complement
of words [1, 4, 6, 7, 18, 23]. Using hamming distance as an approximation to how
well a word and the Watson Crick complement of a second word will bind,

� Supported in part by NSF Grant EIA-0112934.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 48–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Flexible Word Design and Graph Labeling 49

Table 1. Summary of our results

Word Length

Lower Bound Upper Bound

General Graphs O(γD̂ + D̂n)
(Matching Algorithm) Ω(γ + n) Theorem 3

General Graphs Theorem 1 O(
√

γ2m̂n + γm̂n2)
(StarDestroyer) Theorem 4

Forests Ω(γ + log n) O(γD log(max{f, n
γD

}))
(Randomized) Theorem 2 Theorem 8

G : input graph (V, E) m : number of edges in G

G : complement of G m̂ : smaller of the number of edges in
G or G

D : highest degree of any vertex in G n : number of vertices in G

D̂ : smaller of the highest degree of any
vertex in G or G

f : maximum number of leaves in any
tree in the input forest

γ : Hamming distance separation

such a requirement can be achieved in part by designing a set of n words such
that the Hamming distance between any pair in the set is large. There has
been extensive work done in designing sets of words with this and other non-
interaction constraints [5, 6, 10–13,15–18,21].

While the Hamming distance constraint is important for applications requiring
that no pair of words in a code hybridize, new applications are emerging for
which hybridization between different words in a code word set is desirable and
necessary. That is, there is growing need for the efficient design of DNA codes
such that the hybridization between any two words in the code is determined
by an input matrix specifying which strands should bond and which should not.
Aggarwal et al. [2, 3] have shown that a tile self assembly system that uses a set
of glues that bind to one another according to a given input matrix, rather than
only binding to themselves, greatly reduces the number of distinct tile types
required to assemble certain shapes. Efficient algorithms for designing sets of
DNA strands whose pairwise hybridization is determined by an input matrix
may permit implementation of such tile efficient self-assembly systems.

Further, Tsaftaris et al. [19, 20] have recently proposed a technique for apply-
ing DNA computing to digital signal processing. Their scheme involves designing
a set of equal length DNA strands, indexed from 1 to n, such that the melting
temperature of the duplex formed by a word and the Watson Crick complement
of another word is proportional to the difference of the indices of the words.
Thus, this is again an example in which it is desirable to design a set of DNA
words such that different words have varying levels of distinctness from one
another.

50 M.-Y. Kao, M. Sanghi, and R. Schweller

Given an input graph G, we consider the problem of constructing a labeling
such that the Hamming distance between labels of adjacent vertices is small,
the Hamming distance between non-adjacent vertices is large, and there is a
separation of at least γ between the small Hamming distance and the large
Hamming distance. Breuer et al.[8, 9] first studied this problem for the special
case of γ = 1 and achieved labels of size O(Dn) for general graphs, where D
is the degree of the node with the highest degree. By combining graph decom-
positions with codes similar in spirit to Hadamard codes from coding theory,
we get a labeling of length O(γD̂ + D̂n) where D̂ is the smaller of the degree
of the maximum degree node in G and its complement. We then explore more
sophisticated graph decompositions to achieve new bounds that are a function
of the number of edges in G. We also consider the class of trees and forests and
provide various recursive algorithms that achieve poly-logarithmic length labels
for degree bounded trees. Our forest algorithms also make use of probabilistic
bounds from traditional word design to use randomization to reduce label length.
Our results are summarized in Table 1.

Paper Layout: In Section 2, we introduce basic notation and tools and formulate
the problem. In Section 3, we describe techniques for obtaining a restricted type
of labeling for special graphs. In Section 4, we describe how to combine special
graph labelings to obtain algorithms for labeling general graphs. In Section 5,
we present recursive algorithms for labeling forests. In Section 6, we conclude
with a discussion of future research directions. In the interest of space proofs
and some algorithmic details are omitted in this version.

2 Preliminaries

Let S = s1s2 . . . s� denote a length � bit string with each si ∈ {0, 1}. For a bit s,
the complement of s, denoted by sc, is 0 if s = 1 and 1 if s = 0. For a bit string
S = s1s2 . . . s�, the complement of S, denoted by Sc, is the string sc1, s

c
2 . . . s

c
�.

For two bit strings S and T , we denote the concatenation of S and T by S · T .
For a graph G = (V,E), a length � labeling of G is a mapping σ : V → {0, 1}�.

Let deg(G) denote the maximum degree of any vertex in G and let Ḡ = (V, Ē)
denote the complement graph of G. A γ-labeling of a graph G is a labeling σ
such that there exist integers α and β, β − α ≥ γ, such that for any u, v ∈ V
the Hamming distance H(σ(u), σ(v)) ≤ α if (u, v) ∈ E, and H(σ(u), σ(v)) ≥ β if
(u, v) /∈ E. We are interested in designing γ-labelings for graphs which minimize
the length of each label, length(σ).

Problem 1 (Flexible Word Design Problem).
Input: Graph G; integer γ
Output: A γ-labeling σ of G. Minimize � = length(σ).

Throughout this paper, for ease of exposition, we will assume the Hamming
distance separator γ is a power of 2. For general graphs in Sections 3 and 4 we
also assume the number of vertices n in the input graph is a power of 2. These
assumptions can be trivially removed for these cases.

Flexible Word Design and Graph Labeling 51

Theorem 1. The required worst case label length for general n node graphs is
Ω(γ + n).

Theorem 2. The required worst case label length for n node forests is Ω(γ +
logn).

An important tool that we use repeatedly in our constructions is a variant of the
Hadamard codes [22] from coding theory. The key property of this code is that
it yields short words such that every pair of strings in the code has the exactly
the same Hamming distance between them.

Hadamard Codes. We define two types of Hadamard codes using the Hadamard
matrices. The size 2× 2 Hadamard matrix is defined to be:

H2 =
[

1 1
0 1

]

For n a power of 2 the size n×n Hadamard matrix Hn is recursively defined as:

Hn =
[
Hn

2
Hn

2

Hc
n
2
Hn

2

]

From the Hadamard matrices we define two codes. For n a power of 2 and γ
a multiple of n

2 , define the balanced Hadamard code HRB(n, γ) to be the set
of words obtained by taking each row of Hn concatenated 2γ

n times. Similarly,
define the Hadamard code HR(n, γ) by taking each row of Hn, removing the
last bit, and concatenating 2γ

n copies. The Hadamard and balanced Hadamard
codes have the following properties.

Lemma 1. Consider the codes HR(n, γ) and HRB(n, γ) for n and γ powers of
2 and 2γ ≥ n. The following properties hold.

1. For any S ∈ HR(n, γ), length(S) = 2γ − 2γ
n .

2. For any non-equal Si, Sj∈HR(n, γ) (or any Si, Sj∈HRB(n, γ)), H(Si, Sj) =
γ.

3. For any non-equal Si, Sj ∈ HR(n, γ), H(Si, Scj) = γ − 2γ
n .

4. For any S ∈ HRB(n, γ), length(S) = 2γ.
5. Let FB(n, γ) = HRB(n, γ) \ {A1, . . . Ar} ∪ {Ac1, . . . , Acr} for an arbitrary

subset {A1, . . . Ar} of HRB(n, γ). Then, properties 1 and 4 still hold for
FB(n, γ).

6. The codes HR(n, γ) and HRB(n, γ) can be computed in time O(n·γ).

3 Exact Labelings for Special Graphs

In constructing a γ-labeling for general graphs, we make use of a more restrictive
type of labeling called an exact labeling, as well as an inverted type of labeling.
Such labelings can be combined for a collection of graphs to obtain labelings for

52 M.-Y. Kao, M. Sanghi, and R. Schweller

larger graphs. We consider two special types of graphs in this section, matchings
and star graphs, and show how to obtain short exact labelings for each. These
results are then applied in Section 4 by algorithms that decompose arbitrary
graphs into these special subgraphs efficiently, produce exact labelings for the
subgraphs, and then combine the labelings to get a labeling for the original
graph.

Definition 1 (Exact Labeling). A γ-labeling σ of a graph G = (V,E) is said
to be exact if there exist integers α and β, β−α ≥ γ, such that for any two nodes
u, v ∈ V it is the case that H(σ(u), σ(v)) = α if (u, v) ∈ E, and H(σ(u), σ(v)) = β
if (u, v) /∈ E. A labeling that only satisfies H(σ(u), σ(v)) = α if (u, v) ∈ E, but
H(σ(u), σ(v)) ≥ β if (u, v) /∈ E is called a lower exact labeling.

Definition 2 (Inverse Exact Labeling). A labeling σ of a graph G = (V,E)
is said to be an inverse exact labeling for value γ if there exist integers α and β,
β−α ≥ γ, such that for any two nodes u, v ∈ V it is the case that H(σ(u), σ(v)) =
α if (u, v) /∈ E, and H(σ(u), σ(v)) = β if (u, v) ∈ E.

Thus, the difference between an exact γ-labeling and a γ-labeling is that an
exact labeling requires the Hamming distance between adjacent vertices to be
exactly α, rather than at most α, and the distance between non-adjacent nodes
to be exactly β, rather than at least β. An inverse exact labeling is like an exact
labeling except that it yields a large Hamming distance between adjacent nodes,
rather than a small Hamming distance.

We are interested in exact γ-labelings because the exact γ-labelings for a
collection of graphs can be concatenated to obtain a γ-labeling for their union.
We define an edge decomposition of graph G = (V,E) into G1, . . . , Gr where
Gi = (Vi, Ei) such that Vi = V for all i and E =

⋃
i Ei.

Lemma 2. Consider a graph G with edge decomposition G1, . . . Gr. For each
Gi let σi be a labeling of Gi with length length(σi) = �i. Consider the labeling
σ(v) = σ1(v) · σ2(v) · · ·σr(v) defined by taking the concatenation of each of the
labelings σ for each vertex in G. Then the following hold.

1. If each σi is an exact γi-labeling of Gi with thresholds αi and βi, then for γ =
min{γi} the labeling σ(v) is a γ-labeling of G with thresholds α =

∑
βi − γ

and β =
∑
βi.

2. If each σi is an inverse exact γi-labeling of Gi with thresholds αi and βi, then
for γ = min{γi} the labeling σ(v) is a γ-labeling of the complement graph G
with thresholds α =

∑r
i=1 αi and β =

∑r
i=1 αi + γ.

We now discuss how to obtain exact and inverse exact labelings for special classes
of graphs. For the classes of graphs we consider, it is surprising that we are able to
achieve the same asymptotic label lengths for exact labelings as for inverse exact
labelings. In Section 4 we discuss algorithms that decompose general graphs into
these classes of graphs, obtain exact or inverse exact labelings, and then combine
them to obtain a γ-labeling from Lemma 2.

Flexible Word Design and Graph Labeling 53

3.1 Matchings

A graph G = (V,E) is said to be a matching if each connected component
contains at most two nodes. To obtain an exact labeling for a matching we use
Algorithm 1 MatchingExact. To obtain an exact inverse matching, there exists
an algorithm InverseMatchingExact (details omitted).

Algorithm 1. MatchingExact(G, γ)
1. Let γ′ = max(γ, n

2
). Generate HR(n, γ′).

2. Assign a distinct string from HR(n, γ′) to each clique of G. That is, apply the
labeling σ such that for each v ∈ V , σ(v) ∈ HR(n, γ′) and σ(v) = σ(u) iff (v, u) ∈
E.

3. Output σ.

Lemma 3. Algorithm 1 MatchingExact(G, γ) obtains an exact γ-labeling with
α = 0, β = max(γ, n2), and length O(γ + n), in run time O(γn+ n2).

Lemma 4. Algorithm InverseMatchingExact(G, γ) obtains an exact inverse la-
beling with α = max(γ, n2), β = 2 ·max(γ, n2), and length O(γ + n), in run time
O(γn+ n2).

3.2 Star-Graphs

A graph is a star graph if there exists a vertex c such that all edges in the graph
are incident to c. For such a graph, let A be the set of all vertices that are not
adjacent to c and let B be the set of vertices that are adjacent to c. Algorithm 2
StarExact obtains an exact γ-labeling for a star graph G. (In fact, it achieves
an exact 2γ-labeling). Figure 1 provides an example of the labeling assigned
by StarExact. To obtain an exact inverse γ-labeling there exists an algorithm
InverseStarExact (details omitted).

1111000000000000000000000000

γ 1's

0000111100000000000000000000
0000000011110000000000000000
0000000000001111000000000000
0000000000000000111100000000
0000000000000000000011110000
0000000000000000000000001111
0000000000000000000000000000c

B

A

(n-2)γ 0's

1111
1111
1111

0000

0000
0000
0000
0000

γ 1's

S1
c

S2
c

S3
c

S4

S5

S6

S7

S8
c

X copies

S1
c

S2
c

S3
c

S4

S5

S6

S7

S8
c

S1
c

S2
c

S3
c

S4

S5

S6

S7

S8
c

S1
c

S2
c

S3
c

S4

S5

S6

S7

S8
c

...

...

...

...

...

...

...

...

A
B

c

(a) (b)

Fig. 1. (a) A star graph and (b) its corresponding exact labeling

54 M.-Y. Kao, M. Sanghi, and R. Schweller

Algorithm 2. StarExact(G, γ)
1. Let γ′ = max(γ, n

2
). Let x = min(γ, n

2
). Arbitrarily index the n vertices of V as

v1, v2, . . ., vn with c = vn.
2. Set the first (n − 1)γ bits of σ(c) to be 0’s.
3. For each vertex vi �= c, set the first (n − 1)γ bits to be all 0’s except for the ith

size γ word which is set to all 1’s.
4. Append γ 1’s to σ(a) for each a ∈ A and γ 0’s to σ(b) and σ(c) for each b ∈ B.
5. For each vi ∈ A or vi = c append x copies of Sc

i to σ(vi) where Si is the ith string
in HR(γ′, n).

6. For each vi ∈ B append x copies of Si ∈ HR(γ′, n) to σ(vi).
7. Output σ.

Lemma 5. Algorithm 2 StarExact(G, γ) obtains an exact γ-labeling for a Star
graph G with α = γn

2 , β = 2γ + γn
2 and length O(γn), in run time O(γn2).

Lemma 6. Algorithm InverseStarExact(G,γ) obtains an exact inverseγ-labeling
for a Star graph G with α = γn

2 , β = 2γ + γn
2 and length O(γn), in run time

O(γn2).

4 Labeling General Graphs

To obtain a γ-labeling for a general graph, we decompose either the graph or
its complement into a collection of star and matching subgraphs. We then apply
Lemmas 3 and 5 or Lemmas 4 and 6 to obtain exact or exact inverse labelings for
these subgraphs, and then apply Lemma 2 to obtain a γ-labeling for the original
graph. We first consider an algorithm that decomposes a general graph G into
a collection of matchings.

4.1 Matching Decomposition

Lemma 7. An edge decomposition of a graph G = (V,E) into maximal match-
ings contains Θ(D) graphs where D is the maximum degree of any vertex in
G.

By breaking a given graphG into Θ(D) matchings and applying Lemmas 2 and 3,
we have the algorithm MatchingDecomposition(G, γ) which yields a γ-labeling
σ of G with length(σ) = O(D·(γ + n)). For dense graphs whose vertices are all
of high degree, MatchingDecomposition(G, γ) can be modified to decompose the
complement graph G into maximal matchings and apply the routine Inverse-
MatchingExact to obtain a length bound of O(D · (γ + n)) where D is the
maximum degree of any vertex in G. We thus get the following result.

Theorem 3. For any graph G and γ, there exists a γ-labeling σ of G with
length(σ) = O(D̂γ+D̂n) that can be computed in time complexity O(γD̂n+D̂n2)
where D̂ is the smaller between the degree of the maximum degree vertex in G
and the maximum degree vertex in G.

Flexible Word Design and Graph Labeling 55

4.2 Hybrid Decomposition (Star Destroyer)

The next algorithm for obtaining a γ-labeling adds the star decomposition to
the basic matching algorithm. From Theorem 3, the matching algorithm may
perform poorly even if there are just a few very high and very low degree vertices
in the graph. The StarDestroyer(G, γ) algorithm thus repeatedly applies the star
decomposition until all nodes have degree at most

√
mγn/

√
γ + n , and then

applies a final matching decomposition. With a few additional modifications we
achieve the following.

Theorem 4. For any graph G and γ, Algorithm StarDestroyer(G, γ) yields
a γ-labeling σ of G with length(σ) = O(

√
γ2m̂n+ γm̂n2) in time complexity

O(
√
γ2m̂n3 + γm̂n4) where m̂ = min{|E|, |Ē|}.

5 Trees and Forests

In this section we consider input graphs that are trees or forests and show that
we are able to obtain substantially smaller labelings than what is possible for
general graphs. For a collection of trees with a special type of γ-labeling, we show
how to combine the collection into a single special γ-labeled tree. Thus, using
recursive separators for trees we provide a recursive algorithm for tree labeling
that achieves a length of O(γD logn) where D is the largest degree node in the
tree.

We then show how to improve this bound with a more sophisticated algorithm
that assigns labels efficiently to paths as a base case, and recurses on the number
of leaves in the tree rather than the number of nodes to achieve a length of
O(γD log(max{f, n

γD})) where f is the number of leaves in the tree. Note that
this second bound is always at least as good as the first, and for trees with few
leaves but high γ, is better. For example, consider the class of graphs consisting
of log n′ length n′

logn′ paths, each connected on one end to a single node v. The
number of nodes in this graph is n = n′ + 1, the highest degree node has degree
D = logn′, and the number of leaves is f = logn′. For γ = n

logn′ , the first bound
yields � = O(n logn) while the second yields � = O(n log logn).

5.1 Combining Trees

To make our recursive algorithms work, we need a way to take labelings from
different trees and efficiently create a labeling for the tree resulting from com-
bining the smaller trees into one. To do this, we will make use of a special type
of γ-labeling.

Definition 3 (Lower Bounded Labeling). A γ-labeling σ is said to be a
lower bounded γ-labeling with respect to αa, αb, and β, αa ≤ αb < β, β−αb ≥ γ
if for any two nodes v and u, αa ≤ H(σ(v), σ(u)) ≤ αb if v and u are adjacent,
and H(σ(v), σ(u)) ≥ β if they are not adjacent.

56 M.-Y. Kao, M. Sanghi, and R. Schweller

Given a collection of lower bounded labelings for trees, we can combine the
labelings into a new lower bounded labeling with the same parameters according
to Lemma 8. For the rest of this section, we will be dealing with a parameter D′

which will be an upper bound on the maximum degree value of the input graph
such that D′ + 1 is a power of 2 greater than 2.

Algorithm 3. CombineTrees(T = (V,E), v, {σi}ti=1)
Input:

1. A degree t vertex v in tree T with t ≤ D′.
2. An αa = γ, αb = γ(D′−1)

2
, β = γ(D′+1)

2
lower bounded γ-labeling σi for each

subtree of v.

Output: An αa = γ, αb = γ(D′−1)
2

, β = γ(D′+1)
2

lower bounded γ-labeling of T .

1. For each labeling σi, append 0’s such that length(σi) = maxi=1...t{length(σi)}.
2. For each of the child trees T1, . . . Tt of v, do

(a) Let vi be the vertex in Ti adjacent to v and let vi,j denote the value of the jth

character of σi(vi). For each u ∈ Ti, u �= vi, invert the jth character of σi(u) if
vi,j = 1.

(b) Set σi(vi) to all 0’s.
3. Let σ(v) be maxi=1...t{length(σi)} 0’s concatenated with Sc

t+1 ∈ HR(D′ +

1, γ(D′+1)
2

). Let σ(u) = σi(u) for each u ∈ Ti.
4. For i = 1 to t

(a) For each u ∈ Ti, σ(u) ← σ(u) · Si for Si ∈ HR(D′ + 1, γ(D′+1)
2

).
5. Output σ.

Lemma 8 (Combining Trees). Consider a vertex v in a tree T of degree t.
Suppose for each of the t subtrees of v we have a corresponding length at most
� lower bounded γ-labeling σi with β = γ(D′+1)

2 , αb = β − γ, and αa = γ
for some D′ ≥ max{t, 2}, D′ + 1 a power of 2. Then, Algorithm 3 Combine-
Trees(T, v, {σi}ti=1) computes a lower bounded γ-labeling with the same αa, αb,
and β values and length �′ ≤ �+ γD′.

5.2 Node Based Recursion

Define a node separator for a graph to be a node such that its removal leaves the
largest sized connected component with at most �n2 	 vertices. Given Lemma 8
and the well known fact that every tree has a node separator, we are able to
label a tree by first finding a separator, then recursively labeling the separated
subtrees using lower bounded labeling parameters αa = γ, αb = γ(D′−1)

2 , and
β = γ(D′+1)

2 for D′ = O(D). Since it is trivial to obtain a lower bounded labeling
satisfying such αa, αb, and β for a constant sized base case tree, we can obtain
a O(γD log n) bound on length of labelings for trees.

We can then extend this to a t tree forest by creating t length γ(D′+1)
2 log t

length strings such that each pair of strings has Hamming distance at least

Flexible Word Design and Graph Labeling 57

γ(D′+1)
2 and appending a distinct string to the nodes of each forest. This yields

the following result.

Theorem 5 (Node Recursive Forest). Given an integer γ and a forest F
with maximum degree D, a γ-labeling of F with length O(γD logn) can be con-
structed in time O(nγD log2 n).

5.3 Leaf Based Recursion

Instead of performing recursion by halving the number of nodes in the graph,
we can instead halve the number of leaves in the graph and use an efficient path
labeling algorithm to solve the base case. We first describe the efficient path
labeling scheme.

Path Labeling. As a base case for our recursive algorithm, according to
Lemma 8, we want to be able to produce a short lower bounded γ-labeling for a
path graph with β = γ(D′+1)

2 , αb = γ(D′−1)
2 , and αa ≥ γ for any given D′. When

called from the tree algorithm, D′ will be on the order of the maximum degree
of any node in the input tree. The Path algorithm will achieve αa = β

2 ≥ γ to
satisfy the desired constraints. The reason for this choice of αa is that it is a
power of 2, which is necessary for our algorithm. The basic structure of the Path
algorithm is that it uses recursion based on node separators and Lemma 8 until
the path is sufficiently short. Then, a labeling based on the Hadamard code is
used. Recursive Algorithm 4 Path achieves the following result.

Algorithm 4. Path(P = 〈v1, . . . vn〉, γ,D′)
1. If n ≤ 2γ(D′ + 1) − 1 then

(a) Compute S1, . . . Sγ(D′+1) ∈ HR(γ(D′ + 1), γ(D′+1)
4

).
(b) For i = 1 to γ(D′ + 1) − 1 do

i. σ(v2i−1) ← Si.Si

ii. σ(v2i) ← Si.Si+1

(c) σ(v2γ(D′+1)−1) ← Sγ(D′+1).Sγ(D′+1)

(d) Output σ.
2. Else

(a) Let P1 = 〈v1, . . . , v n
2 −1〉, P2 = 〈v n

2 +1 . . . , vn〉.
(b) σ1 ←Path(P1, γ, D′), σ2 ←Path(P2, γ, D′).
(c) Output CombineTrees(P, v n

2
, {σ1, σ2}).

Lemma 9. For D′≥3,D′+1 a power of 2, and path P , Algorithm 4 Path(P,γ,D′)
generates a lower bounded γ-labeling σ of P with αa = γ(D′+1)

4 , αb = γ(D′−1)
2 ,

β = γ(D′+1)
2 , and length(σ) = O(max{γD′ log(n

γD′), γD′}) in time O(n·(max{γ
D′ log2(n

γD′), γD′})).

Leaf Recursive Tree Algorithm. The leaf recursive tree algorithm recursively
reduces the number of leaves in the tree until the input is a simple path, for which

58 M.-Y. Kao, M. Sanghi, and R. Schweller

Algorithm Path can be used. For a tree T with f leaves, a leaf separator is a
node such that its removal reduces the largest number of leaves in any of the
remaining connected components to at most � f2 +1. We start by observing that
every tree must have a leaf separator.

Lemma 10. Every tree has a leaf separator.

Note that a leaf separator always reduces the number of leaves in a tree unless
there are only 2 leaves, in which case the tree is a path which can be handled
according to Lemma 9. Having removed a leaf separator and recursively solved
for the sub trees, we can then apply Lemma 8 to finish the labeling. The details of
the algorithm are given as follows. Here, the input parameter D′ is the smallest
integer such that D′ + 1 is a power of 2 and D′ is at least the degree of the
highest degree node in the tree, or 3 in the case of an input path.

Algorithm 5. Tree(T = (V,E), γ,D′)
1. If Deg(T) ≤ 2, then output Path(T, γ, D′).
2. Else

(a) Find a leaf separator v for T .
(b) For each of the child trees T1, . . . Tt of v, σi ←Tree(Ti, γ, D′).
(c) Output CombineTrees(T, v, {σi}t

i=1).

Theorem 6 (Trees). Consider a tree T with f leaves and integer D′ = 2j −
1 ≥ max{deg(T), 3}. Then, Algorithm 5 Tree(T, γ,D′) computes a length O(γD′

log(max{f, n
γD′ })) γ-labeling of T in time complexity O(n·(γD′ log2(max{f, nγD′ })).

To extend this result to a forest of trees T1 · · ·Tt, we can use Tree(Ti, γ,D′)
for each individual tree. We can then append a distinct string from a set of t
strings to each tree such that the distance between any two strings is at least
β = γ(D′+1)

2 . Deterministically we can achieve such a set of strings trivially
using additional length O(γD log t) where D = deg(T). Alternately, we can use
elements of HR(t, β) for an additional length of O(t + γD). These approaches
yield the the following theorem.

Theorem 7 (Leaf Recursive Forest). There exists a deterministic algorithm
that produces a length O(min{t, γD log t} + γD log(max{f, n

γD})) γ-labeling for
an input forest F in time complexity O(n·(min{t, γDlog t}γDlog2(max{f, nγD}))),
where D = deg(F), f is the largest number of leaves in any of the trees in F ,
and t is the number of trees in F .

Alternately, we can use randomization to append shorter strings to each tree and
avoid an increase in complexity. Kao et al.[15] showed that with high probability,
a set of n uniformly generated random binary strings has Hamming distance at
least x between any two words with high probability for words of length at least
10(x + logn). Thus, we can produce a γ-labeling for a forest by first finding a

Flexible Word Design and Graph Labeling 59

labeling for each tree, making the length of the labels equal, and finally picking
a random string of length 10(β + logn) for each tree and appending the string
to each of the nodes in the tree. We thus get the following result.

Theorem 8 (Randomized Forest). There exists a randomized algorithm that
produces a length O(γD log(max{f, n

γD})) γ-labeling for an input forest F with
probability at least 1 − 1

n+2γ , in time complexity O(n·(γD log(max{f, n
γD}))),

where D = deg(F), and f is the largest number of leaves in any of the trees in
F .

6 Future Directions

There are a number of potential research directions stemming from this work. A
few of these are as follows. First, can our technique for labeling general graphs
by decomposing the graph into exact labelings be extended? We considered two
different types of decompositions, stars and matchings. Are there other types
of decompositions that can yield better bounds? Second, our lower bounds are
straightforward and stem primarily from lower bounds for labeling for adjacency
in general, rather than our much more restricted problem. It is likely that much
higher bounds exist for flexible word design. Third, an important class of graphs
that permits short labels for general graph labeling is the class of planar graphs.
It would be interesting to know whether or not a flexible word labeling that is
sublinear in the number of vertices exists as well. Fourth, we have initiated the
use of randomization in designing labels. Randomization is used extensively in
the design of standard DNA code word sets, and it would be interesting to know
if more sophisticated randomized algorithms can be applied to achieve better
flexible word labelings. Finally, although not included in this draft, we have also
considered generalizations of flexible word design to both distance labelings and
weighted graphs. These generalizations present many open problems and may
have direct applications to applying DNA computing to digital signal processing.

References

[1] L. M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266:1021–1024, 1994.

[2] G. Aggarwal, Q. Cheng, M. H. Goldwasser, M.-Y. Kao, P. M. de Espanes, and
R. T. Schweller. Complexities for generalized models of self-assembly. SIAM
Journal on Computing, 34:1493–1515, 2005.

[3] G. Aggarwal, M. H. Goldwasser, M.-Y. Kao, and R. T. Schweller. Complexities
for generalized models of self-assembly. In Proceedings of the fifteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 880–889, 2004.

[4] A. Ben-Dor, R. Karp, B. Schwikowski, and Z. Yakhini. Universal DNA Tag Sys-
tems: A Combinatorial Design Scheme. In Proceedings of the 4th Annual Inter-
national Conference on Computational Molecular Biology, pages 65–75, 2000.

[5] A. Brenneman and A. E. Condon. Strand Design for Bio-Molecular Computation.
Theoretical Computer Science, 287(1):39–58, 2001.

60 M.-Y. Kao, M. Sanghi, and R. Schweller

[6] S. Brenner. Methods for sorting polynucleotides using oligonucleotide tags, Feb.
1997. U.S. Patent Number 5,604,097.

[7] S. Brenner and R. A. Lerner. Encoded combinatorial chemistry. In Proceedings
of the National Academy of Sciences of the U.S.A., volume 89, pages 5381–5383,
June 1992.

[8] M. Breuer. Coding vertexes of a graph. IEEE transactions on Information Theory,
8:148–153, 1966.

[9] M. Breuer and J. Folkman. An unexpected result on coding vertices of a graph.
Journal of Mathematical Analysis and Applications, 20:583–600, 1967.

[10] R. Deaton, M. Garzon, R. C. Murphy, J. A. Rose, D. R. Franceschetti, and J. S. E.
Stevens. Genetic search of reliable encodings for DNA-based computation. In
Proceedings of the 2nd International Meeting on DNA Based Computers, 1996.

[11] A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith,
and R. M. Corn. Demonstration of a word design strategy for DNA computing
on surfaces. Nucleic Acids Research, 25(23):4748–4757, Dec. 1997.

[12] P. Gaborit and O. D. King. Linear constructions for DNA codes. Theoretical
Computer Science, 334:99–113, 2005.

[13] M. Garzon, R. Deaton, P. Neathery, D. R. Franceschetti, and R. C. Murphy. A
new metric for DNA computing. In Proceedings of the 2nd Genetic Programming
Conference, pages 472–478. Morgan Kaufman, 1997.

[14] C. Gavoille and D. Peleg. Compact and localized distributed data structures.
Technical Report RR-1261-01, Laboratoire Bordelais de Recherce en Informatique,
2001.

[15] M. Y. Kao, M. Sanghi, and R. Schweller. Randomized fast design of short
dna words. In Lecture Notes in Computer Science 3580: Proceedings of the
32nd International Colloquium on Automata, Languages, and Programming, pages
1275–1286, 2005.

[16] O. D. King. Bounds for DNA Codes with Constant GC-content. Electronic
Journal of Combinatorics, 10(1):#R33 13pp, 2003.

[17] A. Marathe, A. Condon, and R. M. Corn. On Combinatorial DNA Word Design.
Journal of Computational Biology, 8(3):201–219, 2001.

[18] D. D. Shoemaker, D. A. Lashkari, D. Morris, M. Mittman, and R. W. Davis.
Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel
molecular bar-coding strategy. Nature Genetics, 14(4):450–456, Dec. 1996.

[19] S. A. Tsaftaris. DNA Computing from a Signal Processing Viewpoint. IEEE
Signal Processing Magazine, 21:100–106, September 2004.

[20] S. A. Tsaftaris. How can DNA-Computing be Applied in Digital Signal Process-
ing? IEEE Signal Processing Magazine, 21:57–61, November 2004.

[21] D. C. Tulpan and H. H. Hoos. Hybrid Randomised Neighbourhoods Improve
Stochastic Local Search for DNA Code Design. In Y. Xiang and B. Chaib-draa,
editors, Lecture Notes in Computer Science 2671: Proceedings of the 16th Con-
ference of the Canadian Society for Computational Studies of Intelligence, pages
418–433. Springer-Verlag, New York, NY, 2003.

[22] J. van Lint. Introduction to Coding Theory. Springer, third edition, 1998.
[23] E. Winfree, F. Liu, L. Wenzler, and N. Seeman. Design and self-assembly of

two-dimensional DNA crystals. Nature, 394:539–544, August 1998.

Frequency Allocation Problems for Linear

Cellular Networks�

Joseph Wun-Tat Chan1, Francis Y.L. Chin2, Deshi Ye3,
Yong Zhang2,4, and Hong Zhu4

1 Department of Computer Science, King’s College London, London, UK
jchan@dcs.kcl.ac.uk

2 Department of Computer Science, The University of Hong Kong, Hong Kong
{chin, yzhang}@cs.hku.hk

3 College of Computer Science, Zhejiang University, China
yedeshi@zju.edu.cn

4 Department of Computer Science and Engineering, Fudan University, China
hzhu@fudan.edu.cn

Abstract. We study the online frequency allocation problem for wire-
less linear (highway) cellular networks, where the geographical coverage
area is divided into cells aligned in a line. Calls arrive over time and
are served by assigning frequencies to them, and no two calls emanating
from the same cell or neighboring cells are assigned the same frequency.
The objective is to minimize the span of frequencies used.

In this paper we consider the problem with or without the assumption
that calls have infinite duration. If there is the assumption, we propose
an algorithm with absolute competitive ratio of 3/2 and asymptotic com-
petitive ratio of 1.382. The lower bounds are also given: the absolute one
is 3/2 and the asymptotic one is 4/3. Thus, our algorithm with absolute
ratio of 3/2 is best possible. We also prove that the Greedy algorithm
is 3/2-competitive in both the absolute and asymptotic cases. For the
problem without the assumption, i.e. calls may terminate at arbitrary
time, we give the lower bounds for the competitive ratios: the absolute
one is 5/3 and the asymptotic one is 14/9. We propose an optimal online
algorithm with both competitive ratio of 5/3, which is better than the
Greedy algorithm, with both competitive ratios 2.

1 Introduction

Reducing channel interference and using frequencies effectively are fundamental
problems in wireless networks based on Frequency Division Multiplexing (FDM)
technology. In FDM networks, service areas are usually divided into cellular
regions or hexagonal cells [7], each containing one base station. Base stations can
allocate radio frequencies to serve the phone calls in their cells. The allocation
strategy is to choose different frequencies for calls in the same cell or in the
neighboring cells, so as to avoid interference.
� This research is supported by an Hong Kong RGC Grant.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 61–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

62 J.W.-T. Chan et al.

We consider the problems of online frequency allocation in linear (or highway)
cellular networks where the cells are aligned in a line as shown in Fig. 1. Linear
cellular networks can be used to cover the traffic on highways or long strips of
busy metropolitan areas. There are many studies on using frequencies effectively
so as to minimize interference and to reduce call blocking in linear networks [1,
2, 6, 8]. In this paper we study the performances of different strategies, which are
to minimize the span of frequencies used to serve all calls without interference.

Ci−2 Ci−1 Ci Ci+1 Ci+2

Fig. 1. Linear cellular network

A formal definition of our problem is described as follows. Given a linear
cellular network, in which a sequence σ of calls arrive over time, where σ =
(Ct1 , Ct2 , . . . , Ctk

, . . . ,) and Ctk
represents the cell from which the k-th call em-

anates. Each call Ctk
must be assigned upon its arrival, without information

about future calls {Cti |i > k}, a frequency from the integer set Z+ = {1, 2, . . .}
of available frequencies, that is different from those of other calls in the same cell
or neighboring cells. Let A(Ctk

) ∈ Z+ denote the integer frequency assigned to
the k-th call. Then A(Ctk

) �= A(Cti), where i < k and Cti is adjacent to Ctk
or

the same as Ctk
. The integer frequency once assigned to a call cannot be changed

during the survival of this call. The online frequency allocation problem for linear
cellular network (FAL for short) is to minimize the maximum assigned frequency,
i.e., max{A(Ctk

)|k = 1, 2, . . . , n}. If all the information of Ctk
is known in ad-

vance, we call this problem off-line frequency allocation problem. In this paper,
we focus on the online version of FAL.

Two models of online frequency allocation problems will be investigated. The
first model is that all calls have infinite duration [4]. We call this model frequency
allocation without deletion. The second model is that each call may terminate
at arbitrary time, i.e., each call is characterized by two parameters: arrival time
and termination time. However, the termination time is not known even when
the call arrives online. We call this model frequency allocation with deletion.

Performance Measures. We use competitive analysis [3] to measure the per-
formance of online algorithms. For any sequence σ of calls, let σt denote the
subsequence of calls served up to and at time t. Let A(σt) denote the cost of an
online algorithm A, i.e., the span of frequencies used by A at time t, and O(σt)
the cost of the optimal off-line algorithm, which has the knowledge of the whole
sequence σ in advance.

Let A(σ) = maxt A(σt) and O(σ) = maxt O(σt). The (absolute) competitive
ratio of A is defined as RA = supσ A(σ)/O(σ). Meanwhile, when the number of
calls emanating from the cells is large, the asymptotic competitive ratio of A is
defined as

Frequency Allocation Problems for Linear Cellular Networks 63

R∞A = lim sup
n→∞

max
σ

{
A(σ)
O(σ)

| O(σ) = n

}
.

Clearly, for any online algorithm A, we have R∞A ≤ RA.

Related and Our Contributions. To our best knowledge, this is the first
study on the online frequency allocation problem in linear cellular networks with
the objective to minimize the span of frequencies used. It is easy to check that
the off-line version can be solved in polynomial time. However, in many practical
scenarios, the information of calls is not completely known until they arrive. The
online problem is more suitable to model the mobile telephone networks problem.

A simple strategy for the online FAL problem is by fixed allocation assign-
ment [7], in which cells are partitioned into independent sets with no neighboring
cells in the same set. Each set is assigned a separate set of frequencies. The fixed
allocation assignment algorithm gives an easy upper bound of 2 for the online
FAL problem.

Another intuitive approach is by the greedy algorithm (Greedy) which assigns
the minimum available frequency to a new call such that the call does not in-
terfere with calls of the same or neighboring cells. We show that, Greedy is
3/2-competitive in the without deletion model, and 2-competitive in the with
deletion model.

In this paper, new algorithms are proposed for both models. In the with-
out deletion model, we present the algorithm Hybrid, which combines the idea
of Greedy and fixed allocation strategy, and yields the absolute and asymp-
totic competitive ratios of 3/2 and 1.382, respectively. Contrasting with the
lower bounds shown, 3/2 for the absolute case and 4/3 for the asymptotic case,
Hybrid is also best possible in the absolute case and better than Greedy in the
asymptotic case.

In the with deletion model, we propose the algorithm Borrow with both
absolute and asymptotic competitive ratios 5/3. We also prove the lower bounds,
which is 5/3 for the absolute case and 14/9 for the asymptotic case. Thus,
Borrow is best possible in the absolute case, and also better than Greedy in
the asymptotic case.

The rest of this paper is organized as follows. In Section 2, we analyze the
performance of Greedy. Section 3 and Section 4 study respectively the without
deletion and the with deletion models, in which upper and lower bounds are
presented. Owing to the space limitation, the proofs of Lemma 1 and part of the
proofs for Theorems 2 and 5 are omitted but they will be given in the full paper.

2 The Greedy Algorithm

We first consider the without deletion model and prove an upper bound of 3/2
for the Greedy. The proved ratio applies to both absolute and asymptotic cases.
Greedy is in fact optimal in the absolute case because no online algorithm can
achieve an absolute competitive ratio less than 3/2 (Theorem 6) in that case.
Then, we show that Greedy is 2-competitive in both absolute and asymptotic
cases of the with deletion model, and that is the best that Greedy can do.

64 J.W.-T. Chan et al.

A B C D E F

Fig. 2. A line cellular network with cells A, B, C, D, E and F

Theorem 1. In the without deletion model, the competitive ratio of Greedy for
frequency allocation problem in linear cellular network is 3/2.

Proof. Consider the network in Fig. 2. Suppose Greedy assigns the highest fre-
quency to a call from cell C, and no more calls arrive after that. Let B and D
be the left and right neighboring cells of C. Let fX denote the set of frequencies
used in cell X at the time when the highest frequency is assigned.

By the definition of Greedy, when the highest frequency, say h, is assigned to
a call in C, the frequencies from 1 to h−1 must have been assigned to calls of C
or its neighboring cells B and D. Thus, the span of frequencies used by Greedy
is h = |fB ∪ fC ∪ fD|.

Without loss of generality, assume the highest frequency among B and D ap-
pears in B. Since fC and fD cannot have common frequencies, those frequencies
in fD − fB must all appear in A. Therefore, |fA ∪ fB| ≥ |fB ∪ fD|.

It is clear that the optimal span of frequencies used, say s∗, must be at least
the maximum number of calls (frequencies used) from any two adjacent cells.
Thus, we have s∗ ≥ max{|fA ∪ fB|, |fB ∪ fC |, |fC ∪ fD|} ≥ max{|fB ∪ fD|, |fB ∪
fC |, |fC ∪ fD|}. Therefore, the competitive ratio of Greedy is at most

|fB ∪ fC ∪ fD|
max{|fB ∪ fD|, |fB ∪ fC |, |fC ∪ fD|} ≤ 3/2.

��

Theorem 2. In the with deletion model, the upper and lower bounds of the
competitive ratio of Greedy are both 2 for the online frequency allocation problem
in linear cellular networks.

Proof. The upper bound proof is simple. Consider the network in Fig. 2. When
the highest frequency, say h, appears in cell C, h is at most the total number of
calls from C and its neighboring cells, B and D. The span of frequencies used
by the optimal algorithm is at least the maximum among the numbers of calls
from B and C and those from C and D. Thus, the upper bound of 2 follows.
The lower bound proof is omitted in this paper. ��

3 FAL Without Deletion

We propose a generic online algorithm Hybrid for FAL in the without deletion
model. Hybrid consists of two integer parameters, α ≥ 1 and β ≥ 0. We prove
that Hybrid is 3/2-competitive in the absolute case for any α ≥ 1 and β ≥ 0.
Moreover, with a proper ratio between the values of α and β, the asymptotic

Frequency Allocation Problems for Linear Cellular Networks 65

competitive ratio of Hybrid is at most 1.382, which is better than Greedy in
the asymptotic case.

Conceptually, we divide the frequencies into groups, each of which consists of
Δ = 3α + β frequencies. A frequency f is said to be in group i if Δi < f ≤
Δ(i + 1). Hybrid partitions the set of all frequencies {1, 2, . . .} into 3 disjoint
subsets. The first subset F0 consists of α +β frequencies from each group, while
each of the remaining 2 subsets F1 and F2 has α frequencies. The details of
Hybrid are as follows:

Preprocessing Step: The cells of the linear cellular network are partitioned
into two sets S1 and S2, e.g., cells C2k+1 ∈ S1 and cells C2k ∈ S2, so that
the cells in these two sets are interleaving each other. As mentioned above,
the frequencies {1, 2, . . .} are partitioned into 3 disjoint subsets F0, F1 and F2.
Precisely, the frequencies of group i for each i ≥ 0 are distributed to the three
subsets as follows.

F0 ← {iΔ + 3j + 1 | j = 0, 1, . . . , α − 1} ∪ {iΔ + 3α + j | j = 1, . . . , β}
F1 ← {iΔ + 3j + 2 | j = 0, 1, . . . , α − 1}
F2 ← {iΔ + 3j + 3 | j = 0, 1, . . . , α − 1}

Frequency Assignment Step: Suppose a new call emanates from a cell C,
which belongs to Si, we assign a frequency x to the call either from Fi or F0
according to the following scheme:

min{x|x∈F0∪Fi, s.t. x is not assigned to cell C or any of its neighboring cells}

3.1 Asymptotic Competitive Ratio

We show that the asymptotic competitive ratio of Hybrid is (5−
√

5)/2 ≈ 1.382
when α/β = (

√
5+1)/2 and no online algorithm has an asymptotic competitive

ratio less than 4/3.
Lemma 1 lower bounds the number of frequencies required by the optimal off-

line algorithm, i.e., the total number of calls emanating from any two neighboring
cells, which helps lead to a bound for the competitive ratio.

Lemma 1. For a linear cellular network, if a cell A assigns a frequency from
group k, then for α/β ≥ (1 +

√
5)/2, the total number of calls from cell A and

one of its neighbor is at least (2α + β)k.

Theorem 3. In the without deletion model, the asymptotic competitive ratio of
Hybrid for FAL approaches (5 −

√
5)/2 ≈ 1.382 when α/β → (

√
5 + 1)/2.

Proof. If the highest frequency used by Hybrid, say h, is of group k, we have
h ≤ (3α+β)(k+1). Suppose the frequency h is assigned in a cell C. By Lemma 1,
C and one of its neighbors together have at least (2α + β)k calls when α/β ≥
(1 +

√
5)/2, in which the optimal algorithm has to settle with at least the same

amount of frequencies. Therefore, the asymptotic competitive ratio of Hybrid

is almost limk→∞
(3α+β)(k+1)

(2α+β)k = (5 −
√

5)/2 when α/β → (
√

5 + 1)/2. ��

66 J.W.-T. Chan et al.

Next, we give a lower bound on the asymptotic competitive ratio for FAL in the
without deletion model.

Theorem 4. No online algorithm for FAL in the without deletion model has an
asymptotic competitive ratio less than 4/3.

Proof. Consider the network in Fig. 2 with cells A, B, C, and D in a row. The
adversary initiates n calls from each of cells A and D. For any online algorithm S,
S assigns n frequencies to each of A and D. Suppose in each of the two sets of
frequencies, xn (0 ≤ x ≤ 1) of the frequencies do not appear in the other set.
Thus, the number of distinct frequencies (span of frequencies used) over the 2n
frequencies assigned is (2 − x)n. If x ≤ 2/3, the adversary stops and we have
R∞S ≥ 2 − x ≥ 4/3.

On the other hand, consider the case where x > 2/3. The adversary makes n
new calls in each of B and C. S must use at least xn new frequencies in each of
B and C. By now, S has used at least (2+x)n distinct frequencies. However, the
optimal algorithm can satisfy all these calls by 2n distinct frequencies. Therefore,
R∞S ≥ (2 + x)/2 ≥ 4/3. ��

3.2 Absolute Competitive Ratio

We show that the absolute competitive ratio of Hybrid is 3/2 for all α ≥ 1 and
β ≥ 0. We also give a matching lower bound proof for the problem, which shows
that Hybrid, as well as Greedy, are both optimal.

Theorem 5. In the without deletion model, the absolute competitive ratio of
Hybrid algorithm for FAL is at most 3/2.

Proof. We can prove that Hybrid is 3/2-competitive for all α ≥ 1 and β ≥ 0.
For simplicity, we only prove the competitive ratio for the case α = 1 and β = 0.
The general proof will be given in the full paper.

Suppose the highest frequency used by Hybrid, say h, is of group k and
assigned by a cell C of S2 (which is worse than the case of S1, which uses
frequencies from F1 that has smaller frequency values). We have h either 3k + 1
from F0 or 3k + 3 from F2. Consider the former case. C must have assigned
k frequencies from F2 before assigning h. Let 3i + 1 for i ≤ k be the highest
frequency from F0 assigned to a neighboring cell of C, say B. B has at least
i + 1 frequencies, where one is from F0 and i from F1. On the other hand, C
has at least k − i frequencies from F0. Altogether, B and C consist of at least
k + i + 1 + k − i, i.e., 2k + 1, distinct frequencies/calls. The optimal algorithm
must use at least the same amount of distinct frequencies. Thus the competitive
ratio of Hybrid is at most (3k + 1)/(2k + 1) ≤ 3/2.

For the latter case, following the same argument, C has at least 2k − i + 1
distinct frequencies and B, the neighbor of C which has the highest frequency
from F0, has at least i+1 distinct frequencies. Then, the optimal algorithm must
use at least 2k + 2 distinct frequencies. The competitive ratio of Hybrid is at
most (3k + 3)/(2k + 2) = 3/2. ��

Frequency Allocation Problems for Linear Cellular Networks 67

Next, we give the lower bound of absolute competitive ratio for FAL in the
without deletion model.

Theorem 6. No online algorithm for FAL in the without deletion model has an
absolute competitive ratio less than 3/2.

Proof. The proof is simple. Consider the network in Fig. 2 with cells A, B, C,
and D in a row. The adversary begins with one call from each of A and D. For
any online algorithm, if it assigns two different frequencies to these two calls, the
adversary stops. The competitive ratio of the online algorithm is 2. Otherwise,
the same frequency is assigned to both calls. One new call arrives at each of B
and C. The online algorithm must use two new frequencies for the two calls.
Thus, at least three different frequencies are used, while the optimal algorithm
can use only two. Therefore, the absolute competitive ratio is at least 3/2. ��

4 FAL with Deletion

In this section we study the online frequency allocation problem in the linear
cellular network in which the calls may terminate in arbitrary time. We call this
the with deletion model. It is noted that the without deletion model considered
above is a special case of the with deletion model. We present a new online
algorithm Borrow with competitive ratio at most 5/3. A matching lower bound
for problem is given for the absolute case which shows that our algorithm is best
possible. For the asymptotic case, we show that no online algorithm has the
competitive ratio less than 14/9, which leaves only a small gap between the
upper and lower bounds.

4.1 Online Algorithm with Borrowing

The main idea of our algorithm is to reuse (“borrow”) an existing frequency even
if the frequency is not the smallest possible (i.e., Greedy). Consider Fig. 1. When
a call emanates in cell Ci, we try to borrow existing frequencies from Ci−2 or
Ci+2, which does not create interference. If none can be borrowed from Ci−2 or
Ci+2, the call is satisfied by Greedy. In case there are more than one frequencies
that can be borrowed, we select the frequency according to the following priority.

1. The frequency appears in both Ci−2 and Ci+2. If there are more than one
of these, pick one arbitrarily.

2. The frequency appears in either Ci−2 or Ci+2 which currently has more
frequencies that do not appear in Ci. If there are more than one of these,
pick one arbitrarily.

3. Pick one arbitrarily.

Theorem 7. In the with deletion model, the competitive ratio of Borrow is at
most 5/3 for FAL.

68 J.W.-T. Chan et al.

Proof. Consider the network in Fig. 2 with cells A, B, C, D and E in a row. Sup-
pose the highest frequency, say h, is assigned to a call from D. Note that without
loss of generality, frequency h is assigned by the greedy approach. Hence, at the
time when frequency h is assigned, all frequencies from 1 to h must appear in
either C, D or E. We also consider another time instance, which is the latest
time before frequency h is assigned, that either C or E assigns a frequency, say
h′, that does not exist in C or E. Without loss of generality, we assume that it is
the cell C to assign the frequency h′. There are only two cases, either C assigns
the frequency h′ by the greedy approach or frequency h′ is borrowed from A.
For these two cases, we analyze the competitive ratio of Borrow.

By the greedy approach. Suppose when frequency h is assigned by D, the
number of frequencies being used in C, D, E are y+r1, x and y+r2, respectively,
where y is the number of common frequencies among cells C and E. Since fre-
quency h is assigned by the greedy approach, we have h = x + y + r1 + r2,
which is the number of distinct frequencies used in the three cells. In fact,
for any algorithm to satisfies all calls from these cells, one has to use at least
x + y + max{r1, r2} distinct frequencies.

Suppose when frequency h′ is assigned by C, the number of frequencies being
used in C and E are y′ + r′1 and y′ + r′2, respectively, where y′ is the number
of common frequencies among C and E. Note that as there are r′2 frequencies
in E that C did not borrow, the r′2 frequencies must be used in B. Hence, the
number of frequencies, and thus the number of calls, from cells B and C is at
least y + r1 + r2. By the definition of frequency h′, at the time frequency h′ is
assigned, the number of distinct frequencies among C and E, i.e., y′ + r′1 + r′2,
must be at least y + r1 + r2. Any algorithm to satisfy the calls from B and C
has to use at least y′ + r′1 + r′2 ≥ y + r1 + r2 frequencies.

As a result the competitive ratio of Borrow is at most

x + y + r1 + r2

max{x + y + max{r1, r2}, y + r1 + r2}
≤ 3

2
.

By borrowing. Similar to the previous case, suppose when frequency h is as-
signed by D, the number of frequencies being used in C, D, E are y + r1, x and
y + r2, respectively, where y is the number of common frequencies among C and
E. For any algorithm to satisfies all calls from these cells, one has to use at least
x + y + max{r1, r2} distinct frequencies. Suppose when frequency h′ is assigned
by C, the number of frequencies being used in C and E are y′ + r′1 and y′ + r′2,
respectively, where y′ is the number of common frequencies among C and E.

In this case, frequency h′ assigned by C is borrowed from A but not E. There
are two subcases by the algorithm: either all the r′2 frequencies in E which could
be assigned to C are already in B (i.e., E has no candidate for C to borrow) or
the number of frequencies in A is at least that in E. For the former subcase, we
have the number of frequencies in B and C at least y′ + r′1 + r′2, and hence the
analysis follows the previous case which yields a competitive ratio at most 3/2.
For the latter subcase, we have the number of frequencies in A but not in C at

Frequency Allocation Problems for Linear Cellular Networks 69

least that of frequencies in E but not in C, which is r′2. In addition, what those
frequencies that A could have but not in C are one frequency that is borrowed to
C, and also the frequencies that are neither in C nor E and with frequency value
less than h. There are at most x of them. That implies that r′2 ≤ x. Therefore,
the competitive ratio of our algorithm is at most

x + y + r1 + r2

max{x + y + max{r1, r2}, y′ + r′1}

with the constraints that r′2 ≤ x and y+r1+r2 ≤ y′+r′1+r′2. By the constraints,
we have y′ + r′1 ≥ y + r1 + r2 − x. Together with the fact that max{r1, r2} ≥
(r1 + r2)/2, we can prove that the ratio is at most 5/3. ��

4.2 Lower Bound

Theorem 8. There is no online algorithm for FAL, in the with deletion model,
with an absolute competitive ratio less than 5/3 or an asymptotic competitive
ratio less than 14/9.

Proof. For the absolute competitive ratio, we give an adversary that any online
algorithm will use at least five distinct frequency (with span of at least five),
while the optimal algorithm uses only three.

Consider the network Fig. 2 with cells A, B, C, D, E and F in a row. The
adversary has three calls emanate from each of A, C and F . In order for an
algorithm to use less than five distinct frequency, either the sets of frequency in
A and C differ by one frequency or the two sets are the same. In the following,
we analyze these two cases to show that no online algorithm has an absolute
competitive ratio less than 5/3.

– If the sets of frequencies in A and C differ by one frequency, without loss
of generality, we can assume that the set of frequencies in A is {1, 2, 3} and
that in C is {1, 2, 4}. In that case, the adversary terminates frequency 1 in
A and frequency 2 in C, and make a call from B in which the fifth distinct
frequency, say 5, has to be used. It is easy to see that the optimal can make
use of three distinct frequencies only, and hence the competitive ratio is at
least 5/3.

– If the sets of frequencies in A and C is the same, without loss of generality,
we can assume that both sets of frequency are {1, 2, 3}. Moreover, if less than
five distinct frequencies are used, the sets of frequency in F must be in the
form {1, 2, 3, 4} − {i} for a fixed i with 1 ≤ i ≤ 4. The aim of the adversary
is to make a call in B such that frequency i must be assigned to serve the
call. This can be done by terminating all calls in A except one and all calls
in C except one, such that the remaining calls in A and C use a different
frequency and none of the two frequencies are frequency i. Note that this
can always be done since originally there are three calls in each of A and C.
After frequency i is assigned by B, all calls in A and C are terminated and
two new calls are made from B and three new calls are made from D. Since
frequency i is used in B but not in F , the three frequencies assigned by D

70 J.W.-T. Chan et al.

cannot be the same to both of those in B and F . Then, applying the same
argument as in the previous case, we can show that the online algorithm
must use at least five distinct frequencies while the optimal algorithm can
use only three. Hence, the competitive ratio is at least 5/3.

For the asymptotic competitive ratio, the adversary makes n calls from each
of the A, C and F . Let fX denote the set of frequencies in cell X . For any online
algorithm, let γ be the minimum between the numbers of common frequencies in
A and F , and C and F , i.e., γ = min{|fA ∩fF |, |fC ∩fF |}. The online algorithm
uses at least 2n − γ distinct frequencies.

The adversary then terminates some calls in A and C such that fA ∩ fC = ∅
and fA ∪fC ⊆ fF and |fA| = |fC | = γ/2. After that, n−γ/2 new calls are made
from B, in which at least γ/2 of the frequencies assigned will not be in F . Then,
all calls from A and C are terminated, γ/2 and n new calls are made from B
and D, respectively. Since at least γ/2 of the frequencies in B are not in F and
vice versa, D has at least γ/4 frequencies either not in B or F and vice versa,
and without loss of generality assume that it is F . The adversary terminates
some calls in D and F such that fD ∩ fF = ∅ and |fD| = |fF | = n/2 + γ/8.
Then, n/2 − γ/8 new calls are made from E in which the frequencies assigned
must be different from those currently in D and F . The online algorithm must
use at least 3n/2 + γ/8 distinct different to satisfy all the calls in D, E and
F . Including the case where γ is defined, the online algorithm uses at least
max{2n−γ, 3n/2+γ/8} ≥ 14n/9 distinct frequencies. As the optimal algorithm
can use only n frequencies to satisfy all calls, the competitive ratio of the online
algorithm is at least 14/9. ��

References

1. S. Anand, A. Sridharam, and K. N. Sivarajan. Performance analysis of channelized
cellular systems with dynamic channel allocation. IEEE Transactions on vehicular
technology, 52(4):847-859, 2003.

2. M. Bassiouni and C. Fang. Dynamic channel allocation for linear macrocellular
topology. Wireless Personal Communications, 19:121-138, 2001.

3. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

4. I. Caragiannis, C. Kaklamanis, and E. Papaioannou. Efficient on-line frequency
allocation and call control in cellular networks. Theory Comput. Syst., 35(5):
521–543, 2002. A preliminary version of the paper appeared in SPAA 2000.

5. A. Iera, S. Marano and A. Molinaro. Call-Level and Burst-Level Properties of Effec-
tive Management of Multimedia Sercies in UMTS. Proceedings of IEEE INFOCOM,
1363-1370, 1996.

6. H. Jiang and S. S. Rappaport. Hybrid channel borrowing and directed retry in
highway cellular communications. IEEE 46th Vehicular Technology Conference,
’Mobile Technology for the Human Race’, 2:716-720, 1996.

7. V. H. MacDonald. The cellular concept. The Bell System Techn. J. 58:15-41, 1979
8. K.L. Yeung and T.P. Yum. Cell group decoupling analysis of a dynamic channel

assignment strategy in linear microcellular radio systems. IEEE Transactions on
Communications, 43:1289-1292, 1995.

Finite-State Online Algorithms and

Their Automated Competitive Analysis

Takashi Horiyama, Kazuo Iwama, and Jun Kawahara

Graduate School of Informatics
Kyoto University Kyoto 606-8501, Japan

{horiyama, iwama, jkawahara}@kuis.kyoto-u.ac.jp

Abstract. In this paper we study the Revocable Online Knapsack Prob-
lem (ROKP) which is an extension of the Online Knapsack Problem [8].
We prove an optimal upper bound of 1/t for the competitive ratio of
ROKP, where t is a real root of 4x3 + 5x2 − x − 4 = 0 (t ≈ 0.76850
and 1/t ≈ 1.3012). To prove this result, we made a full use of computer
programs as follows: For the base algorithm that is designed in a conven-
tional manner, we first construct an equivalent finite state diagram with
about 300 states. Then for each state, we generate a finite set of inequal-
ities such that the competitive ratio at that state is at most 1/t if the set
of inequalities do not have a real solution. The latter can be checked by
Mathematica. The number of inequalities generated was approximately
600 in total, and our computation time was 30 minutes using Athlon XP
2600+.

1 Introduction

When designing online algorithms (combinatorial optimization algorithms, more
in general), we often have heuristics which must be useful to improve the per-
formance of existing algorithms. In many cases, however, we have to give them
up just because their performance analysis seems too difficult. We are especially
unhappy if the difficulty is mainly due to the complexity of its case analysis,
namely, too many cases are involved. Such a difficulty is rather common for
some type of problems, including packing problems (see e.g., [10,11,13]).

In this paper, we study the Revocable Online Knapsack Problem (ROKP),
which is an extension of the Online (Removable) Knapsack Problem (OKP)
[8]. In OKP, we have a knapsack (or a bin) of size 1.0 and receive input items
u1, u2, . . . , ui, . . . (|ui| ≤ 1.0) sequentially. For each ui, we have to decide whether
or not we take (and put into the bin) ui. At the same time, we can discard zero
or more items currently existing in the bin. The goal is to maximize the content
of the bin at the end of the input. ROKP is a semi-online version of OKP: Other
than the main bin, we can use an extra bin and can use it as a buffer for online
decisions by allowing items to be moved between those two bins. Note that
relaxation of the online rule has been quite popular, typically by allowing revoke
of online decisions previously made or postponement of the decisions themselves.
This type of relaxation includes, for example, allowing (restricted) repacking or

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 71–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

72 T. Horiyama, K. Iwama, and J. Kawahara

lookahead in the online bin-packing [7,6]. Our present extension is in the same
category.

Since the extension from OKP to ROKP gives us more freedom, we can nat-
urally expect a better competitive ratio than

√
5+1
2 (≈ 1.6180) for OKP [8]. In

fact it is not so hard to see that if we can increase the number k of extra bins
then the competitive ratio approaches to 1.0 without limit. Unfortunately exact
analysis for a small k, like k = 1 in the case of ROKP, seems to involve very
complicated case analysis. To use a computer program is a natural attempt to
cope with this kind of difficulty. The main purpose of this paper is to show that
our online algorithm can be transformed into a finite-state diagram and we can
make a full use of this fact for automated performance analysis.

Our Contribution. Our algorithm for ROKP achieves a competitive ratio of
1/t ≈ 1.3012 (t is a real root of 4x3 +5x2 −x−4 = 0). We also prove a matching
lower bound (by hand). Our algorithm can also been seen as an approximation
algorithm for the knapsack (subset-sum) problem. It runs in time O(n) and space
O(1) and its approximation ratio (the same as above) is currently best under
the obviously strongest time/space restriction. (PTAS/FPTAS-type algorithms
need at least a linear space.) Note that the constant factors hidden under the
Big-O notation are not so large, either.

The basic idea of our scheme for automated competitive analysis is as follows:
(i) We first design an online algorithm, called a base algorithm, in an ordinary
way. Then we generate a state diagram G which can be seen as a finite automaton
equivalent to the base algorithm. (ii) With each state of G, we associate a set
of inequalities such that whether or not the competitive ratio at that state is
within the target bound is equivalent to whether or not the set of inequalities are
simultaneously satisfiable. (iii) We use Mathematica to solve the latter, i.e., the
satisfiability of the inequalities. In this approach, we have two major difficulties:

(1) The number of states must be finite. First of all, input items can be
arbitrarily small and hence we cannot bound the number of such items in the
bins. Fortunately, we can prove that this class of items are not important for
the competitive analysis, or we can assume that such items do not come. Thus
it is enough to consider finitely many items in the bins. A more serious problem
is that each input item takes a real value between 0 and 1. So, even if the bins
contain a finite number of items, the state space is not finite. Our solution is to
introduce a finite number of inequalities to each state which are implicit in the
base algorithm. Now it is enough to consider a finite number of cases since the
total number of inequalities is finite.

(2) Our target competitive ratio is not rational. Real numbers can be treated
by using e.g., Mathematica but computation time badly slows down. Fortu-
nately, there are few states which need really tight analysis; for others we can
use approximated fractions.

In this project, we first proved an upper bound of 1.3334 and a lower bound of
1.2808. The proof of this upper bound required analysis with essential 13 cases.
Although this proof was done by hand, improving this base algorithm required

Finite-State Online Algorithms 73

the explosion on the number of cases, and thus we adopted automated com-
petitive analysis. We tried to prove an upper bound of 1.2808 but the system
generated states whose competitive ratio is larger than this value. This gave us
an important hint to prove the better lower bound of 1.3012 and the same upper
bound was achieved by further modifying the base algorithm. The number of
states generated is about 300 and the number of generated inequalities is about
600. The total computation time is less than 30 minutes using Athlon XP 2600+.

Related Work. Automated theorem proving is one of the oldest topics in com-
puter science and has a number of successful applications [1,4,5,9,15] for design
and analysis of algorithms. A recent beautiful example is given by Seiden against
online bin-packing [14]. He proved that the asymptotic performance ratio of his
algorithm, called Harmonic++, is at most 1.58889. The performance analysis
is reduced to solving (finding an optimal solution of) a specific instance of a
certain type of integer linear programming. The instance is then solved by us-
ing the standard branch and bound technique together with some edge-pruning
techniques. Our approach in this paper is more direct, i.e., by describing an al-
gorithm in terms of a finite-state diagram in which each state includes enough
information to calculate its competitive ratio.

2 Problem Definitions and Lower Bounds

2.1 Revocable Online Knapsack Problem

An instance of the Online (Removable) Knapsack Problem (OKP) [8] is a se-
quence σ = u1, . . . , un of items, where 0 < |ui| ≤ 1 is the size of item ui. The
online player has a knapsack (also called a bin) of size one and for each ui, has
to decide (i) whether ui is put into the bin and (ii) which (zero or more) items
among the ones currently in the bin are discarded. Our goal is to make the bin
as full as possible.

The Revocable OKP (ROKP) is a semi-online version of the OKP. Other than
the (main) bin we wish to fill as much as possible, the player can use an extra
bin of size one and can use it for delaying discarding decisions. Since two bins
are same and complete rearrangement of the items in the two bins is allowed,
we do not have to distinguish the main and extra bins, namely our rule of the
game can be simply stated as follows: We have two bins and let B1(t) and B2(t)
be the set of items held by the first and the second bins, respectively, before
step t. Initially B1(1) = B2(1) = φ. In each step t(≥ 1), we have to decide
B1(t + 1) and B2(t + 1) so as to satisfy the condition that: (i) |B1(t + 1)| ≤ 1
and |B2(t + 1)| ≤ 1 (|Bi(t + 1)| denotes the total size of the items in the bin)
and (ii) B1(t + 1) ∪ B2(t + 1) ⊆ B1(t) ∪ B2(t) ∪ {ut}.

Let X be an algorithm for ROKP. |X(σ)| is the cost achieved by X for in-
put σ = u1, . . . , un, and is defined by |X(σ)| = max(|B1(n + 1)|, |B2(n + 2)|).
|OPT (σ)| denotes the cost achieved by the off-line optimal algorithm. If |X(σ)| ≥
|OPT (σ)|/r for any input σ, then we say that the competitive ratio of algorithm
X , denoted by CR(X), is r.

74 T. Horiyama, K. Iwama, and J. Kawahara

2.2 Lower Bounds of Competitive Ratio

As mentioned in the first section, the extension from OKP to ROKP substan-
tially increases the number of cases for analysing both lower and upper bounds.
We first present a (tight) lower bound for the competitive ratio of ROKP.

Theorem 1. Let X be any online algorithm for ROKP. Then CR(X) > 1/t−ε
for any ε > 0, where t is a real root of 4x3 + 5x2 − x − 4 = 0 (t ≈ 0.76850 and
1/t ≈ 1.3012).

Proof. We use nine items u, v, w, x, y, z, ū, v̄ and ȳ, where their sizes are defined
as follows: |u| = (t2 + t)/2 (≈ 0.67955) , |v| = 1 − t2 (≈ 0.40940) , |w| = t (≈
0.76850) , |x| = t2+ε′′ (≈ 0.59056) , |y| = (−t2−t+2)/2+ε′ (≈ 0.32045) , |z| =
t2 + t − 1 (≈ 0.35910) , |ū| = 1 − |u| (≈ 0.32045) , |v̄| = 1 − |v| (≈ 0.59060) , and
|ȳ| = 1 − |y| (≈ 0.67955) (ε′ and ε′′ are small positive constants).

Now, the adversary first gives three items u, v, and w. The online player X
has to discard at least one item, resulting in the following three cases: (Case 1)
discarding u, (Case 2) discarding v, and (Case 3) discarding w.

In Case 1, the adversary gives ū as the fourth item and stops the input. X can
get at most |w| as its cost since |ū| < |v| < |ū| + |v| < |w| < 1 and |ū| + |w| > 1.
The optimal cost is |u| + |ū| = 1, and thus the CR is |u|+|ū||w| = 1

t . Case 2 is

similar; the adversary gives v̄ and stops the input, and the CR is |v|+|v̄||w| = 1
t . In

Case 3, the next item by the adversary is x. We have again three cases: (Case
3-1) discarding u, (Case 3-2) discarding v, and (Case 3-3) discarding x. In Cases
3-1 and 3-2, we can prove that the CR exceeds 1

t similarly to Cases 1 and 2. In
Case 3-3, the adversary furthermore gives y and z. Now we have four items u, v,
y and z, where at least one item should be discarded. It can be proved that the
CR is at least 1

t for any of these four cases similarly. Thus the CR is at least 1
t

for all the cases. �

3 Base Algorithm

Recall that our primary goal is to design a finite state algorithm, denoted by
AFS , for ROKP and prove its performance automatically. To do so, we need the
base algorithm, denoted by A, from which AFS is generated as shown later.

Recall that t is a real root of equation 4x3 + 5x2 − x − 4 = 0 (t ≈ 0.76850).
We need the following classification on the sizes of the items. Let c0, c1, . . . , cn

be constant values satisfying c0 = 0 < c1 < c2 < · · · < cn = 1. An item u is
said to be in class Ci if ci−1 < |u| ≤ ci (i = 1, 2, . . . , n). In algorithm A, we use
seven classes: c1 = 1 − t (≈ 0.23150) , c2 = 1 − t2 (≈ 0.40940) , c3 = 2 − 2t (≈
0.46299)c4 = 2t − 1 (≈ 0.53701) , c5 = t2 (≈ 0.59060) , and c6 = t (≈ 0.76850).
Classes C1, C2, . . . , C7 are called XS, SS, MS, MM, ML, LL and XL, respectively.
Items in class SS are denoted as �SS1, �SS2, . . . , or simply denoted as �SS if it
causes no confusion. Similarly for other classes. Our algorithm A uses two bins
B1 and B2, whose single round for an input item u is described as follows:

Finite-State Online Algorithms 75

if (|B1| > t or |B2| > t) discard u. · · · (1)
else if (u ∈ XL) · · · (2)

put u into B1, and discard all the other items.
else if (there exists items �1, · · · , �m in the two bins satisfying t < |�1| + · · · +
|�m| + |u| ≤ 1) · · · (3)

put �1, · · · , �m and u into B1, and discard all the other items.
else if (u ∈ XS) put u into B1. · · · (4)
else if (it is possible to take u without discarding any item

by suitably rearranging the items) put u into B1 or B2 · · · (5)
else decide what items should be discarded according to B = {items in the
bins} ∪ {u}. · · · (6)

if (B includes at least two items in SS and at least one item in LL)
compare the total sizes of the two �SS ’s and the size of �LL,
and discard the larger item(s) (i.e., two SS ’s or one LL).

else if (B includes at least two items in the same class)
discard the largest item in the class.

else if (B includes �MS , �ML, �LL) discard �ML.
else (B includes �MM , �ML, �LL) discard �ML.

Here is an overview of algorithm A: In (1), the target competitive ratio has
already been achieved and the game ended already. In (2) and (3), the ratio will
be achieved after this round. In (4) and (5), it is obviously safe to take the item
u since we do not need to discard anything. (Notice that there is always a space
for an XS item in (4) since neither bin has size t or more.) (6) is the main portion
of A, where we have to discard something. The basic idea is this: Suppose that
we now have two items, x1 and x2 (x1 ≤ x2), in LL. Since two LL’s do not fit
a single bin, it is useless to hold both. So, we should discard one of them and
we do so by discarding the larger one, i.e., x2 for the following intuitive reason.
Suppose that the offline solution includes x2. Of course the online player that has
discarded x2 cannot use it but can use x1 instead. Since |x2|/|x1| ≤ t/t2 = 1/t,
this is not harmful. The same idea applies to the case of two SS ’s and one LL.

4 Finite State Algorithm

4.1 State Diagrams

Now our goal is to construct a finite state algorithm AFS from A. For this
purpose, there are two difficulties. The first one is the existence of XS items.
Arbitrarily small items are undesirable for us to bound the number of states.
Fortunately, we can prove the following lemma, by which without loss of gener-
ality, we can assume that each item has at lease size 1 − t (≈ 0.23150), i.e., the
number of items in each bin is obviously finite.

Lemma 1. Suppose that A achieves a competitive ratio of r for an input se-
quence which does not include XS items. Then A achieves the same competitive
ratio for a general input.

76 T. Horiyama, K. Iwama, and J. Kawahara

Proof. Let σ be an input sequence including XS items and σ′ be the sequence
obtained by deleting all the XS items in σ. Suppose that the competitive ratio
of A is at most 1/t for σ′ and consider the behavior of A for σ. Since the size
of an XS item is at most 1 − t, it must enter the bins unless the target ratio
1/t is already achieved. Thus if an XS item comes, the competitive ratio at that
moment is always improved. Furthermore, one can see easily that if A has to dis-
card XS items to take some (not XS) item, then the ratio 1/t must be achieved
after that. Thus, we can assume that XS items always enter the bins and are
never discarded, i.e., they always contribute to improving the competitive ratio.
Thus A also achieves the ratio 1/t for σ. �

The second difficulty is that the size of each item takes a real value and our
target competitive ratio is also real. As will be seen in a moment, we will escape
this difficulty by introducing a finite number of inequalities. A directed graph
G is called a state diagram, where each vertex is called a state and each ar-
row a transition. Each state and each transition have the following labels. (We
sometimes call such a label itself a state or a transition.)

(1) A state consists of a set U and a set R. U consists of item classes with
subscripts like {SS1,SS2,SS3,LL1}, which means we now have three SS items
and one LL item in the bins. R consists of inequalities like R = {SS1 ≤
SS2,SS 2 ≤ SS3,SS 1 + SS 2 < t,SS1 + LL1 > 1}. Recall that the size of SS
and LL items, �SS and �LL, satisfies approximately that 0.23 < |�SS | ≤ 0.41 and
0.59 < |�LL| ≤ 0.76. Therefore 0.82 < |�SS | + |�LL| ≤ 1.17, namely there are
two cases depending on whether �SS and �LL fit in a single bin or not. The last
inequality in R, SS 1 + LL1 > 1, means they do not.

(2) A transition from a state (U1, R1) to a state (U2, R2) consists of I, O and
T . I is a class in Class, i.e., it means the class the current item u belongs to.
O ⊆ U1 ∪ {u}, which shows the items that should be discarded. T is a set of
inequalities similar to R above, but each inequality must include u. For example
suppose that I = LL, O = {LL1}, and T = {SS1+u > 1, u ≤ LL1}. This means
the current item is an LL item which satisfies the inequalities in T against the
items in U1 of the state (U1, R1) (hence U1 should include SS1 and LL1), and
the item LL1 in U1 is discarded.

AFS will be given in Sec. 5. In the rest of this section, we discuss some basic
properties of AFS .

4.2 Feasibility of State Diagrams

We first introduce an important notion, feasibility, regarding a state diagram. A
state diagram G is said to be feasible if the following two conditions are met:

(1) For each state (U, R) and each C ∈ Class, there is at least one transition
from (U, R) whose I is equal to C. Suppose that there are two transitions t1 =
(I1, O1, T1) and t2 = (I2, O2, T2) from (U, R) such that I1 = I2. Then for any item
u ∈ I1(= I2), there must be exactly one set, either T1 or T2, of inequalities which
are all satisfied. Namely, for the current state and input, the state transition must
be determined uniquely.

Finite-State Online Algorithms 77

(2) For each transition (I, O, T) from (U1, R1) to (U2, R2), the disjunction of
T, R1 and R2 should be consistent in the following sense: Suppose for example
that U1 = {SS1,SS2,MM 1}, I = LL, and T = {SS1 + SS2 > u, SS2 + u ≤ 1}
and O = {SS1}. (Namely, the current bins include two SS ’s and one MM.
The current input u is in LL and u satisfies the two inequalities in T . The
algorithm discards SS 1.) Then in the next state, the item u, which is put in the
bins, becomes LL1. Therefore, U2 should be {SS2,MM 1,LL1} and R2 should be
R1 ∪ T − {all the inequalities including discarded items}, namely {SS2 + LL1 ≤
1} Furthermore, we change the subscripts of items so that they always start
from one. Namely, the new state should be U2 = {SS1,MM 1,LL1} and R2 =
{SS1 + LL1 ≤ 1}. We call this rule of subscript change the item mapping.

4.3 Execution Sequences

Now suppose that we are given a state diagram G and an item sequence u1, u2,. . .,
un. Then we define a sequence (S0, A0), (S1, A1), . . . , (Sn, An), called an execu-
tion sequence, as follows:

(1) For each i, Si = (Ui, Ri) is a state. Suppose that Ui = {SS1,SS2,LL1}. Ai

is an assignment of a specific value to each item in Ui, say {SS1 = 0.32,SS2 =
0.33,LL1 = 0.61}.

(2) S0 is the initial state, i.e., U0 = R0 = φ. A0 is also φ.
(3) From (Si, Ai) and 1 − t ≤ ui ≤ 1.0, (Si+1, Ai+1) is determined (if any)

as follows: (i) There is a transition (Ii, Oi, Ti) from Si to Si+1 in G such that
ui ∈ Ii and all the inequalities in Ti are satisfied under the assignment Ai and
the value ui. For example, suppose that Ui and Ai are as given in (1) above,
ui = 0.39 and Ti = {SS1 + SS 2 + u > 1.0}. Then this inequality in T is met
for SS 1 = 0.32,SS2 = 0.33 and u = 0.39. (ii) Ai+1 represents the change of
assignment accordingly (for this, the item mapping rule should be considered,
details are omitted.)

Now we can use a state diagram as an “algorithm”, which is due to the
following lemma (the proof is straightforward from the previous definitions and
may be omitted.)

Lemma 2. Suppose that G is a feasible transition diagram. Then for any se-
quence u1, u2, . . . , un of items such that 1 − t ≤ ui ≤ 1.0, its execution sequence
is determined uniquely.

4.4 Calculation of Competitive Ratio

Thus a feasible transition diagram has enough information as an algorithm.
However, it is not enough to calculate its competitive ratio automatically. We
thus add a bit more information to each state. In our new state diagram, called
a state diagram with history or an SDH, each state consists of U , H and R. Here,
U is exactly the same as before, i.e., a set of items in the bins. H is a set of items
which have been discarded so far, which looks like {SSH

1 ,SSH
2 ,MSH

1 ,MSH
2+}.

This means that two SS items have been discarded and at least two MS items

78 T. Horiyama, K. Iwama, and J. Kawahara

(denoted by MSH
2+) have been discarded. Note that at most two MS items fit a

single bin and therefore we do not care about whether the number of them is
two or more. R is a set of inequalities like {SS1 + LL1 > 1,SSH + MS 1 < t}.
Here SSH means an SS item already discarded. Note that we prepare only one
SSH even if two or more SS items have been discarded. (Since there may be
unlimitedly many such items, it is not possible to enumerate all of them.) As
will be explained later, this inequality SSH +MS 1 < t is to hold for any SS item
ever discarded.

Now we define the feasibility of an SDH. Its definition is the same as before
excepting the set R2 of inequalities in the next state. Suppose that R1 = {SS1 +
LL1 > 1,SSH+LL1 > 1,SSH+MS1 < t}, and SS 1 is discarded in this transition.
Then when checking R2, besides the same condition as before (given in (2) of
Sec. 4.3), we make the following modification for inequality SS1 + LL1 > 1 (i.e.,
each inequality including the discarded item): SS 1 + LL1 > 1 is changed to
SSH + LL1 > 1 for R2 if there is no SS in H or there is already SSH + LL1 > 1
in R1 (this is the case in the above R1). Otherwise, no inequalities including SS 1
or SSH should be in R2. There is no contradiction in this notation (details are
omitted).

An execution sequence for an SDH is also defined as before. Only one difference
is in assignments for discarded items. We have the following lemma similar to
Lemma 2 (proof is omitted).

Lemma 3. Suppose that G is a feasible SDH. Then for any sequence u1, . . . , un

of items such that 1−t ≤ ui ≤ 1.0, its execution sequence is determined uniquely.

Now we are ready to calculate the competitive ratio of an SDH. Suppose that a
state S = (U, H, R) has U = {SS1,SS2,LL1} and H = {SSH

1 ,MSH
1 ,MSH

2+}.
Then we prepare two sets ALG(S) and OPT (S). ALG(S) includes all the
nonempty subsets of the items in U . Namely, for the above example, ALG(S)=
{{SS1}, {SS2}, {LL1}, {SS1,SS2},. . ., {SS1,SS2,LL1}}. OPT (S) includes all
the nonempty subsets of the items in U ∪ H , namely, OPT (S) = {{SS1},. . .,
{SSH

1 }, . . . , {SS1,MSH
2+}, . . . , {SS1,SS2,LL1,SSH

1 ,MSH
1 ,MSH

2 }}. Now we con-
sider the following proposition P :

Proposition P . For any β ∈ OPT (S), there exists α ∈ ALG(S) such that there
is no assignment of values into items in α ∪ β which satisfies |α|/|β| ≤ t, R,
|α| ≤ 1.0, |β| ≤ 1.0 and all the range restrictions.

Now we show, by the following lemma, that we can actually prove the com-
petitive ratio by using P :

Lemma 4. Suppose that G is a feasible SDH. Then if proposition P is true for
every state of G, then G’s competitive ratio is at most 1/t.

Proof. Suppose that G’s competitive ratio is more than 1/t. Then there is an
input sequence u1, u2, . . . , un such that after un, there is no combination of items
in the bins which achieves the desired competitive ratio. Now consider the ex-
ecution sequence for u1, u2, . . . , un which is guaranteed to exist by Lemma 3.

Finite-State Online Algorithms 79

After un we reach an state S and an assignment which determines all the values
of the items in the bins and the items discarded so far at that state. Since the
competitive ratio is more than 1/t, we can select some β in OPT (S) for any α in
ALG(S) such that |β|/|α| > t, |α| ≤ 1.0, |β| ≤ 1.0. By the definition of execution
sequences, the values of the items must satisfy R and all the range restrictions.
However this contradicts the fact that P is true for this state S. �

Thus we have to check proposition P for every state of G to prove its competitive
ratio: For each state S we enumerate ALG(S) and OPT (S), both of which are
finite. Then for each α ∈ ALG(S) and each β ∈ OPT (S), we generate the
following set EQ(α, β) of inequalities and equalities: R ∪ {|α| ≤ t |β|, |α| ≤
1.0, |β| ≤ 1.0}∪ {All range restrictions} ∪ {4t3 + 5t2 − t − 4 = 0} for t. For each
S in G, if there exists α that EQ(α, β) has no solutions for all β ∈ OPT (S), we
can conclude that P is true. (This can be checked by Mathematica.)

5 Construction and Verification AFS

We now construct AFS which should be a feasible SDH. The basic idea is to
construct AFS by simulating its base algorithm A. We start with the initial
state of AFS which is (φ, φ, φ) and construct transitions and new states step
by step. Suppose that we are now in state S = (U, H, R). Then we consider a
transition t = (I, O, T) from S by an item class c ∈ Class. In order to determine
the state S′ to which t goes, we need the information of O and T of t (its I is c).
Once I, O and T are determined, then the state S′ is determined automatically
by the feasibility condition. So, the obtained SDH is automatically feasible.

The only remaining problem is how to determine T and O. To do so, we
developed a “symbolic simulator” of A which computes O and T from U, R and
I. The idea is that there are only a small number of possible inequalities which
can be in R and T , namely, they look like the following:

C1 + C2 > 1, C1 + C2 ≤ 1, C1 + C2 < t, C1 + C2 ≥ t,

where C1 and C2 are item classes or u. So, the simulator exhaustively checks
each (or sometimes two simultaneously) of those inequalities. Although details
are omitted, this simulator is relatively a small program.

As a result, we obtained AFS as an SDH with some 300 states, which is
shown in http://www.lab2.kuis.kyoto-u.ac.jp/~jkawahara/rokp/.Thus by
Lemma 4, we obtain

Theorem 2. AFS is a correct algorithm for ROKP without XS items, whose
competitive ratio is at most 1/t.

It is not hard to modify AFS into A′FS so that it can accept XS items also. Note
that we do not have a formal proof that A′FS and A are equivalent since we do
not have a formal relation between A and its simulator described in the previous
section, but we do believe that they are equivalent. Thus we have the following
final theorem.

80 T. Horiyama, K. Iwama, and J. Kawahara

Theorem 3. A′FS is a correct algorithm for ROKP, whose competitive ratio is
at most 1/t.

6 Possibilities and Limits of the Approach

An obvious question against this work is the generality of this approach, namely,
what kind of other problems can we use the same technique? There are two
key issues: One is to describe the algorithm as a finite state diagram. This is
reactively easier since the power of inequalities is quite high as seen in this
paper. For example, the work-function algorithm for the 3-server problem can
be described as a finite state diagram. The other is much harder, i.e., how to
install a mechanism of performance analysis into the state diagram. In this paper
we were able to do this by adding “history data” into each state. This does not
seem always possible of course, but there might be alternatives, for example,
checking all the paths of the state diagram up to some (finite) length.

References

1. K. Appel and W. Haken, Every planar map is four colorable. Part 1, II. Dischargin,
Illinois Journal of Mathematics, vol.21, pp.429–597, 1977.

2. Y. Bartal and E. Koutsoupias, On the Competitive Ratio of the Work Function
Algorithm for the k-Server Problem. Proc. STACS, pp.605–613, 2000.

3. W. W. Bein, M. Chrobak, L. L. Larmore, The 3-server problem in the plane,
Theoretical Computer Science, vol.289/1, pp.335–354, 2002.

4. U. Feige and M. X. Goemans, Approximating the value of two prover proof systems,
with applications to MAX-2SAT and MAX-DICUT, Proc. ISTCS, pp.182–189,
1995.

5. M. X. Goemans and D. P. Williamson, Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming, J. ACM,
vol.42, no.6, pp.1115–1145, 1995.

6. E. F. Grove, Online bin packing with lookahead, Proc. SODA pp.430–436, 1995.
7. Z. Ivkovic and E. L. Lloyd, Fully dynamic algorithms for bin packing: Being

(Mostly) myopic helps, Proc. ESA, LNCS, pp.224–235, Springer, 1993.
8. K. Iwama and S. Taketomi, Removable on-line knapsack problems, Proc. ICALP,

LNCS 2380, pp.293–305, 2002.
9. H. Karloff and U. Zwick, A 7/8-approximation algorithm for MAX 3SAT?, Proc.

FOCS, pp.406–415, 1997.
10. O. Kullmann, New methods for 3-SAT decision and worst-case analysis, Theoretical

Computer Science, vol.223/1-2, pp.1–72, 1999.
11. C. C. Lee and D. T. Lee, A simple on-line bin-packing algorithm, J. ACM, vol.32,

no.3, pp.562–572, 1985.
12. M. Manasse, L. A. McGeoch, D. D. Sleator, Competitive algorithms for server

problems, J. Algorithms, vol.11 pp.208–230, 1990.
13. M. B. Richey, Improved bounds for harmonic-based bin packing algorithms, Discr.

Appli. Math., vol.34, pp.203–227, 1991.
14. S. S. Seiden, On the online bin packing problem, J. ACM, vol.49, no.5, pp.640–671,

2002.
15. L. Trevisan, G. B. Sorkin, M. Sudan, D. P. Williamson, Gadgets, Approximation,

and Linear Programming, SIAM J. Comput., vol.29, no.6, pp.2074–2097, 2000.

Offline Sorting Buffers on Line

Rohit Khandekar1 and Vinayaka Pandit2

1 University of Waterloo, ON, Canada
rkhandekar@gmail.com

2 IBM India Research Lab, New Delhi
pvinayak@in.ibm.com

Abstract. We consider the offline sorting buffers problem. Input to
this problem is a sequence of requests, each specified by a point in a
metric space. There is a “server” that moves from point to point to serve
these requests. To serve a request, the server needs to visit the point
corresponding to that request. The objective is to minimize the total
distance travelled by the server in the metric space. In order to achieve
this, the server is allowed to serve the requests in any order that requires
to “buffer” at most k requests at any time. Thus a valid reordering can
serve a request only after serving all but k previous requests.

In this paper, we consider this problem on a line metric which is moti-
vated by its application to a widely studied disc scheduling problem. On
a line metric with N uniformly spaced points, our algorithm yields the
first constant-factor approximation and runs in quasi-polynomial time
O(m · N · kO(log N)) where m is the total number of requests. Our ap-
proach is based on a dynamic program that keeps track of the number of
pending requests in each of O(log N) line segments that are geometrically
increasing in length.

1 Introduction

The sorting buffers problem arises in scenarios where a stream of requests needs
to be served. Each request has a “type” and for any pair of types t1 and t2, the
cost of serving a request of type t2 immediately after serving a request of type t1
is known. The input stream can be reordered while serving in order to minimize
the cost of type-changes between successive requests served. However, a “sorting
buffer” has to be used to store the requests that have arrived but not yet served
and often in practice, the size of such a sorting buffer, denoted by k, is small.
Thus a legal reordering must satisfy the following property: any request can be
served only after serving all but k of the previous requests. The objective in the
sorting buffers problem is to compute the minimum cost output sequence which
respects this sequencing constraint.

Consider, as an example, a workshop dedicated to coloring cars. A sequence
of requests to color cars with specific colors is received. If the painting schedule
paints a car with a certain color followed by a car with a different color, then, a
significant set-up cost is incurred in changing colors. Assume that the workshop
has space to hold at most k cars in waiting. A natural objective is to rearrange

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 81–89, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 R. Khandekar and V. Pandit

the sequence of requests such that it can be served with a buffer of size k and
the total set-up cost over all the requests is minimized.

Consider, as another example, the classical disc scheduling problem. A se-
quence of requests each of which is a block of data to be written on a particular
track is given. To write a block on a track, the disc-head has to be moved to
that track. As discussed in [3], the set of tracks can be modeled by uniformly
spaced points on a straight line. The cost of moving from a track to another
is then the distance between those tracks on the straight line. We are given a
buffer that can hold at most k blocks at a time, and the goal is to find a write-
sequence subject to the buffer constraint such that the total head movement is
minimized.

Usually, the type-change costs satisfy metric properties and hence we formu-
late the sorting buffers problem on a metric space. Let (V, d) be a metric space
on N points. The input to the Sorting Buffers Problem (SBP) consists of a se-
quence of m requests, the ith request being labeled with a point pi ∈ V . There
is a server, initially located at a point p0 ∈ V . To serve ith request, the server
has to visit pi. There is a sorting buffer which can hold up to k requests at a
time. In a legal schedule, the ith request can be served only after serving at least
i − k requests of the first i − 1 requests. More formally, the output is given by
a permutation π of {1, . . . , m} where the ith request in the output sequence is
the π(i)th request in the input sequence. Observe that a schedule π is legal if
and only if it satisfies π(i) ≤ i + k for all i. The cost of the schedule is the total
distance that the server has to travel, i.e., Cπ =

∑m
i=1 d(pπ(i−1), pπ(i)) where

π(0) = p0 corresponds to the starting point. The goal in SBP is to find a legal
schedule π that minimizes Cπ. In the online version of SBP, the ith request is
revealed only after serving at least i − k among the first i − 1 requests. In the
offline version, on the other hand, the entire input sequence is known in advance.

The car coloring problem described above can be thought of as the SBP on
a uniform metric where all the pair-wise distances are identical while the disc
scheduling problem corresponds to the SBP on a line metric where all the points
lie on a straight line and the distances are given along that line.

1.1 Previous Work

On a general metric, the SBP is known to be NP-hard due to a simple reduction
from the Hamiltonian Path problem. However, for the uniform or line metrics, it
is not known if the problem remains NP-hard. In fact, no non-trivial lower bound
is known on the approximation (resp. competitive) ratio of offline (resp. online)
algorithms, deterministic or randomized. In [3], it is shown that the popular
heuristics like shortest time first, first-in-first-out (FIFO) have Ω(k) competitive
ratio on a line metric. In [5], it is shown that the popular heuristics like FIFO,
LRU, and Most-Common-First (MCF) have a competitive ratio of Ω(

√
k) on a

uniform metric.
The offline version of the sorting buffers problem on any metric can be solved

optimally using dynamic programming in O(mk+1) time where m is the number
of requests in the sequence. This follows from the observation that the algorithm

Offline Sorting Buffers on Line 83

can pick k requests to hold in the buffer from first i requests in
(

i
k

)
ways when

the (i + 1)th request arrives.
The SBP on a uniform metric has been studied before. Räcke et al. [5] pre-

sented a deterministic online algorithm, called Bounded Waste that has O(log2 k)
competitive ratio. Englert and Westermann [2] considered a generalization of the
uniform metric in which moving to a point p from any other point in the space
has a cost cp. They proposed an algorithm called Maximum Adjusted Penalty
(MAP) and showed that it gives an O(log k) approximation, thus improving
the competitive ratio of the SBP on uniform metric. Kohrt and Pruhs [4] also
considered the uniform metric but with different optimization measure. Their
objective was to maximize the reduction in the cost from that of the schedule
without a buffer. They presented a 20-approximation algorithm for this variant
and this ratio was improved to 9 by Bar-Yehuda and Laserson [1].

For SBP on line metric, Khandekar and Pandit [3] gave a polynomial time
randomized online algorithm with O(log2 N) competitive ratio. In fact, their
approach works on a class of “line-like” metrics. Their approach is based on
probabilistic embedding of the line metric into the so-called hierarchical well-
separated trees (HSTs) and an O(log N)-competitive algorithm for the SBP
on a binary tree metric. No better approximations were known for the offline
problem.

1.2 Our Results

The first step in understanding the structure of the SBP is to develop offline al-
gorithms with better performance than the known online algorithms. We provide
such an algorithm. Following is our main theorem.

Theorem 1. There is a constant factor approximation algorithm for the offline
SBP on a line metric on N uniformly spaced points that runs in quasi-polynomial
time: O(m ·N ·kO(log N)) where k is the buffer-size and m is the number of input
requests.

This is the first constant factor approximation algorithm for this problem on any
non-trivial metric space. The approximation factor we prove here is 15. How-
ever we remark that this factor is not optimal and most likely can be improved
even using our techniques. Our algorithm is based on dynamic programming.
We show that there is a near-optimum schedule with some “nice” properties and
give a dynamic program to compute the best schedule with those nice proper-
ties. In Section 2.1, we give an intuitive explanation of our techniques and the
Sections 2.2 and 2.3 present the details of our algorithm.

2 Algorithm

2.1 Outline of Our Approach

We start by describing an exact algorithm for the offline SBP on a general
metric on N points. As we will be interested in a line metric as in the disc

84 R. Khandekar and V. Pandit

scheduling problem, we use the term “head” for the server and “tracks” for
the points. Since the first k requests can be buffered without loss of generality,
we fetch and store them in the buffer. At a given step in the algorithm, we
define a configuration (t, C) to be the pair of current head location t and an N -
dimensional vector C that specifies the number of requests pending at each track.
Since there are N choices for t and a total of k requests pending, the number
of distinct configurations is O(N · kN). We construct a dynamic program that
keeps track of the current configuration and computes the optimal solution in
time O(m·N ·kN) where m is the total number of requests. The dynamic program
proceeds in m levels. For each level i and each configuration (t, C), we compute
the least cost of serving i requests from the first i + k requests and ending up in
the configuration (t, C). Let us denote this cost by DP[i, t, C]. This cost can be
computed using the relation

DP[i, t, C] = min
(t′,C′)

(DP[i − 1, t′, C′] + d(t′, t))

where the minimum is taken over all configurations (t′, C′) such that while mov-
ing the head from t′ to t, a request at either t′ or t in C′ can be served and
a new request can be fetched to arrive at the configuration (t, C). Note that it
is easy to make suitable modifications to keep track of the order of the output
sequence.

Note that the high complexity of the above dynamic program is due to the fact
that we keep track of the number of pending requests at each of the N tracks. We
now describe our intuition behind obtaining much smaller dynamic program for
a line metric on N uniformly spaced points. Our dynamic program keeps track
of the number of pending requests only in O(log N) segments of the line which
are geometrically increasing in lengths. The key observation is as follows: if the
optimum algorithm moves the head from a track t to t′ (thereby paying the cost
|t−t′|), a constant factor approximation algorithm can safely move an additional
O(|t − t′|) distance and clear all the nearby requests surrounding t and t′. We
show that instead of keeping track of the number of pending requests at each
track, it is enough to do so for the ranges of length 20, 21, 22, 23, . . . surrounding
the current head location t. For each track t, we partition the disc into O(log N)
ranges of geometrically increasing lengths on both sides of t. The configuration
(t, C) now refers to the current head location t and an O(log N)-dimensional
vector C that specifies number of requests pending in each of these O(log N)
ranges. Thus the new dynamic program will have size O(m · N · kO(log N)).

To be able to implement the dynamic program, we ensure the property that
the new configuration around t′ should be easily computable from the previous
configuration around t. More precisely, we ensure that the partitions for t and
t′ satisfy the following property: outside an interval of length R = O(|t − t′|)
containing t and t′, the ranges in the partition for t coincide with those in the
partition for t′ (see Figure 1). Note however that inside this interval, the two
partitions may not agree. Thus when the optimum algorithm moves the head
from t to t′, our algorithm starts the head from t, clears all the pending requests
in this interval and rests the head at t′ and updates the configuration from the

Offline Sorting Buffers on Line 85

R = O(|t− t′|)

t′

t

Co-inciding ranges increasing geometricallyCo-inciding ranges increasing geometrically

Fig. 1. Division of the line into ranges for tracks t and t′

previous configuration. Since the length of the interval is O(|t−t′|), our algorithm
spends at most a constant factor more than the optimum.

2.2 Partitioning Scheme

Now we define a partitioning scheme and its properties that are used in our
algorithm. Let us assume, without loss of generality, that the total number of
tracks N = 2n is a power of two and that the tracks are numbered from 0 to
2n − 1 left-to-right. In the following, we do not distinguish between a track and
its number. For tracks t and t′, the quantity |t− t′| denotes the distance between
these tracks which is the cost paid in moving the head from t to t′. We say that
a track t is to the right (resp. left) of a track t′ if t > t′ (resp. t < t′).

Definition 1 (landmarks). For a track t and an integer p ∈ [1, n], we define
pth landmark of t as �p(t) = (q + 1)2p where q is the unique integer such that
(q − 1)2p ≤ t < q2p. We also define (−p)th landmark as �−p(t) = (q − 2)2p. We
also define �0(t) = t.

�p(t)

2p q2p

t

(q − 2)2p
(q − 1)2p (q + 1)2p

�−p(t)

Fig. 2. The pth and (−p)th landmarks of a track t

It is easy to see that �−n(t) < · · · < �−1(t) < �0(t) < �1(t) < · · · < �n(t). In
fact the following lemma claims something stronger and follows easily from the
above definition.

Lemma 1. Let p ∈ [1, n − 1] and (q − 1)2p ≤ t < q2p for an integer q.

– If q is even, then �p+1(t) − �p(t) = 2p and �−p(t) − �−p−1(t) = 2p+1.
– If q is odd, then �p+1(t) − �p(t) = 2p+1 and �−p(t) − �−p−1(t) = 2p.

In the following definition, we use the notation [a, b) = {t integer | a ≤ t < b}.

Definition 2 (ranges). For a track t, we define a “range” to be a contiguous
subset of tracks as follows.

86 R. Khandekar and V. Pandit

– [�−1(t), �0(t) = t) and [�0(t) = t, �1(t)) are ranges.
– for p ∈ [1, n − 1], if �p+1(t) − �p(t) = 2p+1 and �p(t) − �p−1(t) = 2p−1 then

[�p(t), �p(t) + 2p) and [�p(t) + 2p, �p+1(t)) are ranges, else [�p(t), �p+1(t)) is
a range.

– for p ∈ [1, n − 1], if �−p(t) − �−p−1(t) = 2p+1 and �−p+1(t) − �−p(t) = 2p−1

then [�−p−1(t), �−p−1(t) + 2p) and [�−p−1(t) + 2p, �−p(t)) are ranges, else
[�−p−1(t), �−p(t)) is a range.

The above ranges are disjoint and form a partition of the tracks which we denote
by π(t).

Note that in the above definition, when the difference �p+1(t)−�p(t) and �−p(t)−
�−p−1(t) equals 4 times �p(t) − �p−1(t) and �−p+1(t) − �−p(t) respectively, we
divide the intervals [�p(t), �p+1(t)) and [�−p−1(t), �−p(t)) into two ranges of length
2p each. For example, in Figure 3, the region between �p+2(t) and �p+3(t) is
divided into two disjoint ranges of equal size.

The following lemma proves a useful relation between the partitions π(t) and
π(t′) for a pair of tracks t and t′: the ranges in the two partitions coincide
outside the interval of length R = O(|t − t′|) around t and t′. As explained in
Section 2.1, such a property is important for carrying the information about the
current configuration across the head movement from t to t′.

Lemma 2. Let t and t′ be two tracks such that 2p−1 ≤ t′ − t < 2p. The ranges
in π(t) and π(t′) are identical outside the interval R = [�−p(t), �p(t′)).

Proof. First consider the case when (q−1)2p ≤ t < t′ < q2p for an integer q, i.e.,
t and t′ lie in the same “aligned” interval of length 2p. Then clearly they also
lie in the same aligned interval of length 2r for any r ≥ p. Thus, by definition,
�r(t) = �r(t′) for r ≥ p and r ≤ −p. Thus it is easy to see from the definition of
ranges that the ranges in π(t) and π(t′) outside the interval [�−p(t), �p(t′)) are
identical.

Consider now the case when t and t′ do not lie in the same aligned interval of
length 2p. Since |t − t′| < 2p, they must lie in the adjacent aligned intervals of
length 2p, i.e., for some integer q, we have (q − 1)2p ≤ t < q2p ≤ t′ < (q + 1)2p

(See Figure 3). Let q = 2uv where u ≥ 0 is an integer and v is an odd integer.
The following key claim states that depending upon how r compares with the

the highest power of two that divides the “separator” q2p of t and t′, either the
rth landmarks of t and t′ coincide with each other or the (r + 1)th landmark of
t coincides with the rth landmark of t′.

Claim. 1. �r(t) = �r(t′) for r ≥ p + u + 1 and r ≤ −p − u − 1.
2. �r+1(t) = �r(t′) for p ≤ r < p + u,
3. �−r(t) = �−r−1(t′) for p ≤ r < p + u,
4. �p+u(t′) = �p+u(t) + 2p+u and �p+u+1(t) − �p+u(t) = 2p+u+1,
5. �−p−u(t) = �−p−u−1(t′) + 2p+u and �−p−u(t′) − �−p−u−1(t′) = 2p+u+1,

Proof. The equation 1 follows from the fact that since 2p+u is the highest power
of two that divides q2p, both t and t′ lie in the same aligned interval of length
2r for r ≥ p + u + 1.

Offline Sorting Buffers on Line 87

The equations 2, 3, 4, and 5 follow from the definition of the landmarks and
the fact that t and t′ lie in the different but adjacent aligned intervals of length
2r for p ≤ r < p + u (see Figure 3).

�p(t)

2p

t

t′

Rng-2Rng-1

t and t′ match beyond
this point.

Landmarks and ranges of

�p(t′)
�p+1(t′) �p+2(t′) �p+3(t′)

�p+3(t)�p+2(t)�p+1(t)

Fig. 3. Landmarks and ranges for tracks t and t′ when q = 4, u = 2

Claim 2.2 implies that all but one landmarks of t and t′ coincide with each
other. For the landmarks of t and t′ that coincide with each other, it follows
from the definition of the ranges that the corresponding ranges in π(t) and π(t′)
are identical.

The landmarks of t, t′ that do not coincide are �p+u(t′) = �p+u(t) + 2p+u

and �−p−u(t) = �−p−u−1(t′) + 2p+u. But, note that the intervals [�p+u(t),
�p+u+1(t)) and [�−p−u−1(t′), �−p−u(t′)) are divided into two ranges each: [�p+u(t),
�p+u(t)+2p+u), [�p+u(t)+2p+u, �p+u+1(t)) and [�−p−u−1(t′), �−p−u−1(t′)+2p+u),
[�−p−u−1(t′) + 2p+u, �−p−u(t′)). These ranges match with [�p+u−1(t′), �p+u(t′)),
[�p+u(t′), �p+u+1(t′)) and [�−p−u−1(t), �−p−u(t)), [�−p−u(t), �−p−u+1(t)) respec-
tively. This follows again from the Claim 2.2 and the carefully chosen definition
of ranges. Thus the proof of Lemma 2 is complete.

For tracks t and t′, where t < t′, let R(t, t′)=R(t′, t) be the interval [�−p(t), �p(t′))
if 2p−1 ≤ t′ − t < 2p. Note that the length of the interval R(t, t′) is at most
|�−p(t) − �p(t′)| ≤ 4 · 2p ≤ 8 · |t − t′|. Thus the total movement in starting from
t, serving all the requests in R(t, t′), and ending at t′ is at most 15 · |t − t′|.

2.3 The Dynamic Program

Our dynamic program to get a constant approximation for the offline SBP on a
line metric is based on the intuition given in Section 2.1 and uses the partition
scheme given in Section 2.2. Recall that according to the intuition, when the
optimum makes a move from t to t′, we want our algorithm to clear all the
requests in R(t, t′). This motivates the following definition.

88 R. Khandekar and V. Pandit

Definition 3. A feasible schedule for serving all the requests is said to be “locally
greedy” if there is a sequence of tracks t1, . . . , tl, called “landmarks”, which are
visited in that order and while moving between any consecutive pair of tracks ti
and ti+1, the schedule also serves all the current pending requests in the interval
R(ti, ti+1).

Since the total distance travelled in a locally greedy schedule corresponding
to the optimum schedule is at most 15 times that of the optimum schedule,
the best locally greedy schedule is a 15-approximation to the optimum. Our
dynamic program computes the best locally greedy schedule. For a locally greedy
schedule, let a configuration be defined as a pair (t, C) where t is the location
of the head and C is an O(log N)-dimensional vector specifying the number
of requests pending in each range in the partition π(t). Clearly the number of
distinct configurations is O(N · kO(log N)).

The dynamic program is similar to the one given in Section 2.1 and proceeds
in m levels. For each level i and each configuration (t, C), we compute the least
cost of serving i requests from the first i + k requests and ending up in the
configuration (t, C) in a locally greedy schedule. Let DP[i, t, C] denote this cost.
This cost now can be computed as follows. Consider a configuration (t′, C′) after
serving i − r requests for some r > 0 such that while moving from a landmark
t′ to the next landmark t,

1. the locally greedy schedule serves exactly r requests from the interval R(t′, t),
2. it travels a distance of D, and
3. after fetching r new requests, it ends up in the configuration (t, C).

In such a case,
DP[i − r, t′, C′] + D

is an upper bound on DP[i, t, C]. Taking the minimum over all such upper bounds,
one obtains the value of DP[i, t, C].

Recall that the locally greedy schedule clears all the pending requests in the
interval R(t′, t) while moving from t′ and t and also that the ranges in π(t) and
π(t′) coincide outside the interval R(t′, t). Thus it is feasible to determine if after
serving r requests in R(t′, t) and fetching r new requests, the schedule ends up
in the configuration (t, C).

The dynamic program, at the end, outputs mint DP[m, t,0] as the minimum
cost of serving all the requests by a locally greedy schedule. It is also easy
to modify the dynamic program to compute the minimum cost locally greedy
schedule along with its cost.

3 Conclusions

Prior to this work, any offline algorithms with better approximation factors than
the corresponding online algorithms were not known for the sorting buffers prob-
lem on any non-trivial metric. We give the first constant factor approximation for
the sorting buffers problem on the line metric improving the previously known

Offline Sorting Buffers on Line 89

O(log2 N) competitive ratio. As the running time of our algorithm is quasi-
polynomial, we suggest that there may be a polynomial time constant factor
approximation algorithm as well. Proving any hardness results for the sorting
buffers problem on the uniform or line metrics; or poly-logarithmic approxima-
tion results for general metrics remain as interesting open questions.

References

1. R. Bar-Yehuda and J. Laserson. 9-approximation algorithm for the sorting buffers
problem. In 3rd Workshop on Approximation and Online Algorithms, 2005.

2. M. Englert and M. Westermann. Reordering buffer management for non-uniform
cost models. In Proceedings of the 32nd International Colloquium on Algorithms,
Langauages, and Programming, pages 627–638, 2005.

3. R. Khandekar and V. Pandit. Online sorting buffers on line. In Proceedings of the
Symposium on Theoretical Aspects of Computer Science, pages 616–625, 2006.

4. J. Kohrt and K. Pruhs. A constant approximation algorithm for sorting buffers. In
LATIN 04, pages 193–202, 2004.

5. H. Räcke, C. Sohler, and M. Westermann. Online scheduling for sorting buffers. In
Proceedings of the European Symposium on Algorithms, pages 820–832, 2002.

Approximating Tree Edit Distance Through

String Edit Distance

Tatsuya Akutsu1,�, Daiji Fukagawa2,��, and Atsuhiro Takasu2,��

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University
Gokasho, Uji, Kyoto 611-0011, Japan

2 National Institute of Informatics
Chiyoda-ku, Tokyo 101-8430, Japan

takutsu@kuicr.kyoto-u.ac.jp, {daiji, takasu}@nii.ac.jp

Abstract. This paper presents an O(n2) time algorithm for approxi-
mating the unit cost edit distance for ordered and rooted trees of bounded
degree within a factor of O(n3/4), where n is the maximum size of two
input trees, and the algorithm is based on transformation of an ordered
and rooted tree into a string.

1 Introduction

Recently, comparison of tree-structured data is becoming important in several
diverse areas such as computational biology, XML databases and image analy-
sis [3,9,16]. Though various measures have been proposed [3], the edit distance
between rooted and ordered trees is widely-used [11,14,15,17]. This tree edit dis-
tance is a generalization of the edit distance for two strings [2,10,12,13], which is
also widely-used for measuring the similarity between two strings. In this paper,
we use tree edit distance and string edit distance to denote the distance between
rooted and ordered trees and the distance between strings, respectively.

It is well-known that the string edit distance can be computed in O(n2) time,
where n is the maximum length of input strings. Recently, extensive studies
have been done on efficient (quasi linear time) approximation and low distortion
embedding of string edit distances [2,10,12,13].

For the tree edit distance problem, Tai [14] first developed a polynomial time
algorithm, from which several improvements followed [4,6,11,17]. Among these,
a recent algorithm by Demaine et al. [6] is the fastest in the worst case and works
in O(n3) time where n is the maximum size of input trees. They also proved an
Ω(n3) lower bound for the class of decomposition strategy algorithms.

Garofalakis and Kumar developed an algorithm for efficient embedding of
trees [8], which can also be used for approximating tree edit distance. However,
the distance considered there is not the same as the tree edit distance: move
� Supported in part by Grants-in-Aid “Systems Genomics” and #16300092 from

MEXT, Japan.
�� Supported in part by Grant-in-Aid “Cyber Infrastructure for the information-

explosion Era” from MEXT, Japan.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 90–99, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximating Tree Edit Distance Through String Edit Distance 91

operations are allowed in their distance. Several practical algorithms have been
developed for efficient computation of lower bounds of tree edit distances [9,16],
but these algorithms do not guarantee any upper bounds. Therefore, it is re-
quired to develop algorithms for efficient approximation and/or low distortion
embedding for trees in terms of the original definition.

In order to approximate the tree edit distance, we studied a relation between
the tree edit distance and the string edit distance for the Euler strings [1]. It
was shown that the tree edit distance is at least half and at most 2h + 1 of
the edit distance for the Euler strings, where h is the minimum height of two
trees. This result gives good approximation if the heights of input trees are
low. However, it does not guarantee any upper bounds of tree edit distances if
the heights of input trees are O(n). In this paper, we improve this result by
modifying the Euler string. Though the modification is slight, a novel idea is
introduced and much more involved analysis is performed. We show that the
unit cost edit distance between trees is at least 1/6 and at most O(n3/4) of the
unit cost edit distance between the modified Euler strings, where we assume
that the maximum degree of trees is bounded by a constant. This result leads
to the first O(n3−ε) time algorithm for computing the tree edit distance with a
guaranteed approximation ratio (for bounded degree trees). Though this result
is not practical, it would stimulate further developments. It should be noted
that the current best approximation ratio within near linear time algorithms for
string edit distance is around O(n1/3) [2] even though extensive studies have
been done in recent years. Though we consider the unit cost edit distances in
this paper, the result can be extended for more general distances to some extent.

2 String Edit Distance and Tree Edit Distance

Here we briefly review the string edit distance and the tree edit distance. We
consider strings over a finite or infinite alphabet ΣS . For string s and integer i,
s[i] denotes the i-th character of s, s[i . . . j] denotes s[i] . . . s[j], and |s| denotes
the length of s. We may use s[i] to denote both the character itself and the
position. An edit operation on a string s is either a deletion, an insertion, or a
substitution of a character of s. The edit distance between two strings s1 and s2
is defined as the minimum number of operations to transform s1 into s2. We use
EDS(s1, s2) to denote the edit distance between s1 and s2.

An alignment between two strings s1 and s2 is obtained by inserting gap
symbols (denoted by ‘-’ where ‘-’ /∈ ΣS) into or at either end of s1 and s2 such
that the resulting strings s′1 and s′2 are of the same length l, where it is not
allowed for each i = 1, . . . , l that both s′1[i] and s′2[i] are gap symbols. The cost
of alignment is given by cost(s′1, s

′
2) =

∑l
i=1 f(s′1[i], s

′
2[i]), where f(x, y) = 0 if

x = y �= ‘-’, otherwise f(x, y) = 1. Then, an optimal alignment is an alignment
with the minimum cost. It is easy to see that the cost of an optimal alignment
is equal to the edit distance.

Next, we define the edit distance between trees (see [3] for details). Let T be
a rooted ordered tree, where “ordered” means that a left-to-right order among

92 T. Akutsu, D. Fukagawa, and A. Takasu

A

B

AB C

D B

D

BA

A

B

AB D B

D

BA

deletion of ’C’

insertion of ’C’

T1 T2(A)

(B) A

B

AB C

D B

D

BA

B

B

AB D B

E

BA

D

T1 T2

Fig. 1. (A) Insertion and deletion operations. (B) T2 is obtained by deletion of a node
with label ‘C’, insertion of a node with label ‘E’ and substitution for the root node. A
mapping corresponding to this edit sequence is also shown by broken curves.

siblings is given in T . We assume that each node has a label from a finite alphabet
ΣT . |T | denotes the size (the number of nodes) of T . An edit operation on a tree
T is one of the following (see Fig. 1): [Deletion] Delete a non-root node v in T
with parent u, making the children of v become the children of u. The children
are inserted in the place of v as a subsequence in the left-to-right order of the
children of u, [Insertion] Complement of delete. Insert a node v as a child of
u in T making v the parent of a consecutive subsequence of the children of u,
[Substitution] Change the label of a node v in T .

The edit distance between two trees T1 and T2 is defined as the minimum
number of operations to transform T1 into T2, and is denoted by EDT (T1, T2).
M ⊆ V (T1)×V (T2) is called an ordered edit distance mapping (or just a mapping)
if the following conditions are satisfied for any two pairs (v1, w1), (v2, w2) ∈ M
[3]: (i) v1 = v2 iff. w1 = w2, (ii) v1 is an ancestor of v2 iff. w1 is an ancestor
of w2, (iii) v1 is to the left of v2 iff. w1 is to the left of w2. Let id(M) be the
number of pairs having identical labels in M . It is well-known that the mapping
M maximizing id(M) corresponds to the edit distance, for which EDT (T1, T2) =
|T1| + |T2| − |M | − id(M) holds.

3 Euler String

Our transformation from a tree to a string is based on the Euler string [11]. In
this section, we review the Euler string (see Fig. 2) and our previous results [1].

For simplicity, we treat each tree T as an edge labeled tree: the label of each
non-root node v in the original tree is assigned to the edge {u, v} where u is
the parent of v. It should be noted that information on the label on the root
is lost in this case. But, it is not a problem because the roots are not deleted

Approximating Tree Edit Distance Through String Edit Distance 93

AT1

B

DC

C

E

B

DC

C

E
B C C D D B C EE C" "

s() = T1

Fig. 2. Construction of an Euler string

or inserted. In what follows, we assume that the roots of two input trees have
identical labels (otherwise, we just need to add 1 to the distance).

The depth-first search traversal of T (i.e., visiting children of each node ac-
cording to their left-to-right order) defines an Euler tour (i.e., an Euler path
beginning from the root and ending at the root where each edge {w, v} is tra-
versed twice in the opposite directions). We use EE(T) to denote the set of
directed edges in the Euler tour of T . Let ΣS = {a, a|a ∈ ΣT }, where a /∈ ΣT .
Let (e1, e2, . . . , e2n−2) be the sequence of directed edges in the Euler path of
a tree T with n nodes. From this, we create the Euler string s(T) of length
2n − 2. Let e = {u, v} be an edge in T , where u is the parent of v. Suppose that
ei = (u, v) and ej = (v, u) (clearly, i < j). We define i1(e) and i2(e) by i1(e) = i
and i2(e) = j, respectively. That is, i1(e) and i2(e) denote the first and second
positions of e in the Euler tour, respectively. Then, we define s(T) by letting
s(T)[i1(e)] = L(e) and s(T)[i2(e)] = L(e), where L(e) is the label of e.

Proposition 1. [1,15] s(T1) = s(T2) if and only if EDT (T1, T2) = 0. Moreover,
we can reconstruct T from s(T) in linear time.

Lemma 1. [1] EDS(s(T1), s(T2)) ≤ 2 · EDT (T1, T2).

Lemma 2. [1] EDT (T1, T2) ≤ (2h + 1) · EDS(s(T1), s(T2)), where h is the
minimum height of two input trees.

It was shown in [1] that this bound is tight up to a constant factor. Fig. 3 gives
an example such that EDS(s(T1), s(T2)) = 4 and EDT (T1, T2) = Θ(h).

4 Modified Euler String

As shown in the above, the approximation ratio of the tree edit distance through
the edit distance between the Euler strings is not good if the minimum height
of input trees is high. In order to improve the worst case approximation ratio,
we modify labels of some edges in the input trees so that structures of small
subtrees are reflected to the labels. For example, we consider trees shown in Fig.
3. Suppose that label “AC” is assigned to each edge just above each node having
children with labels ‘A’ and ‘C’. Similarly, suppose that labels “BD”, “AD” and
“BC” are assigned to appropriate edges. Then, EDS(s(T1), s(T2)) = Θ(h) should
hold. But, in a general case, changes of labels should be performed carefully in
order to keep distance distortion not too large.

94 T. Akutsu, D. Fukagawa, and A. Takasu

T1 T2

B D

A C

B D

A C

B D

A C

D

B C

A D

B C

A D

B C

A D

Fig. 3. Example for the case of EDT (T1, T2) = Θ(h) · EDS(s(T1), s(T2)) [1]. Nodes
without labels have the same labels (e.g., label ‘E’).

For a node v in T1 or T2, id(v) is an integer such that id(v) = id(v′) if and only
if the tree induced by v and its descendants is isomorphic (including labels) to the
tree induced by v′ and its descendants. Since we only consider subtrees induced
by some node v in T1 or T2 and its descendants, all id(v) can be computed in
O(n) time and each id(v) can be represented in a word (i.e., O(log n) bits) [7],
where n = max(|T1|, |T2|).

We replace labels of some nodes in each input tree in the following way. Let
size(v) be the size (the number of nodes) of the subtree induced by v and its
descendants. A subtree rooted at v is called large if size(v) > α, where α is a
parameter defined as α = n1/2. Otherwise, it is called small. We call wi a special
node if size(wi) ≤ α and size(v) > α where v is the parent of wi.

Proposition 2. For each node v in T , there exists at most one special node in
the path from the root to v. Moreover, if depth(v) (i.e., the length of the path
from the root to v) ≥ α, there exists exactly one special node in the path.

Next, we define edge labels (see Fig. 4), using which the modified Euler strings
are constructed. Let v be a node in T1. Let u be the parent of v and w1, . . . , wk be
the children of v (Similarly, we define v′, u′, and w′1, . . . for T2). If none of wi’s are
special, the original label (i.e., label in ΣT) of v is assigned to edge {u, v}. Oth-
erwise, let wi1 , . . . , wih

be the special children of v. Then, let id′(v, wi1 , . . . , wih
)

be an integer number such that id′(v, wi1 , . . . , wih
) = id′(v′, w′i1 , . . . , w

′
il
) if and

only if h = l, v and v′ have identical labels, and id(wij) = id(w′ij
) holds for

all j = 1, . . . , h. As in the case of id(v), the total time required for comput-
ing such numbers is O(n). We assign id′(v, wi1 , . . . , wih

) to edge {u, v} where
we assume w.l.o.g. (without loss of generality) that id′(. . .) /∈ ΣT . It should be
noted that if v has at least one special children, information of the subtrees of
the special children is reflected to the label of {u, v}. We call such edges special
edges.

Using the above labeling of edges, we create a modified Euler string ss(T) as
in s(T), where ss(T) and s(T) differ only on labels of special edges. It should be
noted that ss(T1) and ss(T2) can be constructed in O(n) time from T1 and T2.

Approximating Tree Edit Distance Through String Edit Distance 95

special
node

large subtree

small subtree

v

u
special
edge

special
node

downward path upward path

> n(size)

n(size)<

Fig. 4. Special nodes, special edges, and large subtrees

5 Analysis

In this section, we show the following main theorem using several propositions
and lemmas. In what follows, we may identify a directed edge (u, v), a node v
and the corresponding letter in ss(T) if there is no confusion.

Theorem 1. 1
O(n3/4) ·EDT (T1, T2) ≤ EDS(ss(T1), ss(T2)) ≤ 6·EDT (T1, T2).

Since the righthand side inequality can be easily proven as in the proof of Lemma
1, we prove the lefthand side inequality here.

5.1 Construction of Tree Mapping from String Alignment

In this section, we show a procedure for obtaining a mapping between T1 and
T2 from an (not necessarily optimal) alignment ALS between ss(T1) and ss(T2).
Before showing details of the procedure, we describe an outline. We first create a
mapping M1 that is induced by corresponding downward paths, where downward
(and upward) paths are to be defined later. Next, we modify M1 to M2 so
that labeling information on special edges is reflected (i.e., mapping pairs for
small right subtrees rooted at special children are added to M1). However, such
mappings (both M1 and M2) may contain pairs violating ancestor-descendant
relations. Thus, we delete inconsistent pairs from M2 (the resulting mapping is
denoted as M3). Finally, we add large subtrees included in upward paths, then
delete some inconsistent pairs from M3, and get the desired mapping M4.

[Construction of M1] An edge (u, v) is called a downward edge if v is a child
of u. Otherwise, (u, v) is called an upward edge. For each downward edge e, e
denotes the upward edge corresponding to e (i.e., e = (v, u) if e = (u, v)).

Let {(p1
1, p

1
2), (p2

1, p
2
2), . . .} be the set of maximal substring pairs (pi

1 from ss(T1)
and pi

2 from ss(T2)), each of which corresponds to a maximal consecutive region
(with length at least 2) in ALS without insertions, deletions or substitutions.
Note that pi

1 and pi
2 correspond to isomorphic paths in T1 and T2. We divide each

96 T. Akutsu, D. Fukagawa, and A. Takasu

(a) (b)

u

v

u

v

large large large

(c)

u

v

large

w w w

Fig. 5. Explanation of construction of M2. In cases (a) and (c), mapping pairs for right
subtrees are added, whereas these are not added in case (b) since (u, v) and (v, w) are
included in different downward paths. In this figure, each cross means that there exists
insertion, deletion or substitution at the point. It should be noted that the second and
third paths in (b) are included in the same maximal substring.

region into two parts (see also Fig. 4 and Fig. 5): upward part and downward
part, where one part may be empty. Let pi

1[k] be the first letter corresponding to
a downward edge (u, v) such that a letter corresponding to (v, u) does not appear
in pi

1. Then, (pi
1[1 . . . k−1], pi

2[1 . . . k−1]) and (pi
1[k . . .], pi

2[k . . .]) are the upward
segment pair and the downward segment pair, respectively. Two paths (one in T1
and the other in T2) corresponding to an upward segment pair are called upward
paths. Two paths corresponding to a downward segment pair are called down-
ward paths. A subtree that is fully included in a downward (resp. upward) path
is called a left subtree (resp. right subtree). An edge (u, v) in an upward (resp.
downward) path is called a central edge if (v, u) does not appear in the same path.
Thus, central edges are the edges not appearing in any left or right subtrees.

Suppose that ss(T1)[i] corresponds to ss(T2)[i′] in any downward segment
pair, and downward edges (u, v) and (u′, v′) correspond to ss(T1)[i] and ss(T2)[i′],
respectively. Then, we let M1 be the set of such (v, v′)’s.

[Construction of M2] Let e = (u, v) and e′ = (u′, v′) be a pair of corre-
sponding special edges in M1. Suppose that for e (resp. e′), there exists an edge
(v, w) such that (u, v) and (v, w) belong to the same downward path, and (v, u)
and (w, v) belong to the same upward path. Then, we add matching pairs to
M1 that are induced by the corresponding subtrees of the special children of v
and v′ (see Fig. 5). Precisely, we only need to add matching pairs for small right
subtrees since matching pairs for the left subtrees should already be included in
M1. We let the resulting mapping be M2

[Construction of M3] Let (v, v′) be the pair of nodes corresponding to the
first letters of any downward segment pair (pi

1[k . . .], pi
2[k . . .]). Let Pv (resp. Pv′)

be the set of nodes in the path from the root to v (resp. v′). We delete any
(u, u′) ∈ M2 from M2 if either (u ∈ Pv and u′ /∈ Pv′) or (u /∈ Pv and u′ ∈ Pv′)
holds. We also delete small subtrees rooted at special children of u and u′, where
deletion of a subtree (resp. a region or a node) means that all mapping pairs

Approximating Tree Edit Distance Through String Edit Distance 97

containing a node in the subtree are deleted from the current mapping set. We
execute this deletion procedure for all downward segment pairs (in any order).
We let the resulting mapping be M3. It should be noted that large left subtrees
are never deleted: these will be consistent with other pairs in M3 (and M4).

[Construction of M4] Finally, we add all large subtrees (i.e., subtrees with
more than n1/2 nodes) that are fully included in upward paths, and then delete
inconsistent mapping pairs. It should be noted that deletion is required for re-
gions where corresponding central edges in upward paths are different from those
in downward paths (see Fig. 6 (B-1)). It should also be noted that large subtrees
are not deleted. In this deletion phase, we consider the following two cases (see
Fig. 6). (A) The number of large subtrees appearing in an upward path is at
most δ, where δ is a constant (e.g., δ = 10). (B) The number of large subtrees
appearing in an upward path is greater than δ, where we assume w.l.o.g. that
the central edges of an upward path are shared by the central edges in a down-
ward path (otherwise, we can cut the upward path into multiple upward paths
without affecting the order of the approximation ratio).

For case (A), we only show here the operation for the case where one large
subtree is contained in an upward path. Let z . . . z (resp. z′ . . . z′) be the sequence
of directed edges corresponding to the large subtree of T1 (resp. T2). Suppose
that x ∈ EE(T1) (resp. y′ ∈ EE(T2)) is a parent of z (resp. z′). Suppose that
x′ ∈ EE(T2) corresponds to x in ALS , y ∈ EE(T1) corresponds to y′ in ALS ,
and x′ is an ancestor of y′. Then, we delete mapping pairs for the edges between
x and y along with their small right subtrees and the edges between x′ and y′

along with their small right subtrees. We can do similarly if x′ is not an ancestor
of y′, where details of the procedure and analysis are omitted in this paper.

For case (B), upward paths (excluding large subtrees) should have periodicity,
where the length of a period is at most d. As in the case of (A), suppose that x
and x correspond to x′ and y′ in ALS , respectively. Then, the subtree consisting
of the nodes in the path between x′ and y′ and the nodes in their right small
subtrees is called a block. A subtree isomorphic to the block is also called a block.
It can be seen that blocks appear repeatedly in the vertical direction both in T1
and T2. If a large subtree(s) on the right-hand side is attached to a block, it is
called a relevant block. We consider the following two cases. (B-1) The size of a
block is greater than β, where β = dn1/4. In this case, the number of the central
edges in an upward path is O(n3/4). We delete the top and bottom blocks and
the central edges from T1 and T2. (B-2) The size of a block is at most β. In this
case, the (total) number of relevant blocks is O(n1/2) since there are at most
O(n1/2) large subtrees. We delete all relevant blocks.

5.2 Analysis of Lower Bound of EDS

Now we analyze the lower bound of EDS(ss(T1), ss(T2)). For that purpose, we
estimate the cost of M4, assuming that the cost of ALS is d=EDS(ss(T1), ss(T2)).
Before that, it is straight-forward to see the following.

Proposition 3. M4 is a valid mapping between T1 and T2.

98 T. Akutsu, D. Fukagawa, and A. Takasu

A

B

A

B

A

B

A

B

top
block

x x

A

B

A

B

A

B

A

B

top
block

x’

y’

(A) (B-1)
T1 T2 T1

A

B

A

B

A

B

A

B

T2

A

B

A

B

A

B

A

B

(B-2)
T1

x

y

z
z

T2

y’

x’

z’

z’

Fig. 6. Construction of M4. Shaded triangles denote large subtrees. (A) Gray regions
are deleted. (B-1) Top (shown in gray color) and bottom blocks and central edges
(shown by bold lines) are deleted. (B-2) Relevant blocks shown in gray color are deleted.

In what follows, we estimate the number of mapping pairs deleted or ignored in
the construction.

Proposition 4. The number of nodes not appearing in any downward or upward
path is O(d).

Proposition 5. The number of downward (resp. upward) paths is O(d).

Proposition 6. The total number of nodes in downward paths not appearing in
M1 is O(d).

Due to the above propositions, we only need to consider hereafter upward paths
and deleted mapping pairs.

Lemma 3. The number of nodes in the small subtrees in the upward paths that
are not included in M2 is O(dn1/2).

Proof. The number of special edges that are not taken into account for M2 is
O(d). Since we assume that the maximum degree is bounded by a constant, the
number of nodes in the small right subtrees rooted at special children of a special
edge is O(n1/2). There also may exist small subtrees that are fully included in
the upward paths but are not attached to special edges. But, the number of such
subtrees is O(d). ��

Next, we estimate the numbers of deleted mapping pairs in constructing M3 and
M4 respectively, where the proofs are omitted in this version.

Lemma 4. The number of deleted mapping pairs in the construction of M3 is
O(d2n1/2).

Lemma 5. The number of deleted mapping pairs in the construction of M4 is
O(d2n1/2 + dn3/4).

Approximating Tree Edit Distance Through String Edit Distance 99

Finally, assuming that d = O(n1/4) (otherwise the cost of M4 can be O(n)),
we can see that the cost of M4 is O(d) + O(dn1/2) + O(d2n1/2) + O(d2n1/2 +
dn3/4) = O(dn3/4), which completes the proof of Theorem 1. Since the string
edit distance can be computed in O(n2) time and construction of M4 can also
be done in O(n2) time, we have:

Corollary 1. The unit cost edit distance for trees of bounded degree can be
approximated within a factor of O(n3/4) in O(n2) time.

Acknowledgements

We would like to thank Tetsuji Kuboyama in the University of Tokyo for sug-
gestions of several references and for helpful discussions.

References

1. Akutsu, T.: A relation between edit distance for ordered trees and edit distance
for Euler strings. Information Processing Letters 100 (2006) 105–109

2. Batu, T., Ergun, F., Sahinalp, C.: Oblivious string embeddings and edit distance
approximations. Proc. 17th ACM-SIAM Symp. Discrete Algorithms (2006) 792–
801

3. Bille, P.: A survey on tree edit distance and related problem. Theoretical Computer
Science 337 (2005) 217–239

4. Chen, W.: New algorithm for ordered tree-to-tree correction problem. Journal of
Algorithms 40 (2001) 135–158

5. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with
moves. Proc. 13th ACM-SIAM Symp. Discrete Algorithms (2002) 667–676

6. Demaine, E., Mozes, S., Rossman, B., Weimann, O.: An O(n3)-time algorithm for
tree edit distance. Preprint cs.DS/0604037 (2006)

7. Fukagawa, D., Akutsu, T.: Fast algorithms for comparison of similar unordered
trees. Lecture Notes in Computer Science 3341 (2004) 452–463

8. Garofalakis, M., Kumar, A.: XML stream processing using tree-edit distance em-
bedding. ACM Trans. Database Systems 30 (2005) 279–332

9. Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate XML
joins. Proc. ACM SIGMOD (2002) 287–298

10. Khot, S., Naor, A.: Nonembeddability theorems via Fourier analysis. Proc. 46th
IEEE Symp. Foundations on Computer Science (2005) 101–110

11. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. Proc.
6th European Symp. Algorithms (1998) 91–102

12. Krauthgamer, R., Rabani, R.: Improved lower bounds for embeddings into L1.
Proc. 17th ACM-SIAM Symp. Discrete Algorithms (2006) 1010–1017

13. Ostrovsky, R., Rabani, Y.: Low distortion embeddings for edit distance. Proc. 37th
ACM Symp. Theory of Computing (2005) 218–224

14. Tai, K-C.: The tree-to-tree correction problem. J. ACM 26 (1979) 422–433
15. Valiente, G.: Algorithms on Trees and Graphs. Springer (2002)
16. Yang, R., Kalnis, P., Tang, A.K.H.: Similarity evaluation on tree-structured data.

Proc. ACM SIGMOD (2005) 754–765
17. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between

trees and related problems. SIAM J. Computing 18 (1989) 1245–1262

A 6-Approximation Algorithm for Computing Smallest
Common AoN-Supertree with Application to the

Reconstruction of Glycan Trees

Kiyoko F. Aoki-Kinoshita1, Minoru Kanehisa2, Ming-Yang Kao3,�,
Xiang-Yang Li4,��, and Weizhao Wang4

1 Dept. of Bioinformatics, Fac. of Engineering, Soka University
kkiyoko@t.soka.ac.jp

2 Bioinformatics Center, Institute for Chemical Research, Kyoto University, and Human
Genome Center, Institute of Medical Science, University of Tokyo

kanehisa@kuicr.kyoto-u.ac.jp
3 Dept. of Electrical Engineering and Computer Science, Northwestern University

kao@cs.northwestern.edu
4 Dept. of Computer Science, Illinois Institute of Technology

xli@cs.iit.edu, wangwei4@iit.edu

Abstract. A node-labeled rooted tree T (with root r) is an all-or-nothing subtree
(called AoN-subtree) of a node-labeled rooted tree T ′ if (1) T is a subtree of the
tree rooted at some node u (with the same label as r) of T ′, (2) for each internal
node v of T , all the neighbors of v in T ′ are the neighbors of v in T . Tree T ′

is then called an AoN-supertree of T . Given a set T = {T1, T2, · · · , Tn} of n
node-labeled rooted trees, smallest common AoN-supertree problem seeks the
smallest possible node-labeled rooted tree (denoted as LCST) such that every
tree Ti in T is an AoN-subtree of LCST. It generalizes the smallest superstring
problem and it has applications in glycobiology. We present a polynomial-time
greedy algorithm with approximation ratio 6.

1 Introduction

In smallest AoN-supertree problem we are given a set T = {T1, T2, · · · , Tn} of n
node-labeled rooted trees and we seek the smallest possible node-labeled rooted tree
LCST such that every tree Ti in T is an all-or-nothing subtree (called AoN-subtree) of
LCST. Here a tree Ti is an AoN-subtree of another tree T if (1) Ti is a subtree of T , and
(2) for each node v of tree Ti, either all children nodes of v in T are also children of v in
Ti, or none of the children nodes of v in T is a child node of v in Ti. The widely studied
shortest superstring problem (e.g., [1,2,3,4,5,6,7]), which is known to be NP-hard and
even MAX-SNP hard [5], is a special case of smallest supertree problem where each
string can be viewed as a unary rooted tree. The best known approximation ratio for
shortest superstring problem is 2 1

2 [6]. The simple greedy algorithm was also proven to

� Supported in part by NSF Grant IIS-0121491.
�� Partially supported by NSF CCR-0311174.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 100–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A 6-Approximation Algorithm for Computing Smallest Common AoN-Supertree 101

be effective [5, 4], with the best proven approximation ratio 3 1
2 [4]. Here, we present a

polynomial-time 6-approximation algorithm for smallest supertree problem.
The superstring problem has application in data compression and in DNA sequenc-

ing, while the supertree problem also has vast applications in glycobiology. In the field
of glycobiology, for the study of glycans, or carbohydrate sugar chains (called glycome
informatics), much work pertains to analyzing the database of known glycan structures
themselves. Glycans are considered the third major class of biomolecules next to DNA
and proteins. However, they are not studied as much as DNA or proteins due to their
complex tree structure; they are branched structures. In recent years, databases of gly-
cans [8] have taken off, and the application of theoretical computer science and data
mining techniques have produced glycan tree alignment [9,10], score matrices [11] and
probabilistic models [12] for the analysis of glycans. In this work, we look at one of
the current biggest challenges in this field, which is the characterization of glycan tree
structures from mass spectrometry data. The retrieval of what glycan structures these
data represent still remains a major difficulty. In this work, we will assess this problem
theoretically in application to any glycan structure. By doing so, it would be straightfor-
ward to apply algorithms to quickly annotate any mass spectrometry data with accurate
glycan structures, thus enabling the rapid population of glycan databases and resulting
biological analysis.

2 Preliminaries and Problem Definition

In the remainder of this paper, unless explicitly stated otherwise, a tree is rooted. The
relative positions of the children could be significant or non-significant. The tree is
called an ordered tree if the relative positions of the children of each node is significant,
that is, there is the first child, the second child, the third child, etc., for each internal
node. Otherwise it is called a non-ordered tree. The size of a tree T , denoted as |T |, is
the number of nodes in T . The distance between nodes u and v in a tree T is the number
of edges on the unique path between u and v in T . Given a node u in a tree T rooted at
node r, the level of u is the distance between u and the root r. The height of a tree T is
the maximum level over all nodes in the tree. A node w is an ancestor of a node u if it
is on the path between u and r; the node u is then called a descendant of w. If all leaf
nodes are on the same level, the tree is called regular. Given a rooted tree T , we use
r(T) to denote the root node of T .

In this paper, we consider the trees composed of nodes with labels that are not neces-
sary to be unique. We assume that the labels of nodes are selected from a totally ordered
set. Each node hasx a unique ID. Given a tree T and a node u of T , a tree T ′ rooted at u
is an AoN-subtree (representing All-or-Nothing subtree) of T if for each node v that is
a descendant of u, either all children of v in tree T are in T ′ or none of the children of v
in T is in T ′. Note that the definition of the AoN-subtree is different from the traditional
subtree definition. For example, consider a tree T in Figure 1 (a) and tree T1 in Figure
1 (b). Tree T1 is an AoN-subtree of T . Tree T2 in Figure 1 is not an AoN-subtree of T
since tree T2 only contains one of the two children of node v4. Given two trees T1 and
T2, if T is an AoN-subtree of both T1 and T2, then T is the common AoN-subtree of
T1 and T2. If T has the maximum number of nodes among all common AoN-subtrees,

102 K.F. Aoki-Kinoshita et al.

3v2

v4 v5

v6

v7 v8

v9 v10 v11

v12 v13

v1

v

3v2

v4 v5

v6

v7 v8

v9 v10

v12 v13

v1

v11

1T

v
3v2

v4 v5

v6

v7 v8

v9 v10

v12 v13

v1

v11

2T

v

(a) Tree T (b) T1 is an AoN-subtree of T (c) T2 is not an AoN-subtree of T

Fig. 1. Illustration of AoN-subtree Notation

then T is the maximum common AoN-subtree. Given a tree T and an internal node u of
T , let T (u) be the tree composed of node u and all descendants of u in T . Obviously,
T (u) is an AoN-subtree of T .

If tree T ′ is an AoN-subtree of T , then T is an AoN-supertree of T ′. In this paper, we
assume that there is a set T of n rooted trees {T1, T2, · · · , Tn}, where ri = r(Ti) is the
root of the tree Ti. Here trees Ti could be ordered or non-ordered. If tree T is an AoN-
supertree for every tree Ti for 1 ≤ i ≤ n, then T is called a common AoN-supertree
of T1, T2, · · · , Tn. If T has the smallest number of nodes among all common AoN-
supertrees, then T is smallest common AoN-supertree and is denoted as LCST(T). In
smallest AoN-supertree problem we are given a set T of n node-labeled rooted trees
and we seek smallest common AoN-supertree LCST(T).

3 Find the Maximum Overlap AoN-Subtree

Our algorithm for finding smallest common AoN-supertree is based on greedy merging
of two trees that have the largest overlap. Given two trees T1 and T2, with root r1 and
r2 respectively, if an internal node u of T1 satisfying that (1) u = r2 and (2) T1(u) is an
AoN-subtree of T2, then T1(u) is an overlap AoN-subtree of tree T2 over T1, denoted
by T1(u) = T1�T2. Note that if tree T is an overlap AoN-subtree of T2 over T1, it is not
necessary that T is an overlap AoN-subtree of T1 over T2. If T has the largest number
of nodes among all overlap AoN-subtrees of T2 over T1, then T is the largest overlap
AoN-subtree. Let L(T1, T2) be the largest overlap AoN-subtree of T2 over T1 and note
that L(T1, T2) is not necessarily symmetric. If we remove L(T1, T2) from T2, then the
remaining forest is denoted as T2 − T1.

Here, we assume that the tree is non-ordered. If the tree is ordered, then find the
largest overlap AoN-subtree is trivial. Without loss of generality, we assume that the
labels of the tree are integers from [1, m]. We abuse the notations little bit here by using
u to also denote the label of a node u with ID u if it is clear from context. Given two
trees T1 and T2, we define a total order-relation ≺ of two trees as follows.

1. If r(T1) < r(T2), we say T1 ≺ T2. If r(T2) < r(T1), we say T2 ≺ T1.
2. If r(T1) = r(T2), we further let that {u1, u2, · · · , up} be all the children of r(T1)

in T1 and {v1, v2, · · · , vq} be all the children of r(T2) in T2. W.l.o.g., we also
assume that the children are sorted in an order such that T1(ui) � T1(uj) for

A 6-Approximation Algorithm for Computing Smallest Common AoN-Supertree 103

any 1 ≤ i < j ≤ p and T2(vi) � T2(vj) for any 1 ≤ i < j ≤ q. Let k the
smallest index such that either T1(uk) ≺ T2(vk) or T2(vk) ≺ T1(uk). We have
three subcases: a) If T1(uk) ≺ T2(vk), we say T1 ≺ T2; b) If T1(uk) ≺ T2(vk),
we say T1 ≺ T2; c) Such k does not exist. If p < q, then T1 ≺ T2; if p > q then
T2 ≺ T1; if p = q, then T1 � T2.

Notice that here T1 � T2 if T1 ≺ T2 or T1 � T2; T1 � T2 if T1 � T2 or T1 � T2;
T1 � T2 if T2 ≺ T1. More formally, Algorithm 1 summarizes how to decide the order-
relation between two non-ordered trees.

Algorithm 1. Decide the relationship of two trees.
Input: Two trees T1 and T2.
Output: The relationship between T1 and T2.

1: Label all internal nodes in T1 WHITE and all leaf nodes BLACK.
2: repeat
3: Pick any internal node in T1 such that all children nodes are marked BLACK, say u. Sort

all children nodes of T1(u) in the order as {u1, u2, · · · , up} such that T1(ui) � T1(uj)
for any 1 ≤ i < j ≤ p.

4: Mark u BLACK.
5: until all internal nodes in T1 are BLACK.
6: Mark all internal nodes in T2 WHITE and all leaf nodes BLACK.
7: repeat
8: Pick any internal node in T2 such that all children nodes are with marked BLACK, say

u. Sort all children nodes of T2(u) in the order as {v1, v2, · · · , vp} such that T2(vi) �
T2(vj) for any 1 ≤ i < j ≤ p.

9: Mark u BLACK.
10: until all internal nodes in T2 are BLACK.
11: If r(T1) < r(T2) then return T1 ≺ T2. end if
12: If r(T1) > r(T2) then return T1 � T2; end if
13: Assume {u1, u2, · · · , up} are children nodes of r(T1) and {v1, v2, · · · , vp} are children

nodes of r(T2).
14: for i = 1 to min(p, q) do
15: If T1(ui) ≺ T2(vi) return T1 ≺ T2; if T1(ui) � T2(vi) return T1 � T2.
16: If p < q return T1 ≺ T2; if p > q return T1 � T2; if p = q return T1 � T2.

In Algorithm 1, we first compute a lexicographic ordering of a tree and the compute
the order-relation of two trees. Note for any two siblings of a common parent, we can
compare the order of them by a breadth first search. Thus, the worst case happens when
the tree is a complete binary tree and all nodes have the same label, which takes time
O(n2). Thus, for a tree T of n nodes, we have

Lemma 1. Algorithm 1 computes the ordering of a tree T in time O(n2).

We present a recursive method (Algorithm 2) that decides whether one tree is an AoN-
subtree of another. Given two trees T1 and T2, we then show how to find the largest
overlap tree of T2 over T1. First, we order the trees T1 and T2, and then find the in-
ternal node u such that T1(u) is an AoN-subtree of T2 and |T1(u)| is maximum. From

104 K.F. Aoki-Kinoshita et al.

Lemma 1, the ordering of trees T1 and T2 need O(|T1|2 + |T2|2). Notice that for any
internal node u of T1, checking whether T1(u) is an AoN-subtree of T2 takes time
O(|T1(u)|. Thus, the total time needed is

∑
u∈T1

|T1(u)| ≤ |T1|2. Thus, we have

Lemma 2. Finding largest overlap tree has time complexity O(|T1|2 + |T2|2).
We expect a better algorithm to find the largest overlap AoN-subtree based on the fact
that there exists efficient linear time algorithm that can find a largest common substring
of a set of strings. However, designing such efficient algorithm is not the scope of this
paper. We leave it as a future work.

Algorithm 2. Decide whether a tree T2 is an AoN-subtree of T1.
1: Flag ← FALSE;
2: For each internal node in T1, order its p children from left to right as u1, u2, · · · , up such

that for any pair of children ui and uj , T1(ui) � T1(uj) for i < j. Similarly, we also order
the children of each internal node in T2 similarly. Assume that the children of r(T2) from
left to right is {v1, v2, · · · , vq}.

3: for each internal node u of T1 such that u = r(T2) and Flag==FALSE do
4: Assume that the set of “sorted” children nodes of u is {u1, u2, · · · , up}.
5: Flag ← TRUE if (1) p = q, and (2) tree T2(ui) is an AoN-subtree of T1(vi) for evey ui

with 1 ≤ i ≤ p.
6: Return Flag;

4 Approximate Smallest Common AoN-Supertree

We then consider how to find smallest common AoN-supertree given a set T of n regu-
lar trees {T1, T2, · · · , Tn}. Here, we assume that no tree Ti is an AoN-subtree of another
tree Tj . It is known that the problem of computing smallest common superstring, given
n strings, is NP-Hard and even MAX-SNP hard [5]. Notice that computing the smallest
common superstring is a special case of computing smallest common AoN-supertree
when all trees are restricted to a rooted unary tree. Thus, we have

Theorem 1. Computing smallest common AoN-supertree is NP-Hard.

4.1 Understanding the Structure of LCST

Notice that if a tree T is a common AoN-supertree of T = {T1, T2, · · · , Tn}, then for
each tree Ti, we can find an internal node u of T such that there is an AoN-subtree T (u)
of T root at u that matches Ti. When multiple such internal nodes u exist, we choose
any node with the lowest level, denoted by ri(T). For notational simplicity, we also
denote the AoN-subtree of T that equals to Ti rooted at ri(T) as Ti if it is clear from
the context. If ri(T) is an ancestor of rj(T), then we also say that Ti is an ancestor of
Tj . Similarly, if ri(T) is a descendant of rj(T), then we also say that Ti is a descendant
of Tj . If Ti is an ancestor of Tj and there does not exist a tree Tk such that Tk is an
ancestor of Tj and Ti is ancestor of Tk, then Ti is the parent of Tj and Tj is a child of Ti.
Lemma 3 and 4 (whose proofs are omitted due to space limit) showed that the notation
of child and parent is well defined in smallest common AoN-supertree LCST(T).

A 6-Approximation Algorithm for Computing Smallest Common AoN-Supertree 105

Lemma 3. If Ti is Tj’s parent in tree LCST(T), then either rj(LCST(T)) is a node in
Ti or a child of some leaf node of Ti.

Lemma 4. There is a unique tree Ti such that ri(LCST(T)) is the root of treeLCST(T).

Given a tree set T and a common AoN-supertree T , if any node in tree T is in a tree Ti

for some index i, then we call this common AoN-supertree condensed common AoN-
supertree. If a common AoN-supertree T is not a condensed common AoN-supertree,
then recursively apply the following process will generate a condensed common AoN-
supertree. First, we pick any node u ∈ T that is not in any tree Ti. Remove u, and let all
children of u in T become the children of u’s parent. Notice that this will not violate the
all-or-nothing property of the AoN-supertree. Thus, we will only consider condensed
common AoN-supertrees when we approximate smallest common AoN-supertree. No-
tice Lemma 3 and Lemma 4 implies the following lemma.

Lemma 5. The optimum tree LCST(T) is a condensed common AoN-supertree.

Notice that if T is a common AoN-supertree of T , then for any tree Ti, its parent is
unique. Together with Lemma 4, we have the following lemma.

Lemma 6. Given T and a condensed common AoN-supertree T , for any node ri(T),
either ri(T) is the root of T or there is a unique j where rj(T) is the parent of ri(T).

If we treat each tree Ti as a node, then Lemma 6 reveals that we can construct a unique
virtual overlap tree VT(T) as follows. Each vertex of the virtual overlap tree corre-
sponds to a tree Ti. If ri(T) is the root of tree T , then Ti is the root. Otherwise, Ti’s
unique parent in T , denoted by P(Ti), becomes its parent in VT(T) and all children in
T becomes its children in VT(T). When Ti is Tj’s parent, from Lemma 3, the root of
Tj is either in Ti or a child of a leaf node of Ti. If Tp and Tq are both children of Ti,
then Tp and Tq are siblings. Following lemma reveals a property of the siblings.

Lemma 7. If Tp and Tq are siblings, then Tp and Tq do not share any common nodes.

Thus, given a virtual overlap tree VT(T), the size of the condensed common AoN-
supertree is |T |= |Ti|+

∑
Tj∈T −Ti |Tj−P(Tj)|=

∑
Tj∈T |Tj |−

∑
Tj∈T −Ti

|P(Tj)�Tj |,
where Ti is the root in VT(T). Algorithm 3 will reduce the size of a condensed tree T .

Theorem 2. Algorithm 3 always maintains tree T as a condensed AoN-supertree.
Moreover, for any tree Tj that is not a root, if Tj does not have a maximum overlap
with its parent, then Algorithm 3 decreases the size of T by at least 1.

PROOF. It is not difficult to observe that T temp is a condensed common AoN-supertree.
Thus, we focus on the second part. Without loss of generality, we assume that Tj , which
is not the root, does not have the maximum overlap with its parent Ti. Notice that for
each tree Tk who is a child of Ti and rk is a descendant of u (including Tj), there is an
overlap of Tk over Ti. It is not difficult to observe that the sum of the overlap is smaller
than the size of Ti(u). On the other hand, the maximum overlap of Tj over Ti is exactly
Ti(u). Thus, the overall overlap is increased by 1 at least. In order words, the size of
T temp is decreased at least by 1.

106 K.F. Aoki-Kinoshita et al.

Algorithm 3. Find the largest overlap AoN-subtree.
Input: A tree set T and a condensed common super tree T .
Output: A new tree T .

1: for each tree Tj in VT(T) that is not a root do
2: if the overlap of Ti on Tj in tree T is not equal L(Ti, Tj) where Ti is P(Tj) then
3: Find the the node u ∈ Ti such that Ti(u) is L(Ti, Tj).
4: For each tree Tp who is a sibling of Tj and rp is an descendant of u, we construct a new

tree T new
p that equals T (rp). Similarly, we also construct the tree T new

j .
5: For each tree T new

p , remove T new
p − Ti from T . Tree T becomes T temp.

6: We overlap tree T new
j at node u. For each tree T new

p , we let root of T new
p be the child

of any leaf node in T temp. Update tree T as T temp.

Theorem 2 shows that for any condensed tree T , we can decrease its size by applying
Algorithm 3 as long as some tree does not have a maximum overlap with its parent.
Therefore, we can focus on the tree in which each non-root AoN-subtree always has a
maximum overlaps with its parent. We denote this kind of common AoN-supertree as
maximum condensed common AoN-supertree (MCCST). We then have

Theorem 3. Smallest common AoN-supertree LCST(T) is indeed a MCCST.

4.2 Compute Good MCCST

With understanding of structures of LCST in Section 4.1, we are now ready to present
our algorithm with constant approximation ratio. Notice that our focus now is to choose
maximum condensed common supertree (MCCST) with smaller size among all MCC-
STs. Given a tree set T , the naive way is to first compute L(Ti, Tj) for each pair of Ti

and Tj in T . After that, for each Tj , we choose the Ti such that L(Ti, Tj) is maximum
as its parent, which we call treelization. However, this solution does not guarantee a
valid virtual overlap tree due to two reasons.

i

a

a

b

a

c d

c

b

d

c

T

a

p

b

a

c d

c

b

da d b

T

b

q

b

a

c d

c

b

dc

T

c

(a) Tree Ti (b) Tp (c) Tq

Fig. 2. Illustration of confliction

– First, it is possible that Tp and Tq choose the same tree Ti as their parent, and it
is not possible for Tp and Tq to have maximum overlap with Ti simultaneously.
In this case, we call tree Tp conflicts with Tq regarding Ti. One such example is
shown in Figure 2. The maximum overlap of tree Tp and Tq over Ti are shown in
Figure 2 (b) and (c) respectively. It is not difficult to observe that Tp and Tq can not
maximally overlap with Ti simultaneously.

A 6-Approximation Algorithm for Computing Smallest Common AoN-Supertree 107

– Second, it is possible that Tj chooses Ti as its parent and Ti chooses a tree Tk

who is a descendant of Tj as its parent. It thus creates a cycle in the virtual overlap
graph, which we called cycled tree.

If we ignore the second problem, then any treelization avoids the first problem in the
virtual overlap graph is a special forest with possibly several disconnected components
such that each component is a tree whose root may have one backward edge toward its
descendant. We call the forest a cycled forest.

In order to find the cycled forest with minimum size, we model it as a linear program-
ming problem. Here, xi,j = 1 if tree Tj chooses Ti as its parent; otherwise xi,j = 0.
Notice that for each tree Tj , it has exactly one parent, thus

∑
i:i�=j xi,j = 1 for each

tree Tj . On the other hand, if xi,j = 1, then in order to avoid the first problem, any tree
Tk conflicting with Tj with respect to Ti should satisfy that xi,k = 0. The objective is
to minimize

∑
i�=j xi,j · (|Tj − L(Ti, Tj)|), i.e., the total size of the trees with cycles.

Following is the Integer Programming we aim to solve, which is denoted as IP1.

�
xi,j · (|Tj − L(Ti, Tj)|). (1)

Subject to

��
�

�
i�=j xi,j = 1 ∀ Tj

xi,j + xi,k ≤ 1 ∀ i, j, k such that Tj conflicts Tk regarding Ti

xi,j = {0, 1} ∀ i
= j
(2)

Algorithm 4. Greedy Method To Compute A Cycled Forest.
Input: A tree set T and a condensed common AoN-supertree T .
Output: A cycled forest.

1: Compute L(Ti, Tj) for each pair of trees and sort them in a descending order. Initialize the
tree set S = {L(Ti, Tj) | ∀i
= j} and TC = ∅.

2: while S is not empty do
3: Choose the tree in S with the maximum size, say L(Ti, Tj).
4: Add L(Ti, Tj) in TC and remove L(Tp, Tj) from S for any p
= i in S. Remove L(Ti, Tq)

from S if Tq conflicts with Tj regarding Ti.
5: Set xi,j = 1 if L(Ti, Tj) is in TC, and xi,j = 0 otherwise.

Algorithm 4 greedily selects the L(Ti, Tj) and it finds one solution to IP1.

Theorem 4. Algorithm 4 computes a solution to the Integer Programming (1).

PROOF. It is not difficult to verify that the solution does satisfy the constraints. Thus, we
focus on the proof that it minimizes

∑
xi,j · (|Tj − L(Ti, Tj)|). Since,

∑
i:i�=j xi,j = 1

for each Tj ,
∑

xi,j · (|Tj − L(Ti, Tj)|) =
∑

Ti∈T |Ti| −
∑

i�=j xi,j · |L(Ti, Tj)|. Thus,
we only need to show that

∑
i�=j xi,j · |L(Ti, Tj)| is maximized.

Without loss of generality, we assume that Algorithm 4 chooses L(Ti1 , Tj1),
L(Ti2 , Tj2), · · · , L(Tin , Tjn) in that order. We also assume that the solution to IP1 is
xopt, and all L(Ti, Tj) such that xopt

i,j = 1 are ranked in a descending order L(Tp1 , Tq1),
L(Tp2 , Tq2), · · · , L(Tpn , Tqn). Obviously, L(Ti1 , Tj1) ≥ L(Tp1 , Tq1). Let k be the
smallest index such that ik 	= pk or jk 	= qk. If such k does not exist, then Algorithm 4

108 K.F. Aoki-Kinoshita et al.

does compute a solution to IP1. Otherwise, such k must exist. Since greedy method
always chooses the maximum L(Ti, Tj) that does not violate the constraint (2) of the
Integer Programming IP1, L(Tik

, Tjk
) ≥ L(Tpk

, Tqk
). Without loss of generality, we

assume that xopt
a,jk

= 1 and Tb1 , Tb2 , · · · , Tby are the trees such that xopt
ik,b�

= 1 and Tjk

conflicts with Tb�
regarding Tik

. Let rbi be the root of tree L(Tik
, Tbi), then rbi must

be the descendant of root of tree L(Tik
, Tjk

). Since Tbi does not conflict with Tbj for
any pair of i, j, then rbi is neither an ancestor nor a descendant of rbj . Now we modify
the solution xopt as follows. First, let xopt

ik,jk
= 1 and xopt

ik,b�
= 0 for 1 ≤ � ≤ y. Then,

set xopt
a,b�

= 1 if it did not violate Constraint (2) and xopt
z,b�

= 0 for any z that does
not violate Constraint (2). The modified solution xopt must satisfy Constraint (2). After
this modification, the only difference between original solution and modified solution
is the threes that overlap Tik

and Ta. Let δ1 be the increase of the overlap by replacing
Tjk

with trees Tb1 , Tb2 , · · · , Tby , and δ2 be the decrease of the overlap by replacing
Tb1 , Tb2 , · · · , Tby with Tjk

. Since, L(a, TTjk
) is an AoN-subtree of L(Tik

, TTjk
), then

δ1 ≥ δ2. Thus,
∑

i�=j xi,j · |L(Ti, Tj)| does not increase. This is a contradiction, which
proves that Algorithm 4 computes a solution to the Integer Programming (1).

Since
∑

xopt
i,j ·(|Tj −L(Ti, Tj)|) ≤ |LCST(T)|, we found a cycled forest that is smaller

than the size of LCST. Notice that cycled forest is not a valid tree because it violates
the tree property. Following we will show that simple modification based on the cycled
tree that was found by Algorithm 4 does output a valid common AoN-supertree. In the
meanwhile, we also will show that the increase of the size is at most a constant time of
the size of the original cycled forest.

Algorithm 5. Modify the cycled forest.
Input: Cycled Forest CF.
Output: A valid virtual overlap tree.

1: Rank all cycled tree in cycled forest CF in arbitrary order, say CF1, CF2, . . . , CFk.
2: For a cycled tree CFi, find the unique cycle Ci in tree CFi. Let ri be any node in Ci and

P(ri) be its parent, then we remove the edge between ri and P(ri).
3: Concatenate the tree CFi to CFi without conflict for i = 2, · · · , k, i.e., let ri be a child of

some node in CFi−1.
4: Output the final tree as a valid virtual overlap tree.

Borrowing some ideas from the construction of shortest common super-string (see
[5] for more details), we have the following lemma

Lemma 8. For any two cycles Ci and Cj in two different cycle tree CFi and CFj , let
si and sj be any node in Ci and Cj respectively, then L(si, sj) ≤ |Ci| + |Cj |.

Theorem 5. Algorithm 5 finds a common AoN-supertree ofT with size≤6·|LCST(T)|.

PROOF. Let CF1, CF2, . . . , CFk be all the cycled trees computed by Algorithm 4.
Then,

∑k
i=1 |CFi| ≤ |LCST(T)|. Let Ci be the cycle in cycled tree CFi, and si be

the node whose corresponding tree has the largest size in cycle Ci. Lemma 8 shows

A 6-Approximation Algorithm for Computing Smallest Common AoN-Supertree 109

that L(si, sj) ≤ |Ci| + |Cj | for any pair of cycles Ci and Cj . Unlike the string
case, it is possible that two or more trees overlap with the same tree. However, if
nodes sj1 , sj2 , . . . , sjk

overlap with the tree si in LCST(T), then
∑

k
�=1|L(si, sj�)| ≤

∑
k
�=1|Cj�

| + |Ci| + |CFi|. Thus,
∑k

�=1 |L(si, sj�
)| ≤

∑k
�=1 |Cj�

| + |Ci| + |CFi|. For
each si, let P(si) be its nearest ancestor in the virtual overlap graph of LCST(T), then∑

si |P(si)�si| ≤
∑

si
|L(P(si), si)| ≤ 2

∑
si

|Ci| + |CFi| ≤ 4
∑

si
|CFi|. Thus,

|LCST (T)| ≥
∑

si
|si| −

∑
si

|P(si)�si| ≥
∑

si
|si| − 4

∑
si

|CFi|. Recall the vir-
tual overlap tree computed by Algorithm 5 has the size at most

∑
si

|si| +
∑

si
|CFi|.

Thus,
∑

si
|si| +

∑
si

|CFi| ≤ |LCST(T)| + 5
∑

si
|CFi| ≤ 6|LCST(T)|.

Theorem 6. The time complexity of our approach is O(n · m2), where n is the number
of trees and m is the number of total nodes in these n trees.

PROOF. Note that m =
∑

Ti∈T |Ti|, and the time complexity to find the maximum
overlap of Tj over Ti is O(|Ti|2 + |Tj|2). Thus, finding the maximum overlap between
each pair of trees is of time O(n · m2). Algorithm 4 takes time O(n2 + n log n) and
Algorithm 5 only takes time O(n). Thus, the overall time complexity is O(n · m2).

5 Conclusion

In this paper, we gave a 6-approximation algorithm for smallest common AoN-supertree
problem. It has applications in glycobiology. There are several interesting problems left
for future research. It is known that the simple greedy algorithm will have an approxi-
mation ratio 3.5 (conjectured to be 2). It remains to be proved whether a similar tech-
nique as of [4] can be used to reduce the approximation ratio of our method to 5.5. Fur-
ther, it remains an open problem what is the lower bound on the approximation ratio of
the greedy method when all trees of the tree set T are k-nary trees. Secondly, currently
the best approximation ratio for superstring problem is 2.5 [6] (not using the greedy
method). Since superstring is a special case of the AoN-supertree problem, it remains
an open question whether we can get similar approximation ratio for AoN-supertree
problem. The last but not least important problem is to improve the time-complexity of
finding the maximum overlapping subtree of two trees. Is there a linear time algorithm
that can find the maximum overlap AoN-subtree of two trees?

References

1. Turner, J.S.: Approximation algorithms for the shortest common superstring problem. Infor-
mation and Computation (1989) 1–20

2. Teng, S., Yao, F.: Approximating shortest superstrings. In: Annual Symposium on Founda-
tions of Computer Science. (1993)

3. Weinard, M., Schnitger, G.: On the greedy superstring conjecture. In: FST TCS 2003:
Foundations of Software Technology and Theoretical Computer Science. (2003) 387–398

4. Kaplan, H., Shafrir, N.: The greedy algorithm for shortest superstrings. Inf. Process. Lett.
93 (2005) 13–17

5. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of shortest
superstrings. Journal of the ACM 41 (1994) 630–647

110 K.F. Aoki-Kinoshita et al.

6. Sweedyk, Z.: A 2 1
2

-approximation algorithm for shortest superstring. SIAM Journal of
Computing 29 (1999) 954–986

7. Armen, C., Stein, C.: A 2 2/3-approximation algorithm for the shortest superstring problem.
In: Combinatorial Pattern Matching. (1996) 87–101

8. Hashimoto, K., Goto, S., Kawano, S., Aoki-Kinoshita, K., Ueda, N., Hamajima, M.,
Kawasaki, T., Kanehisa, M.: Kegg as a glycome informatics resource. Glycobiology (2005).

9. Aoki, K., Yamaguchi, A., Ueda, N., Akutsu, T., Mamitsuka, H., Goto, S., Kanehisa, M.:
Kcam (kegg carbohydrate matcher): A software tool for analyzing the structures of carbohy-
drate sugar chains. Nucleic Acids Research (2004) W267–W272

10. Aoki, K., Yamaguchi, A., Okuno, Y., Akutsu, T., Ueda, N., Kanehisa, M., Mamitsuka, H.:
Efficient tree-matching methods for accurate carbohydrate database queries. In: Proceedings
of the Fourteenth International Conference on Genome Informatics (Genome Informatics,
14). (2003) 134–143 Universal Academy Press.

11. Aoki, K.F., Mamitsuka, H., Akutsu, T., Kanehisa, M.: A score matrix to reveal the hidden
links in glycans. Bioinformatics 8 (2005) 1457–1463

12. Ueda, N., Aoki-Kinoshita, K.F., Yamaguchi, A., Akutsu, T., Mamitsuka, H.: A probabilistic
model for mining labeled ordered trees: capturing patterns in carbohydrate sugar chains.
IEEE Transactions on Knowledge and Data Engineering 17 (2005) 1051–1064

Improved Approximation for

Single-Sink Buy-at-Bulk�

Fabrizio Grandoni1 and Giuseppe F. Italiano2

1 Dipartimento di Informatica, Università di Roma “La Sapienza”, Via Salaria 113,
00198 Roma, Italy

grandoni@di.uniroma1.it
2 Dipartimento di Informatica, Sistemi e Produzione, Università di Roma “Tor

Vergata”, Via del Politecnico 1, 00133 Roma, Italy
italiano@disp.uniroma2.it

Abstract. In the single-sink buy-at-bulk network design problem we
are given a subset of source nodes in a weighted undirected graph: each
source node wishes to send a given amount of flow to a sink node. More-
over, a set of cable types is given, each characterized by a cost per unit
length and by a capacity: the ratio cost/capacity decreases from small
to large cables by economies of scale. The problem is to install cables
on edges at minimum cost, such that the flow from each source to the
sink can be routed simultaneously. The approximation ratio of this NP-
hard problem was gradually reduced from O(log2 n) to 65.49 by a long
series of papers. In this paper, we design a better 24.92 approximation
algorithm for this problem.

1 Introduction

Consider the problem of connecting different sites with an optical network. We
know the distance and the traffic demand between each pair of sites. We are
allowed to install optical cables, chosen from a limited set of available cable
types: each cable type is characterized by a capacity and by a cost per unit
length. By economies of scale, the cost per unit capacity decreases from small
to large cables. The same kind of problem arises in several other applications,
where optical cables are replaced by, e.g., pipes, trucks, and so on.

The essence of the mentioned problems is captured by Multi-Sink Buy-at-
Bulk (MSBB) network design. In the MSBB we are given an n-node undirected
graph G = (V, E), with nonnegative edge lengths c(e), e ∈ E. We distinguish a
subset P = {(s1, r1), (s2, r2), . . . , (sp, rp)} of source-sink pairs: source si wishes
to send d(si) units of flow (the demand of si) to sink ri. In order to support such
flow, we are allowed to install cables on edges. There are k different cable types

� This work has been partially supported by the Sixth Framework Programme of the
EU under Contract Number 507613 (Network of Excellence “EuroNGI: Designing
and Engineering of the Next Generation Internet”) and by MIUR, under Project
ALGO-NEXT.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 111–120, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

112 F. Grandoni and G.F. Italiano

1, 2, . . . , k. Cables of type i have capacity μi and cost σi per unit length (that
is, the cost of installing one such cable on edge e is c(e)σi). The cables satisfy
the economies of scale principle: the cost δi = σi/μi per unit capacity and unit
length decreases from small to large cables. The aim is to find a minimum-cost
installation of cables such that the flow between each source-sink pair can be
routed simultaneously. In this paper we are concerned with the Single-Sink ver-
sion of this problem (SSBB), where all the sources si send their flow to a unique
sink r. The problem remains NP-hard also in this case (e.g., by reduction from
the Steiner tree problem). The SSBB problem has been extensively studied in
the literature. Meyerson, Munagala, and Plotkin [18] gave a O(log n) approxi-
mation. Garg et al. [9] described a O(k) approximation, where k is the number
of cable types. The first constant approximation is due to Guha, Meyerson, and
Munagala [10]: the approximation ratio of their algorithm is roughly 2000. This
approximation was reduced to 216 by Talwar [19], and later to 76.8 by Gupta,
Kumar, and Roughgarden [12,15]. Using the same approach as Gupta et al.,
finally Jothi and Raghavachari [16] reduced the approximation factor to 65.49.

The contribution of this paper is a better approximation bound of 24.92 for the
SSBB problem. Our improved bound is surprisingly obtained by a simple variant
of the algorithm of Gupta et al. [12,15], combined with a more careful analysis.
The algorithm by Gupta et al. works in two phases. First there is a preprocessing
phase, where costs are rounded up and capacities are rounded down to the closest
power of two. Part of the new cable types obtained in this way are “redundant”
according to the new costs and capacities, and thus they can be safely discarded.
Let i(1), i(2), . . . , i(k′) be the remaining cable types, in increasing order of
capacity. The second phase consists of a sequence of suitably defined aggregation
rounds. In each round the demand is aggregated into a smaller, randomly selected
subset of nodes, until all the demand is routed to the sink. In round t, only
cables of type i(t) and i(t + 1) are used. The initial rounding of this algorithm
is responsible for a factor 4 in the approximation. Thus, it seems natural to
wonder whether it is possible to improve substantially the approximation factor
by replacing the first phase with a more sophisticated choice of the cable types
to be used in the second phase (while preserving the same basic aggregation
scheme). In this paper we present a simple, non-trivial cable selection rule which,
in combination with a more careful analysis, reduces to 24.92 the approximation
ratio for SSBB.

Related Work. Awerbuch and Azar [1] gave a O(log2 n) approximation for
MSBB, based on the tree embedding techniques by Bartal [2]. The improved
tree embeddings in [3,5,8] lead to a O(log n) approximation. To the best of
our knowledge, no constant approximation for MSBB is currently known. A prob-
lem closely related to MSBB is Multi-sink Rent-Or-Buy (MROB) network design
[4,10,11,13,14,15,17]. As in MSBB, there is a set of source-sink pairs that wish to
communicate. Now, instead of installing cables, we can either buy or rent edges:
if we buy one edge, we pay a fixed cost cbuy per unit length, and we are then
free to route an unbounded amount of flow on the bought edge. If we rent it,
we pay a cost crent per unit length and unit flow along the edge. The current

Improved Approximation for Single-Sink Buy-at-Bulk 113

best approximation for MROB is 6.828 in the multi-sink case [4] and 3.55 in the
single-sink case [15]. Another related problem (from the point of view of the
techniques used to solve it) is Virtual Private Network Design (VPND) [6,7,15].
Here we have a set of terminals which wish to send flow to each other, but the
traffic matrix is not know a priori: only upper bounds are given on the total
amount of (unsplittable) flow that each terminal can send and receive. The aim
is to find a minimum cost capacity reservation which supports every feasible
traffic matrix. The current best approximation for VPND is 3.55 [7].

Preliminaries. For the sake of simplicity, in this extended abstract we assume
that capacities, costs, and demands are non-negative integers. The same results
can be extended to the case of real values. Let 1, 2, . . . , k be the set of cable types,
in increasing order of capacity: μ1 ≤ μ2, . . . , ≤ μk. Recall that δ1 ≥ δ2, . . . , ≥ δk

by economies of scale. Note that we can assume σ1 < σ2, . . . , < σk. In fact, if
σi ≥ σj , for some i < j, we can eliminate the cable type i (without modifying
the optimum). Following [15], and without loss of generality, we assume each
node v ∈ V has a demand d(v), which is either zero or one. This can be achieved
by duplicating nodes. The algorithm presented can be easily adapted so as to
run in polynomial time even when the (original) demands are not polynomially
bounded. The algorithm by Gupta et al. [15] is designed for capacities which
are powers of two. Jothi and Raghavachari [16] designed a somehow complicated
generalization of the algorithm in [15], in order to handle capacities which are
powers of (1 + ε). Here we describe a simpler and more natural generalization
of the algorithm in [15], which works for any value of the capacities. Our gener-
alization is based on the following simple assumption: the sum of the demands∑

v∈V d(v) is a multiple of each capacity μi. This property can be enforced by
adding dummy demands in the sink. By OPT we denote either the optimum
solution or its actual value, where the meaning will be clear from the context.
OPT (s) is the cost paid by OPT to install cables of type s.

The remainder of this paper is organized as follows. In Section 2 we describe
a generalization of the algorithm by Gupta et al., and analyze it under a generic
cable selection paradigm. In Section 3 we introduce within this framework a
more sophisticated cable selection rule, and prove that this yields the claimed
24.92 approximation bound for SSBB.

2 The Algorithm

One of the key steps in the approach of Gupta et al. [12,15] is aggregating
demands over a tree in multiples of a given quantity. More precisely, consider
a tree T and a given integer U > 0. Suppose each node v of T has integer
weight x(v) ∈ [0, U), and the sum of the weights is a multiple of U . They need
to compute a flow moving weights along the tree such that: (1) The amount of
flow along each edge is at most U , (2) The new weight x′(v) at each node is
either 0 or U , and (3) The expected weight at each node is preserved, that is:
Pr[x′(v) = U] = x(v)/U . Gupta et al. give a randomized aggregation algorithm

114 F. Grandoni and G.F. Italiano

for this problem, which we describe next from a slightly different perspective.
Replace each edge of T with two oppositely directed edges. Compute an Euler
tour C′ in the resulting directed graph T ′. The same node v may appear several
times in C′: in that case assign the weight x(v) to one of the occurrences of v,
and zero to the others. Then replace each node with a path of length equal to
its weight minus one (if the weight of a node is zero, remove the node and add
one edge between its two neighbors). Now select a random subset of nodes in
the resulting cycle C = (w0, w1, . . . , w|C|−1), such that the distance (number of
hops) between any two consecutive selected nodes is U . This is possible since
the total weight, which is equal to the total number of nodes of the cycle C, is
a multiple of U by assumption. Eventually each node sends one unit of flow to
the closest selected node in, say, clockwise direction. In particular, each selected
node receives exactly (U − 1) units of flow. The flow along C naturally induces
a flow in the original graph. It is worth to mention that the duplication of nodes
is not really necessary, but it is introduced here for the sake of simplicity.

We are now ready to describe our SSBB algorithm. We initially select a subset
of cable types i(1), i(2), . . . , i(k′) in increasing order of capacity, where we require
that i(1) = 1 and i(k′) = k (that is, the first and last cable types are always
selected). The selection rule will be described in Section 3. Note that there is no
initial rounding. Then there is a sequence of rounds. In each round the demand is
aggregated in a smaller and smaller randomly selected subset of nodes, until it is
eventually routed to the sink. For ease of presentation, we distinguish the initial
and final rounds from the remaining intermediate rounds. Let D0 be the nodes
with unit input demand. In the initial round we compute a ρst-approximate
Steiner tree T0 over {r} ∪ D0, and we apply the aggregation algorithm to T0
with capacity U = μ1 and weights x(v) = d(v) for each node v of T0 (this is
possible since by assumption the sum of the demands is a multiple of μ1). The
corresponding flow is supported by installing cables of type 1 (at most one on
each edge of T0). At the end of the round the demand at each node is either
zero or μ1. Now consider an intermediate round t, t ∈ {1, 2, . . . , k′ − 1}. By
induction on the number of rounds, the initial demand dt(v) of node v is either
zero or μi(t), while its final demand dt+1(v) is either zero or μi(t+1). The round
consists of three steps. Initially the demand is collected at a random subset of
aggregation points. Then a Steiner tree is computed on the aggregation points,
and the demand is aggregated along such tree with the aggregation algorithm.
Eventually the aggregated demand is redistributed back to the source nodes.
Only cables of type i(t) and i(t + 1) are used in this process. We now describe
the steps in more details. Let Dt denote the set of nodes with dt(v) = μi(t).

Collection step: Each node in Dt is marked with probability σi(t)/σi(t+1). Let
D′t be the set of marked nodes. Each node sends its demand to the closest node
in {r}∪D′t along a shortest path, using cables of type i(t). Let d′t(w) be the new
demand collected at each w ∈ {r} ∪ D′t.

Aggregation step: Compute a ρst-approximate Steiner tree Tt on {r} ∪ D′t.
Apply the aggregation algorithm to Tt with U = μi(t+1) and weight x(w) = d′t(w)
(mod μi(t+1)) for each terminal node w (this is possible since the sum of the

Improved Approximation for Single-Sink Buy-at-Bulk 115

d′t(w) , and hence of the x(w), is a multiple of μi(t+1)). The corresponding flow
is supported by installing cables of type i(t + 1) (at most one for each edge of
Tt). Let d′′t (w) be the new demand aggregated at each node w.

Redistribution step: For each node w ∈ {r}∪D′t, consider the subset of nodes
Dt(w) ⊆ Dt that sent their demand to w during the collection step (including w

itself, if w �= r). Uniformly select a random subset D̃t(w) of Dt(w) of cardinality
d′′t (w)/μi(t+1). Send μi(t+1) units of flow back from w to each node in D̃t(v)
along shortest paths, installing cables of type i(t + 1).

Note that no demand is routed to the sink during the initial and intermediate
rounds. The algorithm ends with a final round, where all the demands are sent
to the sink along shortest paths, using cables of type i(k′) = k. A generalization
of the analysis given in [12,15] yields the following result, whose proof is omitted
here for lack of space.

Lemma 1. The SSBB algorithm above computes a solution of cost APX ≤∑k
s=1 apx(s)OPT (s) where

apx(s) :=1+ρst
σi(1)

σs
+

k′−1�
t=1

��
2+2

δi(t+1)

δi(t)

��
1− σi(t)

σi(t+1)

�
+ρst

�
min

�
σi(t+1)

σs
,

δi(t)

δs

�
.

(1)

3 An Improved Cable-Selection Rule

Let i(1), i(2), . . . , i(k′) be the cable types, in increasing order of capacity, left
after the first phase of the algorithm by Gupta et al. Such cables have the
property that the σ’s double and the δ’s halve from one cable to the next one:

∀ t ∈ {1, 2, . . . , k′ − 1}, σi(t+1) ≥ 2σi(t) and δi(t+1) ≤ δi(t)/2.

Recall that all the remaining cables are used in the second phase. Thus, by
Lemma 1, for every s,

apx(s) ≤ 1 + (2 + 1 + ρst)

�
��

i≥0

1

2i
+
�
j≥0

1

2j

�
	 = 1 + (3 + ρst)4.

Unfortunately, the initial rounding introduces an extra factor 4 in the approxi-
mation, thus leading to an overall 4(1 + (3 + ρst)4) < 76.8 approximation.

It is then natural to wonder whether it is possible to keep apx(s) small, while
avoiding rounding, by means of a more sophisticated cable selection rule. An
intuitive approach could be selecting cables (in the original problem) in the
following way: for a given selected cable type i(t), starting from i(1) = 1, i(t+1)
is the smallest cable type such that σi(t+1) ≥ 2σi(t) and δi(t+1) ≤ δi(t)/2. This
way, we maintain the good scaling properties of σ’s and δ’s of selected cables. In
particular, for any selected cable type s = i(t′), apx(s) ≤ 1+(3+ρst)4. Unluckily,
this approach does not work for discarded cable types s, i(t′) < s < i(t′ + 1):
in fact, in this case the intermediate term (min{σi(t′+1)/σs, δi(t′)/δs}) can be

116 F. Grandoni and G.F. Italiano

arbitrarily large. What can we do then? There is a surprisingly simple approach
to tackle this problem. The idea is to slightly relax the scaling properties of the
σ’s: instead of requiring that σi(t+1) ≥ 2σi(t), we only require that σi(t+1)+1 ≥
2σi(t). More precisely, we use the following cable selection rule:

Improved cable selection rule: Let i(1) = 1. Given i(t), 1 < i(t) < k, i(t+1)
is the smallest index such that

σi(t+1)+1 ≥ 2σi(t) and δi(t+1) ≤ δi(t)/2.

If such index does not exist, i(t + 1) = i(k′) = k.

Observe that the δ’s halve at each selected cable (excluding possibly the last
one), and the σ’s double every other selected cable:

∀ t ∈ {1, 2, . . . , k′ − 2}, δi(t+1) ≤ δi(t)/2 and σi(t+2) ≥ σi(t+1)+1 ≥ 2σi(t). (2)

With this cable-selection policy we obtain apx(s) ≤ 1 + (3 + ρst)7 < 32.85 for
every cable type s, including discarded ones. This is also a feasible bound on the
overall approximation ratio since we avoided the initial rounding. This analysis
can be refined by exploiting the telescopic sum hidden in Equation (1). This
refinement improves to 4(1 + (3 + 2ρst) + (3 + ρst)2) < 64.8 the approximation
bound of the algorithm by Gupta et al., and yields a better 16 + 7ρst < 26.85
approximation bound if we use our approach.

Theorem 1. The algorithm of Section 2, combined with the improved cable se-
lection rule, yields a 16 + 7ρst < 26.85 approximation bound for SSBB.

Proof. Let us restrict to the case s ≤ i(k′ − 1). The case i(k′ − 1) < s ≤ i(k′)
is analogous, and thus it is omitted from this extended abstract. We distinguish
between selected and discarded cables.

a) Discarded cable s, i(t′) < s < i(t′ + 1) ≤ i(k′ − 1). By Lemma 1 and
Equation (2), and observing that σs ≥ σi(t′)+1 ≥ 2σi(t′−1) (for t′ > 1), apx(s) is
bounded above by

1 + ρst
σi(1)

σs
+

t′−1�
t=1

�
3 + ρst − 3

σi(t)

σi(t+1)

�
σi(t+1)

σs

+

k′−1�
t=t′

�
2 + 2

δi(t+1)

δi(t)

+ ρst

�
min

�
σi(t+1)

σs
,

δi(t)

δs

�
≤

1+(3+ρst)
σi(t′)

σs
+ ρst

t′−2�
t=1

σi(t+1)

σs
+

k′−1�
t=t′

�
2 + 2

δi(t+1)

δi(t)

+ ρst

�
min

�
σi(t+1)

σs
,

δi(t)

δs

�
≤

1 + (3 + ρst) + ρst

t′−2�
i=1

1

2�i/2� +

k′−1�
t=t′

�
2 + 2

δi(t+1)

δi(t)
+ ρst

�
min

�
σi(t+1)

σs
,

δi(t)

δs

�
≤

4 + 3 ρst +
k′−1�
t=t′

�
2 + 2

δi(t+1)

δi(t)

+ ρst

�
min

�
σi(t+1)

σs
,

δi(t)

δs

�
.

Improved Approximation for Single-Sink Buy-at-Bulk 117

From Equation (2), and observing that δs ≥ δi(t′+1), we get that apx(s) is upper
bounded by

4+3 ρst + (3 + ρst) min

�
σi(t′+1)

σs
,

δi(t′)

δs

�
+ (3 + ρst)

k′−2�
t=t′+1

δi(t)

δs
+ (4 + ρst)

δi(k′−1)

δs
≤

4+ 3ρst + (3 + ρst) min

�
σi(t′+1)

σs
,

δi(t′)

δs

�
+ (3 + ρst)

k′−t′−3�
j=0

1

2j
+ (4 + ρst)

1

2k′−t′−2
≤

4 + 3 ρst + (3 + ρst)min

�
σi(t′+1)

σs
,

δi(t′)

δs

�
+ (3 + ρst)

�
�k′−t′−3�

j=0

1

2j
+

1

2k′−t′−3

�
	

Thus we get

apx(s) ≤ 10 + 5 ρst + (3 + ρst)min

�
σi(t′+1)

σs
,

δi(t′)

δs

�
. (3)

We next show that
min

�
σi(t′+1)

σs
,

δi(t′)

δs

�
≤ 2. (4)

Let j(t′) be the smallest index such that δj(t′)/δi(t′) ≤ 1/2. Consider the case
s < j(t′). By the definition of j(t′), δj(t′)−1/δi(t′) > 1/2 . Therefore

min

�
σi(t′+1)

σs
,

δi(t′)

δs

�
≤ δi(t′)

δs
≤ δi(t′)

δj(t′)−1
≤ 2.

Consider now the case s ≥ j(t′) > i(t′). Observe that σi(t′+1)/σi(t′) < 2. In fact
otherwise we would have

σi(t′+1)−1+1/σi(t′) ≥ 2 and δi(t′+1)−1/δi(t′) ≤ δj(t′)/δi(t′) ≤ 1/2.

Thus cable i(t′+1)−1 should be selected, which contradicts the fact that i(t′+1)
is the first cable selected after i(t′). As a consequence

min

�
σi(t′+1)

σs
,

δi(t′)

δs

�
≤ σi(t′+1)

σs
≤ σi(t′+1)

σi(t′)
≤ 2.

From (3) and (4),

apx(s) ≤ 10 + 5 ρst + (3 + ρst) 2 = 16 + 7ρst. (5)

b) Selected cable s, s = i(t′) ≤ i(k′ − 1). By basically the same arguments
as for the case of discarded cables,

apx(s) ≤ 1 + (3 + ρst)
σi(t′)

σi(t′)
+ ρst

t′−2�
t=1

σi(t+1)

σi(t′)
+ (3 + ρst)

k′−2�
t=t′

δi(t)

δi(t′)
+ (4 + ρst)

δi(k′−1)

δi(t′)

≤ 1 + (3 + ρst) + ρst

t′−2�
i=1

1

2�i/2� + (3 + ρst)

�
�k′−t′−2�

j=0

1

2j
+

1

2k′−t′−2

�
	

≤ 1 + (3 + ρst) + 3ρst + (3 + ρst) 2

= 10 + 6 ρst. (6)

118 F. Grandoni and G.F. Italiano

By (5) and (6)

APX ≤
k∑

s=1

apx(s)OPT (s) ≤ (16 + 7ρst)OPT.

�

Remark 1. In order to prove (4) the “relaxed” condition σi(t+1)+1 ≥ 2σi(t) is
crucial. The “naive” condition σi(t+1) ≥ 2σi(t) would not work properly.

3.1 Adapting the Scaling Factors

The approximation can be further reduced to 24.92 by using better scaling fac-
tors. Let α > 1 and β > 1 be two real parameters to be fixed later. Consider the
following generalization of the improved cable selection rule:

Generalized cable selection rule: Let i(1) = 1. Given i(t), 1 < i(t) < k,
index i(t + 1) is the smallest index such that

σi(t+1)+1 ≥ α σi(t) and δi(t+1) ≤ δi(t)/β.

If such index does not exist, i(t + 1) = i(k′) = k.

A proper choice of α and β leads to the following slightly refined approximation.

Theorem 2. There is a 24.92 approximation algorithm for SSBB.

Proof. Consider the algorithm of Section 2, with the generalized cable selection
rule. For the sake of simplicity, let us assume β ≤ 3.77, from which

(4 + ρst) ≤
�

2 +
2

β
+ ρst

�
β

β − 1
.

Consider first the case i(t′) < s < i(t′ + 1) ≤ i(k′ − 1). By basically the same
arguments as in the proof of Theorem 1, either δi(t′)/δs < β or σi(t′+1)/σs < α.
In the first case

apx(s) ≤ 1+

�
2+

2

β
+ ρst

�
σi(t′)

σs
+ρst

t′−2�
t=1

σi(t+1)

σs
+

�
2 +

2

β
+ ρst

���β +

k′−2�
t=t′+1

δi(t)

δs

�
	

+ (4 + ρst)
δi(k′−1)

δs

≤ 1 +

�
2 +

2

β
+ ρst

�
+ ρst

t′−2�
i=1

1

α�i/2� +

�
2 +

2

β
+ ρst

�
β

+

�
2 +

2

β
+ ρst

� k′−t′−3�
j=0

1

βj
+

4 + ρst

βk′−t′−2

≤ 1 +

�
2 +

2

β
+ ρst

�
+

2ρst

α − 1
+

�
2 +

2

β
+ ρst

�
β +

�
2 +

2

β
+ ρst

�
β

β − 1
.

(7)

Improved Approximation for Single-Sink Buy-at-Bulk 119

In the second case,

apx(s) ≤ 1 +

�
2 +

2

β
+ ρst

�
σi(t′+1)

σs
+ ρst

t′−1�
t=1

σi(t+1)

σs
+

�
2 +

2

β
+ ρst

� k′−2�
t=t′+1

δi(t)

δs

+ (4 + ρst)
δi(k′−1)

δs

≤ 1 +

�
2 +

2

β
+ ρst

�
α + ρst

t′−1�
i=1

1

α�i/2� +

�
2 +

2

β
+ ρst

�
β

β − 1

≤ 1 +

�
2 +

2

β
+ ρst

�
α + ρst

α + 1

α − 1
+

�
2 +

2

β
+ ρst

�
β

β − 1
. (8)

For any selected cable type s = i(t′) ≤ i(k′ − 1),

apx(s) ≤ 1 +

�
2 +

2

β
+ ρst

�
σi(t′)

σi(t′)
+ ρst

t′−2�
t=1

σi(t+1)

σs
+

�
2 +

2

β
+ ρst

� k′−2�
t=t′

δi(t)

δs

+ (4 + ρst)
δi(k′−1)

δs

≤ 1 +

�
2 +

2

β
+ ρst

�
+ ρst

t′−2�
i=1

1

α�i/2� +

�
2 +

2

β
+ ρst

� k′−t′−2�
j=0

1

βj
+

4 + ρst

βk′−t′−1

≤ 1 +

�
2 +

2

β
+ ρst

�
+ ρst

α + 1

α − 1
+

�
2 +

2

β
+ ρst

�
β

β − 1
. (9)

In the case i(k′ − 1) < s ≤ i(k′) = k one obtains similarly:

apx(s) ≤ 1 +

�
2 +

2

β
+ ρst

�
+

2ρst

α − 1
+ (4 + ρst)β, (10)

apx(s) ≤ 1 + (4 + ρst)α + ρst
α + 1

α − 1
, (11)

apx(s) ≤ 1 + (4 + ρst) + ρst
α + 1

α − 1
. (12)

For a given choice of α and β, the approximation ratio is the maximum over
(7)-(12). In particular, for α = β = 2 we obtain the result of Theorem 1. The
claim follows by imposing α = 3.1207 and β = 2.4764. �

Acknowledgments. A special thank to Jochen Könemann for carefully reading
a preliminary version of this paper and for helpful discussions.

References

1. B. Awerbuch and Y. Azar. Buy-at-bulk network design. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 542–547, 1997.

2. Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic appli-
cations. In IEEE Symposium on Foundations of Computer Science (FOCS), pages
184–193, 1996.

3. Y. Bartal. On approximating arbitrary metrics by tree metrics. In IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 161–168, 1998.

120 F. Grandoni and G.F. Italiano

4. L. Becchetti, J. Konemann, S. Leonardi, and M. Pal. Sharing the cost more effi-
ciently: improved approximation for multicommodity rent-or-buy. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 375–384, 2005.

5. M. Charikar, A. Chekuri, A. Goel, and S. Guha. Approximating a finite metric by
a small number of tree metrics. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 379–388, 1998.

6. F. Eisenbrand and F. Grandoni. An improved approximation algorithm for vir-
tual private network design. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 928–932, 2005.

7. F. Eisenbrand, F. Grandoni, G. Oriolo, and M. Skutella. New approaches for virtual
private network design. In International Colloquium on Automata, Languages and
Programming (ICALP), pages 1152–1162, 2005.

8. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating ar-
bitrary metrics by tree metrics. In ACM Symposium on the Theory of Computing
(STOC), pages 448–455, 2003.

9. N. Garg, R. Khandekar, G. Konjevod, R. Ravi, F. Salman, and A. Sinha. On the in-
tegrality gap of a natural formulation of the single-sink buy-at-bulk network design
problem. In International Conference on Integer Programming and Combinatorial
Optimization (IPCO), pages 170–184, 2001.

10. S. Guha, A. Meyerson, and K. Munagala. A constant factor approximation for
the single sink edge installation problem. In ACM Symposium on the Theory of
Computing (STOC), pages 383–388, 2001.

11. A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a
virtual private network: a network design problem for multicommodity flow. In
ACM Symposium on the Theory of Computing (STOC), pages 389–398, 2001.

12. A. Gupta, A. Kumar, M. Pal, and T. Roughgarden. Approximation via
cost-sharing: simpler and better approximation algorithms for network design.
Manuscript.

13. A. Gupta, A. Kumar, M. Pal, and T. Roughgarden. Approximation via cost-
sharing: a simple approximation algorithm for the multicommodity rent-or-buy
problem. In IEEE Symposium on Foundations of Computer Science (FOCS), pages
606–617, 2003.

14. A. Gupta, A. Kumar, and T. Roughgarden. A constant-factor approximation algo-
rithm for the multicommodity. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 333–344, 2002.

15. A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation
algorithms for network design. In ACM Symposium on the Theory of Computing
(STOC), pages 365–372, 2003.

16. R. Jothi and B. Raghavachari. Improved approximation algorithms for the single-
sink buy-at-bulk network design problems. In Scandinavian Workshop on Algo-
rithm Theory (SWAT), pages 336–348, 2004.

17. A. Kumar and C. Swamy. Primal-dual algorithms for the connected facility location
problem. In International Workshop on Approximation Algorithms for Combina-
torial Optimization, pages 256–269, 2002.

18. A. Meyerson, K. Munagala, and S. Plotkin. Cost-distance: two metric network
design. In IEEE Symposium on Foundations of Computer Science (FOCS), pages
624–630, 2000.

19. K. Talwar. The single-sink buy-at-bulk LP has constant integrality gap. In In-
ternational Conference on Integer Programming and Combinatorial Optimization
(IPCO), pages 475–486, 2002.

Approximability of

Partitioning Graphs with Supply and Demand

Extended Abstract

Takehiro Ito1, Erik D. Demaine2, Xiao Zhou1, and Takao Nishizeki1

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan

2 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

take@nishizeki.ecei.tohoku.ac.jp, edemaine@mit.edu,
{zhou, nishi}@ecei.tohoku.ac.jp

Abstract. Suppose that each vertex of a graph G is either a supply
vertex or a demand vertex and is assigned a positive real number, called
the supply or the demand. Each demand vertex can receive “power”
from at most one supply vertex through edges in G. One thus wishes to
partition G into connected components so that each component C either
has no supply vertex or has exactly one supply vertex whose supply is at
least the sum of demands in C, and wishes to maximize the fulfillment,
that is, the sum of demands in all components with supply vertices. This
maximization problem is known to be NP-hard even for trees having
exactly one supply vertex and strongly NP-hard for general graphs. In
this paper, we focus on the approximability of the problem. We first show
that the problem is MAXSNP-hard and hence there is no polynomial-
time approximation scheme (PTAS) for general graphs unless P = NP.
We then present a fully polynomial-time approximation scheme (FPTAS)
for series-parallel graphs having exactly one supply vertex. The FPTAS
can be easily extended for partial k-trees, that is, graphs with bounded
treewidth.

1 Introduction

Consider a graph G such that each vertex is either a supply vertex or a de-
mand vertex. Each vertex v is assigned a positive real number; the number is
called the supply of v if v is a supply vertex; otherwise, it is called the demand
of v. Each demand vertex can receive “power” from at most one supply vertex
through edges in G. One thus wishes to partition G into connected components
by deleting edges from G so that each component C has exactly one supply
vertex whose supply is at least the sum of demands of all demand vertices in C.
However, such a partition does not always exist. So we wish to partition G into
connected components so that each component C either has no supply vertex or
has exactly one supply vertex whose supply is at least the sum of demands of all
demand vertices in C, and wish to maximize the “fulfillment,” that is, the sum

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 121–130, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

122 T. Ito et al.

13

8

15

2

10 2

12

57

3

84

5

67

(a) (b) (c)

C

w

v

44

3

2 7

2

22

3

3 3

5 25

C

w

v

4

4

3

2

7

2

2

2 3

3

3

5

b = 25

supply vertex demand vertex

Fig. 1. (a) Partition of a graph with maximum fulfillment, (b) partition of a series-
parallel graph G having exactly one supply vertex, and (c) a star S with a supply
vertex at the center

of demands of the demand vertices in all components with supply vertices. We
call this problem the maximum partition problem [4]. The maximum partition
problem has some applications to the power supply problem for power delivery
networks [4,6]. Figure 1(a) illustrates a solution of the maximum partition prob-
lem for a graph, whose fulfillment is (2 + 7) + (8 + 7) + (3 + 6) + (4 + 8) = 45.
In Fig. 1(a) each supply vertex is drawn as a rectangle and each demand vertex
as a circle, the supply or demand is written inside, the deleted edges are drawn
by thick dotted lines, and each connected component with a supply vertex is
shaded.

Given a set A of integers and an upper bound (integer) b, the maximum subset
sum problem asks to find a subset C of A such that the sum of integers in C is
no greater than the bound b and is maximum among all such subsets C. The
maximum subset sum problem can be reduced in linear time to the maximum
partition problem for a particular tree, called a star, with exactly one supply
vertex at the center, as illustrated in Fig. 1(c) [4]. Since the maximum subset sum
problem is NP-hard, the maximum partition problem is also NP-hard even for
stars. Thus it is very unlikely that the maximum partition problem can be exactly
solved in polynomial time even for trees. However, there is a fully polynomial-
time approximation scheme (FPTAS) for the maximum partition problem on
trees [4]. One may thus expect that the FPTAS for trees can be extended to a
larger class of graphs, for example series-parallel graphs and partial k-trees, that
is, graphs with bounded treewidth [1,2].

In this paper, we study the approximability of the maximum partition prob-
lem. We first show that the maximum partition problem is MAXSNP-hard, and
hence there is no polynomial-time approximation scheme (PTAS) for the problem
on general graphs unless P = NP. We then present an FPTAS for series-parallel
graphs having exactly one supply vertex. The FPTAS for series-parallel graphs
can be extended to partial k-trees. (The details are omitted from this extended
abstract.) Figure 1(b) depicts a series-parallel graph together with a connected
component C found by our FPTAS. One might think that it would be straight-
foward to extend the FPTAS for the maximum subset sum problem in [3] to an

Approximability of Partitioning Graphs with Supply and Demand 123

FPTAS for the maximum partition problem with a single supply vertex. How-
ever, this is not the case since we must take a graph structure into account. For
example, the vertex v of demand 2 in Fig. 1(b) cannot be supplied power even
though the supply vertex w has marginal power 25−(2+3+2+2+3+7+4) = 2,
while the vertex v in Fig. 1(c) can be supplied power from the supply vertex w
in the star having the same supply and demands as in Fig. 1(b). Indeed, we not
only extend the “scaling and rounding” technique but also employ many new
ideas to derive our FPTAS.

The rest of the paper is organized as follows. In Section 2 we show that the
maximum partition problem is MAXSNP-hard. In Section 3 we present a pseudo-
polynomial-time algorithm for series-parallel graphs. In Section 4 we present an
FPTAS based on the algorithm in Section 3.

2 MAXSNP-Hardness

Assume in this section that a graph G has one or more supply vertices. (See
Figs. 1(a) and 2(b).) The main result of this section is the following theorem.

Theorem 1. The maximum partition problem is MAXSNP-hard for bipartite
graphs.

Proof. As in [7,8], we use the concept of “L-reduction” which is a special kind
of reduction that preserves approximability. Suppose that both A and B are
maximization problems. Then we say that A can be L-reduced to B if there exist
two polynomial-time algorithms R and S and two positive constants α and β
which satisfy the following two conditions (1) and (2) for each instance IA of A:

(1) the algorithm R returns an instance IB = R(IA) of B such that
OPTB(IB) ≤ α · OPTA(IA), where OPTA(IA) and OPTB(IB) denote
the maximum solution values of IA and IB, respectively; and

(2) for each feasible solution of IB with value cB, the algorithm S returns
a feasible solution of IA with value cA such that OPTA(IA) − cA ≤
β ·

(
OPTB(IB) − cB

)
.

Note that, by condition (2) of the L-reduction, S must return the optimal solu-
tion of IA for the optimal solution of IB .

We show that a MAXSNP-hard problem, called “3-occurrence MAX3SAT”
[7,8], can be L-reduced to the maximum partition problem for bipartite graphs.
However, due to the page limitation, we only show in this extended abstract that
condition (1) of the L-reduction holds.

We now show that condition (1) of the L-reduction holds. An instance Φ of 3-
occurrence MAX3SAT consists of a collection of m clauses C1, C2, · · · , Cm on n
variables x1, x2, · · · , xn such that each clause has exactly three literals and each
variable appears at most three times in the clauses. The problem 3-occurrence
MAX3SAT is to find a truth assignment for the variables which satisfies the
maximum number of clauses. Then it suffices to show that, from each instance

124 T. Ito et al.

7

44xj xj

7

44x1 x1

7

44x3 x3

7

44x2 x2

1 1 1

(a) Gxj (b) GΦ

C3C2C1

Gx1 Gx2 Gx3

Fig. 2. (a) Variable gadget Gxj , and (b) the bipartite graph GΦ corresponding to an
instance Φ with three clauses C1 = (x1 ∨ x̄2 ∨ x3), C2 = (x̄1 ∨ x̄2 ∨ x3) and C3 =
(x̄1 ∨ x̄2 ∨ x̄3)

Φ of 3-occurrence MAX3SAT, one can construct in polynomial time a bipartite
graph GΦ as an instance of the maximum partition problem such that

OPTMPP (GΦ) ≤ 26 · OPTSAT (Φ), (1)

where OPTMPP (GΦ) and OPTSAT (Φ) are the maximum solution values of GΦ

and Φ, respectively: condition (1) of the L-reduction holds for α = 26.
We first make a variable gadget Gxj for each variable xj , 1 ≤ j ≤ n; Gxj is

a binary tree with three vertices as illustrated in Fig. 2(a); the root is a supply
vertex of supply 7, and two leaves xj and x̄j are demand vertices of demands
4. The graph GΦ is constructed as follows. For each variable xj , 1 ≤ j ≤ n,
put the variable gadget Gxj to the graph, and for each clause Ci, 1 ≤ i ≤ m,
put a demand vertex Ci of demand 1 to the graph. Finally, for each clause Ci,
1 ≤ i ≤ m, join a demand vertex xj (or x̄j) in Gxj with the demand vertex Ci

if and only if the literal xj (or x̄j) is in Ci, as illustrated in Fig. 2(b). Clearly,
GΦ can be constructed in polynomial time, and is a bipartite graph. It should
be noted that the degree of each demand vertex in the variable gadget for xj

is at most four since xj appears at most three times in the clauses. Therefore,
each supply vertex in the variable gadget Gxj has enough “power” to supply all
demand vertices Ci whose corresponding clauses have xj or x̄j . Then one can
verify Eq. (1), whose proof is omitted from this extended abstract. ��

3 Pseudo-polynomial-time Algorithm

Since the maximum partition problem is strongly NP-hard [5], there is no pseudo-
polynomial-time algorithm for general graphs unless P = NP. However, Ito et
al. presented a pseudo-polynomial-time algorithm for the maximum partition
problem on series-parallel graphs [5]. In this section we present another pseudo-
polynomial-time algorithm, which is suited to an FPTAS presented in Section
4. More precisely, we have the following theorem.

Theorem 2. The maximum partition problem for a series-parallel graph G with
a single supply vertex can be solved in time O(F 2n) if the demands and the supply

Approximability of Partitioning Graphs with Supply and Demand 125

are integers, where n is the number of vertices and F is the sum of all demands
in G.

3.1 Terminology and Definitions

Suppose that there is exactly one supply vertex w in a graph G = (V, E), as
illustrated in Figs. 1(b) and (c). Let sup(w) be the supply of w. For each demand
vertex v, we denote by dem(v) the demand of v. Let dem(w) = 0 although w
is a supply vertex. Then, instead of finding a partition of G, we shall find a set
C ⊆ V , called a supplied set for G, such that

(a) w ∈ C;
(b)

∑
v∈C dem(v) ≤ sup(w); and

(c) C induces a connected subgraph of G.

The fulfillment f(C) of a supplied set C is
∑

v∈C dem(v). A supplied set C is
called the maximum supplied set for G if f(C) is maximum among all supplied
sets for G. Then the maximum partition problem is to find a maximum supplied
set for a given graph G. The maximum fulfillment f(G) of a graph G is the
fulfillment f(C) of the maximum supplied set C for G. For the series-parallel
graph G in Fig. 1(b), the supplied set C shaded in the figure has the maximum
fulfillment, and hence f(G) = f(C) = 23, while f(S) = 25 for the star S in
Fig. 1(c).

A (two-terminal) series-parallel graph G is defined recursively as a graph
obtained from two series-parallel graphs by the so-called series or parallel con-
nection [9]. The terminals of G are denoted by vs(G) and vt(G). Since we deal
with the maximum partition problem, we may assume without loss of generality
that G is a simple graph.

A series-parallel graph G can be represented by a “binary decomposition tree”
T [9]. Every leaf of T represents a subgraph of G induced by a single edge. Each
node u of T corresponds to a subgraph Gu = (Vu, Eu) of G induced by all
edges represented by the leaves that are descendants of u in T . Gu is a series-
parallel graph for each node u of T , and G = Gr for the root r of T . Since
a binary decomposition tree of a given series-parallel graph G can be found in
linear time [9], we may assume that a series-parallel graph G and its binary
decomposition tree T are given.

3.2 Algorithm

In this subsection we give an algorithm to solve the maximum partition problem
in time O(F 2n) as a proof of Theorem 2.

Let G be a series-parallel graph, let u, u′ and u′′ be nodes of a binary decompo-
sition tree T of G, and let Gu = (Vu, Eu), Gu′ = (Vu′ , Eu′) and Gu′′ = (Vu′′ , Eu′′)
be the subgraphs of G for nodes u, u′ and u′′, respectively, as illustrated in
Fig. 3(a). Every supplied set C for G naturally induces subsets of Vu, Vu′ and
Vu′′ . The supplied set C for G in Fig. 3(a) induces a single subset Cst of Vu

in Fig. 3(b) such that Cst = C ∩ Vu and vs(Gu), vt(Gu) ∈ Cst. On the other

126 T. Ito et al.

(a) (b)

Gu

vs(G) vt(G) vs(Gu) vt(Gu)

i

j

C

Cs Ct

Gu’
Gu’’

Gu

Gu’

vs(Gu’) vt(Gu’)

k

(c) (d)

Gu’’
Cs

Ct

vs(Gu’’)

vt(Gu’’)

Cst

Fig. 3. (a) A supplied set C for a series-parallel graph G, (b) a connected set Cst for
Gu, (c) a separated pair (Cs, Ct) of sets for Gu′ , and (d) a separated pair (Cs, Ct) of
isolated sets for Gu′′

hand, C induces a pair of subsets Cs and Ct of Vu′ in Fig. 3(c) such that
Cs ∪ Ct = C ∩ Vu′ , Cs ∩ Ct = ∅, vs(Gu′) ∈ Cs and vt(Gu′) ∈ Ct. A set Cst,
Cs or Ct is not always a supplied set for Gu or Gu′ , because it may not contain
the supply vertex w. Cst is a “connected set” for Gu, that is, Cst induces a con-
nected subgraph of Gu, while the pair (Cs, Ct) is a “separated pair of sets” for
Gu′ , that is, Cs and Ct induce vertex-disjoint connected subgraphs of Gu′ . The
set C contains no terminals of Gu′′ in Fig. 3(a). In such a case, we regard that
dem(vs(Gu′′)) = dem(vt(Gu′′)) = 0 and C induces a separated pair of singleton
sets (Cs, Ct) such that Cs = {vs(Gu′′)} and Ct = {vt(Gu′′)}, as illustrated in
Fig. 3(d).

If a set Cst, Cs or Ct contains the supply vertex w, then the set may have the
“marginal” power, the amount of which is no greater than sup(w). If a set does
not contain w, then the set may have the “deficient” power, the amount of which
is no greater than sup(w). Thus we later introduce five functions g, h1, h2, h3
and h4; for a series-parallel graph Gu and a real number x, the value g(Gu, x)
represents the maximum marginal power or the minimum deficient power of
connected sets for Gu; for a series-parallel graph Gu and a real number x, the
value hi(Gu, x), 1 ≤ i ≤ 4, represents the maximum marginal power or the
minimum deficient power of separated pairs of sets for Gu. Our idea is to compute
g(Gu, x) and hi(Gu, x), 1 ≤ i ≤ 4, from the leaves of T to the root r of T by
means of dynamic programming.

We now formally define the notion of connected sets and separated pair of sets
for a series-parallel graph G. Let Gu = (Vu, Eu) be a subgraph of G for a node
u of a binary decomposition tree T of G, and let vs = vs(Gu) and vt = vt(Gu).

Approximability of Partitioning Graphs with Supply and Demand 127

We call a set C ⊆ Vu a connected set for Gu if C satisfies the following three
conditions (see Fig. 3(b)):

(a) vs, vt ∈ C;
(b) C induces a connected subgraph of Gu; and
(c)

∑
v∈C dem(v) ≤ sup(w) if w ∈ C.

A pair of sets Cs, Ct ⊆ Vu is called a separated pair (of sets) for Gu if Cs and
Ct satisfy the following four conditions (see Fig. 3(c)):

(a) Cs ∩ Ct = ∅, vs ∈ Cs and vt ∈ Ct;
(b) Cs and Ct induce connected subgraphs of Gu;
(c)

∑
v∈Cs

dem(v) ≤ sup(w) if w ∈ Cs; and
(d)

∑
v∈Ct

dem(v) ≤ sup(w) if w ∈ Ct.

We then classify connected sets and separated pairs further into smaller
classes. Let Rw = {x ∈ R : |x| ≤ sup(w)}, where R denotes the set of all
real numbers. For each real number i ∈ Rw, we call a connected set C for Gu an
i-connected set if C satisfies the following two conditions:

(a) if i > 0, then w ∈ C and i +
∑

x∈C dem(x) ≤ sup(w); and
(b) if i ≤ 0, then w /∈ C and

∑
x∈C dem(x) ≤ |i| = −i.

An i-connected set C for Gu with i > 0 is a supplied set for Gu, and hence
corresponds to some supplied set Cr for the whole graph G = Gr such that
w ∈ C ⊆ Cr, where r is the root of T ; an amount i of the remaining power
of w can be delivered outside Gu through vs or vt; and hence the “margin” of
C is i. On the other hand, an i-connected set C for Gu with i ≤ 0 is not a
supplied set for Gu, but may correspond to a supplied set Cr for G = Gr such
that w /∈ C ⊂ Cr and w ∈ Cr ; an amount |i| of power must be delivered to C
through vs or vt, and hence the “deficiency” of C is |i|. For an i-connected set
C for Gu, let

f(C, i) =
∑

x∈C

dem(x).

Then f(C, i) = f(C) if 0 < i ≤ sup(w). On the other hand, if −sup(w) ≤ i ≤ 0,
then f(C, i) represents the fulfillment of C when an amount |i| of power is
delivered to C from w in the outside of Gu.

Let σ /∈ Rw be a symbol. For each pair of j and k in Rw ∪ {σ}, we call
a separated pair (Cs, Ct) for Gu a (j, k)-separated pair if (Cs, Ct) satisfies the
following seven conditions:

(a) if j > 0, then w ∈ Cs and j +
∑

x∈Cs
dem(x) ≤ sup(w);

(b) if j ≤ 0, then w /∈ Cs and
∑

x∈Cs
dem(x) ≤ −j;

(c) if j = σ, then Cs = {vs};
(d) if k > 0, then w ∈ Ct and k +

∑
x∈Ct

dem(x) ≤ sup(w);
(e) if k ≤ 0, then w /∈ Ct and

∑
x∈Ct

dem(x) ≤ −k;
(f) if k = σ, then Ct = {vt}; and
(g) if j + k ≤ 0, then j ≤ 0 and k ≤ 0.

128 T. Ito et al.

Since G has only one supply vertex w, there is no (j, k)-separated pair (Cs, Ct) for
G such that j > 0 and k > 0. A (j, k)-separated pair (Cs, Ct) for Gu with j > 0
corresponds to a supplied set Cr for the whole graph G such that w ∈ Cs ⊆ Cr;
an amount j of the remaining power of w can be delivered outside Cs through
vs, and hence the margin of Cs is j. A (j, k)-separated pair (Cs, Ct) for Gu with
j ≤ 0 may correspond to a supplied set Cr for G such that Cs ⊂ Cr and either
w ∈ Ct or w ∈ Cr − Cs ∪ Ct; an amount |j| of power must be delivered to Cs

through vs, and hence the deficiency of Cs is |j|. A (j, k)-separated pair (Cs, Ct)
for Gu with j = σ corresponds to a supplied set Cr for G such that vs /∈ Cr,
that is, vs is never supplied power. (See Figs. 3(a) and (d).) A (j, k)-separated
pair (Cs, Ct) for Gu with k > 0, k ≤ 0 or k = σ corresponds to a supplied set
Cr for G similarly as above. For a (j, k)-separated pair (Cs, Ct) for Gu, let

f(Cs, Ct, j, k) =

⎧
⎨

⎩

∑
x∈Cs∪Ct

dem(x) if j, k ∈ Rw;∑
x∈Cs

dem(x) if j ∈ Rw and k = σ; and∑
x∈Ct

dem(x) if j = σ and k ∈ Rw.

Let

f(Cs, Ct, σ, σ) = max{f(Cu) | Cu is a supplied set for Gu

such that vs, vt /∈ Cu};

let f(Cs, Ct, σ, σ) = 0 if Gu has no supplied set Cu such that vs, vt /∈ Cu.

We now formally define a function g as follows: for a series-parallel graph Gu

and a real number x ∈ R,

g(Gu, x) = max{i ∈ Rw | Gu has an i-connected set C such that f(C, i) ≥ x}.

If Gu has no i-connected set C with f(C, i) ≥ x for any number i ∈ Rw, then
let g(Gu, x) = −∞. We then formally define a function h1 as follows: for a
series-parallel graph Gu and a real number x ∈ R,

h1(Gu, x) = max{j + k | Gu has a (j, k)-separated pair (Cs, Ct) such that
j, k ∈ Rw, |j + k| ≤ sup(w), and f(Cs, Ct, j, k) ≥ x}.

If Gu has no (j, k)-separated pair (Cs, Ct) with f(Cs, Ct, j, k) ≥ x for any pair
of numbers j and k in Rw, then let h1(Gu, x) = −∞. It should be noted that a
(j, k)-separated pair (Cs, Ct) for Gu with j, k ∈ Rw corresponds to a supplied set
Cr for G such that Cs ∪ Ct ⊆ Cr, and hence we can simply take the summation
of j and k as the marginal power or the deficient power of Cs ∪ Ct. We next
formally define a function h2 as follows: for a series-parallel graph Gu and a real
number x ∈ R,

h2(Gu, x) = max{j ∈ Rw | Gu has a (j, σ)-separated pair (Cs, {vt})
such that f(Cs, {vt}, j, σ) ≥ x}.

If Gu has no (j, σ)-separated pair (Cs, {vt}) with f(Cs, {vt}, j, σ) ≥ x for any
number j ∈ Rw, then let h2(Gu, x) = −∞. We then formally define a function
h3 as follows: for a series-parallel graph Gu and a real number x ∈ R,

Approximability of Partitioning Graphs with Supply and Demand 129

h3(Gu, x) = max{k ∈ Rw | Gu has a (σ, k)-separated pair ({vs}, Ct)
such that f({vs}, Ct, σ, k) ≥ x}.

If Gu has no (σ, k)-separated pair ({vs}, Ct) with f({vs}, Ct, σ, k) ≥ x for any
number k ∈ Rw, then let h3(Gu, x) = −∞. We finally define a function h4 as
follows: for a series-parallel graph Gu and a real number x ∈ R,

h4(Gu, x) =

⎧
⎨

⎩

0 if Gu has a (σ, σ)-separated pair ({vs}, {vt})
such that f({vs}, {vt}, σ, σ) ≥ x;

−∞ otherwise.

Our algorithm computes g(Gu, x) and hi(Gu, x), 1 ≤ i ≤ 4, for each node u of
a binary decomposition tree T of a given series-parallel graph G from the leaves
to the root r of T by means of a dynamic programming. Since G = Gr, one
can compute the maximum fulfillment f(G) of G from g(Gr, x) and hi(Gr, x),
1 ≤ i ≤ 4. However, due to the page limitation, we omit the details of our
algorithm.

We now show that our algorithm takes time O(F 2n). Since all demands and
the supply of vertices in a given series-parallel graph G are integers, f(Cu) is an
integer for any supplied set Cu for Gu. Similarly, f(C, i) and f(Cs, Ct, j, k) are
integers for any i-connected set C and any (j, k)-separated pair (Cs, Ct), respec-
tively. Then one can easily observe that it suffices to compute values g(Gu, x)
and hi(Gu, x), 1 ≤ i ≤ 4, only for all integers x such that 0 ≤ x ≤ F , because
f(G) ≤ F =

∑
v∈V dem(v). We compute g(Gu, x) and hi(Gu, x), 1 ≤ i ≤ 4, for

each internal node u of T from the counterparts of the two children of u in T .
This is called combining operation, and can be done in time O(F 2). Since T has
at most 2n−4 internal nodes, the combining operation is executed no more than
2n times and hence one can compute g(G, x) and hi(G, x), 1 ≤ i ≤ 4, in time
O(F 2n). Our algorithm thus takes time O(F 2n).

4 FPTAS

Assume in this section that the supply and all demands are positive real num-
bers which are not always integers. Since the maximum partition problem is
MAXSNP-hard, there is no PTAS for the problem on general graphs unless
P = NP. However, using the pseudo-polynomial-time algorithm in Section 3,
we can obtain an FPTAS for series-parallel graphs having exactly one supply
vertex, and have the following theorem.

Theorem 3. There is a fully polynomial-time approximation scheme for the
maximum partition problem on a series-parallel graph having exactly one supply
vertex.

We give an algorithm to find a supplied set C for a series-parallel graph G with
f(C) ≥ (1 − ε)f(G) in time polynomial in n and 1/ε for any real number ε,

130 T. Ito et al.

0 < ε < 1. Thus our approximate maximum fulfillent f̄(G) of G is f(C), and
hence the error is bounded by εf(G), that is,

f(G) − f̄(G) = f(G) − f(C) ≤ εf(G). (2)

We now outline our algorithm and the analysis. We extend the ordinary “scal-
ing and rounding” technique for the knapsack problem [3] and the maximum
partition problem on trees [4] and apply it to the maximum partition problem
for a series-parallel graph with a single supply vertex. For some scaling factor
t, we consider the set {· · · , −2t, −t, 0, t, 2t, · · · } as the range of functions g and
hi, 1 ≤ i ≤ 4, and find the approximate solution f̄(G) by using the pseudo-
polynomial-time algorithm in Section 3. Then we have

f(G) − f̄(G) < 4nt. (3)

Intuitively, Eq. (3) holds because the combining operation is executed no more
than 2n times and each combining operation adds at most 2t to the error f(G)−
f̄(G). Let md be the maximum demand, that is, md = max{dem(v) | v ∈ Vd}.
Taking t = εmd/(4n) and claiming f(G) ≥ md, we have Eq. (2). One can observe
that the algorithm takes time

O

((⌊
F

t

⌋
+ 1

)2

n

)

= O

(
n5

ε2

)
,

because F ≤ nmd and hence we have F/t ≤ 4n2/ε.

Acknowledgments

We thank MohammadTaghi Hajiaghayi for fruitful discussions.

References

1. S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable graphs,
J. Algorithms, Vol. 12, pp. 308–340, 1991.

2. H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees, J. Algorithms, Vol. 11, pp. 631–643, 1990.

3. O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the knapsack and
sum of subset problems, J. ACM, Vol. 22, pp. 463–468, 1975.

4. T. Ito, X. Zhou and T. Nishizeki, Partitioning trees of supply and demand, Inter-
national J. of Foundations of Computer Science, Vol. 16, pp. 803–827, 2005.

5. T. Ito, X. Zhou and T. Nishizeki, Partitioning graphs of supply and demand, Proc. of
the 2005 IEEE Int’l Symposium on Circuits and Syst., pp. 160–163, 2005.

6. A. B. Morton and I. M. Y. Mareels, An efficient brute-force solution to the network
reconfiguration problem, IEEE Trans. on Power Delivery, Vol. 15, pp. 996–1000,
2000.

7. C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
8. C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and com-

plexity classes, J. Computer and System Sciences, Vol. 43, pp. 425–440, 1991.
9. K. Takamizawa, T. Nishizeki and N. Saito, Linear-time computability of combina-

torial problems on series-parallel graphs, J. ACM, Vol. 29, pp. 623–641, 1982.

Convex Grid Drawings of Plane Graphs

with Rectangular Contours

Akira Kamada1, Kazuyuki Miura2, and Takao Nishizeki1

1 Graduate School of Information Sciences, Tohoku University,
Sendai 980-8579, Japan

2 Faculty of Symbiotic Systems Science, Fukushima University,
Fukushima 960-1296, Japan

kamada@nishizeki.ecei.tohoku.ac.jp, miura@sss.fukushima-u.ac.jp,
nishi@ecei.tohoku.ac.jp

Abstract. In a convex drawing of a plane graph, all edges are drawn as
straight-line segments without any edge-intersection and all facial cycles
are drawn as convex polygons. In a convex grid drawing, all vertices are
put on grid points. A plane graph G has a convex drawing if and only if
G is internally triconnected, and an internally triconnected plane graph
G has a convex grid drawing on an n × n grid if G is triconnected or the
triconnected component decomposition tree T (G) of G has two or three
leaves, where n is the number of vertices in G. In this paper, we show
that an internally triconnected plane graph G has a convex grid drawing
on a 2n × n2 grid if T (G) has exactly four leaves. We also present an
algorithm to find such a drawing in linear time. Our convex grid drawing
has a rectangular contour, while most of the known algorithms produce
grid drawings having triangular contours.

1 Introduction

Recently automatic aesthetic drawing of graphs has created intense interest due
to their broad applications, and as a consequence, a number of drawing methods
have come out [11]. The most typical drawing of a plane graph is a straight
line drawing in which all edges are drawn as straight line segments without any
edge-intersection. A straight line drawing is called a convex drawing if every
facial cycle is drawn as a convex polygon. One can find a convex drawing of a
plane graph G in linear time if G has one [3,4,11].

A straight line drawing of a plane graph is called a grid drawing if all vertices
are put on grid points of integer coordinates. This paper deals with a convex grid
drawing of a plane graph. Throughout the paper we assume for simplicity that
every vertex of a plane graph G has degree three or more, because the two edges
incident to a vertex of degree two are often drawn on a straight line. Then G has
a convex drawing if and only if G is “internally triconnected” [9]. One may thus
assume without loss of generality that G is internally triconnected. If either G is
triconnected [2] or the “triconnected component decomposition tree” T (G) of G
has two or three leaves [8], then G has a convex grid drawing on an (n−1)×(n−1)

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 131–140, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

132 A. Kamada, K. Miura, and T. Nishizeki

grid and such a drawing can be found in linear time, where n is the number of
vertices of G. However, it has not been known whether G has a convex grid
drawing of polynomial size if T (G) has four or more leaves. Figure 1(a) depicts
an internally triconnected plane graph G, Fig. 2(b) the triconnected components
of G, and Fig. 2(c) the triconnected component decomposition tree T (G) of G,
which has four leaves l1, l2, l3 and l4.

(a) (b)

(d)

(e)

(c)

a1

a2

a3a4

s1 , s8

s2 s3

s4

s5

s6s7 a3a4

s1 , s8 s4

s5

s6s7

a1

a2

s2 s3

Gd

Gu

G Gu and Gd

a3a4

vr

vl

a1 = vr a2

vl

Du

Dd

Pu

Pd

a3
a4

W(D)

W(D)+1

H(Du)

H(D)

a1
a2

H(Dd)

D

Fig. 1. (a) A plane graph G, (b) subgraphs Gu and Gd, (c) a drawing Du of Gu, (d) a
drawing Dd of Gd, and (e) a convex grid drawing D of G

In this paper, we show that an internally triconnected plane graph G has
a convex grid drawing on a 2n × n2 grid if T (G) has exactly four leaves, and
present an algorithm to find such a drawing in linear time. The algorithm is
outlined as follows: we first divide a plane graph G into an upper subgraph Gu

Convex Grid Drawings of Plane Graphs with Rectangular Contours 133

(a) (b) (c)

a3

a1

a2

a4

s1 , s8

s2 s3

s4

s5

s6s7

u4

l1 l2

l3l4

Fig. 2. (a) Split components of the graph G in Fig. 1(a), (b) triconnected components
of G, and (c) a decomposition tree T (G)

and a lower subgraph Gd as illustrated in Fig. 1(b) for the graph in Fig. 1(a);
we then construct “inner” convex grid drawings of Gu and Gd by a so-called
shift method as illustrated in Figs. 1(c) and (d); we finally extend these two
drawings to a convex grid drawing of G as illustrated in Fig. 1(e). This is the
first algorithm that finds a convex grid drawing of such a plane graph G in
a grid of polynomial size. Our convex grid drawing has a rectangular contour,
while most of the previously known algorithms produce a grid drawing having a
triangular contour [1,2,5,6,8,13].

2 Preliminaries

We denote by W (D) the width of a minimum integer grid enclosing a grid
drawing D of a graph, and by H(D) the height of D. A plane graph G divides
the plane into connected regions, called faces. The infinite face is called an outer
face, and the others are called inner faces. The boundary of a face is called a
facial cycle. We denote by Fo(G) the outer facial cycle of G. A vertex on Fo(G)
is called an outer vertex, while a vertex not on Fo(G) is called an inner vertex. In
a convex drawing of a plane graph G, all facial cycles must be drawn as convex
polygons. The convex polygonal drawing of Fo(G) is called an outer polygon. We
call a vertex of a polygon an apex in order to avoid the confusion with a vertex
of a graph.

We call a pair {u, v} of vertices in a biconnected graph G a separation pair
if its removal from G results in a disconnected graph, that is, G − {u, v} is not
connected. A biconnected graph G is triconnected if G has no separation pair. A
biconnected plane graph G is internally triconnected if, for any separation pair
{u, v} of G, both u and v are outer vertices and each connected component of
G− {u, v} contains an outer vertex. In other words, G is internally triconnected
if and only if it can be extended to a triconnected graph by adding a vertex in
the outer face and joining it to all outer vertices.

Let G = (V, E) be a biconnected graph, and let {u, v} be a separation pair of
G. Then, G has two subgraphs G′1 = (V1, E

′
1) and G′2 = (V2, E

′
2) satisfying the

following two conditions.

134 A. Kamada, K. Miura, and T. Nishizeki

(a) V = V1
⋃

V2, V1
⋂

V2 = {u, v}; and
(b) E = E′1

⋃
E′2, E′1

⋂
E′2 = ∅, |E′1| ≥ 2, |E′2| ≥ 2.

For a separation pair {u, v} of G, G1 = (V1, E
′
1+(u, v)) and G2 = (V2, E

′
2+(u, v))

are called the split graphs of G with respect to {u, v}. The new edges (u, v) added
to G1 and G2 are called the virtual edges. Even if G has no multiple edges, G1
and G2 may have. Dividing a graph G into two split graphs G1 and G2 is called
splitting. Reassembling the two split graphs G1 and G2 into G is called merging.
Merging is the inverse of splitting. Suppose that a graph G is split, the split
graphs are split, and so on, until no more splits are possible, as illustrated in
Fig. 2(a) for the graph in Fig. 1(a) where virtual edges are drawn by dotted
lines. The graphs constructed in this way are called the split components of G.
The split components are of three types: triconnected graphs; triple bonds (i.e.
a set of three multiple edges); and triangles (i.e. a cycle of length three). The
triconnected components of G are obtained from the split components of G by
merging triple bonds into a bond and triangles into a ring, as far as possible,
where a bond is a set of multiple edges and a ring is a cycle. Thus the tricon-
nected components of G are of three types: (a) triconnected graphs; (b) bonds;
and (c) rings. Two triangles in Fig. 2(a) are merged into a single ring, and
hence the graph in Fig. 1(a) has ten triconnected components as illustrated in
Fig. 2(b).

Let T (G) be a tree such that each node corresponds to a triconnected com-
ponent Hi of G and there is an edge (Hi, Hj), i �= j, in T (G) if and only if Hi

and Hj are triconnected components with respect to the same separation pair,
as illustrated in Fig. 2(c). We call T (G) a triconnected component decomposition
tree or simply a decomposition tree of G [7]. We denote by �(G) the number of
leaves of T (G). Then �(G) = 4 for the graph G in Fig. 1(a). (See Fig. 2(c).) If G
is triconnected, then T (G) consists of a single isolated node and hence �(G) = 1.

The following two lemmas are known.

Lemma 1. [9] Let G be a biconnected plane graph in which every vertex has
degree three or more. Then the following three statements are equivalent to each
other:

(a) G has a convex drawing;
(b) G is internally triconnected; and
(c) both vertices of every separation pair are outer vertices, and a node of the

decomposition tree T (G) of G has degree two if it is a bond.

Lemma 2. [9] If a plane graph G has a convex drawing D, then the number of
apices of the outer polygon of D is no less than max{3, �(G)}, and there is a
convex drawing of G whose outer polygon has exactly max{3, �(G)} apices.

Since G is an internally triconnected simple graph and every vertex of G has
degree three or more, by Lemma 1 every leaf of T (G) is a triconnected graph.

Convex Grid Drawings of Plane Graphs with Rectangular Contours 135

Lemmas 1 and 2 imply that if T (G) has exactly four leaves then the outer
polygon must have four or more apices. Our algorithm obtains a convex grid
drawing of G whose outer polygon has exactly four apices and is a rectangle in
particular, as illustrated in Fig. 1(e).

In Section 3, we will present an algorithm to draw the upper subgraph Gu
and the lower subgraph Gd. The algorithm uses the following “canonical de-
composition.” Let G = (V, E) be an internally triconnected plane graph, and
let V = {v1, v2, · · · , vn}. Let v1, v2 and vn be three arbitrary outer vertices ap-
pearing counterclockwise on Fo(G) in this order. We may assume that v1 and
v2 are consecutive on Fo(G); otherwise, add a virtual edge (v1, v2) to the orig-
inal graph, and let G be the resulting graph. Let Π = (U1, U2, · · · , Um) be an
ordered partition of V into nonempty subsets U1, U2, · · · , Um. We denote by Gk,
1 ≤ k ≤ m, the subgraph of G induced by U1

⋃
U2

⋃
· · ·

⋃
Uk, and denote by

Gk, 0 ≤ k ≤ m − 1, the subgraph of G induced by Uk+1
⋃

Uk+2
⋃

· · ·
⋃

Um. We
say that Π is a canonical decomposition of G (with respect to vertices v1, v2 and
vn) if the following three conditions (cd1)–(cd3) hold:

(cd1) Um = {vn}, and U1 consists of all the vertices on the inner facial cycle
containing edge (v1, v2).

(cd2) For each index k, 1 ≤ k ≤ m, Gk is internally triconnected.
(cd3) For each index k, 2 ≤ k ≤ m, all the vertices in Uk are outer vertices of

Gk, and
(a) if |Uk| = 1, then the vertex in Uk has two or more neighbors in Gk−1

and has one or more neighbors in Gk when k < m; and
(b) if |Uk| ≥ 2, then each vertex in Uk has exactly two neighbors in Gk,

and has one or more neighbors in Gk.

A canonical decomposition Π = (U1, U2, · · · , U11) with respect to vertices
v1, v2 and vn of the graph in Fig. 3(a) is illustrated in Fig. 3(b).

3 Pentagonal Drawing

Let G be a plane graph having a canonical decomposition Π = (U1, U2, · · · , Um)
with respect to vertices v1, v2 and vn, as illustrated in Figs. 3(a) and (b). In
this section, we present a linear-time algorithm, called the pentagonal drawing
algorithm, to find a convex grid drawing of G with a pentagonal outer polygon,
as illustrated in Fig. 3(d). The algorithm is based on the so-called shift methods
given by Chrobak and Kant [2] and de Fraysseix et al. [5], and will be used by
our convex grid drawing algorithm in Section 4 to draw Gu and Gd.

Let vl be an arbitrary vertex on the path going from v1 to vn clockwise on
Fo(G), and let vr(�= vl) be an arbitrary vertex on the path going from v2 to vn

counterclockwise on Fo(G), as illustrated in Fig. 3(a). Let Vl be the set of all
vertices on the path going from v1 to vl clockwise on Fo(G), and let Vr be the
set of all vertices on the path going from v2 to vr counterclockwise on Fo(G). Our

136 A. Kamada, K. Miura, and T. Nishizeki

(b)

(c)

(a)

(d)

U5

U1

U2

U3

U4
U8U7

U6

U9

U10

U11

vr

v2 = a3
v1 = a4

vl

Dm

vn = w

Dm 1

a3a4

vr

vl

v2 = a3v1 = a4

vl = s1 vr = s4

vn = w

G (= Gd)

Vl Vr

Fig. 3. (a) An internally triconnected plane graph G(= G′
d), (b) a canonical decom-

position Π of G, (c) a drawing Dm−1 of Gm−1, and (d) a pentagonal drawing Dm

of G

pentagonal drawing algorithm obtains a convex grid drawing of G whose outer
polygon is a pentagon with apices v1, v2, vr, vn and vl, as illustrated in Fig. 3(d).

We first obtain a drawing D1 of the subgraph G1 of G induced by all vertices
of U1. Let Fo(G1) = w1, w2, · · · , wt, w1 = v1, and wt = v2. We draw G1 as
illustrated in Fig. 4, depending on whether (v1, v2) is a real edge or not, w2 ∈ Vl

or not, and wt−1 ∈ Vr or not.
We then extend a drawing Dk−1 of Gk−1 to a drawing Dk of Gk for each

index k, 2 ≤ k ≤ m. Let Fo(Gk−1) = w1, w2, · · · , wt, w1 = v1, wt = v2, and
Uk = {u1, u2, · · · , ur}. Let wf be the vertex with the maximum index f among
all the vertices wi, 1 ≤ i ≤ t, on Fo(Gk−1) that are contained in Vl. Let wg

be the vertex with the minimum index g among all the vertices wi that are
contained in Vr. Of course, 1 ≤ f < g ≤ t. We denote by ∠wi the interior
angle of apex wi of the outer polygon of Dk−1. We call wi a convex apex of the

(b) (e)(a) (c) (d)

wtw1

w2

wt = v2w1 = v1

w2

wtw1

w2

wtw1

w2

w1

w2

wt

wt 1 wt 1
wt 1 wt 1

wt 1

Fig. 4. Drawings D1 of G1

Convex Grid Drawings of Plane Graphs with Rectangular Contours 137

polygon if ∠wi < π. Assume that a drawing Dk−1 of Gk−1 satisfies the following
six conditions (sh1)–(sh6). Indeed D1 satisfies them.

(sh1) w1 is on the grid point (0, 0), and wt is on the grid point (2|V (Gk−1)| −
2, 0).

(sh2) x(w1) = x(w2) = · · · = x(wf), x(wf) < x(wf+1) < · · · < x(wg), x(wg) =
x(wg+1) = · · · = x(wt), where x(wi) is the x-coordinate of wi.

(sh3) Every edge (wi, wi+1), f ≤ i ≤ g − 1, has slope −1, 0, or 1.
(sh4) The Manhattan distance between any two grid points wi and wj , f ≤ i <

j ≤ g, is an even number.
(sh5) Every inner face of Gk−1 is drawn as a convex polygon.
(sh6) Vertex wi, f + 1 ≤ i ≤ g − 1, has one or more neighbors in Gk−1 if wi is

a convex apex.

We extend Dk−1 to Dk, 2 ≤ k ≤ m, so that Dk satisfies conditions (sh1)–
(sh6). Let wp be the leftmost neighbor of u1, that is, wp is the neighbor of u1
in Gk having the smallest index p, and let wq be the rightmost neighbor of ur.
Before installing Uk to Dk−1, we first shift w1, w2, · · · , wp of Gk−1 and some
inner vertices of Gk to the left by |Uk|, and then shift wq, wq+1, · · · , wt of Gk−1
and some inner vertices of Gk to the right by |Uk|. After the operation, we shift
all vertices of Gk−1 to the right by |Uk| so that w1 is on the grid point (0, 0).

Clearly W (D1) = 2|V (G1)| − 2 and H(D1) ≤ 4. One can observe that
W (Dk) = 2|V (Gk)|−2 and H(Dk) ≤ H(Dk−1)+W (Dk) for each k, 2 ≤ k ≤ m.
We thus have the following lemma.

Lemma 3. For a plane graph G having a canonical decomposition Π = (U1,
U2, · · · , Um) with respect to v1, v2 and vn, the pentagonal drawing algorithm ob-
tains a convex grid drawing of G on a W × H grid with W = 2n − 2 and
H ≤ n2 −n−2 in linear time. Furthermore, W (Dm−1) = 2(|V (Gm−1)|)−2 and
H(Dm−1) ≤ |V (Gm−1)|2 − |V (Gm−1)| − 2.

4 Convex Grid Drawing Algorithm

In this section we present a linear algorithm to find a convex grid drawing D
of an internally triconnected plane graph G whose decomposition tree T (G) has
exactly four leaves. Such a graph G does not have a canonical decomposition,
and hence none of the algorithms in [1], [2], [6], [8] and Section 3 can find a
convex grid drawing of G.

Division. We first explain how to divide G into Gu and Gd. (See Figs. 1(a)
and (b).) One may assume that the four leaves l1, l2, l3 and l4 of T (G) appear
clockwise in T (G) in this order. Clearly, either exactly one node u4 of T (G) has
degree four and each of the other non-leaf nodes has degree two as illustrated in
Fig. 2(c), or two nodes have degree three and each of the other non-leaf nodes
has degree two. In this extended abstract, we consider only the former case.
Since each vertex of G is assumed to have degree three or more, all the four

138 A. Kamada, K. Miura, and T. Nishizeki

leaves of T (G) are triconnected graphs. Moreover, according to Lemma 1, every
bond has degree two in T (G). Therefore, node u4 is either a triconnected graph
or a ring. We assume in this extended abstract that u4 is a triconnected graph
as in Fig. 2.

As the four apices of the rectangular contour of G, we choose four outer ver-
tices ai, 1 ≤ i ≤ 4, of G; let ai be an arbitrary outer vertex in the component
li that is not a vertex of the separation pair of the component. The four ver-
tices a1, a2, a3 and a4 appear clockwise on Fo(G) in this order as illustrated in
Fig. 1(a).

We then choose eight vertices s1, s2, · · · , s8 from the outer vertices of the com-
ponent u4. Among these outer vertices, let s1 be the vertex that one encounters
first when one traverses Fo(G) counterclockwise from the vertex a1, and let s2
be the vertex that one encounters first when one traverses Fo(G) clockwise from
a1, as illustrated in Fig. 1(a). Similarly, we choose s3 and s4 for a2, s5 and s6
for a3, and s7 and s8 for a4.

We then show how to divide G into Gu and Gd. Split G for separation pairs
{s1, s2} and {s3, s4} as far as possible, and let G′ be the resulting split graph
containing vertices a3 and a4. Then, G′ is internally triconnected, and T (G′) has
exactly two leaves. Consider all the inner faces of G′ that contain one or more
vertices on the path going from s2 to s3 clockwise on Fo(G′). Let G′′ be the
subgraph of G′ induced by the vertices on these faces. Then Fo(G′′) is a simple
cycle. Clearly, Fo(G′′) contains vertices s1 and s4. Let P be the path going from
s1 to s4 counterclockwise on Fo(G′′). (P is drawn by thick lines in Fig. 1(a).)

Let Gd be the subgraph of G induced by all the vertices on or below P , and
let Gu be the subgraph of G obtained by deleting all vertices in Gd as illustrated
in Fig. 1(b). Let nd be the number of vertices of Gd, and let nu be the number
of vertices of Gu. Then nd + nu = n.

Drawing Gd. We now explain how to draw Gd. Let G′d be a graph obtained
from G by contracting all the vertices of Gu to a single vertex w, as illustrated
in Fig. 3(a) for the graph G in Fig. 1(a)D One can prove that the plane graph
G′d is internally triconnected.

The decomposition tree T (G′d) of G′d has exactly two leaves, and a3 and a4
are contained in the triconnected graphs corresponding to the leaves and are not
vertices of the separation pairs. Every vertex of G′d other than w has degree three
or more, and w has degree two or more in G′d. Therefore, G′d has a canonical
decomposition Π = (U1, U2, · · · , Um) with respect to a4, a3 and w, as illustrated
in Fig. 3(b), where Um = {w}. Let vl be the vertex preceding w clockwise on
the outer face Fo(G′d), and let vr be the vertex succeeding w, as illustrated
in Fig. 3(a). We obtain a pentagonal drawing Dm of G′d by the algorithm in
Section 3, as illustrated in Fig. 3(d). The drawing Dm−1 of Gm−1 induced by
U1

⋃
U2

⋃
· · ·

⋃
Um−1 is our drawing Dd of Gd(= Gm−1). (See Figs. 1(d) and

3(c).) By Lemma 3, we have W (Dd) = 2nd − 2 and H(Dd) ≤ n2
d − nd − 2.

Drawing Gu. We now explain how to draw Gu. Let G′u be a graph obtained
from G by contracting all the vertices of Gd to a single vertex w′. Similarly to

Convex Grid Drawings of Plane Graphs with Rectangular Contours 139

G′d, G′u has a canonical decomposition Π = (U1, U2, · · · , Um) with respect to
a2, a1 and w′. Let v′r be the vertex succeeding w′ clockwise on the outer face
Fo(G′u), and let v′l be the vertex preceding w′. We then obtain a drawing Dm−1
of Gu(= Gm−1) by the algorithm in Section 3, as illustrated in Fig. 1(c). By
Lemma 3, we have W (Du) = 2nu − 2 and H(Du) ≤ n2

u − nu − 2.

Drawing of G. If W (Dd) �= W (Du), then we widen the narrow one of Dd and Du
by the shift method in Section 3. We may thus assume that W (Dd) = W (Du) =
max{2nd − 2, 2nu − 2}. Since we combine the two drawings Dd and Du of the
same width to a drawing D of G, we have

W (D) = max{2nd − 2, 2nu − 2} < 2n.

We arrange Dd and Du so that y(a3) = y(a4) = 0 and y(a1) = y(a2) =
H(Dd) + H(Du) + W (D) + 1, as illustrated in Fig. 1(e).

Noting that nd + nu = n and nd, nu ≥ 5, we have

H(D) = H(Dd) + H(Du) + W (D) + 1

< (n2
d − nd − 2) + (n2

u − nu − 2) + 2n + 1

< n2.

We finally draw, by straight line segments, all the edges of G that are contained
in neither Gu nor Gd. This completes the grid drawing D of G. (see Fig. 1(e).)

Validity of drawing algorithm. In this section, we show that the drawing D
obtained above is a convex grid drawing of G. Since both Dd and Du satisfy
condition (sh5), every inner facial cycle of Gd and Gu is drawn as a convex
polygon in D. Therefore, it suffices to show that the straight line drawings of
the edges not contained in Gu and Gd do not introduce any edge-intersection
and that all the faces newly created by these edges are convex polygons.

Since Dd satisfies condition (sh3), the absolute value of the slope of every edge
on the path Pd going from vl to vr clockwise on Fo(Gd) is at most 1. The path
Pd is drawn by thick lines in Fig. 1(d). Similarly, the absolute value of the slope
of every edge on the path Pu going from v′r to v′l counterclockwise on Fo(Gu) is
at most 1. Since H(D) = H(Dd)+H(Du)+W (D)+1, the absolute value of the
slope of every straight line segment that connects a vertex in Gu and a vertex
in Gd is larger than 1. Therefore, all the outer vertices of Gd on Pd are visible
from all the outer vertices of Gu on Pu. Furthermore, G is a plane graph. Thus
the addition of all the edges not contained in Gu and Gd does not introduce any
edge-intersection.

Since Dd satisfies condition (sh6), every convex apex of the outer polygon of
Gd on Pd has one or more neighbors in Gu. Similarly, every convex apex of the
outer polygon of Gu on Pu has one or more neighbors in Gd. Therefore, every
interior angle of a newly formed face is smaller than 180◦. Thus all the inner
faces of G not contained in Gu and Gd are convex polygons in D.

Thus, D is a convex grid drawing of G. Clearly the algorithm takes linear
time. We thus have the following main theorem.

140 A. Kamada, K. Miura, and T. Nishizeki

Theorem 1. Assume that G is an internally triconnected plane graph, every
vertex of G has degree three or more, and the triconnected component decompo-
sition tree T (G) has exactly four leaves. Then our algorithm finds a convex grid
drawing of G on a 2n × n2 grid in linear time.

We finally remark that the grid size is improved to 2n × 4n for the case where
either the node u4 of degree four in T (G) is a ring or T (G) has two nodes of
degree three.

References

1. N. Bonichon, S. Felsner and M. Mosbah, Convex drawings of 3-connected plane
graphs -Extended Abstract-, Proc. of GD 2004, LNCS 3383, pp. 60–70, 2005.

2. M. Chrobak and G. Kant, Convex grid drawings of 3-connected planar graphs,
International Journal of Computational Geometry and Applications, 7, pp. 211–223,
1997.

3. N. Chiba, K. Onoguchi and T. Nishizeki, Drawing planar graphs nicely, Acta In-
form., 22, pp. 187–201, 1985.

4. N. Chiba, T. Yamanouchi and T. Nishizeki, Linear algorithms for convex drawings
of planar graphs, in Progress in Graph Theory, J. A. Bondy and U. S. R. Murty
(Eds.), Academic Press, pp. 153–173, 1984.

5. H. de Fraysseix, J. Pach and R. Pollack, How to draw a planar graph on a grid,
Combinatorica, 10, pp. 41–51, 1990.

6. S. Felsner, Convex drawings of plane graphs and the order of dimension of 3-
polytopes, Order, 18, pp. 19–37, 2001.

7. J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components,
SIAM J. Compt.2, 3, pp. 135–138, 1973.

8. K. Miura, M. Azuma and T. Nishizeki, Canonical decomposition, realizer, Schny-
der labeling and orderly spanning trees of plane graphs, International Journal of
Foundations of Computer Science, 16, 1, pp. 117–141, 2005.

9. K. Miura, M. Azuma and T. Nishizeki, Convex drawings of plane graphs of mini-
mum outer apices, Proc. of GD 2005, LNCS 3843, pp. 297–308, 2005, also to appear
in International Journal of Foundations of Computer Science.

10. K. Miura, S. Nakano and T. Nishizeki, Convex grid drawings of four-connected
plane graphs, Proc. of ISAAC 2000, LNCS 1969, pp. 254–265, 2000, also to appear
in International Journal of Foundations of Computer Science.

11. T. Nishizeki and M. S. Rahman, Planar Graph Drawing, World Scientific, Singapore,
2004.

12. S. Nakano, M. S. Rahman and T. Nishizeki, A linear time algorithm for four
partitioning four-connected planar graphs, Information Processing Letters, 62, pp.
315–322, 1997.

13. W. Schnyder and W. Trotter, Convex drawings of planar graphs, Abstracts of the
AMS 13, 5, 92T-05-135, 1992.

Algorithms on Graphs with Small Dominating

Targets

Divesh Aggarwal, Chandan K. Dubey, and Shashank K. Mehta�

Indian Institute of Technology, Kanpur - 208016, India
{divesh, cdubey, skmehta}@iitk.ac.in

Abstract. A dominating target of a graph G = (V, E) is a set of ver-
tices T s.t. for all W ⊆ V , if T ⊆ W and induced subgraph on W
is connected, then W is a dominating set of G. The size of the small-
est dominating target is called dominating target number of the graph,
dt(G). We provide polynomial time algorithms for minimum connected
dominating set, Steiner set, and Steiner connected dominating set in
dominating-pair graphs (i.e., dt(G) = 2). We also give approximation al-
gorithm for minimum connected dominating set with performance ratio
2 on graphs with small dominating targets. This is a significant improve-
ment on appx ≤ d(opt + 2) given by Fomin et.al. [2004] on graphs with
small d-octopus.

Classification: Dominating target, d-octopus, Dominating set,
Dominating-pair graph, Steiner tree.

1 Introduction

Let G = (V,E) be a simple (no loops, no multiple edges) undirected graph.
For a subset Y ⊆ V , G(Y) will denote the induced subgraph of G on vertex
set Y i.e. G(Y) = (Y, {(x, y) ∈ E : x, y ∈ Y }). Since we will only deal with
induced subgraphs in this paper, some times only Y may be used to denote
G(Y). For a vertex x ∈ V , open neighborhood denoted by N(x) is given by
{y ∈ V : (x, y) ∈ E}. The closed neighborhood is defined by N [x] = N(x) ∪ {x}.
Similarly, the closed and the open neighborhoods of a set S ⊂ V are defined by
N [S] = ∪x∈SN [x] and N(S) = N [S] − S respectively. A vertex set S1 is said
to dominate another set S2 if S2 ⊆ N [S1]. If N [S1] = V , then S1 is said to
dominate G.

We address four closely related domination and connectivity problems on
undirected graphs; minimum connected dominating set (MCDS), Steiner con-
nected dominating set (SCDS), Steiner set (SS), and Steiner tree (ST), each
is known to be NP-complete [1978]. Steiner set problem finds application in
VLSI routing [1995], wire length estimation [1998a], and network routing [1990].
Minimum con- nected dominating set and Steiner connected dominating set
problems have recently received attention due to their applications in wireless
routing in ad hoc networks [2003a].
� Partly supported by Ministry of Human Resource Development, Government of India

under grant no. MHRD/CD/2003/0320.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 141–152, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

142 D. Aggarwal, C.K. Dubey, and S.K. Mehta

Many interesting graph classes such as permutation graphs, interval graphs,
AT-free graphs [1997a, 1972, 1962, 1999] have a pair of vertices with a property
that any path connecting them is a dominating set for the graph. This pair is
called a dominating pair of the graph. The concept of Dominating target was
introduced by Kloks et. al. [2001] as a generalization of the dominating pair.
Any vertex set T in a graph G = (V,E) is said to be a dominating target of G if
the following property is satisfied: for every W ⊆ V , if G(W) is connected and
T ⊆ W , then W dominates V . The cardinality of the smallest dominating target
is called the dominating target number of the graph G and it is denoted by dt(G).
The family of graphs with dt(G) = 2 are known as dominating-pair (DP) graphs
and their dominating target is referred as dominating-pair. Minimum connected
dominating set and Steiner set problems are polynomially solvable on the family
of AT-free graphs [1993], which is a subclass of DP. We will present here efficient
algorithms for MCDS, SS, and SCDS on dominating-pair graphs.

A relevant parameter to the current work is d-octopus, considered by by Fomin
et. al. [2004]. A d-octopus of a graph is a subgraph T = (W,F) of G s.t. W is a
dominating set of G, and T is the union of d (not necessarily disjoint) shortest
paths of G that have one endpoint in common. It is conjectured that dt(G) ≤ d,
where the graph has a d-octopus, [2004]. Let opt be the optimal solution of MCDS
problem and appx be its approximation due to the algorithm by Fomin et.al.,
then appx ≤ d(opt+ 2). The complexity of this algorithm is O(|V |3d+3). We will
present an O(|V |dt(G)+1) approximation algorithm for MCDS with performance
ratio 2, which is an improvement both in terms of complexity (assuming the
conjecture) and approximation factor (for an introduction on approximation
algorithms see [2003, 1992]).

2 Problem Definitions

In this paper we discuss the problem of computing following.

Minimum Connected Dominating Set (MCDS) Given a graph G=(V,E),
vertex set C is a connected dominating set (CDS) if V = N [C] and G(C) is
connected. MCDS is a smallest cardinality CDS.

Steiner Connected Dominating Set (SCDS) Given a graph G = (V,E) and
a set R ⊆ V of required vertices, vertex set C is a connected |R|-dominating
set (R-CDS) if R ⊆ N [C] and G(C) is connected. SCDS of R is a smallest
cardinality R-CDS.

Steiner Set (SS) Given a graph G = (V,E) and a set R ⊆ V of required
vertices, vertex set S is an R-connecting set (R-CS) if G(S∪R) is connected.
SS of R is a smallest cardinality R-CS.

Steiner Tree (ST) Given an edged-weighted graph G = (V,E,w) (w is the
edge-weight function) and a set R ⊆ V of required vertices, a tree T is an
R-spanning tree (R-SPN) if it contains all R-vertices. ST of R is a minimum
weight (sum of the weights of the edges) R-SPN.

Algorithms on Graphs with Small Dominating Targets 143

Note that Steiner set problem is equivalent to Steiner tree problem when the
edge weights are taken to be 1; and MCDS is an instance of SCDS when R is
the entire V .

3 Exact Algorithms on Dominating Pair Graphs

3.1 Minimum Connected Dominating Set

Let (u, v) be a dominating pair of the graph G = (V,E) and X = N [u] and
Y = N [v]. For each x ∈ X define Ax = {a : (a, x) ∈ E and {a, x} dominates
X}. Define By in a similar way for each y ∈ Y . Now let Γ be as follows. Here
x ∈ X , y ∈ Y , and α . . . β denote a shortest path between α and β.

Γ = {P |P = u . . . v, or u . . . by, for b ∈ By or
xa . . . v, for a ∈ Ax or xa . . . by, for a ∈ Ay and b ∈ By}

Balakrishnan et. al. [1993] have given O(|V |3) algorithms to compute MCDS
and SS in AT-free graphs. They claim that the smallest cardinality path in Γ is a
MCDS of the graph. Although the authors address the problem of MCDS in AT-
free graphs, they do not use any property of this class other than the existence
of a dominating pair. Contrary to our expectation, the algorithm does not work
on all dominating pair (DP) graphs. In the graph of Figure 1 {x1, x2, x5, x6} is
an MCDS but no MCDS of size 4 is computable by their algorithm (no CDS of
size 4 is in Γ).

u v

x1 x2 x3

x4 x5 x6

Fig. 1. A DP graph where Balakrishnan et.al. algorithm fails

Theorem 1. Let G = (V,E) be a dominating pair graph and {u, v} any domi-
nating pair with distance greater than 4. Then the shortest paths in Γ are MCDS
of G.

Proof. We show that if S is an MCDS then it can be transformed into another
MCDS S′ which belongs to Γ .

Case 1. u ∈ S, v ∈ S. In this case S must be a shortest path connecting u
and v, which is already in Γ .

Case 2. u ∈ S, v �∈ S or u �∈ S, v ∈ S. We consider the first situation only.
There must exist a y ∈ S ∩N(v). As S is connected, let P be a path from u to
y contained in S. If |S| − |P | ≥ 1 then S′ = P ∪{v} is the required MCDS in Γ .

144 D. Aggarwal, C.K. Dubey, and S.K. Mehta

So, assume that S = P . Let b be the vertex in P connected to y. If b ∈ By then
we are done. Else there must exist a y′ ∈ Y not dominated by {b, y}. As S is a
MCDS, there must exist a b′ ∈ P s.t. (b′, y′) ∈ E. Then S′ = S ∪ {y′, v} − {b, y}
is the required path in Γ .

Case 3. u �∈ S, v �∈ S. Therefore there exist S-vertices x and y such that
x ∈ X and y ∈ Y . Since S is connected there exists a path from x to y in
S, say P . P ∪ {u, v} is a path connecting u and v so it must dominate entire
graph. Therefore P must dominate V −X−Y . Further, the condition d(u, v) > 4
ensures that vertices that dominate any part of X are mutually exclusive from
the vertices dominating any part of Y . We consider three cases.

|S| − |P | ≥ 2 Here S′ = P ∪ {u, v} is obviously in Γ .
|S| − |P | = 1 Let S−P = {p}. Now p must dominate either parts of X or parts

of Y but not both. Without loss of generality assume that p dominates parts
of X . So P must be dominating V − X . Thus S′ = S ∪ {u} − {p}, which
is obviously connected, dominates entire V and |S′| = |S|. From Case 2 we
know that there is a path Q ∈ Γ such that it dominates V and |Q| = |S′| =
|S|.

|S| = |P | If the vertex a adjacent to x in P is in Ax and the vertex b adjacent
to y in P is in By, then P is in Γ .

Next assume that vertex a adjacent to x in P is not in Ax or b adjacent to y in
P is not in Ay. Without loss of generality assume the former. Then there must
exist x′ ∈ X which is not dominated by {a, x}. Since both a and x dominate
parts of X , they do not dominate any part of Y . Thus P − {x, a} dominates Y .
Let S′ = P ∪ {u, x′} − {x, a}. Clearly S′ ∪ {v} is connected so it must dominate
V . But P − {x, a} dominates V so S′ also dominates entire V . From Case 2 we
know that there is a path Q ∈ Γ such that it dominates V and |Q| = |S′|. But
by construction |S′| = |S| so |Q| = |S|. �
If d(u, v) > 4 then compute Γ and output the smallest path. In case d(u, v) ≤ 4,
then either a shortest path connecting u to v will be an MCDS or there exists
an MCDS of size at most 4. This leads to an O(|V |5) algorithm to calculate an
MCDS in DP graphs.

3.2 Steiner Set

Let G = (V,E) be a graph and R a subset of its vertices. Define an edge-weighted
graph Gw(V,E,w) where w(e) = 1 if both vertices of the edge e are in V − R;
1/2 if one vertex is in V − R; 0 if neither is in V − R. Define a function L
over the paths of G as follows. Let P be a path of G and length(P) denotes
its length in Gw, then L(P) = length(P) + 1 if both end vertices of P are in
V −R; length(P) + 1/2 is one end vertex of P is in V −R; length(P) if neither
end-vertex is in V −R. Observe that L(P) is the number of V −R-vertices in P .

In describing the algorithm to compute Steiner set for a required set R in a
dominating-pair graph, we will first assume that R is an independent set (no
two R-vertices are adjacent). The general case will be shown to reduce into this
case in linear time.

Algorithms on Graphs with Small Dominating Targets 145

Theorem 2. Let G = (V,E) be a dominating-pair graph and R be an indepen-
dent set of vertices in it. Then there exists a pair of vertices u, v ∈ V such that
for every minimum-L path P between u and v, P −R is a Steiner set of R in G.

Proof. Let S be a Steiner set for R in G. First we will assume that |S| > 3.
The case of |S| ≤ 3 will be handled by simple search. Let u′, v′ be a dominating
pair of G. Let P1 = u′...u′′u′′′ ≡ P ′1u

′′u′′′ be a G-shortest path from u′ to the
connected set S ∪ R. Similarly let P2 = v′...v′′v′′′ ≡ P ′2v′′v′′′ be a G-shortest
path from v′ to S ∪R. Then u′′′, v′′′ are in S ∪R; P1 − {u′′′} and P2 − {v′′′} are
outside S ∪ R; and no vertex of P ′1 or of P ′2 dominates any R vertex. Observe
that every path X connecting u′′ and v′′ dominates entire R because P ′1.X.P

′
2

dominates entire graph. Let u′′′x1x2...xk−1xkv
′′′ be a shortest path in G(S ∪R).

From the above observation u′′u′′′x1...xkv
′′′v′′ dominates all the R vertices. For

the convenience we will also label u′′′ and v′′′ with x0 and xk+1 respectively.
Suppose there is an S-vertex s not in {xi}i∈[k+1]. Since a Steiner set is

minimum, it must be dominating some R vertex which is not dominated by
any xi. Thus it must be dominated by u′′ or v′′. Let S′ be the set of S-
vertices outside {xi}i∈[k+1]. Define S1 = {s ∈ S′ : N [s] ∩ R ∩ N [u′′] �= ∅}
and S2 = {s ∈ S′ : N [s] ∩ R ∩ N [v′′] �= ∅}. From the above observation
S1 ∪S2 = S′. We will show that S1 ∩S2 = ∅. Assume otherwise. Let s ∈ S′ such
that r1 ∈ N [u′′] ∩ R ∩N [s] and r2 ∈ N [v′′] ∩ R ∩N [s]. So u′′r1sr2v′′ is a path.
From the earlier observation it dominates entire R. Thus {u′′, s, v′′} is a Steiner
set, but it contradicts an earlier assumption that SS has more than 3 vertices.

All paths connecting u′′ to v′′ dominate all R-vertices and minimum-L paths
among them have L value at most S − |S′| + 2 because L(u′′x0x1...xk+1v

′′) =
|S|−|S′|+2. Using the path P ′′3 = u′′x0x1...xk+1v

′′ we will find a pair of vertices
u, v such that all paths connecting these vertices dominate R and among them
minimum-L paths have |S| non-R-vertices. We achieve this in two steps First we
modify the u′′-end of P ′′3 and find u. Then work on the other end.

Case 1. S1 = ∅. Starting from x0, let xi0 be the first S-vertex on the path
x0, x1, ..xk+1.

Claim. Either N [u′′] ∩ R ⊆ N [i0] ∩ R or there is an index j > i0 such that
u′′rxj ...xk+1v

′′ is a path which dominates allR-vertices and L(u′′rxjxj+1...xk+1v
′′)

≤ L(x0x1...xk+1v
′′), where r is an R vertex.

Proof of the claim suppose u′′ dominates anR vertex r which is not dominated
by xi0 . At least one S vertex must dominate it so let it be xj . Consider the path
u′...u′′rxj ...xk+1v

′′...v′. It dominates the graph so the subpath u′′rxj ...xk+1v
′′

must dominate all R-vertices. Further the number of non-R-vertices in this path
cannot exceed that of x0...xk+1v

′′ because while the former has only one new
vertex, it does not have xi0 , an S vertex, which is present in the latter. end-
proof

Let u = xi0 if N [u′′] ∩R ⊆ N [xi0] ∩R else define u = u′′. Let P ′3 be the path
xi0xi0+1...xk+1v

′′ in the former case and u′′rxjxj+1...xk+1v
′′ in the latter case.

Observe that in either case P ′3 dominates all R-vertices (in former case there is

146 D. Aggarwal, C.K. Dubey, and S.K. Mehta

at most one R-vertex between u′′ and xi0 and R-vertices do not dominate other
R-vertices) and the number of non-R-vertices on it are no more than those in
x0...xk+1v

′′, which is |S| − |S2| + 1.
In addition, every path connecting u to v′′ must dominate all R-vertices as

the following reasoning shows. The case of u = u′′ is already established. In
case u = xi0 , pad the path at the left with P ′1u

′′x0...xi0−1 and to the right with
P ′2. This path dominates the graph. P ′2 does not dominate any R-vertex and
P ′1u′′x0...xi0−1 does not dominate any R-vertex which is not already dominated
by xi0 . Since one path between u and v′′, namely P ′3, has L value |S| − |S2| + 1,
the minimum-L paths between these vertices have at most |S| − |S2| + 1 non-R-
vertices.

Case 2. S1 �= ∅. Then P ′3 = u′′x0...xk+1v
′′ has at most |S| − |S2| + 1 non-R-

vertices. Define u = u′′. All path between u and v′′ dominate entire R, because
u = u′′. The minimum L paths among them cannot have more than |S|−|S2|+1
non-R vertices since L(P ′3) = |S| − |S2| + 1.

Together these cases imply that there exists a vertex u such that all path
between u and v′′ dominate entire R and the minimum-L path among them
have L value at most |S| − |S2| + 1.

This completes the computation of u. To determine v we repeat the argument
from the other end. Let xj0 be the first S vertex on the path xk+1xk... starting
from xk+1. Then v = v′′ if S2 is non-empty or if N [v′′] ∩ R is not contained in
N [xj0] ∩R. Otherwise v = xj0 . Repeating the argument given above we see that
all paths between u and v dominate all R-vertices and there is at least one path
between these vertices with at most |S| non-R-vertices. Therefore we conclude
that all minimum-L path between u and v have at most |S| non-R-vertices. �
The algorithm to compute the Steiner set is as follows.

Data: A DP graph G = (V, E) and a set R ⊆ V .
Result: A Steiner set for R.
For each set of at most 3 vertices check if it forms an R-connecting set. If any1

such set is found, then output the smallest of these sets;
Otherwise compute all-pair shortest paths on Gw. Compute the set Γ as the2

collection of those Gw-shortest paths that dominate R. Select a path P from Γ
with minimum L-value. Output P − R.

Algorithm 1. Steiner set algorithm for independent set R in DP graphs

The time complexity of the first step is O(|V |3.(|E| + |V |)). The cost of the
second step is O(|V |3 + |V |2.|E|) Hence the overall complexity is |V |3(|E|+ |V |).

This completes the discussion for independent R case. The general case is
easily reduced to this case. Let G = (V,E) be a dominating pair graph and R
be the required set of vertices. Shrink each connected components of G(R) into
a vertex. Then the resulting graph G′ is also a dominating pair graph (if u, v
is a dominating pair of G and u and v merge into u′ and v′ respectively after
shrinking, then u′, v′ is a dominating pair of G′). Also the new required vertex
set R′ is an independent set in G′ and each Steiner set for R′ in G′ is a Steiner
set of R in G and its converse is also true.

Algorithms on Graphs with Small Dominating Targets 147

3.3 Steiner Connected Dominating Set

Definition 1. Let G be a graph and R be a subset of its vertices. A subset
of vertices DR is called R-dominating target if every connected subgraph of G
containing DR dominates R. In addition, if each vertex of DR has some R vertex
in its closed neighborhood, then we call it an essential-R-dominating-target.

Lemma 1. For any R there exists essential R-dominating target with cardinality
at most dt(G).

Proof. We present a constructive proof. Let D = {di : i ∈ I} be a dominating
target of G of size dt(G). Let r0 be any vertex in R and pi be a path from
r0 to di for each di ∈ D. Let d′i is the first vertex from di on pi such that
N [d′i] ∩ R �= ∅. Let p′i is the sub-path of pi from di to the vertex prior to d′i.
Now we show that DR = {d′i : i ∈ I} is an essential R dominating target. By
construction, each vertex of DR has at least one R vertex in its neighborhood.
Now consider arbitrary connected set C containing DR. Append the paths p′i to
C. The resulting graph is connected and contains all vertices of D so it dominates
entire G. But p′i do not dominate any R-vertices so C must be dominating all
the R-vertices. �

If G is a dominating pair graph, then an essential R dominating target DR exists
with at most 2 vertices. If it is a singleton, then SCDS problem becomes trivial
because this vertex dominates the entire R. So in the remainder of this section
we assume that DR = {u, v} and denote the distance d(u, v) by d0. DR being
an essential R-dominating target, N [u] ∩R �= ∅ and N [v] ∩R �= ∅.

Lemma 2. Let S be a connected set of vertices in G, i.e., the induced graph
on S is connected. Then S is a connected dominating set of R iff S dominates
N2[u] ∩R and N2[v] ∩R, here N2[.] denotes 2-distance closed neighborhood.

Proof. “Only if” part is trivial since N2[u] ∩R and N2[v] ∩R are subsets of R.
As {u, v} is an essential dominating target, N [u] ∩ R and N [v] ∩ R are non-

empty. Let r1 ∈ N [u]∩R and r2 ∈ N [v]∩R. So there must be some x ∈ N2[u]∩S
and y ∈ N2[v] ∩ S s.t. r1 and r2 are adjacent to x and y respectively. Let
S1 = {r1, u} and S2 = {r2, v}. Then S′ = S ∪ S1 ∪ S2 is connected and contains
u and v. By the definition of R-dominating target, S′ dominates all R-vertices.
Thus S must dominate R − (N2[u] ∪ N2[v]). Combining this with the given
fact that S dominates N2[u] ∩ R and N2[v] ∩ R, we conclude that S dominates
entire R. �

Lemma 3. Let d(u, v) ≥ 5 and S be a connected set of vertices in G containing
u. If S also contains a vertex x such that d(x, v) ≤ 2, then S dominates N2[u]∩R.

Proof. Let Q be a shortest path from x to v. Define S′ = S∪Q. By construction
S′ is connected and contains {u, v} therefore it dominates R. In particular, it
dominates N2[u] ∩ R. Vertices of Q − {x} are contained in N [v] and d(u, v) is
at least 5, so vertices of Q− {x} do not dominate N2[u] ∩R. Therefore S must
dominate N2[u] ∩R. �

148 D. Aggarwal, C.K. Dubey, and S.K. Mehta

Lemma 4. Let d(u, v) ≥ 5 and S be a connected R-dominating set. Let y be a
cut vertex of G(S) and G(S−{y}) has a component C such that C∪{y} contains
all the S vertices within 3-neighborhood of v. If P is a path in G connecting y
and u, then S′ = C ∪ P is also a connected R-dominating-set.

Proof. From Lemma 2 it is sufficient to show that S′ is connected and it dom-
inates N2[v] ∩ R and N2[u] ∩ R. Firstly, C ∪ {y} is connected so S′ is also
connected. Next, S is an R-dominating-set and S∩N3[v] is contained in C ∪{y}
so C ∪ {y} dominates N2[v] ∩ R. Finally, N [v] ∩ R is non-empty and S is an
R-dominating set so S contains a vertex x such that d(x, v) ≤ 2. All S-vertices
within 3-neighborhood of v are in C ∪ {y} so x ∈ S′. Further, u also belongs to
S′ since it is in P . Using Lemma 3 we deduce that S′ dominates N2[u] ∩R. This
completes the proof. �

Let S be a SCDS for R. We partition it into levels as follows. x ∈ S is defined
to be in level i if d(u, x) = i. Observe that there is at least one S-vertex at level
2 and at least one S-vertex at level d0 − 2. Further, if x ∈ S is the only vertex
at level i where 2 < i < d0 − 2, then x is a cut vertex of G(S).

Lemma 5. Let d0 ≥ 9. Then there exists an SCDS for R which has a unique
vertex x0 with d(u, x0) = d1 for some d1 ∈ {3, 4} and a unique vertex y0 with
d(v, y0) = d2 for some d2 ∈ {3, 4}.

We omit the proof to save the space.

Theorem 3. Suppose G has an essential R dominating target {u, v} with d(u, v)
≥ 9. Then every minimum vertex set, S, among the sets satisfying the following
conditions is a SCDS of R.

(a) G(S) is connected.
(b) ∃x0 ∈ S with d(u, x0) = 3 or 4 such that x0 is a cut vertex of G(S) and a

component of G(S−{x0}), Cu, is such that Cu ∪{x0} dominates N2[u]∩R.
(c) ∃y0 ∈ S with d(v, y0) = 3 or 4 such that y0 is a cut vertex of G(S) and a

component of G(S − {y0}), Cv, is such that Cv ∪ {y0} dominates N2[v] ∩R.
(d) S − Cu − Cv is a shortest path between x0 and y0.

Proof. From Lemma 2 every set satisfying the conditions is a connected R-
dominating set. Therefore if a SCDS belongs to this collection of sets, then
every smallest set satisfying the conditions must be a SCDS.

From Lemma 5 there exists a SCDS, S, of R with cut vertices x0 at distance
3 or 4 from u such that Cu = {x ∈ S : d(u, x) < d(u, x0)} is a component of
G(S − {x0}). S being an SCDS, {x0} ∪ Cu must dominate N2[u] ∩R. Similarly
y0 at a distance 3 or 4 from v in S such that condition (c) is also satisfied. If we
replace S−Cu−Cv by a G-shortest path between x0 and y0 then also the set will
be a CDS, from Lemma 2. Therefore minimality of S requires that S−Cu−Cv is
a shortest path connecting x0 and y0. Therefore S is one of the CDS that satisfy
the conditions. Therefore the smallest sets that satisfy the conditions must be
SCDS. �

Algorithms on Graphs with Small Dominating Targets 149

Corollary 1. If S is an SCDS, then |Cu| ≤ d(u, x0) and |Cv| ≤ d(v, y0).

Proof. If Cu is replaced by a shortest path P between u and x0 in S, then from
Lemma 4 the resulting set is also R-CDS. Besides, the optimality of S requires
that |S| ≤ |S| − |Cu| + |P | = |S| − |Cu| − d(u, x0). �

Algorithm 2 computes SCDS of any vertex set R in a DP graph with essential
dominating pair {u, v} with d(u, v) ≥ 9.

Data: A DP graph G = (V, E), a subset of vertices R, essential
R-dominating-pair {u, v} with d(u, v) ≥ 9

Result: A Steiner connected dominating set of R
Compute all pair shortest paths;1

for all x ∈ V s.t. d(u, x) = 3 or 4 do2

Ax = {Pux} ∪ {A : G(A) is connected,3

x ∈ A, |A| ≤ d(u, x), N2[u] ∩ R ⊂ N [A]};
/* Pux is a shortest path between u and x */
Ax = smallest cardinality set in Ax;4

end5

for all y ∈ V s.t. d(v, y) = 3 or 4 do6

Ay = {Pvy} ∪ {A : G(A) is connected,7

y ∈ A, |A| ≤ d(v, y),N2[v] ∩ R ⊂ N [A]};
/* Pvy is a shortest path between v and y */
Ay = smallest cardinality set in Ay ;8

end9

S = {Ax ∪ Ay ∪ Pxy : d(u, x) = 3 or 4, d(v, y) = 3 or 4, Px,y a shortest path10

between x and y};
return the smallest set in S ;11

Algorithm 2. SCDS algorithm for DP graphs

The correctness of the Algorithm 2 is immediate from Theorem 3. Step 1 costs
O(|V |(|V | + |E|)). Steps 2 and 6 each costs O(|V |4.|R|) Cost of the tenth step is
O(|V |2). The total complexity of the algorithm is O(|V |4.|R|).

For the case with d0 ≤ 8 either the SCDS is a shortest path connecting u and v
or it contains at most d0 vertices. Therefore a simple way to handle this case is to
test every set of up to d0 cardinality for connectivity and R domination and select
the smallest. If no such set exists, then the shortest path is the solution. This
approach costs O(|V |8.|R|). The cost of computing an essential R-dominating-
target is O(|V | + |E|). Adding all the costs we have following theorem.

Theorem 4. In a dominating-pair graph the Steiner connected dominating set
for any subset R can be computed in O(|V |8.|R|) time. If the distance between
the R-dominating pair vertices is greater than 8, then complexity improves to
O(|V |4.|R|).

4 Approximation Algorithms

Following result is by Fomin et.al.

150 D. Aggarwal, C.K. Dubey, and S.K. Mehta

Theorem 5 ([2004]). Let T = (W,F) be a d-octopus of a graph G = (V,E),
then

– T can be computed in O(|V |3d+3).
– If γ(G) is a minimum connected dominating set, then |W | ≤ d.(γ(G) + 2).

It is conjectured that dt(G) ≤ d for a graph having a d octopus [2004]. We
will present a appx ≤ 2γ(G) algorithm with complexity O(|V ||E| + |V |dt(G)+1).
Following theorem is stated without proof.

Theorem 6. Let G = (V,E,w) be an edge-weighted (non-negative weights)
graph and R ⊆ V be an arbitrary set of required vertices. Then a Steiner tree of
R can be calculated in O(|V |(|V | + |E|) + (|V | − |R|)|R|−2|R|2).

Corollary 2. Let G = (V,E) be a graph and R ⊆ V be an arbitrary set of
required vertices. Then a Steiner set for R can be computed in O(|V |(|V | +
|E|) + (|V | − |R|)|R|−2|R|2).

For convenience we define f(k) = |V |(|V | + |E|) + |V |k(k + 2)2.

4.1 Computation of a Minimum Dominating Target

Let G = (V,E) be a graph. Then T ⊂ V is a dominating target iff for all
W ⊆ V if T ⊆ W and G(W) is connected, then N [W] = V . The problem of
computing a minimum dominating target is known to be NP-complete, [1981].
Here we generalize the algorithm given in [1993] to compute a dominating pair
in AT-free graphs, to one that computes a dominating target in general graphs.

Lemma 6. A set S ⊆ V is a dominating target of G if and only if for every
vertex v ∈ V , S doesn’t lie in a single component of G(V −N [v]).

First compute all neighborhood deleted components of the graph, which costs
O(|V |2.83) [2003b]. Starting with t = 1. Select each set of size t and check
if it is completely contained in any of the pre-computed components. If any
set is found which is not contained in any component, then it is a dominating
target, otherwise increment t and repeat till one dominating target is found.
This computation costs O(dt(G) · |V |dt(G)+1) time.

4.2 Minimum Connected Dominating Set

Theorem 7. Let G = (V,E) be a connected graph with dominating target num-
ber dt(G). If the cardinality of MCDS is opt(G), then in O(|V |.|E| + |V |dt(G)+1)
time a connected dominating set of G can be computed with cardinality no greater
than opt(G) + dt(G).

Proof. Let D be a minimum dominating target of the graph. It can be computed
in O(|V |dt(G)+1) as described in section 2.3. Let T be a Steiner tree for the
required set D. Hence from the definition of dominating targets, T is a connected
dominating set for G. This can be calculated by algorithm of Theorem 6 in
O(f(dt(G) − 2)).

Algorithms on Graphs with Small Dominating Targets 151

Let M be any MCDS of G. In particular, it dominates D so M ∪ D is a
connected set containing D. As T is the minimum connected set containing D,
|T | ≤ |M ∪D| ≤ |M | + |D| = |M | + dt(G). �
It is easy to see that dt(G) ≤ opt(G). So appx ≤ 2.opt(G).

4.3 Steiner Connected Dominating Set

Theorem 8. Let G = (V,E) be a connected graph with dominating target num-
ber dt(G) and R ⊆ V . Let the Steiner connected dominating set (SCDS) of
R have cardinality opt(G,R). Then a connected R-dominating set (an approxi-
mation to SCDS for R), can be computed in O(|V |.|E| + |V |dt(G)+1) time with
cardinality no greater than opt(G,R) + 2dt(G).

Proof. As described in the proof of Lemma 1, compute an essentialR-dominating-
target DR in O(|V |dt(G)+1) time.

Compute Steiner tree of DR, T using algorithm of Theorem 6. T is a connected
set containing DR so it dominates R. As |DR| ≤ dt(G), the cost of the computa-
tion is bounded by f(dt(G) − 2). Next we show that |T | ≤ opt(G,R) + 2.dt(G).

Let S be an SCDS of R in G. DR is an essential dominating target for R so
each member of DR is adjacent to some R vertex. For each d ∈ DR let rd denote
any one vertex fromR which adjacent to d. LetRD denote the set {rd : D ∈ DR}.
Since S dominates R, S∪RD is connected. Further, by construction S∪RD∪DR

is connected also connected. By the definition of Steiner trees T is the smallest
connected set containing DR. So |T | ≤ |S ∪ RD ∪ DR| ≤ |S| + |RD| + |DR| ≤
opt(G,R) + 2.dt(G). The last inequality is due to the fact that |RD| ≤ |DR| ≤
dt(G). �
opt(G,R) = size of the smallest connected R-dominating set ≥ size of the small-
est R-dominating target = DR. Therefore from the last two lines of the above
proof appx ≤ 3.opt(G,R).

4.4 Steiner Set

Corollary 3. Let G = (V,E) be a connected graph with dominating target num-
ber dt(G) and R ⊆ V . Let opt(G,R) denote the cardinality of a Steiner set of
R, then an R-connecting set (Steiner set approximation) can be computed in
O(|V |.|E| + |V |dt(G)+1) time with cardinality not exceeding opt(G,R) + 2dt(G).

Proof (sketch). Reduce G to G′ by shrinking each connected component, Ri, of
R to a vertex ri. Set R′ is independent in G′. Observe that if S is an R-connecting
set in G, then S ∪ R′ is the union of R′ and a connected R′-dominating set in
G′. Conversely if C is a connected R′ dominating set in G′, then C − R′ is a
connecting set of R′ is G′ which is also a connecting set of R in G. Therefore we
can compute a Steiner set of R by first computing SCDS of R′ in G′. The claim
follows from the theorem. �
Future Work: It remains to decide whether MCDS, SS, and SCDS are NP-hard
on graphs with bounded dominating targets.

152 D. Aggarwal, C.K. Dubey, and S.K. Mehta

References

[1996] Sudipto Guha and Samir Khuller: Approximation Algorithms for Connected
Dominating Sets. Proceedings of ESA (1996) 179-193

[1993] Hari Balakrishnan and Anand Rajaraman and C. Pandu Rangan: Connected
Domination and Steiner Set on Asteroidal Triple-Free Graphs. Proceedings of WADS
(1993) 131-141

[2000] Gabriel Robins and Alexander Zelikovsky: Improved Steiner Tree Approxima-
tion in Graphs. Proceedings of SODA (2000) LNCS 770-779

[1998] Sudipto Guha and Samir Khuller: Improved Methods for Approximating Node
Weighted Steiner Trees and Connected Dominating Sets. Proceedings of FSTTCS
year (1998) LNCS 54-65

[1997] Hans Jürgen Prömel and Angelika Steger: RNC-Approximation Algorithms for
the Steiner Problem. Proceedings of STACS (1997) LNCS 559-570

[1996a] Andrea E. F. Clementi and Luca Trevisan: Improved Non-Approximability
Results for Vertex Cover with Density Constraints. Proceedings of COCOON (1996)
1090 LNCS 333-342

[1978] M. R. Garey and D. S. Johnson: Computers and Intractability. Freeman, San
Francisco (1978)

[2003] G. Ausiello and P. Crescenzi and G. Gambosi and V. Kann and A. Marchetti-
Spaccamela and M. Protasi: Complexity and Approximation. Springer, Heidelberg
(2003)

[1995] A. B. Kahng and G. Robins: On Optimal Interconnections for VLSI. Kluwer
Publsihers (1995)

[1999] Andreas Brandstädt and V. Bang Lee and Jeremy P. Spinrad: Graph Classes:
A Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)

[1998a] A. Caldwell and A. Kahng and S. Mantik and I. Markov and A. Zelikovsky:
On Wirelength Estimations for Row-Biased Placement. Proceedings of International
Symposium on Physical Design (1998) 4-11

[2001] T. Kloks and D. Kratsch H. Müller: On the Structure of Graphs with Bounded
Asteroidal Number. Graphs and Combinatorics 17 (2001) 295-306

[1990] B. Korte and H. J. Prömel and A. Steger: Steiner Trees in VLSI Layouts. J.
Paths flows and VLSI layout (1990)

[2003a] Xiuzhen Cheng and Xiao Huang and Deying Li and Weili Wu and Ding-Zhu
Du: A Polynomial-Time Approximation Scheme for the Minimum-Connected Dom-
inating Set in Ad Hoc Wireless Networks. Journal of Networks 42,4 (2003) 202-208

[1997a] Derek G. Corneil and Stephan Olariu and Lorna Stewart: Asteroidal Triple-
Free Graphs. SIAM J. Discrete Math 10,3 (1997) 399-430

[1972] Shimon Even and Amir Pnueli and Abraham Lempel: Permutation Graphs and
Transitive Graphs. J. ACM 19,3 (1972) 400-410

[1962] C. G. Lekkerkerker and J. Ch. Boland: Representation of a Finite Graphs by a
Set of Intervals on the Real Line. J. Fund. Math 51 (1962) 245-264

[1992] Rajeev Motwani: Lecture Notes on Approximation Algorithms - Volume I. Dept.
of Comp. Sc., Stanford University (1992)

[2004] Fedor V. Fomin and Dieter Kratsch and Haiko Müller: Algorithms for Graphs
with Small Octopus. Journal of Discrete Applied Mathematics 134 (2004) 105-128

[2003b] Dieter Kratsch and Jeremy Spinrad: Between O(nm) and O(nα). Prodeedings
of SODA (2003) LNCS 709-716

[1981] Michel Habib: Substitution des Structures Combinatoires, Theorie et Algo-
rithmes. These D’etat, Paris VI (1981)

Efficient Algorithms for Weighted

Rank-Maximal Matchings and Related Problems

Telikepalli Kavitha and Chintan D. Shah

Indian Institute of Science, Bangalore, India
{kavitha, chintan}@csa.iisc.ernet.in

Abstract. We consider the problem of designing efficient algorithms for
computing certain matchings in a bipartite graph G = (A ∪ P , E), with
a partition of the edge set as E = E1 ∪̇ E2 . . . ∪̇ Er. A matching is a set
of (a, p) pairs, a ∈ A, p ∈ P such that each a and each p appears in
at most one pair. We first consider the popular matching problem; an
O(m

√
n) algorithm to solve the popular matching problem was given in

[3], where n is the number of vertices and m is the number of edges in the
graph. Here we present an O(nω) randomized algorithm for this prob-
lem, where ω < 2.376 is the exponent of matrix multiplication. We next
consider the rank-maximal matching problem; an O(min(mn, Cm

√
n))

algorithm was given in [7] for this problem. Here we give an O(Cnω)
randomized algorithm, where C is the largest rank of an edge used in
such a matching. We also consider a generalization of this problem, called
the weighted rank-maximal matching problem, where vertices in A have
positive weights.

1 Introduction

In this paper we consider some problems in computing optimal matchings in
bipartite graphs with one-sided preference lists. The input instance here is a
bipartite graph G = (A ∪ P , E) and a partition E = E1 ∪̇ E2 . . . ∪̇ Er of the edge
set. We call the vertices in A applicants, the vertices in P posts, and the edges in
Ei the edges of rank i. Each applicant can be considered to be ranking a subset
of posts, i.e., its neighbors, in an order of preference (possibly, involving ties)
and an edge (a, p) ∈ Ei implies that post p is an ith rank post for applicant a.

A matching M is a set of edges no two of which share an endpoint. A match-
ing in G is an allocation of posts to applicants. The bipartite matching problem
with a graded edge set is well-studied in the economics literature, see for example
[1,11,13]. It models some important real-world problems, including the alloca-
tion of graduates to training positions [6], and families to government-owned
housing [12]. In a matching M , a vertex u ∈ A ∪ P is either unmatched, or
matched to some vertex, denoted by M(u). One would like to fix some notion of
optimality of matchings so that we can determine a “best” allocation, according
to this notion of optimality. Various notions of optimality of matchings in this
setting can be considered. For example, a matching is Pareto-optimal [2,1,11]

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 153–162, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

154 T. Kavitha and C.D. Shah

if no applicant can improve its allocation (say by exchanging posts with an-
other applicant) without requiring some other applicant to be worse off. Here
we consider two stronger notions of optimality, given by popular matchings and
rank-maximal matchings.

If (a, p) ∈ Ei and (a, p′) ∈ Ej with i < j, we say that a prefers p to p′. If i = j,
we say that a is indifferent between p and p′. We say that an applicant a prefers
matching M ′ to M if (i) a is matched in M ′ and unmatched in M , or (ii) a is
matched in both M ′ and M , and a prefers M ′(a) to M(a).

Definition 1. M ′ is more popular than M if the number of applicants prefer-
ring M ′ to M exceeds the number of applicants preferring M to M ′. A matching
M is popular if and only if there is no matching M ′ that is more popular than
M .

Popular matchings were studied in [3]. It turns out that a popular matching may
not always exist in a given graph (see [3] for an example). The popular matching
problem is to determine if a given instance admits a popular matching, and to
find such a matching, if one exists. An O(m

√
n) algorithm was given for this

problem in [3]. Thus this algorithm takes time Θ(n5/2) when m = Θ(n2). It is
to be expected that the input graphs would be quite dense, since each applicant
should typically rank a large subset of posts in some order of preference. In this
paper we give a randomized algorithm with running time O(nω) for computing
a popular matching, where ω < 2.376 is the exponent of matrix multiplication.
Thus our algorithm is faster than the previous algorithm whenever m > n1.87.

Another definition of optimality is rank-maximality. A matching is rank-
maximal [7] if it allocates the maximum number of applicants to their first
rank posts, and then subject to this, the maximum number to their second rank
posts, and so on. This problem was studied in [7] and an O(min(mn, Cm

√
n))

algorithm was presented to compute such a matching, where C ≤ r is the max-
imum rank of an edge used in such a matching. Here we present an O(Cnω)
randomized algorithm for this problem. Again, when the graph is dense and C
is low, our algorithm is faster than the previous algorithm.

We also consider a generalization of this problem. Let us assume that some
applicants are more important than some other applicants. We wish to give the
more important applicants priority over the rest. A way to formalize this is to
assume that there is a weight function w : A → R

+, where every applicant a is
given a positive weight w(a). This model was used in [10], where the weighted
popular matching problem is solved. Here we define a weighted rank-maximal
matching as a matching which matches the maximum weight of applicants to
their first rank posts, and then subject to this, the maximum weight to their
second rank posts, and so on. Another way of defining a weighted rank-maximal
matching is in terms of its signature.

Definition 2. The signature ρ(M) of a matching M is defined to be the r-tuple
(x1, ..., xr) where for each 1 ≤ i ≤ r, xi is the sum of the weights of applicants
who are matched in M with one of their ith rank posts.

Efficient Algorithms for Weighted Rank-Maximal Matchings 155

The total order ≺ on signatures is given by: (x1, ..., xr) ≺ (y1, ..., yr) if xi = yi

for 1 ≤ i < j and xj < yj, for some j. The weighted rank-maximal matching
problem now is to compute a matching with the maximum signature. Let k be
the number of distinct weights the applicants are given. We reduce the problem
of computing a weighted rank-maximal matching in G = (A ∪ P , E1 ∪̇ · · · ∪̇ Er)
to computing a rank-maximal matching in a graph G′ = (A∪̇P , E1,1 ∪̇ · · · ∪̇ Er,k)
where the partition of the edge set is refined into rk different ranks. Thus we
get an O(min(mn, Cm

√
n)) deterministic algorithm and an O(Cnω) randomized

algorithm for this problem, where C ≤ rk is the maximum rank of an edge used
in a rank-maximal matching in G′.

2 Popular Matchings

We first present the algorithmic characterization of popular matchings given
in [3]. For exposition purposes, we create a unique strictly-least-preferred post
l(a) for each applicant a. In this way, we can assume that every applicant is
matched, since any unmatched applicant a can be paired with l(a). From now
on then, matchings are A-perfect. Also, without loss of generality, we assume
that preference lists contain no gaps, i.e., if a is incident to an edge of rank i,
then a is incident to an edge of rank i − 1, for all i > 1.

Let G1 = (A ∪ P , E1) be the graph containing only rank 1 edges. Then [3,
Lemma 3.1] shows that a matching M is popular in G only if M ∩ E1 is a
maximum matching of G1. Maximum matchings have the following important
properties, which we use throughout the rest of the paper. M ∩ E1 defines a
partition of A ∪ P into three disjoint sets: a vertex u ∈ A ∪ P is even (resp.
odd) if there is an even (resp. odd) length alternating path in G1 (w.r.t. M ∩E1)
from an unmatched vertex to u. Similarly, a vertex u is unreachable if there is
no alternating path from an unmatched vertex to u. Denote by O, U , and N the
sets of odd, unreachable, and even vertices respectively.

Lemma 1 (Gallai-Edmonds Decomposition). Let O, U , and N be the sets
of vertices defined by G1 and M ∩ E1 above. Then O, U , and N are pairwise
disjoint, and independent of the maximum matching M ∩ E1. In any maximum
matching of G1, every vertex in O is matched with a vertex in N and every vertex
in U is matched with another vertex in U . The size of a maximum matching is
|O| + |U|/2. No maximum matching of G1 contains an edge between a vertex in
O and a vertex in O ∪ U . Also, G1 contains no edge between a vertex in N and
a vertex in N ∪ U .

Using this vertex partition, we make the following definitions: for each applicant
a, f(a) is the set of odd/unreachable posts amongst a’s most-preferred posts.
Also, s(a) is the set of a’s most-preferred posts amongst all even posts. We refer
to posts in ∪a∈Af(a) as f -posts and posts in ∪a∈As(a) as s-posts. Note that
f -posts and s-posts are disjoint. Also note that there may be posts in P that are
neither f -posts nor s-posts. The next lemma characterizes the set of all popular
matchings.

156 T. Kavitha and C.D. Shah

Lemma 2 ([3]). A matching M is popular in G iff (i) M ∩ E1 is a maximum
matching of G1 = (A∪P , E1), and (ii) for each applicant a, M(a) ∈ f(a)∪s(a).

We present in Fig. 1 the algorithm from [3], based on Lemma 2, for solving the
popular matching problem in a given graph G = (A ∪ P , E).

1. Construct a maximum matching M of G1 = (A ∪ P , E1).
2. Construct the graph G′ = (A ∪ P ,E ′), where E ′ = {(a, p) : a ∈ A and p ∈

f(a) ∪ s(a)}.
3. Remove any edge in G′ between a vertex in O and a vertex in O ∪ U .
4. Augment M in G′ until it is a maximum matching of G′.
5. Return M if it is A-perfect, otherwise return “no popular matching”.

Fig. 1. An O(m
√

n)-time algorithm for the popular matching problem (from [3])

It is easy to see that the running time of this algorithm is O(m
√

n) by using
the O(m

√
n) Hopcroft-Karp algorithm [5] for computing maximum matchings.

A maximum matching M in G1 is computed by the Hopcroft-Karp algorithm
and this identifies the odd, unreachable, and even vertices and so the graph G′ is
constructed in O(m

√
n) time. M is repeatedly augmented (by the Hopcroft-Karp

algorithm) to obtain the final matching.

2.1 Our Improvement

Lovász [8] showed that it is possible to test whether a given graph has a perfect
matching in randomized time O(nω), where ω < 2.376 is the exponent of matrix
multiplication. Mucha and Sankowski [9] showed that it is possible to actually
compute a maximum matching in randomized time O(nω). In our algorithm
we need to determine the Gallai-Edmonds decomposition of G to construct G′

and for that we could either use this maximum matching algorithm or use the
O(nω) Gallai-Edmonds decomposition algorithm of Cheriyan [4]. We also use the
O(nω) perfect matching algorithm from [9], where a simple algorithm, based on
the LUP factorization algorithm of Hopcroft and Bunch, is given for computing
perfect matchings in bipartite graphs. We first give a characterization of popular
matchings, which our algorithm uses. Its proof will be given in the full version
of the paper.

Lemma 3. M is a popular matching in G iff it is an A-perfect matching in G′

(the pruned graph after Step 3 in Fig. 1) that matches all the f -posts.

It follows from Lemma 3 that we seek an A-perfect matching in G′ that matches
all the f -posts. If G′ admits an A-perfect matching, then obviously |P| ≥ |A|.
If |P| > |A|, then an A-perfect matching does not match all vertices in P , and
we need to ensure that all f -posts are matched. Note that if G admits a popular
matching, then we know that there is an A-perfect matching in G′ that matches

Efficient Algorithms for Weighted Rank-Maximal Matchings 157

all the f -posts. In fact, a popular matching is such a matching. The A-perfect
matching returned by the algorithm in Fig. 1 matches all the f -posts since the
matching M obtained in Step 1 necessarily matches all the f -posts (since M is
maximum in G1) and we obtain the final matching by augmenting M , so all f -
posts continue to remain matched. In our algorithm below, we present a simple
way of accomplishing that all f -posts are matched by an A-perfect matching in
G′.

1. Compute the Gallai-Edmonds decomposition of G and using it, construct
the graph G′ = (A ∪ P , E ′), where E ′ = {(a, p) : a ∈ A and p ∈ f(a)∪s(a)}.
Remove all edges in G′ between vertices in O and vertices in O ∪ U .

2. Modify G′ as follows:
– add |P| − |A| new vertices x1, . . . , x|P|−|A| to A;
– make every s-post adjacent to all the vertices x1, . . . , x|P|−|A|.

3. Test if G′ admits a perfect matching. If not, then return “no popular match-
ing”.

4. Else compute a perfect matching M in G′. Delete all edges (xi, y) from M ,
where xi is a dummy vertex. Return M .

Remark. Note that if G admits a popular matching, then the graph G′ after
Step 2 does admit a perfect matching. Any popular matching of G along with
unmatched vertices (each of which is an s-post) paired with the new vertices,
leads to a perfect matching in the new graph G′.

Lemma 4. The matching M returned by our algorithm is a popular matching.

Proof. The matching M is an A-perfect matching in G′. We need to show that
all f -posts are still matched by M after deleting the edges incident on the new
vertices xi in Step 4; then by Lemma 3, we can conclude that M is a popular
matching. But this is obvious: the new vertices were adjacent only to s-posts.
Hence none of the edges deleted in Step 4 is incident on an f -post. Thus M is an
A-perfect matching that matches all f -posts, thus it is popular (by Lemma 3).

�

Hence we can conclude the following theorem, since the Gallai-Edmonds decom-
position and testing if a perfect matching exists and if so, computing a perfect
matching take randomized O(nω) time.

Theorem 1. The popular matching problem can be solved in randomized O(nω)
time on an n-vertex bipartite graph G = (A ∪ P , E).

3 Rank-Maximal Matchings

In this section we first present the algorithm from [7] to compute a rank-maximal
matching. This algorithm computes a rank-maximal matching by reducing it to
a maximum matching computation in a subgraph G′ of the given graph G =
(A ∪ P , E1 ∪ . . . ∪ Er). However, note that not every maximum matching of G′

158 T. Kavitha and C.D. Shah

is a rank-maximal matching. The pruning of G to G′ uses the properties of odd,
unreachable, even vertices given in Lemma 1.

A rank-maximal matching is a matching M in G = (A∪P , E1 ∪ . . . ∪Er) that
matches the maximum number of applicants to their rank one posts, subject to
this, the maximum number of applicants to their rank two posts, and so on. So
this gives us the property that Mi = M ∩ E≤i is a rank-maximal matching in
Gi = (A ∪ P , E1 ∪ . . . ∪ Ei). The algorithm in [7] iteratively computes matchings
Mi for i = 1, . . . , r such that Mi is a rank-maximal matching in Gi.We present
below the algorithm from [7] to compute a rank-maximal matching.

3.1 The Rank-Maximal Matching Algorithm from [7]

Let Gi = (A ∪ P , E1 ∪ . . . ∪ Ei). Initialize G′1 = G1, and M1 to any maximum
matching in G′1. For i = 1 to r − 1 do the following steps, and output Mr.

1. Partition the vertices of A∪P into three disjoint sets: Ni, Oi, and Ui, which
are the even, odd and unreachable vertices in G′i. Delete all edges incident
to a vertex in Oi ∪ Ui from Ej, ∀j > i. Delete all Oi - Oi and Oi - Ui edges
from G′i. Add the edges in Ei+1 to G′i. Call the resulting graph G′i+1.

2. Determine a maximum matching Mi+1 in G′i+1 by augmenting Mi.

We will not present a formal proof of correctness of the above algorithm and
refer the reader to [7]. The proof of correctness relies on the following facts:

Fact 1: for all 1 ≤ i ≤ r, every rank-maximal matching in Gi is a maximum
matching in G′i (note that the converse is not true).

Fact 2: for all 1 < i ≤ r, we have that the matching Mi contains as many rank
≤ i − 1 edges as Mi−1 (this is due to the edges that we delete and the fact
that Mi is obtained from Mi−1 by augmentation).

These facts put together yield that the matching Mi is a rank-maximal matching
in Gi for all i. Suppose that Mi−1 is a rank-maximal matching in Gi−1. Let Mi−1
contain sk number of edges of rank k for 1 ≤ k ≤ i − 1. Then Mi ∩ E≤i−1 is also
a rank-maximal matching in Gi−1 because if Mi contains rk number of edges of
rank k, then for every k ≤ i − 1, we have

∑k
j=1 rj =

∑k
j=1 sj (by Fact 2 above),

which means that rk = sk for all k. Also, the cardinality of Mi is the same as the
cardinality of a rank-maximal matching of G1 since by Fact 1, a rank-maximal
matching is a maximum cardinality in G′i and so is Mi. Thus Mi contains the
same number of rank j edges as a rank-maximal matching for all j ≤ i. Thus
Mi is a rank-maximal matching in Gi.

Running time of this algorithm. We will now analyze the running time of the
algorithm. The expensive step of iteration i is the augmentation of Mi to Mi+1.
Using the algorithm of Hopcroft and Karp [5], this takes O(min(

√
n, |Mi+1| −

|Mi| + 1) · m) time. The number of iterations is r and hence the overall running
time is O(min(r

√
n, n) · m). It is easy to replace r by C, the maximum rank

of edge used in a rank-maximal matching. At the beginning of each iteration,

Efficient Algorithms for Weighted Rank-Maximal Matchings 159

say iteration i, first check whether Mi is already a maximum matching in Hr,
where Hr denotes the graph consisting of all edges, of all ranks, that are still
present at the beginning of phase i. This takes time O(m). If Mi is a maximum
matching in Hr, then stop; otherwise, continue as described above. In this way,
only C iterations are executed. Thus this is an O(min(Cm

√
n, mn)) algorithm

for computing a rank-maximal matching.

3.2 Our Improvement

Now we present a randomized O(Cnω) algorithm, where ω < 2.376 is the ex-
ponent of matrix multiplication, for computing a rank-maximal matching in
G = (A ∪ P , E1 ∪ · · · ∪ Er). Our algorithm is based on the same approach as the
algorithm in [7]. However it does not compute Mr by successive augmentations.
We first present an O(rnω) algorithm and the same idea as in [7] can be used to
replace r with C. The graph G′1 = G1 = (A ∪ P , E1).

1. For i = 1 to r do the following steps.

– Partition the vertex set A ∪ P = Ni ∪̇ Oi ∪̇ Ui. Delete all edges incident to a
vertex in Oi ∪ Ui from Ej , ∀j > i. Delete all Oi-Oi and Oi-Ui edges from G′i.
If i < r, then add the edges of Ei+1 to G′i, call this graph G′i+1.

2. Compute the cardinality k of a maximum matching in the graph G′r. Modify
G′r as follows:

– Add |P|−k vertices x1, . . . , x|P|−k to A and add |A|−k vertices y1, . . . , y|A|−k

to P . Make each vertex in ∩r
i=1Ni ∩A adjacent to all of y1, . . . , y|A|−k. Make

each vertex in ∩r
i=1Ni ∩ P adjacent to all of x1, . . . , x|P|−k.

3. Compute a perfect matching M in G′r. Delete all edges in M incident on the
vertices {x1, . . . , x|P|−k, y1, . . . , y|A|−k}. Return M .

The proofs of Lemma 5 and 6 will be given in the full version of the paper.

Lemma 5. The graph G′r (in Step 3 of the above algorithm) always admits a
perfect matching.

Lemma 6. The matching M returned by the algorithm above is a rank-maximal
matching in G.

This shows that a rank-maximal matching in G can be computed in randomized
O(rnω) time. We can replace r by C, the maximum rank used by an edge in
a rank-maximal matching, using the same idea as was used in Section 3.1: in
Step 1 for every i, check if a maximum matching in G′i is still maximum when
the existing edges of the sets E>i are added to G′i. If so, then we can stop the
algorithm. Otherwise, we proceed as usual. Hence we can conclude the following
theorem now.

Theorem 2. A rank-maximal matching in a G = (A ∪ P , E) can be computed
in randomized O(Cnω) time, where n is the number of vertices in G and C is
the maximum rank used by an edge in the rank-maximal matching.

160 T. Kavitha and C.D. Shah

4 Weighted Rank-Maximal Matchings

In this section we consider the problem of computing a rank-maximal matching
where each applicant a has a weight w(a) assigned to it. Let k be the number of
distinct weights that the applicants are given; let these weights be w1 > w2 >
· · · > wk. So the set A can be partitioned into sets Cj , j = 1, . . . , k, where set
Cj consists of all applicants of weight wj .

Let us consider a simple case first. Consider the problem of computing a
weighted rank-maximal matching in the graph G1 = (A ∪ P , E1). It is easy to
show the following lemma.

Lemma 7. A rank-maximal matching in (A∪P , E1,1 ∪· · ·∪E1,k) is a maximum
weight matching in G1 = (A ∪ P , E1).

We will show that the above relationship holds for all graphs Gi = (A ∪ P , E1 ∪
· · · ∪ Ei). In other words, a weighted rank-maximal matching in Gi is the same
as a rank-maximal matching in G′i, which is the same graph without weights on
applicants and instead of i ranks, the edge set consists of ik different ranks, that
is, we look at the graph G′i = (A ∪ P , E1,1 ∪ · · · ∪ Ei,k) where edges of Ex,y have
rank (x − 1)k + y. Thus edges of Ex,y have a better rank than edges of Ex′,y′

if x < x′, or x = x′ and y < y′. So this yields the simple algorithm below to
compute a weighted-rank maximal matching in G.

1. Partition the edge set E as E = ∪̇i,jEi,j where i ranges over the r ranks and
j ranges over the k weights. The set Ei,j consists of edges of rank i incident
upon applicants of weight wj .

2. Ignore the applicant weights and compute a rank-maximal matching in G =
(A ∪ P , ∪i,jEi,j) where the edges of Ei,j have rank k(i − 1) + j.

Now we come to the proof of correctness of the above algorithm. This is shown
by the following lemma.

Lemma 8. For all 1 ≤ i ≤ r, a rank-maximal matching in (A ∪ P , E1,1 ∪ · · · ∪
Ei,k), where edges in Ex,y have rank (x − 1)k + y, is the same as a weighted
rank-maximal matching in Gi = (A ∪ P , E1 ∪ · · · ∪ Ei).

Proof. We prove this by induction. Lemma 7 proves the case i = 1. So let us
assume by induction hypothesis that a rank-maximal matching in (A∪P , E1,1 ∪
· · · ∪ Ei−1,k) is a weighted rank-maximal matching in Gi−1 = (A ∪ P , E1 ∪ · · · ∪
Ei−1). Denote the edges E1,1∪· · ·∪Ei−1,k, with edges in Ex,y having rank (x−1)k+
y, as F . Let M be a rank-maximal matching in G′i = (A ∪ P , F ∪ Ei,1 · · · ∪ Ei,k).
Now we make the following claim.

Claim. Any rank-maximal matching M in G′i = (A∪P , F ∪Ei,1 · · ·∪Ei,k) is also
a rank-maximal matching in Hi = (A ∪ P , F ∪ Ei).

We will prove the claim later, but first let us assume the claim and complete the
proof of the lemma. The claim implies that the number of rank i edges used in
M is the largest number of rank i edges that any matching that is rank-maximal

Efficient Algorithms for Weighted Rank-Maximal Matchings 161

in G′i−1 = (A ∪ P , F) can use. Since M is a rank-maximal matching in G′i,
the matching M ∩ F is a rank-maximal matching in G′i−1, so it is a weighted
rank-maximal matching in Gi−1, by the induction hypothesis.

So M has the following properties: (i) M uses the maximum number of rank
i edges possible by any rank-maximal matching in G′i−1 and (ii) under the con-
straint that M has to be rank-maximal in G′i−1, M contains the maximum
number of rank i edges incident on weight w1 applicants, subject to this con-
straint, it contains the maximum number of rank i edges incident on weight w2
applicants, and so on.

Property (i) follows from the claim, and property (ii) follows from the def-
inition that M is rank-maximal in F ∪ Ei,1 ∪ · · · ∪ Ei,k. Let us assume that
(c1, . . . , ci−1) is the signature (refer Definition 2) of a weighted rank-maximal
matching in Gi−1. Then M has prefix signature (c1, . . . , ci−1) over E1 ∪· · ·∪Ei−1
and under this constraint, it has the largest possible weight of rank i edges, by
properties (i) and (ii). Thus M is a weighted rank-maximal matching in Gi.
�

Proof of the Claim. We need to show that M is a rank-maximal matching
in Hi = (A ∪ P , F ∪ Ei). We know that M is a rank-maximal matching in
G′i = (A ∪ P , F ∪ Ei,1 ∪ · · · ∪ Ei,k). The rank-maximal matching algorithm from
[7] (refer Section 3.1) on input G′i obtains M as follows: it first executes (i − 1)k
rounds corresponding to edges in F . This yields a rank-maximal matching (call
it M0) in (A ∪ P , F). Then the following k rounds for j = 1, . . . , k are executed:

1. add edges of the existing set Ei,j to the current graph. Call this graph Xj.
(recall that the original set Ei,j gets pruned during the first (i − 1)k rounds)

2. augment Mj−1 in this graph, call the new matching Mj .
3. partition A ∪ P into sets Oj , Uj , Nj (odd, unreachable, even).

(i) delete all Oj-Oj and Oj-Uj edges from Xj.
(ii) delete all edges incident on a vertex in Oj ∪ Uj from Ei,j+1, . . . , Ei,k.

Note that all these edges are of the form (a, p), where p ∈ Oj ∪ Uj and
w(a) ∈ {wj+1, . . . , wk}, since there are no edges from Ei,j+1, . . . , Ei,k

incident on an applicant with weight wj .

The final matching Mk is our matching M . This is a maximum matching in
Xk. We need to show that if we add to the graph Xk all the rank i edges that
we deleted in Steps 3(i) and 3(ii) during the above k rounds, then M is still
a maximum cardinality matching in this new graph (call this graph Y). That
proves that M is a rank-maximal matching in (A ∪ P , F ∪ Ei), since subject
to the constraint that it is rank-maximal in F , the matching M contains the
maximum number of rank i edges.

We want to show that there is no augmenting path in Y with respect to M .
The main observation here is that none of the edges that was deleted in Steps 3(i)
and 3(ii) during the above k rounds is incident on a post outside ∪k

�=1(O� ∪ U�).
So when we build the Hungarian tree, which is the tree of all alternating paths,
rooted at an unmatched applicant, we never see a post outside ∪k

�=1(O� ∪ U�) in
this tree. Any post in ∪k

�=1(O� ∪ U�) is already matched in M . Thus we never

162 T. Kavitha and C.D. Shah

see a free post in this Hungarian tree, thus there is no augmenting path with
respect to M in Y .

The observation sketched above can be formalized (the details will be given
in the full version). Hence there is no augmenting path with respect to M . This
finishes the proof of the claim.
�

We conclude this section with the following theorem, which follows from Lemma 8,
that a weighted rank-maximal matching in G = (A ∪ P , E1 ∪ · · · ∪ Ei) can be
computed as a rank-maximal matching in the graph (A ∪ P , E1,1 ∪ · · · ∪ Er,k).

Theorem 3. A weighted rank-maximal matching in a graph G = (A ∪ P , E1 ∪
· · · ∪ Er) with m edges and n vertices, where each vertex in A has one of
the weights w1 > · · · > wk assigned to it, can be computed in deterministic
O(min(C

√
nm, (n + C)m)) time and randomized O(Cnω) time, where C ≤ rk

is the largest rank of an edge that is used in any rank-maximal matching of
(A ∪ P , E1,1 ∪ · · · ∪ Er,k).

References

1. A. Abdulkadiroǧlu and T. Sönmez. Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica, 66(3):689–701,
1998.

2. D.J. Abraham, K. Cechlárová, D.F. Manlove, K. Mehlhorn. Pareto-optimality in
house allocation problems. In Proc. of 15th ISAAC, pages 3-15, 2004.

3. D.J. Abraham, R.W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. In
Proc. of 16th SODA, pages 424-432, 2005.

4. Joesph Cheriyan. Randomized Õ(M(|V |)) algorithms for problems in matching
theory. SIAM Journal on Computing, 26(6):1635–1655, 1997.

5. J.E. Hopcroft and R.M. Karp. A n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs. SIAM Journal on Computing, 2:225–231, 1973.

6. A. Hylland and R. Zeckhauser. The efficient allocation of individuals to positions.
Journal of Political Economy, 87(2):293–314, 1979.

7. R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal
matchings. In Proc. of 15th SODA, pages 68–75, 2004.

8. L. Lovász. On determinants, matchings and random algorithms. In Fundamentals
of Computation Theory, pages 565–574, 1979.

9. Marcin Mucha and Piotr Sankowski. Maximum Matchings via Gaussian Elimina-
tion In Proc. of 45th FOCS, pages 248–255, 2004.

10. J. Mestre. Weighted popular matchings. In Proc. of 33rd ICALP, LNCS 4051,
pages 715–726, 2006.

11. A.E. Roth and A. Postlewaite. Weak versus strong domination in a market with
indivisible goods. Journal of Mathematical Economics, 4:131–137, 1977.

12. Y. Yuan. Residence exchange wanted: a stable residence exchange problem. Euro-
pean Journal of Operational Research, 90:536–546, 1996.

13. L. Zhou. On a conjecture by Gale about one-sided matching problems. Journal of
Economic Theory, 52(1):123–135, 1990.

On Estimating Path Aggregates over Streaming

Graphs

Sumit Ganguly and Barna Saha

Indian Institute of Technology, Kanpur
{sganguly, barna}@cse.iitk.ac.in

Abstract. We consider the updatable streaming graph model, where
edges of a graph arrive or depart in arbitrary sequence and are pro-
cessed in an online fashion using sub-linear space and time. We study
the problem of estimating aggregate path metrics Pk defined as the num-
ber of pairs of vertices that have a simple path between them of length
k. For a streaming undirected graph with n vertices, m edges and r
components, we present an Õ(m(m − r)−1/4) space1 algorithm for esti-
mating P2 and an Ω(

√
m) space lower bound. We show that estimating

P2 over directed streaming graphs, and estimating Pk over streaming
graphs (whether directed or undirected), for any k ≥ 3 requires Ω(n2)
space. We also present a space lower bound of Ω(n2) for the problems
of (a) deterministically testing the connectivity, and, (b) estimating the
size of transitive closure, of undirected streaming graphs that allow both
edge-insertions and deletions.

1 Introduction

The data streaming model has gained popularity as a computational model for a
variety of monitoring applications, where, data is generated rapidly and continu-
ously, and must be analyzed very efficiently and in an online fashion using space
that is significantly sub-linear in the data size. An emerging class of monitoring
applications is concerned with massive dynamic graphs. For example, consider
the dynamic web graph, where nodes are web-pages and edges model hyperlinks
from one page to another. The edges in the web-graph are generated in a stream-
ing fashion by web-crawlers [8]. Significant changes in the size, connectivity and
path properties of web-communities of interest can be glimpsed by computing
over these stream of edges. Another example is the citations graph [7], where,
nodes are published articles and directed edges denote a citation of one article
by another. Consider the query: find the top-k second-level frequent citations,
where the second-level citation number of an article A is the number of (distinct)
articles C that cite an article B that cite A.

1 f(m) is said to be Õ(g(m)) if f(m) = O(1

εO(1) (log m)(log n)(log 1
δ
)O(1)g(n)). Simi-

larly, f(m) is said to be Ω̃(g(m)) if g(m) is Õ(f(m)).

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 163–172, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

164 S. Ganguly and B. Saha

Graph Streaming Models. In the updatable edge-streaming model of graphs, the
stream is viewed as a sequence of tuples of the form (u, v, +) or (u, v, −), cor-
responding, respectively, to the insertion or the deletion of the edge (u, v). In
the updatable model, once an edge (u, v) is inserted, it remains current in the
graph until a tuple of the form (u, v, −) appears in the stream to delete the
edge. The current state of the graph G = (V, E) is defined by the set of current
edges E; the set of vertices V are those vertices that are incident to any of the
current edges. Multi-graphs are modelled by allowing an edge to be inserted
multiple times. Edges may be inserted and deleted in arbitrary order; however,
an edge may be deleted at most as many times as it is inserted. The insert-only
streaming model [1,3,7] only allows tuples of the form (u, v, +) to appear in the
stream. Graph streaming models that allow use of external memory and extra
passes over stored data have been proposed—these include the semi-streaming
graph model [2] and the W -stream model [1]. In this paper, we do not consider
computational models over streaming graphs that allow multiple passes.

Path Aggregates. The path aggregate Pk is defined as the number of pairs of
vertices (u, v) such that there is a simple path of length k from u to v. In this
work, we consider the problem of estimating the path aggregate Pk, for k ≥ 2
over updatable streaming graphs. The continuous monitoring of path aggregates
enables online detection of changing path properties of a dynamic graph. For
example, an article can be said to be frequently cited at level l, provided, the
number of its level l-citations exceeds Pl/s, for a parameter s. The problem also
has applications in database query size estimation. For example, let R(A, B) be
a binary relation over attributes A and B, over the same domain. Then, the P2
over the binary relation R viewed as a graph represents the number of distinct
pairs in the self-join (the distinct self join) of its relations.

Prior work in estimating path aggregates. [5] presents the jdsketch algorithm
for estimating the Join-Distinct size of two data streams, R = R(A, B) and
S(B, C) defined as jd(R, S) = |πA,C(R �� S)|. If R = S, then, jd(R, R) = P2
and therefore, the jdsketch algorithm can be used to estimate P2. The space
requirement of the jdsketch algorithm is Õ(m2/P2) [5]. In particular, for
complete bi-partite graphs, chain graphs, etc., the jdsketch requires Ω(m)
space.

Contributions. We present the RS algorithm for estimating P2 for undirected
streaming graphs and multi-graphs to within accuracy factors of 1 ± ε and
confidence 1 − δ, where, 0 < ε, δ < 1. For a graph with n vertices, m edges
and r-components, the algorithm requires O(1

ε2
m

(m−r)−1/4 (log n)(log 1
δ)) bits. For

graphs with m
2 or less components, the space complexity of the algorithm is

Õ(m3/4) bits. We present a lower bound of O(
√

m) bits for estimating P2 for
undirected and connected streaming graphs. For directed streaming graphs, we
show that the estimating Pk, for any k ≥ 2, to within any approximation factor,
requires Ω(m) bits of space. We also show that estimating Pk, for k ≥ 3, for
undirected streaming graphs to within a factor of 1 ± 3

4 , requires Ω(n2) bits of

On Estimating Path Aggregates over Streaming Graphs 165

space. Finally, we present a space lower bound of Ω(n2) for the problems of (a)
deterministically testing the connectivity, and, (b) estimating the size of transi-
tive closure, of undirected streaming graphs that allow both edge-insertions and
deletions.

Organization. Section 2 presents the RS algorithm for estimating P2 and Sec-
tion 3 presents lower bound results.

2 Estimating P2

In this section, we present the RS algorithm for estimating P2 for undirected
graphs and multi-graphs. We first consider insert-only streaming graphs and
prove Theorem 1 and then generalize it to updatable edge streaming graphs.

Theorem 1. For 0 ≤ ε < 1
6 and 0 < δ < 1, there exists an algorithm that

takes as input an insert-only streaming graph with r components, m edges and
n vertices and returns an estimate P̂2 satisfying Pr{|P̂2 − P2| ≤ εP2} ≥ 1 − δ
using O(ε−2m(m − r)−1/4(log 1

δ)(log n)) bits.

2.1 Random Subgraph RS of Graph Streams

Given a graph G = (V, E), the random subgraph RS is obtained by sampling the
vertices of V uniformly and independently with probability p, and storing the
adjacency list of each sampled vertex . We now design an adaptive RS structure
for streaming graphs, given a sampling probability function p(m) (for e.g., p(m) =

1√
m

) and space function s = s(m) = 8mp(m).

Data Structure. The current level counter lcurr is initialized to 1 and takes in-
creasing values between 1 and log|F |. The current sampling probability, denoted
by pcurr, is given by pcurr = 2−lcurr+1. The current upper limit on the number
of edges of the graph is given by mcurr that is initialized to O(1). We maintain
the invariant that mcurr = max(4m, O(1)). The value of mcurr is doubled peri-
odically as necessary. The counter scurr denotes the current space provided to
the portion of the data structure that stores the adjacency list of the sampled
vertices. The invariant scurr = s(mcurr) is maintained. Let S denotes the actual
space (in words) used to store the adjacency lists of the sampled vertices and is
initialized to 0. The set Vl stores the current set of sampled vertices. For every
vertex in Vl, its adjacency list is also stored. The value of m is tracked by the
data structure. This can be done exactly for simple graphs; for multi-graphs,
an ε-approximation to the number m of distinct edges m can be tracked using
space O(1

ε2 (log n)(log 1
δ)) using a standard technique for counting the number of

distinct items in a data stream [4,6].
Let e = {u, v} be an incoming streaming edge. The set of vertices that are

adjacent to a given vertex u ∈ V is denoted by adj(u). If u ∈ Vl, then we add v
to adj(u). If u �∈ Vl, then, we insert u into Vl with probability pcurr and initialize
adj(u) as {v}. If u is not sampled, then, no further action is taken. The procedure

166 S. Ganguly and B. Saha

is repeated for v independently and the space incurred S is incremented suitably.
After processing an incoming edge, we check whether S < scurr, that is, whether
there is room for further insertions. If not, then, we perform a sub-sampling
operation, if m < mcurr

2 , or, increase available space, if m ≥ mcurr
2 . In the former

case, we sub-sample, that is, the sampling probability pcurr is halved and for every
u ∈ Vl, we retain u and its adjacency list with probability 1/2 (and, otherwise,
u and and its adjacency list are dropped). In the latter case, if m ≥ mcurr

2 and
S = scurr, then, we increase the available space from scurr to scurr = s(2mcurr)
and update mcurr = 2mcurr.

Analysis. It is quite straightforward to see that the algorithm maintains the
following invariants: scurr = s(mcurr) and mcurr ≤ max(O(1), 4m). The first
invariant holds at initialization and at all subsequent space increases. Therefore,
space used (in words) is S = O(scurr) = O(s(mcurr)) = O(s(4m)) = O(s(m)),
since, s(m) is a sub-linear function, and, therefore, s(4m) ≤ 4s(m).

For u ∈ V , define an indicator variable yu that is 1 iff u ∈ Vl and is 0
otherwise. The space used by the data structure (in words of size log n bits)
is S =

∑
u∈V deg(u)yu. Thus, E

[
S

]
=

∑
u∈V deg(u)Pr{yu = 1} = (2m)pcurr.

By Markov’s inequality, Pr{S ≤ 4E
[
S

]
} = Pr{S ≤ 8mpcurr} ≥ 3

4 . Therefore,
Pr{pcurr ≥ S

8m} = Pr{S ≤ 8mpcurr} ≥ 3
4 . In view of this calculation, we keep

s2 = O(log 1
δ) independent copies of the data structure. Suppose we call the

current state of the data structure as concise if pcurr ≥ S
8m . At the time of in-

ference, we consider only the concise copies, obtain estimates of P2 from the
concise copies and return the median of these estimates. By Chernoff’s bounds,
the number of concise copies is O(log 1

δ) with probability 1 − δ
2 . The space re-

quirement is O(m·p(m)(log 1
δ)(log n)). The above data structure can be extended

to updatable streaming graphs using a combination of existing data structures
[9].

Estimator. An estimate P̂2 is obtained from a concise copy of the RS structure
with sampling probability p = p(m) as follows. Let EP2 denote the number
of unordered vertex pairs u and v that are both sampled and have a common
neighbor.

P̂2 =
1
p2 EP2 =

1
p2 |{{u, v} | u, v ∈ Vl and adj(u) ∩ adj(v) �= φ}|

Finally, we return the median of t = O(log 1
δ) independent estimates.

2.2 Analysis: Graph Based Properties of P2

For an undirected simple graph G = (V, E) and a vertex u ∈ V , let deg(u)
denote the degree of u in G and let deg2(u) denote the number of vertices in
V − {u} that can be reached from u in two hops.

Lemma 2. In any graph G = (V, E), deg2(u) ≤ (4P2)3/4.

On Estimating Path Aggregates over Streaming Graphs 167

Proof. Let r denote deg(u) and let T be the set of vertices, not including u,
that can be reached from u in two hops. Let s = |T |. The vertices adjacent to u
contribute A =

(
r
2

)
to P2. Let B denote the contribution to P2 by vertex pairs in

T . For each fixed value of s, B is minimized if each vertex of adj(u) has either � s
r 	

or
 s
r � neighbors in T and no two vertices of adj(u) has any common neighbor

(except u). Therefore, B ≥ r
(

s/r
2

)
. Since, each vertex pair may be counted at

most twice, that is once in both A and B, P2 ≥ 1
2 (A + B) ≥ 1

2

(
r
2

)
+ r

2

(
s/r
2

)
. The

expression in the RHS attains a minimum at r ≈ s2/3

21/3 and the corresponding

minimum value of P2 is greater than s4/3

4 . Thus, s = deg2(u) ≤ (4P2)3/4. �

Lemma 3 presents a lower bound on the value of P2 for simple undirected graph.

Lemma 3. For a connected graph G = (V, E) such that |E| = m, P2 ≥ m−
√

m.
For a graph with r components, P2 ≥ m −

√
mr.

Proof. We first show, by induction, that for a connected graph G = (V, E) with
m edges, P2 ≥ m −

√
m. Base Case: A connected graph G with one edge, that

is, m = 1, 0 = P2 ≥ 1 −
√

1 = 0.
Induction Case. Suppose that the statement of the theorem holds true for

graphs with number of edges between 1 and m − 1. Consider a connected graph
G with m edges. Let x be a lowest degree vertex among all vertices in the
connected graph G that are not cut-vertices and let deg(x) = q. (Note that in
any graph G, the end vertices of any longest path are not cut-vertices; hence, we
can always find x.). Let y1, y2, . . . , yq denote the neighbors of x. Let z1, z2, . . . , zs

be the set of neighboring vertices of y1, . . . , yq, not including x.
Suppose s ≥ q. Since x is not a cut-vertex of G, deleting x from G leaves G

connected. In the resulting graph, G′, there are m−q edges, and therefore, by the
induction hypothesis, P2(G′) ≥ m − q − √

m − q. In G, x is connected by a path
of length 2 to z1, z2, . . . , zs respectively. Therefore, P2 ≥ m − q − √

m − q + s ≥
m −

√
m, since, s ≥ q.

Suppose s < q. We first claim that none of y1, y2, . . . , yq are cut-vertices.
To prove this, suppose that yj is a cut-vertex. Then, by removing yj from G,
G − {yj} has two or more components. Thus, in G − {yj}, there is a zk that
is in a different component than x and zk is adjacent to yj . The component
in G − {yj} that contains x also contains y1, . . . , yj−1, yj+1, . . . , yq. Therefore,
there is no edge between yi and zk, for, 1 ≤ i ≤ q, i �= j or between x and zk.
Thus, among the yi’s, zk is attached only to yj . Continuing this argument, we
can show that if yj1 , yj2 , . . . , yjp are cut-vertices in G, then, there exist vertices
zk1 , zk2 , . . . , zkp distinct from each other such that zkr is attached to yjr only
and to none of the other yi’s or to x.

Not all of the yi’s can be cut vertices, since, this implies that the number of
zk’s is at least q, which contradicts the assumption that s < q. Therefore, there
exists at least one of the yi’s that is not a cut-vertex, say ya. Suppose further
that there is at least one cut-vertex yj. Let yj be attached to zk such that zk and
x lie in different components in the graph G−{yj}. Consider the degree of ya. It

168 S. Ganguly and B. Saha

is attached to x and is not attached to zk. Therefore, deg(ya) ≤ 1 + (s − 1) = s.
Since, s < q, deg(ya) < q = deg(x). By assumption, x is the vertex with the
smallest degree among all vertices that are not cut-vertices in G. Since, ya is
not a cut-vertex, and deg(ya) < deg(x), this is a contradiction. Thus, the only
conclusion possible is that none of the yi’s are cut-vertices, proving the claim.

Further, since, none of the vertices yi are cut-vertices, their degree is at least
deg(x) = q. Therefore, other than x, each yi is connected to at least q − 1 of the
zi’s. Since s < q, this implies that s = q−1, and each of y1, y2, . . . , yq is attached
to each of x and z1, z2, . . . , zq−1. The subgraph of the yi’s in one partition and
the zj’s and x in the other partition (yi’s and zj ’s are disjoint, otherwise s ≥ q,
since G is a simple graph) is the complete bi-partite subgraph Kq,q. If there are
no other edges in the graph, then, we can calculate m and P2 for Kq,q as follows.

m = q2, P2 = q(q − 1), and P2 = m −
√

m

which satisfies the statement of the lemma.
Suppose there are edges in addition to the Kq,q subgraph formed above. Note

that since, s = q − 1, if there is any edge in the graph G other than the Kq,q

subgraph, then, there must be an edge attaching some zk to some vertex u
(since, vertices x and y1, . . . , yq are saturated with respect to degree). The vertex
u is neither x nor one of y1, . . . , yq. We now remove the vertex y1 from G.
The reduced graph G′ is still connected since y1 was not a cut-vertex and has
m − deg(y1) = m − q edges. Therefore, by the induction hypothesis, P2(G′) ≥
m−q−(m−q)1/2. In G, y1 is at distance 2 from each of y2, . . . , yq. In addition, y1,
by virtue of the edges (y1, zk) and (zk, u), has a path of length 2 to u. Therefore,
deg2(y1) ≥ q − 1 + 1 = q. Thus, P2 ≥ (m − q) − (m − q)1/2 + q ≥ m −

√
m.

We can now prove Lemma 3. Let mc denote the number of edges of component
number c, 1 ≤ c ≤ r. Since, each component is connected, therefore, P2 ≥∑r

c=1(mc − √
mc) ≥ r

(
m
r −

√
m
r

)
= m −

√
rm. �

2.3 Analysis: Space Usage of the Estimator

For u ∈ V , define an indicator random variable xu such that xu = 1 iff u ∈ Vl.

Lemma 4. E
[
EP2

]
= p2P2 and E

[
P̂2

]
= P2.

Proof. EP2 =
∑
{u,v}∈P2

xuxv. So, E
[
EP2

]
= p2P2 and E

[
P̂2

]
= E

[
EP2
p2

]
= P2.

�
Lemma 5. Var

[
P̂2

]
= P2

p2 + 1
2p

∑
u∈V deg2

2(u).

Proof. Since, EP2 =
∑
{u,v}∈P2

xuxv,

EP 2
2 = (

∑

{u,v}∈P2

xuxv)2 =
∑

{u,v}∈P2

xuxv

+
∑

{u,v}∈P2

{u,v′}∈P2
v �=v′

xuxvxv′ +
∑

{u,v}∈P2

{u′,v′}∈P2
{u,v}∩{u′,v′}=φ

xuxvxu′xv′

On Estimating Path Aggregates over Streaming Graphs 169

Taking expectations,

E
[
EP 2

2
]

≤ p2P2 +
∑

u∈V

∑

v∈adj(u)
v′∈adj(u)

v �=v′

p3 +
∑

{u,v}∈P2
{u′,v′}∈P2

{u,v}∩{u′,v′}=φ

p4

≤ p2P2 + p3
∑

u∈V

(
deg2(u)

2

)
+ (p2P2)2 .

Using Lemma 4,

Var
[
EP2

]
= E

[
EP 2

2
]
− (E

[
EP2

]
)2 ≤ p2P2 + p3

∑

u∈V

(
deg2(u)

2

)
.

So, Var
[
P̂2

]
= Var

[
EP2
p2

]
= 1

p4 Var
[
EP2

]
< P2

p2 + 1
2p

∑
u∈V deg2

2(u). �

Lemma 6. Pr{|P̂2 − P2| > εP2} < 2
9 , if p ≥ max(3

ε
√

P2
, 6

ε2P 2
2

∑
u∈V deg2

2(u)).

Proof. By Chebychev’s inequality, Pr{|P̂2 − E
[
P̂2

]
| > εP2} ≤ Var

[
P̂2

]

25ε2P 2
2

< 1
p2ε2P2

+
�

u∈V deg2
2(u)

ε2P 2
2 p

+ 2
25 < 1

9 + 1
9 . �

Lemma 7. Let G have r components, m edges and n vertices. Then, Pr{|P̂2 −
P2| ≤ 6εP2} ≥ 1 − δ. The space requirement is O(m

ε2(m−r)1/4 (log 1
δ)(log n)) bits,

with probability 1 − δ.

Proof. The space requirement is O(mp), where, by Lemma 6, mp = O(max
(m

ε2
√

P2
, m

ε2P 2
2

∑
u∈V deg2

2(u)))). By Lemma 3, P2 ≥ m−
√

rm. Therefore, m
ε
√

P2
=

m
ε(m−√rm) = m1/2

(m−r)1/2 . Further, since,
∑

u∈V deg2(u) = 2P2, we have,
by Lemma 2,

∑

u∈V

deg2
2(u) ≤ (max

w∈V
deg2(w))

∑

u∈V

deg2(u) ≤ (4P2)3/4(2P2) ≤ 8P
7/4
2 .

By Lemma 3, P2 ≥ m −
√

mr =
√

m(
√

m −
√

r) =
√

m m−r√
m+
√

r
≥ m−r

2 ,

since, r ≤ m. Using this, it follows that m
ε2P 2

2

∑
u deg2

2(u) ≤ 8m

ε2P
1/4
2

≤ 16m
(m−r)1/4 .

To boost the confidence to 1 − δ, we keep O(log 1
δ) independent copies and

return the median from the concise copies. The space required is therefore
O(m

ε2(m−r)1/4 (log 1
δ)(log n)) bits. �

3 Lower Bounds

In this section, we present space lower bounds.

170 S. Ganguly and B. Saha

Lemma 8. An algorithm that estimates P2 for undirected and connected stream-
ing graphs in the insert-only model to within a factor of 1 ± 1

8 with probability 2
3

requires Ω(n +
√

m) bits.

Proof. We reduce a special case of the two-party set disjointness problem in
which parties A and B are each given a subset of {0, 1, . . . , n − 1} of size at
least n

3 with the promise that the subsets are either disjoint or have exactly one
element in common. The parties have to determine whether the sets are disjoint.
This problem has communication complexity Ω(n) bits. Suppose there is an
algorithm A satisfying the premises of the lemma. A and B each construct in
their local memory a complete graph whose nodes correspond to the items in the
subset given to it. A inserts the edges corresponding to its complete graph into
the data structure for A and sends it to B. B inserts the edges of its complete
graph into the data structure of A and estimates P2. If the sets are disjoint,
then, P2 ≤ 5n2

16 , and otherwise, P2 ≥ 7n2

16 , allowing A to distinguish between the
two cases. Hence, A requires Ω(n) bits. In the constructed graph, m = Θ(n2),
hence, the space complexity is Ω(

√
m).

In the above construction, the graph is either connected (when the subsets
intersect) or has two components (disjoint case). An additional tree-structure
ensures that the graph is always connected. For i ∈ {0, 1, . . . , n − 1}, B inserts
new vertices v2i and v3i, with edges between vi and v2i and between v2i and v3i.
The nodes {v3i : 0 ≤ i ≤ n − 1} are then made the leaf nodes of a complete
binary tree (as much as possible) by adding new vertices. The resulting graph is
connected. The contribution to P2 by the new vertices is as follows. deg2(v2i) =
1 + deg(vi), for 0 ≤ i ≤ n − 1, and the contribution to P2 by the remaining tree
vertices is at most n − 1 (vertex pairs at the same level) + n − 3 (vertex pairs
where one vertex is a grandparent of the other) = 2n − 4. Thus, total P2 of the
new graph is n+2n−4+2 oldP2, where, oldP2 is the P2 of the graph prior to the
addition of the tree structure. The rest of the argument proceeds as before. �

Lemma 9. Deterministically estimating P2 over streaming graphs to within fac-
tor of (1 ± 1

4) requires Ω(m) space.

The proof of this lemma may be found in [9].

Estimating Pk over directed streaming graphs. We show that for directed stream-
ing graphs, estimating Pk for k ≥ 2, to any multiplicative factor requires Ω(m)
space. The reductions use the standard bit vector index problem: Party A is
given a bit-vector v of size r and party B is given an index i, 1 ≤ i ≤ r. B has
to determine whether v[i] = 1. The communication allowed is one-way from A
to B. This problem has communication complexity of Ω(r) [7,3].

Lemma 10. Estimating Pk for directed streaming graphs to within any multi-
plicative accuracy factor requires Ω(m) bits.

Proof. We will reduce a special case of the bit-vector index problem, where, it is
given that exactly r

2 bits of v have value 1. The communication complexity of this

On Estimating Path Aggregates over Streaming Graphs 171

problem is also Ω(r). Let r = 2n and let A be an algorithm for estimating P2.
For every v[i] = 1 in the bit-vector v, party A inserts a directed edge (r+1, i) to
the summary structure of algorithm A. A then sends the summary structure to
B. Given index j, B adds the set of directed edges {(j, k) | r+2 ≤ k ≤ r+n+2},
to the summary structure that it received from A. If v[j] = 1, then P2 = n, else
P2 = 0, proving the claim for P2. The extension for Pk is analogous. �

Lemma 11. For k ≥ 3, estimating Pk to within factor of 1 ± 1
3 with probability

3
4 over undirected streaming graphs with n vertices requires Ω(n2) bits.

Proof. We reduce the bit-vector index problem to the problem of estimating
P3. Let r = n(n−1)

2 and let v[1 . . . r] be the given vector of 0’s and 1’s. Let B
be an algorithm for estimating P2 with the specified accuracy and confidence.
Each index 1 ≤ r ≤ n(n−1)

2 is written uniquely as a pair of distinct numbers,
(u, w), each lying between 0 and n − 1. This mapping is used to create a graph
G = (V, E), where, V = {1, 2, . . . , 9n}. For every index j = (u, w) such that
v[j] = 1, we add an edge (u, w) ∈ E. Next, for the given index i = (c, d), we add
8n new vertices to the graph, and attach 4n of them to c and 4n of them to d.
These edges are given as input stream to B. We now use B to estimate P3. v[b] = 1
iff there is an edge between c and d in G. In this case, P3 ≥ 16n2, and, otherwise,
P3 ≤ 8n2 +

(
n
2

)
. Therefore the space requirement by P3 is Ω(r) = Ω(n2). The

proof can be easily extended to Pk, k > 3. �

Theorem 12. A deterministic algorithm for testing connectivity of an undi-
rected graph in the updatable streaming graph model requires Ω(n2) space.

Proof. Let G = (V, E) be a connected graph and let G′ = (V, E′) be the edge-
complement graph on the same set of vertices. Consider the family of graphs
for which G and G′ are both connected. For this family of graphs, checking
for edge-membership can proceed as below. (u, v) is an edge in G iff there is a
sequence of edges e1, . . . , ek−1, ek = (u, v) in G, such that after the deletion of
e1, e2, . . . , ek−1 in sequence, the graph remains connected, but gets disconnected
after ek = (u, v) is deleted thereafter. The sequence of edges e1, . . . , ek−1 can be
thought of as a certificate of membership of (u, v) in G. Analogously, if (u, v) is
not in G, then, it is in G′, and therefore, there exists a certificate for membership
of (u, v) in G′. This certificate serves as a certificate that (u, v) is not in G. Hence
checking edge membership reduces to connectivity testing problem.

Given an algorithm that maintains a summary structure for testing connectiv-
ity of a streaming graph, we use it to maintain a pair of summaries corresponding
to G and its complement G′. This is easily done by letting E = φ and E′ = Kn,
where Kn is the clique of n vertices. Corresponding to each edge update, we
propagate the update to the summary structure for G and propagate the com-
plement of the update to the summary structure for G′.

We now obtain a lower bound on the number of graph-complement pairs
(G, G′) over n vertices such that both G and G′ are connected. Consider the
complete graph Kn on n vertices, for n > 2. Choose a spanning tree C of Kn

that is a chain. Consider the remaining graph defined by the set of edges in

172 S. Ganguly and B. Saha

Kn − C. This graph remains connected for n ≥ 4. Let D be a spanning tree of
the graph defined by edges in Kn − C. Place the set of edges in C in G and
the set of edges in D in G′. The number of remaining edges is

(
n
2

)
− 2(n − 1).

Each of these edges can be placed either in G or in G′ in 2(n
2)−2(n−1) ways. Each

of these ways gives a different (G, G′) pair. By construction, G and G′ contain
C and D respectively, and are therefore connected. Therefore, the number of
graph-complement pairs (G, G′) over n vertices such that both G and G′ are
connected is at least 2(n

2)−2(n−1).
The algorithm that tests for edge-membership must have a different memory

pattern for each of the graph-complement pairs (G, G′). Otherwise, given two
distinct pairs (G, G′) and (H, H ′), there are edge pairs (e, e′) that distinguish
them. Mapping them to the same pattern causes the algorithm to make at least
one error when presented with the certificates of the edges e and e′, respectively.
Hence checking edge-membership requires space Ω(log(2(n

2)−2(n−1))) = Ω(n2)
bits . Since edge-membership can be reduced to connectivity testing, the state-
ment of the lemma follows. �

Corollary 13. Deterministic algorithms for the following problems require Ω(n2)
space in the updatable graph streaming model: (a) estimating the size of the tran-
sitive closure of an undirected graph to within a factor of 1± 1

5 , and (b) estimating
the diameter of an undirected graph to within any approximation factor.

The proof of the corollary may be found in [9]. Note that testing connectivity
and maintaining the size of transitive closure is easily solved using O(n log n)
space in the insert-only streaming model [7,3].

References

1. C. Demetrescu, I. Finocchi, and A. Ribichini. “Trading off space for passes in graph
streaming problems”. In Proceedings of ACM SODA, 2006.

2. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems
in a semi-streaming model. In Proceedings of ICALP, pages 531–543, 2004.

3. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances
in the streaming model: the value of space. In Proceedings of ACM SODA, 2005.

4. Philippe Flajolet and G.N. Martin. “Probabilistic Counting Algorithms for
Database Applications”. J. Comp. Sys. and Sc., 31(2):182–209, 1985.

5. S. Ganguly, M.N. Garofalakis, A. Kumar, and R. Rastogi. “Join-distinct aggregate
estimation over update streams”. In Proceedings of ACM PODS, 2005.

6. P. B. Gibbons and S. Tirthapura. “Estimating simple functions on the union of
data streams”. In Proceedings of ACM SPAA, 2001.

7. M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams.
Technical Note 1998-011, Digital Systems Research, Palo Alto, CA, May 1998.

8. S. Muthukrishnan. “Data Streams: Algorithms and Applications”. Foundations and
Trends in Theoretical Computer Science, Vol. 1, Issue 2, 2005.

9. Barna Saha. “Space Complexity of Estimating Aggregate Path Metrics over Mas-
sive Graph Streams and Related Metrics”. Master’s thesis, IIT Kanpur, Computer
Science, 2006.

Diamond Triangulations Contain Spanners of

Bounded Degree�

Prosenjit Bose, Michiel Smid, and Daming Xu

School of Computer Science, Carleton University, Ottawa, ON, Canada K1S 5B6
{jit, michiel, dxu5}@scs.carleton.ca

Abstract. Given a triangulation G, whose vertex set V is a set of n
points in the plane, and given a real number γ with 0 < γ < π, we
design an O(n)-time algorithm that constructs a connected spanning
subgraph G′ of G whose maximum degree is at most 14 + �2π/γ�. If G
is the Delaunay triangulation of V , and γ = 2π/3, we show that G′ is
a t-spanner of V (for some constant t) with maximum degree at most
17, thereby improving the previously best known degree bound of 23.
If G is the graph consisting of all Delaunay edges of length at most 1,
and γ = π/3, we show that G′ is a t-spanner (for some constant t) of
the unit-disk graph of V , whose maximum degree is at most 20, thereby
improving the previously best known degree bound of 25. Finally, if G is
a triangulation satisfying the diamond property, then for a specific range
of values of γ dependent on the angle of the diamonds, we show that
G′ is a t-spanner of V (for some constant t) whose maximum degree is
bounded by a constant dependent on γ.

1 Introduction

Let V be a set of n points in the plane and let t ≥ 1 be a real number. An
undirected graph G with vertex set V is called a t-spanner of V , if for any two
vertices u and v of V , G contains a path between u and v, whose length is at
most t|uv|, where |uv| denotes the Euclidean distance between u and v.

The problem of constructing a t-spanner with O(n) edges for any given point
set has been studied intensively; see the book by Narasimhan and Smid [11].

In this paper, we focus on spanners that are plane, i.e. the interiors of any two
(straight-line) edges of the spanner are disjoint. Chew [5] and Dobkin et al. [7]
were the first to show the existence of plane spanners. Dobkin et al. proved
that the Delaunay triangulation of V is a t-spanner of V , for some constant
t = ((1 +

√
5)/2)π. Keil and Gutwin [8] improved the analysis, and showed that

the Delaunay triangulation is a t-spanner for t = 4π
√

3/9. A more general result
appears in Bose et al. [2]: For every two vertices u and v of V , the Delaunay
triangulation contains a path between u and v of length at most 4π

√
3

9 · |uv|, all
of whose edges have length at most |uv|.
� This research was supported by the Natural Science and Engineering Research Coun-

cil of Canada.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 173–182, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

174 P. Bose, M. Smid, and D. Xu

Das and Joseph [6] generalized these results to triangulations that satisfy the
so-called diamond property: Let G be a triangulation of V , and let α be a real
number with 0 < α < π

2 . Let e be an edge of G, and consider the two isosceles
triangles Δ1 and Δ2 with base e and base angle α. We say that the edge e satisfies
the α-diamond property, if at least one of Δ1 and Δ2 does not contain any point
of V in its interior. We say that the triangulation G satisfies the α-diamond
property, if every edge e of G satisfies this property.

e

α

α
α

α

�1

�2

Fig. 1. An illustration of the diamond property. At least one of the triangles Δ1 and
Δ2 does not contain any point of V .

Das and Joseph [6] showed that any triangulation satisfying the α-diamond
property is a t-spanner, for some real number t that only depends on the value
of α. (In fact, Das and Joseph considered plane graphs that, additionally, sat-
isfy the so-called good polygon property.) The analysis was refined by Lee [9],
who showed that t ≤ 8(π−α)2

α2 sin2(α/4) . It is clear that the Delaunay triangulation
satisfies the α-diamond property, for α = π/4. Das and Joseph proved that
both the greedy triangulation and the minimum weight triangulation satisfy the
α-diamond property, for some constant α.

None of the results mentioned above lead to plane spanners in which the
degree of every vertex is bounded by a constant. Bose et al. [1] were the first to
show the existence of a plane t-spanner (for some constant t), whose maximum
vertex degree is bounded by a constant. To be more precise, they showed that
the Delaunay triangulation of any set V of n points in the plane contains a
spanning subgraph, which is a t-spanner for V , where t = 4π(π+1)

√
3

9 , and whose
maximum degree is at most 27. This result was improved by Li and Wang [10]:
For any real number γ with 0 < γ ≤ π/2, the Delaunay triangulation contains a
spanning subgraph, which is a t-spanner, where t = max{π

2 , 1 + π sin γ
2} · 4π

√
3

9 ,
and whose maximum degree is at most 19 + �2π/γ�. For γ = π/2, the degree
bound is 23. In this paper, we further improve the degree bound:

Theorem 1. Let V be a set of n points in the plane, and let γ be a real number
with 0 < γ ≤ 2π/3. Assume that we are given the Delaunay triangulation G of
V . Then, in O(n) time, we can compute a spanning subgraph G′ of G, such that
G′ is a t-spanner of V , where

Diamond Triangulations Contain Spanners of Bounded Degree 175

t =

{
4π
√

3
9 · max

{
π
2 , 1 + π sin γ

2

}
if γ < π/2,

4π
√

3
9

(
π + 9 · max

{
π
2 , 1 + π sin γ

2

})
if π/2 ≤ γ ≤ 2π/3,

and the maximum degree of G′ is at most 14 + �2π/γ�. Thus, for γ = 2π/3, the
degree bound is 17.

We obtain this result by designing a linear algorithm that, when given an arbi-
trary triangulation G of the point set V , computes a spanning subgraph G′ of
G, that satisfies the degree bound in Theorem 1.

We also extend this result to the unit-disk graph, which is a graph where every
two distinct points u and v in the vertex set are connected by an edge if and
only if |uv| ≤ 1. A t-spanner of the unit-disk graph is a subgraph of the unit-
disk graph with the property that for every edge (u, v) of the unit-disk graph,
there exists a path between u and v whose length is at most t|uv|. Let G be the
graph consisting of all edges in the Delaunay triangulation of V , whose length
is at most one. It follows from the result of Bose et al. [2] which was mentioned
above, that G is a 4π

√
3

9 -spanner of the unit-disk graph of V . This construction
for the Delaunay triangulation was modified by Li and Wang [10] to obtain a
plane t-spanner (for some constant t) of the unit-disk graph whose maximum
degree is at most 25. By modifying our algorithm, we obtain the following result:

Theorem 2. Let V be a set of n points in the plane, and let γ be a real number
with 0 < γ ≤ π/3. Assume that we are given the Delaunay triangulation G of
V . Then, in O(n) time, we can compute a plane graph G′, such that G′ (G′ ⊆ G
does not necessarily hold) is a t-spanner of the unit-disk graph of V , where

t =
4π

√
3

9
· max

{π

2
, 1 + π sin

γ

2

}
,

and the maximum degree of G′ is at most 14 + �2π/γ�. Thus, for γ = π/3, the
degree bound is 20.

Bounded degree plane spanners of the unit-disk graph have applications in topol-
ogy control of wireless ad hoc networks, see [10]. In such a network, a vertex u
can only communicate with those vertices that are within the communication
range of u. If we assume that this range is equal to one for each vertex, then the
unit-disk graph models a wireless ad hoc network. Many algorithms for rout-
ing messages in such a network require that the underlying network topology is
plane. Moreover, if the maximum degree is small, then the throughput of the
network can be improved significantly.

In the final part of the paper, we show the following result:

Theorem 3. Let V be a set of n points in the plane, let α be a real number with
0 < α ≤ π/2, and let G be a triangulation of V that satisfies the α-diamond
property. Then, in O(n) time, we can compute a spanning subgraph G′ of G,
such that G′ is a t-spanner of V , where

176 P. Bose, M. Smid, and D. Xu

t =
(

1 +
2(π − α)
α sin α

4
· max

{
1, 2 sin

α

2

})
8(π − α)2

α2 sin2 α
4

,

and the maximum degree of G′ is at most 14 + �2π/α�.

Thus, by combining Theorem 3 with the results of Das and Joseph [6], it follows
that both the greedy triangulation and the minimum weight triangulation con-
tain a t-spanner (for some constant t) whose maximum degree is bounded by a
constant.

Full details of all proofs are available in [4].

2 Computing a Bounded-Degree Spanning Subgraph of a
Triangulation

Let V be a set of n points in the plane, and let G = (V, E) be a planar graph.
We define a numbering of the elements of V in the following way: We pick a
vertex of minimum degree and assign it label 1. Then delete this vertex together
with its incident edges, increment label by 1 and recursively define a numbering
of the remaining n − 1 vertices. The resulting numbering (v1, v2, . . . , vn) of the
vertex set V is called a low-degree numbering.

The following algorithm computes a bounded-degree spanning subgraph of
any given triangulation; for an illustration, refer to Figure 2. In this algorithm,
N(v) denotes the set of neighbors of the vertex v in G, i.e., N(v) = {w ∈ V :
(v, w) ∈ E}.

Algorithm BDegSubgraph(G, γ)
Input: A triangulation G = (V, E) whose vertex set V is a set of n points in

the plane, and a real number γ with 0 < γ < π.
Output: A spanning subgraph G′ = (V, E′) of degree at most 14 + � 2π

γ �.
1. compute a low-degree numbering (v1, v2, · · · , vn) of G = (V, E);
2. label each vertex of V as “unprocessed”;
3. E′ = ∅;
4. for i = n downto 1
5. do if vi has “unprocessed” neighbors
6. then compute the closest “unprocessed” neighbor x of vi;
7. divide the plane into cones C1, . . . , C�2π/γ� with apex vi

and angle at most γ such that the segment vix is on the
boundary between C1 and C2;

8. add the edge (vi, x) to E′

9. else go to line 18
10. for each cone C �∈ {C1, C2}
11. do compute the closest “unprocessed” vertex w ∈ V ∩C∩N(vi);
12. if w exists
13. then add the edge (vi, w) to E′

Diamond Triangulations Contain Spanners of Bounded Degree 177

14. let w0, w1, · · · , wd−1 be the vertices in N(vi), ordered in clockwise
order around vi;

15. for k = 0 to d − 1
16. if wk and w(k+1) mod d are both “unprocessed”
17. then add the edge (wk, w(k+1) mod d) to E′;
18. label vi as “processed”;
19. return the graph G′ = (V, E′)

vi

x

w

C1

C2

Fig. 2. An illustration of algorithm BDegSubgraph(G,γ), for γ = 2π/3, when pro-
cessing vertex vi. The figure shows vi and all vertices in N(vi). Solid vertices represent
the “processed” vertices, whereas hollow vertices represent the “unprocessed” vertices.
When processing vi, the algorithm adds the solid edges to the graph G′.

Lemma 1. Algorithm BDegSubgraph(G, γ) returns a connected spanning
subgraph G′ of G, whose maximum degree of G′ is at most 14 + � 2π

γ �.

Proof. Let u be an arbitrary element of V . Since the algorithm processes the
vertices in the reverse order of the low-degree numbering, we know that, before u
is processed, it has at most 5 processed neighbors u1, u2, · · ·, uk where k ≤ 5 due
to the low-degree numbering. In the worst case, each uj can increase the degree
of u by 3. (This is depicted in Figure 2, where the degree of the unprocessed
vertex w is increased by 3 when vi is processed.) During the processing of u, the
degree of u is increased by at most � 2π

γ � − 1. After u has been processed, the
degree of u does not change. Therefore, the degree of u is at most 15+ � 2π

γ �− 1.
The connectivity of G′ follows from results in the next section. �

3 Bounded-Degree Spanners of the Delaunay
Triangulation

In this section, we assume that G = (V, E) is the Delaunay triangulation of the
point set V . Let G′ = (V, E′) be the output of algorithm BDegSubgraph(G, γ).
In this section, we will prove that G′ is a spanner of V . Our analysis uses the
following two lemmas.

178 P. Bose, M. Smid, and D. Xu

Lemma 2. [3] Given the following four conditions: (a) 0 < γ < π/2 and u,
v, and v′ are three points of V such that (u, v) and (u, v′) are Delaunay edges
with ∠vuv′ ≤ γ; (b) v′ = s1, s2, . . . , sk−1, sk = v are the Delaunay neighbors of
u between v′ and v sorted in angular order around u; (c) |uv′| ≤ |usi| for all i
with 1 ≤ i ≤ k; (d) Puv is the path u, v′, s2, s3, . . . , sk−1, v in G between u and
v. Then the length of Puv is at most tγ |uv| where

tγ = max
{π

2
, 1 + π sin

γ

2

}
.

Lemma 3. [1] Let u, x, and y be three points of V , such that (u, x) and (u, y)
are Delaunay edges and ∠xuy < π/2. Let x = s1, s2, . . . , sk−1, sk = y be the
Delaunay neighbors of u between x and y, sorted in angular order around u. Let
Qxy be the path x, s2, s3, . . . , sk−1, y in G between x and y. Then, the length of
Qxy is at most π

2 (|ux| + |uy|).

We cannow complete the proof ofTheorem1. We fix an angle γ with 0 < γ ≤ 2π/3.
Recall that G is a 4π

√
3

9 -spanner of V ; see Keil and Gutwin [8]. Also, G′ is a
spanning subgraph of G. Therefore, it suffices to show that for each edge (u, v)
of G\G′, the graph G′ contains a path between u and v, whose length is at most
a constant factor times |uv|.

Throughout the rest of the proof, we fix an edge (u, v) of G \ G′. We assume
that u is processed before v. Let C be the cone with apex u and having angle
at most γ that contains v and that is constructed when vertex u is processed.
Let v′ be the closest Delaunay-neighbor of u that is contained in C and that
is unprocessed at the moment when u is processed. We assume that (u, v′) is
clockwise to the right of (u, v).

Case 1: ∠vuv′ < π
2 .

Consider the path Puv of Lemma 2 between u and v; refer to Figure 3(a). By
Lemma 2, the length of this path is at most tγ |uv|.

If, at the moment when u is processed, all Delaunay-neighbors of u between
v and v′ are unprocessed, then it follows from algorithm BDegSubgraph that
Puv is a path in G′. Assume that at least one Delaunay-neighbor u′ of u between
v and v′ has already been processed; refer to Figure 3(b). Let u′ be the first
such Delaunay-neighbor in clockwise order from (u, v). Let s be the Delaunay-
neighbor of u such that s is between v and u′ and �usu′ is a Delaunay-triangle.
Then u′ is processed before s. Also, u′ is processed before u. Thus, during the
processing of u′, the algorithm adds the edge (u, s) to G′. Let Q be the subpath of
Puv that starts at s and ends at v. Let Q′ be the path obtained by concatenating
the edge (u, s) and the subpath Q. It follows from algorithm BDegSubgraph
that Q′ is a path in G′ between u and v. By the triangle inequality, the length
of Q′ is at most the length of Puv.

Case 2: ∠vuv′ ≥ π
2 and there is at least one Delaunay-neighbor w of u such

that ∠vuw < π
2 and ∠wuv′ < π

2 .
This case is depicted in Figure 4. The analysis for this case appears in the full

paper.

Diamond Triangulations Contain Spanners of Bounded Degree 179

u
v′

v

C

(a) All Delaunay-neighbors of u are unpro-
cessed

u
v′

v

C

s

u′

(b) At least one Delaunay-neighbor of u
has been processed

Fig. 3. Case 1 in the proof of Theorem 1

u v′

v

C
w

(a) All Delaunay-neighbors of u are unpro-
cessed

u v′

v

C
w

u′

s

(b) At least one Delaunay-neighbor of u has
been processed

Fig. 4. Case 2 in the proof of Theorem 1

Case 3: ∠vuv′ ≥ π
2 and there is no Delaunay-neighbor w of u such that ∠vuw <

π
2 and ∠wuv′ < π

2 .
In this case, there exist two Delaunay-edges (u, x) and (u, y) such that ∠yuv′ ≥

π
2 , ∠vux ≥ π

2 , and (x, y) is a Delaunay-edge. (Refer to Figure 5(a).)
Let Pux be the path that starts at u, follows the edge (u, v′), and then follows

the Delaunay-neighbors of u from v′ to x. Let Qyv be the path that starts at y,
and follows the Delaunay-neighbors of u from y to v. Let P be the concatenation
of Pux, the edge (x, y), and Qyv. Then the length of P is equal to the sum of the
lengths of Pux, Qyv, and |xy|. Since ∠vux ≥ π

2 , we have ∠xuv′ < π
2 . Therefore, it

follows from Lemma 2 that the length of Pux is at most tγ |ux|. Since ∠yuv′ ≥ π
2 ,

we have ∠vuy < π
2 . Thus, by Lemma 3, the length of Qvy is at most π

2 (|uv|+|uy|).
Thus, the length of P is at most tγ |ux| + |xy| + π

2 (|uv| + |uy|). We will prove an
upper bound on this quantity in terms of |uv|.

180 P. Bose, M. Smid, and D. Xu

u

v′

v

C

x

y

(a) All Delaunay-neighbors of u are unpro-
cessed

u

v′

v

C

x

y

u′ s

(b) At least one Delaunay-neighbor of u
has been processed

Fig. 5. Case 3 in the proof of Theorem 1

If x is inside �uyv′ , then, by convexity, |xy|+|v′x| ≤ |uy|+|uv′|. By considering
�yuv′ , and recalling that ∠yuv′ ≥ π

2 , we have |uy| + |uv′| ≤ 2|v′y|. If x is
outside �uv′y, let C′ be the circle through u, v′, and y. Since �uv′y is not a
triangle in the Delaunay triangulation of {u, v′, x, y}, x is contained in C′. Since
∠yuv′ ≤ γ ≤ 2π

3 , it can be shown that |xy|+|v′x| ≤ 2|v′y|. Thus, for any location
of x, we have |xy| + |v′x| ≤ 2|v′y|.

Since |ux| ≤ |uv′| + |v′x|, the total length of the path Pux and edge (x, y) is
at most

tγ |ux| + |xy| ≤ tγ(|ux| + |xy|)
≤ tγ(|uv′| + |v′x| + |xy|)
≤ tγ(|uv′| + 2|v′y|)
= tγ |uv′| + 2tγ |v′y|.

If y is inside �uvv′ , then, by convexity, |vy| + |v′y| ≤ |uv| + |uv′| ≤ 2|uv|. If y
is outside �uvv′ , let C′′ be the circle through u, v, and v′. Since �uvv′ is not a
triangle in the Delaunay triangulation of {u, v′, y, v}, y is contained in C′′. Since
∠vuv′ ≤ γ ≤ 2π

3 , it can be shown that |vy| + |v′y| ≤ 2|vv′| ≤ 2(|uv| + |uv′|) ≤
4|uv|. Thus, for any location of y, we have |vy| + |v′y| ≤ 4|uv|.

Since |uy| ≤ |uv| + |vy|, the length of the path P is at most

tγ |uv′| + 2tγ |v′y| + π

2
(|uv| + |uy|) ≤ tγ |uv| + 2tγ |v′y| + π

2
(|uv| + |uv| + |vy|)

≤ (π + tγ)|uv| + 2tγ(|v′y| + |vy|)
≤ (π + 9tγ)|uv|.

If, at the moment when u is processed, all Delaunay-neighbors of u between
v and v′ are unprocessed (see Figure 5(a)), then P is a path in G′ between u
and v. Otherwise, at least one Delaunay-neighbor u′ of u between v and v′ had

Diamond Triangulations Contain Spanners of Bounded Degree 181

already been processed (see Figure 5(b)). In this case, by a similar argument as
in Case 1, G′ contains a path between u and v which is obtained by shortcutting
P .

Since tγ ≥ π
2 , we have π + 9tγ ≥ 3π + 5tγ . Therefore, for the case when

π/2 ≤ γ ≤ 2π/3, Cases 1–3 prove that G′ is a t-spanner of V , where t = π +9tγ .

4 Bounded-Degree Spanners of the Unit-Disk Graph

Let V be a set of n points in the plane, and let G = (V, E) be the graph with
vertex set V , and whose edge set E is the set of all edges in the Delaunay trian-
gulation of V whose length is at most one. In general, G is not a triangulation,
even though it is a plane graph. Nevertheless, we can run algorithm BDegSub-
graph(G, γ), and the degree bound in Lemma 1 is still valid. Observe that in
line 17 of this algorithm, edges may be added to the graph G′ which are not in
G. Using an analysis that is almost identical to the one in Li and Wang [10], it
can be shown that, when 0 < γ ≤ π/3, (i) the graph G′ is plane, and (ii) G′ is
a spanning subgraph of the unit-disk graph of V .

Consider an arbitrary edge (u, v) of G \ G′. Then, using the same proof tech-
nique as in Theorem 1, it can be shown that, again when 0 < γ ≤ π/3, G′

contains a path between u and v whose length is at most tγ |uv|. Since Bose
et al. [2] have shown that G is a 4π

√
3

9 -spanner of the unit-disk graph of V ,
Theorem 2 follows.

5 Bounded-Degree Spanners of a Diamond Triangulation

Let V be a set of n points in the plane, let α be a real number with 0 < α < π
2 ,

and let G = (V, E) be a triangulation that satisfies the α-diamond property;
see Section 1 for the definition of this property. In this section, we complete
the proof of Theorem 3, by showing that the output G′ = (V, E′) of algorithm
BDegSubgraph(G, α) is a t-spanner, for some value t that only depends on α.
The key of the proof is to use the following lemma, which generalizes Lemma 2.
This lemma can be proved using results by Das and Joseph [6] and Lee [9].

Lemma 4. Let u, v, and v′ be three points of V , such that ∠vuv′ ≤ α. Let
v′ = s1, s2, · · · , sk = v be the neighbors of u in G between v′ and v, sorted in
angular order around u. Assume that |uv′| ≤ |usi| for all i with 1 ≤ i ≤ k. Let
Puv be the path u, v′, s2, s3, · · · , sk−1, v. Then, Puv is a path in G between u and
v, whose length is at most t′α|uv|, where

t′α = 1 +
2(π − α)
α sin α

4
· max

{
1, 2 sin

α

2

}
.

We are now able to complete the proof of Theorem 3: Let (u, v) be an arbitrary
edge of G \ G′. Using the same proof technique as in Theorem 1, and using
Lemma 4, it can be shown that G′ contains a path between u and v whose

182 P. Bose, M. Smid, and D. Xu

length is at most t′α|uv|. Das and Joseph [6] and Lee [9] have shown that G is a
t′-spanner of V , for t′ = 8(π−α)2

α2 sin2 α
4
.

References

1. P. Bose, J. Gudmundsson, and M. Smid. Constructing plane spanners of bounded
degree and low weight. Algorithmica, 42:249–264, 2005.

2. P. Bose, A. Maheshwari, G. Narasimhan, M. Smid, and N. Zeh. Approximating
geometric bottleneck shortest paths. Computational Geometry: Theory and Appli-
cations, 29:233–249, 2004.

3. P. Bose and P. Morin. Online routing in triangulations. SIAM Journal on Com-
puting, 33:937–951, 2004.

4. P. Bose, M. Smid, and D. Xu. Diamond triangulations contain spanners of bounded
degree. Carleton University, Computer Science Technical Report, 2006.

5. L. P. Chew. There are planar graphs almost as good as the complete graph. Journal
of Computer and System Sciences, 39:205–219, 1989.

6. G. Das and D. Joseph. Which triangulations approximate the complete graph? In
Proceedings of the International Symposium on Optimal Algorithms, volume 401 of
Lecture Notes in Computer Science, pages 168–192, Berlin, 1989. Springer-Verlag.

7. D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as
good as complete graphs. Discrete & Computational Geometry, 5:399–407, 1990.

8. J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete
Euclidean graph. Discrete & Computational Geometry, 7:13–28, 1992.

9. A. W. Lee. Diamonds are a plane graph’s best friend. Master’s thesis, School of
Computer Science, Carleton University, Ottawa, 2004.

10. X.-Y. Li and Y. Wang. Efficient construction of low weighted bounded degree
planar spanner. International Journal of Computational Geometry & Applications,
14:69–84, 2004.

11. G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University
Press, Cambridge, UK, 2007.

Optimal Construction

of the City Voronoi Diagram

Extended Abstract

Sang Won Bae1, Jae-Hoon Kim2, and Kyung-Yong Chwa1

1 Div. of Computer Science, Dept. of EECS,
Korea Advanced Institute of Science and Technology, Daejeon, Korea

{swbae, kychwa}@jupiter.kaist.ac.kr
2 Div. of Computer Engineering, Pusan University of Foreign Studies, Busan, Korea

jhoon@pufs.ac.kr

Abstract. We address proximity problems in the presence of roads on
the L1 plane. More specifically, we present the first optimal algorithm for
constructing the city Voronoi diagram. We apply the continuous Dijkstra
paradigm to obtain an optimal algorithm for building a shortest path
map for a given source, and then it extends to that for the city Voronoi
diagram. Moreover, the algorithm applies to other generalized situations
including metric spaces induced by roads and obstacles together.

1 Introduction

We are interested in a city scene. In a modern city that is well planned and
developed, such as Manhattan, lots of buildings stand evenly and densely in
rows and columns so that people are forced to move among those buildings,
which act as obstacles, and thus every movement is supposed to be vertical or
horizontal. However, transportation networks like bus networks, roads, or taxi
systems, are normally equipped with such a modern city as well, and they serve
faster movement for citizens to reach their destinations.

In our sense, a transportation network models such a real transportation net-
work. A transportation network is defined as a plane graph and each edge is
called a road. We assume that along each road of the network, one moves at a
certain fixed speed that is faster than out of the network, and he/she can access
or leave the road at any point on it. In this situation, shortest (travel time) paths
using the given network are of considerable interest, and so are Voronoi diagrams
when we are given a set of equally attractive facilities. We thus address these
proximity problems in the presence of roads, in particular, on the L1 plane.

Shortest paths considering roads under the L1 metric in fact induce a special
metric, called a city metric, and the Voronoi diagram under such a city metric
is called the city Voronoi diagram [2]. The first result about the city Voronoi
diagram was Abellanas et al. [1], and was extended by Aichholzer et al. [2]
whose setting is exactly the same as ours. The authors present an O(n2 log n +
m log m) time and O(n + m) space algorithm for constructing the city Voronoi

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 183–192, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

184 S.W. Bae, J.-H. Kim, and K.-Y. Chwa

diagram when a transportation network of n axis-parallel roads and m sites
are given. Afterwards, there has been some improved results but they seem
not very successful; O(n(n + m) + m log(n + m)) time and O(n + m) space [4];
O((n+m) log5(n+m) log log(n+m)) time and O((n+m) log5(n+m)) space [6].
Some other variations also have been studied. Bae and Chwa [4, 3] considers more
general transportation networks consisting of roads that may have arbitrary
directions and speeds under the Euclidean metric and even convex distances.
Ostrovsky-Berman [9] discusses a discrete version of transportation networks.
All these previous results solve the shortest path problem also (e.g. for building
a shortest path map) due to its strong interconnection with the city Voronoi
diagram problem.

This paper, to our extent, presents the first optimal algorithm that builds
a city Voronoi diagram and also a shortest path map (hereafter, we may call
it SPM) in the presence of a transportation network which in particular con-
sists of axis-parallel roads of equal speed. Indeed, we first obtain an optimal
algorithm for building a SPM for a single source by applying the continuous Di-
jkstra paradigm, and then extend to that for the Voronoi diagram. The following
is our main result.

Theorem 1. A shortest path map under the city metric induced by n axis-
parallel roads of equal speed can be constructed in O(n log n) time and O(n)
space. Also, the city Voronoi diagram for m sites can be computed in O((n +
m) log(n + m)) time and O(n + m) space. These bounds are worst-case optimal.

The resulting map or diagram has information of shortest paths to the given
source or to the nearest site, and of their lengths. With this information, we are
able to get the length of the shortest path from a query point in logarithmic
time, or the path itself in additional time proportional to the complexity of the
path, with the aid of a proper point location structure.

Our algorithm can be easily extended to more general situations. We are able
to allow roads to have a constant number of speeds while the algorithm still
runs within the same runtime and space. Another interesting extension is to
composite (geodesic) metric spaces by roads together with obstacles; only by a
little modification on our algorithm for processing obstacle vertices, as described
in [7]. Subsequently, we can construct the SPM and the Voronoi diagram in the
same time and space bounds, letting n be the number of all the endpoints intro-
duced by the roads and the obstacles. Moreover, as other minor extensions, we
can take polygonal regions with additive weights as input sources into account,
and also one-way roads as in [3].

For other underlying metrics than the L1 metric, such as the Euclidean metric
and convex distances, the SPM and the Voronoi diagram can be constructed in
the same manner. However, the details are not so trivial that another discussion
is seemingly required.

As mentioned above, the city Voronoi diagram can be computed by using the
algorithm for the SPM. Thus, we shall focus on the algorithm for constructing
a SPM for a given source s in the body of this paper. In Section 2, we intro-
duce some preliminaries related to our work and, in Section 3, we describe our

Optimal Construction of the City Voronoi Diagram 185

algorithm. In Section 4, we analyze the correctness and the complexity of the
algorithm and hence prove Theorem 1 at last.

2 Preliminaries

A transportation network on the L1 plane is represented as a planar straight-
line graph G(V, E) such that each edge e ∈ E has its supporting speed ν(e) > 1.
An edge in E is often called a road and a vertex in V a node. A transporta-
tion network together with its underlying metric induces a new metric, called a
transportation distance, which is defined as the shortest travel time between two
points using G [4, 3].

In this paper, we are given a transportation network G under the L1 metric
consisting of n axis-parallel roads of equal speed ν. This setting induces so-called
the city metric [2]. We let d1 be the L1 distance on the plane and d the city
metric (or the transportation distance, interchangeably) induced by G and d1.

A needle is a generalized Voronoi site proposed by Bae and Chwa [4] for easy
explanation of geometry induced by transportation networks. A needle can be
viewed as a generalized type of a line segment with additive weight; a needle,
indeed, is a line segment with a weight function that is linear over all points
along the segment.

More specifically, a needle p can be represented by a 4-tuple (p1(p), p2(p),
t1(p), t2(p)) with t2(p) ≥ t1(p) ≥ 0, where p1(p), p2(p) are two endpoints
and t1(p), t2(p) are additive weights of the two endpoints, respectively. We let
s(p) be the segment p1(p)p2(p). The L1 distance from any point x to a nee-
dle p is measured as d1(x, p) = miny∈s(p){d1(x, y) + wp(y)}, where wp(y) is
the weight assigned to y on s(p), given as wp(y) = t1(p) + (t2(p) − t1(p)) ×
d1(y, p1(p))/d1(p2(p), p1(p)), for all y ∈ s(p).

It was shown that a SPM in our setting may have at most linear size [2] and
further can be represented as a Voronoi diagram of O(n) needles under the L1
metric, which can be computed in optimal time and space [3].

We apply the continuous Dijkstra paradigm to obtain a shortest path tree
(SPT, in short) rooted at a given source s. The framework of our algorithm is
not so different from that of Mitchell [8] but most of specific details are quite
distinguishable. The continuous Dijkstra method simulates the wavefront propa-
gation from s, where the wavefront can be defined as the set {p ∈ IR2 | d(p) = δ}
for any positive δ, where we denote d(s, p) just by d(p). This can be done by
tracking effects of the pseudo-wavefront that is easy to maintain but sufficient
to express the true wavefront.

In our case, the pseudo-wavefront is represented by a set of straight line seg-
ments, called wavelets. A wavelet ω is an arc of a “circle” centered at root r(ω).1

Note that the root r(ω) of a wavelet ω will be a needle along a certain road
in our situation. Each wavelet ω has a left and a right track, denoted by α(ω)
and β(ω), respectively, and expands with its endpoints sliding along its tracks.
1 Here, a “circle” means the set of all the equidistant points from a given center,

generally being a set of points or a needle.

186 S.W. Bae, J.-H. Kim, and K.-Y. Chwa

Each track is either a portion of a vertical or horizontal line or a portion of a
bisecting curve between two certain roots. A bisector B(r, r′) between two roots
r and r′ under the L1 metric is piecewise linear and can be computed explicitly
in constant time, even when the two roots are needles in general [3].

On the L1 plane, wavelets are basically inclined at angle either 45◦ or 135◦.
However, a road e inclined at angle θ makes wavelets inclined at angles θ ±
tan−1 1/ν(e), where ν(e) is the speed of e [1, 2]. We shall denote the set of
such angles by Ae. Since we deal only with axis-parallel roads of speed ν, either
Ae = {tan−1 1/ν, − tan−1 1/ν} or Ae = {π/2 + tan−1 1/ν, π/2− tan−1 1/ν}. We
thus have only 6 angles for the inclinations of wavelets.

After running the continuous Dijkstra method, we obtain a SPT, a vertex-
labeled tree rooted at the given source s such that every path to s through its
vertices in the tree leads us to a shortest path with respect to the city metric
d. Let V ′ := V ∪ {s} ∪ {q ∈ F (p) | p ∈ V ∪ {s}}, where F (p) is the set of
at most four points q such that for each axis-parallel ray γ starting at p, q is
the first meeting point along γ on any road in E. We take V ′ as the set of
vertices of our SPT. We observe that V ′ still has a linear number of vertices and
guarantees that we detect and handle combinatorial and geometric changes of
wavelets by the following lemma based on the lemma for primitive paths [3] and
other previous results [2]. Furthermore, we are able to determine a SPT uniquely
with the vertices V ′.

Lemma 2. For any point t ∈ IR2, there exists an L1 shortest path π = (s =
v0, · · · , vk = t) connecting s and t using the transportation network G such that
vi ∈ V ′ for i = 0, 1, · · · , k − 1.

3 The Algorithm for the SPM

Our algorithm works with two steps: we compute the SPT rooted at s by applying
the continuous Dijkstra method and then construct a shortest path map from
the SPT.

Each vertex v ∈ V ′ has a label
(v) and initially
(v) = ∞. After completing
the continuous Dijkstra method, v will have a finite label
(v) < ∞ and its
predecessor pre(v) in the resulting SPT; indeed, at the end of the first step,
(v)
will become equal to d(v), which is the length of the corresponding shortest path
from s to v.

For that purpose, we maintain the set of wavelets and keep track of their effects
by tracking events at every step. An event is associated with each wavelet and
has its corresponding event point and event distance. We predict and handle two
sorts of events during the algorithm, namely, closure events and vertex events:
Closure events occur when two tracks of a wavelet meet at a point, namely the
closure point, and the associated wavelet degenerates to the closure point. Vertex
events occur when a wavelet, either its interior or its endpoint along a track,
hits a vertex in V ′.

We initially set the current event distance δ to zero. As the current event
distance δ increases, we keep track of active wavelets that represent the circle

Optimal Construction of the City Voronoi Diagram 187

with radius δ centered at s (or, the true wavefront) with respect to our city
metric d. This can be done by maintaining the following data structures: The
event queue Q is a priority queue containing active wavelets indexed by event
distance. A wavelet ω is stored in Q with its left/right tracks α(ω) and β(ω),
its root r(ω), its left/right neighbors L(ω) and R(ω), and its corresponding
event. We call a wavelet active when it is stored in Q. The segment dragging
structure efficiently answers segment dragging queries that ask which vertex in
V ′ is first encountered by a given wavelet as it propagates. SPM(δ)-subdivision
is a (partial) subdivision of the plane, which consists of polygonal cells. Each
cell in SPM(δ)-subdivision is either a triangle or a quadrilateral, and represents
the locus of a wavelet until event distance δ from when it has been created or
modified. In particular, we allow SPM(δ) cells to overlap since two wavelets
can collide with each other. We, however, fix up such unpleasant situations in
a conservative way so that we will have no overlap among SPM(δ) cells at the
end of the algorithm. A cell is called open if it consists of an active wavelet in
its boundary or, otherwise, closed. Every open cell contains exactly one active
wavelet in the pseudo-wavefront at distance δ.

We instantiate, modify, or terminate a wavelet when a certain event occurs.
Performing such operations for an active wavelet is accompanied with updates
for data structures such as the event queue Q and SPM(δ)-subdivision. Every
time we instantiate or modify a wavelet, we also do the following procedure;
(1) we determine the corresponding event point and event distance, (2) insert
the wavelet into Q or modify it in Q, and (3) create a new corresponding cell
in SPM(δ)-subdivision when instantiating a new wavelet, or make the corre-
sponding SPM(δ) cell closed and create a new one when modifying an existing
wavelet (so that we maintain all the SPM(δ) cells to be triangles or quadrilat-
erals). When we terminate a wavelet, we remove it from Q and set the corre-
sponding cell in SPM(δ)-subdivision to be closed by making up its boundary
appropriately.

Determining the event point and the event distance for a wavelet is performed
by computing the distance to its closure point (for a closure event), if any, and the
distance to the first vertex v ∈ V ′ that is encountered as the wavelet propagates
(for a vertex event). The second one can be computed via a segment dragging
query. Also note that even under non-degeneracy a vertex event and a closure
event can occur at the same place and time. We break this type of ties by the
“closure-first” rule.

While such events completely check when a wavelet disappears or when a
wavelet collides with a vertex, what remains difficult is detecting collisions among
wavelets. We detect such collisions also by vertex events. When a vertex event
occurs at v ∈ V ′ due to wavelet ω with root r = r(ω), the label
(v) is set to the
current event distance δ if
(v) = ∞ yet. Otherwise, if
(v) < ∞ (in fact,
(v) <
δ), this means that another wavelet ω′ has already hit the vertex v and hence two
wavelets have been colliding with each other. This collision is also represented by
an overlap, which has been swept over twice, in SPM(δ)-subdivision. In order
to fix up this kind of errors, we shall use subroutines Clip-and-Merge and Trace-

188 S.W. Bae, J.-H. Kim, and K.-Y. Chwa

Bisector when such collisions among wavelets (overlaps in SPM(δ)-subdivision,
equivalently) are detected by a vertex event. (Thus, we handle collisions among
wavelets in a conservative way.) These subroutines are summarized as follows:
Clip-and-Merge works with two phases: Find a point q on the bisector between
two sets of roots corresponding to overlapped cells by walking along path π
from v to p1(r), checking which overlapped cells we are in. Then, run Trace-
Bisector (as described below) with q as input to trace out the merge curve γ.
Trace-Bisector traces γ with q as a starting point as is done in merging two
Voronoi diagrams, making up corresponding SPM(δ) cells appropriately. These
subroutines are indeed small modifications of two subroutines in Mitchell [8].
Thus, for more details about them, we refer to Mitchell [8].

Before going inside the main loop of the algorithm, we need some prepro-
cessing: (1) Computing V ′ can be transformed to finding closest segments in
a vertical or horizontal direction from a set of points. This can be done by a
usual plane sweep method. All the effort on this task is at most O(n log n) time
and O(n) space. (2) For segment dragging queries, we can just make use of the
same structures as in Mitchell [7]. It is easy to see that, for wavelets, both the
number of inclinations and the number of possible directions of track rays are
bounded by a constant. Thus, we have only a constant number of configurations
of wavelets so that we can find the answer for a segment dragging query during
our algorithm with O(n log n) preprocessing time, O(log n) query time, and O(n)
space.

3.1 Computing the SPT

First, we set δ to be 0 and
(v) to be ∞ for all v ∈ V ′ except for s, and
(s)
to be 0. We instantiate four zero-length wavelets along 4 vertical or horizontal
tracks from s that are inclined at 45◦ or 135◦ and have root s (or, equivalently,
needle (s, s, 0, 0)).

While Q is not empty, we repeat the following procedure: We extract the
upcoming event from the front of Q. Let p be the event point, r := r(ω) the root
of the wavelet ω that caused the event, and δ the event distance. According to
its type, we process the event as follows.

Closure Event. First we check whether or not a portion of the bisector B(r(L(ω)),
r(R(ω))) has been swept over doubly by L(ω) and R(ω). This can be done by
just looking locally. If so, we run Trace-Bisector with p as input. Otherwise, we
terminate ω at p and modify L(ω) and R(ω) to have the ray starting at p along
B(r(L(ω)), r(R(ω))) as the right track and the left track, respectively.

Vertex Event. If ω causes a vertex event on p, p is a vertex v ∈ V ′ incident to at
most 4 roads. Let E(v) denote the set of roads incident to v. If
(v) < ∞, v has
already been swept over by another wavelet, so we call the subroutine Clip-and-
Merge. Otherwise, we first label v with
(v) = δ = d1(v, r), which is the length of
the path from s through p1(r) to v, and set pre(v) to be p1(r). We also store the
set Rv of roots r′ of wavelets coming out from v such that p1(r′) = v. Consider a

Optimal Construction of the City Voronoi Diagram 189

needle re for each e ∈ E(v) such that p1(re) = v, p2(re) = qe, t1(re) =
(v), and
t2(re) =
(v)+d1(v, qe)/ν, where qe is the other node of e than v. This needle re

plays a role as the root of wavelets propagating from v along e. We create new
wavelets or modify existing ones according to each case.

1. (v is hit by the interior of ω.) In this case, no portion of any road in E(v)
has been swept over by ω and hence |E(v)| ≤ 2.
(a) If |E(v)| = 1, let e be the only road in E(v). If the inclination θ of ω is

in Ae, we take three rays as tracks; α(ω), β(ω), and a ray along e away
from v. With these rays, we split ω into two wavelets with inclination θ
and root r.
Otherwise, if θ /∈ Ae, we take five tracks; α(ω), β(ω), a ray along e away
from v, and two rays away from v obtained from the bisector B(r, re).
Note that B(r, re) must go through v and we can get two rays at v by
using two local directions of the bisector at v. With these five rays, we
instantiate four wavelets and then terminate ω. Two of them taking e
as a track are inclined at an appropriate angle in Ae and have root re.
The other two are inclined at θ and have root r. Finally, we set up the
neighbor information among new wavelets.

(b) If |E(v)| = 2, then say E(v) = {e1, e2}. If θ ∈ Ae1 , we take 6 tracks; α(ω),
β(ω), a ray along e2, a ray along e1, and two rays away from v obtained
from the bisector B(r, re2). We instantiate 5 wavelets in a similar way
as Case 1(a), and terminate ω. The case of θ ∈ Ae2 is analogous. Also,
we note that there is no chance of θ ∈ Ae1 ∩ Ae2 since ν > 1 and hence
Ae1 ∩ Ae2 = ∅.
If θ /∈ Ae1 ∪ Ae2 , we take 7 tracks; α(ω), β(ω), two rays along e1 and e2,
respectively, and three from the bisectors among {r, re1 , re2}. Then, we
instantiate 6 wavelets with these 7 tracks, and terminate ω.

2. (v is hit by the left track α(ω) of ω.) There are two cases; either α(ω) goes
along a road e or not. In either case, β(L(ω)) = α(ω) and we thus process
the neighbor wavelet L(ω), too.
(a) If α(ω) goes along a road e, r = r(ω) = r(L(ω)). We gather a set T of

tracks; α(L(ω)), β(ω), axis-parallel rays from v that have not been swept
over yet by ω or L(ω), rays from v obtained from the bisectors among
{r} ∪ {re′ | e′ �= e ∈ E(v)}. We also note that |T | is a constant; |T | is at
most 5 if |E(v)| = 1, at most 6 if |E(v)| = 2, at most 7 of |E(v)| = 3,
and at most 9 if |E(v)| = 4.
With T , we modify ω and L(ω), and instantiate |T | − 3 number of new
wavelets to have two neighboring tracks in T . If a new wavelet ω′ has a
track along a road ei ∈ E(v), ω′ is inclined at an appropriate angle in
Aei and has root r(ω′) = rei . Otherwise, if neither two tracks of ω′ are
along a road in E(v), ω′ is inclined at 45◦ or 135◦ and has root r(ω′) =
(v, v,
(v),
(v)). We finally set the neighbor information accordingly. (In
fact, this procedure is a generalization of those for Cases 1(a) and 1(b).)

(b) If α(ω) is not along any road, then α(ω) is axis-parallel and |E(v)| ≤ 3
since we consider the L1 metric as the underlying metric and deal with

190 S.W. Bae, J.-H. Kim, and K.-Y. Chwa

only axis-parallel roads. This case can be handled in a similar way as in
Case 2(a), though possibly r �= r(L(ω)).

3. (v is hit by the right track β(ω) of ω.) This case is analogous to Case 2.

3.2 Building the SPM from the SPT

The SPT consists of labeled vertices and directed links among the vertices. From
this information, we gather the set of needles (or roots), N =

⋃
v∈V ′ Rv. Note

that the Voronoi diagram V(N) under the L1 metric coincides with a SPM for
the source s. This has been already argued in earlier results [2, 4]. Consequently,
we can build a SPM from the resulting SPT in O(n log n) time and O(n) space.

4 Correctness and Complexity of the Algorithm

In this paper, we skip the proof of the correctness of the algorithm, which has
been shown in the previous paper of the authors [5].

Theorem 3. The algorithm correctly constructs a SPT. In other words, if the
event distance is δ > 0 during the algorithm, for all vertices v with d(v) < δ, v
has been correctly labeled with
(v) = d(v) = d(s, v).

We now discuss the complexity of the algorithm. In doing so, we investigate
nearest neighbor graphs for vertices under the city metric. The nearest neighbor
graph of a set P of points under a metric is built as follows: For each point p ∈ P ,
there is a directed edge to point q ∈ P such that q is the nearest neighbor of p
with respect to the given metric among the points P .

Although Mitchell [8] proved the efficiency of his algorithm in a different way,
we observe that the maximum in-degree of any nearest neighbor graph of vertices
among obstacles under the Euclidean metric is at most 6. Since at least one of
7 or more wavelets must be clipped before all of them hit the same vertex, any
point in the plane can be swept over at most 6 times by the pseudo-wavefront
in the presence of obstacles. A similar argument can be naturally applied also to
our situation. It is already known that the maximum in-degree of any directed
nearest neighbor graph in the presence of n roads is Θ(ν min(ν, n)) [5]. This
bound, however, is for arbitrary finite sets of points so that a more careful
analysis for vertices in V ′, which constitute a particular structure, reduces the
bound significantly.

Now, we give an upper bound on the maximum in-degree, say Δ, of the nearest
neighbor graph for V ′ ∪ {p} for any point p in the plane. By the construction of
V ′, it is revealed in Lemma 5 that Δ is surprisingly bounded by a constant, while
it may increase to Θ(ν min(ν, n)) if we consider arbitrary finite sets of points.
This observation will be very helpful in showing the optimality of the algorithm
through the following sequence of lemmas and corollaries. This process starts
with the following simple fact.

Fact 4. Let P be a finite set of points in the plane. The nearest neighbor graph
for P under the L1 metric has maximum in-degree of at most four.

Optimal Construction of the City Voronoi Diagram 191

Proof (Sketch). Pick a point p ∈ P . Let Np be the set of points in P whose
nearest neighbor is p and Dq be the L1 disk centered at q whose radius is d1(q, p)
for each q ∈ Np. Then, Dq touches p and contains no other points q′ ∈ Np in its
interior. Subdividing the plane into four unbounded regions by cutting the plane
along two lines which pass through p and have slopes of 1 and −1, we observe
that no two points in Np lie in the same region and hence |Np| ≤ 4. 	

Lemma 5. For any point p in the plane, the in-degree of p in the nearest neigh-
bor graph for V ′ ∪ {p} is at most a constant.

Proof. We first observe a good property of nearest neighbors graph among
V ′ ∪ {p}: Consider the shortest path π from any vertex v ∈ V ′ to p. By the
construction of V ′, if π goes through a road that is not incident to v, then it
must pass through another vertex v′ ∈ V ′, which implies p cannot be the nearest
neighbor of v since v′ is closer to v along π than p is. Thus, any vertex v ∈ Np

approaches p either by an L1 path or by a path using only one road incident
to v if any. Also, Dv is either just an L1 disk or a union of at most four needle
shapes in the sense of Bae and Chwa [4, 3].

Next, we consider a subset D′v of Dv defined as follows: D′v is the L1 disk
centered at v with radius d1(v, p) if the path from v to p is not using any road.
Otherwise, if the path is using one road e incident to v, D′v is the disk centered at
v as if e is the only road incident to v. See Figure 1. Note that D′v still contains
p, and that since Dv does not contain any other vertices v′ ∈ Np in its interior,
neither does D′v.

v

p

v

p

Dv

D′v Dv

D′v

Fig. 1. Dv (regions bounded by solid thin segments) and D′
v (gray regions)

Now, the problem is switched to how many such D′v’s can be there with each
containing no other vertices v′ ∈ Np than v. By Fact 4, we know that there are at
most 4 D′v’s whose shapes are L1 disks. For vertical needle shapes, we divide the
plane into four unbounded regions by two lines which pass through p and have
slopes ν and −ν in a similar way as we did in the proof of Fact 4. Then, we can
easily see that no two vertices in Np that make vertical needle shapes cannot lie
in the same region. An analogous discussion works for horizontal needle shapes.
Thus, we conclude that (roughly) the in-degree of p is at most 12.2 	

2 This is only a rough bound. One may make it tight by a more careful discussion.

192 S.W. Bae, J.-H. Kim, and K.-Y. Chwa

Almost the same proof shows a bit more extended fact, which helps to show
Lemma 7.

Corollary 6. Let P be a set of points and Np ⊆ P be the set of points q such
that the nearest neighbor of q is p over all points in P . Then, |Np| ≤ 12 if the
following condition holds for every q ∈ Np; the shortest path from q to p is either
(1) the L1 path or (2) using a single road incident to q if any.

Lemma 7. Any point can be swept over at most a constant number of times by
the pseudo-wavefront during the algorithm.

Lemma 7 implies the efficiency of the algorithm as follows.

Lemma 8. The algorithm processes at most O(n) events.

Lemma 9. The total number of SPM(δ) cells created is at most O(n).

Lemma 10. The overall time spent by the subroutines Clip-and-Merge and
Trace-Bisector during the algorithm is only O(n).

Each event, before occurring, may involve a segment dragging query among the
vertices in V ′, which costs O(log n) query time, O(n log n) preprocessing time,
and O(n) space. The city Voronoi diagram for m sites can be obtained just by
initializing the event queue to consist of the initial wavelets for each input site
and regarding each site as a vertex. Furthermore, the Ω(n log n) lower bound
for the problem can be easily obtained by reduction from the sorting problem.
Finally, we conclude the main theorem stated at the beginning.

References

[1] M. Abellanas, F. Hurtado, C. Icking, R. Klein, E. Langetepe, L. Ma, B. Palop, and
V. Sacristán. Proximity problems for time metrics induced by the L1 metric and
isothetic networks. IX Encuetros en Geometria Computacional, 2001.

[2] O. Aichholzer, F. Aurenhammer, and B. Palop. Quickest paths, straight skeletons,
and the city Voronoi diagram. In Proc. 18th Annu. ACM Sympos. Comput. Geom.,
pages 151–159, 2002.

[3] S. W. Bae and K.-Y. Chwa. Shortest paths and Voronoi diagrams with trans-
portation networks under general distances. In Proc. 16th Annu. Internat. Sympos.
Algorithms Comput., volume 3827 of LNCS, pages 1007–1018, 2005.

[4] S. W. Bae and K.-Y. Chwa. Voronoi diagrams for a transportation network on the
Euclidean plane. Internat. J. Comp. Geom. Appl., 16(2–3):117–144, 2006.

[5] S. W. Bae, J.-H. Kim, and K.-Y. Chwa. L1 shortest paths with isothetic roads.
Technical Report CS-TR-2005-241, KAIST, 2005.

[6] R. Görke and A. Wolff. Computing the city Voronoi diagram faster. In Proc. 21st
Euro. Workshop on Comput. Geom., pages 155–158, 2005.

[7] J. S. B. Mitchell. L1 shortest paths among polygonal obstacles in the plane. Algo-
rithmica, 8:55–88, 1992.

[8] J. S. B. Mitchell. Shortest paths among obstacles in the plane. Internat. J. Comput.
Geom. Appl., 6(3):309–331, 1996.

[9] Y. Ostrovsky-Berman. Computing transportation Voronoi diagrams in optimal
time. In Proc. 21st Euro. Workshop on Comput. Geom., pages 159–162, 2005.

Relations Between Two Common Types of

Rectangular Tilings

Yusu Wang

Dept. of Comp. Sci. and Engineering, Ohio State University, Columbus, OH 43016
yusu@cse.ohio-state.edu

Abstract. Partitioning a multi-dimensional data set (array) into rect-
angular regions subject to some constraints (error measures) is an impor-
tant problem arising from applications in parallel computing, databases,
VLSI design, and so on. In this paper, we consider two most common
types of partitioning used in practice: the Arbitrary partitioning and
(p × p) partitioning, and study their relationships under three widely
used error metrics: Max-Sum, Sum-SVar, and Sum-SLift.

1 Introduction

Partitioning a multi-dimensional data set into rectangular regions (tiles) subject
to some constraints is an important problem arising from various applications in
parallel computing, databases, load balancing, and VLSI designs. For example, in
VLSI chip design, it is essential to lower the total power consumption for a given
chip, which can be considered as a two-dimensional array where each cell stores
the square of required voltage at that position and the total power consumption is
proportional to the sum of all cell values. Unfortunately, supplying each position
with a different voltage requires plotting large amount of lines as well as much
overhead in voltage shifting devices. One practical solution to this problem is to
partition the input chip into a few “voltage islands” [9,18]. Within each island,
all cells are supplied with the same voltage, which is the highest voltage needed
by any cell in it. Obviously, this increases the total power consumption. Given a
limit in the power consumption, the goal is then to partition the input chip into
smallest number of voltage islands without exceeding the power limit.

In general, given a way to evaluate a partitioning, called its error (e.g, the
increase in power consumption in the previous example), the partitioning prob-
lem asks for the smallest partitioning whose error is smaller than some error
threshold δ. In this paper, we study the relations between two most common
types of partitioning under different error metrics.

1.1 Preliminaries and Problem Definition

We follow the definitions and terminologies of previous papers, especially from
[13]. Let A be an n × m array, and A(c) or A[i][j] the value of element at cell
c ∈ A or at position (i, j), for 1 ≤ i ≤ n and 1 ≤ j ≤ m. A tile of A is a

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 193–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

194 Y. Wang

rectangular subarray of A. Note that a tile can also be viewed as an array itself.
A partitioning R of array A is a set of disjoint tiles R = {R1, . . . , Rk} that cover
A; k = |R| is the size of this partitioning.

There are three common types of partitioning schemes: (i) Arbitrary; (ii) Hi-
erarchical, where the partitioning can be obtained by recursively cutting current
subarray into two new ones by a horizontal or vertical line (like a quadtree); and
(iii) (p × p), a partitioning of size p2 resulted from p horizontal and p vertical
cutting lines1.

The rectangle tiling problem asks for the smallest partitioning R∗ of a given
array A so that some error measure is below a given threshold; κx(A, δ) = |R∗|
denote the size of such an optimal partitioning, where x =’a’, ’h’, or ’p’, corre-
sponding to Arbitrary, Hierarchical, or (p × p) partitionings. The error measure
is defined both for each tile in a partitioning and for the entire partitioning.
This paper considers the following three error metrics: (1) Max-Sum: where the
error for a tile R is defined as E(R) =

∑
c∈R R(c), and the error for a par-

titioning R, E(R), is the maximum error of any of tile in R. (2) Sum-SVar:
E(R) =

∑
c∈R(R(c) − μ(R))2 where μ(R) is the mean of all elements in R,

and E(R) =
∑

R∈R E(R). (3) Sum-SLift: E(R) =
∑

c∈R(ρ(R) − R(c)), where
ρ(R) is the maximum value of elements in R, and E(R) =

∑
R ∈ RE(R). The

Max-Sum and Sum-SVar metrics are wildly used (e.g, construct the so-called V-
optimal histograms or equi-depth high dimensional histograms for summarizing
database contents [15]). The Sum-SLift metric is the metric used in the VLSI
chip design example at the beginning.

A (p × p)-partitioning of A can also be regarded as a p × p array M , called
a reduced array, such that each cell of M is a tile (subarray) of A. Abusing the
notation slightly, we use M to refer to both the (p × p)-partitioning and the
corresponding reduced array. Any partitioning S over M induces a partitioning
I(S) over A. The induced error of S is simply Ê(S) = E(I(S)), and the opti-
mal induced partitioning of M w.r.t. δ is the smallest partitioning of M with
induce error at most δ; let κx(M |A, δ) denote the size of this optimal induced
partitioning.

1.2 Related Work

The rectangular tiling problem and its variants have a rich history [1,4,5,11,12].
But the more formal and theoretical studies of exact and approximation algo-
rithms for them are mostly recent [3,7,8,10,13,14,16,17]. For one dimensional
arrays, the problem is well solved and there are efficient algorithm for most er-
ror metrics [8]. For dimension higher than one, however, the tiling problem is
NP-hard for both Arbitrary and (p × p) partitioning under most common error
metrics [6,7,13]. In fact, even approximating them within some constant factor
is NP-hard [7,13].

The optimal Hierarchical partitioning, on the other hand, can be computed
exactly by a dynamic programming approach [13]. However, under Sum-SVar and
1 Our results hold for (p×q) partitioning. In this paper, for simplicity, we consider

(p × p) partitioning only.

Relations Between Two Common Types of Rectangular Tilings 195

Sum-SLift metrics, the algorithm requires O(n5κ2) time and O(n4κ) space for an
n×n input array A, where κ is the size of the optimal solution. If approximation
is allowed, it takes Õ(n3.2κ2) time to compute a partitioning of at most 9κ tiles
within the same error bound δ (i.e, an 9-approximation of κh(A, δ)) by a neat
divide and rounding technique. The same technique can be applied recursively
to reduce the time complexity to O(n2+εκ2) but at a cost of increasing the
approximation factor to O(1/ε2).

For (p × p)-partitioning, Muthukrishnan and Suel [14] present a simple ran-
domized algorithm to compute, for an n × n array A and an error threshold δ,
a double-sided approximation in time (i) Õ(n2 + κ3 log n) under Max-Sum error
metric and (ii) O(n2 + (n + κ2)κ log n) under Sum-SVar and Sum-SLift metrics,
where the optimal (p × p)-partitioning with error at most δ has size κ × κ. A
double-sided (α, β)-approximation of κp(A, δ) means that the algorithm outputs
a partitioning R of size p × p such that E(R) ≤ αδ and p ≤ βκ.

For Arbitrary partitioning, it follows from results for rectilinear BSP [2] that
any Arbitrary partitioning R1 of a two-dimensional array A can be refined into a
Hierarchical partitioning R2 of size at most 2|R1|−1. As long as the error metric
is super-additive, which roughly means that refining a partitioning also decreases
its total error, we have E(R2) ≤ E(R1). Hence κa(A, δ) ≤ κh(A, δ) ≤ 2κa(A, δ).
This framework provides so far the best approximation algorithms for Arbitrary
partitioning under metrics Sum-SVar and Sum-SLift. For metric Max-Sum, the
problem is better understood [3,10].

Given that there is no simple and practical algorithm for approximating Ar-
bitrary partitioning other than under Max-Sum metric, Wu et al. used the fol-
lowing heuristics for the chip design problem [18]: first, construct a (p × p)-
partitioning M of input array A with E(M) ≤ δ. Next, compute the optimal
hierarchical partitioning for the reduced array M using dynamic programming.
This Two-step algorithm is very simple, and greatly reduced the time and space
requirement in practice, as M is generally very small (less than 100 × 100, while
A is usually 100K × 100K in chip designs). However, although each step has a
guarantee, it is not clear whether the optimal solution over the reduced array
M indeed approximates the optimal solution of the original array A.

1.3 Our Results

Given that κa(A, δ) ≤ κh(A, δ) ≤ 2κa(A, δ), in this paper, we focus on rela-
tions between the Arbitrary partitioning and (p × p)-partitioning under three
common error metrics: Max-Sum, Sum-SVar, and Sum-SLift. First, observe that
κa(A, δ) ≤ κp(A, δ) ≤ κ2

a(A, δ) under any error metric. It is easy to construct an
example showing that this bound is also asymptotically tight in worst case.

The main results of this paper focus on the following question: given an array
A, let κ = κa(A, δ) and a (p × p) partitioning M with E(M) ≤ δ, what is the
relation between κ = κa(A, δ) and κa(M |A, δ)? In Section 2, we show that for
error metric Max-Sum, κa(M |A, δ) 4-approximates κ, i.e, κ ≤ κa(M |A, δ) ≤ 4κ.
(The results can in fact be extended for higher dimensional arrays.) This implies
that performing a (p × p) partitioning does not destroy the optimal structure

196 Y. Wang

for κa(A, δ) much. For metrics Sum-SVar and Sum-SLift, however, there are
examples where M is an (Ω(κ)×Ω(κ)) partitioning, but κa(M |A, δ) ≥ cκ2 for
some constant c > 0.

On the other hand, although κa(M |A, δ) does not approximate κa(A, δ)
within a constant factor under metric Sum-SVar, it turns out that if we also
relax the error threshold δ, then one can achieve a double-sided approximation
for A from M . More specifically, we show in Section 3 that M produces an
(2, 7)-approximation of κa(A, δ), i.e, κa(A, 2δ) ≤ κa(M |A, 2δ) ≤ 7κa(A, δ). Un-
fortunately, such result does not hold for Sum-SLift metric, which we prove by
a counter-example.

We remark that the above results imply that the two-step algorithm [18]
approximates κ = κa(A, δ) in a double-sided manner under metric Sum-SVar.
The running time is near-quadratic when κ is small (which is usually the case in
practice). Although the algorithm has double-sided approximation, it is simple to
implement and more efficient for small κ, say, when κ = o(n0.64), than previous
best known algorithms [13]. Unfortunately, under metric Sum-SLift, the two-step
algorithm can generate Ω(κ2) tiles in worst case, no matter how much extra error
we allow.

2 Can (p × p)-Partitioning Approximate Arbitrary
Partitioning?

Given an n × n array A, if we first perform a (p × p) partitioning M of A while
keeping the error below δ, can we still recover the optimal structure for κa(A, δ),
either exactly or approximately, from this reduced array M? In other words,
how does κa(A, δ) and κa(M |A, δ) relate? In what follows, we sometimes omit
‘a′ from κa when it is clear that it refers to Arbitrary partitioning.

2.1 Error Metric Max-Sum

Given an array A, let W =
∑

c∈A A(c) be the sum of all elements in A. Easy
to see that κ(A, δ) ≥ �W

δ � under Max-Sum metric. The following lemma upper
bounds κ(A, δ) by O(�W

δ �). The proof is straightforward (similar to the one for
Theorem 3 from [3]) and omitted.

Lemma 1. Under error metric Max-Sum, for any d-dimensional array A, we
can compute a partitioning R of A such that E(R) ≤ δ and �W

δ � ≤ κ(A, δ) ≤
|R| ≤ 2d�W

δ �.
Given a reduced array M of A, for any cell X ∈ M , set M(X) =

∑
c∈AX

A(c),
where AX is the set of cells from A covered by X . Using this value assignment,
the total weight of M is the same as that of A, i.e,

∑
X∈M M(X) = W ; and for

any partitioning S of M , we have that the induced error Ê(S) for A is the same
as E(S) for M . This, together with Lemma 1, implies the following result:

Lemma 2. For any (p × p) partitioning M of a d-dimensional array A such
that E(M) ≤ δ, we have that: κ(A, δ) ≤ κ(M |A, δ) ≤ 2d κ(A, δ).

Relations Between Two Common Types of Rectangular Tilings 197

2.2 Error Metric Sum-SVar and Sum-SLift

The nice relationship under error metric Max-Sum does not exist for metrics
Sum-SVar and Sum-SLift. Below we describe one counter example for metric
Sum-SVar. The same example also works for metric Sum-SLift.

y

x

x

y

x

(a) (b)

y

x x

y

(c) (d)

Fig. 1. (a) The input array A is a unit grid (not all grid lines are shown): dark cells
have value 1, otherwise 0. The dashed region contains 2x + 4 rows. It is repeated
(vertically) r times, and the number of rows between two consecutive such regions is
much larger than x2. There are altogether c columns containing dark cells, and y all-
white columns between two consecutive such columns. (b) The optimal partitioning
of A w.r.t. δ = r2x/(x + 2) has k tiles (thick segments). In (c), one (Θ(k)×Θ(k))-
partitioning M of A such that E(M) = δ. In (d), thick segments bound those tiles
containing dark cells from the optimal induced partitioning of M with error at most δ.

Consider the array A in Figure 1 (a) with c = r/4 and y = cx/2(c−1). It can be
shown that if the error threshold δ = r2x/(x + 2), then the optimal partitioning
for A is shown in (b), where k = κ(A, δ) = 3c/2. On the other hand, consider the
(Θ(k)×Θ(k)) partitioning M as shown in Figure 1 (c). Straightforward calculation
shows that E(M) = δ. Furthermore, call a tile dark if it contains any dark cell.
We claim that the minimum number of dark tiles for any induced partitioning of
M with error at most δ is shown in Figure 1 (d) (details removed due to lack of
space). As there are Θ(k2) number of them, we conclude that:

Lemma 3. Under metrics Sum-SVar and Sum-SLift, there exists an (Ω(k)×
Ω(k)) partitioning M of A, so that E(M) ≤ δ, but κ(M |A, δ) = Θ(κ2(A, δ)).

198 Y. Wang

3 Double-Sided Approximations Under Sum-SVar

Previous section shows that under metric Max-Sum, one can perform a (p × p)-
partitioning safely: the optimal partitioning for the resulting reduced array is
a constant-factor approximation of the original optimal partitioning. However,
under metrics Sum-SVar and Sum-SLift, the optimal induced partitioning may
have size Ω(k2) while the optimal partitioning of the original array is of size
O(k). The next natural question is: if we also relax the error requirement, is
there a partitioning from the reduced array of size O(k)? More precisely, given a
reduced array M of A with E(M) ≤ δ, is there a partitioning R of M such that
|R| = O(κ(A, δ)) and the induced error in A Ê(R) ≤ cδ for some constant c.

It turns out that for error metric Sum-SLift, the same example from previous
section shows that there is no such constant. In fact, no matter how much extra
error we allow, the optimal induced partitioning may have size Ω(k2). This is
not true for error metric Sum-SVar (details omitted in this extended abstract).
In what follows, we show that for any reduced array M of A with E(M) ≤ δ, one
can compute a double-sided (α, β)-approximation for κ(A, E) with α = 2 and
β = 7: i.e, κ(A, 2δ) ≤ κ(M |A, 2δ) ≤ 7κ(A, δ).

(a) (b) (c)

Fig. 2. (a) Solid thin lines form a (p × p)-partitioning M . Dashed lines are from X .
We modify X into P in (b) (bounded by thick solid segments) (c) The shaded tile R is
from P3. Its corresponding Rs has seven cells of M from the same row, while Ro has
six tiles of same width, each of which is the intersection of R and some tile from X .

First, given any partitioning X of A, we modify it into a partitioning P of
M as follows (Figure 2): For any cell in M , if it contains the corner of some
tile from X , we add it as a tile into the set P1 (empty tiles in Figure 2 (b)).
Next, for every tile R ∈ X , add the largest tile of M completely contained in
the interior of R, if it exists, into the set P2 (the light-colored one in Figure 2
(b)). Now the only cells of M left uncovered are those that intersect boundaries
of tiles from X . Each boundary edge is possibly broken into several pieces, some
already covered by tiles from P1 and P2. For each maximal uncovered piece, we
add the corresponding tile of M intersecting it into P3 (dark colored in Figure 2
(b)); a tile R from P3 is thus either a 1 × |R| or a |R| × 1 subarray of M . Tiles
from P1, P2, and P3 are disjoint, and P = P1 ∪ P2 ∪ P3. In the remaining of
this section, we first show that E(P) ≤ E(X)+E(M). We then bound the size of P

Relations Between Two Common Types of Rectangular Tilings 199

by 7|X |. Hence if X is the optimal partitioning of A w.r.t. δ, P then provides a
(2, 7)-approximation of it.

3.1 Upper Bound E(P)

Given an s×t array R, let μ = 1
st

∑
i,j R[i][j] be the average of all elements in R,

α[i] = 1
t

∑t
j=1 R[i][j] the average of elements in the i’th column, for 1 ≤ i ≤ s,

and β[j] be the mean of elements in the j’th row, for 1 ≤ j ≤ t.

Lemma 4. Let Ci and Rj denote the i’th column and j’th row of R respectively.
Then we have that E(R) ≤

∑s
i=1 E(Ci) +

∑t
j=1 E(Rj).

Proof. Easy to verify that the claim is the same as

s∑

i=1

t∑

j=1

(R[i][j] − μ)2 ≤
s∑

i=1

t∑

j=1

(R[i][j] − α[i])2 +
t∑

j=1

s∑

i=1

(R[i][j] − β[j])2.

First, observe that if we change every element R[j][j] by some arbitrary constant
c, then the left and right terms of the above inequality remains the same. As
such, we can now assume that μ = 0, which in turn implies that

∑s
i=1 α[i] =∑t

j=1 β[j] = 0. Furthermore,

s∑

i=1

t∑

j=1

(R[i][j] − α[i])2 +
t∑

j=1

s∑

i=1

(R[i][j] − β[j])2 −
s∑

i=1

t∑

j=1

R2[i][j]

=
s∑

i=1

t∑

j=1

(R2[i][j] − 2R[i][j](α[i] + β[j]) + α2[i] + β2[j])

=
s∑

i=1

t∑

j=1

(R[i][j] − α[i] − β[j])2 − 2
s∑

i=1

t∑

j=1

α[i]β[j]

=
s∑

i=1

t∑

j=1

(R[i][j] − α[i] − β[j])2 ≥ 0.

The last line follows from the fact that
s∑

i=1

t∑

j=1

α[i]β[j] =
s∑

i=1

(α[i]
t∑

j=1

β[j]) = 0.

The lemma then follows.

To bound E(P) = E(P1) + E(P2) + E(P3), we need the following observation,
called the super-additive property in [13], which holds for all three metrics we
consider.

Observation 1 ([13]). Given any two disjoint tiles H and G, let T be the tile
obtained by merging H and G, then E(T) ≥ E(H) + E(G).

200 Y. Wang

The above property implies that given any two sets of tiles R1 and R2, if R2 is (a
subset of) some refinement of R1, i.e., for any R ∈ R2, there exists some R′ ∈ R1
such that R ⊆ R′, then we have E(R2) ≤ E(R1). Now consider any tile R ∈ P3:
R is either a |R| × 1 or a 1 × |R| subarray of M . Assume that it is the first case
(Figure 2 (c)). Then it intersects a set of boundary edges from X , all of which cut
through R horizontally, as it contains no vertex of X . Let Rs = Rs(R) denote
the set of cells from M covered by R, and Ro = Ro(R) the set of intersec-
tions between R and tiles from X (Figure 2 (c)). By Observation 1, we have
E(Rs) ≥

∑k
j=1 E(Rj) and E(Ro) ≥

∑s
i=1 E(Ci) (the case where R intersects

vertical boundaries of X is symmetric). It then follows from Lemma 4 that

E(R) ≤
m∑

i=1

E(Ci) +
k∑

j=1

E(Rj) ≤ E(Rs) + E(Ro). (1)

Lemma 5. Given a reduced array M of A and some partitioning X of A, let P
be the corresponding modified partitioning over M as described earlier. We have
that Ê(P) ≤ E(X) + E(M).

Proof. Recall that P = P1
⋃

P2
⋃

P3. Let Mi be the set of cells from M covered
by Pi, for i = 1, 2, and 3; Mi’s are disjoint, and their union form the set of cells in
M . For E(P1), observe that E(P1) =

∑
C∈M1

E(C) since each tile in P1 is a single
cell in M (thus in M1). To bound E(P2) and E(P3), let X3 be the intersections
of tiles from X with tiles from P3; X3 is the collection of Ro’s (as introduced
above) for all R ∈ P3. Furthermore, tiles from P2

⋃
X3 provide a subset of some

refinement of X . As such, by Observation 1, we have that E(P2)+E(X3) ≤ E(X).
It then follows from Eqn (1) that

E(P3) ≤
∑

R∈P3

E(Rs) +
∑

R∈P3

E(Ro) ≤
∑

C∈M3

E(C) + E(X3)

⇒ E(P) = E(P1) + E(P2) + E(P3)

≤
∑

C∈M1∪M3

E(C) + E(P2) + E(X3) ≤ E(X) + E(M).

3.2 Upper Bound κ(M |A, 2δ)

We now bound the size of P . First, easy to see that |P1| is bounded by the
number of vertices in X , a trivial bound of which is 4|X | as each tile may
produce four vertices. However, since each vertex is shared by at least two tiles
in X , we can improve it to |P1| ≤ 2|X |. Second, by definition, each tile in X can
produce at most one tile in P2. Hence |P2| ≤ |X |. Finally, we bound the size
of P3 as follows: recall that tiles from P3 are disjoint subarrays of some row or
column of M . We classify these tiles into row-tiles and column-tiles, respectively,
depending on whether they cover horizontal or vertical boundary edges of tiles
from X . Consider any row of M and count the number of row-tiles within this
row. Note that the neighbors of such tiles within the same row are necessary tiles

Relations Between Two Common Types of Rectangular Tilings 201

from P1. In particular, if there are s vertex-covering tiles in this row, there are
at most s − 1 row-tiles. Hence the total number of row-tiles is at most |P1| − 1.
Similarly, the total number of column-tiles is at most |P1| − 1, implying that
|P3| < 4|X |. Overall, |P| = |P1| + |P2| + |P3| ≤ 7|X |. Now if X is the optimal
partitioning of A w.r.t. error δ and if E(M) ≤ δ, then there exists a partitioning
P of M such that Ê(P) ≤ 2δ and |P| ≤ 7 · κ(A, δ). Putting everything together,
we conclude with our main theorem:

Theorem 2. Given any (p× p)-partitioning M of A such that E(M) ≤ δ under
Sum-SVar metric, the optimal induced partitioning of M with error at most 2δ
provides an (2, 7)-approximation of κa(A, δ), that is, κa(A, 2δ) ≤ κa(M |A, 2δ) ≤
7κa(A, δ).

Corollary 1. Given an n × n array A and an error threshold δ, under Sum-
SVar metric, the Two-step algorithm from [18] can compute a (2, 7)-approximation
of κh(A, δ), thus a (2, 14)-approximation of k = κa(A, δ) in O(n2 + k7) time and
O(n2 + k5) space.

We remark that we can remove the double-sided approximation by computing
a (p × p) partitioning w.r.t. error δ/2 in the first step, at the cost of increasing
the running time to O(n2 + κ7

a(A, δ/2)). This gives rise to a 14-approximation of
κa(A, δ). Furthermore, the n2 term in time and space comes from storing the in-
put array as well as weights for some subarrays (details omitted here). So the con-
stant hidden is very small. In comparison, the algorithm from [13] 9-approximates
κh(A, δ), thus 18-approximates κa(A, δ) in O(n3.2κ2) time. The two-step algo-
rithm outperforms it in efficiency when κ = o(n0.64) and is much simper.

4 Conclusion and Discussion

Our results on relation between Arbitrary and (p × p) partitioning imply that
there is no theoretical guarantee for the Two-step algorithm under Sum-SLift er-
ror metric, although it performs well in practice [18]. How to develop simple and
efficient approximation algorithms under Sum-SLift metric is one important fu-
ture research direction. We also remark that it is natural to extend the array
partitioning problem to dimensions higher than two. However, while approxima-
tion algorithms for multi-dimensional arrays exist for (p×p) partitioning [14], for
Arbitrary partitioning, such algorithm is only available under Max-Sum metric
[3]. One main reason is because in three dimensions and higher, the nice result
on the size of rectilinear BSP trees no longer holds. It is thus an interesting
open problem to develop different frameworks (other than using BSP) for ap-
proximating Arbitrary partitioning under these metrics that can be extended to
higher dimensions.

Acknowledgment. The author wish to thank an anonymous reviewer for the
current much simpler proof of Lemma 4 and thank Sariel Har-Peled for helpful
discussions.

202 Y. Wang

References

1. S. Anily and A. Federgruen. Structured partitioning problems. Operations Re-
search, pages 130–149, 1991.

2. P. Berman, B. Dasgupta, and S. Muthukrishnan. Exact size of binary space
partitionings and improved rectangle tiling algorithms. SIAM J. Discrete Math,
15(2):252–267, 2002.

3. P. Berman, B. DasGupta, S. Muthukrishnan, and S. Ramaswami. Efficient approx-
imation algorithms for tiling and packing problems with rectangles. J. Algorithms,
41(2):443–470, 2001.

4. S. Bokhari. Partitioning problems in paralle, pipelined, and distributed computing.
IEEE Transactions on Computers, 37:38–57, 1988.

5. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving
problems on concurrent processors, Volumn 1. Prentice-Hall, Englewood Cliffs,
New Jersey, 1998.

6. M. Grigni and F. Manne. On the complexity of the generalized block distribution.
In IRREGULAR’96, pages 319–326, 1996. Lecture notes in computer science 1117,
Springer.

7. S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle tiling
and packing. In SODA ’98: Proceedings of the ninth annual ACM-SIAM symposium
on Discrete algorithms, pages 384–393, 1998.

8. S. Khanna, S. Muthukrishnan, and S. Skiena. Efficient array partitioning. In
ICALP, pages 616–626, 1997.

9. D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould, and
J. M. Cohn. Managing power and performance for system-on-chip designs using
voltage islands. In Proceedings of the 2002 IEEE/ACM international conference
on Computer-aided design table of contents, pages 195–202, 2002.

10. K. Lorys and K. E. Paluch. New approximation algorithm for RTILE problem.
Theor. Comput. Sci., 2-3(303):517–537, 2003.

11. F. Manne. Load Balancing in Parallel Sparse Matrix Computations. PhD thesis,
Dept. of Informatics, Univ. of Bergen, Norway, 1993.

12. F. Manne and T. Sorevik. Partitioning an array onto a mesh of processors. In
Workshop on Applied Parallel Computing in Industrial Problems, 1996.

13. S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular partitionings in two
dimensions: Algorithms, complexity, and applications. In ICDT ’99: Proceeding of
the 7th International Conference on Database Theory, pages 236–256, 1999.

14. S. Muthukrishnan and T. Suel. Approximation algorithms for array partitioning
problems. Journal of Algorithms, 54:85–104, 2005.

15. V. Poosala. Histogram-based estimation techniques in databases. PhD thesis, Univ.
of Wisconsin-Madison, 1997.

16. J. P. Sharp. Tiling multi-dimensional arrays. In International Symposium on
Fundamentals of Computation Theory, pages 500–511, 1999.

17. A. Smith and S. Suri. Rectangular tiling in multi-dimensional arrays. In
ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 786–794, 1999.

18. H. Wu, I. Liu, M. D. F. Wong, and Y. Wang. Post-placement voltage island gen-
eration under performance requirement. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 309–316, 2005.

Quality Tetrahedral Mesh Generation for

Macromolecules

Ho-Lun Cheng and Xinwei Shi

National University of Singapore

Abstract. This paper presents an algorithm to generate quality tetra-
hedral meshes for the volumes bounded by the molecular skin model de-
fined by Edelsbrunner. The algorithm applies the Delaunay refinement
to the tetrahedral meshes bounded by quality surface meshes. In particu-
lar, we iteratively insert the circumcenters of bad shape tetrahedra with
a priority parameterized by its distance from the surface. We achieve a
bounded radius-edge ratio for the tetrahedral mesh after the refinement.
Finally, we apply the sliver exudation algorithm to remove ‘slivers’. The
algorithm terminates with guarantees on the tetrahedral quality and an
accurate approximation of the original surface boundary.

1 Introduction

This paper studies the quality mesh generation for macromolecules, in particular,
the quality Delaunay mesh generation for the volumes bounded by molecular skin
models. This section introduces the motivation of this work and reviews previous
work on Delauany refinement for quality tetrahedral mesh generation.

Motivation. Electrostatics potential is one of the fundamental energy terms to
model a molecular system. It defines the potential energy at a particular loca-
tion near a molecule created by the system of molecular charges. The study of
the electrostatic potential within a molecule or the interactions among differ-
ent molecules is necessary to investigate the protein folding and protein-protein
interactions. Thus, modeling and computation of the electrostatic of molecules
have become a central topic in molecular modeling studies [1].

The Poisson-Boltzmann equation(PBE) is one of the most popular approach
to model the electrostatic of large molecules. Using the solution of PBE to pre-
dict the electrostatic property of molecules achieved good agreement with exper-
imental results [1]. Since the PBE is a non-linear partial differential equation,
an analytical solution is not available and numerical methods are necessary, for
example, using the finite element methods. The accuracy and stability of the
solution with numerical methods depend on the quality of the elements used to
decompose the molecular volume. Moreover, the solution of PBE is sensitive to
the boundary of the molecular models [1]. As a result, quality volumetric meshes
of molecules that conforms to their boundary are desirable for the computing
the molecular electrostatic by solving the PBE.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 203–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 H.-L. Cheng and X. Shi

Therefore, it is still challenging to construct quality tetrahedral meshes con-
forming to the boundary of the molecular models. Most of the previous works use
regular grids[15]. The mesh elements generated by these methods have a biased
alignment to the axis. Moreover, since the boundary of a molecule is smooth
and curved, the resolution of the grids cannot be infinitely fine to conform the
boundary. On the other hand, Delaunay meshes have no such problems and sup-
port efficient construction algorithms with quality guarantees [16]. In this paper,
we use Delaunay refinement methods to generate quality tetrahedral meshes for
the macromolecules.

Related Work. Delaunay refinement methods generate quality tetrahedral
meshes by placing new mesh vertices carefully in the domain and maintaining the
Delaunay triangulation until all mesh elements satisfy the quality constraints.
Shewchuk [16] used the Delaunay refinement to generate tetrahedral meshes for
3D domains bounded by piecewise linear complexes(PLC). The algorithm elim-
inates poor quality tetrahedra by iteratively inserting their circumcenters. Con-
sequently, the resulting meshes achieve an upper bound on the radius-edge ratio,
which is the ratio of the circumradius of a tetrahedron with its shortest edge.
However, the algorithm requires the PLC domains have no acute input angles.
This problem was addressed recently by Cheng et. al [9], in which the algorithm
generates Delaunay meshes for polyhedra with small input angles with guar-
antees on the radius-edge ratio, except for the tetrahedra near the small input
angles. Bounded radius-edge ratio eliminates all kinds of bad shape tetrahedra
except slivers, which are tetrahedra with bounded radius-edge ratio and extreme
small dihedral angles. Cheng et. al [7] introduced sliver exudation algorithm by
assigning weights to the mesh vertices of slivers such that the resulting weighted
Delaunay triangulation is sliver free. Subsequently, Edelbrunner et. al [14] per-
turb the vertices to clean up the slivers in the mesh. However, both sliver removal
algorithms cannot handle the boundaries because they are only applied to peri-
odic sets. Recently, Cheng and Dey [6,10] combined Delaunay refinement with
sliver exudation to construct quality tetrahedra meshes for polyhedra. The algo-
rithm guarantees the quality for all tetrahedra except the ones near the corners
with small input angles.

It is natural to apply the Delaunay refinement to generate quality meshes
for the domains bounded by smooth surfaces. However, this attempt needs to
overcome the following obstacles. First, there are no general piecewise linear
representations for smooth surfaces defined by implicit or parametric equations.
Although a number of surface polygonization and triangulation algorithms have
been proposed, none of them can guarantee the output surface meshes without
acute angles [2,3,8]. As a result,the Delaunay refinement algorithms for polyhe-
dra cannot be applied to mesh the volumes of smooth surfaces. Second, sliver
removal algorithms devote further study for the domains bounded by smooth sur-
faces because Cheng and Dey’s algorithm [6,10] cannot handle the slivers near
acute input angles. Third, the analysis of the mesh size for PLC domains us-
ing local feature size is not suitable for analyzing the size of volumetric meshes of

Quality Tetrahedral Mesh Generation for Macromolecules 205

smooth surfaces. Instead, the curvature and the local feature size of the smooth
surface are important for the analysis of the mesh density.

We present an algorithm for generating quality tetrahedral meshes of the
volumes bounded by molecular skin surfaces. The algorithm overcomes the chal-
lenges arising from applying the Delaunay refinement methods to the domains
with smooth surface boundaries, and generates quality tetrahedral meshes with
bounded radius-edge ratio and free of slivers. In addition, the boundary of the
final tetrahedral mesh is also an accurate approximation of the input molecular
skin surface.

Outline. The remainder of this paper is organized as follows. We introduce some
basic concepts and definitions used in our algorithm in Section 2. Our meshing
algorithm is described in Section 3. Experiments results are illustrated in Section
4 and the paper is concluded in Section 5.

2 Background

In this section, we review the necessary backgrounds to understand our meshing
algorithm for the macromolecules. We first introduce the molecular skin model
and the recent result on skin meshing. Then, we introduce the distance function
defined by the skin surface. Finally, the measure for the tetrahedral quality is
introduced.

Molecular Skin Model. The skin surface FB specified by a finite set of spheres
B is a closed C1-continuous surface in R

3. To model a molecule with the skin
surface, we consider each atom as a sphere bi = (zi, wi) ∈ B. That is, the position
zi is the center of an atom, and its radius wi is

√
2 times the summation of the

atom’s van der Waals radius with the radius of the probe sphere, which is usually
chosen as 1.4 Angstrom to represent the water as solvent. Then, the skin surface
FB gives a model of the molecule.

Adaptive Surface Mesh. Denote the maximum principle curvature at x ∈ FB

as κ(x). The reciprocal 1/κ(x) is called the local length scale at x, denoted as
�(x). The local length scale varies slowly on the skin surface and satisfying the
1-Lipschitz condition, that is, |�(x) − �(y)| ≤ ‖x − y‖, in which x, y ∈ FB . This
property facilitates adaptive homeomorphic triangulations for the skin surface.
We use the recent result from [5], in which the algorithm generates quality skin
surface mesh adaptive to the maximum curvature. Specifically, the surface mesh
is the restricted Delaunay triangulation ,RB(P), of an ε-sampling P of the skin
surface. The surface mesh has the following properties [5,4].

Lemma 1 (Small Circumradius Lemma). The cricumradius Rabc of a tri-
angle abc ∈ RB(P) has an upper bound, Rabc < ε

1−ε�abc,1

This lemma says that the triangles in the surface mesh have a small circumradius
compared to local length scale at their vertices. The smallest circumsphere of
1 In which �abc is the local length scale of abc defined as �abc = min{�(a), �(b), �(c)}.

206 H.-L. Cheng and X. Shi

a surface triangle abc is also called the protecting ball of abc. The union of
the protecting balls of all the surface triangles forms the protecting region that
detects the intrusion of the newly inserting mesh vertices. We also have the
following property of the skin surface mesh [5,4].

Lemma 2 (Dihedral Angle Lemma). For two triangles abc, abd ∈ RB(P)
with shared edge ab, the dihedral angle at edge ab has a lower bound of π −
2arcsin(2ε

1−ε).

These nice properties of the input skin surface mesh facilitate our Delaunay
refinement algorithm for quality tetrahedral mesh generation. Together with a
specific priority for the order of the new mesh vertices insertion, the termination
of the algorithm and the mesh quality are guaranteed. Next, we introduce the
distance function to define the priority.

Distance Function. Given a skin surface FB , the distance function to FB is
defined over R

3 by assigning each point its distance to the surface, d(x) =
infp∈FB ‖x − p‖, ∀x ∈ R

3.
We approximate the function using the ε-sampling P of skin the skin surface,

that is,d′(x) = minp∈P ‖x − p‖, ∀x ∈ R
3.

The approximation has been used by Dey [11] to reconstruct the smooth
surface from a point cloud. We use the function value to parameterize the priority
for new mesh vertices insertion during the Delaunay refinement. The new mesh
vertices are the circumcenters of the tetrahedra with poor quality. Next, we
introduce the measures for the quality of a tetrahedron.

(a) (b) (c) (d)

Fig. 1. A classification of the bad shape tetrahedra

Tetrahedral Quality. Let r and l be the circumradius and the lengthes of the
shortest edge a tetrahedron respectively. The bad shape tetrahedra can be char-
acterized by using the radius-edge ratio r

l . We call a tetrahedron τ skinny if its
radius-edge ratio is larger than a constant c > 1, that is, r

l ≥ c. Otherwise, we
call the tetrahedron τ has ratio property c. A tetrahedral mesh K has the ratio
property for a constant c means that every tetrahedron τ ∈ K has ratio property
c. Figure 1 (a), (b) and (c) illustrate the examples of skinny tetrahedra.

The sliver is a special kind of bad shape tetrahedra with bounded radius-edge
ratio. See Figure 1 (d) for an example. The vertices of a sliver are almost on a
big circle of its circumsphere and form dihedral angles approaching to 0. We
call a tetrahedron sliver if it has the ratio property c and its minimum dihedral
angle is smaller than a constant ζ.

Quality Tetrahedral Mesh Generation for Macromolecules 207

The goal of our meshing algorithm is to generate tetrahedral meshes for the
skin volumes with bounded ratio property and free of slivers. We introduce our
algorithm in the next section.

3 Algorithm

The algorithm is divided into three stages, namely, sculpture, Delaunay refine-
ment with priority and sliver removal by pumping vertices. The procedure of
sculpture builds a coarse tetrahedral mesh T0 for the volume bounded by the
skin FB , denote as VB . Since we have the restricted Delaunay triangulation of
FB, RB(P), defined by point set P as the surface mesh, the tetrahedral mesh
T0 can be constructed by taking the subset of the Delaunay triangulation of P
that includes all the tetrahedra whose circumcenters lie inside the skin volume
VB. Note that the boundary of T0 is exactly the input surface mesh, namely,
the restricted Delaunay triangulation RB(P). Starting with this coarse tetra-
hedral mesh T0, we improve the mesh quality by running Delaunay refinement
and sliver removal sequentially. Next, we introduce the prioritized Delaunay
refinement methods and analyze the quality guarantees when the refinement
terminates.

3.1 Prioritized Delaunay Refinement

Delaunay refinement methods improve the mesh quality by inserting the circum-
centers of the poor shape tetrahedra incrementally. After each new mesh vertex
is inserted, the Delaunay triangulation is maintained and this process is repeated
until all the tetrahedra satisfies the quality constraints. The new mesh vertices
can be inserted in a random way or in a certain order. Shewchuk [16] inserted
new mesh vertices with a priority parameterized by the radius-edge ratio. That
is, the circumcenter of the tetrahedron with largest radius-edge ratio is always
inserted. This priority decreases the number of inserting points in some cases.
Edelsbrunner and Guoy [12] defined the sink as the circumcenters that are con-
tained inside their own tetrahedra. A circumcenter is inserted as a new mesh
vertex only when it is a sink. The priority facilitates parallel implementation of
the Delaunay refinement.

We introduce a new priority parameterized by the distance function value of
the circumcenters. That is, the circumcenter t of a skinny tetrahedron τ that
has the largest distance d′(t) to the surface is inserted in each iteration of the
Delaunay refinement. The reason beyond this priority is that new mesh vertices
are restricted to be as far as possible from such that the circumcenters close to
the media axis of the surface are inserted with high priority to improve the mesh
quality as much as possible. Once the circumcenters near the surface are nec-
essary to be inserted, the mesh quality satisfies the quality constraints because
the input surface mesh has guaranteed quality.

The Delaunay refinement process adapts the incremental algorithm for De-
launay triangulation computation. Starting from the initial coarse tetrahedral

208 H.-L. Cheng and X. Shi

mesh T0, the circumcenter ti of a skinny tetrahedron τi is inserted and forms
four new tetrahedra with the faces of the tetrahedron τi. The Delaunay property
is restored by flipping algorithm and we get the Delaunay tetrahedral mesh Ti

with mesh vertices Pi = Pi−1
⋃

{ti}, for P0 = P . The procedure is described in
the following pseudo code.

Algorithm 1. PDeloneRefine()
1: Test the radius-edge ratio for all the tetrahedra in T0 and push the skinny tetra-

hedron to a queue Q prioritized by their distance function values;
2: while Q �= ∅ do
3: τ = ExtractMax(Q);
4: if the τ is a tetrahedron in Ti−1 with its circumcenter ti that falls outside of the

protecting region then
5: Compute the Delaunay triangulation of Pi = Pi−1 ∪ {ti} by the incremental

method;
6: Update Q by adding the new skinny tetrahedra;
7: end if
8: end while

We analyze the behavior of the Algorithm 1 to validate the termination and
quality guarantees of the prioritized refinement procedure. First, we prove that
all the inserted circumcenters lies inside the skin volume VB and outside the
protecting region. This property ensures the input surface mesh is stable during
the refinement process. Then, we prove the refinement process terminates with
a upper bound of the radius-edge ratio c depending on the constants ε and γ
that specify the surface mesh quality.

Lemma 3 (Circumcenters Lemma). Let t be the circumcenter of a skinny
tetrahedron τ ∈ Ti. The circumcenter t is contained inside the underlying space
of Ti, namely, |Ti|.

Proof. We prove the lemma using a deductive method.
In the case of i = 0, the claim is true on the base of our sculpture procedure.

Since T0 consists of all the tetrahedra whose circumcenters lies inside the volume
of the skin surface VB. The difference between VB and |T0| is the space between
the skin surface and the surface triangles when the local shape of the surface
is convex. According to the dihedral angle Lemma 2, a tetrahedron with its
circumcenter inside VB and outside |T0| must be a sliver. And a sliver is never a
skinny tetrahedron. Thus, the claim is true when i = 0.

We assume the claim is true when i = k and prove all the circumcenters of
tetrahedra in Tk+1 are inside |Tk+1|. To get a contradiction, let a circumcenter
t locates outside |Tk+1|. The circumcenter t must be a Voronoi vertex of a mesh
vertex q that either lie on the boundary or the interior of |Tk+1|. In the case of the
mesh vertex q lie inside |Tk+1|, one of the Voronoi edge of q must penetrate the
surface mesh and we denote the intersection with a surface triangle abc as u. As a

Quality Tetrahedral Mesh Generation for Macromolecules 209

result, the point u must be inside the protecting sphere of abc and its distance to
a, b and c is smaller than the distance to q since q is always outside the protecting
region. It contradicts with the definition of the Voronoi cell for the point q. In the
case of the mesh vertex q is on the boundary, then t must be the circumcenter of a
tetrahedron with its four vertices on the boundary. It is impossible because all the
new tetrahedra we created during the refinement must connect to the newly in-
serted internal nodes. Thus, all the circumcenters of tetrahedra in Tk+1 are inside
|Tk+1| and the claim follows.

The Lemma 3 implies that the boundary of the tetrahedral mesh Tn conforms to
the input surface mesh. Next, we prove the algorithm terminates with bounded
radius-edge ratio for all the tetrahedral in Tn.

Theorem 1. The algorithm terminates with quality tetrahedra mesh having ra-
tio property for the constant c ≤ 2ε

γ(1−ε) .

Proof. We first prove the algorithm terminates. Since the algorithm only inserts
the circumcenters of tetrahedra with radius-edge ratio larger than 1, the edge
length of newly created edges during the Delaunay refinement never shrinks. In
the other words, the inter-vertices distances are bounded from below. Moreover,
the algorithm only inserts points in the domain and never deletes any points. As
a result, the algorithm must terminate because the volume of VB is finite.

Then, we prove the bound for the radius edge ratio. To get a contradiction,
we assume a tetrahedron τ has radius-edge ratio R

l > 2ε
γ(1−ε) when the algorithm

terminates. Then, the circumcenter t of τ must be inside a protecting sphere of
a surface triangle abc. Otherwise, Algorithm 1 will insert the t as a mesh vertex.
The situation is illustrated in Figure 2. Let one of the vertices of τ be q, then we
have R = ‖t−q‖ < ‖t−a‖ < 2Rabc, in which Rabc is the radius of the protecting
sphere of triangle abc. Combining with Lemma 1, we have R < 2ε

(1−ε)�abc. On
the other hand, the length of the shortest edge of the tetrahedron τ must be
longer than the length of any edges on the boundary incident to a. That is,
l > ‖a − b‖ ≥ γ�ab. According to the assumption,

R > l
2ε

γ(1 − ε)
> γ�ab

2ε

γ(1 − ε)
=

2ε

(1 − ε)
�ab. (1)

Since �abc ≤ �ab, Equation (1) and Equation (2) contradict to each other. As a
result, all the tetrahedra have ratio property for the constant c ≤ 2ε

γ(1−ε) .

With feasible values for 0 < γ < 0.218 and 0 < ε < 0.279, a conservative lower
bound for c would be 3.5 [5]. Our experiments show that we can achieve a much
better bound of 1.5 on the radius-edge ratio in practice. However, slivers still
frequently exist inside the tetrahedral mesh after the Delaunay refinement ter-
minated with a bounded radius-edge ratio. Next, we adapt the sliver exudation
algorithm to remove the slivers.

210 H.-L. Cheng and X. Shi

a b, c

tq

Rabc

Fig. 2. A tetrahedron τ with its circumcenter t inside a protecting sphere defined by
the surface triangle abc. q is one of the vertices of τ .

3.2 Sliver Removal by Pumping Vertex

We adapts the sliver exudation algorithm [7] to remove the slivers. The algo-
rithm achieves sliver free tetrahedral mesh by assigning feasible weight to the
vertices of Delaunay mesh with bounded radius-edge ratio so that the resulting
weighted Delaunay triangulation contains no slivers. However, the sliver exu-
dation algorithm only applies to the periodic point set, which is an infinite set
without boundary. In order to apply the algorithm to our bounded domains,
we only pump the non-boundary mesh vertices incident to a sliver. In addition,
we further restrict the assignment of the weights not to challenge the boundary.
That is, the weight for x should be small enough so that the boundary trian-
gles will stay in the weighted Delaunay triangulation. For the slivers with four
mesh vertices on the surface, we remove them from the tetrahedral mesh directly
without influencing the boundary approximation.

4 Experimental Results

We implemented the algorithm on the PC platform with C++ on the base of
the skin surface meshing software built by the authors. The construction of the
Delaunay triangulation and weighted Delaunay triangulation partially reuse the
prior software on alpha shapes. One point worth noting here is the computation
of the distance function value for each circumcenter of a skinny tetrahedra. We
utilize the Delaunay triangulation of the input surface mesh vertices for this
purpose. That is, we locate the tetrahedron contains the circumcenter first and
search its nearest neighbor locally. We tested our implementation to generate
quality tetrahedral meshes for some molecular skin models. The experimental
results show that the prioritized Delaunay refinement performs excellently and
it achieves an upper bound of 1.5 on the radius-edge ratio. At the same time,
the dual Voronoi diagram the Delaunay triangulation decompose the volumes
into well shaped convex polyhedra. Such a decomposition may be useful for the
numerical computations using control volume methods. Moreover, our implemen-
tation of the sliver exudation algorithm eliminates most of the slivers. Table 1
gives the statistics of the tetrahedral mesh quality.

Table 1 illustrates the statistics of the mesh quality for the molecule Crambin.
The input surface mesh includes 27,341 mesh vertices and 50,222 triangular faces.

Quality Tetrahedral Mesh Generation for Macromolecules 211

Table 1. The distribution of the radius-edge ratios and minimal dihedral angles of the
tetrahedral mesh of molecule Crambin

R/l 0-1 1-1.5 1.5-2 2-3 ≥ 3

T0 2,675 4,451 3,327 25,570 47,726

Tn 117,854 138,609 2 0 0

T̂n 117,654 13,8258 12 0 0

ζ(◦) 0-5 5-10 10-20 20-30 ≥ 30

T0 6,964 12,254 10,787 7,335 46,409

Tn 1,292 3,309 14,009 35,877 201,978

T̂n 13 212 14,479 39,566 201,654

The minimum angle in the surface mesh is 20.1◦. The Delaunay refinement
takes around 8 minutes on Pentium 4 PC to insert 26,709 vertices inside the
volume and improve the radius-edge ratio to 1.5. Totally 1,292 slivers exist in
the final tetrahedral mesh, in which 300 slivers have four vertices on the surface.
After we performed the sliver removal, only 13 slivers are left. The distribution
of the radius-edge ratio and minimal dihedral angle in the coarse tetrahedral
mesh before prioritized Delaunay refinement T0, the mesh after the Delaunay
refinement Tn and the final mesh after the sliver removal T̂n is presented in the
table 1.

5 Discussion

In this paper, we present an algorithm for generating quality tetrahedral mesh
for the volumes of the macromolecules. The algorithm improves the mesh quality
of a coarse mesh using Delaunay refinement prioritized by the distance function
value followed by a sliver removal process. The prioritized Delaunay refinement
process terminates with guarantees on the upper bound of the radius-edge ra-
tio of the tetrahedral mesh. We give a proven upper bound 3.5 on the ratio.
In addition, our experimental results show that an upper bound of 1.5 on the
radius-edge ratio can be achieved, which is much better than the theoretical
bound and implies that there are no any skinny tetrahedra in the mesh after the
prioritized Delaunay refinement. The following sliver removal process removes
the slivers effectively and improves the minimal dihedral angle in the mesh. The
boundary of the final tetrahedral mesh also approximates the original surface
accurately.

We also note that the statistics results of our algorithm are different from
the experiments performed on the smooth surface by Edelsbrunner and Guoy
[13]. Firstly, the radius-edge ratio distribution is slightly different. We achieved
a better bound for the radius-edge ratio after the refinement. For example, the
upper bound of the radius-edge ratio for all the tetrahedra in our meshes is
1.57, comparing with 2.14 in [13]. This may be explained from two aspects.
On one hand, the prioritized Delaunay refinement may work better than sink
insertion for the volumes bounded by smooth surfaces. On the other hand, the
surface meshes we used have better quality than the surface meshes used in [13].
Secondly, the number of tetrahedra with ζ < 5◦ in our experimental results is
more than that of [13]. This may due to our algorithm only pumps the vertices
of the slivers.

212 H.-L. Cheng and X. Shi

References

1. Nathan A. Baker and J. Andrew McCammon. Structural Bioinformatics. Wiley-
Liss, Inc., 2003.

2. Jules Bloomenthal. An Implicit Surface Polygonizer. Academic Press, Boston,
1994.

3. J. D. Boissonnat and S. Oudot. Provably good surface sampling and approximation.
In Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry
processing, pages 9–18. Eurographics Association, 2003.

4. H. Cheng, T. K. Dey, H. Edelsbrunner, and J.Sullivan. Dynamic Skin Triangula-
tion. Discrete Comput. Geom., 25:525–568, 2001.

5. Ho-Lun Cheng and Xinwei Shi. Quality mesh generation for molecular skin surfaces
using restricted union of balls. In Proceedings of IEEE Visualization, pages 399–
405, 2005.

6. Siu-Wing Cheng and Tamal K. Dey. Quality meshing with weighted delaunay
refinement. In Proceedings of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 137–146. Society for Industrial and Applied Mathemat-
ics, 2002.

7. Siu-Wing Cheng, Tamal K. Dey, Herbert Edelsbrunner, Michael A. Facello, and
Shang-Hua Teng. Sliver exudation. In Proceedings of the fifteenth annual sympo-
sium on Computational geometry, pages 1–13. ACM Press, 1999.

8. Siu-Wing Cheng, Tamal K. Dey, Edgar Ramos, and Tathagata Ray. Sampling and
meshing a surface with guaranteed topology and geometry. In Proceedings of ACM
Annual Symposium on Computational Geometry, 2004.

9. Siu-Wing Cheng, Tamal K. Dey, Edgar A. Ramos, and Tathagata Ray. Quality
meshing for polyhedra with small angles. In Proceedings of the twentieth annual
symposium on Computational geometry, pages 290–299. ACM Press, 2004.

10. Siu-Wing Cheng, Tamal K. Dey, and Tathagata Ray. Weighted delaunay refine-
ment for polyhedra with small angles. Proceedings of 14th International Meshing
Roundtable, ,, pages 323–342, 2005.

11. Tamal K. Dey, Joachim Giesen, Edgar A. Ramos, and Bardia Sadri. Critical points
of the distance to an epsilon-sampling of a surface and flow-complex-based surface
reconstruction. In SCG ’05: Proceedings of the twenty-first annual symposium on
Computational geometry, pages 218–227, New York, NY, USA, 2005. ACM Press.

12. Herbert Edelsbrunner and Damrong Guoy. Sink-insertion for mesh improvement.
In SCG ’01: Proceedings of the seventeenth annual symposium on Computational
geometry, pages 115–123, 2001.

13. Herbert Edelsbrunner and Damrong Guoy. An experimental study of sliver exu-
dation. Eng. Comput. (Lond.), 18(3):229–240, 2002.

14. Herbert Edelsbrunner, Xiang-Yang Li, Gary Miller, Andreas Stathopoulos, Dafna
Talmor, Shang-Hua Teng, Alper Ungor, and Noel Walkington. Smoothing and
cleaning up slivers. In Proceedings of the thirty-second annual ACM symposium on
Theory of computing, pages 273–277. ACM Press, 2000.

15. Walter Rocchia, Sundaram Sridharan, Anthony Nicholls, Emil Alexov, Alessan-
dro Chiabrera, and Barry Honig. Rapid grid-based construction of the molecular
surface and the use of induced surface charge to calculate reaction field energies:
Applications to the molecular systems and geometric objects. Journal of Compu-
tational Chemistry, 23(1):128 – 137, June 2001.

16. Jonathan Richard Shewchuk. Delaunay refinement mesh generation. PhD thesis,
1997.

On Approximating the TSP with Intersecting

Neighborhoods

Khaled Elbassioni1, Aleksei V. Fishkin2, and René Sitters1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{elbassio, sitters}@mpi-sb.mpg.de

2 University of Liverpool, UK
avf@csc.liv.ac.uk

Abstract. In the TSP with neighborhoods problem we are given a set
of n regions (neighborhoods) in the plane, and seek to find a minimum
length TSP tour that goes through all the regions. We give two approxi-
mation algorithms for the case when the regions are allowed to intersect:
We give the first O(1)-factor approximation algorithm for intersecting
convex fat objects of comparable diameters where we are allowed to hit
each object only at a finite set of specified points. The proof follows from
two packing lemmas that are of independent interest. For the problem
in its most general form (but without the specified points restriction) we
give a simple O(log n)-approximation algorithm.

1 Introduction

In the TSP with neighborhoods problem we are given a set of n subsets of the
Euclidean plane and we have to find a tour of minimum length that visits at least
one point from each subset. This generalizes both the classical Euclidean TSP
and the group Steiner tree problems [6] with applications in VLSI-design, and
other routing-related applications (see e.g. [10,13]). Although the problem has
been extensively studied in the last decade after Arkin and Hassin [1] introduced
it in 1994, still large discrepancies remain between known inapproximability
and approximation ratios for various cases. Safra and Schwartz [14] showed
that the problem in the general case is NP-hard to approximate within any
constant factor, and is APX-hard if each set forms a connected region in the
plane. For connected polygonal regions, Mata and Mitchell [9] gave an O(log n)-
approximation in O(N5)-time based on ”guillotine rectangular subdivisions”,
where N is the total number of vertices of the polygons. Gudmundsson and
Levcpoulos [7] reduced the running time to O(N2 log N).

In another interesting discrete variant of the problem, sometimes called the
group-TSP problem, we are given n connected subsets of the plane, often refred to
as regions or objects, and one set of points P . The TSP-tour must hit each region
in one or more of the points of P . Typically, this restriction makes the problem
harder. For the most general version in which the subsets are unrestricted, and
the metric is not necessarily Euclidean, the gap is almost closed: Garg et al. [6]
gave a randomized O(log N log log N log k log n)-approximation algorithm for the

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 213–222, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

214 K. Elbassioni, A.V. Fishkin, and R. Sitters

group Steiner tree problem, the variant in which we are given a graph with N
vertices and a set of n groups with at most k vertices per group, and seek a
minimum cost Steiner tree connecting to at least one point from each group.
Slav́ık [15] showed that the problem can be approximated within O(k). On the
negative side, Halperin and Krauthgamer [8] gave an inapproximability threshold
of Ω(log2−ε n) for any fixed ε > 0.

With this being the situation for the general case, recent research has consid-
ered the cases where the given subsets are connected regions in the plane. We
speak of the continues case if we can hit any point of the connected region, and
we speak of the discrete case if we are only allowed to hit the region in one of
the specified points. Previous results also distinguish between fat regions, such
as disks, and non-fat regions, such as line-segments, and between instances with
disjoint regions and intersecting regions. Non-fatness and intersections seem to
make the problem much harder and, in fact, no constant factor approximation
algorithm is known for the general case of intersecting non-fat regions.

For the continuous case when the regions are translates of disjoint convex poly-
gons, and for disjoint unit disks, Arkin and Hassin [1] presented constant-factor
approximations. Dumitrescu and Mitchell [4] gave an O(1)-approximation algo-
rithm for intersecting unit disks. For disjoint varying-sized convex fat regions, de
Berg et al. [3] presented an O(α3)-approximation algorithm, where α is a mea-
sure of fatness of the regions. A much simpler algorithm was given in [5] with an
improved approximation factor of O(α), where also an O(1)-approximation algo-
rithm was given for the discrete case with intersecting unit disks. Very recently,
Mitchell [12] gave a PTAS for the continuous case with disjoint fat neighbor-
hoods, even under a weaker notion of fatness than the one used in this paper.

Perhaps the two most natural extensions for which no constant factor algo-
rithm is known, are that of non-fat disjoint objects, and that of fat intersecting
objects. In Section 2 we consider the discrete version of the latter problem and
give an O(α3)-approximation algorithm for intersecting convex α-fat objects
of comparable size. The proof follows from two lemmas given in Section 2.2.
Lemma 1) is interesting on its own and gives a relation between the length of
the optimal TSP tour inside a square and the distribution of the points. Ad-
ditionally, we give in Section 3 a simple alternative O(log n)-algorithm for the
general problem of connected regions, which does not require the regions to be
simple polygons.

There are several definitions of fatness in the literature and the following is
commonly used for the problem we consider [3,5,16].

Definition 1. An object O ⊆ R
2 is said to be α-fat if for any disk D which does

not fully contain O and whose center lies in O, the area of the intersection of O
and D is at least 1/α times the area of D.

Notice for example that the plane R
2 has fatness 1, a halfspace has fatness 2

and a disk has fatness 4.

On Approximating the TSP with Intersecting Neighborhoods 215

2 Intersecting Convex Fat Objects - The Discrete Case

We denote the given set of objects by O = {O1, . . . , On}. In this section, we
assume that each object can be hit only at specified points, i.e., we are given
a set of points P and the required TSP tour must hit Oi at some point in
Si ≡ P ∩ Oi. We consider the case when O1, . . . , On are intersecting convex α-
fat objects of the same (or comparable) diameter δ. We assume P = S1∪. . .∪Sn.
We first present the algorithm. In subsection 2.2, we derive a packing lemma that
will be used in analyzing the performance of the algorithm. We briefly comment
on the analysis of the approximation ratio in subsection 2.3.

2.1 The Algorithm

A subset P ′ ⊆ P is called a hitting pointset for O if P ′ ∩ Si �= ∅ for i = 1, . . . , n
and a minimal hitting pointset if for every x ∈ P ′ there exists an i ∈ [n] such
that (P ′ \ {x}) ∩ Si = ∅. A minimal hitting set can be found by the natural
greedy algorithm: Set P ′ = P , and keep deleting points from P ′ as long as it is
still a hitting set. An axis-aligned square B is called a covering box for the set
of objects O if B contains a hitting pointset for O, and a minimum covering box
if it is smallest size amongst all such covering boxes. Since a minimum covering
box is determined by at most three points of P on its boundary, there are only
O(|P |3) such candidates. By enumerating over all such boxes, and verifying if
they contain a hitting set, one can compute a minimum covering box.

Consider the following algorithm for the Group TSP problem on sets S1, . . . , Sn

(which is essentially the same as the one used in [5] for unit disks):

Algorithm B:
(1) Compute a minimum covering box B of O.
(2) Find a minimal hitting pointset P ′ ⊆ P for O inside B.
(3) Compute a (1 + ε)-approximate TSP tour on P ′.

The last step can be done efficiently for any ε > 0 using techniques from [2]
and [11].

Theorem 1. Algorithm B is an O(α3)-approximation algorithm for the Group
TSP problem, with convex and α-fat neighborhoods of the same diameter.

To analyze the performance of the algorithm, we need to show that, even though
a collection of convex fat objects, with exactly one point in each, might be
intersecting, they still exhibit a packing property that admits a ”short tour”
visiting all the points. This is the content of the packing lemmas, stated and
proved in the next section.

2.2 Two Packing Lemmas

We give two lemmas which are of independent interest. The first relates the
length of a TSP tour through a set of points in the plane to the distribution
of the points. Call a circular sector with head angle θ ≤ π, and radius γ a
(γ, θ)-sector.

216 K. Elbassioni, A.V. Fishkin, and R. Sitters

ξ1

Δ′′(p)

Δ′(p)

pθ

θ

jth slap

ξ7
ξ8

ξ3 ξ2ξ4

ξ6

ξ5

ξ2

Fig. 1. (a) Partitioning the covering box. (b) A (βL, θ)-sector S(p) ∈ Si,j .

Lemma 1. Let P = {p1, . . . , pn} ⊆ R
2 be a a set of points with covering box

of size L, and β > 0 and 0 < θ < π/2 be two constants. Then there exists an
absolute constant c = c(β, θ) such that the following holds:

If for every point p ∈ P there is a (βL, θ)-sector centered at p which contains
no other point from P , then the optimum TSP tour on P has length |Opt| ≤ cL.

Proof. Let P be a point set satisfying the conditions of the lemma, i.e. for every
point p ∈ P there is a (βL, θ)-sector S(p), centered at p, which contains no other
point from P . We begin by partitioning the set of sectors S = {S(p) : p ∈ P}
into k = hg groups, depending on their orientations and locations, where h =
�2π/θ� and g = �

√
2/(β cos θ)�. The precise partitioning is done as follows. Fix

h directions, ξ1, . . . , ξh, where ξi, for i ∈ [h], makes an angle of (i − 1)θ with the
horizontal direction. For each direction ξi, we partition the covering box, into at
most g parallel slabs ρi,j (j = 1 . . . g), along the direction ξ⊥i orthogonal to ξi.
See Figure 1-(a) for an example. For i ∈ [h] and j ∈ [g], let Si,j ⊆ S be the set
of sectors S(p) with the following two properties (see Figure 1-(b)): (i) the line
through p with direction ξi intersects the circular arc part of S(p), and (ii) p lies
in the jth slab with respect to the direction of ξ⊥i .

Since h = �2π/θ� we can find for each p ∈ P a direction ξi such that (i) is
satisfied. Clearly (ii) is satisfied for some value j given the direction ξi for p.
Hence,

⋃
i∈[h], j∈[g] Si,j = S.

Claim 1. Fix i ∈ [h] and j ∈ [g]. Then there exists a path T on the set of points
{p ∈ P : S(p) ∈ Si,j} of length at most (4

√
2/ sin(θ/2) +

√
2)L.

Proof. By performing the appropriate rotation, we may assume without loss of
generality that ξi is the vertical direction, and thus the slab ρi,j determined by
the pair (i, j) is horizontal. Note that, since the diameter of the covering box is at

On Approximating the TSP with Intersecting Neighborhoods 217

most
√

2L, the width of such a slab is at most
√

2L/g ≤ Lβ cos θ. In particular,
if we consider any point p ∈ P such that S(p) ∈ Si,j , then the circular arc of
S(p) lies completely outside ρi,j (see Figure 1-(b)), and thus the boundary of the
intersection of S(p) and ρi,j is a triangle Δ(p), with head angle θ. A line passing
through p parallel to the direction ξi divides this triangle into two, one on the
left Δ′(p) and one on the right Δ′′(p) of the line (see Figure 1-(b)). Clearly, the
angle with head p in one of these triangles is at least θ/2. Now we partition
Si,j further into two groups of sectors: S′i,j is the set of sectors S(p) whose left
triangle Δ′(p) makes an angle of at least θ/2 with the vertical direction, and
S′′i,j = S \ S′i,j .

We claim that there is a path λ connecting all the points in P ′ = {p ∈
P : S(p) ∈ S′i,j}, with total length

|λ| ≤
√

2L

(
1 + cos(θ/2)

sin(θ/2)

)
≤ 2

√
2L/ sin(θ/2). (1)

To see this, we may assume without loss of generality that each triangle Δ′(p),
for p ∈ P ′ makes an angle of exactly θ/2 with the vertical direction. The path
λ is obtained by traversing the boundary of these triangles from left to right as
shown in Figure 2-(a). By projecting the sides of each such triangle on the big
dotted triangle Δ0 containing all of them (see Figure 2-(a)), we observe that the
sum of all these lengths is at most the sum of the two non-horizontal sides of Δ0,
which in turn implies 1. Applying the same for S′′i,j and connecting both paths
by a segment of length at most

√
2L implies Claim 1. ��

Now construct an Eulerian graph by taking two copies of the minimum covering
box, together with the hg paths of the claim above, but extended to start and
end at the covering box, which adds at most L for each slab. The total length is
at most

8L +
(
4
√

2/ sin(θ/2) +
√

2 + 1
)

Lhg,

where h = �2π/θ� and g = �
√

2/(β cos θ)�. ��

Notice that the upper bound in the previous lemma does not depend on the
number of points. An infinite set of points could still satisfy the condition of the
lemma. The next lemma is the analogue for the TSP with intersecting neighbor-
hoods.

Lemma 2. Let B be a box of size L containing a set of points P = {p1, . . . , pn} ⊆
R

2. Assume that there is a collection of n convex α-fat objects O = {O1, . . . , On},
each of diameter δ, such that (i) each point p ∈ P is contained in exactly one
object O(p) ∈ O (ii) each object O contains exactly one point p(O) ∈ P . Then
there exists a tour T on P with length O(L2α2/δ).

Proof. Consider an object O with its unique point p = p(O) ∈ P . We will prove
that there is (βL, θ)-sector with center p that lies completely inside O, with
θ = 2π/(3α) and β = δ/(4L).

218 K. Elbassioni, A.V. Fishkin, and R. Sitters

pO(p)

vu
s R

y ≤ L
√

2
tan(θ/2)

x ≤ L
√

2

θ
2

z ≤ L
√

2
sin(θ/2)

Δ0

θ
2

θ
2

Tour λ

p′

D

R
2

Fig. 2. (a) Bounding the tour length in the proof of Lemma 1. (b) Illustration for the
proof of Lemma 2.

Let p′ be a point in O at maximum distance, say R, from p (See Figure 2(b)).
Obviously, R ≥ δ/2. Let s be the point in the middle of line segment pp′ and
consider a disk D with center p′ and radius R/2. Let u and v be points in O on
the circumference of D such that the angle 〈upv〉 is maximum. Finally, denote
by S the (R, φ)-sector passing through u and v, with center p, radius R, and
head angle upv, where φ = 〈upv〉.

Denote by A(U) the area of a given region U of the plane. By definition of
fatness we have A(O ∩ D) ≥ π(R/2)2/α. Further, A(S ∩ D) ≤ 3/4 · A(S) =
3/4 ·R2φ/2. It follows from the definition of u, v, and p′, and the convexity of O
that O ∩ D ⊆ S ∩ D. Therefore, π(R/2)2/α ≤ A(O ∩ D) ≤ A(S ∩ D) ≤ 3R2φ/8.
Hence, π/α ≤ 3φ/2, implying φ ≥ 2π/(3α). The sector with center p, radius R/2
and head angle upv is contained in O.

Now we apply Lemma 1 with θ = 2π/(3α) and β = δ/(4L). Note that if
α → ∞, then cos(θ/2) → 1 and sin(θ/2) = O(1/α). We conclude that the length
of the optimum tour is O(L2α2/δ). ��

2.3 Analysis of the Approximation Ratio

The analysis is similar to the one given in [5] modulo Lemma 2 stated above.
We only give a sketch here and leave the details for the full version.

Take a maximal independent set of objects O′ ⊆ O, i.e., a maximal collection
of k = |O′| pairwise disjoint objects. If we pick an arbitrary point in each of
these objects and consider an optimal TSP tour on this set, then its length is at
most OPT+O(k), where δ is hidden in the constant. Since the independent set
is maximal we can partition O in k clusters and by Lemma 2 we can connect

On Approximating the TSP with Intersecting Neighborhoods 219

all objects in one cluster by a tour of length O(α2). The lemma below is taken
from [5] and will also be used in the proof of Theorem 3, part (ii). It sates that
OPT= Ω(|O′|/α). Hence, Theorem 1 follows.

Lemma 3 ([5]). The length of the shortest path connecting k disjoint α-fat
objects in R

2 is at least (k/α − 1)πδ/4, where δ is the diameter of the smallest
object.

3 General Objects - The Continuous Case

De Berg et al. [3] prove that the TSP with connected neighborhoods problem
is APX-hard. The constant was raised to 2 − ε by Safra and Schwartz [14].
Both their reduction use curved objects of varying sizes. We can show that the
problem is even APX-hard for the very restricted case where all objects are
line-segments of nearly the same length. The proof is omitted in this abstract.

Theorem 2. The TSP with neighborhood problem is APX-hard, even if all ob-
jects are line segments of approximately the same length, i.e, the lengths differ
by an arbitrarily small constant factor.

If we do not restrict the shape of the objects then no better approximation
algorithm than O(log n) is known. Gudmundsson and Levcpoulos [7] used a
guillotine subdivision of the plane to obtain an algorithm which runs in time
N2 log N , where N is the total number of vertices of the polygonal objects. Here,
we give a very simple approximation algorithm, with the same approximation
guarantee, which does not require the objects to be simple polygons.

As before, we denote the objects by O1, . . . , On and their respective diameters
by δ1, . . . , δn.

Lemma 4. Let O be a set of connected objects with diameter at least δ and
a minimum covering box of size at most L. Then there exists a TSP tour T
connecting all the objects in O of length |T | ≤ 4

[
L
δ

√
2 + 1

]
L.

Proof. Consider covering box B of size at most L. A grid G of granularity δ/
√

2
in B covers all the objects in O, and the total length of all the lines in G is at
most 2(L

√
2/δ + 1)L. By doubling each line of G we can build a TSP tour with

length as stated in the lemma. ��

For two objects O, O′ ∈ O, define their distance d(O, O′) = min{‖x − y‖ : x ∈
O, y ∈ O′}, and for an object O ∈ O and r ∈ R+, define the r-neighborhood of
O to be N(O, r) = {O′ ∈ O : d(O, O′) ≤ r}. Finally, we fix a constant c and
for i = 1, . . . , n, define the neighborhood of Oi as N(Oi) = N(Oi, cδi).

Algorithm A:
(1) For i = 1, 2, . . ., let Qi be the smallest object in O not belonging to N(Q1)∪

N(Q2) ∪ . . . ∪ N(Qi−1). Let k be the largest value of i for which such Qi

exists.

220 K. Elbassioni, A.V. Fishkin, and R. Sitters

(2) Let B be a minimum covering box for O, and Bi be a minimum covering
box for {O ∩ B : O ∈ N(Qi)}, for i = 1, . . . , k.

(3) Pick arbitrary points pi ∈ Qi ∩ Bi, for i = 1, . . . , k. Construct a (1 + ε)-
approximate TSP tour T0 on {p1, . . . pk}.

(4) For i = 1, . . . , k, let Ti be the TSP tour guaranteed by Lemma 4 on the set
of objects N(Qi) with the covering box Bi.

(5) Combine the tours T0, T1, . . . , Tk into a single TSP tour T .
(6) Output the minimum of T and the tour implied by Lemma 4 on the set O.

Step (5) above can be done by adding two copies of a line segment connecting
pi to the closest point of Ti, for i = 1, . . . , k. This yields an Eulerian tour that
can be shortcut to a TSP tour T .

Theorem 3. (i) Algorithm A gives an O(log n)-approximate solution for the
TSP with connected neighborhoods.

(ii) If all the neighborhoods have the same (or comparable) diameters, then A is
an O(1)-approximation algorithm.

Proof. Let Opt and Opt′ be respectively optimal TSP tours on O and O′ =
{Q1, . . . , Qk}. Note that δ1 ≤ δ2 ≤ . . . ≤ δk. Let L, L1, . . . , Lk be respectively
the sizes of the minimum covering box B, B1, . . . , Bk.

(i) We first establish the following claim.

Claim 2. If k ≥ 1 then |Opt′| ≥ c
∑k−1

i=1 δi/ log k.

Proof. Fix an orientation of Opt′ and define Wi as the arc of this directed tour
(that connects exactly 2 objects in O′) starting from Qi. For any i = 1, . . . , k,
let Qh(i) be an object with smallest diameter among the two objects on the
arc Wi. Then for i = 1, . . . , k, |Wi| ≥ cδh(i). (This follows from the fact that
if Wi connects Qh(i) and Qj then Qj �∈ N(Qh(i)).) Consequently, |Opt′| =
∑k

i=1 |Wi| ≥ c
∑k

i=1 δh(i). Let O′′ = O′ \ {Qh(i) : i = 1, . . . , k}. Note that
|O′′| ≤ |O′|/2. Moreover, if Opt′′ is an optimum TSP tour connecting the objects
in O′′ then |Opt′′| ≤ |Opt′|. Thus applying the above argument to O′′, we
obtain |Opt′′| ≥ c

∑
i:Qi∈O′′ δh′(i), where h′(i) is the index of the object with

smallest diameter among the two consecutive objects on the ith part of optimal
path Opt′′. Next we let O′′′ = O′′ \ {Qh′(i) : i s.t. Qi ∈ O′′} and note again
that |O′′′| ≤ |O′′|/2. This process can continue for at most log k steps leading
to at most log k lower bounds on |Opt|. Adding together these inequalities and
noting that |Opt′| ≥ |Opt′′| ≥ |Opt′′′| ≥. . . , we arrive at the bound stated in
the claim. ��

Claim 3. |T0| ≤ (1 + ε)
[
4|Opt| + 2

∑k−1
i=1 δi

]
.

Proof. Let Opt′′ be an optimum tour on {Q1, . . . , Qk−1} and qi be a point in
Qi ∩Opt′′, for i = 1, . . . , k − 1. Then the union of Opt′′ with two copies of each

On Approximating the TSP with Intersecting Neighborhoods 221

of the segments piqi, for i = 1, . . . , k − 1, and p1pk, forms a connected Eulerian
graph that can be shortcut to a TSP tour T ′ on {p1, . . . , pk} of length

|T ′| ≤ |Opt′′| + 2
k−1∑

i=1

|piqi| + 2|p1pk| ≤ |Opt′′| + 2
k−1∑

i=1

δi + 2|p1pk|

≤ (1 + 2
√

2)|Opt| + 2
k−1∑

i=1

δi,

since |Opt′′| ≤ |Opt|, pi, qi ∈ Qi, p1, pk ∈ B, and thus |piqi| ≤ δi and |p1pk| ≤√
2L ≤

√
2|Opt|. ��

From the definition of Q1, . . . , Qk, it follows that the minimum diameter of
objects in the set N(Qi) is δi. It also follows from the definition of N(Qi) that
Li ≤ (2c + 1)δi. Thus Lemma 4 gives, for i = 1, . . . , k,

|Ti| ≤ 4
[
Li

δi

√
2 + 1

]
Li ≤ 4[(2c + 1)

√
2 + 1]Li = O(Li). (2)

The length of the tour T returned by the algorithm can be bounded as follows:

|T | ≤ |T0| +
k∑

i=1

|Ti| + 2
k∑

i=1

Li ≤ O(1)|Opt| + O(
k−1∑

i=1

δi) = O(log k)|Opt|,

using Claims 2 and 3, Li ≤ (2c + 1)δi, and Lk ≤ L ≤ |Opt|.

(ii) Let δ be the diameter of the smallest object, and assume that the diameters
of all other objects are bounded by ρδ, for some constant ρ ≥ 1. We require that
the constant c used in the definition of the neighborhood is at least

√
2(1 + ρ).

In case the objects have comparable diameters, we can strengthen Claim 2 as
follows.

Claim 4. |Opt′| ≥
[

k
4 − 1

]
πδ
4

√
2.

Proof. Let Di, for i = 1, . . . , k, be a disk of diameter δi

√
2, enclosing object Qi.

We observe that, since c ≥ 1+ρ, all the disks are disjoint. (Otherwise, there exist
two indices i < j, such that Di∩Dj �= ∅, implying that d(Qi, Qj) ≤

√
2(δi+δj) ≤√

2(1 + ρ)δi ≤ cδi, and contradicting the fact that Qj �∈ N(Qi).) Thus we can
apply Lemma 3 to the disks D1, . . . , Dk, (using α = 4 for disks) to conclude that
any TSP tour connecting these disks, and hence connecting the objects inside
them, must have length bounded as stated in the claim. ��
To bound the tour T returned by the algorithm, we observe that |T0| ≤ (1 +
ε)(|Opt| + 2

∑k
i=1 δi), and combine this with 2 and Claim 4 to get

|T | ≤ |T0| +
k∑

i=1

|Ti| + 2
k∑

i=1

Li = O(ρ)|Opt|,

assuming that L ≥ δ (otherwise, a tour of length at most 4(
√

2 + 1)|Opt| is
guaranteed by Lemma 4 and Step (6) of the algorithm). ��

222 K. Elbassioni, A.V. Fishkin, and R. Sitters

References

1. E. M. Arkin and R. Hassin, Approximation algorithms for the geometric covering
salesman problem., Discrete Applied Mathematics 55 (1994), no. 3, 197–218.

2. S. Arora, Nearly linear time approximation schemes for euclidean TSP and other
geometric problems, J. ACM 45 (1998), no. 5, 1–30.

3. M. de Berg, J. Gudmundsson, M.J. Katz, C. Levcopoulos, M.H. Overmars, and
A. F. van der Stappen, TSP with Neighborhoods of varying size, J. of Algorithms
57 (2005), 22–36.

4. A. Dumitrescu and J.S.B. Mitchell, Approximation algorithms for TSP with neigh-
borhoods in the plane, J. Algorithms 48 (2003), no. 1, 135–159.

5. K. Elbassioni, A.V. Fishkin, N. Mustafa, and R. Sitters, Approximation algorithms
for Euclidean group TSP., Proc. 15th Internat. Coll. on Automata, Languages
and Programming, Lecture Notes in Computer Science, vol. 3580, Springer, 2005,
pp. 1115–1126.

6. N. Garg, G. Konjevod, and R. Ravi, A polylogarithmic approximation algorithm
for the group Steiner tree problem, J. Algorithms 37 (2000), no. 1, 66–84.

7. J. Gudmundsson and C. Levcopoulos, A fast approximation algorithm for TSP
with neighborhoods., Nordic J. Computing 6 (1999), no. 4, 469–488.

8. E. Halperin and R. Krauthgamer, Polylogarithmic inapproximability, Proc. 35th.
Annual ACM Symposium on Theory of Computing, 2003, pp. 585–594.

9. C.S. Mata and J.S.B. Mitchell, Approximation algorithms for geometric tour and
network design problems (extended abstract)., Proc. 11th. Annual ACM Symposium
on Computational Geometry, 1995, pp. 360–369.

10. J.S.B. Mitchel, Handbook of computational geometry, ch. Geometric shortest paths
and network optimization, pp. 633–701, Elsevier, North-Holland, Amsterdam,
2000.

11. J.S.B. Mitchell, Guillotine subdivions approximate polygonal subdivisons: A sim-
ple polynomial-time approximation scheme for geometric TSP, k-MST and related
problems, SIAM J. Computing 28 (1999), no. 4, 1298–1309.

12. , A PTAS for TSP with neighborhoods among fat regions in the plane, Proc.
18th. Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, To appear.

13. G. Reich and P. Widmayer, Beyond Steiner’s problem: a VLSI oriented generaliza-
tion, Proc. 15th. Int. Workshop on Graph-theoretic Concepts in Computer Science,
Springer, 1990, pp. 196–210.

14. S. Safra and O. Schwartz, On the complexity of approximating TSP with Neighbor-
hoods and related problems., Proc. 11th. Annual European Symposium on Algo-
rithms, Lecture Notes in Computer Science, vol. 2832, Springer, 2003, pp. 446–458.

15. P. Slavik, The errand scheduling problem, Tech. report, SUNY, Buffalo, USA, 1997.
16. A. F. van der Stappen, Motion planning amidst fat obstacles, Ph.d. dissertation,

Utrecht University, Utrecht, the Netherlands, 1994.

Negation-Limited Complexity of

Parity and Inverters

Kazuo Iwama1, Hiroki Morizumi1, and Jun Tarui2

1 Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
{iwama, morizumi}@kuis.kyoto-u.ac.jp

2 Department of Information and Communication Engineering,
University of Electro-Communications, Chofu, Tokyo 182-8585, Japan

tarui@ice.uec.ac.jp

Abstract. We give improved lower bounds for the size of negation-
limited circuits computing Parity and for the size of negation-limited
inverters. An inverter is a circuit with inputs x1, . . . , xn and outputs
¬x1, . . . , ¬xn. We show that (1) For n = 2r − 1, circuits computing Par-
ity with r − 1 NOT gates have size at least 6n − log2(n + 1) − O(1)
and (2) For n = 2r − 1, inverters with r NOT gates have size at least
8n − log2(n + 1) − O(1). We derive our bounds above by considering
the minimum size of a circuit with at most r NOT gates that computes
Parity for sorted inputs x1 ≥ · · · ≥ xn. For an arbitrary r, we com-
pletely determine the minimum size. For odd n, it is 2n − r − 2 for
�log2(n + 1)� − 1 ≤ r ≤ n/2, and it is �3/2 n� − 1 for r ≥ n/2. We
also determine the minimum size of an inverter for sorted inputs with at
most r NOT gates. It is 4n − 3r for �log2(n + 1)� ≤ r ≤ n. In particu-
lar, the negation-limited inverter for sorted inputs due to Fischer, which
is a core component in all the known constructions of negation-limited
inverters, is shown to have the minimum possible size. Our fairly simple
lower bound proofs use gate elimination arguments.

1 Introduction and Summary

Although exponential lower bounds are known [4], [6] for the monotone circuit
size, at present we cannot prove a superlinear lower bound for the size of circuits
computing an explicit Boolean function; the largest known lower bound [9], [7]
is 5n − o(n). It is natural to ask: What happens if we allow a limited number
of NOT gates? The hope is that by the study of negation-limited complexity of
Boolean functions under various scenarios ([3], [14], [13], [2], [1], [11]), we obtain
a better understanding of the power of NOT gates.

An inverter for n Boolean inputs x1, . . . , xn is a circuit whose outputs are the
negations of the inputs, i.e., ¬x1, . . . , ¬xn. We denote this n-input n-output func-
tion by Invn. Beals, Nishino, and Tanaka [3] have shown that one can construct
a size-O(n log n) depth-O(log n) inverter with �log2(n + 1)� NOT gates.

Following previous works, which we will explain below, we consider the cir-
cuit complexity of Parityn and Invn with a tightly limited number of NOT gates:
We assume that n = 2r − 1 and we consider computations of Parityn and Invn

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 223–232, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

224 K. Iwama, H. Morizumi, and J. Tarui

with r − 1 and r NOT gates respectively. For Parityn and Invn, n = 2r − 1
is the maximum n such that computations are possible with r − 1 and r NOT
gates respectively. An r-circuit is a circuit with at most r NOT gates. For a
Boolean function f , let sizer(f) and sizemono(f) respectively denote the mini-
mum size of r-circuits and monotone circuits computing f . The Boolean func-
tion Parityn(x1, . . . , xn) is 1 iff

∑
xi ≡ 1 (mod 2), and the Boolean function

Majorityn(x1, . . . , xn) is 1 iff
∑

xi ≥ n/2. We give the following lower bounds.

Theorem 1. For n = 2r − 1,

sizer−1(Parityn) ≥ 2n − log2(n + 1) − 1 + sizemono(Majorityn)
≥ 6n − log2(n + 1) − O(1).

Theorem 2. For n = 2r − 1,

sizer(Invn) ≥ 4n − log2(n + 1) + sizemono(Majorityn)
≥ 8n − log2(n + 1) − O(1).

Now we explain the previously known lower bounds shown in Table 1, and how
we obtain our improvements focusing on Parityn.

Let C be a circuit computing Parityn with a tightly limited number of NOT
gates as in Theorem 1. Then, the first NOT gate N , i.e., a unique NOT gate
that is closest to the inputs, must compute ¬Majorityn, and the subcircuit C′

at the immediate predecessor of N is a monotone circuit computing Majorityn.
Long [8] has shown that such a monotone circuit has size at least 4n − O(1):

Proposition 1. ([8]) sizemono(Majorityn) ≥ 4n − O(1).

We want to show that in addition to those gates in the subcircuit C′, the circuit C
must contain a certain number of gates; i.e., we want to show as good a lower
bound as possible for the number of gates in C − C′. Tanaka, Nishino, and
Beals [14] showed that there are at least 3 log2(n+1) additional gates; Sung [12]
and Sung and Tanaka [13] showed that there are at least about 1.33n additional
gates; we show that there are at least about 2n additional gates. We show this
in the following way.

We argue that a part of C−C′ must be computing what we call a sorted parity
function, and we show that a circuit computing a sorted parity function has size
at least about 2n when the number of NOT gates is tightly limited. A Boolean

Table 1. The lower bounds of previous works and this paper

Parity Inverter

Tanaka-Nishino-Beals [14] 4n + 3 log2(n + 1) − O(1)

Beals-Nishino-Tanaka [3] 5n + 3 log2(n + 1) − O(1)

Sung [12]/Sung-Tanaka [13] 5.33n + log2(n + 1)/3 − O(1) 7.33n + log2(n + 1)/3 − O(1)

this paper 6n − log2(n + 1) − O(1) 8n − log2(n + 1) − O(1)

Negation-Limited Complexity of Parity and Inverters 225

function f : {0, 1}n → {0, 1} is a sorted parity function if for all sorted inputs
x1 ≥ x2 ≥ · · · ≥ xn, f(x1, . . . , xn) = Parity(x1, . . . , xn). A function f is a sorted
¬parity function if for all sorted inputs x1 ≥ x2 ≥ · · · ≥ xn, f(x1, . . . , xn) =
¬Parity(x1, . . . , xn).

In fact, we completely determine the minimum size of a circuit with at most r
NOT gates computing Sorted Parityn and Sorted ¬Parityn, where a parameter r
is an arbitrary nonnegative integer. From about 2n, the minimum size decreases
by 1 with each additional NOT gate. This decrease stops at about 1.5n: one
cannot make a circuit smaller using more NOT gates.

We also consider the minimum size of an inverter for sorted inputs , i.e., a
circuit with Boolean inputs x1, . . . , xn that outputs ¬x1, . . . , ¬xn for all the
sorted inputs x1 ≥ · · · ≥ xn. The negation-limited inverter for sorted inputs
due to Fischer [5] (shown in Figure 3 in the last page) is a core component in
all the known constructions of negations-limited inverters [3], [14], [5]. We again
completely determine the minimum size of an inverter for sorted inputs with at
most r NOT gates for any r. In particular, we show that Fischer’s inverter for
sorted inputs has the minimum possible size.

We think that our complete determination of sizer(Sorted Parityn) and
sizer(Sorted Invn) are interesting in their own. For the trade-off of size versus
the number of NOT gates, an asymptotically tight result has been shown by
Amano, Maruoka, and Tarui [2]. They showed that for 0 ≤ r ≤ log2 log2 n, the
minimum size of a circuit computing Merge with r NOT gates is Θ(n log n/2r);
thus they showed a smooth trade-off between the monotone case of Θ(n log n)
and the general case of Θ(n). But as far as we know, our result for Sorted Parity
and inverters for sorted inputs is the first one that establishes an exact trade-off.

Our fairly simple lower bound proofs use gate elimination arguments in a
somewhat novel way. The following are precise statements of our results.
Theorem 3. The size and the number of AND/OR/NOT gates in smallest cir-
cuits with at most r NOT gates that compute Sorted Parityn and Sorted ¬Parityn

are as shown in Table 2 and Table 3. In particular, for n = 2s − 1, a smallest
circuit with s − 1 NOT gates computing Sorted Parityn has size 2n − s − 1 =
2n − log2(n + 1) − 1.
Theorem 4. For �log2(n + 1)� ≤ r ≤ n, a smallest inverter for sorted inputs
with at most r NOT gates has size 4n − 3r consisting of 2n − 2r AND gates,
2n − 2r OR gates, and r NOT gates. In particular, for n = 2r − 1, a smallest
inverter for sorted inputs with r NOT gates has size 4n−3r = 4n−3 log2(n+1).

Table 2. the size and the number of AND/OR/NOT gates in a smallest circuit with
≤ r NOTs computing Sorted Parity

size AND OR NOT

�n/2� ≤ r �3/2 n� − 1 �n/2� �n/2� − 1 �n/2�
�log2(n + 1)� − 1 ≤ r ≤ �n/2�, n odd 2n − r − 2 n − r − 1 n − r − 1 r

�log2(n + 1)� − 1 ≤ r ≤ �n/2�, n even 2n − r − 1 n − r n − r − 1 r

r < �log2(n + 1)� − 1 not computable

226 K. Iwama, H. Morizumi, and J. Tarui

Table 3. the size and the number of AND/OR/NOT gates in a smallest circuit with
≤ r NOTs computing Sorted ¬Parity

size AND OR NOT

�n/2� ≤ r �3/2 n� − 1 �n/2� − 1 �n/2� �n/2�
�log2(n + 2)� − 1 ≤ r ≤ �n/2�, n odd 2n − r n − r n − r r

�log2(n + 2)� − 1 ≤ r ≤ �n/2�, n even 2n − r − 1 n − r − 1 n − r r

r < �log2(n + 2)� − 1 not computable

2 Lower Bounds for Parity and Inverters

2.1 Preliminaries

Markov [10], [5] precisely determined the minimum number of NOT gates neces-
sary to compute a Boolean function. We state a special case of Markov’s result
relevant to our work, and include a proof sketch.

Proposition 2. (Markov [10], [5]) The maximum n such that Invn is computable
by an r-circuit is n = 2r − 1. The maximum n such that Parityn is computable
by an r-circuit is n = 2r+1 − 1.

Proof Sketch. We only show the upper bounds for n; we show that if Invn

is computable by some r-circuit, then n ≤ 2r − 1; a similar argument yields
the upper bound for Parityn. Proceed by induction on r, and for the sake of
contradiction assume that C is an r-circuit computing Invn for n = 2r. Let N be
a NOT gate in C such that if G is the immediate predecessor of N , i.e., there is a
wire from G to N , then the subcircuit at G is monotone. An arbitrary monotone
function f : {0, 1}m → {0, 1} has a minterm or a maxterm of size ≤ �m/2�, i.e.,
there are �m/2� inputs xi’s such that fixing xi’s to be 1 (or 0) fix f to be 1 (or
0). Fixing such a term for G fixes N , and yields an (r − 1)-circuit computing
Invn/2; a contradiction. �	

Let C be an r-circuit computing Invn for n = 2r − 1. Let G1 be the immediate
predecessor of a NOT gate N1 such that the subcircuit at G1 is monotone. By
a similar analysis we can see that all the maxterms and the minterms of G have
size (n + 1)/2, i.e., G computes Majorityn. By an inductive analysis we can see
that the immediate predecessors G1, . . . , Gr of r NOT gates are such that for
each x ∈ {0, 1}n, G1(x) · · · Gr(x) is the binary representation of |{i : xi = 1}|.
An (r − 1)-circuit computing Parityn for n = 2r − 1 has a similar property:
G1(x) · · · Gr−1(x) are the r−1 significant bits of the binary representation. What
we have just stated about Gi’s is due to Beals, Nishino, and Tanaka [3].

We will use the following result by Sung and Tanaka[13]. We include a proof
sketch in the appendix.

Lemma 1. ([13]) For n = 2r − 1, sizer(Invn) ≥ sizer−1(Parityn) + 2n + 1.

Negation-Limited Complexity of Parity and Inverters 227

2.2 Crossing Wires

We introduce the notion of crossing wire and show simple lemmas. The lemmas
are not strictly necessary for our proofs of the theorems, but their statements
and proofs should be helpful for understanding our framework, and we think
that the lemmas may be useful for further investigations of negation-limited cir-
cuits. A similar notion has been introduced in [12] as a boundary gate. We focus
on wires as opposed to gates.

Fix a circuit C. A gate g in C is black if there is a path from some input to
g going through a NOT gate, including the case where g itself is a NOT gate.
Otherwise, g is white; inputs x1, . . . , xn are white.

Say that a wire going from g to h is a crossing wire if g is white and h is
black. The white gates and inputs constitute the monotone part of C, and the
black gates constitute the nonmonotone part .

Lemma 2. Distinct crossing wires go into distinct gates.

Proof. Let w1 from g1 to h1 and w2 from g2 to h2 be distinct crossing wires.
By definition, g1 and g2 are white. If h1 = h2, this single gate is white; this
contradicts the assumption that w1 and w2 are crossing wires. �	

Lemma 3. Let C be a circuit computing a nonmonotone Boolean function f .
Suppose that there are a0, . . . , ak ∈ {0, 1}n such that a0 < · · · < ak and f(ai) �=
f(ai+1) for 0 ≤ i < k. Then, the number of crossing wires in C are at least k.

Proof. The output gate T of a nonmonotone circuit C is black. Hence any
path in C from an input xi to T contains a crossing wire. If the values on all
crossing wires remain the same, then the output remains the same. The value
of a crossing wire changes only monotonically. The lemma follows. �	
We note that the two lemmas above immediately yield an n lower bound for the
size of nonmonotone area of circuits computing Parityn and Invn.

2.3 Proofs of Theorems 1 and 2

We prove Theorems 1 and 2 using the lower bound for Sorted Parityn in Theo-
rem 3, which will be proved in Section 3.

Proof of Theorem 1. Let C be an (r − 1)-circuit that computes Parityn for
n = 2r − 1. As explained after Proposition 2, there is a NOT gate N in C such
that the subcircuit C′ at its immediate predecessor is a monotone circuit com-
puting Majorityn. All the gates in C′ are white, and by Proposition 1 the num-
ber of them is at least sizemono(Majorityn) ≥ 4n − O(1).

We can convert the nonmonotone, black part of C into a circuit computing
Sorted Parity for new inputs y1, . . . , yn as follows. Consider the chain 〈a0 =
0n, a1 = 10n−1, . . . , an = 1n〉, and the computation of C on a0, . . . , an. When
the input changes from ai−1 to ai (1 ≤ i ≤ n), some crossing wires change the
value from 0 to 1. Let Wi be the set of such crossing wires. Note that each Wi

is nonempty, and by Lemma 2 the sets Wi’s are mutually disjoint.

228 K. Iwama, H. Morizumi, and J. Tarui

Connect a new input yi to all the gates g in C such that some crossing wire
w in Wi goes into g. Let D be the circuit thus obtained. Clearly, D computes
Sorted Parity for y1 ≥ · · · ≥ yn, and the number of gates in D is a lower bound
for the number of black gates in C. By the lower bound for Sorted Parityn in
Theorem 3, the size of D is at least 2n − (r − 1) − 2 = 2n − log2(n + 1) − 1.

Adding up the lower bounds for the number of white gates in C and the num-
ber of black gates in C yields the theorem. �	
Theorem 2 immediately follows from Theorem 1 and Lemma 1. We note that
instead of using Lemma 1, we can argue similarly as above using the lower bound
in Theorem 4, and obtain a lower bound that is smaller by 2 log2 n than the
bound in Theorem 2.

3 Sorted Input Case: The Minimum Size Determined

The upper bounds of Theorem 3 and Theorem 4 can be shown by straightfor-
ward constructions as we will explain in section 3.2. We prove the lower bounds
of Theorem 3 and Theorem 4 in section 3.1.

3.1 Lower Bounds

We use well-known gate elimination arguments: We fix xi, one at a time, to be
0/1 and eliminate some gates. A gate g is eliminated if its value is fixed or else
the value of one wire coming into g is fixed. In the latter case, the other input
wire of g replaces all the out-going wires of g, and g is eliminated. A lower bound
for the total number of eliminations is a lower bound for the number of gates in
a circuit.

Proof of the lower bound of Theorem 3. Assume that n is odd and let C be
a circuit computing Sorted Parityn for x1 ≥ · · · ≥ xn at the top output gate T .
Starting from (0, 0, . . . , 0), consider flipping and fixing xi = 1 for i = 1, . . . , n−1,
in this order one at a time: Fix xi = 1 after x1, . . . , xi−1 have been fixed and
remain to be 1. Each time we flip and fix xi = 1, the value of T changes flipping
from 0 to 1 or 1 to 0. There must be a path p from xi to T such that all the
gates on p flip the values when we fix xi = 1. Call such a path a propagating
path with respect to xi.

Consider fixing xi = 1. Let p be a propagating path for xi. Consider the gates
on p from xi towards T . If all the gates on p (including T) are ORs, fixing xi = 1
will fix T = 1; this is a contradiction. Thus there is either an AND or a NOT
in p. Let g be the first non-OR gate in p. All the OR gates, if any, before g are
fixed to be 1 once we fix xi = 1. Thus one input wire of g is fixed to be 1.
(1) If g is AND, g is eliminated.
(2) If g is NOT, g is fixed to be 0 and is eliminated. In this case, there must be
at least one AND/OR gate in p beyond g: If all the gates beyond g are NOTs,
all their values are fixed; this is a contradiction. Hence at least one AND/OR
gate (the first AND/OR beyond g) gets eliminated.

Negation-Limited Complexity of Parity and Inverters 229

Now assume that the circuit C contains s NOT gates. From (1) and (2) we
see that there are at least n−1 AND/OR gates; thus there are at least n−1+s
gates. This bound becomes meaningful when s is large. In particular, combined
with the bounds we derive below it will be easy to see that a smallest circuit for
Sorted Parityn does not contain more than �n/2� NOT gates. By (1), at least
n−1 AND/NOT gates are eliminated; thus the circuit contains at least n−1−s
ANDs.

Starting from (1, 1, . . . , 1), consider flipping xi = 0 for i = n, n − 1, . . . , 2 in
this order one at a time. Dual arguments yield the same lower bound for the
number of ORs.

Consider the case where n is even. In this case the circuit obtained after fixing
xi = 1 for i = 1, . . . , n − 1 must contain one NOT gate; thus at most s − 1
NOT gates are eliminated, and hence the lower bound for the number of ANDs
increases by 1. A similar increase occurs for odd n and Sorted ¬Parityn. �	

For Theorem 4 we want to show a lower bound about twice as large by showing
that the number of AND/OR gates eliminated is twice as large.

In the lower bound proof of Theorem 3 above, the eliminations of gates are
always due to the fact that the value of a gate has been determined by having
fixed some inputs. In the lower bound proof of Theorem 4, we also eliminate a
gate when its value is not necessarily determined for an arbitrary input, but its
value must stay constant for sorted inputs. With this additional argument we
proceed similarly as in the lower bound proof of Theorem 3.

Proof of the lower bound of Theorem 4. Let C be an inverter for n sorted
inputs x1 ≥ · · · ≥ xn. Starting from (0, 0, . . . , 0), consider flipping and fixing
xi = 1 for i = 1, . . . , n: Fix xi = 1 after x1, . . . , xi−1 have been fixed and remain
to be 1. Each time we flip and fix xi = 1, the output xi changes flipping from 1
to 0. There must be a path p from xi to xi such that all the gates on p flip the
values when we fix xi = 1. Call such a path a propagating path for xi.

Consider fixing xi = 1. Let p be a propagating path for xi. Consider the gates
on p from xi towards xi. If all the gates on p are ORs, fixing xi = 1 will fix
xi = 1; this is a contradiction. Thus there is either an AND or a NOT in p.

Let g be the first non-OR gate in p. The gate g gets eliminated after fixing
xi = 1. Note that if g is an AND, the value of g is 1 after fixing xi = 1 since all
the gates, if any, before g are ORs.

Let h be the last non-OR gate in p. All the gates, if any, beyond h are ORs.
After fixing xi = 1, the values of all the gates between h and the output xi,
including h and xi, are 0.

We claim that we can fix h to be 0 and thus eliminate h from the circuit in the
following sense. We have fixed x1, . . . , xi to be 1; xi+1, . . . , xn are 0 at present.
We will further flip and fix xi+1, . . . , xn to be 1 one at a time; but in this process
the value of gate h must remain to be 0 since if the gate h has value 1, the output
xi gets flipped back from 0 to 1 contradicting to the fact that xi has been fixed
and remains to be 1. Since the gate h will always be 0, we can fix h to be 0 and
eliminate h; the resulting circuit behaves in the same way. We note that if we

230 K. Iwama, H. Morizumi, and J. Tarui

set xi+1, . . . , xn to be a non-sorted 0/1 sequence, it is possible that the gate h
evaluates to 1 even if x1, . . . , xi are all 1.

It is possible that the gate g and h are the same NOT gate, i.e., g = h. But
they can not be the same AND gate since after fixing xi = 1, h is 0 and g is
1 if g is an AND. Thus unless both g and h are NOTs, g �= h. Therefore if the
circuit C contains s NOT gates, we can eliminate a total of at least 2n−2s AND
gates, and hence C contains at least 2n − 2s AND gates.

The dual argument about starting from (1, 1, . . . , 1) and fixing xi = 0 for
i = n, n − 1, . . . , 1 yields the same lower bound for the number of ORs. �	

3.2 Upper Bounds

Proof of the upper bound of Theorem 3. We can construct a smallest cir-
cuit computing Sorted Parityn with at most r NOT gates for odd n as follows.
Constructions for even n and for Sorted ¬Parity will be explained in the end.
case 1: r = �log2(n + 1)� − 1 and n = 2r+1 − 1: See Figure 1.
case 2: r = �log2(n + 1)� − 1 and 2r ≤ n < 2r+1 − 1: See Figure 2.

In cases 1 and 2 it is easy to see that yi’s are sorted if xi’s are sorted, and
that the circuit consists of n − r − 1 ANDs, n − r − 1 ORs, and r NOTs.
case 3: r > �log2(n + 1)� − 1: Construct a circuit of the following form:

(x1 ∧ x2) ∨ · · · ∨ (x2s−1 ∧ x2s) ∨ Sorted Parityn−2s(x2s+1, . . . , xn),

where Sorted Parityn−2s is computed by a circuit in case 1 or case 2: Let s be
the maximum integer satisfying 2(r−s)+1 − 1 ≥ n− 2s ≥ 1. Use s NOT gates for
s pairs (x1, x2), . . . , (x2s−1, x2s), and use �log2(n − 2s + 1)� − 1 NOT gates for
x2s+1, . . . , xn as in cases 1 and 2. As for the size, the analysis for cases 1 and

x2r x2r+1x2r-1x1...

...

...

 sorted

parity 2
r
-1

..x2r+1-1

y1 y2r-1...

Fig. 1. Sorted Parity for n =
2r+1 − 1 with r NOTs

xp xp+1xp-1x1 ...

...

...

 sorted

parity 2
r
-1

.. x2p-1

y1 yp-1...

x2p... xn

...

...

p=n-2r+1

yp y2r-1...

Fig. 2. Sorted Parity for 2r ≤ n < 2r+1−1 with
r NOTs

Negation-Limited Complexity of Parity and Inverters 231

...

...

 sorted

inverter 2
r-1
-1

... ...

...

x2r-1x2r-1+1x2r-1-1x1 ...x2 x2r-1+2..x2r-1

y1 y2 y2r-1-1...

y1 y2 y2r-1-1

x2r-1x2r-1+1x2r-1-1x1 ...x2 x2r-1+2..x2r-1

Fig. 3. Fischer’s inverter for n = 2r − 1 sorted inputs x1 ≥ · · · ≥ xn with r NOTs

2 applies for the subcircuit for x2s+1, . . . , xn, and we are using s ANDs, s ORs,
and s NOTs additionally.

For even n, construct a circuit as SortedParity(x1, . . . , xn−1)∧xn. For Sorted
¬Parityn, construct a circuit as x1 ∨ Sorted Parity(x2, . . . , xn). �	

Proof of the upper bound of Theorem 4. Construct a circuit as follows.
case 1: r = �log2(n+1)�, n = 2r −1: Figure 3 shows the circuit due to Fischer.
case 2: r = �log2(n + 1)�, 2r−1 ≤ n < 2r − 1: Use xp instead of x2r−1 similarly
as in case 2 of Sorted Parity.
case 3: r > �log2(n+1)�: Similarly as in case 3 of Sorted Parity, apply s NOTs
directly to inputs x1, . . . , xs to obtain outputs x1, . . . , xs, and use �log2(n − s +
1)� NOT gates for xs+1, . . . , xn to obtain xs+1, . . . , xn.

It is easy to see that the circuit thus constructed has size 4n − 3r consisting
of 2n − 2r ANDs, 2n − 2r ORs, and r NOTs. �	

4 Open Problems

In a recent paper, Sato, Amano, and Maruoka [11] consider the problem of in-
verting k-tonic 0/1 sequences, where a k-tonic sequence is a natural generaliza-
tion of a bitonic sequence. They consider restricting the number of NOT gates to
be O(log n), and show that for constant k, one can construct a k-tonic inverter

232 K. Iwama, H. Morizumi, and J. Tarui

of size O(n) and depth O(log2 n) using O(log n) NOT gates. Can we reduce the
depth to O(log n)?

Which functions are computable by circuits with size O(n), depth O(log n),
and O(log n) NOT gates? In particular, under what restrictions on inputs can
we construct inverters with these parameters?

References

1. K. Amano and A. Maruoka, A Superpolynomial Lower Bound for a Cir-
cuit Computing the Clique Function with at most (1/6) log log n Negation Gates,
SIAM J. Comput. (2005) 35(1), pp. 201–216.

2. K. Amano, A. Maruoka and J. Tarui, On the Negation-Limited Circuit Com-
plexity of Merging, Discrete Applied Mathematics (2003) 126(1), pp. 3–8.

3. R. Beals, T. Nishino and K. Tanaka, On the Complexity of Negation-Limited
Boolean Networks, SIAM J. Comput. (1998) 27(5), pp. 1334–1347.

4. R. Boppana and M. Sipser, The Complexity of Finite Functions, Hand-
book of Theoretical Computer Science, Volume A: Algorithms and Complexity,
J. v. Leeuwen editor, Elsevier/MIT Press (1990), pp. 757–804.

5. M. Fischer, Lectures on Network Complexity, Technical Report 1104, CS De-
partment, Yale University, http://cs-www.cs.yale.edu/homes/fischer, 1974,
revised 1996.

6. D. Harnik and R. Raz, Higher Lower Bounds on Monotone Size, Proc. of 32nd
STOC (2000), pp. 378–387.

7. K. Iwama and H. Morizumi, An Explicit Lower Bound of 5n−o(n) for Boolean
Circuits, Proc. of 27th MFCS (2002), LNCS vol. 2420, pp. 353–364.

8. D. Long, The Monotone Circuit Complexity of Threshold Functions, Unpub-
lished manuscript, University of Oxford, (1986).

9. O. Lachish and R. Raz, Explicit Lower Bound of 4.5n − o(n) for Boolean Cir-
cuits, Proc. of 33rd STOC (2001), pp. 399–408.

10. A. A. Markov, On the Inversion Complexity of a System of Functions, J. ACM
(1958) 5(4), pp. 331–334.

11. T. Sato, K. Amano, and A. Maruoka, On the Negation-Limited Circuit Com-
plexity of Sorting and Inverting k-tonic Sequences, Proc. of 12th COCOON , LNCS
vol. 4112, (2006), pp. 104–115.

12. S. Sung, On Negation-Limited Circuit Complexity, Ph.D. thesis, Japan Advanced
Institute of Science and Technology, 1998.

13. S. Sung and K. Tanaka, Lower Bounds on Negation-Limited Inverters, Proc. of
2nd DMTCS: Discrete Mathematics and Theoretical Computer Science Conference
(1999), pp. 360–368.

14. K. Tanaka, T. Nishino and R. Beals, Negation-Limited Circuit Complexity of
Symmetric Functions, Inf. Process. Lett. (1996) 59(5), pp. 273–279.

Appendix: Proof Sketch of Lemma 1. Let C be an inverter with r NOTs
for n = 2r −1 inputs x1, . . . , xn. The subcircuit D at the immediate predecessor
of the last NOT gate N in C is an (r − 1)-circuit for Parityn. For 1 ≤ i ≤ n,
let ei be the n-bit vector such that the i-th bit is 1 and the other bits are 0’s.
Consider a propagating path pi with respect to (0, 0, . . . , 0) and ei. Let gi be the
last OR gate in pi from N towards xi; such gi must exist, and gi �= gj for i �= j;
thus there are at least n ORs in C − D. We can argue similarly for ANDs. �	

The Complexity of Quasigroup Isomorphism and

the Minimum Generating Set Problem

V. Arvind1 and Jacobo Torán2

1 The Institute of Mathematical Sciences, Chennai 600 113, India
arvind@imsc.res.in

2 Theoretische Informatik, Universität Ulm, D-89069 Ulm, Germany
jacobo.toran@uni-ulm.de

Abstract. Motivated by Papadimitriou and Yannakakis’ paper on lim-
ited nondeterminism [19], we study two questions arising from their work:
Quasigroup Isomorphism and the Minimum generating set problem for
groups and quasigroups.

1 Introduction

The Isomorphism problem for combinatorial and algebraic structures has mo-
tivated important notions like Arthur-Merlin games, lowness, and interactive
proof systems, and has inspired advances in areas like counting classes and de-
randomization. In this paper, we study Quasigroup Isomorphism, QGROUP-ISO,
and related problems. A finite quasigroup is an algebraic structure (G, ·), where
the finite set G is closed under the binary operation · that has unique left and
right inverses. Quasigroups are more general than groups: they are nonassocia-
tive and need not have an identity element. The input for QGROUP-ISO is a
pair (G1, G2) of quasigroups of order n given by multiplication tables (of size
n2 × logn), and the problem is to test if they are isomorphic. An isomorphism
between G1 and G2 is a bijection ϕ : G1 −→ G2 such that for i, j ∈ G1,
ϕ(ij) = ϕ(i)ϕ(j).1 The complexity of this problem has been studied for close
to three decades. Quasigroups of order n have generating sets of size log n com-
putable in time polynomial in n. This gives an easy nlog n+O(1) time isomorphism
test: compute a log n-size generating set S for G1. Map S bijectively to S′ ⊂ G2
(for each of the

(
n
|S|)

)
× |S|! ordered subsets S′ of G2). For each of these maps

check, using the multiplication table of G1, if it extends to an isomorphism from
G1 and G2. This algorithm is due to Tarjan [18]. Tarjan’s algorithm can be
seen as a polynomial-time nondeterministic procedure for QGROUP-ISO that
uses only log2 n nondeterministic bits (to guess the injective map from S into
G2). Papadimitriou and Yannakakis observe this in their paper [19] on limited
nondeterminism, classifying QGROUP-ISO in NP(log2 n) (details in Section 2.1).

We study QGROUP-ISO in terms of bounded nondeterminism, parameter-
ized complexity and restricted queries to NP. Papadimitriou and Yannakakis

1 For convenience we represent operations of both quasigroups by concatenation.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 233–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

234 V. Arvind and J. Torán

ask [19] whether QGROUP-ISO is NP(log2 n)-complete. We give negative evi-
dence by showing a suitable complexity upper bound on Quasigroup Noniso-
morphism (QGROUP-NONISO). As QGROUP-ISO is polynomial-time reducible
to Graph Isomorphism which is in AM, clearly QGROUP-NONISO ∈ AM. How-
ever, this upper bound is not entirely satisfactory because QGROUP-ISO ∈
NP(log2 n) unlike Graph Isomorphism. For QGROUP-NONISO we give an AM
protocol with constant error probability, in which Arthur uses O(logc n) ran-
dom bits and Merlin uses O(logc n) nondeterministic bits for a constant c. In
fact, we first give such a IP protocol for QGROUP-NONISO. Then we do an
IP to AM conversion via a scaled down Goldwasser-Sipser simulation [12] of IP
by AM protocols that preserves polylog message size and random bits. That the
Goldwasser-Sipser simulation scales down in this manner is interesting in its own
right.2 Let NTIME[s(n), t(n)] denote the class of languages accepted by nonde-
terministic Turing machines in time O(t(n)) with O(s(n)) nondeterministic bits.
We show, using the above protocol, that QGROUP-ISO cannot be NP(log2 n)
complete unless the coNP-complete problem CLIQUE is in the non-uniform
class NTIME[nO(1), 2O(

√
n log n)]/poly. I.e. for inputs of length n, CLIQUE has

polynomial-size proofs that can be verified in time 2O(
√

n log n) with a polynomial-
size advice. We also consider a parameterized version of QGROUP-ISO and show
it is unlikely to be hard for the parameterized complexity classes W[P] or even
W[1] unless CLIQUE is in NTIME[nO(1), 2o(n)]/poly.

In Section 3 we consider the minimum generating set problem MIN-GEN:
given a quasigroup G as a table, find a minimum cardinality generating set for
G. We show that for general groups MIN-GEN is in DSPACE(log2 n), and for
nilpotent groups it is in P. Finally, in Section 4 we give a sufficient condition for
QGROUP-ISO to be in P.

Most concepts used in the paper are defined where needed. Standard com-
plexity theory definitions can be found in a textbook like [4].

2 Quasigroup Isomorphism

Let G be a quasigroup with n elements. By definition, for a, b ∈ G there are
unique elements x, y ∈ G with ax = b and ya = b. It follows that quasigroups
have the cancellation property: ba = ca implies b = c, and ab = ac implies b = c.
Suppose H ⊂ G is a proper sub-quasigroup, and x ∈ G \ H . Then Hx ∩ H = ∅
as H is a quasigroup. Moreover, because of cancellation |Hx| = |H |. Thus,
|H | ≤ |G|/2. It follows easily that G has a generating set of size at most log n.
Moreover, a log n size generator set is easy to find in polynomial time by a greedy
algorithm. As observed in the introduction, QGROUP-ISO is in NP(log2 n).

For each constant k > 0, let IPk(r(n), s(n)) denote the class of languages
accepted by k-round IP protocols, with error probability 1/4, in which the verifier
uses O(r(n)) random bits in each round and the size of each message in the
protocol is bounded by O(s(n)). Similarly, denote by AMk(r(n), s(n)) the class
2 This AM protocol is conceptually simpler than the one given by the authors for

Group Isomorphism in [3].

The Complexity of Quasigroup Isomorphism 235

of languages accepted by k-round AM protocols, with error probability 1/4, in
which Arthur uses O(r(n)) random bits in each round and Merlin uses O(s(n))
nondeterministic bits. Formally, a language L is in AM2(r(n), s(n)) if there is a
set B ∈ P such that for all x, |x| = n,

x ∈ A ⇒ Probw∈R{0,1}r′(n) [∃y, |y| = s′(n) : 〈x, y, w〉 ∈ B] ≥ 3/4,

x ∈ A ⇒ Probw∈R{0,1}r′(n) [∀y, |y| = s′(n) : 〈x, y, w〉 ∈ B] ≤ 1/4,

where r′ and s′ are functions in O(r(n)) and O(s(n)) respectively. Notice that
AM2(nO(1), nO(1)) is the usual 2-round AM class. The first goal of this section
is to show that QGROUP-NONISO is in AM2(logc n, logc n) for some constant c
and with constant success probability.

Let G be an n element quasigroup. A k-sequence (g1, . . . , gk) of G is a generat-
ing k-sequence if 〈g1, . . . , gk〉 = G (i.e. the distinct elements in the sequence form
a generating set for G). An element can appear more than once in the sequence.
We describe an easy polynomial-time algorithm that on input an n-element
quasigroup G, a generating set X for G, and a 1-1 mapping φ : X → {1, . . . , |X |}
outputs a table for a quasigroup G′ isomorphic to G.

Proposition 1. Let G be an n element quasigroup with a k element generating
set X. Let φ : X → [k] be a bijection. Then there is a polynomial-time algorithm
that computes the table for an n element quasigroup G′ isomorphic to G with an
isomorphism extending φ.

Proof. First, we extend φ to a bijection from G to [n] in a canonical way (for
example, using the lexicographic ordering of G). Now, it is easy to see that we
can define the quasigroup G′ as follows: For two elements φ(x), φ(y) in G′,

φ(x) · φ(y) = φ(φ−1(φ(x)) · φ−1((φ(y))) = φ(x · y).

We next describe a procedure B that on input a quasigroup table G with n
elements outputs with high probability an O(log n) size generating sequence G.

Theorem 1. There is a randomized polynomial-time algorithm that takes as
input a quasigroup table G and a parameter ε > 0 and with probability 1 − ε
outputs a c · log n size generating sequence for G. Otherwise, with probability at
most ε the algorithm halts with “fail” as output. Here, the constant c depends
on ε.

Proof. The algorithm starts with S = ∅ and proceeds in stages by including new
randomly picked elements from G into S at every stage. Thus, it computes a
sequence of subsets S1 = ∅ ⊆ S2 ⊆ . . . ⊆ Sm, where m will be appropriately
fixed in the analysis. Let Hi denote the sub-quasigroup generated by Si for each
i > 0.

We analyze the probability that Sm generates the entire quasigroup G.

Claim. For m = 4 log n + 1 the probability that Sm generates G is at least 1/3.

236 V. Arvind and J. Torán

The proof is an application of Markov’s inequality. Define indicator random
variables Zi, 1 ≤ i ≤ 4 logn.

Zi =
{

1 if Hi = Hi+1 and Hi = G;
0 otherwise.

Let Z =
∑4 log n

i=1 Zi. We bound the expectation of each Zi. If Hi = G then
clearly E[Zi] = 0. Suppose Hi = G. Then |Hi| ≤ |G|/2. Therefore, a random
x ∈ G lies in Hi with probability at most 1/2. Thus, Prob[Zi = 1] ≤ Prob[x ∈
Hi] ≤ 1/2. Putting it together, μ = E[Z] ≤ 2 logn. By Markov’s inequality,
Prob[Z > 3 logn] ≤ Prob[Z > 3μ/2] ≤ 2/3. It follows that with probability 1/3,
Sm generates G which proves the claim.

Finally, note that we can boost the success probability to 1− ε by O(log(1/ε))
repetitions.

Combining Proposition 1 and Theorem 1 we get a randomized polynomial-time
algorithm that takes as input a quasigroup G with |G| = n, and using O(log2 n)
random bits samples from quasigroups isomorphic to G with failure probability
bounded by a given constant ε: the algorithm uses Theorem 1 to pick a gener-
ating sequence X ⊂ G of size c log n (using c log2 n random bits). Then, using
Proposition 1 the algorithm deterministically generates a quasigroup table G′

isomorphic to G. Denote the distribution of quasigroup tables thus obtained by
D(G, ε). The next proposition follows directly from Theorem 1.

Proposition 2. Let G1 and G2 be two n element quasigroups and ε > 0 be any
constant.

1. If G1 ∼= G2 then D(G1, ε) and D(G2, ε) are identical distributions.
2. G1 � G2 then D(G1, ε) and D(G2, ε) have disjoint support (i.e. their statis-

tical difference is 1).

Let G be an n element quasigroup G and let ε be fixed for the following discus-
sion. For any other quasigroup G′ let pG(G′) denote the probability of G′ w.r.t.
the distribution D(G, ε). Define the set C(G) = {G′ | pG(G′) > 0}. Notice that
the size C(G) is bounded by nc log n, where c is given by Theorem 1.

Let G1 and G2 be two n element quasigroups. By Proposition 2 C(G1) and
C(G2) are identical or disjoint. Let X denote C(G1) ∪ C(G2). Although |X | ≤
2nc log n, elements in X have polynomial in n length. Assume that elements of X
are encoded as integers so we can use Chinese remaindering fingerprints to bound
the message lengths in our IP protocol. Since |X | = nO(log n), for a randomly
picked log3 n bit prime p, with probability greater than 1 − 2− log2 n we have
x (mod p) = y (mod p) for every pair x, y ∈ X such that x = y. Call such a p a
good prime. Let Xp = {x (mod p) | x ∈ X}. Then |Xp| = |X | for a good prime
p. Elements of Xp are bit strings of length t = log3 n.

In the protocol we are about to describe, the verifier picks a random log3 n
bit prime number p by sampling random log3 n bit numbers and using the AKS
primality test [1]. With a sample of size O(log3 n), the verifier has constant suc-
cess probability of picking a random log3 n bit prime. Thus, O(log6 n) random

The Complexity of Quasigroup Isomorphism 237

bits suffice for this purpose. We now describe the limited resource IP protocol
for Quasigroup Nonisomorphism.

Input: A pair of quasigroup tables (G1, G2).
Verifier: Randomly sample log3 n bit positive integers until a prime number
p is found. If after 5 log3 n trials no prime number has been found, then reject
the input. Pick a ∈ {1, 2} randomly and, using Theorem 1, pick a random
generating sequence of length c log n for Ga. Using Proposition 1, compute from
Ga the quasigroup table G′. Now compute the log3 n bit integer z = G′ (mod p).
Send 〈z, p〉 to Prover.
Prover: Sends back an integer b ∈ {1, 2}.
Arthur: Accept the pair (G1, G2) as nonisomorphic iff a = b.

This is clearly an IP2(log6 n, log3 n) protocol. The analysis given before the
protocol shows that the IP protocol accepts nonisomorphic pairs with probabil-
ity 1/2 + ε and rejects isomorphic pairs with probability 1/2 + ε, for a constant
ε > 0. We bound the error probability, by bounding the probability of each
bad event causing an incorrect output. First, the verifier fails to pick a random
log3 n bit prime p with probability bounded by 1/n. Next, the probability that
p is not a good prime is bounded by n− log n. Denote the distribution of pairs
〈z, p〉 generated by the randomized verifier by D′(G, ε). The following claim is a
direct consequence of Proposition 2.

Claim. Let G1 and G2 be two n element quasigroups and ε > 0 be any constant.
If G1 ∼= G2 then D′(G1, ε) and D′(G2, ε) are identical distributions. If G1 �

G2 then the statistical difference between D′(G1, ε) and D′(G2, ε) is at least
1 − (ε + n− log n).

Proof. The first part is obvious. To see the second part it suffices to notice that
a pair 〈z, p〉 can have nonzero probability w.r.t. both distributions D′(G1, ε) and
D′(G2, ε) only if p is not a good prime or the algorithm B′ outputs “fail”. The
probability of that event is bounded by n− log n + ε.

Thus, if G1 � G2, the (all powerful) honest prover will correctly compute the
index a with probability at least 1 − (1/n + ε + n− log n). If G1 ∼= G2 then a
cheating prover can find a with probability at most 1/2.

Theorem 2. Quasigroup Nonisomorphism is in IP2(log6 n, log3 n).3

Goldwasser and Sipser [12] showed that for every k, k-round IP protocols can
be simulated by k + 2 round AM protocols. They considered IP protocols that
use polynomially many random bits and polynomial size messages. Careful ex-
amination of their proof shows that their AM simulation appropriately scales
down to polylog random bits used by the verifier and polylog size messages. We
3 Based on this protocol we can obtain a statistical zero knowledge protocol for

QGROUP-ISO that uses polylog random bits with polylog message size. We leave
details to the full version of the paper.

238 V. Arvind and J. Torán

summarize this observation as a theorem (details will appear in a full version).
Likewise, by examining the proof of the result that AMk = AM2 for any constant
k ≥ 2 [5], we have a similar version for polylog message size and random bits.

Theorem 3. For a, b, k > 0

– IPk(loga n, logb n) ⊆ AMk+2(k3 log4a+b n, k2 log4a+b n).
– AMk(loga n, logb n) ⊆ AM2(logkb+a n, logb n).

Combining Theorems 2 and 3 we get the following.

Theorem 4. Quasigroup Nonisomorphism is in AM2(log135 n, log27 n).

Since the actual constants are not important for the following discussion, let
c = 135 and note that QGROUP-NONISO is in AM2(logc n, logc n).

2.1 Limited Nondeterminism

Complexity subclasses of NP with bounded nondeterminism are studied in dif-
ferent contexts: [11] is a nice survey. Kintala and Fischer in [16] introduced
NP subclasses with polylogarithmic nondeterminism. Let NP(logk n) ⊆ NP de-
note the subclass in which only O(logk n) nondeterministic bits are allowed for
the accepting NP machine on inputs of size n. As noted in the introduction,
QGROUP-ISO is in NP(log2 n). The class NP(log2 n) contains complete prob-
lems [8,19] under polynomial time reductions, e.g. the tournament dominating
set problem. Papadimitriou and Yannakakis ask in [19] whether QGROUP-ISO

is NP(log2 n)-complete. Using Theorem 4 we give strong negative evidence. We
consider the following version of the general clique problem: CLIQUE = {G | G
has n vertices and a clique of size n/2}.

Theorem 5. If QGROUP-ISO is many-one complete for NP(log2 n) under poly-
nomial time reductions then CLIQUE is in coNTIME[nO(1), 2O(

√
n log n)]/poly.

I.e. for inputs of length n, CLIQUE has polynomial-size proofs which can be ver-
ified in 2O(

√
n log n) time with the help of a polynomial-size advice.

Proof. The problem log-CLIQUE = {(G, k) | G has n vertices, k ≤ log n and G
has a clique of size k} is clearly in NP(log2 n). If QGROUP-ISO is NP(log2 n)
complete, then log-CLIQUE is many-one reducible to QGROUP-ISO. Hence, by
Theorem 4, log-CLIQUE ∈ AM(logc n, logc n) for some constant c > 0.

We now apply an idea of Feige and Kilian [10]: Let G be an n-node graph, as
an instance of CLIQUE. For simplicity suppose n/2 is a perfect square. In time
nO(
√

n) convert G to a pair (G′, �′) such that G′ is a graph with at most
(n√

n/2

)

nodes. Here, each node of G′ corresponds to a
√

n/2 size subset of V (G), and two
nodes of G′ are adjacent iff their corresponding sets of nodes in G are disjoint
and together they form a clique of size 2

√
n/2 in G. Clearly G′ has a

√
n/2 size

clique iff G ∈ CLIQUE. Set �′ to
√

n/2. The number of vertices in G′ is N =(n√
n/2

)
. As �′ ≤ log N , (G′, �′) is an instance of log-CLIQUE. The AM protocol

The Complexity of Quasigroup Isomorphism 239

on input (G′, �′) uses O(logc N) random bits and O(logc N) nondeterministic
bits. In the AM protocol, the final deterministic computation by Arthur after
the communication rounds is of time polynomial in N . Consequently, CLIQUE

has an AM(nO(1), nO(1)) protocol with error probability 1/4, where the final
deterministic computation done by Arthur, after all the communication rounds,
takes time 2O(

√
n log n).

A parallel repetition of the protocol nO(1) times, with Arthur deciding by
majority vote yields an AM(nO(1), nO(1)) protocol for CLIQUE, where the final
deterministic computation done by Arthur is still of time 2O(

√
n log n) and the

error probability is 2−nO(1)
. For each n, we derandomize the protocol by fixing

the random choices to a polynomial-size advice string. Hence, CLIQUE is in
NTIME[nO(1), 2O(

√
n log n)]/poly.

Consider the parameterized complexity [7] problem k-QGROUP-ISO: let G1 and
G2 be quasigroups with n elements each given by multiplication tables and
generating sets S1 and S2 of size k each. The problem is to test if the groups are
isomorphic. The following theorem is analogous to Theorem 5.

Theorem 6. If k-QGROUP-ISO is hard for W[1] w.r.t. parameterized reductions
then CLIQUE is in NTIME[nO(1), 2o(n)]/poly.

3 The Minimum Generating Set Problem

The complexity of MIN-GEN — finding a minimum size generating set for a
quasigroup G — is first examined in [19]. Since G has generating sets of size
log n, the problem has an easy nO(log n) time algorithm. Note that MIN-GEN is
related to QGROUP-ISO: if (G1, G2) is a QGROUP-ISO instance and k bounds
G1’s minimum generating set, then Tarjan’s isomorphism test takes nO(k) time.
The decision version of MIN-GEN is MIN-GEN = {(G, k) | the quasigroup G has
a generating set of size k}. The complexity of MIN-GEN is left open for groups
and quasigroups in [19]. However, if T is the multiplication table of an arbitrary
binary operation then checking if T has a log n-size generating set is NP(log2 n)
complete [19]. We first note that MIN-GEN for groups is in DSPACE(log2 n).

Proposition 3. MIN-GEN for groups is in DSPACE(log2 n).

Proof. Let (G, k) be a instance of MIN-GEN. Let X denote its Cayley graph
with vertex set G and directed edges labeled by elements of G such that (u, v)
is an edge labeled by g if ug = v. The DSPACE(log2 n) machine cycles through
k-element subsets S ⊂ G. W.l.o.g. k ≤ log n, thus S takes O(log2 n) space. For
each S, consider the graph XS to have only edges labeled by g ∈ S. Clearly,
S generates G iff there is a directed path in XS from 1 to v for each v ∈ G.
This test is clearly an NL predicate and hence in DSPACE(log2 n). The overall
DSPACE(log2 n) machine accepts if some S passes the test.

Theorem 7. The MIN-GEN problem for nilpotent groups given by Cayley table
is in deterministic polynomial time.

240 V. Arvind and J. Torán

Proof. Let G be the input group with n elements and n = pe1
1 pe2

2 · · · pek

k be the
prime factorization of n. Recall that G is nilpotent iff G = Sp1 ×· · ·×Spk

, where
each Spi is the unique (hence normal) pi-Sylow subgroup of G. Let ni = np−ei

i .
Then Spi = {gni | g ∈ G}. This gives an easy (well-known) nilpotence test for
G. If 〈g1, · · · , gk〉 = G then 〈gni

1 , · · · , gni

k 〉 = Spi . Thus, if G has a generating set
of size k then so does Spi for each i. Conversely, suppose 〈gi1, gi2, · · · , gik〉 = Spi

for each i. Letting gj =
∏k

i=1 gij , 1 ≤ j ≤ k, note that 〈g1, · · · , gk〉 = G, be-
cause 〈gni

1 , · · · , gni

k 〉 = Spi . Thus, it suffices to solve MIN-GEN for each Spi . I.e.,
we have polynomial-time reduced MIN-GEN for nilpotent groups to MIN-GEN

for p-groups (groups of p-power order). Henceforth, let G be a p-group. The
Frattini subgroup Φ(G) of a finite group G is the intersection of all maximal
proper subgroups of G. Clearly, Φ(G) � G. We claim that G has a size k
generating set iff G/Φ(G) has a size k generating set. To see this, suppose
{x1Φ(G), x2Φ(G), . . . , xkΦ(G)} generates G/Φ(G). Let H = 〈x1, · · · , xk〉. Then
HΦ(G) = G. By [13, Theorem 1.1, Chapter 5], since Φ(G) consists of nongener-
ators, it follows that H = G. The forward implication of the claim is trivial.

Now, using the above claim we can polynomial-time reduce MIN-GEN for
nilpotent groups to MIN-GEN for elementary abelian groups which, in turn, has
an easy polynomial-time algorithm. By [13, Theorem 1.3, Chapter 5], G/Φ(G) is
an elementary abelian p-group as G is a p-group. We now show that Φ(G) is com-
putable from G in polynomial time when G is nilpotent. We recall some simple
properties of the Frattini subgroup for nilpotent groups [20, Chapter 5.2]. The
commutator subgroup G′ of G is generated by {xyx−1y−1 | x, y ∈ G}. We know
G′ � G and G/G′ is abelian. Now, G is nilpotent iff G′ ⊆ Φ(G) [20, Theorem
5.2.16]. Furthermore, N � G and N ⊆ Φ(G) implies Φ(G/N) = Φ(G)/N . In par-
ticular, Φ(G/G′) = Φ(G)/G′. Therefore, it suffices to compute Φ(G/G′) to find
Φ(G). Now, G′ can be computed in polynomial time from G. Hence, we have the
table for G/G′. As G/G′ is abelian, in polynomial time we can easily decompose
G/G′ as a product of cyclic groups Thus, G/G′ = H1/G′ × H2/G′ × · · ·Ht/G′.
Let Hj be generated by yjG

′ ∈ G/G′, where yjG
′ has order, say, pmj , 1 ≤ j ≤ t.

The Frattini subgroup of a product group is the product of the Frattini subgroups
of the constituent groups, i.e. Φ(G/G′) = Φ(H1/G′)× Φ(H2/G′)× · · ·Φ(Ht/G′).
However, Hj/G′ is cyclic of p-power order. Hence it has a unique maximal proper
subgroup, namely, 〈yp

j G′〉, of index p. Therefore, Φ(Hj/G′) = 〈yp
j G′〉 for each j.

Hence, Φ(G/G′) = 〈yp
1G′, · · · , yp

t G′〉. It follows that Φ(G) = 〈yp
1 , · · · , yp

t , G′〉. Fi-
nally, since G/Φ(G) is an elementary abelian p-group (isomorphic to some Z

k
p),

we can easily compute a minimum generating set {x1Φ(G), · · · , xkΦ(G)} for it
which has to be of size k. By the above claim, {x1, · · · , xk} is a minimum gener-
ating set for G.

4 Quasigroup Isomorphism and Parallel Queries to NP

For a function f : N −→ N, let FPNP
|| [f] denote functions computable in polyno-

mial time with O(f(n)) parallel queries to NP and let FPNP[f] denote functions
computable in polynomial time with O(f(n)) many adaptive queries to NP. Con-

The Complexity of Quasigroup Isomorphism 241

siderable research has examined the hypothesis FPNP
|| [poly] = FPNP[log]. When

the range of the functions is {0, 1} these classes coincide [14]. In general, this
hypothesis implies NP = RP [6,21]. An important open question is whether
the same assumption yields NP = P. Jenner and Torán in [15] make a de-
tailed investigation. In [2], it is shown that FPNP

|| [poly] = FPNP[log] implies
Graph Isomorphism is in P. In this section we show that the weaker assumption
FPNP
|| [log2] ⊆ FPNP[log] implies QGROUP-ISO is in P. In FPNP

|| [log2], the base
machine can make only O(log2 n) parallel queries to NP.

Definition 1. [9] A promise problem is a pair of sets (Q,R). A set L is called
a solution of the promise problem (Q,R) if for all x ∈ Q, x ∈ L ⇔ x ∈ R.

A promise problem of interest is (1SAT, SAT), where 1SAT contains formulas
with at most one satisfying assignment. Any solution of (1SAT, SAT) agrees with
SAT in formulas with a unique satisfying assignment as well as the unsatisfiable
formulas. By [21], FPNP

|| [poly] = FPNP[log] implies (1SAT, SAT) has a solution
in P. An easy consequence of this shown in [2] is the following.

Theorem 8. [2] Suppose L ∈ NP is accepted by a deterministic polynomial-
time oracle machine M with access an NP oracle A such that M makes only
queries to A having at most one nondeterministic solution.4 Then FPNP

|| =
FPNP[log] implies that L ∈ P.

Our result based on a weaker hypothesis follows.

Theorem 9. FPNP
|| [log2] ⊆ FPNP[log] implies that QGROUP-ISO is in P.

Proof. Suppose L ∈ NP(log2 n) as witnessed by NP machine M . Analogous to
SAT, consider the promise problem (1L, L) where 1L is the set of all x ∈ Σ∗ such
that either x ∈ L or M has exactly one accepting computation path (of length
log2 n bits). Notice that, following [21], the hypothesis FPNP

|| [log2] ⊆ FPNP[log]
implies for every L ∈ NP(log2) that any solution to the promise problem (1L, L)
is in P. Thus, in order to derive QGROUP-ISO ∈ P from the hypothesis it suffices
to show that there is set L ∈ NP(log2 n) such that QGROUP-ISO ∈ PA for any
solution A to the promise problem (1L, L).

This claim is based on [2, Theorem 13] where it is shown that Graph Isomor-
phism is in PB, where B is any solution to the promise problem (1SAT, SAT).
The crucial reason why we can replace SAT by a set L ∈ NP(log2 n) for the case
of QGROUP-ISO is because of the following property of n element quasigroups
G: the automorphism group Aut(G) is a subgroup of Sn but has a base B of
size log n. I.e. Aut(G)’s elements are completely determined by their action on
B. This follows from the fact that G has log n size generating sets.

4 Here, nondeterministic solution means a nondeterministic computation path for A’s
NP machine.

242 V. Arvind and J. Torán

References

1. M. Agrawal, N. Kayal and N. Saxena, PRIMES is in P, Annals of Mathemat-
ics, (2) 160 (2004), 781-793.

2. V. Arvind, Piyush P Kurur, Graph Isomorphism is in SPP, Information and
Computation, Volume 204, Issue 5, pp. 835-852, May 2006.

3. V. Arvind, J. Torán, Solvable Group Isomorphism is (almost) in NP ∩ coNP,
in Proc. 19th IEEE Computational Complexity Conference Conference, 91–103,
2004.

4. J. L. Balcázar, J. Dı́az, J. Gabarró, Structural Complexity I, EATCS Mono-
graphs on Theoretical Computer Science, Springer-Verlag, 1989.

5. L. Babai, Trading group theory for randomness, Proc. 17th ACM Symposium on
Theory of Computing, 421–429, 1985.

6. R. Beigel. NP-hard sets are P-superterse unless R = NP, January 04 1988.
7. R.G. Downey and M.R. Fellows Parameterized Complexity, Springer Verlag

1992.
8. J. Dı́az, J. Torán, Classes of bounded nondeterminism, Math. Systems Theory,

23, 1990, 21–32.
9. S. Even, A. L. Selman, and Y. Yacobi. The complexity of promise problems with

applications to public-key cryptography. Information and Control, 61(2):159–173,
May 1984.

10. U. Feige, J. Kilian, On Limited versus Polynomial Nondeterminism, Chicago
Journal of Theoretical Computer Science, March (1997).

11. J. Goldsmith, M. Levy and M. Mundhenk, Limited nondeterminism in
SIGACT news, June 1996.

12. Shafi Goldwasser and Michael Sipser, Private coins versus public coins in in-
teractive proof systems, In Silvio Micali, editor, Advances in Computing Research,
volume 5, pp. 73–90. JAC Press, Inc., 1989.

13. D. Gorenstein, Finite Groups, Harper and Row Publishers, New York, 1968.
14. L. Hemachandra, The strong exponential hierarchy collapses, in Proc. 19th ACM

Symposium on Theory of Computing , 1987, 110–122.
15. B. Jenner and J. Torán. Computing functions with parallel queries to NP. Theo-

retical Computer Science, 141(1–2):175–193, 1995.
16. C. Kintala and P. Fischer, Refining nondeterminism in relativized polynomial

time computations, SIAM J. on Computing, 9, 1980, 46–53.
17. J. Köbler, U. Schöning, and J. Torán, Graph Isomorphism: its Structural

Complexity, Birkhäuser, Boston, 1992.
18. G.L. Miller, On the nlog n isomorphism technique, in Proc. 10th ACM Sympo-

sium on the Theory of Computing, 1978, 51–58.
19. C. Papadimitriou, M. Yannakakis On limited nondeterminism and the com-

plexity of the VC dimension. In Journal of Computer and System Sciences, 53(2):
161-170, 1996.

20. D.J.S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathe-
matics, Springer Verlag, 1996.

21. A. L. Selman. A taxonomy of complexity classes of functions. Journal of Computer
and System Sciences, 48(2):357–381, 1994.

22. M. Sipser,A complexity theoretic approach to randomness. In Proc. 15th ACM
Symp. Theory of Computer Science 1983, 330–335.

Inverse HAMILTONIAN CYCLE and Inverse

3-D MATCHING Are coNP-Complete

Michael Krüger and Harald Hempel

Institut für Informatik, Friedrich-Schiller-Universität Jena
{krueger, hempel}@minet.uni-jena.de

Abstract. In this paper we show that the inverse problems of HAMIL-
TONIAN CYCLE and 3-D MATCHING are coNP complete. This
completes the study of inverse problems of the six natural NP-complete
problems from [2] and answers an open question from [1]. We classify the
inverse complexity of the natural verifier for HAMILTONIAN CYCLE
and 3-D MATCHING by showing coNP-completeness of the correspond-
ing inverse problems.

Keywords: computational complexity, coNP-completeness, inverse NP-
problems, HAMILTONIAN CYCLE, 3-DIMENSIONAL MATCHING.

1 Introduction

The influential book by Garey and Johnson [2] lists six natural NP-complete
languages: 3SAT, VERTEX COVER (VC), CLIQUE, HAMILTONIAN CYCLE
(HC), 3-D MATCHING (3DM) and PARTITION. When it comes to studying
the complexity of inverse NP problems it seems desirable to start by investigating
the inverse problems of the above six examples. The inverse problems of 3SAT,
VC, CLIQUE, and PARTITION have been shown to be coNP-complete in [4, 1].

In this paper we show that the inverse problems for the remaining two prob-
lems HC and 3DM, are coNP-complete. This settles an open question from [1]
and contributes to the growing knowledge about the complexity of inverse NP
problems [4, 1, 3]. In particular we show that inverting the natural verifiers of
HC and 3DM, is complete for the class coNP.

The complexity class NP is often referred to as the class of problems hav-
ing polynomial-time verifiers. A polynomial-time verifier V is a polynomial-
time computable function mapping from Σ∗ × Σ∗ to {0, 1} such that there
exists a polynomial p such that for all x, π ∈ Σ∗, V (x, π) = 1 implies |π| ≤
p(|x|). The language L(V) associated with a verifier V is defined as L(V) =
{x ∈ Σ∗ : (∃π ∈ Σ∗)[V (x, π) = 1]}. It is well-known that NP = {L(V) :
V is a polynomial-time verifier}. The inverse problem for a verifier V is given
a set Π ⊆ Σ∗ (represented as a list) to decide if there exists a string x such
that Π = {π ∈ Σ∗ : V (x, π) = 1}. It appears that inverting verifiers has an
Σp

2 upper bound but this bound only holds for so called fair verifiers [1]. How-
ever, even though there do exist verifiers such that their inverse problems are

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 243–252, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

244 M. Krüger and H. Hempel

Σp
2 complete, the inversion of natural verifiers for some NP-complete languages

is complete for the class coNP [4, 1, 3]. It is known that different verifiers for one
and the same NP problem may have inverse problems of different complexity [1].
However for many NP-complete languages L there seems to exist a verifier that
deserves to be called “the natural verifier” for L and we will focus on the in-
verse problems relative to those natural verifiers. We mention in passing that a
different definition of the inverse problem for a verifier has been studied and a
very general coNP-hardness result been proven in [3]. The difference between
the two concepts is the representation of the input as a list (see [1] and above)
or as a boolean circuit (see [3]).

Our paper is organized as follows. In Chap. 2 we define the basic concepts and
some useful graph modules. The two main theorems of this paper are stated in
Sect. 3. Due to space restrictions we only give a proof for the coNP-completeness
of the inverse problem of HC. We mention that the proof idea can be modified
to also work for the inverse problem of HC in directed graphs and thus coNP-
completeness holds in the directed case as well.

2 Preliminaries

We assume the reader to be familiar with the basic definitions and notations from
graph theory [6] and complexity theory [5]. Let Σ = {0, 1} be our alphabet.

2.1 Inverse Problems

The class NP is also called the class of problems with short proofs. Essential for
a definition that follows that informal description is the notion of a verifier.

Definition 1. 1. A (polynomial-time) verifier V is a polynomial-time com-
putable function V : Σ∗ × Σ∗ → {0, 1} such that there exists a polynomial p
satisfying that for all x, π ∈ Σ∗, (x, π) ∈ V =⇒ |π| ≤ p(|x|).

2. For a (polynomial-time) verifier V let V (x) denote the set of proofs for a
string x ∈ Σ∗, that is, for all x ∈ Σ∗, V (x) = {π ∈ Σ∗ : V (x, π) = 1}.

3. The language L(V) accepted by a polynomial-time verifier V is defined as
L(V) = {x ∈ Σ∗ : V (x) �= ∅}.

It is well known that NP is the class of languages that can be accepted by
(polynomial-time) verifiers. Inverse problems are defined relative to a verifier V .

Definition 2 ([1]). The inverse problem V −1 for a verifier V is defined as

V −1 = {Π ⊆ Σ∗ : (∃x ∈ L(V))[V (x) = Π]}.

The inverse problem of a language A ∈ NP can clearly only be defined relative to
a verifier accepting A. We will study the inverse problems of the natural verifiers
for 3SAT and HC.

The concept of a candidate function is a useful tool when studying the com-
plexity of inverse problems.

Inverse HAMILTONIAN CYCLE and Inverse 3-D MATCHING 245

Definition 3 ([1]). Let V be a verifier. A polynomial-time computable mapping
c : P(Σ∗) → Σ∗ is called a candidate function for V if and only if for all Π ⊆ Σ∗:
if there exists a z ∈ Σ∗ such that V (z) = Π then V (c(Π)) = Π.

It is not clear if all verifiers do have candidate functions. However, many nat-
ural verifiers for NP-complete languages, such as 3SAT or VC, have candidate
functions. Note that if a verifier V has a candidate function c then we have an
obvious coNP upper bound for the complexity of V −1, namely given Π , com-
pute c(Π), and then check if for all π such that |π| ≤ p(|c(Π)|) (where p is the
polynomial that bounds the length of witnesses with respect to the verifier V)
we have π ∈ Π ⇐⇒ V (c(Π), π) = 1.

Observation 1. If V is a verifier with a candidate function, then V −1 ∈ coNP.

2.2 HAMILTONIAN CYCLE

A cycle in a graph G = (V, E) is assumed to be a set C ⊆ E such that there
exist pairwise different vertices x1, x2, x3, . . . xk−1, xk, k ≥ 3, such that C =
{{x1, x2}, {x2, x3}, . . . , {xk−1, xk}, {xk, x1}}. A Hamiltonian cycle in a (simple
and undirected) graph is a cycle in G that contains every vertex of G.

The NP-complete problem HC is defined as the set of all (simple and undi-
rected) graphs that contain a Hamiltonian cycle.

Definition 4. The verifier VHC is defined as VHC(G, C) = 1 if G is a sim-
ple, undirected graph and C is a Hamiltonian cycle in G and VHC(G, C) = 0
otherwise.

Clearly, VHC is a verifier for HC and since it appears to be the most natural
verifier for HC we will choose Invs-HC as a more intuitive notation for V −1

HC .
Following a more general concept from [1] we will call a collection of sets of

edges Π = {C1, C2, . . . , Ck} well-formed if and only if C1, C2, . . . , Ck are cycles
over a common vertex set V such that ||C1|| = ||C2|| = · · · = ||Ck|| = ||V ||. It is
not hard to see that non well-formed sets Π can not be in Invs-HC. Obviously,
testing if an instance Π is well-formed can be done in polynomial time.

Looping back to the notion of a candidate function (see Definition 3) it is
not hard to see that the verifier VHC has a candidate function cHC. Given a
well-formed collection of sets of edges Π = {C1, C2, . . . , Ck} let cHC(Π) be the
graph induced by C1, C2, . . . , Ck, that is cHC(Π) = (V, E) such that V = {v :
(∃u)[{u, v} ∈ C1] and E = C1 ∪ C2 ∪ · · · ∪ Ck. The following corollary is an
immediate consequence of Observation 1.

Corollary 1. The problem Invs-HC is in coNP.

2.3 3-DIMENSIONAL MATCHING

The NP-complete problem 3-DIMENSIONAL MATCHING(3DM) is defined as
follows.

246 M. Krüger and H. Hempel

3-DIMENSIONAL MATCHING

Input: A 4-tuple (S, X, Y, Z) of sets such that S is a subset of X × Y × Z and
X, Y and Z have the same number of elements.

Question: Does S contain a 3D-Matching, i.e., a subset M ⊆ S such that
|M | = |X | and no two elements of M agree in any coordinate.

As many other NP-complete problems 3DM has a natural verifier.

Definition 5. The verifier V3DM is defined via V3DM((S, X, Y, Z), M) = 1 if S
is a subset of X × Y × Z, X, Y and Z are sets, having the same number of
elements and M is a 3D-Matching for S. Otherwise V3DM((S, X, Y, Z), M) = 0.

It is easy to see that V3DM is a verifier for 3DM. Since we feel that V3DM is the
most natural verifier for 3DM we let Invs-3DM denote the language V −1

3DM.

2.4 3-SATISFIABILITY

One of the standard NP-complete problems is 3-SATISFIABILITY (3SAT), the
set of all satisfiable boolean formulas in 3-conjunctive normal form (3-CNF),
that is any clause has at most three literals. 3SAT will play an important role
in the proofs of our main theorems.

A natural verifier for 3SAT is the following: V3SAT(F, α) = 1 if F is a boolean
formula in 3-CNF and α is a satisfying assignment for the variables of F , and
V3SAT(F, α) = 0 otherwise. The inverse problem V −1

3SAT also has been denoted by
Invs-3SAT or 3SAT−1 [1, 4]. Throughout this paper we will use Invs-3SAT to
denote V −1

3SAT.
As it has been the case for VHC there are easy to check properties that a proof

set for V3SAT has to have in order to be in Invs-3SAT. Since any assignment for
an n-variable boolean formula is represented by a string from {0, 1}n, the notion
of well-formed proof sets Π with respect to V3SAT only requires that all strings
from Π have the same length.

Theorem 2 ([4]). Invs-3SAT is coNP-complete.

A concept that will be useful for our purposes as well was defined in [4].

Definition 6 ([4]). Let Π be a set of boolean assignments for x1, x2, . . . , xn.

1. An assignment α for x1, . . . , xn is said to be {xi, xj , xk}-compatible with Π,
1 ≤ i < j < k ≤ n, if and only if there exists an assignment β ∈ Π, such
that α and β assign the same truth values to xi, xj , xk.

2. An assignment for x1, . . . , xn is called 3-compatible with Π if and only if
it is {xi, xj , xk}-compatible with Π for each triplet xi, xj , xk of variables,
1 ≤ i < j < k ≤ n.

The notion of 3-compatibility leads to a useful characterization of Invs-3SAT.

Theorem 3 ([4]). A well-formed set of proofs Π for V3SAT is in Invs-3SAT
if and only if it is closed under 3-compatibility, i. e., if and only if for each
assignment α it holds, that if α is 3-compatible with Π then α ∈ Π.

Inverse HAMILTONIAN CYCLE and Inverse 3-D MATCHING 247

2.5 Some Helpful Graph Modules for Hamiltonian Cycles

For the proof of our main result we need two simple but very useful graph
modules, that will help us to direct a Hamiltonian cycle through a given graph.
The first module is the parity-module, introduced in [5].

The parity module “connects” two edges e and f of a graph G and forces
each Hamiltonian cycle to either enter and leave the parity module through the
endpoints of the original edge e or enter and leave the parity module through the
endpoints of the original edge f , but not both, i.e., each Hamiltonian cycle either
“uses” e or f but not both. In all forthcoming figures we will use the symbol
shown in Fig. 1 to express that a pair of edges is connected by a parity-module.

P

u′ v′

u v
e

f

Fig. 1. Symbolic depiction of two parity-connected edges e = {u, v} and f = {u′, v′}

It is not hard to extend this idea to connecting f with several edges e1, e2, . . . ,
ek via parity-modules. We obtain a module that relates the edges e1, e2, . . . , ek

of a graph in such a way that each Hamiltonian cycle of the modified graph uses
all of the edges e1, e2, . . . , ek or none of them.

Lemma 1. Let G be an undirected graph with an edge f , that is used by each
Hamiltonian cycle of G and let e1, e2, . . . , ek be pairwise different edges of G. The
graph G is modified to G′ by first inserting an edge f ′ that connects the endpoints
of f and then inserting parity modules between f ′ and each of e1, e2, . . . , ek.

Each Hamiltonian cycle of G′ uses either all of ei, 1 ≤ i ≤ n or none of them.

The proof is omitted. We will call edges that are connected in the sense of the
above Lemma 1 all-connected and symbolize this connection as done in Fig. 2.
The symbolization does not include the connection to the edge f . In the forth-
coming proof it will always be clear which edge will play the role of the
edge f .

a

e1 e2 ek

Fig. 2. Symbolization for all-connected edges e1, e2, . . . , ek

248 M. Krüger and H. Hempel

3 Main Results

We now state the main results of this paper. However, due to space restrictions
we will only prove the coNP-completeness of Invs-HC by giving a reduction from
Invs-3SAT in the remainder of this section.

Theorem 4. Invs-3DM is coNP-complete.

Theorem 5. Invs-HC is coNP-complete.

Proof of Theorem 5: Due to Corollary 1 it suffices to give a ≤p
m-reduction

from the coNP-complete problem Invs-3SAT (Theorem 2) to Invs-HC. If a proof
set Π3SAT is not well-formed (with respect to V3SAT) then it is not in Invs-3SAT
and hence we will map it to a fixed non-member of Invs-HC. Given a well-formed
proof set Π3SAT for V3SAT, we will construct a graph GΠ3SAT that will contain a
Hamiltonian cycle for each assignment (via an one-to-one correspondence) that
is 3-compatible with Π3SAT. The proof set ΠHC can then be easily extracted
from GΠ3SAT , and it will contain exactly those Hamiltonian cycles from GΠ3SAT

that correspond to the assignments in Π3SAT. Recall that by Theorem 3 for any
proof set Π3SAT it holds that Π3SAT is in Invs-3SAT if and only if Π3SAT is
closed under 3-compatibility. Our construction will ensure that the latter is the
case if and only if the candidate graph of ΠHC contains exactly the Hamiltonian
cycles from ΠHC.

Now let Π3SAT be well-formed. Hence, there exist n, m ∈ N such that Π3SAT =
{α1, α2, . . . , αm} and for all i, 1 ≤ i ≤ m, αi ∈ {0, 1}n. The strings αi will be
interpreted as assignments to n boolean variables y1, y2, . . . , yn in the canonical
way, and we will write αi(yj) to denote the jth bit of αi. Recall that by Theorem 3
Π3SAT ∈ Invs-3SAT if and only if Π3SAT is closed under 3-compatibility, that is,
if and only if Π3SAT contains all assignments, that are 3-compatible with Π3SAT.

We will now construct a graph GΠ3SAT in stages that will contain exactly one
Hamiltonian cycle for each assignment that is 3-compatible with Π3SAT.

Construction Step 1. The construction starts with a simple cycle Cl, l =
n+2

(
n
3

)
+1. Fix n consecutive edges e1, e2, . . . , en in Cl and for each i, 1 ≤ i ≤ n,

add one new edge fi to Cl that connects the endpoints of ei (and so produce a
chain of n double edges). Let G′Π3SAT

be the graph constructed so far.

Even though G′Π3SAT
is not a simple graph the upcoming stages of the construc-

tion will ensure that the final graph GΠ3SAT is simple.
The chain of “double” edges ei, fi, 1 ≤ i ≤ n will be called n-chain in the

following. For each i, we associate the edges ei, fi with the variable yi. Note
that the n-chain induces exactly 2n Hamiltonian cycles in G′Π3SAT

, one for each
possible assignment of the variables y1, y2, . . . , yn. The edges ei (fi), 1 ≤ i ≤
n, will also be called 0-edges (1-edges) referring to the desired correspondence
between Hamiltonian cycles and assignments. The usage of a 0-edge ei (1-edge
fi) in a Hamiltonian cycle will represent assigning the boolean value 0 (1) to yi.
Hence any Hamiltonian cycle traversing the n-chain canonically corresponds to
an assignment for y1, y2, . . . , yn and vice versa.

Inverse HAMILTONIAN CYCLE and Inverse 3-D MATCHING 249

The remaining part of the construction of GΠ3SAT consists of the insertion
of subgraphs into G′Π3SAT

in order to restrict the set of Hamiltonian cycles to
those that correspond to assignments that are 3-compatible with Π3SAT. Recall
that an assignment β is called 3-compatible with a set of assignments Π (over
the same variable set) if for each three-element set of variables {yi1 , yi2 , yi3} the
assignment β is {yi1 , yi2 , yi3}-compatible with Π .

We will now define gadgets Hi, 1 ≤ i ≤
(
n
3

)
, one gadget for each three-

element set of variables {yi1 , yi2 , yi3}, that will eventually be subgraphs of the
to be constructed graph GΠ3SAT . The structure of a subgraph Hi associated
with the three variables yi1 , yi2 , yi3 and its connections to the remaining graph,
in particular the n-chain, will ensure that every Hamiltonian cycle in GΠ3SAT

corresponds to an assignment that is {yi1 , yi2 , yi3}-compatible with Π3SAT.
The gadgets Hi, 1 ≤ i ≤

(
n
3

)
, will all have the same structure and so without

loss of generality we will only describe the construction of the gadget for the
three variables y1, y2, y3, call it H1. The gadget H1 will also be constructed in
stages.

First we define the define set

Π1
3SAT = {a1a2a3 ∈ {0, 1}3 : (∃α ∈ Π3SAT)(∀i : 1 ≤ i ≤ 3)[α(yi) = ai]}.

So, Π1
3SAT is the set of pairwise different partial {y1, y2, y3}-assignments in

Π3SAT, i.e., assignments from Π3SAT restricted to the variables y1, y2, and y3. In
other words Π1

3SAT consists of those possible triples of values (β(y1), β(y2), β(y3))
for an assignment β that is {y1, y2, y3}-compatible with Π3SAT. Let k1 denote
the number of elements in Π1

3SAT and note that k1 ≤ 8.

Construction Step 2a. The construction of the gadget H1 starts with a path
of four edges. After “doubling” the first three edges, i.e., inserting new edges
connecting their endpoints and so building a graph consisting of a chain of three
double edges followed by a (single) edge, we obtain a graph K ′. Connect k1 copies
of K ′, call them K ′1, K

′
2, . . . , K

′
k1

in a path-like manner by identifying the start
and end vertices of the original path of four edges of consecutive copies of K ′

(see also Fig. 3).

Each chain of (three) consecutive double edge will be called a 3-chain and every
3-chain will correspond to an element a1a2a3 from Π1

3SAT. This correspondence
will play an important role in the upcoming Construction Step 2b. Within each
3-chain of H1 we will associate the first double edge with the variable y1, the
second with y2 and the third with y3, where one edge participating in a double
edge will be called 0-edge while the other will be called 1-edge.

The next construction step for H1 deals with the issue that H1 is supposed to
handle {y1, y2, y3}-compatibility. Informally put, the traversal of a Hamiltonian
cycle through the n-chain, i.e. the usage of 0- and 1-edges in the n-chain, will
effect the traversal of that Hamiltonian cycle through the gadget H1. So in the
upcoming step we describe how that yet to be completely defined gadget H1 is
connected to the n-chain.

250 M. Krüger and H. Hempel

Construction Step 2b. Let e′ be a 0-edge in H1. Suppose e′ is part of a 3-chain
that is associated with the partial assignment a1a2a3 ∈ Π1

3SAT, a1, a2, a3 ∈ {0, 1},
and let e′ be associated with the variable yi, 1 ≤ i ≤ 3, within that 3-chain.
Connect e′ with fi (the 1-edge in the n-chain that is associated with yi) via a
parity module if and only if ai = 1 and connect e′ with ei (the 0-edge in the
n-chain that is associated with yi) via a parity module if and only if ai = 0 .

Suppose that C is a Hamiltonian cycle in the to be constructed graph GΠ3SAT

that by its traversal through the n-chain defines an assignment β. Consider a
3-chain K in H1 that is associated with a partial assignment a1a2a3 and the
0-edge (edge) in that 3-chain associated with y1. Observe that by the above
insertion of the parity modules we have that C does not use the 0-edge in K
that is associated with y1 if and only if a1 = β(y1).

It follows that a Hamiltonian cycle C corresponds to an assignment (the
assignment defined by the Hamiltonian cycle’s traversal of the n-chain) that
is {y1, y2, y3}-compatible with Π3SAT if and only if there exists one 3-chain K
in H1 such that C does not use any of the three 0-edges in K.

The next step introduces three auxiliary vertices in H1 that will force any
Hamiltonian cycle in GΠ3SAT to avoid all three 0-edges in at least one 3-chain K
and so in light of the above comment force any Hamiltonian cycle in GΠ3SAT to
correspond to an assignment that is (y1, y2, y3)-compatible with Π3SAT.

u1 v1

w1
1 w2

1 w3
1

a a

copy K ′1 of K ′ copy K ′k1
of K ′

Fig. 3. The structure of the gadget H1

Construction Step 2c. Add three new vertices w1
1, w

1
2 , w

1
3 to the gadget H1,

that will be associated with the variables y1, y2, and y3, respectively. For each i,
1 ≤ i ≤ 3, and each 3-chain K in H1 add edges from the endpoints of its yi-
double-edge to w1

i . Furthermore, for each 3-chain K all-connect (see Lemma 1)
the six edges between K and the vertices w1

1 , w
1
2, w

1
3

1 (see Fig. 3).

In order to see that the introduction of w1
1 , w

1
2, w

1
3 has the desired effect note

that the three new vertices have to be visited by each Hamiltonian cycle. Each
edge leading from a 3-chain to one of the new vertices is all-connected to the
1 Note that all-connection requires the existence of an auxiliary edge, that is used by

each Hamiltonian cycle. However the 3-chain K contains an edge that has not been
doubled in Construction Step 2a and so it can be used for exactly this purpose.

Inverse HAMILTONIAN CYCLE and Inverse 3-D MATCHING 251

other five edges that connect this 3-chain with one of w1
1 , w

1
2 , w

1
3 . It follows that

w1
1 , w

1
2 , w

1
3 will be visited by any Hamiltonian cycle via edges coming from one

and the same 3-chain.
Now it easy to see that each Hamiltonian cycle avoids all three 0-edges in at

least one 3-chain, namely in the 3-chain, from which the Hamiltonian cycle visits
w1

1 , w
1
2 , w

1
3. If a Hamiltonian cycle C would use one of these 0-edges there would

be a small cycle in C consisting of the 0-edge and those two edges between the
3-chain and w1

1 , w
1
2 , w

1
3 , that start at the endpoints of the 0-edge, a contradiction.

Observe that with respect to a potential Hamiltonian cycle C in the graph
GΠ3SAT and C’s traversal of the n-chain the parity-connections between the n-
chain and the gadget H1 uniquely define C’s way through the series of 3-chains
inside H1 and hence also the way the vertices w1

1, w
1
2 , w

1
3 are traversed. The latter

is determined by the 3-chain in which C avoids all three 0-edges, in other words
by the 3-chain that witnesses the {y1, y2, y3}-compatibility of the assignment
defined by C’s traversal through the n-chain.

This completes the construction of H1. It is obvious how the gadgets for other
triples of variables have to be constructed. The overall structure of the gadgets
H2, . . . , H(n

3) is identical to the structure of H1 as shown in Fig. 3, except for
the names of the vertices and the number of copies of K ′. The connections of a
gadget to the n-chain (not shown in Fig. 3) also differ between the gadgets.

This concludes the construction of the gadgets Hi and we will return to the
construction of GΠ3SAT . Let for all i, ui and vi be the “first” and “last” vertices
of Hi (see Fig. 3).

Construction Step 3. Insert the gadgets H1, . . . H(n
3) into the graph G′Π3SAT

as shown in Fig. 4. In particular, recall that the graph G′Π3SAT
contains a simple

path of 2
(
n
2

)
+ 1 edges. Replace any second edge of that simple path by one

gadget (replacing an edge {u′′, v′′} by Hi means removing the edge {u′′, v′′} from
G′Π3SAT

and identifying the vertices u′′ and v′′ with the vertices ui and vi—the
“first” and “last” vertices of Hi—respectively). Note that by inserting a gadget
Hi any connections from Hi to the n-chain, i.e., the parity modules spoken of in
Construction Step 2b, are also inserted in GΠ3SAT .

This completes the construction of the graph GΠ3SAT . As mentioned at the be-
ginning of the proof, GΠ3SAT has the property that it contains exactly one Hamil-
tonian cycle for each assignment that is 3-compatible with Π3SAT.

Lemma 2. Let Π3SAT be a well-formed set of proofs for V3SAT. There is a bi-
jective mapping between the set of assignments that are 3-compatible with Π3SAT
and the set of Hamiltonian cycles in GΠ3SAT .

Note that the size of the constructed graph GΠ3SAT is polynomial in the length
n of the strings in Π3SAT and thus in |Π3SAT| . Also, the construction of GΠ3SAT

can be done in time polynomial in |Π3SAT|. Furthermore, it follows from the
construction of the graph GΠ3SAT that given a well-formed set of proofs Π3SAT
for V3SAT and an assignment α ∈ Π3SAT the Hamiltonian cycle that is associ-

252 M. Krüger and H. Hempel

n-chain

gadget H1 gadget H2 gadget H(n
3)

Fig. 4. The overall structure of GΠ3SAT . The dashed lines represent the “connections”
between the gadgets Hi and the n-chain that are realized by several parity-modules.

ated with α via the bijective mapping spoken of in the above Lemma 2 can be
constructed in time polynomial in Π3SAT.

We will now turn to formally define the function f that reduces Invs-3SAT
to Invs-HC. As already mentioned at the beginning of this proof f maps non
well-formed proof sets Π3SAT to a fixed non-member of Invs-HC. For well formed
proof-sets Π3SAT we define f(Π3SAT) to be the set of those Hamiltonian cycles
in GΠ3SAT that correspond to the assignments from Π3SAT via the mapping
spoken of in Lemma 2. Note that any assignment from Π3SAT is 3-compatible
with Π3SAT and hence there does indeed exist a Hamiltonian cycle in GΠ3SAT for
every assignment from Π3SAT (Lemma 2). Since checking whether a proof set
is well-formed, constructing the graph GΠ3SAT , and also extracting Hamiltonian
cycles corresponding to given assignments can all be done in polynomial time it
follows that f is computable in polynomial time.

It remains to show that for all Π3SAT we have Π3SAT ∈ Invs-3SAT ←→
f(Π3SAT) ∈ Invs-HC. Due to space restrictions that part of the proof is omitted.

Acknowledgement. We thank Tobias Berg for all the inspiring and helpful
discussions and we thank the anonymous reviewers for their useful comments.

References

[1] H. Chen. Inverse NP problems. Mathematical foundations of computer science
(2003), 338–347, Lecture Notes in Comput. Sci., 2747, Springer, Berlin, 2003

[2] M. Garey and D.Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness,W.H.Freeman Company, 1979

[3] E. and L.Hemaspaandra, H. Hempel. All superlinear inverse schemes are coNP-
hard. Theoretical Computer Science 345 (2005), no. 2-3, 345–358.

[4] D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM Journal on
Computing 28(1) (1998), no. 1, pp. 152–163

[5] C. H. Papadimitriou. Computational Complexity, Addison-Wesley, 1994
[6] D.B. West. Introduction to Graph Theory, Prentice Hall, 2001

Parameterized Problems on Coincidence Graphs

Sylvain Guillemot

LIRMM - 161 rue Ada - 34392 Montpellier Cedex 5
sguillem@lirmm.fr

Abstract. A (k, r)-tuple is a word of length r on an alphabet of size k.
A graph is (k, r)-representable if we can assign a (k, r)-tuple to each ver-
tex such that two vertices are connected iff the associated tuples agree
on some component. We study the complexity of several graph prob-
lems on (k, r)-representable graphs, as a function of the parameters k, r;
the problems under study are Maximum Independent Set, Minimum
Dominating Set and Maximum Clique. In this framework, there are
two classes of interest: the graphs representable with tuples of logarith-
mic length (i.e. graphs (k, r)-representable with r = O(k log n)), and
the graphs representable with tuples of polynomial length (i.e. graphs
(k, r)-representable with r = poly(n)). In both cases, we show that the
problems are computationally hard, though we obtain stronger hardness
results in the second case. Our hardness results also allow us to derive
optimality results for Multidimensional Matching and Disjoint r-
Subsets.

1 Introduction

A (k, r)-tuple is a word of length r on an alphabet of size k. A graph is (k, r)-
representable if we can assign a (k, r)-tuple to each vertex such that two ver-
tices are connected iff the associated tuples agree on some component. In this
paper, we consider the complexity of several problems on (k, r)-representable
graphs: Maximum Independent Set, Minimum Dominating Set, Maxi-
mum Clique. The focus is on the parameterized complexity of these problems
with respect to the parameters k,r. To address this question, we use the toolkit
developed by Downey and Fellows (fpt algorithms, classes W [t] and M [t]).

Our results are as follows:

– in Section 3, we consider the Maximum Independent Set (MIS) problem.
We show that the problem can be solved in O(nk) time in the general case,
and in O(2O(pr)rn) time if we seek an independent of size ≥ p. Moreover, we
show that the problem is M[1]-hard when r = O(k log n), and W[1]-complete
when r = poly(n).

– in Section 4, we consider the Minimum Dominating Set (MDS) problem.
We show that the problem can be solved in O(nk) time in the general case,
and in O((pr)2prrn) time if we seek a dominating set of size ≤ p. We also
show that the problem is M[2]-hard when r = O(k log n), and W[2]-complete
when r = poly(n).

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 253–266, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

254 S. Guillemot

– in Section 5, we consider the Maximum Clique (MC) problem. We show
that even when r = O(k log n), there exists a value of k for which the problem
is NP-hard (under randomized reductions).

– in Section 6, we show that our hardness results imply optimality results for
various FPT algorithms, under complexity-theoretic assumptions. Namely,
we show that MIS and MDS on (k, r)-representable graphs cannot be solved
in 2o(kr)nc time, or in 2o(pr)nc time, under likely assumptions (FPT �= M[1]
in the first case, FPT �= M[2] in the second case); we also show that the
problems Multidimensional Matching and Disjoint r-Subsets cannot
be solved in 2o(pr)nc time if FPT �= M[1].

2 Definitions

We use the notation [k] to denote either the set of integers {1, ...k} or the set of
integers {0, ..., k − 1}, depending on the context.

2.1 Graphs

Let G = (V, E) be a graph. We recall that a k-coloring of G is a function
γ : V → [k] s.t. γ(x) �= γ(y) whenever {x, y} ∈ E. We say that γ : V → [k]
is a k-cocoloring of G iff γ is a k-coloring of Ḡ. A k-colored graph is a triple
G = (V, E, γ) where γ is a k-coloring of (V, E). A k-cocolored graph is a triple
G = (V, E, γ) where γ is a k-cocoloring of (V, E).

A (k, r)-tuple is an element of [k]r. If u is a (k, r)-tuple, for every i ∈ {0, ..., r−
1} the i-th component of u is denoted u[i]. A (k, r)-family is a family of (k, r)-
tuples: note that this is a family and not a set, meaning that a given tuple
may have several occurences. Given two (k, r)-tuples u, v, we say that u, v are
coincident (denoted by u ‖ v) iff there exists i s.t. u[i] = v[i]. We say that
u, v are non coincident (denoted by u ∦ v) otherwise. The coincidence graph of
a (k, r)-family F is the graph of the coincidence relation on F , i.e. this is the
graph G = (V, E), where V := F , and where we have {u, v} ∈ E whenever u ‖ v.
We denote by G[F] the coincidence graph of F .

We say that G is (k, r)-representable iff there exists a (k, r)-family F s.t.
G = G[F], or equivalently s.t. there exists a bijection φ : V → F s.t. {x, y} ∈
E ⇔ φ(x) ‖ φ(y). Note that in this case, for every i ∈ [r], the function
γi : V → [k] defined by γi(x) = φ(x)[i] is a k-cocoloring of G. We say that
G is (k, r)-corepresentable iff there exists a (k, r)-family F s.t. Ḡ = G[F], or
equivalently s.t. there exists a bijection φ : V → F st {x, y} ∈ E ⇔ φ(x) ∦

φ(y). Note that in this case, for every i ∈ [r], the function γi is a k-coloring
of G.

If G is a graph, we denote by α(G) the size of an independent set of maximum
cardinality, and by β(G) the size of a dominating set of minimum cardinality.
We will also use these notations for families, e.g. α(F) and β(F).

Parameterized Problems on Coincidence Graphs 255

2.2 Parameterized Complexity

Let A be an alphabet. A parameterized language is a set L ⊆ A∗× N. Given two
parameterized languages L, L′, we say that L fpt-reduces to L′ iff there exists a
computable function f : N → N, a function g : N → N, a constant c ∈ N, and
an algorithm A s.t. from every instance I = (x, k) of L, A computes an instance
I ′ = (x′, k′) of L′ in time f(k)nc, s.t. k′ ≤ g(k) and I ∈ L ⇔ I ′ ∈ L′. We write
L ≤fpt L′ to mean that L fpt-reduces to L′.

We define the following parameterized languages. 1 is the trivial language
with two elements. Miniaturized 3-Satisfiability (Mini3Sat) asks: given a
parameter k, an integer n encoded in unary, and a 3CNF Φ with k log n variables,
decide if Φ is satisfiable. Miniaturized Satisfiability (MiniSat) asks: given a
parameter k, an integer n encoded in unary, and a CNF Φ with k log n variables
s.t. |Φ| ≤ n, decide if Φ is satisfiable. Independent Set (Is) asks: given a
parameter k, and a graph G, decide if α(G) ≥ k. Dominating Set (Ds) asks:
given a parameter k, and a graph G, decide if β(G) < k.

A class is a set C of parameterized languages, closed by fpt-reduction: if L ∈ C
and L′ ≤fpt L, then L′ ∈ C. Given a parameterized language L, we denote by
Lfpt the class generated by L, this is the set of parameterized languages L′ s.t.
L′ ≤fpt L. Given a class C, we say that a parameterized language L is C-complete
iff C = Lfpt and that L is C-hard iff C ⊆ Lfpt. We define the classes FPT, M[1],
W[1], M[2] and W[2] as follows: FPT = 1fpt, M[1] = Mini3Satfpt, W[1] =
Isfpt, M[2] = MiniSatfpt and W[2] = Dsfpt (this is consistent with the usual
definitions of these classes). We have the inclusions FPT ⊆ M[1] ⊆ W[1] ⊆
M[2] ⊆ W[2], and these inclusions are conjectured to be proper.

3 Complexity of Maximum Independent Set

In this section, we determine the complexity of the Maximum Independent
Set problem on (k, r)-representable graphs (given a representation). Formally,
we define the problem Maximum Independent Set on Families (MISF):
given a parameter k, a (k, r)-family F , and an integer p, decide if α(F) ≥ p.

In Section 3.1, we show that the problem can be solved in O(nk) time for any r
by exhaustive search, and in O(22krrn) time by dynamic programming. We also
show that the problem of deciding if a (k, r)-family has an independent of size
≥ p can be solved in O(22prrn) time via a randomized algorithm. These results
give an alternative to known algorithms for the Multidimensional Matching
problem (since this problem is equivalent to MISF).

In Section 3.2, we obtain hardness results for MISF. Since the problem can
be solved in O(nk) time, the question arises whether it could be fixed-parameter
tractable. We settle this question negatively. Let MISF-1 denote the restriction
of MISF to (k, O(k log n))-families. Let MISF-2 denote the restriction of MISF
to (k, poly(n))-families. We prove that MISF-1 is M[1]-hard, and that MISF-2
is W[1]-complete.

256 S. Guillemot

3.1 Solving MISF

First, observe that:

Proposition 1. There is an algorithm which, given a (k, r)-family F , computes
α(F) in O(nk) time.

Proof. This follows from the fact that for a (k, r)-family F , we have α(F) ≤ k.
Indeed, if we have a set of k + 1 elements S = {v1, ..., vk+1} ⊆ F , then there
exists i, j s.t. vi[0] = vj [0], and thus S is not an independent.
�

We now give an algorithm solving the problem in O(22krrn) time, which is faster
than the previous algorithm when r ≤ log2 n/2:

Proposition 2. There is an algorithm which, given a (k, r)-family, computes
α(F) in O(22krrn) time.

Proof. Before describing the algorithm, we introduce a few definitions. A filter
is a tuple X = (x1, ..., xr), where xi ⊆ [k] for every i. Let ∅ = (∅, ..., ∅) denote
the empty filter, and let X0 = ([k], ..., [k]) denote the full filter. We say that X
is thin iff |xi| = 1 for every i.

Consider three filters X, Y, Z. We denote the union of X, Y by X �Y , and we
denote their intersection by X
Y (obtained by taking unions, resp. intersections,
componentwise). We say that Y dominates X (denoted X Y) if xi ⊆ yi for
every i. We say that (X, Y) is a partition of Z iff (i) X �= ∅, Y �= ∅, (ii) X
Y = ∅
and (iii) X � Y = Z.

Let AllowedF(X) denote the set of elements t ∈ F s.t. t[i] ∈ xi for every i.
Let ISF (X) denote the family of independent sets of AllowedF(X); let isF(X)
denote the size of a largest set in ISF (X). Obviously, α(F) = isF(X0).

Consider the following algorithm, which computes isF(X) by dynamic pro-
gramming:

1. if |AllowedF (X)| = 0, return 0;
2. else if X is thin, return 1;
3. else: compute isF(X) := max{isF(X1)+isF (X2) : (X1, X2) partition of X}.

The termination of the algorithm is ensured by the fact that if (X1, X2) is a
partition of X , we have X1 � X and X2 � X . The correctness follows from
the observation that if X is not thin and I ∈ ISF(X), then there is a partition
(X1, X2) of X and a partition I1, I2 of I s.t. Ii ∈ ISF (Xi) (and conversely).

Obviously, this algorithm has running time O(22krrn), since for a given tuple
X , computing |AllowedF (X)| requires time O(rn).
�

Observe that the running time can be shown to be O(3krrn) by a more precise
analysis. Note also that the complexity can be lowered to O(2krkrrn) if in Step
3 we consider only the partitions (X1, X2) of X where X1 is thin.

Using the above algorithm, we can show that:

Proposition 3. There is an algorithm which, given a (k, r)-family F and an
integer p, decides whether α(F) ≥ p in RPTIME(O(2O(pr)rn)).

Parameterized Problems on Coincidence Graphs 257

Proof. Let F be a (k, r)-family s.t. we want to decide whether α(F) ≥ p. Con-
sider a tuple of functions F = (f1, ..., fr) where each fi : [k] → [p]. For every
t ∈ F , let γF (t) = (f1(t[1]), ..., fr(t[r])), and let FF = {γF (t) : t ∈ F}. We claim
that:

1. if α(F) ≥ p, then PrF [α(FF) = p] ≥ 1
epr .

2. if α(F) < p, then PrF [α(FF) = p] = 0.

Now, consider the following algorithm. Repeat epr times the following proce-
dure: choose a random tuple F = (f1, ..., fr), and test if α(FF) = p using the
algorithm described in Proposition 2: return ”yes” if this is the case, continue
otherwise; return ”no” if no such F is found. Then this algorithm has running
time 2O(pr)n, and by the above observation:

1. if α(F) ≥ p, then the algorithm returns ”yes” with probability ≥ 1/2;
2. if α(F) < p, then the algorithm always returns ”no”.

�

Note that the above algorithm could be derandomized using the following notion:

Definition 1. A (p, r)-perfect hash family on a base set S is a family F of tuples
(f1, ..., fr), where each fi : S → [p], satisfying the following:

for every x1, ..., xr ⊆ S, |xi| = p, there exists a tuple (f1, ..., fr) ∈ F s.t. fi is
injective on xi.

Note that this is a generalization of the notion of p-perfect hash family [2] (which
corresponds to the particular case r = 1). Observe that:

Lemma 1. Let S be a base set of size k. Fix N , and let F be a random family
of N tuples (f1, ..., fr), where each fi : S → [p]. Then: if N ≥ (1 + ε)eprpr log k,
then F is a (p, r)-perfect hash family with high probability.

Proof. Consider a tuple of sets X = (x1, ..., xr), where each xi is a p-subset of S.
Say that a tuple of functions F = (f1, ..., fr) validates X iff every fi is injective
on xi. Say that X is good iff there exists F ∈ F which validates X , say that X
is bad otherwise. Let Nb denote the number of bad tuples. For a given F ∈ F ,
and for a given tuple X , we compute the probability that X is validated by F :

Pr[X validated by F] =
r∏

i=1

Pr[fi injective on xi] ≥ 1
epr

Now, we compute the expected number of bad tuples:

E[Nb] ≤
∑

X

Pr[X good] ≤ kpr(1 − 1
epr

)N ≤ epr log k−Ne−pr

which is o(1) as soon as N ≥ (1 + ε)eprpr log k. We obtain that F is a (p, r)-
perfect hash family with probability 1 − o(1).
�

258 S. Guillemot

Since the above result gives a probabilistic construction of a (p, r)-perfect hash
family, this yields a randomized algorithm for deciding whether α(F) ≥ p in
ZPTIME(2O(pr)rn log k) (improving the RPTIME algorithm of Proposition 3,
at the expense of a log k factor). We conjecture that it is possible to give a
deterministic algorithm with the same time complexity; note that this would
require the explicit construction of a (p, r)-perfect hash family on [k], having
size 2O(pr) log k. This algorithm could then be combined with the kernelization
algorithm for Multidimensional Matching described in [10], lowering the
running time to O(n + 2O(pr)).

3.2 Hardness Results

First, we show M[1]-hardness of MISF-1. To this end, we introduce the problem
MiniBis. A (k, p)-partitioned graph is a tuple G = (V, E, P), where P is a
partition of V in k classes V1, ..., Vk, each of size p. A K-balanced independent
of G is a set I ⊆ V s.t. (i) I is an independent of G, (ii) |I ∩ Vi| = |Vi|/K for
every i. Let MiniBis-(K, Δ) denote the following problem: given a parameter
k, and a (k, O(log n))-partitioned graph G s.t. G is Δ-regular, decide if G has a
K-balanced independent. We prove that:

Proposition 4. MiniBis-(3, 4) is M[1]-hard.

Proof. Let 3Sat-E2,2 denote the problem 3Sat, restricted to instances in which
each variable has exactly 2 positive occurences and 2 negative occurences. Let
Mini3Sat-E2,2 denote its miniaturized version. Then:

– Mini3Sat-E2,2 is M[1]-hard: indeed, the reduction from 3Sat to 3Sat-E2,2
runs in linear time, and thus induces an fpt-reduction between the minia-
turized problems;

– Mini3Sat-E2,2 reduces to MiniBis-(3, 4) via the usual reduction from Sat
to Is. Indeed, let Φ be an instance of Mini3Sat-E2,2, with p = O(k log n)
clauses and q variables.
The reduction constructs a graph G = (V, E, P) where V is the set of literals
of Φ, two elements u, v ∈ V are connected if: (i) either they belong to the
same clause of Φ, or (ii) they are complementary literals, i.e. u = x, v = ¬x.
The partition P = {V1, ..., Vk} is defined as follows. Let C be the set of
clauses of Φ, then partition C in k sets C1, ..., Ck of size O(log n), and for each
i, let Vi be the set of literals appearing in clauses of Ci.
Then G is a (k, O(log n))-partitioned graph. Moreover, since each clause of
Φ has size 3, and since each variable of Φ has two positive and two negative
occurences, it follows that every vertex of G has degree 4, thus G is 4-
regular. Hence, G is an instance of MiniBis-(3, 4); besides, its construction
takes polynomial time.
The correctness of the reduction follows by showing that: Φ is satisfiable iff
G has a 3-balanced independent (proof omitted).

�

Parameterized Problems on Coincidence Graphs 259

We are now ready to prove that:

Proposition 5. MISF-1 is M[1]-hard.

Proof. We reduce from MiniBis-(K, Δ). Let I = (G, k) be a an instance of
MiniBis-(K, Δ). Then G = (V, E, P) is a Δ-regular (k, p)-partitioned graph
with p = O(log n). Thus P is a partition of V in k classes V1, ..., Vk, each of size
p. Let Δ′ = Δ

2 . We construct the following instance I ′ = (F , k) of MISF-1. We
set l := k + 1, r := Δ′kp + 1, and F is the (l, r)-family constructed as follows.

Since G is Δ-regular, we have |E| = Δ′kp. Let e1, ..., e|E| be an enumeration
of E. For every i ∈ [k], let Si denote the family of independent sets I ⊆ Vi s.t.
|I| = p/K. Then, for every u ∈ Si we define the tuple si,u as follows. Let j ∈ [r],
we set:

⎧
⎪⎨

⎪⎩

si,u[0] = i

si,u[j] = k + 1 if j ≥ 1, ej ∩ u �= ∅
si,u[j] = i if j ≥ 1, ej ∩ u = ∅

Let F = {si,u : i ∈ [k], u ∈ Si}. Then the construction takes polynomial time.
The validity of the reduction follows by proving that: G has a K-balanced inde-
pendent iff α(F) ≥ k.
�

Now, we show W[1]-completeness of MISF-2. This relies on the following
Lemma, on the representability of k-cocolored graphs:

Lemma 2. Let G = (V, E, γ) be a k-cocolored graph. Then G is (k + 1, O(n2))-
representable.

Proof. Let V1, ..., Vk be the color classes of G, and let e1, ..., em be an enumeration
of E. We will construct a (k + 1, m+ 1)-family F as follows. For every v ∈ V we
create a tuple sv. Suppose that v ∈ Vi, and consider j ∈ [m + 1], then we set:

⎧
⎪⎨

⎪⎩

sv[0] = i

sv[j] = i if j ≥ 1, v /∈ ej

sv[j] = k + 1 if j ≥ 1, v ∈ ej

We take F = {sv : v ∈ V }. It follows that G = G[F], by proving that for every
u, v ∈ V , we have: {u, v} ∈ E iff su ‖ sv.
�

We consider the problem Partitioned Independent Set (Pis) which asks:
given a parameter k, and a k-cocolored graph G, decide if α(G) = k. Using a
similar argument to [13], we show that:

Proposition 6. Pis is W[1]-complete.

Proof. Clearly, Pis is in W[1], since it fpt-reduces to the Is problem.

260 S. Guillemot

To prove that Pis is W[1]-hard, we reduce from Is. Let I = (G, k) be an
instance of Is, where G = (V, E) is a graph of which we seek an independent of
size k.Consider the k-cocolored graph G′ = (V ′, E′, γ′), where:

V ′ = [k] × V

E′ = {{(i, x), (j, y)} : i = j ∨ x = y ∨ {x, y} ∈ E}
γ′(i, x) = i

It is straightforward to verify that G′ is k-cocolored. Moreover, we have: α(G′) =
k iff α(G) ≥ k (proof omitted).
�

We are now ready to prove that:

Proposition 7. MISF-2 is W[1]-complete.

Proof. Membership is obvious. Hardness follows from Proposition 6 and Lemma 2.

�

4 Complexity of Minimum Dominating Set

In this section, we investigate the complexity of the Minimum Dominating
Set problem on (k, r)-representable graphs (given a representation). Formally,
we define the problem Minimum Dominating Set on Families (MDSF):
given a parameter k, a (k, r)-family F , and an integer p, decide if β(F) ≤ p?

In Section 4.1, we show that the problem can be solved in O(nk) time by
exhaustive search. We also show that the problem of deciding if a (k, r)-family
has a dominating set of size ≤ p can be solved in O((pr)2prn) time.

In Section 4.2, we obtain hardness results for MDSF, ruling out the possibility
of having a FPT algorithm. More precisely, we show the following. Let MDSF-1
denote the restriction of MDSF to (k, O(k log n))-families. Let MDSF-2 denote
the restriction of MDSF to (k, poly(n))-families. We prove that MDSF-1 is
M[2]-hard, and that MDSF-2 is W[2]-complete.

4.1 Solving MDSF

First, observe that:

Proposition 8. There is an algorithm which, given a (k, r)-family F , computes
β(F) in O(nk) time.

Proof. This follows from the fact that for a (k, r)-family F , we have β(F) ≤ k.
Indeed, for every i ∈ [k], let Fi = {s ∈ F : s[0] = i}. Then for every i ∈ [k]
s.t. Fi �= ∅, choose an element vi ∈ Fi. Clearly, D = {vi : i ∈ [k], Fi �= ∅} is a
dominating set of G.
�

Moreover, if we have a bound p on the size of the dominating set sought, then
we can solve the problem efficiently:

Parameterized Problems on Coincidence Graphs 261

Proposition 9. There is an algorithm which, given a (k, r)-family F and an
integer p, decides whether β(F) ≤ p in O((pr)2prn) time.

Proof. Say that a partial (k, r)-tuple is a tuple u ∈ ([k] ∪ {⊥})r. Say that u is
full iff u[i] �=⊥ for every i; in the following, we identify the (k, r)-tuples and the
full partial (k, r)-tuples. If u is a partial (k, r)-tuple, if i ∈ [r] and v ∈ [k], let
u[i → v] denote the partial (k, r)-tuple u′ s.t.: u′[j] = u[j] (j �= i), u′[i] = v.
Denote by ε the partial (k, r)-tuple s.t. ε[i] =⊥ for every i. Let u, v be two partial
(k, r)-tuples, say that u extends v iff u(i) = v(i) whenever v(i) �=⊥.

We say that a partial (k, r)-tuple u is realizable by F iff there exists v ∈ F
which extends u. Given a set D of partial (k, r)-tuples, we say that a (k, r)-tuple
x is dominated by D iff there exists y ∈ D, i ∈ [r] s.t. x[i] = y[i].

Say that a state is a tuple S = (R, U), where U = (u1, ..., up) is a list of partial
(k, r)-tuples, and R = {x ∈ F : x not dominated by U}. Say that S is final if ui

is full for every i. Define the initial state S0 = (F , U0) with U0 = (ε, ..., ε). Say
that S is accepting if there exists v1, ..., vp ∈ F s.t.:

– for every i, vi extends ui;
– {v1, ..., vp} is a dominating set of F .

Then obviously: β(F) ≤ p iff S0 is accepting.

Let S = (R, U) be a state. We will define a function IsAccepting(S) which
determines if S is accepting. We rely on the following observation. For every
x ∈ [k], i ∈ [r], denote noccS(x, i) = |{s ∈ R : s[i] = x}|. Then:

Lemma 3. Suppose that S is accepting. Then there exists v ∈ [k], i ∈ [r] s.t.
noccS(v, i) ≥ |R|/pr.

Proof. Since S is accepting, there exists v1, ..., vp ∈ F as prescribed by the
definition. Now, since R ⊆ F , D = {v1, ..., vp} is a dominating set of R. Thus,
for every x ∈ R, there exists φ(x) = (i, j) s.t. x[i] = vj [i]. Thus, we have a
function φ : R → [r] × [p]; let x ∈ [r] × [p] s.t. |φ−1(x)| is maximal. Then
x = (i, j), let v = vj [i], thus we have noccS(v, i) ≥ |R|/pr as claimed.
�

This observation allows us to define the function IsAccepting(S) as follows:
The correctness of the algorithm follows from the following observations.

Let S be a state, define m(S) = |{(i, j) ∈ [p] × [r], ui[j] =⊥}|. When calling
IsAccepting(S), we have S = (R, U) where:

1. R = {x ∈ F : x not dominated by U};
2. every ui is realizable by F ;
3. for every call IsAccepting(S′) issued, we have m(S′) < m(S).

These observations can be proved by induction on pr − m(S). Clearly, they
hold for S = S0, and when issuing a new call IsAccepting(S′) at Line 14,
using induction hypothesis, we check that Point 1 is verified (because of Line
9) and that Point 2 is verified (because of Lines 11). Point 3 is clear since
m(S′) = m(S) − 1.

262 S. Guillemot

IsAccepting(S)

1: if S is final then
2: return true if R = ∅, false otherwise
3: else
4: choose i ∈ [r]
5: for every v, compute t[v] = noccS(v, i)
6: choose v s.t. t[v] ≥ |R|/pr
7: choose j ∈ [p] s.t. uj [i] =⊥
8: let S ′ = (R′, U ′) be the state defined as follows
9: R′ = {x ∈ R : x[j] �= v}

10: U ′ = (u′
1, ..., u

′
p) where u′

l = ul (l �= j) and u′
j = uj [i → v]

11: if u′
j is not realizable by F then

12: return false
13: else
14: return IsAccepting(S ′)
15: end if
16: end if

Now, the correctness of the algorithm follows by proving by induction on m(S)
that: for every state S, S is accepting iff IsAccepting(S) returns true.

Finally, we justify the running time of the algorithm. Observe that the algo-
rithm builds a search tree, where the nodes are the states, and the leaves are the
final states. Moreover, observe that:

– the search tree has height pr, since m(S) decreases by one at each step.
– each internal node has degree ≤ (pr)2: indeed, when processing an internal

node, the algorithm makes choices at lines 4, 6, 7. Note that Line 4 induces
r possible choices, Line 6 induces ≤ pr possible choices, and Line 7 induces
≤ p possible choices. Thus, the degree of the node is ≤ (pr)2.

– each node is processed in O(n) time.

Thus, the algorithm has running time O((pr)2prn) as claimed.
�

We conjecture that MDSF can be solved in 2O(pr)n time, but we have been
unable to devise an algorithm with this complexity.

4.2 Hardness Results

First, we show:

Proposition 10. MDSF-1 is M[2]-hard.

Proof. We give an fpt-reduction from MiniSat. Let I = (Φ, k) be an instance of
MiniSat. Then Φ is a CNF with p := O(k log n) variables and O(n) clauses. Let
V be its variable set, and consider a partition of V in sets V1, ..., Vk, each of size
O(log n). Let L = {x, ¬x : x ∈ V}, and for every i, let Li = {x, ¬x : x ∈ Vi}. Let
l1, ..., l2p be an enumeration of L. For every i, we define Si as the sets X ⊆ Li

s.t. for every x ∈ Li, |X ∩ {x, ¬x}| = 1.

Parameterized Problems on Coincidence Graphs 263

We construct an instance I ′ = (F , k) of MDSF-1 as follows. We set l := k+2
and r := 2p + 1. We define F to be a (l, r)-family, with the following tuples:

– for every i ∈ [k], we define si := (i, ..., i);
– for every i ∈ [k], for every X ∈ Si, we define ti,X as follows:

⎧
⎪⎨

⎪⎩

ti,X [0] = i

ti,X [j] = i if j ≥ 1, lj /∈ X

ti,X [j] = k + 1 if j ≥ 1, lj ∈ X

– for every clause C of Φ, we define uC as follows.
⎧
⎪⎨

⎪⎩

uC [0] = k + 1
uC [i] = k + 1 if i ≥ 1, li ∈ C

uC [i] = k + 2 if i ≥ 1, li /∈ C

We set F1 = {si : i ∈ [k]}, F2 = {ti,X : i ∈ [k], X ∈ Si}, F3 = {uC :
C clause of Φ}. We set F = F1 ∪ F2 ∪ F3.

We can show that: Φ is satisfiable iff β(F) ≤ k (proof omitted).
�

Now, we prove W[2]-completeness of MDSF-2. Let Partitioned Dominating
Set (Pds) denote the following problem: given a parameter k, and a k-cocolored
graph G = (V, E), decide if β(G) < k. We show that:

Proposition 11. Pds is W[2]-complete.

Proof. Obviously, Pds is in W[2], since it fpt-reduces to the Ds problem.
To prove that Pds is W[2]-hard, we reduce from Ds. Let I = (G, k) be an

instance of Ds, where G = (V, E) is a graph of which we seek a dominating set
of size < k. Consider the k-cocolored graph G′ = (V ′, E′, γ′), where:

V ′ = [k] × V

E′ = {{(i, x), (j, y)} : i = j ∨ x = y ∨ {x, y} ∈ E}
γ′(i, x) = i

Obviously, G′ is k-cocolored. We can show that: β(G) < k iff β(G′) < k (proof
omitted).
�

We are now ready to prove that:

Proposition 12. MDSF-2 is W[2]-complete.

Proof. Membership is obvious. Hardness follows from Proposition 11 and
Lemma 2.
�

264 S. Guillemot

5 Complexity of Maximum Clique

In this section, we consider the complexity of Maximum Clique on (k, r)-
representable graphs (given a representation). The formal definition of the prob-
lem is Maximum Clique on Families (MCF): given a parameter k, a (k, r)-
family F , and an integer p, decide if ω(F) ≥ p.

Let MCF-1 denote the restriction of MCF to (k, O(k log n))-families. We
prove that MCF-1 is NP-hard for some value of k (Proposition 13). This result
relies on the following lemma, concerning the (co)representability of graphs of
bounded degree. Its proof uses a simple variant of Welsh-Powell’s greedy algo-
rithm ([14]).

Lemma 4. Let G = (V, E) be a graph of maximum degree ≤ Δ. Let n = |V |. Let
f ≥ 3 and g > 6f , and let h = g

3f . Then G is (fΔ, gΔ logn)-corepresentable, and
such a representation can be found in O(|G|) time with probability ≥ 1 − 1

nh−2 .

Proof. We use a probabilistic argument. Let k = fΔ and r = gΔ log n. Consider
the following probabilistic algorithm. Enumerate the vertices of G in some fixed
order, and assign a tuple γ(x) ∈ [k]r to each vertex x ∈ V in the following way.
At each step, choose a vertex u ∈ V , let v1, ..., vd be its neighbors which have
been already examined, and let c1, ..., cd be the tuples assigned to them (i.e.
ci = γ(vi) for every i = 1..d). We then define c := γ(u) as follows. For every
j ∈ [r], let Cj = [k]\{ci[j] : i = 1..d}: since d ≤ Δ, we have |Cj | ≥ (f − 1)Δ; let
c[j] be an element chosen randomly (and uniformly) in Cj .

Let F = {γ(x) : x ∈ V } be the (k, r)-family obtained at the end of the
algorithm. We claim that G[F] = Ḡ with high probability. We need to check
that F satisfies the two following conditions with high probability: (i) for every
{x, y} ∈ E then γ(x) ∦ γ(y); (ii) for every {x, y} /∈ E then γ(x) ‖ γ(y). Condition
(i) is verified by construction. We need to show that Condition (ii) holds with
high probability. Indeed:

– for {x, y} /∈ E, say that {x, y} is bad if γ(x) ∦ γ(y). Then we can show that:

Pr[{x, y} bad] ≤ 1
nh

– Let Nb denote the number of bad pairs obtained for a given execution of the
algorithm. We compute the expected number of bad pairs:

E[Nb] ≤ n2

2
1
nh

≤ 1
nh−2

Say that an execution is good if it produces no bad pairs, and bad otherwise.
Thus, by Markov inequality, we obtain that the probability that an execution
is bad is ≤ 1

nh−2 , and thus an execution is good with probability ≥ 1 − 1
nh−2

as claimed.

�

Note that the result still holds for graphs of bounded degeneracy. But in our
case, we only need the result for graphs of bounded degree. This allows us to
prove that:

Parameterized Problems on Coincidence Graphs 265

Proposition 13. The problem MCF-1 is NP-hard for some k (under random-
ized reductions).

Proof. Let 3-MIS denote the MIS problem restricted to cubic graphs. Then
3-MIS is NP-hard [11]. Now, Lemma 4 gives a randomized polynomial-time
reduction from 3-MIS to MCF-1 (with k = 9). This proves that the problem
MCF-1 is NP-hard for k = 9 (under randomized reductions).
�
Note that Lemma 4 implies that for every problem Π which is NP-hard on
bounded-degree graphs, the complementary coΠ = {Ḡ : G ∈ Π} is NP-hard on
(k, O(k log n))-representable graphs for some k (under randomized reductions),
and thus is not in ZPP unless NP ⊆ ZPP.

6 Optimality Results

In the last years, several techniques have yielded numerous optimality results for
parameterized problems [5,8,6,4,7]. In particular, M[1]-hardness results have been
used by several authors to prove optimality of FPT algorithms. Two notorious ex-
amples are Vertex Cover and Planar Dominating Set. The problem of find-
ing a Vertex Cover of size k can be solved in 2O(k)n time (see [12,3] for the first
algorithms), and cannot be solved in 2o(k)nc time unless FPT = M[1] ([4]). The
problem of finding a Dominating Set of size k in a planar graph can be solved in
2O(
√

k)n time ([1]), and cannot be solved in 2o(
√

k)nc time unless FPT = M[1] ([4]).
We observe that our M[1]-hardness results for MISF-1 and MDSF-1 yield

interesting optimality results for these problems, as well as for the problems
Multidimensional Matching and Disjoint r-Subsets. The problem Mul-
tidimensional Matching asks: given sets V1, ..., Vr , and a family of tuples
F ⊆ V1 × ... × Vr, can we find a matching M ⊆ F of size p? The problem Dis-
joint r-Subsets asks: given a set X , and a family of F of r-subsets of X , can we
find p elements of F that are pairwise disjoint? These problems can be solved in
O((pr)!2O(pr)nc) time using perfect hashing [9]. Moreover, Multidimensional
Matching can be solved in O(n + 2O(pr)) time (using reduction to a problem
kernel of size pr, [10]). We show that these problems cannot be solved in 2o(pr)nc

time under complexity-theoretic assumptions.
Our optimality results for these problems rely on the following observation:

Lemma 5 ([4]). A parameterized problem is in FPT if it is solvable in time
O(2O(s(n)t(k))p(n)) for some unbounded and nondecreasing function s(n)
= o(log n).

Using this Lemma, we show:

Proposition 14. We have the following optimality results:

1. MISF cannot be solved in 2o(kr)nc or 2o(pr)nc time, unless FPT = M[1];
2. MDSF cannot be solved in 2o(kr)nc or 2o(pr)nc time, unless FPT = M[2];
3. Multidimensional Matching cannot be solved in 2o(pr)nc time unless

FPT = M[1];
4. Disjoint r-Subsets cannot be solved in 2o(pr)nc time unless FPT = M[1].

266 S. Guillemot

Proof. 1. follows from Proposition 5 and Lemma 5.
2. follows from Proposition 10 and Lemma 5.
3. is a direct consequence of 1. since the problems MISF and Multidimen-

sional Matching are equivalent.
4. is shown by reducing MISF to Disjoint r-Subsets. If F is a (k, r)-family

given as instance of MISF, then we construct an instance F ′ of Disjoint r-
Subsets as follows. The base set is B = [k] × [r], and the family of sets is
F ′ = {tx : x ∈ V }. To each x ∈ V , if sx = (a1, ..., ar), then we associate the set
tx = {(1, a1), ..., (r, ar)}.
�

References

1. J. Alber, H. Bodlaender, H. Fernau, and R. Niedermeier. Fixed parameter algo-
rithms for planar dominating set and related problems. In Proceedings of SWAT’00,
volume 1851 of Lecture Notes in Computer Science, pages 97–110. Springer-Verlag,
2000.

2. N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the Association for
Computing Machinery, 42(4):844–856, 1995.

3. J.F. Buss and J. Goldsmith. Nondeterminism within P. SIAM Journal on Com-
puting, 22:560–572, 1993.

4. L. Cai and D. Juedes. On the existence of subexponential parameterized algo-
rithms. Journal of Computer and System Sciences, 67(4):789–807, 2003.

5. J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I.A. Kanj, and G. Xia. Tight
lower bounds for certain parameterized NP-hard problems. Information and Com-
putation, 201(2):216–231, 2005.

6. F. Dehne, M. Fellows, and F. Rosamond. An FPT algorithm for Set Splitting. In
Proceedings of WG’03, volume 2880 of Lecture Notes in Computer Science, pages
180–191. Springer-Verlag, 2003.

7. Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosa-
mond, and Kim Stevens. An O(2O(k)n3) FPT Algorithm for the Undirected Feed-
back Vertex Set Problem. In Proceedings of COCOON’05, volume 3595 of Lecture
Notes in Computer Science, pages 859–869. Springer-Verlag, 2005.

8. R. Downey, V. Estivill, M. Fellows, E. Prieto, and F. Rosamond. Cutting up is hard
to do: the parameterized complexity of k-cut and related problems. In Proceedings
of CATS’03, volume 78 of ENTCS, 2003.

9. R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer Verlag, 1999.
10. M. Fellows, C. Knauer, N. Nishimura, P. Ragde, F. Rosamonds, U. Stege, D. Thi-

likos, and S. Whitesides. Faster fixed-parameter tractable algorithms for matching
and packing problems. In Proceedings of ESA’04, volume 3221 of Lecture Notes in
Computer Science, pages 311–322. Springer-Verlag, 2004.

11. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, New-York, 1979.

12. K. Mehlhorn. Data Structures and Algorithms. Springer Verlag, 1990.
13. K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest com-

mon supersequence and longest common subsequence problems. Journal of Com-
puter and System Sciences, 67(4):757–771, 2003.

14. D.J.A. Welsh and M.B. Powell. An upper bound for the chromatic number of a
graph and its application to timetabling problems. The Computer Journal, 10:
85–86, 1967.

On 2-Query Codeword Testing with

Near-Perfect Completeness

Venkatesan Guruswami�

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

Abstract. A codeword tester is a highly query-efficient spot checking
procedure for ascertaining, with good confidence, proximity of a given
string to its closest codeword. We consider the problem of binary code-
word testing using only two queries. It is known that three queries suffice
for non-trivial codeword testing with perfect completeness (where code-
words must be accepted with probability 1). It is known that two queries
are not enough for testing with perfect completeness, whereas two queries
suffice if one relaxes the requirement of perfect completeness (this is akin
to the polynomial-time decidability of 2SAT and the APX-hardness of
Max 2SAT, respectively).

In this work, motivated by the parallel with 2-query PCPs and the
approximability of near-satisfiable instances of Max 2SAT, we investigate
2-query testing with completeness close to 1, say 1 − ε for ε → 0. Our
result is that, for codes of constant relative distance, such testers must
also have soundness 1 − O(ε) (and this is tight up to constant factors
in the O(ε) term). This is to be contrasted with 2-query PCPs, where
assuming the Unique Games Conjecture, one can have completeness 1−ε
and soundness 1 − O(

√
ε). Hence the ratio (1 − s)/(1 − c) can be super-

constant for 2-query PCPs while it is bounded by a constant for 2-query
LTCs. Our result also shows a similar limitation of 2-query PCPs of
proximity, a notion introduced in [1].

1 Introduction

A locally testable code (LTC) is an error-correcting code that has a testing pro-
cedure which can ascertain whether a string is a codeword or far from every
codeword, by querying very few (eg. a small constant number of) locations of
the string. LTCs have been the subject of much research over the years and
there has been heightened activity and progress on them recently (eg., see the
survey [6] and the references therein). The construction of good LTCs has gone
hand-in-hand with constructions of Probabilistically Checkable Proof (PCP) sys-
tems. A PCP system specifies a proof format that allows a verifier to ascertain
membership of a string in an NP language by probing very few locations into
the proof/witness. The key parameters in both LTCs and PCPs are the number
� Research supported in part by NSF CCF-0343672 and a Sloan Research Fellowship.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 267–276, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

268 V. Guruswami

of queries q, completeness c which is the probability of accepting correct code-
words (proofs in the case of PCPs), and soundness s which is the probability of
accepting strings far-off from codewords (false proofs in the case of PCPs).

The most interesting and non-trivial setting for the LTC case (resp. PCP case)
is when length of the codewords (resp. proofs) is polynomially long in the message
length (resp. size of the input). Additionally, for LTCs, the distance of the code
should be a constant fraction of the codeword length. For this setting, which is
our focus, there is a great deal of parallel between what is achievable with respect
to the three parameters q, c, s in the LTC and PCP worlds. Qualitatively, PCP
constructions, or in other words negative results for approximation algorithms,
have parallel positive results for LTCs. Conversely, results showing limitations of
PCPs (i.e., approximation algorithms) have parallel negative results for LTCs.
We describe below some of the manifestations of this phenomenon (these are
also discussed briefly in [2]):

– When q = 3, there is an absolute constant α0 < 1, for which there are known
constructions of binary PCPs and LTCs that have c = 1 (referred to as perfect
completeness) and s = α0. Therefore, three queries suffice for non-trivial
codeword testing and proof checking, even with perfect completeness. (The
analogy w.r.t approximation algorithms is the hardness of approximating
Max 3SAT, even on satisfiable instances.)

– When q = 2, there is an absolute constant α1 < 1 for which there are known
constructions of PCPs and LTCs over ternary alphabets that have perfect
completeness and soundness s = α1. Thus, two queries suffice for LTCs1

and PCPs with perfect completeness over alphabets of size at least 3. (The
analogy in terms of approximability is the hardness of approximating Max
2SAT over domain size d, even on satisfiable instances, for all d ≥ 3.2)

– For two queries and binary alphabet, there are no non-trivial PCPs and LTCs
with perfect completeness and soundness s < 1. Thus, two queries do not
suffice for binary LTCs and PCPs if we insist on perfect completeness. (The
algorithmic analogy for this is the polynomial-time decidability of 2SAT.)

– For two queries and binary alphabet, there are absolute constants 0 < α2 <
α3 < 1 (one can take α3 = 11/12) for which non-trivial LTCs and PCPs are
known with c = α3 and s = α2. (The analogy in terms of approximability is
the APX-hardness of Max 2SAT.)

Despite these striking similarities, we stress that there is no generic transla-
tion of LTCs into PCPs with similar parameters, or vice versa (cf. the discus-
sion/warning in [7]).

By the above discussion if either alphabet size or number of queries is bigger
than 2, LTCs with perfect completeness exist, while imperfect completeness is
necessary and sufficient for 2-query binary LTCs. This work investigates the
potential of 2-query binary LTCs when the completeness approaches 1 (this

1 The codes must necessarily be non-linear for testing with two queries [2].
2 A 2SAT clause on variables x, y over general domains is of the form (x �= a)∨(y �= b)

for some values a, b from the domain.

On 2-Query Codeword Testing with Near-Perfect Completeness 269

setting is typically called near-perfect completeness). Below we describe some
of the motivation and context for considering this question which at first sight
might seem rather esoteric.

To describe the context, consider the Max 2SAT problem when the instance is
promised to be near-satisfiable, i.e., have an assignment that satisfies most (say,
a fraction (1−ε) for small ε > 0) of the clauses. What fraction of clauses can one
then satisfy in polynomial time? Establishing a hardness result for this problem
was in fact one of the original motivations for the formulation of the Unique
Games Conjecture (UGC) by Khot [9]. In fact, assuming the UGC, and using
a deep theorem by Bourgain [3], Khot showed the following: For every t > 1/2,
it is NP-hard to decide, given a 2CNF formula, whether it is (1 − ε)-satisfiable
or at most (1 − O(εt))-satisfiable. Recently, a proof of the Majority is Stablest
conjecture [10] improved this result to t = 1/2. In particular, assuming the UGC,
for all ε > 0, there is a 2-query PCP for NP languages that has completeness
1 − ε and soundness 1 − O(

√
ε).

Given the above-mentioned parallel between the PCP world and the LTC
world, the original motivation for this work was to see if one could uncondi-
tionally establish that 2-query binary codeword testing is possible with com-
pleteness 1 − ε and soundness 1 − O(

√
ε), or weaker still, soundness 1 − εh(ε)

where h(ε) → ∞ as ε → 0. This would imply that the ratio (1 − s)/(1 − c) of
the rejection probabilities for strings far away from the code and strings that
are codewords can be super-constant. (We remark that it is quite easy to get
completeness 1 − ε and soundness 1 − Bε for some absolute constant B > 1.3)
Such a result could then perhaps be viewed, using the “empirically” observed
parallel between PCPs and LTCs, as a comforting (but definitely non-rigorous)
evidence towards the UGC, or at least towards the super-constant hardness of
Min 2CNF deletion (one of the first corollaries of the UGC). Unfortunately, as
described below, such a result does not exist.

Zwick [11] gave a polynomial time approximation algorithm for near-satisfiable
instances of Max 2SAT. His algorithm finds an assignment that satisfies a frac-
tion 1 − O(3

√
ε) of the clauses in a 2SAT formula if the optimal assignment

satisfies a fraction 1 − ε of the clauses. Recently, Charikar et al [4] gave a better
polynomial time algorithm that matches the UGC based hardness result and
satisfies a fraction 1 − O(

√
ε) of the clauses given a (1 − ε)-satisfiable instance.

This also hints at a potential negative result for 2-query codeword testing that
says that if completeness is 1 − ε the soundness must be at least 1 − f(ε) for
some function f where f(ε) → 0 as ε → 0.

Indeed, the result presented here is a (stronger) negative result in this spirit.
In fact, we prove that we can take f(ε) = Bε for a constant B that depends
on the distance of the code. (This negative result is of course tight up to the

3 Indeed, one can start with a 2-query tester T with completeness c and soundness
s for say c = 11/12 and s < 11/12. We can define a new tester T ′ that simply
accepts with probability 1 − ε without making any queries, and with the remaining
probability runs T . It is clear that the completeness and soundness of T ′ are both
1 − Θ(ε).

270 V. Guruswami

constant factor in O(ε) term.) In particular, our result precludes the existence
of a 2-query locally testable code of fixed relative distance with completeness
1 − ε and soundness 1 − εa for a < 1 and arbitrarily small ε > 0. This shows
that one cannot get a result for 2-query codeword testing similar to what is
known (assuming the UGC) for 2-query PCPs. Note that our result for LTCs
is unconditional, and we appeal to the UGC only for contrasting with the PCP
world.

Our proof is an easy adaptation of the proof of impossibility of 2-query code-
word testing with perfect completeness from [2]. Our contribution is therefore
not technical but rather conceptual, as it points out that under the UGC, at
least with the usual notion of soundness, the parallel between PCPs and LTCs
is subtle and ceases to hold for 2-queries and near-perfect completeness (which
was essentially the only remaining qualitative case that wasn’t understood).4

We also want to highlight the “qualitative” nature of the discrepancy between
these worlds: the ratio of (1 − s)/(1 − c) can be super-constant (in the input
length) for 2-query PCPs (conditioned on the UGC), whereas it is bounded by
a fixed constant for 2-query testing of any code of constant relative distance.
Showing just a fixed constant gap between these quantities would not be very
interesting. As an example of such a difference, for the case of perfect complete-
ness and three queries, PCPs can achieve soundness s → 1/2, and this cannot
be achieved for LTCs whose relative distance is small.

PCPs of Proximity and Codeword Testing

As remarked earlier, there is no generic way known to translate PCPs into LTCs.
However, a notion related to PCPs, called PCPs of proximity (PCPP), which
was introduced in [1] (and independently in [5] where the notion was called
Assignment Testers), can be used in a generic way to construct locally testable
codes, as described in [1]. In a nutshell, the queries a verifier of a PCPP makes
into the input also count towards its query complexity, while in a PCP the input
can be read fully and only queries into the proof count. However, a PCPP verifier
is required to do a weaker job; it needs to only check proximity of the input to a
string in the language, i.e., it only needs to reject with good probability inputs
that are δ-far from every member of the language, for some constant δ > 0 which
is called the proximity parameter (larger the δ, easier the verifier’s job).

The high-level approach to use PCPPs to construct LTCs due to [1] is as
follows. One starts with an arbitrary binary linear code C0 of block length n and
large distance, say n/10. Then define a new code C where the encoding C(x) =
C0(x)tπ(C0(x)) where C0(x)t denotes the encoding of x by C0 repeated t times
(for some larger t) and π(z) is a PCP of proximity for the fact that z ∈ C0 (which
can be checked in polynomial time). Given input 〈w1, w2, . . . , wt, π〉, the tester

4 With a relaxed notion of “soundness” that is motivated from the PCP application,
long codes can be tested using two queries with completeness 1− ε and “soundness”
1 − O(

√
ε) [3], and this forms the basis for the inapproximability result for near-

satisfiable instances of Max 2SAT in [9].

On 2-Query Codeword Testing with Near-Perfect Completeness 271

for C operates as follows. With probability 1/2 it picks two wk, w� and an index
i ∈ {1, 2, . . . , n}, and checks that the i’th symbol of wk and w� are equal (this
involves two queries). With probability 1/2, it picks a random i ∈ {1, 2, . . . , n}
and runs the PCPP verifier for input wi and proof π. This translation of a PCPP
construction into a LTC preserves the query complexity and completeness, and
further preserves the quantity 1 − s up to a small constant factor. The distance
to the code for which the codeword tester rejects with probability at least 1 − s
is related to the proximity parameter of the PCPP construction.

In light of the above, our result on the limitation of 2-query LTCs also implies
that a 2-query PCP of proximity cannot have c = 1 − ε and s = 1 − εa for
a < 1. This is the case even if we want PCPPs for languages only in P, since the
above-mentioned construction of LTCs from PCPPs only requires PCPPs for
the class P. We simply state our result concerning limitations of 2-query PCPs
of proximity below, and do not elaborate further on PCPPs. Instead, we point
the interested reader to [1] where PCPPs and their connection to locally testable
codes are discussed at length.

Theorem 1 (Limitations of PCPPs). For every a < 1 and δ < 1/20, the
following holds. For all sufficiently small ε > 0, there exists a polynomial time
decidable language L that does not admit a probabilistically checkable proof of
proximity (PCPP) for proximity parameter δ with query complexity 2, complete-
ness (1 − ε), and soundness (1 − εa).

2 Preliminaries and Definitions

We consider binary (error-correcting) codes C ⊆ {0, 1}n in this work. The block
length of C is n, and its size is its cardinality |C|. The elements of C are referred to
as codewords. For x, y ∈ {0, 1}n, we denote by Δ(x, y) their Hamming distance,
i.e., the number of coordinates i where xi
= yi. The distance of a code C, denoted
dist(C), is the minimum Hamming distance between two distinct codewords in
C, i.e., dist(C) = minx �=y∈C Δ(x, y). The relative distance of a code, denoted
δ(C), is the normalized distance dist(C)/n. The distance of a word w from the
code C, denoted Δ(w, C), is minx∈C Δ(w, x).

In coding theory, one is typically interested in a family of codes of increasing
block lengths whose relative distance is bounded away from 0. A code of distance
d = δn enables, in principle, detection of up to d− 1 errors, and correction of up
to (d − 1)/2 errors. The latter task in particular involves determining if there is
a codeword within distance δn/2 from a string w, i.e., whether Δ(w, C) < δn/2.
In the subject of codeword testing, which has witnessed intense activity due to
its connections to property testing, PCPs, and coding theory, one is interested
in spot checking procedures that attempt to ascertain this fact using very few
queries. This brings us to the following definitions concerning local testing of
binary codes.

Definition 1 (Codeword tester). A [q, ρ, c, s]-codeword tester for a code C ⊆
{0, 1}n is a randomized oracle machine T that has oracle access to w ∈ {0, 1}n

272 V. Guruswami

(viewed as a function w : {1, 2, . . . , n} → {0, 1}) and satisfies the following three
conditions:

– [Query Complexity]: T makes at most q queries to w. (The queries may
be made adaptively, that is the location of a query can depend on both T ’s
randomness and the answers of the oracle to its previous queries.)

– [Completeness]: For any w ∈ C, given oracle access to w, T accepts with
probability at least c.5

– [Soundness]: For any w for which Δ(w, C) > ρδn, given oracle access to
w, T accepts with probability at most s.

When c = 1, the tester is said to have perfect completeness. A tester is said to
be non-adaptive if its queries only depend on its random coin tosses and not on
previous answers of the oracle.

Definition 2 (Locally testable code). A code C is said to be [q, ρ, c, s]-locally
testable if there exists a [q, ρ, c, s]-codeword tester for C.

3 2-Query Codeword Testing with Near-Perfect
Completeness

3.1 Statement of Result

We now state our main result, which in particular implies that 2-query codeword
testers for binary codes with completeness very close to 1, say 1 − ε, must also
have soundness close to 1, specifically soundness at least 1−Bε for some constant
B that depends on the relative distance of the code.

Theorem 2 (Main). Fix ρ < 1/2 and δ > 0, and let M(ρ, δ)=
(
1+21/(δ(1−2ρ))

)
.

Let C be a binary code of relative distance δ with |C| ≥ M(ρ, δ) and which is
[2, ρ, c, s]-locally testable. Then (1 − s) ≤ 2(1 − c)M(ρ, δ).

Note that the case when c = 1, the above says that s = 1 as well, as was shown
in [2]. The binary alphabet hypothesis is essential, as there are ternary codes
that are [2, 1/3, 1, s]-locally testable for some s < 1.

The above lets us conclude the following, which can viewed as the main mes-
sage from this work.

Corollary 1. Fix an arbitrary choice of δ > 0, ρ < 1/2, and a < 1. Then, for
small enough ε, there is no non-trivial binary code with relative distance δ that
is [2, ρ, 1−ε, 1−εa]-locally testable. Here by a non-trivial code we mean any code
that has at least M(ρ, δ) codewords.

5 One can imagine a stronger condition requiring that T must accept with probability
at least c all w’s for which Δ(w, C) is small (as opposed to being 0). This notion
was recently studied under the label “Tolerant testing” [8]. Since we prove a nega-
tive result in this work, our result is only stronger when working with the weaker
condition where T needs to only accept exact codewords with probability at least c.

On 2-Query Codeword Testing with Near-Perfect Completeness 273

As mentioned earlier, the above is to be contrasted with the (1−ε, 1−O(
√

ε)-
hardness for approximating 2SAT, or equivalently a 2-query PCP that has com-
pleteness 1 − ε and soundness 1 − O(

√
ε), which is known to exist for all ε > 0

assuming the Unique Games Conjecture (UGC) [9,10].

3.2 Proof

We now prove Theorem 2. The proof is a simple generalization of the proof for
the perfect completeness case from [2], and proceeds by examining the digraph
induced by the set of possible pairs of queries made by the codeword tester.

Let C be a code with |C| ≥ M(ρ, δ), and let T be a (possibly adaptive) 2-
query tester for C with completeness c and soundness s. We first modify T to a
non-adaptive tester T ′ with completeness c′ ≥ c and soundness s′ ≤ (1 + s)/2,
where each test made by T ′ is a 2SAT clause (the clause could just depend on
one literal, or could even be a constant 0 or 1).

Every test made by T is a decision tree of depth at most 2, i.e., T reads one
bit, say x, first, and depending on its value does its next move (for example, it
could read y if x = 0, and base the decision on (x, y), and read z if x = 1 and
base its decision on (x, z)). Note that the second query must lead to one positive
and one negative outcome, otherwise it will be unnecessary. It follows that every
test made by T can be described by a 2CNF with at most two clauses.6 We can
get a non-adaptive verifier T ′ which operates just like T , except that for each of
T ’s tests φ, it picks at random one of the at most two 2SAT clauses in φ and just
checks this clause. Since T ′ is performing only more lax tests compared to T , the
completeness of T ′ is at least that of T . Moreover, the probability that T ′ rejects
is at least 1/2 times the probability that T rejects. Hence 1 − s′ ≥ (1 − s)/2, as
desired.

Let n denote the block length of C and let xi denote the bit in position i of
the string to be tested. We will denote by 	i a literal that stands for either xi

or xi. Define the following digraph H on vertices {xi, xi | 1 ≤ i ≤ n} ∪ {0, 1}
corresponding to the operation of the tester T ′. For each test of form (i ∨ 	j),
we add directed edges (i → 	j) and (j → 	i). For tests of the form 	i, we add
edges (1 → 	i) and (i → 0). Each of these edges has a weight equal to half the
probability that T ′ makes the associated tests. If T ′ makes the trivial test that
always accepts, we add a self-loop on 1 with weight equal to the probability that
T ′ makes this test.

For each x ∈ {0, 1}n, denote by Hx the subgraph of H consisting of precisely
those edges that are satisfied by x, where an edge (i → 	j) is said to be satisfied
iff the implication (i ⇒ 	j) is satisfied; the loop on 1, if it exists, is satisfied by
every x. By definition of H , the probability that T ′ accepts x is precisely the
total weight of edges in Hx.

Let M = M(ρ, δ), and let c1, c2, . . . , cM be distinct codewords in C (recall that
we are assuming |C| ≥ M). Define the digraph G =

⋂M
i=1 Hci , i.e., an edge of H

is present in G if and only if it is satisfied by all the codewords c1, c2, . . . , cM . By
the completeness of T ′, the total weight of edges in G is at least 1 − M(1 − c′).
6 Thanks to an anonymous reviewer for this observation.

274 V. Guruswami

Now we can use the exact same argument for the perfect completeness case
from [2] and construct a word v with Δ(v, C) > ρδn that passes all tests in G.
In other words, T ′ accepts v with probability at least 1 − M(1 − c′). But since
Δ(v, C) > ρδn, by the soundness condition T ′ accepts v with probability at most
s′. Therefore, s′ ≥ 1 − M(1 − c′). Recalling 1 − s′ ≥ (1 − s)/2 and c′ ≥ c, we get
1 − s ≤ 2M(1 − c), as desired.

We stress that the remainder of the proof proceeds exactly as in [2], and we
include it only for completeness.

Let us consider the decomposition of G into strongly connected components
(SCCs). (Recall that a SCC is a maximal set of vertices W such that any ordered
pair w, w′ ∈ W , there is a directed path from w to w′.) Call a SCC of G to be
large if its cardinality is at least δαn, where α

def= (1 − 2ρ). Let L be the set
of large SCCs. Clearly |L| ≤ 1/(δα). Also, for every SCC C in G, and each
j = 1, 2, . . . , M , the value of cj on all variables in C must be the same (since all
edges in G are satisfied by every cj). Let A be the set of variables that belong to
large SCCs. Since M > 21/(δα), there must exist two codewords, say c1, c2, which
agree on all the variables in A. Let γ denote the common assignment of c1, c2 to
the variables in A. Note that by construction, γ satisfies all the edges in G. Let
L be the set of literals associated with A, together with the nodes corresponding
to constants 0, 1. Let us say a variable v is forced by the assignment γ to A if
one of the following conditions hold:

(i) v ∈ A.
(ii) There exists 	′ ∈ L with γ(′) = 1 such that there is a directed path in G

from 	′ to either v or v (or equivalently, there exist 	′′ ∈ L with γ(′′) = 0
and a directed path in G from either v or v to 	′′).

(iii) There exists a directed path from v to v (in this case v is forced to 0) or
from v to v (in this case v is forced to 1).

The rationale behind this notion is that since all edges in G are satisfied by both
c1, c2, and c1, c2 agree on their values for literals in L, they must also agree on
every variable forced by A. Let σ be the partial assignment that is the closure of
γ obtained by fixing all forced variables (and their negations) to the appropriate
forced values. Let U denote the set of variables that are not forced. Since c1, c2
satisfy all edges in G, they agree outside U , and so their Hamming distance
satisfies Δ(c1, c2) ≤ |U |. Since c1, c2 are distinct codewords, Δ(c1, c2) ≥ δn. It
follows that |U | ≥ δn > 2ρδn.

Let H be the subgraph of G induced by the variables in U and their negations.
We can define a transitive relation ≺ on SCCs of H where S ≺ S′ iff there exists
w ∈ S and w′ ∈ S′ with a directed path from w to w′. We note that for
each u ∈ U , there will be two SCCs in G, one containing u and a disjoint one
containing u (this follows since G, and therefore H , has a satisfying assignment
and so no variable and its negation can be in the same SCC). Moreover these
two SCCs are incomparable according to ≺, since otherwise there must be a
directed path from u to u (or from u to u), and in such a case u will be a
forced variable. Therefore, we can pick a topological ordering S1, S2, . . . , Sk of

On 2-Query Codeword Testing with Near-Perfect Completeness 275

strongly connected components where each Si contains either a variable in U or
its negation, and for each u ∈ U , the Si’s will comprise of exactly one of the two
SCCs that contain u and u respectively.

For j = 0, 1, . . . , k, let v(j) be the assignment extending σ defined by:

v(j)(Si) =
{

0 if i ≤ j
1 if i > j

Since each assignment v(j) respects the topological ordering of the Si’s, each v(j)

satisfies all edges in G. Since the weight of edges in G is at least 1 − M(1 − c′)
and the soundness of T ′ is s′ < 1 − M(1 − c′), each v(j) is within distance ρδn
from some codeword of C, say w(j). Now,

2ρδn < |U | = Δ(v(0), v(k))
≤ Δ(v(0), w(0)) + Δ(w(0), w(k)) + Δ(w(k), v(k))
≤ 2ρδn + Δ(w(0), w(k))

which implies w(0)
= w(k), and hence Δ(w(k), w(0)) ≥ δn. Since Δ(w(k), v(k)) ≤
ρδn, we have

Δ(v(k), w(0)) ≥ Δ(w(k), w(0)) − Δ(w(k), v(k)) ≥ (1 − ρ)δn . (1)

Also, we have Δ(v(j), v(j+1)) < (1 − 2ρ)δn for each j = 0, 1, . . . , k − 1 since
|Si| < αδn for each i = 1, 2, . . . , k (recall our threshold αδn for considering a
SCC to be large where α = 1 − 2ρ). Together with Δ(v(0), w(0)) ≤ ρδn and (1),
we conclude that there must exist j, 1 ≤ j < k, such that

ρδn < Δ(v(j), w(0)) < (1 − ρ)δn .

This implies that Δ(v(j), C) > ρδn, and yet v(j) satisfies all edges of G. The
existence of such a word v(j) is what we needed to conclude that s′ ≥ 1−M(1−c′),
and this completes the proof.

References

1. E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs
of proximity, shorter PCPs and application to coding. In Proceedings of the 36th
Annual ACM Symposium on Theory of Computing (STOC), pages 1–10, 2004.

2. E. Ben-Sasson, O. Goldreich, and M. Sudan. Bounds on 2-query codeword testing.
In Proceedings of the 7th International Workshop on Randomization and Approxi-
mation Techniques in Computer Science (RANDOM), pages 216–227, 2003.

3. J. Bourgain. On the distribution of the Fourier spectrum of boolean functions.
Israel Journal of Mathematics, 131:269–276, 2002.

4. M. Charikar, K. Makarychev, and Y. Makarychev. Note on Max2SAT. Technical
Report TR06-064, Electronic Colloquium on Computational Complexity, 2006.

5. I. Dinur and O. Reingold. Assignment Testers: Towards a combinatorial proof of
the PCP-Theorem. In Proceedings of 45th Annual Symposium on Foundations of
Computer Science (FOCS), pages 155–164, 2004.

276 V. Guruswami

6. O. Goldreich. Short locally testable codes and proofs (Survey). ECCC Technical
Report TR05-014, 2005.

7. O. Goldreich and M. Sudan. Locally testable codes and PCPs of almost linear
length. In Proceedings of 43rd Symposium on Foundations of Computer Science
(FOCS), pages 13–22, 2002.

8. V. Guruswami and A. Rudra. Tolerant locally testable codes. In Proceedings of
the 9th International Workshop on Randomization and Approximation Techniques
in Computer Science (RANDOM), pages 306–317, 2005.

9. S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th
ACM Symposium on Theory of Computing (STOC), pages 767–775, May 2002.

10. E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with low
influences: invariance and optimality. In Proceedings of the 46th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 21–30, 2005.

11. U. Zwick. Finding almost satisfying assignments. In Proceedings of the 30th ACM
Symposium on Theory of Computing (STOC), pages 551–560, May 1998.

Poketree: A Dynamically Competitive Data

Structure with Good Worst-Case Performance

Jussi Kujala and Tapio Elomaa

Institute of Software Systems
Tampere University of Technology

P.O. Box 553, FI-33101 Tampere, Finland
jussi.kujala@tut.fi, elomaa@cs.tut.fi

Abstract. We introduce a new O(lg lg n)-competitive binary search tree
data structure called poketree that has the advantage of attaining, under
worst-case analysis, O(lg n) cost per operation, including updates. Pre-
vious O(lg lg n)-competitive binary search tree data structures have not
achieved O(lg n) worst-case cost per operation. A standard data struc-
ture such as red-black tree or deterministic skip list can be augmented
with the dynamic links of a poketree to make it O(lg lg n)-competitive.
Our approach also uses less memory per node than previous competitive
data structures supporting updates.

1 Introduction

Among the most widely used data structures are different binary search trees
(BSTs). They support a variety of operations, usually at least searching for a
key as well as updating the set of stored items through insertions and dele-
tions. A successful search for a key stored into the BST is called an access. BST
data structures are mostly studied by analyzing the cost of serving an arbitrary
sequence of operation requests. Moreover, the realistic online BST algorithms,
which cannot see future requests, are often contrasted in competitive analysis
against offline BST algorithms that have the unrealistic advantage of knowing
future requests. Examples of BST algorithms include 2-3 trees, red-black trees
[1], B-trees [2], splay trees [3], and an alternative to using the tree structure,
skip lists [4, 5].

In an attempt to make some progress in resolving the dynamic optimality
conjecture of Sleator and Tarjan [3], Demaine et al. [6] recently introduced Tango,
an online BST data structure effectively designed to reverse engineer Wilber’s [7]
first lower bound on the cost of optimal offline BST. Broadly taken the dynamic
optimality conjecture proposes that some (self-adjusting) BST data structure
working online, possibly splay tree, would be competitive up to a constant factor
with the best offline algorithm for any access sequence. Tango does not quite
attain constant competitiveness, but Demaine et al. showed an asymptotically
small competitive ratio of O(lg lg n) for Tango in a static universe of n keys.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 277–288, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

278 J. Kujala and T. Elomaa

Table 1. Known asymptotic upper bounds on the performance of competitive BST
algorithms. Memory is given in bits, where letter w is a shorthand for ”words”.

Tango MST Poketree Poketree(RB) Poketree(skip)

Search, worst-case O(lg lg n lg n) O(lg2 n) O(lg n) O(lg n) O(lg n)
Search, amortized O(lg lg n lg n) O(lg n) O(lg n) O(lg n) O(lg n)

insert/delete N/A O(lg2 n) N/A O(lg n) O(lg2 n)
memory per node 4w+2lg w+2 7w+lg w+1 6w+1 6w+2 4w+lg lg w

Prior to this result the best known competitive factor for an online BST data
structure was the trivial O(lg n) achieved by any balanced BST.1

Tango only stores a static set of keys, it does not support update operations on
stored data items. It has O(lg n lg lg n) worst-case access cost and cannot guar-
antee better performance under amortized analysis for all access sequences.2

Wang, Derryberry, and Sleator [8] put forward a somewhat more practical BST
data structure, in the sense that it supports update operations as well, multi-
splay trees (MST) — a hybrid of Tango and splay trees — which also attains the
double logarithmic competitive ratio O(lg lgn). The worst-case complexity of a
MST is O(lg2 n), but it achieves O(lg n) amortized access cost. The costs for up-
date operations in a MST are similar. MSTs inherit some interesting properties
from splay trees; it is, e.g., shown that the sequential access lemma [9] holds for
MSTs.

In this paper we introduce poketree, which is a generic scheme for attaining
O(lg lg n)-competitive BST data structures with different static data structures
underlying it. As static data structures we use red-black trees [1] and determinis-
tic skip lists [5]. By using different static data structures we can balance between
the amount of augmented information in the nodes and efficiency of operations.
In contrast to Tango and MST, poketree has O(lg n) cost per operation under
worst-case analysis. The O(lg2 n) update cost with skip lists can be, in prac-
tice, lowered to O(lg n) cost per update [5]. See Table 1 for a summary of the
characteristic costs of Tango, MST, and poketree.

The contribution of this paper is a dynamically O(lg lg n)-optimal data struc-
ture that has the best combination of space and cost requirements with updates
supported. Poketree is not a strict binary search tree, because nodes in it can
have up to one additional pointer, but it supports the same set of operations.
As a side result we give a lower bound to the cost of BST algorithms, proven in
a similar manner to the bound of Demaine et al. [6], which has a small increase
in the additive term from the previous best of −n− 2r [8] to −n/2 − r/2.

The remainder of this paper is organized as follows. In Section 2 we explain
the lower bound on the cost of offline BST algorithms that we use. It is slightly
tighter than the one in [6] and formulated to support other than strict 2-trees.
In Section 3 we demonstrate the idea behind poketree in case where the static

1 By lg n, for a positive integer n, we denote �log2 n� and define lg 0 = lg 1 = 1.
2 Subsequent manuscripts available at the Internet mention that Tango can be modi-

fied to support O(lg n) worst-case access.

Poketree: A Dynamically Competitive Data Structure 279

structure is a perfectly balanced BST with no update operations supported. In
Sections 4 and 5 we generalize to other static structures, now supporting update
operations. The concluding remarks of this paper are presented in Section 6.

2 Cost Model and the Interleave Bound

Because we want to compare the costs of online and offline BST algorithms, we
need a formal model of cost. Earlier work [3, 7, 6, 8] has mostly used a model
which charges one unit of cost for each node accessed and for each rotation.
However, a simpler cost model was used by Demaine et al. [6] in proving a lower
bound. They only counted the number of nodes touched in serving an access. A
node is touched during an access if the data structure reads or writes information
on the node. These two models, and several others, differ at most by a constant
factor because a BST can be transformed to any other one containing the same
set of keys using a number of rotations that is twice the number of nodes in the
tree [10]. We adopt the latter model and take care that no computation is too
costly when compared to the number of nodes accessed.

Wilber [7] gave two lower bounds on the cost of dynamic BST algorithms; the
first of these is also known as the interleave bound. It has been used to prove
the O(lg lgn)-competitiveness of the recent online BST algorithms [6, 8]. We will
also use it to show the O(lg lg n)-competitiveness of poketree. Let us describe the
interleave bound briefly. Let P be a static BST on the items that are accessed.
The BST P is called a reference tree. It may be a proper BST, 2-3 tree, or any
2-. . . -* tree. Using BSTs results in the tightest bound and, hence, they have
been used previously. However, we do not necessarily need as tight results as
possible, therefore, we give a slightly different version of the interleave bound.

We are given an access sequence σ = σ1, . . . , σm that is served using P . For
each item i in P define the preferred child of i as the child into whose subtree
the most recent access to the subtree of i was directed. Let IB(σ, P, i) be the
number of switches of preferred child of i in serving σ. The interleave bound
IB(σ, P) is the sum of these over all the nodes of P :

∑
i∈P IB(σ, P, i). Let r be

the number of rotations in P while serving σ.

Theorem 1. Any dynamic binary search tree algorithm serving an access se-
quence σ has a cost of at least IB(σ, P)/2 +m− n/2 − r/2.

This bound is slightly tighter than previously known best lower bound IB(σ, P)/
2 +m−n−2r by Wang, Derryberry, and Sleator [8]. The proof for the new bound
is given is given in Appendix B.

3 Poketree— A Dynamic Data Structure

Let Pt be the state of the reference tree P at time t. In addition to P , Pt con-
tains information on preferred children. Preferred paths follow preferred child
pointers in Pt. Both Tango and MST keep each preferred path of a reference
tree Pt on a separate tree; these trees make up a tree of trees. When the

280 J. Kujala and T. Elomaa

interleave bound on P increases by k, then exactly k subtrees are touched.
Moreover, the algorithms provide an efficient way to update the structure to
correspond to the new reference tree Pt+1. Thus the access cost is at most
k lg(# of items on a path) ≤ k lg lgn when the data structure for subtrees is
chosen suitably.

We, rather, augment a standard balanced search structure with dynamic links
to support a kind of binary search on preferred paths. The balanced search
structure corresponds to the structure of the reference tree, which is used to
provide a lower bound on the cost. In our approach we take advantage of the
static links in searching for an item, whereas Tango and MST maintain the
reference tree information but do not really use it in searching. This enables us
to implement update operations using less space than MST.

We first describe how our method, called poketree, works on a perfectly bal-
anced tree. In the following sections we relax these assumptions and generalize it
to handle trees with less balance and to support update operations insert and
delete. Interpreted most strictly, poketree is not really a BST, because items
are not necessarily searched through a search tree, but using dynamic links.
However, this is rather a philosophical than a practical point, since the same op-
erations are supported in any case. The nodes of a poketree are augmented with
a dynamic link to make it dynamically competitive. The idea is to follow a dy-
namic link whenever possible, and descend via a static link otherwise. Dynamic
links allow to efficiently find a desired location on a preferred path and they can
be efficiently updated to match the new reference tree Pt+1. We consider later
the requirement of inserting (removing) an item to the head of a preferred path
brought along by supporting insertion (deletion).

Let us fix a preferred path a = a1, . . . , al and note that al is always a leaf
in the static tree but a1 is not necessarily its root. If the dynamic links would
implement a binary search on the path a, then it would be possible to travel
from a1 to any ai in lg l ≤ lg lg n time. However, this idea does not work as
such, because updating dynamic links would be difficult and, even worse, since
the preferred path a is a path in a BST, it is not necessarily ordered, making it
impossible to carry out binary search on it.

For now we just augment each node to contain the smallest and the largest
item in the subtree rooted at the node (we later lift this requirement in Section 5).
We still have to set the dynamic links to implement a kind of binary search
including quick updates to the structure of the preferred paths in P . There are
two types of nodes, of type SDD and S. Define a static successor of a node N
to be the child in which the last search through N went. The dynamic link of a
node of type SDD leads to the same node as following two dynamic links starting
from its static successor. A node of type S, on the other hand, has its dynamic
link pointing to its static successor. Note that the dynamic links always point
lower in the tree, except in the special case of a leaf node.

The key trick is to choose the type of a node. The rule for this is as follows. A
node is of type SDD if the length of the dynamic link of its successor equals the
length of the dynamic link of the dynamic link of the successor. Otherwise, the

Poketree: A Dynamically Competitive Data Structure 281

Fig. 1. An example of dynamic links. Static links are omitted, they point always to the
next item in the list. The round nodes are of type SDD and the square ones of type S.
The node with label 0 is a leaf.

node is of type S or a leaf node, which does not have a dynamic link. Observe
that to satisfy this requirement, links have to be set up from a leaf to the root.

An example of the resulting structure is given in Figure 1. Intuitively, dynamic
links let us recursively split a path into two parts and have one dynamic link
arc over the first part and another one over the second part. The two Ds in
SDD stand for these arcs. Now note that if these links are set from the last item
to the first one, the distance that a dynamic link traverses is a function of its
distance to the end of the preferred path. Every possible path starting from a
particular node is of the same length because we have assumed that a poketree
is perfectly balanced. These facts together make it possible to update dynamic
links quickly when a preferred path in P changes direction. We describe next
the search operation and how to update the structure corresponding to Pt to
correspond to Pt+1.

The search attempts at each node to use the dynamic link to potentially
skip a number of static links. However, if following the dynamic link leads to
a node that does not contain the searched item in the range of items in its
subtree, we say that the dynamic link fails. If the dynamic link fails, then the
search backtracks to the node where the dynamic link was used and resorts to
using the appropriate static pointer. Using a dynamic link has a cost, because
an additional node has to be visited. It is possible to augment the parent of
a dynamic link with the range information of the dynamic link, but this costs
more space.

After the searched item has been found, we may have to update those nodes
in which a static link was used, because the preferred path may have changed.
Assume that we know whether a node is of type S or SDD, for example by
reading a bit that contains this information. After performing a search, in going
from the bottom to the top, the dynamic link in each node can be (re)set because
the the links in the subtree rooted at the preferred child have already been set
up. Let us start by stating the most obvious result.

Theorem 2. The worst-case cost for any search in a poketree is O(lg n).

Proof. Clearly, in the worst case all dynamic links fail because otherwise some
static link can be skipped with no cost. Thus, the worst-case cost is bounded to
be a constant factor away from the number of static links traversed. This bound
is of the order O(lg n) because the static structure is balanced and a constant
amount of work is done during each static link.

The following theorem states that dynamic links are fast enough.

282 J. Kujala and T. Elomaa

Theorem 3. No more than O(lg lgn) time is spent on a preferred path on the
way to the accessed element.

The proof is given in Appendix A.
Each change in the preferred paths, and subsequently in dynamic links, cor-

responds to one switch in dynamic pointers. Poketree does at most a constant
amount of work for each switch in the dynamic links. Thus, by Theorems 3 and 1,
it follows:

Theorem 4. Poketree is O(lg lg n)-competitive among the class of all binary
search tree algorithms.

4 Insertions and Deletions: Poketree(RB)

In previous section we assumed that each root-to-leaf path has the same length.
In reality, a data structure must support insertions and deletions and, thus, we
cannot rely on idealized perfect balance to make things easy for us. Nevertheless,
it is possible to retain the use of dynamic links while supporting these important
operations. Some data structures are in a sense always perfectly balanced. For
example, in a red-black tree [1, 11] every root-to-leaf path has the same number of
black nodes and in balanced 2-3 tree implementations the nodes (each containing
one or two items) are always in perfect balance.

In order to argue competitiveness, we need a cost model that can handle
updates. During updates the structure of the reference tree changes to correspond
to the static structure of the poketree. An insertion causes a search and insertion
to the location in the reference tree where the item should be, and a deletion
causes a search to both the deleted item and its successor in the key space, after
which the item is deleted as usual. The actual cost charged from an offline BST
algorithm is the number of preferred child pointers that switch, more precisely
a constant factor of that number. Wang et al. [8] implement updates and use a
similar model, which however is not as tight, because in a deletion they search
for both predecessor and successor as well as rotate the item in the offline BST
to a leaf.

We now describe how to support insertion and deletion by using a red-black
tree as the static structure. A red-black tree can be viewed as a 2-3-4 tree, where a
node of the 2-3-4 tree corresponds to a black node and its red children. We choose
the reference tree P to be the 2-3-4 tree of the red-black tree. In the red-black tree
the dynamic links point only from black nodes to black nodes. First, note that in
the 2-3-4 tree view of a red-black tree, the tree increases height only from the top,
and when splitting nodes the distance from nodes to leaves stays the same (in
the 2-3-4 tree). Second, during updates nodes in the red-black tree may switch
nodes in the 2-3-4 tree, because there might be repaints. Third, it is known that
during an update to a red-black tree the amortized number of repaints and the
worst-case number of rotations are both constants [12]. The resulting algorithm,
poketree(RB), has the same asymptotic competitiveness properties as a perfectly
balanced poketree, but now with updates supported. Note that the competitive

Poketree: A Dynamically Competitive Data Structure 283

ratio is not exactly the same, because red nodes are without dynamic links and,
thus, there is a constant factor overhead in the competitive ratio. On the other
hand, less unnecessary work is done if the access sequence does not conform to
a structure that allows a BST algorithm to serve it in less than Θ(m lg n) cost.

To support update operations, we must be able to decide the type of a new
root —S or SDD — assuming that the types in the subtree rooted at the root
are set up correctly. If we are given such a node, then it is possible to count the
number of consecutive SDD nodes its static successor and dynamic link of the
static successor have. If these are equal, then the node is of type SDD, otherwise
it is of type S. This holds, because the rule for choosing the type of a node
depends on the fact that the length of the dynamic link in its successor and in
the dynamic link of the successor are the same, which is true if the same number
of SDD nodes have been chosen in a row in those two locations. Leaf nodes (tails
in a preferred path) make an exception, because they do not have a dynamic
link.

In poketree each node carries information about the interval of keys in its
subtree. In poketree(RB) these bounds are maintained in the form of strict lower
and upper bounds, i.e., a lower bound cannot be the smallest key in the tree, but
could be the predecessor to the smallest key. The reason is that these bounds
can be efficiently handled during updates.

To insert a key to a poketree(RB) we need to search for its predecessor and
successor (note that there is no need to actually know their values), actually
insert it and set the lower and upper bound in the corresponding node, update
the dynamic links, and finally fix any violations to red-black invariants while
taking care in each repaint of the nodes that the poketree invariant holds in the
tree at the level of the current operation. In general a repaint from black to red
deletes the dynamic link and a repaint from red to black sets the dynamic link
according to the type of the node which can either be obtained from some other
node or as described above in the case of a new root node. For completeness we
describe what to do during the fixup of the red-black tree as it might not be
obvious. These cases correspond to ones in [11, pp. 284–286]. Unfortunately, the
page limit does not allow for a more complete presentation.

Case 1: Swap memory locations of the A and C nodes and set static pointers
and dynamic pointer in A. This ensures that dynamic links upper in the
tree point to a correct node. Then set the type of D to be the type of C
and remove dynamic link in C and set the dynamic link in D. This case
represents a split of a node in the 2-3-4 tree view.

Case 2: Do nothing.
Case 3: Swap memory locations of B and C and set the static pointers. Thus

B obtains the dynamic link that was in C and dynamic links upper in the
tree point to a correct node.

Finally, if the root was repainted from red to black, obtain a new type using the
procedure described bove and set the type info and dynamic link accordingly.

284 J. Kujala and T. Elomaa

Note that we may need to update information about lower and upper bounds
on the nodes. The total time of insertion is O(lg n), because the type-procedure
needs to be called at most once at the root.

A deletion can be implemented using the same ideas as the insertion, but the
details are slightly more complicated. In a deletion the following sequence of
operations is executed: find the item to be deleted; find its successor by using
dynamic links, bound information, and comparing the lower bound to the deleted
item; set dynamic links; delete the item as usual; finally, call the RB-fixup to fix
possible invariant violations. In fixup there are several cases to consider, but the
general idea is that in the tree there might be an extra black with an associated
memory address (because a node further up in the tree may point to it through
a dynamic link), which floats upper in the tree, and the address might change,
until it is assigned in another location. Things to consider during RB-fixup:

Case 1: Swap memory locations of B and D items and set the static pointers.
Case 2: (There is no dynamic link pointing to D). Delete dynamic information

on D. Swap memory location and type of A with the extra black. This
represents a merge of two nodes in the 2-3-4 tree.

Case 3: Swap memory locations of C and D items and set the static pointers.
Case 4: Set static pointers, delete dynamic information on D, set type of E

to type of D and set the dynamic pointer, swap memory location and type
of A with extra black, set memory location and type of B to those of the
extra black, set static pointers and update the dynamic pointer on B and A
accordingly.

If there is an extra black in the root, just delete it and set the type to be the
type of a black child node before the update.

Note that the lower bound must be set on the nodes along the dynamic links on
the preferred path from the successor node to the location where the successor
previously was. This ensures that the dynamic links pointing from above of the
successor to its subtree do not make a mistake if the successor is later accessed.

All operations done during updates have a cost of O(lg lgn) per switch of
preferred child pointer in the reference tree. We conclude that poketree(RB) is
O(lg lg n)-competitive, even when updates to the tree are taken into account.

5 Reducing Memory Consumption: Poketree(Skip)

So far we have augmented each node in a poketree with a lower bound and an
upper bound on key values in its subtree. This constitutes a problem, since each
node consumes two words of precious memory. It is no surprise that it is possible
to fare better, as a part of the information about lower and upper bounds seems
to be redundant between nodes. We suggest a poketree based on a variant of a
deterministic skip list by Munro, Papadakis, and Sedgewick [5].

In a skip list items form a list. A node of this list is an array that contains a key,
a pointer to the next item in the list, and a varying number of links that point
progressively further in the list. More precisely, each additional link on an item

Poketree: A Dynamically Competitive Data Structure 285

points about twice as far as the previous link. The number of additional links
on an item is referred to as its height. Approximately 1/2hth part of the nodes
have h additional links and links of same height are nearly uniformly distributed
in the list. Thus, the search cost is logarithmic and the total space consumed is
upper bound by n+n+n

∑∞
i=1 1/2i = 3n. What makes this structure desirable

for us is that if we search for an item and can see only a node of the list, then
it is easy to check whether the searched item is between the current node and
a node pointed by a link of some particular height. Hence, we can lower the
memory overhead of storing bounds for keys in subtrees, but have to fetch one
additional node to see its key.

A deterministic skip list corresponds to a perfectly balanced 2-3 tree [5]. Us-
ing this correspondence, it is possible to relate the performance of a skip list
augmented with dynamic links to BST algorithms. More specifically, if there is
a dynamic link for each additional static link, then it is possible to associate
each dynamic link to a node in the 2-3 tree view. Items between an item and
a particular static link on it correspond to a subtree rooted to a node in the
2-3 tree. The dynamic link associated with this static link corresponds to the
dynamic link of that node in the 2-3 tree. We do not go into the details, because
of lack of space.

Insertion and deletion can be implemented similarly as in a poketree(RB).
Unfortunately, an insertion takes O(lg2 n)-time in a deterministic skip list, so
we have a trade-off here. However, Munro et al. [5] argue that in practice the
update operation can be implemented in O(lg n)-time if memory for nodes is
allocated in powers of two.

6 Conclusions

We have presented poketree algorithm, which is O(lg lgn)-competitive against
the best dynamic offline BST algorithm and that is founded on same ideas as
previous such algorithms, like Tango [6]. Our implementation supports update
operations, like MST [8] does, and has better worst case performance.

Acknowledgments

This work was supported by Academy of Finland project “INTENTS: Intelligent
Online Data Structures”. Moreover, the work of J. Kujala is financially supported
by Tampere Graduate School in Information Science and Engineering (TISE).

References

1. Bayer, R.: Symmetric binary B-trees: Data structure and maintenance algorithms.
Acta Informatica 1 (1972) 290–306

2. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-
dices. Acta Informatica 1 (1972) 173–189

286 J. Kujala and T. Elomaa

3. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM
32(3) (1985) 652–686

4. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Communications
of the ACM 33(6) (1990) 668–676

5. Munro, I., Papadakis, T., Sedgewick, R.: Deterministic skip lists. In: Proceedings
of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM (1992)
367–375

6. Demaine, E.D., Harmon, D., Iacono, J., Pǎtraşcu, M.: Dynamic optimality – al-
most. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press (2004) 484–490

7. Wilber, R.: Lower bounds for accessing binary search trees with rotations. SIAM
Journal on Computing 18(1) (1989) 56–67

8. Wang, C.C., Derryberry, J., Sleator, D.D.: O(log log n)-competitive dynamic bi-
nary search trees. In: Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms, ACM Press (2006) 374–383

9. Tarjan, R.E.: Sequential access in splay trees takes linear time. Combinatorica
5(4) (1985) 367–378

10. Culik II, K., Wood, D.: A note on some tree similarity measures. Information
Processing Letters 15(1) (1982) 39–42

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
Second edn. McGraw-Hill (2001)

12. Tarjan, R.E.: Data Structures and Network Algorithms. SIAM (1983)

A Proof of Theorem 3

The definition of dynamic links gives the following recursive rule for the length
L(m) of the dynamic link of the mth item counted from the tail of a preferred
path.

L(m) =

⎧
⎨

⎩

0 m ≤ 1
1 + 2L(m− 1) if L(m− 1) = L(m− 1 − L(m− 1))
1 otherwise.

Let b1, . . . , bj be the items accessed on the preferred path when searching for
bj, or the place where the search deviates from the path, and the first item
on the path is b1. Associate to each bi a the length of its dynamic link ki.
We will prove that the sequence K = 〈k1, . . . , kj〉 is of the form where it first
increases and then decreases and, moreover, that no number appears more than
twice in a row. Together with the fact that numbers ki are of form L(N) =
{0, 1, 3, 7, 15, 31, 63, . . . , 2i − 1, . . .} and a maximal ki is at most a length of a
root-to-leaf path l this implies that j can be at most 4 lg l ≤ 4 lg lgn, if l ≤ lg n.

As a tool we use a more intuitive presentation of the sequence L(m): L(m) is
the mth item in a sequence 〈0, S〉, where S is a infinite sequence. Let S1:i be the
prefix of S containing the first i numbers. The sequence S has been generated
by repeatedly applying a rule to generate a longer prefix of S:

S1
1:2 = 〈1, 1〉

Sk
1:2(i+1) = 〈Sk−1

1:i , (i+ 1), Sk−1
1:i , (i+ 1)〉.

Poketree: A Dynamically Competitive Data Structure 287

Here the superscript k counts how many times this rule has been used. Equiv-
alence of these two presentations can be verified by simple induction on k.
In induction step assume that numbers in Sk

1:i equal numbers given by the
function L, i.e. Sk

1:i = 〈L(2), . . . , L(i + 1)〉. By inductive assumption Sk =
〈Sk−1, L(i+1), Sk−1, L(i+1)〉 and by definition the first i numbers in Sk+1 equal
Sk and Sk+1

i+1 = 2L(i+1)+1 = L(i+2). Now, L(i+3) = 1 because L(i+2) must be
larger than numbers in 〈L(1), . . . , L(i+1)〉, and L(i+3) = 1 because L(i+1) > 1
and L(i+2) = 1. In fact, 〈L(2), . . . , L(i+2)〉 = 〈L(i+3), . . . , L(2i+3)〉, because
L(i+ 2) is larger than numbers in 〈L(2), . . . , L(i+ 1)〉 and thus it behaves like 0
in the definition of L until the number L(i + 2) itself is generated again, which
is not until L(2i+ 3). Thus 〈L(i + 3), . . . , L(2i+ 4)〉 = 〈Sk, 2i+ 1〉 and we can
conclude that the correspondence between L and S holds.

Let us denote by kM the maximal element in the sequence K. The prefix of K
that is 〈k1, . . . , ki+1, ki+2, . . . , kM 〉 is a non-decreasing sequence with at most two
repetitions of the same value because of the following structure in a subsequence
of S:

〈kM , . . . , ki+1 or ki+2, 1, 1, . . .
︸ ︷︷ ︸

ki−1 items

, ki, . . .︸︷︷︸
ki−1 items

, ki, 2ki + 1〉.

Now the subscript in the item marked by k′ = (ki+1 or ki+2) depends on which
ki corresponds to the actual item that is visited during ki in K (we use ki as both
an item in the sequence K and a numerical value). Due to the rule generating
S, k′ must be either 0, which is impossible in our case, 2ki + 1, or a larger value.

On the other hand, 〈kM , . . . , ki, . . . , kj〉 is a non-increasing sequence with at
most two repetitions of same value, because we can again write a subsequence
S as:

〈. . . , 1, 1, . . .
︸ ︷︷ ︸

kj is here

, ki, 1, 1, . . .︸ ︷︷ ︸
or here

, ki, 2ki + 1, . . . , kM , . . .〉.

Here the parts indicated by underbraces are of length ki − 1.

B Proof of Theorem 1

A BST algorithm serving σ = σ1, . . . , σm defines a sequence of trees T0, . . . , Tm

and touches items during each access, let these be connected subtrees S1, . . . , Sm.
In the spirit of Demaine et al. [6], we will play with marbles. Our argument is
similar, but not quite the same as theirs. More precisely, for each change of a
preferred child, we will place a marble on an item. They are placed so that at
any time there is at most one marble on an item. Furthermore, no more than
two marbles per item in Sj − σj are discarded during σj . Two can be discarded
because after the first discard a new marble might be placed and then discarded.
Thus, half of the number of the marbles discarded is a lower bound on the cost
of the BST algorithm minus m. The number of marbles discarded can be at most
that of marbles placed Mplaced and is at least Mplaced − n, because there is
at most one marble on an item at any given time. So the total cost of any BST

288 J. Kujala and T. Elomaa

algorithm is at least Mplaced/2 −n/2 +m. Note that in our argument the trees
Ti are BSTs, but P can have nodes with several items. As such, this is not an
improvement to the results of Demaine et al., because if for example a 2-3 tree
P is given as a BST it gives a tighter bound, but we are able to get a smaller
additive term of −n/2 to the bound.

Let us now describe a method of placing marbles. On an access σj we first
discard marbles on Sj − σj . Then for each switch in preferred children a marble
is placed. It is placed to the least common ancestor (LCA) in Tj of items in the
subtree of formerly preferred child. Note that Tj is the tree after an access σj .
After placing marbles, again discard marbles on Sj − σj .

Why are two marbles never on the same item? First, note that distinct sub-
trees rooted at items in P form continuous intervals in key values. Thus their
LCAs must be distinct, because the LCA of a continuous interval belongs to
that interval. This implies that marbles placed during the same time step do not
mix; the previously preferred subtrees are distinct, so their LCAs are distinct
too. Second, marbles placed at different time steps do not mix. To see why, as-
sume that there is an item a that already has a marble when we try to place
another on it. Preferred child pointer of a node v changes; it previously pointed
to subtree Pa of P containing a. Let s1 be the access during which the first mar-
ble was placed and s2 the access trying to place the second marble. There are
two separate cases depending on where the first marble has been placed: above
of v in P or on v or below it. In the first case we must either have touched a
during the access to s2, because a must have been an ancestor of s2, or a must
have been touched while it was rotated from being an ancestor to s2. In the sec-
ond case the first marble has been placed on v or in Pa and a has been touched
when an item in Pa was last accessed, which must be after or during s1 because
the preferred child pointer of v points to Pa and s1 is in Pa. In any case, a can-
not hold the first marble anymore and the second marble can be safely inserted
to a.

Assume now that we may do rotations on BST P . What happens if we rotate
an item a above of b? If before the rotation tree P was safe in the sense that
an access to any item would not place two marbles on the same item, then by
removing a marble from a certain item on P , we can guarantee that after the
rotation the new tree P ′ is safe as well. To find this item, note that preferred
child pointers of a and b point to two subtrees and it is safe to switch the
pointers to these subtrees and place a marble to the LCA of those subtrees.
After the rotation, if the preferred child pointers are set to their natural places,
at most one of these two pointers points to a different tree (this can be verified
by going through all four — eight, counting the mirror images — possible cases).
If we remove the marble on the LCA of the items in this tree, then P ′ is safe.
This implies a lower bound of (IB(σ, P) − n− r)/2 +m, where r is the number
of rotations. This is the tightest known bound formulated using a reference
tree P .

Efficient Algorithms for the Optimal-Ratio

Region Detection Problems in Discrete
Geometry with Applications�

Xiaodong Wu

Departments of Electrical & Computer Engineering and Radiation Oncology,
the University of Iowa, Iowa City, IA 52242, USA

xiaodong-wu@uiowa.edu

Abstract. In this paper, we study several interesting optimal-ratio re-
gion detection (ORD) problems in d-D (d ≥ 3) discrete geometric spaces,
which arise in high dimensional medical image segmentation. Given a d-
D voxel grid of n cells, two classes of geometric regions that are enclosed
by a single or two coupled smooth heightfield surfaces defined on the en-
tire grid domain are considered. The objective functions are normalized
by a function of the desired regions, which avoids a bias to produce an
overly large or small region resulting from data noise. The normalization
functions that we employ are used in real medical image segmentation.
To our best knowledge, no previous results on these problems in high di-
mensions are known. We develop a unified algorithmic framework based
on a careful characterization of the intrinsic geometric structures and
a nontrivial graph transformation scheme, yielding efficient polynomial
time algorithms for solving these ORD problems. Our main ideas include
the following. We show that the optimal solution to the ORD problems
can be obtained via the construction of a convex hull for a set of O(n)
unknown 2-D points using the hand probing technique. The probing or-
acles are implemented by computing a minimum s-t cut in a weighted
directed graph. The ORD problems are then solved by O(n) calls to the
minimum s-t cut algorithm. For the class of regions bounded by a single
heighfield surface, our further investigation shows that the O(n) calls to
the minimum s-t cut algorithm are on a monotone parametric flow net-
work, which enables to detect the optimal-ratio region in the complexity
of computing a single maximum flow.

1 Introduction

In this paper, we study several optimal-ratio region detection problems in dis-
crete geometry, which aims to find a “best” well-shaped region in a given d-
dimensional voxel grid Γ = [1..N]d of n = Nd cells. Many applications such as
� This research was supported in part by an NIH-NIBIB research grant R01-EB004640,

in part by a faculty start-up fund from the University of Iowa, and in part by a fund
from the American Cancer Society through an Institutional Research Grant to the
Holden Comprehensive Cancer Center, the University of Iowa, Iowa City, Iowa, USA.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 289–299, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

290 X. Wu

data mining [8, 5], data visualization [1], and computer vision [3], require that
the target region be of a “good” shape. We develop in this paper efficient algo-
rithms for computing two interesting classes of optimal-ratio geometric regions,
the coupled-surfaces-bounded regions and the smooth lower-half regions, which
model important applications in medical image analysis [18, 2, 15, 20].

(a) (b)

Fig. 1. (a) A retinal layer in a slice of a 3-D optical coherence tomography (OCT)
image. Each 3-D OCT image is composed of a number of 2-D radial scans, as schemat-
ically shown on the left. (b) A schematic cross-sectional anatomy of a diseased artery.

A central problem in medical image analysis is image segmentation, which
aims to define accurate boundaries for the objects of interest captured by image
data. Accurate three and higher dimensional (e.g., 3-D + time) image segmenta-
tion promises to revolutionize the current medical imaging practice. Many med-
ical anatomies express layered structures. Detecting regions bounded by a single
or coupled surfaces from image data is highly demanded in medical practice.
Figure 1(a) shows the retinal layer in a slice of a 3-D optical coherence tomog-
raphy (OCT) image; the retinal layer is bounded by two coupled heightfield
(terrain-like) surfaces, the internal limiting membrane and the pigment epithe-
lium. Figure 1(b) illustrates a schematic cross-sectional anatomy of a diseased
artery. For non-heightfield structures, a common segmentation approach [18, 15]
for those objects is to perform a resampling of the original image to produce
another new image I in the geometric xyz-space. This so-called “unfolding” op-
eration is done in such a way that the sought object surfaces in I are terrain-like
ones. Thus, each of the sought surfaces in I for the object boundaries contains
exactly one voxel in every column of I that is parallel to the z-axis. Then, the
region bounded by two coupled terrain-like surfaces is segmented from I. Some
geometric constraints on these surfaces should be satisfied by the segmentation.
First, the two sought surfaces must be non-crossing and within a given range
of distance apart. Since many anatomical structures are smooth, the segmented
surfaces must be sufficiently “smooth”. Generally speaking, the smoothness is re-
lated to the surface curvature and means that an object boundary cannot change
abruptly. Motivated by this medical image segmentation and other applications,
we formulate the following optimal-ratio region detection problems.

Let Γ be a given d-D (d ≥ 3) voxel grid [1..N]d of n = Nd cells. The domain
D of Γ is the projection of Γ onto the first d−1 dimensions (i.e., D = [1..N]d−1).
For each x = (x1, x2, . . . , xd−1 ∈ D, the voxel subset {(x1, x2, . . . , xd−1, z | 1 ≤

Efficient Algorithms for the ORD Problems 291

z ≤ N} forms a column Col(x), called the x-column of Γ . We denote the voxel
(x1, x2, . . . , xd−1, z) of Col(x) by xz . Two columns, Col(x) and Col(y) with
x = (x1, x2, . . . , xd−1), y = (y1, y2, . . . , yd−1) ∈ D, are adjacent in the p-th
dimension if

∑d−1
i=1 |xi − yi| = 1 and |xp − yp| = 1 (1 ≤ p < d). Each voxel

xz ∈ Γ is assigned an on-surface cost b(xz) and an in-region cost c(xz); both
are an arbitrary real value. The on-surface cost of a voxel is closely related
to the likelihood that it may appear on a desired surface, while the in-region
cost measures the probability of a given voxel preserving the expected regional
property (e.g., we assign the logarithm of the probability as the on-surface/in-
region cost of each voxel). In image segmentation, both on-surface and in-region
costs can be determined using low-level image features [18].

A heightfield surface in Γ is defined by a function S : D → {1, 2, . . . , N} such
that it satisfies the following smoothness constraint: Given d − 1 smoothness
parameters {Δi ≥ 0 | i = 1, 2, . . . , d − 1} with each for one of the first d − 1
dimensions, for any two voxels, xz and yz′ , on the surface (i.e., z = S(x) and
z′ = S(y)), if their corresponding columns Col(x) and Col(y) are adjacent in
the p-th dimension (p = 1, 2, . . . , d − 1), then |z − z′| ≤ Δp. Intuitively, the
smoothness constraint defines the maximum allowed change in the d-th coordi-
nate of a feasible heightfield surface along each unit distance change in the first
d− 1 dimensions. A coupled-surfaces-bounded region (briefly called a csb-region)
is a region R in Γ enclosed by two interrelated heightfield surfaces S1 and S2
(i.e., R = {xz | x ∈ D, S1(x) ≤ z ≤ S2(x)}), whose interrelation is specified by
the surface separation constraint: Given two parameters δu ≥ δl ≥ 0, for each
x ∈ D, δl ≤ S2(x)−S1(x) ≤ δu. The second class of regions is called the smooth
lower-half region, which is a region R bounded by a heightfield surface S (i.e.,
R = {xz | x ∈ D, 1 ≤ z ≤ S(x)}). The net-cost β(R) of a region R is defined as
the total on-surface cost of the heightfield surface(s) enclosing R plus the total
in-region cost of the voxels in R.

The optimal-ratio region detection (ORD) problem seeks a desired re-
gion R in Γ such that the ratio cost α(R) induced by R, with α(R) = β(R)

g(R) ,

is maximized, where g(R) is a non-negative real-valued function of R. The ob-
jective function α(R) incorporates both boundary and regional information of
the desired region R. The normalization over g(R) is to avoid a bias to produce
an overly large or small region resulting from data noise. The normalization
techniques [19, 17] is commonly used for image segmentation. Let |R| denote the
number of voxels in the region R. In this paper, we consider two normalization
functions. One is g(R) =

√|R|(n− |R|), which is closely related to the inter-
class variance in discriminant analysis [13]. We denote by ORDI this version
of the ORD problem. The second normalization function that we consider is
g(R) = |R|, which is equivalent to the volume of R in the discrete space, and
the problem is denoted by ORDV.

Previous work on the optimal region detection problems mainly focuses on
computing optimal well-shaped regions in low dimensions. Fukuda et al. [8] con-
sidered computing optimal rectangular, connected x-monotone, and rectilinear
convex regions in a 2-D pixel grid Γ of n cells, and gave O(n1.5)-, O(n)-, and

292 X. Wu

O(n1.5)-time algorithms, respectively. Asano et al. [2] considered to detect a
connected x-monotone region in a 2-D image while maximizing the interclass
variance. Their algorithm employed the hand-probing technique in computa-
tional geometry and dynamic programming schemes. In studying the optimal
pyramid problem [5], Chun et al. gave a linear time algorithm for computing
an optimal region called point-stabbed union of rectangles in 2-D. The optimal
region detection problems in higher dimensions are so under-explored that few
known methods actually address them. Chen et al. [4] extended Chun et al.’s
2-D approach to searching for a minimum-weight stabbed union of orthogonal
regions in d-D (d ≥ 3). Wu et al. [20] considered several classes of less restricted
regions in the d-D discrete geometric space. However, both approaches bias to
find an overly small region in a given voxel grid Γ .

In this paper, we develop an interesting algorithmic framework for solving each
of the ORD problems. We exploit a set of interesting geometric observations and
show that each of the ORD problems is closely related to the construction of a
convex hull for a set of O(n) unknown 2-D points using the hand probing tech-
nique [7, 6]. The optimal solution actually defines a vertex of the constructed
convex hull. Asano et al. [2] observed a similar property for the detection of a
connected x-monotone region in 2-D. The implementation of the probing oracle,
which recognizes either one hull vertex or one edge at each call, is essentially
the main challenge here. By judiciously characterizing the intrinsic structures
of the problems, we are able to implement such a probing oracle by computing
a minimum s-t cut in a weighted directed graph. The ORD problems are then
solvable by O(n) calls to the minimum s-t cut algorithm. Interestingly, we are
able to do much better for computing an optimal smooth lower-half region using
either normalization criterion (called the ORDI-SLH and the ORDV-SLH prob-
lems, respectively). For the ORDI-SLH problem, we observe that the O(n) calls
to the minimum s-t cut algorithm are on a sequence of weighted directed graphs,
which forms a monotone parametric flow network [12, 9]. Hence, the ORDI-SLH
problem can be solved in the complexity of computing a single maximum flow
using Gusfield and Martel’s algorithm [12]. For the ORDV-SLH problem, we
establish a connection between our convex hull model for the problem and the
traditional Newton based approach for the fractional programming problem (see,
e.g., Gondran and Minous [11]). This connection enables us to apply Gallo et
al.’s simple parametric minimum s-t cut algorithm [9], yielding an O(n2 logn)
time algorithm for solving the ORDV-SLH problem.

2 Our Algorithms for the ORDI Problems

This section presents our polynomial-time algorithms for the ORDI problems.
We illustrate our algorithmic framework using the computation of an optimal
coupled-surfaces-bounded region in Γ (called the ORDI-CSB problem) as an
example. An improved O(n2 log n) time algorithm for computing an optimal
smooth lower half region in Γ (called the ORDI-SLH problem) is then obtained
by exploiting the applicability of the parametric minimum s-t cut algorithm [12].

Efficient Algorithms for the ORD Problems 293

2.1 Convex Hull for the ORDI-CSB Problem

The objective function that we want to maximize is the ratio cost α(R) of a
csb-region R with α(R) = β(R)√

|R|(n−|R|) , where β(R) is the net-cost of R. Note

that |R| denotes the total number of voxels in R and ranges from 0 to n. Observe
that for each k (0 ≤ k ≤ n), if we are able to compute an optimal csb-region R∗k
in Γ such that the size of R∗k is k and the net-cost β(R∗k) =

∑2
i=1

∑
xz∈Si

b(xz)+∑
xz∈R∗

k
c(xz) is maximized, then we solve the problem. Unfortunately, that is

not an easier problem at all. However, the view of the problem in such a way
lays down a base for further exploiting the geometric structure of the problem.

For each k = 0, 1, . . . , n, the pair (k, β(R∗k)) defines a point in the 2-D (x,y)-
plane, thus forming a set P of points with P = {(k, β(R∗k)) | k = 0, 1, . . . , n}.
Note that for some k’s, the problem may not have a feasible solution; we then
simply let the net-cost be −∞. Actually, we may not need to compute all the
points in P in order to find the optimal solution R∗ for the ORDI-CSB problem,
as stated in Lemma 1.

Lemma 1. The point (|R∗|, β(R∗)) defined by an optimal csb-region R∗ for the
ORDI-CSB problem, must be a vertex of the upper chain UH(P) of the convex
hull CH(P) of P .

Thus, we only need to compute a subset of points in P that lie on the upper chain
UH(P) of convex hull CH(P) (note that the convex hull model here is mainly
used to get rid of the denominator g(R) of the objective function). However,
directly computing the hull vertices of UH(P) appears to be quite involved.
Inspired by the hand probing method [7, 6], which can be viewed as recognizing
a convex polygon by “ touching with lines”, we use the following probing oracle
to construct the upper chain UH(P) even the points in P is unknown.

Given a slope θ, report the tangent line with slope θ to CH(P) and the tangent
point as well.

With this probing oracle, the convex polygonal chain UH(P) can be con-
structed, as follows. Start with slopes +∞ and −∞ to find the two endpoints
(leftmost and rightmost points) of UH(P). Now suppose that we have computed
two vertices u and v on the hull and there is no vertex of UH(P) between u and
v being computed so far. Let θ be the slope of the line through u and v. Then,
perform a probing oracle with respect to θ. Consequently, we either find a new
vertex on UH(P) between u and v or know that uv is a hull edge of UH(P) (i.e.,
no vertex of UH(P) between u and v). Thus, performing a probing oracle results
in either a new vertex or a new hull edge of UH(P). Hence, the convex polygonal
chain with m vertices can be computed with O(m) probing oracles [7].

Based on Lemma 1, if we are able to implement such a probing oracle, the
ORDI-CSB problem can be solved by performing O(n) probing oracles since
|UH(P)| = O(n). In the next section, we address the main challenge of efficient
implementation of the probing oracles.

294 X. Wu

2.2 Implementation of the Probing Oracle

Given a real-valued parameter θ, we define the parametric net-cost of a csb-region
R in Γ as the net-cost of R minus θ|R| (i.e., β(R)−θ|R|), denoted by βθ(R). We
show in this section that the probing oracle can be implemented via computing
in Γ an optimal csb-region with a maximized parametric net-cost.

For a given parameter θ, let R∗(θ) be an optimal csb-region with a maximized
parametric net-cost. Recall that R∗k denotes the optimal csb-region with size of k
such that β(R∗k) = maxR⊆Γ,|R|=k β(R). Lemma 2 follows immediately from the
relevant definitions.

Lemma 2. maxR(θ) βθ(R(θ)) = maxk[β(R∗k)− kθ]
Lemma 3. There exists a tangent line to UH(P) at the point (j, β(R∗j)) with a
slope θ if and only if |R∗(θ)| = j and β(R∗(θ)) = β(R∗j).

Consequently, for a given slope θ, we need to compute an optimal csb-region
R∗(θ) in Γ . If the size of R∗(θ) is j, based on Lemma 3, the line l: y = θx +
(β(R∗(θ)) − j · θ) is a tangent line to UH(P) at the point (j, β(R∗(θ))) with
slope θ. We thus let R∗j = R∗(θ). Next, we develop an efficient algorithm for
computing such an optimal csb-region R∗(θ) in Γ .

2.3 The Algorithm for Maximizing the Parametric Net-Cost

Our algorithm for computing an optimal csb-region R∗(θ) with a maximized
parametric net-cost (namely, the MPNC problem) is inspired by our previous
algorithm for solving the layered net surface problem [20]. Instead of seeking
an optimal “partition” of a given voxel grid into multiple disjoint regions us-
ing heightfield surfaces as in [20], here we “select” an optimal region bounded
by coupled heightfield surfaces in Γ . We characterize the self-closure structures
of the MPNC problem, and then model it as a maximum-cost closed set prob-
lem [16, 14] based on a nontrivial graph transformation scheme.

The self-closure structures of the MPNC problem. Recall that a csb-
region R(θ) in Γ is a region enclosed by two coupled heightfield surfaces, S1 and
S2, satisfying the surface separation constraint. WOLG, we assume that S2 is
“on top” of S1 (i.e., for any x ∈ D, S2(x) > S1(x)).

Given a set of d − 1 smoothness parameters {Δi ≥ 0|i = 1, 2, . . . , d − 1}
with each for one of the first d − 1 dimensions, consider every voxel xz ∈ Γ
(i.e., x ∈ D and 1 ≤ z ≤ N) and each column Col(y) adjacent to Col(x) in
the p-th dimension for every p = 1, 2, . . . , d − 1. The lowest neighbor of xz on
Col(y) is the voxel yz′ with z′ = max{1, z − Δp} (i.e., the voxel on Col(y)
with the smallest d-th coordinate that can possibly appear together with xz on
a same feasible heightfield surface in Γ). To help exploit the spatial relations
between two bounding surfaces S1 and S2 of a feasible csb-region, we define
below the upstream and downstream voxels of any voxel xz ∈ Γ for the given
surface separation constraint specified by two parameters δl and δu: the upstream

Efficient Algorithms for the ORD Problems 295

(resp., downstream) of xz is xz+δl (resp., xmax{1,z−δu}) if z + δl ≤ N (resp.,
z − δl ≥ 1). Intuitively, if xz ∈ S1 (resp., xz ∈ S2), then the upstream (resp.,
downstream) voxel of xz is the voxel on Col(x) with the smallest d-th coordinate
that can be on S2 (resp., S1). We say that a voxel xz is below a heightfield surface
S if S(x) > z, and denote by LO(S) the subset of all voxels of Γ that are on or
below S. The following self-closure structures shown in Observations 1 and 2 are
crucial to our MPNC algorithm and suggests a connection between our target
problem and the maximum-cost closed set problem [16, 14].

Observation 1. For any feasible heightfield surface S in Γ , if a voxel xz is
in LO(S), then every lowest neighbor of xz is also in LO(S).

Observation 2. For any feasible csb-region R enclosed by S1 and S2, the
upstream (resp., downstream) voxel of each voxel in LO(S1) (resp., LO(S2)) is
in LO(S2) (resp., LO(S1)).

In our MPNC approach, instead of directly searching for an optimal csb-region
R∗(θ) bounded by S1 and S2, we look for optimal LO(S1) and LO(S2) in Γ ,
such that LO(S1) and LO(S2) uniquely define S1 and S2, respectively.

Computing an optimal csb-region with a maximum parametric net-
cost. For a given θ, we construct a vertex-weighted directed graphG(θ) = (V,E)
from Γ , such that the maximum-cost closed set in G(θ) specifies an optimal csb-
region R∗(θ) with a maximized parametric net-cost in Γ . The construction of
G(θ) crucially relies on the self-closure structures shown in Section 2.3. G(θ)
contains two vertex disjoint subgraphs {Gi = (Vi, Ei)|i = 1, 2}; each Gi is con-
structed in reflecting the single surface self-closure structure of the MPNC prob-
lem and is used for the search of Si of R∗(θ). The separation constraints between
S1 and S2 are enforced in G(θ) by a set of edges Es, connecting the correspond-
ing subgraphs G1 and G2, in such a way to reflect the inter-surface self-closure
structure. Thus, V = V1 ∪ V2 and E = E1 ∪ E2 ∪ Es.

We first show the construction of each Gi = (Vi, Ei) (i = 1, 2). Every voxel
xz ∈ Γ corresponds to exactly one vertex vi(xz) ∈ Vi. For each x in the domain
D of Γ and z = 2, 3, . . . , N , vertex vi(xz) has a directed edge to the vertex
vi(xz−1), forming a chain Chi(x): vi(xN)→ vi(xN−1)→ . . .→ vi(x1) in Gi for
Col(x). We next put directed edges between every two adjacent chains (i.e., their
corresponding columns in Γ are adjacent) in Gi to enforce the surface smoothness
constraint. Based on Observation 1, for every voxel xz of each Col(x) in Γ and its
lowest neighbor yz′ on each adjacent Col(y) of Col(x), we put into Ei a directed
edge from vi(xz) ∈ Chi(x) to vi(yz′) ∈ Chi(y). We then put directed edges into
Es between G1 and G2, to incorporate the surface separation constraint. For
each vertex v1(xz) with z ≤ N − δl on the chain Ch1(x) in G1, a directed edge
is put in Es from v1(xz) to v2(xz+δl) on Ch2(x) in G2. On the other hand, each
vertex v2(xz) with z > δl on Ch2(x) of G2 has a directed edge in Es to vertex
v1(xz′) with z′ = max{1, z − δu} (xz′ in Γ is the downstream voxel of xz).

The following lemma establishes the connection between a closed set in G(θ)
and a feasible csb-region in Γ .

296 X. Wu

Lemma 4. (1) Any feasible csb-region in Γ defines a closed set C 	= ∅ in G(θ).
(2) Any closed set C 	= ∅ in G(θ) specifies a feasible csb-region in Γ .

Our goal is to compute a non-empty maximum-cost closed set in G(θ), which
can specify an optimal csb-region in Γ . Thus, we need to further assign a cost
w(·) to each vertex in G(θ). Using the following vertex-cost assignment scheme,
we can show that the parametric net-cost βθ(R) of the csb-region R defined by
a closed set C 	= ∅ is equal to the total vertex cost w(C) of C, and vice verse. For
every x ∈ D,

w(v1(xz)) =
{
b(xz) if z = 1,
[b(xz)− b(xz−1)] + [θ − c(xz−1)] for z = 2, 3, . . . , N − δl. (1)

w(v2(xz)) =
{
b(xz) +

∑z
z′=1 c(xz′) if z = δl + 1,

[b(xz)− b(xz−1)] + [c(xz)− θ] for z = δl + 2, . . . , N . (2)

Based on Lemma 4, we have the following fact.

Lemma 5. For a given θ, the region R∗(θ) specified by a maximum-cost non-
empty closed set C in G(θ) is an optimal csb-region with a maximized parametric
net-cost in Γ .

As in [16, 9], we obtain a maximum non-empty closed set C∗ in G(θ) by com-
puting a minimum s-t cut. We then define in Γ a feasible csb-region R bounded
by two coupled heightfield surfaces S1 and S2 from C∗, as follows. Recall that
we search for each Si in subgraph Gi (i = 1, 2). Let Ci = C∗ ∩ Vi. For each voxel
x ∈ D, denote by Ci(x) the set of vertices of Ci on the chain Chi(x) of Gi. Based
on the construction of Gi, it is not hard to show that Ci(x) 	= ∅. Let ri(x) be
the largest d-th coordinate of the vertices in Ci(x). Then, define the function Si
as Si(x) = ri(x) for every x ∈ D. By applying a similar argument as in [20],
we can prove that each Si is a heightfield surface in Γ and S1 and S2 satisfy
the surface separation constraint. By using Goldberg and Tarjan’s minimum s-t
cut algorithm [10], we compute in G(θ) a maximum-cost closed set C∗ 	= ∅ in
O(n2 logn) time.

Lemma 6. For a given θ, the MPNC problem can be solved in O(n2 logn) time.

In summary, it suffices to compute the upper chain UH(P) of the convex hull
CH(P) to solve the ORDI-CSB problem by Lemma 1, where P ={(k,β(R∗k))|k =
0, 1, . . . , n}. We can perform O(n) probing oracles to obtain all vertices on
UH(P). Each probing oracle can be implemented in O(n2 logn) time by Lemmas
3 and 6. Thus, the total running time is O(n3 logn).

Theorem 1. Given a d-D (d ≥ 3) voxel grid Γ of n cell, an optimal csb-region
R∗ with a maximum ratio cost α(R∗) = maxR

β(R)√
|R|(n−|R|) can be computed in

O(n3 logn) time.

Efficient Algorithms for the ORD Problems 297

2.4 Computing an Optimal-Ratio Smooth Lower-Half Region

This section presents our O(n2 logn) time algorithm for solving the ORDI-SLH
problem, which is achieved by exploiting the monotonicity of the parametric
graph used for the search of the bounding heightfield surface.

Recall that a smooth lower-half region R in Γ is bounded by a heightfield
surface S, that is, R = LO(S). A key subroutine here is that, for a given pa-
rameter θ, computing an optimal smooth lower-half region R∗(θ) in Γ such that
the parametric net-cost βθ(R∗(θ)) of R∗(θ) is maximized. Note that the single
surface self-closure structure as in Section 2.3 holds for the ORDI-SLH problem.
Thus, a similar graph transformation scheme as in Section 2.3 is used to con-
struct a vertex-weighted directed graph G(θ) = (V,E), yet here G(θ) has only
one subgraph used for the search of the only bounding heightfield surface S of
the smooth lower-half region R(θ) for a given θ. The cost of each vertex in G(θ)
is assigned, as follows.

w(v(xz)) =
{
b(xz) + [c(xz)− θ] if z = 1,
[b(xz)− b(xz−1)] + [c(xz)− θ] for z = 2, 3, . . . , N . (3)

Note that computing a maximum-cost closed set C in G(θ) is equivalent to
computing a minimum s-t cut in Gst(θ) [16, 9]. In Gst(θ), the source s has a
directed edge to every vertex v(xz) in G(θ) with a cost of w(v(xz)), the sink t
has a directed edge with a cost of 0 from every vertex in G(θ), and the cost of
all other edges is +∞. Obviously, based on the vertex-cost assignment scheme
(3), the cost of every edge from source s is a non-increasing function of θ and
all other edges in Gst(θ) have a constant cost with respect to θ. Thus, Gst(θ) is
a monotone parametric flow network [12, 9].

To compute an optimal-ratio smooth lower-half region in Γ , as in the ORDI-
CSB algorithm, we need to compute an optimal smooth lower-half region with a
maximum parametric net-cost for each of a sequence of parameters {θ1, θ2,. . . ,θm}
generated by the hand probing process (see Section 2.1), where m = O(n). Due
to the monotonicity of Gst(θ), we can apply Gusfield and Martel’s parametric
minimum cut algorithm [12] to compute all those O(n) optimal smooth lower-
half regions in Γ in the complexity of solving a single maximum flow problem.

Theorem 2. Given a d-D (d ≥ 3) voxel grid Γ of n cell, the ORDI-SLH problem
can be solved in O(n2 logn) time.

3 Our Algorithms for the ORDV Problems

In this section, we present our efficient algorithms for the ORDV problem, which
seeks a maximum-ratio coupled-surfaces-bounded region (called the ORDV-CSB
problem) or a maximum-ratio smooth lower-half region (called the ORDV-SLH
problem) in a given d-D (d ≥ 3) voxel grid Γ . The algorithmic framework follows
that for the ORDI problems. Our ORDV-SLH algorithm utilizes an observation
that establishes a connection between our convex hull model for the ORDV-SLH

298 X. Wu

problem and the traditional Newton-based approach for the fractional program-
ming problem (see, e.g., Gondran and Minous [11]). This connection enables us
to find an order to compute the vertices on the convex hull, such that all those
vertices can be computed by using Gallo et al.’s simple parametric minimum s-t
cut algorithm [9] in the complexity of solving a single maximum flow problem.
The detailed algorithms are left to the full version of this paper.

Theorem 3. Given a d-D (d ≥ 3) voxel grid Γ of n cell, an optimal csb-
region R∗ with a maximum ratio cost α(R∗) = maxR

β(R)
|R| can be computed

in O(n3 logn) time.

Theorem 4. Given a d-D (d ≥ 3) voxel grid Γ of n cell, the ORDV-SLH prob-
lem can be solved in O(n2 logn) time.

References

1. A. Amir, R. Kashi, N.S. Netanyalm, Analyzing Quantitative Databases: Image Is
Everything, Proc. 27th Int. Conf. on Very Large Data Bases, Italy, 2001, pp. 89-98.

2. T. Asano, D.Z. Chen, N. Katoh, and T. Tokuyama, Efficient Algorithms for
Optimization-Based Image Segmentation, Int’l J. of Computational Geometry and
Applications, 11(2001), pp. 145-166.

3. I. Bloch, Apatial Relationship between Objects and Fuzzy Objects using Mathe-
matical Morphology, in Geometry, Morphology and Computational Imaging, 11th
Dagsthul Workshop on Theoretical Foundations of Computer Vision, April 2002.

4. D.Z. Chen, J. Chun, N. Katoh, and T. Tokuyama, Efficient Algorithms for Approx-
imating a Multi-dimensional Voxel Terrain by a Unimodal Terrain, Lecture Notes
in Computer Science, Vol. 3106, Springer Verlag, Proc. of the 10th Int. Comput-
ing and Combinatorics Conf. (COCOON), Jeju Island, Korea, August 2004, pp.
238-248.

5. J. Chun, K. Sadakane, T. Tokuyama, Linear Time Algorithm for Approximat-
ing a Curve by a Single-Peaked Curve, Lecture Notes in Computer Science, Vol.
2906, Springer Verlag, Proc of the 14th Int. Symp. on Algorithms and Computation
(ISAAC), Kyoto, Japan, Dec 2003, pp. 6-15.

6. R. Cole and C.K. Yap, Shape from Probing, J. of Algorithms, 8(1987), pp. 19-38.
7. D. Dobkin, H. Edelsbrunner, and C.K. Yap, Probing Convex Polytopes, Proc. 18th

Annual ACM Symp. on Theory of Computing, 1986, pp. 387-392.
8. T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, Data Mining with Opti-

mized Two-Dimensional Association Rules, ACM Transaction on Database Systems
26(2001), pp. 179-213.

9. G. Gallo, M.D. Grigoriadis, and R.E. Tarjan, A Fast parametric maximum flow
algorithm and applications, SIAM J. Comput., 18(1989), pp. 30-55.

10. A.V. Goldberg and R.E. Tarjan, A New Approach to the Maximum-flow Problem,
J. Assoc. Comput. Mach., 35(1988), pp. 921-940.

11. M. Gondran and M. Minous, Graphs and Algorithms, John Wiley, New York, 1984.
12. D. Gusfield and C. Martel, A Fast Algorithm for the Generalized Parametric Min-

imum Cut Problem and Applications, Algorithmica, 7(1992), pp. 499-519.
13. D.J. Hand, Discrimination and Classification, John Wiley & Sons, 1981.
14. D.S. Hochbaum, A New-old Algorithm for Minimum-cut and Maximum-flow in

Closure Graphs, Networks, 37(4)(2001), pp. 171-193.

Efficient Algorithms for the ORD Problems 299

15. K. Li, X. Wu, D.Z. Chen, and M. Sonka, Optimal Surface Segmentation in Volu-
metric Images – A Graph-Theoretic Approach, IEEE Trans. on Pattern Analysis
and Machine Intelligence, 28(2006), pp. 119 - 134.

16. J.C. Picard, Maximal Closure of a Graph and Applications to Combinatorial Prob-
lems, Management Science, 22(1976), 1268-1272.

17. J. Shi and J. Malik, Normalized Cuts and Image Segmentation, IEEE Trans. on
Pattern Analysis and Machine Intelligence, 22(8)(2000), pp. 888-905.

18. M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine
Vision, 2nd edition, Brooks/Cole Publishing Company, Pacific Grove, CA, 1999.

19. J. Stahl and S. Wang, Convex Grouping Combining Boundary and Region Infor-
mation, IEEE Int. Conf. on Computer Vision, Volume II, pp. 946-953, 2005.

20. X. Wu, D.Z. Chen, K. Li, and M. Sonka, The Layered Net Surface Problems in
Discrete Geometry and Medical Image Segmentation, Lecture Notes in Computer
Science, Vol. 3827, Springer Verlag, Proc. of the 16th Int. Symposium on Algorithms
and Computation (ISAAC), Sanya, China, December 2005, pp. 17-27.

On Locating Disjoint Segments with Maximum

Sum of Densities

Hsiao-Fei Liu1 and Kun-Mao Chao1,2,3,�

1 Department of Computer Science and Information Engineering
2 Graduate Institute of Biomedical Electronics and Bioinformatics

3 Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106

kmchao@csie.ntu.edu.tw

Abstract. Given a sequence A of n real numbers and two positive in-
tegers l and k, where k ≤ n

l
, the problem is to locate k disjoint seg-

ments of A, each has length at least l, such that their sum of densities
is maximized. The best previously known algorithm, due to Bergkvist
and Damaschke [1], runs in O(nl + k2l2) time. In this paper, we give an
O(n + k2l log l)-time algorithm.

1 Introduction

Given a sequence A = (a1, a2, . . . , an) of n real numbers and two positive integers
l and k, where k ≤ n

l , let d(A[i, j]) denote the density of segment A[i, j], defined
as ai+ai+1+...+aj

j−i+1 . The problem is to find k disjoint segments {s1, s2, . . . , sk} of
A, each has length at least l, such that

∑
1≤i≤k d(si) is maximized.

For k = 1, this problem was well studied in computational biology [3, 6, 5, 7, 9].
A closely related problem in data mining, which basically deals with a binary
sequence, was independently formulated and studied by Fukuda et al. [4]. For
general k, Chen et al. [2] proposed an O(nkl)-time algorithm and an improved
O(nl + k2l2)-time algorithm was given by Bergkvist and Damaschke [1]. In this
paper, we propose an O(n+ k2l log l)-time algorithm.

Lin et al. [8] formulated a related problem: Given a sequence A of n real
numbers and two positive integers l and k, where k ≤ n

l , find a sequence Γ =
(γ1, γ2, . . . , γk) of k disjoint segments of A such that for all i, γi is either a
maximum-density segment of length between l and 2l − 1 not overlapping any
of the first i − 1 segments of Γ or NIL if all segments of length between l and
2l − 1 overlap some of the first i − 1 segments of Γ . For this related problem,
Lin et al. [8] proposed a heuristic O(n log k)-time algorithm and an optimal
O(n+ k log k)-time algorithm was given by Liu and Chao [10].

The rest of this paper is organized as follows. In Section 2, we introduce some
preliminary knowledge. In Section 3, we show how to reduce the length of the
input sequence. In Section 4, we give our main algorithm. Section 5 summarizes
our results.
� Corresponding author.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 300–307, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Locating Disjoint Segments with Maximum Sum of Densities 301

2 Preliminaries

Let PS[0, . . . , n] be the prefix-sum array of A[1, . . . , n], i.e., PS[i] = a1 + a2 +
. . .+ ai for i > 0 and PS[0] = 0. PS can be computed in linear time by set PS[0]
to 0 and PS[i] to PS[i − 1] + A[i] for i = 1, 2, . . . , n. Since d(A[i, j])=(PS[j] −
PS[i− 1])/(j − i+ 1), the density of any segment can be computed in constant
time after the prefix-sum array is constructed.

A simpler version of the following lemma was first presented in [6].

Lemma 1. Let S′ = {s′1, s′2, . . . , s′k} be a set of k disjoint segments of length at
least l such that

∑
1≤i≤k d(s′i) is maximized. There exists a set S = {s1, s2. . . , sk}

of k disjoint segments of length between l and 2l − 1 such that
∑

1≤i≤k d(si) =∑
1≤i≤k d(s′i).

Proof. We prove this lemma by showing that each s′i has a subsegment si of
length between l and 2l − 1 such that d(s′i) = d(si). If s′i is of length between
l and 2l − 1, then let si = s′i. Otherwise, let s′i = A[p, q]. Suppose for the
contradiction that d(A[p, p + l − 1]) �= d(A[p + l, q]). Without loss of generality
assume d(A[p, p + l − 1]) < d(A[p + l, q]). Since the length of s′i is larger than
2l − 1 and the length of A[p, p + 1 − l] is l, the length of A[p + 1, q] is at least
l. It follows that {s′1, . . . , s′i−1, A[p+ 1, q], s′i+1, . . . , s

′
k} is a better solution than

S′, a contradiction. Thus, d(A[p, p+ l− 1]) must be equal to d(A[p+ l, q]). Since
d(A[p, p+ l− 1]) = d(A[p+ l, q]) = d(s′i), we can let si = A[p, p+ l − 1]. ��
Lemma 1 states that there exists a solution for the problem instance (A, k, l)
composed of segments of length between l and 2l − 1. It allows us to redefine
the problem as follows: Given a sequence A = (a1, a2, . . . , an) of n real num-
bers and two positive integers l and k, where k ≤ n

l , find k disjoint segments
{s1, s2, . . . , sk} of A, each has length between l and 2l−1, such that

∑
1≤i≤k d(si)

is maximized. From now on, we shall adopt this problem definition.

3 Preprocessing

In this section, we show how to compress an input sequence A of length n ≥ 2kl
into a sequence A′ of length O(kl) in O(n + k log k). First we have to find a
sequence Γ = (γ1, γ2, . . . , γ2k) of 2k disjoint segments of length between l and
2l − 1 such that for all i, γi is either a maximum-density segment of length
between l and 2l − 1 not overlapping any of the first i − 1 segments in Γ or
NIL if all segments of length between l and 2l− 1 overlap some of the first i− 1
segments of Γ . Let γi = A[pi, qi] for all i. We extend each segment γi to get
γ′i = A[p′i, q

′
i], where

p′i =
{
pi − 2l + 1 if pi ≥ 2l,
1 if pi < 2l, and q′i =

{
qi + 2l− 1 if qi ≤ n− 2l+ 1,
n if qi > n− 2l+ 1.

We say that A[p, q] is a segment consisting of only elements in
⋃2k
i=1 γ

′
i if

and only if for each index j ∈ [p, q], there exists a γ′i = A[p′i, q
′
i] such that

302 H.-F. Liu and K.-M. Chao

j ∈ [p′i, q
′
i]. A segment A[p, q] consisting of only elements in

⋃2k
i=1 γ

′
i is maximal

if and only if A[p, q] is not a subsegment of any other segment consisting of only
elements in

⋃2k
i=1 γ

′
i. Note that any two different maximal segments consisting of

only elements in
⋃2k
i=1 γ

′
i must be disjoint according to our definition. Let R =

(r1, r2, . . . , r|R|) be all of the maximal segments, in left-to-right order, consisting
of only elements in

⋃2k
i=1 γ

′
i. We set A′ to r1 · (−∞) · r2 · (−∞) · r3 . . . (−∞) · r|R|,

where the symbol “·” means concatenation. Since
∑

1≤i≤|R| ri ≤
∑

1≤i≤k γ
′
i ≤

6kl, A′ is of length O(kl)
The correctness follows from the next lemma which ensures that it is safe to

delete elements not in any segments of R.

Lemma 2. There exists a solution S = {s1, s2, . . . , sk} for the problem instance
(A, k, l) such that each segment in S is a subsegment of some segment of R.

Proof. First we show that there exists a solution S = {s1, s2, . . . , sk} for the
problem instance (A, k, l) such that si overlaps some segment of Γ for i =
1, . . . , k. Let S′ = {s′1, s′2, . . . , s′k} be a solution with fewest segments in it not
overlapping any segments of Γ . Let s′i be a segment not overlapping any segment
of Γ . Since each segment in S′ has length shorter than 2l and each segment of Γ
has length at least l, each segment in S′ can overlap at most two segments of Γ .
It follows that at most 2(k−1) segments of Γ are overlapped with some segment
in S′. Since Γ is composed of 2k segments, there exists some γj not overlapping
any segment in S′. By the specification for Γ , we know d(γj) ≥ d(s′i). Thus,
(S′/{s′i}) ∪ {γj} is a solution with fewer segments in it not overlapping any
segment of Γ , a contradiction.

It remains to prove that each segment in S is a subsegment of some segment
of R. Let si be overlapped with γji for i = 1, 2, . . . , k. Since each si is of length
shorter than 2l, si must be a subsegment of γ′ji for i = 1, 2, . . . , k. Since each si
is a subsegment of γ′ji and each γ′ji is a subsegment of some segment of R, each
si is a subsegment of some segment of R. ��
Now we start to analyze the time complexity of our preprocessing.

Lemma 3. It takes O(n+ k log k) time to compute A′.

Proof. Liu and Chao [10] proposed an O(n+k log k)-time algorithm for comput-
ing Γ . Let Γ ′ = (γ′1, . . . , γ

′
k). It is clear that Γ ′ can be computed in O(kl) time

and R can be computed in O(n) time. Since
∑

1≤i≤|R| ri ≤
∑

1≤i≤k γ
′
i ≤ 6kl, A′

is of length O(kl) and can be computed in O(kl) time. The total complexity is
therefor O(n+ kl + k log k) = O(n+ k log k) time. ��
The next theorem summarizes the work of this section.

Theorem 1. Given a problem instance (A[1 . . . n], k, l), we can reduce it to a
new problem instance (A′, k, l) in O(n + k log k) time, where A′ is of length
O(kl).

Proof. Immediate from Lemmas 2 and 3. ��

On Locating Disjoint Segments with Maximum Sum of Densities 303

4 The Main Algorithm

In the following, we shall describe an O(nk log l)-time algorithm for finding a
solution for the problem instance (A[1 . . . n], k, l).

Definition 1. Let Si,j be a solution for the problem instance (A[1 . . . i], j, l) such
that the position of the leftmost element of the rightmost segment in Si,j is
maximized. Define Dj [i] to be the sum of densities of segments in Si,j, Sj [i]
to be the rightmost segment in Si,j, and P j [i] to be the position of the leftmost
element of Sj [i].

Let DC((p, q), P j [p], P j [q]) be a procedure for computing Dj [i], Sj [i], and P j [i]
for all i ∈ (p, q), where q − p ≤ l. A sketch of our main algorithm is given in
Figure 1. For simplicity, we assume n is a multiple of l.

Algorithm MAIN(A[1 . . . n], k, l)
1 for j ← 1 to k do
2 Compute Dj [i], Sj [i], and P j [i] for all i ∈ {jl, (j + 1)l, (j + 2)l, . . . , n}.
3 Run DC((tl, (t + 1)l), P j [tl], P j [(t + 1)l]) for all j ≤ t ≤ n

l
− 1.

4 end for
5 Compute the solution with the help of

⋃k
j=1{Sj [1 . . . n]} and

⋃k
j=1{P j [1 . . . n]}.

Fig. 1. A sketch of the main algorithm

We now start to explain the algorithm in detail. By the next lemma, a
solution can be found in O(k) time with the help of

⋃k
j=1{Sj[1 . . . n]} and

⋃k
j=1{P j[1 . . . n]}.

Lemma 4. After Sj[1 . . . n] and P j[1 . . . n] are known for j = 1, . . . , k, a solu-
tion for the problem instance (A[1 . . . n], k, l) can be found in O(k) time

Proof. Suppose now Sj and P j are known for j = 1, . . . , k. We describe a proce-
dure for finding a solution for the problem instance (A[1 . . . n], k, l) in O(k) time
as follows.

1. Initiate i with n and Y with {}.
2. For j = k, k − 1, . . . , 1 do

(a) Y ← Y ∪ Sj [i].
(b) i← P j [i]− 1.

3. Return Y .

Since each iteration takes constant time, the total time complexity is O(k).
The correctness is easy to verify by observing the loop invariant: there exists a
solution such that Y is its last |Y | segments in left-to-right order. ��

304 H.-F. Liu and K.-M. Chao

Thus, the challenge now lies on computing Dj , Sj, and P j for all j in [1, k] in
O(nk log l) time. The computation consists of k iterations. In the jth iteration,
Dj , Sj , and P j are computed in O(n log l) time. In the following, we shall de-
scribe how to compute Dj , Sj, and P j in O(n log l) time for each j by utilizing
Lemma 5 and the Chung-Lu algorithm [3]. For technical reason, we define Dj [i],
Sj [i], and P j [i] to be −∞, NIL, and 0 respectively if i < jl.

Lemma 5. P j [1] ≤ P j [2] ≤ . . . ≤ P j [n− 1] ≤ P j [n] for j = 1, . . . , k.

Proof. Suppose not. Let p < q and P j[p] > P j [q]. Let Sp,j = {s1, s2, . . . , sj} be
a solution for the problem instance (A[1, p], j, l), in left-to-right order, such that
the position of the leftmost element of sj is P j [p]. Let Sq,j = {s′1, s′2, . . . , s′j}
be a solution for the problem instance (A[1, q], j, l), in left-to-right order, such
that the position of the leftmost element of s′j is P j[q]. Let sj = A[l1, r1] and
s′j = A[l2, r1]. r1 is less than r2; otherwise

∑
1≤i≤j d(s′i) ≤

∑
1≤i≤j d(si) and

l2 < l1, a contradiction. Thus, we can let L = A[l2, l1− 1] and R = A[r1 + 1, r2].
It is clear that

∑
1≤i≤j−1 d(si) ≥

∑
1≤i≤j−1 d(s′j), so d(sj) < d(s′j); otherwise∑

1≤i≤j d(si) ≥
∑

1≤i≤j d(sj) and l2 < l1, a contradiction. Since d(sj) < d(s′j),
we have d(R) > d(L ∪ sj). Suppose for the contradiction that d(L) < d(sj). By
d(R) > d(L ∪ sj), we have d(R) > d(L ∪ sj) > d(L). It follows that d(sj ∪R) >
d(L), so d(sj∪R) > d(L∪sj∪R) = d(s′j), a contradiction. Thus, we have d(L) ≥
d(sj). By d(R) > d(L∪ sj) and d(L) ≥ d(sj), we have d(R) > d(L∪ sj) ≥ d(sj).
By d(R) > d(L ∪ sj) ≥ d(sj) and |L ∪ sj | > |L|, we have

d(s′j)− d(L ∪ sj) < d(sj ∪R)− d(sj). (1)

Since Sp,j is a solution for the problem instance (A[1, p], j, l) and {s′1,. . ., s′j−1, L∪
sj} is a set of j disjoint segments of A[1, p] of length between l and 2l − 1, we
have ∑

1≤i≤j−1

d(s′i) + d(L ∪ sj) ≤
∑

1≤i≤j
d(si). (2)

By (1) and (2), we have
∑

1≤i≤j−1 d(s′i) + d(s′j) <
∑

1≤i≤j−1 d(si) + d(sj ∪ R).
It follows that Sq,j is not a solution for the problem instance (A[1, q], j, l), a
contradiction. ��
The Chung-Lu Algorithm [3]. Given a sequence A of n number pairs (vi, wi)
with wi > 0 and two positive numbers l ≤ u, define the density and length
of a segment A[i, j] to be (vi + vi+1 + . . . + vj)/(wi + wi+1 + . . . + wj) and
(wi+wi+1+. . .+wj) respectively. The Chung-Lu algorithm can find a maximum-
density segment of A with length bwtween l and u in an online manner in O(n)
time.

First we describe how to compute Dj [i], Sj [i], and P j [i] for all i in {jl, (j +
1)l, (j + 2)l, . . . , n} in O(n) time.

Lemma 6. Computing Dj [i], Sj [i], and P j [i] for all i in {jl, (j + 1)l, (j +
2)l, . . . , n} can be done in O(n) time.

On Locating Disjoint Segments with Maximum Sum of Densities 305

Proof. The procedure consists of n
l iterations, and in the ith iteration Dj [il],

Sj [il], and P j [il] are computed in O(l) time. The first iteration can be completed
in O(1) time by setting Dj [jl], Sj[jl], and P j [jl] to Dj−1[(j−1)l]+d(A[(j−1)l+
1, jl]), A[(j−1)l+1, jl], and (j−1)l+1 respectively. Suppose now we are in the
ith iteration, where i > 1. We first find the the maximum-density segments st of
A[t, il] with length between l and 2l−1 for t = il, il−1, . . . , (i−1)l−2l+1 in O(l)
time by taking A[t] as a pair (v = A[t], w = 1) and using the Chung-Lu algorithm
to scan A from position il to position (i−1)l−2l+1. Let t′ be the largest t such
that Dj−1[t−1]+d(st) is maximized. Then there are two cases to consider. Case
1: P j [i] ≤ (i− 1)l− 2l. In this case, it is clear that Dj [jl], Sj [jl], and P j [jl] are
equal to Dj [(i − 1)l], Sj[(i − 1)l], and P j [(i− 1)l] respectively. Case 2: P j[i] ≥
(i− 1)l− 2l+ 1. In this case, Dj [il], Sj [il], and P j[il] are set to Dj−1[t′− 1]+st′,
st′ , and t′ respectively. We distinguish between Case 1 and Case 2 by comparing
Dj [(i− 1)l] with Dj−1[t′ − 1] + st′ . If Dj [(i− 1)l] > Dj−1[t′ − 1] + st′ , then it is
Case 1; otherwise it is Case 2. ��
Now we begin to describe how to compute Dj [i], Sj[i], and P j [i] for all i ∈⋃
j≤t≤ n

l −1(tl, (t+ 1)l) in O(n log l) time.

Lemma 7. If the procedure DC((p, q), P j [p], P j [q]) can be implemented to run
in O((m′ + n′) logn′) time, where n′ = q − p + 1 and m′ = P j [q] − P j [p] + 1,
then Dj [i], Sj [i], and P j [i] for all i ∈ ⋃

j≤t≤ n
l −1(tl, (t+ 1)l) can be computed in

O(n log l) time.

Proof. Let mt = P j [(t+1)l]−P j[tl]+1 for t = j, (j+1), . . . , nl −1. By Lemma 5,∑
j≤t≤n

l −1mt = O(n). Since (t + 1)l − tl = l, Dj [i], Sj [i], and P j [i] for all
i ∈ (tl, (t+ 1)l) can be computed in O((mt + l) log l) time by calling DC((tl, (t+
1)l), P j[tl], P j[(t + 1)l]). The total complexity for computing Dj [i], Sj [i], and
P j [i] for all i ∈ ⋃

j≤t≤ n
l −1(tl, (t+ 1)l) is therefore O(

∑
j≤t≤ n

l −1(mt + l) log l) =
O(n log l). ��
Lemma 8. The procedure DC((p, q), P j [p], P j[q]) can be implemented to run in
O((m′ + n′) logn′) time, where n′ = q − p+ 1 and m′ = P j [q]− P j [p] + 1.

Proof. Let c = �(p+q)/2�. We first compute Dj [c], Sj [c], and P j [c] in O(n′+m′)
time and then recursively call DC((p, c), P j [p], P j[c]) and DC((c, q), P j [c], P j [q]).
Let T (n′,m′) be the run time of DC((p, q), P j [p], P j [q]). Since P j [c] is between
P j [p] and P j [q] by Lemma 5, we have T (n′,m′) ≤ T (�n′

2 �−1, x)+T (n′
2 �−1,m′−

x+1) for some integer x in [1,m′]. It follows that T (n′,m′) = O((m′+n′) logn′).
It remains to explain how to compute Dj [c], Sj [c], and P j [c] in O(n′+m′) time.
Note that since q−p ≤ l, we have P j [q] ≤ p+1. First we compute the maximum-
density segments st of A[t, c] of length between l and 2l − 1 with the position
of the rightmost element not in (P j [q], p+ 1) for t = P j [p], P j[p] + 1, . . . , P j [q].
It can be done in O(n′ +m′) time by using the Chung-Lu algorithm to process
A[P j [p], c] from right to left by taking A[i] as a pair (v = A[i], w = 1) for
i not in [pj[q] + 1, p + 1] and the whole segment A[pj [q] + 1, p + 1] as a pair
(v =

∑
P j [q]+1≤i≤p+1A[i], w = p − P j [q] + 1). Let t′ be the largest t such that

306 H.-F. Liu and K.-M. Chao

Dj−1[t−1]+d(st) is maximized. Then there are two cases to consider. Case 1: the
position of the rightmost element of Sj[c] can be ≤ p. In this case, Dj [c], Sj [c],
and P j [c] are set to Dj [p], Sj[p], and P j [p] respectively. Case 2: the position
of the rightmost element of Sj [c] has to be > p. In this case, Dj [c], Sj[c], and
P j [c] are set to Dj−1[t′ − 1] + d(st′), st′ , and t′ respectively. We can distinguish
between Case 1 and Case 2 as follows: If Dj [p] > Dj−1[t′ − 1] + d(st′) or both
Dj [p] = Dj−1[t′ − 1] + d(st′) and t′ = P j [p], then it is Case 1; otherwise it is
Case 2. ��
The next theorem summarizes the work of this section.

Theorem 2. Given a problem instance (A[1 . . . n], k, l), we can find a solution
in O(nk log l) time.

Proof. By Lemmas 6, 7, and 8, computing Dj , Sj, and P j can be done in
O(n log l) time in the jth iteration for j = 1, . . . , k. Thus, computing Dj , Sj ,
and P j for all j in [1, k] can be done in O(nk log l) time. After Sj and P j are
found for j = 1, . . . , k, a solution for the problem instance (A[1 . . . n], n, k) can
be found in O(k) time by Lemma 4. ��
By Theorems 1 and 2, we get our main result.

Theorem 3. Given a problem instance (A[1 . . . n], k, l), we can find a solution
in O(n+ k2l log l) time.

5 Concluding Remarks

We give an O(n+ k log k)-time preprocessing algorithm for reducing the length
of the input sequence to O(kl) and a main algorithm which finds a solution in
O(nk log l) time without preprocessing. By combining the preprocessing algo-
rithm with the main algorithm, we get an O(n+ k2l log l)-time algorithm.

Acknowledgments

We thank Prof. Kunihiko Sadakane for kindly informing us of the elegant results
by Fukuda et al. We thank Hung-Lung Wang for verifying our proof. Hsiao-Fei
Liu and Kun-Mao Chao were supported in part by NSC grants 94-2213-E-002-
018 and 95-2221-E-002-126-MY3 from the National Science Council, Taiwan.

References

1. Anders Bergkvist and Peter Damaschke. Fast Algorithms for Finding Disjoint Sub-
sequences with Extremal Densities. In Proceedings of the 16th Annual International
Symposium on Algorithms and Computation, 714-723, 2005.

2. Yen Hung Chen, Hsueh-I Lu, Chuan Yi Tang. Disjoint Segments with Maximum
Density. In Proceedings of the 5th Annual International Conference on Computa-
tional Science, 845-850, 2005.

On Locating Disjoint Segments with Maximum Sum of Densities 307

3. Kai-Min Chung and Hsueh-I Lu. An Optimal Algorithm for the Maximum-Density
Segment Problem. SIAM Journal on Computing, 34:373-387, 2004.

4. Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita and Takeshi Tokuyama.
Mining Optimized Association Rules for Numeric Attributes. Journal of Computer
and System Sciences, 58:1-12, 1999.

5. Michael Goldwasser, Ming-Yang Kao and Hsueh-I Lu. Linear-Time Algorithms for
Computing Maximum-Density Sequence Segments with Bioinformatics Applica-
tions. Journal of Computer and System Sciences, 70:128-144, 2005.

6. Xiaoqiu Huang. An Algorithm for Identifying Regions of a DNA Sequence that
Satisfy a Content Requirement. Computer Applications in the Biosciences, 10:219-
225, 1994.

7. Sung Kwon Kim. Linear-Time Algorithm for Finding a Maximum-Density Segment
of a Sequence. Information Processing Letters, 86:339-342, 2003.

8. Yaw-Ling Lin, Xiaoqiu Huang, Tao Jiang and Kun-Mao Chao. MAVG: Locating
Non-Overlapping Maximum Average Segments in a Given Sequence. Bioinformat-
ics, 19:151-152, 2003.

9. Yaw-Ling Lin, Tao Jiang and Kun-Mao Chao. Efficient Algorithms for Locating
the Length-Constrained Heaviest Segments with Applications to Biomolecular Se-
quence Analysis. Journal of Computer and System Sciences, 65:570-586, 2002.

10. Hsiao-Fei Liu and Kun-Mao Chao. An Optimal Algorithm for Iteratively Locat-
ing Non-Overlapping Maximum Density Segments. Information Processing Letters,
submitted.

Two-Tier Relaxed Heaps�

Amr Elmasry1, Claus Jensen2, and Jyrki Katajainen2

1 Department of Computer Engineering and Systems
Alexandria University, Alexandria, Egypt

2 Department of Computing, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen East, Denmark

Abstract. We introduce an adaptation of run-relaxed heaps which pro-
vides efficient heap operations with respect to the number of element
comparisons performed. Our data structure guarantees the worst-case
cost of O(1) for find -min, insert , and decrease ; and the worst-case cost
of O(lg n) with at most lg n + 3 lg lg n + O(1) element comparisons for
delete , improving the bound of 3 lg n + O(1) on the number of element
comparisons known for run-relaxed heaps. Here, n denotes the number
of elements stored prior to the operation in question, and lg n equals
max {1, log2 n}.

1 Introduction

In this paper we study (min-)heaps which support the following set of operations:

find-min(H). Return the location of a minimum element held in heap H .
insert(H , e). Insert element e into heap H and return the location of e in H .
delete(H , p). Remove the element at location p from heap H .
decrease(H , p, e). Replace the element at location p in heap H with element e,

which must be no greater than the element earlier located at p.

Observe that delete-min(H), which removes the current minimum of heap H ,
can be accomplished by invoking find-min and thereafter delete with the location
returned by find-min. In the heaps studied, the location abstraction is realized
by storing elements in nodes and passing pointers to these nodes.

The research reported in this paper is a continuation of our earlier work aim-
ing to reduce the number of element comparisons performed in heap operations.
In [5] (conference version) and [7] (journal version), we described how the com-
parison complexity of heap operations can be improved using a multi-compon-
ent data structure which is maintained by moving nodes from one component
to another. In a technical report [6], we were able to add decrease having the
worst-case cost of O(1) to the operation repertoire. Unfortunately, the resulting
data structure is complicated. In this paper we make the data structure simpler
� Partially supported by the Danish Natural Science Research Council under con-

tracts 21-02-0501 (project Practical data structures and algorithms) and 272-05-0272
(project Generic programming—algorithms and tools).

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 308–317, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Two-Tier Relaxed Heaps 309

and more elegant by utilizing the connection between number systems and data
structures (see, for example, [14]).

For the data structures considered our basic requirement is that the worst-case
cost of find-min, insert , and decrease is O(1). Given this constraint, our goal is to
reduce the number of element comparisons involved in delete. Binary heaps [17]
are to be excluded based on the fact that lg lg n±O(1) element comparisons are
necessary and sufficient for inserting an element into a heap of size n [11]. Also,
pairing heaps [9] are excluded because they cannot guarantee decrease at a cost
of O(1) [8]. There exist several heaps that achieve a cost of O(1) for find -min,
insert , and decrease; and a cost of O(lg n) for delete. Fibonacci heaps [10] and
thin heaps [13] achieve these bounds in the amortized sense. Run-relaxed heaps
[4], fat heaps [12, 13], and the meldable heaps described in [1] achieve these
bounds in the worst case.

For all of the aforementioned heaps guaranteeing a cost of O(1) for insert ,
2 lg n −O(1) is a lower bound on the number of element comparisons performed
by delete, and this is true even in the amortized sense (for binomial heaps [16],
on which many of the above data structures are based, this is proved in [6, 7]).
Run-relaxed heaps have a worst-case upper bound of 3 lg n+O(1) on the number
of element comparisons performed by delete (see Section 2). For fat heaps the
corresponding bound is 4 log3 n+O(1) ≈ 2.53 lgn+O(1), and for meldable heaps
the bound is higher.

In this paper we present a new adaptation of run-relaxed heaps. In Section 2,
we give a brief review of the basic operations defined on run-relaxed heaps. In
Section 3, we discuss the connection between number systems and data struc-
tures; among other things, we show that it is advantageous to use a zeroless
representation of a run-relaxed heap which guarantees that any non-empty heap
always contains at least one binomial tree of size one. In Section 4, we describe
our data structure, called a two-tier relaxed heap, and prove that it guarantees
the worst-case cost of O(1) for find-min, insert , and decrease, and the worst-case
cost of O(lg n) with at most lg n+3 lg lg n+O(1) element comparisons for delete.

2 Run-Relaxed Heaps

Since we use run-relaxed heaps as the basic building blocks of the two-tier relaxed
heaps, we recall the details of run-relaxed heaps in this section. However, we still
assume that the reader is familiar with the original paper by Driscoll et al. [4],
where the data structure was introduced.

A binomial tree [16] is a rooted, ordered tree defined recursively as follows:
A binomial tree of rank 0 is a single node; for r > 0, a binomial tree of rank r
consists of the root and its r binomial subtrees of ranks 0, 1, . . . , r−1 connected
to the root in that order. We denote the root of the subtree of rank 0 the smallest
child and the root of the subtree of rank r − 1 the largest child. The size of a
binomial tree is always a power of two, and the rank of a tree of size 2r is r.

Each node of a binomial tree stores an element drawn from a totally ordered
set. Binomial trees are maintained heap-ordered meaning that the element stored

310 A. Elmasry, C. Jensen, and J. Katajainen

at a node is no greater than the elements stored at the children of that node.
Two heap-ordered trees of the same rank can be linked together by making the
root that stores the non-smaller element the largest child of the other root. We
refer to this as a join. A split is the inverse of a join, where the subtree rooted
at the largest child of the root is unlinked from the given binomial tree. A join
involves a single comparison, and both a join and a split have a cost of O(1).

A relaxed binomial tree [4] is an almost heap-ordered binomial tree where
some nodes are denoted active, indicating that the element stored at that node
may be smaller than the element stored at the parent of that node. Nodes are
made active by decrease, even though no heap-order violation is introduced, and
remain active until the potential heap-order violation is explicitly removed. From
the definition, it follows that a root cannot be active. A singleton is an active
node whose immediate siblings are not active. A run is a maximal sequence of
two or more active nodes that are consecutive siblings.

Let τ denote the number of trees in any collection of relaxed binomial trees,
and let λ denote the number of active nodes in the entire collection of trees. A
run-relaxed heap is a collection of relaxed binomial trees where τ ≤ �lg n� + 2
and λ ≤ �lg n�, n denoting the number of elements stored.

To keep track of the active nodes, a run-singleton structure is maintained as
described in [4]. All singletons are kept in a singleton table, which is a resizable
array accessed by rank. In particular, this table must be implemented in such
a way that growing and shrinking at the tail is possible at the worst-case cost
of O(1), which is achievable, for example, by doubling, halving, and incremental
copying. Each entry of the singleton table corresponds to a rank; pointers to
singletons having this rank are kept in a list. For each entry of the singleton
table that has more than one singleton of the same rank a counterpart is kept
in a pair list. The last active node of each run is kept in a run list. All lists are
doubly linked, and each active node should have a pointer to its occurrence in
a list (if any). The bookkeeping details are quite straightforward so we will not
repeat them here, but refer to [4]. The fundamental operations supported are an
addition of a new active node, a removal of a given active node, and a removal
of at least one arbitrary active node if λ is larger than �lg n�. The cost of each
of these operations is O(1) in the worst case.

As to the transformations needed for reducing the number of active nodes,
we again refer to the original description given in [4]. The rationale behind the
transformations is that, when there are more than �lg n� active nodes, there is
at least one pair of singletons that root a subtree of the same rank, or there is
a run of two or more neighbouring active nodes. In that case, it is possible to
apply the transformations—a constant number of singleton transformations or
run transformations—to reduce the number of active nodes by at least one. The
cost of performing any of the transformations is O(1) in the worst case. Hereafter
one application of the transformations together with all necessary changes to the
run-singleton structure is referred to as a λ-reduction.

To keep track of the trees in a run-relaxed heap, the roots are doubly linked
together in a root list. Each tree is represented as a normal binomial tree [3],

Two-Tier Relaxed Heaps 311

but to support the transformations used for reducing the number of active nodes
each node stores an additional pointer. That is, a node contains sibling pointers,
a child pointer, a parent pointer, a rank, and a pointer to its occurrence in the
run-singleton structure. The occurrence pointer of every non-active node has the
value null; for a node that is active and in a run, but not the last in the run, the
pointer is set to point to a fixed sentinel. To support our two-tier relaxed heap,
each node should store yet another pointer to its counterpart held at the upper
store (see Section 4), and vice versa.

Let us now consider how the heap operations are implemented. A reader
familiar with the original paper by Driscoll et al. [4] should be aware that we
have made modifications to the implementation of the heap operations to adapt
them for our purposes.

A minimum element is stored at one of the roots or at one of the active nodes.
To facilitate a fast find-min, a pointer to the node storing a minimum element
is maintained. When such a pointer is available, find-min can be accomplished
at the worst-case cost of O(1).

An insertion is performed in the same way as in a worst-case efficient binomial
heap [6, 7]. To obtain the worst-case cost of O(1) for insert , all the necessary joins
cannot be performed at once. Instead, one join is done in connection with each
insertion, and the execution of any remaining joins is delayed for forthcoming
insert operations. A way of facilitating this is to maintain a logarithmic number
of pointers to unfinished joins on a stack. In one join step, the pointer at the
top of the stack is popped, the two roots are removed from the root list, the
corresponding trees are joined, and the root of the resulting tree is put in the
place of the two. If there exists another tree of the same rank as the resulting
tree, a pointer indicating this pair is pushed onto the stack. In insert a join step
is executed, if necessary, and a new node is added to the root list. If the given
element is smaller than the current minimum, the pointer indicating the location
of a minimum element is updated. If there exists another tree of rank 0, a pointer
to this pair of trees is pushed onto the stack. When one join is done in connection
with every insert , the ongoing joins are disjoint and there is always space for
new elements (for a formal proof, see [2, p. 53 ff.]). To summarize, insert has
the worst-case cost of O(1) and requires at most two element comparisons. An
alternative way of achieving these bounds is described in [4].

There exists at most two trees of any given rank in a relaxed binomial heap. In
fact, a tighter analysis shows that the number of trees is bounded by �lg n� + 2.
Namely, it can be shown that insert (as well as delete) maintains the invariant
that between any two ranks holding two trees there is a rank holding no tree
(see [2, p. 53ff.] or [12]).

In delete we rely on the same borrowing technique as in [4]: the root of a tree
of the smallest rank is borrowed to fill in the hole created by the node being
removed. To free a node that can be borrowed, a tree of the smallest rank is
repeatedly split, if necessary, until the split results in a tree of rank 0. In one
split step, if x denotes the root of a tree of the smallest rank and y its largest

312 A. Elmasry, C. Jensen, and J. Katajainen

child, the tree rooted at x is split, and if y is active, it is made non-active and
its occurrence is removed from the run-singleton structure.

Deletion has two cases depending on whether one of the roots or one of the
internal nodes is to be removed. Let z denote the node being deleted, and assume
that z is a root. If the tree rooted at z has rank 0, then z is removed and no other
structural changes are done. Otherwise, the tree rooted at z is repeatedly split
and, when the tree rooted at z has rank 0, z is removed. In each split step all
active children of z are retained active, but they are temporarily removed from
the run-singleton structure (since the structure of runs may change). Thereafter,
the freed tree of rank 0 (the node borrowed) and the subtrees rooted at the
children of z are repeatedly joined by processing the trees in increasing order
of rank. Finally, the active nodes temporarily removed are added back to the
run-singleton structure. The resulting tree replaces the tree rooted at z in the
root list. It would be possible to handle the tree used for borrowing and the tree
rooted at z symmetrically, with respect to the treatment of the active nodes, but
when delete is embedded into our two-tier relaxed heap it would be too expensive
to remove all active children of z in a single delete. To complete the operation, all
roots and active nodes are scanned to update the pointer indicating the location
of a minimum element. Singletons are found by scanning through all lists in the
singleton table. Runs are found by accessing their last node via the run list and
following the sibling pointers until a non-active node is reached.

The computational cost of deleting a root is dominated by the repeated splits,
the repeated joins, and the scan over all minimum candidates. In each of these
steps a logarithmic number of nodes is visited, so their total cost is O(lg n). Splits
as well as updates to the run-singleton structure do not involve any element
comparisons. In total, joins may involve at most �lg n� element comparisons.
Even though a tree of the smallest rank is split, after the joins the number of
trees is at most �lg n�+2. If the number of active nodes is larger than �lg(n−1)�
(the size of the heap is now one smaller), a single λ-reduction is performed which
involves O(1) element comparisons. To find the minimum of 2�lg n�+2 elements,
at most 2�lg n�+1 element comparisons are to be done. To summarize, this form
of delete performs at most 3 lg n + O(1) element comparisons.

Assume now that the node z being deleted is an internal node, and let x be
the node borrowed. Also in this case the tree rooted at z is repeatedly split,
and after removing z the tree of rank 0 rooted at x and the subtrees of the
children of z are repeatedly joined. The resulting tree is put in the place of the
subtree rooted earlier at z. If z was active and contained the current minimum,
the pointer to the location of a minimum element is updated. If x is the root
of the resulting subtree, node x is made active. Finally, the number of active
nodes is reduced, if necessary, by performing a λ-reduction once or twice (once
because one new node may become active and possibly once more because of the
decrement of n, since the difference between �lg n� and �lg(n − 1)� can be one).

Similar to the case of deleting a root, the deletion of an internal node has
the worst-case cost of O(lg n). If z did not contain the current minimum, only
at most lg n + O(1) element comparisons are done; at most �lg n� due to joins

Two-Tier Relaxed Heaps 313

and O(1) due to λ-reductions. However, if z contained the current minimum,
at most 2�lg n� + 1 additional element comparisons may be necessary. That is,
the total number of element comparisons performed is bounded by 3 lg n+O(1).
To sum up, each delete has the worst-case cost of O(lg n) and requires at most
3 lg n + O(1) element comparisons.

In decrease, after making the element replacement, the corresponding node
is made active, an occurrence is inserted into the run-singleton structure, and
a single λ-reduction is performed if the number of active nodes is larger than
�lg n�. Moreover, if the given element is smaller than the current minimum, the
pointer indicating the location of a minimum element is corrected to point to
the active node. All these actions have the worst-case cost of O(1).

3 Number Systems and Data Structures

The way our two-tier framework works (see Section 4) suggests that the run-
relaxed heaps are to be modified before they can be used. One of the main
operations required for our framework is the ability to borrow a node from the
structure at a cost of O(1), such that this borrowing would only produce O(1)
new roots in the root list. Accordingly, we introduce an operation borrow which
fulfils this requirement. We rely on the observation that, in a run-relaxed heap,
there is a close connection between the sizes of the relaxed binomial trees of the
heap and the number representation of the current size of the heap denoted by
n. Three different number representations are relevant:

Binary representation:

n =
�lg n�∑

i=0

di2i, where di ∈ {0, 1} for all i ∈ {0, . . . , �lg n�}.

Redundant representation:

n =
�lg n�∑

i=0

di2i, where di ∈ {0, 1, 2} for all i ∈ {0, . . . , �lg n�}.

Zeroless representation:

n =
k∑

i=0

di2i, where k ∈ {−1, 0, . . . , �lg n�} and di ∈ {1, 2, 3, 4} for all i ∈

{0, . . . , k}.

For each such representation, the heap contains di relaxed binomial trees of
size 2i, appearing in the root list in increasing order of rank. Now insert can
be realized elegantly by imitating increments in the underlying number system.
The worst-case efficiency of insert is directly related to how far a carry has
to be propagated. If the binary representation is used as in [3], insert has the
worst-case cost of Θ(lg n). Both the redundant and zeroless representations can
reduce the worst-case cost of insert to O(1); the zeroless representation can also
support borrow at the worst-case cost of O(1).

In Section 2, the redundant representation was used. For the zeroless repre-
sentation, two crucial changes are made. First, the relaxed binomial trees of the

314 A. Elmasry, C. Jensen, and J. Katajainen

same rank are maintained in sorted order according to the elements stored at
the roots. The significant consequence of this ordering is that delete has to only
consider one root per rank when finding a minimum element stored at the roots.
Second, every carry (digit 4 which corresponds to four consecutive relaxed bino-
mial trees of the same rank) and every borrow (digit 1) are kept on a stack in
rank order. When a carry/borrow stack is available, increments and decrements
can be performed as follows [2, p. 56]:

1) Fix the topmost carry or borrow if the stack is not empty.
2) Add or subtract one as desired.
3) If the least significant digit becomes 4 or 1, push a pointer to this carry or

borrow onto the stack.

Let x be a digit in the used number system. To fix a carry, x4 is converted
to (x + 1)2, after which the top of the stack is popped. Analogously, to fix a
borrow, x1 is converted to (x − 1)3 and the top of the stack is popped. If a fix
creates a new carry or borrow, an appropriate pointer is pushed onto the stack.
In terms of relaxed binomial trees, fixing a carry means that a join is made,
which produces a relaxed binomial tree whose rank is one higher; and fixing a
borrow means that a split is made, which produces two relaxed binomial trees
whose rank is one lower.

To summarize, insert is carried out by doing at most one join or one split
depending on the contents of the carry/borrow stack, and injecting a new node
as a relaxed binomial tree of rank 0 into the root list. Correspondingly, after
a join or split, if any, borrow ejects one relaxed binomial tree from the root
list. Due to the zeroless representation, we can be sure that the rank of every
ejected relaxed binomial tree is 0, i.e. it is a single node. However, if the ejected
node contains the current minimum and the heap is not empty, another node is
borrowed, and the first is inserted back into the data structure. The correctness
of insert and borrow is proved in [2, p. 56 ff.] (see also [12]) by showing that both
increments and decrements maintain the representation regular, i.e. between any
two digits equal to 4 there is a digit other than 3, and between any two digits
equal to 1 there is a digit other than 2. (In [2] digits {−1, 0, 1, 2} are used, but
this is equivalent to our use of {1, 2, 3, 4}.) Clearly, insert and borrow can be
accomplished at the worst-case cost of O(1).

4 Two-Tier Relaxed Heaps

The two-tier relaxed heap is composed of two components, the lower store and
the upper store. The lower store stores the actual elements of the heap. The rea-
son for introducing the upper store is to avoid the scan over all minimum candi-
dates when updating the pointer to the location of a minimum element; pointers
to minimum candidates are kept in a heap instead. Actually, both components
are realized as run-relaxed heaps modified to use the zeroless representation as
discussed in Section 3.

Two-Tier Relaxed Heaps 315

Upper-store operations. The upper store is a modified run-relaxed heap stor-
ing pointers to all roots of the trees held in the lower store, pointers to all active
nodes held in the lower store, and pointers to some earlier roots and active
nodes. In addition to find-min, insert , delete, and decrease, which are realized
as described earlier (however delete could also use borrow), it should be possible
to mark nodes to be deleted and to unmark nodes if they reappear at the up-
per store before being deleted. Lazy deletions are necessary at the upper store
when, at the lower store, a join is done or an active node is made non-active
by a λ-reduction. In both situations, a normal upper-store deletion would be
too expensive. The algorithms maintain the following invariant: for each marked
node whose pointer refers to a node y in the lower store, in the same tree there is
another node x such that the element stored at x is no greater than the element
stored at y.

To provide worst-case efficient lazy deletions, we adopt the global-rebuilding
technique from [15]. When the number of unmarked nodes becomes equal to
m0/2, where m0 is the current size of the upper store, we start building a new
upper store. The work is distributed over the forthcoming m0/4 upper-store
operations. In spite of the reorganization, both the old structure and the new
structure are kept operational and used in parallel. All new nodes are inserted
into the new structure, and all old nodes being deleted are removed from their
respective structures. Since the old structure does not handle any insertions, it
can be emptied using borrow . In connection with each of the next at most m0/4
upper-store operations, four nodes are borrowed from the old structure; if a node
is unmarked, it is inserted into the new structure; otherwise, it is released and in
its counterpart in the lower store the pointer to the upper store is given the value
null. When the old structure becomes empty, it is dismissed and thereafter the
new structure is used alone. During the m0/4 operations at most m0/4 nodes can
be deleted or marked to be deleted, and since there were m0/2 unmarked nodes
in the beginning, at least half of the nodes are unmarked in the new structure.
Therefore, at any point in time, we are constructing at most one new structure.
We emphasize that each node can only exist in one structure and whole nodes
are moved from one structure to the other, so that pointers from the outside
remain valid.

Given that the cost of each borrow and insert is O(1), the reorganization only
adds an additional cost of O(1) to all upper-store operations. A find-min may
need to consult both the old and the new upper stores, but its worst-case cost
is still O(1). The cost of marking and unmarking is clearly O(1). If m denotes
the total number of unmarked nodes currently stored, at any point during the
rebuilding process, the total number of nodes stored is Θ(m), and all the time
during this process m0 = Θ(m). Therefore, since in both structures delete is
handled normally, except that it may take part in reorganizations, it has the
worst-case cost of O(lg m) and requires 3 lg m + O(1) element comparisons.

Let n be the number of elements in the lower store. The number of trees in
the lower store is at most 4(�lg n�+1), and the number of active nodes is at most
�lg n�. At all times at most a constant fraction of the nodes stored at the upper

316 A. Elmasry, C. Jensen, and J. Katajainen

store can be marked to be deleted. Hence, the number of pointers is O(lg n).
That is, at the upper store the worst-case cost of delete is O(lg lg n), including
at most 3 lg lg n + O(1) element comparisons.

Lower-store operations. The lower store is a modified run-relaxed heap stor-
ing all the elements. Minimum finding relies on the upper store; an overall min-
imum element is either in one of the roots or in one of the active nodes held in
the lower store. The counterparts of the minimum candidates are stored at the
upper-store, so communication between the lower store and the upper store is
necessary each time a root or an active node is added or removed, but not when
an active node is made into a root.

In addition to the modifications described in Section 3, insert requires three
further modifications in places where communication between the lower store
and upper store is necessary. First, in each join the counterpart of the root of
the loser tree must be lazily deleted from the upper store. Second, in each split a
counterpart of the largest child of the given root must be inserted into the upper
store, if it is not there already. Third, after inserting a new node its counterpart
must be added to the upper store. After these modifications, the worst-case cost
of insert is still O(1).

Deletion is done as described in Section 2, but now borrowing is done by
invoking borrow instead of repeated splitting. As a consequence of borrow , a lazy
deletion or an insertion may be necessary at the upper store. As a consequence
of delete, a removal of a root or an active node will invoke delete at the upper
store, and an insertion of a new root or an active node will invoke insert at the
upper store. A λ-reduction may invoke one or two lazy deletions (a λ-reduction
can make up to two active nodes non-active) and at most one insertion at the
upper store. In total, lazy deletions and insertions have the worst-case cost of
O(1). Also borrow has the worst-case cost of O(1). At most one real upper-store
deletion will be necessary, which has the worst-case cost of O(lg lg n) and includes
3 lg lg n + O(1) element comparisons. Therefore, delete has the worst-case cost
of O(lg n) and performs at most lg n + 3 lg lg n + O(1) element comparisons.

In decrease, three modifications are necessary. First, each time a new active node
is created, insert has to be invoked at the upper store. Second, each time an ac-
tive node is removed by a λ-reduction, the counterpart must be lazily deleted from
the upper store. Third, when the node whose value is to be decreased is a root or
an active node, decrease has to be invoked at the upper store as well. If due to a
λ-reduction an active node is made into a root, no change at the upper store is
required. After these modifications, the worst-case cost of decrease is still O(1).

The following theorem summarizes the main result of the paper.

Theorem 1. Let n be the number of elements of the heap prior to each opera-
tion. A two-tier relaxed heap guarantees the worst-case cost of O(1) for find-min,
insert, and decrease; and the worst-case cost of O(lg n) including at most lg n+
3 lg lg n + O(1) element comparisons for delete.

We conclude the paper with two remarks. 1) It is relatively easy to extend the
data structure to support meld at the worst-case cost of O(min {lg m, lg n}),

Two-Tier Relaxed Heaps 317

where m and n are the number of elements of the two melded heaps. 2) It is
an open problem whether it is possible or not to achieve a bound of lg n + O(1)
element comparisons for delete, when fast decrease is to be supported. Note that
the worst-case bound of lg n + O(1) is achievable [6, 7], when decrease is not
supported.

References

[1] G.S. Brodal. Worst-case efficient priority queues. Proceedings of the 7th ACM-
SIAM Symposium on Discrete Algorithms, ACM/SIAM (1996), 52–58.

[2] M.J. Clancy and D.E. Knuth. A programming and problem-solving seminar. Tech-
nical Report STAN-CS-77-606, Department of Computer Science, Stanford Uni-
versity (1977).

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo-
rithms, 2nd Edition. The MIT Press (2001).

[4] J.R. Driscoll, H.N. Gabow, R. Shrairman, and R.E. Tarjan. Relaxed heaps: An
alternative to Fibonacci heaps with applications to parallel computation. Com-
munications of the ACM 31 (1988), 1343–1354.

[5] A. Elmasry. Layered heaps. Proceedings of the 9th Scandinavian Workshop on
Algorithm Theory, Lecture Notes in Computer Science 3111, Springer-Verlag
(2004), 212–222.

[6] A. Elmasry, C. Jensen, and J. Katajainen. A framework for speeding up priority-
queue operations. CPH STL Report 2004-3. Department of Computing, University
of Copenhagen (2004). Available at http://cphstl.dk.

[7] A. Elmasry, C. Jensen, and J. Katajainen. Multipartite priority queues. Submitted
for publication (2004).

[8] M.L. Fredman. On the efficiency of pairing heaps and related data structures.
Journal of the ACM 46 (1999), 473–501.

[9] M.L. Fredman, R. Sedgewick, D.D. Sleator, and R.E. Tarjan. The pairing heap:
A new form of self-adjusting heap. Algorithmica 1 (1986), 111–129.

[10] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved net-
work optimization algorithms. Journal of the ACM 34 (1987), 596–615.

[11] G.H. Gonnet and J.I. Munro. Heaps on heaps. SIAM Journal on Computing 15
(1986), 964–971.

[12] H. Kaplan, N. Shafrir, and R.E. Tarjan. Meldable heaps and Boolean union-find.
Proceedings of the 34th Annual ACM Symposium on Theory of Computing, ACM
(2002), 573–582.

[13] H. Kaplan and R.E. Tarjan. New heap data structures. Technical Report TR-597-
99, Department of Computer Science, Princeton University (1999).

[14] C. Okasaki. Purely Functional Data Structures. Cambridge University Press
(1998).

[15] M.H. Overmars and J. van Leeuwen. Worst-case optimal insertion and deletion
methods for decomposable searching problems. Information Processing Letters 12
(1981), 168–173.

[16] J. Vuillemin. A data structure for manipulating priority queues. Communications
of the ACM 21 (1978), 309–315.

[17] J.W.J. Williams. Algorithm 232: Heapsort. Communications of the ACM 7
(1964), 347–348.

http://cphstl.dk

The Interval Liar Game

Benjamin Doerr1, Johannes Lengler2, and David Steurer3

1 Max–Planck–Institut für Informatik, Saarbrücken, Germany
2 Mathematics Department, Saarland University, Saarbrücken

johnny@math.uni-sb.de
3 Computer Science Department, Princeton University, Princeton

dsteurer@cs.princeton.edu

Abstract. We regard the problem of communication in the presence of faulty
transmissions. In contrast to the classical works in this area, we assume some
structure on the times when the faults occur. More realistic seems the “burst error
model”, in which all faults occur in some small time interval.

Like previous work, our problem can best be modelled as a two-player perfect
information game, in which one player (“Paul”) has to guess a number x from
{1, . . . , n} using Yes/No-questions, which the second player (“Carole”) has to
answer truthfully apart from few lies. In our setting, all lies have to be in a con-
secutive set of k rounds.

We show that (for big n) Paul needs roughly log n + log log n + k rounds to
determine the number, which is only k more than the case of just one single lie.

1 Introduction and Results

Communication in the presence of transmission faults is a well-studied subject. Pelc’s
[Pel02] great survey lists more than a hundred references on such problems.

1.1 Communication Model with Errors

The customary model is that there are two entities, “Sender” and “Receiver”. Sender
wants to send a message to Receiver. The message is represented by a number x from
[n] := {1, . . . , n}. If we have an error-free channel, it is clear that Sender needs to send
log(n) := log2(n) bits (and Receiver only needs to listen).

In the model with errors, however, some of the bits sent by Sender are flipped. Of
course, we need some restriction on the occurrence of errors, as otherwise no reliable
communication is possible. Typically, we assume that such errors only occur a certain
number of times, at a certain rate or according to a certain probability distribution.

To compete with the errors, we often assume a two-way communication, that is,
Receiver may send out information to Sender. However, we typically think of the situ-
ation as not symmetric: Bits sent from Receiver to Sender are never flipped (no errors
occur). This model is justified in many practical situations where one communication
partner has much less energy available and thus his sendings are more vulnerable to
errors.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 318–327, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Interval Liar Game 319

1.2 Liar Games

We often adopt a worst-case view. Hence we do not assume the errors to be random, but
rather to be decided on by a malevolent adversary. In fact, we may think of that sender
not really wanting to share his secret x, but rather trying to keep it by intentionally
causing errors (lying). This leads to a so-called liar game. In the following, we adopt
the language usually used in the analysis of such games. In particular, Sender/Lier will
be called “Carole”, an anagram of oracle, and Receiver, who is questioning Carole to
reveal the secret, will be called “Paul” in honor of Paul Erdős, the great questioner.

The rules of the game are as follows: Carole decides on a number (secret) x ∈ [n].
There are q rounds. Each round, Paul asks a Yes/No-question, which Carole answers.
In doing so, Carole may lie according to further specifications. Paul wins the game, if
after q such rounds, he knows the number.

To make this a perfect information game (in-line with our worst-case view), let us
assume that Carole does not have to decide on the number x beforehand, but rather
tries to answer in a way that is consistent with some secret. For technical reasons, we
shall also allow that she lies in a way that is inconsistent with any secret, which will be
viewed as a win for Paul as well.

We remark that, depending on the parameters n, q, and on the lying restrictions either
Paul or Carole has a winning strategy. So we say that Paul wins if he has a winning
strategy.

Note that this set-up perfectly models the communication problem with errors. There
is one more remark regarding Paul’s questions. It seems that his communication effort
is much higher, since each question can only be represented by a n bit string.

This could be justfied by the stronger battery Paul has compared to Carole, but there
is a more natural explanation: If Paul and Carole agree on a communication protocol
beforehand, then Paul does not need to transmit his questions. It suffices that he merely
repeats the bit he just received and Carole can deduce the next question from this and
the agreed-on protocol.

In the following, we rather use the language of games than that of communication
protocols. With the above equivalence at hand, this is merely a question of taste and we
follow the authors of previous work in this respect.

1.3 Previous Results

As said, liar games are an intensively studied subject. We now briefly state the main
results relevant for our work and refer to the survey paper Pelc [Pel02] for a more
complete coverage.

The first to notice the connection between erroneous communication and such games
was Alfréd Rényi [Rén61, Rén76]. However, for a long time most of this community
was not aware of Rényi’s work and cited Ulam [Ula76] as inventor of liar games.

Pelc [Pel87] was the first to completely analyse the game with one lie. He showed
that Paul wins for even n if n ≤ 2q/(q + 1), and for odd n if n ≤ (2q − q + 1)/(q + 1).
There are numerous results for k = 2, 3, or 4 lies, which we will not discuss here.

Spencer [Spe92] solved the general problem for any fixed number k of lies. Here
Paul wins if n ≤ 2q/

(
q
≤k

)
(1 + o(1)), where

(
q
≤k

)
=

∑k
i=0

(
q
i

)
.

320 B. Doerr, J. Lengler, and D. Steurer

All results above concern the fully adaptive (‘real game’) setting with unrestricted
questions and fixed numbers of lies. The problem has a quite different nature if only
comparison questions (“Is x ≤ s?” for some s ∈ [n]) are allowed [BK93], a constant
fraction of lies is allowed in any initial segment of rounds [Pel89], or Paul’s questions
have to come in two batches, where Carole gives her answers only after having received
the whole batch [CM99].

1.4 Our Contribution

Translating the above results back into the model of erroneous communication, the
errors occur independently at arbitrary times. While this might be true for some types
of errors, we feel that it is much more likely that the errors occur in bunchs. We think,
e.g., of atmospheric disorders. Here, not only a single bit will be affected, but a whole
sequence of bits sent.

In the game theoretic setting, we allow Carole to lie up to k times, but only in a way
that all lies occur in k consecutive rounds. Note that, in these k rounds, Carole may lie,
but of course she does not have to.

The additional interval restriction makes Carole’s position much harder. Roughly
speaking, Paul only needs k more questions than in the one-lie game. This shows that,
in scenarios where it can be assumed, using our interval assumption is a valuable im-
provement. More precisely, we show the following.

Theorem 1. Let n, q ∈ N and k ∈ N≥2.

(i) Paul wins if q ≥ �log n� + k + �log log 2n� and q ≥ �log n� + 2k.
(ii) Carole wins if q < log n + 2k.

(iii) Carole wins if q < log n + k + log log 2n − 1.

We assumed k ≥ 2 as otherwise the game in consideration would revert to the searching
game with just one lie.

Note that Theorem 1 gives almost matching lower and upper bounds on the number
of questions Paul needs to reliably distinguish n integers. Specifically, for all choices of
n and k, the upper and lower bound differ by at most 3.

2 Notation and Preliminaries

We describe a game position by a non-negative vector P = (xk, . . . , x0), where xi

is the number of integers for which (assuming it to be the correct answer) Carole is
allowed to lie within the next i questions. Note that for the analysis, it does not matter
which are the particular integers that Carole may lie for i times, it is only their number
that matters.

In particular, xk is the number of integers for which Carole has never lied, and x0 is
the number of integers for which Carole must not lie anymore. Note that

∑k
i=0 xi ≤ n,

and this is strict if there are integers for which Carole would have lied at two times
separated by at least k rounds. For the initial position, denoted P 0, we have xk = n and
x0 = . . . = xk−1 = 0.

The Interval Liar Game 321

We continue formalizing the questions Paul is asking. Note first that a Yes/No-
questions can always be expressed in the form “x ∈ S?” for some S ⊆ [n]. Since
again for the analysis the particular integers are not so relevant, we describe the ques-
tion via an integer vector v = (vk, . . . , v0), where vi is the number of integers that (i)
are in S and (ii) Carole may lie i times for. Consequently, we have 0 ≤ vi ≤ xi for all
i ∈ {0, . . . , k}. To ease the language, we identify questions with their corresponding
vectors.

Depending on Carole’s answer there are two possibilities for the next game position
P ′, namely P ′ = YES(P, v) and P ′ = NO(P, v), where

YES(P, v) = (vk, xk − vk, xk−1, xk−2, . . . , x1 + v0)
NO(P, v) = YES(P, P − v) = (xk − vk, vk, xk−1, xk−2, . . . , x1 + x0 − v0)

Note that neither YES(P, v) nor NO(P, v) depends on any vi with 0 < i < k. For the
integers corresponding to these entries, Carole’s answer does not affect the state of the
game.

For a position P = (xk, . . . , x0), a question (i.e. an integer vector v with 0 ≤ v ≤ P)
is a perfect bisection if v0 = 1

2x0 and vk = 1
2vk.

Recall that YES(P, v) and NO(P, v) do not depend on v1, . . . , vk−1, so if Paul can
make a perfect bisection, then the successor state does not depend on Carole’s answer.

We call a question a quasi-perfect bisection if vi ∈ {�xi/2	, �xi/2�} for i = 0 and
i = k.

We conclude this section by explaining when some position is better than another:

Lemma 2. Let P = (xk, . . . , x0) and P ′ = (x′k, . . . , x′0) be positions (= non-negative
inegral vectors). Assume that P and P ′ have the following property:

k∑

i=j

xi ≤
k∑

i=j

x′i for all j = 0, . . . , k. (1)

Then for any q, we have the implication

Paul can win P ′ in q rounds =⇒ Paul can win P in q rounds

In this case, we call position P at least as good as P ′, and we call P ′ at most as good
as P .

Proof. Though the statement is rather technical, the idea is simple: We can generate P ′

out of P by (i) allowing Carole some additional lies and (ii) adding some more numbers
to the search space. Clearly, both operations will make the game harder for Paul, so if
he has a winning strategy for P ′ in q rounds, then exactly the same strategy will also
win P .

So we want to prove that we can indeed transform P into P ′ by operations (i) and
(ii). We use an inductive argument. Firstly, we add some numbers of type x0 to P until
we get equality for j = 0, i.e.,

∑k
i=0 xi =

∑k
i=0 x′i.

Now we have x0 =
∑k

i=0 xi −
∑k

i=1 xi ≥
∑k

i=0 x′i −
∑k

i=1 x′i = x′0, so x0 −x′0 ≥
0. We choose x0 − x′0 numbers in P at the x0-position. For these numbers, we allow

322 B. Doerr, J. Lengler, and D. Steurer

Carole to lie in the next step. So we get a new position P 1 = (xk, . . . , x2, x1 + x0 −
x′0, x

′
0), and we know that P is at least as good as P 1.

Now inductively we produce a sequence P 0 := P, P 1, P 2, . . . , P k with the follow-
ing properties:

– P i−1 is at least as good as P i (in the sense of equation (1)).
– P i is generated from P i−1 by operations of type (i) and (ii).
– For 0 ≤ j < i we have xi

j = x′j , where xi
j is the j-entry of P i.

–
∑k

j=0 xi
j =

∑k
j=0 x′j for i > 0.

Indeed, we have already constructed P 1. Out of P i−1, by the same construction we get
P i, namely by allowing one additional lie for some numbers from xi−1

i . (Formally by
setting P i := (xi−1

k , . . . , xi−1
i+1, x

i−1
i + xi−1

i−1 − x′i−1, x
′
i−1, x

i−1
i−2, . . . , x

i−1
0)). Note that

P i−1 and P i are identical except for the components i−1 and i. It is easy to check that
P i has the desired properties.

Finally, we end up with P k, which is automatically identical to P ′.
Altogether, we have constructed P ′ out of P by the feasible operations (i) and (ii).

This proves the claim.

3 Upper Bounds and Strategies for Paul

In this section, we give a strategy for Paul. In this way, we derive upper bounds on
the number of questions Paul needs in order to reveal the secret x ∈ [n]. We show
(Corollary 6) that for n being a power of 2, Paul can win if

q ≥ max
{
k + log n + �log log n�, 2k + log n

}
.

Our strategy is constructive, that is, immediately yields an efficiently executable proto-
col for the underlying communication problem.

Here is an outline of the strategy. Assume that n is a power of two. Clearly, some
strategy working for a larger n will also work for a smaller one, hence this assumption
is fine (apart from possible a minor loss in the resulting bounds). If all xi are even, Paul
can ask the question v = 1

2P . He does so for the first log n rounds of the game (Main
Game), resulting in a position with xk = 1. Now the aim is to get rid of this one integer
Carole has not lied for yet. To do so, we ask a “trigger question”, roughly (1, 0, . . . , 0).
Either we succeeded with our plan and simply repeat asking for half of the x0-integers
(Endgame I), or we end up with very few possible integers altogether (Endgame II),
allowing an easy analysis.

Lemma 3 (Main Game). If n is a power of 2, then with the first m = log n questions
Paul can reach position

Pm = (1, 1, 2, . . . , 2k−2, (m − k + 1)2k−1).

Proof. In the first m rounds, Paul can always ask questions of the form v = P/2, where
P is the current game position. The position after k such perfect bisections is

P k = (2m−k, 2m−k, 2m−k+1, . . . , 2m−1).

The Interval Liar Game 323

A simple inductive argument shows that the position after k + ν questions with ν ≤
m − k is

P k+ν = (2m−k−ν , 2m−k−ν , 2m−k−ν+1, . . . , 2m−ν−2, (ν + 1) · 2m−ν−1).

For ν = m − k, we get the statement of the lemma.

After the first m questions, Paul asks a “trigger question” vm+1 = (1, 0,. . ., 0, 2k−2).
If k is sufficiently small compared to n, Carole will not give up the relatively many
possibilities encoded in x0 and therefore answer “No”. The following two lemmas deal
with both possible successor positions, namely YES(Pm, vm+1) and NO(Pm, vm+1).

Lemma 4 (Endgame I). From position

NO(Pm, vm+1) = (0, 20, 20, . . . , 2k−3, (m − k + 1)2k−1)

Paul wins the game (by reaching position (0, . . . , 0, 1)), with at most k − 1 + �log m�
questions.

Proof. With k−2 perfect bisections, Paul reaches the position with xk = . . . = x2 = 0,
x1 = 1 and x0 = 2(m − k + 1) +

∑k−2
i=1 2i−1/2i−1 = 2m − k.

In the next question, Paul asks for m−�k/2� integers corresponding to the last entry
of the position. So the next position is no more than

(0, . . . , 0, m − �k/2	 + 1) ≤ (0, . . . , 0, m).

From this position on, the game reverts to classical “Twenty Questions” problem for
a universe of size m. So Paul can win with �log m� additional questions.

The total number of questions is at most

k − 2 + 1 + �log m� ≤ k − 1 + �log m�.

Lemma 5 (Endgame II). Paul can win with at most 2k − 1 questions from position

YES(Pm, vm+1) = (1, 0, 20, 21, . . . , 2k−3, 2k−2)

Proof. With k − 2 quasi-perfect bisections, Paul reaches a position at least as good as

(1, 0, . . . , 0,

k−2∑

i=0

2i/2i) = (1, 0 . . . , 0, k − 1).

Now Paul asks for the number corresponding to the first entry of the position, that is,
the question v = (1, 0, . . . , 0). If the answer is “Yes”, Paul wins instantly. Otherwise,
the position is (0, 1, 0, . . . , k − 1). Playing the “Twenty Questions” game on the k − 1
integers corresponding to the last entry, we reach with t ≤ �log k� additional questions
a position with x0 = xk−1−t = 1 and all other entries naught. From this position, Paul
can win in k − t questions.

The total number of questions is at most

k − 2 + 1 + k = 2k − 1.

324 B. Doerr, J. Lengler, and D. Steurer

Corollary 6. For log n ∈ N, Paul can win if

q ≥ max
{
k + log n + �log log n�, 2k + log n

}
.

Proof. By Lemma 3, we need log n questions for the main game. Then Paul asks one
“trigger question”. Depending on Carole’s answer, Paul either plays Endgame I or
Endgame II. In the first case, he needs k + �log log n� − 1 further questions to win
the game (Lemma 4). In the latter case, Paul wins with 2k − 1 questions (Lemma 5).

If n is not a power of two, we can replace the starting position P = (n, 0, . . . , 0) by
(2�log(n)�), 0, . . . , 0), which is at most as good as P . By the Corollary, Paul can still
win if

q ≥ max
{
k + �log n� + �log log n�, 2k + �log n�

}
,

which is the statement in Theorem 1 (i).

4 Lower Bound

In this section, we prove lower bounds showing that our strategies given in the previous
section are optimal up to a small constant number of questions. We start by defining the
following formal weight function:

wj(xk, . . . , x0) = (j − k + 2)2k−1xk +
k−1∑

i=0

2ixi.

The weight function is supposed to determine whether it is possible for Paul to find
out the correct number in j rounds. It does not quite so, but it solves only a formal
relaxation of the problem. (That’s why it is called formal weight function.)

Note that the weight function is linear in its variables.
The following lemma summarises the important properties of such a formal weight

function.

Lemma 7. (i) Triangle equality: For all j ≥ k + 1 and for all integral vectors P and
v,

wj(P) = wj−1(YES(P, v)) + wj−1(NO(P, v)).

(Note: We do not require that the entries of P and v are positive.)
(ii) Formal descent: For all j ≥ k + 1 and for all integral P , there is a formal choice

v for Paul, such that

wj−1(YES(P, v)) = wj−1(NO(P, v)), if wj(P) is even.

wj−1(YES(P, v)) = wj−1(NO(P, v)) + 1, if wj(P) is odd.

By a formal choice, we mean an integral vector with possibly negative entries.
(iii) Starting condition: For j = k, if P is a state with non-negative integral entires,

we have wk(P) ≤ 2k if and only if Paul can win the situation P in k rounds.

The Interval Liar Game 325

Proof. Let P = (xk, . . . , x0), v = (vk, . . . v0). Direct calculation proves the assertion:

wj−1(YES(P, v)) + wj−1(NO(P, v))

=

(

(j − k + 1)2k−1vk + 2k−1(xk − vk) +
k−2∑

i=1

2ixi+1 + (v0 + x1)

)

+

(

(j − k + 1)2k−1(xk − vk) + 2k−1vk +
k−2∑

i=1

2ixi+1 + (x0 − v0 + x1)

)

= (j − k + 1)2k−1xk + 2k−1xk +
k−2∑

i=1

2i+1xi+1 + 2x1 + x0

= (j − k + 1)2k−1xk +
k−1∑

i=2

2ixi + 2x1 + x0

= (j − k + 1)2k−1xk +
k−1∑

i=0

2ixi

= wj(P)

This proves the triangle equality.
Obviously, if P =(0,. . ., 0, 2, 0,. . ., 0), then Paul can choose v=(0,. . ., 0, 1, 0,. . ., 0),

and thus obtain wj−1(YES(P, v)) = wj−1(NO(P, v)). (Because by symmetry
YES(P, v) = NO(P, v).)

But wj is linear in all entries, so it suffices to prove the claim for P = (0, . . . , 0, 1,
0, . . . , 0), with the i-th entry = 1. Let P ′ = (0, . . . , 0, 1, 0, . . . , 0), but with the i − 1-th
entry = 1. Now put a := wj(P) − 2wj−1(P ′). We must distinguish two cases:

– wj(P) is even: Then also a is even. Put v := P +(0, . . . , 0, a
2). Then YES(P, v) =

P ′+(0, . . . , 0, a
2), so wj−1(YES(P, v)) = wj−1(P ′)+ a

2 = 1
2wj(P). On the other

hand, by the triangle equality, wj−1(NO(P, v)) = wj(P) − wj−1(YES(P, v)) =
1
2wj(P) = wj−1(YES(P, v)).

– wj(P) is odd: Then also a is odd. Put v := P +(0, . . . , 0, a+1
2). Then YES(P, v) =

P ′ + (0, . . . , 0, a+1
2), so wj−1(YES(P, v)) = wj−1(P ′) + a+1

2 = 1
2 (wj(P) +

1). On the other hand, by the triangle equality, wj−1(NO(P, v)) = wj(P) −
wj−1(YES(P, v)) = 1

2 (wj(P) − 1) = wj−1(YES(P, v)) − 1.

For the starting condition, note that due to j = k, the weight function simplifies to
wk(xk, . . . , x0) =

∑k
i=0 2ixi.

Case 1: xk ≥ 1
In this case, there is a chip C1 on the xk-position.

First assume that the weight is ≥ 2k. Then there is some other chip C2. Now Carol
can take the following strategy: In the remaining k rounds, she always says that C2 is
the correct chip. Then after the k moves, C2 is still in the game. But so is C1, because it
takes at least k moves to travel down all the way to the x0-position and one more to be
kicked out. Hence, there are two chips left and Paul cannot decide which one is correct.

Now assume that the weight is ≤ 2k. Then C1 is the only chip, and Paul has
already won.

326 B. Doerr, J. Lengler, and D. Steurer

Case 2: xk = 0
First assume that the weight is ≤ 2k. Then Paul chooses the question v := (0, . . . , 0,⌊1

2x0
⌋
). (� 	 means rounding down to the next integer.) The two possible consecutive

states differ only at the x0-position, and it is better for Carole to take NO(P, v) =
(0, xk, . . . , x2, x1 +

⌈1
2x0

⌉
), having weight

w(NO(P, v)) =
⌈

1
2
x0

⌉
+ x1 +

k−1∑

i=1

2ixi+1

=
⌈

1
2
x0

⌉
+

k∑

i=1

2i−1xi

=
⌈

w(P)
2

⌉
≤

⌈
2k

2

⌉
= 2k−1.

So Paul can assure that in the following state, the weight is ≤ 2k−1. By induction, after
k rounds the weight is ≤ 1, implying that only one chip is left. Hence, Paul wins the
game.

Now assume that the weight is > 2k. Paul asks a question, and Carol choses the
answer that leaves more chips on the x0-position. The other positions are indifferent
against Carols choice, and the consecutive state is Pnew = (0, xk, . . . , x2, x1 + x̃0),
with some x̃0 ≥ 1

2x0.
Then the weight of the new position is at least

w(Pnew) ≥ x̃0 + x1 +
k−1∑

i=1

2ixi+1

≥ 1
2
x0 +

k∑

i=1

2i−1xi

=
w(P)

2
>

2k

2
= 2k−1.

So Carol can assure that in the following state, the weight is > 2k−1. By induction,
after k rounds the weight is > 1. But during those rounds, all chips must move all the
way down to the x0-position. So all chips have weight 1, implying that there is more
than one chip left. Hence, Carol wins the game.

Corollary 8. If P is a state in the liars game, and if j ≥ k with wj(P) > 2j , then Paul
can not win the game within j moves.

Hence, max{j ≥ k| wj(P) ≤ 2j} is a lower bound for the minimal number of
questions that Paul needs.

Proof. Assume Paul had a strategy that would yield him victory in j moves. Then Carol
does the following: In each round, she picks the answer with the higher weight function.
By the triangle equality, the new weight will be at least half the old weight. Hence, we
have the invariant that wi(Pi) > 2i, where Pi is the state when there are i questions left.

The Interval Liar Game 327

In particular, for i = k, we have wk(Pk) > 2k, and by our assumption, Paul can still
win within k moves. This is a contradiction to the starting condition of our theorem.

We now show an almost tight lower bound for the case that n ≤ 22k

. To do so, we need
the following lemma.

Lemma 9. For n = 2, Paul needs at least 2k + 1 questions to win the game.

Proof. For the first k questions Carole claims that x = 1, and for the next k ques-
tions she claims x = 2. Now Paul needs one additional questions to finally determine
Carole’s choice.

The above lower bound for n = 2 extends in the following way to arbitrary n.

Lemma 10. Paul needs at least log n + 2k questions to win the game.

Proof. From the start position (n, 0, . . . , 0), Paul needs at least log n − 1 questions to
reach a position P = (xk, . . . , x0) with xk = 2, if Carole always chooses an answer
that yields the largest entry in the first component of the successor position. Lemma 9
implies that Paul needs at least 2k + 1 questions to win the game from position P .

Thus the total number of questions needed for Paul to win the game is at least log n+
2k.

Theorem 1 (ii) is now a corollary of the lemma above.

Proof (Theorem 1 (ii)). If n < 2q−2k then Paul may ask less than log n + 2k questions
and henceforth cannot win the game by Lemma 10.

References

[BK93] Ryan S. Borgstrom and S. Rao Kosaraju. Comparison-based search in the presence of
errors. In STOC, pages 130–136, 1993.

[CM99] Ferdinando Cicalese and Daniele Mundici. Optimal binary search with two unreliable
tests and minimum adaptiveness. In Jaroslav Nesetril, editor, ESA, volume 1643 of
Lecture Notes in Computer Science, pages 257–266. Springer, 1999.

[Pel87] Andrzej Pelc. Solution of Ulam’s problem on searching with a lie. J. Comb. Theory,
Ser. A, 44(1):129–140, 1987.

[Pel89] Andrzej Pelc. Searching with known error probability. Theor. Comput. Sci., 63(2):
185–202, 1989.

[Pel02] Andrzej Pelc. Searching games with errors - fifty years of coping with liars. Theor.
Comput. Sci., 270(1-2):71–109, 2002.

[Rén61] Alfréd Rényi. On a problem of information theory. MTA Mat. Kut. Int. Kozl., 6B:
505–516, 1961.

[Rén76] Alfréd Rényi. Napl’o az információelméletről. Gondolat, Budapest, 1976. (English
translation: A Diary on Information Theory, Wiley, New York, 1984.)

[Spe92] Joel Spencer. Ulam’s searching game with a fixed number of lies. Theor. Comput. Sci.,
95(2):307–321, 1992.

[Ula76] Stanislaw M. Ulam. Adventures of a Mathematician. p. 281, Scribner, New York,
1976.

How Much Independent Should Individual Contacts Be
to Form a Small–World?�

Extended Abstract

Gennaro Cordasco and Luisa Gargano

Dipartimento di Informatica ed Applicazioni, Università di Salerno, Italy
{cordasco, lg}@dia.unisa.it

Abstract. We study Small–World graphs in the perspective of their use in the
development of efficient as well as easy to implement network infrastructures.
Our analysis starts from the Small–World model proposed by Kleinberg: a grid
network augmented with directed long–range random links. The choices of the
long–range links are independent from one node to another. In this setting greedy
routing and some of its variants have been analyzed and shown to produce paths
of polylogarithmic expected length. We start from asking whether all the indepen-
dence assumed in the Kleinberg’s model among long–range contacts of different
nodes is indeed necessary to assure the existence of short paths. In order to deal
with the above question, we impose (stringent) restrictions on the choice of long–
range links and we show that such restrictions do not increase the average path
length of greedy routing and of its variations. Diminishing the randomness in the
choice of random links has several benefits; in particular, it implies an increase in
the clustering of the graph, thus increasing the resilience of the network.

1 Introduction

In this paper we consider Small-World (SW) networks based on Kleinberg’s model [5].
We investigate the possibility of diminishing the amount of randomness that nodes need
in the choice of their long–range links, while keeping the short routes of the original
model. Our proposal has the advantage that the obtained networks show high clustering
and, hence, they are particularly resilient to failures.

1.1 Small–World (SW) Networks

The study of many large–scale real world networks shows that such networks exhibit a
set of properties that cannot be totally captured by the traditional models: regular graphs
and random graphs. Indeed, many biological and social networks occupy a position
which is intermediate between completely regular and random graphs. Such networks,
commonly called Small–World networks, are characterized by the following main prop-
erties:

• they tend to be sparse;
• they tend to have short paths (as random graphs);
• they tend to be clustered (unlike sparse random graphs).

� This work was partially supported by the Italian FIRB project “WEB-MINDS”, http://web-
minds.consorzio-cini.it/

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 328–338, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

How Much Independent Should Individual Contacts Be to Form a Small–World? 329

The study of SW graph was pioneered by Milgram [10] in the 1960s. In his famous
experiment, people were asked to send letters to unknown targets only through acquain-
tances. The result confirmed the believe that random pairs of individuals are connected
by short chains of acquaintances.

The work by Milgram has been followed by several studies finalized to a better un-
derstanding and modeling of the SW phenomenon. In particular, Watts and Strogatz
[16] noticed that, unlikely random graphs, real data networks tend to be clustered. Thus,
Watts and Strogatz proposed thinking about SW networks as combining an underlying
regular (high–diameter) graph with a few random links. They showed that several real
networks fall into this category, e.g. the network of actors cooperations or the neural
wiring diagram of the worm C. elegans.

Recently, Kleinberg [5] reconsidered an important algorithmic aspect of Milgram’s
experiment: not only short path exist but individuals are able to deliver messages to
unknown targets using short routes. Kleinberg proposed a basic model that uses a two-
dimensional grid as underlying interconnection, the grid is then augmented with random
links: Each node has an undirected local link to each of its grid neighbors and one di-
rected long-range random link; this last link connects to a node at lattice distance dwith
probability proportional to d−2. Kleinberg proved that such graphs are indeed naviga-
ble, that is, a simple greedy algorithm finds routes between any source and target using
only O(log2 n) expected hops in a network on n nodes [5]. Notice that navigability is
an interesting property for a graph. Such graphs, in fact, can be easily used in the de-
velopment of efficient network infrastructures, such as for Peer–to–peer systems, where
neither flooding nor complex routing protocols are to be used.

Subsequently, routing strategies that make use of an augmented topological aware-
ness of the nodes have been investigated. In particular it was shown that if each node
knows the long-range contacts of its closest O(log n) neighbors on the grid (Indirect
greedy routing [8, 13]) then O(log1+1/s n) expected hops suffice in an s–dimensional
lattice, for any fixed s. Papers [11] and [12] consider the improvements obtainable over
greedy routing in the case in which the topological awareness of a node is augmented
by the knowledge of the long–range contacts of all neighbors of the node (Neighbor–
of–neighbors routing).

Augmenting an overlay network with random links is also at the base of randomized
Peer–to–peer networks. Two examples are randomized Chord and Symphony [12]. Such
networks are both obtained by adding O(log n) random long range links to each node
of a ring. They allow to obtain optimal routing [12].

1.2 Low Randomness Small–World Networks

In a SW network, the additional long–range random links represent the chance, that
play a large role in creating short paths through the network as a whole. In this paper
we consider the following question:

Do the long–range contacts really need to be completely random, or some “long–range
clustering” could instead be envisaged in such a “navigable” network?

In other words, we investigate the problem of whether all the independence assumed
in the Kleinberg’s model among different long–range contacts is indeed necessary to

330 G. Cordasco and L. Gargano

assure the existence of short paths. We show that, up to a certain extend, the answer to
the above question is that the same (greedy) routing performances can be maintained if
we limit the amount of randomness nodes use in the choice of long–range contacts.

Why to reduce randomization?
In the perspective of using SW graphs as a base for the development of network infras-
tructures, we notice that besides diameter and degree, a very important property for a
such an infrastructure is the resilience to simultaneous node failures.

The resilience of a network grows with the clustering of the graph which provides
the overlay network. High clustering provides several alternative pathways throw which
flow can pass, thus avoiding the failed component [14]. Clustering is a very interesting
concept that is found in many natural phenomena and, roughly speaking, determines
how tightly neighbors of a given node link to each other [9]. In a graph the clustering
is related to the level of randomization of the graph itself. In particular, it was shown in
[16] that the smaller is the randomization the higher is the clustering of the considered
system. It is also worth noticing that the use of randomization increases the difficulties
in the implementation and testing of applications.

Therefore, it is worth investigating if, in analogy with real SW graphs [16], a SW in-
terconnection can be obtained by using a limited amount of randomness. Such a small
value would allow both SW requirements (small average path length and high cluster-
ing) to be obtained together with easy routing strategies.

1.3 Our Results

We start from Kleinberg’s model (that is an s–dimensional lattice augmented with long–
range links) and proceed in two steps. In a first step, we limit the choice of long–ranges
of a node u to be done only among those other nodes that differ from u itself in exactly
one coordinate; namely, a node u = 〈u1, . . . , us〉 has its long–range contacts chosen
among nodes v = 〈v1, . . . , vs〉 for which there exists i (1 ≤ i ≤ s) such that vj = uj
for each j �= i. We show that all the routing properties immediately translate to this
restricted model, some times with easier proofs.

In a second part, we enforce even more the restriction nodes have in establishing their
long–range contacts. We introduce the notion of communities: keeping the restriction
that long–range links can only connect two nodes differing in exactly one coordinate,
nodes are partitioned into (random) groups and all nodes belonging to the same group
are subject to additional restrictions in the choice of their long range contacts depending
on the group they belong to.

We show that a logarithmic (in the number of nodes) number of different communi-
ties is sufficient to assure the SW property for the resulting graph. Namely, we analyze
the routing performances of greedy, indirect and neighbor–of–neighbor routing strate-
gies in dependence of the number of communities; in particular, if the number of com-
munities is at least logarithmic all the routing strategies attain the same performances
as in Kleinberg’s original model.

The main results presented in this paper, together with those known for the original
Kleinberg model, are summarized in Table 1.

How Much Independent Should Individual Contacts Be to Form a Small–World? 331

Road Map: In Section 2 we give the basic definitions and present the notation used in
the paper. In Section 3 we define Restricted–Small–World networks and analyze their
routing properties. Section 4 is devoted to the study of SW networks with communities.
Section 5 concludes the paper.

1.4 Related Work

The Small–World phenomenon was first demonstrated by Milgram’s famous experi-
ment [10]. Such an experiment showed that not only pairs of people were connected
by short chains of acquaintances but also that people were able to route letters in a
few hops by forwarding them to one of their acquaintances. Since then there has been
quite a lot of work in the literature concerning the SW phenomenon and models for SW
networks. A first model was proposed by Watts and Strogatz [16]. Following the no-
tion that SW graph interpolate between completely regular graphs and purely random
graphs, such model is based on randomly rewiring each edge of a regular graph with a
given probability p. For suitable values of p, this gives rise to networks having the short
path lengths and the high level of clustering observed in studied real networks (e.g. the
network of actors cooperations or the neural wiring diagram of the worm C. elegans).

The model we consider in this paper (namely, an s-dimensional grid augmented with
long–range links according to a given probability distribution – cfr. Definition 1) was
introduced by Kleinberg in [5]. Kleinberg’s proposal gave rise to a vast subsequent
literature on routing in SW like networks. The O(log2 n) expected number of hops
shown by Kleinberg for greedy routing was proved tight in [1]. Moreover [13] and [8]
prove that if the knowledge of a node is augmented with the knowledge of the long–
range contacts of some of its neighbors then O(log1+1/s n) can be achieved by greedy
routing in a s–dimensional lattice, for any fixed s. A review of the vast literature on the
subject can be found in [7].

Table 1. Performance of variants of greedy routing (see Section 2.1 for more details). Routing
strategies: Greedy (Greedy routing), IR (Indirect greedy routing), NoN (Neighbor–of–neighbor
greedy routing). Grid networks having n nodes, s-dimensions and q long-range contacts are con-
sidered: K(n, s, q) (Kleinberg–Small–World network K(n, s, q, p) with probability p(d) propor-
tional to d−s, cfr. Definition 1), R(n, s, q) (Restricted–Small–World network, cfr. Definition 2),
Rc(n, s, q) (Small–World network with communities, cfr. Definition 3).

Paper Results Avg #steps Networks Observations
[5] Greedy O((log2 n)/q) K(n, s, q)

[1, 13] Greedy Ω((log2 n)/q) K(n, s, q)

[11, 12] NoN O((log2 n)/(q log q)) K(n, s, q) s = 1

[13] IR O(log1+1/s n) K(n, s, q) s = O(1)

[8] IR O((log1+1/s n)/(q1/s)) K(n, s, q) s = O(1)

[8] IR Ω(log1+1/s n) K(n, s, q) s = O(1)

This paper Greedy O((log2 n)/q) R(n, s, q), Rc(n, s, q)

This paper IR O((log1+1/s n)/(q1/s)) R(n, s, q), Rc(n, s, q)

This paper NoN O((log2 n)/(q log q)) R(n, s, q), Rc(n, s, q)

332 G. Cordasco and L. Gargano

SW like networks have been considered in the context of routing in peer–to–peer
systems. In particular [12] analyzes the use of neighbor–of–neighbor greedy routing
strategy, were the local knowledge of a node is augmented with the knowledge of the
long–range links of all its contacts. They show that such routing reaches the optimal
O(log n/ log logn) expected number of hops in SW percolation networks and in the
randomized version of the Chord network [15] (both having O(log n) degree). Paper
[2] introduces, in order to speed-up bootstrap in the Chord ring, the concept of classes;
such concept has some resemblance to that of communities.

2 Preliminary Notation and Definitions

In the following we denote by d the distance between two points v = 〈v1, . . . , vs〉
and u = 〈u1, . . . , us〉 on an s-dimensional toroidal lattice having n = ms nodes. The
metric distance is defined as d(v, u) =

∑s
i=1 di where di = (ui − vi) mod m.

Definition 1. Kleinberg–Small–World network (K(n, s, q, p)): Consider n nodes lying
on a toroidal s-dimensional grid {0, . . . ,m−1}s where each node maintains two types
of connections:

short–range contacts (2s connections): Each node has a direct connection to every
other node within distance 1 on the grid;
long–range contacts (q connections): Each node v establishes q directed links in-
dependently according to the probability distribution p (on the integers): each link
has endpoint u with probability p(d(u, v)).

All reported results on Kleinberg’s model assume p(d) proportional to d−s with nor-
malization factor

∑
u,v d(u, v)

−s. We notice that in Definition 1, we assume the inter-
connection be formed by a torus while the original Kleinberg’s model was based on a
grid. For sake of simplicity we will show our results on the torus, however they could
be also obtained in case of a grid (e.g. with no wrap–around).

In the following we will denote by:
•N(v) the neighborhood of v, that is, set of 2s neighbors of v on the s-dimensional

torus;
•L(v) the set of the q long-ranges contacts of node v;
•Nr(v) = {v | d(u, v) ≤ r} the ball of radius r and center v.

We recall that,

|Nr(v)| =
2s

s!
· rs + ν(r), (1)

where ν(x) is a positive polynomial of degree s− 1[3].

2.1 Routings Strategies

Consider a SW network K(n, s, q, p). We shortly review the routing strategies adopted
in the Small–World related literature and that will be subsequently used in this paper.
We denote by v be the node currently holding the message and by t the target key.

How Much Independent Should Individual Contacts Be to Form a Small–World? 333

Greedy Routing uses only the local knowledge of v: a message is forwarded along the
link (either short or long) that takes it closest to the target t.

Indirect greedy routing. and neighbor–of–neighbor greedy routing are obtained
through an additional topological awareness given to the nodes: Each node v is in fact
aware of the long-range contacts of some other nodes.

Indirect Greedy Routing (IR) assumes that node v is aware of the long-range contacts
of its |Nr(v)| closest neighbors, for some r > 0. Formally, IR entails the following
decision:

1. Let Lr(v) =
⋃
u∈Nr(v) L(u) denote the set of all long-ranges contacts of nodes

in Nr(v);
2. Among the nodes in Lr(v)∪N(v), assume that z is the closest to the target (with
respect to the distance d()): If z ∈ L(v) ∪ N(v) then route the message from v
to z directly; otherwise, let z ∈ L(u) (u ∈ Nr(v) for some u �= v) and route the
message from v to z via u.

Neighbor–of–Neighbor Greedy Routing (NoN) assumes that each node knows its
long-range contacts, and on top of that it holds the long-range contacts of its neighbors.
Here we restrict ourself to consider only the long-range contacts of nodes in L(v), this
will be sufficient to get the improvements over greedy assured by NoN. Formally, a
NoN greedy step entails the following decision:

1. Consider the set L2(v) = ∪u∈L(v)∪{v}L(u) of long–range contacts of the long–
ranges of v;
2. Among the nodes in L2(v) ∪N(v), let z be the closest to the target (with respect
to the distance d()): If z ∈ L(v)∪N(v) then route the message from v to z directly,
otherwise let z ∈ L(u) (u ∈ L(v) for some u �= v) and route the message from v
to z via u.

We recall that in the NoN routing, u may not be the long-range neighbor of v which is
the closest to the target; indeed the algorithm could be viewed as a greedy algorithm on
the square of the graph induced by the long-range contacts.

3 Restricted–Small–World Networks

In a restricted–Small–World network we allow each node to make long–range connec-
tions only with nodes that differ from it in exactly one coordinate. A connection between
two nodes u and v is created with probability proportional to d−1(u, v). In particular
this probability is p(d(u, v)) = 1

λ·d(u,v) , where λ is the inverse normalized coefficient,

λ = s ·
∑m

j=1
1
j ≈ lnn. Different connections are established by independent trials.

Definition 2. A Restricted–Small–World network (R(n, s, q)): is a network K(n, s,
q, p) with probability distribution p s.t. for any u and v, the probability of having a
long–range link from u to v is

p(d(u, v)) =
{

1
d(u,v) lnn if v and u differ in exactly one dimension
0 otherwise.

334 G. Cordasco and L. Gargano

It is easy to observe that any outgoing link goes along a generic dimension i with prob-
ability:

m∑

j=1

p(j) ≈ lnn1/s

lnn
= 1/s.

We will show that all the results obtained on Kleinberg’s SW networks [5, 13, 8, 12]
can be easily proved to remain valid in spite of the restrictions we impose on the long-
range connections.

Greedy Routing

Theorem 1. The average path length isO
(

log2 n
q

)
for the greedy routing on R(n, s, q)

when 1 ≤ q ≤ logn.

Proof. Consider a generic node v = 〈v1, . . . , vs〉 ∈ {0, . . . ,m − 1}s that holds a
message destined for node t = 〈t1, . . . , ts〉 at distance d. For each i = 1, . . . , s, let di
the distance between v and t on dimension i that is di = (ti − vi) mod m.

The routing proceeds by greedily diminishing the distance on dimension 1 first, until
d1 = 0, then the distance on dimension 2 is considered, and so on until the target is
reached.

Consider now a fixed dimension i. Clearly the analysis is equivalent to that of greedy
routing on a ring with long-range connections added according to Definition 1.

Let φ denote the event that the current node is able to diminish the remaining dis-
tance, from di to at most di/k in one hop. The expected number of nodes encoun-

tered before a successful event φ occurs is O
(
k logn
q

)
. Since the maximum number

of times the remaining distance could possibly be diminished is logk di ≤ logkm,
di ≤ m, it follows that the average number of hops we need on each dimension is

O
(
k logn
q · logkm

)
. By repeating for each dimension (that is , up to s times),

O

(
s · k

log k
logm logn

q

)
= O

(
k

log k
log2 n

q

)
. (2)

By choosing k = 2, the result follows.

Indirect Greedy Routing

In the following we analyze indirect greedy routing. Step 2 in the definition of IR rout-
ing can be specialized to R(n, s, q) as follows:

2’. Among the nodes in Lr(v)∪N(v), assume that z is the closest to the target
(with respect to the distance d()): If z ∈ L(v) ∪ N(v) then route the message
from v to z directly, otherwise first route the message from v to u ∈ Nr(v) (at
most r hops), then use the u’s long-range to z (1 hop), and finally go from z
to a node w using a inverse path with respect to the path from v to u, in such a
way that w differs from v in exactly one dimension (at most r hops). Formally,
if u = 〈v1 +d1, v2 +d2, . . . , vs+ds〉 thenw = 〈z1 −d1, z2 −d2, . . . , zs−ds〉.

How Much Independent Should Individual Contacts Be to Form a Small–World? 335

Let N = |Nr(v)|. We can repeat the proof of Theorem 1 by noticing that Nq long-
ranges contacts are available at each greedy step and choosing the parameter k in equa-
tion (2) so that qN = k lnn. Hence, we get that the number of indirect steps to reach

the destination is O
(

k
log k

log2 n
qN

)
= O(logk n). Each step requires at most 2r+ 1 hops

where, by (1), r = O

(
s
(
k lnn
q

)1/s
)

. Hence, the average path length is

O (r logk n) = O

(
s lnn
ln k

(
k lnn
q

)1/s
)

.

Choosing k = es, we obtain the following result.

Corollary 1. The average path length is O
(

log1+1/s n
q1/s

)
for the indirect routing on

R(n, s, q) when each node is aware of the long-range contacts of its es lnn
q closest

neighbors.

Remark 1. Unlikely in [8, 13], where the same result holds only for value of the pa-
rameter s independent of n (multiplicative factors in s are discarded in the asymptotic
notation), our results are expressed also for a non-constant number s of dimensions. In
particular the results in [8, 13] are obtained using an awareness of O (logn/q) neigh-

bors; this awareness allows to obtain an average path length O
(
s · log1+1/s n

q1/s

)
.

Corollary 2. The average path length isO (logn) for the indirect routing on R(n, s, q)
when s ≥ ln lnn and each node is aware of the long-range contacts of its ln2 n/q
closest neighbors.

NoN Greedy Routing

In the case of neighbor–of–Neighbor greedy routing, we obtain the following result.

Theorem 2. The average path length isO
(

log2 n
q log q

)
for NoN routing on R(n, s, q) when

1 < q ≤ logn.

4 Small–World Networks with Communities

In this section we impose more strict restrictions on the choice of long–range con-
tacts by the nodes in the network. Namely, we assume that nodes are partitioned into
c groups, called communities. Each node randomly choose one of the communities to
belong to; each node in community i, for 0 ≤ i < c, can choose its long–range contacts
only among a subset of nodes depending on the parameter i.

Definition 3. A Small–World network with communities (Rc(n, s, q)): is a network
K(n, s, q, p) with probability distribution p such that for any u and v the probability of
having a long–range from v to u is obtained as follows:

336 G. Cordasco and L. Gargano

i) Node v chooses the community its belongs to by uniformly at random selecting an
integer cv in the interval [0, c).

ii) Node v chooses uniformly at random an integer σ in the set [1, s].
Let t = q mod s, T = {σ, σ+1 mod s . . . , σ+ t−1 mod s}, and, for i = 1 . . . s,

qi =
{

q/s� if i ∈ T
�q/s otherwise.

(3)

For i = 1, . . . , q, the ith long–range link from v has endpoint u at distance d(v, u)
with probability

p(d(v, u)) =

⎧
⎨

⎩

1
q if v and u differ in exactly one dimension and u is a feasible

endpoint (i.e. d(v, u) = �γ�+
cv
c

i for some � = 0, . . . , qi − 1)
0 otherwise.

where γi denotes a real number satisfying ln γi = (lnm)/qi.

Observation 1. For each node v there are exactly q feasible endpoints each with prob-
ability 1

q . Hence a feasible endpoint of a node v is a long-range of v with probability

1 −
(
1 − 1

q

)q
≥ 1 − e−1 > 1/2.

4.1 Routing in Small–World Networks with Communities

In this section we show that by introducing communities we reduce the amount of
randomness with no harm to the efficiency of the system.

The following preliminary result will be a tool in the analysis of the performances of
the various routing strategies.

Lemma 1. Fix a dimension i. Let k > 1 an integer and let Φ denote the probabil-
ity that a node of a Rc(n, s, q) network (where 1 ≤ q ≤ logn) is able to dimin-
ish with one hop the distance on a fixed dimension i, from di to at most di/k, then

Φ = Ω
(

q
k logn

)
if c ≥ 2k lnn

q .

Greedy Routing

Theorem 3. The average path length isO
(

log2 n
q

)
for the greedy routing on Rc(n, s, q)

when 1 ≤ q ≤ logn and c ≥ 4 lnn
q .

Proof. By following the same arguments as in proof of Theorem 1 we only need to

show that Φ = Ω
(

q
log n

)
, where Φ denotes the probability that the current node is able

to halve the distance on a fixed dimension i. Using Lemma 1 with k = 2 we obtain the
desired value.

How Much Independent Should Individual Contacts Be to Form a Small–World? 337

Indirect Greedy Routing

Consider an indirect greedy routing step as described in Section 3. Let v be the node
currently holding the message, considerNr(v) such that it contains a setNc ⊆ Nr(v) of

nodes which belong to different communities with |Nc| = O
(
k lnn
q

)
. Fix any dimen-

sion i for which the distance from v to the target on dimension i is di > r (otherwise
we route on this dimension using short–range links).

For each node in Nc, consider the event that one of its long–ranges allows to to
diminish in one indirect step the distance on dimension i from di to at most di/k;
since nodes in Nc belong to different communities, such events are independent. Then
applying Lemma 1, the probability that at least one node in Nc is able to diminish, with
one indirect step, the distance to the target on dimension i, from di to at most di/k is
Ω(1).

If c ≥ 2k lnn
q and |Nr(v)| ≥ k lnn

q we have |Nc| = O
(
k lnn
q

)
and we can reach

the destination using O(logk n) indirect greedy routing step. Therefore, since r =

O

(
s
(
k lnn
q

)1/s
)

the average path length is as for Restricted–Small–World.

Corollary 3. The average path length is O
(

log1+1/s n
q1/s

)
for indirect routing on Rc(n,

s, q) when 1 ≤ q ≤ logn, c ≥ 2es lnn
q and each node knows the long-range contacts of

its es lnn
q closest neighbors.

NoN Greedy Routing

By analyzing NoN Greedy Routing in SW network with communities, we can prove
the following Theorem.

Theorem 4. The average path length isO
(

log2 n
q log q

)
for the NON routing on Rc(n, s, q)

when 1 < q ≤ logn and c > logn.

5 Conclusions

Our Theorems 3 and 4 answer in a positive way our initial question: Do the long–range
contacts really need to be completely random, or some “long–range clustering” could
instead be envisaged in such a “navigable” network? In a sense, we show that it is
not necessary to use a completely eclectic network in order to obtain a SW. Indeed,
such result can be obtained using a limited amount of heterogeneity, namely only a
logarithmic number of communities.

A part of their theoretical interest, such networks can be used toward the design of ef-
ficient as well as easy to implement network infrastructures based on the SW approach.
Diminishing the amount of randomness used for random links increases the cluster-
ing of the network. Hence, one can get interconnected networks which, in addition to
convenient graph properties (such as low average path length and degree) and beside
providing the efficient and easy routing algorithms (as offered by Kleinberg’s model)
offer an increased resilience (due to a higher clustering).

338 G. Cordasco and L. Gargano

References

1. Lali Barrière, Pierre Fraigniaud, Evangelos Kranakis and Danny Krizanc. “Efficient Routing
in Networks with Long Range Contacts”. Proc. DISC 01, LNCS 2180, pp. 270–284, Springer,
2001.

2. Giovanni Chiola, Gennaro Cordasco, Luisa Gargano, Alberto Negro, and Vittorio Scarano.
“Overlay networks with class”. Proc. I-SPAN 2005, IEEE Press, Dec. 2005.

3. John H. Conway and Neil J.A. Sloane. “Low Dimensional Lattices VII: Coordination Se-
quences”. Proc. Royal Soc. A453, pages 2369–2389, 1997.

4. Peter Sheridan Dodds, Roby Muhamad, and Duncan J. Watts. “An Experimental study of
Search in Global Social Networks”. In Science Volume 301, pages 827–829, August 2003.

5. Jon M. Kleinberg. “The Small–World Phenomenon: An Algorithm Perspective”. In Proc. of
32th ACM Symp. on Theory of computing (STOC ’00), pages 163–170, May 2000.

6. Jon M. Kleinberg. “The Small–World Phenomena and the Dynamics of informations”. In
Advances in Neural Information Processing Systems (NIPS), December 2001.

7. Jon M. Kleinberg. “Complex Networks and Decentralized Search Algorithms”. In Interna-
tional Congress of Mathematicians (ICM), 2006.

8. P. Fraigniaud, C. Gavoille, C. Paul. “Eclecticism Shrinks Even Small Worlds” PODC 2004.
9. D. Loguinov and A. Kumar and V. Rai and S. Ganesh Graph-Theoretic, “Analysis of Struc-

tured Peer-to-Peer Systems: Routing Distances and Fault Resilience”. In Proc. of the ACM
SIGCOMM ’03 Conference, 2003.

10. Stanley Milgram. “The Small World Problem”. In Psychology Today, pp. 60–67, May 1967.
11. Gurmeet Singh Manku, Mayank Bawa, and Prabhakar Raghavan. “Symphony: Distributed

hashing in a Small World”. In Proc. of USENIX Symp.on Internet Technologies and Systems
(USITS), March 2003.

12. Gurmeet Singh Manku, Moni Naor, and Udi Wieder. “Know thy Neighbor’s Neighbor: The
Power of Lookahead in Randomized P2P Networks”. Proceedings of 36th ACM Symp. on
Theory of Computing (STOC ’04), pages 54–63, June 2004.

13. Chip Martel and Van Nguyen. “Analyzing Kleinberg’s (and other) Small–world models”. In
the 23rd ACM Symposium on Principles of Distributed Computing, pages 179–188, 2004.

14. David Newth and Jeff Ash. “Evolving cascading failure resilience in complex networks”. In
Proc. of 8th Asia Pacific Symp. on Intelligent and Evolutionary Systems, December 2004.

15. Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank
Dabek, and Hari Balakrishnan. “Chord: A Scalable Peer-to-Peer Lookup Protocol for Inter-
net Applications”. In IEEE/ACM Trans. Networking, Vol. 11, No. 1, pp. 17–32, 2003.

16. Duncan J. Watts and Steven H. Strogatz. “Collective dynamics of ‘smallworld’ networks”.
In Nature, volume 393, Macmillan Publishers Ltd, pages 440–442, June 1998.

Faster Centralized Communication in Radio Networks

Ferdinando Cicalese1,�, Fredrik Manne2,��, and Qin Xin2,��

1 AG Genominformatik, Technische Fakultät, Universität Bielefeld, Germany
nando@cebitec.uni-bielefeld.de

2 Department of Informatics, The University of Bergen, Norway
{fredrikm, xin}@ii.uib.no

Abstract. We study the communication primitives of broadcasting (one-to-all
communication) and gossiping (all-to-all communication) in known topology ra-
dio networks, i.e., where for each primitive the schedule of transmissions is pre-
computed based on full knowledge about the size and the topology of the network.
We show that gossiping can be completed in O(D+ Δ log n

log Δ−log log n
) time units in

any radio network of size n, diameter D and maximum degree Δ = Ω(log n).
This is an almost optimal schedule in the sense that there exists a radio net-
work topology, such as: a Δ-regular tree in which the radio gossiping cannot
be completed in less than Ω(D + Δ log n

log Δ
) units of time. Moreover, we show a

D +O(log3 n
log log n

) schedule for the broadcast task. Both our transmission schemes
significantly improve upon the currently best known schedules in Gąsieniec, Pe-
leg and Xin [PODC’05], i.e., a O(D + Δ log n) time schedule for gossiping and
a D + O(log3 n) time schedule for broadcast. Our broadcasting schedule also
improves, for large D, a very recent O(D + log2 n) time broadcasting schedule
by Kowalski and Pelc.

Keywords: Centralized radio networks, broadcasting, gossiping.

1 Introduction

We consider the following model of a radio network: an undirected connected graph
G = (V,E), where V represents the set of nodes of the network and E contains un-
ordered pairs of distinct nodes, such that (v, w) ∈ E iff the transmissions of node v can
directly reach node w and vice versa (the reachability of transmissions is assumed to be
a symmetric relation). In this case, we say that the nodes v and w are neighbours in G.
Note that in a radio network, a message transmitted by a node is always sent to all of its
neighbors.

The degree of a node w is the number of its neighbours. We use Δ to denote the
maximum degree of the network, i.e., the maximum degree of any node in the network.
The size of the network is the number of nodes n = |V |.

Communication in the network is synchronous and consists of a sequence of com-
munication steps. In each step, a node v either transmits or listens. If v transmits, then

� Supported by the Sofja Kovalevskaja Award 2004 of the Alexander von Humboldt Stiftung.
�� Supported by the Research Council of Norway through the SPECTRUM project.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 339–348, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

340 F. Cicalese, F. Manne, and Q. Xin

the transmitted message reaches each of its neighbours by the end of this step. However,
a node w adjacent to v successfully receives this message iff in this step w is listening
and v is the only transmitting node among w’s neighbors. If node w is adjacent to a
transmitting node but it is not listening, or it is adjacent to more than one transmitting
node, then a collision occurs and w does not retrieve any message in this step.

The two classical problems of information dissemination in computer networks are
the broadcasting problem and the gossiping problem. The broadcasting problem re-
quires distributing a particular message from a distinguished source node to all other
nodes in the network. In the gossiping problem, each node v in the network initially
holds a message mv, and the aim is to distribute all messages to all nodes. For both
problems, one generally considers as the efficiency criterion the minimization of the
time needed to complete the task.

In the model considered here, the running time of a communication schedule is deter-
mined by the number of time steps required to complete the communication task. This
means that we do not account for any internal computation within individual nodes.
Moreover, no limit is placed on the length of a message which one node can transmit
in one step. In particular, this assumption plays an important role in the case of the
gossiping problem, where it is then assumed that in each step when a node transmits, it
transmits all the messages it has collected by that time. (i.e., the ones received and its
own one.)

Our schemes rely on the assumption that the communication algorithm can use
complete information about the network topology. Such topology-based communica-
tion algorithms are useful whenever the underlying radio network has a fairly stable
topology/infrastructure. As long as no changes occur in the network topology during
the execution of the algorithm, the tasks of broadcasting and gossiping will be com-
pleted successfully. In this extended abstract we do not touch upon reliability issues.
However, we remark that it is possible to increase the level of fault-tolerance in our
algorithms, at the expense of some small extra time consumption. We defer this issue
to the extended version of this paper.

Our results. We provide a new (efficiently computable) deterministic schedule that uses
O(D + Δ logn

logΔ−log logn) time units to complete the gossiping task in any radio network
of size n, diameterD and maximum degreeΔ = Ω(log n). This significantly improves
on the previously known best schedule, i.e., the O(D + Δ logn) schedule of [10].
Remarkably, our new gossiping scheme constitutes an almost optimal schedule in the
sense that there exists a radio network topology, specifically a Δ-regular tree, in which
the radio gossiping cannot be completed in less than Ω(D + Δ logn

logΔ) units of time.
For the broadcast task, we show a new (efficiently computable) radio schedule that

works in time D + O(log3 n
log logn), improving the currently best published result for ar-

bitrary topology radio networks, i.e., the D + O(log3 n) time schedule proposed by
Gąsieniec et al. in [10]. It is noticeable that for large D, our scheme also outperforms
the very recent (asymptotically optimal)O(D+ log2 n) time broadcasting schedule by
Kowalski and Pelc in [12]. This is because of the significantly larger coefficient of the
D term hidden in the asymptotic notation. In fact, in our case the D term comes with
coefficient 1.

Faster Centralized Communication in Radio Networks 341

Related work. The work on communication in known topology radio networks was
initiated in the context of the broadcasting problem. In [3], Chlamtac and Weinstein
prove that the broadcasting task can be completed in time O(D log2 n) for every n-
vertex radio network of diameterD. AnΩ(log2 n) time lower bound was proved for the
family of graphs of radius 2 by Alon et al [1]. In [5], Elkin and Kortsarz give an efficient
deterministic construction of a broadcasting schedule of lengthD+O(log4 n) together
with a D + O(log3 n) schedule for planar graphs. Recently, Gąsieniec, Peleg and Xin
[10] showed that a D +O(log3 n) schedule exists for the broadcast task, that works in
any radio network. In the same paper, the authors also provide an optimal randomized
broadcasting schedule of length D+O(log2 n) and a new broadcasting schedule using
fewer than 3D time slots on planar graphs. A D+O(logn)-time broadcasting schedule
for planar graphs has been showed in [13] by Manne, Wang and Xin. Very recently,
a O(D + log2 n) time deterministic broadcasting schedule for any radio network was
proposed by Kowalski and Pelc in [12]. This is asymptotically optimal unless NP ⊆
BPTIME(nO(log logn)) [12]. Nonetheless, for large D, our D + O(log3 n

log log n) time
broadcasting scheme outperforms the one in [12], because of the larger coefficient of
the D term hidden in the asymptotic notation describing the time evaluation of this
latter scheme.

Efficient radio broadcasting algorithms for several special types of network topolo-
gies can be found in Diks et al. [4]. For general networks, however, it is known that the
computation of an optimal (radio) broadcast schedule is NP-hard, even if the underlying
graph is embedded in the plane [2, 15].

Radio gossiping in networks with known topology was first studied in the context of
radio communication with messages of limited size, by Gąsieniec and Potapov in [8].
They also proposed several optimal or close to optimalO(n)-time gossiping procedures
for various standard network topologies, including lines, rings, stars and free trees. For
general topology radio network a O(n log2 n) gossiping scheme is provided and it is
proved that there exists a radio network topology in which the gossiping (with unit size
messages) requiresΩ(n logn) time. In [14], Manne and Xin show the optimality of this
bound by providing an O(n log n)-time gossiping schedule with unit size messages in
any radio network. The first work on radio gossiping in known topology networks with
arbitrarily large messages is [9], where several optimal gossiping schedules are shown
for a wide range of radio network topologies. For arbitrary topology radio networks, an
O(D + Δ logn) schedule was given by Gąsieniec, Peleg and Xin in [10]. To the best
of our knowledge no better result is known to date for arbitrary topology.

2 Gossiping in General Graphs with Known Topology

The gossiping task can be performed in two consecutive phases. During the first phase
we gather all individual messages in one (central) point of the graph. Then, during the
second phase, the collection of individual messages is broadcast to all nodes in the net-
work. We start this section with the presentation of a simple gathering procedure that
works in time O((D + Δ) logn

logΔ−log logn) in free trees. Later we show how to choose
a spanning breadth-first (BFS) tree in an arbitrary graph G in order to gather (along its
branches) all messages inG also in timeO((D+Δ) log n

logΔ−log logn), despite the additional

342 F. Cicalese, F. Manne, and Q. Xin

edges in G which might potentially cause additional collisions. Finally, we show how
the gathering process can be pipelined and sped up to run inO(D+ Δ logn

logΔ−log logn) time.

A super-ranking procedure. Given an arbitrary tree, we choose its central node c as
the root. Then, the nodes in the tree (rooted at c) are partitioned into consecutive layers
Li = {v | dist(c, v) = i}, for i = 0, .., r where r is a radius of the tree. We denote the
size of each layer Li by |Li|.

We use a non-standard approach for ranking the nodes in a rooted tree, which we
call super-ranking. The super-ranking depends on an integer parameter 2 ≤ x ≤ Δ,
that for our purposes will be optimized later. Specifically, for every leaf v we define
rank(v, x) = 1. Then, for a non-leaf node, v with children v1, . . . , vk, we define
rank(v, x) as follows. Let r̂ = maxi=1,...,k{rank(vi, x)}. If at least x of the children
of v have rank r̂, then rank(v, x) = r̂ + 1 otherwise rank(v, x) = r̂.

For each x ≥ 2, we define r[x]max = maxv∈T rank(v, x). As an immediate conse-
quence of the definition of rank(·, ·) we have the following.

Lemma 1. Let T be a tree with n nodes of maximum degreeΔ. Then, r[x]max ≤ �logx n�,
for each 2 ≤ x ≤ Δ.

Note that when x = 2 we obtain the standard ranking procedure, that has been em-
ployed in the context of radio communication in known topology networks in [6, 9, 10].
Previously this same ranking had been used to define the Strahler number of binary
trees, introduced in hydrogeology [16] and extensively studied in computer science (cf.
[17] and the references therein).

The schedule for gathering messages at the root is now defined in stages using the
super-ranked tree under the assumption that the value of the parameter x has been fixed.
For the sake of the analysis, we will optimize its value later. We partition the nodes of
the tree into different rank sets that are meant to separate the stages in which nodes are
transmitting, i.e., nodes from different rank sets transmit in different stages. For y ≥ 2,
let r[y]max be the maximum rank for a node of T according to the super-ranking with
parameter y. Recall that r[y]max ≤ �logy n�. Then, let Ri(y) = {v | rank(v, y) = i},

where 1 ≤ i ≤ r
[y]
max.

We use the above rank sets to partition the node set as follows. In particular, we shall
use the ranking of the nodes both for the parameter y set to a fixed parameter x > 2 and
to 2.

Definition 1. We partition the set of nodes as follows:
The fast transmission set is given by F kj = {v | v ∈ Lk ∩ Rj(2) and parent(v) ∈
Rj(2)}. Also define Fj =

⋃D
k=1 F

k
j and F =

⋃r[2]max

j=1 Fj .

The slow transmission set is given by Skj = {v | v ∈ Lk ∩ Rj(2) and parent(v) ∈
Rp(2), for some p > j; and rank(v, x) = rank(parent(v), x), x > 2}. Also define

Sj =
⋃D
k=1 S

k
j and S =

⋃r[2]max

j=1 Sj .

The super-slow transmission set is given bySSkj = {v | v∈Lk∩Rj(x) and parent(v)∈
Ri(x), i > j}. Accordingly, define SSj =

⋃D
k=1 SS

k
j and SS =

⋃r[x]
max

j=1 SSj .

Faster Centralized Communication in Radio Networks 343

Lemma 2. Fix positive integers i ≤ r
[x]
max, j ≤ r

[2]
max and k ≤ D. Then, during the

ith stage, all nodes in F kj can transmit to their parents simultaneously without any
collisions.

Proof. Consider any two distinct nodes u and v in F kj , and suppose they interfere with
each other. This is true if they have a neighbor in Lk−1 in common. Obviously, u
and v are on the same level and must therefore have the same parent y in the tree.
Moreover, according to the definition of the fast transmission set F kj , u, v, y ∈ Rj(2).
However, according to the definition of the super-ranking procedure, if rank(u, 2) =
rank(v, 2) = j then rank(y, 2) must be at least j+1. Hence the nodes u and v cannot
both belong to F kj , which leads to a contradiction.

Lemma 3. Fix positive integers i ≤ r
[x]
max, j ≤ r

[2]
max and k ≤ D. Then, all messages

from nodes in Skj ∩Ri(x) can be gathered in their parents in at most x− 1 time units.

Proof. By Definition 1 we have: For each node v in Skj ∩Ri(x) we have that parent(v)

has at most x − 1 children in Skj ∩ Ri(x), for i = 1, 2, ..., r[x]max ≤ �logx n�, j =

1, 2, ..., r[2]max ≤ �logn� and k = 1, .., D. Now, using the above claim, the desired result
is achieved by simply letting each parent of nodes in Skj ∩Ri(x) collect messages from
one child at a time.

We shall use the following result from [10].

Proposition 1. [10] There exists a gathering procedure Γ such that in any graph G
of maximum degree ΔG and diameter DG the gossiping task, and in particular the
gathering stage, can be completed in time O(DG +ΔG logn).

The following procedure moves messages from all nodes v with rank(v, x) = i into
their lowest ancestor u with rank(u, x) ≥ i + 1, where x > 2, using the gathering
procedure Γ from the previous proposition.

Procedure SUPER-GATHERING(i);

1. Move messages from nodes in (F ∪ S) ∩Ri(x) to SSi;
using the gathering procedure Γ in Proposition 1.

2. Move messages from nodes in SSi to their parents;
all parents collect their messages from their children in SSi one by one.

Note that the subtrees induced by the nodes in Ri(x) have maximum degree ≤ x. Thus,
by Proposition 1 and Lemma 3, we have that the time complexity of step 1 is O(D +
x logn). The time complexity of step 2 is bounded by O(Δ), whereΔ is the maximum

degree of the tree. By Lemma 1, r[x]max ≤ �logx n�. Thus, we have that the procedure
SUPER-GATHERING completes the gathering stage in timeO((D+Δ+x log n) logx n).
Since we can follow this with the trivial broadcasting stage following in timeO(D), we
have proved the following.

Theorem 1. In any tree of size n, diameter D and maximum degree Δ, the gossiping
task can be completed in time O((D + Δ + x logn) logx n), where 2 < x ≤ Δ. In

344 F. Cicalese, F. Manne, and Q. Xin

particular when Δ = Ω(log n), by choosing x = Δ
logn , we obtain the bound O((D +

Δ) logn
logΔ−log logn).

Gathering messages in arbitrary graphs. We start this section with the introduction
of the novel concept of a super-gathering spanning tree (SGST). These trees play a
crucial role in our gossiping-scheme for arbitrary graphs. We shall show anO(n3)-time
algorithm that constructs a SGST in an arbitrary graph G of size n and diameter D.
In the concluding part of this section, we propose a new more efficient schedule that
completes message gathering in time O(D + Δ logn

logΔ−log logn).

A super-gathering spanning tree (SGST) for a graph G = (V,E) is any BFS spanning
tree TG of G, ranked according to the super-ranking above and satisfying1

(1) TG is rooted at the central node c of G,
(2) TG is ranked,
(3) all nodes in F kj of TG are able to transmit their messages to their parents simulta-

neously without any collision, for all 1 ≤ k ≤ D and 1 ≤ j ≤ r
[2]
max ≤ �logn�

(4) every node v in Skj ∩ Ri(x) of TG has following property: parent(v) has at

most x − 1 neighbours in Skj ∩ Ri(x), for all i = 1, 2, ..., r[x]max ≤ �logx n�,

j = 1, 2, ..., r[2]max ≤ �logn� and k = 1, .., D.

Any BFS spanning tree TG of G satisfying only conditions (1),(2), and (3) above is
called a gathering spanning tree, or simply GST. Figure 1 shows an example of a GST.
We recall the following result from [10].

4

1 3 3 1

3 1 1 1 3 1

2 2 1 1 3 1

2 1 1 1 3 1

1 2 1 1 2 1

1 1 1 1 1 1

1 1

Original Graph Gathering−spanning−tree with ranks

Fig. 1. Creating a gathering spanning tree

Theorem 2. There exists an efficient (O(n2 logn) time) construction of a GST on an
arbitrary graph G. (see Theorem 2.5 in [10])

The procedure SUPER-GATHERING-SPANNING-TREE constructs a super-gathering-
spanning-tree SGST ⊆ G on the basis of a GST⊆ G using a pruning process. The
pruning process is performed layer by layer starting from the bottom (layer D) of the

1 We use the definition 1 of the ranking partitions given above.

Faster Centralized Communication in Radio Networks 345

GST. For each layer we gradually fix the parents of all nodes which violate condition
(4) above, i.e., each v in Skj ∩ Ri(x) of GST, such that parent(v) has at least x neigh-
bours in Skj ∩Ri(x). In fact, for our gathering-scheme, v is a node which is potentially
involved in collisions. In each layer, the pruning process starts with the nodes of highest
rank in the current layer. We use NB(v) to denote the set of neighbours of the node v
in the original graph G. In Figure 2, we show the output of the SUPER-GATHERING-
SPANNING-TREE procedure when it is run on the GST presented in Figure 1.

Procedure SUPER-GATHERING-SPANNING-TREE(GST);
(1) Fix rank(w, 2) for every node w ∈ V ;
(2) For k := D down to 1 do
(3) For i := r

[x]
max down to 1 do

(4) For j := r
[2]
max down to 1 do

(5) While ∃v ∈ Sk
j ∩ Ri(x) in GST such that |Sk

j ∩ Ri(x) ∩ NB(parent(v))| ≥ x do
(6) rank(parent(v), x) = i + 1; //rank(v, x) = i
(7) UPDATE = {u|u ∈ Sk

j ∩ Ri(x) ∩ NB(parent(v))};
(8) SSk

rank(v,x)
= SSk

rank(v,x)
∪ UPDATE;

(9) EGST = EGST − {(u, parent(u))|u ∈ UPDATE};
(10) EGST = EGST ∪ {(u, parent(v))|u ∈ UPDATE};
(11) Sk

j = Sk
j − {u|u ∈ UPDATE};

(12) re-set rank(w, x) for each w ∈ V ;
(13) recompute the sets S and SS in GST

We now prove that Procedure SUPER-GATHERING-SPANNING-TREE constructs the
SGST of an arbitrary graphG = (V,E) in time O(n3). The following technical lemma
is easily proved by induction.

Lemma 4. After completing the pruning process at layer k in GST , the structure of
edges inGST between layers k−1, .., D is fixed, i.e., each node v within layers k, ..,D
in all sets Skj ∩ Ri(x), satisfy the following property: parent(v) has at most x − 1

neighbours in Skj ∩Ri(x), for i = 1, .., r[x]max ≤ �logx n� and j = 1, .., r[2]max ≤ �logn�.

By the above lemma, Theorem 2 and the fact that procedure SUPER-GATHERING-
SPANNING-TREE preserves the property of the GST it starts with, we get

Theorem 3. For an arbitrary graph there exists an O(n3) time construction of a
SGST .

O((D + Δ) logn
logΔ−log logn)-time gossiping. Using the ranks computed on the SGST ,

the nodes of the graph are partitioned into distinct rank sets Ri = {v|rank(v, x) = i},
where 1 ≤ i ≤ r

[x]
max ≤ �logx n�. This allows the gathering of all messages into the

central node c, stage by stage, using the structure of the SGST as follows. During the
ith stage, all messages from nodes in (F ∪ S) ∩ Ri(x) are first moved to the nodes
in SSi. Later, we move all messages from nodes in SSi to their parents in SGST .
In order to avoid collisions between transmissions originating at neighbouring BFS
layers we divide the sequence of transmission time slots into three separate (interleaved)

346 F. Cicalese, F. Manne, and Q. Xin

1 1

1

1

1

1

1 1 1 1 1 1

11111

1 1 1 1 1

1111

1 1 1 1 1

1112

2

1

1 1

1

1

1

1

1 1 1 1 1 1

11112

1 1 1 2 1

1111

1 1 1 2 1

1112

2

2

4

3 3

3 3

3

3

2 2

2

2 2

1 1 1 1

1 1 1 1

111

1 1 1 1

1

111111

1 1 1

4

3 3

3 3

3

3

2 2

2

2 2

1 1 1 1

1 1 1 1

111

1 1 1 1

1

111111

1 1 1

Fig. 2. From gathering-spanning-tree to super-gathering-spanning-tree

subsequences of time slots. Specifically, the nodes in layer Lj transmit in time slot t iff
t ≡ j (mod 3).

Lemma 5. In stage i, the nodes in the set SSi of the SGST transmit their messages to
their parents in time O(Δ).

Proof. By [9, Lemma 4], one can move all messages between two partitions of a bipar-
tite graph with maximum degree Δ (in this case two consecutive BFS layers) in time
Δ. The solution is based on the use of the minimal covering set. Note that during this
process a (possibly) combined message m sent by a node v ∈ SSi may be delivered
to the parent of another transmitting node w ∈ SSi rather than to parent(v). But this
is fine, since now the time of delivery of the message m to the root of the tree is con-
trolled by the delivery mechanism of the node w. Obviously this flipping effect can be
observed a number of times in various parts of the tree, though each change of the route
does not change the delivering mechanism at all.

In order to avoid extra collisions caused by nodes at neighbouring BFS layers, we
use the solution with three separate interleaved subsequences of time slots incurring a
slowdown with a multiplicative factor of 3.

When the gathering stage is completed, the gossiping problem is reduced to the broad-
casting problem. We distribute all messages to every node in the network by reversing
the direction and the time of transmission of the gathering stage. In section 3 we prove
that the broadcasting stage can be performed faster in graphs with large Δ, i.e., in time
D +O(log3 n

log log n).

Theorem 4. In any graph G with Δ = Ω(log n), the gossiping task can be completed
in time O((D +Δ) logn

logΔ−log logn).

Proof. During the ith stage, all messages from (F ∪ S) ∩ Ri(x) are moved to SSi.
Because of property (4) of the SGST, Proposition 1 assures that this can be achieved in
timeO(D+x log n). By Lemma 5, all nodes in the set SSi can transmit their messages
to their parents in SGST in time O(Δ). By Lemma 1, this process is repeated at most
logx n times. Thus, the gossiping time can be bounded byO((D+Δ+x log n) logx n).
The desired result follows directly by setting x = Δ

logn .

Faster Centralized Communication in Radio Networks 347

O(D+ Δ logn
logΔ−log log n) -time gossiping. The result of Theorem 4 is obtained by a trans-

mission process consisting of �logx n� separate stages, each costingO(D+Δ+x log n)
units of time. We shall now show that the transmissions of different stages can be
pipelined and a new gossiping schedule obtained of length O(D + Δ logn

logΔ−log logn).
The communication process will be split into consecutive blocks of 9 time units

each. The first 3 units of each block are used for fast transmissions from the set F , the
middle 3 units are reserved for slow transmissions from the set S and the remaining 3
are used for super-slow transmissions of nodes from the set SS. We use 3 units of time
for each type of transmission in order to prevent collisions between neighbouring BFS
layers, like we did in the last section. Recall that we can move all messages between
two consecutive BFS layers in time Δ [9, Lemma 4]. Moreover, the same result in
[9] together with property (4) of the GSTS, allows us to move all messages stored in
Skj ∩Ri(x) to their parents in SGST within time x− 1.

We compute for each node v ∈ Sj ∩ Ri(x) at layer k the number of a step 1 ≤
s(v) ≤ x − 1 in which node v can transmit without interruption from other nodes in
Sj ∩ Ri(x) also in layer k. We also compute for each node u ∈ SSi at layer k the
number of a step 1 ≤ ss(u) ≤ Δ in which the node u can transmit without interruption
from other nodes in SSi also in layer k.

Let v be a node at layer k and with rank(v, 2) = j and rank(v, x) = i, in SGST.
Depending on if v belongs to the set F , to the set S or to the set SS, it will transmit in
the time block t(v) given by:

t(v) =

⎧
⎨

⎩

(D − k + 1) + (j − 1)(x − 1) + (i − 1) (Δ + (x − 1) log n) if v ∈ F
(D − k + 1) + (j − 1)(x − 1) + s(v) + (i − 1) (Δ + (x − 1) log n) if v ∈ S
(D − k + 1) + log n(x − 1) + (i − 1) (Δ + (x − 1) log n) + ss(v) if v ∈ SS

We observe that any node v in the SGST requires at most D fast transmissions,
logn slow transmissions and logx n super-slow transmissions to deliver its message to
the root of the SGST if there is no collision during each transmission. Moreover, the
above definition of t(v) results in the the following lemma, whose proof is deferred to
the full version of the paper.

Lemma 6. A node v transmits its message as well as all messages collected from its
descendants towards its parent in SGST successfully during the time block allocated to
it by the transmission pattern.

Since the number of time blocks used is ≤ D+ (x · logn+Δ) · (logx n+ 1), we have

Theorem 5. In any graph G, the gossiping task can be completed in time O(D + (x ·
logn + Δ) logx n), where 2 ≤ x ≤ Δ. In particular when Δ = Ω(log n), by setting
x = Δ

logn the bound becomes O(D + Δ logn
logΔ−log logn).

By employing the solution of the equation Δ = x log x one can obtained an improved
O(D+ Δ logn

logΔ−log logn+log log log� n)-time gossiping schedule. Moreover, a recursive pro-

cedure can be employed to attain the boundO(D+ Δ logn
logΔ−log logn+logc log log� n), where

c is some constant.

348 F. Cicalese, F. Manne, and Q. Xin

3 Final Remarks: Broadcasting in Graphs with Known Topology

By exploiting the structure of the SGST it is possible to obtain a very efficient schedul-
ing algorithm for completing the broadcasting task in a general known topology radio
network. The following theorem summarizes our findings. Due to the space constaints
we defer the details to the full version of the paper.

Theorem 6. For any n node radio network of diameter D, a broadcasting schedule of
length D +O(log3 n

log logn) can be deterministically constructed in polynomial time.

References

1. N. Alon, A. Bar-Noy, N. Linial and D. Peleg. A lower bound for radio broadcast. J. Computer
and System Sciences 43, (1991), 290 - 298.

2. I. Chlamtac and S. Kutten. On broadcasting in radio networks-problem analysis and protocol
design. IEEE Trans. on Communications 33, (1985), pp. 1240-1246.

3. I. Chlamtac and O. Weinstein. The wave expansion approach to broadcasting in multihop
radio networks. IEEE Trans. on Communications 39, (1991), pp. 426-433.

4. K. Diks, E. Kranakis, D. Krizanc and A. Pelc. The impact of information on broadcasting
time in linear radio networks. Theoretical Computer Science, 287, (2002), pp. 449-471.

5. M. Elkin and G. Kortsarz. Improved broadcast schedule for radio networks. Proc. 16th ACM-
SIAM Symp. on Discrete Algorithms, 2005, pp. 222-231.

6. I. Gaber and Y. Mansour. Broadcast in radio networks. Proc. 6th ACM-SIAM Symp. on Dis-
crete Algorithms, 1995, pp. 577-585.

7. L. Gąsieniec, E. Kranakis, A. Pelc and Q. Xin. Deterministic M2M multicast in radio net-
works. Proc. 31st ICALP, 2004, LNCS 3142, pp. 670-682.

8. L. Gąsieniec and I. Potapov, Gossiping with unit messages in known radio networks. Proc.
2nd IFIP Int. Conference on Theoretical Computer Science, 2002, pp. 193-205.

9. L. Gąsieniec, I. Potapov and Q. Xin. Efficient gossiping in known radio networks. Proc. 11th
SIROCCO, 2004, LNCS 3104, pp. 173-184.

10. L. Gąsieniec, D. Peleg and Q. Xin. Faster communication in known topology radio networks.
Proc. 24th Annual ACM SIGACT-SIGOPS PODC, 2005, pp. 129-137.

11. L. Gąsieniec, T. Radzik and Q. Xin. Faster deterministic gossiping in ad-hoc radio networks.
Proc. 9th Scandinavian Workshop on Algorithm Theory, 2004, LNCS 3111, pp. 397-407.

12. D. Kowalski and A. Pelc. Optimal deterministic broadcasting in known topology radio net-
works. Distributed Computing, (2006), to appear.

13. F. Manne, S. Wang and Q. Xin. Faster radio broadcast in planar graphs. Manuscript, 2006.
14. F. Manne and Q. Xin. Optimal gossiping with unit size messages in known radio networks.

Proc. 3rd Workshop on Combinatorial and Algorithmic Aspects of Networking, to appear.
15. A. Sen and M.L. Huson. A new model for scheduling packet radio networks. Proc. 15th Joint

Conf. of IEEE Computer and Communication Societies, 1996, pp. 1116-1124.
16. A.N. Strahler. Hypsometric (area-altitude) analysis of erosional topology. Bull. Geol. Soc.

Amer. 63, (1952), pp. 117–1142.
17. X.G. Viennot. A Strahler bijection between Dyck paths and planar trees. Discrete Mathemat-

ics 246, (2002), pp. 317–329.

On the Runtime and Robustness of
Randomized Broadcasting�

Robert Elsässer and Thomas Sauerwald

University of Paderborn
Institute for Computer Science

33102 Paderborn, Germany
{elsa, sauerwal}@upb.de

Abstract. One of the most frequently studied problems in the context
of information dissemination in communication networks is the broad-
casting problem. In this paper, we study the following randomized broad-
casting protocol. At some time t an information r is placed at one of the
nodes of a graph. In the succeeding steps, each informed node chooses
one neighbor, independently and uniformly at random, and informs this
neighbor by sending a copy of r to it.

In this work, we develop tight bounds on the runtime of the algorithm
described above, and analyze its robustness. First, it is shown that on Δ-
regular graphs this algorithm requires at least log2− 1

Δ
N+log(Δ

Δ−1)Δ N−
o(log N) rounds to inform all N nodes. For general graphs, we prove a
slightly weaker lower bound and improve the upper bound of Feige et. al.
[8] to (1+o(1))N ln N which implies that K1,N−1 is the worst-case graph.
Furthermore, we determine the worst-case-ratio between the runtime of
a fastest deterministic algorithm and the randomized one.

This paper also contains an investigation of the robustness of this
broadcasting algorithm against random node failures. We show that if
the informed nodes are allowed to fail in some step with probability 1−p,
then the broadcasting time increases by a factor of at most 6/p. Finally,
the previous result is applied to state some asymptotically optimal up-
per bounds for the runtime of randomized broadcasting in Cartesian
products of graphs and to determine the performance of agent based
broadcasting [6] in graphs with good expansion properties.

1 Introduction

The study of information spreading in large networks has various fields of
application in distributed computing. Consider for example the maintenance of
replicated databases on name servers in a large network [5]. There are updates

� This work is partially supported by German Science Foundation (DFG) Research
Training Group GK-693 of the Paderborn Institute for Scientific Computation
(PaSCo) and by Integrated Project IST-15964 "Algorithmic Principles for Build-
ing Efficient Overlay Computers" (AEOLUS) of the European Union.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 349–358, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

350 R. Elsässer and T. Sauerwald

injected at various nodes, and these updates must be propagated to all the nodes
in the network. In each step, a processor and its neighbor check whether their
copies of the database agree, and if not, they perform the necessary updates. In
order to be able to let all copies of the database converge to the same content,
efficient broadcasting algorithms have to be developed.

There is an enormous amount of experimental and theoretical study of broad-
casting algorithms in various models and on different network topologies. Several
(deterministic and randomized) algorithms have been developed and analyzed.
In this paper we only concentrate on the efficiency of randomized broadcast-
ing and mainly consider the runtime of the so called push algorithm [5] which
is defined in the following way: In a graph G = (V,E), where N := |V |, we
place at some time t an information on one of the nodes. Then, in every succed-
ing round, each informed vertex sends the information to one of its neighbors
selected independently and uniformly at random.

The advantage of randomized broadcasting is in its inherent robustness
against several kinds of failures and dynamical changes compared to determin-
istic schemes that either need substantially more time [9] or can tolerate only
a relatively small number of faults [15]. Most papers dealing with randomized
broadcasting analyze the runtime of the push algorithm in different graph classes.
Pittel [19] proved that with a certain probability an information is spread to all
nodes by the push algorithm within log2N + lnN + O(1) steps in a complete
graph. Feige et al. [8] determined asymptotically optimal upper bounds for the
runtime of this algorithm on several graph classes. They showed that in random
graphs and hypercubes of size N , all nodes of the graph receive the information
within O(logN) steps, with high probability1 and also proved that in bounded
degree graphs the number of broadcasting steps is bounded by O(D + logN),
where D is the diameter of the graph, and provided simple bounds on the broad-
casting time in general graphs. In [7], we could prove optimality also on Star
graphs [1].

A model related to the push algorithm has been introduced in [5] and is
called pull model. Here, any (informed or uninformed) node is allowed to call a
randomly chosen neighbor, and the information is sent from the called to the
calling node. Please note, these kind of transmission makes only sense if new or
updated informations occur frequently in the network so that every node places
a random call in each round anyway.

It was observed in complete graphs of size N that the push algorithm needs
at least Ω(N logN) transmissions to inform all nodes of the graph, w.h.p. How-
ever, in the case of the pull algorithm if a constant fraction of the nodes are
informed, then within O(log logN) additional steps every node of this graph be-
comes informed as well, w.h.p. [5, 14]. This implies that in such graphs at most
O(N log logN) transmissions are needed if the distribution of the information is
stopped at the right time.

1 When we write “with high probability” or “w.h.p.” we mean with probability at least
1 − 1/N .

On the Runtime and Robustness of Randomized Broadcasting 351

In [6], we introduced the so called agent based broadcasting. In this model, N
agents are distributed among the nodes and jump from one node to another via
edges which are chosen uniformly at random in each time step. An information
r placed initially on one node is carried by the agents to other vertices. If an
agent visits an informed node, then the agent becomes informed, and any node
visited by an informed agent becomes informed as well. Also in this environment,
O(logN) steps are sufficient to distribute r among all nodes in Random graphs.
We also could prove in this model that bounded degree graphs support optimal
broadcasting. Furthermore, we point at several examples, on which the agent-
based broadcasting algorithm and the push-algorithm considered in this paper
behave differently.

We should also note that several broadcasting models have been analyzed
in scenarios that allow nodes and/or edges to fail during the algorithm is exe-
cuted (e.g. [13, 14, 17]). Most of these papers deal with the worst case asymptotic
behavior of broadcasting algorithms when the failures are goverened by an ad-
versary, however, in some papers the random failure scenario is also considered.

In this paper we study the push algorithm and examine its runtime and ro-
bustness in general graphs. Section 2 consists of several lower and upper bounds
on the runtime. First we show that in any Δ-regular graph the push algorithm
requires log2− 1

Δ
N + log(Δ

Δ−1)Δ N − o(logN) rounds to inform all nodes of the
graph, w.h.p. Since this function is decreasing in Δ, this result implies that
among regular graphs, this algorithm performs best in complete graphs (cf. [19]).
We also analyze the runtime of the push algorithm in general graphs, and prove
that log2− 1

Δ
N+log4N−o(logN) steps are necessary, w.h.p., to inform all nodes

of an arbitrary graph. Moreover, we extend a result of Feige et.al.[8] by proving
that the graph K1,N−1 is the worst-case-graph and determine in several graphs
the worst-case-ratio between the runtime of an optimal deterministic algorithm
and the push algorithm.

In section 3 we also analyze its robustness against random failures, and show
that if the informed nodes are allowed to fail in some step with probability
1 − p, then the broadcasting time increases by a factor of at most 6/p. An
important implication of this result is that agent based broadcasting [6] has
in many graphs the same asymptotic runtime as the broadcasting algorithm
defined above. Finally, we derive asymptotically tight bounds for the runtime
of randomized broadcasting in Cartesian products of graphs, and compare the
runtime of deterministic and randomized broadcasting in general graphs. The
last section contains our conclusions. Due to space limitations some proofs are
omitted in this extended abstract.

2 Bounds on the Broadcasting Time

2.1 Notations and Definitions

Throughout this paper, let G = (V,E) be an unweighted, simple and connected
graph of size N := |V (G)| and diameter diam(G). We denote by δ and Δ the

352 R. Elsässer and T. Sauerwald

minimum and the maximum degree of G, respectively. As already mentioned, in
this paper we mainly consider the following randomized broadcasting algorithm
(known also as the push model [5]). At the beginning round t = 0 one arbitrary
node owns an information which is to be sent to all other nodes in G. In the
following rounds t = 1, 2, . . ., each informed vertex contacts one neighbor selected
independently and uniformly at random and sends the information to it.

In this paper we focus on the number of required rounds. Let I(t) be
the set of informed nodes at time t and H(t) := V \ I(t). Let RT(G, p) =
mint∈N{Pr [I(t) = V] ≥ p} denote the runtime of our randomized algorithm in
G (guaranteed with probability p), i.e., the number of rounds needed by the push
algorithm to inform all vertices of G with a given probability p. Additionally,
let E [RT(G)] denote the expected runtime. Clearly, in any graph G at least
max{diam(G) + log2N} rounds are always required to inform all nodes.

2.2 Lower Bounds

There exists several techniques to prove lower bounds for deterministic broad-
casting. In most cases these bounds make use of a bounded maximum degree
which often leads to expressions using Fibonacci-Numbers, see e.g. [3], or rely
on the special structure of some graphs [13].

Theorem 1. Let G = (V,E) be an arbitrary Δ-regular graph, where Δ ≥ 2.
Then it holds that

RT(G,Θ(1)) ≥ log2− 1
Δ
N + log(Δ

Δ−1)Δ N − o(logN).

Proof. In order to show the theorem we consider two cases. First, we assume
that 2 ≤ |I(t)| ≤ N/4. Since the set of informed nodes always forms a connected
subgraph, any node v ∈ I(t) has at least one informed neighbor. Therefore, an
informed node contacts in step t some informed neighbor with probability at
least 1/Δ, which implies that E [|I(t)| | |I(t− 1)| = k] ≤ (2 − 1/Δ)k. Then we
obtain by using conditional expectations (see e.g. [18]).

E [|I(t)|] =
N∑

k=0

Pr [|I(t− 1)| = k] · E
[
|I(t)|

∣
∣
∣ |I(t− 1)| = k

]

≤ (2− 1
Δ

) · E [|I(t− 1)|] ≤ (2− 1
Δ

)t.

Now, if c > 0 is any constant, the Markov inequality leads to

Pr
[
|I(log2− 1

Δ
(c
N

4
))| ≥ N/4

]
≤

E

[
|I(log2− 1

Δ
(cN4))|

]

N
4

=
4cN
4N

= c.

In the second case, let t0 be the first time step when |I(t)| ≥ N/4. If v is a
node in V , then the probability that in some round v will not be contacted is

On the Runtime and Robustness of Randomized Broadcasting 353

exactly (Δ−1
Δ)Δ. As in the first case, we have E [|H(t)|] ≥ (Δ−1

Δ)(t−t0)ΔN/2,
and applying the same methods as before, we conclude that if |I(t0)| ≤ N/2 at
time t0, then after log(Δ

Δ−1)Δ(cN/2) additional rounds some node is uninformed
with constant probability. ��

Using the Azuma-Hoeffdings Inequality [18], we could guarantee the lower bound
with much higher probability, however, the analysis would be more complicated.

In [19] Pittel showed that on the complete graph log2N + lnN + o(1) rounds
are both sufficient and necessary with probability 1 − o(1), which matches
asymptotically our lower bound for regular graphs if Δ = N − 1. Since
log2− 1

Δ
N + log(Δ

Δ−1)Δ N is monotonously decreasing in Δ ∈ N, as can be shown
by using Taylor series, the complete graphs have asymptotically the lowest run-
time among all regular graphs.

It is worth mentioning that the assumption of regularity is crucial for the last
proof. One can easily construct non-regular graphs and choose N/2 (connected)
informed nodes such that after less than lnN rounds all nodes will be informed
w.h.p.

Theorem 2. Let G = (V,E) be an arbitrary graph, where N ≥ 3. Then,

RT(G,Θ(1)) ≥ log2− 1
Δ
N + log4N − o(logN).

Proof. Again, we consider two cases. First, we assume that δ(G) ≥ 2. For a fixed
node v ∈ V denote by E [v] the expected number of nodes which contact v in
one round. Note, that

∑
v∈V E [v] = N . We call a node v good if E [v] < 1 + γ

for some γ = Ω(1/ log logN). If we denote by x the number of good nodes, then
it holds that x ≥ N · (1− 1

1+γ).
Now, for any good node v we have E [v] =

∑
w∈N(v)

1
deg(w) ≤ 1 + γ, where

N(v) represents the set of neighbors of v, and deg(w) is the degree of w. Then,
in some round node v is not contacted with probability

∏

w∈N(v)

(
1− 1

deg(w)

)
=

∏

w∈N(v)

(
1− 1

deg(w)

) deg(w)
deg(w)

≥
(1

4

)1+γ
,

since (1 − 1/ deg(w))deg(w) ≥ 1/4 whenever deg(w) ≥ 2. Using the same tech-
niques as in the proof of Theorem 1, we can show that, with probability at least
1/2, more than log2−1/Δ(N4 · (1 − 1

1+γ)) − o(logN) = log2−1/ΔN − o(logN)
rounds are needed to inform N

2 · (1 − 1
1+γ) nodes. Therefore, with constant

probability, there are still N
2 · (1 − 1

1+γ) uninformed good nodes, which are not
contacted in some further round t with probability (1

4)1+γ . The same argu-
ments as before imply that, with probability at least 1/2, we need more than
log41+γ (N4 · (1 − 1

1+γ)) − o(logN) = 1
1+γ log4N − o(logN) additional rounds to

inform all nodes in the graph.
The case δ = 1 is similar, but is omitted due to space limitations. ��

354 R. Elsässer and T. Sauerwald

2.3 Upper Bounds

Proposition 1. For any Δ-regular graph G = (V,E) it holds that E [RT(G)] =
O(N), and for any Δ there exists a Δ-regular graph G such that E [RT(G)] =
Ω(N).

Of course, a similar results holds if δ and Δ differ only by a constant factor.
In [8] it is shown that RT(G, 1−1/N) ≤ 12N lnN. Moreover they gaveK1,N−1

as an example for a graph with a runtime of Ω(N lnN). The following theorem
tightens their upper bound and in particular implies that K1,N−1 is the worst-
case graph.

Theorem 3. For any graph G = (V,E) it holds that

RT(G, 1 − o(1)) ≤ (1 + o(1))N lnN.

It is easy to see, that the runtime in K1,N−1 reduces to the Coupon-Collector-
Problem [18] and (1 + o(1))N lnN rounds are both sufficient and necessary.

2.4 Price of Randomness

In this subsection, we compare the runtime of a fastest deterministic broadcast-
ing algorithm with the runtime of the randomized broadcasting algorithm. Let
PR(G) = supG∈G(RT(G, 1/2)/DT(G)) denote the price of randomness [14] for
some graph class G, where DT(G) is the runtime of an optimal determinsitic
algorithm in G.

Theorem 4. Let R be the set of regular graphs, E the set of regular edge-
transitive graphs, and G the set of general graphs according to Section 2.1. Then,
we have

PR(G) = Θ(N), PR(R) = Θ

(
N

logN

)
and PR(E) = O(logN).

3 Robustness of Randomized Broadcasting and
Applications

In this section we analyze the robustness of the push algorithm against random
node failures. Then this result is applied to derive new bounds on the runtime
of the push-algorithm in Cartesian product of graphs and also related to agent
based broadcasting.

3.1 A Robustness Result

In this section we consider the robustness of the push algorithm against random
failures. We assume here that in each round t, any informed node is allowed
to fail with probability 1 − p for some p ∈ (0, 1), independently of any failure

On the Runtime and Robustness of Randomized Broadcasting 355

in other rounds. However, there might exist failure dependencies between nodes
within one round. We should note that our model is somehow a generalization
of the probabilistic failure-model examined in [13], in which no dependencies
between failures within the same round are allowed.

As described above, only informed vertices are allowed to fail. If an informed
vertex fails in some round t, then it does not choose any communication partner
to send the message. If it is functional, then it executes the push algorithm as
described before. If some informed node is able to send a message, then the
transmission will be completed.

It is worth mentioning, however, that this model can be extended to other
random failure models as well. We should also note here that the results below
can be generalized to the case when restricted dependencies are allowed between
the time steps (e.g. if a node fails in some step t + 1 after being functional in
step t, then it fails for O(1) further rounds). Therefore, this model is well-suited
to describe restricted asynchronicity in a network, in which even if some nodes
are busy for a time period, the messages sent to these nodes do not get lost.

Denote by RT′(G, p) = mint∈N{Pr [I(t) = V] ≥ p} the runtime of the push-
algorithm in the previously described failure model.

Theorem 5. For any graph G it holds that

RT′(G, 1−O(1/N)) ≤ 6
p
· RT(G, 1 −O(1/N)).

Proof. In this proof, we are going to show that any instance of the push algo-
rithm in the failure model can be related to an instance of the push algorithm
without failures. Then, we show that, with very high probability, there is no
large difference between the runtimes of the corresponding instances.

For an instance T of the push algorithm (without failures) let NT,j(v) de-
note the neighbor of v chosen in step i(v) + j, where i(v) denotes the time
step in which v has been informed (according to instance T). Accordingly, let
(NT,j(v))∞j=1 be the sequence of nodes chosen by v in steps i(v)+1, . . . ,∞. Simi-
larly, for any instance T ′ of the push algorithm in the failure model, let N ′T ′,j(v)
denote the neighbor of v chosen in step i′(v) + XT ′,j(v) + j, where i′(v) de-
notes the time step in which v has been informed according to T ′ and XT ′,j(v)
is the number of failures of v before v has been functional j times, i.e., the
number of failures within the first XT ′,j(v) + j steps after v becomes informed.
Again, let (N ′T ′,j(v))

∞
j=1 be the sequence of nodes chosen by v in the steps v is

functional. Furthermore, let RT(T) be the exact runtime of the push algorithm
for instance T , and let RT′(T ′) be the runtime of the push algorithm (in the
failure model) for instance T ′. Hereby, an instance T of the push algorithm is
completely described by the set of sequences ∪v∈V (NT,j(v))∞j=1 and the node
informed at the beginning. However, an instance T ′ is only described by both
sets of sequences ∪v∈V (N ′T ′,j(v))

∞
j=1, ∪v∈V (XT ′,j(v))∞j=1, and the node informed

at the beginning. In the following paragraphs, NT,j(v) is simply denoted by
Nj(v) for any j and v. Let now T ′(∪v∈V (Nj(v))∞j=1) denote the set of instances

356 R. Elsässer and T. Sauerwald

in the failure model, which contain the set of sequences ∪v∈V (Nj(v))∞j=1. Now
we are going to show for any set of sequences ∪v∈V (Nj(v))∞j=1 that at least
(1−O(1/N))|T ′(∪v∈V (Nj(v))∞j=1)| instances of T ′(∪v∈V (Nj(v))∞j=1) will have a
runtime which is less than 6

pRT(∪v∈V (Nj(v))∞j=1).
To show this, we first consider the push algorithm without failures, and an-

alyze for the instance ∪v∈V (Nj(v))∞j=1 some path used by the information to
reach from the starting node u a node v. Let P (u, v) := (u = u1 → u2 →
· · · → un = v) be this path, and define dj := i(uj+1) − i(uj) as the time the
information needs to reach uj+1 from uj,i.e., the time difference between the
time step ui gets the information and the time step ui sends the information
directly to ui+1. If d(P (u, v)) :=

∑n−1
j=1 dj = i(v), then maxv∈V d(P (u, v)) =

RT(∪v∈V (Nj(v))∞j=1) ≥ log2N .
Now we consider some instance T ′ containing ∪v∈V (Nj(v))∞j=1. Obviously, the

path P (u, v) = (u = u1 → u2 → · · · → un = v) still exists in T ′, however, the
time needed for the information to reach ui+1 from ui is now d′j := i′(uj+1) −
i′(uj) = XT ′,dj(uj)+dj . If d′(P (u, v)) :=

∑n−1
j=1 (dj+XT ′,dj (uj)), then RT′(T ′) ≤

maxv∈V d′(P (u, v)). In order to estimate d′(P (u, v)) we define for any time step
t the random variable Xi, which is 0 if the last node informed before step t on
P (u, v) fails in step t, and 1 otherwise. Since any (informed) node fails in some
round with probability 1 − p, independently of the other rounds, Xt = 0 with
probability 1−p, and Xt = 1 with probability p, independently of any other Xj .

Now we show that
∑6/p·max{d(P (u,v)),log2N}

t=1 Xt ≥ d(P (u, v)) with proba-
bility ≥ 1 − 1/N2. Since all Xt are independent from each other, using the
Chernoff bounds [4, 11] (cf. Appendix) where δ = 5/6, we obtain

Pr

⎡

⎣
6/p·d(P (u,v))∑

t=1

Xt ≤ (1− 5
6
)6d(P (u, v))

⎤

⎦≤e−6d(P(u,v))25
72 ≤ e−2d(P (u,v)) ≤ 1

N2 ,

whenever d(P (u, v)) ≥ log2N . If d(P (u, v)) < log2N , then using the same
technique we can show that Pr

[∑6/p·log2N
t=1 Xt ≤ d(P (u, v))

]
≤ 1/N2. This

implies that d′(P (u, v)) ≤ 6/p · max{d(P (u, v)), log2N} with probability 1 −
O(1/N2) for any node v ∈ V . By Markovs inequality, the last statement holds for
any node v ∈ V with probability at least 1−O(1/N). Since maxv∈V d(P (u, v)) ≥
log2N , the theorem follows. ��

3.2 Applications

In the following paragraphs, we use Theorem 5 to derive bounds on the runtime of
agent based broadcasting [6] (cf. Section 1 for the description), which is denoted
in the following paragraphs by AT(G, 1 − O(1/N)) according to the definition
of RT(G, 1−O(1/N)). Since any agent performs an ergodic random walk in the
network, the distribution of the agents converges towards the stationary distri-
bution [16]. However, the distribution of the agents in some round t+1 depends
on their distribution in round t. Therefore, we introduce so-called log-expanding

On the Runtime and Robustness of Randomized Broadcasting 357

graphs. Their good expansion properties guarantee that the distribution of the
agents possess a certain "renewal"-property.

Definition 1. A graph G = (V,E) is a log-expanding graph, if ∀v ∈ V (G) ∃γ =
O(1) : |Bγ(v)| ≥ 5 lnN, where Bγ(v) := {w ∈ V (G) | dist(w, v) ≤ γ}.
Among others, classical random graphs [2], hypercubes [12] and Star graphs [7]
are log-expanding graphs. In [8] and [7] it has been shown that all these graphs
support an optimal runtime of O(logN).

Theorem 6. Let G = (V,E) be a log-expanding graph with δ = Θ(Δ), and
assume that N agents are initially distributed independently and according to
the stationary distribution. Then,

AT(G, 1 −O(1/N)) ≤ O(RT(G, 1−O(1/N))).

Proof. Note, that the stationary distribution of a random walk is given by the
vector π(v) = deg(v)

2|E| for any node v ∈ V (G). Therefore, on an arbitrary node
lies at least one agent with a constant probability c. Now consider some node
v together with Bγ(v). Since |Bγ(v)| ≥ 5 lnN , there are Θ(|Bγ(v)|) agents in
Bγ(v) with probability 1−O(1/N5) by using a Chernoff-Bound. This guarantees
that within the first O(N2) rounds, there are always Θ(|Bγ(v)|) agents in Bγ(v),
with probability 1−O(1/N3). Hence with probability 1−O(1/N2), for any fixed
t = O(N2), a node v will be visited by at least one agent within the time interval
[t, t+ O(1)] with a constant probability p. Thus, we can apply Theorem 5, and
the theorem follows. ��
Using Theorem 5 we also state new results on the runtime of randomized broad-
casting in Cartesian products of graphs [10]. Denote by G := G1×G2 the product
of two connected graphs, G1 and G2 of size N1 and N2, resp. It is easy to see
that DT(G) ≤ DT(G1) + DT(G2). For the randomized case, we can state the
following.

Corollary 1. For p := min{ δ1
δ1+Δ2

, δ2
Δ1+δ2

} it holds that RT(G, 1 − 1/N) ≤ 1
p ·

O (RT(G1, 1− 1/N1) + RT(G2, 1− 1/N2)) and for p := min{ δ1
δ1+Δ2

} it holds that
RT (G, 1− o(1)) ≤ 1

p ·O (RT(G1, 1− 1/N1) ·N2) .

As shown in [7], RT(K√N × C√N , O(1)) = Ω(logN · √N), so that the second
bound is tight.

4 Conclusion

In this paper, we developed tight lower and upper bounds on the runtime of
the push algorithm, and analyzed its robustness against random node failures.
We generalized the lower bound of Pittel [19] and improved the upper bound
of Feige et.al. [8] for general graphs. One open problem is to close the gap

358 R. Elsässer and T. Sauerwald

between the lower bound for regular and the one for general graphs. Moreover, we
determined in several graph classes the worst-case ratio between the runtime of
an optimal deterministic algorithm and the push algorithm. We also investigated
the robustness of randomized broadcasting against random node failures. After
that, we related the robustness result to broadcasting on Cartesian product of
graphs and to the agent-based broadcasting model, introduced in [6].

References

1. S.B. Akers, D. Harel, and B. Krishnamurthy. The star graph: An attractive alter-
native to the n-cube. In Proc. of ICPP, pages 393–400, 1987.

2. B. Bollobás. Random Graphs. Academic Press, 1985.
3. M. Capocelli, L. Gargano, and U. Vaccaro. Time bounds for broadcasting in

bounded degree graphs. In Proc. of WG’89, pages 19–33, 1989.
4. H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on

the sum of observations. Ann. Math. Stat., 23:493–507, 1952.
5. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,

D. Swinehart, and D. Terry. Epidemic algorithms for replicated database mainte-
nance. In Proc. of PODC’87, pages 1–12, 1987.

6. R. Elsässer, U. Lorenz, and T. Sauerwald. Agent based information handling in
large networks. In Proc. of MFCS’04, pages 686–698, 2004.

7. R. Elsässer and T. Sauerwald. On randomized broadcasting in star graphs. In
Proc. of WG’05, pages 307–318, 2005.

8. U. Feige, D. Peleg, P. Raghavan, and E. Upfal. Randomized broadcast in networks.
Random Structures and Algorithm, 1(4):447–460, 1990.

9. L. Gasieniec and A. Pelc. Adaptive broadcasting with faulty nodes. Parallel Com-
puting, 22:903–912, 1996.

10. J. L. Gross and J. Yellen (eds.). Handbook of Graph Theory. CRC Press, 2004.
11. T. Hagerup and C. Rüb. A guided tour of Chernoff bounds. Information Processing

Letters, 36(6):305–308, 1990.
12. L.H. Harper. Optimal assignment of numbers to vertices. J. Soc. Ind. Appl. Math.,

12:131–135, 1964.
13. J. Hromkovic̆, R. Klasing, A. Pelc, P. Ruz̆ic̆ka, and W. Unger. Dissemination of

Information in Communication Networks. Springer, 2005.
14. R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Randomized rumor spread-

ing. Proc. of FOCS’00, pages 565–574, 2000.
15. F. Leighton, B. Maggs, and R. Sitamaran. On the fault tolerance of some popular

bounded-degree networks. In Proc. of FOCS’92, pages 542–552, 1992.
16. L. Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdös is

Eighty, 2:1–46, 1993.
17. D. Malkhi, Y. Mansour, and M.K. Reiter. On diffusion updates in a byzantine

environment. In Proc. of 18th IEEE Symp. on Reliable Distributed Systems, pages
134–143, 1999.

18. M. Mitzenmacher and E. Upfal. Probability and Computing. Cambdrige University
Press, 2005.

19. B. Pittel. On spreading rumor. SIAM Journal on Applied Mathematics, 47(1):213–
223, 1987.

Local Search in Evolutionary Algorithms:

The Impact of the Local Search Frequency

Dirk Sudholt�

FB Informatik, LS2, Universität Dortmund, 44221 Dortmund, Germany
Dirk.Sudholt@udo.edu

Abstract. A popular approach in the design of evolutionary algorithms
is to integrate local search into the random search process. These so-
called memetic algorithms have demonstrated their efficiency in count-
less applications covering a wide area of practical problems. However,
theory of memetic algorithms is still in its infancy and there is a strong
need for a rigorous theoretical foundation to better understand these
heuristics. Here, we attack one of the fundamental issues in the design
of memetic algorithms from a theoretical perspective, namely the choice
of the frequency with which local search is applied. Since no guidelines
are known for the choice of this parameter, we care about its impact on
memetic algorithm performance. We present worst-case problems where
the local search frequency has an enormous impact on the performance of
a simple memetic algorithm. A rigorous theoretical analysis shows that
on these problems, with overwhelming probability, even a small factor
of 2 decides about polynomial versus exponential optimization times.

1 Introduction

Solving optimization problems is a fundamental task in computer science. The-
oretical computer science has developed powerful techniques to design problem-
specific algorithms and to provide guarantees on the worst-case runtime and the
quality of solutions. Nevertheless, these algorithms can be quite complicated and
difficult to implement. Moreover, practitioners often have to deal with problems
where they have only limited insight into the structure of the problem, thus
making it impossible to design specific algorithms.

The advantage of randomized search heuristics like randomized local search,
tabu search, simulated annealing, and evolutionary algorithms is that they are
easy to design and easy to implement. Despite the lack of performance guar-
antees, they often yield good results in short time and they can be applied in
scenarios where the optimization problem at hand is only known as a black box.

Therefore, practitioners often apply randomized search heuristics like, e. g.,
evolutionary algorithms to find good solutions during a random search process.
Often the performance of evolutionary algorithms can be enhanced if (problem-
specific) local search techniques are integrated. These hybrid algorithms are
� This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part

of the Collaborative Research Center “Computational Intelligence” (SFB 531).

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 359–368, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

360 D. Sudholt

known as memetic algorithms. Using problem-specific local search can provide
a better guidance for the random search process while preserving the low costs
of implementation. That way, the advantages of problem-specific algorithms and
simple randomized search heuristics can be combined. It is therefore not sur-
prising that practitioners have applied memetic algorithms to a wide range of
applications, see Moscato [6] for a survey or Hart, Krasnogor, and Smith [3] for
various applications.

However, from a theoretical point of view this situation is unsatisfactory be-
cause these algorithms are presently not considered in the theory of algorithms.
Despite a broad activity in the area of memetic algorithms, theory on memetic
algorithms is hanging behind and rigorous theoretical results are rare.

We present a brief survey of theoretical approaches concerning memetic algo-
rithms. Hart [2] empirically investigates the role of the local search frequency and
the local search depth, i. e., the maximal number of iterations in one local search
call, on three artificial test functions. Lourenço, Martin, and Stützle [4] empiri-
cally analyze the runtime distribution of memetic algorithms on problems from
combinatorial optimization. Merz [5] adapts the parameterization of memetic
algorithms to the given problem by using problem-specific knowledge gained
from empirical analysis of the problem structure. Sinha, Chen, and Goldberg [8]
present macro-level theoretical results on the design of global-local search hy-
brids explaining how to balance global and local search. Finally, Sudholt [10]
compares a simple memetic algorithm with two well-known randomized search
heuristics and proves rigorously for an artificial function that the local search
depth has a large impact on the behavior of the algorithm.

In the design of memetic algorithms it is essential to find a proper balance
between evolutionary (global) search and local search. If the effect of local search
is too weak, we fall back to standard evolutionary algorithms. If the effect of local
search is too strong, the algorithm may get stuck in local optima of bad quality.
Moreover, the algorithms is likely to rediscover the same local optimum over and
over again, wasting computational effort. Lastly, when dealing with population-
based algorithms, too much local search quickly leads to a loss of diversity within
the population.

A common design strategy is to apply local search with a fixed frequency, say
every τ generations for some τ ∈ N. At present, there are no guidelines available
for the choice of this parameter. Hence, an interesting question is what impact
the local search frequency has on the performance of the algorithm. We will
define a simple memetic algorithm and prove that in the worst case (w. r. t. the
problem instance) even small changes to the local search frequency can totally
change the algorithm’s behavior and decide about polynomial versus exponential
optimization times, with overwhelming probability.

In Section 2 we define a simple memetic algorithm, the (1+1) Memetic Algo-
rithm. In Section 3 we define so-called race functions where local search effects
compete with global search effects. Section 4 proves rigorously that the local
search frequency has a large impact on the (1+1) MA on race functions and
that even a factor of 2 makes an enormous difference. We conclude in Section 5.

Local Search in Evolutionary Algorithms 361

Due to space limitations, we restrict ourselves to sketches of proofs. An ex-
tended version of this work with full proofs can be found in [9].

2 Definitions

The (1+1) Memetic Algorithm ((1+1) MA) is a simple memetic algorithm with
population size 1 that has already been investigated in [10]. It employs the
following local search procedure. The algorithm is defined for the maximization of
pseudo-boolean functions f : {0, 1}n → R including problems from combinatorial
optimization. H(x, y) denotes the Hamming distance between x and y.

Procedure 1 (Local Search(y) with depth δ)
t := 1.
While t ≤ δ and ∃z : (H(z, y) = 1 and f(z) > f(y)) do

y := z. t := t + 1.

If there is more than one Hamming neighbor with larger fitness, z may be chosen
arbitrarily among them.

Algorithm 1 ((1+1) Memetic Algorithm ((1+1) MA))
1. Initialization: gen := 1. Choose x uniformly at random. Local Search(x).
2. Mutation: y := x. Flip each bit in y independently with probability 1/n.
3. Local Search: If gen mod τ = 0 then Local Search(y).
4. Selection: If f(y) ≥ f(x) then x := y.
5. Loop: gen := gen+1. Continue at line 2.

We do not specify a termination condition as we are only interested in the number
of f -evaluations until a global optimum is found. Note that an iteration of local
search may require up to n f -evaluations.
Definition 1. An event E occurs with overwhelming probability (w. o. p.) if
Prob(E) = 1 − 2−Ω(nε) for a constant ε > 0, n the search space dimension.

We say that an algorithm A is efficient on a function f iff A finds a global
optimum on f in a polynomial number of f -evaluations w. o. p.

We say that an algorithm A fails on a function f iff A does not find a global
optimum in an exponential number of f -evaluations w. o. p.
When constructing the race functions, we will make use of so-called long K-
paths. A long K-path is a sequence of Hamming neighbors where all points are
different. The following definition is taken from [1].
Definition 2 (Long K-paths). Let K, N ∈ N with (N − 1)/K ∈ N. The long
K-path of dimension N is a sequence of strings from {0, 1}N defined recursively.
The long K-path of dimension 1 is PK

1 := (0, 1). Let PK
N−K = (v1, . . . , v�) be

the long K-path of dimension N − K. The long K-path of dimension N is the
concatenation S0 ·B ·S1, where S0, B, S1 result from prepending K bits to strings
from PK

N−K :

S0 := (0Kv1, 0Kv2, . . . , 0Kv�),
B := (0K−11v�, 0K−212v�, . . . , 01K−1v�), and
S1 := (1Kv�, 1Kv�−1, . . . , 1Kv1).

362 D. Sudholt

S0 and S1 differ in the K leading bits and B represents a bridge between them.
If N = K2 + 1, the length of the path is Ω(2K). Moreover, for all 0 < i < K the
following statement holds. Let x be a point on the long K-path. If x has at least
i successors on the path, then the ith successor has Hamming distance i of x
and all other successors of x on the path have Hamming distances different from
i (a proof is given in [1]). This implies that all successors on the path except the
K − 1 next ones have Hamming distance at least K to x. The index of a point
z on a long K-path is denoted by i(z). If z is not on the path, i(z) := −1.

3 Race Functions: Where Local Search and Global Search
Compete

Now we will define the aforementioned race functions where local search effects
compete with global search effects. The idea behind the construction is quite in-
tuitive. We will identify two non-overlapping blocks of the bit string of length N ,
referred to as x′ and x′′ if x is the current bit string. These partial bit strings span
subspaces of the original search space. Then, subfunctions are defined on those
subspaces such that the value of the original superior function is the (weighted)
sum of the subfunctions’ values for an important part of the search space.

The two subfunctions are defined as follows. The function on the left block x′

is based on a connected subsequence (subpath) of a long K-path of adjustable
length. The fitness is increasing on the subpath, thus it can be optimized effi-
ciently by local search. The function on the right block x′′ consists of a much
shorter subpath, but only every third search point on the path has positive
fitness. Hence, this subfunction contains a sequence of isolated peaks with in-
creasing fitness and mutation can help to jump to the next peak by mutations
flipping three specific bits.

To conclude, the function on the left block (or shortly, the left path) can be
optimized efficiently by local search and the right path can only be optimized
by mutations. The (1+1) MA on the superior function now optimizes the two
subfunctions in parallel. If the local search frequency is high, we expect the
algorithm to optimize the left path prior to the right path. Contrarily, if the
local search frequency is low, then we expect the right path to be optimized
prior to the left one.

By defining special fitness values for cases where some path end is reached, we
obtain a function where it makes a large difference which path is optimized first.
For example, we can define the end of the left path as being globally optimal.
However, if the right path is optimized prior to the left one, the function turns
into a so-called deceptive function giving hints to move away from all global
optima and to get stuck in a local optimum. That way, the (1+1) MA typically
optimizes this function efficiently if the local search frequency is high and it gets
stuck in a local optima if the local search frequency is low. Another function can
be defined analogously where it is optimal to reach the end of the right path.

Before giving formal definitions for these race functions, we present our main
theorem that will be proved in Section 4 according to the ideas described above.

Local Search in Evolutionary Algorithms 363

Theorem 1 (Main Theorem). Let δ, τ ∈ N be defined such that δ = poly(n),
δ ≥ 22, δ/τ ≥ 2/n, τ = ω(n2/3), and τ = O(n3) hold. There exist functions
Raceleft

�,r , Raceright
�,r : {0, 1}n → R such that

– the (1+1) MA with local search frequency 1/τ is efficient on Raceleft
�,r while

the (1+1) MA with local search frequency 1/(2τ) fails on Raceleft
�,r and

– the (1+1) MA with local search frequency 1/τ fails on Raceright
�,r while

the (1+1) MA with local search frequency 1/(2τ) is efficient on Raceright
�,r .

Definition 3. Let n = 4N and N = K2 + 1 with K/3 ∈ N. Let Pi be the ith
point on the long K-path of dimension N .

The (1+1) MA initializes uniformly at random. However, we want the optimiza-
tion of the two paths to start with specific starting points. Therefore, we use a
construction that is explained in detail in Section 3 of [10] (here, we use a slight
transformation of the search space which is immaterial to the algorithm). In a
nutshell, we append additional 2N bits denoted by x′′′ to the 2N bits used by
the two blocks x′ and x′′. The following subfunction ZZO guides the algorithm
to reach x′′′ = 02N (i. e. a concatenation of 2N zeros) and then to reach specific
starting points for x′ and x′′, namely x′x′′ = 0NPn5−1 (n5 − 1 is the multiple
of 3 closest to n5 due to the choice of K and n). Afterwards, x′′′ is turned into
x′′′ = 12N . Once all these bits are ones, the optimization of the two paths begins.

Definition 4. Let x = x′x′′x′′′ with x′, x′′ ∈ {0, 1}N and x′′′ ∈ {0, 1}2N . We
define ZZO : {0, 1}n → R as

ZZO(x) :=

⎧
⎪⎨

⎪⎩

−H
(
x′′′, 02N

)
− 4N if x′x′′ �= 0NPn5−1, x

′′′ �= 02N ,

−H
(
x′x′′, 0NPn5−1

)
− 2N if x′x′′ �= 0NPn5−1, x

′′′ = 02N ,

−H
(
x′′′, 12N

)
if x′x′′ = 0NPn5−1.

Definition 5 (Race Functions). Call a search point x = x′x′′x′′′ well-formed
iff i(x′) ≥ 0, i(x′′) ≥ 0, i(x′′)/3 ∈ N, and x′′′ = 12N . Given �, r ∈ N we define

Raceleft
�,r (x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ZZO(x) if H
(
x′′′, 12N

)
≥ 3,

i(x′) · n + i(x′′) if x well-formed, i(x′) < �, i(x′′) < r,

2N + H(x′, P�) if x well-formed, i(x′) < �, i(x′′) = r,

22N if x well-formed, i(x′) = �,

−∞ otherwise.

Raceright
�,r (x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ZZO(x) if H
(
x′′′, 12N

)
≥ 3,

i(x′) · n + i(x′′) if x well-formed, i(x′) < �, i(x′′) < r,

2N + H(x′′, Pr) if x well-formed, i(x′) = �, i(x′′) < r,

22N if x well-formed, i(x′′) = r,

−∞ otherwise.

364 D. Sudholt

In a typical run, after random initialization the function ZZO is optimized guid-
ing the search towards the well-formed search point x = x′x′′x′′′ with i(x′) = 0,
i(x′′) = Pn5−1, and x′′′ = 12N . There is a gap between the ZZO-dependent
search points and all well-formed search points since all points with one or two
zero-bits in the x′′′-part have fitness −∞. However, this gap can easily be jumped
over by mutation in expected time O(n3). Moreover, the probability that at least
K = Θ(n1/2) bits flip in this jump is exponentially small. Thus, it is very likely
that we reach points close to the desired starting points in polynomial time. For
a proof of a result similar to the following corollary, we refer the reader to [10].

Corollary 1. With overwhelming probability, the (1+1) MA on either Raceleft
�,r

or Raceright
�,r reaches some well-formed search point x∗ with i(x∗′) < K and

|i(x∗′′) − (n5 − 1)| < K within the first n4 generations.

4 Analyzing the Impact of the Local Search Frequency

To prove our main theorem, we will investigate the progress of the algorithm
on the two paths. The progress will be estimated by separating the effects of
different operations and proving bounds for the cumulated progress for single
types of operations.

For the rest of the section, we consider the (1+1) MA on Raceleft
�,r or Raceright

�,r
after some well-formed search point has been reached. In a generation with local
search, the mutation only affects the algorithm if the outcome of local search
is accepted in the selection step. Thus, we only have to take into account those
mutations where the outcome of the following local search call is accepted.

Lemma 1. Let x = x′x′′x′′′ be the current population, x well-formed, let y =
y′y′′y′′′ be an offspring created by mutation, and let z = z′z′′z′′′ be the result of
local search applied to y. Then z is accepted in the selection step only if y has
Hamming distance at most 1 to a well-formed search point.

Proof. Let w = w′w′′12N be a well-formed search point with minimal Ham-
ming distance to y. We distinguish three cases according to H(y′′′, x′′′), i. e., the
number of zero-bits in y′′′.

– If H(y′′′, x′′′) ≥ 2, the function to be optimized during the local search
process is ZZO since the fitness of all search points with one or two zero-
bits in the x′′′-part is −∞ and the fitness is ZZO(·) > −∞ in case of three
or more zero-bits. However, due to the gap between ZZO-dependent search
points and well-formed search points, local search cannot reach a well-formed
search point. Hence, the offspring z is rejected in the selection step.

– In case y′′′ = 12N and H(w′w′′, y′y′′) ≥ 2 we have fitness −∞ for y and all
Hamming neighbors of y. Hence, local search stops immediately in this case.

– Lastly, if H(y′′′, x′′′) = 1 and H(w′w′′, y′y′′) ≥ 1 we have fitness −∞ and
the fitness cannot be increased by flipping single bits in y′y′′. The Hamming
neighbor obtained by flipping the unique zero-bit in y′′′ has fitness −∞ and
so do all Hamming neighbors with a larger number of zero-bits in the x′′′

part. Thus, local search stops immediately, here. �

Local Search in Evolutionary Algorithms 365

An important observation is that mutations followed by local search are in some
sense more powerful than mutations without local search. Imagine a mutation
yielding a non-well-formed search point with Hamming distance 1 to a well-
formed one. Then local search reaches the well-formed search point within its
first iteration and the outcome of local search may be accepted by the algorithm
(note that Lemma 1 provides a necessary condition, not a sufficient one). Hence,
mutations followed by local search are more likely to yield an accepted search
point than mutations without local search and the first iteration of local search
plays a crucial role, here. As a consequence, we may regard the first iteration of
local search as being part of the mutation instead of local search.

Definition 6. An extended mutation is either a mutation reaching a well-
formed search point or a mutation followed by one iteration of local search in
case the mutant is not well-formed.

Using these insights, we now formally define the intuitive notion of progress. In
a generation without local search, the progress by one mutation on, say, the left
path is defined as i(y′) − i(x′) if y is accepted and 0 otherwise. In a generation
with local search let x be the current search point, y be the individual obtained by
an extended mutation, and z be the result of local search. Then the progress by
one extended mutation is defined as i(y′)− i(x′) if z is accepted and 0 otherwise
and the progress by local search is i(z′) − i(y′) if z is accepted and 0 otherwise.
The progress on the right path is defined analogously.

In the following lemmas, we will prove lower and upper bounds on the cumu-
lated progress for specific operations, namely mutations in generations without
local search, extended mutations, and the remaining iterations of local search
after extended mutations. Full proofs can be found in [9].

Lemma 2. Let Δleft
mut (Δright

mut) be the progress on the left (right) path in T =
Ω(n4), T = poly(n) mutations. Then with probability 1 − 2−Ω(n1/2) for ε > 0

(1 − ε) · T/(en) < Δleft
mut < (1 + ε) · T/(en) and

(1 − ε) · T/(en3) < Δright
mut < (1 + ε) · T/(en3) .

Sketch of Proof. Here and in the following proofs, we consider a typical run
of the algorithm. Events preventing a run from being typical are called errors
and the total error probability is bounded by the sum of single error probabil-
ities. If there is only a polynomial number of exponentially small single error
probabilities, a run is typical with overwhelming probability.

In a typical mutation less than K bits flip simultaneously. Upper bounds
on Δleft

mut and Δright
mut are proved in the same way. We consider a well-formed

search point x and the sequence of bits b1, . . . , bK that have to be flipped in
that order to climb the next K steps on the path. Mutations of x flipping other
bits are not accepted, thus we only consider mutations not flipping bits outside
of {b1, . . . , bK} occurring with probability close to 1/e. Suppose the mutation
operator decides sequentially for each bit whether to flip it or not and that
b1, . . . , bK are processed in the specified order. Then the progress in one mutation

366 D. Sudholt

can be modelled by a (bounded) geometric distribution with parameter (1−1/n)
for Δleft

mut and (1 − 1/n3) for Δright
mut , resp. The upper bounds are then obtained

by applying a variance-based tail inequality (Theorem 3.44 in Scheideler [7]).
A progressing step is a mutation flipping exactly the bits differing from the

next well-formed point on the considered path which happens with probability
1/n·(1−1/n)n−1 ≥ 1/(en) for the left path and 1/n3 ·(1−1/n)n−3 ≥ 1/(en3) for
the right path. Changes on the left path dominate changes on the right path due
to the larger weight in the definition of the race functions. Thus, we may have an
accepted mutation stepping back on the right path if the same mutation yields
progress on the left path. However, the probability for such an event is O(1/n4)
and the regress on the right path can be bounded by the above-mentioned tail
inequality. For both paths, Chernoff bounds show that the number of progressing
steps is large enough to prove the claimed lower bounds w. o. p. �

Lemma 3. Let Δright
enh be the progress on the right path in T = O(n4) extended

mutations of parents whose index on the right path is greater than 0. Let δ ≥ 6,
then with probability 1 − 2−Ω(n1/4)

−4T 3/4n−3/2 − n1/2 < Δright
enh < 4T 3/4n−3/2 + n1/2 .

Sketch of Proof. Since δ ≥ 6 and the left path has a larger weight, it is
likely that local search climbs the left path yielding an accepted search point if
the extended mutation reaches a well-formed search point. This typically holds
regardless whether the index on the right path has increased or decreased. Hence,
the process describing the progress by extended mutations on the right path
resembles a martingale. It is easy to see that an upper bound on the progress
also represents a lower bound on the negative progress. Hence, we only prove an
upper bound by distinguishing two cases according to T .

Let T < n5/2/9. An extended mutation yields progress 3i for some 0 < i <
K/3 iff it reaches the (3i)th-next path point directly or if it reaches a Ham-
ming neighbor thereof. Exactly 3i Hamming neighbors have distance 3i − 1,
thus dominating the probability to have progress 3i: it can be estimated by
(1 + o(1))/e · 3i · n−3i+1 which is (1 + o(1))/e · 3n−2 for i = 1. We now imagine
a sequence of binary random variables where each variable is set to 1 indepen-
dently with probability 3n−2. Then the probability to have a block of i ones is
larger than the probability to have progress 3i, hence the random process de-
scribing the number of ones in T binary random variables dominates the random
process describing the progress on the right path divided by 3. Applying Cher-
noff bounds to the former process shows that the probability of having progress
larger than n1/2 is exponentially small.

Now let T ≥ n5/2/9. We exploit the fact that the process is almost a martin-
gale. Progresses of at least 6 or at most −6 are unlikely and their effect can be
bounded by rather crude estimates. Then only ±3-steps remain, and apart from
pathological steps with expected progress o(1), the situation is completely sym-
metric due to the hypothesis on the parents’ indices. The upper bound follows
by the method of bounded martingale differences (Theorem 3.67 in [7]). �

Local Search in Evolutionary Algorithms 367

Lemma 4. Let Δleft
enh be the progress on the left path in T ≥ n1/2, T = poly(n)

extended mutations. Then with probability 1 − 2−Ω(n1/2) for ε > 0

−(1 + ε) · T/e < Δleft
enh < (1 + ε) · T/e .

Lemma 4 can be proved using ideas from Lemma 3, thus we omit a proof.
The probability that an extended mutation leads to an offspring that is ac-

cepted after local search converges to 2/e as it is dominated by the probability
that the mutation flips at most one bit. Afterwards, either δ − 1 or δ iterations
of local search yield progress on the left path. By Chernoff bounds, the following
lemma can be proved.

Lemma 5. Let Δleft
ls be the progress on the left path in T = poly(n) calls of local

search. Then with probability 1 − 2−Ω(T) for ε > 0

(δ − 1) · (1 − ε) · 2T/e ≤ Δleft
ls ≤ δ · (1 + ε) · 2T/e .

Proof of the Main Theorem. Let � = (1− ε)/e · (n3 +(2δ − 4)n4τ−1) be the
length of the left path and r = n5 − 1 + (1 + ε)/e · n + 4n3/2τ−3/4 + n1/2 + 2K
be the length of the right path for a small enough constant ε > 0. W. l. o. g.
r/3 ∈ N0.

We investigate typical runs of the (1+1) MA with local search frequency 1/τ

and 1/(2τ) on Raceleft
�,r and Raceright

�,r , resp. The following statements hold w. o. p.
By Corollary 1, the (1+1) MA reaches some well-formed search point xfirst with
i(x′first) < K and |i(x′′first) − (n5 − 1)| < K within the first n4 steps.

We consider a period of n4 generations of the (1+1) MA with local search
frequency 1/τ after xfirst has been reached. Let Δleft be the total progress on
the left path and Δright be the total progress on the right path in n4 genera-
tions. Then we apply Lemmas 2, 4, and 5 w. r. t. n4 − n4/τ mutations, n4/τ
extended mutations or n4/τ local search calls, respectively. Simple calculations
yield i(x′first) + Δleft ≥ �, thus the end of the left path is reached within the
considered period.

Moreover, we show that the end of the right path is not reached within this
period. First, we consider the very last search point with index i(x′′first) + Δright

on the right path and show that the probability of i(x′′first) + Δright > r − K is
exponentially small, i. e., the last considered search point is by at least K path
points away from the end of the right path. This is done by applying Lemmas 2
and 3 where Lemma 3 can be applied since i(x′′first) ≥ n5 − 1 − K and n4 steps
can only decrease the index by n4 · K implying that the index on the right path
cannot become 0. Observe that the probability to reach the end of a path cannot
increase with decreasing number of generations. Hence, this bound also holds
for all other search points reached within the period and the error probability
increases by a factor of n4.

Together, the (1+1) MA with local search frequency reaches the end of the left
path within O(n4) generations and O(n4+n·δ/τ) = poly(n) function evaluations.
This implies that on Raceleft

�,r , a global optimum is found and the (1+1) MA is
efficient. On Raceright

�,r , however, the Hamming distance to the end of the right

368 D. Sudholt

path is at least K. As all search points closer to the right path now have worse
fitness, the only way to reach a global optimum is a direct jump flipping at least
K bits. The probability for such an event is at most n−K = 2−Ω(n1/2 log n), thus
the (1+1) MA fails on Raceright

�,r .
The argumentation for the (1+1) MA with local search frequency 1/(2τ) is

symmetric. Repeating the arguments from above, the end of the right path is
reached within a period of

√
2n4 generations while all search points traversed

during this period are at least K away from the end of the left path. Thus,
the (1+1) MA is efficient on Raceright

�,r and it gets trapped on Raceleft
�,r , which

completes the proof. �

5 Conclusions

We have presented a rigorous theoretical analysis of a simple memetic algorithm,
the (1+1) MA, thus showing that these randomized search heuristics can be
analyzed in terms of computational complexity. On worst-case instances we have
shown that the choice of the local search frequency has an enormous impact on
the performance of the (1+1) MA: with overwhelming probability, even altering
the parameterization by a factor of 2 turns a polynomial runtime behavior into
an exponential one and vice versa.

References

1. S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276:51–81, 2002.

2. W. E. Hart. Adaptive Global Optimization with Local Search. PhD thesis, Univer-
sity of California, San Diego, CA, 1994.

3. W. E. Hart, N. Krasnogor, and J. E. Smith, editors. Recent Advances in Memetic
Algorithms, vol. 166 of Studies in Fuzziness and Soft Computing. Springer, 2004.

4. H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In Handbook of
Metaheuristics, vol. 57 of International Series in Operations Research & Manage-
ment Science, pages 321–353. Kluwer Academic Publishers, Norwell, MA, 2002.

5. P. Merz. Advanced fitness landscape analysis and the performance of memetic
algorithms. Evolutionary Computation, 12(3):303–326, 2004.

6. P. Moscato. Memetic algorithms: a short introduction. In D. Corne, M. Dorigo,
and F. Glover, editors, New Ideas in Optimization, pages 219–234. McGraw-Hill,
1999.

7. C. Scheideler. Probabilistic Methods for Coordination Problems. HNI-
Verlagsschriftenreihe 78, University of Paderborn, 2000. Habilitation Thesis, avail-
able at http://www14.in.tum.de/personen/scheideler/index.html.en.

8. A. Sinha, Y. Chen, and D. E. Goldberg. Designing efficient genetic and evolutionary
algorithm hybrids. In [3], pages 259–288.

9. D. Sudholt. Local search in memetic algorithms: the impact of the local search
frequency. Technical Report CI-208/06, Collaborative Research Center 531, Uni-
versity of Dortmund, June 2006. Available at http://sfbci.cs.uni-dortmund.de.

10. D. Sudholt. On the analysis of the (1+1) memetic algorithm. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2006), pages
493–500. ACM Press, New York, NY, 2006.

http://www14.in.tum.de/personen/scheideler/index.html.en
http://sfbci.cs.uni-dortmund.de

Non-cooperative Facility Location and Covering Games

Martin Hoefer�

Department of Computer & Information Science, Konstanz University, Germany
hoefer@inf.uni-konstanz.de

Abstract. We study a general class of non-cooperative games coming from com-
binatorial covering and facility location problems. A game for k players is based
on an integer programming formulation. Each player wants to satisfy a subset
of the constraints. Variables represent resources, which are available in costly
integer units and must be bought. The cost can be shared arbitrarily between
players. Once a unit is bought, it can be used by all players to satisfy their con-
straints. In general the cost of pure-strategy Nash equilibria in this game can be
prohibitively high, as both prices of anarchy and stability are in Θ(k). In addition,
deciding the existence of pure Nash equilibria is NP-hard. These results extend to
recently studied single-source connection games. Under certain conditions, how-
ever, cheap Nash equilibria exist: if the integrality gap of the underlying integer
program is 1 and in the case of single constraint players. In addition, we present
algorithms that compute cheap approximate Nash equilibria in polynomial time.

1 Introduction

Analyzing computational environments using game-theoretic models is a quickly evolv-
ing research direction in theoretical computer science. Motivated in large parts by the
Internet, the resulting dynamics of introducing selfish behavior of distributed agents into
a computational environment are studied. In this paper we follow this line of research
by considering a general class of non-cooperative games based on general integer cov-
ering problems. Problems concerning service installation or clustering, which play an
important role in large networks like the Internet, are modeled formally as some vari-
ant of covering or partition problems. Our games can serve as a basis to analyze these
problems in the presence of independent non-cooperative selfish agents.

The formulation of our games generalizes an approach by Anshelevich et al [2],
who proposed games in the setting of Steiner forest design. In particular, we consider
a covering optimization problem given as an integer linear program and turn this into
a non-cooperative game as follows. Each of the k non-cooperative players considers
a subset of the constraints and strives to satisfy them. Each variable represents a re-
source, and integer units of resources can be bought by the players. The cost of a unit
is given by the coefficient in the objective function. In particular, players pick as strat-
egy a payment function that specifies how much they are willing to pay for the units
of each resource. A unit is considered bought if the cost is paid for by the amount the

� Supported by DFG Research Training Group 1042 “Explorative Analysis and Visualization
of Large Information Spaces” and in part by DFG grant Kr 2332/1-2 within Emmy Noether
research group on “Algorithmic Game Theory”.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 369–378, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

370 M. Hoefer

players offer. Bought units can then be used by all players simultaneously to satisfy
their constraints – no matter whether they contribute to the cost or not. A player strives
to minimize the sum of her offers, but insists on satisfaction of her constraints. A va-
riety of integer covering problems, most prominently variants of set cover and facility
location, can be turned into a game with the help of this model. We study our games
with respect to the existence and cost of stable outcomes of the game, which are exact
and approximate Nash equilibria. At first, we characterize prices of anarchy [14] and
stability [1]. They measure the social cost of the worst and best Nash equilibria in terms
of the cost of a social optimum solution. Note that a social optimum solution is the
optimum solution to the underlying integer program. As the cost of exact Nash equilib-
ria can be as high as Θ(k), we then consider a two-parameter optimization problem to
find (α, β)-approximate Nash equilibria. These are solutions in which each player can
reduce her contribution by at most a factor of α by unilaterally switching to another
strategy, and which represent a β-approximation to the socially optimum cost. We refer
to α as the stability ratio and β as the approximation ratio.

Related Work. Competitive location is an active research area, in which game-theoretic
models for spatial and graph-based facility location have been studied in the last decades
[7, 18]. These models consider facility owners as players that selfishly decide where to
place and open a facility. Clients are modeled as part of player utility, e.g. they are
always assumed to connect to the closest facility. Recent examples of this kind of lo-
cation games are also found in [21, 5]. According to our knowledge, however, none of
these models consider the clients as players that need to create connections and facilities
without central coordination.

Closer to our approach are cooperative games and mechanism design problems based
on optimization. In [6] strategyproof cost sharing mechanisms have been presented for
games based on set cover and facility location. For set cover games this work was ex-
tended in [20,15] by considering different social desiderata and games with items or sets
being agents. Furthermore, in [11] lower bounds on budget-balance for cross-monotonic
cost sharing schemes were investigated. Cooperative games based on integer cover-
ing/packing problems were studied in [4]. It was shown that the core of such games is
non-empty if and only if the integrality gap is 1. In [8] similar results are shown for a
class of facility location games and an appropriate integer programming formulation.
Cooperative games and the mechanism design framework are used to model selfish ser-
vice receivers who can either cooperate to an offered cost sharing or manipulate. Our
game, however, is strategic and non-cooperative in nature and allows players a much
richer set of actions. We investigate distributed uncoordinated covering scenarios rather
than a coordinated environment with a mechanism choosing customers, providing ser-
vice and charging costs. Our model is suited for a case in which players have to directly
investment into specific resources. Nevertheless our model has some connections to the
cooperative setting, which we will outline in the end of Sect. 2.1.

The non-cooperative model we consider stems from [2], who proposed a game based
on the Steiner forest problem. They show that prices of anarchy and stability are in Θ(k)
and give a polynomial time algorithm for (4.65 + ε, 2)-approximate Nash equilibria. In
our uncapacitated facility location (UFL) game we assume that each of the clients must
be connected directly to a facility. We can introduce a source node s and connect all

Non-cooperative Facility Location and Covering Games 371

facilities f to it, furthermore direct all edges from clients to facilities. The costs for the
new edges (f, s) are given by the opening costs c(f) of the corresponding facilities.
This creates a single-source connection game on a directed graph. If we allow indi-
rect connections to facilities, the game can be turned into an undirected single-source
connection game (SSC) considered in [2, 10]. For both UFL and SSC games results
in [2] suggest that the price of anarchy is k and the price of stability is 1 if each player
has a single client. Algorithms for (3.1 + ε, 1.55)-approximate Nash equilibria in the
SSC game were proposed in [10]. In a very recent paper [3] we considered our game
model for the special case of vertex covering. Prices of anarchy and stability are in Θ(k)
and there is an efficient algorithm computing (2, 2)-approximate Nash equilibria. For a
lower bound it was shown that both factors are essentially tight. In addition, for games
on bipartite graphs and games with single edge players the price of stability was shown
to be 1. This paper extends and adjusts these results to a much larger class of games
based on general covering and facility location problems.

Our results. We study our games with respect to the quality and existence of pure strat-
egy exact and approximate Nash equilibria. We will not consider mixed equilibria, as
our model requires concrete investments rather than a randomized action, which would
be the result of a mixed strategy. Our contributions are as follows.

Section 2 introduces the facility location games. Even for the most simple variant, the
metric UFL game, the price of anarchy is exactly k and the price of stability is at least
k − 2. Furthermore, it is NP-hard to determine whether a game has a Nash equilibrium.
For the metric UFL game there is an algorithm to compute (3, 3)-approximate Nash
equilibria in polynomial time. There is a lower bound of 1.097 on the stability ratio.
For the more general class of facility location problems considered in [8] the price
of stability is 1 if the integrality gap of a special LP-relaxation is 1. The best Nash
equilibrium can be derived from the optimum solution to the LP-dual. Furthermore, if
every player has only a single client, the price of stability is 1. We translate the lower
bounds from the UFL game to SSC games [2] showing that it is NP-hard to determine
Nash equilibrium existence and the price of stability is at least k−2. In addition, there is
a lower bound of 1.0719 for the stability ratio in the SSC game. This negatively resolves
a recent conjecture that the price of stability is 1 for SSC games with more than two
terminals per player [10].

In Section 3 we consider general covering games. Even for the case of vertex cover
it has been shown in [3] that prices of anarchy and stability are k and at least k − 1,
respectively, and it is NP-hard to decide the existence of exact Nash equilibria. We
show that for covering games, in which the integrality gap of the ICP-formulation is 1,
the price of stability is 1. The best Nash equilibrium can be derived from the optimum
solution to the LP-dual in polynomial time. If each player holds a single item, the price
of stability is 1. There is an algorithm to get (F , F)-approximate Nash equilibria in
set cover games in polynomial time, where F is the maximum frequency of any item
in the sets. This generalizes results for vertex cover games on bipartite graphs and an
algorithm for (2, 2)-approximate Nash equilibria for general vertex cover games [3].
Proofs omitted from this extended abstract will be given in the full version of the paper.

372 M. Hoefer

2 Facility Location Games

Consider the following non-cooperative game for the basic problem of uncapacitated
facility location (UFL). Throughout the paper we denote a feasible solution by S and
the social optimum solution by S∗.

A complete bipartite graph G = (T ∪ F, T × F) with vertex sets F of nf facilities
and T of nt clients or terminals is given. Each of the k non-cooperative players holds a
set Ti ⊂ T of terminals. Each facility f ∈ F has nonnegative opening costs c(f), and
for each terminal t and each facility f there is a nonnegative connection cost c(t, f).
The goal of each player is to connect her terminals to opened facilities at the minimum
cost. Consider an integer programming (IP) formulation of the UFL problem:

Min
∑

f∈F

c(f)yf +
∑

t∈T

c(t, f)xtf

subject to
∑

f∈F

xtf ≥ 1 for all t ∈ T

yf − xtf ≥ 0 for all t ∈ T, f ∈ F
yf , xtf ∈ {0, 1} for all t ∈ T, f ∈ F.

(1)

Each player insists on satisfying the constraints corresponding to her terminals t ∈ Ti.
She offers money to the connection and opening costs by picking as a strategy a pair
of two payment functions pc

i : T × F → IR+
0 and po

i : F → IR+
0 , which specify

her contributions to the connection and opening costs, resp. These are her offers to the
cost of raising the xtf and yf variables. If the total offers of all players exceed the cost
coefficient in the objective function (e.g. for a facility

∑
i pi(f) ≥ c(f)), the variable

is raised to 1. In this case the corresponding connection or facility is considered bought
or opened, resp. This affects all constraints, as all players can use bought connections
and opened facilities for free, no matter whether they contribute to the cost or not. A
payment scheme is a vector of strategies specifying for each player a single strategy.
An (α, β)-approximate Nash equilibrium is a payment scheme in which no player can
reduce her payments by more than a factor of α by unilaterally switching to another
strategy, and which purchases a β-approximation to the socially optimum solution S∗.
We refer to α as the stability ratio and β as the approximation ratio. Using this concept
a payment scheme purchasing S∗ is an (α, 1)-approximate Nash equilibrium, and an
exact Nash equilibrium is (1, β)-approximate.

The following observations can be used to simplify a game. Suppose a terminal is
not included in any of the terminal sets Ti. This terminal is not considered by any player
and has no influence on the game. Hence, we will assume that T =

⋃k
i=1 Ti.

Suppose a terminal t is owned by a player i and a set of players J , i.e. t ∈ Ti ∩
(
⋂

j∈J Tj). Now consider an (approximate) Nash equilibrium for an adjusted game in
which t is owned only by i. If t is added to Tj again, the covering requirement of player
j increases. Contributions of j to resource units satisfying the constraint of t might have
been superfluous previously, but become mandatory now as t is included in Tj . Thus
j’s incentive to deviate to another strategy does not increase. So if the payment scheme
is an (α, β)-approximate Nash equilibrium for the adjusted game, it can yield only a
smaller stability ratio for the original game. We will thus assume that all terminal sets

Non-cooperative Facility Location and Covering Games 373

(a) (b)

Fig. 1. (a) A metric UFL game without Nash equilibria – player 1 owns terminals labeled t11 and
t12, player 2 owns terminal t2; (b) a metric UFL game with price of stability close to k − 2 for
small ε – terminal labels indicate player ownership, facility labels specify opening costs. Black
vertices are facilities, white vertices are terminals. All solid edges have cost 1, all dashed edges
cost ε > 0, all other edge costs are given by the shortest path metric.

Ti are mutually disjoint, as our results continue to hold if the sets Ti are allowed to
overlap.

2.1 Metric UFL Games

In this section we present results on exact and approximate Nash equilibria for the
metric UFL game. For lower bound constructions we only consider a subset of basic
edges, for which we explicitly specify the connection cost. All other edge costs are
given by the shortest path metric over basic edges.

Even in the metric UFL game the price of anarchy is exactly k. The lower bound is
derived by an instance with two facilities, f1 with cost k and f2 with cost 1. Each player
i has one terminal ti, and all connection costs are ε > 0. If each player pays a cost of 1
for f1 and her connection cost, then no player has an incentive to switch and purchase
f2 completely. S∗ is derived by opening only f2 and connecting all terminals to it.
This yields a lower bound on the price of anarchy arbitrarily close to k. For an upper
bound suppose there is a Nash equilibrium with cost larger than kc(S∗). Then at least
one player pays at least the cost c(S∗) and can thus deviate to purchase S∗ completely
by herself. This contradicts the assumption of a Nash equilibrium. The argumentation
allows to show a price of anarchy of exactly k even for non-metric games. To derive a
bound on the price of stability, we note that there are games without Nash equilibria.

Lemma 1. There is a metric UFL game without Nash equilibria.

Consider the game in Fig. 1(a). We assume that c(f1) = c(f3) = 1 and c(f2) = 1.5.
Player 1 either contributes to f2 or to f1 and f3. If she purchases only c(f2), for it is
best for player 2 to open one other facility, e.g. f1. In this case it is better for player 1
to connect to f1 and pay for opening f3 as well. Then player 2 can drop f1 and simply
connect to f3. This will create an incentive for player 1 to return to paying only for
f2. Although this is not a formal proof, it illustrates the cycling objectives inherent in
the game. In a Nash equilibrium each terminal must be connected to an opened facility.
Thus, formally all Nash equilibria can be considered by seven cases – depending on the

374 M. Hoefer

different sets of opened facilities. It can be shown that for each set of opened facilities
the costs cannot be purchased by a Nash equilibrium payment scheme. This game and
the game outlined for the lower bound on the price of anarchy can be combined to a
class of games that yields a price of stability of k − 2. The construction is shown in
Fig. 1(b). In addition, deciding the existence of Nash equilibria is NP-hard.

Theorem 1. The price of stability in the metric UFL game is at least k − 2.

Theorem 2. It is NP-hard to decide whether a metric UFL game has a Nash equilib-
rium.

Both results extend easily to non-metric games. Thus, exact Nash equilibria can be quite
costly and hard to compute. For some classes of games, however, there is a cheap Nash
equilibrium. In particular, results in [2] can be used to show that UFL games with a
single terminal per player allow for an iterative improvement procedure that improves
both stability and approximation ratio. The price of stability is 1, and (1 + ε, 1.52)-
approximate Nash equilibria can be found using a recent approximation algorithm [16]
to compute a starting solution. In addition, we show that there is another class of games
with cheap equilibria, which can be computed efficiently.

Theorem 3. For any metric UFL game, in which the underlying UFL problem has in-
tegrality gap 1, the price of stability is 1. An optimal Nash equilibrium can be computed
in polynomial time.

The payments are determined as follows. Reconsider the IP formulation (1) and its
corresponding LP-relaxation obtained by allowing yf , xtf ≥ 0. The integrality gap is
assumed to be 1, so the optimum solution (x∗, y∗) to (1) is optimal for the relaxation.
Using the optimum solution (γ∗, δ∗) to the dual of the LP-relaxation we assign po

i (f) =
y∗f

(∑
t∈Ti

δ∗tf
)

for player i and each facility f . In addition, we let player i contribute

pc
i(t, f) = x∗tf (γ∗t − δ∗tf) for each t ∈ Ti and f ∈ F . The argument that this gives a

Nash equilibrium relies on LP duality and complementary slackness.
For general games we consider approximate Nash equilibria. This concept is moti-

vated by the assumption that stability evolves if each player has no significant incentive
to deviate. Formally, for (α, β)-approximate Nash equilibria the stability ratio α ≥ 1
specifies the violation of the Nash equilibrium inequality, and β ≥ 1 is the approxima-
tion ratio of the social cost.

Theorem 4. For the metric UFL game there is a primal-dual algorithm to derive (3, 3)-
approximate Nash equilibria in polynomial time.

Proof. In Algorithm 1 we denote a terminal by t, a facility by f , and the player owning
t by it. The algorithm raises budgets for each terminal, which are offered for purchasing
the connection and opening costs. Facilities are opened if the opening costs are covered
by the total budget offered, and if they are located sufficiently far away from other
opened facilities. For the approximation ratio of 3 we note that the algorithm is a primal-
dual method for the UFL problem [17, 19].

For the analysis of the stability ratio consider a single player i and her payments.
Note that the algorithm stops raising the budget of a terminal by the time it becomes

Non-cooperative Facility Location and Covering Games 375

directly or indirectly connected. We will first show that for the final budgets
∑

t∈Ti
Bt

is a lower bound on the cost of any deviation for player i. For any terminal t we denote
by f(t) the facility t is connected to in the calculated solution. Verify that c(t, f) ≥ Bt

for any terminal t and any opened facility f �= f(t). Hence, if a player has a de-
viation that improves upon Bt, it must open a new facility and connect some of her
agents to it. By opening a new facility, however, the player is completely independent
of the cost contributions of other players. Similar to [19] we can argue that the final
budgets yield a feasible solution for the dual of the LP-relaxation. Hence, they form
a 3-approximately budget balanced core solution for the cooperative game [13]. Now
suppose there is a deviation for a player, which opens a new facility f and connects a
subset of her terminals Tf to f thereby improving upon the budgets. Then the cost of
c(f) +

∑
t∈Tf

<
∑

t∈Tf
Bt. This, however, would mean that the coalition formed by

Tf in the coalitional game has a way to improve upon their budgets, which is a contra-
diction to Bt having the core-property. Hence, we know that

∑
t∈Ti

Bt is a lower bound
on every deviation cost. Finally, note that for every directly connected terminal t ∈ Ti

player i pays Bt. A terminal t becomes indirectly connected only if it is unconnected
and tight to a facility f by the time f is definitely closed. f becomes definitely closed
only if there is another previously opened facility f ′ at distance 2Bt from f . Hence,
there is an edge c(t, f ′) ≤ 3Bt by the metric inequality. So in the end player i pays
at most 3Bt when connecting an indirectly connected terminal to the closest opened
facility. This establishes the bound on the stability ratio.
�

In terms of lower bounds there is no polynomial time algorithm with an approximation
ratio of 1.463 until NP ⊂ DTIME(nO(log log n)) [9]. The following theorem shows
that in the game of Fig. 1(a) the cost of any feasible solution cannot be distributed to
get an approximate Nash equilibrium with stability ratio α ≤ 1.097.

Theorem 5. There is a metric UFL game in which for every (α, β)-approximate Nash
equilibrium α > 1.097.

Relation to cooperative games. In the cooperative game each terminal is a single
player. The foremost stability concept is the core – the set of cost allocations assign-
ing any coalition of players at most the cost of the optimum solution for this coalition
only. A Nash equilibrium in our game guarantees this property only for the coalitions
represented by our players. On the other hand the investments of a player now alter the
cost of optimal solutions for other players. This feature makes overcovering the central
problem that needs to be resolved to provide cheap solutions with low incentives to
deviate. For deriving cheap approximately budget balanced core solutions the method
of dual fitting can be applied, which scales the assigned payments of players to dual
feasibility. The scaling factor then yields a factor for competitiveness, the notion in
cooperative games analog to the stability ratio. In our non-cooperative framework the
same simple scaling unfortunately does not work. In particular, for recently proposed
greedy methods with better approximation ratios the factor for the approximation ratio
does not translate.

Lemma 2. The payments computed by recent greedy algorithms [12,16] yield a stabil-
ity ratio of Ω(k).

376 M. Hoefer

Algorithm 1. Primal-dual algorithm for (3,3)-approximate Nash equilibria
In the beginning all terminals are unconnected, all budgets Bt are 0, and all facilities
closed. Raise budgets of unconnected terminals at the same rate until one of the following
events occurs. We denote the current budget of unconnected terminals by B. We call a
terminal t tight with facility f if Bt ≥ c(t, f).

1. An unconnected terminal t goes tight with an opened facility f .
In this case set t connected to f and assign player it to pay pc

it
(t, f) = c(t, f).

2. For a facility f not yet definitely closed the sum of the budgets of unconnected and
indirectly connected terminals t pays for opening and connection costs:�

t max(Bt − c(t, f), 0) = c(f). Then stop raising the budgets of the unconnected
tight terminals. Also,

(a) if there are opened facility f ′ and terminal t′ with c(t′, f) + c(t′, f ′) ≤ 2B,
set f definitely closed and all unconnected terminals t tight with f indirectly
connected.

(b) Otherwise open f and set all terminals directly connected to f , which are tight
with f and not yet directly connected to some other facility. For each such
terminal assign player it to pay pc

it
(t, f) = c(t, f) and po

it
(f) = Bt − c(t, f).

In the end connect all indirectly connected terminals to the closest opened facility and
assign the corresponding players to pay for the connection cost.

2.2 Extensions

Connection-Restricted Facility Location Games. We extend the game from UFL to
connection-restricted facility location (CRFL) problems as considered in [8]. Instead
of the constraints yf − xtf ≥ 0 there is for each facility f a set of feasible subsets
of terminals that can be connected simultaneously to f . This formulation allows for
instance capacity, quota, or incompatibility constraints and thus encompasses several
well-known generalizations of the problem. For these games some of the previous re-
sults can be extended to hold.

Theorem 6. For CRFL games, in which a partially conic relaxation of the underlying
CRFL problem has integrality gap 1, the price of stability is 1.

Theorem 7. For CRFL games with singleton players the price of stability is 1.

Single source connection games. By appropriately changing opening and connection
costs most of the previous results translate in some reduced form to the SSC game with
any number of terminals per player. As the previous algorithms in [2, 10] construct
approximate Nash equilibria purchasing S∗, we explicitly examine a lower bound for
this case.

Corollary 1. There is a SSC game, in which for every (α, β)-approximate Nash equi-
librium α > 1.0719. For approximate Nash equilibria with β = 1 purchasing S∗ the
bound increases to α > 1.1835.

Corollary 2. In the SSC game the price of stability is at least k − 2.

Corollary 3. It is NP-hard to decide whether a SSC game has a Nash equilibrium.

Non-cooperative Facility Location and Covering Games 377

3 Covering Games

Covering games and their equilibria are defined similarly to the facility location case.
An integer covering problem (ICP) is given as

Min
n∑

f=1

c(f)xf

subject to
n∑

f=1

a(t, f)xf ≥ b(t) for all t = 1, . . . , m

xf ∈ IN for all f = 1, . . . , n.

(2)

All constants are assumed to have non-negative (rational) entries a(t, f), b(t), c(f) ≥ 0
for all t = 1, . . . , m and f = 1, . . . , n. Associated with each of the k non-cooperative
players is a subset of the constraints Ci, which she strives to satisfy. Integral units of a
resource f have cost c(f). They must be bought to be available for constraint satisfac-
tion. Each player i chooses as a strategy a payment function pi : {1, . . . , n} → IRn

+,
which specifies her non-negative contribution to each resource f . Then an integral num-
ber of xf units of resource f are considered bought if xf is the largest integer such that∑

i pi(f) ≥ c(f)xf . A bought unit can be used by all players for constraint satisfac-
tion – no matter whether they contribute or not. We assume that if player i offers some
amount pi(f) to resource f , and xf units are bought in total, then her contribution to
each unit is pi(f)/xf . Each player strives to minimize her cost, but insists on satisfying
her constraints. We can translate definitions of exact and approximate Nash equilibria
in this game directly from the UFL game. In addition, observations similar to the ones
made in Sect. 2 can be used to simplify a game. Hence, in the following we will assume
w.l.o.g. that the constraint sets Ci of the players form a partition of the constraints of
the ICP. Note that in a Nash equilibrium no player contributes to an unbought unit, so
the equality

∑
i pi(f) = c(f)xf holds.

In the covering game prices of anarchy and stability behave similarly as in the metric
UFL game. Using the results for vertex cover games in [3] and similar observations for
the price of anarchy as in Sect. 2.1, we can see that the price of anarchy in the covering
game is exactly k and the price of stability is at least k−1. Furthermore, even for vertex
cover games it is NP-hard to decide, whether a covering game has a Nash equilibrium.
Hence, we again focus on classes of games, for which cheap Nash equilibria exist.

Theorem 8. If the integrality gap of the ICP is 1, the price of stability is 1 and an
optimal Nash equilibrium can be found in polynomial time.

Theorem 9. If for each player |Ci| = 1, the price of stability is 1.

For set cover games there is an efficient algorithm to compute cheap approximate Nash
equilibria. F denotes the maximum frequency of any element in the sets.

Theorem 10. There is a primal-dual algorithm to compute a (F , F)-approximate Nash
equilibrium for set cover games.

Acknowledgement. Part of this work was done during a visit at Dortmund University. I
am grateful to Piotr Krysta and Patrick Briest for enlightening discussions on the topic.

378 M. Hoefer

References

1. E. Anshelevich, A. Dasgupta, J. Kleinberg, T. Roughgarden, É. Tardos, and T. Wexler. The
price of stability for network design with fair cost allocation. In Proc 45th FOCS, pages
295–304, 2004.

2. E. Anshelevich, A. Dasgupta, É. Tardos, and T. Wexler. Near-optimal network design with
selfish agents. In Proc 35th STOC, pages 511–520, 2003.

3. J. Cardinal and M. Hoefer. Selfish serive installation in networks. In Proc 2nd Workshop
Internet & Network Economics (WINE), 2006.

4. X. Deng, T. Ibaraki, and H. Nagamochi. Combinatorial optimization games. In Proc 8th
SODA, pages 720–729, 1997.

5. N. Devanur, N. Garg, R. Khandekar, V. Pandit, A. Saberi, and V. Vazirani. Price of anarchy,
locality gap, and a network service provider game. In Proc 1st Workshop Internet & Network
Economics (WINE), pages 1046–1055, 2005.

6. N. Devanur, M. Mihail, and V. Vazirani. Strategyproof cost-sharing mechanisms for set cover
and facility location problems. In Proc 4th EC, pages 108–114, 2003.

7. H. Eiselt, G. Laporte, and J.-F. Thisse. Competitive location models: A framework and
bibliography. Transport. Sci., 27:44–54, 1993.

8. M. Goemans and M. Skutella. Cooperative facility location games. In Proc 11th SODA,
pages 76–85, 2000.

9. S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms. J.
Algorithms, 31:228–248, 1999.

10. M. Hoefer. Non-cooperative tree creation. In Proc 31st MFCS, pages 517–527, 2006.
11. N. Immorlica, M. Mahdian, and V. Mirrokni. Limitations of cross-monotonic cost sharing

schemes. In Proc 16th SODA, pages 602–611, 2005.
12. K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani. Greedy facility location

algorithms analyzed using dual fitting with factor-revealing LP. J. ACM, 50(6):795–824,
2003.

13. K. Jain and V. Vazirani. Applications of approximation algorithms to cooperative games. In
Proc 33rd STOC, pages 364–372, 2001.

14. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proc 16th STACS, pages
404–413, 1999.

15. X. Li, Z. Sun, and W. Wang. Cost sharing and strategyproof mechanisms for set cover games.
In Proc 22nd STACS, pages 218–230, 2005.

16. M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algorithms for metric facility
location problems. In Proc. 5th APPROX, pages 229–242, 2002.

17. R. Mettu and G. Plaxton. The online median problem. SIAM J. Comp, 32(3):816–832, 2003.
18. T. Miller, T. Friesz, and R. Tobin. Equilibrium Facility Location in Networks. Springer

Verlag, 1996.
19. M. Pál and É. Tardos. Group strategyproof mechanisms via primal-dual algorithms. In Proc

44th FOCS, pages 584–593, 2003.
20. Z. Sun, X. Li, W. Wang, and X. Chu. Mechanism design for set cover games when elements

are agents. In Proc 1st Intl Conf Algorithmic Applications in Management (AAIM), 2005.
21. A. Vetta. Nash equilibria in competitive societies with application to facility location, traffic

routing and auctions. In Proc 43rd FOCS, page 416, 2002.

Optimal Algorithms for the Path/Tree-Shaped

Facility Location Problems in Trees

Binay Bhattacharya1,�, Yuzhuang Hu1, Qiaosheng Shi1, and Arie Tamir2

1 School of Computing Science, Simon Fraser University, Burnaby B.C.,
Canada. V5A 1S6

{binay, yhu1, qshi1}@cs.sfu.ca
2 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv,

Tel Aviv 69978, Israel
atamir@post.tau.ac.il

Abstract. In this paper we consider the problem of locating a path-
shaped or tree-shaped (extensive) facility in trees under the condition
that existing facilities are already located. We introduce a parametric-
pruning method to solve the conditional extensive weighted 1-center lo-
cation problems in trees in linear time. This improves the recent results
of O(n log n) by Tamir et al. [16].

1 Introduction

In a typical facility location problem, a set of demand points are embedded in
some metric space and the goal is to locate a specified number of facilities in this
space, such that the quality of service provided by these facilities is optimized.
In general, the quality of service is measured by some objective function. There
are many different objective functions of possible interests, among which the
mostly studied ones are the minimization of average service distance and the
minimization of maximum distance. The corresponding problems are referred to
as the median problem and the center problem in the literature [5].

Usually a facility is represented by a point in the metric space [1,2,3,4,5,8,9,
10]. However, in recent years there has been a growing interest in studying the lo-
cation of connected structures (referred to as extensive facilities)
[6, 7, 11, 13, 14, 15, 16, 17, 18]. These studies were motivated by concrete decision
problems related to routing and network design [16]. Also, in many practical
situations there may exist some facilities and the problem is to find locations for
a specified number of new facilities, which is referred to as conditional location
problem by Minieka [12].

Our study in this paper is restricted to extensive facility location problems in a
tree network where the objective function is to minimize the maximum distance.
In specific terms our problem is to locate a path/subtree-shaped facility, whose
length is no more than a predefined nonnegative value, in the underlying tree net-
work such that the maximum weighted distance from demand points to the facility
� Research was partially supported by MITACS and NSERC.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 379–388, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

380 B. Bhattacharya et al.

is minimized. In the case when there are no existing facilities, Hedetmiemi et al. [7]
proposed optimal algorithms for locating a path-shaped facility without length
constraint that take advantage of a canonical recursive representation of a tree.
Wang [17] proposed an optimal parallel algorithm for locating a path-shaped fa-
cility of a specified length in a weighted tree network. For locating a tree-shaped
facility, Shioura and Shigeno [14] showed that these problems in tree networks
are related to the bottleneck knapsack problems, and presented linear-time al-
gorithms by using this relationship. When the existing facilities are taken into
considerations, Mesa [11] provided an O(n log n) time algorithm (n is the number
of vertices in the tree) for the conditional path-shaped center problem in the pure
topological case of a tree, where vertices and edges in the tree are unweighted.

All the results mentioned above [7, 11, 14, 17] considered the tree network to
be edge-weighted but not vertex-weighted. In recent papers [15,16], Tamir et al.
proposed O(n log n)-time algorithms to solve the conditional problems in tree
networks where the vertices and the edges are weighted. The basic technique
used in their algorithms is parametric search. In this paper, we introduce a
method (called parametric pruning) to optimally solve the weighted 1-center
problem in a tree (that is, locate a point facility to minimize the maximum
weighted distance from a demand point to it). This method is more general than
Megiddo’s method [9]. It is an integral part of the proposed optimal algorithms
for locating a single path/tree-shaped center facility of a specified length in a
tree network with/without existing facilities. These results improve the recent
O(n log n) results of Tamir et al. [16].

The paper is organized as follows. Section 2 introduces notations and presents
formal definitions of our problems. In Sect. 3, the main ideas of our algorithms
are presented. The linear-time algorithms for the conditional path-shaped and
tree-shaped center problems in tree networks are provided in sections 4 and 5
respectively. Section 6 gives a brief summary and shows that our approach can be
extended to optimally solve the problem for more general service cost functions.

2 Notations and Problem Formulation

Let T = (V,E,w, l) be an undirected tree network with the vertex set V , and
the edge set E where each vertex v ∈ V is associated with a positive weight w(v)
and each edge e ∈ E is associated with a positive length l(e). Let A(T) denote
the continuum set of points on the edges of T . For a subtree network T ′ of T , let
V (T ′), E(T ′) and A(T ′) denote the vertex set, the edge set and the continuum
set of points on the edges of T ′, respectively. P (u, v), u, v ∈ A(T) denotes the
simple path (also the shortest path) in T from u to v, whose length is denoted
by d(u, v). The length of a subtree network T ′ is the total length of edges in T ′.

Let δT ′(v) be the degree of vertex v in the subtree T ′. A vertex v is called an
anchor vertex of T ′ if v ∈ V (T ′), δT ′(v) = 1 and δT ′(u) = δT (u), u ∈ V (T ′)\{v}.
A subtree network is called discrete if all its leaf points are the vertices of T ,
and is called continuous otherwise. Let S represent the set of existing facilities,
which by itself can be a subtree network or even a forest network [16].

Optimal Algorithms for the Path/Tree-Shaped Facility Location Problems 381

The Weighted Path/Tree-Shaped Center Problem. Let C1 (resp. C2) be
the set of all the path networks (resp. subtree networks) in T whose lengths are
at most a predefined nonnegative value L, and let D1 (resp. D2) be the set of all
the discrete path networks (resp. subtree networks) in T whose lengths are at
most L. The goal is to establish one facility Y ∗, either a path network in C1/D1
or a subtree network in C2/D2, such that

Cost(Y ∗ ∪ S, T) = min
Y ∈C1(or D1,C2,D2)

Cost(Y ∪ S, T),

where

Cost(Y ∪ S, T) = max
v∈V

w(v) · d(Y ∪ S, v) with d(Y ∪ S, v) = min
x∈A(Y)∪S

d(x, v)

is the service cost function of a new extensive facility Y and a set S of existing
vertex/extensive facilities for all the demand points in T . When the facility Y is
selected from C1 or C2, we call the model continuous, and if Y is chosen from D1
or D2, the model is called discrete. An extensive facility is valid if it is in C1 (or
D1/C2/D2) for the continuous path-shaped (or discrete path-shaped/continuous
tree-shaped/discrete tree-shaped) center problem. If S is empty we refer to the
model as the unconditional model, and otherwise the model is conditional. We
also consider the path-shaped center problem without the length constraint.

Since a problem in the unconditional model is a special case of the conditional
one, it suffices to develop algorithms for problems in the conditional model only.

3 Main Idea of Our Algorithms

Given an extensive facility Y and a set S of existing facilities, a vertex v is called
a dominating vertex of Y ∪S if w(v) ·d(Y ∪S, v) = Cost(Y ∪S, T). Observe that,
in the center problem, an optimal facility Y ∗ ∪S always has an equal or smaller
service cost to the dominating vertices of a valid facility Y ∪ S. In other words,
given such dominating information of a valid facility, we are able to determine
the relative location of an optimal facility with respect to the location of this
valid facility. In Path Lemma and Tree Lemma discussed later, we will see how
this idea works in solving our problems.

For the weighted 1-center problem, Megiddo [9] designed a ‘prune-and-search’
algorithm, which is carried out in two phases. The first phase is to locate a
subtree network T ′, containing an optimal 1-center, that is anchored to a centroid
vertex o of T . It is easy to see that the optimal 1-center provides services to all
the clients in T \T ′ through the vertex o. Therefore, the topology of the subtree
network T \T ′ is not important. For each vertex in T \T ′, we only need to keep
its distance information to o. Since |V (T \T ′)| ≥ n/2, we call the subtree T \T ′ a
big component. The second phase answers the following key question: determine
whether there is an optimal 1-center in T ′ within distance t to o. An appropriate
value of t is determined in the following way. We arbitrarily pair the vertices in
T \ T ′. Let (u1, u

′
1), (u2, u

′
2), . . . , (ul, u′l) be the pairs where w(ui) ≥ w(u′i). For

382 B. Bhattacharya et al.

every such pair (ui, u′i), 1 ≤ i ≤ l let ti = [w(u′i)d(u′i, o)−w(ui)d(ui, o)]/(w(ui)−
w(u′i)), that is, ui and u′i have the same weighted distance to a point with the
distance ti to o. t is taken to be the median of these values. Once the answer to
the key question is known, approximately 1/4 of the vertices in T \T ′ cannot be
dominating vertices of an optimal solution in T ′, and therefore can be discarded.
The algorithm performs O(log n) such iterations. Each iteration takes linear
time, linear in the size of the current tree. Therefore, the 1-center problem can
be solved in linear time.

In this paper, we present a parametric pruning method for the weighted
1-center problem in T . For every pair (ui, u′i), 1 ≤ i ≤ l, w(ui) ≥ w(u′i), let
ci = w(ui)·(d(ui, o)+ti) = w(u′i)·(d(u′i, o)+ti) (ti is described above). ci is called
the switch service cost of this pair. If the optimal service cost is larger (resp.
smaller) than ci then ui (resp. u′i) is a dominating candidate. Let R(ui) andR(u′i)
denote the dominating regions of ui, u′i, respectively. That is, R(ui) = (ci,∞)
and R(u′i) = [0, ci]. Let c be the median of these switch service costs. We can find
either c∗ > c or c∗ ≤ c after solving the following decision problem: does there
exist a point p ∈ A(T) such that Cost(p, T) ≤ c? Here c∗ denotes the optimal
service cost. As we know, the decision problem in a tree network can be solved
in linear time [10]. Therefore, the pruning of the vertices in T \ T ′ can also be
performed using this parametric-pruning method.

The advantage of parametric pruning over Megiddo’s technique is that it is
more general and is applicable to the problems considered in this paper. In
Megiddo’s method, we need to locate one big component served by a 1-center
from outside so that a fraction of the vertices from the big component can be
identified for pruning. Here the center facility serves the demand points in the big
component through the vertex o only. However, the parametric-pruning method
still works even if O(n) disjoint components are found which are served from the
outside by the facilities. We will see the details later in our algorithms. Basically,
our main idea is to ‘prune’ the vertices that do not determine the optimal service
cost (i.e. vertices are not dominating), and to ‘shrink’ the facility if some path
network or subtree network is known to be a part of an optimal facility.

3.1 Locating Non-dominating Vertices in an Optimal Solution

For our problems, more ideas are needed to make the parametric pruning to
work. In the conditional model we cannot afford to keep the information of the
existing facilities in S at each pruning iteration as S could be O(n). However, it
is not difficult to design a linear-time step to find the distance d(S, v) for each
vertex v ∈ V [16]. After this step, it is safe to discard the vertices of S in the
subsequent steps. The following important lemma is established in [16].

Lemma 1. [16] Given a point p and a nonnegative value c, the facility Y of
smallest length with p ∈ A(Y) and Cost(Y ∪S, T) ≤ c can be computed in linear
time.

From Lemma 1, it is not hard to see that the feasibility test can be solved in
linear time [16]. The feasibility test can be formally described as follows. Given

Optimal Algorithms for the Path/Tree-Shaped Facility Location Problems 383

a real number c, determine whether there exists a subtree/path Y of length not
exceeding L such that C(Y ∪ S, T) ≤ c.
Number of Switch Service Costs for a Pair of Nodes. Suppose that facility
Y serves a pair of vertices (u, v) through o, see Fig. 1.

d(Y, o)

Cost(Y ∪ S, u)

Cost(Y ∪ S, v)

0

(a) d(S, u) − d(o, u) ≥ d(S, v) − d(o, v) (b) d(S, u) − d(o, u) < d(S, v) − d(o, v)

d(S, v) − d(o, v)

d(S, u) − d(o, u)
vu

o

d(Y, o)

Cost(Y ∪ S, v)

Cost(Y ∪ S, u)

0

d(S, u) − d(o, u)

d(S, v) − d(o, v)

cr
u,v

cl
u,v

Fig. 1. The number of switch service costs for (u, v) in the conditional model

In the unconditional model, it is trivial to see that there exists at most one
switch service cost. However, there may be more than one switch service cost in
the conditional model. In the following we show that in the conditional model at
most two switch service costs exist for a given pair of vertices (u, v). If d(o, v) ≥
d(S, v) then v will always be served by some existing facility. Without loss of
generality, assume that d(o, u) < d(S, u), d(o, v) < d(S, v), and w(u) ≥ w(v).
Fig. 1 shows the service cost functions Cost(Y ∪ S, u), Cost(Y ∪ S, v) with the
change of d(Y, o). We use the dashed lines to represent all possibilities. If d(S, u)−
d(o, u) ≥ d(S, v)− d(o, v), see Fig. 1(a), there is at most one switch service cost.
In the case when d(S, u)− d(o, u) < d(S, v)− d(o, v), see Fig. 1(b), it is possible
to have two switch service costs, but no more than two. When there are two
switch service costs for (u, v), we call the switch service cost with smaller value
left switch service cost and call the other one right switch service cost.

In fact, it is not hard to see that there are a constant number of intersection
points between a pair of nondecreasing piecewise linear functions with a constant
number of breakpoints. That is, there are a constant number of dominating
regions for each vertex. In [18], Zemel provided a ‘prune-and-search’ method
for the case where there are a constant number of dominating regions for each
vertex. Here we show an algorithm to locate non-dominating vertices in our
problems.

For those pairs having only one switch service cost, we can locate the non-
dominating vertices easily by checking the feasibility of the median switch service
cost. In this case there are half of such pairs in which one vertex is identified as a
non-dominating vertex. Suppose that (u1, v1), (u2, v2), . . . , (uk, vk) are the pairs
of vertices with two switch service costs, where w(ui) ≥ w(vi), 1 ≤ i ≤ k. Let
cli (resp. cri) be the left (resp. right) switch service cost of (ui, vi), i = 1, . . . , k.
Clearly, R(ui) = (cli, c

r
i] and R(u′i) = [0, cli]∪(cri ,∞). Select one value cl (resp. cr)

384 B. Bhattacharya et al.

such that one third of left (resp. right) switch service costs cli > cl (resp. cri ≤ cr)
and the remaining ones are no more than (resp. larger than) it. We call cl

(resp. cr) called the left switch value (resp. right switch value). After solving
the decision problems with cl and cr, we can find at least �k3� non-dominating
vertices for an optimal facility.

4 Weighted Path-Shaped Center Problems

In this section we apply the ideas introduced in the previous section to design a
linear-time algorithm that solves the path-shaped center location problem.

Lemma 2 (Path Lemma). Given a point q in T , we can find in linear time
either the optimal service cost c∗, one subtree network anchored to q containing
an optimal path facility, or two subtree networks anchored to q containing an
optimal path facility and q is on it.

Proof. Let T1, . . . , Tm be the subtree networks anchored to q such that Cost({q}∪
S, T1) ≥ Cost({q}∪S, T2) and Cost({q}∪S, T2) ≥ Cost({q}∪S, Ti), i = 3, . . . ,m.
Let F be the set of dominating vertices for {q} ∪ S.

– If some dominating vertices are in T \ {T1 ∪ T2}, c∗ = Cost({q} ∪S, T1) and
q is an optimal path facility.

– When Cost({q}∪S, T1) = Cost({q}∪S, T2) > Cost({q}∪S, T3), an optimal
facility lies in T1 ∪ T2, and q lies on it.

– Otherwise, T1 contains all the dominating vertices. Let c = Cost({q}∪S, T2).
If c is infeasible, an optimal path facility lies in T1, otherwise, c∗ ≤ c. Note
that q must be on an optimal path facility if c∗ < c. By Lemma 1, we can
find whether or not there is a valid path facility containing q with service
cost no more than c. If there exists such facility then an optimal path facility
lies in T1 ∪ T2 and q lies on it. If not, c∗ = c. 	

One of the following cases occurs when the Path Lemma is applied to a centroid
vertex o of T . Let T1, T2, . . . , Tm be the subtree networks anchored to o, as
described in the proof of Path Lemma.

– Case 1 : An optimal path facility lies in a subtree network T1 anchored to o.
– Case 2 : There is an optimal path facility lying in T1 ∪T2 anchored to o, and
o lies on it.

In Case 1, vertices in subtree T \ T1 are served by the new facility through o
and |V (T \ T1)| ≥ n/2. Our goal is to prune a fraction of the vertices in the big
component T \T1. Randomly pair the vertices in T \T1, and compute the switch
service costs for each pair. By the method described in Sect. 3.1, at least n

4 × 1
3

non-dominating vertices in T \ T1 can be found and be discarded in linear time.
In Case 2, o is the closest point in an optimal path facility to any vertex in

T \ (T1 ∪ T2). We discard all the vertices in T \ (T1 ∪ T2) except one vertex
v with w(v) × d({o} ∪ S, v) = maxu∈V (T\T1∪T2) w(u) · d({o} ∪ S, u). If |V (T) \

Optimal Algorithms for the Path/Tree-Shaped Facility Location Problems 385

o′ v′
1 v1 o

T1
T ′
1

T \ T ′
1

(b) Case 2.2

T2

v2

o′ v′
1 v1

T1

u

o

T ′
1

v′
2

(c) Case 2.3

v2

T2T ′
2

o

v2

T2T1 T \ T1 ∪ T2

v1

v

(a) Case 2.1

Fig. 2. Case 2: an optimal path facility lies in T1, T2 and o is on it

V (T1∪T2)| ≥ n/3 (Case 2.1, see Fig. 2(a)), at least n/3 −1 vertices in T can be
removed. So assume that |V (T1) ∪ V (T2)| > 2n/3 and |V (T1)| > n/3. Let o′ be
a centroid vertex of T1. We get the following cases after applying Path Lemma
on o′:

– Case 2.2 : The path facility lies in one subtree network T ′1, anchored to o′

and contains o. In this case, the path facility serves the vertices in T \T ′1 via
o′ and |V (T1 \ T ′1)| > n/6. Using the same method as the one used in Case
1, we can discard at least n

12 × 1
3 vertices in T1 \ T ′1.

– Case 2.3 : The path facility lies in two subtrees T ′1 and T ′2 anchored to o′.
Observe that P (o, o′) is a part of new facility in an optimal solution. It implies
that the closest facility point of every vertex in V (T1 \ T ′2) in an optimal
solution is determined. Contract P (o, o′) into one point o and discard all the
other vertices in T1 \T ′2 except the vertex u with the maximum service cost.
Since |V (T1 \ T ′2)| ≥ n

6 , at least n
6 − 1 vertices are removed from T .

Denote by T ′ the new tree thus computed. Since the size of T ′ is at most 35
36n, the

process terminates within O(log n) iterations. Since each iteration takes linear
time, linear in the size of the current underlying tree, the total cost is therefore
linear in n.

It is not hard to see that the algorithm works for the discrete case as well.
Summing up, we have the following theorem.

Theorem 1. The unconditional/conditional discrete/continuous weighted path-
shaped center problem with/without length constraint in tree networks can be
solved in linear time.

5 Weighted Tree-Shaped Center Problems

In this section we present a linear-time algorithm to locate a tree-shaped center
in a weighted tree. The following lemma shows a property for the tree-shaped
facility location problem, which is similar in spirit to Path Lemma. Its proof is
also very similar.

Lemma 3 (Tree Lemma). Given a vertex u in T , we can find in linear time
either the optimal service cost c∗, one subtree network anchored to u containing
an optimal facility, or u lies in an optimal facility.

386 B. Bhattacharya et al.

After the application of the Tree Lemma to a centroid vertex o of T , there are
two cases to consider. In Case 1 where one subtree network anchored to o is
found to contain an optimal facility, we can discard n

12 vertices in linear time by
a procedure similar to the one described for Case 1 in the path-shaped center
problem.

In Case 2, o lies in an optimal facility. In this case, we focus on pruning the
vertices of T of degree no more than two. For a leaf vertex u, let p(u) denote the
vertex adjacent to it in T and let eu be the edge incident to it. If the optimal
service cost is smaller than w(u) · d({p(u)} ∪ S, u), then a part of the edge eu
must lie in an optimal facility, and u is served by the new facility. Therefore, u is
a dominating vertex of an optimal facility (if we want to minimize the length of
the new facility without increasing the optimal service cost). Lemma 4 provides
a process to prune such dominating leaf vertices. Otherwise, the new facility lies
outside the edge eu in an optimal solution.

Basically, we are interested in pairing the vertices (u, v), δ(u), δ(v) ≤ 2, satis-
fying one of the following relations:

– (Type-I) u and v have a ‘ancestor-descendent’ relation, i.e. v is on the path
P (u, o) or u is on P (v, o). In this case we can also show that there are at
most two switch service costs no matter where the new facility lies. This is
due to the fact that u, v and o all lie on a path and the new facility contains
o.

– (Type-II) u and v are ‘sibling’ leaf vertices with p(u) = p(v). If the new
facility doesn’t lie on eu and ev, surely one of them can be pruned.

In the following, we first describe a simple algorithm to determine disjoint Type-
I pairs of vertices, and show that the output size depends on the number of leaf
vertices in the tree. We then present the algorithm for the case where there are
lots of leaf vertices.

We remove all the vertices of degree more than two. For each connected path,
output the disjoint pairs of vertices (leave one if the number of vertices in one
path is odd). Let m be the number of leaf vertices in T . Then the number of
vertices not in any pair cannot be more than 3m. In the case where the number
of leaf vertices is no more than n

5 , we can use the proposed parametric pruning
in Sect. 3.1 to prune the tree. Since there are at least n

5 output (Type-I) pairs of
vertices, at least 1

3 × n
5 vertices can be discarded after solving the corresponding

decision problems.
We now consider the problem where the number of leaf vertices in T is more

than n
5 . For each leaf vertex v, compute cv = w(v) · d({p(v)} ∪S, v). If there are

lots of leaf vertices such that their neighboring vertices are of degree two, say at
least one quarter of them, then we have at least 1

4 × n
5 Type-I pairs of vertices

(each pair consists of a leaf vertex and its neighbor vertex) and the algorithm
described above can be applied here. Otherwise, there are at least 3

4 × n
5 leaf

vertices whose neighbors have degrees greater than two. We arbitrarily pair such
sibling leaf vertices. It is not hard to see that there are at least 1

4 × n
5 such

disjoint Type-II pairs. We leave one leaf vertex if it has odd number of siblings.

Optimal Algorithms for the Path/Tree-Shaped Facility Location Problems 387

For each leaf vertices pair (u, v), let c(u,v) = max {cu, cv}. c is chosen to be the
median of these values.

– c∗ > c. Then, for each pair (u, v) with c(u,v) ≤ c it is not necessary for eu
and ev to intersect the new facility in an optimal solution. Therefore, the
algorithm used for Case 1 can be adapted again to prune vertices (at least
n
5 × 1

8 vertices).
– c∗ ≤ c. For each pair (u, v) with c(u,v) > c, assume that cu = c(u,v), without

any loss of generality. Then u is a dominating vertex, and it is served by the
new facility. Hence, there are at least 1

8 × n
5 such dominating vertices. The

following lemma provides the base to prune these dominating vertices. But
first we need to shorten the edge eu if d(S, u) < l(eu). In this case we update
L = L− l(eu) + d(S, u)) and set l(eu) = d(S, u).

Lemma 4. Given two dominating leaf vertices u, v for an optimal facility with
its service cost no more than min {w(u) · l(eu), w(v) · l(ev)}, where d(S, u) ≥
l(eu) and d(S, v) ≥ l(ev), the optimal service cost in the new tree, constructed
by deleting u and eu, and updating l(ev) = l(eu) + l(ev) and w(v) = w(u)·w(v)

w(u)+w(v) ,
is equal to the optimal service cost in original tree.

Proof. It is not hard to see that p(u) and p(v) must lie in the optimal facility
and u, v are served by it (not by some existing facility). Let d1, d2 be the distance
from u, v to the optimal facility respectively. Clearly, w(u)·d1 = w(v)·d2 is equal
to the optimal service cost. In the new tree, only vertices u and v and edges eu
and ev are changed. Since (d1 +d2) · w(u)·w(v)

w(u)+w(v) = w(u) ·d1 = w(v) ·d2, the length
of the part of the new facility on the new edge ev is equal to the length of the
part of the new facility on eu and ev (that is l(eu) + l(ev) − d1 − d2), for any
optimal service cost. Therefore, the optimal service cost in the new tree is equal
to the original optimal service cost. 	

Putting everything together, we establish Theorem 2. Adapting the algorithm
for the discrete case is straightforward.

Theorem 2. The unconditional/conditional discrete/continuous weighted tree-
shaped center problem with length constraint in trees can be solved in linear time.

6 Conclusion and Future Work

In this paper, we propose optimal algorithms for the extensive facility location
problems in tree networks, where the new facility (center) is either path-shaped
or tree-shaped. The main technique is to ‘prune’ the nondominating vertices and
to ‘shrink’ the facility if some path or subtree is known to be a part of an optimal
facility. These results improve the recent O(n log n) results of Tamir et al. [16].

For the case where the service cost fi(x) of a client (vertex) vi is a nondecreas-
ing, piecewise linear function (with a fixed number of breakpoints) of the service
distance to the facility (in the ‘conditional’ case fi(x) has only one breakpoint),

388 B. Bhattacharya et al.

all the ideas presented in this paper can be extended to achieve an optimal al-
gorithm for locating the facility (either a point, a path, or a subtree). Actually,
our method works even when the piecewise linearity assumption is relaxed to
piecewise polynomiality (e.g. quadratic, or cubic) of fixed degree.

References

1. B. Ben-Moshe, B. Bhattacharya, Q. Shi, “An optimal algorithm for the continu-
ous/discrete weighted 2-center problem in trees”, in LATIN, Chile, 2006.

2. B. Bhattacharya, Q. Shi, “Optimal algorithms for weighted p-center problem in
trees, any fixed p”, manuscript, 2006.

3. G.N. Frederickson, “Parametric search and locating supply centers in trees”, In
Workshop on Algorithms and Data Structures (WADS) (1991), 299-319.

4. G.N. Frederickson, D.B. Johnson, “Finding k-th paths and p-centers by generating
and searching good data structures”, J. of Alg. 4 (1983) 61-80.

5. S.L. Hakimi, “Optimum location of switching centers and the absolute centers and
medians of a graph”, Oper. Res. 12 (1964) 450-459.

6. S.L. Hakimi, E.F. Schmeichel, M. Labbe, “On locating path or tree shaped facilities
on networks”, Networks 23 (1993) 543-555.

7. S.M. Hedetniemi, E.J. Cockaine, S.T. Hedetniemi, “Linear algorithms for finding
the Jordan center and path center of a tree” Transport. Sci. 15 (1981) 98-114.

8. M. Jeger, O. Kariv, “Algorithms for finding p-centers on a weighted tree (for rela-
tively small p)”, Networks, 15 (1985) 381-389.

9. N. Megiddo, “Linear-time algorithms for linear programming in R3 and related
problems”, SIAM J. Comput. 12 (1983) 759-776.

10. N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran, “An O(n log 2n) algo-
rithm for the kth longest path in a tree with applications to location problems”,
SIAM J. Comput. 10 (1981) 328-337.

11. J.A. Mesa, “The conditional path center problem in tree graphs”, unpublished
paper presented to EWGLA8 held in Lambrecht (Germany), 1995.

12. E. Minieka, “Conditional centers and medians on a graph”, Networks 10 (1980)
265-272.

13. E. Minieka, “The optimal location of a path or tree in a tree network”, Networks
15 (1985) 309-321.

14. A. Shioura, M. Shigeno, “The tree center problems and the relationship with the
bottleneck knapsack problems”, Networks 29 (1997) 107-110.

15. A. Tamir, J. Puerto, D. Pérez-Brito, “The centdian subtree on tree networks”,
Disc. Appl. Math. 118 (2002) 263-278.

16. A. Tamir, J. Puerto, J.A. Mesa, A.M. Rodriguez-Chia, “Conditional location of
path and tree shaped facilities on trees”, J. of Alg., 56 (2005) 50-75.

17. B.F. Wang, “Efficient parallel algorithms for optimally locating a path and a tree
of a specified length in a weighted tree network”, J. of Alg., 34 (2000) 90-108.

18. E. Zemel, “An O(n) algorithm for the linear multiple choice knapsack problem and
related problems”, Information Processing Letters, 18 (1984) 123-128.

Multiobjective Optimization: Improved FPTAS

for Shortest Paths and Non-linear Objectives
with Applications�

George Tsaggouris and Christos Zaroliagis

Computer Technology Institute, Patras University Campus, 26500 Patras, Greece;
and Dept of Computer Eng & Informatics, University of Patras, 26500 Patras, Greece

{tsaggour, zaro}@ceid.upatras.gr

Abstract. We provide an improved FPTAS for multiobjective shortest
paths, a fundamental (NP-hard) problem in multiobjective optimization,
along with a new generic method for obtaining FPTAS to any multiob-
jective optimization problem with non-linear objectives. We show how
these results can be used to obtain better approximate solutions to three
related problems that have important applications in QoS routing and
in traffic optimization.

1 Introduction

Multiobjective shortest paths (MOSP) is a core problem in the area of multiobjec-
tive optimization [3,4] with numerous applications. Informally, the problem con-
sists in finding a set of paths that captures not a single optimum but the trade-off
among d > 1 objective functions in a digraph whose edges are associated with
d-dimensional attribute (cost) vectors. In general, an instance of a multiobjec-
tive optimization problem is associated with a set of feasible solutions Q and a
d-vector function f = [f1, . . . , fd]T (d is typically a constant) associating each fea-
sible solution q ∈ Q with a d-vector f(q) (w.l.o.g. we assume that all objectives
fi, 1 ≤ i ≤ d, are to be minimized). In a multiobjective optimization problem,
we are interested not in finding a single optimal solution, but in computing the
trade-off among the different objective functions, called the Pareto set or curve
P , which is the set of all feasible solutions in Q whose vector of the various ob-
jectives is not dominated by any other solution (a solution p dominates another
solution q iff fi(p) ≤ fi(q), ∀1 ≤ i ≤ d). Multiobjective optimization problems
are usually NP-hard (as indeed is the case for MOSP). This is due to the fact
that the Pareto curve is typically exponential in size (even in the case of two ob-
jectives). On the other hand, even if a decision maker is armed with the entire
Pareto curve, s/he is left with the problem of which is the “best” solution for the
application at hand. Consequently, three natural approaches to solve multiobjec-
tive optimization problems are to: (i) study approximate versions of the Pareto
curve; (ii) optimize one objective while bounding the rest (constrained approach);

� This work was partially supported by the FET Unit of EC (IST priority – 6th FP),
under contracts no. FP6-021235-2 (ARRIVAL) and no. IST-2002-001907 (DELIS).

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 389–398, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

390 G. Tsaggouris and C. Zaroliagis

and (iii) proceed in a normative way and choose the “best” solution by intro-
ducing a utility (typically non-linear) function on the objectives (normalization
approach). In this paper, we investigate all of them for MOSP.

Multiobjective Shortest Paths. Despite so much research in multiobjective
optimization [3,4], only recently a systematic study of the complexity issues re-
garding the construction of approximate Pareto curves has been initiated [11,14].
Informally, an (1 + ε)-Pareto curve Pε is a subset of feasible solutions such that
for any Pareto optimal solution, there exists a solution in Pε that is no more
than (1 + ε) away in all objectives. Papadimitriou and Yannakakis show in a
seminal work [11] that for any multiobjective optimization problem there exists
a (1 + ε)-Pareto curve Pε of (polynomial) size |Pε| = O((4B/ε)d−1), where B
is the number of bits required to represent the values in the objective functions
(bounded by some polynomial in the size of the input); Pε can be constructed
by O((4B/ε)d) calls to a GAP routine that solves (in time polynomial in the size
of the input and 1/ε) the following problem: given a vector of values a, either
compute a solution that dominates a, or report that there is no solution better
than a by at least a factor of 1 + ε in all objectives.

For the case of MOSP (and some other problems with linear objectives), it is
shown in [11] how a GAP routine can be constructed (based on a pseudopoly-
nomial algorithm for computing exact paths), and consequently a FPTAS is
provided. Note that FPTAS for MOSP were already known in the case of two ob-
jectives [8], as well as in the case of multiple objectives in directed acyclic graphs
(DAGs) [15]. In particular, the 2-objective case has been extensively studied [4],
while for d > 2 very little has been achieved; actually, the results in [11,15] are
the only and currently best FPTAS known (see Table 1). Let Cmax denote the
ratio of the maximum to the minimum edge weight (in any dimension), and let
n (resp. m) be the number of nodes (resp. edges) in a digraph.

Our first contribution in this work (Section 3) is a new and remarkably simple
FPTAS for constructing a set of approximate Pareto curves (one for every node)
for the single-source version of the MOSP problem in any digraph. For any
d > 1, our algorithm runs in time O(nm(n log(nCmax)

ε)d−1) for general digraphs,
and in O(m(n log(nCmax)

ε)d−1) for DAGs. Table 1 summarizes the comparison of
our results with the best previous ones. Our results improve significantly upon
previous approaches for general digraphs [11,14] and DAGs [14,15], for all d > 2.
For d = 2, our running times depend on ε−1; those in [14] are based on repeated
applications of a stronger variant of the GAP routine, like a FPTAS for the
restricted shortest path (RSP) problem (see e.g., [9], and thus depend on ε−2.
Hence, our algorithm gives always better running times for DAGs, while for
general digraphs we improve the dependence on 1/ε.

Non-linear Objectives. Our second contribution in this work concerns two
fundamental problems in multiobjective optimization: (i) Construct a FPTAS for
the normalized version of a multiobjective optimization problem when the utility
function is non-linear. (ii) Construct a FPTAS for a multiobjective optimization
problem with non-linear objectives.

Multiobjective Optimization 391

Table 1. Comparison of new and previous results for MOSP. TGAP denotes the time
of a GAP routine, which is polynomial in the input and 1/ε (but exponential in d).

Best previous This work

General
digraphs

d = 2 O
�
nm 1

ε
log (nCmax)

�
log log n + 1

ε

��
[14] O

�
n2m 1

ε
log (nCmax)

�
d > 2 O((log(nCmax)/ε)d · TGAP) [11] O

�
nm

�
n log(nCmax)

ε

�d−1
�

DAGs
d = 2 O

�
nm 1

ε
log n log (nCmax)

�
[15]

O
�
nm 1

ε
log (nCmax)

�
O
�
nm 1

ε2 log (nCmax)
�

[14]

d > 2 O
�
nm(n log(nCmax)

ε
)d−1 logd−2(n

ε
)
�

[15] O

�
m
�

n log(nCmax)
ε

�d−1
�

An algorithm for the first problem was given in [12] (earlier version of this
work) for d ≥ 2 objectives and polynomial utility function, and independently
in [1] for d = 2 objectives and quasi-polynomially bounded utility function. Let
T (1/ε, m′) denote the time to generate an (1+ε)-Pareto curve for an instance of
a multiobjective optimization problem of size m′. The algorithm in [1] provides
a FPTAS with time complexity T (Λ1/ε2, m′), where Λ1 is polylogarithmic on
the maximum cost in any dimension.

We show in Section 4 that we can construct a FPTAS for the normalized
version of any multiobjective optimization problem with d ≥ 2 objectives and
quasi-polynomially bounded utility function in time T (Λ2/ε, m′), where Λ2 < Λ1
is polylogarithmic on the maximum cost in any dimension. Our results are based
on a novel and simple analysis, and improve upon those in [1] both w.r.t. the
running time (better dependence on 1/ε and Λ2 < Λ1) and the number of
objectives – as well as upon those in [12] w.r.t. the class of utility functions.

The only generic method known for addressing the second problem is that in
[11], which assumes the existence of a GAP routine. Such routines for the case
of non-linear objectives are not known. The GAP routines given in [11] concern
problems with linear objectives only.

We show in Section 4 that a FPTAS for any multiobjective optimization prob-
lem M′ with quasi-polynomially bounded non-linear objective functions can be
constructed from a FPTAS for a much simpler version M of the problem. M
has the same feasible solution set with M′ and objectives the identity functions
on the attributes of the non-linear objective functions of M′. In other words, our
result suggests that restricting the study of approximate Pareto curves to iden-
tity (on the attributes) objectives suffices for treating the non-linear case. Our
approach constitutes the first generic method for obtaining FPTAS for any mul-
tiobjective optimization problem with quasi-polynomial non-linear objectives.

Applications. The following problems play a key role in several domains.

Multiple Constrained (Optimal) Paths. One of the key issues in networking [10]
is how to determine paths that satisfy QoS constraints, a problem known as
QoS routing or constraint-based routing. The two most fundamental problems in
QoS routing are the multiple constrained optimal path (MCOP) and the multiple
constrained path (MCP) problems (see e.g., [7,10]). In MCOP, we are given a

392 G. Tsaggouris and C. Zaroliagis

d-vector of costs c on the edges and a (d − 1)-vector b of QoS-bounds. The
objective is to find an s-t path p that minimizes cd(p) =

∑
e∈p cd(e), and obeys

the QoS-bounds, i.e., ci(p) =
∑

e∈p ci(e) ≤ bi, ∀1 ≤ i ≤ d−1. MCOP is NP-hard,
even when d = 2 in which case it is known as the restricted shortest path problem
and admits a FPTAS (see e.g., [9]). In MCP, the objective is to find an s-t path
p that simply obeys a d-vector b of QoS-bounds, i.e., ci(p) =

∑
e∈p ci(e) ≤ bi,

∀1 ≤ i ≤ d. MCP is NP-complete. For both problems, the case of d = 2 objectives
has been extensively studied and there are also very efficient FPTAS known (see
e.g., [9]). For d > 2, apart from the generic approach in [11], only heuristic
methods and pseudopolynomial time algorithms are known [10]. We are able to
show how (quality guaranteed) approximate schemes to both MCOP and MCP
can be constructed that have the same complexity with MOSP, thus improving
upon all previous approaches for any d > 2.
Non-Additive Shortest Paths. In this problem (NASP), we are given a digraph
whose edges are associated with d-dimensional cost vectors and the task is to find
a path that minimizes a certain d-attribute non-linear utility function. NASP is
a fundamental problem in several domains [5,6], the most prominent of which
is finding traffic equilibria [5]. NASP is an NP-hard problem. By virtue of the
results in [1,12], there exists a FPTAS for d = 2 and quasi-polynomial utility
function [1], and a FPTAS for any d ≥ 2 and polynomial utility function [12].

In Section 5, we show how our FPTAS for MOSP, along with our generic
framework for dealing with non-linear objectives, can be used to obtain a FPTAS
for NASP for any d > 1 and a larger than quasi-polynomially bounded family
of utility functions. Our results improve considerably upon those in [1,12] w.r.t.
time (dependence on 1/ε), number of objectives, and class of utility functions.

2 Preliminaries

Recall that an instance of a multiobjective optimization problem is associated
with a set of feasible solutions Q and a d-vector function f = [f1, . . . , fd]T as-
sociating each feasible solution q ∈ Q with a d-vector f(q). The Pareto set or
curve P of Q is defined as the set of all undominated elements of Q. Given a
vector of approximation ratios ρ = [ρ1, . . . , ρd]T (ρi ≥ 1, 1 ≤ i ≤ d), a solution
p ∈ Q ρ-covers a solution q ∈ Q iff it is as good in each objective i by at least a
factor ρi, i.e., fi(p) ≤ ρi · fi(q), 1 ≤ i ≤ d. A set Π ⊆ Q is a ρ-cover of Q iff for
all q ∈ Q, there exists p ∈ Π such that p ρ-covers q (note that a ρ-cover may
contain dominated solutions). A ρ-cover is also called ρ-Pareto set. If all entries
of ρ are equal to ρ, we also use the terms ρ-cover and ρ-Pareto set.

A fully polynomial time approximation scheme (FPTAS) for computing the
Pareto set of an instance of a multiobjective optimization problem is a family of
algorithms that, for any fixed constant ε > 0, contains an algorithm that always
outputs an (1 + ε)-Pareto set and runs in time polynomial in the size of the
input and 1/ε. W.l.o.g. we make the customary assumption that ε ≤ 1, yielding
ln(1 + ε) = Θ(ε), which will be used throughout the paper.

If a=[a1, a2,· · ·,ad]T is a d-dimensional vector and λ a scalar, then we denote by
aλ =[aλ

1 , aλ
2 , · · ·,aλ

d]T . A vector with all its elements equal to zero is denoted by 0.

Multiobjective Optimization 393

3 Single-Source Multiobjective Shortest Paths

In the multiobjective shortest path problem, we are given a digraph G = (V, E)
and a d-dimensional function vector c : E → [IR+]d associating each edge e
with a cost vector c(e). We extend the cost function vector to handle paths
by extending the domain to the powerset of E, thus considering the function
c : 2E → [IR+]d, where the cost vector of a path p is the sum of the cost vectors
of its edges, i.e., c(p) =

∑
e∈p c(e). Given two nodes v and w, let P (v, w) denote

the set of all v-w paths in G. In the multiobjective shortest path problem, we
are asked to compute the Pareto set of P (v, w) w.r.t. c. In the single-source
multiobjective shortest path (SSMOSP) problem, we are given a node s and the
task is to compute the Pareto sets of P (s, v) w.r.t. c, ∀v ∈ V .

Given a vector ε = [ε1, ε2, · · · , εd−1]T of error parameters (εi > 0, 1 ≤ i ≤
d − 1) and a source node s, we present below an algorithm that computes, for
each node v, a ρ-cover of P (s, v), where ρ = [1+ε1, 1+ε2, · · · , 1+εd−1, 1]T . Note
that we can be exact in one dimension (here w.l.o.g. the d-th one), without any
impact on the running time. In the following, let cmin

i ≡ mine∈E ci(e), cmax
i ≡

maxe∈E ci(e), and Ci = cmax
i

cmin
i

, for all 1 ≤ i ≤ d. Let also P i(v, w) denote the set

of all v-w paths in G with no more than i edges; clearly, Pn−1(v, w) ≡ P (v, w).

3.1 The SSMOSP Algorithm

Our algorithm resembles the classical (label correcting) Bellman-Ford method.
Previous attempts to straightforwardly apply such an approach [2,3,4] had a very
poor (exponential) performance, since all undominated solutions (exponentially
large sets of labels) have to be maintained. The key idea of our method is that
we can implement the label sets as arrays of polynomial size by relaxing the
requirements for strict Pareto optimality to that of ρ-covering.

We represent a path p = (e1, e2, · · · , ek−1, ek) by a label that is a tuple
(c(p), pred(p), lastedge(p)), where c(p) =

∑
e∈p c(e) is the d-dimensional cost

vector of the path, pred(p) = q is a pointer to the label of the subpath q =
(e1, e2, · · · , ek−1) of p, and lastedge(p) = ek points to the last edge of p. An empty
label is represented by (0, null, null), while a single edge path has a null pred
pointer. This representation allows us to retrieve the entire path, without implic-
itly storing its edges, by following the pred pointers. Let r = [r1, . . . , rd−1, 1] be a
vector of approximation ratios. The algorithm proceeds in rounds. In each round
i and for each node v the algorithm computes a set of labels Πi

v, which is an
ri-cover of P i(s, v). We implement these sets of labels using (d − 1)-dimensional
arrays Πi

v[0..	logr1
(nC1)
, 0..	logr2

(nC2)
, · · · , 0..	logrd−1
(nCd−1)
], and index

these arrays using (d−1)-vectors. This is done by defining a function pos : 2E →
[IN0]d−1. For a path p, pos(p)=[logr1

c1(p)
cmin
1

, 	logr2

c2(p)
cmin
2

, · · ·, 	logrd−1

cd−1(p)
cmin

d−1

]T

gives us the position in Πi
v corresponding to p. The definition of pos along with

the fact that for any path p we have ci(p) ≤ (n − 1)cmax
i , ∀1 ≤ i ≤ d, justifies

the size of the arrays.

394 G. Tsaggouris and C. Zaroliagis

Initially, Π0
v = ∅, for all v ∈ V − {s}, and Π0

s contains only the trivial empty
path. For each round i ≥ 1 and for each node v the algorithm computes Πi

v

as follows. Initially, we set Πi
v equal to Πi−1

v . We then examine the incoming
edges of v, one by one, and perform an Extend-&-Merge operation for each
edge examined. An Extend-&-Merge operation takes as input an edge e = (u, v)
and the sets Πi−1

u and Πi
v. It extends all labels p ∈ Πi−1

u by e, and merges
the resulting set of s-v paths with Πi

v. Since each extension results in a new
label (path) q = (c(p) + c(e), p, e) whose pos(q) leads to an array position
which may not be empty, the algorithm maintains in each array position the
(at most one) path that covers all other paths with the same pos(·) value,
which turns out to be the path with the smallest cd cost. This keeps the size
of the sets polynomially bounded. In particular, q is inserted in the position
pos(q) = [logr1

c1(q)
cmin
1

, 	logr2

c2(q)
cmin
2

, · · · , 	logrd−1

cd−1(q)
cmin

d−1

]T of Πi

v, unless this

position is already filled in with a label q′ for which cd(q′) ≤ cd(q).
The next two lemmas establish the algorithm’s correctness and complexity.

Lemma 1. For all v ∈ V and for all i ≥ 0, after the i-th round Πi
v ri-covers

P i(s, v).

Proof. It suffices to prove that for all p ∈ P i(s, v), there exists q ∈ Πi
v such that

c�(q) ≤ ri
�c�(p), ∀1 ≤ � ≤ d. We prove this by induction.

For the basis of the induction (i = 1) consider a single edge path p ≡ (e) ∈
P 1(s, v). At each round all incoming edges of v are examined and an Extend-&-
Merge operation is executed for each edge. After the first round and due to the
if condition of the Extend-&-Merge operation, position pos(p) of Π1

v contains a
path q for which: (i) pos(q) = pos(p); and (ii) cd(q) ≤ cd(p). From (i) it is clear
that for all 1 ≤ � ≤ d − 1, we have 	logr�

c�(q)
cmin

�

 = 	logr�

c�(p)
cmin

�

, and therefore

logr�

c�(q)
cmin

�

−1 ≤ logr�

c�(p)
cmin

�

. This, along with (ii) and the fact that rd = 1, implies
that c�(q) ≤ r�c�(p), ∀1 ≤ � ≤ d.

For the induction step consider a path p ≡ (e1, e2, . . . , ek = (u, v)) ∈ P i(s, v),
for some k ≤ i. The subpath p′ ≡ (e1, e2, . . . , ek−1) of p has at most i − 1 edges
and applying the induction hypothesis we get that there exists a path q′ ∈ Πi−1

u

such that c�(q′) ≤ ri−1
� c�(p′), 1 ≤ � ≤ d. Let now q̄ be the concatenation of q′

with edge ek. Then, we have:

c�(q̄) ≤ ri−1
� c�(p), 1 ≤ � ≤ d (1)

It is clear by our algorithm that during the Extend-&-Merge operation for edge
ek in the i-th round q̄ was examined. Moreover, at the end of the i-th round and
due to the if condition of the Extend-&-Merge operation, position pos(q̄) of Πi

v

contains a path q for which: (iii) pos(q) = pos(q̄); and (iv) cd(q) ≤ cd(q̄). From
(iii) it is clear that 	logr�

c�(q)
 = 	logr�
c�(q̄)
, ∀ 1 ≤ � ≤ d − 1, and therefore

logr�
c�(q) − 1 ≤ logr�

c�(q̄), ∀ 1 ≤ � ≤ d − 1, which implies that

c�(q) ≤ r�c�(q̄), 1 ≤ � ≤ d − 1. (2)

Since rd = 1, combining now (iv) and (2) with (1), we get that c�(q) ≤ ri
�c�(p),

∀ 1 ≤ � ≤ d. �

Multiobjective Optimization 395

Lemma 2. Algorithm SSMOSP computes, for all v ∈ V , an rn−1-cover of
P (s, v) in total time O(nm

∏d−1
j=1(logrj

(nCj)
 + 1)).

Proof. From Lemma 1, it is clear that, for any v ∈ V , Πn−1
v is an rn−1-cover

of Pn−1(s, v) ≡ P (s, v), since any path has at most n − 1 edges. The algorithm
terminates after n − 1 rounds. In each round it examines all of the m edges and
performs an Extend-&-Merge operation. The time of this operation is propor-
tional to the size of the arrays used, which equals

∏d−1
j=1 (logrj

(nCj)
 + 1) and

therefore the total time complexity is O(nm
∏d−1

j=1 (logrj
(nCj)
 + 1)). �

Applying Lemma 2 with r = [(1+ε1)
1

n−1 , (1+ε2)
1

n−1 , · · · , (1+εd−1)
1

n−1 , 1], and
taking into account that ln(1 + δ) = Θ(δ) for small δ, yields our main result.

Theorem 1. Given a vector ε = [ε1, ε2, · · · , εd−1]T of error parameters and a
source node s, there exists an algorithm that computes, for all v ∈ V , a ρ-cover
of P (s, v) (set of all s-v paths), where ρ = [1 + ε1, 1 + ε2, · · · , 1 + εd−1, 1]T , in
total time O(ndm

∏d−1
j=1 (1

εj
log(nCj))).

Let Cmax = max1≤j≤d−1 Cj . In the special case, where εi = ε, ∀1 ≤ i ≤ d − 1,
we have the following result.

Corollary 1. For any error parameter ε > 0, there exists a FPTAS for the
single-source multiobjective shortest path problem with d objectives on a digraph
G that computes (1 + ε)-Pareto sets (one for each node of G) in total time
O(nm(n log(nCmax)

ε)d−1).

Further improvements can be obtained in the case of DAGs; see [13].

4 Non-linear Objectives

In this section, we present two generic methods to construct a FPTAS for the
normalized version of any multiobjective optimization problem with a non-linear
utility function, as well as a FPTAS for any multiobjective optimization problem
with non-linear objectives, for a quite general family of non-linear functions. The
only precondition is the existence of a FPTAS for a much simpler version of the
problems.

Let M be (an instance of) a multiobjective optimization problem with set of
feasible solutions Q and vector of objective functions c = [c1, . . . , cd]T , associat-
ing each feasible solution q ∈ Q with a d-vector of attributes c(q); i.e., the i-th
objective is the identity function of the i-th attribute.

Let N be the normalized version of M w.r.t. a non-decreasing, non-linear
utility function U : [IR+]d → IR; i.e., the objective of N is minq∈Q U(c(q)). We
will show that a FPTAS for M can provide a FPTAS for N . To obtain such a
FPTAS, we consider a quite general family of non-linear functions U(x).

A multiattribute function U(x) is called quasi-polynomially bounded (see e.g.,

[1]) if there exist some constants γ and δ such that
∂U
∂xi

(x)
U(x) ≤ γ 1

xi

∏d
k=1 lnδ xk,

396 G. Tsaggouris and C. Zaroliagis

1 ≤ i ≤ d. For instance, the function U([x1, x2]T) = x
polylog(x1)
1 + x

polylog(x2)
2

is quasi-polynomially bounded, while the function U([x1, x2]T) = 2xμ
1 + 2xμ

2 ,
for some μ > 0, is not. Note also that this class includes all non-decreasing
polynomials.

Let Ci = maxq∈Q ci(q) be the maximum cost in the i-th dimension, and let
log Ci be polynomial to the input size (as indeed is the case for MOSP and other
problems, like the multiobjective versions of spanning tree, perfect matching,
knapsack, etc). We can prove the following.

Theorem 2. Let the objective function U of N be quasi-polynomially bounded.
If there exists a FPTAS for M with time complexity T (1/ε, m′), then there exists
a FPTAS for N with complexity T (Λ/ε, m′), where m′ is the input size of M
and Λ = γd

∏d
i=1 lnδ Ci.

Proof. We construct an (1 + ε′)-Pareto set Π for M, where ε′ will be chosen
later. Pick q = argminp∈Π(U(c(p))). Let p∗ denote the optimal solution with
cost vector c∗ = c(p∗). By the definition of Π , we know that there exists some
p′ ∈ Π such that ci(p′) ≤ min{(1 + ε′)c∗i , Ci}. By the choice of q we have that
U(c(q)) ≤ U(c(p′)), thus it suffices to bound U(c(p′))

U(c(p∗)) .
Let c′ be the vector whose elements are given by c′i = min{(1+ε′)c∗i , Ci}, ∀1 ≤

i ≤ d. Since U(·) is non-decreasing, U(c(p′))
U(c(p∗)) ≤ U(c′)

U(c∗) = exp [lnU(c′) − ln U(c∗)].

We write the exponent as a telescopic sum ln U(c′)− lnU(c∗) =
∑d

k=1 [Fk(c′k)−
Fk(c∗k)], where Fk(x) = lnU([c′1, . . . , c′k−1, x, c∗k+1, . . . , c

∗
d]

T). On each term k
of the sum, we apply the well-known Mean Value Theorem1 for Fk(x) on the
interval (c∗k, c′k). Hence, ∀1 ≤ k ≤ d, there exists some ζk with c∗k < ζk < c′k such

that Fk(c′k) − Fk(c∗k) = F ′k(ζk)(c′k − c∗k) ≤
∂U

∂xk
(c[k])

U(c[k]) ε′c∗k, where c[k] are vectors

with c
[k]
i =

{
c′i if 1 ≤ i < k
ζk if i = k
c∗i if k < i ≤ d

. Consequently, U(c′)
U(c∗) ≤ exp

[
ε′

∑d
k=1

[
∂U

∂xk
(c[k])

U(c[k]) c∗k

]]
.

Observe now that the term
∑d

k=1

[
∂U

∂xk
(c[k])

U(c[k]) c∗k

]
is bounded by Λ=γd

∏d
i=1 lnδ Ci.

Hence, choosing ε′= ln(1+ε)
Λ , yields an 1+ε approximation in time T (Λ/ε, m′). �

The above result improves upon that of [1] both w.r.t. d (number of objectives)
and time; the time in [1] (d = 2) is T (Λ′/ε2, m′), where Λ′ = γ2δ+4 ∏2

i=1 lnδ+1 Ci.
Now, let M′ be a multiobjective optimization problem, defined on the same

with M set of feasible solutions Q, but having a vector of objective functions
U = [U1, . . . , Uh]T associating each q ∈ Q with an h-vector U(q). These objective
functions are defined as Ui(q) = Ui(c(q)), 1 ≤ i ≤ h, where Ui : [IR+]d → IR are
non-linear, non-decreasing, quasi-polynomially bounded functions. By working
similarly to Theorem 2, we can show the following (details in [13]).

1 Mean Value Theorem: Let f(x) be differentiable on (a, b) and continuous on [a, b].
Then, there is at least one point c ∈ (a, b) such that f ′(c) = (f(b) − f(a))/(b − a).

Multiobjective Optimization 397

Theorem 3. Let the objective functions of M′ be quasi-polynomially bounded.
If there exists a FPTAS for M with time complexity T (1/ε, m′), then there exists
a FPTAS for M′ with complexity T (Λ/ε, m′), where m′ is the input size of M
and Λ = γd

∏d
i=1 lnδ Ci.

5 Applications

Multiple Constrained (Optimal) Paths. Let ρ = [1 + ε1, 1 + ε2, · · · , 1 +
εd−1, 1]T and let Π be a ρ-cover Π of P (s, t), constructed using the SSMOSP al-
gorithm as implied by Theorem 1. For MCOP, choose p′=argminp∈Π{cd(p); ci(p)
≤ (1+ εi)bi, ∀1 ≤ i ≤ d−1}. This provides a so-called acceptable solution in the
sense of [7] by slightly relaxing the QoS-bounds; that is, the path p′ is at least as
good as the MCOP-optimum and is nearly feasible, violating each QoS-bound
bi, 1 ≤ i ≤ d−1, by at most an 1+εi factor. For MCP, choose a path p′ ∈ Π that
obeys the QoS-bounds, or answer that there is no path p in P (s, t) for which
ci(p) ≤ bi/(1 + εi), ∀1 ≤ i < d. In the latter case, if a feasible solution for MCP
exists, then (by the definition of Π) we can find a solution in Π that is nearly fea-
sible (i.e., it violates each QoS-bound bi, 1 ≤ i ≤ d−1, by at most an 1+εi factor).
By Theorem 1, the required time for both cases is O(ndm

∏d−1
j=1 (1

εj
log(nCj)),

which can be reduced to O(ndm
∏d−1

j=1 (1
εj

log(min{nCj , bj/cmin
j })) by observ-

ing that it is safe to discard any path p for which cj(p) > (1 + εj)bj for some
1 ≤ j ≤ d − 1 (thus reducing the size of the Πi

v arrays).

Non-Additive Shortest Paths. In this problem (NASP) we are given a di-
graph G = (V, E) and a d-dimensional function vector c : E → [IR+]d associating
each edge e with a vector of attributes c(e) and a path p with a vector of at-
tributes c(p) =

∑
e∈p c(e). We are also given a d-attribute non-decreasing and

non-linear utility function U : [IR+]d → IR. The objective is to find a path p∗,
from a specific source node s to a destination t, that minimizes the objective
function, i.e., p∗ = argminp∈P (s,t)U(c(p)). (It is easy to see that in the case
where U is linear, NASP reduces to the classical single-objective shortest path
problem.) For the general case of non-linear U , it is not difficult to see that
NASP is NP-hard.

Theorem 2 suggests that our FPTAS for MOSP yields an (improved w.r.t.
[1,12]) FPTAS for NASP for the case of quasi-polynomially bounded functions.
We show that we can do better by taking advantage of the fact that our FP-
TAS for MOSP is exact in one dimension (w.l.o.g. the d-th). This allows us to
provide a FPTAS for an even more general (than quasi-polynomial) family of
functions. Specifically, we consider d-attribute functions for which there exist

some constants γ and δ such that
∂U
∂xi

(x)
U(x) ≤ γ 1

xi

∏d
k=1 lnδ xk, 1 ≤ i ≤ d − 1.

The fact that we do not require that this condition holds for the d-th attribute
allows U to be even exponential on xd; e.g., U([x1, x2]T) = x

polylog(x1)
1 + 2xμ

2 , for
any μ > 0. Note that this does not contradict the inapproximability result in
[1], which applies to functions of the form U([x1, x2]T) = 2xμ

1 + 2xμ
2 , for μ > 0.

398 G. Tsaggouris and C. Zaroliagis

Our result makes the gap between NASP approximability and inapproximability
even tighter. Let Ci denote the maximum path cost in the i-th dimension, i.e.,
Ci = (n − 1)maxe∈E ci(e). We can show the following (see [13]).

Theorem 4. Let U be a non-decreasing function for which
∂U
∂xi

(x)
U(x) ≤ γ 1

xi

∏d
k=1

lnδ xk, 1 ≤ i ≤ d−1. Then, for any ε > 0, there exists an algorithm that computes
in time O(ndm(log(nCmax)Λ

ε)d−1) an (1+ε)-approximation to the NASP optimum
w.r.t. U(x), where Λ = γ(d − 1)

∏d
i=1 lnδ Ci.

References

1. H. Ackermann, A. Newman, H. Röglin, and B. Vöcking, “Decision Making Based
on Approximate and Smoothed Pareto Curves”, in Algorithms and Computation –
ISAAC 2005, LNCS Vol. 3827 (Springer 2006), pp. 675-684; full version as Tech. Re-
port AIB-2005-23, RWTH Aachen, December 2005.

2. H. Corley and I. Moon, “Shortest Paths in Networks with Vector Weights”, Journal
of Optimization Theory and Applications, 46:1(1985), pp. 79-86.

3. M. Ehrgott, Multicriteria Optimization, Springer, 2000.
4. M. Ehrgott and X. Gandibleux (Eds), Multiple Criteria Optimization – state of the

art annotated bibliographic surveys, Kluwer Academic Publishers, Boston, 2002.
5. S. Gabriel and D. Bernstein, “The Traffic Equilibrium Problem with Nonadditive

Path Costs”, Transportation Science 31:4(1997), pp. 337-348.
6. S. Gabriel and D. Bernstein, “Nonadditive Shortest Paths: Subproblems in Multi-

Agent Competitive Network Models”, Computational & Mathematical Organiza-
tion Theory 6(2000), pp. 29-45.

7. A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis, “Efficient Computa-
tion of Delay-Sensitive Routes from One Source to All Destinations”, in Proc. IEEE
Conf. Comput. Commun. – INFOCOM 2001.

8. P. Hansen, “Bicriterion Path Problems”, Proc. 3rd Conf. Multiple Criteria Decision
Making – Theory and Applications, LNEMS Vol. 117 (Springer, 1979), pp. 109-127.

9. D.H. Lorenz and D. Raz, “A simple efficient approximation scheme for the re-
stricted shortest path problem”, Operations Res. Lett., 28 (2001) pp.213-219.

10. P. Van Mieghem, F.A. Kuipers, T. Korkmaz, M. Krunz, M. Curado, E. Monteiro,
X. Masip-Bruin, J. Sole-Pareta, and S. Sanchez-Lopez, “Quality of Service Rout-
ing”, Chapter 3 in Quality of Future Internet Services, LNCS Vol. 2856 (Springer-
Verlag, 2003), pp. 80-117.

11. C. Papadimitriou and M. Yannakakis, “On the Approximability of Trade-offs and
Optimal Access of Web Sources”, in Proc. 41st Symp. on Foundations of Computer
Science – FOCS 2000, pp. 86-92.

12. G. Tsaggouris and C. Zaroliagis, “Improved FPTAS for Multiobjective Shortest
Paths with Applications”, CTI Techn. Report TR-2005/07/03, July 2005.

13. G. Tsaggouris and C. Zaroliagis, “Multiobjective Optimization: Improved FPTAS
for Shortest Paths and Non-linear Objectives with Applications”, CTI Techn. Re-
port TR-2006/03/01, March 2006.

14. S. Vassilvitskii and M. Yannakakis, “Efficiently Computing Succinct Trade-off
Curves”, in Automata, Languages, and Programming – ICALP 2004, LNCS
Vol. 3142 (Springer, 2004), pp. 1201-1213.

15. A. Warburton, “Approximation of Pareto Optima in Multiple-Objective Shortest
Path Problems”, Operations Research 35(1987), pp. 70-79.

Algorithms for Computing Variants of the

Longest Common Subsequence Problem

Extended Abstract

M. Sohel Rahman�,�� and Costas S. Iliopoulos���

Algorithm Design Group
Department of Computer Science, King’s College London,

Strand, London WC2R 2LS, England
{sohel, csi}@dcs.kcl.ac.uk

http://www.dcs.kcl.ac.uk/adg

Abstract. The longest common subsequence(LCS) problem is one of
the classical and well-studied problems in computer science. The compu-
tation of the LCS is a frequent task in DNA sequence analysis, and has
applications to genetics and molecular biology. In this paper we define
new variants, introducing the notion of gap-constraints in LCS problem
and present efficient algorithms to solve them.

1 Introduction

The longest common subsequence(LCS) problem is one of the classical and well-
studied problems in computer science which has extensive applications in diverse
areas ranging from spelling error corrections to molecular biology [7, 2]. This
paper introduces the notion of gap-constraints in LCS. Our versions of LCS, on
one hand, offers the possibility to handle gap-constraints between the consecutive
matches among the sequences. On the other hand, they provide us with the
tool to handle motif finding problems where not all positions of the motif is
important [6]. Before going into details we need to present some preliminary
concepts.

Suppose we are given two strings X [1..n] = X [1] X [2] . . . X [n] and Y [1..n] =
Y [1] Y [2] . . . Y [n]. A subsequence S[1..r] = S[1] S[2] ...S[r] of X is obtained
by deleting n − r symbols from X . A common subsequence of two strings X
and Y , denoted cs(X,Y), is a subsequence common to both X and Y . The
longest common subsequence of X and Y , denoted lcs(X,Y) or LCS(X,Y), is
a common subsequence of maximum length. We denote the length of lcs(X,Y)
by r(X,Y).

Problem “LCS”. Given 2 strings X and Y , we want to find out the Longest
Common Subsequence of X and Y .

� Supported by the Commonwealth Scholarship Commission in the UK under the
Commonwealth Scholarship and Fellowship Plan (CSFP).

�� On Leave from Department of CSE, BUET, Dhaka-1000, Bangladesh.
��� Supported by EPSRC and Royal Society grants.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 399–408, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

400 M.S. Rahman and C.S. Iliopoulos

In what follows we assume that the two given strings are of equal length. But
our results can be easily extended to handle two strings of different length.

Definition. (Correspondence Sequence): Given a string X [1..n] and a subse-
quence S[1..r] of X, we define a correspondence sequence (not necessarily unique)
of X and S, C(X,S) = C[1] C[2] . . . C[r] to be a strictly increasing sequence of
integers taken from [1, n] such that S[i] = X [C[i]] for all 1 ≤ i ≤ r.

Definition. (Fixed Gapped Correspondence Sequence): A correspondence se-
quence of a string X of length n and one of its subsequences S of length r is said
to be a Fixed Gapped Correspondence Sequence with respect to a given integer K
if and only if we have C[i] − C[i− 1] ≤ K + 1 for all 2 ≤ i ≤ r. We sometimes
use CFG(K) to denote a Fixed Gapped Correspondence Sequence with respect
to K.

Definition. (Elastic Gapped Correspondence Sequence): A correspondence se-
quence of a string X of length n and one of its subsequences S of length r is said
to be a Elastic Gapped Correspondence Sequence with respect to given integers
K1 and K2, K2 > K1, if and only if we have K1 < C[i] −C[i− 1] ≤ K2 + 1 for
all 2 ≤ i ≤ r.

Definition. (Fixed and Elastic Gapped Common Subsequence): Suppose we are
given two strings X [1..n] and Y [1..n] and an integer K. A common subsequence
S[1..r] of X and Y is a Fixed Gapped Common Subsequence, if there exists Fixed
Gapped Correspondence Sequences CFG(K)(X,S) and CFG(K)(Y, S). For a Fixed
Gapped Common Subsequence to be rigid we must also have, for all 2 ≤ i ≤ r,
CFG(K)(X,S)[i] −CFG(K)(X,S)[i− 1] = CFG(K)(Y, S)[i] −CFG(K)(Y, S)[i− 1].
Elastic Gapped Common Subsequences (both non-rigid and rigid) can be defined
analogously.

The problems we handle in this paper are defined in Figure 1. In this paper we
use the following notions. We say a pair (i, j), 1 ≤ i, j ≤ n defines a match, if
X [i] = Y [j]. The set of all matches, M , is defined as follows: M = {(i, j) | X [i] =
Y [j], 1 ≤ i, j ≤ n}. We define |M | = R.

PROBLEM INPUT OUTPUT (of maximum length)
FIG (Fixed Gap) X, Y and K Fixed Gapped Common Subsequence

ELAG (Elastic Gap) X,Y,K1 and K2 Elastic Gapped Common Subsequence
RIFIG (Rigid Fixed Gap) X, Y and K Rigid Fixed Gapped Common Subsequence

RELAG (Rigid Elastic Gap) X,Y,K1 and K2 Rigid Elastic Gapped Common Subsequence

Fig. 1. Problems handled in this paper

2 An Algorithm for FIG

In the traditional dynamic programming technique to solve LCS [11], the idea is
to determine the longest common subsequences for all possible prefix combina-

Algorithms for Computing Variants of the LCS Problem 401

tions of the input strings. The recurrence relation for extending r(X [1..i],Y [1..j]),
is as follows [11]:

T [i, j] =

⎧
⎪⎨

⎪⎩

0 if i = 0 or j = 0,
T [i− 1, j − 1] + 1 if X[i] = Y [j],
max(T [i− 1, j], T [i, j − 1]) if X[i] �= Y [j].

(1)

Here we have used the tabular notion T [i, j] to denote r(X [1..i], Y [1..j]). After
the table has been filled, r(X,Y) can be found in T [n, n] and lcs(X,Y) can
be found by backtracking from T [n, n]. Unfortunately, the attempt to generalize
this algorithm in a straightforward way doesn’t give us an algorithm to solve our
problems. Note that, in FIG, due to the gap constraint, a continuing common
sequence may have to stop at an arbitrary T [i, j] because the next match is
not within the gap constraint. In order to cope with this situation what we do
is as follows. For each tabular entry T [i, j], (i, j) ∈ M we calculate and store
two values namely Tlocal[i, j] and Tglobal[i, j]. For all other (i, j), Tlocal[i, j] is
irrelevant and, hence, is undefined. The recurrence relations are defined below:

Tlocal[i, j] =

⎧
⎪⎪⎨

⎪⎪⎩

Undefined if (i, j) /∈M,

maxi−1−K≤�i<i
j−1−K≤�j <j

(�i,�j)∈M

(Tlocal[�i, �j]) + 1 if (i, j) ∈M. (2)

Remark 1. The max operation in Equation 2 returns 0, when there is no (�i, �j) ∈
M, i− 1 −K ≤ �i < i, j − 1 −K ≤ �j < j.

Tglobal[i, j] =

⎧
⎪⎨

⎪⎩

0 if i = 0 or j = 0,
max(Tglobal[i− 1, j], Tglobal[i, j − 1]) if (i, j) /∈ M,

max(Tglobal[i− 1, j], Tglobal[i, j − 1], Tlocal[i, j]) if (i, j) ∈ M.

(3)

It is easy to see that Tglobal[i, j] is used to store the information of the LCS
so far, i.e. the ‘global’ LCS, on other hand Tlocal[i, j] tracks any ‘local’ LCS
in growth. As soon as a local LCS becomes the global one the value of the
corresponding Tglobal changes. What will be the running time of this algorithm?
Since, for each (i, j) ∈ M , we have to check a (K+1)2 area to find the maximum
of Tlocal in that area, the total running time is O(n2 + R(K + 1)2). The space
requirement is θ(n2). Also note that by keeping appropriate pointer information
or by examining the calculation of the two recurrences we can easily construct
lcs(X,Y) as can be done in the case of the traditional solution of LCS problem.

Theorem 1. Problem FIG can be solved in O(n2 +R(K+1)2) time using θ(n2)
space. �
Remark 2. Unfortunately, this strategy, if used for the LCS problem, would lead
to an inefficient algorithm with O(n2+

∑
(i,j)∈M (i−1)(j−1)) worst case running

time.

As in the case of the traditional solution of LCS problem the complete tabular
information is required for our algorithm, basically, to provide the solution for
the subproblems if required. If that is not required, we can get rid of Tglobal
altogether by keeping a variable to keep track of the current global LCS. As

402 M.S. Rahman and C.S. Iliopoulos

soon as a local LCS becomes a global one we just change this variable. This
would give us a running time of O(R(K+1)2) provided we have a preprocessing
step to construct the set M in sorted order according to their position they
would be considered in the algorithm. This preprocessing step is as follows. We
construct for each symbol a ∈ Σ two separate lists, LX [a] and LY [a]. For each
a ∈ Σ, LX [a] (LY [a]) stores, in sorted order, the positions of a in X (Y), if any.
We now use an elegant data structure invented by Emde Boas [10] that allows
us to maintain a sorted list of integers in the range [1..n] in O(log logn) time
per insertion and deletion. In addition to that it can return next(i) (successor
element of i in the list) and prev(i) (predecessor element of i in the list) in
constant time. We construct an Emde Boas data structure EP where we insert
each pair (i, j), i ∈ LX [a], j ∈ LY [a], a ∈ Σ. In this case the order of the elements
in EP is maintained according to the value (i∗(n−1)+j). Note that these values
are within the range [1..n2] and hence the cost is O(log logn2) = O(log logn) per
insertion and deletion. It is easy to verify that, using EP , we can get all the pairs
in the correct order to process them in row by row manner. We now analyze the
running time of this preprocessing step. The 2 ∗ |Σ| lists can be constructed in
O(n) by simply scanning X and Y in turn. Since there are in total R elements in
M , the construction of EP requires O(R log logn) time. The space requirement
is O(R). We note, however, that for the complete algorithm, we still need the
θ(n2) space to guaranty a linear time search for the highest Tlocal in the (K+1)2

area.

Theorem 2. Given a preprocessing time of O(R log logn), Problem FIG can be
solved in O(R(K + 1)2) time. �

3 An Improved Algorithm for FIG

In this section we try to improve the running time of Algorithm presented in
Section 2. Ideally, we would like to reduce the quadratic term (K+1)2 to linear.
Note that we can easily improve the running time of the algorithm to LCS
problem reported in Remark 2 using the following interesting facts.

Fact 1. Suppose (i, j) ∈ M . Then for all (i′, j), i′ > i ((i, j′), j′ > j), we must
have T [i′, j] ≥ T [i, j] (T [i, j′] ≥ T [i, j]), where T is the table filled up by the tra-
ditional dynamic programming algorithm using Equation 1. �

Fact 2. The calculation of a T [i, j], (i, j) ∈ M, 1 ≤ i, j ≤ n is independent of
any T [�, q], (�, q) ∈ M, � = i, 1 ≤ q ≤ n. �

The idea is to avoid checking the (i− 1)(j− 1) entries and check only (j− 1) (or
(i−1)) entries instead. We maintain an array H of length n where, for T [i, j] we
have, H [�] = max1<k<i,(i,�)∈M (T [k, �]), 1 ≤ � ≤ n. The ‘max’ operation, here,
returns 0 if there exists no (i, �) ∈ M within the range. Given the updated array
H , we can easily perform the task by checking only the (j−1) entries of H . And
Fact 1 makes it easy to maintain the array H on the fly as we proceed as follows.
As usual, we proceed in a row by row manner. We use another array S, of length

Algorithms for Computing Variants of the LCS Problem 403

n, as a temporary storage. When we find an (i, j) ∈ M , after calculating T [i, j]
we store S[j] = T [i, j]. We continue to store in this way as long as we are in the
same row. As soon as we find an (i′, j) ∈ M, i′ > i, i.e. we start processing a new
row, we update H with new values from S.

The correctness of the above procedure1 follows from Fact 1 and 2. But this
idea doesn’t work for FIG because Fact 1 doesn’t hold when we consider FIG.
This is because due to the gap constraint a new local LCS may start which
would surely have lesser T -value than another previous local LCS. We, however,
use the similar idea to improve our previous running time. But we need to do
something more than just maintaining an array. In the rest of this section we
present a novel technique to present the improved algorithm. The basic idea
depends on the following fact which is, basically, an extension of Fact 2.

Fact 3. The calculation of a Tlocal[i, j], (i, j) ∈ M, 1 ≤ i, j ≤ n is independent
of any Tlocal[�, q], (�, q) ∈ M, (� = i or � < i−K − 1), 1 ≤ q ≤ n. �
We maintain n Emde Boas data structures Ei, 1 ≤ i ≤ n, one for each column.
We also need to maintain one insert list, I and one delete list, D. Recall that we
proceed in a row by row manner. Suppose we are starting to process row i+K+2
i.e. we are considering the ‘first’ match in this row, namely, (i+K + 2, j) ∈ M .
So we need to calculate Tlocal[i+K+2, j] and Tglobal[i+K+2, j]. At this instant
the delete list D contains all (i, �) such that 1 ≤ � ≤ n, (i, �) ∈ M and the insert
list I contains all (i + K + 1, �) such that 1 ≤ � ≤ n, (i + K + 1, �) ∈ M . In
other words, when we consider the first match in row (i + K + 2), D contains
all the matches in row i and I contains all the matches in row i + K + 1. For
each (m,n) ∈ D we delete (m,n) from En and for each (m,n) ∈ I we insert
(m,n) in En. Note that the sorted order in En is maintained according to the
Tlocal-value. We then calculate Tlocal[i + K + 2, j] for all 1 ≤ j ≤ n such that
(i + K + 2, j) ∈ M . It should be clear that we can calculate Tlocal[i + K + 2, j]
as follows in O(K) time:

Tlocal[i+K + 1, j] = max
j−K−1≤�≤j−1

(value(max(E�))) (4)

Note that value(max(E�)) = Tlocal[m,n] when max(E�) = (m,n). The running
time of O(K) follows from the fact that we can find the maximum of each E� in
constant time. And the correctness follows from Fact 3.

What should be the running time of this algorithm? It is clear that we spend
O(n2 +RK) time in computing the LCS for FIG. But this improved time comes
at the cost of maintaining n Emde Boas data structure Ei, 1 ≤ i ≤ n. It is easy
to verify that the total time to maintain Ei, 1 ≤ i ≤ n is O(R log logn) because
we never insert nor delete more than R elements in total from/to Ei, 1 ≤ i ≤ n.
Note that the values to be inserted is always within the range [1..n] since no
subsequence can be of length greater than n.

Theorem 3. Problem FIG can be solved in O(n2+RK+R log logn) time using
θ(n2) space. �
1 Although we still don’t achieve a good running time for Problem LCS in the worst

case.

404 M.S. Rahman and C.S. Iliopoulos

If the solutions for the subproblems are not required, then we need only compute
Tlocal[i, j], (i, j) ∈ M . We, however, would need to use a variable to finally report
r(X,Y) and use appropriate pointers to construct lcs(X,Y). Therefore, we get
the following theorem (The corresponding algorithm is formally stated in the
form of Algorithm 1).

Theorem 4. Problem FIG can be solved in O(RK + R log logn) time using
θ(R) space. �

Algorithm 1.
1: Compute the set M using the preprocessing step suggested in Section 2. Let Mi = (i, j) ∈

M, 1 ≤ j ≤ n.
2: for i = j to n do
3: Ej = ε {Initialize the n Emde Boas structure one for each column}
4: end for
5: globalLCS.Instance = ε
6: globalLCS.Value = ε
7: for i = 1 to n do
8: Insert (i− 1, j) ∈Mi−1 in Ej , 1 ≤ j ≤ n {If i− 1 ≤ 0 then insert nothing}
9: Delete (i−K − 2, j) ∈ Mi−k−2 in Ej , 1 ≤ j ≤ n {If i−K − 2 ≤ 0 then delete nothing}
10: for each (i, j) ∈ Mi do
11: maxresult = max(j−K−1)≤�≤(j−1)(max(E�))
12: T .V alue[i, j] = maxresult.V alue + 1
13: T .Prev[i, j] = maxresult.Instance
14: if globalLCS.Value < T .Value[i, j] then
15: globalLCS.Value = T .V alue[i, j]
16: globalLCS.Instance = (i, j)
17: end if
18: end for
19: end for
20: return globalLCS

4 A K-Independent Algorithm for FIG

In this section we try to devise an algorithm for FIG that is independent of K.
As we shall see later that this would give us an efficient algorithm for Problem
LCS as well. We make use of a classical problem in computer science, namely,
Range Maxima Query Problem.

Problem “RMAX” (Range Maxima Query Problem). Given a sequence
A = a1a2...an, a Range Maxima (minima) Query specifies an interval I =
(is, ie), 1 ≤ is ≤ ie ≤ n and the goal is to find the index � with maximum
(minimum) value a� for � ∈ I.

Theorem 5. ([4, 3]). The RMAX problem can be solved in O(n) preprocessing
time and O(1) time per query. �

With Theorem 5 in our hand, we can modify Algorithm 1 as follows. We want
to implement Step 11 in constant time so that we can avoid the dependency
on K completely. Before we start processing a particular row, just after Step 9,
we create an array of length n, A = max(Ej), 1 ≤ j ≤ n. Now we simply

Algorithms for Computing Variants of the LCS Problem 405

replace the Step 11 with an appropriate Range Maxima Query. It is easy to
see that, due to Fact 3, this will work correctly. Since we have a constant time
implementation for Step 11, we now can escape the dependency on K. However
there is a preprocessing time of O(n) in case any Ej gets updated. But since this
preprocessing is needed once per row (due to Fact 3), the computational effort
added is O(n2) in total.

Theorem 6. Problem FIG can be solved in O(n2 + R log log n) time using
θ(max(R, n)) space. �

Finally, it is easy to see that this algorithm can be easily used to solve LCS
problem, virtually, without any modification. We, however, can do better using
Fact 1 and the subsequent discussion in Section 3. We can get rid of the Emde
Boas structures altogether and use a simple array (array H in Section 3) instead.
So we get the following theorem.

Theorem 7. Problem LCS can be solved in O(n2 + R log logn) time using
θ(max(R, n)) space. �

We can shave off the log logn term from the running time of Theorem 7 by not
computing M as a preprocessing step. In this case, however, we need to process
each entry of T [i, j], 1 ≤ i ≤ n, 1 ≤ i ≤ n, instead of processing only each
(i, j) ∈ M.

Theorem 8. Problem LCS can be solved in O(n2+R) time using θ(n2) space. �

5 Algorithm for Elastic Gapped LCS

In this section we modify the algorithms in Section 2, 3, and 4 to solve ELAG.
Recall that, in ELAG, we have two parameters, namely K1 and K2. Note also
that, FIG is a special case of ELAG when K1 = 0 and K2 = K. The obvious
modification to Equation 2 in Section 2 to solve ELAG is as follows:

Tlocal[i, j] =

⎧
⎪⎨

⎪⎩

Undefined if (i, j) /∈ M,

max i−1−K2≤�i<i−K1
j−1−K2≤�j<j−K1

(�i,�j)∈M

(Tlocal[�i, �j]) + 1 if (i, j) ∈ M. (5)

Theorem 9. Problem ELAG can be solved in O(n2 + R(K + 1)2) time using
θ(n2) space where K = K2−K1. �

For Algorithm 1, described in Section 3, the only modification that is needed to
solve ELAG, is in Step 11. The modified statement is as follows:
maxresult = max(j−K2−1)≤�≤(j−K1)(max(E�))

Theorem 10. Problem ELAG can be solved in O(RK+R log logn) time, using
θ(max(R, n)) space, where K = K2−K1. �

406 M.S. Rahman and C.S. Iliopoulos

The following result holds if we need the solutions to the subproblems.

Theorem 11. Problem ELAG can be solved in O(n2 + RK + R log logn) time,
using θ(n2) space, where K = K2 −K1. �

Finally, it should be clear that in the algorithm in Section 4, virtually, there
is no modification at all except for that we have to adjust the Range Maxima
Query to incorporate the elastic gap constraint.

Theorem 12. Problem ELAG can be solved in O(n2 + R log logn) time, using
θ(max(R, n)) space. �

6 Algorithms for Rigid Gapped LCS

This section is dedicated to solve Problem RIFIG and Problem RELAG. RIFIG,
by nature, is a bit more restricted because, in addition to the K-gap constraint,
the consecutive characters in the common subsequence must have the same dis-
tance between them (rigidness) both in X and Y . Interestingly enough, this
restriction makes this problem rather easier to solve. And in fact we will see
that we can modify the algorithm in Section 2 easily to solve RIFIG and this
slight modification would even improve the running time of the algorithm. The
key idea lies in the fact that to calculate a Tlocal[i, j] we just need to check the
K + 1 diagonal entries before it. This is true because of the required rigidness.
The modified version of Equation 2 to handle RIFIG is given below.

Tlocal[i, j] =

⎧
⎨

⎩

Undefined if (i, j) /∈ M,

max(�i,�j)∈{(i−1,j−1),(i−2,j−2)...(i−1−K,j−1−K)}
(�i,�j)∈M

(Tlocal[�i, �j]) + 1 if (i, j) ∈ M.

(6)

Also we can easily modify Equation 6 to solve RELAG. So we get the following
theorems.

Theorem 13. Problem RIFIG can be solved in O(n2 + RK) time using θ(n2)
space. �

Theorem 14. Problem RELAG can be solved in O(n2+R(K2−K1)) time using
θ(n2) space. �

In the rest of this section we will try to achieve better solutions for RIFIG. We
first introduce a variant of RIFIG where the gap constraint is withdrawn. In
other words we can say that in this variant we have K = n.

Problem “RLCS” (Rigid LCS Problem). Given two strings X and Y, each
of length n, we want to find out a Rigid Common Subsequence of the max-
imum length2. A Rigid Common Subsequence of X and Y is a subsequence
S[1..r] = S[1] S[2] ...S[r] of both X and Y such that C(X,S)[i]−C(X,S)[i−1] =
C(Y, S)[i] − C(Y, S)[i− 1] for all 2 ≤ i ≤ r.
2 The generalized version of RLCS was introduced and proved to be Max-SNP hard

in [6].

Algorithms for Computing Variants of the LCS Problem 407

It is easy to see that using Equation 6 we can easily solve Problem RLCS by
assuming K = n. But this will not give us a very good running time at all. On
the other hand, it turns out that, we can achieve a better running time by ap-
propriate modification to Equation 1. To solve RLCS, however, for each tabular
entry T [i, j] we calculate and store two values namely Tlocal[i, j], Tglobal[i, j]. The
recurrence relations are defined below:

Tlocal[i, j] =

⎧
⎪⎨

⎪⎩

0 if i = 0 or j = 0,
Tlocal[i− 1, j − 1] + 1 if X[i] = Y [j],
Tlocal[i− 1, j − 1] if X[i] �= Y [j].

(7)

Tglobal[i, j] =

⎧
⎪⎨

⎪⎩

0 if i = 0 or j = 0,
max(Tglobal[i− 1, j], Tglobal[i, j − 1]) if (i, j) /∈ M,

max(Tglobal[i− 1, j], Tglobal[i, j − 1],Tlocal[i, j] if (i, j) ∈ M.

(8)

It is easy to see that Equation 7 preserves the rigidness of the subsequence. Note
that, Equation 8 is required to keep track of the global solution.

Theorem 15. Problem RLCS can be solved in O(n2) time using θ(n2) space. �

Inspired by the idea of above solution to RLCS in the rest of this section we try
to devise an algorithm to solve RIFIG in O(n2) time. The idea is to some how
propagate the constraint information up through the diagonal entries as soon as
we find a match and whenever a match is found check this information. What
we plan to do is as follows. For the calculation of Tlocal we apply K-modulo
arithmetic. The actual length of LCS would be �Tlocal[n, n]/K�.

Tlocal[i, j] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 0 or j = 0,
0 if X[i] �= Y [j] and

Tlocal[i− 1, j − 1] mod K = 1,
�Tlocal[i− 1, j − 1]/K� ∗K +K if X[i] = Y [j],
Tlocal[i− 1, j − 1]− 1 if X[i] �= Y [j] and

Tlocal[i− 1, j − 1] > 0,
0 if X[i] �= Y [j] and

Tlocal[i− 1, j − 1] = 0.

(9)

Tglobal[i, j] =

⎧
⎪⎨

⎪⎩

Tglobal[i, j] if i = 1 or j = 1,
max(Tglobal[i− 1, j], Tglobal[i, j − 1]) if (i, j) /∈ M,

max(Tglobal[i− 1, j], Tglobal[i, j − 1], Tlocal[i, j] if (i, j) ∈ M.

(10)

Theorem 16. Problem RIFIG can be solved in O(n2) time using θ(n2) space. �

7 Conclusion

In this paper we have introduced new variants of LCS problem and presented
efficient algorithms to solve them. Our algorithms can be used to solve some
other interesting problems, specially in bioinformatics, as well. We can tackle
the degenerate strings in biological applications, for e.g., using a clever tech-
nique invented by Lee et al. [5] (the details are omitted for space constraints).
Moreover we can solve the Longest Common Substring problem for degenerate
strings, a very common problem in molecular biology simply by putting K = 1

408 M.S. Rahman and C.S. Iliopoulos

in the Problem FIG. Also, our algorithms should be useful in extracting long
multiple repeats in DNA sequences as follows. One approach to solve this prob-
lem efficiently is to apply ‘lossless’ filters [1, 9] where filters apply a necessary
condition that sequences must meet to be part of repeats. One way to improve
the computational time and the sensitivity of the filters is to compute Longest
Common Subsequences between the ordered sequences of exact k-mers used in
the filtering technique. However in the case of the filter, the LCS that needs to
be computed has bounded span [8] which, again, can be obtained by applying
the gap-constraints in LCS.

References

1. ED’NIMBUS. http://igm.univ-mlv.fr/ peterlon/officiel/ednimbus/.
2. S. F. Altschul, W. Gish, W. Miller, E. W. Meyers, and D. J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.
3. M. A. Bender and M. Farach-Colton. The lca problem revisited. In Latin American

Theoretical INformatics (LATIN), pages 88–94, 2000.
4. H. Gabow, J. Bentley, and R. Tarjan. Scaling and related techniques for geometry

problems. In Symposium on the Theory of Computing (STOC), pages 135–143,
1984.

5. I. Lee, A. Apostolico, C. S. Iliopoulos, and K. Park. Finding approximate occur-
rence of a pattern that contains gaps. In Australasian Workshop on Combinatorial
Algorithms (AWOCA), pages 89–100, 2003.

6. B. Ma and K. Zhang. On the longest common rigid subsequence problem. In CPM,
pages 11–20, 2005.

7. W. Pearson and D. Lipman. Improved tools for biological sequence comparison.
Proceedings of National Academy of Science, USA, 85:2444–2448, 1988.

8. P. Peterlongo. Private communication.
9. P. Peterlongo, N. Pisanti, F. Boyer, and M.-F. Sagot. Lossless filter for finding long

multiple approximate repetitions using a new data structure, the bi-factor array.
In SPIRE, pages 179–190, 2005.

10. P. van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters, 6:80–82, 1977.

11. R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, 1974.

Constructing Labeling Schemes Through

Universal Matrices

Amos Korman1,�, David Peleg2,��, and Yoav Rodeh3

1 Information Systems Group, Faculty of IE&M, The Technion, Israel
pandit@tx.technion.ac.il

2 Dept. of Computer Science, Weizmann Institute, Israel
david.peleg@weizmann.ac.il

3 Dept. of Computer Science, Tel Hai Academic College, Israel
yoavr@telhai.ac.il

Abstract. Let f be a function on pairs of vertices. An f-labeling scheme
for a family of graphs F labels the vertices of all graphs in F such that
for every graph G ∈ F and every two vertices u, v ∈ G, f(u, v) can be
inferred by merely inspecting the labels of u and v. The size of a labeling
scheme is the maximum number of bits used in a label of any vertex
in any graph in F . This paper illustrates that the notion of universal
matrices can be used to efficiently construct f -labeling schemes.

Let F(n) be a family of connected graphs of size at most n and let
C(F , n) denote the collection of graphs of size at most n, such that each
graph in C(F , n) is composed of a disjoint union of some graphs in F(n).
We first investigate methods for translating f -labeling schemes for F(n)
to f -labeling schemes for C(F , n). In particular, we show that in many
cases, given an f -labeling scheme of size g(n) for a graph family F(n),
one can construct an f -labeling scheme of size g(n)+ log log n+O(1) for
C(F , n). We also show that in several cases, the above mentioned extra
additive term of log log n + O(1) is necessary. In addition, we show that
the family of n-node graphs which are unions of disjoint circles enjoys
an adjacency labeling scheme of size log n+O(1). This illustrates a non-
trivial example showing that the above mentioned extra additive term is
sometimes not necessary.

We then turn to investigate distance labeling schemes on the class of
circles of at most n vertices and show an upper bound of 1.5 log n+O(1)
and a lower bound of 4/3 log n − O(1) for the size of any such labeling
scheme.

Keywords: Labeling schemes, Universal graphs, Universal matrices.

1 Introduction

Motivation and related work. In the fields of communication networks and dis-
tributed computing, network representation schemes have been studied exten-
� Supported in part at the Technion by an Aly Kaufman fellowship.

�� Supported in part by grants from the Israel Science Foundation and the Israel Min-
istry of Science and Art.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 409–418, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

410 A. Korman, D. Peleg, and Y. Rodeh

sively. This paper studies a type of representation based on assigning informative
labels to the vertices of the network. In most traditional network representations,
the names or identifiers given to the vertices betray nothing about the network’s
structure. In contrast, the labeling schemes studied here involve using more in-
formative and localized labels for the network vertices. The idea is to associate
with each vertex a label selected in a such way, that will allow us to infer in-
formation about any two vertices directly from their labels, without using any
additional information sources. Hence in essence, this method bases the entire
representation on the set of labels alone.

Obviously, without restricting the label size one can encode any desired in-
formation, including in particular, the entire graph structure. Our focus is thus
on informative labeling schemes using short labels. Labeling schemes were previ-
ously developed for different graph families and for a variety information types,
including adjacency [16, 5], distance [27, 21, 13, 12, 10, 17, 30, 7, 1], tree routing
[9, 31], flow and vertex connectivity [20, 15], tree ancestry [4, 3, 17, 2, 18, 19],
nearest common ancestor in trees [28, 2] and various other tree functions. See
[11] for a survey on (static) labeling schemes. The dynamic version was studied
in [23, 22, 8, 14].

The size of a graph is the number of vertices in it. The size of a labeling scheme
for a family F of graphs is defined as the maximum number of bits assigned in
a label of any vertex in any graph in F . The following is an example (see [16])
of an adjacency labeling scheme on the family of n-node forests.

Example: Given an n-node forest, first assign each vertex v a disjoint identifier
id(v) in the range 1, 2, · · · , n. Then assign each non-root vertex v, the label
L(v) = 〈id(v), id(p(v))〉, where p(v) is v’s parent in the corresponding tree, and
assign each root r the label L(r) = 〈id(r)〉. Note that two nodes in a forest
are neighbors iff one is the parent of the other. Therefore, given the labels of
two nodes, one can easily determine whether these nodes are neighbors or not.
Clearly, the size of this labeling scheme is 2 log n.

As shown in [16], the notion of adjacency labeling schemes is strongly related to
the notion of vertex induced universal graphs. Given a graph family F , a graph
U is F -induced universal if every graph in F is a vertex induced subgraph of
U . In the early 60’s, induced universal graphs were studied in [29] for infinite
graph families. Induced universal graphs for the family of all n-node graphs were
studied in [26], for trees, forests, bounded arboricity graphs and planar graphs
in [6, 16, 4], for hereditary graphs in [24] and for several families of bipartite
graphs in [25].

As proved in [16], a graph family F (of n-node graphs) has an adjacency
labeling scheme of size g(n) iff there exists an F -induced universal graph of size
2g(n). Therefore, Example 1 implies the existence of an n2-node induced universal
graph for the family of n-node forests. This bound was further improved in [5]
to 2log n+O(log∗ n) by constructing an adjacency labeling scheme for forests with
label size log n + O(log∗ n).

An extension of the notion of an F -induced universal graph was given in [10].
An F-universal distance matrix is a square matrix U containing the distance

Constructing Labeling Schemes Through Universal Matrices 411

matrix of every graph in F as an induced sub-matrix. It was shown in [10] that
a graph family F has a distance labeling scheme of size g(n) iff there exists an
F -universal distance matrix with dimension 2g(n). We note that to the best of
our knowledge, despite the above mentioned relation between labeling schemes
and universal distance matrices, no attempt has been made so far to construct
labeling schemes based on this relation.

Our results. We first notice that the notion of a universal distance matrix can
be generalized into a universal f -matrix for any type of function f on pairs of
vertices. This paper investigates this notion of universal f -matrices for various
functions and graph families and uses it to explicitly construct upper bounds
and lower bounds on the sizes of the corresponding f -labeling schemes. To the
best of our knowledge, this is the first attempt to explicitly construct labeling
schemes based on such notions.

Let F(n) be a family of connected graphs of size at most n and let C(F , n)
denote the collection of graphs of size at most n, such that each graph in C(F , n)
is composed of a disjoint union of some graphs in F(n). We first investigate
methods for translating f -labeling schemes for F(n) to f -labeling schemes for
C(F , n). In particular, using the notion of universal f -matrices we show that in
many cases, given an f -labeling scheme of size g(n) for a graph family F(n), one
can construct an f -labeling scheme of size g(n) + log log n + O(1) for C(F , n).
We also show that in several cases, the above mentioned extra additive term of
log log n + O(1) is necessary. In addition, using the notion of universal induced
graphs, we show that the family of n-node graphs which are unions of disjoint
circles enjoys an adjacency labeling scheme of size log n + O(1). This illustrates
a non-trivial example showing that the above mentioned extra additive term is
sometimes not necessary.

We then turn to investigate distance labeling schemes on the class of circles
of size at most n. Using the notion of universal distance matrices we construct
a distance labeling scheme for this family of size 1.5 logn + O(1) and then show
a lower bound of 4

3 log n − O(1) for the size of any such scheme.
Throughout, all additive constant terms are small, so no attempt was made

to optimize them.

2 Preliminaries

Let f be a function on pairs of vertices. An f -labeling scheme π = 〈Lπ , Dπ〉 for
a graph family F is composed of the following components:

1. A labeler algorithm Lπ that given a graph in F , assigns labels to its vertices.
2. A polynomial time decoder algorithm Dπ that given the labels L(u) and L(v)

of two vertices u and v in some graph in F , outputs f(u, v).

The size of a labeling scheme π = 〈Lπ , Dπ〉 for a graph family F is the maximum
number of bits in a label assigned by Lπ to any vertex in any graph in F .

We mainly consider the following functions on pairs of vertices u and v in a
graph G.

412 A. Korman, D. Peleg, and Y. Rodeh

The adjacency (respectively, connectivity) function: f(u, v)=1 if u and v are
adjacent (resp., connected) in G and 0 otherwise.
The distance function: f(u, v) = dG(u, v), the (unweighted) distance between u
and v in G; we may sometimes omit the subscript G when it is clear from the
context.
The flow function: f(u, v) is the maximum flow possible between u and v in a
weighted graph G.

The size of a graph G, denoted |G|, is the number of vertices in it. Let
Fpaths(n) (respectively, Fcircles(n)) denote the family of paths (resp. circles)
of size at most n. Given a family F(n) of connected graphs of size at most n, let
C(F , n) denote the collection of graphs of size at most n, such that each graph
in C(F , n) is composed of a disjoint union of some graphs in F(n).

A graph G with vertex set {v1, v2, . . . , vn} is a vertex induced subgraph of a
graph U with vertex set {u1, u2, . . . , uk} if there exist indices 1 ≤ s1, s2, . . . , sn ≤
k such that for every i, j ∈ {1, 2, . . . , n}, vi and vj are neighbors in G iff usi and
usj are neighbors in U . Given a graph family F , a graph U is F -induced universal
if every graph in F is a vertex induced subgraph of U .

Proposition 1. [16] A graph family F has an adjacency labeling scheme with
label size g iff there exists an F-induced universal graph with 2g nodes.

The dimension of a square matrix M , denoted dim(M), is the number of rows
in it. An n × n square matrix B = (bi,j)1≤i,j≤n is an induced sub-matrix of a
k × k square matrix A = (ai,j)1≤i,j≤k if there exists a sequence (s1, s2, . . . , sn)
of distinct indices 1 ≤ s� ≤ k such that bi,j = asi,sj for every i, j ∈ {1, 2, . . . , n}.
As defined in [10], given a graph family F , an F-universal distance matrix is
a square matrix M containing the distance matrix of every graph in F as an
induced sub-matrix.

Proposition 2. [10] If a graph family F enjoys a distance labeling scheme
with label size g, then there exists an F-universal distance matrix of dimension
2g+O(1). Conversely, if there exists an F-universal distance matrix of dimension
2g then F enjoys a distance labeling scheme of size g + O(1).

Let G be an n-node graph and let u1, u2, . . . , un denote its vertices. Given a
function f on pairs of vertices, the f -matrix of G is an n-dimensional square
matrix B such that Bi,j = f(ui, uj) for every i, j ∈ {1, 2, . . . , n}. We first notice
that the notion of a universal distance matrix can be extended into a universal
f matrix for any type of function f on pairs of vertices. Formally, given a graph
family F , an F-universal f -matrix is a square matrix M containing the f -matrix
of every graph in F as an induced sub-matrix of M . Going along the same steps
as the proof of Proposition 2 in [10], we obtain the following proposition.

Proposition 3. If a graph family F enjoys an f -labeling scheme with label size
g, then there exists an F-universal f -matrix of dimension 2g+O(1). Conversely, if
there exists an F-universal f -matrix of dimension 2g then F enjoys an f -labeling
scheme of size g + O(1).

Constructing Labeling Schemes Through Universal Matrices 413

3 Transforming f -Labeling Schemes for Connected
Graphs to Non-connected Graphs

3.1 The General Transformation

Let F(n) be a family of connected graphs, each of size at most n. In this section
we show that in many cases one can transform an f -labeling scheme for F(n)
to an f -labeling scheme for C(F , n) with a size increase of log log n + O(1). We
then show that this additive term is necessary in some cases but not always.

Let f be a function on pairs of vertices, with the property that there exists
some value σ ∈ [0, ∞] such that f(u, v) = σ for every two non-connected vertices
u and v. For example, f can be the distance function (with σ = ∞), the flow
function (with σ = 0) or the adjacency function (with σ = 0). First note that
there exists a straightforward translation allowing us to transform a given f -
labeling scheme π = 〈L, D〉 for a graph family F(n) of size g(n) into an f -labeling
scheme π′ = 〈L′, D′〉 for C(F , n) of size g(n) + log n + O(1) as follows. Given a
graph H ∈ F(n) and a vertex v ∈ H , let LH(v) be the label given to v by the
labeler algorithm L applied on H . Given a graph G ∈ C(F , n), let G1, G2, . . . , Gk

be its connected components (which belong to F(n)). For 1 ≤ i ≤ k, given a
vertex v ∈ Gi, the label L′(v) to be assigned to v by the labeler algorithm L′
is composed of the concatenation of two sublabels, M ′

1(v) and M ′
2(v). The first

sublabel, M ′
1(v), consists of precisely �log n� bits which are used to encode i

(padded by 0’s to the left as necessary). The second sublabel is M ′
2(v) = LGi(v).

Since the first sublabel consists of precisely �log n� bits, given a label L′(v) one
can easily distinguish the two sublabels L′1(v) and L′2(v). Given two labels L′(v)
and L′(u) of two vertices v and u in G, the decoder D′ outputs D(L′2(v), L′2(u))
if the two labels agree in their first sublabels, and σ otherwise. Clearly π′ is an
f -labeling scheme of size g(n) + log n + 1 for C(F , n).

Lemma 1. Let g(n) be an increasing function satisfying (1) g(n) ≥ log n and
(2) for every constant c ≥ 1, 2g(c·n) ≥ c · 2g(n)1. If, for every m ≤ n, there exists
an f -labeling scheme π(m) of size g(m) for F(m) then there exists an f -labeling
scheme of size g(n) + log log n + O(1) for C(F , n).

Proof. For every 1 ≤ i ≤ n, let mi =
n/i� and let Mi be the F(mi)-universal
f -matrix obtained from the f -labeling scheme π(mi). Let M be the matrix

M =

⎛

⎜⎜
⎜
⎝

M1 σ σ . . .
σ M2 σ . . .
σ σ M3 . . .
...

...
...

. . .

⎞

⎟⎟
⎟
⎠

where all entries except for the diagonal of Mi’s contain the value σ. Since the
size of π(mi) is at most g(n/i), we obtain that dim(Mi) ≤ 2g(n/i)+O(1). By our
assumption on g(n), we get that dim(Mi) ≤ 2g(n)/i + O(1), hence dim(M) ≤
1 These requirements are satisfied by all functions of the form α logβ n, where α, β ≥ 1.

414 A. Korman, D. Peleg, and Y. Rodeh

O(n) + 2g(n) ∑n
i=1 1/i ≤ O(n) + 2g(n) · log n. Since we assume g(n) ≥ log n, we

obtain that dim(M) = O(2g(n) · log n).
The lemma follows once we show that M is an C(F , n)-universal distance

matrix. Let G =
⊔k

i=1 Gi be a graph in C(F , n) such that for every 1 ≤ i < k,
|Gi| ≥ |Gi+1|. If follows that for every 1 ≤ i ≤ k, |Gi| ≤ mi. For each 1 ≤
i ≤ k, using the F(mi)-universal f -matrix Mi, we map the vertices of Gi to the
corresponding indices of Mi in M .

3.2 Labeling Schemes for Path Collections

The following easy to prove claim shows that the requirements from g(n) in the
previous lemma are necessary.

Claim. The size of a connectivity labeling scheme on Fpaths(n) is O(1) and the
size of a connectivity labeling scheme on C(Fpaths, n) is Ω(log n).

Note that one can easily show that the size of a distance labeling scheme for
Fpaths(n) is log n + Θ(1). Therefore, the following lemma shows, in particu-
lar, that the extra additive term of log log n + O(1) mentioned in Lemma 1 is
sometimes necessary.

Lemma 2. Any distance labeling schemes for C(Fpaths, n) must have size at
least log n + log log n − O(1).

Proof. It is enough to show that any C(Fpaths, n)-universal distance matrix must
have dimension Ω(n log n). For simplicity of presentation, we assume that n = m!
for some m. The general case follows using similar arguments. Let M be any
C(Fpaths, n)-universal distance matrix and let k = dim(M), i.e., M is a square
k × k matrix.

For every 1 ≤ i ≤ n, let Gi be the graph consisting of a disjoint union of i
paths of size n/i each. We now define inductively n sets of integers, X1, . . . , Xn,
with the following properties.

1. Xi ⊂ {1, 2, . . . , k},
2. Xi ⊂ Xi+1,
3. |Xn| = Ω(n log n),
4. for every 1 ≤ i ≤ n, the set Xi can be partitioned into i disjoint subsets

Q1, Q2, . . . , Qi, such that the following property is satisfied.
Partition property: for every 1 ≤ j ≤ i and every two integers x, y ∈ Qj ,
Mx,y = ∞.

The sets X1, . . . , Xn are defined inductively as follows. Enumerate the vertices
in G1 from 1 to n, i.e., let the set of vertices in G1 be a1, a2, . . . , an. Let X1 be
a set of integers {s1, s2, . . . , sn} satisfying that for every two vertices ah and aj

in G1, f(ah, aj) = Msh,sj . The required properties trivially hold. Now assume
that the sets Xj are already defined for each j ≤ i. Then Xi+1 is constructed as
follows. Let Q1, Q2, . . . , Qi be the subsets of Xi satisfying the partition property
and let P1, P2, . . . , Pi+1 be the n/(i + 1)-node paths of Gi+1. Let a1, a2, . . . , an

Constructing Labeling Schemes Through Universal Matrices 415

denote the set of vertices in Gi+1 and let (s1, s2, . . . , sn) be a sequence of integers
such that for every 1 ≤ ah, aj ≤ n, f(ah, aj) = Msh,sj . For every 1 ≤ j ≤ i + 1,
let ϕ(Pj) be the set {sk | ak ∈ Pj}. By the partition property, for every 1 ≤
h ≤ i, there exists at most one 1 ≤ j ≤ i + 1 such that Qh ∩ ϕ(Pj) = ∅.
Therefore, there exists some j such that Qh ∩ϕ(Pj) = ∅ for every 1 ≤ h ≤ i. Let
Xi+1 = Xi∪ϕ(Pj). Clearly, the partition property is satisfied for Xi+1. Moreover,
|Xi+1| = |Xi| + n/(i + 1), and therefore |Xn| ≈ n(1 + 1

2 + . . . + 1
n) = Ω(n log n).

Since |Xn| ≤ k, the lemma follows.

It can be shown that C(Fpaths, n) enjoys an adjacency labeling scheme of size
log n + O(1). It follows that the extra additive term of log log n + O(1) (Lemma
1) is not necessary in this case. In the following subsection we show another
example for the fact that this additive term is not necessary, using the notion of
universal induced graphs.

3.3 An Adjacency Labeling Scheme for C(FCircles, n)

In this subsection we consider adjacency labeling schemes for C(Fcircles, n).
Clearly, any adjacency labeling scheme for Fcircles(n) must have size at least
log n. We now describe an adjacency labeling scheme for C(Fcircles, n) of size
log n + O(1).

Let us first note that the following straightforward labeling scheme for the
class C(Fcircles, n) uses labels of size 3 log n. Given a graph G ∈ C(Fcircles, n), let
C1, C2, . . . be the circles of G. For each i, enumerate the vertices of Ci clockwise
and label each node u ∈ Ci by L(u) = 〈i, |Ci|, n(u)〉, where n(u) is the number
given to u in the above mentioned enumeration. Given the labels L(u) and L(v)
of two vertices in G, the decoder can easily identify whether u and v belong to
the same circle or not. If u and v do not belong to the same circle, then the
decoder outputs 0. Otherwise, the adjacency between u and v in their common
circle Ci can easily be determined using |Ci|, n(u) and n(v).

An even (respectively, odd) circle is a circle of even (resp., odd) size. Let
Fe−circles be the graph family containing all m-node circles, where m ≥ 8 is
an even number. Let us first describe an C(Fe−circles, n)-universal graph. Let
Ue−circles be a 3 × n-grid graph (see the bottom graph in Figure 2). Consider
some graph G ∈ C(Fe−circles, n) and let C1, C2, . . . be its collection of disjoint
circles. Map each circle Ci into Ue−circles leaving a gap of one column between
any two consecutive mapped circles. An example of such a mapping is depicted
in Figure 1.

It follows that Ue−circles is an C(Fe−circles, n)-universal graph of size O(n). In
the full paper we describe how to extend Ue−circles to obtain an C(Fcircles, n)-
universal graph of size O(n). The following lemma follows.

Lemma 3. There exists an adjacency labeling scheme of size log n + O(1) for
C(Fcircles, n).

416 A. Korman, D. Peleg, and Y. Rodeh

C C C1 2 3

G

U
e−circles

Fig. 1. A mapping of a graph G ∈ C(Fe−circles, n) into the universal graph Ue−circles

4 A Distance Labeling Scheme for FCircles(n)

In this section we construct a distance labeling scheme for Fcircles(n) of size
1.5 logn + O(1) and establish a lower bound of 4/3 logn − O(1) for the size of
any such labeling scheme. Due to lack of space, this extended abstract contains
only the lower bound proof.

4.1 A Size Lower Bound on Distance Labeling Schemes for
FCircles(n)

Lemma 4. Any distance labeling scheme for Fcircles(n) must have size at least
4/3 logn − O(1).

Proof. For simplicity of presentation, assume n is divisible by 12. The general
case follows using similar arguments. Let π = 〈L, D〉 be a distance labeling
scheme for Fcircles(n) and denote the set of labels assigned to the vertices of
graphs in Fcircles(n) by X = {L(v) | v ∈ C, C ∈ Fcircles(n)}.

For m = 1, 2, . . . , n/12, let cm = n/2+6m (note that cm is divisible by 6). For
every 1 ≤ m ≤ n/12, let Cm be the circle with cm nodes. For any such circle Cm,
let I1

m, I2
m, . . . , I6

m be six vertex disjoint arcs of Cm, each of size m/6, ordered
clockwise. Figure 2 shows this division of C12 into 6 disjoint arcs. Define

Ψm = {〈L(a), L(b), L(c)〉 | a ∈ I1
m, b ∈ I3

m, c ∈ I5
m}.

It is easy to show that for every two vertices v, u ∈ Cm, L(v) = L(u), therefore
Ψm contains (cm/6)3 ≥ (n/12)3 elements. Note that given any circle Cm, if
a ∈ I1

m, b ∈ I3
m and c ∈ I5

m then d(a, b) + d(b, c) + d(c, a) = m, so necessarily
D(L(a), L(b)) + D(L(b), L(c)) + D(L(c), L(a)) = m. We therefore obtain the
following claim.

Claim. For every 1 ≤ m < m′ ≤ n/12, Ψm ∩ Ψm′ = ∅.

Constructing Labeling Schemes Through Universal Matrices 417

12
12

3
4

6

2

12
12
I

5

12

1

12
I

I

I

I

I

Fig. 2. The division of C12 into 6 disjoint arcs I1
12, I

2
12, . . . , I

6
12

Let Ψ =
⋃n/12

m=1 Ψm. By the above claim, Ψ contains Ω(n4) distinct elements.
Since Ψ ⊂ X × X × X , we obtain that X contains Ω(n4/3) elements. Therefore,
there exists a label in X encoded using log(Ω(n4/3)) = 4

3 log n − O(1) bits. The
lemma follows.

References

[1] S. Alstrup, P. Bille and T. Rauhe. Labeling schemes for small distances in trees.
In Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, Jan. 2003.

[2] S. Alstrup, C. Gavoille, H. Kaplan and T. Rauhe. Nearest Common Ancestors:
A Survey and a new Distributed Algorithm. Theory of Computing Systems 37,
(2004), 441–456.

[3] S. Abiteboul, H. Kaplan and T. Milo. Compact labeling schemes for ancestor
queries. In Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, Jan. 2001.

[4] S. Alstrup and T. Rauhe. Improved Labeling Scheme for Ancestor Queries. In
Proc. 19th ACM-SIAM Symp. on Discrete Algorithms, Jan. 2002.

[5] S. Alstrup and T. Rauhe. Small induced-universal graphs and compact implicit
graph representations. In Proc. 43rd IEEE Symp. on Foundations of Computer
Science, Nov. 2002.

[6] F.R.K. Chung. Universal graphs and induced-universal graphs. J. of Graph Theory
14(4), (1990), 443–454.

[7] E. Cohen, E. Halperin, H. Kaplan and U. Zwick. Reachability and Distance
Queries via 2-hop Labels. In Proc. 13th ACM-SIAM Symp. on Discrete Algo-
rithms, Jan. 2002.

[8] E. Cohen, H. Kaplan and T. Milo. Labeling dynamic XML trees. In Proc. 21st
ACM Symp. on Principles of Database Systems, June 2002.

[9] P. Fraigniaud and C. Gavoille. Routing in trees. In Proc. 28th Int. Colloq. on
Automata, Languages & Prog., 757–772, July 2001.

[10] C. Gavoille and C. Paul. Split decomposition and distance labelling: an optimal
scheme for distance hereditary graphs. In Proc. European Conf. on Combinatorics,
Graph Theory and Applications, Sept. 2001.

[11] C. Gavoille and D. Peleg. Compact and Localized Distributed Data Structures.
J. of Distributed Computing 16, (2003), 111–120.

418 A. Korman, D. Peleg, and Y. Rodeh

[12] C. Gavoille, M. Katz, N.A. Katz, C. Paul and D. Peleg. Approximate Distance
Labeling Schemes. In 9th European Symp. on Algorithms, Aug. 2001, 476–488.

[13] C. Gavoille, D. Peleg, S. Pérennes and R. Raz. Distance labeling in graphs. In
Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, pages 210–219, Jan. 2001.

[14] A. Korman. General Compact Labeling Schemes for Dynamic Trees. In Proc.
19th Symp. on Distributed Computing, Sep. 2005.

[15] A. Korman and S. Kutten. Distributed Verification of Minimum Spanning Trees.
In 25th Annual ACM SIGACT-SIGOPS Symp. on Principles of Distributed Com-
puting, July 2006.

[16] S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. In SIAM
J. on Descrete Math 5, (1992), 596–603.

[17] H. Kaplan and T. Milo. Short and simple labels for small distances and other
functions. In Workshop on Algorithms and Data Structures, Aug. 2001.

[18] H. Kaplan and T. Milo. Parent and ancestor queries using a compact index. In
Proc. 20th ACM Symp. on Principles of Database Systems, May 2001.

[19] H. Kaplan, T. Milo and R. Shabo. A Comparison of Labeling Schemes for Ancestor
Queries. In Proc. 19th ACM-SIAM Symp. on Discrete Algorithms, Jan. 2002.

[20] M. Katz, N.A. Katz, A. Korman and D. Peleg. Labeling schemes for flow and
connectivity. SIAM Journal on Computing 34 (2004),23–40.

[21] M. Katz, N.A. Katz, and D. Peleg. Distance labeling schemes for well-separated
graph classes. In Proc. 17th Symp. on Theoretical Aspects of Computer Science,
516–528, February 2000.

[22] A. Korman and D. Peleg. Labeling Schemes for Weighted Dynamic Trees. In
Proc. 30th Int. Colloq. on Automata, Languages & Prog., July 2003.

[23] A. Korman, D. Peleg and Y. Rodeh. Labeling schemes for dynamic tree networks.
Theory of Computing Systems 37, (2004), 49–75.

[24] V. V. Lozin. On minimal universal graphs for hereditary classes. J. Discrete Math.
Appl.,7(3), (1997), 295–304.

[25] V. V. Lozin and G. Rudolf. Minimal universal bipartite graphs. To appear in Ars
Combinatoria.

[26] J. W. Moon. On minimal n-universal graphs. In Proc. Galasgow Math. Soc. 7,
32–33, 1965.

[27] D. Peleg. Proximity-preserving labeling schemes and their applications. In Proc.
25th Int. Workshop on Graph-Theoretic Concepts in Computer Science, pages 30–
41, June 1999.

[28] D. Peleg. Informative labeling schemes for graphs. In Proc. 25th Symp. on Math-
ematical Foundations of Computer Science, 579–588, Aug. 2000.

[29] R. Rado. Universal graphs and universal functions. Acta. Arith., (1964), 331–340.
[30] M. Thorup. Compact oracles for reachability and approximate distances in planar

digraphs. J. of the ACM 51, (2004), 993–1024.
[31] M. Thorup and U. Zwick. Compact routing schemes. In Proc. 13th ACM Symp.

on Parallel Algorithms and Architecture, pages 1–10, Hersonissos, Crete, Greece,
July 2001.

Making Arbitrary Graphs Transitively

Orientable: Minimal Comparability
Completions�

Pinar Heggernes, Federico Mancini, and Charis Papadopoulos

Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{pinar, federico, charis}@ii.uib.no

Abstract. A transitive orientation of an undirected graph is an assign-
ment of directions to its edges so that these directed edges represent a
transitive relation between the vertices of the graph. Not every graph
has a transitive orientation, but every graph can be turned into a graph
that has a transitive orientation, by adding edges. We study the prob-
lem of adding an inclusion minimal set of edges to an arbitrary graph
so that the resulting graph is transitively orientable. We show that this
problem can be solved in polynomial time, and we give a surprisingly
simple algorithm for it.

1 Introduction

A transitive orientation of an undirected graph is an assignment of a direction to
each of the edges, such that the edges represent a binary transitive relation on
the vertices. An undirected graph is a comparability graph if there is a transitive
orientation of its edges, and hence comparability graphs are also called transi-
tively orientable graphs. This is a wide and well known graph class studied by
many authors, and and it has applications in areas like archeology, psychology,
and political sciences [1,12]. Comparability graphs are perfect, and they can be
recognized in polynomial time. Many interesting optimization problems that are
NP-hard on arbitrary graphs, like coloring and maximum (weighted) clique, are
polynomially solvable on comparability graphs [1]. Hence, computing a compara-
bility supergraph of an arbitrary graph, and solving a generally NP-hard problem
in polynomial time on this supergraph, is a way of obtaining approximation algo-
rithms for several hard problems. For graphs coming from the application areas
mentioned above, there may be missing edges due to lacking data so that the
graph fails to be comparability, in which case one is again interested in com-
puting a comparability supergraph. A comparability graph obtained by adding
edges to an arbitrary graph is called a comparability completion of the input
graph. Unfortunately, computing a comparability completion with the minimum
number of added edges (called a minimum completion) is an NP-hard problem
[2].
� This work is supported by the Research Council of Norway through grant

166429/V30.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 419–428, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

420 P. Heggernes, F. Mancini, and C. Papadopoulos

A minimal comparability completion H of G is a comparability completion of
G such that no proper subgraph of H is a comparability completion of G. Al-
though the number of added edges in a minimal comparability completion may
be far from minimum, computing a few different minimal comparability com-
pletions, and choosing the one with the smallest number of edges is a possible
approach to finding a comparability completion close to minimum. Furthermore,
the set of minimal comparability completions of a graph contains the set of mini-
mum comparability completions. Therefore, the study of minimal comparability
completions is a first step in the search for minimum comparability completions,
possibly through methods like exact exponential time algorithms or parameter-
ized algorithms. In this paper, we give the first polynomial time algorithm for
computing minimal comparability completions of arbitrary graphs, and hence we
show that this problem is solvable in polynomial time, as opposed to computing
minimum comparability completions.

The study of minimal completions of arbitrary graphs into a given graph
class started with a polynomial-time algorithm for minimal chordal completions
in 1976 [13], before it was known that minimum chordal completions are NP-
hard to compute [15]. Since then the NP-hardness of minimum completions has
been established for several graph classes (summarized in [10]). Recently, several
new results, some of which have been presented at recent years’ SODA and ESA
conferences, have been published on completion problems, leading to faster algo-
rithms for minimal chordal completions [6,8,9], and polynomial-time algorithms
for minimal completions into split, interval, and proper-interval graphs [3,5,11].
The complexity of computing minimal comparability completions has been open
until now.

There are simple examples to show that a minimal comparability completion
cannot be obtained by starting from an arbitrary comparability completion, and
removing unnecessary edges one by one (as opposed to minimal completions into
chordal and split graphs). To overcome this difficulty, we use a vertex incremen-
tal approach in our algorithm. A vertex incremental algorithm has also proved
useful for minimal completions into interval graphs [5], and therefore we find it
worthwhile to give a more general result here, describing classes of graphs into
which minimal completions of arbitrary graphs can be computed with such a
vertex incremental approach. Notice, however, that the algorithm for each step
is completely different for, and dependent on, each graph class, and polynomial
time computability is not guaranteed by the vertex incremental approach.

2 Notation and Background

We consider undirected finite graphs with no loops or multiple edges. For a
graph G, we denote its vertex and edge set by V (G) and E(G), respectively,
with n = |V (G)| and m = |E(G)|. For a vertex subset S ⊆ V (G), the subgraph
of G induced by S is denoted by G[S]. Moreover, we denote by G− S the graph
G[V (G) − S] and by G − v the graph G[V (G) − {v}].

Making Arbitrary Graphs Transitively Orientable 421

The neighborhood NG(x) of a vertex x of the graph G is the set of all the
vertices of G which are adjacent to x. The closed neighborhood of x is defined as
NG[x] = NG(x)∪{x}. If S ⊆ V (G), then the neighbors of S, denoted by NG(S),
are given by

(⋃
x∈S NG(x)

)
−S. For a vertex x of G, the set NG(NG(x))−{x} is

denoted by N2
G(x). For a pair of vertices x, y of a graph G we call xy a non-edge

of G if xy /∈ E(G). A vertex x of G is universal if NG[x] = V (G).
Given a new vertex x /∈ V (G) and a set of vertices Nx of G, we denote by

Gx the graph obtained by adding x to G and making x adjacent to each vertex
in Nx, i.e., V (Gx) = V (G) ∪ {x} and E(Gx) = E(G) ∪ {xv | v ∈ Nx}; thus
NGx(x) = Nx. For a vertex x /∈ V (G), we denote by G + x the graph obtained
by adding an edge between x and every vertex of V (G), thus x is universal in
G + x.

All the results presented here are new except those that contain references.
Due to limited space, the proofs of most of the results of this extended abstract
will be omitted. The proofs can be found in the full version of the paper [4].

2.1 Comparability Graphs

A digraph is a directed graph, and an arc is a directed edge. While we denote an
undirected edge between vertices a and b equivalent by ab or ba, we denote an
arc from a to b by (a, b), and an arc in the opposite direction by (b, a). A directed
acyclic graph (dag) is transitive if, whenever (a, b) and (b, c) are arcs of the dag,
(a, c) is also an arc. An undirected graph is a comparability graph if directions
can be assigned to its edges so that the resulting digraph is a transitive dag, in
which case this assignment is called a transitive orientation.

We consider an undirected graph G to be a symmetric digraph, that is, if
xy ∈ E(G) then (x, y) and (y, x) are arcs of G. Two arcs (a, b) and (b, c) of an
undirected graph G are called incompatible if ac is not an edge of G. We say,
then, that (a, b) is incompatible with (b, c) and vice versa, or that ((a, b), (b, c)) is
an incompatible pair. The incompatibility graph BG of an undirected graph G is
defined as follows: In BG there is one vertex for each arc of G, and therefore we
will (somewhat abusively) denote a vertex of BG that corresponds to arc (a, b) of
G by (a, b). For each edge ab of G, there are two adjacent vertices (a, b) and (b, a)
in BG. In addition, there is an edge between two vertices (a, b) and (b, c) of BG if
and only if arcs (a, b) and (b, c) are incompatible in G. We will refer to the edges
of BG of this latter type as incompatibilities. Since we consider an undirected
graph to be a symmetric digraph, if (a, b)(b, c) is an edge (incompatibility) of BG

then (c, b)(b, a) is also an edge (incompatibility) of BG. An example of a graph
G and its incompatibility graph BG is given in Figure 1.

A graph is bipartite if its vertex set can be partitioned into two independent
sets. Bipartite graphs are exactly the class of graphs that do not contain cycles
of odd length. The incompatibility graph will be our main tool to compute
minimal comparability completions, and the following result from Kratsch et
al. [7] is central to our algorithm.

Theorem 1 ([7]). An undirected graph G is a comparability graph if and only
if its incompatibility graph BG is bipartite.

422 P. Heggernes, F. Mancini, and C. Papadopoulos

a b

d c

(a, b) (c, b) (c, d) (a, d)

(b, a) (b, c) (d, c) (d, a)

G BG

Fig. 1. A graph G and its incompatibility graph BG

2.2 A Vertex Incremental Approach for Minimal Completions

A comparability graph can be obtained from any graph G by adding edges,
and the resulting graph is called a comparability completion of G. An edge that
is added to G to obtain a comparability completion H is called a fill edge. A
comparability completion H = (V, E ∪ F) of G = (V, E), with E ∩ F = ∅,
is minimal if (V, E ∪ F ′) fails to be a comparability graph for every F ′ ⊂ F .
We will now show that minimal comparability completions can be obtained
vertex incrementally.In fact, we give a more general result here, describing graph
classes into which minimal completions of arbitrary graphs can be computed by
a vertex incremental approach. A graph class Π is called hereditary if all induced
subgraphs of graphs in Π also belong to Π .

Property 1. We will say that a graph class Π has the universal vertex property
if, for every graph G ∈ Π and a vertex x �∈ V (G), G + x ∈ Π .

Lemma 1. Let H be a minimal Π completion of an arbitrary graph G, and
let Gx be a graph obtained from G by adding a new vertex x adjacent to some
vertices of G. If Π is hereditary and has the universal vertex property, then there
is a minimal Π completion H ′ of Gx such that H ′ − x = H.

An important consequence of Lemma 1 is that for a hereditary graph class
Π with the universal vertex property, a minimal Π completion of any input
graph G can be computed by introducing the vertices of G in an arbitrary or-
der x1, x2, . . . , xn. Given a minimal Π completion Hi of Gi = G[x1, . . . , xi], we
compute a minimal Π completion of Gi+1 = G[x1, . . . , xi, xi+1] by actually com-
puting a minimal Π completion of the graph Hxi+1 = ({x1, . . . , xi+1}, E(Hi) ∪
{xi+1v | v ∈ NGi+1(xi+1)}). In this completion, we add only fill edges incident
to xi+1. Meanwhile, notice that this minimal completion is not necessarily easy
to obtain, and some major challenges might need to be overcome, depending on
the graph class Π .

Observation 1. The class of comparability graphs is hereditary and satisfies the
universal vertex property.

The real challenge is how to do the computations of each vertex incremental
step. This is exactly the problem that we solve in the rest of this paper. Thus for
the rest of the paper, due to Lemma 1 and Observation 1, we consider as input
a comparability graph G and a new vertex x /∈ V (G) together with a list of
vertices Nx in G. Our aim is to compute a minimal comparability completion of

Making Arbitrary Graphs Transitively Orientable 423

Gx = (V (G)∪{x}, E(G)∪{xv | v ∈ Nx}). We do this by finding an appropriate
set of fill edges Fx incident to x such that we obtain a comparability graph by
adding Fx to Gx, and no proper subset Fx yields a comparability graph when
added to Gx.

3 An Algorithm for Minimal Comparability Completion
of Gx

In this section, we give an algorithm that computes a minimal comparability
completion H of Gx, for a given comparability graph G and a new vertex
x /∈ V (G) together with a neighborhood Nx in G. Our main tool will be the
incompatibility graph BG of G, which we know is bipartite by Theorem 1. We
will proceed to update BG with the aim of obtaining the incompatibility graph
BGx of Gx. We will keep this partial incompatibility graph a bipartite graph at
each step. If Gx is not a comparability graph, we will have to add fill edges to
Gx to be able to achieve this goal.

Let Ex = {xv | v ∈ Nx} (thus Gx = (V ∪ {x}, E ∪ Ex)). Our first step in
obtaining BGx from BG is to add vertices corresponding to edges of Ex and
the edges and incompatibilities between these. We will make a separate graph
Bx to represent the incompatibilities among the edges of Ex. Let Bx be the
graph that has two adjacent vertices (x, v) and (v, x) for each xv ∈ Ex, and that
has all incompatibilities that are implied by non-edges of Gx between vertices
of Nx. To be more precise, if E = {(x, v) | xv ∈ Ex} ∪ {(v, x) | xv ∈ Ex}, and
BGx[Nx∪{x}] is the incompatibility graph of Gx[Nx∪{x}], then Bx is the subgraph
of BGx[Nx∪{x}] induced by E . An example is given in Figure 2. Observe that the
graph Gx[Nx ∪ {x}] is a comparability graph, since G[Nx] is comparability by
the hereditary property, and x is a universal vertex in Gx[Nx ∪ {x}]. Following
the above arguments, Bx is a bipartite graph by Theorem 1.

x

a
b

d c

(a, x) (c, x) (b, x)

(x, a) (x, c) (x, b)

(a, b) (c, b) (c, d) (a, d) (a, x) (c, x) (b, x)

(b, a) (b, c) (d, c) (d, a) (x, a) (x, c) (x, b)

Gx Bx BGx

︸ ︷︷ ︸
BG

︸ ︷︷ ︸
Bx

Fig. 2. An example that shows Gx, Bx, and BGx , for the graph G given in Figure 1

For our purposes, we also need to define the set of incompatibilities of BG

implied by a given non-edge xv of G. We call this set CG(xv), and define it as
follows for each non-edge xv of G.

CG(xv)={(x, w)(w, v) | w ∈ NG(x)∩NG(v)}∪{(v, w)(w, x) | w ∈ NG(x)∩NG(v)}

Observe that CG(e1)∩CG(e2) = ∅ for any pair of non-edges e1 and e2 of G, and⋃
e/∈E(G) CG(e) is exactly the set of all incompatibilities in BG.

424 P. Heggernes, F. Mancini, and C. Papadopoulos

Lemma 2. By adding the set of edges CGx(xv) for each v ∈ N2
Gx

(x) into the
graph BG ∪ Bx, we obtain the incompatibility graph BGx of Gx.

Assume that we want to compute the incompatibility graph BGx of Gx. We start
with the partial incompatibility graph BG ∪ Bx, which is bipartite by the above
arguments. By Lemma 2, to get BGx it is sufficient to scan all non-edges of Gx

between x and N2
Gx

(x) one by one, and add the incompatibilities that are implied
by each non-edge into the partial incompatibility graph. If Gx is a comparability
graph, then by Theorem 1, the partial incompatibility graph will stay bipartite
at each step, since we never delete edges from it. By the same argument, if Gx is
not a comparability graph, then at some step, when we add the incompatibilities
implied by a non-edge, we will get an odd cycle in the partial incompatibility
graph. For computing a minimal comparability completion H of Gx, we augment
this approach as follows: If adding the incompatibilities implied by non-edge xv
results in a non-bipartite partial incompatibility graph, then we do not add these
incompatibilities, and instead, we decide that xv should become a fill edge of H .

At start, we let L = {xv | v ∈ N2
Gx

(x)}, B = BG ∪Bx, and H = Gx. For each
non-edge xv ∈ L, we check whether or not non-edge xv should become a fill edge
of the intermediate graph H , using the information given by CH(xv) and B. If
B ∪ CH(xv) is a bipartite graph, then we update B = B ∪ CH(xv) and decide
that xv will never become a fill edge. In the opposite case, we add fill edge xv to
H , and update B as follows.

1. Add the two adjacent vertices (x, v) and (v, x) in B.
2. For each new incompatible pair ((z, x), (x, v)) or ((v, x), (x, z)) in H , add the

corresponding edge (incompatibility) to B connecting the vertices of the pair.
(We will show that this can never introduce odd cycles in the incompatibility
graph.)

3. For each new incompatible pair ((x, v), (v, u)) or ((u, v), (v, x)) in H , add
the corresponding edge (incompatibility) to B connecting the vertices of the
pair only if xu is a non-edge that has already been processed and decided to
stay a non-edge (marked). If not, either xu ∈ L or we add it to L.

The second case takes care of new incompatibilities among the edges incident
to x, and the last case takes care of all other new incompatibilities. In the last
case, when we encounter new incompatibilities that are implied by a non-edge e
which we have not yet processed, we do not add these incompatibilities to B at
this step, and we wait until we come to the step which processes e. The reason
for this is the following: If we add these incompatibilities now, and later decide
that e should become a fill edge, then we have to delete these incompatibili-
ties from B. This causes problems regarding minimality, because deleting “old”
incompatibilities can make some previously added fill edges become redundant,
and thus we might have to examine each initial non-edge several times. When we
do not add the incompatibilities before they are needed, we never have to delete
anything from B, and B can only grow at each step. This way, the intermediate
graph B will at all steps be a supergraph of BG ∪ Bx and a subgraph of BH .

Making Arbitrary Graphs Transitively Orientable 425

This is the clue to the simplicity of our algorithm, which makes it sufficient to
examine each non-edge incident to x once.

The non-edges that are removed from L are marked, which means that they
will stay non-edges. This marking is necessary since new non-edges enter L during
the algorithm, and we need to test for every incompatibility we discover, whether
it is already implied by a marked non-edge so that we can add it at this step, or
we should wait.

Algorithm: Minimal Comparability Completion (MCC)

Input: A comparability graph G, BG, and Gx for a vertex x /∈ V (G)
Output: A minimal comparability completion H of Gx, and B = BH

B = BG ∪ Bx; L = {xv | v ∈ N2
Gx

(x)}; H = Gx;1

Unmark all non-edges of H incident to x;2

while L �= ∅ do3

Choose a non-edge xv ∈ L;4

if B ∪ CH(xv) is a bipartite graph then5

B = B ∪ CH(xv);6

else7

Add fill edge xv to H ;8

Add vertices (x, v) and (v, x) and an edge between them to B;9

forall z ∈ NH(x) and z /∈ NH [v] do10

Add edges (v, x)(x, z) and (z, x)(x, v) to B;11

forall u ∈ NH(v) and u /∈ NH [x] do12

if xu is marked then13

Add edges (x, v)(v, u) and (u, v)(v, x) to B;14

else if xu /∈ L then15

Add xu to L;16

Mark xv and remove it from L;17

4 Correctness of Algorithm MCC

Although our algorithm is surprisingly simple due to the fact that each non-edge
is examined once, its proof of correctness is quite involved, and requires a series
of observations and lemmas, some of which with long proofs. Let us define a step
of the algorithm to be one iteration of the while–loop given between lines 3–17.
For the proof of correctness, we will sometimes need to distinguish between the
graph H at the start of a step and the updated graph H at the end of a step,
to consider the changes made at one step. Throughout the rest of the paper, let
HI be the graph H at the start of step I, and let HI+1 be the graph obtained
at the end of this step, and define BI and BI+1 analogously.

Observation 2. Let I be the step of the algorithm that processes the non-edge
xv ∈ L. Then BI contains no edge belonging to CHI (xv).

426 P. Heggernes, F. Mancini, and C. Papadopoulos

Lemma 3. At the end of each step of the algorithm, BI is a subgraph of the
incompatibility graph BHI of HI .

We have thus proved that BI is at all times a partial incompatibility graph of
the intermediate graph HI . At the end of the algorithm, since all non-edges that
can cause incompatibilities are scanned, and all such incompatibilities are added,
we will argue that BI is indeed the correct incompatibility graph of HI . What
remains to prove is that BI is a bipartite graph at all steps. This is obvious if xv
is not added as a fill edge at the step that processes xv, but it has to be shown
in the case xv is added as a fill edge. First we introduce the notion of conflicts.

Definition 1. At each step of the algorithm, a non-edge xv of the intermediate
graph HI is called a conflict if B ∪ CHI (xv) is not a bipartite graph.

Lemma 4. Let I be the step of the algorithm that processes non-edge xv ∈ L.
If xv is a conflict then HI is not a comparability graph.

Now we start the series of results necessary to prove that at each step BI is a
bipartite graph. We will prove this by induction on the number of steps. For
each step I, we will assume that BI is bipartite, and show that this implies that
BI+1 is bipartite. Since B1 = Bx ∪ BG is bipartite, the result will follow.

(x, z2) (x, z1) (x, v) (u1, v) (u2, v)

(z2, x) (z1, x) (v, x) (v, u1) (v, u2)

Fig. 3. Adding the fill edge xv in B

Let z1, z2 and u1, u2 be vertices of HI which fulfill the conditions of the first
for–loop and the second for–loop of Algorithm MCC, respectively. With the
following result we establish the situations that occur in BI whenever an odd
cycle appears in BI+1 (see also Figure 3).

Observation 3. Assume that BI is bipartite. If xv is conflict at step I, then
BI+1 is not bipartite only if there is a path on even number of vertices in BI

between the following pair of vertices: (i) ((x, z1), (x, z2)) or (ii) ((v, u1), (v, u2))
or (iii) ((x, z1), (u1, v)).

Our goal is to show that these cases cannot happen in BI , and therefore BI+1
remains a bipartite graph. We prove each case by showing that if such a path
exists then there is an odd cycle in BI which is a contradiction to our assumption
that BI is a bipartite graph. For a complete proof of the case analysis we refer
to [4].

Lemma 5. At each step of the algorithm BI is a bipartite graph.

Making Arbitrary Graphs Transitively Orientable 427

Theorem 2. The graph H returned by Algorithm MCC is a minimal compara-
bility completion of Gx.

Proof. First we show that H is a comparability completion of Gx. During the
algorithm, every time a new incompatible pair is created, the corresponding
incompatibility is added to BI unless it is implied by a non-edge of L. Incom-
patibilities implied by members of L that remain non-edges are added one by
one until L is empty. At the end of the algorithm, the graph B contains all
incompatibilities implied by the non-edges in H , since L = ∅. Thus B is the
correct incompatibility graph of H , i.e., B = BH . Since BH is bipartite graph
by Lemma 5, the resulting graph H is a comparability graph by Theorem 1.

Now we want to prove that H is minimal, that is, if any subset of the fill
edges is removed the remaining graph is not comparability. Recall that at any
step of the algorithm we do not remove any edges from the graph BI (see also
Lemma 3). Assume for the sake of contradiction that there is a subset F of the
fill edges such that H ′ = H −F is a comparability graph. First note that BH′ is
obtained from BH by removing the vertices (x, u) and (u, x), and then adding
the set CH′(xu), for every xu ∈ F . Let I be the earliest step in which Algorithm
MCC adds a fill edge xv ∈ F . Thus no non-edge of Gx belonging to F has been
processed before step I, and HI is a subgraph of H ′. Furthermore, BI does not
contain any edge belonging to

⋃
xu∈F CH′ (xu), and BI does not contain any pair

of vertices (x, u) and (u, x), for xu ∈ F . Thus BI is a subgraph of BH′ . Now,
observe that for each xu ∈ F , CHI (xu) ⊆ CH′ (xu), since NHI (x) ⊆ NH′(x).
In particular, CHI (xv) ⊆ CH′ (xv). Since xv is a non-edge of H ′, all edges of
CH′ (xv) are present in BH′ . Therefore BI ∪ CHI (xv) is a subgraph of BH′ . In
Algorithm MCC, at step I, we know that BI ∪ CHI (xv) contains an odd cycle,
otherwise xv would not be a fill edge. Since it is not possible to remove an
odd cycle by adding edges or vertices, this means that there is an odd cycle in
BH′ . This gives the desired contradiction, because by Theorem 1 H ′ cannot be
a comparability graph as assumed.

5 Time Complexity and Concluding Remarks

We point out that given an incompatible pair ((a, b)(b, c)) of G there is an O(n+
m) time algorithm deciding whether its incompatibility graph has an odd cycle
[7]. However, it is not straightforward to use this result for checking whether
the graph BI ∪ CHI (xv) of Algorithm MCC is bipartite in O(n + m) time, since
at each step of the algorithm, BI is merely a subgraph of BHI , and BI is not
necessarily equal to BHI before the last step. The following result follows from
Lemma 1 and Algorithm MCC.

Theorem 3. There is an algorithm for computing a minimal comparability com-
pletion of an arbitrary graph G in O(n3m) time.

In this paper, we have shown that minimal comparability completions of arbi-
trary graphs can be computed in polynomial time. Our focus has been on the

428 P. Heggernes, F. Mancini, and C. Papadopoulos

polynomial time complexity, and we believe that the running time of the given
algorithm can be improved. Comparability graphs can be recognized in time
O(n2.38) [14], and even the straight forward O(n3m) time complexity of our al-
gorithm for computing minimal comparability completions is thus comparable to
the time complexity of recognizing comparability graphs. As a comparison, both
chordal and interval graphs can be recognized in linear time; the best known
time for minimal chordal completions is O(n2.38) [6], and for minimal interval
completions is O(n5) [5].

References

1. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
1980.

2. S. L. Hakimi, E. F. Schmeichel, and N. E. Young. Orienting graphs to optimize
reachability. Information Processing Letters, 63(5):229–235, 1997.

3. P. Heggernes and F. Mancini. Minimal split completions of graphs. In LATIN
2006: Theoretical Informatics, pages 592–604. Springer Verlag, 2006. LNCS 3887.

4. P. Heggernes, F. Mancini, and C. Papadopoulos. Minimal comparabiltiy
completions. Reports in Informatics 317, University of Bergen, 2006.
http://www.ii.uib.no/publikasjoner/texrap/pdf/2006-317.pdf

5. P. Heggernes, K. Suchan, I. Todinca, and Y. Villanger. Minimal interval comple-
tions. In Algorithms - ESA 2005, pages 403 – 414. Springer Verlag, 2005. LNCS
3669.

6. P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations
in time O(nα log n) = o(n2.376). In Proceedings of SODA 2005 - 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 907–916, 2005.

7. D. Kratsch, R. M. McConnell, K. Mehlhorn, and J. P. Spinrad. Certifying algo-
rithms for recognizing interval graphs and permutation graphs. SIAM J. Comput.,
2006. To appear.

8. D. Kratsch and J. P. Spinrad. Between O(nm) and O(nα). In Proceedings of
SODA 2003 - 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
709–716, 2003.

9. D. Kratsch and J. P. Spinrad. Minimal fill in o(n3) time. Discrete Math.,
306(3):366–371, 2006.

10. A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge
modification problems. Disc. Appl. Math., 113:109–128, 2001.

11. I. Rapaport, K. Suchan, and I. Todinca. Minimal proper interval completions.
In Proceedings of WG 2006 - 32nd International Workshop on Graph-Theoretic
Concepts in Computer Science, 2006. To appear.

12. F. S. Roberts. Graph Theory and Its Application to Problems of Society. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1978.

13. D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput., 5:266 – 283, 1976.

14. J. Spinrad. On comparability and permutation graphs. SIAM J. Comput., 14:658 –
670, 1985.

15. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg.
Disc. Meth., 2:77–79, 1981.

Analyzing Disturbed Diffusion on Networks�

Henning Meyerhenke and Thomas Sauerwald

Universität Paderborn
Fakultät für Elektrotechnik, Informatik und Mathematik

Fürstenallee 11, D-33102 Paderborn, Germany
{henningm, sauerwal}@upb.de

Abstract. This work provides the first detailed investigation of the dis-
turbed diffusion scheme FOS/C introduced in [17] as a type of diffu-
sion distance measure within a graph partitioning framework related to
Lloyd’s k-means algorithm [14]. After outlining connections to distance
measures proposed in machine learning, we show that FOS/C can be
related to random walks despite its disturbance. Its convergence proper-
ties regarding load distribution and edge flow characterization are exam-
ined on two different graph classes, namely torus graphs and distance-
transitive graphs (including hypercubes), representatives of which are
frequently used as interconnection networks.

Keywords: Disturbed diffusion, Diffusion distance, Random walks.

1 Introduction

Diffusive processes can be used to model a large variety of important transport
phenomena arising in such diverse areas as heat flow, particle motion, and the
spread of diseases. In computer science one has studied diffusion in graphs as one
of the major tools for balancing the load in parallel computations [5], because
it requires only local communication between neighboring processors. Equally
important, the migrating flow computed by diffusion is ‖ · ‖2-optimal [6].

Recently, disturbed diffusion schemes have been developed as part of a graph
partitioning heuristic [17, 20]. Applied within a learning framework optimizing
the shape of the partitions, disturbed diffusion is responsible for identifying
densely connected regions in the graph. As partitions are placed such that their
centers are located within these dense regions, this heuristic yields partitions with
few boundary nodes. This is desirable particularly in scientific computing, where
the boundary nodes model the communication within parallel numerical solvers.
The disturbed diffusion scheme and the algorithm employing it are described in
more detail in Sections 2.1 and 2.2, respectively.
� This work is partially supported by German Science Foundation (DFG) Research

Training Group GK-693 of the Paderborn Institute for Scientific Computation
(PaSCo) and by Integrated Project IST-15964 "Algorithmic Principles for Build-
ing Efficient Overlay Computers" (AEOLUS) of the European Union.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 429–438, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

430 H. Meyerhenke and T. Sauerwald

While the connection between diffusion and random walks on graphs is well-
known (see, e.g., [15]), the relation of disturbed diffusion the way considered
here to random walks has not been explored yet. In Section 3 we thus show that
random walk analysis can be applied despite the disturbance in the diffusion
scheme. Before that, we draw connections to machine learning applications that
employ distance measures based on diffusion and random walks in Section 2.3.

Using random walk theory, we analyze the load distribution and the edge
flow induced by FOS/C in its convergence state on torus graphs in Section 4.
Although random walks on infinite and finite tori have been investigated before
(cf. Pólya’s problem [7] and [8]), our monotonicity result on the torus provides
an important theoretical property, to the best of our knowledge previously un-
known. It is of high relevance for the graph partitioning heuristic, since the
torus corresponds to structured grids that stem from the discretization of nu-
merical simulation domains with cyclic boundary conditions. A simple charac-
terization of the convergence flow by shortest paths is shown not to hold on
the two-dimensional torus in general. Interestingly, this characterization is true
on distance-transitive graphs, as shown in Section 5, which is supplemented by
a more rigorous result for the hypercube, a very important representative of
distance-transitive graphs.

These insights provide a better understanding of FOS/C, its properties within
the graph partitioning framework, and its connection to similar distance mea-
sures in machine learning. They are expected to improve the partitioning heuris-
tic in theory and practice and its applicability for graph clustering and related
applications.

2 Disturbed Diffusion, Graph Partitioning, and Diffusion
Distances

2.1 Disturbed Diffusion: FOS/C

Diffusion is one method for iteratively balancing the load on vertices of a graph
by performing load exchanges only between neighboring vertices [26]. The idea
of the FOS/C algorithm (C for constant drain) is to modify the first order
diffusion scheme FOS [5] by letting some of the load on each vertex drain away
after each diffusion step. The total drain of the graph is then sent back to some
specified source vertex s, before the next iteration begins. For this algorithm the
underlying graph has to be connected, undirected, and loop-free. Additionally,
we assume it to be unweighted and simple throughout this paper.

Definition 1. (comp. [17]) Given a graph G = (V,E) with n nodes, a specified
source vertex s, and constants 0 < α ≤ (deg(G)+1)−1 and δ > 0. Let the initial
load vector w(0) and the disturbing drain vector d be defined as follows:

w(0)
v =

{
n v = s

0 otherwise
dv =

{
δ(n− 1) v = s

−δ otherwise

Analyzing Disturbed Diffusion on Networks 431

The FOS/C diffusion scheme performs the following operations in each iteration:

f
(t)
e=(u,v) = α(w(t)

u − w(t)
v), w(t+1)

v = w(t)
v + dv +

∑

e=(∗,v)
f (t)
e .

This can be written in matrix-vector notation as w(t+1) = Mw(t) + d, where
M = I − αL is the stochastic diffusion matrix of G (and L its Laplacian [10]).
It is shown in [17] that FOS/C converges for any d that preserves the total
load amount in every iteration, i.e., d ⊥ (1, . . . , 1)T . Moreover, in this case the
convergence load vector w can be computed by first solving the linear system
Lw = d and then normalizing w such that the total load is n again. The entries
of this vector can then be interpreted as the diffusion distances between s and
the other nodes.

Comparing this notation to [6] and [11], it is clear that the convergence state
of FOS/C is equivalent to the following flow problem: Find the ‖·‖2-minimal flow
from the producing source s sending the respective load amount δ to all other
vertices in the graph, which act as δ-consuming sinks. One therefore knows that
s always has the highest load.

Remark 1. Using Lemma 4 of [6], it follows that f = ATw (with A being the
incidence matrix of G [10, p. 58]) is the ‖ · ‖2-minimal flow via the edges of G
induced by the flow problem equivalent to FOS/C. Hence: fe=(u,v) = wu − wv.

Furthermore, it holds for every path between any u, v ∈ V that the sum of
the load differences

∑l−1
i=0(wvi −wvi+1) on the path edges ei = (vi, vi+1) is equal

to wu − wv (with u = v0 and v = vl).

The following proposition states a basic monotonicity result that holds on any
graph, whereas stricter results will be proven in the forthcoming sections.

Proposition 1. Let the graph G = (V,E) and the load vector w be given. Then
for each vertex v ∈ V there is a path (v = v0, v1, . . . , vl = s) with (vi, vi+1) ∈ E
such that wvi < wvi+1 , 0 ≤ i < l.

2.2 FOS/C for Graph Partitioning

The graph partitioning framework in which FOS/C is applied transfers Lloyd’s
algorithm [14] well-known from k-means-type cluster analysis and least square
quantization to graphs. Starting with k (the number of partitions) randomly
chosen center vertices, all remaining nodes are assigned to the closest center
based on FOS/C. This means that we solve one FOS/C diffusion problem per
partition (its center acts as source s) and assign each vertex to the partition
which sends the highest load in the convergence state. After that, each partition
computes its new center (based on a similar FOS/C problem again) for the next
iteration. This can be repeated until a stable state, where the movement of all
centers is small enough, is reached. For a detailed discussion of this iterative
algorithm called Bubble-FOS/C the reader is referred to [17].

432 H. Meyerhenke and T. Sauerwald

2.3 Diffusion Distances in Graphs

One can view FOS/C as a means to determine the distance from each vertex
to the different center vertices within Bubble-FOS/C (hence, ordinary FOS is
not applicable, because it converges to a completely balanced load situation),
where this distance reflects how well-connected the two vertices are (comp. [19]
and [7, p. 99f.]). Thus, it is able to identify dense regions of the graph. A sim-
ilar idea is pursued by other works that make use of distance measures based
on random walks and diffusion. They have mostly been developed for machine
learning, namely, clustering of point sets and graphs [18, 19, 23, 25, 27], image
segmentation [16], and dimensionality reduction [4]. However, their approaches
rely on very expensive matrix operations, amongst others computation of matrix
powers [23, 25], eigenvectors of a kernel matrix [4, 16, 18], or the pseudoinverse of
the graph’s Laplacian [19, 27]. This mostly aims at providing a distance between
every pair of nodes.

Yet, this is not necessary for Lloyd’s algorithm, because distance computations
are relative to the current centers and the determination of the new partition
centers can also be replaced by a slightly modified FOS/C operation, as men-
tioned above. The sparse linear system Lw = d, where w can be seen as the result
of the pseudoinverse’s impact on the drain vector, can be solved with O(n3/2)
and O(n4/3) operations for typical 2D and 3D finite-element graphs, respec-
tively, using the conjugate gradient algorithm [21]. This can even be enhanced
by (algebraic) multigrid methods [24], which have linear time complexity when
implemented with care. Note that only a constant number of calls to FOS/C
are sufficient in practice. Thus, this approach is faster (unless distances between
every pair of nodes are necessary in a different setting) than the related methods,
which all require at least O(n2) operations in the general case.

3 Relating FOS/C to Random Walks

In order to examine the relationship between disturbed diffusion and random
walks, we expand the original definition of FOS/C and obtain

w(t+1) = Mt+1w(0) + (I + M1 + . . .+ Mt)d.

Note that the doubly stochastic diffusion matrix M of G in the classical FOS
diffusion scheme can be viewed as the transition matrix of a random walk [15]
on V (G), i.e., Mu,v denotes the probability for a random walker located in node
u to move to node v in the next timestep. Despite its disturbance, a similar
connection holds for FOS/C, since its load differences in the convergence state
(a.k.a. stationary distribution in random walk theory) can be expressed as scaled
differences of hitting times, as shown below. In the following let X(t)

u be the
random variable representing the node visited in timestep t by a random walker
starting in u in timestep 0.

Analyzing Disturbed Diffusion on Networks 433

Definition 2. Let the balanced distribution vector be π = (1
n , . . . ,

1
n)T and let

τu be defined as τu := min{t ≥ 0 : X(t)
u = s} for any u ∈ V . Then, the hitting

time H is defined as H [u, s] := E [τu].

Theorem 1. In the convergence state it holds for two nodes u, v ∈ V not nec-
essarily distinct from s

wu − wv = lim
t→∞nδ

(
t∑

i=0

Mi
u,s −

t∑

i=0

Mi
v,s

)

= δ(H [v, s]−H [u, s]).

Proof. We denote the component corresponding to node u in a vector w by [w]u
and assume that the nodes are ordered in such a way that the source node is the
first one. Then some rearranging of the FOS/C iteration scheme yields

[w(t+1)]u = [Mt+1w(0)]u + [(I + M1 + . . .+ Mt) · (δ(n− 1),−δ, . . . ,−δ)T]u

= [Mt+1w(0)]u +
∑t

i=0
(δ(|V | − 1))Mi

u,s +
∑t

i=0

∑

v∈V,v �=s(−δ)M
i
u,v

= [Mt+1w(0)]u + nδ
∑t

i=0
Mi

u,s − (t+ 1)δ.

As Mt+1w(0) converges towards the balanced load distribution [5], we only
have to consider limt→∞

∑t
i=0(M

i
u,s −Mi

v,s). By a result of [12, p. 79] it holds
that H [u, s] = (−∑∞

k=1M
t
u,s +

∑∞
k=1(1/n) + Zs,s) · n, where Z is the so-called

fundamental matrix. Now, subtracting and dividing by n yields the desired result.

4 FOS/C on the Torus

In this section we analyze two properties of FOS/C on torus graphs in the
convergence state, namely, its edge flow and the corresponding load distribution.

Definition 3. The k-dimensional torus T [d1, . . . , dk] = (V,E) is defined as:

V = {(u1, . . . , uk) | 0 ≤ uν ≤ dν − 1 for 1 ≤ ν ≤ k} and
E = {{(u1, . . . , uk), (v1, ..., vk)} | ∃ 1 ≤ μ ≤ k

with vμ = (uμ + 1) mod dμ and uν = vν for ν �= μ}.
Torus graphs are very important in theory [13] and practice [22], e.g., because
they have bounded degree, are regular and vertex-transitive1, and correspond to
the structure of numerical simulation problems that decompose their domain by
structured grids with cyclic boundary conditions. Note that the load distribution
on a torus and a grid graph are equal if their di are all odd and s is located at
the center of the graphs, because then there is no flow via the wraparound edges
of the torus.
1 A graph G = (V, E) is vertex-transitive if for any two distinct vertices of V there is

an automorphism mapping one to the other.

434 H. Meyerhenke and T. Sauerwald

Since the number of shortest paths from a source s to another vertex u does
not depend on its distance to s alone, the following flow distribution among
the shortest paths is not optimal on the torus in general. As we will see later,
this optimality holds for graphs that are distance-transitive, an even stronger
symmetry property than vertex-transitivity.

Definition 4. Consider the flow problem where s sends a load amount of δ
to every other vertex of G, which acts as a δ-consuming sink. If the flow is
distributed such that for all v ∈ V \{s} the same flow amount is routed on every
(not necessarily edge-disjoint) shortest path from s to v, we call this the uniform
flow distribution.

Proposition 2. The uniform flow distribution on the 2D torus yields the ‖ ·‖2-
minimal flow for d1 = d2 ∈ {2, 3, 5}, but not for odd d1 = d2 ≥ 7.

Intuitively, the reason is that near the diagonal there are more shortest paths
than on an axis and thus, by rerouting some of the uniform flow towards the
diagonal, the costs can be reduced.

In the remainder of this section we exploit the simple structure and sym-
metries of the torus to show monotonicity w.r.t. the FOS/C convergence load
distribution. Since we are only interested in the convergence state, we will set
α = (deg(G) + 1)−1, so that all entries of the diffusion matrix M are either 0 or
α. This is a usual choice for transition matrices in random walk theory.

Now consider an arbitrary k-dimensional torus T [d1, . . . , dk]. Each vertex u
can be uniquely represented as a k-dimensional vector u = (u1, . . . , uk), ∀i ∈
1, . . . , k : 0 ≤ ui < di. Since any torus is vertex-transitive, we assume w.l.o.g.
that the source node is the zero-vector. Denote by ei = (0, . . . , 0, 1, 0, . . . , 0)
the unit-vector containing exactly one 1, namely in the i-th component. Note
that all edges correspond to the addition (or subtraction) of some ei, where we
always assume that the i-th component is meant to be modulo di. It is also easy
to see that the distance between two nodes (vectors) is given by dist(u, v) =∑k

i=1 min{|ui − vi|, di − |ui − vi|}.
Let u, v, s be pairwise distinct nodes such that dist(u, s) = dist(v, s) − 1 and

u and v are adjacent, i.e., there exists a shortest path from s to v via u. Assume
w.l.o.g. that u and v are adjacent along the j-th dimension: v = u+ ej , so that

∀i ∈ {1, . . . , k}, i �= j : dist(v, s)− dist(v, s± ei) = dist(u, s)− dist(u, s± ei),

implying the existence of a shortest path from s± ei to v via u ∀i �= j.

For vertex-transitive graphs G, all ϕ ∈ Aut(G), and all timesteps t we have
Mt

u,v = Mt
ϕ(u),ϕ(v) [2, p. 151]. Using this and the automorphisms of the next

lemma, we prove the following theorem, which may be of independent interest
for random walks in general.

Lemma 1. The following functions are automorphisms for all i ∈ {1, . . . , k} :
ψi : u
→ u+ ei, ϕi : u
→ u+ (di − 2ui)ei, and σi : u
→ u+ (di − 1− 2ui)ei.

Analyzing Disturbed Diffusion on Networks 435

Theorem 2. Let T [d1, . . . , dk] = (V,E), k arbitrary, be a torus graph. For α =
(deg(G) + 1)−1 and all adjacent nodes u, v ∈ V distinct from s with dist(u, s) =
dist(v, s)− 1 it holds

∀t ∈ N0 : Mt
u,s ≥Mt

v,s.

Proof. We will prove the statement by induction on the number of timesteps t.
Obviously, the claim is true for t = 0. By the Chapman-Kolmogorov equation,
see e.g. [9], we have

Mt
u,s =

1
Δ+ 1

(
Mt−1

u,s +
∑

i∈{1,...,k}M
t−1
u,s+ei

+
∑

i∈{1,...,k}M
t−1
u,s−ei

)
. (1)

Obviously, the same equation holds also for M t
v,s. Our strategy is now to find

for any summand in M t
v,s a proper summand in M t

u,s which is not smaller by
using the induction hypothesis for t− 1. Of course, if this is done bijectively, we
have shown that M t

u,s ≥M t
v,s. To proceed, we divide this proof into two cases.

1. Case uj = 0: By Lemma 1 we have

Mt−1
u,s = Mt−1

ψj(u),ψj(s)
= Mt−1

v,s+ej
.

Mt−1
u,s+ej

= Mt−1
ϕj(u),ϕj(s+ej) = Mt−1

u,s−ej
= Mt−1

ψj(u),ψj(s−ej) = Mt−1
v,s .

To show Mt−1
u,s−ej

≥Mt−1
v,s−ej

, we have to distinguish the following cases:
(a) Ignoring the trivial case dj = 2, we now consider the case where dj = 3:

Mt−1
u,s−ej

= Mt−1
u,s+ej

ψ−1
j= Mt−1

u−2ej ,s−ej
= Mt−1

v,s−ej
.

(b) dj ≥ 4: Then, dist(v, s − ej) = dist(v, s) + 1, implying the existence of
a shortest path from v to s − ej via u. Due to vertex-transitivity there
exists an automorphism which maps s− ej onto s and we can apply the
induction hypothesis to conclude Mt−1

u,s−ej
≥Mt−1

v,s−ej
.

Recall that for all i ∈ {1, . . . , k}, i �= j, there exists a shortest path from v
to s ± ei via u, so that we can again conclude inductively that Mt−1

u,s±ei
≥

Mt−1
v,s±ei

. With Equation (1) and its analogon for v the claim Mt
u,s ≥Mt

v,s

follows.
2. Case uj �= 0: One distinguishes two subcases by the parity of uj and uses

similar methods as before to prove this case. It is therefore omitted due to
space constraints. �

Note that one can show with a modified three-dimensional hypercube as a coun-
terexample that this monotonicity does not hold for all vertex-transitive graphs
in all timesteps. Furthermore, the general result M2t

u,u ≥M2t
u,v for random walks

without loops on vertex-transitive graphs can be found in [2, p. 150], which is
improved significantly by our last theorem on torus graphs. As one can prove
by induction, on the torus the source vertex is the unique node with the highest
load in all timesteps due to the choice of α and the back-flow of the drain. Thus,
by combining Theorems 1 and 2, one can derive the following corollary for any
pair of vertices.

436 H. Meyerhenke and T. Sauerwald

Corollary 1. On any torus graph T = (V,E) it holds for all u, v ∈ V : ∀t <
dist(u, s) : w(t)

u = w
(t)
v , ∀t ∈ {dist(u, s), . . . ,∞} : w(t)

u > w
(t)
v .

Using this monotonicity and the symmetry properties of the torus, it is easy (but
rather technical) to show that Bubble-FOS/C produces connected partitions on
this graph class, which is desirable in some applications.

5 FOS/C on Distance-Transitive Graphs

We have seen that the convergence flow does not equal the uniform flow distri-
bution on the torus, despite its symmetry. Yet, in this section we show that this
equality holds if the symmetry is extended to distance-transitivity.

Definition 5. [3, p. 118] A graph G = (V,E) is distance-transitive if, for all
vertices u, v, x, y ∈ V such that dist(u, v) = dist(x, y), there exists an automor-
phism ϕ for which ϕ(u) = x and ϕ(v) = y.

One important subclass of distance-transitive graphs are Hamming graphs, which
occur frequently in coding theory [1, p. 46]. A very well-known representative is
the hypercube network [13]. It is not difficult to show that distance-transitive
graphs G = (V,E) have a level structure w.r.t. to an arbitrary s ∈ V , where
level i consists of the vertex set Li := {v ∈ V | dist(v, s) = i} and Λ denotes the
number of such levels. For the k-dimensional hypercube Q(k), for instance, we
have Λ = k + 1.

Now, the results of this section can be derived by means of this level structure
and the aforementioned equivalence of FOS/C to a ‖ · ‖2-minimal flow problem.

Proposition 3. Let G be a distance-transitive graph. Then, w(t)
u = w

(t)
v holds

for all vertices u, v with the same graph distance to s and all timesteps t ≥ 0.

We know by Proposition 1 that for each vertex v ∈ V \{s} of an arbitrary graph
there exists a path from v to s such that by traversing it the load amount
increases. Now we can show that for distance-transitive graphs this property
holds on every shortest path.

Theorem 3. If G is distance-transitive, then for all u, v ∈ V with dist(u, s) <
dist(v, s) it holds that wu > wv.

Note that, although the order induced by the FOS/C diffusion distance corre-
sponds to the one induced by the ordinary graph distance, the load differences
across levels reflect their connectivity (see also Theorem 5). We now state the
following characterization of the convergence flow.

Theorem 4. The uniform flow distribution of Definition 4 yields the ‖ · ‖2-
minimal FOS/C convergence flow on every distance-transitive graph.

As this is not true for general tori, the following implication is not an equivalence.

Analyzing Disturbed Diffusion on Networks 437

Proposition 4. If on a graph G = (V,E) the uniform flow distribution is ‖ ·‖2-
minimal, then for (u, v) ∈ E and dist(u, s) < dist(v, s) it holds that wu > wv.

Due to the explicitly known structure of the hypercube we obtain:

Theorem 5. For the k-dimensional hypercube Q(k) = (V,E) the result of The-
orem 3 holds in all timesteps t ≥ 0. Also, the FOS/C convergence flow fe
on an edge e = (u, v) ∈ E (u in level i, v in level i+1, 0 ≤ i < Λ) is
wu − wv = fe = δ

(k
i)(k−i)

·∑k
l=i+1

(
k
l

)
.

6 Conclusions

We have shown that the disturbed diffusion scheme FOS/C can be related to
random walks despite its disturbance, since its load differences in the convergence
state correspond to scaled differences of hitting times. Exploiting this correspon-
dence, we have shown that load diffuses monotonically decreasing from a source
vertex into the graph on torus and distance-transitive graphs. Furthermore, while
the uniform flow division among shortest paths does not yield the ‖ · ‖2-minimal
flow on the torus in general, it does so on distance-transitive graphs. For the
hypercube, one of its highly relevant representatives, the convergence flow has
been stated explicitly.

Future work includes the extension of the results to further graph classes
and simple characterizations of the convergence flow as in the case of distance-
transitive graphs. Naturally, different disturbed diffusion schemes and drain con-
cepts and therefore different distance measures could be examined as well. More-
over, while connectedness of partitions can be observed in experiments and veri-
fied easily for torus and distance-transitive graphs with the results of this paper,
a rigorous proof for general graphs remains an object of further investigation,
likewise a convergence proof for Bubble-FOS/C on general graphs. All this aims
at further improvements to the heuristic in theory and practice for graph parti-
tioning and its extension to graph clustering.

References

1. J. Adámek. Foundations of Coding. J. Wiley & Sons, 1991.
2. N. Alon and J. H. Spencer. The Probabilistic Method. J. Wiley & Sons, 2nd edition,

2000.
3. N. Biggs. Algebraic Graph Theory. Cambridge University Press, 1993.
4. R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W.

Zucker. Geometric diffusions as a tool for harmonic analysis and structure definition
of data. Parts I and II. Proc. Natl. Academy of Sciences, 102(21):7426–7437, 2005.

5. G. Cybenko. Dynamic load balancing for distributed memory multiprocessors.
Parallel and Distributed Computing, 7:279–301, 1989.

6. R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor
load balancing. Parallel Computing, 25(7):789–812, 1999.

438 H. Meyerhenke and T. Sauerwald

7. P. G. Doyle and J. L. Snell. Random Walks and Electric Networks. Math. Assoc.
of America, 1984.

8. R. B. Ellis. Discrete green’s functions for products of regular graphs. In AMS
National Conference, invited talk, special session on Graph Theory, 2001.

9. G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford
University Press, second edition, 1992.

10. J. L. Gross and J. Yellen (eds.). Handbook of Graph Theory. CRC Press, 2004.
11. Y. F. Hu and R. F. Blake. An improved diffusion algorithm for dynamic load

balancing. Parallel Computing, 25(4):417–444, 1999.
12. J. G. Kemeny and J. L. Snell. Finite Markov Chains. Springer-Verlag, 1976.
13. F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. Morgan Kaufmann Publishers, 1992.
14. Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on

Information Theory, 28(2):129–136, 1982.
15. L. Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdös is

Eighty, 2:1–46, 1993.
16. M. Meila and J. Shi. A random walks view of spectral segmentation. In Eighth

International Workshop on Artificial Intelligence and Statistics (AISTATS), 2001.
17. H. Meyerhenke, B. Monien, and S. Schamberger. Accelerating shape optimizing

load balancing for parallel FEM simulations by algebraic multigrid. In Proc. 20th
IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS’06), page 57 (CD).
IEEE, 2006.

18. B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis. Diffusion maps, spectral
clustering and eigenfunctions of fokker-planck operators. In NIPS, 2005.

19. M. Saerens, P. Dupont, F. Fouss, and L. Yen. The principal components analysis
of a graph, and its relationships to spectral clustering. In ECML 2004, European
Conference on Machine Learning, pages 371–383, 2004.

20. S. Schamberger. A shape optimizing load distribution heuristic for parallel adaptive
FEM computations. In Parallel Computing Technologies, PACT’05, number 2763
in LNCS, pages 263–277, 2005.

21. J. R. Shewchuk. An introduction to the conjugate gradient method without the
agonizing pain. Technical Report CMU-CS-94-125, Carnegie Mellon University,
1994.

22. The BlueGene/L Team. An overview of the BlueGene/L supercomputer. In Proc.
ACM/IEEE Conf. on Supercomputing, pages 1–22, 2002.

23. N. Tishby and N. Slonim. Data clustering by markovian relaxation and the infor-
mation bottleneck method. In NIPS, pages 640–646, 2000.

24. U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press,
2000.

25. S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, Univ. of Utrecht,
2000.

26. C. Xu and F. C. M. Lau. Load Balancing in Parallel Computers. Kluwer, 1997.
27. L. Yen, D. Vanvyve, F. Wouters, F. Fouss, M. Verleysen, and M. Saerens. Clus-

tering using a random-walk based distance measure. In ESANN 2005, European
Symposium on Artificial Neural Networks, 2005.

Exact Algorithms for Finding the Minimum

Independent Dominating Set in Graphs

Chunmei Liu1 and Yinglei Song2

1 Dept. of Systems and Computer Science, Howard University, Washington, DC
20059, USA

chunmei@scs.howard.edu
2 Dept. of Computer Science, University of Georgia, Athens, GA 30602, USA

song@cs.uga.edu

Abstract. In this paper, we consider the Minimum Independent Dom-
inating Set problem and develop exact exponential algorithms that

break the trivial O(2|V |) bound. A simple O∗(
√

3
|V |

) time algorithm is
developed to solve this problem on general graphs. For sparse graphs,
e.g. graphs with degree bounded by 3 and 4, we show that a few new
branching techniques can be applied to these graphs and the resulting
algorithms have time complexities O∗(20.465|V |) and O∗(20.620|V |), re-
spectively. All our algorithms only need polynomial space.

1 Introduction

A dominating set in a graph G = (V, E) is a vertex subset D ⊆ V such that
each vertex v ∈ V is either in D or connected to a vertex in D. Similarly, an
independent dominating set is a dominating set I in G such that each pair of
the vertices in I are not connected. The goal of the Minimum Independent
Dominating Set problem is to find the independent dominating set of the
minimum size in a given graph. This problem is of importance and has many
practical applications in data communication and networks [13]. It has been
shown to be NP-hard [8]. In [10], Halldórsson shows that this problem is unlikely
to be approximated within |V |1−ε, where ε is any positive number less than 1.
For graphs of bounded degree, Kann [11] has shown that this problem is APX-
hard, which suggests it is NP-hard to approximate the minimum independent
dominating set in such a graph within some constant ratio in polynomial time.

Due to these inapproximability results for the minimum independent domi-
nating set problem, exact solutions that need time O(2α|V |), where α is a positive
number less than 1.0, is more desirable in practice. In particular, a slight reduc-
tion in α may significantly reduce the amount of computation time when the
graph is of large size. However, such algorithms are still not available for the
minimum independent dominating set problem.

Recently, with the growth of interests in developing exact exponential time
algorithms for NP-hard optimization problems, the upper bound time complexi-
ties for many NP-hard problems have been significantly improved. For example,

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 439–448, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

440 C. Liu and Y. Song

a sophisticated algorithm [16] that needs time O(2|V |/4) has been developed to
find the maximum independent set in a general graph G = (V, E). A O(20.114|E|)
time algorithm [1] has been available for computing the maximum independent
set in a sparse graph. A few other efficient algorithms [2,4] have also been de-
veloped for this problem.

The trivial O(2|V |) bound for the Minimum Dominating Set problem, which
needs to find the dominating set of minimum size in a graph, was broken very re-
cently. Fomin et al. [7] used a deep graph theoretical result proposed by Reed [15]
and developed an algorithm that can find the minimum dominating set in time
O(20.955|V |). Randerath and Schiermeyer [14] showed that matching based tech-
niques are useful for reducing the size of the search space and as a result, an elegant
algorithm of time complexity O∗(20.919|V |) can be developed. Grandoni [9] consid-
ered a reduction from the Minimum Dominating Set problem to the Minimum
Set Cover problem and was able to find the minimum dominating set in time
O∗(20.919|V |)withpolynomial space.Using adynamicprogramming technique that
may require exponential space, the time complexity of this algorithmcanbe further
improved to O∗(20.850|V |). Recent work [6] on new measures for analyzing back-
tracking algorithms showed that the worst time complexities of the Grandoni’s al-
gorithms are in fact at most O(20.610|V |) and O(20.598|V |), respectively.

On the other hand, recent work has shown that many NP-hard problems can
be solved with improved time complexity on sparse graphs. For example, in [1],
exact algorithms of time complexity O(20.171|V |) and O(20.228|V |) are designed
to compute the maximum independent sets in graphs of degree bounded by 3
and 4, respectively. In [12], Kneis et al. proved a generic result on the tree width
of cubic graphs, which leads to an O∗(20.5|V |) time algorithm for the Minimum
Dominating Set problem. Fomin and Hoie [5] showed that the path width of
a cubic graph is bounded by (1

6 + ε)|V |, where ε is any positive number and the
minimum dominating set in a graph with degree bounded by 3 can be found
in time O∗(20.265|V |). Fomin and Hois’s result on the pathwidth of cubic graph
can also be used to compute the maximum independent set in graphs with de-
gree bounded by 3 in time O∗(20.167|V |). However, tree decomposition or path
decomposition based dynamic programming requires maintaining a dynamic pro-
gramming table in each tree node and this algorithm thus may need exponential
space to store the intermediate results needed in the dynamic programming.

In this paper, we develop exact algorithms to solve the Minimum Indepen-
dent Dominating Set problem in both general graphs and sparse graphs.
Based on a maximal matching, we show that a simple algorithm can solve this
problem in O∗(

√
3
|V |

) time and polynomial space. For sparse graphs, we use the
number of edges in a graph as a new measure for analyzing its computational
complexity and develop new branching techniques based on the fundamental
topological units in these graphs. We show that these branching techniques can
lead to algorithms that can find a minimum independent dominating set on
graphs of degree bounded by 3 and 4 in time O∗(20.465|V |) and O∗(20.620|V |)
respectively with polynomial space. Here, O∗(.) implies the existence of an ad-
ditional polynomial factor in the corresponding time complexity result.

Exact Algorithms for Finding the Minimum Independent Dominating Set 441

2 Preliminaries

The graphs in this paper are undirected graphs without loops. For a given graph
G = (V, E) and a vertex v ∈ V , N(v) is the set of vertices that are connected to
v in G and |N(v)| is the degree of v. N [v] is {v}∪N(v). The degree of a graph is
the maximum degree of all its vertices. To simplify the notation, we use G − v
to represent the graph obtained by removing v and all the edges incident on v
from G. For a vertex subset U , we use G−U to denote the graph obtained from
G by removing all vertices in U and the edges incident on them from G. For
a subset U ⊆ V , N(U) denotes the set of all vertices that are connected to at
least one vertex in U ; G[U] is the subgraph induced on U in G. We use d(G) to
denote the size of the minimum independent dominating set in graph G. A path
in a graph is a sequence of vertices v1, v2, · · · , vl such that there is a graph edge
between vi and vi+1 (1 ≤ i < l). We use P = (v1, v2, · · · , vl) to represent a path
P of length l. A cycle of length l is a sequence of vertices v1, v2, · · · , vl such that
there is a graph edge between vi and v(i+1) mod l

. For simplicity of notations,
we focus on the exponential part of time complexity results and ignore all their
polynomial factors.

3 Algorithms

3.1 On General Graphs

A matching in a graph G = (V, E) is a set of edges M ⊆ E such that no two
edges in M are incident on the same vertex. A maximal matching in G is a
matching M such that any edge set M ′ ⊆ V is not a matching if M ⊂ M ′. The
size of a matching is the number of edges in M .

Theorem 1. For a given graph G = (V, E), there exists an algorithm that can

compute the minimum independent dominating set in G in time O∗(
√

3
|V |

) and
polynomial space.

Proof. We can obtain a maximal matching M in graph G in polynomial time.
We then consider the vertex set VM = {v |∃e ∈ M , such that e incident on
v}. It is not difficult to see that V − VM form an independent set I in G. We
now consider a minimum independent dominating set D in G. We must have
D ∩ I = I − N(D ∩ VM), since if it is not the case, there must exist a vertex
v ∈ I such that v is not connected to any vertex in D. This is contradictory to
the fact that D is also a dominating set. Based on this fact, we can enumerate
subsets in VM that can be D ∩ VM . For each of the enumerated subset S, we
can obtain DS = S ∪ (I − N(S)). We now only need to return the set DS that
is a dominating set and has the minimum number of vertices. The number of
such subsets S is bounded by

√
3
|V |

and the time complexity of the algorithm is
bounded by O∗(

√
3
|V |

). Enumeration of all such subsets only need polynomial
space.

442 C. Liu and Y. Song

3.2 On Graphs of Degree Bounded by 3

We now consider finding the minimum independent dominating set problem on
graphs of degree bounded by 3.

Definition 1. In a given graph G = (V, E), a path P = (h, v1, v2, · · · , vl) (l ≥ 1)
is a sword if vertices v1, v2, · · · , vl−1) are all of degree 2, vl is of degree 1, and
h is of degree at least 3. h is the head of the sword while vl is the tail; l is the
length of the sword.

Definition 2. In a given graph G = (V, E), a path P = (h, v1, v2, · · · , vl, t)
(l ≥ 1) is a bridge if vertices v1, v2, · · · , vl are all of degree 2 and both h and t
are of degree at least 3. h and t are the head and tail of the bridge; l is the length
of the bridge.

Definition 3. In a given graph G = (V, E), a cycle C = (b, v1, v2, · · · , vl) (l ≥ 2)
is a circle if vertices v1, v2, · · · , vl are of degree 2 and h is of degree at least 3. b
and l are the base and the length of the circle, respectively.

Lemma 1. For a given graph G = (V, E) and a given vertex v ∈ V , we have
d(G) = minu∈N [v]{d(G − N [u])}+1.

Proof. This is an obvious fact, since v must be dominated by a minimum dom-
inating set D, i.e., ∃u ∈ N [v], u ∈ D. In addition, since D is independent, if
u ∈ D, N(u) /∈ D. We thus have d(G) = minu∈N [v]{d(G − N [u])}+1.

Lemma 1 describes a simple branching operation based on which we can recur-
sively solve the Minimum Independent Dominating Set problem by solving
a few subproblems of smaller size. We use the number of edges E in a graph as
the measure to evaluate the computation time of the branching.

Lemma 2. Given a graph G = (V, E) of degree bounded by 3 and a sword
(h, v1). If the number of vertices in each connected component is at least 10,
the simple branching on h can be simplified by d(G) = min{d(G − N [h]), d(G −
N [v1])}. This branching contributes a factor of at most 20.310 to the overall time
complexity.

Proof. Since v1 is of degree 1, a minimum dominating set in G must include
one of h and v1. If v1 is included in the dominating set, h is dominated by v1.
Thus we do not need to consider other neighbors of h. This leads to a simplified
branching operation and we have d(G) = min{d(G − N [h]), d(G − N [v1])}.

Now, the removal of N [v1] reduces at least 3 edges from G and the removal
of N [h] reduces at least 4 edges, because a connected component contains at
least 10 vertices. Assume the computation time is T (E), the recursion for this
branching is:

T (E) ≤ T (E − 3) + T (E − 4) (1)

The equation x4 − x − 1 = 0 has a root in interval (1, 2) and its value is less
than 20.310. This number bounds the factor this branching can contribute to the
overall time complexity.

Exact Algorithms for Finding the Minimum Independent Dominating Set 443

Lemma 3. Given a graph G = (V, E) of degree bounded by 3 and free of
sword of length 1, if G contains a circle (b, v1, v2, · · · , vl) where l ≥ 2, the simple
branching on the base of the circle contributes a factor not larger than 20.310 to
the overall time complexity.

Proof. We assume the minimum independent dominating set in G is D. We
analyze the simple case. When l = 2, the simple branching can be simplified
as d(G) = min {d(G − b − v1 − v2), d(G − N [b])}. This is due to the fact that if
b /∈ D, one of the v1, v2 must be in D and we thus do not need to consider the
third neighbor of b in this branching. v1 ∈ D and v2 ∈ D are the same and we
thus do not need to distinguish between them. The recursion for time complexity
T (E) is T (E) ≤ 2T (E − 4), which shows that it contributes a factor less than
20.310.

Now, we need to consider the cases where l > 2. In particular, we need to
utilize the symmetry in the circle to avoid recomputation. It is not difficult to
see that graphs G−N [v1] and G−N [vl] differs only in the connected component
induced by the rest of the vertices in the circle. This component is only a path and
its minimum independent dominating set can be easily computed in polynomial
time. We thus only need to solve the problem on G − N [v1] and obtain the
solution for G − N [vl] from that on G − N [v1] with some additional operations
that take polynomial time. Based on this observation and the fact that G does
not contain sword of length 1, the recursion relation is:

T (E) ≤ T (E − l − 3) + 2T (E − l − 2) (2)

and the branching contributes a factor less than 20.310.

Lemma 4. Given a graph G = (V, E) of degree bounded by 3 and free of circles
and swords of length 1, if G contains a sword (h, v1, v2, · · · , vl) where l ≥ 4, the
simple branching operation on h contributes a factor of at most 20.310 to the
overall time complexity.

Proof. Figure 1(a) shows the branching on such a sword. Since G does not con-
tain circles and sword of length 1, it is not difficult to check that the removal of
N [v] reduces the number of edges by at least l +4 since the path in the sword is
now disconnected from the rest part of the graph and its minimum independent
dominating set can be computed in polynomial time. Similarly, the removal of v1
reduces it by at least l +2 and for each of the two neighbors of h, the number of
edges is reduced by at least l + 3. We thus have the following recursion relation:

T (E) ≤ T (E−l−4)+T (E−l−2)+2T (E−l−3) ≤ T (E−8)+T (E−6)+2T (E−7)
(3)

We consider the equation x8 − x2 − 2x − 1 = 0 and it has a root in the interval
(1, 2) and its value is less than 20.310.

Lemma 5. Given a graph G = (V, E) of degree bounded by 3 and free of swords
of length 1, if each of the connected component of G contains at least 10 vertices
and it also contains a bridge (h, v1, t), a simple branching on v1 contributes a
factor less than 20.310 to the overall time complexity.

444 C. Liu and Y. Song

Proof. We consider two different cases, i.e., h is connected to t or not connected
to t. The correctness of this branching is obvious.

If h is connected to t, as shown in Figure 1(c), the removal of N [v1] reduces
the number of edges in G by at least 5. In other two cases where h and l are
included in the minimum dominating set respectively, at least 6 edges can be
removed from G since the connected component G contains at least 10 vertices.
We thus have T (E) ≤ T (E − 5) + 2T (E − 6).

If h is not connected to t, as shown in Figure 1(d), a similar analysis can show
that the recursion is T (E) ≤ 3T (E − 6). Both cases show that this branching
contributes a factor less than 20.310 to the overall time complexity.

Lemma 6. Given a graph G = (V, E) of degree bounded by 3 and free of swords
of length 1, if each of the connected component of G contains at least 10 vertices
and it also contains a bridge (h, v1, v2, t), we consider the following branching
operations:

1. Neither v1 nor v2 is in the minimum independent dominating set.
2. One of v1 and v2 is in the minimum dominating set.

These branching operations contribute a factor less than 20.310 to the overall
time complexity.

Proof. We also need to analyze two possible cases, where h is either connected
t or not connected to it.

In the case where h is connected to t, as shown in Figure 1(e), if none of v1 and
v2 are in the minimum independent dominating set, both h and t must be in it.
Therefore, at least 7 edges can be removed from G. In the second case where one
of v1 and v2 is in the minimum independent dominating set, we can reduce the
number of edges by at least 5. The recursion thus is T (E) ≤ T (E−7)+2T (E−5).

If h is not connected to t, as shown in Figure 1(f), a similar analysis can show
that the recursion is T (E) ≤ T (E − 9) + 2T (E − 5). Combining the two cases
together, we can see that this branching contributes a factor less than 20.310 to
the time complexity.

Lemma 7. Given a graph G = (V, E) of degree bounded by 3 and free of swords
of length 1, if each of the connected component of G contains at least 10 vertices
and it also contains a bridge (h, v1, v2, · · · , vl, t) where l ≥ 3, we consider the
following branching operations:

1. vl−1 is in the minimum independent dominating set;
2. vl−2 is in the minimum independent dominating set, vl is not;
3. vl is in the minimum independent dominating set, vl−2 is not;
4. both vl and vl−2 are included in the minimum independent dominating set.

Proof. The correctness of the recursion is obvious. Note that if vl is not in the
minimum independent dominating set, t must be in it. Similar analysis holds for
vl−2. If l = 3, we can consider the two cases where h and t are connected and
not connected. If h and t are connected, as shown in Figure 1(g), based on the

Exact Algorithms for Finding the Minimum Independent Dominating Set 445

h

l

h v1 t h v1 t

h v1 t
v2 h v1 tv2

h v1 t
v2 h

v1 t
v2 v3v3

t
vl-1 vlvl-2vl-3

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. A few different cases where the algorithm branches on bridges and swords. (a)
a sword of length l; (b) a bridge of length larger than 3; (c)(d)(e)(f)(g)(h) describe the
branching on bridges of length 1, 2 and 3.

above observation that t must be in the minimum dominating set when vl is not,
we have the recursion:

T (E) ≤ T (E − 4) + T (E − 9) + T (E − 8) + T (E − 7) (4)

If h and t are not connected, as shown in Figure 1(h), the recursion is:

T (E) ≤ T (E − 4) + 2T (E − 10) + T (E − 8) (5)

In the case where l > 3, as shown in Figure 1(b), we can get the following
recursion:

T (E) ≤ T (E − 4) + T (E − 9) + T (E − 8) + T (E − 7) (6)

Considering all three possible cases, we are able to see that the branching factor
is less than 20.310.

Lemma 8. Given a graph G = (V, E) of degree bounded by 3 and free of circles,
bridges and swords of length 1, if G contains a sword (h, v1, · · · , vl) where l = 2
or 3 and at least one neighbor of h is of degree 3, the simple branching on h
contributes a factor less than 20.310 to the overall time complexity.

446 C. Liu and Y. Song

Proof. The proof is based on similar case analysis and proof details will appear
in a full version of the paper.

Putting all the results we have obtained in the above lemmata together, we can
obtain the following Theorem.

Theorem 2. For a given graph G = (V, E) of degree bounded by 3, we can
compute a minimum independent dominating set in G in time O∗(20.465|V |) and
polynomial space.

Proof. We sketch the algorithm as follows. This algorithm only considers ap-
plying the branching rules on connected components that have more than 10
vertices. For a connected component that has less than 10 vertices, we can find
a minimum independent dominating set by exhaustive enumeration. Now, if a
large component contains a sword of length 1, we can branch on this sword as
described in Lemma 2 until no sword of length 1 exists in the graph. We then
branch on the circles in G as described in Lemma 3 until the graph is free of
circles. Next, we branch on the bridges in the graph as described in Lemmata 5,
6, 7 until the graph is free of bridges. We then consider branching on swords of
length at least 4 as described in lemma 4 until the graph does not contain such
swords.

Now we consider a vertex that is of degree 3. If all its neighbors are of degree 2,
we know that this vertex is the head of three swords; this connected component
is a tree and we can use a dynamic programming algorithm to find its minimum
independent dominating set in polynomial time. If 1 or 2 of its neighbors are of
degree 2, we can branch on this vertex as described in lemma 8 until no such
vertices exist. Last, if all of its three neighbors are of degree 3, a simple branching
on this vertex will lead to the following recursion:

T (E) ≤ 4T (E − 7) (7)

since including any vertex in N [v] removes at least 7 edges from G. This branch-
ing is again applied until no such v exists in G. It also contributes a branching
factor less than 20.310 to the overall time complexity. After all these branchings
are applied, the graph now only contains paths and cycles that are vertex dis-
joint and we can use a dynamic programming algorithm to compute its minimum
independent dominating set in polynomial time. Putting all these together, the
above algorithm only needs time O∗(20.310|E|). Because |E| ≤ 3|V |/2, the time
complexity of this algorithm is at most O∗(20.465|V |). This algorithm only needs
polynomial space for branchings.

3.3 On Graphs of Degree Bounded by 4

In this section, we show that on graphs of degree bounded by 4, a similar algo-
rithm can find the minimum independent dominating set in time O∗(20.620|V |).
In fact, Lemmata 5, 6, and 7 can also be used to branch on the bridges in such a

Exact Algorithms for Finding the Minimum Independent Dominating Set 447

graph since the number of terms on the branching recursions does not increase
and the number of edges reduced by branching is even more or at least the same.
For the same reason, the branching in Lemma 2 can also be used to remove all
the swords of length 1 from the graph.

Lemma 9. For a graph G = (V, E) of degree bounded by 4 and containing a
circle (b, v1, v2, · · · , vl), if G is free of sword of length 1, the simple branching on
base b contributes a factor less than 20.310 to the overall time complexity.

Proof. The proof is similar to that of Lemma 3, details are shown in the full
version of the paper.

Lemma 10. For a graph G = (V, E) of degree bounded by 4, if G is free of
circles and bridges and v is a vertex of degree 4, if at least one of the neighbors
of v is of degree 3, a simple branching on v contributes a factor less than 20.310

to the overall computation time.

Proof. The proof is similar to that of previous Lemmata and will be shown in
the full version of the paper.

Theorem 3. For a graph G = (V, E) of degree bounded by 4, we are able to
compute a minimum independent dominating set in G in time O∗(20.620|V |) and
polynomial space.

Proof. We can develop an algorithm similar to the one we have described in
the proof of Theorem 2. Proof details will be shown in a full version of the
paper.

4 Conclusions

In this paper, we develop exact exponential algorithms to solve the Minimum
Independent Dominating Set problem in both general and sparse graphs.
The measure we have used to analyze the time complexities of our algorithms on
sparse graphs is the number of edges in the graph. The recent work of Eppstein
[3] and Fomin et al. [4,6], has shown that an improved measure for analyzing
branching algorithms can sometimes lead to improved analysis results. It is thus
possible that the measure we have used to evaluate the time complexities of our
algorithms is not the optimal one and the actual time complexities of them are
possibly better than we have obtained.

Acknowledgment

We thank the anonymous reviewers for their comments and suggestions on an
earlier version of the paper.

448 C. Liu and Y. Song

References

1. R. Beigel, “Finding maximum independent sets in sparse and general graphs”,
Proceedings of SODA 1999, 856-857, 1999.

2. J. Chen, I. A. Kanj, and W. Jia, “Vertex Cover: Further Observations and Further
Improvements”, Journal of Algorithms, 41: 280-301, 2001.

3. D. Eppstein, “Quasiconvex analysis of backtracking algorithms”, Proceedings of
SODA 2004, 788-797, 2004.

4. F. V. Fomin, F. Grandoni, and D. Kratsch, “Measure and Conquer: A Simple
O(20.288n) Independent Set Algorithm”, Proceedings of SODA 2006, to appear.

5. F. V. Fomin and K. Hoie, “Pathwidth of cubic graphs and exact algorithms”,
Information Processing Letters, 97(5): 191-196, 2006.

6. F. V. Fomin, F. Grandoni, and D. Krastch, “Measure and conquer: domination -
a case study”, Proceedings of ICALP 2005, 191-203, 2005.

7. F. V. Fomin, D. Kratsch, and G. J. Woeginger, “Exact(exponential) algorithms for
the dominating set problem”, Proceedings of WG 2004, 245-256, 2004.

8. M. R. Garey and D. S. Johnson, “Computers and intractability, A guide to the
theory of NP-completeness”, Freeman and Company, New York, NY, 1979.

9. F. Grandoni, “A note on the complexity of minimum dominating set”, Journal of
Discrete Algorithms, in press.

10. M. M. Halldórsson, “Approximating the minimum maximal independence num-
ber”, Information Processing Letter, 46: 169-172, 1993.

11. V. Kann, “On the approximability of NP-complete optimization problems”, Ph.D.
Thesis, Department of Numerical Analysis and Computing Science, Royal Institute
of Technology, Stockholm, 1992.

12. J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, “Algorithms based on the
treewidth of sparse graphs”, Proceedings of WG 2005, 385-396, 2005.

13. F. Kuhn, T. Nieberg, T. Moscibroda, and R. Wattenhofer, “Local approximation
schemes for ad hoc and sensor networks”, 2005 Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, 97-103, 2005.

14. B. Randerath, I. Schiermeyer, “Exact algorithms for MINIMUM DOMINATING
SET”, Technical Report zaik-469, Zentrum für Angewandte Informatik Köln, Ger-
many, 2004.

15. B. Reed, “Paths, stars and the number three”, Combinatorial Probabilistic Com-
puting, 5: 277-295, 1996.

16. J. M. Robson, “ Finding a maximum independent set in time O(2n/4), Technical
Report 1251-01, LABRI, Université Bordeaux I, 2001.

On Isomorphism and Canonization of Tournaments and
Hypertournaments

V. Arvind, Bireswar Das, and Partha Mukhopadhyay

Institute of Mathematical Sciences
C.I.T Campus, Chennai 600 113, India

{arvind, bireswar, partham}@imsc.res.in

Abstract. We give a polynomial-time oracle algorithm for Tournament Canon-
ization that accesses oracles for Tournament Isomorphism and Rigid-Tournament
Canonization. Extending the Babai-Luks Tournament Canonization algorithm,
we give an nO(k+log n) algorithm for canonization and isomorphism testing of
k-hypertournaments, where n is the number of vertices and k is the size of
hyperedges.

1 Introduction

Computing canonical forms for graphs (and other finite structures) is a fundamental
problem. Graph canonization, in particular, is well-studied for its close connection to
Graph Isomorphism GRAPH-ISO. Let G be a class of graphs on n vertices closed under
isomorphism. Then f : G −→ G is a canonizing function for G if for all X, X ′ ∈ G:
f(X) ∼= X and f(X) = f(X ′) if and only if X1 ∼= X2. I.e., f assigns a canonical form
to each isomorphism class of graphs. E.g. we could define f(X) as the lexicographi-
cally least graph isomorphic to X . This particular canonizing function is computable in

FPNP by prefix search, but it is NP-hard [BL83, Lu93]. Whether there is some canon-
izing function for graphs that is polynomial-time computable is a long-standing open

question. No better bound than FPNP is known for computing any canonizing function.
Clearly GRAPH-ISO is polynomial-time reducible to graph canonization. However, it is
an intriguing open question if the converse reduction holds.

The seminal paper of Babai and Luks [BL83] takes a group-theoretic approach to
canonization. As we use their approach we explain the group-theoretic setting. We first
recall definitions and some basic facts about permutation groups [Wi64, Lu93]. A per-
mutation group G is a subgroup of SymV , where SymV is the group of all permutations
on an n-element set V . We write H ≤ G when H is a subgroup of G. The image of
v ∈ V under g ∈ G is denoted vg . We apply permutations from left to right so that
vgh = (vg)h. The set vG = {vg | g ∈ G} is the G-orbit of v, and G is transitive on
V if vG = V for v ∈ V . The group 〈S〉 generated by a set S ⊆ SymV is the smallest
subgroup of SymV containing S.

Let G ≤ SymV be transitive on V . A subset B ⊆ V is a G-block if either Bg = B
or Bg ∩ B = ∅, for each g ∈ G. For any transitive group G, the set V and the singleton
sets {u}, u ∈ V are the trivial blocks. A transitive group G is primitive if it does not
have any nontrivial blocks, otherwise it is imprimitive. If B is a G-block, then Bg is

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 449–459, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

450 V. Arvind, B. Das, and P. Mukhopadhyay

also a G-block, for every g ∈ G. The collection of blocks {Bg : g ∈ G} is a partition
of V , called the B block system. Notice that G acts transitively on the B block system
(since every g ∈ G naturally maps blocks to blocks). Call B ⊂ V a maximal block if
there is no other block B′ such that B ⊂ B′ ⊂ V . Then, {Bg : g ∈ G} is a maximal
block system. An important fact is that G acts primitively on a maximal block system.
For � ⊆ V , the set stabilizer for Δ, GΔ = {g ∈ G | Δg = Δ}.

Let G ≤ Sn. For X1, X2 ∈ G, we say X1 is G-isomorphic to X2, denoted by
X1 ∼=G X2 if X2 = Xg

1 for some g ∈ G. Suppose G is any class of graphs closed
under G-isomorphisms. Assume w.l.o.g. that the vertex set of any n-vertex graph in G
is [n]. Call CFG : G → G a canonizing function w.r.t. to G, if CFG(X) ∼=G X , for
X ∈ G, and X1 ∼=G X2 iff CFG(X1) = CFG(X2), for X1, X2 ∈ G. As G is closed
under G-isomorphisms, Gσ is closed under σ−1Gσ-isomorphisms, for σ ∈ Sn. Thus,
for a coset Gσ of G we can define CFGσ(X) = CFσ−1Gσ(Xσ). Finally, the canonical
labeling coset CL(X, Gσ) is defined as {τ ∈ Gσ | Xτ = CFGσ(X)}. Notice that
CL(X, Gσ) = (G ∩ Aut(X))π for any π ∈ CL(X, Gσ).

Babai and Luks [BL83] give a canonizing algorithm that exploits the group structure
of G. The algorithm is recursive and works by a divide-and-conquerguided by the orbits
and blocks of G. In the following theorem, we state the main result of their paper.

Theorem 1 (Babai-Luks Theorem). Suppose G ≤ Sn is a permutation group in the
class Γd (i.e. all nonabelian composition factors of G are subgroups of Sd), then a
canonical labeling coset of an n-vertex graph X = (V, E) w.r.t. a coset Gσ of SymV ,
can be found in time nO(d).

Theorem 1 crucially uses the fact that primitive subgroups of Sn in Γd are of size at
most nO(d) (e.g. see [LS99]). This result yields an nO(log n) algorithm for Tournament
Canonization, T-CANON, and Tournament Isomorphism TOUR-ISO [BL83]. The algo-
rithm exploits the fact that automorphism groups of tournaments are solvable and hence
in Γd for d = 1.

Remark 1 (Generalized Babai-Luks theorem). We give a useful restatement of Theo-
rem 1 applicable to more general structures like edge-colored tournaments or hyper-
tournaments. Suppose Γ is a class of finite groups such that for each n and for any
primitive subgroup G ≤ Sn in Γ we have |G| ≤ nc, where c > 0 is a fixed constant.
Let R be the class of finite relational structures of any signature (For example, we can
take R to be the class of all k-hypertournaments or the class of vertex-colored graphs).
Consider the canonization problem for a structure X from R under permutation action
of a group G ∈ Γ . Because of the size bound on primitive permutation groups in Γ , the
Babai-Luks algorithm (Theorem 1) will compute a G-canonical form and the canonical
labeling coset (G ∩ Aut(X))σ for X in polynomial time. The proof of this restatement
is identical to that of Theorem 1.

In this paper we study the complexity of canonization and isomorphism of tournaments
as well as hypertournaments. A central motivation for our study is the question whether
T-CANON is polynomial-time reducible to TOUR-ISO. While we are not able to settle
this question, we prove an interesting weaker result: T-CANON has a polynomial-time
oracle algorithm with oracle access to TOUR-ISO and an oracle for canonizing rigid

On Isomorphism and Canonization of Tournaments and Hypertournaments 451

tournaments. Rigid tournaments have no nontrivial automorphism. The other main result
is an nO(k+log n) algorithm for canonization and isomorphism of k-hypertournaments
which builds on [BL83] and uses quite different properties of the automorphism groups
of hypertournaments. In this extended abstract we omit some proof details.

2 Gadget Construction for Tournaments

We recall the definition of tournaments.

Definition 1 (tournament). A directed graph T = (V, A) is a tournament if for each
pair of distinct vertices u, v ∈ V , exactly one of (u, v) or (v, u) is in A.

In this section, we explain some polynomial-time reductions concerning TOUR-ISO that
are useful for our algorithm presented in Theorem 6. A key technique here is “fixing”
nodes in a tournament. A node v in a graph X is a fixpoint if vπ = v for every π ∈
Aut(X). By the fixing of v in X we mean a construction that modifies X to another
graph X ′ using a gadget so that v is forced to be fixed in X ′. We now show a gadget
construction for fixing several nodes in a tournament so that the resulting graph is again
a tournament. We use it to show that the color-tournament isomorphism problem is
polynomial-time many-one reducible to TOUR-ISO. As a consequence, we derive some
facts related to tournament isomorphism and automorphism (Theorem 2), useful for
canonization. Let u1, u2, · · · , ul be the nodes of a tournament T that we want to fix.
The gadget we use is shown in Figure 1. Call the resulting tournament T ′.

u1

u2

ul

ul−1

v1v2vlvl+1vl+2vl+3

T

Fig. 1.

Here, v1, v2, · · · , vl+3 are l + 3 news vertices used in the gadget. Notice that v1 is
the unique vertex that beats all other vertices of T ′. For 2 ≤ j ≤ l + 1, vj beats vk for
k > j, and beats all the vertices of T except uj−1. Vertex vl+2 beats vl+3, and both
vl+2 and vl+3 beat all vertices of T . The thick gray edge between v1 and T indicates
that v1 beats all the vertices of T . All thick gray edges have similar meaning.

Lemma 1. Any automorphism of T ′ fixes {u1, u2, · · · , ul}.

Proof. Notice that v1, v2, v3, · · · , vl are the unique vertices of in-degree 0, 2, 3, · · · , l,
respectively. Hence they are fixed by any automorphism of T ′. Also, vl+1 and vl+2 are

452 V. Arvind, B. Das, and P. Mukhopadhyay

the only vertices of in-degree l +1. But, the directed edge (vl+1, vl+2) forces the fixing
of these two vertices by all automorphisms. As vi+1 has a unique incoming edge from
ui, 1 ≤ i ≤ l, each of u1, u2, · · · , ul is fixed by all automorphisms of T ′.

Search and decision for GRAPH-ISO are known to be polynomial-time equivalent to
computing a generator set for the automorphism group Aut(X) of a graph X . We show
similar results for tournaments. In fact, we give a general approach to proving this
equivalence for any class of graphs and apply it to tournaments.

For a class of graphs G, let GRAPH-ISOG denote the decision problem: GRAPH-ISOG
= {〈X1, X2〉 ∈ G×G | X1, X2 are isomorphic}. Two vertex-colored graphs1 X1, X2 ∈
G are said to be isomorphic if there is a color preserving graph isomorphism between
them. Let C-GRAPH-ISOG be the corresponding decision problem. The graph automor-
phism problem is: GAG = {X ∈ G | X has a nontrivial automorphism}. For X ∈ G,
let AUTG be the problem of computing a generating set for the automorphism group of
X . The following theorem is easy to prove using standard techniques from [KST93].

Theorem 2. Let G be any class of graphs. If C-GRAPH-ISOG is polynomial-time many-
one reducible to GRAPH-ISOG then

1. GAG is polynomial-time Turing reducible to GRAPH-ISOG .
2. Search version of GRAPH-ISOG is polynomial-time Turing reducible to decision

version of GRAPH-ISOG .
3. AUTG is polynomial-time Turing reducible to GRAPH-ISOG .

We now show C-TOUR-ISO ≤P
m TOUR-ISO, implying that tournaments satisfy the con-

ditions of Theorem 2.

C2

C1

Cl

u2

u1

ul

T ′1

Fig. 2.

Theorem 3. Color tournament isomorphism problem is polynomial time many-one re-
ducible to tournament isomorphism problem.

1 In this paper, vertex and edge colorings are simply labels without any constraints like proper
vertex/edge colorings etc.

On Isomorphism and Canonization of Tournaments and Hypertournaments 453

Proof. Let T1, T2 be tournaments with vertices colored using l distinct colors {ci}l
i=1.

Let Ci denotes the set of vertices colored with ci. Our reduction transforms T1 and T2
into uncolored tournaments T ′1, T ′2. We show the construction for T1 (Fig 2). Construc-
tion for T2 is likewise.

In T ′1, ui beats the vertices in each color class Cj with j = i, and ui is beaten by all
vertices in color class Ci. Using the gadget of Lemma 1, we fix u1, u2, · · · , ul in T ′1. Call
the resulting tournament T ′′1 . Likewise, T ′′2 is obtained from T2 by first constructing T ′2
by introducing new vertices v1, v2, · · · , vl and then fixing them in T ′2. vi has the same
edge relation with all the color classes, as ui has. Now it is easy to see that T1 ∼= T2 if
and only if T ′′1 ∼= T ′′2 .

3 Canonical Labeling of Tournaments

We recall an important fact about tournaments and the Babai-Luks result on tournament
canonization [BL83].

Fact 4. The automorphism group of a tournament has an odd number of elements and,
therefore, is a solvable group (follows from [FT63]).

Theorem 5. [BL83, Theorem 4.1] There is an nO(log n) algorithm for T-CANON, the
Tournament Canonization problem.

We sketch the proof of Theorem 5 as we need the main ideas. Let T = (V, A) be a
tournament with |V | = n. If T is not regular, partition V as V = ∪k

i=1Vi, where Vi

are the vertices of out-degree i in T . Let Ti be the subtournament induced by Vi. The
algorithm recursively computes CL(Ti, SymVi) = Hiρi, for all i, where Hi = Aut(Ti).
Then, we set CL(T, SymV) = CL(T, H1ρ1×H2ρ2×· · ·×Hkρk) = CL(T, Hρ), where
H = H1 ×H2×· · ·×Hk and ρ = (ρ1, ρ2, · · · , ρk)). As each Hi is a solvable group, H
is also solvable. By Theorem 1 CL(T, Hρ) can be computed in polynomial time. Thus,
if t(n) is the overall running time bound then for this case it satisfies the recurrence
relation: t(n) =

∑k
i=1 t(ni) + nO(1), where ni = |Vi|.

Now, suppose T is a regular tournament. Fix v ∈ V . Put V ′ = V \ {v} and let T ′ be
the subtournament induced by V ′. Consider the partition V ′ = V ′1 ∪V ′2 , where V ′1 is the
set of (n − 1)/2 vertices in T that beat v and V ′2 is the set of (n − 1)/2 vertices beaten
by v. Let the subtournaments induced by V ′1 and V ′2 be T ′1 and T ′2, respectively. The
algorithm now recursively computes CL(T ′1, SymV ′i) = Hiρi for i = 1, 2. Compute
CL(T ′, SymV ′) = CL(T, H1ρ1 × H2ρ2). Repeat this process for every v ∈ V . This
yields n cosets in all. We compute CL(T, SymV) as the union of those cosets that give
rise to the lex-least canonical labeling among the n. Clearly, this union will itself paste
into a coset Aut(T)σ of Aut(T) [BL83]. For this case, t(n) satisfies the recurrence
relation t(n) = n(t(n−1

2)+nO(1)). Solving the two recurrence relations for t(n) yields
the running time bound nO(log n).

We turn to the problem of this section: can T-CANON be polynomial-time reduced
to TOUR-ISO? We make some progress on the problem by giving a polynomial-time
oracle algorithm for T-CANON that accesses oracle TOUR-ISO with an additional oracle
for canonizing rigid tournaments. Thus, canonizing rigid tournaments seems to be the

454 V. Arvind, B. Das, and P. Mukhopadhyay

bottleneck in reducing T-CANON to TOUR-ISO. Let RT-CANON denote the functional
oracle for computing the canonical form of a rigid tournament. Since rigid tournaments
have trivial automorphism groups, the canonical form trivially gives the canonical la-
beling coset as well.

Theorem 6. There is a polynomial-time oracle algorithm for T-CANON that accesses
oracles for TOUR-ISO and RT-CANON.

Proof. Let T = (V, A) be the input tournament. The function T-CANON(T) computing
the canonical labeling coset CL(T, SymV) of T has the following recursive description:

T-CANON(T):

1. Orbit computing: With oracle queries to TOUR-ISO and using the vertex fixing
technique of Theorem 2 we can compute the partition of V into Aut(T)-orbits in
polynomial time.

2. If orbits are singletons: This happens precisely when T is a rigid tournament. In
this case we query the RT-CANON oracle to obtain a canonical form for T .

3. Single orbit: If V has only one orbit w.r.t. Aut(T) then the tournament is vertex-
transitive. As T is vertex-transitive it follows that T is regular. Now, we can in-
dividualize (fix) any vertex v of T , and find canonical labeling coset with respect
to SymV ′, where V ′ = V \ {v}, because each such v will give rise to the same
canonical form.2 Then v defines the partition V ′ = V1 ∪ V2, where V1 is the set
of all vertices that beat v and V2 is the set of all vertices beaten by v. As T is
regular, |V1| = |V2| = (n − 1)/2. Suppose the tournaments induced by V1 and
V2 are T1 and T2 respectively. Recursively compute H1ρ1 := T-CANON(T1) and
H2ρ2 := T-CANON(T2). Let Tv be the tournament induced by V ′. Applying The-
orem 1 we compute T-CANON(Tv) = CL(Tv, H1ρ1 × H2ρ2) in polynomial time
as H1 and H2 are solvable, being automorphism groups of tournaments. This gives
the canonical ordering for Tv. Placing v as the overall first vertex gives the canoni-
cal ordering for T . Let T ′ denote the resulting tournament (which is the canonical
form for T). Finally, the canonical labeling coset is easy to compute from T and T ′

with queries to TOUR-ISO by applying Theorem 2.
4. Nonrigid with more than one orbit: This is the general case when there is more

than one orbit and T is not rigid. Let O1, O2, · · · , O� be the orbits of T .
– [Case (a)] Let Ti be the tournament induced by Oi, for 1 ≤ i ≤ �. We first
consider a case that yields an easy recursive step. Suppose not all Ti are isomor-
phic to each other (which we can easily find with queries to TOUR-ISO). Then we
partition the Oj ’s into k collections S1, S2, · · · , Sk, where Si contains all orbits Oj

such that the corresponding Tj’s are all isomorphic. Now, for 1 ≤ j ≤ k, let T̂j

be the tournament induced by the union of the orbits in Sj . Recursively compute
Hjρj := T-CANON(T̂j) for all j. Then, we set T-CANON(T) as CL(T, Hρ) —
where H = H1 × H2 × · · · × Hk and ρ = (ρ1, · · · , ρk) — which can be computed
in polynomial time using the Babai-Luks algorithm of Theorem 1 as each Hj , being
the automorphism group of a tournament, is solvable.

2 This is not true in the case of a tournament that is regular but not vertex transitive. Recall from
proofsketch of Theorem 5 that n recursive calls are made in the regular case.

On Isomorphism and Canonization of Tournaments and Hypertournaments 455

– [Case (b)] We are now in the case when the tournaments Ti induced by Oi are
all isomorphic, for 1 ≤ i ≤ �. Since Ti are induced by orbits they are all regu-
lar tournaments. That forces |Oi| to be odd. Furthermore, all Oi are of same size
since Ti are all isomorphic. Thus, |Oi| = t is an odd positive integer. Now, from
the � orbits of T , we will construct a tournament T with � vertices. The vertices
vi of T represent the orbits Oi. We still have to define the edges of T . To that
end, let Xij denote the directed bipartite graph between Oi and Oj . As Oi and
Oj are orbits of Aut(T) and |Oi| = |Oj |, the directed bipartite graph Xij has the
following property: there is a positive integer α such that, in the graph Xij , the
indegree of each vertex in Oi is α and the outdegree of each vertex in Oj is α.
Since |Oi| is odd, |Oi| − α = α. The edges of T can now be defined as follows:
for 1 ≤ i = j ≤ �, (vi, vj) is an edge in T if |Oi| − α > α, otherwise (vj , vi)
is an edge in T . Notice that T does not carry all the information about the origi-
nal tournament T since the Xij have been replaced by single directed edges. We
now color the edges (vi, vj) of T by the isomorphism type of Xij . To that end, we
first recursively compute Hiρi := T-CANON(Ti) for 1 ≤ i ≤ �. Then compute
CL(Xij , Hiρi × Hjρj) using Theorem 1 for each pair 1 ≤ i = j ≤ � which actu-
ally canonizes each Xij . Now, we color the edges of T so that two edges (vi, vj)
and (vs, vt) of T get the same color iff the corresponding directed bipartite graphs
Xij and Xst are isomorphic (i.e. have same canonical forms as computed above).
Let T ′ denote this edge-colored tournament obtained from T . Now, recursively
we compute, Aut(T)ρ = T-CANON(T). Then, as Aut(T) is solvable, using the
Babai-Luks algorithm (Theorem 1), we can compute H ′ρ′ = CL(T ′, Aut(T)ρ) in
polynomial time. From ρ′ we obtain the canonical labeling of T ′. This canonical
labeling effectively gives a canonical ordering of the orbits Oi of T , since vertices
of T ′ represent orbits of T . Within each orbit Oi, we already have the canonical la-
beling given by the recursive calls T-CANON(Ti). This defines the entire canonical
labeling for T . Let T ′ denote the resulting tournament, i.e., the canonical form ob-
tained from T by the canonical labeling. Now, by Theorem 2, the canonical labeling
coset is easily computable from T and T ′ with oracle queries to TOUR-ISO.

Claim. Step 3 correctly computes the canonical labeling coset of a vertex transitive
tournament.

Proof of Claim. It suffices to argue that the computed canonical form is independent of
the choice of v. The proof is by an induction on n. Let u and v be two vertices. Let Tu

and Tv be the tournaments induced by V \{u} and V \{v} respectively. Furthermore, let
Tu1, Tu2 be the tournaments induced by in-neighbors and out-neighbors of u. Similarly,
define Tv1, Tv2 for v. Vertex transitivity of T implies that Tu

∼= Tv, Tu1 ∼= Tv1, and
Tu2 ∼= Tv2. Consequently, by induction we have T-CANON(Tu) = T-CANON(Tv). It
easily follows that we get the same canonical form for T by choosing either u or v as
first vertex.

Claim. In Step 4 Case(b), H ′ρ′ is the canonical labeling coset for T ′.
Proof of Claim. This follows directly from the following property of the canonical la-
beling coset (Theorem 1 and Remark 1). Suppose T = (V̂ , A). Recall that T ′ is ob-
tained from T by coloring its edges in some manner. Then we have CL(T ′, SymV) =

456 V. Arvind, B. Das, and P. Mukhopadhyay

CL(T ′, CL(T , SymV̂)). As CL(T , SymV̂) = Aut(T)ρ, the claim follows. The cor-
rectness of the algorithm follows from the above claims. We now analyze the running
time. Let T (n) bound the running time. In Step 1, we compute the orbits in polynomial
time with queries to the TOUR-ISO oracle. If the tournament is rigid then we canonize
it with a single query to RT-CANON. The remaining steps involve recursive calls. The
recurrence relation for T (n) in Step 3 is T (n) = 2T ((n − 1)/2) + nO(1), and in Step
4a it is given by T (n) = �T (n/�) + nO(1) for � > 1 because we need to compute
the canonical labeling coset for � tournaments induced by n/l-sized orbits. For Step 4
Case (b), the recurrence is T (n) =

∑k
i=1 T (ni) + nO(1). It follows by induction that

T (n) = nO(1).

Remark 2. It seems unlikely that a similar reduction can be carried out for general
graphs. This is because our reduction heavily uses the fact that the automorphism group
of tournaments are solvable and hence in Γd, enabling us to use Theorem 1. In case of
general graphs, it is unlikely that in the intermediate stages of recursion we will have
groups in Γd (or even Γ : see Remark 1) to canonize with.

4 Hypertournament Isomorphism and Canonization

Hypertournaments are a generalization of tournaments and are well-studied by graph
theorists over the years (see e.g. [GY97]). We recall the definition.

Definition 2 (Hypertournament). A k-hypertournament T on n vertices is a pair
(V, A) where V is a set of n vertices and A is a set of k-tuples of vertices called arcs so
that for each subset S ∈

(
V
k

)
, A contains exactly one of the (k! many) k-tuples whose

entries belong to S.

It is easy to show that Hypergraph Isomorphism (HGI) is polynomial-time many-one
equivalent to GRAPH-ISO. Thus, complexity-theoretic upper bounds for GRAPH-ISO
like NP∩coAM and SPP apply to HGI. However, consider an instance of HGI: (X1, X2),
with n vertices and m hyperedges each. The reduction to GRAPH-ISO maps it to a pair
of graphs (Y1, Y2) with vertex sets of size m + n. The best known isomorphism testing
algorithm due to Luks and Zemlyachenko (see [BL83]) which has running time c

√
n lg n

will take time c
√

(m+n) lg(m+n) when combined with the above reduction and applied
to HGI. In [Lu99] a different, dynamic-programming based algorithm with running time
2O(n) was developed.

Motivated by the above we study the analogous question for hypertournaments in
this section. We consider k-Hypertournament Isomorphism (HYPER-TOUR-ISOk) and
give an nO(k+log n) algorithm for the problem for k-hypertournaments, for each k. In
fact, we actually give an nO(k+log n) algorithm for the corresponding canonization prob-
lem. We first establish some observations about hypertournaments. We are interested in
automorphisms of k-hypertournaments.

Lemma 2. For k ≥ 2, the automorphism group Aut(T) of a k-hypertournament T has
the following property: for any prime factor p of k it holds that p does not divide the
size of Aut(T).

On Isomorphism and Canonization of Tournaments and Hypertournaments 457

Proof. Let T = (V, A). For k = 2, T is a usual tournament and in this case it is a
well-known fact that Aut(T) has odd cardinality. Suppose k > 2 and p is any prime
factor of k. Suppose p divides Aut(T). Let π ∈ Aut(T) be an order p element. Since
π ∈ Sym(V), we can write it as a product of disjoint p-cycles, π = C1C2 · · · C�, where
the remaining n − p� elements of V are fixed by π. Let k/p = t. If k ≤ p� then let
S = ∪t

i=1Ci. Notice that π maps S to S. Now, suppose e ∈ A is the unique hyperedge
defined by S. Then eπ = e, since π reorders the sequence defining hyperedge e. Thus,
eπ is not a hyperedge of T , contradicting π ∈ Aut(T). If k > p�, choose S′ as any
subset of size k − p� of the n − p� points fixed by π, and let S = S′ ∪ C1 ∪ · · · ∪ C�.
Again, let e ∈ A be the hyperedge defined by S. Then eπ is not a hyperedge of T , since
π will reorder the sequence defining e. Again, this contradicts π ∈ Aut(T).

Recall that a section of a group G is a quotient group of some subgroup of G. An easy
corollary of the above lemma is the following.

Corollary 1. For k ≥ 2, the automorphism group Aut(T) of a k-hypertournament T
does not have the alternating group Ak as section.

Proof. For k = 2 (i.e. when T is a usual tournament) it is well known that Aut(T)
has odd cardinality. We consider the case k > 2. For, suppose Ak is a section of
Aut(T). Then |Ak| divides |Aut(T)|. As |Ak| = (k!)/2, k! divides 2|Aut(T)| which
implies k divides |Aut(T)|. Thus, any prime factor of k divides |Aut(T)|, contradicting
Lemma 2.

Some notation: we denote by Ck the class of finite groups G such that Ak is not a section
of G. Corollary 1 implies Aut(T) ∈ Ck for any k-hypertournament T . This property is
crucial for our canonization algorithm. First recall a celebrated result about primitive
permutation groups not containing Ak as a section.

Theorem 7. [BCP82, LS99] Let k be a positive integer and G ≤ Sn be a primitive
group in Ck (i.e. G does not involve the alternating group Ak as a section), then |G| is
bounded by nO(k).

At this point, in order to put Theorem 7 in perspective, we recall the discussion in
Remark 1 explaining a general form of Theorem 1 applicable to hypertournaments.

Let T = (V, A) be a k-hypertournament with n vertices. We define the i-degree of
a vertex v ∈ V as the number dvi of hyperedges in which v occurs at the ith position,
1 ≤ i ≤ k. Thus, to each v ∈ V we can associate its degree vector (dv1, dv2, . . . , dvk).
We say T is a regular k-hypertournament if all v ∈ V have the same degree vector
(d1, d2, . . . , dk). It is easy to see that di = 1

n

(
n
k

)
for each i and n

∑k
i=1 di = k

(
n
k

)
.

Moreover, each v ∈ V occurs in exactly
(
n−1
k−1

)
hyperedges. We are now ready to prove

the main result of this section.

Theorem 8. Canonization of k-hypertournaments can be done in nO(k+log n) time.
As a consequence, there is an nO(k+log n) time isomorphism testing algorithm for k-
hypertournaments.

Proof. The canonization algorithm is recursive and we give a high level description of
its phases. Let T = (V, A) be the input k-hypertournament.

458 V. Arvind, B. Das, and P. Mukhopadhyay

Phase 0 (usual tournament case): If k = 2 then we can invoke the Babai-Luks
canonizing algorithm that runs in time nO(log n).

Phase 1 Vertex partitioning by degree vectors: If T is not regular, partition V
as, V = V1 ∪ V2 ∪ · · · ∪ Vm, where Vi (1 ≤ i ≤ m) is the set of all vertices hav-
ing the same degree vector, where the degree vectors are sorted in lexicographic or-
der. For 1 ≤ i ≤ m, let Ti be the k-hypertournament induced by Vi. We recursively
compute CL(Ti, SymVi) for all i. Let CL(Ti, SymVi) = Hiρi where Hi = Aut(Ti)
and ρi ∈ CL(Ti, SymVi). Let H = H1 × H2 × · · · × Hk and ρ = (ρ1, ρ2, · · · , ρk).
Then CL(T, SymV) = CL(T, Hρ). Notice that H is in Ck since each Hi is in Ck.
Thus, by Theorem 1 and Remark 1, CL(T, Hρ) can be computed in time nO(k). Re-
peated application of this phase eventually reduces the original hypertournament into
an ordered set of regular k-hypertournaments, and it suffices to canonize each regular
k-hypertournament in this list. In the next phase we explain the canonization of regular
k-hypertournaments.

Phase 2 Regular k-hypertournament phase: If k = 2 then we invoke Phase 0. So,
k > 2 and T = (V, A) is a regular k-hypertournament. We will make n recursive calls,
trying each of the n vertices v ∈ V as the first vertex in the canonical ordering. Among
these, we will pick the lexicographically least ordering. We now describe one of these
recursive calls after placing v as the first vertex. Using v, we will decompose T into a
(k − 1)-hypertournament T ′ on n − 1 vertices and a k-hypertournament T ′′ on n − 1
vertices. Let A′ denote the set of the

(
n−1
k−1

)
many (k − 1)-sequences obtained by taking

each of the
(
n−1
k−1

)
hyperedges of T containing v and dropping v from the sequence. Let

V ′ = V \ {v}. Notice that T ′ = (V ′, A′) is a (k − 1)-hypertournament. Let A′′ denote
all hyperedges of T not containing v. Then T ′′ = (V ′, A′′) is a k-hypertournament. We
recursively canonize T ′. Let CL(T ′, SymV ′) = Gρ. By Corollary 1, G ∈ Ck. Thus,
invoking Theorem 1 (its general form explained in Remark 1) we can now directly
canonize T ′′ w.r.t. the coset Gρ in time nO(k). Suppose that algorithm returns the coset
CL(T ′′, Gρ) = Hvτv . From the collection {Hvτv}v∈V we can find the collection that
gives the lexleast ordering. If several of these cosets give the least ordering then they
will paste together into a single coset Aut(T)τ , which is CL(T, SymV).

For the overall algorithm, an easy inductive proof shows that CL(T, SymV) com-
putes a canonizing coset for the input k-hypertournament T . Next we analyze the
running time of the algorithm. Let t(n, k) denote the running time taken by the al-
gorithm for n-vertex k-hypertournaments. Clearly, for Phase 1 and k > 2 we have
t(n, k) =

∑m
i=1 t(|Vi|, k) + nO(1), and for Phase 2 and k > 2 we have t(n, k) =

n(t(n − 1, k − 1) + nO(k)). When k = 2, t(n, 2) = nc log n by Theorem 5. An easy
induction yields t(n, k) = nO(k+log n).

References

[BCP82] L. BABAI, P.J. CAMERON, AND P.P. PÁLFY. On the order of primitive groups with
restricted nonabelian composition factors. Journal of Algebra, 79:161–168, 1982.

[BL83] L. BABAI AND E.M. LUKS. Canonical labeling of graphs. Proceedings of the Fif-
teenth Annual ACM Symposium on Theory of Computing, pages 171–183, 1983.

[FT63] W. FEIT AND J. THOMPSON, Solvability of groups of odd order, Pacific Journal of
Mathematics, 13, 775-1029, 1963.

On Isomorphism and Canonization of Tournaments and Hypertournaments 459

[GY97] G. GUTIN AND A. YEO, Hamiltonian Paths and Cycles in Hypertournaments, Journal
of Graph Theory, 25(4):277-286, 1997.

[KST93] J. KÖBLER, U. SCHÖNING AND J. TORÁN, The Graph Isomorphism Problem: Its
Structural Complexity, Birkhäuser, Boston, 1993.

[LS99] M. LIEBECK AND A. SHALEV, Simple groups, permutation groups and probability,
Journal of Amer. Math. Soc. 12, 497-520, 1999.

[Lu93] E.M. LUKS, Permutation groups and polynomial time computations. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 11:139–175, 1993.

[Lu99] E.M. LUKS, Hypergraph isomorphism and structural equivalence of boolean func-
tions. Proc. 31st ACM Symposium on Theory of Computing, 652–658. ACM Press,
1999.

[Wi64] H. WIELANDT, Finite Permutation Groups, Acad.Press, New York, 1964.

Efficient Algorithms for the Sum Selection

Problem and K Maximum Sums Problem�

Tien-Ching Lin�� and D.T. Lee��

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

{kero, dtlee}@iis.sinica.edu.tw

Abstract. Given a sequence of n real numbers A = a1, a2, . . . , an and a
positive integer k, the Sum Selection Problem is to find the segment
A(i, j) = ai, ai+1, . . . , aj such that the rank of the sum s(i, j) =

�j
t=i at

is k over all n(n−1)
2

segments. We present a deterministic algorithm for
this problem that runs in O(n log n) time. The previously best known
randomized algorithm for this problem runs in expected O(n log n) time.
Applying this algorithm we can obtain a deterministic algorithm for the
k Maximum Sums Problem, i.e., the problem of enumerating the k
largest sum segments, that runs in O(n log n + k) time. The previously
best known randomized and deterministic algorithms for the k Maxi-
mum Sums Problem run respectively in expected O(n log n + k) and
O(n log2 n + k) time in the worst case.

Keywords: k maximum sums problem, sum selection problem, maxi-
mum sum problem, maximum sum subarray problem.

1 Introduction

Given a sequence of n real numbers A = a1, a2, . . . , an, the Maximum Sum
Problem is to find the segment A(i, j) = ai, ai+1, . . . , aj whose sum s(i, j) =
∑j

t=i at is the maximum among all possible 1 ≤ i ≤ j ≤ n. This problem was
first introduced by Bentley [6,7] and can be easily solved in O(n) time [7,13].

Given an m×n matrix of real numbers (assuming that m ≤ n), the Maximum
Sum Subarray Problem is is to find the submatrix, the sum of whose entries
is the maximum among all O(m2n2) submatries. The problem can be solved
in O(m2n) time [7,13,18]. Tamaki and Tokuyama [19] gave the first sub-cubic
time algorithm for this problem and Takaoka [20] later gave a simplified algo-
rithm achieving sub-cubic time as well. Many parallel algorithms under different
parallel models of computation were also obtained [3,16,17,18].
� Research supported in part by the National Science Council under the Grants

No. NSC-94-2213-E-001-004, NSC-95-2221-E-001-016-MY3, and NSC 94-2752-E-
002-005-PAE, and by the Taiwan Information Security Center (TWISC), National
Science Council under the Grant No. NSC94-3114-P-001-001-Y.

�� Also with Institute of Information Science, Academia Sinica, Nankang, Taipei 115,
Taiwan.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 460–473, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Algorithms for the Sum Selection Problem 461

The Maximum Sum Problem can find many applications in pattern recog-
nition, image processing and data mining [1,12]. A natural generalization of the
above Maximum Sum Problem is the k Maximum Sums Problem which is
to find the k segments such that their sums are the k largest over all n(n−1)

2
segments. Bae and Takaoka [4] presented an O(kn) time algorithm for this prob-
lem. Bengtsson and Chen [5] gave an O(min{k +n log2 n, nk

1
2 }) time algorithm,

or O(n log2 n + k) time in the worst case. Cheng et al. [8] recently gave an
O(n + k log(min{n, k})) time algorithm for this problem which is superior to
Bengtsson and Chen’s when k is o(n log n), but it runs in O(n2 log n) time in
the worst case. Lin and Lee [14] recently gave an expected O(n log n + k) time
randomized algorithm based on a randomized algorithm which finds in expected
O(n log n) time the segment whose sum is the k-th smallest, for any given pos-
itive integer 1 ≤ k ≤ n(n−1)

2 . The latter problem is referred to as the Sum
Selection Problem. In this paper we will give a deterministic O(n log n + k)
time algorithm for the k Maximum Sums Problem based on a deterministic
O(n log n) time algorithm for the Sum Selection Problem as well.

The rest of the paper is organized as follows. Section 2 give a deterministic
algorithm for the Sum Selection Problem. Section 3 gives a deterministic
algorithm for the k Maximum Sums Problem. Section 4 gives some conclusion.

2 Algorithm for the Sum Selection Problem

We define the rank r(x, P) of an element x in a set P ⊆ R of real numbers to
be the number of elements in P no greater than x, i.e. r(x, P) = |{y|y ∈ P, y ≤
x}|. Given a sequence A of real numbers a1, a2, . . . , an, and a positive integer
1 ≤ k ≤ n(n−1)

2 , the Sum Selection Problem is to find the segment A(i∗, j∗)
over all n(n−1)

2 segments such that the rank of the sum s(i∗, j∗) =
∑j∗

t=i∗ at

in the set of possible subsequence sums is k. That is, we would like to find
s∗ = s(i∗, j∗) for some i∗ < j∗ such that r(s∗, P) = k where P = {s(i, j) |
s(i, j) =

∑j
t=i at, 1 ≤ i ≤ j ≤ n}.

We will transform the Sum Selection Problem into a problem of arrange-
ments of lines in computational geometry in O(n) time as follows. We first define
the set S = {s0, s1, . . . , sn} according to the prefix sums of the sequence A, where
si =

∑i
t=1 at, i = 1, 2, . . . , n and s0 = 0. We then define two sets of lines H = {hi

| hi : y = −si, i = 0, 1, . . . , n} and V = {vi | vi : y = x − si, i = 0, 1, . . . , n} in
the plane respectively. For any two lines hi ∈ H and vj ∈ V with i < j, they
intersect at the point pij = (xij , yij) with abscissa xij = sj − si. It means that
the abscissa of the intersection point of any two lines hi ∈ H and vj ∈ V with
i < j is equal to the sum s(i + 1, j) of the segment A(i + 1, j). We say that an
intersection point of two lines hi ∈ H and vj ∈ V is feasible if i < j. Note that
there are totally n2 intersection points in the arrangements of lines A(H ∪ V)
and it contains n(n−1)

2 feasible intersection points and n(n+1)
2 non-feasible in-

tersection points. An example of the arrangements of lines A(H ∪ V) is shown
in Figure 1. Let Xf = {xij | pij = (xij , yij) is a feasible intersection point of

462 T.-C. Lin and D.T. Lee

hσ(0) = h5

hσ(1) = h3

hσ(2) = h1

hσ(3) = h0

hσ(5) = h2

v5

v3

v1

v0

v4

v2

s

y

x
hσ(4) = h4

Fig. 1. Given A = a1, a2, a3, a4, a5 = 1, −3, 4, −3, 4, we have S =
{s0, s1, s2, s3, s4, s5, s6} = {0, 1, −2, 2, −1, 3}, H = {hi | hi : y = −si, i = 0, 1, . . . , 6}
and V = {vi | vi : y = x−si, i = 0, 1, . . . , 6} respectively. The intersection points shown
in dark solid dots are the feasible intersection points and others are the non-feasible
intersection points.

A(H ∪ V)}. The Sum Selection Problem now is equivalent to the following
problem.

Given a set of lines L = H ∪V = {h0, v0, h1, v1, . . . , hn, vn} in R2, where
hi : y = −si and vj : y = x − sj , find the feasible intersection point
pi∗j∗ = (xi∗j∗ , yi∗j∗) such that r(xi∗j∗ , Xf) = k.

Given a set of n lines in the plane and an integer k, 1 ≤ k ≤ n(n−1)
2 , the well-

known dual problem of the Slope Selection Problem1 in computational ge-
ometry is to find the intersection point whose x-coordinate is the k-th smallest
among all intersection points of these n lines. Cole et al. [10] develop an ap-
proximate counting scheme combining the AKS sorting network and parametric
search to obtain an optimal O(n log n) algorithm for this problem. Brönnimann
and Chazelle [9] modify their approximate counting scheme combining ε-net to
obtain another optimal algorithm for this problem. The Sum Selection Prob-
lem can be viewed as a variant of the Slope Selection Problem. Since we
don’t know how many non-feasible intersection points of A(L) are to the left of
the k-th feasible intersection point, and thus we don’t know the actual rank of

1 Given a set of n points in the plane and an integer k, 1 ≤ k ≤ n(n−1)
2

, the slope
selection problem is to select the pair of points determining the line with the k-th
smallest slope.

Efficient Algorithms for the Sum Selection Problem 463

the k-th feasible intersection point in the set of all intersection points of A(L).
The actual rank of the k-th feasible intersection point may lie between k and
k + n(n+1)

2 in the set of all intersection points of A(L). Therefore, we can not
solve the Sum Selection Problem by fixing some specific rank and apply-
ing the slope selection algorithms [9,10] directly. We will give a deterministic
algorithm for this problem that runs in O(n log n) time based on the ingenious
parametric search technique of Megiddo [15], AKS sorting network [2] and a
new approximate counting scheme. This new approximate counting scheme is a
generalization of the approximate counting schemes developed by Cole et al. [10]
and Brönnimann and Chazelle [9].

Given a vertical line x = s, the number of intersection points of A(L) on it
or to its left is denoted I(L, s) and the number of feasible intersection points of
A(L) on it or to its left is denoted If (L, s). The vertical order of the lines of L
at x = s defines a permutation π(s) of L at s with π(−∞) being the identity
permutation. An example of π(s) = (h5, h3, h1, v5, h0, v3, h4, v1, h2, v0, v4, v2) is
shown in Figure 1. An inversion of a permutation (p1, p2, . . . , pn) of {1, 2, . . . , n}
is a pair of indices i < j with pi > pj . It is easy to see that the number of
inversions, denoted by I(π(s)), of a permutation π(s) is exactly I(L, s). We
define the number of feasible inversions, denoted by If (π(s)), of π(s) to be
If (L, s). Therefore, the Sum Selection Problem is also equivalent to finding
some s∗ such that If (π(s∗)) = k.

The problem for finding s∗ can be viewed as an unusual sorting problem at-
tempting to sort the set of lines L at x = s∗ without knowing the value of s∗, i.e.
to sort h0(s∗), v0(s∗), h1(s∗), v1(s∗), . . . , hn(s∗), vn(s∗) in vertical order without
knowing the value of s∗. We know that this sort may be achieved in O(n log n)
comparisons. In particular, the questions of the forms ”hi(s∗) ≤ hj(s∗)” and
”vi(s∗) ≤ vj(s∗)” can be solved in O(n log n) time by any usual optimal sorting
algorithm, since the ordering of hi’s, which is identical to that of vj ’s, is inde-
pendent of s∗. However, the question, qij of the form ”hi(s∗) ≤ vj(s∗)”, can
be answered by a counting subroutine that given any vertical line x = s it can
quickly compute If (L, s), the number of feasible intersection points of A(L) that
lie on it or to its left. There is a simple way to perform this task in O(n log n)
time by Lemma 1 with s� = −∞ and sr = s. Even though we don’t know s∗, we
can answer the question qij by finding the xij , the x-coordinate of intersection
point of hi and vj in constant time and call the counting subroutine at x = xij .
If the return of the subroutine is less than or equal to k, we get hi(s∗) ≤ vj(s∗).
Otherwise we get hi(s∗) > vj(s∗). After solving the unusual sorting problem we
can obtain the permutation π(s∗) without knowing the value of s∗. Then, we
can obtain s∗ = max{xπ(s∗)[i]π(s∗)[i+1]}.

Lemma 1. ([14], Lemma 2) Given a sequence A of n real numbers a1, a2, . . . , an

and two real numbers s�, sr with s� ≤ sr, it takes O(n) space and O(n log n) time
to count the total number of segments A(i, j), 1 ≤ i ≤ j ≤ n, among all n(n−1)

2
segments such that their sums s(i, j) satisfy s� ≤ s(i, j) ≤ sr.

How can we solve the unusual sorting problem? We will use the parametric
search approach running a sequential simulation of a generic parallel sorting

464 T.-C. Lin and D.T. Lee

algorithm, which attempts to sort the lines along the line x = s∗, where s∗ is
the x-coordinate of the desired k-th leftmost feasible intersection point, without
knowing the value of s∗. A naive algorithm is to use a parallel sorting algorithm
of depth O(log n) and O(n) processors developed by Ajtai, Komlós, and Sze-
merédi [2], and at each parallel step we may perform n

2 comparisons between
pairs of lines. Since each comparison can be solved in O(n log n) time and O(n)
space following Lemma 1, it takes O(n2 log n) time at each parallel step, and
O(n2 log2 n) time overall.

However, we can improve it by the following slightly complicated algorithm.
That is, we compute the median xm of the x-coordinates of all the intersection
points of these n

2 pairs of lines in each parallel step, and call the counting sub-
routine at xm, which can answer half of the questions in O(n log n) time. For
the n

4 unresolved questions at the same step, we again find the median among
the n

4 x-coordinates and call the counting subroutine at the median, which can
answer half of these n

4 unresolved questions in O(n log n) time. Repeating the
above binary search process O(log n) times we can answer all n

2 comparisons in
O(n log2 n) time in each parallel step. We thus obtain an algorithm that runs in
O(n log3 n) time.

We can further improve O(n log3 n) to O(n log2 n) by using a technique due
to Cole [11] as follows. Instead of invoking O(log n) counting subroutine calls at
each parallel step to resolve all comparisons at this step, we call the counting
subroutine only a constant number of times. This of course does not resolve all
comparisons of this parallel step, but it does resolve a large fraction of them.
All the unresolved comparisons at this step will be deferred to the next parallel
step. Suppose that each of the unresolved comparisons can affect only a constant
number of comparisons executed at the next parallel step. Each parallel step is
now a mixture of many parallel steps. Cole shows that if it is implemented
carefully by assigning an appropriate time-dependent weight to each unresolved
comparison and choosing the weighted median at each step of the binary search,
the number of the parallel steps of the algorithm increases only by an additive
O(log n) steps. Since each of these steps uses only a constant number of counting
subroutine calls, the whole running time improves to O(n log2 n).

The final step to improve the sum selection algorithm from O(n log2 n) to
O(n log n) is to develop an approximate counting scheme. Note that the expen-
sive counting subroutine, Lemma 1, can be used not only to find If (L, s) for each
point s given by the sorting network but also to determine the relative ordering
of s and s∗ in O(n log n) time. Instead of invoking the expensive counting sub-
routines O(log n) times, we shall develop an approximate counting scheme, that
counts the number of inversions of desired permutations only approximately,
with an error that gets smaller and smaller as we get closer to the desired s∗.
The idea of the approximate counting scheme is to use an approximation algo-
rithm in O(n) time for each point s chosen by the sorting network. If the error
for the approximation algorithm is small enough, then we can decide the relative
ordering of s and s∗ directly. Otherwise, we will refine the approximation until
we can decide the relative ordering of s and s∗. It turns out that an amortized

Efficient Algorithms for the Sum Selection Problem 465

O(n log n) extra time is sufficient to refine approximations throughout the entire
course of the algorithm.

We first define an m-block left-compatible (resp. right-compatible) permuta-
tion πl(s) (resp. πr(s)) of permutation π(s) such that it satisfies I(πl(s)) ≤
I(π(s)) ≤ I(πl(s)) + mn (resp. I(πr(s)) − mn ≤ I(π(s)) ≤ I(πr(s))). Let
(σ(0), σ(1), . . . , σ(n)) denote the permutation of {0, 1, . . . , n} such that hσ(0),
hσ(1), . . . , hσ(n) are in the ascending vertical order, i.e. −sσ(0) ≤ −sσ(1) ≤ . . . ≤
−sσ(n). Let G0, G1, . . . , G n

m
be an m-block of H for some fixed size m, where

group Gi = {hσ(i·m), hσ(i·m+1), . . . , hσ(i·m+m−1)}. For any i, j, we say that vi

is greater than group Gj at s, denoted by vi(s) � Gj , if vi(s) = x − si >
hσ(j·m+m−1)(s) = −sσ(j·m+m−1) where hσ(j·m+m−1) is the largest element in
group Gj , and we say that vi is in group Gj at s, denoted by vi(s) � Gj , if
hσ((j−1)·m+m−1)(s) < vi(s) ≤ hσ(j·m+m−1)(s).

We define a permutation πl(s) (resp. πr(s)) as an m-block left-compatible
(resp. right-compatible) permutation of π(s) as follows: Given hσ(0), hσ(1), . . . ,
hσ(n) sorted in ascending σ-order, πl(s) and πr(s) will be obtained by inserting
vσ(i), i = 0, 1, . . . , n, one by one in between hσ(qi) and hσ(qi+1) for some qi such
that vσ(i)’s, i = 0, 1, . . . , n, are also in ascending σ-order. For each vσ(i) ∈ V , if
vσ(i)(s) � Gj for some j then we insert vσ(i) in between hσ((j−1)·m+m−1) and
hσ(j·m), where hσ((j−1)·m+m−1) is the largest element in group Gj−1 and hσ(j·m)
is the smallest element in group Gj . (resp. For each vσ(i) ∈ V , if vσ(i)(s) � Gj

for some j then we insert vσ(i) in between hσ(j·m+m−1) and hσ((j+1)·m), where
hσ(j·m+m−1) is the largest element in group Gj and hσ((j+1)·m) is the smallest
element in group Gj+1.) For example, the 2-block left-compatible permutation
πl(s) = (h5, h3, v5, h1, h0, v3, v1, h4, h2, v0, v4, v2) and right-compatible permuta-
tion πr(s) = (h5, h3, h1, h0, v5, h4, h2, v3, v1, v0, v4, v2) in Figure 1. Therefore, we
have

I(πl(s)) ≤ I(π(s)) ≤ I(πl(s)) + mn, If (πl(s)) ≤ If (π(s)) ≤ If (πl(s)) + mn.

I(πr(s)) − mn ≤ I(π(s)) ≤ I(πr(s)), If (πr(s)) − mn ≤ If (π(s)) ≤ If (πr(s)).

Thus, we see that maintaining left-compatible (right-compatible) permuta-
tion with π(s) gives a good approximation on the number of inversions of the
permutation: the smaller the block size m, the finer the approximation.

We now give an O(n log n) algorithm for the Sum Selection Problem as
follows. We will first sketch the algorithm and then explain and analyze it in
detail in subsequent paragraphs. We assume, for simplicity, that n = 2g for
some integer g and the fractions in this algorithm are integers taken by floor or
ceiling functions. We define sign(s) to be 1 if s is a positive real number, 0 if s is
zero and −1 if s is a negative real number. The algorithm maintains an interval
(sl, sr) containing s∗, an ml-block left-compatible permutation πl(sl) at sl and
an mr-block right-compatible permutation πr(sr) at sr such that they satisfy
invariant conditions (I1) and (I2). An example of an interval (sl, sr) containing
s∗ is shown in Figure 2.

466 T.-C. Lin and D.T. Lee

(I1) If (πl(sl)) + mln ≤ If (π(s∗)) ≤ If (πr(sr)) − mrn.

(I2) If (πr(sr)) − 2mrn ≤ If (π(s∗)) ≤ If (πl(sl)) + 2mln.

(I1) means that s∗ lies within the interval (sl, sr). Since If (π(sl)) ≤ If (πl(sl))+
mln ≤ If (π(s∗)) ≤ If (πr(sr)) − mrn ≤ If (π(sr)), we have sl ≤ s∗ ≤ sr. (I2)
means that the left-compatible and right-compatible permutations are no finer
than needed.

If (πl(sl))
s∗sl sr

If (πr(sr))If (πr(sr)) − 2nmr If (πr(sr)) − nmr

If (πl(sl)) + nml If (πl(sl)) + 2nml

Fig. 2. The sum selection algorithm maintains an interval (sl, sr) containing s∗ satis-
fying invariant conditions (I1) and (I2)

If k < n, then we can solve the sum selection problem by using the al-
gorithm due to Cheng et al. [8]. Let us assume k ≥ n in the following. To
initialize the algorithm we set ml = k

n , sl = −∞, πl(sl) = (vσ(0), vσ(1), . . . ,

vσ(n), hσ(0), hσ(1), . . . , hσ(n)), If (πl(sl)) = 0, mr = (n−1)
4 − k

2n , sr = ∞, πr(sr) =
(hσ(0), hσ(1), . . . , hσ(n), vσ(0), vσ(1), . . . , vσ(n)), If (πr(sr)) = n(n−1)

2 and If (π(s∗))
= k. It is easy to check that this initial condition satisfies (I1) and (I2).

After coming in a new point s from AKS network combining Cole’s technique,
we will decide an interval, called winning interval, which contains s∗ between
(sl, s) and (s, sr) and maintain invariant conditions (I1) and (I2) for the win-
ning interval. In order to decide the winning interval and maintain (I1) and
(I2), we need the following four subroutines, each costing O(n) time. The left
reblocking subroutine allows us to construct an ml-block left-compatible per-
mutation πl(s) at s when If (πl(sl)) + 2mln ≥ If (πl(s)) holds. We will show
later that if If (πl(sl)) + 2mln < If (πl(s)) then (s, sr) can not be the win-
ning interval so we don’t need to construct πl(s). The right reblocking subrou-
tine allows us to construct an mr-block right-compatible permutation πr(s) at
s when If (πr(s)) ≥ If (πr(sr)) − 2mrn holds. We will also show later that if
If (πr(s)) < If (πr(sr)) − 2mrn then (sl, s) can not be the winning interval so
we don’t need to construct πr(s). The left halving subroutine is to construct a
ml

2 -block left-compatible permutation πl(s) at s. The right halving subroutine
is to construct a mr

2 -block right-compatible πr(s) at s.
After coming in a new point s, we first do left reblocking ml and right re-

blocking mr at s to construct πl(s) and πr(s) respectively. It divides into three
cases: For the case 1: If If (πl(sl)) + 2mln < If (πl(s)) then (sl, s) will be the
winning interval. But if the winning interval (sl, s) doesn’t satisfy (I1) and (I2),
then we will do the right halving mr

21 , mr

22 , . . . until mr

2t such that (I1) and (I2)
hold for (sl, s). For the case 2: If If (πr(s)) < If (πr(sr))− 2mrn then (s, sr) will

Efficient Algorithms for the Sum Selection Problem 467

be the winning interval. But if the winning interval (s, sr) doesn’t satisfy (I1)
and (I2), then we will do the left halving ml

21 , ml

22 , . . . until ml

2t such that (I1)
and (I2) hold for (s, sr). For the case 3: If If (πl(sl)) + 2mln ≥ If (πl(s)) and
If (πr(s)) ≥ If (πr(sr)) − 2mrn then we can not decide the winning interval yet.
We will do the left halving and the right halving interleavingly ml

21 , mr

21 , . . . until
ml

2t (mr

2t) such that (I1) and (I2) hold, then (s, sr) ((sl, s)) will be the winning
interval and it satisfies (I1) and (I2) automatically.

After deciding the winning interval, we can decide the relative order of s and
s∗. Therefore, we can answer the comparison question at s and the relevant
si’s of which s was the weighted median such that sign(s − si) = sign(s∗ − s).
Then another new point will come in and repeat above procedure again. The
algorithm will continue above procedure to make approximations until ml <
10 and mr < 10. When ml < 10 and mr < 10, we know that the winning
interval (sl, sr) will contain s∗ and O(n) feasible intersection points. Let k

′
be

the total number of feasible intersection points in (−∞, sl] which can be obtained
by the counting subroutine in Lemma 1. Then, we can enumerate all feasible
intersection points in the winning interval (sl, sr) in O(n log n + n) = O(n log n)
time by the enumerating subroutine in Lemma 2, and select from those feasible
intersection points the (k − k

′
)-th feasible intersection point with sum s∗ by

using any standard selection algorithm in O(n) time. If after the algorithm ends
we have either ml ≥ 10 or mr ≥ 10, at this moment we have solved the unusual
sorting problem to obtain π(s∗) without knowing the value of s∗. Therefore, we
can obtain s∗ = max{xπ(s∗)[i]π(s∗)[i+1]}.

Lemma 2. ([14], Lemma 1) Given a sequence A of n real numbers a1, a2, . . . , an

and two real numbers s�, sr with s� ≤ sr, it costs O(n) space and O(n log n + h)
time, where h is the output size, to find all segments A(i, j), 1 ≤ i ≤ j ≤ n, among
all n(n−1)

2 segments such that their sums s(i, j) satisfy s� ≤ s(i, j) ≤ sr.

We now develop the left reblocking, right reblocking, left halving and right
halving subroutines and then explain the algorithm and analyze its complex-
ity in detail. We develop left reblocking subroutine as an example since the
right reblocking subroutine can be done similarly. The left reblocking subrou-
tine will either construct an ml-block left-compatible permutation πl(s) when
If (πl(s)) − If (πl(sl)) ≤ 2mln holds or output ”fail” otherwise. Given an ml-
block left-compatible permutation πl(sl), the left reblocking subroutine is to
find the ml-block left-compatible permutation πl(s) at s for some s > sl only
if If (πl(s)) − If (πl(sl)) ≤ 2mln. At the beginning of the subroutine we just
know s > sl, but we don’t know whether If (πl(s)) − If (πl(sl)) is greater than
2mln or not. But once we found that If (πl(s)) − If (πl(sl)) > 2mln during run-
ning the left reblocking subroutine, we will halt the subroutine immediately and
output ”fail”. Assume that we have had an ml-block G1, G2, . . . , G n

ml
of H , an

ml-block left-compatible permutation πl(sl) and If (πl(sl)) and maintained an
array dl[i] = j at sl such that vi(sl) � Gj for each i, we want to find an ml-block
left-compatible permutation πl(s) and If (πl(s)) and maintain an array dl[i] = j
at s such that vi(s) � Gj for each i. Let us process the lines of L one by one

468 T.-C. Lin and D.T. Lee

according the order v0, h0, v1, h1, . . . , vn, hn to construct πl(s) at s. Initially we
set If (πl(s)) to be If (πl(sl)) and current size c[j] = 0 for each group Gj , where
c[j] denotes the total number of lines in Gj processed so far. While processing vi

we will do the following steps until vi(s) � Gdl[i]. If vi(s) � Gdl[i], then If (πl(s))
is increased by c[dl[i]] and dl[i] is increased by 1. While processing hi, if it is in
group Gj then the current size c[j] in group Gj is increased by 1. A detailed
description of the left reblocking subroutine is shown in the pseudo code. The
whole procedure can be done in O(n) time if If (πl(s)) − If (πl(sl)) ≤ 2mln.
This can be easily seen by the fact that the total processing time is proportional
to the number of times each vi steps up the groups. But doing so increases
rank ml, and we know that there are at most 2mln rank between I(πl(s)) and
I(πl(sl)). Therefore, going up the groups cannot happen more than O(n) times.
And once we have found that If (πl(s)) − If (πl(sl)) > 2mln, we will halt the
subroutine immediately and output ”fail”. Therefore, it also costs O(n) time if
If (πl(s)) − If (πl(sl)) > 2mln. Thus we have Lemma 3.

Lemma 3. (Reblocking) Given an ml-block left-compatible permutation πl(sl)
with approximation rank If (πl(sl)), we can compute in O(n) time an ml-block
left-compatible permutation πl(s) with approximation rank If (πl(s)) for any s >
sl when If (πl(s)) − If (πl(sl)) ≤ 2mln holds.

Subroutine LeftReblocking(s, sl, ml, dl[·]).
Input: An ml-block left-compatible permutation πl(sl)
Output: An ml-block left-compatible permutation πl(s)

1. for i = 0 to n do t[i] ← dl[i];
2. If (πl(s)) ← If (πl(sl)); g ← 0;
3. for i = 0 to n

ml
do c[i] ← 0;

4. for i = 0 to n do
5. while vi(s) � Gt[i]
6. If (πl(s)) ← If (πl(s)) + c[t[i]]; g = g + ml; t[i] ← t[i] + 1;
7. if g > 2mln then return fail;
8. if hi(s) is in group Gj then c[j] ← c[j] + 1;
9. for i = 0 to n

ml
do insert hσ(i·ml), hσ(i·ml+1), . . . , hσ(i·ml+ml−1) one by one

into list B[i];
10. for i = 0 to n do insert vσ(i) into list B[t[i] − 1];
11. Concatenate the lists B[0], B[1], . . . , B[n

ml
] to obtain πl(s);

12. for i = 0 to n do dl[i] ← t[i];
13. return πl(s);

We develop the left halving subroutine as an example as follows. Given an ml-
block left-compatible permutation πl(s), the left halving subroutine is to find an
ml

2 -block left-compatible permutation πl(s). Assume that we have had an ml-
block G1, G2, . . . , G n

ml
of H , an ml-block left-compatible permutation πl(s) and

If (πl(s)) and maintained an array dl[i] = j at s such that vi(s) � Gj for each i,
we want to find a ml

2 -block left-compatible permutation πl(s) and If (πl(s)) and
maintain the array dl[i] at s for each i.

Efficient Algorithms for the Sum Selection Problem 469

Let G
′
1, G

′
2, . . . , G

′
2n
ml

be a ml

2 -block of H . Let us process the lines of L one by

one according the order v0, h0, v1, h1, . . . , vn, hn to construct an ml

2 -block left-
compatible permutation πl(s) at s. It is easy to see that vi is either in the group
G

′
2dl[i]

or G
′
2dl[i]+1. Initially we set dl[i] to be 2dl[i] for each i, and current size

c[j] = 0 for each group G
′
j , where c[j] denotes the total number of lines in G

′
j

processed so far. While processing vi, if vi(s) � G
′
dl[i], then If (πl(s)) is increased

by c[dl[i]] and dl[i] is increased by 1. While processing hi, if it is in group G
′
j

then the current size c[j] of group G
′
j is increased by 1. A detailed description

of the left halving subroutine is shown in the pseudo code. The whole procedure
can be done in O(n) time since each vi steps up at most one group. Thus we
have Lemma 4.

Lemma 4. (Halving) Given an ml-block left-compatible permutation πl(s) with
approximation rank If (πl(s)) for some s, we can compute in O(n) time a ml

2 -
block left-compatible permutation πl(s) with approximation rank If (πl(s)).

Subroutine LeftHalving(s, ml, dl[·]).
Input: An ml-block left-compatible permutation πl(s)
Output: A ml

2 -block left-compatible permutation πl(s)

1. m
′
l ← ml

2 ;
2. for i = 0 to n do dl[i] ← 2dl[i];
3. for i = 0 to n

m
′
l

do c[i] ← 0;
4. for i = 0 to n
5. if vi(s) � G

′
dl[i]

then If (πl(s)) ← If (πl(s)) + c[dl[i]]; dl[i] ← dl[i] + 1;
6. if hi is in group G

′
j then c[j] ← c[j] + 1;

7. for i = 0 to n
m

′
l

do insert hσ(i·m′
l)

, hσ(i·m′
l+1), . . . , hσ(i·m′

l+m
′
l−1) one by one

into list B[i];
8. for i = 0 to n do insert vσ(i) into list B[dl[i] − 1];
9. Concatenate the lists B[0], B[1], . . . , B[n

m
′
l

] to obtain πl(s);

10. return πl(s);

We now explain the algorithm and analyze its complexity. After coming in a
new point s from sorting network, we first do left reblocking ml and right reblock-
ing mr at s. If left blocking fails, we have If (π(s)) > If (πl(s)) > If (πl(sl)) +
2mln > If (s∗). It implies s > s∗. Therefore, we can decide (sl, s) to be the win-
ning interval. But mr may not be small enough such that (sl, s) satisfies (I1) and
(I2). If so, we do right halving at s until both (I1) and (I2) hold. Similarly, if
right blocking fails, we have If (π(s)) < If (πr(s)) < If (πr(sr))−2mrn < If (s∗).
It implies s < s∗. Therefore, we can decide (s, sr) to be the winning interval.
But ml may not be small enough such that (s, sr) satisfies (I1) and (I2). If
so, we do left halving at s until both (I1) and (I2) hold. If both left blocking
and right blocking don’t fail then we have If (πl(sl)) + 2mln ≥ If (πl(s)) and
If (πr(s)) ≥ If (πr(sr)) − 2mrn. It means that both ml and mr are not fine
enough to decide the winning interval, so we can not decide the winning interval

470 T.-C. Lin and D.T. Lee

yet. We will do left halving and right halving at s interleavingly ml

21 , mr

21 , . . .
until ml

2t (mr

2t) such that both (I1) and (I2) hold, then (s, sr) ((sl, s)) will be the
winning interval and it will satisfy (I1) and (I2) automatically. After deciding
the winning interval, we can decide the relative order of s and s∗. Therefore, we
can answer the comparison question at s and the relevant si’s of which s was
the weighted median such that sign(s − si) = sign(s∗ − s). Then another new
point will come in and repeat above procedure again.

Since our sorting network is an AKS sorting network combining Cole’s tech-
nique, the algorithm will invoke O(1) left blocking and right blocking subroutines
at each parallel step to resolve all comparisons at this step, each costing O(n),
it totally costs O(n) time at each step. The sorting network has depth O(log n),
each parallel step requires O(n), so the algorithm totally costs O(n log n) time
to do left blocking and right blocking. But during the execution of the algorithm
the approximation sometimes is not small enough to distinguish the relative or-
dering of s and s∗, we will refine the approximation until we can decide relative
ordering of s and s∗. The algorithm will at most invoke O(log n) left halving
and right halving subroutines, each costing O(n). It turns out that an amortized
O(n log n) extra time will be done to refine approximations throughout the en-
tire course of the algorithm. The correctness of this algorithm follows from the
above discussion. Thus, we conclude with the following theorem.

Theorem 1. The Sum Selection Problem can be solved in O(n) space and
O(n log n) time.

The complete pseudo code of the algorithm follows.

Algorithm Sum Selection Problem.
Input: A set of lines L = H ∪ V = {h0, v0, h1, v1, . . . , hn, vn} in R2, where
hi : y = −si and vj : y = x − sj .
Output: The feasible intersection pt. pi∗j∗ = (xi∗j∗ , yi∗j∗) s.t. r(xi∗j∗ , Xf) = k.

1. ml ← k
n ; sl ← −∞; πl(sl) ← (vσ(0), vσ(1), . . . , vσ(n), hσ(0), hσ(1), . . . , hσ(n));

2. mr ← (n−1)
4 − k

2n ; sr ← ∞; πr(sr) ← (hσ(0), hσ(1), . . . , hσ(n), vσ(0),
vσ(1), . . . , vσ(n));

3. for i = 0 to n do dl[i] ← 0; dr[i] ← 0;
4. while ml > 10 or mr > 10
5. get next s from AKS network
6. if s is not in (sl, sr)
7. then resolve s and the relevant si’s such that sign(s−si) = sign(s∗−s);
8. else
9. for i = 0 to n do tl[i] ← dl[i]; tr[i] ← dr[i];

10. m
′
l ← ml; m

′
r ← mr;

11. πl(s) ← LeftBlocking(s, sl, m
′
l, tl[·]);

12. πr(s) ← RightBlocking(s, sr, m
′
r, tr[·]);

13. if LeftBlocking subroutine outputs ”fail”
14. then

Efficient Algorithms for the Sum Selection Problem 471

15. if (sl, s) doesn’t satisfy (I1) and (I2)

16. then do πr(s) ← RightHalving(s, m
′
r, tr[·]); m

′
r ← m

′
r

2 ; until
(I1), (I2) hold

17. if RightBlocking subroutine outputs ”fail”
18. then
19. if (s, sr) doesn’t satisfy (I1) and (I2)

20. then do πl(s) ← LeftHalving(s, m
′
l, tl[·]); m

′
l ← m

′
l

2 ; until (I1),
(I2) hold

21. if LeftBlocking and RightBlocking subroutines don’t output ”fail”
22. then do
23. πl(s) ← LeftHalving(s, m

′
l, tl[·]); m

′
l ← m

′
l

2 ;

24. πr(s) ← RightHalving(s, m
′
r, tr[·]); m

′
r ← m

′
r

2 ;
25. until (sl, s) satisfies (I1) and (I2) or (s, sr) satisfies (I1) and (I2)
26. if (s, sr) satisfies (I1) and (I2)
27. then sl ← s; ml ← m

′
l; dl[·] ← tl[·]; resolve s and the relevant si’s

such that sign(s − si) = sign(s∗ − s)
28. else sr ← s; mr ← m

′
r; dr[·] ← tr[·]; resolve s and the relevant si’s

such that sign(s − si) = sign(s∗ − s)
29. if ml ≤ 10 and mr ≤ 10
30. then
31. k

′ ← total number of feasible points in (−∞, sl] by Lemma 1
32. S ← the set of all feasible points in (sl, sr) by Lemma 2
33. return s∗ ← (k − k

′
)-th element in S by any optimal selection alg.

34. return s∗ ← max{xπ(s∗)[i]π(s∗)[i+1]}

3 Algorithm for k Maximum Sums Problem

After obtaining the algorithm for the Sum Selection Problem, we can use it
to obtain the algorithm for k Maximum Sums Problem directly. We have the
following result.

Theorem 2. The k Maximum Sums Problem can be solved in O(n) space
and O(n log n + k) time.

Proof. Let � = n(n−1)
2 − k + 1 and r = n(n−1)

2 . We can run the algorithm of
the Sum Selection Problem to obtain the �-th smallest segment s� and r-th
smallest segment sr respectively in O(n log n) time and then we can enumer-
ate them by the enumerating subroutine Lemma 2 in the interval [s�, sr] in
O(n log n + k) time.

4 Conclusion

In the paper we have presented an algorithm for the Sum Selection Problem
that runs in O(n log n) time. We then use it to give a more efficient algorithm
for the k Maximum Sums Problem that runs in O(n log n + k) time. It is

472 T.-C. Lin and D.T. Lee

better than the previously best known result for the problem, but whether or
not one can prove a Ω(n log n) lower bound for the Sum Selection Problem
is of great interest.

References

1. Agrawal, R., Imielinski, T. Swami, A. Data mining using two-dimensional opti-
mized association rules: scheme, algorithms, and visualization. Proceedings of the
1993 ACM SIGMOD international conference on management of data, 207-216,
1993.

2. M. Ajtai, J. Komlós, E. Szemerédi. An O(n log n) sorting networks. Combinatorica,
3:1–19, 1983.

3. Alk, S., Guenther, G. Application of broadcasting with selective reduction to the
maximal sum subsegment problem. International journal of high speed computat-
ing, 3:107-119, 1991.

4. Bae, S. E., Takaoka, T. Algorithms for the problem of k maximum sums and a VLSI
algorithm for the k maximum subarrays problem. 2004 International Symposium
on Parallel Architectures, Algorithms and Networks, 247-253, 2004.

5. Bengtsson, F., Chen, J. Efficient Algorithms for K Maximum Sums. Algorithms
and Computation, 15th International Symposium, ISAAC 2004, 137-148.

6. Bentley, J. Programming perals: algorithm design techniques. Commun. ACM, 27,
9:865-873, 1984.

7. Bentley, J. Programming perals: algorithm design techniques. Commun. ACM, 27,
11:1087-1092, 1984.

8. Chih-Huai Cheng, Kuan-Yu Chen, Wen-Chin Tien, and Kun-Mao Chao Improved
Algorithms for the k Maximum-Sums Problems. Algorithms and Computation,
16th International Symposium, ISAAC 2005.

9. H. Brönnimann, B. Chazelle. Optimal slope selection via cuttings. Computational
Geometry, 10:23–29, 1998.

10. R. Cole, J. S. Salowe, W. L. Steiger, and E. Szemeredi. An optimal-time algorithm
for slope selection. SIAM Journal on Computing, 18(4):792–810, 1989.

11. R. Cole. Slowing down sorign networks to obtain faster sorting algorithm. Journal
of the Association for Computing Machinery, Vol. 34, No. 1:200–208, 1987.

12. Fukuda, T., Morimoto, Y., Morishita, S. Tokuyama, T. Mining association rules
between sets of items in large databases. Proceedings of the 1996 ACM SIGMOD
international conference on management of data, 13-23, 1996.

13. Gries, D. A note on the standard strategy for developing loop invariants and loops.
Science of Computer Programming, 2:207-214, 1982.

14. Tien-Ching Lin, D. T. Lee Randomized algorithm for the Sum Selection Problem.
Algorithms and Computation, 16th International Symposium, ISAAC 2005, 515-
523.

15. N. Megiddo. Applying parallel computation algorithms in the design of serial
algorithm. Journal of the Association for Computing Machinery, Vol. 30, No.
4:852–865, 1983.

16. Perumalla, K., Deo, N. Parallel algorithms for maximum subsequence and maxi-
mum subarray. Parallel Processing Letters, 5:367-373, 1995.

17. Qiu, K., Alk, S. Parallel maximum sum algorithms on interconnection networks.
Technical Report No. 99-431, Jodrey School of Computer Science, Acadia Univer-
sity, Canada, 1999.

Efficient Algorithms for the Sum Selection Problem 473

18. Smith, D. Applications of a strategy for designing divide-and-conquer algorithms.
Science of Computer Programming, 8:213-229, 1987.

19. Tamaki, H., Tokuyama, T. Algorithms for the maximum subarray problem based
on matrix multiplication. Proceedings of the ninth annual ACM-SIAM symposium
on Discrete algorithms, 446-452, 1998.

20. Takaoka, T. Efficient algorithms for the maximum dubarray problem by fistance
matrix multiplication. Proceedings of the 2002 australian theory symposium, 189-
198, 2002.

Deterministic Random Walks

on the Two-Dimensional Grid

Benjamin Doerr and Tobias Friedrich

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Deterministic and randomized balancing schemes are used
to distribute workload evenly in networks. In this paper, we compare
two very general ones: The random walk and the (deterministic) Propp
machine. Roughly speaking, we show that on the two-dimensional grid,
the Propp machine always has the same number of tokens on a node
as does the random walk in expectation, apart from an additive error
of less than eight. This constant is independent of the total number of
tokens and the runtime of the two processes. However, we also show that
it makes a difference whether the Propp machine serves the neighbors in
a circular or non-circular order.

1 Introduction

Given an arbitrary graph, a random walk is a path which begins at a given
starting point and chooses the next node from the set of its current neighbors
uniformly at random. Random walks have been used to model a wide variety
of processes in economics (share prices), physics (Brownian motion of molecules
in gases and liquids), medicine (cascades of neurons firing in the brain), and
mathematics (estimations and modeling of gambling). In computer science, they
are the heart of many randomized algorithms.

Jim Propp suggested the following quasirandom analogue to the random walk.
The study of quasirandom approaches is motivated by the experience that in
many applications they proved to be superior to random ones. Propp’s rotor-
router model, which we prefer to call Propp machine, is a simple deterministic
process. Each vertex is equipped with a “rotor” which points to one of its neigh-
bors. Instead of leaving a vertex in a random direction, the Propp walk follows
the direction of the rotor. Afterwards, the rotor is updated to point to a new
neighbor. For this, it follows a fixed cyclic permutation of the adjacent vertices.

The rotors ensure a very high degree of fairness. If a Propp walk visits some
vertex v exactly k times, then for each neighbor w of v it does the passage
v → w either �k/ deg(v)� or �k/ deg(v)� times. While in the random walk all
these numbers are k/ deg(v) in expectation, with high probability they deviate
from that by Θ(

√
k/ deg(v)). Therefore, in this respect the Propp machine is a

better simulation for the “expected random walk” than the random walk itself.
The Propp machine found considerable attention recently [2, 3, 5, 6]. In this

paper, we compare the two models with respect to their balancing behavior,

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 474–483, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Deterministic Random Walks on the Two-Dimensional Grid 475

another well-known application of random walks in computer science. In this
setting, each vertex holds a number of chips. These chips simultaneously and
in a synchronized manner perform a walk (random or Propp, depending on
the model). Clearly, we expect both model to reduce imbalances between the
occupation of vertices in each time step. As an idealized balancing scheme, we
also regard the linear machine. Here, we allow fractional chips, and in each time
step each vertex sends out exactly the same number (possibly non-integral) of
chips to each neighbor. Clearly, the linear machine describes what the random
walk does in expectation.

A well-studied problem is balancing the workload in a massively parallel com-
puter or distributed network [9]. Each node/processor initially has a collection
of tasks and the object is to balance the number of tasks at each node by moving
them to neighboring nodes. Hence, processors are modeled as vertices of an undi-
rected connected graph and links between them as edges. Jobs are modeled as
unit-size tokens. There are two models prevalent in the literature: the dimension
exchange and the diffusion paradigm. In both models each node’s decisions are
based only on local knowledge.

The intuition behind diffusion is that the number of tokens a processor sends
to its neighbor is proportional to the differential between the two processors and
some constant depending on the connecting edge [4]. A standard choice for these
constants is uniform diffusion, in which each processor simply averages the loads
of its neighbors at each step. This is usually modeled by allowing fractional
tasks and ignoring the roundings to whole tasks at each local balancing step.
However, the resulting deviations can become quite large, as was shown in [8].
To quantify the deviation between the fractional problem and the (real-world)
integer problem is an important step in understanding diffusive load-balancing.

Dimension exchange refers to (periodic) balancing circuits [7]. This model is
particularly suited to single-port architectures, where processors can only com-
municate with one of its d neighbors at a time. It decomposes the network in
a sequence M1, . . . , Md of perfect matchings and adds a balancer at each edge.
The balancer is a simple toggling device pointing to one of the incident nodes.
Its purpose is to balance the flow of chips along the wires. Each balancing round
consists of d steps, one for each matching. In step k, two nodes i, j which are
matched in Mk balance their loads xi, xj as closely as possible, i.e., their loads
become �xi+xj

2 � and �xi+xj

2 � with the excess chip following the balancer of the
edge {i, j}.

Both models raise the question how well such quasirandom approaches sim-
ulate the random one, in particular, how close they get to the idealized linear
approach (the random approach “in expectation”).

In order to stick not too closely to a particular workload balancing approach
for a particular distributed network, we analyze what we think is a sufficiently
general but simple model. We compare the classical random walk (respectively
the linear machine describing its expectation) with the Propp machine. Hence
we do not have weights attached to the edges. As underlying graph we choose
the two-dimensional infinite grid. Clearly, infinity is not a realistic assumption

476 B. Doerr and T. Friedrich

in a computer network setting. However, since in finite time chips can walk only
a finite distance, the behavior we detect also occurs on finite grids. Hence the
infinity assumption is rather used to get rid of some extra technicalities. Also,
we assume that our results can be extended to settings with weights attached
to the edges, as well as to other graph topologies or a setting where chips may
also stay on a vertex. We would like to stress that the focus of our research is
more fundamental than oriented to direct applicability. We do feel, however, that
the same questions for a particular balancing setting are highly relevant from
the view-point of application. Also, we are convinced that our methods can be
applied there in an analogous manner.

To measure the difference between the two models, we estimate the maximal
difference of the number of chips at any position and time in the Propp model
compared to the number in the linear model if both models start with the same
initial configuration. Apart from a technicality, which we defer to Section 2,
Cooper and Spencer [2] proved for all grids Z

d that this discrepancy can be
bounded by a constant cd, which only depends on the dimension. In particular,
cd is independent of the initial configuration, the runtime, and the cyclic permu-
tation of the cardinal directions (rotor sequence). For the graph being the infinite
path, Cooper et al. [3] showed that this constant is c1 ≈ 2.3. They further proved
that the discrepancy at the origin is maximized if each position sends exactly
one odd chip at a certain time in the direction of the origin.

In this paper, we continue this work and rigorously analyze the Propp machine
on the two-dimensional grid Z

2. In comparison to the one-dimensional case, a
number of new effects appear. In particular, the order in which the four neighbors
are served now makes a difference. We prove c2 ≈ 7.8 for circular (i.e., clockwise
or counterclockwise) rotor sequences and c2 ≈ 7.3 for all other rotor sequences.
This is the first paper which regards the influence of these rotor sequences. We
also precisely characterize the respective worst-case configurations. In particular,
we prove that the worst-case is already reached when each position sends at most
nine odd chips at at most three different times.

2 Preliminaries

To simplify the calculations, we rotate the grid by 45◦ and consider neighbors
in directions DIR :=

{
↗, ↘, ↙, ↖

}
. Note that by this, we only allow chips

on positions x =
(
x1
x2

)
with x1 ≡ x2 (mod 2). Since this model is isomorphic to

the standard two-dimensional grid model with neighbors {↑, →, ↓, ←}, our result
also holds for the standard model.

First, we fix some notation to describe chips on the grid. For x ∈ Z
2 and

t ∈ N0, x ∼ t denotes that x1 ≡ x2 ≡ t (mod 2) and x ∼ y denotes that
x1 ≡ x2 ≡ y1 ≡ y2 (mod 2). A position x is called “even” or “odd” if x ∼ 0 or
x ∼ 1, respectively. A configuration is called “even” or “odd” if all chips are at
an even or all at an odd positions, respectively.

As pointed out in the introduction, there is one limitation without which
neither the results of [2, 3] nor our results hold. Note that since Z

2 is a bipartite

Deterministic Random Walks on the Two-Dimensional Grid 477

graph, chips that start on even positions never mix with those starting on odd
positions. It looks like we are playing two games at once. However, this is not true,
because chips of different parity may affect each other through the rotors. Within
each game the number of chips send in the four directions is not balanced at each
position. One can cleverly arrange piles of off-parity chips to reorient rotors and
steer them away from random walk simulation. We therefore require the starting
configuration to have chips only on one parity. Without loss of generality, we
consider only even starting configurations.

A random walk on Z
2 can be described nicely by its probability density. By

H(x, t) we denote the probability that a chip from location x arrives at the origin
after t random steps (at time t) in a simple random walk. On a grid as defined
above, this is

H(x, t) = 4−t
(

t
(t+x1)/2

)(
t

(t+x2)/2

)

for x ∼ t and ‖x‖∞ ≤ t, and H(x, t) = 0 otherwise.
The order, in which the four neighbors in directions DIR are served, has a

significant impact on the discrepancy between Propp and linear machine. We
use the same rotor sequence for all positions and describe it by a cyclic function
NEXT : DIR → DIR. Implicitly in the following notations, we fix the rotor sequence
as well as the starting configuration. That is, the number of chips on vertices
and rotor directions. Let f(x, t) denote the number of chips and ARR(x, t) the
direction of the arrow at position x after t steps of the Propp machine. Note
that with this we can determine the resulting arrow after one Propp step via
ARR(x, t + 1) = NEXTf(x,t)

(
ARR(x, t)

)
.

Let E(x, t) denote the expected number of chips at location x after a random
walk of all chips for t steps. In the proofs, we also need the following mixed
notation. By E(x, t1, t2) we denote the expected number of chips at location x
after first performing t1 Propp and then t2 − t1 random walk steps.

3 Parity-Forcing Theorem

For a deterministic process like the Propp machine, it is obvious that the initial
configuration (that is, the position of each chip and the direction of each rotor),
determines all subsequent configurations. The following theorem shows a partial
converse, namely that (roughly speaking) we may prescribe the number of chips
modulo 4 on all vertices at all times and still find an initial configuration leading
to such a game. An analogous result for the one-dimensional Propp machine has
been shown in [3].

Theorem 1 (Parity-forcing Theorem). For any fixed rotor sequence, any
initial position of the arrows and any π : Z

2 × N0 → {0, 1, 2, 3} with π(x, t) = 0
for all x �∼ t, there is an initial even configuration f(x, 0), x ∈ Z

2 that results
in a game with f(x, t) ≡ π(x, t) (mod 4) for all x and t.

The proof is based on the observation that a pile of 4t chips splits evenly t times.
The details of this proof (and all proofs coming) are deferred to the full version
of this paper.

478 B. Doerr and T. Friedrich

4 The Basic Method

In this section we derive the main equations to compare Propp and linear ma-
chine based on the number of chips on a single vertex. We are interested in
bounding the discrepancies f(x, t) − E(x, t) for all vertices x and all times t.
Since we aim at bounds independent of the starting configuration, it suffices to
regard the vertex x = 0. With

E(0, 0, t) = E(0, t),
E(0, t, t) = f(0, t),

we get

f(0, t) − E(0, t) =
t−1∑

s=0

(E(0, s + 1, t) − E(0, s, t)) . (1)

By REM
(j)
s we denote the set of positions that are occupied by k chips with

k ≡ j (mod 4) at time s. Note that if a position contains four chips, then these
four chips behave identically on the Propp and linear machine. With this, we
obtain

E(0, s + 1, t) − E(0, s, t) (2)

=
∑

x∈REM
(1)
s

(
H(x + ARR(x, s), t − s − 1) − H(x, t − s)

)

+
∑

x∈REM
(2)
s

(
H(x + ARR(x, s), t − s − 1)

+H(x + NEXT(ARR(x, s)), t − s − 1)
−2H(x, t − s)

)

+
∑

x∈REM
(3)
s

(
H(x + ARR(x, s), t − s − 1)

+H(x + NEXT(ARR(x, s)), t − s − 1)
+H(x + NEXT2(ARR(x, s)), t − s − 1)
−3H(x, t − s)

)
.

We now regard single chips and define si(x) := min
{
u ≥ 0 | i <

∑u
t=0 f(x, t)

}

for all i ∈ N0, i.e., at time si(x) the location x is occupied by its i-th chip
(counting from 0). With

INF(x,A, t) := H(x + A, t − 1) − H(x, t)

for x ∼ t and INF(x,A, t) = 0 otherwise, we denote the influence of position x
with the arrow pointing to A at time t to the discrepancy between Propp and
linear machine. A simple calculation yields

INF(x,A, t) =
(
(A1x1 · A2x2)t−2 − (A1x1 + A2x2)t−1) H(x, t).

Deterministic Random Walks on the Two-Dimensional Grid 479

With these notations, Equations (1) and (2) give

f(0, T) − E(0, T) =
∑

x∈Z2

∑

i≥0

INF(x, NEXTi(ARR(x, 0)), T − si(x)). (3)

This is the main equation, which will be examined in the remainder. It shows
that the discrepancy is just the sum of the contributions

CON(x) :=
∑

i≥0

INF(x, NEXTi(ARR(x, 0)), T − si(x))

at all positions x. This is a very important observation since this allows us to
examine each position x separately.

5 The Modes of INF(x, A, t)

In the previous section, we expressed the discrepancy as a sum of certain influ-
ences INF(x,A, t). We now analyze INF(x,A, t). Let X ⊆ R. We call a mapping
f : X → R unimodal, if there is an m ∈ X such that f |x≤m as well as f |x≥m

are monotone. We call a mapping f : X → R bimodal, if there are m1, m2 ∈ X
such that f |x≤m1, f |m1≤x≤m2 , and f |m2≤x are monotone. We call a mapping
f : X → R strictly bimodal, if it is bimodal, but not unimodal.

Unimodal functions are popular in optimization and probability theory. The
probability H(x, t) that a chip from the origin arrives at location x at time t
in a simple random walk is unimodal in t. For our purposes it is important
that INF(x,A, t) is bimodal. To prove this, we need Descartes’ Rule of Signs,
which can be found in [1]. With this, we are now well equipped to characterize
INF(x,A, t) precisely.

Lemma 2. For all x and A, INF(x,A, t) is bimodal in t. It is strictly bimodal
in t if and only if (i) ‖x‖∞ > 6 and (ii) −A1x1 > A2x2 > (−A1x1 + 1)/2 or
−A2x2 > A1x1 > (−A2x2 + 1)/2.

We will also need the extrema of certain sums of INF’s. The following lemma
shows that

INF2(x,A(1),A(2), t) := INF(x,A(1), t) + INF(x,A(2), t)

has even nicer properties than INF itself. In particular, INF2(x,A(1),A(2), t) is
never strictly bimodal in t for A(1) �= A(2).

Lemma 3. For all x and A(1) �= A(2), INF2(x,A(1),A(2), t) is unimodal in t.

6 Worst-Case Behavior

In Section 4 we derived that for a fixed initial configuration, the single vertex
discrepancy is the sum of the contributions

CON(x) :=
∑

i≥0

INF(x, A(i), ti)

480 B. Doerr and T. Friedrich

of all positions x with A(i) := NEXTi(ARR(x, 0)) and ti := T − si(x). In this
section we determine for each rotor sequence and each position x the maximum
of CON(x) for all initial configurations. We denote this by MAXCON(x). Hence the
sum of all MAXCON(x) gives an upper bound for the single vertex discrepancy.
Due to the parity-forcing Theorem 1, there is also an initial configuration which
sends from all locations x (apart from multiples of four) exactly the number of
chips from x as the configurations with CON(x) = MAXCON(x). Thus, the upper
bound is tight:

f(0, T) − E(0, T) =
∑

x∈Z2

MAXCON(x). (4)

We now fix a rotor sequence and a position x and examine MAXCON(x). Lemmas 2
and 3 prove that INF(x,A, t) and INF(x,A(1), t)+ INF(x,A(2), t) are bimodal in t.
We observe that sending a chip in each direction at the same time does not
change CON(x). For all t we have

∑

A∈{↗,↘,↙,↖}
INF(x,A, t) = 0. (5)

This shows that all
∑

i INF(x,A(i), t) are bimodal in t. Since INF(x,A, 0) =
limt→∞ INF(x,A, t) = 0 for all A, each

∑
i INF(x,A(i), t) has at most two ex-

tremal times. The set of all extremal times of all
∑

i INF(x,A(i), t) can be defined
as follows.

EX(x) :=
⋃

A(1),A(2)∈{↗,↘,↙,↖}
maxt INF2(x,A(1),A(2),t)>0

argmax
t

INF2(x,A(1),A(2), t) ∪

⋃

A(1),A(2)∈{↗,↘,↙,↖}
mint INF2(x,A(1),A(2),t)<0

argmin
t

INF2(x,A(1),A(2), t)

with argmaxt f(t) := max{s | f(s) = maxt f(t)} and argmint f(t) :=
max{s | f(s) = mint f(t)}. Notice that

INF(x,A, t) = 1
2 INF2(x,A,A, t),

∑1
i=0 INF(x,A(i), t) = INF2(x,A(0),A(1), t), and

∑2
i=0 INF(x,A(i), t) = − 1

2 INF2(x,A(3),A(3), t).

Lemmas 2 and 3 imply |EX(x)| ≤ 7. By calculating the roots of the polynomials
p(x,A, t) and p(x,A(1), t) + p(x,A(2), t) given in Lemma 2, it is easy to deter-
mine EX(x). In Lemma 4 below we will show that there are configurations with
CON(x) = MAXCON(x) where chips are only send from x at times EX(x). This
proof is based on the following blocking argument.

A phase (of x) denotes a maximal period of time, in which all sums of
INF(x,A, t)’s are monotonic. That is, the upper and lower limit of a phase

Deterministic Random Walks on the Two-Dimensional Grid 481

is either an extremal time t ∈ EX(x), or 0, or T . Note that we can assume
T > max EX(x) and that the monotonicity is uniquely determined for all A in
each phase.

A block denotes four consecutive chips, at (possibly different) times tj , . . . , tj+3

send from x within one phase such that
∑j+k

i=j INF(x,A(i), t) is monotonically
increasing in t for all k ∈ {0, 1, 2}. By Equation (5), this is equivalent to∑j+3

i=j+k INF(x,A(i), t) being monotonically decreasing in t for all k ∈ {1, 2, 3}.
A block prefix denotes 0 ≤ � ≤ 3 consecutive chips at times tj , . . . , tj+�−1

send from x within one phase with
∑j+k

i=j INF(x,A(i), t) monotonically increasing
in t for all 0 ≤ k < �. A block suffix denotes 0 ≤ � ≤ 3 consecutive chips at
times tj , . . . , tj+�−1 send from x within one phase with

∑j+�−1
i=j+k INF(x,A(i), t)

monotonically decreasing in t for all 0 ≤ k < �.
To describe chips in a phase, we use → and ← to denote chips send in arrow

direction A(i) whose INF(x,A(i), t) is increasing or decreasing in t, respectively.
With this notation, there are four types of blocks: →←←←, →→←←, →→→←,
and →←→←. There are four important properties of blocks, which are shown
easily:

• For all blocks, there is a common time t with tj ≤ t ≤ tj+3 such that
∑j+3

i=j INF(x,Ai, ti) ≤
∑j+3

i=j INF(x,Ai, t) = 0. Hence, removing a block does
not decrease CON(x).

• For all block suffixes and prefixes, there is a common time t with tj ≤
t ≤ tj+�−1 such that

∑j+�−1
i=j INF(x,Ai, ti) ≤

∑j+�−1
i=j INF(x,Ai, t). Hence,

sending the � chips of a block suffix or prefix at a common time t instead at
times tj , . . . , tj+�−1 does not decrease CON(x).

• In each phase, the block type is uniquely determined by the monotonicity of
INF and INF2.

• Any sequence of chips sent within one phase, can be partitioned in a block
suffix, zero or more blocks, and a block prefix.

Lemma 4. There is an initial configuration with CON(x) = MAXCON(x) such
that there are only chips send from x at times EX(x).

Lemma 4 shows that configurations with CON(x) = MAXCON(x) that send a min-
imal number of chips, only send chips from x at times EX(x). With MAXCONt(x)
denoting the contribution at time t ∈ EX(x), we obtain

MAXCON(x) =
∑

t∈EX(x)

MAXCONt(x).

The following lemma proves that MAXCONt(x) is uniquely determined.

Lemma 5. MAXCONt(x) is uniquely determined by the monotonicity of INF and
INF2 in the two adjacent phases.

For all x we can now characterize exactly the configuration with CON(x) =
MAXCON(x) that sends the least number of chips. Note that by Equation (4),

482 B. Doerr and T. Friedrich

∑
x MAXCON(x) is not only an upper bound for the single vertex discrepancy

f(0, T) − E(0, T), but also a lower bound. With the help of a computer, it is
now easy to sum up over a large number of positions x and to calculate

∑

‖x‖∞≤800

MAXCON(x) ≈
{

7.831 for circular rotor sequences
7.285 for other rotor sequences.

Notice that these constants are just lower bounds for the single vertex dis-
crepancy. To prove that they are upper bounds as well, we have to bound
E :=

∑
‖x‖∞>800 CON(x). Equation (3) yields

E ≤
∑

‖x‖∞>800

(
∑

i≥0

−A
(i)
1 (x)

x1H(x, t − si(x))
t − si(x)

+

∑

i≥0

−A
(i)
2 (x)

x2H(x, t − si(x))
t − si(x)

+

∑

i≥0

A
(i)
1 (x)A(i)

2 (x)
x1x2H(x, t − si(x))

(t − si(x))2

)

(6)

for all times t ∈ N0. Note that, independent of the chosen rotor sequence, each
of the sequences (A(i)

1 (x))i≥0, (A(i)
2 (x))i≥0, and (A(i)

1 (x)A(i)
2 (x))i≥0 are either

strictly or in groups of two alternating. To bound the alternating sums of Equa-
tion (6), we need the following elementary fact.

Lemma 6. Let t0, . . . , tn ∈ X ⊆ R such that t0 ≤ . . . ≤ tn. Let f : X → R be
non-negative and unimodal. If A(i) is either strictly alternating or alternating in
groups of two, then

∣∣
∣
∣

n∑

i=0

A(i)f(ti)
∣∣
∣
∣ ≤ 2 max

x∈X
f(x).

The following lemma shows that (in contrast to INF) the three summands of
Equation (6) are indeed always unimodal.

Lemma 7. H(x, t)/t and H(x, t)/t2 are unimodal functions in t. Denote their
global maxima with tmax(x) and t′max(x), respectively. Then, (x2

1 + x2
2)/4 − 2 ≤

tmax(x) ≤ (x2
1 + x2

2)/4 + 1 and (x2
1 + x2

2)/6 − 1 ≤ t′max(x) ≤ (x2
1 + x2

2)/6 + 2.

By bounding the infinite sums with definite integrals, and applying Lemmas 6
and 7 we get E < 0.15, which finally proves

f(0, T) − E(0, T) ≈
{

7.8 for circular rotor sequences
7.3 for other rotor sequences.

Deterministic Random Walks on the Two-Dimensional Grid 483

References

[1] G. E. Collins and A. G. Akritas. Polynomial real root isolation using descarte’s rule
of signs. In SYMSAC ’76: Proceedings of the third ACM symposium on Symbolic
and algebraic computation, pp. 272–275, New York, NY, USA, 1976. ACM Press.

[2] J. Cooper and J. Spencer. Simulating a random walk with constant error. Combi-
natorics, Probability and Computing. (Also available at arXiv:math.CO/0402323).

[3] J. Cooper, B. Doerr, J. Spencer, and G. Tardos. Deterministic random walks. In
ANALCO’06: Proceedings of the Workshop on Analytic Algorithmics and Combi-
natorics, pp. 185–197, Philadelphia, PA, 2006. SIAM.

[4] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J.
Parallel Distrib. Comput., 7(2):279–301, 1989.

[5] M. Kleber. Goldbug Variations. The Mathematical Intelligencer, 27(1), 2005.
[6] L. Levine and Y. Peres. The rotor-router shape is spherical. The Mathematical

Intelligencer, 27(3):9–11, 2005.
[7] Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of markov chains and

the analysis of iterative load-balancing schemes. In FOCS’98: Proceedings of the
39th Annual Symposium on Foundations of Computer Science, pp. 694–705. IEEE
Computer Society, 1998.

[8] R. Subramanian and I. D. Scherson. An analysis of diffusive load-balancing. In
SPAA, pp. 220–225, New York, NY, USA, 1994. ACM Press.

[9] C.-Z. Xu, B. Monien, R. Lüling, and F. C. M. Lau. An analytical comparison of
nearest neighbor algorithms for load balancing in parallel computers. In IPPS, pp.
472–479. IEEE Computer Society, 1995.

Improving Time and Space Complexity for

Compressed Pattern Matching

Shirou Maruyama1, Hiromitsu Miyagawa1, and Hiroshi Sakamoto2

1 Graduate School of Computer Science and Systems Engineering
{s maruyama, miyagawa}@donald.ai.kyutech.ac.jp

2 Faculty of Computer Science and Systems Engineering
Kyushu Institute of Technology, Kawazu 680-4, Iizuka 820-8502, Japan

hiroshi@ai.kyutech.ac.jp

Abstract. The compressed pattern matching problem is to find all oc-
currences of a given pattern in a compressed text. In this paper an ef-
ficient grammar-based compression algorithm is presented for the com-
pressed pattern matching. The algorithm achieves the worst-case approx-
imation ratio O(g∗ log g∗ log n) for the optimum grammar size g∗ with an
input text of length n. This upper bound improves the complexity of the
compressed pattern matching problem to O(g∗ log g∗ log m+ n

m
+m2+r)

time and O(g∗ log g∗ log m + m2) space for any pattern shorter than m
and the number r of pattern occurrences.

1 Introduction

In this paper we propose a dictionary-based compression algorithm and using the
obtained upper bound of the compression ratio, we improve the time and space
complexity for the compressed pattern matching problem. We give the related
studies on the problem for our motivation.

The compressed pattern matching problem is to find all the occurrences of a
pattern in a compressed text without decoding. This problem was first presented
by Amir and Benson [1], and many algorithms were proposed by individual
compression methods. Farach and Thorup’s [5] algorithm on LZ77 compression
achieved O(n log2 N

n + m) time, where n is the compressed text size, N is the
original text length, and m is the pattern length. Amir et al. [2] proposed an
algorithm on LZW compression runs in O(n + m2) time and its experimental
results [8] reported that it is approximately twice faster than Agrep [26] searching
the original text. Their algorithm directly simulates the Knuth-Morris-Pratt
automaton [6] on the compressed text, and the method was extended to the
multiple pattern matching [8] in O(n + m2 + r) time, where m is the total
length of the patterns and r is the number of pattern occurrences. Navarro and
Raffinot [16] developed a technique for pattern matching which abstracts both
LZ77 and LZ78 and its implementation for LZW is in O(nm

w + m + r) time for
the machine word length w.

Kida et al. [7] proposed a general framework for the compressed pattern
matching called the collage system to represent a string by a pair of dictionary

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 484–493, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improving Time and Space Complexity for Compressed Pattern Matching 485

D and token sequence S of in D. This system is unifying almost dictionary-
based compression methods such as Lempel-Ziv family (LZ77, LZSS, LZ78,
LZW). These dictionary-based compression methods are represented by a class
of context-free grammar (CFG), called grammar-based compression by Kieffer
et al. [27,10,9]. Their idea is to build a small CFG G that produces the original
text uniquely. Then, we can consider that G encodes the text. Since the class of
grammar-based compression corresponds to a subclass of collage system, other
dictionary-based compression methods [12,17] are also encoded by the system.
Kida et al. [7] showed that the compressed pattern matching problem can be
solved in O(|D| + |S| +m2 + r) time and in O(|D| + m2) space, where |D| is the
size of dictionary and |S| is the length of the token sequence.

The pattern matching algorithm on collage system is fast in practice [7]. How-
ever the time/space complexity is dependent on the size of the dictionary D and
the token sequence S produced by the compression method, which maybe O(n)
in worst case. For example, it is known that the size of dictionary by LZW is
almost Ω(n) for input size n [14]. This difficulty is implicitly contained in all
results mentioned in the above, and this motivate us to ensure the efficiency of
our compressed pattern matching algorithm by improving the upper bound of
the complexity.

In order to improve the bounds, the most fundamental problem is to find a
smallest context-free grammar that generates the given text uniquely. The factor
g
g∗ is called the approximation ratio of an algorithm for the compressed grammar
size g and the optimum grammar size g∗. Lehman and Shelat [14] showed that
this problem is APX-hard, i.e., it is hard to approximate this problem within a
constant factor (see [3]). Their result also suggests that o(log n/ log log n) ratio
is computationally hard due to the relationship between the grammar-based
compression and the classical semi-numerical problem [11] consider to be hard.

The first O(log n)-approximation algorithm was developed by Charikar et
al. [4]. Their algorithm achieves the ratio O(log n

g∗
), where g∗ is the size of a

minimum deterministic CFG for an input. Independently, Rytter [19] presented
other O(log n

g∗
)-approximation algorithm that employs a suffix tree and the LZ-

factorization technique for strings. Sakamoto [20] also proposed a simple linear-
time algorithm based on Re-pair [12] and achieving ratio O(log n); Now this ratio
has been improved to O(log n

g∗).
The ratio O(log n

g∗
) achieved by these new algorithms is sufficiently small.

However, all these algorithms require Ω(n) space, and it prevents us to apply
the algorithms to huge texts, which is crucial to obtain a good compression ratio
in practice. On the other hand, Sakamoto et al. [21] proposed a space-saving
compression algorithm which guarantees at least O(log2 n) approximation ratio
within sub-linear space using a partial order on alphabetical symbols. Since the
technique requires no real special data structure, such as suffix tree or occurrence
frequency table, the space complexity is nearly equal to the total number of
created nonterminal symbols, each of which corresponds to a production rule in
Chomsky normal form.

486 S. Maruyama, H. Miyagawa, and H. Sakamoto

Our compression method is also based on the alphabetical order only. We
introduce three criteria to replace digrams in a string. The compression algorithm
achieves O(log g∗ log n) approximation ratio and O(g∗ log g∗) space as well as the
derivation tree generated by the grammar is balanced , i.e., any token symbol
encodes a sufficiently long substring, which is not obtained in [21] and enable us
the efficient pattern matching on the compressed text. Using these results, we
improve the results by Kida et al. [7] to O(g∗ log g∗ log m + n

m + m2 + r) time
and O(g∗ log g∗ log m + m2) space.

The remaining part of this paper is organized as follows. In Section 2, we
prepare the definitions related to the compressed pattern matching and the
grammar-based compression. The compression algorithm is presented in Sec-
tion 3 and we analyze the approximation ratio and estimate the space efficiency.
In the final section, we summarize this study.

2 Notions and Definitions

In this section we give the notations and definitions for strings, grammar-based
compression, and compressed pattern matchings.

2.1 Strings

We assume a finite alphabet Σ for the symbols forming input strings throughout
this paper. The set of all strings over Σ is denoted by Σ∗, and Σi denotes the
set of all strings of length just i. The length of a string w ∈ Σ∗ is denoted by
|w|, and also for a set S, the notion |S| refers to the cardinality of S.

Strings x and z are said to be a prefix and suffix of the string w = xyz,
respectively. They are said to be proper if it is not w itself. Also x, y, z are called
substrings of w. The ith symbol of w is denoted by w[i]. For an interval [i, j]
with 1 ≤ i ≤ j ≤ |w|, the substring of w from w[i] to w[j] is denoted by w[i, j].
The integer i is called an occurrence of the substring w[i, j] in w.

A repetition is a string xk for a symbol x and an integer k ≥ 2. A repetition
w[i, j] = xk is maximal if w[i − 1], w[j + 1] �= x. It is simply referred by x+ if the
length is unnecessary. Substrings w[i, j] and w[i′, j′] with i < i′ are overlapping
if i′ ≤ j < j′. A string of length two is called a pair .

2.2 Grammar-Based Compression

A context-free grammar (CFG) is a quadruple G = (Σ, N, D, s) of disjoint finite
alphabets Σ and N , a finite set (a dictionary) D ⊆ N × (N ∪ Σ)∗ of production
rules, and the start symbol s ∈ N . Symbols in N are called nonterminals . A
production rule a → b1 · · · · · bk in D derives β ∈ (Σ ∪ N)∗ from α ∈ (Σ ∪ N)∗

by replacing an occurrence of a ∈ N in α with b1 · · · · · bk. In this paper, we
assume that any CFG is deterministic, that is, for each nonterminal a ∈ N ,
exactly one production rule from a is in D. Thus, the language L(G) defined by
G is a singleton set. We say a CFG G derives w ∈ Σ∗ if L(G) = {w}. The size

Improving Time and Space Complexity for Compressed Pattern Matching 487

of G is the total length of strings in the right hand sides of all production rules,
and is denoted by |G|. The aim of grammar-based compression is formalized as
a combinatorial optimization problem, as follows:

Problem 1 Grammar-Based Compression
Instance: A string w ∈ Σ∗.
Solution: A deterministic CFG G that derives w.
Measure: The size of G.

From now on, we assume that every deterministic CFG is in Chomsky normal
form, i.e., the size of strings in the right-hand side of production rules is two,
and we use |N | for the size of a CFG. Note that for any CFG G there is an
equivalent CFG G′ in Chomsky normal form whose size is no more than 2 · |G|.

It is known that there is an important relation between a deterministic CFG
and the following factorization. The LZ-factorization LZ(w) of w is the decom-
position of w into f1 · · · · · fk, where f1 = w[1], and for each 1 < � ≤ k, f� is
the longest prefix of the suffix w[|f1 · · · f�−1| + 1, |w|] that appears in f1 · · · f�−1.
Each f� is called a factor . The size |LZ(w)| of LZ(w) is the number of its fac-
tors. The following result is used in the analysis of the approximation ratio of
our algorithm.

Theorem 1 ([19]). For any string w and its deterministic CFG G, the inequal-
ity |LZ(w)| ≤ |G| holds.

2.3 Compressed Pattern Matching

Let an input text w be represented by a deterministic CFG G = (Σ, N, D, s).
The grammar is denoted by (S, D) for short, where S is the string X1 · · · Xk

such that s → X1 · · · Xk ∈ D for the start symbol s. Each symbol Xi is called a
token and S is called the token sequence. The expression X.u denotes the string
in Σ∗ obtained by decoding the token X . As is mention in the above, any other
production is of the form X → Y Z for some X ∈ N and Y, Z ∈ Σ ∪N . For such
CFGs, the compressed pattern matching problem is defined as follows.

Problem 2 Compressed Pattern Matching
Instance: A CFG (S, D) for a text w ∈ Σ∗ and a pattern π ∈ Σ∗.
Solution: The positions of all occurrences of π in w.

For this problem, Kida et al. [7] developed the collage system unifying frame-
work of the compressed pattern matching: For a compressed text (S, D) and a
pattern π, the pattern matching algorithm outputs the required positions of π
by simulating Knuth-Morris-Pratt (KMP) automaton [6] for π without decod-
ing (S, D). They showed that the KMP automaton for π to the text S.u can be
simulated in linear time using O(|D| + |π|2) time preprocessing for D and π.

Theorem 2 ([7]). If any production is restricted to the form X → Y Z for
X ∈ N and X, Y ∈ Σ ∪ N , the problem of compressed pattern matching can be
solved in O(|D| + |S| + m2 + r) time and O(|D| + m2) space.

488 S. Maruyama, H. Miyagawa, and H. Sakamoto

In their result, the size |D| and |S| are dependent on the compression scheme.
For example, LZW compression is contained in the framework of collage system

but the lower bound of |D| for LZW is Ω(n
2
3

log n), which is almost equal to the
input size (See [14] for other bounds).

In this paper we present an algorithm which approximates the optimum com-
pression in nearly log-scale and we improve the size O(|D|) to O(g∗ log g∗ log n)
and the size O(|S|) to O(n

m) in Theorem 2. We then obtain our results in the
upper bounds for the time and space complexity for the compressed pattern
matching problem.

3 Compression Algorithm

In this section we introduce a compression algorithm for the grammar-based
compression problem and analyze its performance.

3.1 Key Idea

The task of the algorithm is only to replace a pair XY occurring in a current
string by a new symbol Z and generate a production Z → XY to D, where for
all occurrences of XY , different two productions are not generated. However, not
all occurrences of XY are replaced by Z. Thus, the key idea of the compression
algorithm is the decision rule for which pair should be replaced. Consequently,
the aim of this algorithm is to minimize the number of different nonterminals
generated. Here we explain the three decision rules for the replaced pairs.

The first rule (maximal repetition): If a current string contains a maximal
repetition w[i, j] = Xk (k ≥ 2), then w[i, i + 1] and w[j − 1, j] are replaced by a
same symbol, and w[i+2, j −2] is replaced recursively, where the middle symbol
of w is remained in case that |w| is odd. For example, for the maximal repetition
a5, its an occurrence is transformed to AaA by an appropriate nonterminal A
and the production A → aa is generated.

The second rule (minimal pair): We assume that all symbols in Σ ∪N have
a fixed partial order, that is, any symbol is represented by an integer. If a current
string contains a substring AiAjAk such that j < i, k, then the occurrence of Aj

is called minimal . The second decision rule is to replace all such pairs AjAk in
AiAjAk by an appropriate nonterminal.

In advance of the third decision rule, we explain the notion of the lowest
common ancestor defined on an index tree.

Definition 1. Let d be a positive integer and k = 	log2 d
. The index tree Td is
the rooted, ordered complete binary tree whose leaves are labeled with 1, . . . , 2k

from the left. The height of an internal node refers to the number of edges in a
path from the node to a descendant leaf. Then, the height of the lowest common
ancestor of leaves i, j is denoted by lca(i, j)d, or denoted by lca(i, j) for short.

Improving Time and Space Complexity for Compressed Pattern Matching 489

The third rule (maximal pair): For a fixed order of alphabet, let a current
string contain a substring Ai1Ai2Ai3Ai4 such that the integers are increasing or
decreasing order. If lca(i2, i3) > lca(i1, i2), lca(i3, i4), then the occurrence of the
middle pair Ai2Ai3 is called maximal . The third decision rule is to replace all
such pairs by an appropriate nonterminal.

We have explained the decision rule to replaced pairs in the current string.
However, we can not apply the three types of rules simultaneously since there
maybe a case that a pair w[i, i + 1] satisfies one of the first/second rule and the
overlapping pair w[i + 1, i + 2] satisfies the other. For example, the substring
a2a1a3a3a3 contains such overlapping pairs. So we apply the first, second, and
third rules in this order to hold the uniqueness of the replacement. Indeed, any
cases are not overlapping by this priority.

3.2 Compression Algorithm

Outline of algorithm: For a current token string S(initially the input), this
compression algorithm categorizes all pairs in S to the class of repetitions, max-
imal pairs, minimal pairs, and the others. These classes also define the priority
for the replacement in this order, where the left occurrence has the higher pri-
ority in a same class. According to the priority, the algorithm replaces all such
occurrences by appropriate nonterminals and updates the current token string
to the resulting string. The algorithm repeats the above process until there is
no expectation for compression, i.e., all pairs in the current token string are
mutually different. Then the final token string and dictionary are returned.

Theorem 3. The time complexity of the compression algorithm is O(|w|).

1: Input: a string w; (S = w, D = ∅)
2: Output: a deterministic CFG (S, D) for w;
3: for each maximal repetition in S do
4: replace the pairs in the repetition; /*first rule replacement*/
5: i = 1;
6: while(i < |S|) do /*second, third rule replacement*/
7: if S[i, i + 1] is minimal or maximal pair then
8: replace it, i = i + 2, update D;
9: else if S[i + 1, i + 2] is minimal or maximal pair then
10: replace it, i = i + 3, update D;
11: else replace S[i, i + 1], i = i + 2, update D;
12: update S to the replaced string;
13: goto line 3 until all pairs in S are different;
14: output (S,D);

Fig. 1. The compression algorithm

490 S. Maruyama, H. Miyagawa, and H. Sakamoto

Proof. Since the algorithm replaces at least one of three pairs w[i, i+1], w[i+1, i+
2], or w[i + 2, i + 3], the loop is repeated at most O(log |w|) times. Moreover,
for each iteration of the loop from line 3 to 13, the length of a token string
becomes at least 2

3 to the previous one. For each step, we can verify whether an
occurrence of a pair is repetition, maximal, or minimal in O(1) time1. Thus, the
compression algorithm runs in linear time. �

3.3 Performance Analysis

The approximation ratio of the compression algorithm is the upper bound of the
factor g

g∗
for the output grammar size g and the optimum solution size g∗. Next

we show that g
g∗

is smaller than O(log2 n).

Definition 2. Let w be a string and w[i, j] = α be an occurrence of a substring
α in w. We call w[i, j] a boundary occurrence if w[i−1] �= w[i] and w[j] �= w[j+1].

Definition 3. Let w be a current token sequence. Let R(i, j) be the set of
occurrences of pairs in w[i, j] such that they are replaced by the compression
algorithm at the first execution of line 3–13 for w.

Lemma 1. Let w[i1, j1] = w[i2, j2] be any occurrences of a substring α in w.
There exists an integer k ≤ log n such that R(i1 + k, j1 − k) = R(i2 + k, j2 − k).

Proof. We first show the case that w[i1, j1] and w[i2, j2] are not boundary. Then,
there is an interval [�, r] containing [i1, j1] such that w[�, r] = a+βb+, where α =
xβy for some repetition x of a and y of b. We can also assume w[�′, r′] = a+βb+

for some [�′, r′]. Since the replacement of a pair w[i, i + 1] depends on the three
pairs in w[i−1, i+2] only, the replacements for the two β in w[i1, j1] and w[i2, j2]
completely synchronize. Thus, the difference between R(i1, j1) and R(i2, j2) is
bounded for the replacements of x and y. A disagreement for x may happen only
if exactly one of the length of a+ in w[�, r] and w[�′, r′] is odd. In this case, exactly
one of w[i1, i1+1] and w[i2, i2+1] is replaced, so R(i1+k, j1−k) = R(i2+k, j2−k)
holds for at least k = 2.

We assume that w[i1, j1] and w[i2, j2] are boundary string. Let Σ be the
current alphabet containing all symbols generated. Here we consider the in-
dex tree T|Σ| such that any lca(i, j) is defined for the leaves i, j. If a string
α = a�1a�2 · · · a�m contains no repetition and minimal/maximal pair, then the
sequence �1, �2, . . . �m is monotonic, i.e., �1 < �2 < . . . < �m or �1 > �2 > . . . > �m

and lca(�1, �2), lca(�2, �3), . . . , lca(�m−1, �m) is monotonic. The length of such
string α is bounded by log |Σ|. Thus, a prefix of w[i1, j1] longer than log |Σ| con-
tains at least one of repetition, minimal, or maximal pair and the pair also ap-
pears in w[i2, j2] at the same position from the left, and their short suffixes have
one of repetition, minimal, or maximal pair at the same position. Thus, the re-
placements of w[i1, j1] and w[i2, j2] completely synchronize between such the left-
most and rightmost pairs. The case that one of w[i1, j1] and w[i2, j2] is boundary
1 We can get the lca of any two leaves i and j of complete binary trees by an xor

operation between binary numbers in O(1) time under our RAM model [6].

Improving Time and Space Complexity for Compressed Pattern Matching 491

and the other is not is similarly proved. Hence, R(i1+k, j1−k) = R(i2+k, j2−k)
for k = log |Σ| ≤ log n. �

Lemma 2. The worst-case approximation ratio g
g∗ is O(log g∗ log n), where g is

the output grammar size and g∗ is the minimum grammar size.

Proof. We estimate the number of different nonterminals produced by the com-
pression algorithm at a single loop. Let w1 · · · wm be the LZ-factorization of
the input string w. We denote by #(w) the number of different nonterminals
produced at a single loop. From the definition of LZ-factorization, any fac-
tor wi occurs in the prefix w1 · · · wi−1, or |wi| = 1. By lemma 1, any factor
wi and its leftmost occurrence are compressed into almost the same strings
αβγ and α′βγ′, such that |αγ|, |α′γ′| = O(log |Σ|). Thus, we can estimate
#(w) = #(w1 · · · wm−1) + O(log |Σ|) = O(m log |Σ|) = O(g∗ log |Σ|). This es-
timation can be applied to the occurrences of β until |β| < log |Σ| = O(log n).
Hence, O(g∗ log n) is the maximum number of different nonterminals produced at
a single loop. Since the depth of loop is at most O(log n), the size of the finial dic-
tionary O(g∗ log2 n) is derived. This bound is easily improved to O(g∗ log g∗ log n)
since #(w) converges to O(g∗ log g∗) for any constant alphabet Σ. �

Next we show that the derivation tree of (D, S) is “balanced”, i.e., any token Xi

in S encodes a sufficiently long substring in the text.

Lemma 3. Let (Sk, Dk) be the grammar generated by the compression algo-
rithm at the kth loop for an input text w. Then, for any substring w[i, j], there
is k (k ≤ 3 log(j − i + 1)) and a substring XY Z of Sk whose length is at most
three such that it encodes w[i, j], that is, (X.u)(Y.u)(Z.u) contains w[i, j].

Proof. In the kth loop of the compression algorithm, at least one of three pairs
in w[i, i + 3] is replaced by an appropriate symbol. From the fact, we show this
lemma by induction with the length � of w[i, j] (� = j − i + 1). Clearly, the
lemma is true for � = 1, so we assume the induction hypothesis on any substring
of length at most �. Let w[i, j] be any substring of length � + 1. We split the
substring w[i, j] = w[i, j′]w[j′ + 1, j] for j′ = � �+1

2 �. Since the hypothesis is true
for w[i, j′] and w[j′+1, j], a substring X1X2X3Y1Y2Y3 encodes w[i, j], X1X2X3
encodes w[i, j′], and Y1Y2Y3 encodes w[j′ + 1, j]. The string X1X2X3Y1Y2Y3
becomes to be at least length three within the next three loops. Thus, w[i, j]
is encoded by a consecutive three tokens and the depth k of the loop is at
most 3 log �′ + 3 for � = 2�′ + 1. Hence, we conclude the induction is true by
k ≤ 3 log �′ + 3 < 3 log(2�′ + 1) = 3 log � < 3 log(� + 1). �

Lemma 3 ensures that the length of the token sequences generated by the algo-
rithm is sufficiently short according to the depth of loop and any token encodes
sufficiently long substring. By lemma 2 and 3, we can obtain the main result of
this paper.

Theorem 4. The problem of compressed pattern matching can be solved in
O(g∗ log g∗ log m + n

m + m2 + r) time and O(g∗ log g∗ log m + m2) space for any

492 S. Maruyama, H. Miyagawa, and H. Sakamoto

pattern of length at most m, any text of length n, the optimum compression size
g∗, and the number r of pattern occurrences.

Proof. For the time complexity, the bound O(g∗ log g∗ log m) is derived from
Lemma 2, which is the size of the grammar (Sk, Dk) for depth k = 3 logm. On
the other hand, the bound O(n

m) is derived from Lemma 3 since the length of
the substring encoded by a token in Sk is greater than 2log m = m. Also the
preprocessing can be computed within the dictionary size. Thus, we obtain the
time and space complexity. �

4 Conclusion

We introduced a compression algorithm based on a partial order of alphabets
and showed that the algorithm ensures the compression ratio O(g∗ log g∗ log n)
within O(g∗ log g∗) memory space for the length n of input and the optimum
compression size g∗. Moreover our dictionary-based compression generates the
balanced derivation tree for input string. We applied this property to the com-
pressed pattern matching and obtain the improved time and space complexity
O(g∗ log g∗ log m + n

m +m2 + r) and O(g∗ log g∗ log m +m2), respectively, where
m is the pattern length and r is the number of occurrences of the pattern.

References

1. A. Amir, G. Benson, Efficient two-dimensional compressed matching, in: Proc.
Data Compression Conference, p.279, 1992.

2. A. Amir, G. Benson, M. Farach, Let sleeping files lie: pattern matching in Z-
compressed files, J. Comput. System Sci. 52:299–307, 1996.

3. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Pro-
tasi, Complexity and Approximation: Combinatorial Optimization Problems and
Their Approximability Properties, Springer, 1999.

4. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala, A. Sa-
hai, A. Shelat, Approximating the Smallest Grammar: Kolmogorov Complexity in
Natural Models, in: Proc. 29th Ann. Sympo. on Theory of Computing, 792-801,
2002.

5. M. Farach, M. Thorup, String-matching in Lempel-Ziv compressed strings, in:
27th ACM STOC, pp. 703–713, 1995.

6. D. Gusfield, Algorithms on Strings, Trees, and Sequences, Computer Science and
Computational Biology, Cambridge University Press, 1997.

7. T. Kida, Y. Shibata, M. Takeda, A. Shinohara, S. Arikawa, Collage System: a
Unifying Framework for Compressed Pattern Matching, Theoret. Comput. Sci.
298:253–272.

8. T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, S. Arikawa, Multiple pattern
matching in LZW compressed text, J. Discrete Algorithms 1(1):133–158, 2000.

9. J. C. Kieffer, E.-H. Yang, Grammar-Based Codes: a New Class of Universal Lossless
Source Codes, IEEE Trans. on Inform. Theory, 46(3):737–754, 2000.

10. J. C. Kieffer, E.-H. Yang, G. Nelson, P. Cosman, Universal Lossless Compression
via Multilevel Pattern Matching, IEEE Trans. Inform. Theory, IT-46(4), 1227–
1245, 2000.

Improving Time and Space Complexity for Compressed Pattern Matching 493

11. D. Knuth, Seminumerical Algorithms, Addison-Wesley, 441-462, 1981.
12. N. J. Larsson, A. Moffat, Offline Dictionary-Based Compression, Proceedings of

the IEEE, 88(11):1722-1732, 2000.
13. E. Lehman, Approximation Algorithms for Grammar-Based Compression, PhD

thesis, MIT, 2002.
14. E. Lehman, A. Shelat, Approximation Algorithms for Grammar-Based Compres-

sion, in: Proc. 20th Ann. ACM-SIAM Sympo. on Discrete Algorithms, 205-212,
2002.

15. M. Lothaire, Combinatorics on Words, volume 17 of Encyclopedia of Mathematics
and Its Applications, Addison-Wesley, 1983.

16. G. Navarro, M. Raffinot, A general practical approach to pattern matching over
Ziv-Lempel compressed text, in: Proc. 10th Ann. Symp. on Combinatorial Pattern
Matching, LNCS 1645, pp. 14–36, 1999.

17. C. Nevill-Manning, I. Witten, Compression and Explanation Using Hierarchical
Grammars, Computer Journal, 40(2/3):103–116, 1997.

18. C. Nevill-Manning, I. Witten, Identifying hierarchical structure in sequences: a
linear-time algorithm, J. Artificial Intelligence Research, 7:67–82, 1997.

19. W. Rytter, Application of Lempel-Ziv Factorization to the Approximation of
Grammar-Based Compression, in: Proc. 13th Ann. Sympo. Combinatorial Pat-
tern Matching, 20-31, 2002.

20. H. Sakamoto, A Fully Linear-Time Approximation Algorithm for Grammar-Based
Compression, Journal of Discrete Algorithms, 3:416-430, 2005.

21. H. Sakamoto, T. Kida, S. Shimozono, A Space-Saving Linear-Time Algorithm for
Grammar-Based Compression, in: Proc. 11th International Symposium on String
Processing and Information Retrieval, pp.218-229, 2004.

22. D. Salomon, Data compression: the complete reference, Springer, second edition,
1998.

23. J. Storer, T. Szymanski, Data compression via textual substitution, J. Assoc.
Comput. Mach., 29(4):928–951, 1982.

24. J. A. Storer, T. G. Szymanski, The Macro Model for Data Compression, in: Proc.
10th Ann. Sympo. on Theory of Computing, pp. 30–39, 1978.

25. T. A. Welch, A Technique for High Performance Data Compression, IEEE Com-
put., 17:8-19, 1984.

26. S. Wu, U. Manber, Agrep–a fast approximate pattern-matching tool, in: Usenix
Winter 1992 Technical Conference, pp. 153–162, 1992.

27. E.-H. Yang, J. C. Kieffer, Efficient Universal Lossless Data Compression Algo-
rithms Based on a Greedy Sequential Grammar Transform–Part One: without
Context Models, IEEE Trans. on Inform. Theory, 46(3):755-777, 2000.

28. J. Ziv, A. Lempel, A Universal Algorithm for Sequential Data Compression, IEEE
Trans. on Inform. Theory, IT-23(3):337-349, 1977.

29. J. Ziv, A. Lempel, Compression of Individual Sequences via Variable-Rate Coding,
IEEE Trans. on Inform. Theory, 24(5):530-536, 1978.

Improved Multi-unit Auction Clearing

Algorithms with Interval (Multiple-Choice)
Knapsack Problems

Yunhong Zhou

HP Labs, 1501 Page Mill Rd, Palo Alto, CA 94304, USA
yunhong.zhou@hp.com

Abstract. We study the interval knapsack problem (I-KP), and the in-
terval multiple-choice knapsack problem (I-MCKP), as generalizations of
the classic 0/1 knapsack problem (KP) and the multiple-choice knapsack
problem (MCKP), respectively. Compared to singleton items in KP and
MCKP, each item i in I-KP and I-MCKP is represented by a ([ai, bi], pi)
pair, where integer interval [ai, bi] specifies the possible range of units,
and pi is the unit-price. Our main results are a FPTAS for I-KP with
time O(n log n + n/ε2) and a FPTAS for I-MCKP with time O(nm/ε),
and pseudo-polynomial-time algorithms for both I-KP and I-MCKP with
time O(nM) and space O(n + M). Here n, m, and M denote number of
items, number of item sets, and knapsack capacity respectively. We also
present a 2-approximation of I-KP and a 3-approximation of I-MCKP
both in linear time.

We apply I-KP and I-MCKP to the single-good multi-unit sealed-bid
auction clearing problem where M identical units of a single good are auc-
tioned. We focus on two bidding models, among them the interval model
allows each bid to specify an interval range of units, and XOR-interval
model allows a bidder to specify a set of mutually exclusive interval bids.
The interval and XOR-interval bidding models correspond to I-KP and
I-MCKP respectively, thus are solved accordingly. We also show how to
compute VCG payments to all the bidders with an overhead of O(log n)
factor. Our results for XOR-interval bidding model imply improved al-
gorithms for the piecewise constant bidding model studied by Kothari et
al. [18], improving their algorithms by a factor of Ω(n).

1 Introduction

Combinatorial auctions have been proposed as expressive, economically efficient
mechanisms for resource distributions and procurement auctions [16,22,23,26].
The winner determination problem in combinatorial auctions, unfortunately, is
NP-hard and inapproximable in general [24]. Consequently, there is enormous
interest in finding the right level of generality at which to address this problem.

There have been increasing activities of procurement auctions conducted by
large firms, inspired and facilitated by the emergence of electronic commerce.
For various reasons, firms tend to conduct separate auctions for different types

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 494–506, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improved Multi-unit Auction Clearing Algorithms 495

of goods, thus eliminating the main source of complexity in combinatorial auc-
tions. There are also a flurry of research activities [6,1] for procurement auctions.
But they either assume divisible goods, or use mixed integer programming or
heuristics to solve the auction clearing problem, while none of these work has
an algorithmic focus. And traditional single-good multi-unit auctions use either
singleton bids or XOR of singleton bids, resulting in either inflexibility or inef-
ficiency.

In this paper we focus on single-good multi-unit combinatorial auctions with
increasingly expressive bidding models, and where (weakly) tractable algorithms
are possible. Specifically, we focus on two bidding models, interval bids and XOR-
interval bids (the former extends the traditional singleton bids and the later
extends the piecewise constant bids), and formalize the corresponding auction
clearing problem as new variants of knapsack problems. The connection between
winner determination problems in sealed-bid combinatorial auctions and general-
ized knapsack problems (especially the equivalence of the Multi-good Multi-unit
Combinatorial Auction and the Multidimensional Knapsack Problem) was ob-
served recently [9,15,17]. This connection tremendously expedites the progress of
auction clearing research as there is abundance of research literature on variants
of knapsack problems. Our work is benefited from this connection, meanwhile
advances the state of art in knapsack research as we introduce new variants of
knapsack problems and design near-optimal algorithms to solve them.

1.1 Problem Statement

We consider the one-round sealed-bid single-good multi-unit auction problem
(SMAP) where there is only one single good and M identical units of it. The
auctioneer wants to either sell at most M units of the good (forward auction)
with maximum revenue, or acquire at least M units of the good (reverse auction)
with minimum cost. We focus on the forward auction version throughout the
paper, since maximization and minimization are dual to each other, and most
of our results for the forward auction version can be translated to the reverse
auction version (sometimes requiring small tricks for the translation.). 1 There
are n bidders, each submitting a sealed bid, and the auctioneer decides winning
bidders, the number of units allocated to them as well as the associated unit-
prices. We consider the following four bidding models:

1. Point Bid: a pair (x, p) where x is the number of units and p is the unit-
price.

2. Interval Bid: a tuple ([xl, xu], p) where interval [xl, xu] gives the range of
units and p is the unit-price.

3. XOR-Point Bid: a collection of point bids, with at most one point bid
taken.

4. XOR-Interval Bid: a collection of interval bids, with at most one interval
bid taken.

1 It is even possible to handle exchanges where agents are both buyers and sellers.

496 Y. Zhou

Point bids correspond to items in the classic 0/1 knapsack problem (KP)
where point bid (x, p) corresponds to an item with weight x and profit xp.
XOR bids encode mutually exclusive bids. For example, a buyer submits a bid
(x1, p1)⊗ (x2, p2), with the intention of buying either x1 units at unit-price p1 or
x2 units at unit-price p2, but not both. SMAP with XOR-point bids corresponds
to the multiple-choice knapsack problem (MCKP), which is defined as follows:
Given m sets of items, where item j in set i has weight wj

i and profit pj
i , and

a knapsack of capacity M , select a subset of items, at most one from each item
set, to maximize their total profit while their total weight is at most M .

The interval bidding model generalizes the atomic point bidding model to
an interval range of units. The XOR-interval bidding model is the most ex-
pressive model in this paper and it generalizes the piecewise constant bidding
model [18,19]. In many procurement auction settings, in order to improve their
total profit, suppliers offer volume discount, where the unit-price decreases as the
number of units increases. The XOR-interval bid is one way of offering volume
discount, and it is an extension to base bidding models.

1.2 Our Contributions

We define the interval knapsack problem (I-KP), and the interval multiple-choice
knapsack problem (I-MCKP), as new generalizations of the classic 0/1 knapsack
problem (KP) and the multiple-choice knapsack problem (MCKP), respectively.
Our main results are a FPTAS for I-KP with time O(n log n+n/ε2) and a FPTAS
for I-MCKP with time O(nm/ε), and pseudo-polynomial-time algorithms for
both I-KP and I-MCKP with time O(nM) and space O(n + M). Here n, m,
and M denote number of items, number of item sets, and knapsack capacity
respectively. We also present a 2-approximation of I-KP and a 3-approximation
of I-MCKP both in O(n) time. Most of our algorithms for both I-KP and I-
MCKP match the corresponding time bounds for the best algorithms of KP and
MCKP. Since KP and MCKP are well studied problems in Operations Research
and Theoretical Computer Science, our results for I-KP and I-MCKP will be
hard to beat.

We apply I-KP and I-MCKP to the single-good multi-unit auction clearing
problem (SMAP) where M identical units of a single good are auctioned. We
focus on two bidding models, among them the interval model allows each bid to
specify an interval range of units, and XOR-interval model allows a bidder to
specify a set of mutually exclusive interval bids. The interval and XOR-interval
bidding models correspond to I-KP and I-MCKP respectively, thus are solved
accordingly. We also show how to compute VCG payments to all the bidders with
only an overhead of O(log n) for various bidding models, while the straightfor-
ward approach takes an overhead of factor O(n).

Our results for XOR-interval bidding model imply improved algorithms for
the piecewise constant bidding model studied by Kothari et al. [18]. Specifically,
Kothari et al. developed a FPTAS for this auction model with time O(n3/ε)
while our results for XOR-interval model implies a FPTAS for this problem
with time O(n2/ε). They also developed an ε-approximate and ε-efficient VCG

Improved Multi-unit Auction Clearing Algorithms 497

payment scheme with time O((n3/ε)α log(αn/ε)) where α is a constant related
to “market no-monopoly”. We improve their algorithm to O((n2/ε) logn) time.
We also point out that a constant-factor approximation for I-MCKP can be com-
puted in O(n) time, while they computed a 2-approximation in O(n2) time. Our
algorithms are substantially simpler than previous approaches, as we identify
one technical lemma for vector merging and another technical lemma for VCG
computations, and get rid of unnecessary steps.

1.3 Related Work

Single-good Multi-unit Auction. The single-good multi-unit auction clearing
problem with piecewise linear supply/demand curves were studied by [25,4].
Sandholm and Suri [25] also studied the point bid model and XOR-point bid
model. However the relationship between the XOR-point bidding model and
MCKP is not stated, and their FPTAS for the XOR-bidding model is actually
based on a FPTAS for KP, thus incorrect.

The single-good multi-unit auction clearing problem with piecewise constant
bidding curves were studied by Kothari et al. [18]. Kothari et al. proposed an al-
gorithm for the auction clearing problem with time O(n3/ε). They also proposed
another algorithm to compute an ε-approximate and ε-efficient VCG payments to
all bidders with time O((n3/ε)α log(αn/ε)) where α is a constant related to “mar-
ket no-monopoly”. The ε-approximate VCG mechanism is only approximately
truthful, as a possible deviation of a single bidder might be high. Lehmann et
al. [21] gave a sufficient condition of truthful mechanisms for single-minded com-
binatorial auctions, which requires the corresponding approximation algorithm
to be monotone in an appropriate sense. Briest et al. [2] designed monotone
approximation algorithms for multi-unit auctions, and their monotone FPTAS
for single-commodity multi-unit auctions (only point bids are considered) runs
in time O((n3/ε) log(n/(1 − ε))).

The single-good multi-unit auction clearing problem with piecewise constant
bidding curves was also studied by Kothari, Suri and Zhou [19]. Their work
differs from ours as they considered the special case of uniform-price auction
clearing and reduced their problem to the interval subset-sum problem. Here we
allow winning bids to take different clearing prices, thus improving the revenue
of the auctioneer with the expense of discriminatory pricing.

Knapsack Problems. Variants of knapsack problems were studied intensively
in Operations Research and Theoretical Computer Science. For a comprehen-
sive exposition of this topic, see Kellerer et al. [15]. Here we review only lit-
eratures related to our work. The earliest FPTAS for KP (and also one of
the first FPTAS in general) was given by Ibarra and Kim [11]. The best re-
sults were obtained by Kellerer and Pferschy [13,14], where a FPTAS with time
O(n min{logn, log(1/ε)} + 1/ε2 log(1/ε)min{n, 1/ε log(1/ε)}) and space O(n +
1/ε2) is given.

For MCKP, Dyer [5] and Zemel [27] independently developed linear time al-
gorithms to compute the optimal solution of its linear relaxation. The maximum

498 Y. Zhou

of the linear relaxation of MCKP and the split item is at least 1/2 of the optimal
solution for MCKP, thus a 2-approximation of MCKP can be computed in O(n)
time. Gens and Levner [8] gave a (5/4)-approximation of MCKP in O(n log m)
time. The first FPTAS for MCKP was given by Chandra et al. [3] and the best
FPTAS was given by Lawler [20] with running time O(nm/ε).

The rest of the paper is organized as follows. We define I-KP and I-MCKP
formally in Section 2. We present a crucial technical lemma in Section 2.1, which
is used subsequently for merging a vector with an interval vector in linear time.
In Sections 3 and 4, we present both exact and approximation algorithms for
I-KP and I-MCKP respectively. Section 5 summarizes single-good multi-unit
auction clearing algorithms for various bidding models. We describe algorithms
for VCG computations in Section 6 and conclude in Section 7.

2 Definitions and Preliminaries

In this section, we define the interval knapsack problem (I-KP) and the interval
multiple-choice knapsack problem (I-MCKP) formally. The interval knapsack
problem is a variant (generalization) of the classic 0/1 knapsack problem. Instead
of singleton items in KP, I-KP associates with each item a unit-price and an
interval range of units. It also generalizes the classic integer knapsack problem,
either bounded or unbounded. Formally, I-KP is defined as follows:

Instance: Given a set of items S, each represented as an interval [ai, bi] paired
with a unit-price pi, for i = 1, . . . , n, and a capacity bound M .

Objective: Find a subset {xi | i ∈ S′} and S′ ⊆ S, such that xi ∈ [ai, bi],
∀i ∈ S′,

∑
i∈S′ xi ≤ M , and

∑
i∈S′ xipi is maximized.

Next we define the interval multiple-choice knapsack problem (I-MCKP), a
variant (generalization) of the classic multiple-choice knapsack problem (MCKP).
Formally, I-MCKP is defined as follows:

Instance: Given a set of item sets S1, . . . , Sm, where item set Si contains
ni items and each item sj

i ∈ Si is represented by a tuple ([aj
i , b

j
i], p

j
i), for

i = 1, . . . , m, and a capacity bound M .
Objective: Find a subset {xj

i | sj
i ∈ Si, i ∈ I}, such that xj

i ∈ [aj
i , b

j
i], ∀i ∈ I,∑

i∈I,j xj
i ≤ M , there are at most one xj

i �= 0 for each i ∈ I, and
∑

i∈I,j xj
ip

j
i

is maximized.

Here n =
∑

1≤i≤m ni is the total number of items in all the item sets.
Without loss of generality, we assume that bi ≤ M for all i in I-KP, and bj

i ≤ M
for all (i, j) pair in I-MCKP. For the special case of I-KP where ai = bi for all
i, I-KP degenerates to the classic knapsack problem where item i has weight ai

and profit aipi. For the special case of I-MCKP where aj
i = bj

i for all (i, j) pairs,
each item corresponds to a singleton element with weight aj

i and profit aj
ip

j
i , thus

I-MCKP degenerates to MCKP. And if each item set contains exactly one item,
I-MCKP degenerates into I-KP. Since KP is NP-hard [12], both I-MCKP and

Improved Multi-unit Auction Clearing Algorithms 499

I-KP are NP-hard. It is easy to verify that both are in NP, thus both I-MCKP
and I-KP are NP-complete. Fortunately, they are weakly NP-complete, as we
will show in subsequent sections that both accept pseudo-polynomial-time exact
algorithms and fully-polynomial-time approximation schemes (FPTAS).

2.1 A Linear Time Merging Subroutine

Next we describe a crucial technical lemma which is used as a subroutine to mer-
ge a vector with an interval item to obtain a new vector. Let A = (A1, . . . , Ad)
be a vector with length d, and [ar, br] be an integer interval. We want to compute
a new integer vector C = (C1, . . . , Cd) where Ck = min{Ak, C′k}, and

C′k = min {A� + xr | 1 ≤ � ≤ k, ar ≤ xr ≤ br, xr ≥ (k − �)cr} , ∀ k = 1, . . . , d.

Here cr is a positive constant, not necessarily integer. Intuitively, vector C is the
result of merging vector A with an interval item ([ar, br], pr) where the unit-price
pr is scaled down to a fractional value 1/cr. If Ck = Ak, no element is taken from
the interval item. If Ck = C′k, an element xr ∈ [ar, br] is taken. Furthermore,
we want to make sure that � + xr/cr ≥ k, i.e., the combined solution has its
scaled value at least k. The simple approach takes time O(d) to compute one
single value C′k thus O(d2) time for the whole vector C′. The following crucial
technical lemma shows that vectors C and C′ can be computed in linear time:

Lemma 1. We can compute vectors C and C′ in time O(d).

The problem of merging a vector with an interval item is actually a special
case of the so-called vector merge problem. Kellerer and Pferschy [14] showed
how to solve the vector merge problem in O(d log d) time. By taking advantage
of interval items, together with an advanced data structure (deque with heap
order) [10,7], we are able to improve their bound and get an asymptotically
optimal result. Not surprisingly, the same result applies to the corresponding
maximization version.

Lemma 2. Let A = (A1, . . . , Ad) be a vector and ([ar, br], pr) an interval item.
Let C = (C1, . . . , Cd) where Ck = max{Ak, C′k} and

C′k = max {A� + xrpr | 1 ≤ � ≤ k, ar ≤ xr ≤ br, xr + � ≤ k} , ∀ k = 1, . . . , d.

We can compute vectors C and C′ in time O(d).

3 The Interval Knapsack Problem

In this section we design both a pseudo-polynomial-time exact algorithm and
a FPTAS for I-KP. We first develop a pseudo-polynomial-time exact algorithm
using DP-by-unit.

Let T (i, w) denote the maximum value for all solutions selected from the first
i interval items with the total number of units bounded by w, for 1 ≤ i ≤ n,

500 Y. Zhou

1 ≤ w ≤ M . Let T (i) denote the vector with length M where the w-th position
stores T (i, w) for all w. It is easy to compute T (1) since T (1, w) = 0 if w ∈ (0, a1),
T (1, w) = p1w if w ∈ [a1, b1], and T (1, w) = p1b1 if w ∈ (b1, M]. Next we show
how to compute T (i) based on T (i − 1) and ([ai, bi], pi):

T (i, w) = max {T (i − 1, w), max {T (i − 1, w − xi) + xipi | ai ≤ xi ≤ bi}} .

By Lemma 2, T (i) can be computed in time O(M) based on T (i − 1), for
each i. So that T (n) can be computed in time O(nM) and the optimal solution
value is given by T (n, M). The space complexity is O(nM), however it can be
reduced to O(n + M) using standard storage reduction technique in Dynamic
Programming [15]. In summary, we have:

Theorem 1. I-KP is weakly NP-complete and pseudo-polynomial-time solvable.
We can compute the exact solution of I-KP in time O(nM) and space O(n+M).

3.1 FPTAS for I-KP

Next we design a FPTAS for I-KP based on dynamic programming. There are
two ways to build the DP table, either by unit or by value. The DP-by-unit
approach described above is relatively simple and incurs low overhead, but it is
hard to convert into an approximation scheme. So we design a FPTAS based on
DP-by-value. We first give a 2-approximation of I-KP in linear time, which is
subsequently used for the FPTAS.

Lemma 3. We can compute a 2-approximation of I-KP in O(n) time.

Next we describe a FPTAS for I-KP. Let V0 be twice the value of the 2-
approximation solution, then V ∗ ≤ V0 ≤ 2V ∗ where V ∗ is the optimal solution
value. We use V0 for a value rounding procedure in order to get the approxima-
tion scheme. Since a solution consists of at most n elements, a naive approach is
to use (εV0/n) as the rounding factor, which results in a time complexity Ω(n2).
To get a Õ(n) running time ignoring other factors, we divide items into two
classes: small items and large items. Small items are those ([ai, bi], pi) where
aipi ≤ εV0, large items are all others. For simplicity, assume that there are
nS small items, nL large items, n = nS + nL and all items with i ≤ nL are
large items. We consider large items first, and use the following value-rounding
procedure for each item with value v:

v′ = f(v) ≡
 v

ε2V0
� · (ε2V0).

Notice that we only need to consider values v ≤ V0, thus the value-rounding
procedure essentially reduces the number of distinct values to at most 1/ε2 of
them: j · (ε2V0) for 1 ≤ j ≤ 1/ε2. Let L(i, k) denote the minimum weight over
all solutions with profit at least k · ε2V0 and elements selected from the first i
rounded item sets, and L(i) denote the vector with length 1/ε2 where the k-th

Improved Multi-unit Auction Clearing Algorithms 501

cell stores L(i, k), for k = 1, . . . , 1/ε2. The following recursive formula is used to
compute L(i): L(i, k) = min{L(i − 1, k), L′(i, k)} where

L′(i, k) ≡ min
{
L(i − 1, �) + xi | xipi ≥ (k − �)ε2V0, xi ∈ [ai, bi]

}

= min {L(i − 1, �) + xi | xi ≥ (k − �)ci, xi ∈ [ai, bi]} ,

for k = 1, . . . , 1/ε2, and ci = ε2V0/pi. Let Ak = L(i − 1, k), Ck = L(i, k), for
k = 1, . . . , 1/ε2, then Lemma 1 shows that L(i) can be computed from L(i − 1)
in O(1/ε2) time, for all 1 ≤ i ≤ nL.

After vector L(nL) is computed, L(nL, k) is the minimum weight among large
item solutions with value at least k · ε2V0, for k = 1, . . . , 1/ε2. For each fixed
v = k ·ε2V0 and the corresponding large item solution, we use a greedy algorithm
to pack the small items to the end. This requires sorting all small items with
decreasing unit-prices and it takes time O(n log n). After the sorting, we can
simply pack small items with decreasing unit-prices to the end of the solution
corresponding to value v, and stop immediately before the first time when the
total number of units exceeds M . Let Sv denote the solution consisting of large
items with total value at least v and small items packed in the end. Then it takes
O(n) time to obtain Sv for each v. Actually the greedy packing only needs to
walk through the small item list once: (1) Start with k = k0 corresponding to the
largest v = k · ε2V0 such that L(nL, v) ≤ M ; (2) Walk through the small items
list from the beginning and stop at position ik0 to obtain Sv0 ; (3) Set k := k − 1
and walk through the small item list from its current position to the right until
obtaining Sv for the current v = k · ε2V0; (4) Continue until k = 0 or reaching
the end of the small item list.

The greedy packing procedure takes time linear of the vector length, thus the
total processing time for merging large items and small items is O(n log n+1/ε2).
Once we obtain Sv for each v = k · ε2V0 and k = 1, . . . , 1/ε2, we select among
all Sv the one with the maximum total value. We can recover all the elements
of the solution using standard backtracking techniques. In summary, we have:

Theorem 2. We can compute a (1+ε)-approximation of I-KP in time O(n log n+
n/ε2).

4 The Interval Multiple-Choice Knapsack Problem

We first describe a pseudo-polynomial-time algorithm for I-MCKP which is
similar to the algorithm described in Section 3 for I-KP. Let T (i) denote the
vector with length M where the w-th position T (i, w) stores the maximum
value for all solutions selected from the first i item sets with the total num-
ber of units bounded by w, for 1 ≤ i ≤ m, 1 ≤ w ≤ M . Let T j(i) denote
the vector with length M where T j(i, w) denotes the maximum value over all
solutions with elements selected from the first i − 1 item sets, together with
an element from ([aj

i , b
j
i], p

j
i), where 1 ≤ j ≤ ni. It is easy to compute T (1):

T (1, w) = min{T j(1, w) | 1 ≤ j ≤ n1} where T j(1, w) is determined easily from

502 Y. Zhou

([aj
1, b

j
1], p

j
1) for 1 ≤ j ≤ n1. Next we show how to compute T (i) from T (i − 1).

It is easy to know that

T j(i, w) = max
{
T (i − 1, w − xj

i) + pj
ix

j
i | xj

i ∈ [aj
i , b

j
i], x

j
i ≤ w

}
.

By Lemma 2, T j(i) can be computed in time O(M) for each 1 ≤ j ≤ ni. Once
we have computed T j(i) for all j, then

T (i, w) = max{T (i − 1, w), max{T j(i, w) | 1 ≤ j ≤ ni}}, ∀ w = 1, . . . , M.

So that it takes time O(niM) to compute T (i), for i = 1, . . . , m. Since
∑

1≤i≤m ni

= n, it takes in total O(nM) time to compute vector T (i), for i = 1, . . . , m. The
optimal solution is given by T (n, M). In summary, we have:

Theorem 3. I-MCKP is weakly NP-complete and pseudo-polynomial-time
solvable. We can compute the exact solution of I-MCKP in time O(nM) and
space O(n + M).

4.1 FPTAS for I-MCKP

Next we design a FPTAS for I-MCKP based on DP-by-value. We first describe
constant-factor approximations of I-MCKP, which are subsequently used for the
FPTAS of I-MCKP. Our constant-factor approximations of I-MCKP are sum-
marized as follows.

Lemma 4. We can compute a 3-approximation of I-MCKP in O(n) time, and
another (9/4)-approximation in O(n log m) time.

Comment: Kothari et al. [18] gave a 2-approximation with O(n2) time for the
so-called general knapsack problem, which is actually a special case of I-MCKP.
We observe that a minor modification of their algorithm gave a worst-case 2-
approximation with O(n log n) time. Instead of running Greedy(�, j) for each
tuple ([uj

� , u
j+1
�), pj

�), we can simply run one Greedy and take care of the case
where the next element will be taken from the interval [uj

�, u
j+1
�). It remains an

interesting problem to compute a 2-approximation of I-MCKP in linear time, or
a (5/4)-approximation in O(n log n) time.

We are now ready to describe a FPTAS to I-MCKP. Let V0 be three times
the value of the 3-approximation solution, then V ∗ ≤ V0 ≤ 3V ∗ where V ∗ is
the optimal solution value. We still use a value rounding procedure to get an
approximation scheme, using (εV0/m) as the rounding factor. Formally, given v,
its rounded value is:

v′ = g(v) ≡
 vm

εV0
� · εV0

m
.

Let L(i, k) denote the minimum weight over all solutions with profit at least
k · εV0/m, and elements selected from the first i rounded item sets, for k =
1, . . . , m/ε. Let L(i) denote the vector with length m/ε where the k-th position
stores L(i, k). The following formula is used to compute L(i) based on L(i − 1):
L(i, k) is the minimum of L(i − 1, k) and min{Lj(i, k) | 1 ≤ j ≤ ni} where

Lj(i, k) ≡ min
{

L(i − 1, �) + xj
i | xj

ip
j
i ≥ (k − �)εV0/m, xj

i ∈ [aj
i , b

j
i]

}
.

Improved Multi-unit Auction Clearing Algorithms 503

Let Ak = L(i − 1, k), Cj
k = Lj(i, k), cr = εV0/(mpj

i), for k = 1, . . . , m/ε, j =
1, . . . , ni. By Lemma 1, we can compute Cj = Lj(i) for each j in O(m/ε) time.
Once Lj(i) is obtained for each j = 1, . . . , ni, then L(i) can be computed easily
as the minimum over these vectors and L(i − 1). In total, it takes O(nim/ε)
to compute L(i) based on L(i − 1). Since

∑
i ni = n, thus in total it takes

time O(nm/ε) to compute all vectors L(i) for 1 ≤ i ≤ m. The optimal solution
value is given by walking through the last vector L(m) and finding the largest
v = k · εV0/m such that L(m, k) ≤ M . We can recover all the elements of the
solution using standard backtracking techniques. In summary, we have:

Theorem 4. We can compute a (1 + ε)-approximation of I-MCKP in time
O(nm/ε).

5 Applications to Multi-unit Auction Clearing

In this section we apply algorithms for I-KP and I-MCKP to solve the single-
good multi-unit auction clearing problem (SMAP). For SMAP with point bids, it
is equivalent to the classic 0/1 knapsack problem. By Kellerer and Pferschy [14],
we have the following result:

Theorem 5. For SMAP with point bids, we can compute the exact solution
in time O(nM) and space O(n + M), and a (1 + ε)-approximation in time
O(n min{logn, log(1/ε)} + 1/ε2 log(1/ε)min{n, 1/ε log(1/ε)}) and space O(n +
1/ε2).

For SMAP with interval bids, it is reduced to I-KP studied in Section 3. By
Theorems 1 and 2, we have the following result:

Theorem 6. For SMAP with interval bids, we can compute the exact solution
in time O(nM) and a (1 + ε)-approximation in time O(n log n + n/ε2).

For SMAP with XOR-point bids, it corresponds to exactly MCKP. For SMAP
with XOR-interval bids, it corresponds to I-MCKP. By Theorems 3 and 4, we
have the following combined results:

Theorem 7. For SMAP with XOR-point bids or XOR-interval bids, we can
compute the optimal solution in time O(nM) and a (1 + ε)-approximation in
time O(nm/ε).

As said before, the XOR-interval bidding model covers the piecewise constant
bidding model as a special case. Therefore we have the following corollary, which
improves the corresponding algorithm of Kothari et al. [18] by a factor of n.

Corollary 1. Given a buyer with M units of a single good, and n suppliers
with piecewise constant bidding curves where each curve has O(1) pieces, we can
compute an exact solution with time O(nM) and a (1 + ε)-approximation with
time O(n2/ε).

504 Y. Zhou

6 Improved Algorithms for VCG Computations

In this section we consider how to compute VCG payments to all bidders under
various bidding models. Vickey-Clark-Grove (VCG) mechanism maximizes the
expected payoff to the auctioneer and it is strategyproof for all bidders. For any
sealed-bid combinatorial auction, we can embed a VCG payment scheme to it:
bidder i is given a discount of V (I) − V (I \ {i}) to its payment, ∀ i ∈ I. Here
I denotes the set of all bidders, V (S) denotes the maximum revenue for bids
from S, for any S ⊆ I. While a straightforward approach requires solving n + 1
winner determination problems with n bidders, here we show that an overhead
of factor O(log n) is sufficient for our bidding models.

We start with the interval bidding model with n interval items. For each
1 ≤ r ≤ n, 1 ≤ w ≤ M , let T (I \{r}, w) denote the maximum value for solutions
consisting of elements excluding the r-th item, and total units bounded by w.
We can compute T (I \ {r}, w) for all r, w values in O(n2M) time using DP. In
the following lemma, we show how to improve the running time to O(nM log n).

Lemma 5. We can compute T (I \ {r}, w) for all 1 ≤ r ≤ n, 1 ≤ w ≤ M with
time O(nM log n).

Next we state results for VCG payment computations of SMAP with different
bidding models. All our results are based on variations of Lemma 5.

Theorem 8. For SMAP with point bids, we can compute the VCG payments
to all the bidders in time O(nM log n), and an ε-approximate VCG payment in
time O(T (n) log n) where T (n) is the running time of KP.

Theorem 9. For SMAP with interval bids, we can compute the VCG payments
to all bidders in time O(nM log n), and an ε-approximate VCG payment in time
O((n/ε2) log n).

Theorem 10. For SMAP with XOR-point bids or XOR-interval bids, we can
compute the VCG payments to all bidders in time O(nM log m) and an ε-
approximate VCG payment in time O((nm/ε) log m).

Kothari et al. [18] designed an algorithm to compute an ε-approximate VCG
payment to all bidders with time O((n3/ε)α log(αn/ε)) under the piecewise con-
stant bidding model. Here α = maxi V (I)/V (I \ {i}) is a constant related to
“market no-monopoly”. Since the XOR-interval bidding model covers the piece-
wise constant bidding model as a special case, we obtain the following corollary,
which gives a factor Ω(n) improvement over their algorithm.

Corollary 2. Given a buyer with M units of a single good, and n suppliers
with piecewise constant bidding curves where each curve has O(1) pieces, we can
compute an ε-approximate VCG payment in time O((n2/ε) logn).

Improved Multi-unit Auction Clearing Algorithms 505

7 Conclusion

In this paper, we have studied the single-good multi-unit auction problem with
interval bids and XOR-interval bids, and formalize the auction clearing problem
as new variants of knapsack problems. We have designed both exact and approx-
imate algorithms to solve these knapsack problems, as well as better algorithms
for the auction clearing problem. Our results are built upon a crucial technical
lemma, which is used to merge a vector with an interval item in linear time.
This technical lemma essentially allows us to treat an interval item the same as
a singleton item, and we are optimistic that similar techniques can be applied
to other variants of knapsack problems to obtain better bounds.

Acknowledgement. We thank Anshul Kothari for introducing us to this prob-
lem and working on it initially, Bob Tarjan for pointing us to the deque with
heap order data structure, and Terence Kelly for comments.

References

1. J. K. A. Davenport and H. Lee. Computational aspects of clearing continuous call
double auctions with assignment constraints and indivisible demand. Electronic
Commerce Research, 1(3):221–238, 2001.

2. P. Briest, P. Krysta, and B. Vcking. Approximation techniques for utilitarian
mechanism design. In Proc. STOC, pages 39–48, 2005.

3. A. K. Chandra, D. S. Hirschberg, and C. Wong. Approximate algorithms for some
generalized knapsack problems. Theoretical Computer Science, 3:293–304, 1976.

4. V. D. Dang and N. R. Jennings. Optimal clearing algorithms for multi-unit single-
item and multi-unit combinatorial auctions with demand/supply function bidding.
In Proc. 5th ICEC, pages 25–30, 2003.

5. M. E. Dyer. An O(n) algorithm for the multiple-choice knapsack linear program.
Mathematical Programming, 29:57–63, 1984.

6. M. Eso, S. Ghosh, J. Kalagnanam, and L. Ladanyi. Bid evaluation in procurement
auctions with piecewise linear supply curves. J. Heuristics, 11(2):147–173, 2005.

7. H. Gajewska and R. E. Tarjan. Deques with heap order. Information Processing
Letters, 22(4):197–200, 1986.

8. G. V. Gens and E. V. Levner. Approximation algorithms for certain universal
problems in scheduling theory. Soviet J. Comput. System Sci., 6:31–36, 1978.

9. R. C. Holte. Combinatorial auctions, knapsack problems, and hill-climbing search.
In Proc. Canadian Conf. on AI, LNCS 2056, pages 57–66, 2001.

10. R. Hood and R. Melville. Real-time queue operations in pure LISP. Information
Processing Letters, 13:50–54, 1981.

11. O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and
sum of subset problems. Journal of the ACM, 22:463–468, 1975.

12. R. M. Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations, pages 85–103. Plenum Press, New York, 1972.

13. H. Kellerer and U. Pferschy. A new fully polynomial time approximation scheme
for the knapsack problem. J. of Comb. Opt., 3(1):59–71, 1999.

14. H. Kellerer and U. Pferschy. Improved dynamic programming in connection with
an FPTAS for the knapsack problem. J. of Comb. Opt., 8(1):5–11, 2004.

506 Y. Zhou

15. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.
16. F. Kelly and R. Steinberg. A combinatorial auction with multiple winners for

universal services. Management Science, 46:586–596, 2000.
17. T. P. Kelly. Generalized knapsack solvers for multi-unit combinatorial auctions.

In Workshop on Agent Mediated E-Commerce, LNAI 3435, 2004.
18. A. Kothari, D. C. Parkes, and S. Suri. Approximately-strategyproof and tractable

multi-unit auctions. Decision Support Systems, 39:105–121, 2005.
19. A. Kothari, S. Suri, and Y. Zhou. Interval subset-sum and uniform-price auction

clearing. In Proc. COCOON, LNCS 3595, pages 608–620, 2005.
20. E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics

of Operations Research, 4:339–356, 1979.
21. D. Lehmann, L. I. O’Callaghan, and Y. Shoham. Truth revelation in approximately

efficient combinatorial auctions. In Proc. ACM EC, pages 96–102, 1999.
22. N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic

Behavior, 35:166–196, 2001.
23. M. H. Rothkopf, A. Pekec, and R. M. Harstad. Computationally manageable

combinatorial auctions. Management Science, 44(8):1131–1147, 1998.
24. T. Sandholm. Algorithm for optimal winner determination in combinatorial auc-

tions. Artificial Intelligence, 135(1-2):1–54, 2002.
25. T. Sandholm and S. Suri. Market clearability. In IJCAI, pages 1145–1151, 2001.
26. W. E. Walsh, M. P. Wellman, and F. Ygge. Combinatorial auctions for supply

chain formation. In Proc. ACM EC, pages 260–269, 2000.
27. E. Zemel. An O(n) algorithm for the linear multiple choice knapsack problem and

related problems. Information Processing Letters, 18:123–128, 1984.

A Simple Message Passing Algorithm

for Graph Partitioning Problems

Mikael Onsjö and Osamu Watanabe

1 Dept. of Computer Sci. and Eng., Chalmers Univ. of Technology, Sweden
2 Dept. of Math. and Comput. Sci., Tokyo Inst. of Technology, Japan

Abstract. Motivated by the belief propagation, we propose a simple and
deterministic message passing algorithm for the Graph Bisection problem
and related problems. The running time of the main algorithm is linear
w.r.t. the number of vertices and edges. For evaluating its average-case
correctness, planted solution models are used. For the Graph Bisection
problem under the standard planted solution model with probability pa-
rameters p and r, we prove that our algorithm yields a planted solution
with probability > 1 − δ if p − r = Ω(n−1/2 log(n/δ)).

1 Introduction

We begin by introducing problems discussed in this paper. A Graph Bisection
problem is to find an equal size partition of a given undirected graph with the
smallest number of crossing edges. Throughout this paper, we consider undi-
rected graphs with no loop nor multiple edge, and assume that the number of
vertices is even. We use 2n and m to denote the number of vertices and edges
respectively. For a graph G = (V, E), an equal size partition is a pair of disjoint
subsets V+ and V− of V such that V = V+ ∪V− and |V+| = |V−|. The Graph Bi-
section problem is to find such a partition V+ and V− minimizing |(V+×V−)∩E|,
i.e., the number of edges between them. In the case where the optimal solution
is not unique, we only require to compute one of them. The same requirement
is assumed for the other problems.

We consider another graph partitioning problem, the Most Likely Partition
problem. Intuitively, the problem is to find, for a given graph G = (V, E), a
partition that is most likely under the condition that G is observed. For defining
the problem precisely, we need to specify a certain random graph model, i.e., a
way to generate a graph randomly. For any n, consider a set V of vertices; we let
V = {v1, ..., v2n}. For generating a graph, we first generate a partition of V . This
is done by simply dividing V into two equal size sets V+ and V− uniformly at
random. Define a vector a = (a1, ..., a2n) ∈ {+1, −1}2n so that ai = +1 if vi ∈ V+
and ai = −1 if vi ∈ V−; this a is called an assignment for the partition (V+, V−).
Then for a priori determined parameters p and r, we generate undirected edges
as follows: for any vertices vi, vj ∈ V , put an edge (vi, vj) to E with probability
p if ai = aj , and put an edge (vi, vj) to E with probability r if ai �= aj. This is
the way of generating a graph randomly. Note that, for any size parameter n,
and parameters p and r, this model defines a probability distribution on graphs
of size 2n. For any graph G = (V, E), consider any partition (V+, V−) of V , and

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 507–516, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

508 M. Onsjö and O. Watanabe

let a be its assignment. Then for given parameters p and r, the following is the
probability that G is generated from (V+, V−) in the way specified above. (Below
by E we denote the set of ordered pairs of V not in E.)

Pr[G | (V+, V−)] =
∏

(vi,vj)∈E

p[ai=aj]r[ai �=aj] ·
∏

(vi,vj)∈E

(1 − p)[ai=aj](1 − r)[ai �=aj]

(1)
where [· · ·] takes 1 if · · · holds and 0 otherwise. We call this probability the
likelihood of (V+, V−). Note that the likelihood of (V+, V−) for observed G (that
is, Pr[(V+, V−)|G]) should be computed as Pr[G|(V+, V−)] · Pr[(V+, V−)]/ Pr[G].
But both Pr[G] and Pr[(V+, V−)] are the same for all possible partitions, we use
this probability Pr[(V+, V−)|G] for determining the most likely partition.

Now our second graph partitioning problem — Most Likely Partition (MLP)
problem — is defined as follows: For a given graph G = (V, E) and parameters p
and r, the problem is to find a partition V+ and V− of V with the max. likelihood
w.r.t. p and r. We also consider a problem where parameters p and r are not
given, which requires to compute also these parameters besides a partition. In
this case, parameters p and r to be computed are those maximize Pr[(V+, V−)|G]
with most likely partition (V+, V−) w.r.t. p and r. This harder version is called
a parameterless version. The Most Likely Partition problem is considered as a
basic problem for various clustering problems; see, e.g., [CK01, DLP03] for the
background of the problem.

1.1 Planted Solution Models: Our Average-Case Scenario

There are some NP-hard problems, for which we can show some algorithm that
solves the problem correctly/efficiently on average under a reasonable average-
case scenario. For discussing average-case performance of algorithms, the choice
of an average-case scenario, that is, the choice of a probability model for de-
termining an input distribution is important. The notion of “planted solution”
has been used for defining reasonable probability models. Here we follow this
approach and consider the standard planted solution model for our graph parti-
tioning problems.

Jerrum and Sorkin [JS98] studied a planted solution model for the Graph
Bisection problem, which has been used as a standard model. Here we use this
model for our two graph partitioning problems. This model specifies a way to
generate graph from a planted solution, which is almost the same as the one
used for defining the most likely partition. We first fix probability parameters
p and r, 0 < r < p ≤ 1. Then for a given size parameter n, and a given equal
size partition V ∗+ and V ∗− of V = {v1, ..., v2n}, generate undirected edges in E
as follows (here let a∗ denote the assignment for (V ∗+ , V ∗−)): for any vertices
vi, vj ∈ V , put an edge (vi, vj) to E with probability p if a∗i = a∗j , and put an
edge (vi, vj) to E with probability r if a∗i �= a∗j . Since r < p, we have on average
more edges among vertices in V ∗+ (resp., V ∗−) than between V ∗+ and V ∗−. Hence,
we can expect that the partition (V ∗+, V ∗−) achieves the smallest number of cut

A Simple Message Passing Algorithm for Graph Partitioning Problems 509

edges, that is, it is optimal for the Graph Bisection problem. Thus, the partition
(V ∗+, V ∗−) is called a planted solution.

The above intuition can be formally justified for our two graph partitioning
problems. It has been shown [Betal87] that if p − r = Ω(n−1/2), then with high
probability, a planted solution is the unique optimal solution of the Graph Bi-
section problem. We can show a similar property for the MLP problem. That
is, it can be shown [Ons05] that if p − r = Ω(n−1/2), then a planted solution
is, with high probability, the unique solution of the MLP problem for the gener-
ated instance. Thus, under the above planted solution model, both of our graph
partitioning problems ask for the same solution for a wide range of parameters
p and r.

1.2 Main Results

We propose a simple deterministic algorithm for our two graph partitioning
problems. Since these two problems ask for the same answer (under the planted
solution model with reasonable parameters), we explain the algorithm for the
MLP problem.

First consider the case that the probability parameters p and r are given as
input. Figure 1 (of the next section) states a general message passing algorithm
for the problem. The algorithm aims to compute, for each vertex vi, the belief bi

for its assignment ai; the sign of bi determines whether ai = +1 or ai = −1, and
its absolute value reflects the strength of the belief. (Without losing generality,
we may assume that a1 = +1; hence, b1 is set +∞ at every round.) Roughly
speaking, at each round, it updates (in parallel) the current belief bi, which is
propagated to its neighbor vertices in the next round. In general, this computa-
tion is repeated until all beliefs get stabilized. But for our theoretical analysis,
we consider the algorithm that terminates in two rounds (i.e., MAXSTEP = 2)
and outputs an assignment based on the obtained beliefs. We call this algorithm
GraphPart2. (The two round restriction is necessary for our current analysis;
roughly speaking, during the first two rounds, all edges are touched only once,
and we can make use of the independence of edge existence for analyzing the
variance of beliefs. Also some more minor changes are made in GraphPart2 for
simplifying our analysis; see the next section for the details.) Though the general
GraphPart requires some floating number computation, only simple counting
is enough for executing this simplified GraphPart2, and it is easy to see that
GraphPart2 runs in time O(n + m). For the correctness of the algorithm, we
prove the following theorem.

Theorem 1. For any n, and p and r, 0 < r < p < 1, consider the execution
of GraphPart2 on randomly generated graphs under the planted solution model.
Then with some constant ε1 we have

Pr[the algorithm yields the planted solution] ≥ 1 − 2n · e
−ε1n· (p−r)4

p2 ,

This accuracy can be stated in terms of the bound for p − r, which is more
useful for comparing with the other algorithms. For simplicity, we consider the

510 M. Onsjö and O. Watanabe

case such that cp < r < p for some constant c > 0. Then the condition of the
theorem can be restated as p − r ≥ c1(n log(n/δ))−1/2 for some constant c1 > 0.
That is, if p − r = Ω(

√
log n/n), then the algorithm gives a correct answer with

high probability.
We can also prove the same theorem even if the size of each class is not the

same. That is, for any fixed pair of n1 and n2, we have the same accuracy bound
for n = min(n1, n2), under the planted solution model for the partition of size n1
and n2. Note that the algorithm does not need to know n1 or n2. This property
may be useful for multiclass partitioning; we may first separate vertices of class
1 from the others, and then separate those of class 2, and so on.

We next consider the prameterless version, in particular, for the Graph Bisec-
tion problem. Note here that we may assume that a planted partition is of equal
size; hence, we can estimate p + r by counting the number of edges in a given
graph, and we can expect that this estimated value can be quite accurate. Then
within some appropriate range, we search for approximations p̃ and r̃ of p and
r by binary search. This needs to run the algorithm GraphPart2 for O(log n)
times (if p − r = Ω(n−1/c) for some c > 1). Notice that with the same strategy,
we can also solve the Graph Bisection problem. The accuracy of this strategy is
guaranteed by the following theorem.

Theorem 2. For any n, and p and r, 0 < r < p < 1, consider the execution
of GraphPart2 on randomly generated graphs under the planted solution model,
but here execute it with parameters p̃ and r̃ such that p̃ + r̃ = p + r and p − r ≤
p̃ − r̃ < (5/4)(p − r). Even in this case with some constant ε2 we have

Pr[the algorithm yields the planted solution] ≥ 1 − 2n · e
−ε2n· (p−r)4

p2 ,

The proofs of the above two theorems are not so hard. It is easy to estimate the
expected belief computed at each vertex. On the other hand, we can make use
of independency of assigning edges because all pairs of vertices are touched only
once during the execution. Thus, by a standard argument, we can show that
the actual values stay, with high probability, within a reasonable range from the
expected beliefs.

1.3 Related Work

The Graph Bisection problem has been studied by many researchers, and a good
number of theoretically guaranteed algorithms have been already proposed. Here
we mention some of them related to our algorithm; see, e.g., [CK01, McS99,
Coj05]. Boppana is one of those who gave polynomial-time algorithms in 80’s,
and his spectral algorithm [Bop87] has been the best until quite recently; see,
e.g., [Coj05] for the details. On the other hand, for using his algorithm, one needs
to solve some convex optimization problem, which is not so easy. More recently,
McSherry [McS99] gave a more general spectral algorithm, which performs al-
most as well as Boppana’s and which can be implemented in quasi linear time
by some randomized computation. Among those having accuracy bounds close

A Simple Message Passing Algorithm for Graph Partitioning Problems 511

to Boppana’s algorithm, the one proposed by Condon and Karp [CK01] achieves
linear time. But note that theirs is also a randomized algorithm.

Compared with these known algorithms, we may claim that our algorithm is
very simple and deterministic. Unfortunately, the range of parameters for which
high accuracy is guaranteed by Theorem 2 is much weaker than the one for
the algorithms by Boppana, though it is close to the one for the algorithm of
Condon and Karp. Nevertheless, we think that our algorithm is worth studying
theoretically. Firstly, since it is very simple, we may be able to clarify the reason
why previously proposed randomized algorithms work. For example, instead of
computing beliefs numerically, if we compute them by some appropriate random
simulation, we may have a randomized algorithm that is conceptually similar
to the one by Condon and Karp. Secondly, the algorithm works for the case
with very unbalanced partition size, which has not been shown for the other
algorithms. Thirdly, though our analysis is only for the case MAXSTEP = 2
(due to the technical reason), computer experiments show that the algorithm
performs much better when it is allowed to update beliefs more than twice. It is
an important open problem to justify this performance theoretically.

Belief Propagation
The algorithm GraphPart is derived from Pearl’s belief propagation [Pea88] with
some modification. Roughly speaking, the belief propagation is a way to compute
a marginal probability of the state of each node in a given Bayesian network.
We use this technique for the MLP problem. For any input G, p, and r for the
MLP problem, we can define a Bayesian network on which a belief propagation
algorithm (in short, the BP algorithm) is expected to compute P (i) = Pr[vi ∈
V+|G], where the probability is defined under our random model for defining
the most likely partition. Intuitively, a belief (that vi belongs to V+) is the
approximation of P (i). The BP algorithm computes beliefs in rounds; at each
round, it updates beliefs and we would like to have correct P (i)’s at some round.
In fact, it is shown that the BP algorithm converges in finite rounds and yields
the correct probabilities if a given Bayesian network is a tree; although such a
convergence cannot be guaranteed in general Bayesian networks, it is often the
case that the BP algorithm converges and gives quite accurate values even for
Bayesian networks with cycles. Now suppose that the BP algorithm computes
P (i) correctly at some round, then a natural solution for our partition problem
is to compute V+ (resp., V−) as a set of vertices vi with P (i) > 0.5 (resp.,
P (i) < 0.5), which we may expect to give a partition with the max. likelihood.
Our algorithm is derived from this BP-based partition algorithm. see, [OW05]
for the derivation and related issues.

2 Algorithm and Its Analysis

We explain the algorithm GraphPart of Figure 1 and its analysis. As explained
in Introduction, the algorithm updates beliefs for each vertex vi ∈ V+ each
round. An updated value of bi is computed by summing up the beliefs of all
vertices vj , multiplied by eigher h+ > 0 (if an edge (vi, vj) exists) and by −h− <

512 M. Onsjö and O. Watanabe

procedure GraphPart (G, p, r);
begin

set all bi to 0;
repeat MAXSTEP times do {

b1 ← +∞;
for each vi ∈ V do in parallel {

bi ←
�

vj∈Ni

h+ · Th+(bj)

−
�

vj �∈Ni

h− · Th−(bj);

}
if all bi’s get stabilized then break;

}
output (+1, sg(b2), ..., sg(b2n));

end-procedure

parameters & functions

c− =
1 − p

1 − r
, c+ =

p

r
,

h− =

����
c− − 1

c− + 1

���� , h+ =

����
c+ − 1

c+ + 1

���� ,

th− =

����
ln c−
h−

���� , th+ =

����
ln c+

h+

���� ,

Th+(z) = sg(z)min(|z|, th+),

Th−(z) = sg(z) min(|z|, th−),

sg(z) = the sign of z, and

Ni = the set of vi’s neighbors.

Fig. 1. Computation of pseudo beliefs for the MLP problem

0 (otherwise). This is intuitively reasonable because one can expect that two
vertices vi and vj are in the same class (resp., in the different classes); if an
edge exists (resp., does not exist) between them. The algorithm uses threshold
functions Th+(z) and Th−(z) so that too large (or too small) beliefs are not
sent to the other vertices. The algorithm terminates (before the time bound) if
bi gets stabilized for every i, i.e., either the change of bi becomes small, or |bi|
exceeds the threshold value max(Th+, Th−).

The theoretical analysis stated in Introduction is for the case that the algo-
rithm is terminated in two rounds, i.e., MAXSTEP = 2. For simplifying the
analysis, we further consider the following modifications: (i) use some small
θ < min(th+, th−) for the initial value of b1 (for avoiding the thresholding), and
(ii) set b1 = 0 before the second round (for ignoring the effect from v1 in the sec-
ond round). Precisely speaking, this is the algorithm GraphPart2 investigated
in our theorems.

We give the outline of the proof of Theorem 1. (Due to the space limit, we
omit the proof of each lemma, which can be found in [OW05].) Below let G =
(V, E) be a random graph of size |V | = 2n generated from the planted solution
V ∗+ = {v1, ..., vn} and V ∗− = {vn+1, ..., v2n} with parameters p and r, 0 < r < p.
Let a∗ be the assignment of vertices in the planted solution.

Let us introduce some notations. Define α = p + r and β = p − r. Since the
vertex v1 is treated separately, we omit v1 from our discussion, and by, e.g.,
“vi ∈ V ∗+” we always mean vi from {v2, ..., vn}. We introduce random variables
(where the randomness is due to the random graph G). For any vi, vj ∈ V , let
Ei,j be a random variable taking a value in {0, 1} that indicates whether there
exists an edge between vertices vi and vj in G; hence, Ei,j = 1 with prob. p
if a∗i = a∗j , and otherwise Ei,j = 1 with prob. r. Let P1 and P0 be the set of
vertices in V ∗+ that respectively does/does not have an edge with v1; sets Q1 and
Q0 are defined similarly for V ∗−.

A Simple Message Passing Algorithm for Graph Partitioning Problems 513

Now consider any vi ∈ V . we use bi to denote the final pseudo belief computed
by the algorithm. On the other hand, the value of the variable bi after the first
round is denoted as b′i. It is easy to see that b′j = h+ · θ if vj ∈ P1 ∪ Q1 and
b′j = −h− · θ if vj ∈ P0 ∪ Q0, and these values are used to compute the final
value bi. (Note that both h+ · θ and h− · θ are less than min(th+, th−).) Then
we have the following lemma.

Lemma 1. E[bi] = a∗i · ϕ(n, α, β), where ϕ(n, α, β) def=
2nθβ4

α2(2 − α)2
.

This lemma shows that bi gives on average the correct classification. Thus, it
now suffices to show a condition that bi is close to their expectations so that
bi > 0 and the algorithm outputs the correct assignment for vi.

Let us consider the case where α ≤ 1 and vi ∈ V ∗+, and we discuss a condition
that bi becomes positive, i.e., the algorithm yields a correct assignment for vi.
Arguments for the other cases are similar and omitted. Here we introduce some
random variables taking values in [0, 1) and consider the following situation.

Y + = E[Y +] + δ+n = pn + δ+n,
Y − = E[Y −] + δ−n = rn + δ−n,

X+,1
i = (pn + δ+n)(p − γ+) = p2n + (pδ+ − pγ+ − δ+γ+)n,

X−,1
i = (rn + δ−n)(r − γ−) = r2n + (rδ− − rγ− − δ−γ−)n,

X+,0
i = ((1 − p)n − δ+n)(p + γ′

+) = (1 − p)pn + ((1 − p)γ′
+ − pδ+ − δ+γ′

+)n,

X−,0
i = ((1 − r)n − δ−n)(r + γ′

−) = (1 − r)rn + ((1 − r)γ′
− − rδ− − δ−γ′

−)n.

(2)

We may also consider the other situations such as the case where Y + = E[Y +]−
δ+n; but it is easy to check that the above choice makes bi the smallest. By
using these variables, we express below a sufficient condition that bi is close to
its expectation and bi > 0.

Lemma 2. Assume that the following bounds hold for the estimators defined by
(2).

δ+ < min
(

p,
β2

8pα

)
, δ− < min

(
p,

β

8
,

β2

8rα

)
,

γ+ <
β2

8p(2 − α)
, γ− <

β2

8p(2 − α)
, and γ <

β2

8α(2 − α)
.

Then we have bi > E[bi] − ϕ(n, α, β) = 0.

Next we show a bound for the probability that the above condition holds.

Lemma 3. There exists some constant ε1 such that for any p, r, 0 < r < p < 1,
we have

Pr[all bounds of Lemma 2 hold] ≥ 1 − e
−ε1n·β4

p2 . (3)

Note that this bound is for the event that the algorithm yields the planted
solution for one vertex. The bound of the theorem is obtained by considering
the event that the algorithm answers the planted solution for all vertices.

514 M. Onsjö and O. Watanabe

2.1 Robustness of the Algorithm

First we show that the algorithm works as well even if a planted solution (V ∗+ , V ∗−)
is not of the equal size. The argument is almost the same. For example, we can
show the following generalization of Lemma 1.

Lemma 4. E[bi] = a∗i · (n+ + n−)θβ4

α2(2 − α)2
, where n+ = |V ∗+| and n− = |V ∗−|.

Then by a similar argument, we can prove the same theorem for the general case
with n = min(n+, n−).

Next consider the situation that we use parameters p̃ and r̃ that are different
from those used for generating instances. This situation occurs when we want to
solve the MLP problem of the parameterless version. Precisely speaking, under
the planted solution model, our goal is to obtain a planted solution and param-
eters p′ and r′ close enough to those used to generate the input graph from the
planted solution. For this goal, we may consider the following algorithm: First
by counting the number of edges, we compute the estimation α̃ of α (= p + r),
which should be very close to α. Then by using a guess β̃ of β, run the algorithm
GraphPart2 with guessed p̃ and r̃, where p̃ = (α̃ + β̃)/2 and r̃ = (α̃ − β̃)/2. The
initial guess of β̃ is the largest candidate, i.e., α̃, and repeat the algorithm by
revising β̃ with (4/5)β̃ until any “consistent” equal size partition is obtained.
The consistency of the partition can be tested by checking whether the same
partition can be obtained by the algorithm with parameters p′ and r′ that are
estimated by counting the number of edges respectively within and between two
partitioned sets.

In this situation, the algorithm is executed by using parameters p̃ and r̃ that
are different from those used for generating instances; but we may assume that
p̃ + r̃ (= α̃) ≈ α, and p̃ − r̃ (= β̃) satisfies β ≤ β̃ < (5/4)β. For simplicity, we
assume that α̃ = α and β ≤ β̃ < (5/4)β. Theorem 2 states that, even with such
parameters p̃ and r̃, the algorithm still yields the planted solution with high
probability.

Let us see the proof outline of Theorem 2. Consider any vi ∈ V ∗+ (again the case
vi ∈ V ∗− can be argued similarly); E[bi] is now the expected value of bi when the
algorithm is executed with p̃ and r̃. Consider also the execution of the algorithm
(with p̃ and r̃) on a random graph generated with these parameters p̃ and r̃, and
let Ẽ[bi] denote the expected value of bi in this execution. By Lemma 1, we have
Ẽ[bi] = ϕ(n, α, β̃). Then by essentially the same way as Lemma 2, we obtain the
following lemma. (Below let Δ = p̃ − p, and recall α̃ = α.)

Lemma 5. E[bi] = Ẽ[bi] − a∗i

(
2n(4β̃2)

α2(2 − α)2

)

(β̃Δ − Δ2) ≥ Ẽ[bi]/2.

From our assumption β̃ ≥ β, it is easy to see that the tolerance against deviation
is stronger by using β̃ for β. More specifically, the condition of Lemma 2 using β̃
instead of β implies that bi > E[bi] − ϕ(n, α, β̃). Hence, from some stronger but

A Simple Message Passing Algorithm for Graph Partitioning Problems 515

procedure SimplePart (G, p, r);
begin

set all bi to 0; b1 ← +1; bn+1 ← −1;
repeat MAXSTEP times do {

for each vi ∈ V do in parallel bi ←
�

vj∈Ni

bj ;

if all bi’s get stabilized then break;
}
output (sg(b1), ..., sg(b2n));

end-procedure

Fig. 2. Yet simpler message passing algorithm the MLP problem

still similar condition, we would have bi > E[bi] − ϕ(n, α, β̃)/2 = E[bi] − Ẽ[bi]/2,
where the last expression is greater than equal to 0 by the above lemma. Then
Theorem 2 is proved by the same last argument for Theorem 1.

3 Some Remarks

Simpler Algorithm Works?
From the argument of the previous section, one may wonder that much simpler
message passing algorithm also works. For example, we can consider an algorithm
SimplePart stated in Figure 2. The idea is clear. Assume that v1 ∈ V ∗+ and
vn+1 ∈ V ∗−, and positive and negative beliefs are passed to their neighbor vertices,
from which beliefs are computed at all vertices. Then these beliefs are sent again
to neighbor vertices, which are again used to update beliefs. For this algorithm,
we may stop the iteration if for every i, either the change of bi becomes small,
or |bi| exceeds some large number.

We confirmed by some computer experiment that this algorithm works when
p and r are in a certain range. Also again for a two round version of SimplePart
(i.e., the one with MAXSTEP = 2), we can prove a property similar to the one
that we showed in Theorem 1. In fact, it is easy to check that E[bi], the average
belief at vertex vi ∈ V ∗+ after two updating rounds, is n(p− r)2 (= nβ2), and we
can argue that the deviation is small enough if p and r satisfy a similar condition.

Unfortunately, however, this simple algorithm fails badly if instances are gen-
erated from an unbalanced partition, a partition such that |V ∗+| �= |V ∗−|. This is
because this algorithm uses only the information of the existence of edges. On
the other hand, the BP based algorithm makes use of also the information of
the nonexistence of edges. This point is important for keeping our algorithm to
work even for instances from an unbalanced partition.

Some Observations from Experiments
Some interesting observations are also obtained from computer experiments on
the algorithm GraphPart. We executed the algorithm on graphs with n = 6000
vertices that are generated randomly under the planted solution model with
various values of parameters p and r. We had the following observations: (1)

516 M. Onsjö and O. Watanabe

The algorithm shows much better performance if it is executed until the beliefs
are stabilized. (2) The algorithm yields a most likely partition for a quite wide
range of p − r. Even when p − r is “small” and the planted solution is not
the optimal, the algorithm gives a solution whose likelihood is better than the
planted solution. (3) The number of rounds required until the stabilization is not
so large; approximately 10 rounds for large p − r, and up to 50 rounds even for
the above “small” p−r. (4) The algorithm GraphPart works as well even without
the thresholding; it yields an answer very close to the planted solution with high
probability. On the other hand, without the thresholding, the execution becomes
less stable, and the chance of obtaining the planted solution exactly gets smaller.

References

[Bop87] R.B. Boppana, Eigenvalues and graph bisection: an average-case analysis,
in Proc. Symposium on Foundations of Computer Science, 280-285, 1987.

[Betal87] T. Bui, S. Chaudhuri, F. Leighton, and M. Spiser, Graph bisection algo-
rithms with good average behavior, in Combinatorica 7, 171–191, 1987.

[Coj05] A. Coja-Oghlan, A spectral heuristic for bisecting random graphs, in Proc.
SODA 2005, 850–859, 2005. (The journal version will appear in Random
Structures and Algorithms.)

[CK01] A. Condon and R. Karp, Algorithms for graph partitioning on the planted
partition model, Random Str. and Algorithms 18, 116–140, 2001.

[DLP03] D. Dubhashi, L. Laura, and A. Panconesi, Analysis and experimental eval-
uation of a simple algorithm for collaborative filtering in planted partition
models, in Proc. FST TCS 2003, 168–182, 2003.

[DF89] M.E. Dyer and A.M. Frieze, The solution of some random NP-hard problems
in polynomial expected time, J. of Algorithms 10, 451–489, 1989.

[GJ79] M.R. Garey, D.S. Johnson, Computers and Intractability, Bell Telephone
Laboratories, Incorporated, 1979.

[GJS76] M. Garey, D. Johnson, and L. Stockmeyer, Some simplified NP-complete
graph problems, in Theoret. Comput. Sci. 1, 237–267, 1976.

[JS98] M. Jerrum and G. Sorkin, The Metropolis algorithm for graph bisection,
Discrete Appl. Math 82(1-3), 155–175, 1998.

[HSS03] R. Hahnloser, H. Seung, and J. Slotine, Permitted and forbidden sets in
threshold-linear networks, in Neural Computation 15, 621–638, 2003.

[McS99] F. McSherry, Spectral partition of random graphs, in Proc. 40th IEEE Sym-
pos. on Foundations of Computer Science (FOCS’99), IEEE, 529–537, 1999.

[Ons05] M. Onsjö, Master Thesis, 2005.
[OW05] M. Onsjö and O. Watanabe, Simple algorithms for graph partition problems,

Research Report C-212, Dept. of Math. and Comput. Sci., Tokyo Inst. of
Tech, 2005.

[Pea88] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference, Morgan Kaufmann Publishers Inc., 1988.

Minimal Interval Completion

Through Graph Exploration

Karol Suchan1,2 and Ioan Todinca1

1 LIFO, Université d’Orléans, 45067 Orléans Cedex 2, France
2 Department of Discrete Mathematics, Faculty of Applied Mathematics,

AGH - University of Science and Technology, Cracow, Poland
{Karol.Suchan, Ioan.Todinca}@univ-orleans.fr

Abstract. Given an arbitrary graph G = (V, E) and an interval graph
H = (V, F) with E ⊆ F we say that H is an interval completion of G. The
graph H is called a minimal interval completion of G if, for any sandwich
graph H ′ = (V, F ′) with E ⊆ F ′ ⊂ F , H ′ is not an interval graph. In
this paper we give a O(nm) time algorithm computing a minimal interval
completion of an arbitrary graph. The output is an interval model of the
completion.

1 Introduction

Various well-known graph parameters, like treewidth, minimum fill-in, pathwidth
or bandwidth are defined in terms of graph embeddings. The general framework
consists in taking an arbitrary graph G = (V, E) and adding edges to G in order
to obtain a graph H = (V, E ∪E′) belonging to a specified class H. For example,
if H is chordal then it is called a triangulation of G. The treewidth can be
defined as min(ω(H)) − 1, where the minimum is taken over all triangulations
of G (here ω(H) denotes the maximum size of a clique in H). If, instead of
minimizing ω(H), we minimize |E′|, the number of added edges, we define the
minimum fill-in of G. If H = (V, E∪E′) is an interval graph, we say that H is an
interval completion of G. The pathwidth of G can be defined as min{ω(H))− 1 |
H is an interval completion of G}. The minimum number of edges that we need
to add for obtaining an interval completion is called the profile of the graph.

For each of the parameters cited above, as well as for similar embedding prob-
lems into other type of graph classes, the problem of computing the parameter
is NP-hard. Obviously, for all of them, the optimal solution can be found among
the minimal embeddings. We say that H = (V, E ∪ E′) is a minimal triangula-
tion (minimal interval completion) if no proper subgraph of H is a triangulation
(interval completion) of G.

Computing minimal triangulations is a standard technique used in heuris-
tics for the treewidth or the minimum fill-in problem. The deep understanding
of minimal triangulations lead to many theoretical and practical results for the
treewidth and the minimum fill-in. We believe that, similarily, the study of other
types of minimal completions might bring new powerfull tools for the correspond-
ing problems.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 517–526, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

518 K. Suchan and I. Todinca

Related work. Much research has been devoted to the minimal triangulation
problem. Tarjan and Leuker propose the first algorithm solving the problem
in O(nm) time. Several authors give different approaches for the same prob-
lem, with the same running time. Only recently this O(nm) (in the worst case
O(n3)) time complexity has been improved, and the fastest algorithm is due to
Heggernes, Telle and Villanger ([11], running in O(nα log n) time where O(nα)
is the time needed for the multiplication of two n × n matrices). The latter
algorithm is the fastest up to now for the minimal triangulation problem.

A first polynomial algorithm solving the minimal interval completion problem
is given in [10], using an incremental approach. Recent results relate to minimal
completions into split and comparability graphs [8,9].

Our result. We study the minimal interval completion problem. Our main
result is an O(nm) time algorithm computing a minimal interval completion of
an arbitrary graph, faster and simpler than the result of [10]. The latter result
is based on characterization of interval graph by existence of its clique path.
Here, we use the characterization by a special ordering of the vertex set, called
interval ordering [12]. Its role is similar to the simplicial elimination scheme for
chordal graphs. We define a family of orderings such that the associated proper
interval graph is a minimal interval completion. Eventually, we give an O(nm)
time algorithm computing such an ordering. Our algorithm is based on a breadth-
first search of the input graphs, using special tie-break rules. In particular, we use
the LexBFS algorithm for tie-breaks. The ordering can be efficiently transformed
into an interval model.

2 Definitions and Basic Results

Let G = (V, E) be a finite, undirected and simple graph. Moreover we only con-
sider connected graphs — in the non-connected case each connected component
can be treated separately. Denote n = |V |, m = |E|. If G′ = (V ′, E′) is a span-
ning subgraph of G = (V, E) (i.e. V ′ = V and E ⊆ E′) we write G ⊆ G′ (and
G ⊂ G′ if G ⊆ G′, G �= G′). The neighborhood of a vertex v in G is NG(v) =
{u | {u, v} ∈ E}. Similarly, for a set A ⊆ V , NG(A) =

⋃
v∈A NG(v) \ A. The

closed neighborhood of A (of v) is NG[A] = A ∪ NG(A) (NG[v] = {v} ∪ NG(v)).
As usual, the subscript is sometimes omitted.

A graph G is an interval graph if continuous intervals can be assigned to each
vertex of G such that two vertices are neighbors if and only if their intervals
intersect. The family of intervals is called the interval model of the graph.

Theorem 1 ([5]). A graph G is interval if and only if there is a path P whose
vertex set is the set of all maximal cliques of G, such that the subgraph of P
induced by the maximal cliques of G containing vertex v is connected, for each
vertex v of G.

Such a path will be called a clique path of G. Notice, that a clique path P gives
an interval model of G, with an interval (subpath) of maximal cliques assigned to

Minimal Interval Completion Through Graph Exploration 519

each vertex. For our purpose, we also use the caracterization of interval graphs
in terms of vertex orderings (also called layouts).

Definition 1 (interval ordering [12]). An interval ordering of the vertices of
a graph H = (V, F) is a linear ordering σ = (v1, v2, . . . , vn) of V such that, for
any 1 ≤ i < j ≤ k ≤ n, if {vi, vk} ∈ F then also {vi, vj} ∈ F .

Theorem 2 ([12]). A graph H = (V, F) is an interval graph if and only if there
exists an interval ordering of its vertex set.

Definition 2. Let G = (V, E) be an arbitrary graph and σ = (v1, . . . , vn) be an
ordering of V . The graph G(σ) = (V, F) is defined by

F = {{vi, vk} | there is j such that 1 ≤ i < k ≤ j ≤ n and {vi, vj} ∈ E}.

The following Lemma is a direct consequence of Theorem 2.

Lemma 1. G(σ) is an interval graph.

Remark 1. Let σ = (v1, v2 . . . , vn) be an interval ordering of an interval graph
H . An interval model of H can be obtained by associating to each vertex vi the
interval [i, j], where j ≥ i is the largest index such that {vi, vj} ∈ F .

Conversely, given an interval model of the graph H , we obtain an interval
ordering by ordering the vertices according to the left-end point of their intervals,
from left to right. Ties can be broken arbitrarily. For technical reasons, in this
article, we decide to use the right-ends as a tie-break, from left to right, too.

Given an interval model, a clique path can be obtained by traversing the
model from left to right and, at each point p where an interval finishes, adding
the clique of intervals intersecting p to the model if it is not included in the
(maximal) clique added right before. If H = G(σ), for some simple graph G, let
P (G, σ) denote the clique path obtained in that way.

Theorem 3. Let G = (V, E) be an arbitrary graph and H = (V, F) be a minimal
interval completion of G. Then there is an ordering σ such that H = G(σ).

Proof. By Theorem 2, there is an ordering σ of V such that H = H(σ). As a
straight consequence of Definition 2, E(G(σ)) ⊆ E(H). By Lemma 1, G(σ) is also
an interval graph. Thus, by minimality of H , we deduce that E(G(σ)) = E(H).

	

Definition 3. An ordering σ = (v1, . . . , vn) is called nice if G(σ) is a minimal
interval completion of G. Any prefix (v1, . . . , vk), k ≤ n of a nice ordering is
called a nice prefix.

Our goal will be to find a nice ordering σ of an arbitrary graph G. This will be
achieved through ordered partitions of the vertex set, which are to be refined
into a linear ordering.

Definition 4. A tuple of disjoint subsets of V , OP = (V1, . . . , Vk) whose union
is exactly V is called an ordered partition of V . A refinement of OP is an ordered
partition OP ′ obtained by replacing each set Vi by an ordered partition of Vi.

520 K. Suchan and I. Todinca

Definition 5. Given an ordered partition OP = (V1, . . . , Vk), any tuple OP ′ =
(V1, . . . , Vj), with 0 ≤ j ≤ k, is called a prefix of OP . We use V(OP ′) to denote⋃

{Vi | 1 ≤ i ≤ j}.

In the particular case where OP = (V1), we simply write V1. Moreover if
V1 is formed by a single vertex x, we write x instead of {x}. Given two tu-
ples OP ′ = (V1, . . . , Vk), OP ′′ = (Vk+1, . . . , Vk+l), their concatenation OP =
(V1, . . . , Vk, Vk+1, . . . , Vk+l) is denoted by OP ′ • OP ′′.

Notice that an ordering σ = (v1, . . . , vn) of V is a special case of an ordered
partition.

3 Nice Orderings and Nice Prefixes

3.1 Choosing a First Vertex

A module is a set of vertices M such that for any x, y ∈ M , N(x)\M = N(y)\M .
A clique module is a module inducing a clique. An inclusion-maximal clique
module will be simply called a maximal clique-module.

A minimal separator S is a set of vertices such that there exist two connected
components of G − S with vertex sets C and D satisfying N(C) = N(D) = S.

Lemma 2 (see e.g. [6]). Let P be a clique path of an interval graph H. For
any minimal separator S of H, there exist two maximal cliques of H, consecutive
in P , whose intersection is S.

Definition 6 ([1]). A moplex is a maximal clique module M , such that N(M)
is a minimal separator of G. The vertices of a moplex are called moplexian
vertices.

The LexBFS (Lexicographic Breadth-First Search) algorithm, introduced by
Rose, Leuker and Tarjan [14], is a famous linear-time algorithm that numbers
the vertices of an arbitrary graph from n to 1. Initially designed to obtain a
simplicial ordering for chordal graphs, we use it here to obtain the first vertex
of a nice ordering. LexBFS is a particular breadth-first search algorithm.Each
vertex x has a label lab(x), which is a tuple of integers. During the algorithm,
each vertex x also receives a number. The algorithm may start the exploration
of the graph on any vertex.

Theorem 4 ([1]). The algorithm LexBFS ends on a moplexian vertex.

A vertex v numbered 1 by some execution of LexBFS is called a LexBFS-terminal
vertex. A moplex M such that some execution of LexBFS terminates on a vertex
of M is called a LexBFS-terminal moplex.

Lemma 3 ([1,2]). Let M be a LexBFS-terminal moplex and S = NG(M). De-
note by C1, C2, . . . , Ck, with Ck = M , the connected components of G − S in
the order in which the LexBFS execution encounters them. Then the following
equation are satisfied:

Minimal Interval Completion Through Graph Exploration 521

N(C1) ⊆ N(C2) ⊆ · · · ⊆ N(Ck). (1)

∀i, j, x, y : 1 ≤ i < j ≤ k, x ∈ N(Ci), y ∈ N [Cj] \ N(Ci)
⇒ {x, y} ∈ E(G). (2)

Lemma 4. Consider a non-complete graph G = (V, E). Let v be a vertex of a
moplex M and S = NG(M). Let C1, C2, . . . , Ck, with Ck = M , the connected
components of G − S, satisfy Equations 1 and 2 of Lemma 3. Then there exists
a minimal interval completion H of G such that NG(v) = NH(v).

For any such H, there exists a clique path P of H such that M ∪ S is one of
its end cliques.

Proof. Let H ′ be the graph obtained from G by transforming NG[Ci] into a
clique, from each 1 ≤ i ≤ q. By Equation 1 (see Lemma 3), (NG[C1], . . . , NG[Ck])
is a clique path of H ′, in particular H ′ is an interval graph. Consequently H ′

contains some minimal interval completion H of G as required.
Now let H be any minimal interval completion of G such that NH(v) = NG(v).

We first show that S induces a clique in H . Let D be a component of G − S,
different from M , such that NG(D) = S. Note that S is a v, u-minimal separator
of G, for some u ∈ D. Let T be a minimal v, u separator of H such that T ⊆
NH(v). Clearly T exists because u and v are non-adjacent in H . We claim that
S ⊆ T . For each vertex s ∈ S, there is a u, v path of G contained in D ∪ {v, s}.
This path intersects NG(v) only in s, so also in the graph H the only possible
intersection between T and the path is s. It follows that s ∈ T , so S ⊆ T . The
minimal separator T induces a clique in H by Lemma 2. Hence S also induces
a clique in H . Note that, by definition of a moplex, M ∪ S also induces a clique
in H .

For each i, 1 ≤ i ≤ k let Hi = H [NG[Ci]]. Let H ′′ be the graph with vertex
set V and edge set E(H1) ∪ E(H2) ∪ · · · ∪ E(Hk). Therefore G ⊆ H ′′ ⊆ H . We
will construct a clique path P of H ′′, showing that H ′′ is an interval graph. By
minimality of H , this implies that H ′′ = H . Moreover, the clique path P will
have M ∪ S = NG[M] as one of its end cliques.

Let Si = NG(Ci). By Equation 2, the vertices of Si−1 are adjacent to all
vertices of Ci − Si−1 in the graph G, so also in Hi. Combined with the fact that
Si−1 ⊆ S induces a clique in H we have that Si−1 is contained in each maximal
clique of Hi. We claim that for each i, 1 ≤ i < k, there exists a clique path of
Hi such that Si is contained in the rightmost clique of Pi. Indeed, the graph
H+

i = H [Ci ∪ S ∪ M] is an interval graph and M ∪ S is one of its maximal
cliques. Take any clique path P+

i of H+
i , we prove that M ∪ S is an end clique.

By contradiction, let x (resp y) be a vertex appearing in the clique left (resp.
right) to S ∪M , but not appearing in S ∪M . By the properties of a clique path,
S ∪ M must separate x and y in H+

i . This contradicts the fact that x, y ∈ Ci

and there exists an x, y-path in G[Ci]. So the only possibility is that S ∪ M is
at an end of P+

i . Since Si ⊆ S and every vertex of S has a neighbour in M ,
Si is contained in the clique next to S ∪ M in P+

i . The clique path Pi of Hi

obtained by removing S ∪M from P+
i has the required property. Eventually, by

522 K. Suchan and I. Todinca

concatenating the clique paths P1, P2, . . . , Pk, it is easy to check that we obtain
a clique path P of H ′′. Indeed if a vertex x appears in the subpaths Pi and Pj

with i < j, then x ∈ NG[Ci] ∩ NG[Cj] = Si (see Equation 1). By Equation 2, x
appears in every clique of Pk, for each k, i < k ≤ j. Since Hk is the complete
graph with vertex set NG[M] = S∪M , the clique path P has S∪M as rightmost
clique. 	

Theorem 5. Let G be a non-complete graph and v be a LexBFS-terminal mo-
plexian vertex of G. For any minimal interval completion H of G such that
NG(v) = NH(v), there is an interval ordering of H starting with v.

Proof. By Lemma 4, there exists a clique path of H such that the left-most
clique is M ∪ S, where S = N(M). We can reverse this path so that S ∪ M
becomes the leftmost clique of the clique path P . By construction, H has no fill
edges incident to v, in particular the v only appears in the left-most clique of P .
By Remark 1, there is an interval ordering of H starting with v. 	

3.2 A Family of Nice Orderings

Notation 1. We denote by ρ = (v1, . . . , vk) a prefix, and R = V \ V(ρ). Let
Nxt be a non-empty subset of R, such that Nxt = NG(vi)∩R for some vi ∈ V(ρ)
and Nxt is inclusion-minimal for this property. We denote R \ Nxt by Rst.

Lemma 5. Let σ be a refinement of ρ•Nxt • Rst and σ′ be a refinement of ρ•R
such that G(σ′) ⊆ G(σ). Then σ′ also is a refinement of ρ • Nxt • Rst.

Proof. Let vi ∈ V(ρ) such that Nxt = R ∩ NG(vi). Suppose that σ′ is not a
refinement of ρ•Nxt • Rst, so there is some vertex u ∈ Rst and a vertex w ∈ Nxt
such that u appears before w in σ′. Since u appears in σ after all vertices of
Nxt, vi and u are not adjacent in G(σ). Now in σ′, u appears after vi and before
w. Since Nxt ⊆ NG(vi), vi and w are adjacent in G and therefore vi and u are
adjacent in G(σ′) – a contradiction. 	

Lemma 6. Consider two vertex orderings σ and σ′ of G that are refinements
of ρ • Nxt •σRst, where σRst is an ordering of Rst. That is to say, σ and σ′

differ only by a permutation of Nxt. Let u, v be two vertices adjacent in G(σ′)
but non-adjacent in G(σ). Then both u, v ∈ Nxt.

Proof. By construction of G(σ) and G(σ′), at least one of the vertices u, v are
in Nxt. By contradiction, suppose that the other is not in Nxt.

First we consider the case when u ∈ V(ρ) and v ∈ Nxt. Suppose that u has
a neighbour u′ ∈ Rst. In both G(σ) and G(σ′) all vertices of Nxt are adjacent
to u as they appear after u and before u′ in the corresponding ordering – a
contradiction. So NG(u) ∩ R ⊆ Nxt. By definition (minimality) of Nxt, either
Nxt ⊆ NG(u) or Nxt∩NG(u) = ∅. Clearly, in the first case Nxt is contained in
the neighborhood of u in both G(σ) and G(σ′). In the second, for both G(σ)
and G(σ′) the vertex u has no neighbours in Nxt – a contradiction.

Minimal Interval Completion Through Graph Exploration 523

It remains to consider the situation when u ∈ Nxt and v ∈ Rst. Since u and
v are adjacent in G(σ′), there is a neighbour v′ of u in G, appearing after v in
σ′. But u, v, u′ appear in the same order in σ, so u and v are adjacent in G(σ) –
a contradiction. 	

3.3 Nice Orderings: A Sufficient Condition

Notation 2. Let σ be a vertex ordering of G and let ρ be a prefix of σ. We
denote by T the set of vertices of Nxt having neighbours in Rst. GNxt denotes
the graph obtained from G[Nxt] by adding a dummy vertex d1, adjacent to each
vertex of T , and a dummy vertex d2 adjacent only to d1. The graph G+

Nxt is
obtained from GNxt by completing T into a clique. Given a clique path P of H,
let P [Nxt] denote the clique path of H [Nxt] obtained by restricting all the bags of
P to their intersections with Nxt and then removing the redundant ones (leaving
only unique maximal cliques of H [Nxt]).

Theorem 6. Let σ be a vertex ordering of G with the following properties:

1. σ starts with a LexBFS-terminal vertex v1.
2. For any non-empty prefix ρ = (v1, . . . , vi)

– σ respects ρ, i.e. σ is a refinement of ρ • Nxt • Rst,
– the next vertex in σ is a LexBFS-terminal vertex of G+

Nxt obtained by
running LexBFS starting from d2.

Then σ is a nice ordering.

Proof. Suppose that σ = (v1, . . . , vn) is not nice and let σ′ be an ordering such
that H ′ = G(σ′) is a minimal interval completion of G strictly contained in
H = G(σ). Take σ′ such that the maximal common prefix ρ of σ and σ′ is the
longest possible.

Claim. ρ is not empty.

The first vertex v1 of σ is LexBFS-terminal. NG(v1) = NG(σ)(v1), since σ re-
spects the prefix (v1) and thus the neighbours of v1 in G appear right after v1
in σ. So the Claim follows by Theorem 5.

Let v (resp. u) be the vertex right after ρ in σ (resp. in σ′). By Lemma 5, we
have:

Claim (1). σ′ is a refinement of ρ • Nxt • Rst, in particular u ∈ Nxt.

Claim (2). Let σ′′ be any refinement of ρ • Nxt • Rst and H ′′ = G(σ′′). Let
P

′′
= P (G, σ′′) (see Remark 1). Then H ′′[Nxt] is an interval completion of

G[Nxt], where the clique path P ′′[Nxt] has the set T = NG(Rst)∩Nxt contained
in one of the end-cliques. In particular, T is a clique in H ′′.

Clearly, P
′′
[Nxt] is a clique path of H

′′
[Nxt]. The last clique contains T , since

the corresponding intervals in the model intersect the interval of a vertex in Rst.

524 K. Suchan and I. Todinca

Claim (3). H ′[Nxt] is an interval completion of G[Nxt], minimal with respect to
the property expressed in the previous claim.

Since σ′ defines a minimal interval completion H ′ of G, σ′ has to yield H ′[Nxt]
minimal with this property. Suppose it is not minimal, and let H

′′′
[Nxt] be the

corresponding completion strictly included in H
′
[Nxt]. Then we can take the

corresponding clique path P
′′′

[Nxt] to create an interval order σ
′′′
Nxt of H

′′′
[Nxt]

(see Remark 1). By Lemma 6, σ
′′′

= ρ • σ
′′′
Nxt • σ

′
Rst yields H

′′′
= G(σ

′′′
) strictly

contained in H
′
. A contradiction with minimality of H

′
.

Following Notation 2, let H ′Nxt be obtained from H ′[Nxt] by adding a dummy
vertex d1 adjacent to the vertices of T and a vertex d2 adjacent to d1.

Claim (4). H ′Nxt is a minimal interval completion of G+
Nxt.

Let P ′Nxt denote the clique path of H ′Nxt, obtained from P ′[Nxt] by ading two
bags q1 = T ∪{d1} and q2 = {d1, d2} after the clique containing T (see Claim 2).
It is a clique path indeed, so H ′Nxt is an interval completion of G+

Nxt. Suppose it
is not minimal. So there is a minimal one H

′′
Nxt strictly included in H ′Nxt. Notice

that this graph has a clique path P
′′
Nxt, that also has − − q1 − −q2 at an end.

Indeed, the moplex M = d2 satisfies the conditions of Lemma 4 in H
′′
Nxt, so

there is a clique path of H
′′
Nxt with {d1, d2} as one of the end-cliques. Therefore

P
′′
[Nxt], obtained by removing − − q1 − −q2 from P

′′
Nxt, is a clique path of

H
′′
[Nxt] with T contained in one of the end-cliques. Which contradicts Claim 3,

since H
′′
[Nxt] is a strict subgraph of H ′[Nxt].

Claim (5). There is an interval ordering of H ′Nxt starting with v.

Let us prove that NH′
Nxt

(v) = NG+
Nxt

(v). Indeed if v ∈ T , since v is the last vertex
encountered by LexBFS launched on G+

Nxt from d2, we have T = Nxt. In this
case the neighborhood of v in both graphs is T \ {v} ∪ {d1}, and the equality
follows.

Now if v �∈ T then NG(v) ∩ R ⊂ Nxt. By second condition of the theorem, σ
respects ρ • v, so NG(v) ∩ Nxt is put before R \ NG(v) in σ and NH[Nxt](v) =
NG[Nxt](v). Therefore NH′

Nxt
(v) = NG+

Nxt
(v), since

NG+
Nxt

(v) ⊆ NH′
Nxt

(v) ⊆ NHNxt(v) = NGNxt(v) ⊆ NG+
Nxt

(v).

The claim follows from Theorem 5 and Claim 4.

Claim (6). There is an ordering σ
′′
, with G(σ

′′
) = G(σ′), sharing a longer prefix

with σ – a contradiction.

We restrict the ordering from the previous claim to Nxt and obtain σ
′′
Nxt. Let

σ
′′

= ρ • σ
′′
Nxt • σ

′
Rst. By Lemma 6, G(σ

′′
) = G(σ′). So σ

′′
defines the same

completion and shares a longer prefix. Which contradicts the choice of σ
′
.

This achieves the proof of our theorem. 	

Minimal Interval Completion Through Graph Exploration 525

Theorem 7. There is an O(nm)-time algorithm computing a minimal interval
completion of an arbitrary graph.

Proof. Algorithm MIC Ordering of Figure 1 computes in O(nm) time a vertex
ordering satisfying the conditions of Theorem 6. The full proof is given in [15].
Let us simply point out that unlike the Theorem 6, our algorithm computes
the vertex vi by launching LexBFX from d2 on the graph GNxt and not G+

Nxt.
The reason is related to the running time. Indeed GNxt has O(n + m) edges,
while if we compute G+

Nxt, the number of edges of G+
Nxt might be up to Ω(n2).

Nevertheless we prove [15] that vi is also a LexBFS-terminal vertex obtained by
using G+

Nxt instead of GNxt. 	

Algorithm MIC Ordering
Input: G = (V, E) connected
Output: a nice ordering σ and the corresponding interval model
let v1 be the last vertex encountered by LexBFS(G)
ρ := (v1)
Nxt = NG(v1); Rst := V \ NG[v1]
OP := v1 • Nxt •Rst
for i := 2 to n do

let Nxt be the class appearing after ρ in OP
let vi be the last vertex encouneterd by LexBFS

launched on GNxt starting from d2 (see Theorem 6)
ρ = ρ • vi

if | Nxt | ≥ 2 then
replace Nxt in OP by vi • (Nxt \{vi})

let C be the last class of OP such that NG(vi) ∩ C �= ∅
if C \ NG(vi) �= ∅ then

replace C in OP by (C ∩ NG(vi)) • (C \ NG(vi))
σ := OP
return IntervalModel(σ)

Fig. 1. Algorithm MIC Ordering

4 Conclusion

We give in this paper an O(nm) time algorithm computing a minimal interval
completion of an arbitrary input graph. The algorithm is based on the notion of
nice orderings, which characterize a minimal interval completion, and on Theo-
rem 6 which gives a sufficient condition for a nice ordering. We point out that
there are nice orderings satisfying the conditions of Theorem 6, which cannot
be produced by the algorithm. Such examples can be easily obtained when the
input graph is a cycle. In particular an ordering produced by our algorithm is
always a breadth-first search ordering, which is not required by the theorem.

There are two very natural directions for further research. One is to obtain
a faster algorithm for the minimal interval completion problem. The second

526 K. Suchan and I. Todinca

important question is to characterize all nice orderings. For the minimal trian-
gulation problem, the perfect elimination orderings (which play the same role
as the nice orderings here) have been completely characterized. In our case, we
have examples of nice orderings that do not satisfy the conditions of Theorem 6.

References

1. A. Berry, J. P. Bordat, Separability Generalizes Dirac’s Theorem. Discrete
Applied Mathematics, 84(1-3): 43-53, 1998.

2. A. Berry, J. P. Bordat, Local LexBFS Properties in an Arbitrary Graph. Pro-
ceedings of Journes Informatiques Messines, 2000. http://www.isima.fr/berry/
lexbfs.ps.

3. H. L. Bodlaender, A Linear-Time Algorithm for Finding Tree-Decompositions
of Small Treewidth. SIAM Journal on Computing, 25(6):1305-1317, 1996.

4. L. Cai, Fixed-Parameter Tractability of Graph Modification Problems for Hered-
itary Properties. Information Processing Letters, 58(4):171-176, 1996.

5. P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs
and of interval graphs. Canadian Journal of Mathematics, 16:539-548, 1964.

6. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic
Press, 1980.

7. M. Habib, C. Paul, L. Viennot, Partition Refinement Techniques: An Inter-
esting Algorithmic Tool Kit. International Journal of Foundations of Computer
Science, 10(2): 147-170, 1999.

8. P. Heggernes, F. Mancini, Minimal Split Completions of Graphs. Proceedings
of LATIN 2006, Lecture Notes in Computer Science, 3887:592-604, 2006.

9. P. Heggernes, F. Mancini, C. Papadopoulos Minimal Comparability Com-
pletions. Tech. Report, University of Bergen, 2006, http://www.ii.uib.no/
publikasjoner/texrap/pdf/2006-317.pdf

10. P. Heggernes, K. Suchan, I. Todinca,Y. Villanger, Minimal Interval Com-
pletions. Proceedings of the 13th Annual European Symposium on Algorithms -
ESA 2005, Lecture Notes in Computer Science, 3669:403-414, 2005.

11. P. Heggernes, J. A. Telle, Y. Villanger, Computing minimal triangula-
tions in time O(nαlogn) = o(n2.376). Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms - SODA 2005, SIAM, 907-916, 2005.

12. S. Olariu, An optimal greedy heuristic to color interval graphs. Information
Processing Letters, 37(1): 21–25, 1991.

13. I. Rappaport, K. Suchan, I. Todinca, Minimal proper interval completions.
To appear in Proceedings of the 32nd Workshop on Graph-Theoretic Concepts
in Computer Science (WG’06), 2006. http.//www.univ-orleans.fr/SCIENCES/
LIFO/prodsci/rapports/RR2006.htm.en.

14. D. Rose, R.E. Tarjan, and G. Lueker, Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput., 5:146–160, 1976.

15. K. Suchan, I. Todinca, Minimal interval vompletion through graph explo-
ration. Research Report RR 2006-08, Université d’Orléans. http.//www.univ-
orleans.fr/SCIENCES/LIFO/prodsci/rapports/RR2006.htm.en.

Balanced Cut Approximation in

Random Geometric Graphs�

Josep Diaz1, Fabrizio Grandoni2, and Alberto Marchetti Spaccamela3

1 Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de
Catalunya, Campus Nord - Ed. Omega, 240 Jordi Girona Salgado,

1-3 E-08034, Barcelona
diaz@lsi.upc.edu

2 Dipartimento di Informatica, Università di Roma “La Sapienza”, via Salaria 113,
00198 Roma, Italy

grandoni@di.uniroma1.it
3 Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”,

via Salaria 113, 00198, Roma, Italy
alberto.marchetti@dis.uniroma1.it

Abstract. A random geometric graph G(n, r) is obtained by spreading
n points uniformly at random in a unit square, and by associating a
vertex to each point and an edge to each pair of points at Euclidian
distance at most r. Such graphs are extensively used to model wireless
ad-hoc networks, and in particular sensor networks. It is well known that,
over a critical value of r, the graph is connected with high probability.

In this paper we study the robustness of the connectivity of random
geometric graphs in the supercritical phase, under deletion of edges. In
particular, we show that, for a sufficiently large r, any cut which sepa-
rates two components of Θ(n) vertices each contains Ω(n2r3) edges with
high probability. We also present a simple algorithm that, again with
high probability, computes one such cut of size O(n2r3). From these two
results we derive a constant expected approximation algorithm for the
β-balanced cut problem on random geometric graphs: find an edge cut
of minimum size whose two sides contain at least β n vertices each.

Keywords: ad-hoc networks, sensor networks, random geometric graphs,
balanced cut, approximation algorithms.

1 Introduction

Let us consider a wireless network of sensors on a terrain, where the sensors
communicate by radio frequency, using an omnidirectional antenna. Each sensor

� Partially supported by EU Integrated Project AEOLUS (FET-15964); the first au-
thor was partially supported by La distinció de la Generalitat de Catalunya, 2002,
the second author by project ALGO-NEXT of the Italian Ministry of University and
Research and the third author by project FIRB RBIN047MH9, Italy-Israel of the
Ministry of University and Research.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 527–536, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

528 J. Diaz, F. Grandoni, and A. Marchetti Spaccamela

broadcasts with the same power to the same distance. Two sensors can commu-
nicate if and only if they are within the transmission radius of each other. Sensor
networks, and more in general ad-hoc wireless networks, are often modelled via
random geometric graphs [1,5]. A random geometric graph G(n, r) [9] is a graph
resulting from placing a set V of n vertices uniformly at random on the unit
square [0, 1]2, and connecting two vertices if and only if their Euclidean distance
is at most the given radius r.

Random geometric graphs in general, and in particular their connectivity
properties, have been intensively studied, both from the theoretical and from the
empirical point of view. For the present paper, the most interesting result on ran-
dom geometric graphs is the fact that, for r = r(n) =

√
(ln n + c(n))/(πn), for

any c(n) such that c(n) → ∞ when n → ∞, G(n, r) is connected whp [11,14,15].
(Throughout this paper, “whp” will abbreviate with high probability, that is with
probability tending to 1 as n goes to ∞). Once the connectivity is achieved, it is
natural to wonder how robust it is: how many edges one needs to remove in order
to disconnect the graph? In most applications the disconnection of one vertex,
or of a few vertices, does not affect significantly the behavior of the network.
So we can reformulate the question above in the following more general way:
given β ∈ [0, 1/2], how many edges one needs to remove in order to isolate two
components (not necessarily connected) of β n vertices each?

Our results. We can formalize the question above in the following way. A cut
of a graph is a partition of its vertices into two subsets W and B, the sides of the
cut. The size of cut (W, B) is the number of edges δ(W, B) between W and B.
Given β ∈ [0, 1/2], β n ∈ N, a β-balanced cut is a cut where both sides contain
at least β n vertices. The β-balanced cut problem is to compute a β-balanced cut
of minimum size. Here we prove that, if r = r(n) =

√
R ln n/n for R ≥ R∗, with

R∗ > 0 a sufficiently large constant, with high probability any β-balanced cut
of G(n, r) has size Ω(min{βnR log n,

√
βnR3 log3 n}).

We also present a simple algorithm that with high probability computes a cut
of size O(min{β n R log n,

√
β n R3 log3 n}), thus matching the lower bound.

The two mentioned results imply a probabilistic constant expected approxima-
tion algorithm for the β-balanced cut problem. We eventually show how to ex-
tend such result to a constant expected approximation algorithm.

We remark that the above results hold also if R is a function of n, and that
the hidden constants in the O and Ω notations do not depend on n, R and β.

Related Work. Nothing is known on β-balanced cut approximation in ran-
dom geometric graphs, for arbitrary values of β. For β = 1/2, the β-balanced
cut problem is the well-know minimum edge bisection problem. Minimum edge
bisection is a difficult problem which has received a lot of attention due to its
numerous applications (see e.g. [10]). The problem is known to be NP-Hard for
general graphs [8], and in such case there is a O(log1.5 n) approximation [6]. In
the same paper, the authors prove that if the graph is planar, the approxima-
tion can be reduced to O(log n). If the input graph is dense, i.e. each vertex
has degree Θ(n), there is a polynomial time approximation scheme (PTAS) for

Balanced Cut Approximation in Random Geometric Graphs 529

the minimum bisection problem [2]. In the case of random geometric graphs,
it is known how to obtain a constant approximation whp for the special case
R = R(n) → ∞ for n → ∞ [3]. Our approximation algorithm improves on the
algorithm in [3] in several ways: (i) it holds for arbitrary values of β, includ-
ing the case β = o(1); (ii) it holds for constant values of R as well; (iii) the
value of the approximation ratio is constant in expectation, not only with high
probability. We remark that each of the mentioned improvements is achieved by
introducing new, simple techniques (which do not trivially follow from [3,13]).

One of the first papers to introduce the general problem of the minimum β-
balanced cut was [4]. In this paper, the authors also show that given an ε > 0,
it is NP-hard to approximate the minimum bisection within an additive term of
n2−ε. The β-balanced cut problem admits a PTAS for β ≤ 1/3, if every vertex
has degree Θ(n) [2]. For planar graphs there is a 2-approximation for the β-
balanced cut, if β ≤ 1/3 [7]. However, it is still open whether bisection and
β-balanced cut are NP -hard for planar graphs.

Preliminaries. Given a region Q of the unit square, |Q| denotes the area of Q,
and ‖Q‖ the number of points falling in Q. Note that ‖Q‖ is a Binomial random
variable of parameters n and |Q|, for which the following standard Chernoff’s
Bounds hold [12]. Let μ = E[‖Q‖] = |Q| n. Then:

Pr[‖Q‖ < (1 − δ)μ] ≤ e−δ2μ/2 for δ ∈ [0, 1); (1)

Pr[‖Q‖ > (1 + δ)μ] ≤ e−δ2μ/3 for δ ∈ [0, 1); (2)

Pr[‖Q‖ > (1 + δ)μ] ≤ e−δ2μ/4 for δ ∈ [1, 2e − 1); (3)

Pr[‖Q‖ > (1 + δ)μ] ≤ e−δμ ln 2 for δ ≥ 2e − 1. (4)

From now on r = r(n) =
√

R ln n/n. For the sake of simplicity, we will assume
R = o(n/ log n). For R = Ω(n/ log n), the problems considered here become
trivial. In particular, for R ≥ 2n/ lnn the graph is a clique (deterministically).

2 A Lower Bound

In this section we show that, for any β ∈ [0, 1/2], β n ∈ N, and for R ≥ 240,
the size of any β-balanced cut is Ω(min{βnR log n,

√
β nR3 log3 n}) with high

probability.
In order to prove the mentioned lower bound, we consider a partition of the

unit square into 5n/(R ln n) non-overlapping square cells of the same size. Each
cell is adjacent to the cells to its right, left, top, and bottom. Observe that, since
the side of each cell has length

√
R ln n/(5n), a vertex is adjacent to all the

vertices in the same cell and in all the adjacent cells. This property is crucial
in the analysis. The number of points ‖C‖ in each cell C satisfies the following
probabilistic bounds.

Lemma 1. For any R ≥ 240, each cell C of the partition above contains ‖C‖
vertices of G(n, r), R ln n/10 ≤ ‖C‖ ≤ 3 R ln n/10, with probability 1 − o(1/n2).

530 J. Diaz, F. Grandoni, and A. Marchetti Spaccamela

bad

good

good

Fig. 1. Possible configuration of black and white cells. There are 3 black clusters and
1 white cluster.

Proof. Consider any cell C. Observe that E[‖C‖] = R ln n/5. By Chernoff’s
Bounds (1) and (3),

Pr

(
‖C‖ /∈

[
R ln n

10
,

3 R ln n

10

])
≤ e−(1/2)2R ln n/10 + e−(1/2)2R ln n/20 = O(1/n3).

The claim follows by applying the union bound to the O(n/(R ln n)) cells. �

Let (W, B) be any given cut, with |W | = β n. Let us call the vertices in W
white, and the vertices in B black. A cell is white if at least one half of its points
are white, otherwise the cell is black. We define a cluster C to be a maximal
connected component of cells of the same color, with respect to the adjacency
between cells defined above. The frontier ∂C of C is the subset of its cells which
either touch the border of the unit square, or are adjacent to a cell of differ-
ent color. We call good the cells of ∂C which are adjacent to a cell of different
color, and bad the other cells of ∂C. In particular, a cell is bad if it touches the
border of the unit square and it is surrounded by cells of the same cluster (see
Figure 1).

In order to prove the lower bound, we need the following two observations.

Lemma 2. Given a cluster of k cells, its frontier contains at least
√

π k/4 cells.

Proof. Suppose that the frontier contains h <
√

π k/4 cells. Thus the perime-
ter of the cluster has length at most 4hL, where L =

√
R ln n/(5n) is the

length of the side of one cell. Such perimeter can enclose an area of size at most
(4hL)2/(4π) (case of a disk of radius 4hL/(2π)), and thus at most 4h2/π < k
cells, which is a contradiction. �

Lemma 3. Consider a cluster touching either 0, or 1, or 2 consecutive sides of
the square. Then at least one third of the cells on its frontier are good.

Proof. Consider any cluster C. Without loss of generality, let C be white. If C
does not touch any side of the square, all the cells of ∂C are good. Thus the
claim is trivially true.

Balanced Cut Approximation in Random Geometric Graphs 531

Now suppose C touches one or two consecutive sides of the square, say the
left side and possibly the top side. Let ∂Cgood be the good cells of ∂C, and
∂Cbad = ∂C \∂Cgood the bad ones. Moreover, let ∂Cout be the cells of ∂C touching
the border of the square, and ∂Cin = ∂C \ ∂Cout. Note that ∂Cin ⊆ ∂Cgood since
the cells in ∂Cin do not touch any side of the square.

At least one half ∂C′ of the cells of ∂Cout touches one between the left and the
top side of the square, say the left one. Consider any cell C′ ∈ ∂C′. If C′ is bad,
we can univocally associate to C′ a good cell C′′ ∈ ∂Cin in the following way.
Consider the sequence of consecutive white cells at the right of C′ (there must
be at least one such cell, since C′ is bad). We let C′′ be the rightmost of such
cells. As a consequence, the number of good cells is lower bounded by |∂C′|, and
|∂Cgood| ≥ |∂C′| ≥ |∂Cout|/2. Thus

|∂C| = |∂Cin| + |∂Cout| ≤ |∂Cgood| + |∂Cout| ≤ 3|∂Cgood|.

The claim follows. �

Theorem 1. With probability 1 − o(1/n2), for any β ∈ [0, 1/2], β n ∈ N, and
for any R ≥ 240, the size of any β-balanced cut of G(n, r) is

Ω(min{β n R log n,

√
β n R3 log3 n}).

Proof. By Lemma 1, with probability 1 − o(1/n2) for each cell C,

‖C‖ ∈
[
R ln n

10
,
3R ln n

10

]
. (5)

Thus it is sufficient to show that, given (5), the lower bound holds (determinis-
tically) for any β ∈ [0, 1/2] and for any cut (W, B) with |W | = β n.

We need some notation. By W and B we denote the set of white and black
cells respectively. Moreover, Wblack ⊆ W (Bwhite ⊆ B) is the subset of white
(black) vertices in black (white) cells.

Since each vertex is adjacent to all the other vertices in the same cell, each
vertex w ∈ Wblack contained into a (black) cell C contributes with at least
‖C‖/2 ≥ R ln n/20 edges to the edges of the cut. It follows that, if |Wblack| ≥
|W |/2 = β n/2, the size of the cut is at least

|Wblack|R ln n

20
≥ β n R ln n

40
= Ω(β n R log n).

Analogously, if |Bwhite| ≥ |B|/2 = (1−β)n/2, then the size of the cut is at least

|Bwhite|
R ln n

20
≥ (1 − β)n R ln n

40
= Ω(β n R log n).

Thus, let us assume |Wblack| < |W |/2 and |Bwhite| < |B|/2. Note that, since
all the vertices in adjacent cells are adjacent, each pair of adjacent (good) cells
(C′, C′′), with C′ ∈ W and C′′ ∈ B contributes with at least

‖C′‖
2

‖C′′‖
2

≥ R2 ln2 n

400
= Ω(R2 log2 n).

532 J. Diaz, F. Grandoni, and A. Marchetti Spaccamela

distinct edges to the total number of edges in the cut. Since there must be at
least one such pair (C′, C′′), if β = O(R log n/n), trivially the size of the cut is
Ω(R2 log2 n) = Ω(β n R log n).

For β = Ω(R log n/n) we need to bound the number of distinct pairs (C′, C′′)
in a more sophisticated way. In particular, we will show that the number of good
cells, either white or black, is Ω(

√
β n/(R log n)), from which it follows that the

size of the cut is at least

Ω(R2 log2 n)Ω(
√

β n/(R log n)) = Ω(
√

β n R3 log3 n).

Observe that, from Equation (5) and from the assumption |Wblack| < |W |/2 and
|Bwhite| < |B|/2,

|W| ≥ β n/2
3R ln n/10

=
5β n

3R ln n
and |B| ≥ (1 − β)n/2

3R ln n/10
=

5(1 − β)n
3R ln n

(6)

We distinguish three sub-cases, depending on the existence of white clusters
with some properties.

(B.1) There is a white cluster C touching either 3 or 2 opposite sides
of the square (but not 4). Without loss of generality, let the right side of
the square be untouched. Consider all the cells of C which have no cell of the
same cluster to their right. Note that such cells belong to the frontier ∂C of the
cluster. Moreover, they are all good (they have a black cell to their right). The
number of such cells is exactly

√
5n/(R ln n) = Ω(

√
β n/(R log n)).

(B.2) Every white cluster touches 0, 1, or 2 consecutive sides of
the square. Recall that the white cells are |W| ≥ 5β n/(3R ln n) by (6). Let
C1, C2, . . . , Cp be the p white clusters. It follows by Lemmas 2 and 3, that the
total number of white good cells is at least

p∑

i=1

1
3

√
π |Ci|

4
≥ 1

3

√
π |W|

4
≥ 1

3

√
π 5 β n

12R ln n
= Ω(

√
β n/(R log n)).

(B.3) There is a white cluster touching the 4 sides of the square. It
follows that each black cluster touches 0, 1, or 2 consecutive sides of the square.
Thus, by basically the same argument as in case (B.2), the number of black good
cells is at least

1
3

√
π |B|

4
≥ 1

3

√
π 5 (1 − β)n

12R ln n
= Ω(

√
β n/(R log n)).

�

3 A Simple Cutting Algorithm

In this section we describe a simple algorithm simpleCut which, for a given
input β ∈ [0, 1/2], β n ∈ N, computes a β-balanced cut. We will show that,

Balanced Cut Approximation in Random Geometric Graphs 533

Fig. 2. The white disk D contains one side W of the cut, ‖W‖ = β n. The annulus A
of D, of width

�
R ln n/n, is drawn in gray.

for R ≥ 3/π, the size of the cut computed is O(min{βnR log n,
√

βnR3 log3 n})
with high probability. This, together with Theorem 1, implies that simpleCut is
a probabilistic constant approximation algorithm for the β-balanced cut problem
for R ≥ 240. We later show how to convert such result into a constant expected
approximation algorithm.

Algorithm 1. (simpleCut) Take the β n vertices which are closest to (1/2, 1/2)
(breaking ties arbitrarily). Such vertices form one side W of the cut.

Observe that simpleCut can be easily implemented in polynomial time.
In order to bound the size of the cut produced by simpleCut, we need the

following simple probabilistic bound on the degree of the vertices.

Lemma 4. For R > 3/π, the degree of each vertex of G(n, r) is upper bounded
by (3 πR ln n) with probability 1 − o(1/n2).

Proof. Consider the ball of radius
√

R ln n/n centered at vertex v, and let Xv

be the number of vertices it contains. Clearly, the degree of v is Xv − 1. By
denoting μv = E[Xv] we have

π R ln n/4 ≤ μv ≤ π R ln n,

where the upper and lower bounds correspond to the case v is in the middle of
the unit square and in one corner, respectively. By Chernoff’s Bounds (2)-(4),

Pr(Xv > 3πR ln n) ≤ e− ln 2(3πR ln n/μv−1)μv ≤ e− ln 2(2 π R lnn) = o(1/n3).

Hence, from the union bound,

Pr(∃v ∈ V : Xv > 3πR ln n) ≤
∑

v∈V

Pr(Xv > 3πR ln n) = o(1/n2).

�

Theorem 2. For any β ∈ [0, 1/2], β n ∈ N, and for R > 3/π, the size of the cut
of G(n, r) computed by simpleCut is O(min{β n R log n,

√
β n R3 log3 n }) with

probability 1 − o(1/n2).

534 J. Diaz, F. Grandoni, and A. Marchetti Spaccamela

Proof. The upper bound O(β n R log n) trivially follows from Lemma 4. So, it is
sufficient to show that for β =Ω(R ln n/n), the size of the cut is O(

√
β n R3 log3 n).

In particular, β ≥ 8 π R ln n/n is sufficient for our purposes.
Recall that, for a given region Q of the unit square, |Q| denotes the area of Q,

and ‖Q‖ the number of points inside Q. Let us denote by D the disk centered in
(1/2, 1/2), of minimum possible radius ρ, which contains all the vertices in W
(see Figure 2). In the following we will assume ‖D‖ = β n, which happens with
probability one by standard probabilistic techniques.

Let A denote the annulus of width
√

R ln n/n surrounding D. The edges of the
cut are a subset of the edges incident to the vertices in A. Hence, from Lemma
4, it is sufficient to show that the number ‖A‖ of vertices in A is O(

√
β n R log n)

with probability 1 − o(1/n2).
Consider the disk D′ centered in (1/2, 1/2) of radius ρ′ =

√
(3/2)β/π, and let

A′ be the annulus of width
√

R ln n/n surrounding D′. Since ρ′ ≤
√

3/(4π) <
1/2, for n large enough, D′ and A′ are entirely contained in the unit square.

Observe that, given ρ ≤ ρ′, the density of points in both A and A′ is the
same, that is (n − β n)/(1 − |D|). The density is maximized when ρ = ρ′. Note
that whp, ρ �= ρ′, but, for our purposes of getting and upper bound to the size
of ||A′||, the argument below is valid. Thus, for any c > 0,

Pr[‖A‖ > c | ρ ≤ ρ′] ≤ Pr[‖A′‖ > c | ρ ≤ ρ′] ≤ Pr[‖A′‖ > c | ρ = ρ′].

For ρ = ρ′,

n − β n

1 − |D| =
n − β n

1 − 3β/2
and |A′| = π

√
R ln n

n

(

2

√
3β

2π
+

√
R ln n

n

)

.

Therefore

μ = E[‖A′‖ | ρ = ρ′] =
n − β n

1 − 3β/2
π

√
R ln n

n

(

2

√
3β

2π
+

√
R ln n

n

)

.

In particular
√

108 ln n ≤
√

(3/2)πβRn lnn ≤ μ ≤ 12
√

(3/2)πβRn lnn.

It follows from Chernoff’s Bound (3) that

Pr[‖A′‖ > 2μ | ρ = ρ′] ≤ e−μ/4 ≤ e−
√

108/16 ln n = o(1/n2).

Moreover, being E[‖D′‖] = (3/2)β n, from Chernoff’s Bound (1),

Pr[ρ > ρ′] = Pr[‖D′‖ < β n] ≤ e−(1/3)2(3/2)β n/2 ≤ e−β n/12 = o(1/n2).

Altogether

Pr[‖A‖ > 2μ] ≤ Pr[ρ > ρ′] + Pr[‖A‖ > 2μ | ρ ≤ ρ′] Pr[ρ ≤ ρ′]
≤ o(1/n2) + Pr[‖A′‖ > 2μ | ρ = ρ′]
= o(1/n2).

Balanced Cut Approximation in Random Geometric Graphs 535

It follows that ‖A‖ ≤ 2μ = O(
√

β n R log n) with probability 1 − o(1/n2). �

Theorems 1 and 2 imply that simpleCut is a probabilistic constant approxi-
mation algorithm for the β-balanced cut problem. We next show how to ex-
tend this result to a constant expected approximation algorithm for the same
problem. Consider the following algorithm zeroCut to compute a cut of size
zero, if any. Compute the connected components of G(n, r). For any integer m,
βn ≤ m ≤ n/2, check whether there is a subset of components whose total size
is m. If yes, return such subset of components as one side of the partition. Note
that for each of the O(n) possible values of m, we have to solve an instance of
the subset sum problem. Since the sum of the sizes of the connected components
is n, it follows that dynamic programming allows to solve all such instances in
total time O(n2) and space O(n) [8]. Combining zeroCut and simpleCut, one
obtains the desired constant expected approximation algorithm.

Algorithm 2. (refinedCut) If zeroCut returns a solution, return it. Other-
wise, return the solution computed by simpleCut.

Theorem 3. For any β ∈ [0, 1/2], β n ∈ N, and for any R ≥ 240, refinedCut
is a constant expected approximation algorithm for the β-balanced cut problem
on G(n, r).

Proof. Let zH and z∗ denote the size of the solution found by refinedCut and
the size of the optimum cut, respectively. Let moreover A denote the event that

z∗ ≥ c min{β n R log n,
√

β n R3 log n3}

and
zH ≤ C min{β n R log n,

√
β n R3 log n3},

where the constants c and C are as in the proofs of Theorems 1 and 2. Note
that Pr[A] = 1 − o(1/n2). Given A, the approximation ratio of refinedCut is
at most C/c = O(1). Given A, if the size of the optimum cut is zero, zeroCut
computes the optimum solution and the approximation ratio is 1 by definition.
Otherwise, any cut, and hence also the cut computed by simpleCut, is a O(n2)
approximation. Altogether the expected approximation ratio is

E(zH/z∗) = Pr[A] O(1) + Pr[A]O(n2) = O(1).

�

Remark 1. The threshold 240 can be reduced to a value arbitrarily close to
30 by adapting the constants in Lemma 1. However, this would increase the
approximation ratio. If we only desire a probabilistic constant approximation,
such threshold can be made arbitrarily close to 10, with the same drawback as
above.

Acknowledgments. We thank an anonymous referee for the comments that
have improved the presentation of the paper.

536 J. Diaz, F. Grandoni, and A. Marchetti Spaccamela

References

1. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor net-
works: a survey. Computer Networks, 38:393–422, 2002.

2. S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes
for dense instances of NP-hard problems. In ACM Symposium on the Theory of
Computing (STOC), pages 284–293, 1995.

3. J. Dı́az, M. Penrose, J. Petit, and M. Serna. Approximating layout problems on
random geometric graphs. Journal of Algorithms, 39:78–116, 2001.

4. T.N. Bui, and C. Jones. Finding good approximate vertex and edge partitions is
NP-hard. Information Processing Letters, 42:153–159, 1992.

5. J. Dı́az, J. Petit, and M. Serna. Evaluation of basic protocols for optical smart
dust networks. IEEE Transactions on Mobile Networks, 2:189–196, 2003.

6. U. Feige, and R. Krauthgamer. A polylogarithmic approximation of the minimum
bisection. SIAM Journal on Computing, 31(3): 1090–1119, 2002.

7. G. Garg, H. Saran, and V. Vazirani. Finding separator cuts in planar graphs
within twice the optimal. In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 14–23, 1994.

8. M. Garey, and D. Johnson. Computers and Intractability. Freeman. N.Y., 1979.
9. E. Gilbert. Random plane networks. Journal of the Society for Industrial and

Applied Mathematics, 9:533–543, 1961.
10. S.H. Gerez. Algorithms for VLSI design automation. Wiley, 2003.
11. A. Goel, S. Rai, and V. Krishnamachari. Sharp thresholds for monotone properties

in random geometric graphs. In ACM Symposium on Foundations of Computer
Science (FOCS), pages 13–23, 2004.

12. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

13. S. Muthukrishnan and G. Pandurangan. The Bin-covering technique for thresh-
olding random geometric graph properties graphs. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 989–998, 2005.

14. M. Penrose. The longest edge of the random minimal spanning tree. The Annals
of Applied Probability, 7(2):340–361, 1997.

15. M. Penrose. Random Geometric Graphs. Oxford Studies in Probability. Oxford
U.P., 2003.

Improved Algorithms for the Minmax-Regret

1-Center Problem

Tzu-Chin Lin, Hung-I Yu, and Biing-Feng Wang

Department of Computer Science, National Tsing Hua University,
Hsinchu, Taiwan 30043, Republic of China

rems@cs.nthu.edu.tw, herbert@cs.nthu.edu.tw, bfwang@cs.nthu.edu.tw

Abstract. This paper studies the problem of finding the 1-center on a
graph where vertex weights are uncertain and the uncertainty is charac-
terized by given intervals. It is required to find a minmax-regret solution,
which minimizes the worst-case loss in the objective function. Averbakh
and Berman had an O(mn2log n)-time algorithm for the problem on a
general graph. On a tree, the time complexity of their algorithm becomes
O(n2). In this paper, we improve these two bounds to O(mnlog n) and
O(nlog2n), respectively.

Keywords: location theory, minmax-regret optimization, centers.

1 Introduction

Over three decades, location problems on networks have received much
attention from researchers in the fields of transportation and communication
[10,11,12,13,18]. Traditionally, network location theory has been concerned with
networks in which the vertex weights and edge lengths are known precisely.
However, in practice, it is often impossible to make an accurate estimate of all
these parameters [14,15]. Real-life data often involve a significant portion of un-
certainty, and these parameters may change with time. Thus, location models
involving uncertainty have attracted increasing research efforts in recent years
[2,3,4,5,6,7,8,9,14,15,17,19,20,21,22].

Several ways for modeling network uncertainty have been defined and studied
[14,17,19]. One of the most important models is the minmax-regret approach,
introduced by Kouvelis [14]. In the model, uncertainty of network parameters is
characterized by given intervals, and it is required to minimize the worst-case loss
in the objective function that may occur because of the uncertain parameters.
During the last ten years, many important location problems have been studied
on the minmax-regret model. The 1-center problem was studied in [3,4,7], the
p-center problem was studied in [3], and the 1-median problem was studied in
[5,6,8,14].

The minmax-regret 1-center problem is the focus of this paper. For a general
graph with uncertain edge lengths, the problem is strongly NP-hard [2]. For a
general graph with uncertain vertex weights, Averbakh and Berman [3] gave an
O(mn2log n)-time algorithm, where n is the number of vertices and m is the

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 537–546, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

538 T.-C. Lin, H.-I. Yu, and B.-F. Wang

number of edges. For a tree with uncertain vertex weights, the time complexity of
their algorithm becomes O(n2) [3,4]. For a tree with uncertainty in both vertex
weights and edge lengths, Averbakh and Berman [4] presented an O(n6)-time
algorithm and Burkard and Dollani [7] had an O(n3log n)-time algorithm. For
a tree with uncertain edge lengths, assuming uniform vertex weights, Averbakh
and Berman [4] presented an O(n2log n)-time algorithm and Burkard and Dol-
lani [7] had an O(nlog n)-time algorithm. In this paper, efficient algorithms are
presented for the minmax-regret 1-center problem on a general graph and a tree
with uncertain vertex weights. For general graphs, we improve the upper bound
from O(mn2log n) to O(mnlog n). The bottleneck of the previous algorithm is
the computation of the classical 1-centers of the input graph under n different
weight assignments. The key idea of our improvement is to identify the similarity
among these assignments and preprocess the input graph under this similarity,
such that the classical 1-center for each assignment can be derived efficiently.
For trees, we improve the upper bound from O(n2) to O(nlog2n) using the same
concept.

The remainder of this paper is organized as follows. In Section 2, notation
and preliminary results are presented. In Sections 3 and 4, improved algorithms
for the minmax-regret 1-center problem are proposed. Finally, in Section 5, we
conclude this paper.

2 Notation and Preliminaries

Let G = (V, E) be an undirected connected graph, where V is the vertex set
and E is the edge set. Let n = |V | and m = |E|. In this paper, G also denotes
the set of all points of the graph. Thus, the notation x ∈ G means that x is a
point along any edge of G which may or may not be a vertex of G. Each edge
e ∈ E has a nonnegative length. For any two points a, b ∈ G, let d(a, b) be
the distance of the shortest path between a and b. Suppose that the matrix of
shortest distances between vertices of G is given. Each vertex v ∈ V is associated
with two positive values w−v and w+

v , where w−v ≤ w+
v . The weight of each vertex

v ∈ V can take any value randomly from the interval [w−v , w+
v]. Let Σ be the

Cartesian product of intervals [w−v , w+
v], v ∈ V . Any element S ∈ Σ is called a

scenario and represents a feasible assignment of weights to the vertices of G. For
any scenario S ∈ Σ and any vertex v ∈ V , let wS

v be the weight of v under the
scenario S.

For any scenario S ∈ Σ, and a point x ∈ G, we define
F (S, x) = maxv∈V {wS

v × d(v, x)},
which is the maximum weighted distance from all the vertices to x according to
S. Given a specific scenario S ∈ Σ, the classical 1-center problem is to find a
point x∗ ∈ G that minimizes F (S, x∗). The point x∗ and the value of F (S, x∗)
are, respectively, called a classical 1-center and the 1-radius of G under the
scenario S. For any scenario S ∈ Σ, denote F ∗(S) as the 1-radius of G under
the scenario S. For any point x ∈ G, the regret of x with respect to a scenario
S ∈ Σ is maxy∈G{F (S, x) − F (S, y)} and the maximum regret of x is

Improved Algorithms for the Minmax-Regret 1-Center Problem 539

Z(x) = maxS∈Σmaxy∈G{F (S, x) − F (S, y)}.
The minmax-regret 1-center problem is to find a point x ∈ G minimizing Z(x).

The upper envelope of a set H of functions is the function U defined as U(x) =
maxf∈H{f(x)}. A function is unimodal if it increases to a maximum value and
then decreases. Kariv and Hakimi [12] gave the following result.

Theorem 2.1 [12]. The upper envelope of a set of n unimodal piecewise linear
functions with at most two segments defined on the same interval is a piecewise
linear function having O(n) linear segments.

In this paper, we assume that a piecewise linear function is represented by an
array storing the sequence of its breakpoints such that f(x) can be determined
in O(log |f |) time for any given x and the upper envelope of f and g can be
constructed in O(|f | + |g|) time, where f and g are piecewise linear functions
that have, respectively, |f | and |g| linear segments.

3 Minmax-Regret 1-Center on a General Graph

Averbakh and Berman [3] had an O(mn2log n)-time algorithm for finding a
minmax-regret 1-center of a graph G = (V, E). Their algorithm is firstly de-
scribed in Subsection 3.1. Then, our improved algorithm is presented in Subsec-
tion 3.2.

3.1 Averbakh and Berman’s Algorithm

For each i ∈ V , let Si be the scenario in which the weight of i is w+
i and the weight

of any other vertex v is w−v . Averbakh and Berman solved the minmax-regret
1-center problem by an elegant transformation to the classical 1-center problem.
Define an auxiliary graph G′ as follows. Let M = (maxv∈V w+

v) ×
∑

e∈E l(e),
where l(e) is the length of e. The graph G′ is obtained from G by adding for
each i ∈ V a vertex i′ and an edge (i, i′) with length (M − F ∗(Si))/w+

i . Specific
weights are assigned to the vertices of G′. For each i ∈ V , the weight of i is zero
and the weight of i′ is w+

i . Averbakh and Berman gave the following important
property for solving the minmax-regret 1-center problem.

Lemma 3.1 [3]. Any classical 1-center of G′ is a minmax-regret 1-center of G.

Based upon Lemma 3.1, Averbakh and Berman solved the minmax-regret 1-
center problem as follows. First, for each i ∈ V , the 1-radius F ∗(Si) is computed.
Kariv and Hakimi [12] had an O(mnlog n)-time algorithm for the classical 1-
center problem. By applying their algorithm, this step is done in O(mn2log
n) time. Next, the auxiliary graph G′ is constructed, which requires O(m + n)
time. Finally, a solution is obtained in O(mnlog n) time by applying Kariv and
Hakimi’s algorithm again to G′.

Theorem 3.2 [3]. The minmax-regret 1-center problem on a general graph can
be solved in O(mn2log n) time.

540 T.-C. Lin, H.-I. Yu, and B.-F. Wang

3.2 The Improved Algorithm

The bottleneck of Averbakh and Berman’s algorithm is the computation of
F ∗(Si) for every i ∈ V . In this subsection, we improve their upper bound by
showing that the computation can be done in O(mnlog n) time. For any scenario
S ∈ Σ and e ∈ E, the local-radius of G on e under the scenario S is F ∗e (S) =
minx∈e{F (S, x)}. In order to compute the 1-radius of G under a scenario, it is
enough to compute the local-radius on each of the edges. Therefore, let us focus
on the determination of a local-radius. Let e be an edge in G and l be its length.
For ease of discussion, e is regarded as an interval [0, l] on the real line so that
any point on e corresponds to a real number x ∈ [0, l]. Let S ∈ Σ be a scenario.
For any vertex v ∈ V and any point x on e, define D(S, v, x) = wS

v × d(v, x),
which is the weighted distance from v to x under the scenario S. Clearly, each
D(S, v, ·) is a unimodal piecewise linear function, which consists of at most two
linear segments. For convenience, we define Fe(S, x) = maxv∈V {D(S, v, x)} for
x ∈ [0, l]. Note that Fe(S, x) = F (S, x) for x ∈ [0, l]. Since Fe(S, ·) is the upper
envelope of n unimodal piecewise linear functions with at most two segments,
by Theorem 2.1, the following is obtained.

Lemma 3.3 [12]. Fe(S, ·) is a continuous piecewise linear function having O(n)
breakpoints and can be computed in O(nlog n) time.

For any scenario S ∈ Σ, the minimum of Fe(S, ·) is the local-radius F ∗e (S).
Therefore, by Lemma 3.3, F ∗e (Si) of all i ∈ V can be computed in O(n2log n)
time. In the following, we show how to reduce the time complexity. Let S− be
the scenario in which the weight of every v ∈ V is w−v . For any i ∈ V , the
scenario Si can be obtained from S− by simply increasing the weight of i from
w−i to w+

i . Therefore, for any i ∈ V and x ∈ e, we have D(Si, i, x) ≥ D(S−, i, x)
and D(Si, v, x) = D(S−, v, x) for all v �= i. Consequently, the following relation
between Fe(Si, ·) and Fe(S−, ·) is established.

Lemma 3.4. For any i ∈ V and x ∈ e, Fe(Si, x) = max{Fe(S−, x), D(Si, i, x)}.

According to Lemma 3.4, Fe(Si, ·) is the upper envelope of Fe(S−, ·) and
D(Si, i, ·). Since Fe(S−, ·) contains O(n) linear segments and D(Si, i, ·) con-
tains at most two linear segments, it is easy to compute their upper envelope
in O(n) time. Therefore, after Fe(S−, ·) is determined, the time for computing
each F ∗e (Si) can be reduced to O(n). With some preprocessing on Fe(S−, ·), the
time for computing each F ∗e (Si) can be further reduced to O(log n). The trick is
not to construct the whole function Fe(Si, ·), but only to determine its minimum
from Fe(S−, ·) and D(Si, i, ·). For convenience, we define the radius-adjustment
problem as follows. Let R be a continuous piecewise linear function that has
O(n) breakpoints and is defined on an interval I = [0, l]. The radius-adjustment
problem is to preprocess R so as to answer the following queries efficiently: given
a unimodal piecewise linear function A with at most two segments defined on
I, determine the minimum of max{R(x), A(x)} over all x ∈ I. Later, we will
present an efficient algorithm for the radius-adjustment problem. The presented

Improved Algorithms for the Minmax-Regret 1-Center Problem 541

algorithm requires O(n) preprocessing time and O(log n) query time. Such a re-
sult immediately leads to a procedure to compute F ∗e (Si) for all i ∈ V in O(nlog
n) time. Consequently, we have the following theorem.

Theorem 3.5. The minmax-regret 1-center problem on a general graph can be
solved in O(mnlog n) time.

In the remainder of this subsection, we complete the proof of Theorem 3.5 by
presenting an efficient algorithm for the radius-adjustment problem. Let U be
the upper envelope of A and R. Our problem is to compute the minimum of
U . The query function A is piecewise linear with at most two linear segments.
In the following, we first discuss the case that A contains only a linear segment
with positive slope.

We define Φ(x) = min0≤z≤x{R(z)} for 0 ≤ x ≤ l, which is called the prefix-
minimum function of R. Clearly, Φ is a piecewise linear function having O(n)
breakpoints and each of its breakpoints is a point of R. Two vertical linear
segments are associated with Φ. One is from (0, Φ(0)) to (0, ∞) and the other
is from (l, Φ(l)) to (l, −∞). These two linear segments are called, respectively,
the left and right boundaries of Φ. Let Φ∗ be the set of points on Φ and its
boundaries. The function Φ is non-increasing. Thus, it is easy to see that there
is a unique point at which A intersects Φ∗. With some efforts, the following can
be obtained.

Lemma 3.6. Let r = (xr , yr) be the unique point at which A intersects Φ∗. If
r lies on the right boundary of Φ, the minimum of U is Φ(l); otherwise, the
minimum of U is yr.

According to Lemma 3.6, after Φ is computed, our problem becomes to find
the unique point at which A intersects Φ∗. Since Φ is non-increasing and A is
increasing, the finding can be done in O(log n) time by performing binary search
on the linear segments of Φ. Therefore, we have the following.

Lemma 3.7. If A is a linear segment with positive slope, by using the prefix-
minimum function Φ, the minimum of U can be determined in O(log n) time.

Next, consider the case that A is a linear segment with negative slope. Define
the suffix-minimum function of R as Π(x) = minx≤z≤l{R(z)} for 0 ≤ x ≤ l.
Similarly, we have the following.

Lemma 3.8. If A is a linear segment with negative slope, by using the suffix-
minimum function Π, the minimum of U can be determined in O(log n) time.

When A consists of two linear segments, by combining Lemmas 3.7 and 3.8, it
is not difficult to compute the minimum of U in O(log n) time.

By scanning the breakpoints of R from left to right, Φ can be computed
in O(n) time. Similarly, Π can be computed in O(n) time. We conclude this
subsection with the following theorem.

Theorem 3.9. With an O(n)-time preprocessing on R, each query of the radius-
adjustment problem can be answered in O(log n) time.

542 T.-C. Lin, H.-I. Yu, and B.-F. Wang

4 Minmax-Regret 1-Center on a Tree

In this section, we assume that the underlying graph G is a tree T = (V, E). For
a tree, the auxiliary graph defined in Subsection 3.1 is also a tree. Megiddo [18]
had an O(n)-time algorithm for finding the classical 1-center of a tree. Thus,
as indicated in [3,4], on a tree the time complexity of Averbakh and Berman’s
algorithm becomes O(n2). The bottleneck is still the computation of F ∗(Si) for
every i ∈ V . In this section, we improve this upper bound by showing that the
computation can be done in O(nlog2n) time. In Subsection 4.1, we preprocess
T under the scenario S− to construct a data structure. The constructed data
structure is useful in evaluating the value of F (S−, x) for any point x ∈ T . Then,
in Subsection 4.2, we describe the computation of F ∗(Si) for each i ∈ V .

4.1 Preprocess

A top tree [1] is adopted to provide a hierarchical representation of the tree T .
It is defined as follows. For any subtree X of T , we call a vertex in X having a
neighbor in T outside X a boundary vertex. A cluster of T is a subtree having
at most two boundary vertices. Two clusters A and B can be merged if they
intersect in a single vertex and A ∪ B is still a cluster. There are five different
cases of merging, which are illustrated in Figure 4.1. A top tree of T is a binary
tree with the following properties [1].

1. Each node represents a cluster of T.
2. The leaves represent the edges of T.
3. Each internal node represents the cluster merged from the two clusters rep-

resented by its children.
4. The root represents T.
5. The height is O(log n).

A top tree of T defines a way to recursively decompose T into subtrees, until
each of the subtrees contains only a single edge. It was shown in [1] that a top
tree of T always exists and can be constructed in O(n) time. For each node α of

(a) (b)

(c) (d) (e)

Fig. 4.1. Five cases of merging A and B into C. Black nodes are C’s boundary vertices.

Improved Algorithms for the Minmax-Regret 1-Center Problem 543

a top tree, let C(α) denote the cluster represented by α, B(α) denote the set of
boundary vertices of C(α), and V(α) and E(α) denote, respectively, the vertex
set and edge set of C(α).

We preprocess T under the scenario S− to construct a data structure τ . The
data structure τ is a top tree of T ; in addition, each node α stores a function
Uα,b for every b ∈ B(α), where

Uα, b(t) = maxv∈V(α){w−v × (d(v, b) + t)} for t ≥ 0.
Before presenting the computation of the functions Uα,b, their usage is de-

scribed as follows. For any subset K ⊂ V and any point x ∈ T , define
F−(K, x) = maxv∈K{w−v × d(v, x)},

which is the largest weighted distance from any vertex v ∈ K to x under the sce-
nario S−. For ease of description, for any node α of τ , we simply write F−(α, x)
in place of F−(V(α), x). Then, we have the following.

Lemma 4.1. Let α be a node of τ . For any given point x ∈ (T \C(α)) ∪ B(α),
F−(α, x) = Uα,b(d(b, x)), where b is the boundary vertex nearer to x in B(α).

For convenience, we call each Uα,b a dominating function of α. Since Uα,b is
the upper envelope of |V(α)| linear functions, by Theorem 2.1, it is a piecewise
linear function having O(|V(α)|) breakpoints. According to Lemma 4.1, with the
dominating functions of a node α of τ , the largest weighted distance from any
vertex in C(α) to any point x outside C(α) can be determined in O(log |V(α)|)
time.

We now proceed to discuss the computation of the dominating functions. We
do the computation for each node α of τ , layer by layer from the bottom up.
Each leaf of τ represents an edge of T . Thus, if α is a leaf, the computation of
its dominating functions takes O(1) time. Next, consider the case that α is an
internal node. Let b be a boundary vertex of C(α). Let α1 and α2 be the children
of α, and let c be the intersection vertex of C(α1) and C(α2). Let U1(t) =
maxv∈V (α1){w−v × (d(v, b) + t)} and U2(t) = maxv∈V (α2){w−v × (d(v, b) + t)}.
Since V(α) = V (α1) ∪ V (α2), Uα,b(t) = max{U1(t), U2(t)}. Therefore, Uα,b is
the upper envelope of U1 and U2. Consider the function U1. According to the
definition of a top tree, B(α) ⊆ B(α1) ∪ B(α2) and {c} = B(α1) ∩ B(α2). If
b ∈ B(α1), U1(t) = Uα1,b(t); otherwise, we have d(v, b) = d(v, c) + d(c, b) for
each v ∈ C(α1) and thus U1(t) = Uα1,c(d(c, b) + t). Therefore, we obtain U1
from a dominating function of α1 in O(|V (α1)|) time. Similarly, we obtain U2
from a dominating function of α2 in O(|V (α2)|) time. With U1 and U2, we then
construct Uα,b in O(|V (α1)| + |V (α2)|) = O(|V(α)|) time. Since α has at most
two dominating functions, the computation for α requires O(|V(α)|) time.

The time complexity for computing all the dominating functions is analyzed
as follows. For any node α, the computation time is O(|V(α)|) = O(|E(α)|). No
two clusters of the same layer of τ share a common edge. Thus, for any layer of τ ,∑

α |E(α)| = O(n). Therefore, the computation for all nodes in a layer requires
O(n) time. Since there are O(log n) layers, we have the following.

Lemma 4.2. The data structure τ can be constructed in O(nlog n) time.

544 T.-C. Lin, H.-I. Yu, and B.-F. Wang

4.2 An Improved Algorithm

In this subsection, by presenting an efficient algorithm to compute F ∗(Si) for
every i ∈ V , we show that the minmax-regret 1-center problem on T can be
solved in O(nlog2n) time. We begin with several important properties of this
problem. For any i ∈ V and x ∈ T , define Di(x) = w+

i × d(i, x). Trivially,
Lemma 3.4 can be extended to the following.

Lemma 4.3. For any i ∈ V and x ∈ T , F (Si, x) = max{F (S−, x), Di(x)}.

Lemma 4.4 [18]. For any scenario S ∈ Σ, the function F (S, ·) is convex on
every simple path in T .

Let c− be the classical 1-center of T under the scenario S−. For each i ∈ V ,
let ci be the classical 1-center of T under the scenario Si. For any two points
x, y ∈ T , let P (x, y) be the unique path from x to y. The following lemma
suggests a possible range for searching each ci. Due to page limit, the proof is
omitted.

Lemma 4.5. For each i ∈ V , ci is a point on P (c−, i).

Let i ∈ V be a vertex and x be a point on P (c−, i). By Lemma 4.4, the value
of F (S−, x) is non-decreasing along the path P (c−, i). On the contrary, the
value of Di(x) is decreasing. Thus, by Lemma 4.3, ci is the point x ∈ P (c−, i)
at which F (S−, ·) and Di intersect. Moreover, F (S−, x) < Di(x) for any x ∈
P (c−, ci)\{ci} and F (S−, x) > Di(x) for any x ∈ P (ci, i)\{ci}. We have the
following lemma, which plays a key role in our algorithm.

Lemma 4.6. Let i ∈ V be a vertex. For any point x ∈ P (c−, i), ci = x if
F (S−, x) = Di(x); otherwise, ci ∈ P (c−, x) if F (S−, x) > Di(x), and ci ∈
P (x, i) if F (S−, x) < Di(x).

According to Lemma 4.6, if the values F (S−, v) of all v ∈ V are available,
by examining the vertices on P (c−, i) in a binary-search manner, the range for
searching ci can be further restricted to an edge in O(log n) time. We can
compute the values F (S−, v) by using the divide-and-conquer strategy on the
top tree τ . Due to page limit, the details are omitted here.

Lemma 4.7. F (S−, v) can be computed in O(nlog n) time for all v ∈ V .

With the values F (S−, v), in O(nlog n) time, we compute the edge ei containing
ci for every i ∈ V as follows. First, we compute c− and then orient T into a rooted
tree with root c−. (In case c− is not a vertex, a dummy vertex is introduced.)
Then, we perform a depth-first traversal on T , during which we maintain the
path from the root c− to the current vertex in an array. And, for each i ∈ V ,
when i becomes the current vertex, we perform a binary search to find the edge
ei.

Next, we show how to determine the exact position of ci and the value F ∗(Si)
for a fixed i ∈ V . If an edge e ∈ T is removed from T , two subtrees are induced.
We denote the vertex set of the subtree containing c− by Y (e) and the vertex
set of the other subtree by Z(e). With some efforts, the following can be proved.

Improved Algorithms for the Minmax-Regret 1-Center Problem 545

Lemma 4.8. Let e∈E be an edge. For any point x ∈ e, F (S−, x)=F−(Y (e), x).

By Lemmas 4.6 and 4.8, ci is the unique point x∗ ∈ ei at which F−(Y (ei), ·) and
Di intersect. Moreover, F ∗(Si) = Di(x∗). Therefore, the problem remained is
to determine the unique point x∗ on ei at which F−(Y (ei), ·) and Di intersect.
The construction of the function F−(Y (ei), ·) is a costly computation. To avoid
it, we replace it with O(log n) dominating functions. The replacement is based
upon the following lemma. The proof is omitted due to page limit.

Lemma 4.9. For any e ∈ E, we can determine a set Q of O(log n) dominating
functions in τ such that F−(Y (e), x) = maxUα,b∈Q{Uα,b(d(b, x))} for any x ∈ e
in O(log n) time.

Now, we proceed to show how to determine the unique point x∗ on ei at which
F−(Y (ei), ·) and Di intersect. According to Lemma 4.9, we compute a set Q of
dominating functions in τ such that F−(Y (ei), x) = maxUα,b∈Q{Uα,b(d(b, x))}
for any x ∈ ei. Let ei = (y, z), where y ∈ Y (e) and z ∈ Z(e). For ease
of discussion, in the following, ei is regarded as an interval [0, d(y, z)] on the
real line, where y and z correspond, respectively, to 0 and d(y, z). For conve-
nience, for any Uα,b ∈ Q, we say that Di intersects Uα,b at a number x ∈ ei

if Di(x) = Uα,b(d(b, x)). We compute I as the set of numbers x ∈ ei at which
Di intersects the functions in Q. For each Uα,b ∈ Q, since Di is decreasing and
Uα,b is increasing, Di and Uα,b have at most one intersection point, which can
be found in O(log n) time by binary search. Thus, the computation of I takes
O(log2n) time. Then, in O(log n) time, we compute x∗ as the smallest number
in I. The correctness is ensured by the following lemma. We omit the proof due
to page limit.

Lemma 4.10. Let Q be a set of increasing functions defined on the same in-
terval and U be the upper envelope of the functions in Q. Let f be a decreasing
function that intersects U . The smallest number at which f intersects a function
in Q is the unique number at which f intersects U .

As mentioned, ci is x∗ and F ∗(Si) = Di(x∗). Therefore, we have the following.

Lemma 4.11. We can compute ci and F ∗(Si) for all i ∈ V in O(nlog2n) time.

Theorem 4.12. The minmax-regret 1-center problem on a tree can be solved in
O(nlog2n) time.

5 Concluding Remarks

During the last decade, minmax-regret optimization problems have attracted
significant research efforts. For many location problems, however, there are still
large gaps between the time complexities of the solutions to their classical ver-
sions and those to their minmax-regret versions. For example, the classical 1-
center problem on a tree can be solved in O(n) time, while the current upper
bound for its minmax-regret version on a tree with uncertainty in both vertex
weights and edge lengths is O(n3log n) [7]. It would be a great challenge to
bridge the gaps.

546 T.-C. Lin, H.-I. Yu, and B.-F. Wang

References

1. Alstrup, S., Lauridsen, P. W., Sommerlund, P., and Thorup, M.: Finding cores of
limited length. Technical Report. The IT University of Copenhagen (2001)

2. Averbakh, I.: On the complexity of a class of robust location problems. Working
Paper. Western Washington University. Bellingham, WA. (1997)

3. Averbakh, I., Berman, O.: Minimax regret p-center location on a network with
demand uncertainty. Location Science 5 (1997) 247–254

4. Averbakh, I., Berman, O.: Algorithms for the robust 1-center problem on a tree.
European Journal of Operational Research 123 (2000) 292–302

5. Averbakh, I., Berman, O.: Minmax regret median location on a network under
uncertainty. Informs Journal on Computing 12 (2000) 104–110

6. Averbakh, I., Berman, O.: An improved algorithm for the minmax regret median
problem on a tree. Networks 41 (2003) 97–103

7. Burkard, R. E., Dollani, H.: A note on the robust 1-center problem on trees. Annals
of Operations Research 110 (2002) 69–82

8. Chen, B. T., Lin, C. S.: Minmax-regret robust 1-median location on a tree. Net-
works 31 (1998) 93–103

9. Drezner, Z.: Sensitivity analysis of the optimal location of a facility. Naval Research
Logistics Quarterly 33 (1980) 209–224

10. Goldman, A. J.: Optimal center location in simple networks. Transportation Sci-
ence 5 (1971) 212–221

11. Hakimi, S. L.: Optimal locations of switching centers and the absolute centers and
medians of a graph. Operations Research 12 (1964) 450–459

12. Kariv, O., Hakimi, S. L.: An algorithmic approach to network location problems.
I: The p-centers. SIAM Journal on Applied Mathematics 37 (1979) 513–538

13. Kariv, O., Hakimi, S. L.: An algorithmic approach to network location problems.
II: The p-medians. SIAM Journal on Applied Mathematics 37 (1979) 539–560

14. Kouvelis, P., Vairaktarakis, G., Yu, G.: Robust 1-median location on a tree in the
presence of demand and transportation cost uncertainty. Working Paper 93/94-3-4.
Department of Management Science and Information Systems, Graduate School of
Business, The University of Texas at Austin (1994)

15. Kouvelis, P., Yu, G.: Robust discrete optimization and its applications. Kluwer
Academic Publishers, Dordrecht (1997)

16. Ku, S. C., Lu, C. J., Wang, B. F., Lin, T. C.: Efficient algorithms for two generalized
2-median problems on trees. in Proceedings of the 12th International Symposium
on Algorithms and Computation (2001) 768–778

17. Labbe, M., Thisse, J.-F., Wendell, R.: Sensitivity analysis in minisum facility lo-
cation problems. Operations Research 38 (1991) 961–969

18. Megiddo, N.: Linear-time algorithms for linear-programming in R3 and related
problems. SIAM Journal on Computing 12 (1983) 759–776

19. Mirchandani, P. B., Odoni, A. R.: Location of medians on stochastic networks.
Transportation Science 13 (1979) 85–97

20. Mirchandani, P. B., Oudjit, A., Wong, R. T.: Multidimensional extensions and a
nested dual approach for the M-median problem. European Journal of Operational
Research 21 (1985) 121–137

21. Oudjit, A.: Median locations on deterministic and probabilistic multidimensional
networks. PhD Dissertation. Rennselaer Polytechnic Institute, Troy (1981)

22. Weaver, J. R., Church, R. L.: Computational procedures of location problems on
stochastic networks. Transportation Science 17 (1983) 168–180

On Approximating the Maximum Simple

Sharing Problem�

Danny Z. Chen1,��, Rudolf Fleischer2,� � �, Jian Li2,
Zhiyi Xie2, and Hong Zhu2,†

1 Department of Computer Science and Engineering, University of
Notre Dame, Notre Dame, IN 46556, USA

dchen@cse.nd.edu
2 Department of Computer Science and Engineering, Shanghai Key Laboratory of

Intelligent Information Processing, Fudan University, Shanghai, China
{rudolf, lijian83, xie zhiyi, hzhu}@fudan.edu.cn

Abstract. In the maximum simple sharing problem (MSS), we want to
compute a set of node-disjoint simple paths in an undirected bipartite
graph covering as many nodes as possible of one layer of the graph, with
the constraint that all paths have both endpoints in the other layer. This
is a variation of the maximum sharing problem (MS) that finds important
applications in the design of molecular quantum-dot cellular automata
(QCA) circuits and physical synthesis in VLSI. It also generalizes the
maximum weight node-disjoint path cover problem. We show that MSS
is NP-complete, present a polynomial-time 5

3
-approximation algorithm,

and show that it cannot be approximated with a factor better than 740
739

unless P = NP .

1 Introduction

Let G = (U, V ; E) be an undirected bipartite graph with upper nodes U and
lower nodes V . An upper node u ∈ U forms a sharing with two distinct lower

� This work was supported in part by a grant from the Shanghai Key Laboratory of
Intelligent Information Processing, Fudan University, Shanghai, China. The order
of authors follows the international standard of alphabetic order of the last name.
In China, where first-authorship is a particularly important aspect of a publication,
the order of authors should be Zhiyi Xie, Jian Li, Hong Zhu, Danny Z. Chen, and
Rudolf Fleischer.

�� The research of this author was supported in part by the US National Science Foun-
dation under Grant CCF-0515203. This work was partially done while the author
was visiting the Shanghai Key Laboratory of Intelligent Information Processing at
Fudan University, China.

� � � The work described in this paper was partially supported by a grant from the
National Natural Science Fund China (grant no. 60573025).

† The work described in this paper was partially supported by a grant from the
National Natural Science Fund China (grants #60496321 and #60573025) and the
Shanghai Science and Technology Development Fund (grant #03JC14014).

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 547–556, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

548 D.Z. Chen et al.

UU

V V

Fig. 1. The MSS problem: A non-optimal maximal solution (left), and an optimal
solution (right)

nodes v1, v2 ∈ V if (u, v1) and (u, v2) are both edges in E. In the maximum
simple sharing problem (MSS), we want to cover the maximum number of upper
nodes by sharings such that the edges of the sharings form a set of node-disjoint
simple paths in G, where every path has both endpoints in V . See Figure 1 for
an example.

MSS is a variant of the maximum sharing problem (MS) where a node in U
may be involved in multiple sharings (i.e., the paths formed by the sharings may
be non-simple and may overlap in the nodes of U). In a companion paper [10]
we give a 1.5-approximation for MS. Unfortunately, the techniques used for that
result do not carry over to the restricted variant MSS.

MS can help us to solve the node-duplication based crossing elimination prob-
lem (NDCE) [1,4]. In a two-layered (bipartite) graph, we want to duplicate as
few nodes as possible in the first layer such that afterwards all connections be-
tween the two layers can be realized crossing-free (after a suitable permutation of
the nodes in both layers). Intuitively, each sharing in an MS solution tells us how
to avoid a node duplication. MSS is equivalent to restricted NDCE where dupli-
cated nodes can only have a single neighbor in V . Variants of NDCE play a key
role in the design of molecular quantum-dot cellular automata (QCA) circuits
[1,12,15] and physical synthesis [3] which is similar to the key role played by the
well studied crossing minimization problem [9,11,14] in the design of traditional
VLSI circuit layouts.

MSS also generalizes the NP-hard maximum weight node-disjoint path cover
problem (PC) where we want to find in an undirected graph a set of node-
disjoint paths maximizing the number (or total weight) of the edges used by the
paths. It is easy to see that PC is equivalent to MSS when all nodes in U have
degree two (V and U correspond to the nodes and edges of the PC instance,
respectively). PC is equivalent to the (1, 2)-TSP problem in the following sense.
An approximation ratio of γ for one problem yields an approximation ratio of

1
2−γ for the other [13] (note that we adapted their formula for the approximation
ratio to our different definition of approximation ratio). Since (1, 2)-TSP can be
approximated with a factor of 8

7 [2], PC, and thus the case of MSS where all
nodes in U have degree two, can be approximated with a factor of 7

6 . On the
other hand, it is NP-hard to approximate (1, 2)-TSP better than with a factor of
741
740 [7]. Thus, MSS cannot be approximated with a factor better than 740

739 unless
P = NP .

An MSS solution is maximal if it cannot be enlarged by extending any path
from its endpoints without destroying the current solution; otherwise, it is ex-
tendible. Note that we can enlarge any given solution to a maximal solution
in polynomial time. The greedy algorithm that always chooses an unused node

On Approximating the Maximum Simple Sharing Problem 549

in V and arbitrarily extends a maximal node-disjoint path in both endpoints
obviously constructs a maximal solution. Since a sharing touches exactly three
nodes, each sharing in a maximal solution can only block three sharings in an
optimal solution. Thus, any maximal solution is a 3-approximation for MSS.

Our main contribution is to show that MSS can be approximated with a fac-
tor of 5

3 . Our algorithm is based on a relaxation of the path constraint to allow
solutions to contain node-disjoint simple cycles as well as paths, still maximizing
the number of nodes of U covered by the paths and cycles. We call this relaxed
version the cyclic maximum simple sharing problem (CMSS). While MSS is NP-
hard, CMSS can be solved optimally in polynomial time as a maximum weight
perfect matching problem (MWPM) [5]. A similar phenomenon occurs in the 2-
matching relaxation of TSP [8] which can be computed in polynomial time [6].
The difference is that a 2-matching is a pure cycle cover, whereas CMSS com-
putes a mixture of cycles and paths. Since each cycle in a CMSS solution contains
at least two sharings, we can get a 2-approximate MSS solution by removing one
sharing from each cycle (thus breaking the cycle into a path). To obtain an ap-
proximation factor of 5

3 , we must carefully construct a set of node-disjoint simple
paths from an optimal CMSS solution.

We assume in this paper that every node v ∈ V has degree at least two. In
MS we can get rid of degree-one nodes by adding a parallel edge to the one
edge connecting the node, giving rise to the so-called q-MS problem in [10]. This
approach does not work for MSS. Instead, we must duplicate the upper node
adjacent to a degree-one lower node (we can w.l.o.g. assume that there is only
one degree-one neighbor) together with all its adjacent edges. Then, maximizing
the sharings is still equivalent to minimizing the node duplications.

The rest of this paper is organized as follows. First, we show in Section 2 that
MSS is equivalent to restricted NDCE. In Section 3 we show how to solve CMSS
in polynomial time. In Section 4 we then show how to transform an optimal
CMSS solution into a 5

3 -approximation for MSS.

2 MSS and Restricted NDCE

The input to NDCE is a bipartite graph G = (U, V ; E). We want to duplicate
as few nodes of U as possible to achieve a crossing-free drawing of G with the
nodes U (and their copies) drawn (in some suitable order) along a line (the upper
layer) and the nodes V drawn along another parallel line (the lower layer). In
restricted NDCE the copies of nodes in U can only have a single neighbor in
V . The following theorem shows that minimizing the number of duplications is
equivalent to maximizing the number of simple sharings.

Theorem 1. Given a bipartite graph G = (U, V ; E) in which every node has
degree at least two, there is a solution of the MSS problem containing m simple
sharings if and only if we can duplicate |E| − |U | − m nodes of U to eliminate
all wire crossings.

Proof. Denote the layout of the circuit without wire crossings by G′=(U ′, V ′; E′).
U ′ consists of |U | original nodes and the newly duplicated nodes. One way to

550 D.Z. Chen et al.

achieve crossing-free wires is to duplicate |E| − |U | nodes, i.e., every edge of E
has a distinct endpoint in U ′. To reduce the number of node duplications we
observe that the original nodes (not the duplicated nodes) in U ′ can connect to
more than one node, thus reducing the number of duplications.

Consider a permutation of the nodes in V ′, and let vi and vi+1 be two con-
secutive nodes. It is easy to see that vi and vi+1 can have at most one common
neighbor in U ′; otherwise there would be some wire crossings. It can also be seen
that in G′ the degree of a node in U ′ cannot be bigger than two; otherwise edge
crossings cannot be avoided because we cannot duplicate nodes in V .

In G, if there are m simple sharings, then we can arrange m pairs of nodes
in V consecutively so that each pair of nodes shares a common neighbor in U ,
thus reducing the duplication number by m. The other direction can be proved
by a similar argument. ��

3 The Cyclic Maximum Simple Sharing Problem (CMSS)

The cyclic maximum simple sharing problem (CMSS) is defined as follows. Given
a bipartite graph G = (U, V ; E), find a set C of node-disjoint simple cycles and
simple paths in G such that every path begins at a node of V and ends at another
node of V , maximizing the number of nodes in U covered by C (i.e., maximizing
the number of sharings). Since any MSS solution is also a CMSS solution, the
optimal objective function value of MSS is upper-bounded by the optimal CMSS
value.

We now show how to solve CMSS by reducing it to the maximum weight
perfect matching problem (MWPM) on undirected graphs which can be solved
optimally in polynomial time [5]. Given a bipartite graph G = (U, V ; E), we
construct an undirected graph H as follows. We want to represent every node
and every edge of G by a pair of adjacent nodes in H . If a node or an edge in
G is not used by any sharing, then the corresponding paired nodes in H are
matched by their connecting edge. Otherwise, they are matched by other edges.

Figure 2 shows an example of the construction. For each node v ∈ U ∪ V , we
add to H two nodes v(1) and v(2) connected by an edge of weight zero. Similarly,
for each edge e ∈ E, we add to H two nodes e(1) and e(2) connected by an edge
of weight zero. In addition, for each edge e = (u, v), with u ∈ U and v ∈ V , we
add the four edges (u(1), e(1)), (u(2), e(1)), (v(1), e(2)), and (v(2), e(2)), where the
first edge has weight one and the other three edges have weight zero. Finally, for
any two nodes v1 and v2 in V , we add an edge (v(2)

1 , v
(2)
2) of weight zero to H .

It is easy to see that we can construct H in time O(|E| + |V |2).

Theorem 2. G has a CMSS solution with k sharings if and only if H has a
perfect matching of weight k.

Proof. Figure 2 illustrates the proof. We prove the “only if” direction first. Given
a set C of node-disjoint simple paths and cycles in G with k sharings, we construct
a perfect matching M of weight k in H , as follows. We treat C as a subgraph

On Approximating the Maximum Simple Sharing Problem 551

u
(1)
1 u

(1)
2

v
(2)
1 v

(2)
2 v

(2)
3

HG

v1 v2 v3 v
(1)
1 v

(1)
2 v

(1)
3

u
(2)
2u

(2)
1

u2u1

e1

e4

e5e3 e
(2)
1

e
(1)
2e2

e
(1)
1 e

(1)
3

e
(2)
2 e

(2)
4

e
(1)
5

e
(1)
4

e
(2)
5

e
(2)
3

Fig. 2. Illustrating the proof of Theorem 2: The equivalence between CMSS in G and
MWPM in H

of G. For each node v of G not covered by C we add the edge (v(1), v(2)) to M .
Similarly, we add the edge (e(1), e(2)) to M for each edge e ∈ E not in C.

We now classify the nodes of C into three types: (i) upper nodes, (ii) lower
nodes of degree two in C, and (iii) lower nodes of degree one in C. All nodes of
type (i) have degree two in C, and the number of nodes of type (iii) is even.

If u ∈ U is of type (i), let e1 and e2 be the two edges adjacent to u in C. We
add the two edges (u(1), e

(1)
1) and (u(2), e

(1)
2) to M , increasing the weight of M

by one. If v ∈ V is of type (ii), let f1 and f2 be the two edges adjacent to v in C.
We add the two edges (v(1), f

(2)
1) and (v(2), f

(2)
2) to M . If w ∈ V is of type (iii),

let g be the edge adjacent to w in C. We add the edge (w(1), g(2)) to M .
All these operations are possible because a node or an edge in G can appear

at most once in C. Now, all nodes in H are matched except those of the form
w(2) corresponding to a lower node w ∈ V of type (iii). Because there is an even
number of such nodes and they are all pairwise connected, we can arbitrarily
match them. Now we have a perfect matching M in H . The weight of M is k,
the number of nodes of type (i).

Next, we prove the “if” direction. Given a perfect matching M of weight k in
H , we construct a CMSS solution in G, as follows. We call a node v ∈ U ∪V used
if the corresponding edge in H , (v(1), v(2)), does not belong to M . Similarly, we
call an edge e ∈ E used edge if the corresponding edge in H , (e(1), e(2)), does
not belong to M .

Let e = (u, v) be a used edge, where u ∈ U and v ∈ V . Since (e(1), e(2)) is not
in M , e(1) must be matched either with u(1) or u(2), and e(2) must be matched
either with v(1) or v(2). Thus, both u and v are used nodes. On the other hand,
let u ∈ U be a used upper node. Since (u(1), u(2)) is not in M , u(1) must be
matched with some node e

(1)
1 and u(2) must be matched with some node e

(1)
2 ,

where e1 and e2 are two edges in E adjacent to u. Thus, both e1 and e2 are used
edges and there are no other edges of E corresponding to used edges adjacent to
u in G. Only the used upper nodes contribute one to the weight of M . Similarly,
each used lower node v ∈ V must be adjacent to one or two used edges in E.
In summary, every used edge connects two used nodes, every used upper node

552 D.Z. Chen et al.

is adjacent to exactly two used edges, and every used lower node is adjacent
to either one or two used edges. Thus, all used nodes and used edges form a
subgraph C of G consisting of node-disjoint simple cycles and simple paths such
that every path begins at a node of V and ends at another node of V . The
number of used nodes in U (i.e., the number of sharings contained in C) equals
the weight k of M . ��

Corollary 3. CMSS can be solved optimally in polynomial time. ��

4 Obtaining a 5
3
-Approximate MSS Solution

Given a bipartite graph G = (U, V ; E), let S denote a (not necessarily optimal)
CMSS solution, i.e., S is a subgraph of G. We first classify the lower nodes V
into three types: (i) white nodes, which are not covered by S, (ii) gray nodes,
which have degree one in S (i.e., the endpoints of the paths in S), and (iii) black
nodes, which have degree two in S (i.e., the lower nodes lying in the interior of
a path or on a cycle in S). Nodes on a cycle in S are also called cycle nodes.
Cycle nodes are always black. Note that the color of a lower node depends on
the subgraph S and may vary while the subgraph S changes.

Let C be a cycle in S. An edge not belonging to C but connected to an upper
node in C is a short tail of C. A long tail is a chain of two edges not belonging
to C starting at a lower node of C with the middle (upper) node not in S (i.e., a
long tail is a sharing). We often do not distinguish between short and long tails,
just calling them tails. A tail of C has the color of its endpoint not in C. Note
that the edges of a tail never belong to S. See Figure 3 for an example.

v

u

V

U

Fig. 3. A gray long tail at v and a white short tail at u

Lemma 4. Let C be a cycle in S.

(a) If C has a white tail, we can break C into a path with the same number of
sharings.

(b) If C has a gray tail ending at an endpoint of a path D in S, then we can
break C by merging it with D into a single path with the same number of
sharings.

(c) If C has a tail ending at a node of another cycle D in S, then we can merge
C and D into a single path at the cost of losing one sharing.

Proof. See Fig. 4. ��

On Approximating the Maximum Simple Sharing Problem 553

(a)

(b)

(c)

Fig. 4. Three ways of breaking a cycle, proving Lemma 4

We now present our approximation algorithm. For the input graph G =
(U, V ; E), let OPT � denote an optimal CMSS solution. We apply the follow-
ing algorithm to OPT �.

Cycle-breaking Algorithm

Step 0: Let S = OPT �.
Step 1: Repeatedly pick a cycle C in S with a white or gray tail and break C

into a path as in Lemma 4 (a) or (b), until no such cycle exists. Then
go to Step 2.

Step 2: Pick a pair of cycles C and D such that C has a tail ending at a cycle
node in D, merge C and D into a path P as in Lemma 4 (c), and then
go to Step 3. Go to Step 4 if no such pair exists.

Step 3: Let v1 and v2 denote the two (gray) endpoints of P . Perform the fol-
lowing two substeps:
Step 3(a): Repeatedly pick a cycle C that has a tail ending at v1 or

v2, and break C as in Lemma 4 (b). Then go to Step 3(b).
Step 3(b): For the two endpoints v1 and v2 of P obtained in Step 3(a),

if there is an upper node u ∈ U not in S and both (v1, u)
and (v2, u) are edges in E, then add the sharing (v1, u, v2)
to S, closing a cycle. Then go to Step 2.

Step 4: Break all remaining cycles in S by arbitrarily removing one sharing
from each cycle.

The output from the algorithm above is our approximate MSS solution. It is
easy to see that the algorithm takes only polynomial time. Note that Steps 2
and 3 are iterated at most � |U|2 � times since each iteration merges at least two
cycles into either one path or one cycle. Moreover, if at the end of an iteration
of Steps 2 and 3 a path is generated, then it will stay as a path from that point
on.

Let SOL� denote the CMSS solution before we begin with Step 4. Further-
more, let |OPT �| and |SOL�| denote the number of sharings contained in OPT �

and SOL�, respectively.

Lemma 5. Let p be the number of paths that are generated and added to SOL�

in Steps 2 and 3. Then |OPT �| = |SOL�| + p.

554 D.Z. Chen et al.

Proof. Let s(S) denote the number of sharings in S during the algorithm. By
Lemma 4 (a) and (b), we do not lose any sharings in Step 1. Thus, s(S) = |OPT �|
at the end of Step 1. For each iteration of Steps 2 and 3, by Lemma 4 (b) and
(c), we lose one sharing in Step 2, but we do not lose any sharing in Step 3(a).
Therefore, if the algorithm does not find a suitable upper node in Step 3(b),
then one path is generated that will stay as a path from that point on and we
lose one sharing. On the other hand, if the algorithm forms a cycle in Step 3(b),
then no path is generated and no sharing is lost. Hence, the number of paths
generated is equal to the number of sharings lost in Steps 2 and 3, which is
exactly p. Therefore, |OPT �| = |SOL�| + p. ��

Lemma 6. Let (v1, u, v2) be a sharing in G such that the upper node u is not
covered by a path in SOL�.

(a) Then at least one of v1 and v2 is black in SOL�.
(b) If v1 is a cycle node in SOL�, then v2 is also black.
(c) If v1 and v2 are both cycle nodes, then they belong to the same cycle in SOL�.

Proof. Part (c) follows immediately from the termination codition of Step 2. The
other two parts we prove by induction on the number of iterations of Steps 2
and 3. Note that |S| = |OPT �| at the end of Step 1. The termination condition
of Step 1 implies part (b) at the end of Step 1, and part (a) if u is covered by
a cycle in S at that time. If u is not covered by S and both v1 and v2 were not
black after Step 1, we could add the sharing (v1, u, v2) to S and get a CMSS
solution better than OPT �, which is impossible.

In Steps 2 and 3 we do not destroy a path, and we do not create new black
nodes or cycle nodes. However, it may happen that we break a cycle into a path,
thus turning two black nodes into gray nodes (the endpoints of the path). If a
tail ends at one of these gray nodes, Step 3(a) does not terminate. This implies
that part (b) holds after each iteration of Steps 2 and 3.

To prove part (a), assume there is a sharing (v1, u, v2) with u not covered
by a path at the end of an iteration of Steps 2 and 3. Since part (a) holds at
the beginning of the iteration, at least one of the two lower nodes must have
been black at that time. Since only cycle nodes can change their color during
an iteration, it was a cycle node. By part (b), the other node must also have
been black before the iteration. Since both nodes became gray, they are the
two endpoints of the path created in the iteration. But then we would add the
sharing (v1, u, v2) to S in Step 3(b), making both nodes black again. ��

Now we have all the ingredients to prove our main result. Let SOL denote the
final MSS solution obtained by the “Cycle-breaking Algorithm” on G.

Theorem 7. SOL is a 5
3 -approximate MSS solution.

Proof. We partition the paths in SOL into three sets: (i) SOL1, the paths that
exist right after Step 1, (ii) SOL2, the paths created in Steps 2 and 3, and (iii)
SOL4, the paths created in Step 4. We denote the number of sharings in SOLi

On Approximating the Maximum Simple Sharing Problem 555

by si, for i = 1, 2, 4, and we denote the number of paths in SOLi by pi. Each
path in SOL1 or SOL2 is a path in SOL�, and each path in SOL4 corresponds
to a cycle in SOL� with the same set of lower nodes.

Let OPT denote an optimal MSS solution. We partition the sharings in OPT
into three disjoint subsets. 1) The set OPT1+2 of all sharings whose upper
nodes are contained in the paths in SOL1 or SOL2. 2) The set OPT4 of all
sharings whose upper nodes are not contained in any paths in SOL1 or SOL2,
and whose two lower nodes are contained in some paths in SOL4. 3) The set
OPTother of all other sharings.

For each sharing (v1, u, v2) in OPT4, in SOL� both v1 and v2 are cycle nodes
and u is not contained in any path. Thus, by Lemma 6 (c), v1 and v2 are in
the same cycle in SOL�, i.e., in the same path in SOL4. Let s(P) denote the
number of sharings in a simple path P . For each path P in SOL4 there are
at most s(P) sharings that are in OPT4. Summing over all paths in SOL4, we
obtain |OPT4| ≤ s4.

Similarly, for each sharing (v1, u, v2) in OPTother, u is not in any path in
SOL�. Thus, if v1 (or v2) is a cycle node in SOL�, then by Lemma 6 (b), v2 (or
v1) is a black node in a path in SOL�. On the other hand, if neither v1 nor v2 is
a cycle node in SOL�, then by Lemma 6 (a) at least one of v1 and v2 is a black
node on a path in SOL�. Hence, in either case, the sharing (v1, u, v2) has at least
one black node on a path in SOL�, i.e., on a path in SOL1 or SOL2. Since a
lower node can appear in at most two sharings in OPT , we have |OPTother| ≤
2 · #(black nodes in a path in SOL1 or SOL2) = 2(s1 − p1 + s2 − p2).

Since the number of sharings in OPT1+2 cannot exceed the number of sharings
in SOL1 and SOL2, we have |OPT1+2| ≤ s1 + s2. Altogether,we have |OPT | =
|OPT1+2| + |OPT4| + |OPTother| ≤ s1 + s2 + s3 + 2(s1 − p1 + s2 − p2) =
|SOL| + 2(s1 − p1 + s2 − p2).

Note that we lost p4 sharings in Step 4 of the algorithm. Moreover, by Lemma
5, |OPT �| = |SOL�| + p2. Thus, |OPT | ≤ |OPT �| = |SOL| + p2 + p4 and
therefore |OPT | + 2 · |OPT | ≤ |SOL| + 2(s1 − p1 + s2 − p2) + 2(|SOL| + p2 +
p4) = 3 · |SOL| + 2(s1 + s2 + p4) − 2p1. Since p4 ≤ s4 and p1 ≥ 0, this implies
3 · |OPT | ≤ 3 · |SOL| + 2(s1 + s2 + s4) = 5 · |SOL|. ��

3SOL 2SOL 3SOL

 Edges in SOL

 Edges in OPT

Fig. 5. An example showing that our approximation ratio 5
3

is tight

556 D.Z. Chen et al.

The 5
3 approximation ratio of our algorithm is tight, as shown by the example

in Fig. 5.

References

1. D. A. Antonelli, D. Z. Chen, T. J. Dysart, X. S. Hu, A. B. Khang, P. M. Kogge,
R. C. Murphy, and M. T. Niemier. Quantum-dot cellular automata (QCA) cir-
cuit partitioning: problem modeling and solutions. Proc. 41st ACM/IEEE Design
Automation Conference (DAC), pp. 363–368, 2004.

2. P. Berman and M. Karpinski. 8
7
-approximation algorithm for (1, 2)-TSP. Proc.

17th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’06), pp. 641–648,
2006.

3. A. Cao and C.-K. Koh. Non-crossing OBDDs for mapping to regular circuit struc-
tures. Proc. IEEE International Conference on Computer Design, pp. 338–343,
2003.

4. A. Chaudhary, D. Z. Chen, X. S. Hu, M. T. Niemier, R. Ravinchandran, and K. M.
Whitton. Eliminating wire crossings for molecular quantum-dot cellular automata
implementation. Proc. IEEE/ACM International Conference on Computer-Aided
Design, pp. 565–571, 2005.

5. W. Cook and A. Rohe. Computing minimum-weight perfect matchings. INFORMS
J. on Computing, 11(2):138–148, 1999.

6. J. Edmonds. Maximum matching and a polyhedron with 0,1-nodes. J. Res. Nat.
Bur. Stand. B, 69:125–130, 1965.

7. L. Engebretsen and M. Karpinski. TSP with bounded metrics. Journal of Computer
and System Sciences, 72(4):509–546, 2006.

8. S. R. Kosaraju, J. K. Park, and C. Stein. Long tours and short superstrings. Proc.
35th Annual Symp. on Foundations of Computer Science (FOCS’94), pp. 166–177,
1994.

9. T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley, New
York, 1990.

10. J. Li, A. Chaudhary, D. Z. Chen, R. Fleischer, X. S. Hu, M. T. Niemier, Z. Xie, and
H. Zhu. Approximating the Maximum Sharing Problem. Submitted for publication,
2006.

11. M. Marek-Sadowska and M. Sarrafzadeh. The crossing distribution problem, IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 14(4):423–
433, 1995.

12. M. T. Niemier and P. M. Kogge. Exploring and exploiting wire-level pipelining
in emerging technologies, Proc. 28th Annual International Symp. on Computer
Architecture, pp. 166–177, 2001.

13. C. H. Papadimitriou and M. Yannakakis. The Traveling Salesman Problem with
distances one and two, Mathematics of Operations Research, 18(1):1–11, 1993.

14. C. D. Thompson. Area-time complexity for VLSI, Proc. 11th Annual ACM Symp.
on Theory of Computing (STOC’79), pp. 81–88, 1979.

15. P. D. Tougaw and C. S. Lent. Logical devices implemented using quantum cellular
automata, J. of App. Phys., 75:1818, 1994.

Approximation Scheme for Lowest Outdegree
Orientation and Graph Density Measures

Łukasz Kowalik1,2,�

1 Institute of Informatics, Warsaw University, Warsaw, Poland
2 Max-Planck-Institute für Informatik, Saarbrücken, Germany

kowalik@mimuw.edu.pl

Abstract. We deal with the problem of finding such an orientation of a given
graph that the largest number of edges leaving a vertex (called the outdegree of
the orientation) is small.

For any ε ∈ (0, 1) we show an Õ(|E(G)|/ε) time algorithm1 which finds an
orientation of an input graph G with outdegree at most �(1 + ε)d∗�, where d∗ is
the maximum density of a subgraph of G. It is known that the optimal value of
orientation outdegree is �d∗�.

Our algorithm has applications in constructing labeling schemes, introduced
by Kannan et al. in [18] and in approximating such graph density measures as
arboricity, pseudoarboricity and maximum density. Our results improve over the
previous, 2-approximation algorithms by Aichholzer et al. [1] (for orientation /
pseudoarboricity), by Arikati et al. [3] (for arboricity) and by Charikar [5] (for
maximum density).

1 Introduction

In this paper we deal with approximating lowest outdegree orientation, pseudoarboric-
ity, arboricity and maximum density. Let us define these notions as they are not so
widely used.

Let G = (V, E) be a graph. An orientation of G is a digraph
−→
G = (V,

−→
E) that is

obtained from G by replacing every undirected edge uv by an arc, i.e., (u, v) or (v, u).
The outdegree of an orientation is the largest of its vertices’ outdegrees. In this paper
we focus on the problem of finding for a given graph its orientation with minimum
outdegree. We will call it a lowest outdegree orientation. This problem is closely related
to computing pseudoarboricity and maximum density of graphs.

Density of a graph G = (V, E), denoted by d(G), is defined as d(G) = |E|/|V |, i.e.,
it is half of its average degree. In the Densest Subgraph Problem, given graph G one
has to find its subgraph G∗ such that any nonempty subgraph H of G satisfies d(H) ≤
d(G∗). The number d(G∗) will be called maximum density of graph G, and we will
denote it by d∗(G). As it was shown by Charikar [5], the linear program for Densest
Subgraph Problem is dual to the relaxation of the integer program for finding the lowest
outdegree orientation. Moreover, it follows from a theorem by Frank and Gyárfás [11]
that �d∗(G)� equals the outdegree of the lowest outdegree orientation of G.

� Supported in part by KBN grant 4T11C04425.
1 The Õ(·) notation ignores logarithmic factors.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 557–566, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

558 Ł. Kowalik

A pseudotree is a connected graph containing at most one cycle. Pseudoforest is a
union of vertex disjoint pseudotrees. Pseudoarboricity of graph G, denoted as P (G), is
the smallest number of pseudoforests needed to cover all edges of G. As it was noticed
by Picard and Queyranne [22], P (G) = �d∗(G)�, which combined with the theorem
of Frank and Gyárfás implies that pseudoarboricity equals the outdegree of the lowest
outdegree orientation. This can be also easily proved directly (see Section 2).

Arboricity of graph G, denoted as arb(G), is the smallest number of forests needed
to cover all edges of G. A classic theorem by Nash-Williams [21] says that arboricity is
equal to maxJ�|E(J)|/(|V (J)| − 1)� where J is any subgraph of G with |V (J)| ≥ 2
vertices and |E(J)| edges. Using this fact it is easy to show (see [22]) that P (G) ≤
arb(G) ≤ P (G) + 1.

Applications. Arboricity is the most often used measure of graph sparsity. Complexity
of many graph algorithms depends heavily on the arboricity of the input graph – see
e.g. [6,4,8].

Kannan et al. [18] noticed that for any n-vertex graph of arboricity k one can label
its vertices using at most (k + 1) log n bits for each label in such a way that adjacency
of any pair of vertices can be verified using merely their labels. They call it a (k + 1)-
labeling scheme. It is achieved as follows: (1) number the vertices from 1 to n, (2) find
a partition of the graph into k forests, (3) in each tree in each forest choose a root, and
(4) assign each vertex a label containing its number and the numbers of its parents in
the at most k trees it belongs to. Then to test adjacency of vertices u and v it suffices to
check whether u is the parent of v in some tree or vice versa.

Chrobak and Eppstein [7] observed that in order to get the labeling schemes one can
use orientations instead the partition into forests. Then each vertex v stores in its label
the numbers of endpoints of the arcs leaving v. As for any graph G, P (G) ≤ arb(G)
this is a little bit more efficient approach. Then the problem of building a (P (G) + 1)-
labeling scheme reduces to the problem of finding a lowest degree orientation.

It should be noted that low outdegree orientations are used as a handy tool in many
algorithms, see e.g., [2,19,9].

Related Work. Throughout the whole paper m and n denote the number of edges and
vertices of the input graph, respectively.

The problem of computing pseudoarboricity and the related decomposition was first
raised by Picard and Queyranne [22] who applied network flows and obtained
O(nm log3 n) algorithm by using the maximum flow algorithm by Galil and Naa-
mad [14]. It was improved by Gallo, Grigoriadis and Tarjan [15] to O(nm log(n2/m))
by using parametric maximum flow. Next Gabow and Westermann [13] applied their
matroid partitioning algorithm for the k-pseudoforest problem – the problem of finding
in a given graph k edge-disjoint forests containing as many edges as possible. Their
algorithm works in O(min{(kn′)3/2, k(n′)5/3}) time where n′ = min{n, m/k}. As
pseudoarboricity is at least m/n it gives an O(m min{m1/2, n2/3})-time algorithm
which verifies whether a given graph has pseudoarboricity at most k and if the an-
swer is yes computes the relevant pseudoforest partition. Using binary search pseu-
doarboricity p can be computed in O(m min{m1/2, n2/3} log p) time. However, if
the pseudoforest partition is not needed, they show also that this value can be found

Approximation Scheme for Lowest Outdegree Orientation 559

in O(m min{(m logn)1/2, (n log n)2/3}) time. For the related problem of finding ar-
boricity and the relevant forest partition they describe an O(m3/2√log n) algorithm.

Finally, Aichholzer et al. [1] claimed (without giving details) that one can solve the
equivalent lowest outdegree orientation problem in O(m3/2 log p) time by using Dinic’s
algorithm.

Since the problem seems to be closely related with network flows and matroid par-
titions it can be hard to get a near-linear algorithm for it. Hence one can consider ap-
proximation algorithms. Arikati et al. [3] showed a simple linear-time 2-approximation
algorithm for computing arboricity and the corresponding partition into forests. Inde-
pendently, Aichholzer et al. [1] showed a 2-approximation algorithm for the problem
of finding lowest outdegree orientation (and hence also pseudoarboricity). In fact, these
two algorithms are the same. Both can be viewed as finding for a given graph G its
acyclic orientation of outdegree at most 2P (G).

Recently, Gabow [12] considered a related problem of orienting as many edges as
possible subject to upper bounds on the indegree and outdegree of each vertex. He
proves that the problem is MAXSNP-hard and shows a 3/4-approximation algorithm.

For the densest subgraph problem the state of art is very similar to computing pseu-
doarboricity. A paper of Goldberg [16] contains a reduction to a network flow problem,
which combined with the algorithm by Goldberg and Rao [17] gives an algorithm with
time complexity Õ(m min{n2/3, m1/2}). On the other hand, Charikar [5] showed a
simple linear-time 2-approximation algorithm.

Our Results. We show an algorithm which, given a number ε > 0 and a graph with
maximum density d∗, finds a d-orientation so that d ≤ �(1 + ε)d∗�. In other words,
it is an approximation scheme with additional additive error (caused by rounding up)
bounded by 1. For 0 < ε < 1 the algorithm works in O(m log n max{log d∗, 1}ε−1)
time.

As P (G) ≤ arb(G) ≤ P (G) + 1 and P (G) = �d∗(G)� it is not surprising that
our algorithm can be also used for efficient approximating arboricity and maximum
density – for both these problems we get an approximation scheme with an additional
small additive error (2 for arboricity, 1 for maximum density). In Section 2 we also
note that finding a partition of edges of a graph into d pseudoforests is equivalent to the
problem of finding an orientation with outdegree d. Thus our algorithms apply also to
the pseudoforest partition problem.

In the particular case of sparse graphs, i.e., graphs of bounded arboricity, the run-
ning time of our algorithm is O((n log n)/ε), as then d∗ = O(1) and m = O(n).
It is worth noting that for sparse graphs our algorithm can be used to efficiently find
an orientation with outdegree �d∗ + δ�, for δ > 0. Alternatively, we can use it for
approximating arboricity (additive error 1 + �δ�) and maximum density (additive er-
ror 1 + δ). This can be done in O(m log n max{log d∗, 1} max{ d∗

δ , 1}) time, which is
O(n log n max{δ−1, 1}) for sparse graphs. In particular, for sparse graphs this gives
O(n log n) time approximation algorithms with additive error 1 (for lowest outdegree
orientation / pseudoarboricity), or 2 (for arboricity and maximum density).

The idea of our approximation algorithms is very simple. We start Dinic’s maximum
flow algorithm in some network which depends on the input graph and some parameter
d. We stop it when augmenting paths grow too long. If d is greater, but not very close to

560 Ł. Kowalik

the maximum density d∗ we show that the augmenting paths will never grow too long
and then we obtain a d-orientation. Otherwise we know d is too close to d∗ — closer
than we need. In order to find the smallest value of d such that the augmenting paths are
always short we use binary search.

2 Preliminaries

We say that
−→
G is a d-orientation when vertex outdegrees in

−→
G do not exceed d. We

assume that the reader is familiar with basic concepts concerning network flow algo-
rithms. For details see e.g. [20]. Let us recall here only some basic notions.

Let G = (V, E) be a directed graph with two special vertices s (called source) and
t (called sink). Each arc of G is assigned a number called capacity. More precisely,
capacity is a function c : V 2 → R≥0 such that for (v, w) �∈ E, c(v, w) = 0. Graph G
with the capacity function c is called a network. Flow in a network G is any function
f : V 2 → R such that for any u, v ∈ V (1) f(u, v) ≤ c(u, v), (2) f(u, v) = −f(v, u),
(3) if v �= s, t,

∑
x∈V f(v, x) = 0. The value of flow f , denoted by |f |, is the value

of
∑

x∈V f(s, x). A maximum flow is a flow with largest possible value. For network
G and flow f the residual capacity is a function cf : V 2 → R≥0 such that cf (u, v) =
c(u, v) − f(u, v). The graph with vertex set V containing edge (u, v) if and only if
cf (u, v) > 0 is denoted as Gf . Graph Gf with cf as capacity function is called a
residual network. An augmenting path is any path from s to t in the residual network.
Edge (u, v) of graph G is called augmented when f(u, v) = c(u, v).

Below we show an important relation between partitions into pseudoforests and ori-
entations.

Proposition 1. The problems of finding p-orientation and partition into p pseudoforests
are equivalent, i.e., from a given p-orientation of some graph one can find a partition
of edges of this graph into p pseudoforests and vice versa. Both conversions take time
linear in the number of edges.

Proof. Every pseudotree has a 1-orientation, as it suffices to remove any edge of the
cycle (if there is one), choose one of its ends as the root, orient all edges toward the root
and finally add the removed edge oriented from the root to the other endpoint. Thus
given a decomposition of a graph into p pseudoforests we can find its p-orientation in
linear time.

Conversely, consider a connected graph G with a 1-orientation. We will show that G
is a pseudotree. G has at least |V (G)|−1 edges since it is connected, and at most |V (G)|
edges since it has 1-orientation. If it has |V (G)| − 1 then it is a tree. If it has |V (G)
edges it contains a cycle. After removing any edge of this cycle we get a connected
graph G′ with |V (G′)|−1 edges. Hence G′ is a tree which implies that G has precisely
one cycle. It follows that a graph with a 1-orientation is a pseudoforest.

Now, given a p-orientation, for each vertex we remove any of the edges leaving it.
Then we obtain a (p−1)-orientation and the removed edges form a 1-orientation, which
is a pseudoforest when we forget about edge orientations. After repeating this step p
times we obtain the desired decomposition into p pseudoforests. The whole process
also takes linear time.
�

Approximation Scheme for Lowest Outdegree Orientation 561

The above proposition implies that finding pseudoarboricity and the corresponding par-
tition of edges into pseudoforests is equivalent to finding the lowest degree orientation.

3 Reduction to a Flow Problem

Here we present a reduction of finding a d-orientation of a given graph (if it exists) to
finding a maximum flow in some network. Other reductions are used in [22,1].

Let G = (V, E) be a graph and let d be a positive integer. Let
−→
G be an arbitrary

orientation of G (we will call it the initial orientation). We build a network G̃d =
(Ṽ , Ẽ) with capacity function cd as follows. Set Ṽ contains all vertices from V and

two new vertices s (source) and t (sink). Set Ẽ contains all edges from E(
−→
G), each

with capacity 1, an edge (s, v) with capacity outdeg(v) − d for each vertex v with

outdegree in
−→
G greater than d and an edge (v, t) with capacity d − outdeg(v) for each

vertex v with outdegree in
−→
G smaller than d. Let G̃d

f denote the residual network for
flow f . Note the following proposition.

Proposition 2. For any integral flow f in network G̃d, the subgraph of the residual
network G̃d

f induced by set V is an orientation of graph G.
�

Let us denote the subgraph described above by
−→
Gf . From now on we assume that flows

in G̃d are integral.

Lemma 1. Let f be any flow in network G̃d. There is an edge (s, v) in G̃d
f if and only if

outdeg−→
Gf

(v) > d. Also, there is an edge (v, t) in G̃d
f if and only if outdeg−→

Gf
(v) < d.

Proof. Let
−→
G be the initial orientation of G and let v be an arbitrary vertex in V . Clearly,

outdeg−→
Gf

(v) = outdeg−→
G

(v) +
∑

w∈V f(w, v). As f is a flow, 0 =
∑

w∈Ṽ f(w, v) =
∑

w∈V f(w, v) + f(s, v) + f(t, v). Hence,

outdeg−→
Gf

(v) = outdeg−→
G

(v) − f(s, v) + f(v, t). (1)

Now, if c(s, v) = c(v, t) = 0 then f(s, v) = f(v, t) = 0 and we see that both (s, v)
and (v, t) are not in G̃d

f and outdeg−→
Gf

(v) = d.

If c(s, v) > 0 then c(v, t) = 0 and further f(v, t) = 0. Hence, by (1), we have
c(s, v) − f(s, v) = outdeg−→

G
(v) − d − f(s, v) = outdeg−→

Gf
(v) − d. Then c(s, v) −

f(s, v) > 0 if and only if outdeg−→
Gf

(v) − d > 0, which is equivalent to the first part of

the lemma. Also, since c(v, t) = 0 and c(t, v) = 0 we get (v, t) �∈ E(G̃d
f). Moreover,

0 ≤ c(s, v) − f(s, v) = outdeg−→
Gf

(v) − d which implies that the second part of the

lemma also holds in this case. The case c(s, v) < 0 can be verified analogously.
�

Corollary 1. There is an augmenting path sv1v2 . . . vkt in the residual network G̃d
f iff

there is a path v1v2 . . . vk in
−→
G f such that outdeg−→

Gf
(v1) > d, outdeg−→

Gf
(vk) < d.

Let cd(s, V − s) denote the capacity of the ({s}, V \ {s}) cut, i.e., cd(s, V − s) =∑
v∈V cd(s, v).

562 Ł. Kowalik

Theorem 1. Let G be a graph and let f be a maximum flow in network G̃d. There exists
a d-orientation of G if and only if |f | = cd(s, V −s). Moreover, when |f | = cd(s, V −s)
then

−→
G f is a d-orientation of G.

Proof. Assume that there is a d-orientation of G and the maximum flow f in G̃d is
smaller than cd(s, V −s). Then at least one edge leaving s, say (s, v) is not augmented.
Then from Lemma 1 outdeg−→

Gf
(v) > d. Let W ⊆ V denote the set of vertices reach-

able from v in
−→
Gf . Since there is a d-orientation of G, graph G[W] contains at most

d|W | edges. If W contained no vertex of outdegree smaller than d then graph G[W]
would contain more than d|W | edges, which would be a contradiction. Hence W con-
tains a vertex w such that outdeg−→

Gf
(w) < d and by Corollary 1 there is an augmenting

path which contradicts the maximality of flow f .
Conversely, if f is a flow in G̃d of value cd(s, V − s) there are no edges leaving s in

the residual network and Lemma 1 implies that outdegrees in
−→
Gf do not exceed d.
�

In order to analyze our approximation algorithm we will use the following lemma. The
lemma and its proof is analogous to Lemma 2 in [4] (however, our Lemma 2 implies
Lemma 2 in [4] and not vice-versa, hence we include the proof for completeness).

Lemma 2. Let
−→
G be a d-orientation of some n-vertex graph G of maximum density

d∗ and let d > d∗. Then for any vertex v the distance in
−→
G to a vertex with outdegree

smaller than d does not exceed logd/d∗ n.

Proof. Let v be an arbitrary vertex and let k be the distance from v to a vertex with
outdegree smaller than d. For every i = 0, . . . , k let Vi be the set of vertices at distance
at most i from v. We will show by induction that for each i = 0, . . . , k, |Vi| ≥ (d

d∗)i.
We see that this inequality holds for i = 0. For the induction step assume that i < k. Let
Ei+1 be the set of edges with both ends in Vi+1. We see that exactly d|Vi| edges leave
Vi. Since all these edges belong to Ei+1 it gives us |Ei+1| ≥ d|Vi|. As |Ei+1|

|Vi+1| ≤ d∗

we get |Vi+1| ≥ d
d∗ |Vi|. After applying the induction hypothesis we get the desired

inequality. Then since |Vk| ≤ n we get (d
d∗)k ≤ n which ends the proof.
�

As an immediate consequence of Corollary 1 and Lemma 2 we get the following corol-
lary.

Corollary 2. Let G be an n-vertex graph of maximum density d∗ and let for some
integer d > d∗, G̃d be the corresponding network with some flow f . If G̃d contains an
augmenting path then it contains an augmenting path of length at most 2 + logd/d∗ n.

4 Approximation Algorithm

Let us now briefly recall Dinic’s algorithm. Details can be found in many textbooks,
e.g. [20]. Dinic’s algorithm begins with the empty flow f . It consists of a sequence of
phases. In the beginning of each phase it builds a layered network, i.e., a subgraph of
the residual network containing only edges of shortest paths from source s to sink t.

Approximation Scheme for Lowest Outdegree Orientation 563

The goal of each phase is to find a blocking flow in the layered network, i.e., such flow
that each s, t-path in the layered network contains an augmented edge. In the end of
each phase the blocking flow is added to flow f .

Dinic’s algorithm finds the blocking flow by finding a number of augmenting paths,
each time sending maximal amount of flow through the path. To find such path it uses
the following method. Start from the empty path. Let v be the end of the path p found
so far. If v = t an augmenting path is found. If there is an edge leaving v add it to path
p (this step is called advance). Otherwise remove the last edge of path p from both the
layered network and p (this step is called retreat).

It is known that Dinic’s algorithm finds a blocking flow in unit capacity networks
in linear time (see e.g. [10]). It is not surprising that it is similarly fast in network G̃d,
which is “almost unit capacity”. For completeness, below we give a proof.

Proposition 3. For any graph G with m edges the Dinic’s algorithm finds a blocking
flow in network G̃d in O(m) time.

Proof. The number of advance steps after which the sink t is reached is equal to
the number of augmenting paths found, which is bounded by the value of maximum
flow, which in turn is bounded by m. The total number of other advance steps is
bounded by the sum of relevant edge capacities, i.e.,

∑
v cd(s, v)+

∑
v,w∈V cd(v, w) ≤

∑
v outdeg(v) +

∑
v,w∈V cd(v, w) = 2m. The number of retreat steps is bounded by

the number of edges. We see that the total number of advance and retreat steps is at
most 4m.
�

Let us also recall another crucial property of Dinic’s algorithm (see e.g. [20]):

Proposition 4. After each phase of Dinic’s algorithm the length of the shortest aug-
menting path increases.

Now let us describe our main result, algorithm ORIENT(ε) which finds orientation of a
given graph with outdegree close to optimal.

Algorithm 4.1 TEST(k,d)

1: Build G̃d

2: while distG̃d
f
(s, t) ≤ k do

3: Run another phase of Dinic’s algorithm

4: if |f | = cd(s, V − s) then return
−→
Gf else return “FAIL”

We will use a subroutine TEST(k,d). It builds network G̃d, and runs the Dinic’s
algorithm until it finishes (i.e. when there is no augmenting path) or the augmenting
paths become longer than k. If the resulting flow has value cd(s, V − s), it returns an

orientation
−→
Gf . Otherwise it returns “FAIL” message. As an immediate consequence

of propositions 3 and 4 we get the following proposition.

564 Ł. Kowalik

Proposition 5. Algorithm TEST(k,d) works in O(km) time.
�

Lemma 3. Let G be a graph with maximum density d∗ and let d ≥ �(1 + ε)d∗� for
some ε > 0. Then TEST(2 + log1+ε n, d) returns a d-orientation of G.

Proof. As ε > 0 it follows that d > d∗ and by Corollary 2 if there is an augmenting
path, there is an augmenting path of length at most 2 + logd/d∗ n, which is not greater
than 2 + log1+ε n. Hence the while loop is stopped when there is no augmenting path,
i.e., distG̃d

f
(s, t) = ∞, which implies that a maximum flow f is found. As d ≥ �(1 +

ε)d∗� ≥ �d∗� = P (G), there exists a d-orientation of G, so by Theorem 1, |f | =
cd(s, V − s) and

−→
G f is a d-orientation. It establishes the proof.
�

Algorithm 4.2 ORIENT(ε)
1: d1 ← 0; d2 ← 1
2: while TEST (2 + log1+ε n,d2) = “FAIL” do
3: d1 ← d2; d2 ← 2d2

4: while d1 < d2 do
5: d′ = � d1+d2

2
�

6: if TEST (2 + log1+ε n,d′) = “FAIL” then d1 ← d′ else d2 ← d′

7: return the orientation returned by the last call of TEST

Algorithm ORIENT(ε) uses binary search to find an integer d such that TEST(2 +
log1+ε n, d− 1) returns “FAIL” message, while TEST(2+ log1+ε n, d) does not. (Note
that it may happen that d < �(1 + ε)d∗�). It returns the d-orientation returned by the
relevant call of TEST. Now we state the main result of the paper.

Theorem 2. Let G be any graph of maximum density d∗. For any ε > 0 algorithm
ORIENT(ε) finds a d-orientation of G such that d ≤ �(1 + ε)d∗�. Its time complexity is
O(m log n max{log d∗, 1} max{ε−1, 1}).

Proof. Correctness of the algorithm is an immediate consequence of Lemma 3. By
Proposition 5 each call of TEST(2 + log1+ε n,d) subroutine takes O(m log1+ε n) =
O(m(log n)(log(1 + ε))−1) time. By Taylor expansion, for ε < 1, ln(1 + ε) =
ε+O(ε2). Hence each call of TEST routine in algorithm ORIENT takes time bounded by
O(m(log n)max{ε−1, 1}). Theorem 2 implies that ORIENT(ε) makes at most
O(�log�(1 + ε)d∗��) = O(max{log d∗, 1}) calls of subroutine TEST. Hence we get
the claimed time bound.
�

4.1 Approximating Graph Density Measures

Using our algorithm one can approximate efficiently graph density measures. The de-
tails are given in the following theorem.

Theorem 3. Let G be any graph of maximum density d∗. For any ε > 0 there are algo-
rithms with time complexity O(m log n max{log d∗, 1} max{ε−1, 1}) for the following
problems:

Approximation Scheme for Lowest Outdegree Orientation 565

(i) (pseudoarboricity approximation) Finding a partition of G into d̃ pseudoforests so
that d̃ ≤ �(1 + ε)d∗� ≤ (1 + ε)P (G) + 1.

(ii) (arboricity approximation) finding a number ã such that there exists a partition of
G into ã forests so that ã ≤ (1 + ε)arb(G) + 2.

(iii) (densest subgraph approximation) finding a number d̃∗ such that G contains a sub-
graph of density at least d̃∗ so that d̃∗ ≥ (1 − ε)d∗ − 1.

Proof. Part (i) follows immediately from Proposition 1 and Theorem 2.
To construct the algorithm described in (ii) it suffices to find the number d̃ using

part (i) and report ã = d̃ + 1. Since P (G) ≤ arb(G), the claimed bound follows. The
relevant partition into forests exists because ã ≥ P (G) + 1 ≥ arb(G).

Similarly, for part (iii) we also apply algorithm from part (i), but using different
value of ε, namely using ε′ = ε/(1 − ε). Since max{(ε′)−1, 1} = max{ε−1 − 1, 1} ≤
max{ε−1, 1}, the algorithm works in the claimed time. Then we report d̃∗ = (d̃ −
1)/(1 + ε′). Since d̃ ≤ �(1 + ε′)d∗�, we see that d̃∗ ≤ d∗, hence there is a subgraph
of density at least d̃∗. Finally, because d̃ ≥ P (G) ≥ d∗, we get d̃∗ ≥ d∗

1+ε′ − 1
1+ε′ =

(1 − ε)d∗ − (1 − ε) > (1 − ε)d∗ − 1.
�

4.2 Approximation with Additive Error

Now we observe that for sparse graphs our algorithm can be used to efficiently find an
orientation with outdegree �d∗ + δ�, for δ > 0. To this end one finds a d′-orientation,
d∗ < d′ < 3

2d∗ using algorithm ORIENT(3
2). If δ ≥ d′ the algorithm stops and returns

the d′-orientation found. Otherwise it calls algorithm ORIENT(δ
d′). Clearly the second

call returns an orientation with outdegree �(1 + δ
d′)d∗� ≤ �(1 + δ

d∗)d∗� = �d∗ + δ�.
Time complexity is O(m log n max{log d∗, 1} max{ d∗

δ , 1}), which for sparse graphs
can be rewritten as O(n log n max{δ−1, 1}). Similarly as in Theorem 3 we obtain also
algorithms with the same time complexity for approximating pseudoarboricity (additive
error �δ�), arboricity (additive error 1 + �δ�), and maximum density (additive error
1 + δ).

5 Further Research

We showed how to efficiently approximate the values of arboricity and maximum den-
sity. It is very natural to ask for near-linear algorithms for finding the relevant decom-
position into forests and the relevant dense subgraph. In the context of the first problem
it is particularly interesting whether there is a fast algorithm which transforms a decom-
position of a graph into d pseudoforests to a decomposition into d+1 forests (or, if this
is infeasible, then into α · d forests, for some α < 2).

References

1. O. Aichholzer, F. Aurenhammer, and G. Rote. Optimal graph orientation with storage appli-
cations. SFB-Report F003-51, SFB ’Optimierung und Kontrolle’, TU Graz, Austria, 1995.

2. N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

566 Ł. Kowalik

3. S. R. Arikati, A. Maheshwari, and C. D. Zaroliagis. Efficient computation of implicit repre-
sentations of sparse graphs. Discrete Appl. Math., 78(1-3):1–16, 1997.

4. G. S. Brodal and R. Fagerberg. Dynamic representations of sparse graphs. In Proc. 6th
Int. Workshop on Algorithms and Data Structures (WADS’99), volume 1663 of LNCS, pages
342–351, 1999.

5. M. Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Proc. 13th Int. Workshop on Approximation Algorithms for Combinatorial Optimization
(APPROX’00), volume 1913 of LNCS, pages 84–95, 2000.

6. N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput.,
14(1):210–223, 1985.

7. M. Chrobak and D. Eppstein. Planar orientations with low out-degree and compaction of
adjacency matrices. Theoretical Computer Science, 86(2):243–266, 1991.

8. D. Eppstein. Arboricity and bipartite subgraph listing algorithms. Inf. Process. Lett.,
51(4):207–211, 1994.

9. D. Eppstein. All maximal independent sets and dynamic dominance for sparse graphs. In
Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’05), pages 451–
459, 2005.

10. S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM J. Comput.,
4(4):507–518, 1975.

11. A. Frank and A. Gyárfás. How to orient the edges of a graph? In Combinatorics Volume I
(Proc. of the Fifth Hungarian Colloquium on Combinatorics, Keszthely, 1976, A. Hajnal, V.
T. Sós, eds.), pages 353–364, Amsterdam, 1976. North-Holland.

12. H. Gabow. Upper degree-constrained partial orientations. In Proc. 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’06), 2006.

13. H. Gabow and H. Westermann. Forests, frames, and games: algorithms for matroid sums and
applications. In Proc. of the 20th Annual ACM Symposium on Theory of Computing (STOC
’88), pages 407–421, New York, NY, USA, 1988. ACM Press.

14. Z. Galil and A. Naamad. An O(EV log2 V) algorithm for the maximal flow problem. J.
Comput. System Sci., 21:203–217, 1980.

15. G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm
and applications. SIAM J. Comput., 18(1):30–55, 1989.

16. A. V. Goldberg. Finding a maximum density subgraph. Technical Report UCB/CSD-84-171,
EECS Department, University of California, Berkeley, 1984.

17. A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. In Proc. of the 38th
Annual Symposium on Foundations of Computer Science (FOCS ’97), page 2, Washington,
DC, USA, 1997. IEEE Computer Society.

18. S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. In Proc. of the 20th
Annual ACM Symposium on Theory of Computing (STOC ’88), pages 334–343, New York,
NY, USA, 1988. ACM Press.

19. Ł. Kowalik and M. Kurowski. Shortest path queries in planar graphs in constant time. In
Proc. 35th Symposium on Theory of Computing (STOC’03), pages 143–148. ACM, June
2003.

20. D. C. Kozen. The design and analysis of algorithms. Springer-Verlag New York, Inc., New
York, NY, USA, 1992.

21. C. S. J. A. Nash-Williams. Decomposition of finite graphs into forests. Journal of the London
Mathematical Society, 39:12, 1964.

22. J.-C. Picard and M. Queyranne. A network flow solution to some nonlinear 0-1 programming
problems with application to graph theory. Networks, 12:141–159, 1982.

Improved Approximation Algorithms for

Maximum Resource Bin Packing and Lazy Bin
Covering Problems�

Mingen Lin, Yang Yang, and Jinhui Xu

Department of Computer Science and Engineering
University at Buffalo, the State University of New York

Buffalo, NY 14260, USA
{mlin6, yyang6, jinhui}@cse.buffalo.edu

Abstract. In this paper, we study two variants of the bin packing /cov-
ering problems called Maximum Resource Bin Packing (MRBP) and
Lazy Bin Covering (LBC) problems, and present new approximation
algorithms for each of them. For the offline MRBP problem, the previ-
ous best known approximation ratio is 6

5
= 1.2, achieved by the clas-

sical First-Fit-Increasing (FFI) algorithm [1]. In this paper, we give a
new FFI-type algorithm with an approximation ratio of 80

71
≈ 1.12676.

For the offline LBC problem, it has been shown in [2] that the classical
First-Fit-Decreasing (FFD) algorithm achieves an approximation ratio
of 71

60
≈ 1.18333. In this paper, we present a new FFD-type algorithm

with an approximation ratio of 17
15

≈ 1.13333. Both algorithms are sim-
ple, run in near linear time (i.e., O(n log n)), and therefore are practical.

1 Introduction

Bin packing is a fundamental problem in combinatorial optimization and finds
numerous applications in various areas. The problem and many of its variants
have been extensively studied in the past and a number of important results
have been obtained [3,4,5,6,7,8,9,10,11]. In its most basic form, the bin packing
problem seeks to pack a sequence of items of size between zero and one into a
minimum number of unit-sized bins. Recently Boyar et al. studied an interest-
ing variant of the classical bin packing problem, called Maximum Resource Bin
Packing (MRBP) [1], which considers the bin packing problem from a reverse
perspective and maximizes the total number of used unit-sized bins. In its offline
version, the MRBP problem maintains an order of the packed bins such that the
following constraint is satisfied.

Constraint 1. No item in a latter bin fits into any earlier bin.

MRBP has applications in real world. For details, we refer the readers to [1] for
an interesting example. In [1], the authors showed that no algorithm for this
� The research of this work was supported in part by an NSF CARRER Award CCF-

0546509.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 567–577, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

568 M. Lin, Y. Yang, and J. Xu

problem has an approximation ratio worse than 17
10 and the First-Fit-Decreasing

(FFD) algorithm has the worst possible approximation ratio. They proved that
the First-Fit-Increasing (FFI) algorithm has a better ratio of 6

5 . In Section 2,
we introduce a new FFI-type algorithm called Modified FFI (MFFI) for the
offline MRBP, with an approximation ratio of 80

71 .
As the“dual” of the bin packing problem, bin covering problem has also been

extensively studied, and its common objective is to pack items of size between
zero and one into a maximum number of unit-sized bins so that the level (i.e.
the total size of all contained items) of each bin is no less than one [12,13].
Motivated by the MRBP problem, in [2] the authors considered the bin covering
problem from the reverse perspective of minimizing the number of covered bins
and studied the Lazy Bin Covering (LBC) problem. In its offline version, LBC
requires that all bins are covered, except for at most one bin and every covered
bin satisfies the following constraint.

Constraint 2. Removing any item from a covered bin should make it uncovered.

The non-redundancy constraint (i.e., Constraint 2) implies that the level of each
bin is strictly smaller than one plus the size of its smallest item. It has been
shown in [2] that FFD has an approximation ratio of 71

60 , and there exists an
asymptotic polynomial time approximation scheme (APTAS) (i.e., asymptotic
(1 + ε)-approximation) for the (offline) LBC problem. However, similar to the
APTAS in [10] for the classical bin packing problem, the time complexity of their
APTAS for the LBC problem is exponential in 1

ε , which makes the algorithm
impractical. In Section 3, we give a new FFD-type algorithm called Modified
FFD (MFFD) with an approximation ratio of 17

15 .
Both of our algorithms run in O(n log n) time for a sequence of n items. More-

over, our algorithms are simple and can be easily implemented for applications.
Another interesting feature of our algorithms is the judiciary combination of
computer programs and analytical analysis. In the design of both algorithms,
we have relied on computer programs to enumerate all possible packing patterns
and used the generated patterns to guide the design of the algorithms.

In the rest of this paper, we use the following notation for our approximation
algorithms. An (asymptotic) approximation algorithm ALG is a c-approximation
algorithm for c ≥ 1, if there is a constant b such that for all possible input
sequences L, ALG(L) ≤ cOPT (L)+b for minimization problems (or OPT (L) ≤
cALG(L) + b for maximization problems). The infimum of all such c is called
the approximation ratio of the algorithm, RALG.

Due to space limit, many proofs are omitted or shortened. Details are left for
the full paper.

2 MFFI for the Offline MRBP

In this section, we study the offline MRBP and present a Modified First-Fit-
Increasing (MFFI) algorithm with an approximation ratio of 80

71 . We start with
some definitions and notations.

Improved Approximation Algorithms for MRBP and LBC Problems 569

Let l(B) denote the level of a bin B and min(B) denote the smallest item in
B. Let L be a given input sequence, and intervals Ik = (1

k+1 , 1
k], 1 ≤ k ≤ 8, I9 =

(0, 1
9]. We define a weighting function w : L → � as follows:

w(ai) =
{

ai, for ai ∈ I9,
1
k , for ai ∈ Ik, 1 ≤ k ≤ 8.

It is clear from the weighting function that the weight of each item is no less
than its size. Let W be the total weight of all items in a given input sequence.

As mentioned in Section 1, the classical FFI achieves a 6
5 -approximation [1].

To obtain a better approximation, we consider an optimal packing OPT. First,
observe those bins containing at least one item in (0, 1

9]. By Constraint 1, there
is at most one such bin whose level is less than or equal to 8

9 . Since the weight
of any item is no less than its size, we know that there is at most one such bin
whose total weight of its items is less than 71

80 < 8
9 . Second, if a bin contains one

item in (1
2 , 1], the total weight of its items is at least one.

To better characterize a packing, we define a pattern P 1 to be a multiset of
numbers (or elements) in { 1

2 , 1
3 , 1

4 , 1
5 , 1

6 , 1
7 , 1

8} whose sum is at most 1, and w(P)
to be the sum of all elements in P . Denote γ(P) as the number of elements
in pattern P . The type of a pattern is the inverse of its smallest element. A
pattern P of type j is a maximal pattern if adding another copy of 1

j to P will
result in a non-pattern (i.e., P ∪ { 1

j } no longer forms a pattern). The pattern
of a packed bin is the multiset formed by the weights of its items. By Con-
straint 1, it is not difficult to see that for any feasible packing, there is at most
one bin whose pattern is of type j, for j = 2, 3, · · · , 8, but not maximal. Let
ψ = {Pi|Pi is maximal, and w(Pi) < 71

80}. Then, there are in total 15 maximal
patterns (enumerated by a computer program) in ψ, and we list them below in
a non-decreasing order of their weights and types (If two patterns have the same
weight, then order them by their types).

P1 = (1
2 , 1

3) P6 = (1
4 , 1

4 , 1
5 , 1

6) P11 = (1
5 , 1

5 , 1
6 , 1

6 , 1
7)

P2 = (1
3 , 1

4 , 1
4) P7 = (1

3 , 1
5 , 1

6 , 1
6) P12 = (1

3 , 1
5 , 1

5 , 1
7)

P3 = (1
4 , 1

5 , 1
5 , 1

5) P8 = (1
2 , 1

5 , 1
6) P13 = (1

4 , 1
5 , 1

7 , 1
7 , 1

7)
P4 = (1

3 , 1
3 , 1

5) P9 = (1
4 , 1

6 , 1
6 , 1

7 , 1
7) P14 = (1

6 , 1
7 , 1

7 , 1
7 , 1

7 , 1
7)

P5 = (1
5 , 1

6 , 1
6 , 1

6 , 1
6) P10 = (1

3 , 1
4 , 1

7 , 1
7) P15 = (1

5 , 1
5 , 1

5 , 1
7 , 1

7)

From the above patterns, we have the following observation.

Observation 1. For any two patterns Pi and Pj with i < j, w(Pi) ≤ w(Pj)
and the smallest number in Pi is no less than that in Pj.

Let OPTi denote the number of bins in OPT whose pattern is Pi and OPT0
denote the number of all other bins in OPT. By the above arguments, we have
OPT =

∑15
i=0 OPTi and

1 In [1], a similar definition of patterns has been used to analyze FFI algorithm.

570 M. Lin, Y. Yang, and J. Xu

W ≥ 71

80
(OPT0 − 8) +

15�
i=1

w(Pi)OPTi =
71

80
OPT − 71

10
−

15�
i=1

�
71

80
− w(Pi)

�
OPTi.(1)

Now consider a packing generated by our to-be-designed algorithm MFFI.
Let A be the total number of bins in the packing, Ai be the number of bins of
pattern Pi (for 1 ≤ i ≤ 15), and A0 be the number of remaining bins. Then,
A =

∑15
i=0 Ai. Further, we assume that Ai, 0 ≤ i ≤ 15, and W satisfies the

following inequality.

W ≤
15�

i=1

w(Pi)Ai + A0 + C = A −
15�

i=1

(1 − w(Pi))Ai + C, for some constant C. (2)

In order for MFFI to achieve an asymptotic 71
80 -approximation (i.e., 71

80OPT ≤
A+D for some constant D), it is sufficient to ensure a) Inequality (2) is satisfied;
and b)

∑15
i=1(

71
80 − w(Pi))OPTi ≤

∑15
i=1(1 − w(Pi))Ai + E, for some constant E.

To satisfy the two conditions, we have the following main steps for our MFFI
algorithm.

Algorithm 1. MFFI
1: Greedily pack bins of pattern Pi (Pi = P1, P2, · · · , P15) until no bin of pattern Pi

can be packed.
2: Pack the remaining items separately by using FFI algorithm.
3: Merge the two packings.

For each pattern Pi, let α(Pi) = 1 − w(Pi) and β(Pi) = 71
80 − w(Pi). Since

w(P1) ≤ w(P2) ≤ · · · ≤ w(P15), we have α(P1) ≥ α(P2) ≥ · · · ≥ α(P15) and
β(P1) ≥ β(P2) ≥ · · · ≥ β(P15). Let ρ(MFFI) =

∑15
i=1(α(Pi)Ai) be the mffi-

gain and ρ(OPT) =
∑15

i=1(β(Pi)OPTi) be the opt-gain. As mentioned before,
we need to show that ρ(OPT) ≤ ρ(MFFI) + E for some constant E.

Next we discuss the details of each step in the above algorithm.
Step 1 includes fifteen phases. In each phase we have a partial output bin

list X and a remaining (i.e. unpacked) item set R. Initially X = ∅ and R is
the whole input input sequence L. Starting from phase one, in each phase i we
keep packing bins of pattern Pi. More specifically, for each element ej ∈ Pi, we
select the largest item of weight ej from R, and form a pattern-Pi bin once we
found an item for each element in Pi. Note that since the size of each item is
no larger than its weight, the level of each generated pattern-Pi bin is no larger
than w(Pi), which is less than 71

80 . All generated bins are placed in a reverse
order (i.e., a newly produced bin becomes the first bin in X). Phase i ends when
one of the following two things happens: a) For some ej ∈ Pi, there exists no
item of weight ej in R, and therefore can no longer form a pattern-Pi bin. b)
Even though the selected items form a bin B of pattern Pi, the total size of
the items is not large enough so that the smallest item in the first bin in X
(which is also the smallest item in all the packed bins in X) fits into B, thus

Improved Approximation Algorithms for MRBP and LBC Problems 571

violating Constraint 1. In either case, the selected items are put back to R and
the algorithm moves to the next phase (i.e., phase i+1). At the end of Step 1, if
there is only one bin of pattern Pi for some 1 ≤ i ≤ 15 in X , we remove it from
X . We call such a removal as X-refinement. Obviously, the total mffi-gain of all
removed bins by the X-refinement procedure is at most

∑15
i=1 α(Pi).

To estimate the quality of the packing obtained by MFFI, we consider the
following scenario. Whenever we successfully pack the selected items from the
remaining set R into a bin, we remove the bins in OPT that contain at least
one selected item (if they have not been removed yet), and call the remaining
packing of OPT as the updated OPT. In addition, at the end of phase i, if there
is one bin of pattern Pi in the updated OPT, remove it. We call it additional
removal. We have the following lemmas.

Lemma 1. In Phase i, if there are at least two bins of pattern Pi in the updated
OPT, MFFI always successfully packs one bin of pattern Pi.

The overall opt-gain of the bins in OPT removed by the additional removals is
at most

∑15
i=1 β(Pi). Lemma 2 bounds the opt-gain of the removed bins in the

updated OPT for each successfully packed bin of pattern Pi in phase i.

Lemma 2. The total opt-gain of the removed bins in the updated OPT is at
most γ(Pi)β(Pi) for each successfully packed bin of pattern Pi in phase i for
1 ≤ i ≤ 15.

Lemma 3. ρ(MFFI) +
∑15

i=1(α(Pi) + β(Pi)) ≥ ρ(OPT).

Proof. By Lemma 1 and the additional removals, in Step 1 of MFFI when phase
i ends, there is no bin of pattern Pi (1 ≤ i ≤ 15) in the updated OPT. By
Lemma 2, the additional removals, and the X-refinement, we have ρ(OPT) ≤∑15

i=1(γ(Pi)β(Pi)(Ai + 1)) +
∑15

i=1 β(Pi). From definition, we have ρ(MFFI) =
∑15

i=1(α(Pi)Ai). To show ρ(MFFI) +
∑15

i=1(α(Pi) + β(Pi)) ≥ ρ(OPT), it is
sufficient to show α(Pi) ≥ β(Pi)γ(Pi) for each 1 ≤ i ≤ 15. This is clearly true
by examining each row of Table 1. 	

Lemma 4. Any bin B in X of type k has a remaining capacity less than 1
k .

In Step 2 of MFFI, we pack the remaining items in R by the FFI algorithm
without using any bins in X . FFI handles the items in a non-decreasing order of
their sizes, and places each of them in the first bin in which it fits. For MRBP,
FFI behaves in the exactly the same way as Next-Fit-Increasing (NFI). Once a
new bin is opened, no previous opened bin will be used any more. Let the output
bin list be Y . For each k = 9, 8, · · · , 1, remove the largest indexed bin containing
items in Ik from Y . Let the set of removed bins be T and the resulting packing be
Y ′. Obviously, Y ′ ≥ Y − 9. We know that each removed bin has a total weight
less than two since each removed bin has a total size of at most one and the
maximum ratio of the weight of any item over its size is less than two. It is clear
that all bins in Y ′ only contain items from one interval Ik. This implies that for
any bin in Y ′, the total weight of its items is at most one. This is clear if the

572 M. Lin, Y. Yang, and J. Xu

items are all in I9 whose weights are equal to their sizes. For other items, there
are exactly k items in Ik with the sum of weights equal to one. Thus we have

W ≤ Y + 9 +
15�

i=1

w(Pi)Ai, (3)

where W is the total sum weight of all items.

Lemma 5. Any bin in Y ′ whose pattern is of type k for 2 ≤ k ≤ 8 has a
remaining capacity less than 1

k+1 .

In Step 3 of MFFI, we first merge packing X with packing Y ′ by inserting the
bins in X into Y ′. Let the resulting packing be Z. Then we pack the items in
T into Z by using FFI. The merging procedure of X and Y ′ consists of several
phases. At each phase, we only deal with all the patterns of the same type k
(k = 7, 6, 5, 4, 3). Let k′ = min{h|h ≥ k and there exists a bin whose pattern is
of type h in Y ′ }. If there exists a such k′, we insert all the bins in X whose
patterns are of type k into Y ′, right behind the last bin of type k′ in Y ′ while
preserving their orders in X . Otherwise we insert all these bins into the top of Y ′

while preserving their orders in X . By Lemma 5, every bin appeared before the
inserted bins in Y ′ has a remaining capacity less than 1

k+1 , and the smallest item
of the inserted bins is larger than 1

k+1 . Thus there is no violation of Constraint
1 between the inserted bins and the bins before them in Y ′. Since the smallest
item of the bins after the inserted bins in Y ′ is larger than 1

k and by Lemma

Table 1. The values of w, α, β, γ, βγ for P1, P2, · · · , P15

w α β γ βγ

P1
5
6

1
6

≈ 0.16667 13
240

2 13
120

≈ 0.10833

P2
5
6

1
6

≈ 0.16667 13
240

3 13
80

= 0.1625

P3
17
20

3
20

= 0.15 3
80

4 3
20

= 0.15

P4
13
15

2
15

≈ 0.13333 1
48

3 1
16

= 0.0625

P5
13
15

2
15

≈ 0.13333 1
48

5 5
48

≈ 0.10417

P6
13
15

2
15

≈ 0.13333 1
48

4 1
12

≈ 0.08333

P7
13
15

2
15

≈ 0.13333 1
48

4 1
12

≈ 0.08333

P8
13
15

2
15

≈ 0.13333 1
48

3 1
16

= 0.0625

P9
73
84

11
84

≈ 0.13095 31
1680

5 31
336

≈ 0.09226

P10
73
84

11
84

≈ 0.13095 31
1680

4 31
420

≈ 0.07381

P11
92
105

13
105

≈ 0.12381 19
1680

5 19
336

≈ 0.05655

P12
92
105

13
105

≈ 0.12381 19
1680

4 19
420

≈ 0.04524

P13
123
140

17
140

≈ 0.12143 1
112

5 5
112

≈ 0.04464

P14
37
42

5
42

≈ 0.11905 11
1680

6 11
280

≈ 0.03929

P15
31
35

4
35

≈ 0.11429 1
560

5 1
112

≈ 0.00893

Improved Approximation Algorithms for MRBP and LBC Problems 573

4 each of the inserted bins has a remaining capacity less than 1
k , there is no

violation of Constraint 1 between the bins in Y ′ after the inserted bins and
the inserted bins. Therefore packing Z is valid packing. After placing the items
in T into Z by using FFI, we have the final packing MFFI. It is clear that
MFFI ≥ X + Y ′ = X + Y − 9.

Theorem 1. For the Offline Maximum Resource Bin Packing Problem, the ap-
proximation ratio of MFFI is at most 80

71 .

Proof. First we have MFFI ≥ X + Y − 9. By (1), (3) and Lemma 3, we are
able to show MFFI ≥ 71

80OPT − 251
10 −

∑15
i=1(α(Pi) + β(Pi)). 	

Theorem 2. For the Offline Maximum Resource Bin Packing Problem, the ap-
proximation ratio of MFFI is 80

71 .

3 MFFD for the Offline LBC

In this section, we study the offline lazy bin covering problem and present a
Modified First-Fit-Decreasing (MFFD) algorithm with an approximation ratio
of 17

15 .
Let l(B) denote the level of a bin B. Let L be a given input sequence of items

and let intervals Ik = [1
k , 1

k−1), 1 ≤ k ≤ 8, I9 = (0, 1
8). Here we assume 1

0 = +∞.
We define a weighting function w : L → � as follows:

w(ai) =
{

ai, for ai ∈ I9,
1
k , for ai ∈ Ik, 1 ≤ k ≤ 8

It is clear that the weight of each item is at most its size. Let w(B)=
∑

ai∈B w(ai)
denote the weight of B. By the problem description, we have the following fact:

Fact 1. For any bin B, w(B) < 1 + min{w(ai) | ai ∈ B}.

Let W be the total weight of all items in a given input sequence. Consider an
optimal packing OPT. First of all, consider the bins containing at least one item
in I8 or I9 . By Fact 1, we have that the weight of each such bin is less than
1 + 1

8 < 17
15 . Secondly, consider the bins containing at least one item in I1, we

know that by the non-redundancy constraint, each of these bins contains exactly
one item of size one. So the weight of each such bin is one, which is less than 17

15 .
We define a pattern P to be a multiset of numbers (or elements) in { 1

2 , 1
3 , 1

4 , 1
5 ,

1
6 , 1

7} whose sum is less than one plus the smallest number in P , and w(P) to be
the sum of all elements in P . We denote γ(P) to be the number of elements in
P . The pattern of a bin is the multiset formed by the weights of its items. Below
are nine patterns (enumerated by a computer program) with weight larger than
17
15 , listed in a non-increasing order of their weights.

574 M. Lin, Y. Yang, and J. Xu

P1 = (1
3 , 1

4 , 1
5 , 1

5 , 1
5) P4 = (1

4 , 1
5 , 1

5 , 1
6 , 1

6 , 1
6) P7 = (1

2 , 1
4 , 1

5 , 1
5)

P2 = (1
3 , 1

3 , 1
4 , 1

4) P5 = (1
4 , 1

4 , 1
4 , 1

5 , 1
5) P8 = (1

5 , 1
5 , 1

6 , 1
7 , 1

7 , 1
7 , 1

7)
P3 = (1

2 , 1
3 , 1

3) P6 = (1
3 , 1

4 , 1
5 , 1

5 , 1
6) P9 = (1

4 , 1
5 , 1

5 , 1
5 , 1

7 , 1
7)

Let OPTi denote the number of bins in OPT whose pattern is Pi, 1 ≤ i ≤
9, and OPT0 denote the number of all other bins in OPT. We have OPT =∑9

i=0 OPTi, and by the above arguments we know

W ≤ 17

15
OPT0 +

9�
i=1

w(Pi)OPTi =
17

15
OPT +

15�
i=1

�
w(Pi) − 17

15

�
OPTi. (4)

To achieve a better approximation than the one in [2], let A be the number
of bins in the packing produced by our to-be-designed MFFD algorithm. Let Ai

be the number of bins whose patterns are Pi in A, 1 ≤ i ≤ 9, and A0 be the
number of all other bins in A. Then we have A =

∑9
i=0 Ai. Further, we assume

Ai, 0 ≤ i ≤ 9, and W satisfies the following inequality

W ≥
9�

i=1

w(Pi)Ai + A0 + C = A +
9�

i=1

(w(Pi) − 1)Ai + C, for some constant C. (5)

From (4) and (5), we know that in order to make MFFD have an approxima-
tion ratio of 17

15 (or more precisely, 17
15OPT ≥ A + D, for some constant D), it is

sufficient to ensure: a) Inequality (5) is satisfied; and b)
∑9

i=1(w(Pi)− 17
15)OPTi ≤

∑9
i=1(w(Pi) − 1)Ai + E for some constant E. To satisfy these two conditions,

we have our MFFD algorithm include the following main steps.

Algorithm 2. MFFD
1: Greedily pack bins of pattern Pi (Pi = P2, · · · , P9) until no bin of pattern Pi can

be packed.

2: Pack the remaining items separately by using FFD algorithm.

3: Merge the two packings.

It is interesting to point out that even though the MFFD algorithm shares
some similar ideas with the MFFI algorithm, it has also one major difference. To
achieve better approximation ratio, in Step 1 of the MFFD algorithm, it starts
with P2 for the greedy packing, instead of P1. The reason will be clear later on.

For each pattern Pi, let α(Pi) = w(Pi) − 1 and β(Pi) = w(Pi) − 17
15 . Since

w(P1) ≥ w(P2) ≥ · · · ≥ w(P9), we have α(P1) ≥ α(P2) ≥ · · · ≥ α(P9) and
β(P1) ≥ β(P2) ≥ · · · ≥ β(P9). Let ρ(MFFD) =

∑9
i=1(α(Pi)Ai) be the mffd-

gain and ρ(OPT) =
∑9

i=1(β(Pi)OPTi) be the opt-gain. As mentioned before,
one of the objectives is to show is that ρ(OPT) ≤ ρ(MFFD) + E, for some
constant E.

Next we discuss the details of each step in MFFD.

Improved Approximation Algorithms for MRBP and LBC Problems 575

Step 1 consists of eight phases. In each phase we have a partial output bin
list X and a remaining (i.e. unpacked) item set R. Initially X = ∅ and R is the
whole set of the input items. Starting with phase one, in each phase i we only
consider a particular pattern Pi+1. More specifically, for each element ej ∈ Pi+1,
we select the smallest item of weight ej from R, and try to form a bin of pattern
Pi+1. Since the size of each item is no smaller than its weight, we know that the
level of each packed bin in phase i is no smaller than w(Pi+1), which is greater
than 17

15 . Therefore each bin generated in Step 1 is a covered bin. Phase i ends
when one of the following two events occurs: a) For some ej ∈ Pi+1, there exists
no item of weight ej in R and therefore the selected items can not form a bin
of pattern Pi+1; b) The selected items indeed form a bin B of pattern Pi+1,
but the total size of the items is greater than the sum of one and the smallest
selected item, thus violating the non-redundancy constraint. In either case, the
attempting packing is rolled back (i.e., the selected items are put back to R),
and the algorithm enters phase i + 1.

To measure the quality of the packing obtained by MFFD, we consider the
following scenario. Whenever we successfully pack the selected items from R into
a bin B, we remove the bins in OPT that contain at least one selected item in
B if they have not been removed yet. The remaining packing of OPT is called
updated OPT. In addition, at the end of phase 1 (note that phase one deals with
pattern P2), if there is one bin of pattern P1 in the updated OPT, remove it.
We call this as the additional removal. We have the following lemmas.

Lemma 6. If there are at least two bins of pattern P1 in the updated OPT ,
MFFD always packs one bin of pattern P2 in phase one. Moreover, A2 ≥ �OPT1

2 .

Lemma 7. If there is at least one bin of pattern Pi in the updated OPT, MFFD
always successfully packs one bin of pattern Pi in phase i − 1 for 2 ≤ i ≤ 9.

Lemma 8. The total opt-gain of the removed bins in the updated OPT is at
most γ(Pi)β(Pi) for each successfully packed bin of pattern Pi in phase i − 1 for
3 ≤ i ≤ 9.

Lemma 9. At the end of phase one, the overall opt-gain of the removed bins
from OPT is at most 1

6A2 + 1
20 .

Lemma 10. ρ(MFFD) + 1
20 ≥ ρ(OPT).

Proof. When Step 1 completes, by Lemma 6, Lemma 7, and the additional re-
moval there is no bin of pattern Pi in the updated OPT. By Lemma 8 and
Lemma 9, we have ρ(OPT) ≤

∑9
i=3(γ(Pi)β(Pi)Ai) + 1

6A2 + 1
20 . From the defi-

nition, ρ(MFFD) =
∑9

i=1(α(Pi)Ai). To show ρ(MFFD) + 1
20 ≥ ρ(OPT), it is

sufficient to have α(Pi) ≥ β(Pi)γ(Pi) for each 3 ≤ i ≤ 9 and α(P2) ≥ 1
6 . This is

ensured by the corresponding values in Table 2. 	

576 M. Lin, Y. Yang, and J. Xu

Table 2. The values of w, α, β, γ, βγ for P1, P2, · · · , P9

w α β γ βγ

P1
71
60

11
60

≈ 0.18333 1
20

5 1
4

= 0.25

P2
7
6

1
6

≈ 0.16667 1
30

4 2
15

≈ 0.13333

P3
7
6

1
6

≈ 0.16667 1
30

3 1
10

= 0.1

P4
23
20

3
20

= 0.15 1
60

6 1
10

= 0.1

P5
23
20

3
20

= 0.15 1
60

5 1
12

≈ 0.08333

P6
23
20

3
20

= 0.15 1
60

5 1
12

≈ 0.08333

P7
23
20

3
20

= 0.15 1
60

4 1
15

≈ 0.066667

P8
239
210

29
210

≈ 0.13810 1
210

7 1
30

= 0.03333

P9
159
140

19
140

≈ 0.13571 1
420

6 1
70

≈ 0.01429

Note that in Table 2, we have α(P1) < β(P1)γ(P1). Therefore MFFD will not
achieve the approximation ratio of 17

15 if it starts with pattern P1 (instead of P2)
for the greedy packing in Step 1.

In Step 2, we pack the remaining items in R by FFD without using any bins
in X . FFD handles the items in a non-increasing order of their sizes, and places
each of them in the first bin in which it fits. Note that for LBC, FFD behaves in
the exactly same way as Next-Fit-Decreasing (NFD). Once a new bin is opened,
no previous opened bin will be used any more. We denote the output bin list as
Y . Consider a bin B in Y which is not the last bin and contains only items from
a single interval Ij for some j. If 1 ≤ j ≤ 8, B will contain exactly j items and
w(B) = 1. If j = 9, w(B) = l(B) ≥ 1. Thus w(B) < 1 only if B contains items
from more than one interval or B is the last bin in Y . Let C be the set of bins
in Y with weight less than one. Obviously, C ≤ 8 and we have

Y − 8 +
9�

i=2

Ai < W. (6)

In Step 3, we merge all the bins in X with all the bins in Y (i.e., append the
list of bins in Y at the end of the list of bins in X ; denote MFFD = X |Y).

Theorem 3. For the offline Lazy Bin Covering Problem, the approximation
ratio of MFFD is at most 17

15 .

Proof. We have MFFD = X + Y and by (4), (6) and Lemma 10, we are able
to show MFFD < 17

15OPT + 161
20 . 	

Theorem 4. For the offline Lazy Bin Covering Problem, the approximation
ratio of MFFD is 17

15 .

Improved Approximation Algorithms for MRBP and LBC Problems 577

References

1. Boyar, J., Epstein, L., Favrholdt, L.M., Kohrt, J.S., Larsen, K.S., Pedersen, M.M.,
Wøhlk, S.: The maximum resource bin packing problem. In: FCT. (2005) 397–408

2. Lin, M., Yang, Y., Xu, J.: On lazy bin covering and packing problems. In: CO-
COON. (2006)

3. Garey, M.R., Graham, R.L., Johnson, D.S.: Resource constrained scheduling as
generalized bin packing. J. Comb. Theory, Ser. A 21 (1976) 257–298

4. Csirik, J.: The parametric behavior of the first-fit decreasing bin packing algorithm.
J. Algorithms 15 (1993) 1–28

5. Csirik, J., Johnson, D.S.: Bounded space on-line bin packing: Best is better than
first. Algorithmica 31 (2001) 115–138

6. Johnson, D.S., Garey, M.R.: A 71/60 theorem for bin packing. J. Complexity 1
(1985) 65–106

7. Galambos, G., Woeginger, G.: Repacking helps in bounded space on-line bin-
packing. Computing 49 (1993) 329–338

8. Woeginger, G.J.: Improved space for bounded-space, on-line bin-packing. SIAM
J. Discrete Math. 6 (1993) 575–581

9. Shachnai, H., Tamir, T.: On two class-constrained versions of the multiple knapsack
problem. Algorithmica 29 (2001) 442–467

10. Friesen, D.K., Langston, M.A.: Analysis of a compound bin packing algorithm.
SIAM J. Discrete Math. 4 (1991) 61–79

11. Bar-Noy, A., Ladner, R.E., Tamir, T.: Windows scheduling as a restricted version
of bin packing. In: SODA ’04. (2004) 224–233

12. Csirik, J., Kenyon, C., Johnson, D.S.: Better approximation algorithms for bin
covering. In: SODA. (2001) 557–566

13. Assmann, S.F., Johnson, D.S., Kleitman, D.J., Leung, J.Y.T.: On a dual version
of the one-dimensional bin packing problem. J. Algorithms 5 (1984) 502–525

Partitioning the Nodes of a Graph

to Minimize the Sum of Subgraph Radii�

Guido Proietti1,2 and Peter Widmayer3

1 Dipartimento di Informatica, Università di L’Aquila, 67010 L’Aquila, Italy
2 Istituto di Analisi dei Sistemi ed Informatica, CNR, 00185 Roma, Italy

3 Institut für Theoretische Informatik, ETH, 8092 Zürich, Switzerland
proietti@di.univaq.it, widmayer@inf.ethz.ch

Abstract. Let G = (V, E) denote a weighted graph of n nodes and m
edges, and let G[V ′] denote the subgraph of G induced by a subset of
nodes V ′ ⊆ V . The radius of G[V ′] is the maximum length of a shortest
path in G[V ′] emanating from its center (i.e., a node of G[V ′] of minimum
eccentricity). In this paper, we focus on the problem of partitioning the
nodes of G into exactly p non-empty subsets, so as to minimize the sum
of the induced subgraph radii. We show that this problem – which is
of significance in facility location applications – is NP-hard when p is
part of the input, but for a fixed constant p > 2 it can be solved in
O(n2p/p!) time. Moreover, for the notable case p = 2, we present an
efficient O(mn2 + n3 log n) time algorithm.

Keywords: Graph partition, Facility location problems, Clustering
problems, Graph radius, NP-hardness.

1 Introduction

Locating facilities on a network requires to identify a set of distinguished points
in the network, so as to ideally minimize the global effort needed from a set
of customers to benefit from the service provided by the facilities. The basic
graph-theoretic definition of a facility location problem, also known as a graph
location problem, is the following: Given an undirected graph G = (V, E) of n
nodes and m edges, with positive (rational) weights on the edges inducing a
symmetric distance function δ(·, ·) which associates with each pair of nodes in
G the length (i.e., total weight) of a shortest path between them, and given a
positive integer p ≤ n, find a subset of nodes X ⊆ V of size p such that some
distance criteria φ(X, G) is minimized. Once that a subset of the nodes of the
graph are identified as being facilities, each demand node remains associated
with one facility. Up to now, the literature was mainly concentrated on two
general types of distance criteria for graph location problems, always under the
� Work partially supported by the Research Project GRID.IT, funded by the Ital-

ian Ministry of Education, University and Research, by the European Union under
COST 295 (DYNAMO), and by the Swiss SBF under grant no. C05.0047. Part of
this work has been developed while the first author was visiting ETH Zürich.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 578–587, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Partitioning the Nodes of a Graph to Minimize the Sum of Subgraph Radii 579

condition that each demand node is associated with its nearest facility: (1) a min-
sum criterion, in which the facilities have to be located so as to minimize the
total sum of all the distances to the associated nodes; (2) a min-max criterion,
in which the facilities have to be located so as to minimize the maximum of their
radii, where the radius of a facility is the distance from a farthest node associated
to it. Correspondingly, under the problem definition given above, a set of nodes
of cardinality p which minimizes the former (resp., the latter) criterion is known
as a p-median (resp., a p-center) of G.

1.1 Related Work

The p-median and the p-center problem are central to the field of location theory
(for a survey, see [10]). We briefly recall some results known for the p-center
problem. Not surprisingly, the problem is NP-hard [9], and the fastest exact
algorithm (exponential in p) is based on an exhaustive search which considers
all the combinations of p-tuples of nodes in G, and, for each of these tuples,
associates each remaining node with the closest node in the tuple. Since the
association step can be performed in linear time, this amounts to an O(np+1/(p−
1)!) time algorithm. In particular, for the case p = 2, this implies the existence of
an O(n3) time algorithm. For the metric case, a 2-approximation algorithm [7,8]
is known, and this ratio is tight [12], while for the Euclidean case, where centers
can lie everywhere and so the exhaustive search cannot take place, there exists
a polynomial time approximation scheme (PTAS) which is exponential in p [2].

In spite of its relevance, the minimization of the maximum radius induces a
negative side effect, the dissection effect [5]. Recall that in clustering, we partition
a set of objects into a collection of disjoint subsets (i.e., the clusters) so that
a certain measure defined over these clusters is minimized. Thus, a clustering
that minimizes the maximum radius tends to remove peripheral objects from
large clusters (so as to have fairly equal cluster radii), despite of their natural
similarity with the elements in the original cluster. This dissection effect can
be avoided by partitioning a set of objects according to the minimum sum of
the cluster radii/diameters. For the diameter case, the problem remains hard,
even hard to approximate [6]. Conversely, when we minimize the sum of radii,
which is of interest here, the complexity of the problem is still open. On the
positive side, for metric spaces there exists an algorithm that computes an O(1)-
approximate solution with a constant factor blow-up in the number of clusters
[4]. On the other hand, in a geometric setting, the problem can be formulated, in
its widest generality, as that of covering a given set of n points in a d-dimensional
Euclidean space by means of a set of at most p circles of radii ri, whose center
positions can be constrained in several different ways. The objective function
is to minimize the sum of rα

i over all these circles, where α is a constant that
can be 1 or larger, depending on the boundary conditions. For a summary of
results in this general framework, see [1]. However, for the case α = 1, which is
close in spirit to our setting, the complexity of the problem is still unknown. In
Euclidean spaces of constant dimension, two PTASs exist, for both the case in
which the the center positions are restricted to a given set of feasible locations

580 G. Proietti and P. Widmayer

but the number of circles is left unspecified [11], and for the (more general) case
in which the number of circles is bounded and centering a circle at any given
point has a variable non-negative cost [3].

1.2 Our Results

The dissection effect is easy to be reported also in a facility location framework,
in which distances between elements are actually lengths of shortest paths. The
traditional idea of minimizing the maximum distance to a facility is customer-
centric, meaning that the objective is to minimize the maximum effort that
a customer has to make to benefit from a facility. Many practical situations,
however, are facility-centric, in the sense that the set-up cost of installing a
facility depends upon the maximum effort that a facility has to make to serve
a customer. Consider, for instance, a delivery service that needs to maintain in
each location a vehicle whose properties (such as speed or fuel efficiency) and (as
a consequence) whose cost depend on the distance the vehicle needs to travel:
A small and cheap car may serve a small radius well, but for a larger delivery
radius a more powerful and expensive car may be useful. The corresponding
optimization problem (which locations, and which car for each location, so that
the total cost for all cars is smallest) can be modelled in abstract terms by
what we call the p-radius problem, which asks for partitioning the nodes of G
into exactly p non-empty subsets, so as to minimize the sum of the radii of the
induced subgraphs. In this paper, we therefore aim to solve this problem, and
we provide: (1) an NP-hardness proof for the general case; (2) for the case p = 2,
an algorithm requiring O(mn2 +n3 log n) time and O(n3) space; (3) for the case
p > 2, an algorithm requiring O(n2p/p!) time and O(np+1/(p + 1)!) space.

The paper is organized as follows: in Section 2, we show that the p-radius
problem is NP-hard, while in Section 3 we show, for the case p = 2, the general
idea behind our algorithm; finally, in Section 4 we outline the extension of our
algorithm to the case p > 2.

2 The p-Radius Problem is NP-Hard

Let G = (V, E) denote a graph of n nodes and m edges with positive (rational)
weights. For any two given nodes a, b in G, we denote by δG(a, b) the distance
(i.e., the length of a shortest path) in G between a and b. Let G[V ′] be the
subgraph of G induced by a subset of nodes V ′ ⊆ V . Recall that the center of
G[V ′] is a node for which the maximum distance in G[V ′] to any node in V ′

is minimum (notice that such a node is not necessarily unique). This distance
is called the radius of G[V ′], and is denoted by r(G[V ′]). Given a graph G and
an integer value p, the p-radius problem asks for a partition of the nodes of G
into exactly p disjoint non-empty subsets, say V1, . . . , Vp, in such a way that∑p

k=1 r(G[Vk]) is minimum. We start by proving the following:

Theorem 1. The p-radius problem is NP-hard.

Partitioning the Nodes of a Graph to Minimize the Sum of Subgraph Radii 581

Proof. We show the NP-hardness by reduction from the NP-complete Satisfi-
ability problem. In Satisfiability, we are given a set X = {x0, . . . , xn−1} of
n variables, a set C = {c1, . . . , cm} of m clauses over X , and we want to find a
truth assignment τ : X → {0, 1} satisfying C. For a given instance I of Satisfi-
ability, we build an instance I ′ for the p-radius problem as follows. Each clause
cj defines a vertex vcj , and each variable xi defines n + 2 vertices: two vertices
vxi and v̄xi (for the non-negated and the negated variable), and n vertices yk

i ,
for k = 1, . . . , n. We have an edge (vxi , vcj) iff xi appears in cj in non-negated
form, and an edge (v̄xi , vcj) iff xi appears in negated form in cj . Moreover, each
of vxi and v̄xi is connected with an edge to each of the yk

i , k = 1, . . . , n, and vxi

and v̄xi are connected with an edge as well. The weights of all the edges incident
to vxi or v̄xi are 2i. Notice that this is still a polynomially long representation
in the logarithmic cost measure, with at most n bits for an edge weight. For the
p-radius problem we require p = n subsets. We show that the Satisfiability
instance I has a positive answer iff there exists a solution for I ′ having sum of
radii at most b = 2n − 1. One direction is immediate. Given a satisfying assign-
ment τ , we define the following n centers. For i = 0, . . . , n− 1, if τ(xi) = 1, then
we pick vxi as a center, otherwise (i.e., τ(xi) = 0) we pick v̄xi . The subset Vi

contains vxi , v̄xi , the yk
i for k = 1, . . . , n, and all vcj reachable from the center

with a single edge (if vcj is reachable from different centers with one edge, we
put vcj in one of the corresponding subsets arbitrarily). By construction, each
Vi has radius 2i, the totality of all chosen centers covers all vertices, and the
value of the solution is exactly b. Concerning the other direction, suppose that
there is a solution for I ′ having value at most b. We show that such a solution
can be transformed in polynomial time into a satisfying assignment for I. For
each i, we define the set Ui = {vxi , v̄xi , y

1
i , . . . , yn

i }. Notice that for each i, since
|Ui| > n, there must exist two vertices in Ui belonging to the same subset in the
solution of I ′. Let us call such a subset Vi. We prove the following two facts.

Fact 1. Given a solution of I ′, there exists another solution of I ′ having the
same cost and with no subset V ′ consisting of a single vertex of Ui, for each i.

Proof. If there is such a singleton subset, it is always possible to move the vertex
of V ′ in Vi without increasing the radius of the subgraph induced by Vi. ��

Fact 2. Any subset V ′ with |V ′| > 1 containing a vertex x ∈ Ui induces a
subgraph having radius at least 2i.

Proof. The distance between x and any other vertex in V ′ is at least 2i. ��

Now, we prove the following.

Lemma 1. For every i, it holds: (i) Ui ⊆ Vi, and (ii) Vi ∩ Vj = ∅, ∀j > i.

Proof. The proof is by induction on i, starting at i = n − 1 and ending at i = 0.
For the base case i = n − 1, (ii) is trivial, and (i) follows from Fact 1 and
2, because otherwise there would be two subsets with associated radius at least
2n−1, together exceeding b. Now assume that the claim is true for j = i, . . . , n−1,

582 G. Proietti and P. Widmayer

and let us prove it for i − 1. For the sake of contradiction, suppose that (i) does
not hold. Then, there are two subsets V ′ and V ′′ both containing vertices in Ui−1.
If both V ′ and V ′′ do not contain vertices in Uj , j ≥ i, then the overall sum of the
induced subgraph radii is at least 2i−1 +2i−1 +

∑n−1
j=i 2j > b. Otherwise, w.l.o.g.

assume that V ′ = Vk for some k ≥ i, while V ′′ is different from every Vj , j ≥ i.
Because there is no edge between any two vertices for different variables, the
radius associated with Vk must be at least 2k +2i−1, and the sum of the induced
subgraph radii is strictly greater than b. Similarly, if both V ′ and V ′′ contain
some vertices in Vj for some j ≥ i, the value of the solution exceeds b. In order
to prove (ii), notice that if Vi−1 ∩Vj �= ∅ for some j ≥ i, then, since we have just
proven that Ui−1 ⊆ Vi−1 and Uj ⊆ Vj , then necessarily it must be Vi−1 = Vj .
But then, the radius associated with Vj is at least 2j + 2 · 2i−1, which yields to
a solution having value greater than b. ��

From the above lemma, it is easy to see that the center associated with each Vi

must be either vxi or v̄xi . Now, for each i, we set

τ(xi) =

{
1 if vxi is the center associated with Vi;
0 otherwise.

Since, if Vi contains a vertex vcj , then vcj must be adjacent to the center asso-
ciated with Vi (otherwise by applying induction as we did above, we can prove
that the solution will exceed the bound b), it follows that τ is a truth assignment
satisfying C. ��

3 An Efficient Solution of the 2-Radius Problem

In this section, we will concentrate on the 2-radius problem. At a very high
level, our approach works as follows. Basically, we consider all the possible pairs
of nodes in G. In fact, each of these pairs is a feasible pair of subgraph centers.
Thus, when we fix one of these pairs, we compute an optimal bipartition of V ,
namely a distribution of the nodes into two subsets in such a way that the sum
of the radii with respect to the fixed centers is minimum. This is exactly the
crucial step of our algorithm. Finally, out of all these feasible pairs of centers,
we select a pair minimizing the sum of the radii. We start by observing that
for the 2-radius problem, an approach based on the association of each node
with its closest center (which works for the p-median and the p-center problem)
does not work, as suggested from the example in Figure 1: If we associate node
v with the closest root, namely b, then the sum of radii will be equal to 3,
while for the bipartition on the right side of the picture, this sum is 2 + ε. This
suggests that it might help to keep track of the distances from a root which
avoid the use of the other root. More generally, we will have to determine paths
that avoid the nodes on the other side of the bipartition, while at the same time
finding that bipartition. It is this mutual dependence of the path lengths on the
bipartition, and of the bipartition on the path lengths, that distinguishes the p-
radius problem from other location or clustering problems (such as the p-center

Partitioning the Nodes of a Graph to Minimize the Sum of Subgraph Radii 583

a

vu

b

2 2 + ε1
2 + ε

u a b

2 1

v

Fig. 1. On the right side, an optimal bipartition for nodes a, b

or the p-median) and that makes it difficult to solve. In the following, for a node
v ∈ V , we denote by G − v the graph G deprived of the node v and all the
incident edges. For a node a of graph G, let SG(a) denote a shortest-paths tree
(SPT) of G rooted at a. We start by computing the following set of SPTs

S = {SG−a(b) : a, b ∈ V, a �= b}.

This takes O(mn2 + n3 log n) time. Afterwards, we sort in O(n3 log n) time the
n(n − 1)/2 obtained distance arrays (one for each SPT in S). Each array is
sorted in increasing lexicographic order of the distance value and the identifier
of the associated node. In total, each node a ∈ V is associated with n − 1 arrays
for shortest path trees rooted in a and avoiding one specific other node. Let
Qa
−b[1..n−1] denote the sorted distance array associated with SG−b(a). Let each

of its entries contain the following three fields: (i) Qa
−b[k].dist, the distance from

a of the kth closest node in G − b; (ii) Qa
−b[k].node, the identifier of this node;

and (iii) Qa
−b[k].pred, the identifier of the predecessor in SG−b(a) of this node.

Each array can be found in O(n) time, once we have computed S.
We now give the following:

Definition 1. Let a, b, i, j be distinct nodes of G, and let

Va(i) = {v ∈ V : δG−b(a, v) ≤ δG−b(a, i)};
Vb(j) = {v ∈ V : δG−a(b, v) ≤ δG−a(b, j)}. (1)

Then, 〈i, j〉 is a 2-periphery for a, b if and only if Va(i) ∪ Vb(j) = V .

Recall that the radius of a rooted tree T , say r(T), is the length of a maximum-
length root-leaf path in T . We now give the following:

Definition 2. Let a, b ∈ V . Then, a legal tree pair (LTP) for a, b is a pair
of trees {Ta, Tb} together spanning G and rooted at a, b, respectively, and each
having a radius associated with a root-leaf path which is a shortest path in G− b
and G − a, respectively.

We can now state the following proposition, whose proof is only sketched due to
lack of space:

Proposition 1. Let 〈i, j〉 be a 2-periphery for a, b ∈ V . Then, there exists a
LTP for a, b associated with 〈i, j〉, say {Ta, Tb}, whose total radius is at most
δG−b(a, i) + δG−a(b, j), and which can be computed in O(n) time, once Qa

−b and
Qb
−a are given.

584 G. Proietti and P. Widmayer

Proof sketch. We create the two trees Ta and Tb by visiting concurrently SG−b(a)
and SG−a(b) in a closest-first-search (CFS) order: The kth node to be examined
is exactly the kth closest node to any of the roots a, b. This is done until the
neighborhood of either a or b w.r.t the maximum allowed distances induced by
〈i, j〉 is exhausted. Afterwards, we focus on the root whose neighborhood has
not yet been exhausted, say a, and we go ahead in adding the unreached node
to Ta by maintaining the invariant that a farthest node from a in Ta is on a
shortest path in G − b. This might require the detachment of some subtrees
from Tb, more precisely all the subtrees of Tb which are rooted at the nodes of
Tb belonging to the path used to reach a new node (for an illustration of this
step, see Figure 2). Concerning the time complexity, it is not hard to see that
by exploiting the information contained in Qa

−b and Qb
−a, all the computations

require O(n) time, from which the claim follows. ��

Tb
Ta

z

(a) (b)

Tb

z

Ta

u

u

v

a b a b

v

w

w

Fig. 2. In (a), a node v is visited starting from a, but its predecessor belongs to Tb;
in (b), the two trees after the detachment of the associated path (triangles denote
subtrees)

We can now prove the following:

Proposition 2. Let a, b ∈ V . Then, there exists a 2-periphery 〈i∗, j∗〉 for a, b
such that the associated LTP induces an optimal (in the sense of minimizing the
sum of radii) bipartition of G, once a and b are fixed to be the centers of the
induced subgraphs.

Proof. Let ra and rb be the radii of an optimal bipartition of G when a and b
are fixed to be the centers. W.l.o.g., let us assume that ra ≥ rb. We now exhibit
a LTP of a, b such that its total radius is ra +rb. To this aim, we select the nodes
i and j in V such that

i ∈ argmax
{
δG−b(a, v) : v ∈ V and δG−b(a, v) ≤ ra

}
;

j ∈ arg max
{
δG−a(b, v) : v ∈ V and δG−a(b, v) ≤ rb

}
.

Partitioning the Nodes of a Graph to Minimize the Sum of Subgraph Radii 585

We now show that 〈i, j〉 is a 2-periphery for a, b, namely we prove that for any
v ∈ V , we have that either δG−b(a, v) ≤ δG−b(a, i), or δG−a(b, v) ≤ δG−a(b, j).
Indeed, if there exists a node v̂ ∈ V such that δG−b(a, v̂) > δG−b(a, i) and
δG−a(b, v̂) > δG−a(b, j), then by definition of i and j it must be δG−b(a, v̂) > ra

and δG−a(b, v̂) > rb. But then it would also be δTa(a, v̂) ≥ δG−b(a, v̂) > ra

and δTb
(b, v̂) ≥ δG−a(b, v̂) > rb, a contradiction. This means that 〈i, j〉 is a 2-

periphery for a, b, and therefore we can build an associated LTP by following the
algorithm suggested in Proposition 1. Clearly, since the radii of the two resulting
trees cannot be larger than δG−b(a, i) ≤ ra and δG−a(b, j) ≤ rb, respectively, it
follows that the total radius of the LPT cannot be larger than ra + rb. More
precisely, from the assumed minimality of ra + rb, it must be exactly equal to
this value. ��

To select an optimal LTP for a and b, we can therefore check out all the 2-
peripheries associated with them. This can be done efficiently as stated in the
following:

Proposition 3. Let a, b ∈ V . Then, an optimal LTP of a, b can be computed in
O(n) time, once Qa

−b and Qb
−a are given.

Proof. It is easy to see that when we fix the first node i of a 2-periphery, then
there exists a set of corresponding nodes which can be associated with i in order
to generate a 2-periphery. Among all these nodes, let us consider the subset of
nodes which are closer to b in G − a, and let ji be any such node. Then, 〈i, ji〉
is a 2-periphery for a, b, and from the minimality of ji it follows that for any
j ∈ V such that δG−a(b, j) ≥ δG−a(b, ji), we have that 〈i, j〉 is a 2-periphery,
while for any j ∈ V such that δG−a(b, j) < δG−a(b, ji), we have that 〈i, j〉 is
not a 2-periphery. We name 〈i, ji〉 a minimal 2-periphery (M2P) for i. Then,
from the analysis of the algorithm proposed in Proposition 1, it follows that an
optimal LTP is associated with a M2P 〈i∗, j∗〉 such that δG−b(a, i∗)+δG−a(b, j∗)
is minimum. Therefore, this value can be selected within the set P(a, b) of all the
possible M2Ps for the nodes a and b. The set P(a, b) can be found in O(n) time as
follows. Initially, we set P(a, b) := {〈a, ja〉}, where ja = Qb−a[n − 1].node. Next,
we consider i = Qa

−b[2].node (and, implicitly, all the nodes having in SG−b(a) the
same distance from a as i); let Va(i) be this set of nodes, as defined in (1). It is
not hard to see that if we maintain for each v ∈ V a set of pointers leading to its
images in all the distance arrays, then we can mark in O(|Va(i)|) time the set of
nodes in Qb−a corresponding to Va(i). Thus, we search in reverse order the array
entries Qb

−a[j].node, until we encounter the first node which is not marked as
belonging to Va(i); then, we set ji exactly equal to this node, and for an arbitrary
v ∈ Va(i), we add 〈v, ji〉 to P(a, b). At the next step, we consider the immediately
farthest node in G − b from a, and we continue to browse in reverse order the
array entries Qb

−a[j].node from where we stopped at the previous step. We go
ahead in this way until we complete the retrieval of all the M2Ps for the endnode
a (i.e., we exhaust Qa

−b). Then, we pass to compute the M2Ps for the endnode
b (some of which are already available from a by symmetry), by inverting the
roles of Qa

−b and Qb
−a. Finally, we select in P(a, b) the M2P 〈i∗, j∗〉. It is not

586 G. Proietti and P. Widmayer

hard to see that all the computations require O(n) time, once Qa
−b and Qb

−a are
given. Finally, we compute in O(n) time the LTP associated with 〈i∗, j∗〉. ��

From the above proposition, it follows that in O(n3) time we compute all the
optimal LTPs of G, and finally we select an optimal bipartition of G as that
induced by an optimal LTP of minimum total radius. Then, we can claim the
following:

Theorem 2. Given a positively real-weighted graph G = (V, E) of n nodes and
m edges, the 2-radius problem can be solved in O(mn2+n3 log n) time and O(n3)
space.

4 A Solution of the p-Radius Problem

In this section, we will concentrate on the general case p > 2. Due to lack of
space, we will only sketch our technique, which is indeed an extension of the case
p = 2. Basically, we consider all the possible p-tuples of nodes in G as feasible
centers. Thus, when we fix one of these sets of centers, we compute an optimal
p-partition of V , namely a distribution of the nodes into p subsets in such a
way that the sum of the radii with respect to the fixed centers is minimum.
Finally, out of all these feasible sets of centers, we select a p-tuple minimizing
the sum of the radii. As for the case p = 2, the p-partition is performed as follows:
assume that for a given set of centers v1, . . . , vp ∈ V , the optimal associated radii
are r1, . . . , rp, respectively, and let (V1, . . . , Vp) be the corresponding optimal
p-partition. Then, this partition can be obtained by incrementally building p
spanning trees of G[Vi] rooted at vi and having radius ri, i = 1, . . . , p, in a way
analogous to the case p = 2. These particular spanning trees are associated
with an optimal p-periphery, selected by checking all the possible p-peripheries
associated with the current set of centers. Once again, an optimal p-periphery
can be found by making use of the distance arrays associated with the following
set of SPTs

S = {SG−{v1,...,vp−1}(vp) : {v1, . . . , vp} ∈ C(V, p)},

where C(V, p) is the set of combinations in p-tuples of all the nodes in V . Thus, we
have O(np/(p+1)!) SPTs, and the space needed for storing them is O(np+1/(p+
1)!). The computation of all the SPTs, along with the construction of the sorted
distance arrays, takes O(mnp+np+1 log n) time. Then, the selection of an optimal
p-periphery is done as follows: (1) first, consider exhaustively all the possible p-
tuples of indexes of the arrays associated with the centers under consideration;
since each array has n − p + 1 entries, this amounts to a total of (n − p + 1)p =
O(np) possible p-tuples; (2) then, for each of these tuples, verify by scanning the
distance arrays in O(p n) time if it identifies a p-periphery, and if so, compute in
O(p) time the associated radius measure. Then, an optimal p-periphery can be
computed in O(p np) time, and since we have O(np/(p + 1)!) feasible p-tuples of
centers, we can finally state the following:

Partitioning the Nodes of a Graph to Minimize the Sum of Subgraph Radii 587

Theorem 3. Given a positively real-weighted graph G = (V, E) of n nodes and
m edges, the p-radius problem for p > 2 can be solved in O(n2p/p!) time and
O(np+1/(p + 1)!) space.

Acknowledgements. The authors would like to thank Davide Bilò, Jörg Derungs,
and Luciano Gualà for inspiring discussions, and a referee for helpful comments.

References

1. H. Alt, E.M. Arkin, H. Brönnimann, J. Erickson, S.P. Fekete, C. Knauer, J. Lench-
ner, J.S.B. Mitchell, and K. Whittlesey, Minimum-cost coverage of point sets by
disks, Proc. 22nd ACM Symp. on Computat. Geometry (SoCG’06), 449–458, 2006.

2. P.K. Agarwal and C.M. Procopiuc, Exact and approximation algorithms for clus-
tering, Algorithmica, 33(2):201–226, 2002.

3. V. Bilò, I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos, Geometric cluster-
ing to minimize the sum of cluster sizes, Proc. 13th Europ. Symp. on Algorithms
(ESA’05), Vol. 3669 of LNCS, Springer-Verlag, 460–471, 2005.

4. M. Charikar and R. Panigrahy, Clustering to minimize the sum of cluster diameters,
J. of Computer and Systems Sciences, 68(2):417–441, 2004.

5. R.M. Cormack, A review of classification, J. of the Royal Statistical Society,
134:321–367, 1971.

6. S.R. Doddi, M.V. Marathe, S.S. Ravi, D.S. Taylor, and P. Widmayer, Approxima-
tion algorithms for clustering to minimize the sum of diameters, Nordic Journal of
Computing, 7(3):185–203, 2000.

7. T.F. Gonzalez, Clustering to minimize the maximum intercluster distance, Theor.
Comp. Science, 38(23)293–306, 1985.

8. D.S. Hochbaum and D.B. Shmoys, A best possible heuristic for the k -center prob-
lem, Mathematics of Operations Research, 10:180–184, 1985.

9. O. Kariv and S.L. Hakimi, An algorithmic approach to network location problems.
I: The p-centers, SIAM J. Applied Mathematics, 37(3):519–538, 1979.

10. M. Labbe, D. Peeters, and J.F. Thisse, Location on networks, in Handbooks in
Operations Research and Management Science: Network Routing, M. Ball, T. Mag-
nanti, and R. L. Francis Eds., Elsevier, Amsterdam, 1995.

11. N. Lev-Tov and D. Peleg, Polynomial time approximation schemes for base station
coverage with minimum total radii, Computer Networks, 47(4):489–501, 2005.

12. J. Plesńık, On the computational complexity of centers locating in a graph, Aplikace
Matematiky, 25(6):445–452, 1980.

Efficient Prüfer-Like Coding and Counting

Labelled Hypertrees

Saswata Shannigrahi1 and Sudebkumar Prasant Pal2

1 School of Technology and Computer Science, Tata Institute of Fundamental
Research, Homi Bhabha Road, Mumbai-400005, India

saswata@tcs.tifr.res.in
2 Department of Computer Science and Engineering, and Centre for Theoretical

Studies, Indian Institute of Technology Kharagpur, 721302, India
spp@cse.iitkgp.ernet.in

Abstract. We show that r-uniform hypertrees can be encoded in linear
time using as little as n − 2 integers in the range [1, n]. The decoding
algorithm also runs in linear time. For general hypertrees, we require
codes of length n + e − 2, where e is the number of hyperedges. We

show that there are at most n(n−2)−f(n,r)

(r−1)
(r−2)∗ n−1

r−1
distinct labeled r-uniform

hypertrees, where f(n, r) is a lower bound on the number of trees with
vertex degrees exceeding (r−1)+ n−1

r−1
−2. We suggest a counting scheme

for determining f(n, r).

Keywords: hypertree, Prüfer code, coding, counting, r-uniform.

1 Introduction

Hypergraphs have been studied extensively in the combinatorics literature [1,5].
A hypergraph represents an arbitrary set of subsets of its vertex set, where each
subset is called a hyperedge. Graphs may be viewed as special hypergraphs where
each hyperedge has exactly two vertices. From the combinatorial viewpoint, a
natural and interesting connection can be made between multipartite quantum
entanglement and hyperedges; representing n nodes in a network as vertices, an
m-partite maximally entangled quantum state (|0m〉+|1m〉)√

2
(m ≤ n) betweem m

nodes can be represented as a hyperedge with m vertices. Such a state is called an
m-CAT state, or simply a CAT or GHZ state [2]. We can represent an ensemble
or collection of such states over the n-node network using a hypergraph made of
several such hyperedges, where each hyperedge represents a multipartite entan-
gled (CAT state) state [10,11,8]. Given two distinct multipartite entanglement
configurations H1 and H2, it is always possible to construct H1 from H2, or vice
verse, if sufficient quantum communication is permitted between the n nodes of
the network. Such transformations between entanglement configurations is not
always possible with only local operations within nodes, and classical communi-
cation between nodes. Such a restricted scenario is termed LOCC (Local Opera-
tions and Classical Communication). The notion of LOCC comparability between

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 588–597, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Prüfer-Like Coding and Counting Labelled Hypertrees 589

Table 1. Encoding the hypertree in Figure 1, where layers in the encoding procedure
are numbered in increasing order starting from the outermost layer. The code for the
hypertree is the Prüfer code of the tree in the final step.

i hi V (Si) pi Prüfer Remaining
code lowest layer
of Ti hyperedges

1 a {1, 2, 3} 4 < 2, 3 > {d, e, f, h}
2 d {8, 9, 10} 5 < 9, 9 > {e, f, h}
3 e {23, 24, 25} 22 < 25, 23 > {f, h}
4 f {11, 12, 13} 7 < 12, 12 > {h}
5 h {17, 18, 19} 16 < 17, 17 > {c, g}
6 c {20, 21, 22(T3)} 6 < 20, 20, 22, {g}

25, 23 >

7 g {14, 15, 16(T5)} 7(T4) < 12, 12, 7, 14, {b}
15, 16, 17, 17 >

8 b {4(T1), 5(T2), 6(T6)} 7(T7) < 2, 3, 4, 9, 9, 5, {}
12, 12, 7, 17, 17, 16

15, 14, 7, 4, 5,
6, 20, 20, 22, 23, 25 >

two distinct entanglement configurations H and H ′ is studied in [10,11,8]; the
problem is to determine whether LOCC transformations can generate an entan-
glement configuration H ′ from another entanglement configuration H , written
as H ′ <LOCC H . If neither of H ′ <LOCC H or H <LOCC H ′ hold, then we
say that H and H ′ are LOCC incomparable. It is known that any two multi-
partite entanglement configurations represented by distinct labelled r-uniform
hypertrees are mutually LOCC incomparable [10,11]. The derivation of this re-
sult was done using a non-trivial property of r-uniform hypertrees as established
in [10,11]. This property may be interpreted as follows: two labeled r-uniform
hypertrees defined on the same set of vertices are identical if and only of their
vertex pairing relations are identical [8]. The vertex pairing relation R(H) of a
hypergraph is the set of all possible pairs of vertices (u, v), where u and v share
a hyperedge in H .

In this paper we give a constructive proof of the unique reconstruction of r-
uniform hypertrees from their succinct codes, in contrast to the non-constructive
characterizations of [10,11,8] as mentioned above. In particular, we settle the
open question in [8], by showing that r-uniform hypertrees can be encoded effi-
ciently in sequences of n − 2 integers, and decoded efficiently from such succinct
codes in section 2. Following Prüfer codes for trees, we call our codes Prüfer-
like codes for hypertrees; our codes are of smaller length compared to the trivial
bound of n−1

1−1/r integers required to represent all hyperedges with labelled vertex
numbers in each hyperedge. We are not aware of better bounds in the literature.
We also show in section 3 that on the average, our codes for random r-uniform
trees can be compressed significantly due to the redundancy in the codes devel-
oped in this paper. This follows from our upper bound on the number of distinct

590 S. Shannigrahi and S.P. Pal

labelled r-uniform hypertrees on n vertices as developed in section 3. Earlier,
Renyi and Renyi [9] developed Prüfer-like codes for k-trees and also devised
some counting techniques.

Let S be a set of n vertices, and F = {E1, E2, · · · , Em}, where Ei ⊆ S; i =
1, 2, · · · , m. Then, the set system H = (S, F) is called a hypergraph with hyper-
edges Ei, 1 ≤ i ≤ m. We define connectedness for hypergraphs as follows. A
sequence of j hyperedges E1, E2, ..., Ej in a hypergraph H = (S, F) is called
a hyperpath (path) from a vertex a ∈ S to a vertex b ∈ S if Ei and Ei+1 have
a common vertex vi in S, for all 1 ≤ i ≤ j − 1, a ∈ E1, and b ∈ Ej , where the
vertices vi are distinct. A connected hypergraph H = (S, F) is a hypertree if it
contains no cycles. In other words, no pair of vertices from S has two distinct
hyperpaths connecting them. An r-uniform hypertree is a hypertree where there
are exactly r vertices in every hyperedge. Here r is a fixed integer greater than
1. Note that any two hyperedges in a hypertree can share at most one vertex;
sharing two vertices would introduce cycles. Any vertex shared between two hy-
peredges in a hypertree is called a pivot. Any hyperedge having a single pivot is
called a peripheral hyperedge. In ordinary graphs, a vertex belonging to a single
edge is called a pendant vertex. This concept is extended to the case of hyper-
graphs. A vertex of a hypergraph H = (S, F) belonging to exactly one hyperedge
from the set F is called a pendant vertex in H . Note that each hyperedge in any
(multi-hyperedge) connected hypergraph must have at least one non-pendant
vertex. Throughout this paper, we deal with vertex labelled hypertrees.

2 Efficient Coding of r-Uniform Hypertrees

We know thet the number of hyperedges e = (n − 1)/(r − 1), for any n-vertex
r-uniform hypertree as shown in [10,11]. So, a labelled r-uniform hypertree can
be encoded using e ∗ r = n−1

1− 1
r

integers in the range [1, n]. We show that such

1 2 3
4

5

9

8 10

6

20
21

22

25

23

24

7

12

11 13

14

15

16
17

18

19

a

b

c

e

d

h

g

f
h g

b

f

a

d

c

e

Fig. 1. A 4-uniform hypertree with 25 vertices and its (i) encoding tree (left), and (ii)
hypergraph partial order (right)

Efficient Prüfer-Like Coding and Counting Labelled Hypertrees 591

1
2 3

4

6
7

9
10

12 13

8

11

5

14

15 16

1

2

3

4

5

6

7 8

9

10

1112

13

Fig. 2. (i) A 4-uniform hypertree generating an encoding tree with maximum degree
(left), and (ii) a tree that is not an encoding tree of any 4-uniform hypertree

Table 2. Decoding the 4-uniform hypertree of Figure 1. (All steps are not
shown). The chosen separators are {4, 5, 7, 16, 22, 6, 7, 7}. The reconstructed edges are
{a, d, f, h, e, c, g, b}.

i V (Ri) V Vertices to be deleted from Ti sep(Ri, Ti) hi

1 {1, 2, 3, 4} {1, 2, 3} 4 a = {1, 2, 3, 4}
2 {5, 8, 9, 10} {8, 9, 10} 5 d = {5, 8, 9, 10}
8 {4, 5, 6, 7} {4, 5, 6} 7 b = {4, 5, 6, 7}

hypertrees can be encoded using as little as n − 2 integers in the range [1, n].
It is a well-known fact that any n-vertex labelled tree has a unique encoding
in the form of a sequence of n − 2 integers, popularly known as Prüfer coding
(see [4,7]). Note that a tree is actually a 2-uniform hypertree. We start with the
following useful property, omiting the proof in this version (see [12]).

Lemma 1. Any r-uniform hypertree has at least one peripheral hyperedge.

We require the notion of elimination of a peripheral hyperedge from the hyper-
tree. Elimination of a peripheral hyperedge is the removal of the hyperedge and
all the terminal vertices in the hyperedge.

Observation 1. The elimination of a peripheral hyperedge from an r-uniform
hypertree results in a r-uniform hypertree with n − r + 1 vertices.

Let HT (S, F) be a hypertree defined on vertex set S with the set E of hyperedges.
We define the hyperedge partial order (hpo(HT)) on the hyperedges of the hyper-
tree HT (S, F) by defining a DAG with vertex set F where each vertex represents
a hyperedge of HT . For each peripheral hyperedge a ∈ F , introduce a directed
edge (a, b) if b ∈ F is not a peripheral hyperedge and a and b share a vertex in

592 S. Shannigrahi and S.P. Pal

S; delete all such peripheral hyperedges a from the hypertree HT . These deleted
hyperedges form a layer of the DAG. Repeat this process on the resulting hyper-
tree until all hyperedges are deleted, layer by layer. See Figure 1(ii). Note that
this is a unique DAG for a given hypertree since the peripheral hyperedges in
each layer are uniquely determined. The approach we adopt is to first compute
an undirected graph underlying the hyperedge partial order, and then traverse
the this graph in order to identify and process hyperedges, layer by layer.

Consider the undirected graph G(F, E) defined on the set of hyperedges F as
the vertex set; the edge set E is made of unordered pairs of hyperedges from
F that share a vertex of the given hypertree HT (S, F). We start with a vertex
in G(F, E) (as root), corresponding to an arbitrary peripheral hyperedge in the
given hypertree HT (S, F), and perform a depth first search on G(F, E) to build a
DFS tree. At each vertex v ∈ F , we maintain the depth(v) and height(v), where
depth(v) is the usual DFS depth of the node v and height(v) is the maximum
over height(u), u being the children of v in the DFS. The minimum over depth(v)
and height(v) is the layer number of the hyperedge corresponding to the vertex
v. Clearly, these layer numbers can therefore be computed in linear time, thereby
yielding the hyperedge partial order hpo(HT).

The encoding procedure: Let H1(= HT), H2, . . . , He+1 be a sequence of
r-uniform hypertrees, where Hi+1 is generated by the deletion of a peripheral
hyperedge hi from Hi, 1 ≤ i ≤ e. [By Lemma 1, such a hyperedge hi exists in
Hi. By Observation 1 we know that Hi, 1 ≤ i ≤ e, are r-uniform.] Here HT is
the given hypertree, e is the number of its hyperedges, and He+1 is the empty
hypertree. We ensure that peripheral hyperedges hi are deleted layer by layer;
as a peripheral hyperedge hi is deleted from Hi, any new peripheral hyperedge
introduced in Hi+1 can be determined by keeping track of hyperedges sharing
the common pivot pi with hi. This whole procedure is performed in linear time
since the layers have already been computed in linear time in the hyperedge
partial order as explained above. Also, note that the last (innermost) layer will
have either a single hyperedge or a set of hyperedges, all sharing a single vertex.
For the latter case, we say that the single common vertex is the pivot for each
hyperedge in the last layer. For the case of a single hyperedge in the last layer,
the pivot is defined as the vertex which was a (common) pivot of the maximum
number of hyperedges of the penultimate layer (ties are broken arbitrarily).

Let pi be the pivot of hi in Hi, and Si be any spanning tree of the pendant
vertices of hi in Hi. Now, let v be any vertex of Si. For each v, if v is the pivot
pj of hj in Hj , for some j < i, then assume that the partial encoding subtree Tj

is already attached to Si at v = pj . Construct a (partial encoding) subtree tree
Ti connecting r vertices including (i) the attached partial encoding subtrees Tj

rooted at pivot vertices pj ∈ Si, j ≤ i, (ii) the remaining (non-pivot) vertices of
Si, and (iii) the pivot vertex pi of hi; some partial encoding tree Tj might already
have been created and attached to this vertex pi(= pj) (see Table 1, the cases
of T4 and T7). Make pi the root of Ti by connecting pi to an arbitrary vertex
w of Si. This completes the construction of the partial encoding subtree Ti. [In
order to complete the inductive definition of T ′is, we define T1 as S1 connected

Efficient Prüfer-Like Coding and Counting Labelled Hypertrees 593

to the pivot p1 of h1 in H1 = HT , connected to S1 at an arbitrary vertex v of
S1.] We call the final spanning tree Te the encoding tree T (HT) of the hypertree
HT and use the Prüfer code E(HT) of Te as an encoding of HT . Observe that
there can be several codes for HT because the spanning trees Si can be built in
many different ways, and the vertex w of Si chosen to be attached to pivot pi can
also be chosen in many ways. Also, note that all these steps can be performed
in linear time; in particular, the Prüfer coding of T (HT) can be done in linear
time by the algorithm of Chen and Wang [3].

Theorem 1. The encoding algorithm generates the code E(HT) of the given
r-uniform hypertree HT by generating the tree Te and its Prüfer code in linear time.

The decoding procedure: Now consider the problem of reconstructing a la-
belled r-uniform hypertree from its encoding E(HT). Here E(HT) is the Prüfer
code of the encoding tree T (HT) of HT . It is possible to reconstruct the encod-
ing tree T (HT) of HT from the Prüfer code E(HT) in O(n) time [6]. We need
a few definitions. Let V (R) denote the set of vertices of a tree R. Let R be any
proper subtree of a tree T . We call a vertex sep(R, T) of R, a separator of R in
T , if the deletion of sep(R, T) from T gives two or more subtrees, at least one
of which is exclusively made of one or more vertices of T \ R. Let R1 be such a
subtree of T (HT) with r vertices and a single separator vertex sep(R1, T (HT))
whose degree in R1 is 1 (in Table 2, R1 has vertex set {1, 2, 3, 4}). We say that
such a subtree R1 satisfies the reconstruction criterion. Note that the set of ver-
tices of each peripheral hyperedge of HT satisfies the reconstruction criterion.
[This follows from the construction of the encoding tree Te of HT in the en-
coding algorithm; in the construction of each Ti, the pivot pi is the separator
sep(Ti, T (HT)), with degree 1 in Ti.] We now argue that no subtree of r vertices
can satisfy the reconstruction criterion if it does not constitute a peripheral hy-
peredge in HT . Suppose the subtree chosen does not constitute a hyperedge of
HT . Then it must have two vertices such that no hyperedge in HT has both
these vertices. A subtree including such two vertices must have more than one
separator if it has r vertices, or must have at least 2r − 1 vertices if there is only
one separator. So V (R1) must constitute a hyperedge of HT ; we now show that
V (R1) is, in particular, also a peripheral hyperedge of HT .

Lemma 2. The vertices of R1 form a peripheral hyperedge in HT with pivot
sep(R1, T (HT)).

Proof: For the sake of contradiction, we assume that the set V (R1) does not
constitute a peripheral hyperedge in HT . So, there are 2 or more pivots in V (R1),
a contradiction because the constitution of R1 permits only one pivot, which is
the same as sep(R1, T (HT)). �

The reconstruction of HT from E(HT) is done in e steps; in the process hy-
peredges h1, h2, . . ., he of HT are identified. We claim that all the identified
hyperedges are exactly the hyperedges of HT . Following Lemma 2, we observe
that V (S1) constitutes a peripheral hyperedge in HT ; so we call this hyperedge
h1. For the remaining hyperedges we have the following lemma whose proof is

594 S. Shannigrahi and S.P. Pal

similar to that of Lemma 2. Suppose we have already identified i hyperedges of
HT , h1, h2, . . ., hi, i ≤ e, following the hyperedge partial order, layer by layer.
The computation of hi from Ti has already been done transforming Ti to Ti+1
by the deletion of r − 1 vertices of hi. [The r-th vertex of hi which is retained in
Ti+1 is the separator vertex sep(Ri, Ti).] Let Ri+1 be a subtree of Ti+1 satisfying
the reconstruction criterion. More precisely, Ri+1 has r vertices and a single sep-
arator vertex sep(Ri+1, Ti+1), whose degree in Ri+1 is 1. By the definition of the
hyperedge partial order and the way we designed the encoding procedure, it is
also clear that Ri+1 constitutes the hyperedge hi+1 belonging to the proper layer
of hpo(HT). All we need to do now is to establish the two hereditary properties
by induction that (i) Ti+1 is a (valid) encoding tree of HT \{h1, h2,, hi}. [Here,
HT {h1, h2,, hi} denotes the remaining hypertree after the deletion of the se-
quence h1, · · · , hi of hyperedges from HT], and (ii) hpo(HT \ {h1, h1, . . . , hi−1})
is identical to hi appended with hpo(HT \ {h1, h1, . . . , hi}). [We omit details of
induction in this version.] Following arguments similar to those given for R1 and
the Lemma 2, we have the following claim about the induction step.

Lemma 3. V (Ri+1) form a peripheral hyperedge in HT \ {h1, h2,, hi} with
pivot sep(Ri+1, Ti+1).

The reconstruction with hyperedges hi of HT proceeds obeying the hyperedge
partial order, in batches, layer by layer. The entire reconstruction is possible in
linear time (see [12]); we omit the analysis in this version. We can now claim the
following result.

Theorem 2. Given the Prüfer code E(HT) of the encoding tree T (HT) of an
r-uniform hypertree HT , it is possible to reconstruct HT from E(HT) in linear
time.

Proof: The sets Ri and separators sep(Ri, Ti) are identified by the decoding
algorithm, such that the sets Ri satisfy the reconstruction criterion in the re-
maining tree (encoding tree) Ti. By Lemmas 2 and 3, these identified hyperedges
are exactly those of HT . �

3 Counting r-Uniform Hypertrees

Our encoding algorithm for labelled r-uniform hypertrees produces a code of
n − 2 integers, each of which is an integer in the range [1, n]. This code is not
unique however. In the following lemma we derive the exact number of distinct
codes possible for any given input.

Lemma 4. The encoding algorithm generates one of (r − 1)(r−2)∗n−1
r−1 distinct

labelled encoding trees for any r-uniform hypertree.

Proof: In each step of our encoding algorithm, we select one peripheral hy-
peredge and delete its pendant vertices. There are r − 1 pendant vertices in a
peripheral hyperedge. These r − 1 pendant vertices can be connected to form
one of (r−1)(r−3) different labelled (partial encoding) subtrees. The root of each

Efficient Prüfer-Like Coding and Counting Labelled Hypertrees 595

of these labelled trees can be selected in r − 1 ways. So, from each peripheral
hyperedge, we can get (r−1)(r−2) different rooted subtrees. After we delete these
r − 1 vertices, we consider the second hyperedge in the deletion sequence. We
can again create one of (r − 1)(r−2) different rooted labelled (partial encoding)
subtrees corresponding to the different subtrees with the r vertices of this sec-
ond hyperedge. Since a total of n−1

r−1 hyperedges are processed, the total number

of distinct labelled encoding trees of the original hypertree is (r − 1)(r−2)∗n−1
r−1 .

The order in which hyperedges are deleted does not matter in the above count,
because hyperedges are deleted layer by layer. �

We know by Cayley’s formula that the number of distinct labelled trees on n
vertices is nn−2. The above lemma gives the exact number of possible distinct
labelled encoding trees that our encoding algorithm can generate for any given
r-uniform hypertree. All these labelled encoding trees, when decoded, return the
unique original encoded hypertree. So, based on our coding scheme, we get an
upper bound on the number of distinct r-uniform hypertrees with n vertices as

nn−2

(r−1)(r−2)∗ n−1
r−1

.

Improving the upper bound: This upper bound can be improved if we ob-
serve that all possible labelled trees on n vertices are not encoding trees of a
r-uniform hypertree. See Figure 2(ii) for an example of a labelled tree which is
not a valid encoding tree for any 4-uniform hypertree. We need better estimates
of the number of potential encoding trees for r-uniform hypertrees. One way is
to use necessary conditions as follows.

Lemma 5. Given an r-uniform hypertree HT , let T (HT) be encoding tree for
HT . The degree of each vertex in T (HT) is less than or equal to (r−1)+(n−1

r−1)−2.

Proof: Observe that in the last step of the encoding procedure, the last hy-
peredge f processed can give an encoding tree in which one vertex v of this
hyperedge is connected to the r − 1 remaining vertices. We show that there
could have been up to n−1

r−1 − 2 hyperedges in the very previous stage or layer
of hyperedges (call this set K) with vertex v as the pivot, leading to exactly
n−1
r−1 − 2 vertices connected to v in the encoding tree. The hyperedge f must
survive the stage in which the hyperedges in K are processed so that vertex v
in f is connected to r − 1 vertices of f as already mentioned. This will give the
maximum possible degree of (r − 1) + (n−1

r−1) − 2; the deficiency of 2 is due to
the fact that at least one peripheral hyperedge connected to a vertex u �= v of
f must also be eliminated in the layer of the hyperedges in the set K, thereby
limiting the size of K to n−1

r−1 − 2. See illustration in Figure 2(i). In this figure,
r = 4, n = 16, the number of hyperedges e = 5, v = 4 and u = 10. �

We wish to obtain a lower bound f(n, r) on the number of trees with maximum
vertex degree exceeding d = (r − 1) + (n−1

r−1) − 2. We consider trees where one
vertex v, has degree d + i, where 1 ≤ i ≤ n − d − 1. This vertex v is connected
to d + i non-empty subtrees with a total of n − 1 vertices. We have to therefore
partition the n−1 labelled vertices into d+i unlabelled non-empty subtrees, and
generate all possible labelled subtrees in each partition. So, we write f(n, r) =

596 S. Shannigrahi and S.P. Pal

Σn−d−1
i=1 g(n, r, i), where g(n, r, i) is the number of trees with at least one node

of degree d + i. Let (i) pj , 1 ≤ j ≤ d + i be integers such that pj > 0, (ii)
pj ≤ pj+1, 1 ≤ j ≤ d + i − 1, and (iii) Σd+i

j=1pj = n − 1. We can write g(n, r, i)
as the sum of h(n, r, i, j) over all partitions p1, p2, . . . , pd+i of n − 1, satisfying
conditions (i), (ii) and (iii), where h(n, r, i, j) is the number of possibilities with
the jth tree has pj vertices. The choice of these pj vertices from the total of
n − 1 vertices can be done in after pk vertices are selected for subtrees k =
1, 2, . . . , j − 1. Then, these pj labelled vertices can be built in to a subtree in
p

pj−2
j ways and connected by any of the pj vertices, to the vertex v with degree

d + i, resulting in a total of p
pj−1
j possibilities. However, parts that have the

same cardinality may be permuted arbitrarily without any effect, so we need
to divide by count(pj)! only once, where count(pj) is the number of times pj

appears in the partition. So, h(n, r, i, j) =
Πd+i

j=1 [(n−1−Σ
j−1
k=1

pk)
Cpj

]p
pj−1
j

Πd+i
j=1,(pj �=pj+1)count(pj)!

. Here, nCr

is the number of combinations without repetitions of n objects taken r at a time.
Thus we define the scheme for determining the lower bound for f(n, r).

Using our encoding algorithm in Section 2, any r-uniform hypertree with n
vertices can be encoded as a sequence of n − 2 integers, where each integer is
in the range [1,n]. If we randomly choose such a sequence of n − 2 integers, the
sequence may or may not represent a r-uniform hypertree. Using our decoding
algorithm of Section 2, the generating party can determine whether the randomly
generated sequence indeed encodes an r-uniform hypertree. Since all sequences
can be generated with equal probability, the probability p that a code for a

specific r-uniform hypertree is generated exceeds (r−1)(r−2)∗ n−1
r−1

nn−2 (see Lemma 4).
So the entropy log 1

p ≤ (n − 2) log n − (r−2)∗(n−1)∗log(r−1)
(r−1) . This upper bound on

the entropy is strictly less than (n − 2) log n for r > 2.

4 Conclusion

We can extend our results to general hypertrees where each hyperedge has at
least 2 vertices. The hyperedge partial order and the encoding tree can be com-
puted by applying the same encoding procedure as in Section 2. The additional
cost to be paid is the increase in the length of the code; we need to append a list
of pivots. Since the number of pivots is bounded by the number e of hyperedges,
we need at most (n−2)+e integers to encode a general hypertree. For decoding,
we can apply the same decoding procedure of Section 2, with slight modification.
Instead of checking whether a subtree of size r − 1 has been identified for Ri,
as required in the definition of the separator sep(Ri, Ti), we now need to check
whether we have reached a pivot, where the pivot is a separator of degree 1 in
the subtree Ti. The rest of the decoding algorithm remains unchanged. Proving
better bounds for the length of Prüfer-like codes for general hypertrees is an
interesting open question.

Distinct hypertrees generated using some combinatorial enumerative scheme
may be used to compute distinct codes for hypertrees using our encoding

Efficient Prüfer-Like Coding and Counting Labelled Hypertrees 597

algorithm. The generation of such codes requires time proportional to the length
of the code. Such a scheme may be used for allocating unique IDs or PINs to
users where each group of users can be associated with a distinct hypertree
whereas users within a group can be allocated distinct codes of the same hyper-
tree associated with the group.

Acknowledgements

The authors would like to sincerely thank Subir Ghosh, Arnab Basu and Prajakta
Nimbhorkar for their valuable comments and suggestions. The first author also
thanks Center for Theoretical Studies, IIT Kharagpur for inviting him for a visit
during which the rudiments of this problem were conceptualized. The second
author expresses his thanks to the School of Technology and Computer Science,
TIFR, for sponsoring a summer visit to the School during which this problem
was solved and the present manuscript took its final form.

References

1. C. Berge, Hypergraphs, Elsevier Science Publishers, N.H. (1989).
2. D. Bouwmeester, A. Ekert and A. Zeilinger (Eds.), The Physics of Quantum In-

formation, Springer (2000).
3. H. -C. Chen and Y. -L. Wang, An efficient algorithm for generating Prüfer codes

from labelled trees, Theory of Computer Systems 33: 97-105 (2000).
4. N. Deo, Graph Theory: With Applications to Engineering and Computer Science,

Prentice Hall (1974).
5. R. L. Grahmam, M. Grotschel, and L. Lovasz (Eds), Handbook of Combinatorics,

vol-1, Elsevier Science Publishers , N.H. (1995).
6. R. Greenlaw, M. M. Halldorsson and R. Petreschi, On computing Prüfer codes

and their corresponding trees optimally, Proceedings Journees de l’Informatique
Messine, Graph Algorithms, 2000.

7. L. Lovász, J. Pelikán and K. Vesztergombi, Discrete Mathematics: Elementary and
Beyond, Springer, 2003.

8. S. P. Pal, S. Kumar and R. Srikanth, Multipartite entanglement configurations:
Combinatorial offshoots into (hyper)graph theory and their ramifications, to appear
in the Proceedings of the workshop on Quantum Computing: Back Action, IIT
Kanpur, March 2006.

9. C. Rényi and A. Rényi, The Prüfer code for k-trees, Combinatorial Theory and its
Applications III, pp. 945-971, (Eds.) P. Erdös, A. Rényi and Vera T. Sós, North-
Holland Publsihing Comapny, 1970.

10. S. K. Singh, Combinatorial Approaches in Quantum Information Theory, M.Sc.
Thesis, Dept. of Mathematics, IIT Kharagpur, India, eprint quant-ph/0405089
(2004).

11. S. K. Singh, S. P. Pal, S. Kumar and R. Srikanth, A combinatorial approach for
studying local operations and classical communication transformations of multi-
partite states, J. Math. Phys. 46, 122105 (2005); eprint quant-ph/0406135 v3.

12. Saswata Shannigrahi and Sudebkumar Prasant Pal, Efficient Prüfer-like coding
and counting labelled hypertrees (manuscript).

Intuitive Algorithms

and t-Vertex Cover�

Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith

Department of Computer Science, RWTH Aachen University, Fed. Rep. of Germany
{kneis, moelle, richter, rossmani}@cs.rwth-aachen.de

Abstract. Many interesting results that improve on the exponential
running times of exact algorithms for NP-hard problems have been ob-
tained in recent years. One example that has attracted quite some at-
tention of late is t-Vertex Cover, the problem of finding k nodes that
cover at least t edges in a graph. Following the first proof of fixed-
parameter tractability, several algorithms for this problem have been
presented in rapid succession. We improve on the best known runtime
bound, designing and analyzing an intuitive randomized algorithm that
takes no more than O(2.0911tn4) steps. In fact, we observe and encour-
age a renewed vigor towards the design of intuitive algorithms within the
community. That is, we make a plea to prefer simple, comprehendable,
easy-to-implement and easy-to-verify algorithms at the expense of a more
involved analysis over more complicated algorithms that are specifically
tailored to ease the analysis.

1 Introduction

Under the assumption P �=NP, which is widely believed to hold true, thousands of
well-known problems— many of which have important practical applications—
cannot be solved in polynomial time. This troublesome fact has been addressed
by several concepts such as approximation, heuristics, randomization and pa-
rameterization.

In spite of the unquestionable success of approximation methods, examples
abound of problems where this approach is not viable, either because approxima-
tion is not possible or because an exact result is required. The obvious practical
need has inspired renewed effort in the field of exact algorithms, and the expo-
nential runtime bounds for many problems have been improved in recent years.
Some examples for such improvement have been achieved with new algorithms
for 3-Satisfiability [17], Independent Set [4,26], Dominating Set [14],
and Max-Cut [18,28,30].

Still, it seems that our community is lacking powerful analytical methods. In
practice, many hard problems can be solved extremely fast using heuristics —
for which it is usually impossible to prove non-trivial runtime bounds. On the
other hand, the analysis of exact algorithms for these problems may only result
in prohibitively large bounds.
� Supported by the DFG under grant RO 927/7-1.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 598–607, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Intuitive Algorithms and t-Vertex Cover 599

There are two possible reasons for this effect: Firstly, it may be the case
that no worst-case instances do occur in practical applications. There has been
a lot of research that aims to identify the complexity inherent in a problem
instance, such as Spielman and Teng’s smoothed analysis approach [29] or the
whole field of parameterized complexity [12]. A lot of notable results have been
obtained using the latter approach, which allows for closer inspection of NP-
hard problems. The underlying idea of this paradigm is to identify a measure
describing the hardness of a problem instance that, if bounded, eases the solution.
For example, the famous Steiner tree problem— given an edge-weighted graph
with n nodes k of which are marked as terminals, find a cheapest tree that spans
the terminals— is NP-hard, but since there are algorithms with running times
of the form O(cknO(1)) where 2 < c ≤ 3, it can be tackled even for very large n
provided that k is reasonably small [13,20].

Secondly, it may be that we have hold of a rather efficient exact algorithm
but have not been able to prove that it is as fast as we think it is. Indeed,
there are many exact algorithms that perform well on every tested instance, and
surprisingly better than suggested by the runtime bounds obtained through a
theoretical analysis.

In many cases, the only known way of improving on the bounds for exact
algorithms lies in introducing manifold case distinctions into the algorithm. Tai-
loring the analytical tools to each of the cases then leads to a better bound, but
in fact, this often decreases the actual practical performance. Moreover, it makes
the algorithms less understandable, more error-prone, harder to maintain, and
often nearly impossible to verify.

In contrast to such tendencies, the paper at hand can be seen to be a plea
for intuitive algorithms. We aim at obtaining algorithms that are very easy to
comprehend and that can be turned into short and concise high-level programs.
This, of course, is most likely to happen at the expense of a more involved
analysis— a price we are willing to pay. Depending on the actual problem, new
methods and techniques may be required. Intuitive algorithms are by no means
a new idea. In recent years, there have been quite some surprising results that
could be obtained with very simple algorithms, such as Schöning’s algorithm
for k-SAT [27]. As another illustrative instance, new bounds on the treewidth of
sparse graphs have led to intuitive algorithms that come close to or even beat the
hitherto best known bounds for problems like Max-Cut or Max-2-SAT [18].

A fruitful concept toward the construction of intuitive algorithms, which also
combines very well with parameterized complexity, lies in randomization. A very
elegant and famous example is the color-coding technique by Alon et al. [2], which
yields an O(5.44kpoly(n)) algorithm with exponentially small error probability
for Longest Path (i.e., finding a path of length k in a graph) and similar results
for several graph packing problems. Whereas it is possible to derandomize color-
coding algorithms, the resulting running times are impractically large. Even
in the face of some recent results [25] that call into question the complexity-
theoretical power of randomization, probabilistic algorithms often outperform

600 J. Kneis et al.

the best known deterministic method while being much more simple and intuitive
at the same time.

2 Previous and New Results

In this paper, we design and analyze a simple algorithm for the Vertex Cover
variant t-Vertex Cover. Vertex Cover, the problem of checking for a set
of at most k nodes that cover all the edges of a graph G = (V, E), arguably con-
stitutes the most intensely studied problem in parameterized complexity. Its im-
portance is reflected by a long history of improved runtime bounds [3,21,10,22,9]
culminating in the algorithm by Chen, Kanj, and Xia with running time
O(1.2738k + kn) [11]. Moreover, many generalizations have been introduced
and investigated, for instance Connected Vertex Cover, Tree Cover, and
Capacitated Vertex Cover [15,19].

Given a graph G = (V, E) and numbers k, t ∈ N, the problem t-Vertex
Cover asks for a set of at most k nodes that cover at least t edges. There are sev-
eral positive results regarding the approximability of t-Vertex Cover [23,6,16].
In this setting, the minimum number of nodes to cover t edges is approximated.
As in the case of Vertex Cover itself, an approximation ratio of two can
be achieved. The parameterized complexity, however, of this problem has long
remained unclear.

Recently, Markus Bläser [5] has shown that the problem is in fact fixed-
parameter tractable when parameterized in t: Using color-coding, it is possible to
obtain a randomized O(5.44tpoly(n)) algorithm. Just as in the case of Longest
Path, the running time of the derandomized version is impractically large. Ob-
viously, fixed-parameter tractability also holds when parameterizing in both k
and t.

Cai, Chan and Chan have applied the new random separation method [8] to
several problems [7], including t-Vertex Cover. The resulting randomized al-
gorithm has a running time of O(4tpoly(n)), but compared to Bläser’s algorithm,
it allows for a much better derandomization. This can be achieved using (ε, k)-
independent sets [1], yielding a deterministic version solving t-Vertex Cover
in O(16tpoly(n)) steps. This is the best deterministic bound currently known.
Raman and Saurabh[24] have furtherwise come up with an O(tk) algorithm for
t-Vertex Cover this year, a result that is only relevant for small values of k.
On the other hand, note that t-Vertex Cover is known to be W[1]-hard when
only k is chosen as a parameter [15, Theorem 11].

In the next section we present an intuitive randomized algorithm that solves
t-Vertex Cover in O(2.0911tn · (n+m)k) steps with exponentially small error
probability. As a kind of by-product of the somewhat involved analysis, a problem
kernel of size O(t3) can be constructed efficiently.

Given natural numbers k and t, we say that a t-vertex cover C is optimal,
under the implicit constraint that |C| ≤ k, if it covers a maximal number of
edges. We also adhere to the following standard notation for neighborhoods of
nodes and induced subgraphs.

Intuitive Algorithms and t-Vertex Cover 601

Definition 1. Let G = (V, E) be a graph and V ′ ⊆ V . We define:

– N(v) := { w ∈ V | {v, w} ∈ E },
– N [v] := N(v) ∪ {v},
– V ′[a, b] := { v ∈ V ′ | a ≤ degG(v) ≤ b }, and
– G[V ′] is the subgraph of G induced by V ′.

3 A Randomized Algorithm for t-Vertex Cover

In what follows, we present a randomized algorithm (see Table 1) that takes
O((n + m)k) steps where n = |V | and m = |E|. Its error probability is bounded
by 1 − 2.091−t. In effect, this algorithm just chooses a vertex v of maximum
degree d. If d < 3, the solution can be easily found in linear time1. Otherwise, it
selects either v itself (with probability 1/2d) or a randomly choosen neighbor of
v (with probability 1−1/2d) for the vertex cover. The selected node u is removed
from the graph, and the algorithm searches a (t − deg(u))-vertex cover for the
remaining graph.

Table 1. The randomized algorithm (TVC)

TVC(G, k, t) :
if t ≤ 0 then return true fi;
if E = ∅ or k ≤ 0 then return false fi;
choose v ∈ V of maximum degree;
d := deg(v);
if d < 3 then find the solution in linear time fi;

randomly choose u

�
∈ N(v) with probability 1 − 2−d

= v with probability 2−d;

if TVC(G[V − {u}], k − 1, t − deg(u)) then return true fi;
return false

While it is quite intuitive that either a node of maximum degree or some
of its neighbors should be part of an optimum solution, it is not so obvious
that behaving according to this particular distribution yields a favorable success
probability. When aiming at a randomized algorithm with a running time of
about 2t, however, we have to pick this maximum-degree node with probability
at least 2−d: Consider the case that iterating this choice is the only way to
obtain the optimum t-vertex cover {v1, . . . , vk}, and that this solution covers
exactly t edges (as exemplified by k isolated t/k-stars). Then the overall success
probability is at least 2−d1 · · · · · 2−dk = 2−t, where di := deg(vi). Therefore, it
seems reasonable to use exactly this probability in our algorithm.

The following key observation formalizes the fact that in some optimal solu-
tion, many edges will be covered by either v or some neighbors of v all having
the same degree.
1 In this case, the graph only consists of paths and cycles.

602 J. Kneis et al.

Lemma 1. Let G = (V, E) be a graph and k, t ∈ N. Let v be a node of maximum
degree in G and d = deg(v) ≥ 3, S = N [v]. Assume that there is no optimal
t-vertex cover C with either v ∈ C or N(v) ⊆ C. Then there is an i, 3 ≤ i ≤ d,
and an optimal t-vertex cover C′ such that

∣∣C′ ∩ S[i, i]
∣∣ ≥ d

2i
.

Proof. Let first C be an optimal t-vertex cover with v /∈ C. If C ∩N(v) contains
a node u of degree two, then (C∪{v})\{u} is an optimal t-vertex cover whenever
N(v) �⊆ C. We may thus assume that an optimal t-vertex cover not containing
v never contains a neighbor u of v with deg(u) ≤ 2.

Now let C′ be an optimal t-vertex cover with

∣
∣C′ ∩ S[i, i]

∣
∣ <

d

2i

for 3 ≤ i ≤ d. Obviously, the nodes from C′ ∩ S[i, i] cannot cover di/2i or more
edges. Hence, all the nodes from S[3, d] cannot cover

∑d
i=3 i/2i or more edges.

Note that

∞∑

i=3

i

2i
=
∞∑

i=3

i∑

j=1

1
2i

=
∞∑

j=3

∞∑

i=j

1
2i

+ 2
∞∑

i=3

1
2i

=
∞∑

j=3

1
2j−1 +

1
2

= 1.

If C′ ∩ S �= ∅, then C′ cannot be optimal, since replacing a node from C′ ∩ S
with v yields a better t-vertex cover—a contradiction to the optimality of C′.
Otherwise, if C′∩S = ∅, replacing an arbitrary node in C′ with v yields another
optimal t-vertex cover, because d = deg(v) is maximal. This contradicts the
assumption in the statement of the lemma.
�

Now we can estimate the success probability for a single call of the algorithm. No-
tice that for a Monte-Carlo algorithm like this, the notion of success probability
replaces the distinct notions of correctness and running time in the deterministic
case.

Lemma 2. On a yes-instance, Algorithm TVC returns true with probability at
least 2−t(7/8)t/3. It always returns false on a no-instance.

Proof. The second statement is easily observed. We show the first statement
by induction on t: Let (G, t, k) be a yes-instance. Except for some special cases
in which the algorithm behaves deterministically, it considers a node v with
maximum degree d ≥ 3. If t ≤ d, the algorithm returns true in any case.

According to Lemma 1, either a maximum degree node v or one of its neigh-
bors belongs to an optimal solution. In the first case, the algorithm guesses
correctly with probability 2−d. By induction, the overall success probability in
this case is at least

2−d · 2−(t−d)(7/8)(t−d)/3 ≥ 2−t(7/8)t/3.

Intuitive Algorithms and t-Vertex Cover 603

Otherwise, v is not part of any optimal solution. There are two subcases to
investigate:

Assume first that there is a degree-two neighbor u of v in some optimal so-
lution C. This implies N(v) ⊆ C, because otherwise C ∪ {v} \ {u} is an opti-
mal solution as well: While retaining the same cardinality as C, it covers the
same edges except for {u, x} with x �= v, which is replaced by {v, u′} for some
u′ ∈ N(v) \ C. The algorithm chooses some node from N(v) with probability
1 − 2−d ≥ 7/8. Using the induction hypothesis, we obtain a lower bound to the
overall success probability of

(7/8) · 2−(t−1)(7/8)(t−1)/3 ≥ 2−t(7/8)t/3.

In the remaining subcase, Lemma 1 guarantees that for some i, 3 ≤ i ≤ d,
there are at least d/2i nodes of degree i in N(v) that belong to some optimal
solution. The probability that the algorithm chooses one of these nodes is at
least (1−2−d)2−i ≥ (7/8)2−i. By induction, the overall success probability is at
least

(7/8)2−i ·2−(t−i)(7/8)(t−i)/3 ≥ 2−t(7/8)t/3.
�

We can now state the following central theorem which establishes our main
result.

Theorem 1. t-Vertex Cover can be solved with failure probability e−n in
O(2.0911tn · (n + m)k) steps.

Proof. Algorithm TVC only takes time O((n + m)k), because there are at most
k recursive calls, each of which takes time O(n+m). By Lemma 2, a single call of
Algorithm TVC fails to find an existing t-vertex cover with probability at most
1 − 2−t(7/8)t/3. After n2t(8/7)t/3 repetitions the failure probability drops to

(
1−2−t(7/8)t/3)n2t(8/7)t/3

< e−n.
�

4 A Problem Kernel for t-Vertex Cover

Kernelization constitutes an important tool in the field of parameterized com-
plexity. If each instance of a problem with parameter k can be reduced to an
instance of size f(k) in polynomial time for some fixed function f , we say that
the problem allows for a problem kernel of that size.

Given the ideas from the previous section, a problem kernel of size O(t3) for
t-Vertex Cover can be developed in a straightforward fashion. Let us first
state the following simple proposition, which will be used several times.

Proposition 1. Let G = (V, E) be a graph with maximum degree d. Then G
contains an independent set of size at least |V |/(d + 1).

604 J. Kneis et al.

To ease the proof of the kernelization theorem, we begin with a lemma regarding
properties of graphs containing only small independent sets of certain degrees.

Lemma 3. Let G = (V, E) be a graph and c, k, t ∈ N, c ≤ t/k − 1. If G
contains at most k independent nodes of degree between c and t/k − 1, then
|V [c, t/k − 1]| ≤ t.

Proof. Assume there are t+1 nodes of degree between c and t/k−1. Proposition 1
then states that k + 1 of these nodes constitute an independent set.

Let us now prove the main result of this section: A small problem kernel for t-
Vertex Cover can be constructed efficiently. The proof is based on two crucial
ideas. Firstly, if there are many nodes of relatively high degree, the input cannot
be a no-instance. Secondly, if there are many nodes of relatively low degree,
many of them can be dropped due to an equivalence argument.

Theorem 2. Any instance of t-Vertex Cover can be reduced to a kernel of
size at most 2t3 + 4t2 + 3t in linear time.

Proof. The problem is trivial for k ≥ t. Given a connected graph G = (V, E)
and k, t ∈ N, 1 ≤ k < t, we proceed as follows. Note that all the operations
employed take linear time.

There are three cases in which we may replace G by a trivial yes-instance.
Firstly, if G contains a node v of degree t or more, then v alone forms a t-vertex
cover. Secondly, if |V [t/k + k, t− 1]| ≥ k, then any k nodes from V [t/k + k, t− 1]
constitute a t-vertex cover: Since their degrees sum up to t + k2 and at most(
k
2

)
edges can be incident to two of them, these nodes cover at least t edges.

Thirdly, if |V [t/k, t/k + k − 1]| ≥ t + k2, then Proposition 1 guarantees that
V [t/k, t/k + k − 1] contains an independent set of size at least k. It is easy to
see that this set automatically forms a t-vertex cover.

Otherwise, |V1| < t + k2 and |V2| < k for V1 = V [t/k, t/k + k − 1] and
V2 = V [t/k+k, t−1]. In the following kernelization, we will consider N [N [V1∪V2]]
rather than just N [V1 ∪ V2] in order to preserve the degrees of nodes in the
neighborhood of V1 ∪V2. The above inequalities imply |N [V1]| < (t+k2)(t/k+k)
and |N [V2]| < kt, and consequently |N [V1 ∪ V2]| < t2/k + 3tk + k3 as well as

|N [N [V1 ∪ V2]]| < (t2/k + 3tk + k3)t/k = t3/k2 + 3t2 + tk2.

Define G′ = (V ′, E′) to be the graph obtained from G by removing N [N [V1 ∪
V2]] as well as all isolated nodes. If |V ′[1, t/k − 1]| ≤ t, then G is small enough,
and we may stop immediately. Otherwise, let c ∈ N be the largest number such
that |V ′[c, t/k−1]| > t. In this case, Lemma 3 implies that V ′[c, t/k−1] contains
an independent set I of more than k nodes. By choice of c, the size j of a largest
independent set from V ′[c + 1, t/k − 1] is bounded by k.

Construct a node set V3 by combining V ′[c + 1, t/k − 1] and a set A of k − j
additional nodes from I. We claim that the subgraph GK of G induced by

Intuitive Algorithms and t-Vertex Cover 605

N [N [V1 ∪ V2]] ∪ N [V3] constitutes a problem kernel. Since |V3| ≤ t + k and each
v ∈ V3 has degree at most t/k in G, the number of nodes in GK is bounded by

(t + k)(t/k + 1) + t3/k2 + 3t2 + tk2 = t2/k + 2t + k + t3/k2 + 3t2 + tk2.

It remains to show that GK indeed has a t-vertex cover of size k iff G does.
Clearly, if GK admits such a cover C, then C also consitutes a t-vertex cover of
size at most k for G. On the other hand, if C is such a cover for G, the set

CK = { v ∈ C | deg(v) > c } ∪ { v ∈ C ∩ V3 | deg(v) = c} ∪ A

constitutes a t-vertex cover of size at most k for GK :
By construction, there are no edges between A and CK \ A in G or GK .

Moreover, A is an independent set in G and GK . Let B = C \ CK . Since A
contains |B| independent nodes of degree c and deg(v) ≤ c for each v ∈ B,
replacing B with A does not decrease the number of covered edges.
�

Note that only O(t2) of the nodes in the kernel have high degrees. In fact,
the construction could easily be modified to output only O(t2) nodes of degree
greater than one. An f(n)-time algorithm for t-Vertex Cover that processes
nodes of degree one in an adequate way would thus only take f(t2) steps on
the problem kernel. More precisely, it only makes sense to choose a node of
degree one if the maximum degree is one as well. In the case of our algorithm,
preprocessing the input by a reduction to its problem kernel yields the following
runtime bound:

Theorem 3. We can solve t-Vertex Cover with failure probability at most p
in O(2.0911tt4 ln(1/p) + n + m) steps.

Proof. First construct a problem kernel G′ with t3 nodes in linear time. Note
that there are at most t4 edges as each node has degree less than t. Then call
Algorithm TVC ln(1/p)2t(8/7)t times on G′.
�

5 Concluding Remarks

We argued for the concept of intuitive algorithms using the example of t-Vertex
Cover. The resulting randomized algorithm is rather simple and has a running
time of O(2.0911tpoly(n)), improving vastly over previous bounds. It remains
an open question whether our algorithm can be derandomized without a large
computational overhead. Whereas rather sophisticated derandomization meth-
ods have been developed in earlier scholarship, none of them seems to be appli-
cable in this case. This poses the question as to whether randomization should
be considered more than merely a design tool. In fact, we believe that the use
of probabilistic methods can be justified from the practical viewpoint of actual
performance as well.

606 J. Kneis et al.

References

1. N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple constructions of almost k-
wise independent random variables. Journal of Random structures and Algorithms,
3(3):289–304, 1992.

2. N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(4):
844–856, 1995.

3. R. Balasubramanian, M. R. Fellows, and V. Raman. An improved fixed parameter
algorithm for vertex cover. Information Processing Letters, 65(3):163–168, 1998.

4. R. Beigel. Finding maximum independent sets in sparse and general graphs. In
Proc. of 10th SODA, pages 856–857, 1999.

5. M. Blser. Computing small partial coverings. Information Processing Letters,
85:327–331, 2003.

6. N. H. Bshouty and L. Burroughs. Massaging a linear programming solution to give
a 2-approximation for a generalization of the vertex cover problem. In M. Morvan,
C. Meinel, and D. Krob, editors, Proc. of 15th STACS, number 1373 in LNCS,
pages 298–308. Springer, 1998.

7. L. Cai, S. M. Chan, and S. O. Chan. Random separation: A new method for solving
fixed-cardinality optimization problems. In Proc. of 2nd IWPEC, number 4169 in
LNCS. Springer, 2006. To appear.

8. L. Cai, S. M. Chan, and S. O. Chan. Random separation: A new method for solving
fixed-parameter problems. Manuscript, 2006.

9. L. Sunil Chandran and F. Grandoni. Refined memorization for vertex cover. In-
formation Processing Letters, 93:125–131, 2005.

10. J. Chen, I. A. Kanj, and W. Jia. Vertex cover: Further observations and further
improvements. Journal of Algorithms, 41:280–301, 2001.

11. J. Chen, I. A. Kanj, and G. Xia. Simplicity is beauty: Improved upper bounds for
vertex cover. Technical Report TR05-008, School of CTI, DePaul University, 2005.

12. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
1999.

13. S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:
195–207, 1972.

14. F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: Domination –
A case study. In Proc. of 32d ICALP, LNCS. Springer, 2005.

15. J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of generalized
vertex cover problems. In Proc. of 9th WADS, number 3608 in LNCS, pages 36–48,
Waterloo, Canada, 2005. Springer.

16. D. S. Hochbaum. The t-vertex cover problem: Extending the half integrality frame-
work with budget constraints. In K. Jansen and D. S. Hochbaum, editors, Proc.
of 1st APPROX, number 1444 in LNCS, pages 111–122. Springer, 1998.

17. K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. In Proc. of 15th
SODA, pages 328–328, 2004.

18. J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Algorithms based on the
treewidth of sparse graphs. In Proc. of 31st WG, number 3787 in LNCS, pages
385–396. Springer, 2005.

19. D. Mölle, S. Richter, and P. Rossmanith. Enumerate and expand: Improved al-
gorithms for connected vertex cover and tree cover. In Proc. of 1st CSR, number
3967 in LNCS, pages 270–280. Springer, 2006.

20. D. Mölle, S. Richter, and P. Rossmanith. A faster algorithm for the Steiner tree
problem. In Proc. of 23rd STACS, number 3884 in LNCS, pages 561–570. Springer,
2006.

Intuitive Algorithms and t-Vertex Cover 607

21. R. Niedermeier and P. Rossmanith. Upper bounds for Vertex Cover further im-
proved. In Proc. of 16th STACS, number 1563 in LNCS, pages 561–570. Springer,
1999.

22. R. Niedermeier and P. Rossmanith. On efficient fixed parameter algorithms for
Weighted Vertex Cover. Journal of Algorithms, 47:63–77, 2003.

23. E. Petrank. The hardness of approximation: Gap location. Computational Com-
plexity, 4:133–157, 1994.

24. V. Raman and S. Saurabh. Triangles, 4-cycles and parameterized (in-) tractability.
In Proc. of 10th SWAT, number 4059 in LNCS. Springer, 2006. To appear.

25. O. Reingold. Undirected ST-connectivity in Log-Space. In Proc. of 37th STOC,
pages 376–385, 2005.

26. J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms,
7:425–440, 1986.

27. U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In Proc. of 40th FOCS, pages 410–414, 1999.

28. A. Scott and G. B. Sorkin. Faster algorithms for Max-CUT and Max-CSP, with
polynomial expected time for sparse instances. In Proc. of 7th RANDOM, number
2764 in LNCS, pages 382–395. Springer, 2003.

29. D. A. Spielman and S.-H. Teng. Smoothed analysis: Why the simplex algorithm
usually takes polynomial time. In Proc. of 33d STOC, pages 296–305, 2001.

30. R. Williams. A new algorithm for optimal constraint satisfaction and its implica-
tions. In Proc. of 31st ICALP, number 3142 in LNCS, pages 1227–1237. Springer,
2004.

Politician’s Firefighting

Allan E. Scott1,�, Ulrike Stege1,��, and Norbert Zeh2,���

1 Department of Computer Science, University of Victoria, Victoria, Canada
{aescott, stege}@cs.uvic.ca

2 Faculty of Computer Science, Dalhousie University, Halifax, Canada
nzeh@cs.dal.ca

Abstract. Firefighting is a combinatorial optimization problem on
graphs that models the problem of determining the optimal strategy to
contain a fire and save as much from the fire as possible. We introduce
and study a new version of firefighting, Politician’s Firefighting, which
exhibits more locality than the classical one-firefighter version. We prove
that this locality allows us to develop an O(bn)-time algorithm on trees,
where b is the number of nodes initially on fire. We further prove that
Politician’s Firefighting is NP-hard on planar graphs of degree at most
5. We present an O(m + k2.54k)-time algorithm for this problem on gen-
eral graphs, where k is the number of nodes that burn using the optimal
strategy, thereby proving that it is fixed-parameter tractable. We present
experimental results that show that our algorithm’s search-tree size is in
practice much smaller than the worst-case bound of 4k.

1 Introduction

Firefighting can be thought of as a puzzle game where the player’s goal is to
save nodes in a graph from an advancing fire. Given a graph G = (V,E) and a
set B0 ⊂ V of initially burning nodes, the game proceeds in rounds, numbered
0 through r. In each round, first the fire advances and then the player places
firefighters on one or more nodes that are neither burning nor occupied (by a
firefighter). Once a node is burning or occupied, it stays that way for the rest of
the game. Round 0 is special; all nodes inB0 are set on fire. In subsequent rounds,
the fire spreads from each burning node to every adjacent unoccupied node. The
game ends when the fire can no longer spread, that is, when all neighbours of
burning nodes are burning or occupied. Viewed as an optimization problem,
the player’s goal is to find a firefighter-placement strategy that minimizes the
number of burning nodes at the end of the game. The problem can be seen as a

� Research supported by a University of Victoria fellowship and a grant of the
Natural Sciences and Engineering Research Council of Canada, grantholder Ulrike
Stege.

�� Research supported by the Natural Sciences and Engineering Research Council of
Canada.

��� Research supported by the Natural Sciences and Engineering Research Council of
Canada and the Canadian Foundation for Innovation.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 608–617, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Politician’s Firefighting 609

model of the spread of forest fires or diseases in social networks, which motivated
the initial study of this problem [3, 4, 7].

The classical version of firefighting, introduced in [4], allows the player to
place one firefighter on an arbitrary node in each round, so long as the node is
not yet occupied or burning. Finding an optimal strategy under these conditions
is NP-hard even on trees of degree three and with |B0| = 1, provided that the
node in B0 has degree three [1]. A simple greedy algorithm produces an optimal
strategy on binary trees. On arbitrary trees, the greedy strategy that always
protects the heaviest threatened subtree produces a 2-approximation w.r.t. the
number of saved nodes [5]. In [8], algorithms for containing the fire on 2- and
3-dimensional grids are studied. Apart from the results cited here, we are not
aware of any algorithmic results for this problem. What makes this version of
firefighting hard is the complete freedom where to place the firefighter, that is,
the non-local nature of the problem.

In this paper we study Politician’s Firefighting, a more localized version of
the problem: In each round, we are allowed to deploy as many firefighters as
there are burning nodes (politicians allocate resources according to how dire the
situation is). However, if a node x “generates” a firefighter by being on fire, this
firefighter can only be placed on an unoccupied, non-burning neighbour of x. In
other words, we can use only as many firefighters as there are burning nodes
with unoccupied non-burning neighbours. It seems more realistic to allow more
than one firefighter to be placed in each round because typically not just one fire
brigade fights a forest fire. The constraints imposed on where firefighters may
be placed reflect the political reality that politicians and local inhabitants would
prefer to see their fire brigade protect them or their neighbours, rather than
somebody miles away. This constraint can also be seen as a logistic one since
fire trucks travel at a finite speed. Another motivation for the locality is that,
when using vaccination to contain the spread of a disease, one usually vaccinates
persons interacting with infected persons before using a much wider “radius” of
vaccination, particularly if vaccine is expensive or hard to obtain.

We prove in Section 2 that this problem can be solved in O(bn) time on
trees, where b = |B0|. In Section 3, we show that Politician’s Firefighting is
NP-hard even on planar graphs of degree at most 5. In Section 4, we present an
O(m+ k2.54k)-time algorithm for general graphs, which shows that the problem
is fixed-parameter tractable when parameterized by k, the number of nodes that
is allowed to burn. The worst-case bound on the size of the search tree in our
algorithm is tight. However, experimental results discussed in Section 4 indicate
that, in practice, the search-tree size is much smaller.

2 Trees

We start by arguing that the locality of Politician’s Firefighting helps to solve it
in polynomial time on trees. We choose an arbitrary node in B0 as the root of
the tree. For every node v, let Tv be the subtree rooted in v, let pv be v’s parent,
and let Cv be the set of v’s children. Our strategy is to consider all possible cases
how a node v may be set on fire or saved and, based on their analysis, develop

610 A.E. Scott, U. Stege, and N. Zeh

v

P (v)

v (r)

(r)

Op(v, r)

v (r)

(r)

Oc(v, r)

v (r)

(r − 1)

B×
p (v, r)

v (r)

(r − 1)

(r)

B↓
p(v, r)

v (r)

(r − 1)

B×
c (v, r)

v (r)

(r − 1) (r)

B↓
c (v, r)

Fig. 1. The different states of a node v and the possible choices how v can attain
this state. Burning nodes are black, occupied nodes are white with a black dot inside,
and unoccupied non-burning nodes are white. The state of a gray node is unspecified.
Labels in parentheses show when the nodes attain the shown state.

a recurrence for the number of nodes that burn in Tv in each case. This allows
us to use dynamic programming to determine the number of nodes that burn
using the optimal strategy (The corresponding strategy is then easily found). A
straightforward evaluation of these recurrences leads to a running time of Θ(n4)
in the worst case. We then discuss how to reduce the running time to O(bn).

2.1 The Basic Algorithm

Consider a node v. At the end of the game, v is in one of three states: burning,
occupied by a firefighter, or protected ; the latter means that there is no firefighter
on v, but there is a firefighter on every path between v and a burning node. A
burning node v either belongs to B0 or is set on fire by one of its neighbours in
some round r. We distinguish whether it is pv or a child of v that sets v on fire. We
further distinguish whether or not we choose to place v’s firefighter on a child of
v in round r+1. Similarly, an occupied node has a firefighter placed on it in some
round r. This firefighter is available because pv or a child of v catches fire in round
r. We use the following notation to denote the number of nodes that burn in Tv in
each of the resulting cases (see Figure 1 for an illustration): P (v) if v is protected;
Op(v, r) and Oc(v, r) if v is occupied in round r; B×c (v, r), B↓c (v, r), B×p (v, r),
and B↓p(v, r) if v is set on fire in round r. Subscripts p and c denote the subcases
when v is set on fire by its parent or a child, respectively, or when the parent’s
or a child’s firefighter is placed on v. Superscripts indicate whether we place v’s
firefighter on one of v’s children (↓) or not (×). In addition, we use the following
notation: Bp(v, r) = min(B↓p(v, r), B×p (v, r)), Bc(v, r) = min(B↓c (v, r), B×c (v, r)),
O∗c (v, r) = min1≤r′≤r Oc(v, r′), B∗c (v, r) = minr≤r′≤nBc(v, r′), and L(v, r) =
min(Bc(v, r − 1), Bc(v, r), Bc(v, r + 1), O∗c (v, r), Bp(v, r + 1)).

Since |B0| = b, every node v in T can be occupied or set on fire only in b
different rounds, corresponding to the lengths of the paths from v to the nodes
in B0. If node v cannot be set on fire or occupied at time r, we define its
corresponding B··(v, r) or O·(v, r) value to be +∞.

Next we derive a recurrence for B↓c (v, r). Due to lack of space, we only state
the recurrences for the other cases; they are easily obtained using similar, but
simpler, analyses. For technical reasons, we treat every node v ∈ B0 as being
set on fire in round 0 by both an imaginary child and an imaginary parent.
Thus, for v ∈ B0 and r > 0, we have B↓c (v, r) = +∞; for r = 0, we have

Politician’s Firefighting 611

B↓c (v, 0) = 1 + minw∈Cv

(
Op(w, 0) +

∑
w′∈Cv\{w} L(w′, 0)

)
because, after being

set on fire, node v chooses one child w to occupy in round 0; any other child
w′ ∈ Cv \ {w} is then either set on fire by v in round 1, set on fire by a child in
round 0 or 1, or occupied using one of its children’s firefighters in round 0.

For v �∈ B0, node v is set on fire by one of its children, say w1, and again
node v chooses a child w2 ∈ Cv \ {w1} to occupy using v’s firefighter; any other
node w′ ∈ Cv \ {w1, w2} is set on fire by v in round r + 1, set on fire by one of
its own children in round r − 1, r, or r + 1, or occupied by one of its children’s
firefighters no later than round r. This leads to the following recurrence:

B↓c (v, r) = 1 + min
w1,w2∈Cv

w1 �=w2

(
Bc(w1, r − 1) +Op(w2, r) +

∑

w′∈Cv\{w1,w2}
L(w′, r)

)

Using similar analyses, we obtain for v ∈ B0: Oc(v, r) = Op(v, r) = P (v) =
+∞. For r > 0, we have B×c (v, r) = B↓p(v, r) = B×p (v, r) = +∞. For r = 0, we
have B↓p(v, 0) = B↓c (v, 0) and B×c (v, 0) = B×p (v, 0) = 1 +

∑
w∈Cv

L(w, 0). For
v �∈ B0, we obtain

B×c (v, r) = 1 + min
w∈Cv

(
Bc(w, r − 1) +

∑

w′∈Cv\{w}
L(w′, r)

)

B↓p(v, r) = 1 + min
w∈Cv

(
Op(w, r) +

∑

w′∈Cv\{w}
L(w′, r)

)

B×p (v, r) = 1 +
∑

w∈Cv

L(w, r)

Oc(v, r) = min
w∈Cv

(
B×c (w, r) +

∑

w′∈Cv\{w}
min(P (w′), B∗c (w′, r), O∗c (w′, n))

)

Op(v, r) =
∑

w∈Cv

min(P (w), B∗c (w, r), O∗c (w, n))

P (v) =
∑

w∈Cv

min(O∗c (w, n), P (w))

Each of these recurrences for a given node v depends only on values of the
recurrences on children of v. Hence, they can be computed bottom-up. Since
the game ends after at most n rounds, we must consider up to n different time
values. The most expensive recurrence to evaluate is B↓c (v, r), where we must
consider all pairs of children (w1, w2) of v. The number of these pairs, summed
over all nodes in T , is Θ(n2) in the worst case. For each pair, we spend linear
time to evaluate the expression inside the outer parentheses, leading to a Θ(n3)
bound per round. Summing over all n rounds gives a running time of Θ(n4).

2.2 A Faster Algorithm

To reduce the running time to O(n2), we need to evaluate every recurrence for a
given pair (v, r) in O(1+|Cv|) time. This is easy for P (v), Op(v, r), and B×p (v, r).

612 A.E. Scott, U. Stege, and N. Zeh

Next we discuss in detail how to achieve this bound for evaluating B↓p(v, r); the
same ideas also speed up the computation of the other recurrences Oc(v, r),
B↓c (v, r), and B×c (v, r). If we precompute the sum L∗(v, r) =

∑
w∈Cv

L(w, r),
which takes O(|Cv |) time, we can rewrite the recurrence for B↓c (v, r) as

B↓c (v, r) = 1 +

min
w1,w2∈Cv

w1 �=w2

(
L∗(v, r) +Bc(w1, r − 1)− L(w1, r) +Op(w2, r)− L(w2, r)

)
,

which can be evaluated in O(1 + |Cv|2) time. Looking more closely at the
rewritten form of B↓c (v, r), we observe that B↓c (v, r) is minimized if B′(w1, r) =
Bc(w1, r−1)−L(w1, r) and B′′(w2, r) = Op(w2, r)−L(w2, r) are minimized, ex-
cept that w1 and w2 cannot be the same node. Thus, if w′1 and w′′1 are the
two children of v that minimize B′(w, r) and w′2 and w′′2 are the two chil-
dren of v that minimize B′′(w, r), we have three cases: Assume w.l.o.g. that
B′(w′1, r) ≤ B′(w′′1 , r) and B′′(w′2, r) ≤ B′′(w′′2 , r). If w′1 �= w′2, let w1 = w′1 and
w2 = w′2. If w′1 = w′2 and B(w′′1 , r) − B(w′1, r) ≤ B(w′′2 , r) − B(w′2, r), then let
w1 = w′′1 and w2 = w′2; otherwise, let w1 = w′1 and w2 = w′′2 .

Nodes w′1, w
′′
1 , w

′
2, and w′′2 can be found in O(|Cv |) time. Once this is done,

B↓c (v, r) can be evaluated in constant time because one of the three combinations
(w′1, w′2), (w′1, w′′2), (w′′1 , w′2) minimizes B↓c (v, r). Hence, each recurrence can be
evaluated in O(1 + |Cv|) time per pair (v, r), and the total cost of evaluating the
recurrences over all nodes is O(n) per time value r. Since we have to consider
only 1 ≤ r ≤ n, the total running time is O(n2).

To reduce the running time to O(bn), we observe that every node can be set
on fire or occupied by a neighbour at only b different times, determined by the
distances from v to the nodes in B0. Thus, we must evaluate each recurrence for
only b different time values for each node in T ; we define every value that is not
computed explicitly to be +∞. This reduces the running time to O(bn).

Theorem 1. Politician’s Firefighting can be solved in O(bn) time on a tree with
n nodes of which b are initially on fire.

3 NP-Hardness on Planar Graphs

Theorem 2. Politician’s Firefighting is NP-hard, even on planar graphs with
vertices of degree at most five and only one node initially on fire.

We prove NP-hardness of Politician’s Firefighting by reduction from Planar
Vertex Cover [2]. In particular, given a planar graph G, we construct another
planar graph G′ with nodes1 of degree at most 5, and a set B0 = {ρ}, where ρ
is an almost arbitrary node of G′, such that G has a vertex cover of size k if and
only if G′ has a firefighting strategy that burns only “a few” nodes.
1 To avoid confusion, we refer to the vertices of G as “vertices” and to the vertices of

G′ as “nodes”.

Politician’s Firefighting 613

xe ye

ef eg

ex,1

ex,2

ex,3 ey,1

ey,2

ey,3

Pe,x Pe Pe,y

x′
e y′

e

xf fx

(a) (b)

Fig. 2. (a) The edge widget Ee for the edge e = xy. (b) A connector.

The construction ofG′ has the following intuition: First we replace the vertices
and edges of G with subgraphs called vertex widgets and edge widgets. A vertex
widget is built such that if any one of its nodes burn, n3 nodes burn in the
widget. An edge widget is built such that letting one or both of two special
incineration nodes burn sacrifices n5 nodes, unless we let at least one of the
vertex widgets corresponding to the endpoints of the edge burn as well. We
complete the construction by superimposing two additional graph structures on
the vertex and edge widgets. The first one allows the fire to spread from ρ to all
incineration nodes, and is built so that we cannot prevent the spread unless we
sacrifice n5 nodes elsewhere. Thus, if the size of a minimum vertex cover of G is
k, at least n5 nodes in G′ will burn unless we let k vertex widgets in G′ burn,
which means that roughly kn3 nodes burn. The second graph structure allows
the fire to spread to the k vertex widgets corresponding to vertices in a vertex
cover, without using nodes in edge widgets.

We use penalizers to ensure that letting certain nodes in G′ burn causes many
more nodes to burn. These are complete ternary trees whose leaves are at depth
d, for some d > 0. When the root of a penalizer P catches fire, the optimal
strategy burns a complete binary subtree of P of height d. Thus, we have

Lemma 1. If the root of a penalizer P of height d catches fire, the optimal
strategy burns 2d+1 − 1 nodes in P .

We call a penalizer small if 2d+1 − 1 = n3, and big if 2d+1 − 1 = n5. Both are
of polynomial size: small penalizers have size O(n3 log 3), big penalizers have size
O(n5 log 3). We say a node v of G′ is adjacent to a penalizer P if v is adjacent to
the root of P and no other node in P is adjacent to a node in G′ − P .

Next we define the different widgets that compriseG′ and discuss how they are
connected. For the construction, we assume that we are given a planar embedding
of G. From the construction, it will be obvious that G′ is planar and that every
node in G′ has degree at most five.

Vertex widgets. Let x be a vertex of G, and let e1, f1, . . . , ed, fd be the edges
and faces incident to x, in clockwise order. The vertex widget Vx consists
of a simple cycle (xe1 , xf1 , . . . , xed

, xfd
). Each node of this cycle is adjacent

to a small penalizer, except xe1 , which is adjacent to two small penalizers.

614 A.E. Scott, U. Stege, and N. Zeh

Note that, once a single node of the cycle burns we have two choices: let the
fire spread around the cycle and protect one penalizer per node, or protect
a cycle-neighbour of a burning node. In the former case, we let the second
penalizer attached to xe1 burn, incurring a penalty of n3 burning nodes. In
the latter case, the penalizers attached to the node whose cycle-neighbour
we protect burn. This incurs a penalty of at least n3 burning nodes.

Edge widgets. Let e be an edge with endpoints x and y and incident faces f
and g. In G′, edge e is represented by an edge widget Ee, shown in Figure 2a.
The endpoints xe and ye are shared between the edge widget Ee and the
vertex widgets Vx and Vy; that is, the endpoints of Ee are the same nodes
as the nodes with the same names in Vx and Vy. All penalizers in the edge
widget are big. We argue later that we have to let both ef and eg burn. We
call ef and eg incineration nodes, as we cannot protect all three penalizers
threatened by these two nodes unless we let at least one of the nodes x′e and
y′e burn, which can be achieved only by letting Vx or Vy (or both) burn.

Face widgets. G′ contains one face widget Ff per face f of G. Similar to
a vertex widget, the face widget for a face f with incident vertices and
edges x1, e1, . . . , xd, ed, in this order clockwise around f , consists of a cycle
(fx1 , fe1 , . . . , fxd

, fed
), each of whose nodes has an attached penalizer; but

this time the penalizers are big. Once one node in Ff catches fire, the only
way we can prevent n5 nodes from burning is to let the fire spread around
Ff , while protecting the roots of all penalizers in Ff .

The last two widgets build two additional graph structures within G′. The
first allows us to cheaply set fire to vertex widgets corresponding to vertices in a
vertex cover of G. The second ensures that every node ef or eg in an edge widget
burns eventually, forcing us to set fire to at least one vertex widget incident to
each edge widget in order to save all penalizers in the edge widget.

Channels. A channel is a path of length 42n. Each of its internal nodes has a
big penalizer attached to it. The first endpoint of the channel belongs to a
face widget; the second endpoint belongs to an edge widget. More precisely,
for every face f and every edge e on its boundary, there is a channel in G′

whose endpoints are fe and ef . Note that this implies that, once one of the
endpoints of the channel burns, we have to protect its big penalizer inside
the face or edge widget. This sets fire to its neighbour inside the channel.
In order to prevent n5 nodes from burning in the channel, we now have to
let the fire spread along the channel path and, for every node on the path,
protect its adjacent penalizer.

Connectors. A connector is used to let the fire spread cheaply between face
and vertex widgets. For every face f and every vertex x on its boundary,
there is a connector with endpoints xf and fx, which belong to Vx and Ff ;
see Figure 2b. For each connector, if fx burns, we have two choices: Either
we let the fire spread along the connector, thereby forcing all cycle nodes in
Vx to burn, or we let the fire spread to the middle node and then stop the
fire by placing this node’s firefighter on the neighbour of xf in the connector.

Politician’s Firefighting 615

To finish the construction of the firefighting instance, we choose an arbitrary
non-penalizer node ρ in a face widget and define B0 = {ρ}. The following lemma
proves that connectors and face widgets allow us to cheaply and quickly set fire
to the appropriate vertex widgets in G′. Lemma 3 then uses this fact to prove
that G has a small vertex cover if and only if G′ has a firefighting strategy that
lets few nodes burn.

Lemma 2. Let V ′ = {x1, . . . , xk} be a vertex cover of G. Then G′ contains a
connected subgraph containing only nodes from face widgets, connector widgets,
and vertex widgets Cx1 , . . . , Cxk

. This graph includes ρ and has diameter at most
42n− 84.

Lemma 3. Graph G has a vertex cover of size k if and only if G′ has a strategy
that burns at most kn3 + 252n2 − 432n− 144 nodes.

Proof sketch. We prove the “only if” part; the “if” part can be proved using
similar arguments. Let V ′ = {x1, . . . , xk} be a vertex cover of size k, and let H
be a subgraph of G′ as in Lemma 2. Then, due to the diameter bound of H ,
we can make sure that every node in H burns by time 42n− 84. Moreover, we
can protect all penalizers incident to nodes in H , except one small penalizer per
vertex widget. Thus, we let kn3 nodes in penalizers burn.

Now observe that an incineration node in an edge widget Ee for an edge e = xy
catches fire no earlier than round 42n, unless we let the fire spread to this node
from xe or ye. In summary, for every edge widget Ee, at least one of xe and
ye catches fire at least 84 rounds before ef or eg can be set on fire through a
channel. We sketch here what happens if only xe burns, that is, y �∈ V ′. The
other two cases are similar.

In this case, we let the fire spread from xe to x′e and ex,1, using xe’s firefighter
to protect its incident penalizer inside Vx. In the next time step, we use the
firefighters of x′e and ex,1 to protect the adjacent penalizers, letting ex,2 burn.
Next we let the fire spread from ex,2 to ex,3 and then on to ef , eg, ey,3, and ey,2.
Each of these nodes has only one unprotected adjacent penalizer by the time
it catches fire because x′e has already protected Pe,x and then ef protects Pe
before eg catches fire. Thus, each node can use its firefighter to protect the one
penalizer it threatens. Finally, we use ey,2’s firefighter to protect ey,1, thereby
preventing the fire from spreading into Vy.

To obtain the claimed bound on the total number of nodes that burn, we
count the total number of non-penalizer nodes in vertex widgets, face widgets,
channels, and connectors, and add the kn3 nodes that burn in small penalizers
in the k vertex widgets Vx1 , . . . ,Vxk

. �	

4 Fixed-Parameter Tractability on General Graphs

We present a bounded search-tree algorithm that solves Politician’s Firefight-
ing in O(m + k2.54k) time. Rather than deciding an entire round at once, our
algorithm is based on the idea of choosing a single threatened node v (i.e., a non-
burning node adjacent to a burning node), and branching recursively on two

616 A.E. Scott, U. Stege, and N. Zeh

cases: place a firefighter on v, or let v burn. However, there are two problems
that must be addressed for the algorithm to work.

The first problem arises because we decouple the recursion from the rounds.
Specifically, we have to track the set of nodes threatened from the beginning of
the round since we place fires during the round rather than at the beginning
of the next round. Otherwise, new nodes would become threatened during the
round as we place fires, which would spread fires indiscriminately.

The other problem is that this approach creates illegal firefighter placements,
since the branching step does not associate firefighters with fires. To overcome
this, before adding a node v to our set F of nodes to be occupied by firefighters,
we check the size of a maximum matching between the nodes in F ∪ {v} and
the nodes in B. If there is a matching that includes every vertex in F ∪ v, then
every firefighter can be matched to a unique fire, so putting a firefighter on v
does not create an illegal placement. If we delete the edges between two burning
nodes or two firefighters, the subgraph induced by B ∪F ∪ v is bipartite with at
most 2k vertices and k2 edges. A maximum matching in a bipartite graph can
be computed in O(

√
nm) time [6], or in this case in O(k2.5) time.

Algorithm politiciansFirefighting(V,E,B, F, T, k)
if k < 0 then return false
if T is empty then
T ← {v ∈ V \ (F ∪B) : v is adjacent to a node in B}
if T is still empty then return true
if |T |− max match(B, T,E) > k then

return false (more than k fires will spawn this round)
Choose any v ∈ T
if max match(B,F ∪ {v}, E) = |F |+ 1 and

politiciansFirefighting(V,E,B, F ∪ {v}, T \ {v}, k) then return true
return politiciansFirefighting(V,E,B ∪ {v}, F, T \ {v}, k − 1)

Algorithm politiciansFirefighting runs in time O(m + k2.54k), which can be
verified as follows. The height of the search tree is bounded by 2k: Overall we
cannot let more than k nodes burn; furthermore we cannot place more than k
firefighters because every fire gives us one firefighter to place. This results in a
search-tree size of at most 22k = 4k nodes.2 The time per node is dominated by
the cost of procedure max match, which computes a maximum matching for a
given bipartite graph and takes O(k2.5) time.

We have implemented our algorithm to measure the average search-tree size in
practice. Our experimental results indicate that, although the size of our search
tree is 4k in the worst-case, in practice the running times are much better.

For five different densities, we tested 1000 random (connected) graphs from
Gn,p where n is the number of nodes and p is the probability of any given edge
2 This worst-case search-tree size for our algorithm is indeed tight up to a polynomial

factor. If the number of threatened nodes is exactly twice the number of burning
neighbours, the number of legal firefighter placements that must be generated is

≥ 22b

2b
, which is greater than x2b for any x < 2 and sufficiently large b.

Politician’s Firefighting 617

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 3 5 7 9 11 13 15 17 19 21 23
k

B
a
s
e

p = 0.04
p = 0.05
p = 0.06
p = 0.07
p = 0.08

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 3 5 7 9 11 13 15 17 19 21 23

k

B
a
s
e

n = 100, p = 0.06
n = 500, p = 0.012
n = 1000, p = 0.006

Fig. 3. Left: search-tree size for n = 100, k ≤ 25. Base refers to the x in our xk search
tree size. Right: search-tree sizes for n = 100, 500, 1000, k ≤ 25.

occuring. As shown in Figure 3 (left), running time decreases as graph density
increases. This is likely due to nodes in the graph burning more quickly, causing
the algorithm to reach a no-answer sooner. Therefore, we concentrated on sparse
graphs. We also checked several larger test cases, but as Figure 3 (right) shows,
the number of search-tree nodes actually decreases slightly as n increases and
relative density is maintained.

References

1. S. Finbow, A. King, G. MacGillivray, and R. Rizzi. The firefighter problem for
graphs of maximum degree three. In Proceedings of the European Conference ond
Combinatorics, Graph Theory and Applications, 2003.

2. M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete problems.
In Proceedings of the 6th ACM Symposium on the Theory of Computing, pages
47–63, 1974.

3. S. G. Hartke. Graph-Theoretic Models of Spread and Competition. PhD thesis,
Rutgers University, 2004.

4. B. Hartnell. Firefighter! an application of domination, 1995. Presentation at the
24th Manitoba Conference on Combinatioral Mathematics and Computing.

5. B. Hartnell and Q. Li. Firefighting on trees: How bad is the greedy algorithm?
Congressus Numerantium, 145:187–192, 2000.

6. J. E. Hopcroft and R. M. Karp. A n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2:225–231, 1973.

7. F. Roberts Challenges for discrete mathematics and theoretical computer science
in the defense against bioterrorism, pages 1–34. SIAM Frontiers in Applied Mathe-
matics. 2003.

8. P. Wang and S. Moeller. Fire control in graphs. Journal of Combinatorial Mathe-
matics and Combinatorial Computing, 41:19–34, 2002.

Runtime Analysis of a Simple Ant Colony

Optimization Algorithm

Extended Abstract

Frank Neumann1 and Carsten Witt2,�

1 Institut für Informatik, CAU Kiel, 24098 Kiel, Germany
fne@informatik.uni-kiel.de

2 FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund, Germany
carsten.witt@cs.uni-dortmund.de

Abstract. Ant Colony Optimization (ACO) has become quite popular
in recent years. In contrast to many successful applications, the theo-
retical foundation of this randomized search heuristic is rather weak.
Building up such a theory is demanded to understand how these heuris-
tics work as well as to come up with better algorithms for certain prob-
lems. Up to now, only convergence results have been achieved showing
that optimal solutions can be obtained in finite time. We present the first
runtime analysis of an ACO algorithm, which transfers many rigorous re-
sults on the runtime of a simple evolutionary algorithm to our algorithm.
Moreover, we examine the choice of the evaporation factor, a crucial pa-
rameter in ACO algorithms, in detail for a toy problem. By deriving new
lower bounds on the tails of sums of independent Poisson trials, we de-
termine the effect of the evaporation factor almost completely and prove
a phase transition from exponential to polynomial runtime.

1 Introduction

The analysis of randomized search heuristics with respect to their runtime is a
growing research area where many results have been obtained in recent years.
This class of heuristics contains well-known approaches such as Randomized Lo-
cal Search (RLS), the Metropolis Algorithm (MA), Simulated Annealing (SA),
and Evolutionary Algorithms (EAs). Such heuristics are often applied to prob-
lems whose structure is not known or if there are not enough resources such
as time, money, or knowledge to obtain good specific algorithms. It is widely
acknowledged that a solid theoretical foundation for such heuristics is needed.

Some general results on the runtime of RLS can be found in Papadimitriou,
Schäffer and Yannakakis (1990). The graph bisection problem has been subject
to analysis of MA (Jerrum and Sorkin, 1998), where MA can be seen as SA with
a fixed temperature. For a long time, it was an open question whether there is
a natural example where SA outperforms MA for all fixed temperatures. This
question has recently been answered positively by Wegener (2005) for instances
of the minimum spanning tree problem.
� This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as a part

of the Collaborative Research Center “Computational Intelligence” (SFB 531).

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 618–627, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Runtime Analysis of a Simple Ant Colony Optimization Algorithm 619

In this paper, we focus on another kind of randomized search heuristics,
namely Ant Colony Optimization (ACO). Like EAs, these heuristics imitate
optimization processes from nature, in this case the search of an ant colony for a
common source of food. Solving problems by ACO techniques has become quite
popular in recent years. Developed by Dorigo, Maniezzo and Colorni (1991), they
have shown to be a powerful heuristic approach to solve combinatorial optimiza-
tion problems such as the TSP (see Dorigo and Stützle, 2004, for an overview
on numerous applications). From a theoretical point of view, there are no results
that provide estimates of the runtime of ACO algorithms. Despite interesting
theoretical investigations of models and dynamics of ACO algorithms (Merkle
and Middendorf, 2002; Dorigo and Blum, 2005), convergence results are so far
the only results related to their runtimes. Dorigo and Blum (2005) explicitly
formulate the open problem to determine the runtime of ACO algorithms on
simple problems in a similar fashion to what has been done for EAs.

We solve this problem, starting the analysis of ACO algorithms with respect
to their expected runtimes and success probability after a specific number of
steps. RLS, SA, MA, and simple EAs search more or less locally, and runtime
bounds are often obtained by considering the neighborhood structure of the con-
sidered problem. Considering ACO algorithms, this is different as search points
are obtained by random walks of ants on a so-called construction graph. The
traversal of an ant on this graph is determined by values on the edges which
are called pheromone values. Larger pheromone values correspond to a higher
probability of traversing a certain edge, where the choice of an edge usually fixes
a parameter in the current search space. The pheromone values are updated if a
good solution has been constructed in this random walk. This update depends
on the traversal of the ant and a so-called evaporation factor ρ.

The choice of ρ seems to be a crucial parameter in an ACO algorithm. Using
a large value of ρ, the last accepted solution changes the pheromone values by a
large amount such that there is a large probability of producing this solution in
the next step. In contrast to this, the use of a small evaporation factor leads to a
small effect of the last accepted solution such that an improvement may be hard
to find in the next step. We show that a simple ACO algorithm behaves for very
large values of ρ (namely ρ ≥ 1/3) as the simplest EA called (1+1) EA. This
algorithm has been studied extensively with respect to its runtime on pseudo-
boolean functions f : {0, 1}n → R (see, e. g., Droste, Jansen and Wegener, 2002)
as well as on combinatorial optimization problems. The list of problems where
runtime bounds have been obtained include some of the best-known polynomi-
ally solvable problems such as maximum matchings (Giel and Wegener, 2003)
and minimum spanning trees (Neumann and Wegener, 2004). It should be clear
that we cannot expect such general heuristics to outperform the best-known
algorithms for these mentioned problems. The main aim of such analyses is to
get an understanding how these heuristics work. In the case of NP-hard prob-
lems, one is usually interested in good approximations of optimal solutions. Witt
(2005) has presented a worst-case and average-case analysis of the (1+1) EA for
the partition problem, which is one of the first results on NP-hard problems. All
these results immediately transfer to our ACO algorithm with very large ρ.

620 F. Neumann and C. Witt

After these general results, we consider the effect of the evaporation factor ρ
on the runtime of our ACO algorithm in detail. As proposed in the open problem
stated by Dorigo and Blum (2005), we examine the simplest non-trivial pseudo-
boolean function called OneMax and analyze for the first time for which choices
of ρ the runtime with high probability is upper bounded by a polynomial and for
which choices it is exponential. We observe a phase transition from exponential to
small polynomial runtime when ρ crosses the threshold value 1/n. Larger values
of ρ imply that the expected function value of a new solution is determined
by the function value of the best seen solution. Then an improvement will be
achieved after an expected polynomial number of steps. In the case of smaller ρ,
an improvement does not increase the expected function value sufficiently. Here
exponential lower bounds are obtained by showing that there is a large gap
between the expected value and the best-so-far function value. Both the proof
of the upper and the lower runtime bound contain new analytical tools to lower
bound the tail of a sum of independent trials with different success probabilities.
The new tools may be of independent interest in other probabilistic analyses.

In Section 2, we introduce the simple ACO algorithm which we will consider.
We investigate its relation to the (1+1) EA in Section 3 and transfer the results
on this EA to our algorithm. In Section 4, we investigate the choice of the
evaporation factor ρ for the function OneMax in great detail and finish with
some conclusions. Several proofs have been omitted in this extended abstract. A
technical report with full proofs is available (Neumann and Witt, 2006).

2 The Algorithm

Gutjahr (2003) has considered a graph-based ant system and investigated un-
der which conditions such an algorithm converges to an optimal solution. We
consider a simple graph-based ant system metaheuristic that has been inspired
by this algorithm. Such a heuristic produces solutions by random walks on a
construction graph. Let C = (V,E) be the construction graph with a desig-
nated start vertex s and pheromone values τ on the edges. Starting at s, an
ant traverses the construction graph depending on the pheromone value using
Algorithm 1. Assuming that the ant is at vertex v, the ant moves to a successor
w of v, where w is chosen proportionally to the pheromone values of all non-
visited successors of v. The process is iterated until a situation is reached where
all successors of the current vertex v have been visited.

Algorithm 1 (Construct(C, τ))
1.) v:=s, mark v as visited.
2.) While there is a successor of v in C that has not been visited:
a.) Let Nv be the set of non-visited successors of v and T :=

∑
(v,w)|w∈Nv

τ(v,w).
b.) Choose one successor w of v where the probability of selection of any fixed

u ∈ Nv is τ(v,u)/T .
c.) Mark w as visited, set v := w and go to 2.).

3.) Return the solution x and the path P (x) constructed by this procedure.

Runtime Analysis of a Simple Ant Colony Optimization Algorithm 621

Based on this construction procedure, solutions of our simple ACO algorithm
(see Algorithm 2) called 1-ANT are constructed. In the initialization step, each
edge gets a pheromone value of 1/|E| such that the pheromone values sum up
to 1. After that, an initial solution x∗ is produced by a random walk on the
construction graph and the pheromone values are updated with respect to this
walk. In each iteration, a new solution x is constructed and the pheromone values
are updated if this solution is not inferior to the currently best solution x∗. We
formulate our algorithm for maximization problems although it can be easily
adapted to minimization.

Algorithm 2 (1-ANT)
1.) Set τ(u,v) = 1/|E| for all (u, v) ∈ E.
2.) Compute x (and P (x)) using Construct(C, τ).
3.) Update(τ, P (x)) and set x∗ := x.
4.) Compute x (and P (x)) using Construct(C, τ).
5.) If f(x) ≥ f(x∗), Update(τ, P (x)) and set x∗ := x.
6.) Go to 4.).

For theoretical investigations, it is common to have no termination condition
in such an algorithm. One is interested in the random optimization time which
equals the number of constructed solutions until the algorithm has produced an
optimal search point. Usually, we try to bound the expected value of this time.

We take a general view and consider optimization for pseudo-boolean goal
functions f : {0, 1}n → R for n ≥ 3 using the canonical construction graph in
our setting, Cbool = (V,E) (see Figure 1) with s = v0. In the literature, this graph
is also known as Chain (Gutjahr, 2006). Optimizing bitstrings of length n, the
graph has 3n+1 vertices and 4n edges. The decision whether a bit xi, 1 ≤ i ≤ n,
is set to 1 is made at node v3(i−1). In case that the edge (v3(i−1), v3(i−1)+1) is
chosen, xi is set to 1 in the constructed solution. Otherwise xi = 0 holds. After
this decision has been made, there is only one single edge which can be traversed
in the next step. In case that (v3(i−1), v3(i−1)+1) has been chosen, the next edge is
(v3(i−1)+1, v3i), and otherwise the edge (v3(i−1)+2, v3i) will be traversed. Hence,
these edges have no influence on the constructed solution and we can assume
τ(v3(i−1),v3(i−1)+1) = τ(v3(i−1)+1 ,v3i) and τ(v3(i−1) ,v3(i−1)+2) = τ(v3(i−1)+2,v3i) for 1 ≤
i ≤ n. We call the edges (v3(i−1), v3(i−1)+1) and (v3(i−1)+1, v3i) 1-edges and the
other edges 0-edges. The edges (v3(i−1), v3(i−1)+1) and (v3(i−1), v3(i−1)+2) as well
as (v3(i−1)+1, v3i) and (v3(i−1)+2, v3i) are called complementary to each other.

The pheromone values are chosen such that at each time
∑

(u,v)∈E τ(u,v) = 1
holds. In addition, it seems to be useful to have bounds on the pheromone values
(see, e. g., Dorigo and Blum, 2005) to ensure that each search point has a pos-
itive probability of being chosen in the next step. We restrict each τ(u,v) to the
interval

[1
2n2 ,

n−1
2n2

]
and ensure

∑
(u,·)∈E τ(u,·) = 1

2n for u = v3i, 0 ≤ i ≤ n − 1,
and

∑
(·,v) τ(·,v) = 1

2n for v = v3i, 1 ≤ i ≤ n. This can be achieved by normalizing
the pheromone values after an update and replacing the current value by 1

2n2 if
τ(u,v) <

1
2n2 and by n−1

2n2 if τ(u,v) > n−1
2n2 holds. Depending on whether edge (u, v)

622 F. Neumann and C. Witt

. . .v0

v1

v2

v3

v4

v5

v6

v3(n−1)+1

v3n

x1 x2 xn

v3(n−1)

v3(n−1)+2

Fig. 1. Construction graph for pseudo-boolean optimization

is contained in the path P (x) of the accepted solution x, the pheromone values
are updated to τ ′ in the procedure Update(τ, P (x)) as follows:

τ ′(u,v) = min
{

(1− ρ) · τ(u,v) + ρ

1− ρ+ 2nρ
,
n− 1
2n2

}
if (u, v) ∈ P (x)

and

τ ′(u,v) = max
{

(1 − ρ) · τ(u,v)
1− ρ+ 2nρ

,
1

2n2

}
if (u, v) /∈ P (x).

Due to the bounds on the pheromone values, the probability of fixing xi as in an
optimal solution is at least 1/n. Hence, the 1-ANT finds an optimum for each
pseudo-boolean function f regardless of ρ in expected time at most nn.

3 1-ANT and (1+1) EA

We consider the relation between the 1-ANT and a simple evolutionary algorithm
called (1+1) EA, which has extensively been studied with respect to its runtime
distribution. The (1+1) EA starts with a solution x∗ that is chosen uniformly
at random and produces in each iteration a new solution x from a currently
best solution x∗ by flipping each bit of x∗ with probability 1/n. Hence, the
probability of producing a certain solution x with Hamming distance H(x, x∗)
to x∗ is (1/n)H(x,x∗) · (1− 1/n)n−H(x,x∗).

Algorithm 3 ((1+1) EA)
1.) Choose x∗ ∈ {0, 1}n uniformly at random.
2.) Construct x by flipping each bit of x∗ independently with probability 1/n.
3.) Replace x∗ by x if f(x) ≥ f(x∗).
4.) Go to 2.).

In the following, we consider the 1-ANT with values of ρ at least n−2
3n−2 , which

is for large n approximately 1/3 . In this case, the pheromone values attain their
upper and lower bounds n−1

2n2 respectively 1
2n2 . Theorem 1 shows that the 1-ANT

behaves as the (1+1) EA on each function for the mentioned choice of ρ. This

Runtime Analysis of a Simple Ant Colony Optimization Algorithm 623

also means that the 1-ANT has the same expected optimization time as the
(1+1) EA on each function.

Theorem 1. Choosing ρ ≥ (n− 2)/(3n− 2), the 1-ANT has the same runtime
distribution as the (1+1) EA on each function.

4 1-ANT on OneMax

In the following, we inspect the choice of ρ in detail for a simple pseudo-boolean
function called OneMax defined by OneMax(x) =

∑n
i=1 xi. This is the sim-

plest non-trivial function that can be considered and analyses of ACO algorithms
for such simple functions are explicity demanded by Dorigo and Blum (2005).
Note that due to results on the (1+1) EA by Droste, Jansen and Wegener (2002),
the expected optimization time of the 1-ANT is O(n log n) on each linear func-
tion if ρ ≥ (n− 2)/(3n− 2) holds.

We prepare ourselves by considering the effects of pheromone updates for a
solution x∗ in greater detail. Let τ(e) and τ ′(e) be the pheromone values on
edge e before resp. after the update. If e ∈ P (x∗), τ ′(e) ≥ τ(e) and τ ′(e) ≤ τ(e)
otherwise. The amount by which the pheromone value is increased on a 1-edge
equals the amount the pheromone value is decreased on the complementary
0-edge. However, the change of a pheromone value depends on the previous value
on the edge. In the following lemma, we bound the relative change of pheromone
values. We call an edge saturated iff its pheromone value is either 1

2n2 or n−1
2n2 .

Lemma 1. Let e1 and e2 be two edges of Cbool and let τ1 resp. τ2 be their current
pheromone values in the 1-ANT. Let τ ′1 resp. τ ′2 be their updated pheromone
values for the next accepted solution x. If e1, e2 ∈ P (x∗) and none of the edges
is saturated before or after the update, then |(τ ′1 − τ1)− (τ ′2 − τ2)| ≤ ρ|τ1 − τ2|.
In the following, we will figure out which values of ρ lead to efficient runtimes
of the 1-ANT and which do not. Intuitively, 1/n is a threshold value for ρ since
the denominator 1− ρ+ 2nρ of the normalization factor diverges for ρ = ω(1/n)
and is 1 − ρ − o(1) for ρ = o(1/n). We will make precise that there is a phase
transition in the behavior of the 1-ANT on OneMax when ρ is asymptotically
smaller resp. larger than 1/n.

4.1 Exponential Lower Bounds

Choosing ρ = 0, the pheromone value on each edge is 1/(4n) at each time step.
This implies that the expected optimization time of the 1-ANT on OneMax is 2n

as each solution is chosen uniformly at random from {0, 1}n. In the following, we
show that the optimization time with overwhelming proability still is exponential
if ρ is convergent to 0 only polynomially fast.

Assume that the currently best solution x∗ has value k. Then the following
lemma gives a lower bound on the probability of overshooting k by a certain
amount in the next accepted step.

624 F. Neumann and C. Witt

Lemma 2. Let X1, . . . , Xn ∈ {0, 1} be independent Poisson trials with success
probabilities pi, 1 ≤ i ≤ n. Let X := X1 + · · ·+ Xn, μ := E(X) = p1 + · · ·+ pn
and σ :=

√
Var(X). For any 0 ≤ k ≤ n − σ, let γk = max{2, (k − μ)/σ}. If

σ →∞ then Prob(X ≥ k + σ/γk | X ≥ k) = Ω(1).

Using this lemma, we are able to prove an exponential lower bound on the
runtime of the 1-ANT on OneMax. In order to show that the success probability
in an exponential number of steps is still exponentially small, we assume that
ρ = O(n−1−ε) for some constant ε > 0.

Theorem 2. Let ρ = O(n−1−ε) for some constant ε > 0. Then the optimization
time of the 1-ANT on OneMax is 2Ω(nε/3) with probability 1− 2−Ω(nε/3).

Proof. The main idea is to keep track of the so-called 1-potential, defined as the
sum of pheromone values on 1-edges. Note that the 1-potential multiplied by n
equals the expected OneMax-value of the next constructed solution x. If the
1-potential is bounded above by 1/2 +O(1/

√
n), Chernoff bounds yield that the

probability of OneMax(x) ≥ n/2 + n1/2+ε/3 is bounded above by 2−Ω(nε/3).
We will show that with overwhelming probability, the 1-potential is bounded as
suggested as long as the OneMax-value of the so far best solution is bounded
above by n/2 + n1/2+ε/3.

Starting with initialization, we consider a phase of length s := �2cnε/3	 for
some constant c to be chosen later and show that the success probability in the
phase is 2−Ω(nε/3). A main task is to bound the number of successful steps of the
phase, i. e., of steps where the new solution is accepted and a pheromone update
occurs. In a success with OneMax-value n/2 + i, n + 2i pheromone values on
1-edges are increased and n − 2i are decreased. Suppose all pheromone values
are 1/(4n)± o(1/n) in the phase. Then Lemma 1 yields that the 1-potential is
changed by at most 4i(1±o(1))ρ due to the considered success. Hence, if the best
solution always had OneMax-value at most n/2 + n1/2+ε/3, the total change of
the 1-potential due to at most O(n2ε/3) successes would be at most

O(n2ε/3) · 4n1/2+ε/3 · (1± o(1))ρ = O(n1/2+ε) ·O(1/n1+ε) = O(1/n1/2)

by our assumption on ρ. This would prove the theorem since the initial 1-poten-
tial is 1/2.

Under the assumption on the pheromone values, we want to show that with
probability 1−2−Ω(nε/3), at most c′n2ε/3 successes occur in the phase, where c′ is
an appropriate constant. We already know that then the probability of a success
with value at least n/2 + n1/2+ε/3 is 2−Ω(nε/3) in each step of the phase. If c is
chosen small enough, this probability is 2−Ω(nε/3) for the whole phase. Moreover,
the initial value is at least n/2− n1/2+ε/3 with probability 1− 2−Ω(nε/3).

Let the so far best value be k. We apply Lemma 2 with respect to the expected
OneMax-value μ of the next constructed solution. Note that k−μ = O(n1/2+ε/3)
holds at each time step we consider. Moreover, pi = 1/2 ± o(1) is assumed to
hold for all bits, implying σ = Θ(n1/2). Hence, with probability Ω(1) the next

Runtime Analysis of a Simple Ant Colony Optimization Algorithm 625

success leads to a value at least k + Ω(n1/2−ε/3). Using Chernoff bounds, with
probability 1 − 2−Ω(nε/3), c′n2ε/3 successes increase the OneMax-value by at
least c′′n1/2+ε/3, where c′′ is an appropriate constant.

We still have to show the statement on the pheromone values. This is not too
difficult for our choice of ρ if the number of successes is bounded by O(n2ε/3).
Then the total change of pheromone on any fixed edge is bounded above by

ρ ·O(n2ε/3) = O(n−1−ε) ·O(n2ε/3) = o(1/n)

with probability 1 − 2−Ω(nε/3). Since the number of edges is bounded by 4n,
this holds also for all edges together. Since the sum of all failure probabilities is
2−Ω(nε/3), this completes the proof.
�

4.2 Polynomial Upper Bounds

In the following, we consider for which values of ρ the optimization time of the
1-ANT on OneMax with high probability is still polynomial. We will show that
the function value of the last accepted solution determines the expected value of
the next solution almost exactly if ρ = Ω(n−1+ε), ε > 0 an arbitrary constant.
To determine the expected time to reach an improvement, we give a lower bound
on the probability of overshooting the expected value by at least a small amount.

Lemma 3. Let X1, . . . , Xk ∈ {0, 1}, k ≤ n, be independent Poisson trials with
success probabilities pi ∈ [1/n, 1− 1/n], 1 ≤ i ≤ k. Let X := X1 + · · ·+Xk and
μ := E(X) = p1 + · · ·+ pk. If μ ≤ k − 1 then Prob(X ≥ μ+ 1/2) = Ω(1/n).

The proof of Lemma 3 makes use of ideas by Hoeffding (1956). It is shown that
Prob(X ≥ μ+ 1/2) is minimized if the pi take on at most three different values,
namely 1/n, 1− 1/n and some third value a, 1/n �= a �= 1− 1/n. This property
allows us to prove the lemma by distinguishing a small number of cases.

Finally, we prove that the runtime switches from exponential to polynomial
when ρ crosses the threshold 1/n.

Theorem 3. Choosing ρ = Ω(n−1+ε), ε > 0 a constant, the optimization time
of the 1-ANT on OneMax is O(n2) with probability 1− 2−Ω(nε/2).

Proof. We assume ρ ≤ 1/2 since the result follows from Theorem 1 otherwise. In
contrast to previous definitions, an edge is called saturated if its pheromone value
is n−1

2n2 and called unsaturated otherwise. Let x∗ be a newly accepted solution
and denote by S the set of saturated 1-edges and by U the set of unsaturated
1-edges after the pheromone update. Let k = OneMax(x∗) and decompose k
according to k = ks + ku, where ks denotes the number of ones in x∗ whose
corresponding 1-edges belong to S and ku to the number of ones in x∗ whose
1-edges belong to U . The probability that the edges of S contribute at least ks
to the next (not necessarily accepted) solution x is at least (1− 1/n)ks = Ω(1).

Consider the 1-potential (i. e., the sum of pheromone values) P ∗ of all edges
of U before x∗ updates the pheromone values. Let μ∗ = P ∗n be the expected

626 F. Neumann and C. Witt

OneMax-value w. r. t. these edges before the update. Depending on P ∗ and ku,
we compute P (ρ), their 1-potential after the update:

P (ρ) =
(1− ρ)P ∗ + 2kuρ

(1− ρ) + 2nρ
.

We denote by μ = P (ρ) ·n the expected OneMax-value w. r. t. the edges of U
after the update has occured. Under certain assumptions, we will prove that with
probability 1−2−Ω(nε), μ+1/2 > ku. Since ku is an integer, Lemma 3 shows that
the probability of producing in the next solution x at least μ + 1/2� ≥ ku + 1
ones by the U-edges is at least Ω(1/n). Consider the difference

μ− ku ≥ (1 − ρ)P ∗ + 2kuρ

(1− ρ) + 2nρ
· n− ku =

(μ∗ − ku)(1− ρ)
(1− ρ) + 2nρ

.

We exploit that ρ ≤ 1/2, implying 1 − ρ ≥ 0. Hence, if μ∗ − ku ≥ 0 then μ ≥
ku > ku−1/2 anyway. Assuming μ∗−ku < 0, we can lower bound the (negative)
last fraction by (μ∗ − ku)/(2nρ). Hence, if we can prove that ku − μ∗ < nρ, we
obtain μ > ku−1/2 as desired. We will bound the probability of a large deviation
ku − μ∗ keeping track of the variance of the random number of ones on the
U-edges. Let v∗ be the variance before the pheromone values have been updated
with respect to x∗ and denote by v the variance after the update. If v∗ ≤ (nρ)3/2,
then a Chernoff-Hoeffding-type bound (Theorem 3.44 in Scheideler, 2000) yields

Prob(ku − μ∗ ≥ nρ) ≤ e−
(nρ)2

2v∗(1+nρ/(3v∗)) = 2−Ω(
√
nρ) = 2−Ω(nε/2).

However, we cannot show that v∗ ≤ (nρ)3/2 is likely for all points of time.
Therefore, we will prove v ≥ v∗/(4nρ) for any time step. This will show that v is
large enough to compensate a large ku−μ∗ in the following step (constructing x).

Suppose v∗ > (nρ)3/2. Then v∗ ≥ √v∗nρ, and by the above bound,

Prob(ku − μ∗ ≥
√
v∗nρ) ≤ e

− (
√

v∗nρ)2

2v∗+2
√

v∗nρ/3 ≤ e−
v∗nρ

2v∗+2v∗/3 = 2−Ω(nε).

Hence, with probability 1 − 2−Ω(nε), (ku − μ∗)/(2nρ) ≤ √
v∗/(2nρ), implying

μ ≥ ku −
√
v∗/(2nρ). Due to the assumptions v∗ > (nρ)3/2, v ≥ v∗/(4nρ)

and nρ = Ω(nε), it follows that v → ∞. Hence, we can apply Lindeberg’s
generalization of the Central Limit Theorem for the number of ones on U . The
probability of producing at least ku + 1 ones on these edges is bounded below by
the probability of producing at least 1 +μ+

√
v∗/(2nρ) ones on these edges. By

the Central Limit Theorem, this has probability Ω(1) since
√
v ≥√

v∗/(2nρ).
We still have to show that v ≥ v∗/(4nρ). It is sufficient to show a statement on

the success probability for each edge (u, v) of the construction graph. Consider
the expression τ ′(u,v) ≥

(1−ρ)τ(u,v)

1−ρ+2nρ . The last fraction is at least τ(u,v)

4nρ since ρ ≤ 1/2.
The S-edges contribute with probability Ω(1) at least ks to the next solution,

and (if no failure of probability 2−Ω(nε/2) occurs) with probability Ω(1/n), the
U-edges contribute at least ku + 1. At most n− 1 improvements suffice, and, by

Runtime Analysis of a Simple Ant Colony Optimization Algorithm 627

Chernoff bounds, cn2 steps contain at least n−1 improvements with probability
1−2−Ω(n) for an appropriate constant c. Since ρ ≤ 1/2, ε ≤ 1 must hold. Hence,
the sum of all failure probabilities in O(n2) steps is 2−Ω(nε/2).
�

5 Conclusions

For the first time, bounds on the runtime of a simple ACO algorithm have been
obtained. Choosing a large evaporation factor, it behaves like the (1+1) EA
and all results on this algorithm transfer directly to our ACO algorithm. In
addition, we have inspected the effect of the evaporation factor in detail for the
function OneMax and figured out the border between a polynomial and an
exponential optimization time almost completely. Thereby, we have developed
new techniques for the analysis of randomized search heuristics.

References

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey. Theor.
Comput. Sci., 344, 243–278.

Dorigo, M., Maniezzo, V., and Colorni, A. (1991). The ant system: An autocatalytic
optimizing process. Tech. Rep. 91-016 Revised, Politecnico di Milano.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. MIT Press.
Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evolution-

ary algorithm. Theor. Comput. Sci., 276, 51–81.
Giel, O. and Wegener, I. (2003). Evolutionary algorithms and the maximum matching

problem. In Proc. of STACS ’03, vol. 2607 of LNCS, 415–426.
Gutjahr, W. J. (2003). A generalized convergence result for the graph-based ant system

metaheuristic. Probab. Eng. Inform. Sc., 17, 545–569.
Gutjahr, W. J. (2006). On the finite-time dynamics of ant colony optimization. Method-

ology and Computing in Applied Probability. To appear.
Hoeffding, W. (1956). On the distribution of the number of successes in independent

trials. Ann. Math. Stat., 27, 713–721.
Jerrum, M. and Sorkin, G. B. (1998). The Metropolis algorithm for graph bisection.

Discrete Appl. Math., 82(1–3), 155–175.
Merkle, D. and Middendorf, M. (2002). Modelling the dynamics of ant colony opti-

mization algorithms. Evolutionary Computation, 10(3), 235–262.
Neumann, F. and Wegener, I. (2004). Randomized local search, evolutionary algo-

rithms, and the minimum spanning tree problem. In Proc. of GECCO 04, vol. 3102
of LNCS, 713–724.

Neumann, F. and Witt, C. (2006). Runtime analysis of a simple ant colony optimization
algorithm. Tech. Rep. TR06-084, Electr. Colloq. on Comput. Compl. (ECCC).

Papadimitriou, C. H., Schäffer, A. A., and Yannakakis, M. (1990). On the complexity
of local search. In Proc. of STOC ’90, 438–445. ACM Press.

Scheideler, C. (2000). Probabilistic Methods for Coordination Problems. HNI-
Verlagsschriftenreihe 78, University of Paderborn. Habilitation Thesis, available
at http://www14.in.tum.de/personen/scheideler/index.html.en.

Wegener, I. (2005). Simulated annealing beats metropolis in combinatorial optimiza-
tion. In Proc. of ICALP ’05, vol. 3580 of LNCS, 589–601.

Witt, C. (2005). Worst-case and average-case approximations by simple randomized
search heuristics. In Proc. of STACS ’05, vol. 3404 of LNCS, 44–56.

Lower Bounds on the Deterministic and Quantum
Communication Complexities of Hamming-Distance

Problems�

Andris Ambainis1, William Gasarch2, Aravind Srinivasan2, and Andrey Utis3

1 University of Waterloo, Dept. of Combinatorics and Optimization and Instuitute for Quantum
Computing, University of Waterloo, 200 University Avenue West, Waterloo, ON,

Canada N2L 3G1
ambainis@uwaterloo.ca

2 Department of Computer Science and University of Maryland Institute for Advanced
Computer Studies, University of Maryland at College Park, College Park, MD 20742, USA

{gasarch, srin}@cs.umd.edu
3 Department of Computer Science, University of Maryland at College Park, College Park,

MD 20742, USA
utis@cs.umd.edu

Abstract. Alice and Bob want to know if two strings of length n are almost
equal. That is, do they differ on at most a bits? Let 0 ≤ a ≤ n − 1. We show
that any deterministic protocol, as well as any error-free quantum protocol (C∗

version), for this problem requires at least n − 2 bits of communication. We
show the same bounds for the problem of determining if two strings differ in
exactly a bits. We also prove a lower bound of n/2−1 for error-free Q∗ quantum
protocols. Our results are obtained by employing basic tools from combinatorics
and calculus to lower-bound the ranks of the appropriate matrices.

1 Introduction

Given x, y ∈ {0, 1}n one way to measure how much they differ is the Hamming
distance.

Definition 1. If x, y ∈ {0, 1}n then HAM(x, y) is the number of bits on which x and
y differ.

If Alice has x and Bob has y then how many bits do they need to communicate such that
they both know HAM(x, y)? The trivial algorithm is to have Alice send x (which takes
n bits) and have Bob send HAM(x, y) (which takes �lg(n+ 1)� bits) back to Alice.
This takes n+ �lg(n+ 1)� bits. Pang and El Gamal [15] showed that this is essentially
optimal. In particular they showed that HAM requires at least n+ lg(n+ 1−√n) bits
to be communicated. (See [1, 3, 12, 14] for more on the communication complexity of
HAM. See [5] for how Alice and Bob can approximate HAM without giving away too
much information.)
� The research of the first author was supported in part by IQC University Professorship and

CIAR, that of the second author in part by NSF grant CCR-01-05413, and that of the third
author in part by NSF grant CCR-0208005 and NSF ITR Award CNS-0426683.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 628–637, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Lower Bounds on the Deterministic and Quantum Communication Complexities 629

What if Alice and Bob just want to know if HAM(x, y) ≤ a?

Definition 2. Let n ∈ N. Let a be such that 0 ≤ a ≤ n − 1. HAM (a)
n : {0, 1}n ×

{0, 1}n → {0, 1} is the function HAM (a)
n (x, y) = 1 if HAM(x, y) ≤ a, and is 0

otherwise.

The problem HAM
(a)
n has been studied by Yao [18] and Gavinsky et al [6]. Yao

showed that there is an O(a2) public coin simultaneous protocol for HAM (a)
n which

yields (by Newman [13], see also [10]) an O(a2 + logn) private coin protocol and
also an O(2a2

logn) quantum simultaneous message protocol with bounded error [18].
Gavinsky et al. give an O(a log n) public coin simultaneous protocol, which yields an
O(a log n) private coin protocol; recently, Huang et al. have presented an improved
O(a log a) public coin simultaneous protocol [7]. See [8] for lower bounds. All of the
protocols mentioned have a small probability of error. How much communication is
needed for this problem if we demand no error? There is, of course, the trivial (n+ 1)-
bit protocol. Is there a better one?

In this paper we show the following; in the list of results below, the “c” (in the “c
√
n”

terms) is some positive absolute constant.

1. For any 0 ≤ a ≤ n − 1, HAM (a)
n requires at least n − 2 bits in the deterministic

model.
2. For a ≤ c√n, HAM (a)

n requires at least n bits in the deterministic model.
3. For any 0 ≤ a ≤ n − 1, HAM (a)

n requires at least n − 2 bits in the quantum
model with Alice and Bob share an infinite number of EPR pairs, using a classical
channel, and always obtain the correct answer.

4. For a ≤ c√n, HAM (a)
n requires at least n bits in the quantum model in item 3.

5. For any 0 ≤ a ≤ n − 1, HAM (a)
n requires at least n

2 − 1 bits in the quantum
model with Alice and Bob share an infinite number of EPR pairs, using a quantum
channel, and always obtain the correct answer.

6. For a ≤ c√n, HAM (a)
n requires at least n/2 bits in the quantum model in item 5.

Note that if a = n then (∀x, y)[HAM (a)
n (x, y) = 1, hence we do not include that

case.
What if Alice and Bob need to determine if HAM(x, y) = a or not?

Definition 3. Let n ∈ N. Let a be such that 0 ≤ a ≤ n. HAM (=a)
n : {0, 1}n ×

{0, 1}n → {0, 1} is the function HAM (=a)
n (x, y) = 1 if HAM(x, y) = a, and is 0

otherwise.

We show the exact same results for HAM (=a)
n as we do for HAM (a)

n . There is one
minor difference: for HAM (a)

n the a = n case had complexity 0 since all pairs of
strings differ on at most n bits; however, for HAM (=a)

n the a = n case has complexity
n+ 1 as it is equivalent to equality.

All our results use the known “log rank” lower bounds on classical and quantum
communication complexity: Lemmas 1 and 2. Our approach is to lower-bound the ranks
of the appropriate matrices, and then to invoke these known lower bounds. It has been

630 A. Ambainis et al.

pointed out to us by anonymous referees of this paper that our results may follow from
known results [9] on the zeroes of the Krawtchouk polynomials. While these results em-
ploy analysis and a number of other theorems, our method is elementary (just requires
generating functions and basic combinatorics), and is self-contained. Also, to the best
of our understanding, our results are new for the case where n is odd and a = (n−1)/2.

2 Definitions, Notations, and Useful Lemmas

We give brief definitions of both classical and quantum communication complexity.
See [10] for more details on classical, and [4] for more details on quantum.

Definition 4. Let f be any function from {0, 1}n × {0, 1}n to {0, 1}.
1. A protocol for computing f(x, y), where Alice has x and Bob has y, is defined in

the usual way (formally using decision trees). At the end of the protocol both Alice
and Bob know f(x, y).

2. D(f) is the number of bits transmitted in the optimal deterministic protocol for f .
3. Q∗(f) is the number of bits transmitted in the optimal quantum protocol where we

allow Alice and Bob to share an infinite number of EPR pairs and communicate
over a quantum channel.

4. C∗(f) is the number of bits transmitted in the optimal quantum protocol where we
allow Alice and Bob to share an infinite number of EPR pairs and communicate
over a classical channel.

5. Mf is the 2n × 2n matrix where the rows and columns are indexed by {0, 1}n and
the (x, y)-entry is f(x, y).

Let lg denote the logarithm to the base two. Also, as usual, if x < y, then
(
x
y

)
is taken

to be zero. The following theorem is due to Mehlhorn and Schmidt [11]; see also [10]:

Lemma 1. If f : {0, 1}n × {0, 1}n → {0, 1} then D(f) ≥ lg(rank(Mf)).

Buhrman and de Wolf [2] proved a similar theorem for quantum communication com-
plexity:

Lemma 2. If f : {0, 1}n × {0, 1}n → {0, 1} then the following hold: Q∗(f) ≥
1
2 lg(rank(Mf)), and C∗(f) ≥ lg(rank(Mf)).

3 The Complexity HAM (a)
n for a ≤ O(

√
n)

We start by presenting results for general a, and then specialize to the case a ≤ c√n.

Definition 5. Let Ma be M
HAM

(a)
n

, the 2n × 2n matrix representing HAM (a)
n .

Lemma 3. Ma has 2n orthogonal eigenvectors.

Proof. This follows from Ma being symmetric.
�
We know that Ma has 2n real eigenvalues; we will bound the multiplicity of 0 as an
eigenvalue of Ma. This leads to a lower bound on D(HAM (a)

n) by Lemma 1.

Lower Bounds on the Deterministic and Quantum Communication Complexities 631

Definition 6. Let z ∈ {0, 1}n.

1. vz ∈ R2n

is defined by, for all x ∈ {0, 1}n, vz(x) = (−1)
∑

i xizi . The entries
vz(x) of vz are ordered in the natural way: in the same order as the order of the
index x in the rows (and columns) of Ma.

2. We show that vz is an eigenvector of Ma. Once that is done we let eig(z) be the
eigenvalue of Ma associated with vz .

Lemma 4.

1. The vectors {vz : z ∈ {0, 1}n} are orthogonal.
2. For all z ∈ {0, 1}n, vz is an eigenvector of Ma.
3. If z has exactly m 1’s in it, then

eig(z) =
a∑

j=0

min{j,m}∑

k=max{0,j+m−n}

(
m

k

)(
n−m
j − k

)
(−1)k.

Proof. (Sketch) The first assertion (orthogonality) follows by simple counting. We omit
the proofs of the other two assertions due to the lack of space. Similar ideas are used in
[16], but while estimates suffice in the context of [16], we need exact results.
�

Definition 7. Let

F (a, n,m) =
a∑

j=0

min{j,m}∑

k=max{0,j+m−n}

(
m

k

)(
n−m
j − k

)
(−1)k.

The following lemma will be used in this section to obtain a lower bound when a =
O(
√
n), and in Section 5 to obtain a lower bound for general a.

Lemma 5. D(HAM (a)
n) and C∗(HAM (a)

n) are both lower-bounded by the quantity

lg
∑

m:F (a,n,m) �=0

(
n
m

)
. Also, Q∗(HAM (a)

n) ≥ 1
2 · lg

∑
m:F (a,n,m) �=0

(
n
m

)
.

Proof. By Lemma 4, the eigenvector vz has a nonzero eigenvalue if vz has m 1’s and
eig(z) �= 0. The rank of Ma is the number of nonzero eigenvalues that correspond
to linearly independent eigenvectors. This is

∑
m:F (a,n,m) �=0

(
n
m

)
. The lemma follows

from Lemmas 1 and 2.
�

Lemma 6. The number of values of m for which F (a, n,m) = 0 is ≤ a.

Proof. View the double summationF (a, n,m) as a polynomial inm. The jth summand
has degree k + (j − k) = j. Since j ≤ a the entire sum can be written as a polynomial
in m of degree a. This has at most a roots.
�

Theorem 1. There is a constant c > 0 such that if a ≤ c
√
n then: D(HAM (a)

n) ≥ n,

Q∗(HAM (a)
n) ≥ n/2, and C∗(HAM (a)

n) ≥ n.

632 A. Ambainis et al.

Proof. By Lemma 5, D(f), C∗(f) ≥ lg(
∑

m:F (a,n,m) �=0

(
n
m

)
), and Q∗(f) is at least

half of this latter quantity (i.e., half of the “log-sum”). Note that

2n =
∑

m:F (a,n,m) �=0

(
n

m

)
+

∑

m:F (a,n,m)=0

(
n

m

)
.

By Lemma 6 |{m : F (a, n,m) = 0}| ≤ a. Hence,

∑

m:F (a,n,m)=0

(
n

m

)
≤ |{m : F (a, n,m) = 0}| · max

0≤m≤n

(
n

m

)
≤ a

(
n

n/2

)
≤ a2n

√
n
.

So, if a ≤ 1
4
√
n, then

∑

m:F (a,n,m) �=0

(
n

m

)
≥ 2n − a2n

√
n
≥ 2n − 2n−2.

Hence,

lg

⎛

⎝
∑

m:F (a,n,m) �=0

(
n

m

)
⎞

⎠ ≥ lg(2n − 2n−2); i.e.,

⎡

⎢
⎢
⎢
lg

⎛

⎝
∑

m:F (a,n,m) �=0

(
n

m

)
⎞

⎠

⎤

⎥
⎥
⎥
≥ n.

�

4 The Complexity of HAM (=a)
n for a ≤ O(

√
n)

We again start by deducing results for general a, and then specialize to the case where
a ≤ c√n.

Definition 8. Let M=a be M
HAM

(=a)
n

, the 2n × 2n matrix representing HAM (=a)
n .

The vectors vz are the same ones defined in Definition 6. We show that vz is an eigen-
vector of M . Once that is done we let eig(z) be the eigenvalue of M associated to z.
The lemmas needed, and the final theorem, are very similar (in fact easier) to those in
the prior section. Hence we just state the needed lemmas and final theorem.

Lemma 7.

1. For all z ∈ {0, 1}n vz is an eigenvector of M=a.
2. If z has exactly m 1’s in it then

eig(z) =
min{a,m}∑

k=max{0,a+m−n}

(
m

k

)(
n−m
a− k

)
(−1)k.

Definition 9.

f(a, n,m) =
min{a,m}∑

k=max{0,a+m−n}

(
m

k

)(
n−m
a− k

)
(−1)k.

Lower Bounds on the Deterministic and Quantum Communication Complexities 633

Using our convention “if x < y, then
(
x
y

) ≡ 0”, we can also write

f(a, n,m) =
a∑

k=0

(
m

k

)(
n−m
a− k

)
(−1)k.

The following lemma will be used in this section to obtain a lower bound when
a = O(

√
n), and in Section 5 to obtain a lower bound for general a.

Lemma 8. D(HAM (=a)
n) ≥ lg

∑
m:f(a,n,m) �=0

(
n
m

)
; also,Q∗(HAM (=a)

n) is at least
1
2 · lg

∑
m:f(a,n,m) �=0

(
n
m

)
, and C∗(HAM (=a)

n) ≥ lg
∑

m:f(a,n,m) �=0

(
n
m

)
.

Lemma 9. The number of values of m for which f(a, n,m) = 0 is ≤ a.

Theorem 2. There is a constant c > 0 such that if a ≤ c
√
n then the following hold:

D(HAM (=a)
n) ≥ n, Q∗(HAM (=a)

n) ≥ n/2, and C∗(HAM (=a)
n) ≥ n.

5 The Complexity of HAM (a)
n and HAM (=a)

n for General a

We now consider the case of general a. As above, we will show that F (a,m, n) and
f(a,m, n) are nonzero for many values of m. This will imply that the matrices Ma

and M=a have high rank, hence HAM (a)
n and HAM (=a)

n have high communication
complexity. We will use general generating-function methods to derive facts about these
sums. A good source on generating functions is [17].

One of our main results will be Lemma 11, which states that if 0 ≤ a ≤ m < n, then
“f(a,m, n) = 0” implies “f(a,m+1, n) �= 0”. The idea behind our proof of Lemma 11
will be the following: we will show a relationship between the sum f(a,m, n) and a
certain new sum h(a,m, n). Then we will derive generating functions for f and h, and
translate this relationship into a relation between their generating functions. Finally,
we will show that this relation cannot hold under the assumption that f(a,m, n) =
f(a,m + 1, n) = 0, thus reaching a contradiction. Some auxiliary results needed for
this are now developed in Section 5.1.

5.1 Auxiliary Notation and Results

Define [xb]g(x) to be the coefficient of xb in the power series expansion of g(x) around
x0 = 0. Also let t(i)(x) denote the i’th derivative of t(x).

We will make use of the following lemma, which follows by an easy induction on i:

Lemma 10. Let t(x) be an infinitely differentiable function. Let T1(x) = (x − 1)t(x),
and T2(x) = (x + 1)t(x). Then for any i ≥ 1: T (i)

1 (x) = (x − 1)t(i) + i · t(i−1)(x),
and T (i)

2 (x) = (x + 1)t(i) + i · t(i−1)(x).

For the rest of Section 5.1, the integers a,m, n are arbitrary subject to the constraint
0 ≤ a ≤ m ≤ n, unless specified otherwise.

634 A. Ambainis et al.

Definition 10. Let h(a,m, n) =
∑a

i=0

(
m
i

)(
n−m
a−i

) (−1)i

m−i+1 . Also define the function

g(x) = xm+1−(x−1)m+1

m+1 · (x+ 1)n−m.

We will show an interesting connection between h and f .

Proposition 1. Suppose f(a,m, n) = 0. Then f(a,m+ 1, n) = 0 iff h(a,m, n) = 0.

Proof.

f(a,m+ 1, n) =
∑a

i=0

(
m+1

i

)(
n−m−1

a−i

)
(−1)i

= m+1
n−m

∑a
i=0

(
m
i

)(
n−m
a−i

)
(−1)i · n−m−a+i

m−i+1

= m+1
n−m ((n+1−a)∑a

i=0

(
m
i

)(
n−m
a−i

) (−1)i

m−i+1)−∑a
i=0

(
m
i

)(
n−m
a−i

)
(−1)i)

= m+1
n−m ((n+ 1− a)h(a,m, n)− f(a,m, n))

Thus, if f(a,m, n) = 0, then f(a,m+ 1, n) = 0 iff h(a,m, n) = 0.
�
We next show a connection between g(x) and h.

Proposition 2. h(a,m, n) = (−1)m · [xa]g(x).

Next, define an auxiliary function φ(u, v, w) as the w’th derivative of the function
(x+ 1)u(x− 1)v evaluated at x = 0. We now relate φ and h.

Proposition 3. h(a,m, n) = 0 iff φ(n−m,m+ 1, a) = 0.

The proof of Propositions 2 and 3 are omitted due to the lack of space. Now we can
relate the zeroes of f with those of φ:

Proposition 4. f(a,m, n) = 0 iff φ(n −m,m, a) = 0.

Proof.

(x − 1)m(x + 1)n−m =
∑m

i=0

(
m
i

)
xi(−1)m−i ·∑n−m

j=0

(
n−m

j

)
xj

= (−1)m
∑m

i=0

(
m
i

)
xi(−1)i ·∑n−m

j=0

(
n−m

j

)
xj

= (−1)m
∑n

b=0
∑b

k=0

(
m
k

)(
n−m
b−k

)
(−1)kxb

= (−1)m
∑n

b=0 f(b,m, n) · xb.

So f(a,m, n) = (−1)m

a! · φ(n−m,m, a), and the proposition follows.
�
Proposition 5. Supposem < n andφ(n−m,m, a) = 0. Then φ(n−m−1,m+1, a) =
0 iff φ(n−m,m+ 1, a) = 0.

Proof. This proposition follows from Propositions 1, 3, and 4.
�

We are now able to prove a recursive relation between values of φ:

Proposition 6. If k > 0, a > 0, and φ(k,m, a) = φ(k,m, a − 1) = 0, then φ(k −
1,m, a) = φ(k − 1,m, a− 1) = 0.

Lower Bounds on the Deterministic and Quantum Communication Complexities 635

Proof. Suppose φ(k,m, a) = φ(k,m, a− 1) = 0. By Lemma 10,

φ(k,m+ 1, a) = −φ(k,m, a) + a · φ(k,m, a− 1) = 0. (5.1)

By Proposition 5, since φ(k,m, a) = 0, we know that

φ(k − 1,m+ 1, a) = 0 iff φ(k,m+ 1, a) = 0.

Now, (5.1) yields φ(k − 1,m+ 1, a) = 0. Applying Lemma 10 again, we obtain:

0 = φ(k − 1,m+ 1, a) = −φ(k − 1,m, a) + a · φ(k − 1,m, a− 1);
0 = φ(k,m, a) = φ(k − 1,m, a) + a · φ(k − 1,m, a− 1)

Solving these equations, we get φ(k − 1,m, a) = φ(k − 1,m, a− 1) = 0.
�

5.2 The Main Results

We are now ready to prove our main lemma.

Lemma 11. Let 0 ≤ a ≤ m < n. If f(a,m, n) = 0, then f(a,m+ 1, n) �= 0.

Proof. The lemma holds trivially for a = 0, since both f(a,m, n) and f(a,m + 1, n)
are nonzero if a = 0. So suppose a ≥ 1. Suppose f(a,m, n) = f(a,m + 1, n) = 0.
Then by Propositions 4 and 5, we know that

φ(n−m,m, a) = φ(n−m− 1,m+ 1, a) = φ(n−m,m+ 1, a) = 0.

By Lemma 10, φ(n−m,m+ 1, a) = −φ(n−m,m, a) + a · φ(n−m,m, a− 1), i.e.,
φ(n−m,m, a− 1) = 0. Hence φ(n−m,m, a− 1) = φ(n−m,m, a) = 0. Now, an
iterative application of Proposition 6 eventually yields φ(0,m, a) = φ(0,m, a−1) = 0.
By definition, φ(0,m, a) is the a’th derivative of

(x− 1)m =
m∑

i=0

(
m

i

)
xi(−1)m−i

evaluated at x = 0. But m ≥ a, so this is clearly not zero. Thus we have reached a
contradiction, and Lemma 11 is proved.
�
Theorem 3. For large enough n and all 0 ≤ a ≤ n: D(HAM (=a)

n) ≥ n − 2,

Q∗(HAM (=a)
n) ≥ n

2 − 1, and C∗(HAM (=a)
n) ≥ n− 2.

Proof. By Lemma 8,

D(f), C∗(f) ≥ lg(
∑

m:f(a,m,n) �=0

(
n

m

)
)

and

Q∗(f) ≥ 1
2

lg(
∑

m:f(a,m,n) �=0

(
n

m

)
).

636 A. Ambainis et al.

First suppose a ≤ n/2. We have

∑

m:f(a,m,n) �=0

(
n

m

)
≥

∑

m≥n/2:f(a,m,n) �=0

(
n

m

)
. (5.2)

Let us lower-bound the r.h.s. of (5.2). First of all, since the r.h.s. of (5.2) works in the
regime where m ≥ n/2 ≥ a, Lemma 11 shows that no two consecutive values of m
in this range satisfy the condition “f(a,m, n) = 0”. Also, for m ≥ n/2,

(
n
m

)
is a non-

increasing function of m. Thus, if we imagine an adversary whose task is to keep the
r.h.s. of (5.2) as small as possible, the adversary’s best strategy, in our regime where
m ≥ n/2, is to make f(a,m, n) = 0 exactly when m ∈ S, where

S
.= {�n/2�, �n/2�+ 2, �n/2�+ 4, . . .}. (5.3)

Now,

2n−1 ≤
∑

m≥n/2

(
n

m

)
≤ 2n−1 +O(2n/

√
n). (5.4)

(We need the second inequality to handle the case where n is even.) Also, recall that an
(1 − o(1)) fraction of the sum

∑
m≥n/2

(
n
m

)
is obtained from the range n/2 ≤ m ≤

n/2 +
√
n logn, for instance. In this range, the values of

(
n
m

)
for any two consecutive

values of m are within (1 + o(1)) of each other. In conjunction with (5.4), this shows
that

∑

m≥n/2:f(a,m,n) �=0

(
n

m

)
≥

∑

m≥n/2:m �∈S

(
n

m

)
≥ (1/2− o(1))2n−1.

Thus, ⎡

⎢
⎢
⎢

lg

⎛

⎝
∑

m≥n/2:f(a,m,n) �=0

(
n

m

)
⎞

⎠

⎤

⎥
⎥
⎥
≥ n− 2,

completing the proof for the case where a ≤ n/2.
Now we apply symmetry to the case a > n/2: note that Alice can reduce the problem

with parameter a to the problem with parameter n− a, simply by complementing each
bit of her input x. Thus, the same communication complexity results hold for the case
a > n/2.
�
Lemma 12. Let 0 ≤ a < m < n. If F (a,m, n) = 0, then F (a,m+ 1, n) �= 0.

Proof. We have f(j,m, n) = (−1)m[xj]((x − 1)m(x+ 1)n−m). By definition,

F (a,m, n) =
∑a

j=0 f(j,m, n)
= (−1)m

∑a
j=0[x

j]((x − 1)m(x+ 1)n−m)
= (−1)m[xa]((x− 1)m(x + 1)n−m ·∑∞j=0 x

j)
= (−1)m[xa]((x− 1)m(x + 1)n−m · 1

1−x)
= (−1)m−1[xa]((x− 1)m−1(x+ 1)n−m) = f(a,m− 1, n− 1).

So F (a,m, n) = F (a,m+1, n) = 0 iff f(a,m− 1, n− 1) = f(a,m, n− 1) = 0. But
the latter is impossible by Lemma 11, thus the lemma is proved.
�

Lower Bounds on the Deterministic and Quantum Communication Complexities 637

By a proof mostly similar to that of Theorem 3, we get

Theorem 4. For large enough n and all 0 ≤ a ≤ n − 1: D(HAM (a)
n) ≥ n − 2,

Q∗(HAM (a)
n) ≥ n

2 − 1, and C∗(HAM (a)
n) ≥ n− 2.

Acknowledgments. We thank Jaikumar Radhakrishnan and the anonymous referees
for their helpful comments.

References

1. K. Abdel-Ghaffar and A. E. Ababdi. An optimal strategy for comparing file copies. IEEE
Transactions on Parallel and Distributed Systems, 5:87–93, 1994.

2. H. Buhrman and R. de Wolf. Communication complexity lower bounds by polynomials. In
Proc. of the 16th IEEE Conf on Complexity Theory. IEEE Computer Society Press, 2001.

3. G. Cormode, M. Paterson, S. Sahinalp, and U. Vishkin. Communication complexity of doc-
ument exchange. In Proc. of the 11th ACM Symp. on Discrete Algorithms, pages 197–206,
2000.

4. R. de Wolf. Quantum communication and complexity. Theoretical Comput. Sci., 12:
337–353, 2002.

5. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. Wright. Secure multiparty
computation of approximations. In Proc. of the 28th ICALP (LNCS 2076), volume 2076 of
Lecture Notes in Computer Science, pages 927–938, Berlin, 2001. Springer-Verlag.

6. D. Gavinsky, J. Kempe, and R. de Wolf. Quantum communication cannot simulate a public
coin, 2004. arxiv.org/abs/quant-ph/0411051.

7. W. Huang, Y. Shi, S. Zhang, and Y. Zhu. The communication complexity of the Hamming
distance problem. arxiv.org/abs/quant-ph/0509181.

8. H. Klauck. Lower Bounds for Quantum Communication Complexity. In Proc. IEEE Sympo-
sium on Foundations of Computer Science, pages 288–297, 2001.

9. I. Krasikov and S. Litsyn. On integral zeros of Krawtchouk polynomials. J. Comb. Theory
Ser. A, 74:71–99, 1996.

10. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1997.

11. K. Mehlhorn and E. Schmidt. Las Vegas is better than determinism for VLSI and distributed
systems. In Proc. of the 14th ACM Symp. on Theory of Computing, pages 330–337, 1982.

12. J. Metzner. Efficient replicated remote file comparison. IEEE Transactions on Computers,
40:651–659, 1991.

13. I. Newman. Private vs. common random bits in communication complexity. Inf. Process.
Lett., 39:67–71, 1991.

14. A. Orlitsky. Interactive communication: balanced distributions, correlated files, and average-
case complexity. In Proc. of the 32st IEEE Symp. on Found. of Comp. Sci., pages 228–238,
1991.

15. K. Pang and A. E. Gamal. Communication complexity of computing the Hamming distance.
SIAM Journal of Computing, 15, 1986.

16. R. Raz. Fourier analysis for probabilistic communication complexity. Journal of Computa-
tional Complexity, 5:205–221, 1995.

17. H. Wilf. Generatingfunctionology. Academic Press, 1994.
18. A. Yao. On the power of quantum fingerprinting. In Proc. of the 35th ACM Symp. on Theory

of Computing, pages 77–81, 2003.

Resources Required for Preparing Graph States

Peter Høyer1,�, Mehdi Mhalla2,��, and Simon Perdrix2,���

1 Dept. of Comp. Sci., University of Calgary, Canada
hoyer@cpsc.ucalgary.ca

2 Leibniz Laboratory, Grenoble, France
{mehdi.mhalla, simon.perdrix}@imag.fr

Abstract. Graph states have become a key class of states within quan-
tum computation. They form a basis for universal quantum computa-
tion, capture key properties of entanglement, are related to quantum
error correction, establish links to graph theory, violate Bell inequali-
ties, and have elegant and short graph-theoretical descriptions. We give
here a rigorous analysis of the resources required for producing graph
states. Using a novel graph-contraction procedure, we show that any
graph state can be prepared by a linear-size constant-depth quantum
circuit, and we establish trade-offs between depth and width. We show
that any minimal-width quantum circuit requires gates that acts on sev-
eral qubits, regardless of the depth. We relate the complexity of preparing
graph states to a new graph-theoretical concept, the local minimum de-
gree, and show that it captures basic properties of graph states.

Keywords: Quantum Computing. Algorithms. Foundations of comput-
ing.

1 Introduction

What are the minimal resources required for universal quantum computation?
This single question is one of the most fundamental questions related to building
quantum computers, and it is one of the most studied questions within quantum
computing. In 2000, in seminal work, Raussendorf and Briegel [15] proposed a
new model for quantum computations. They show that if certain initial quantum
states, called graph states, are provided, then the mere ability to perform one-
qubit measurements suffices for quantum computations.

Graph states have been studied extensively within the last five years. The
recent survey [11] by Hein et al. provides an excellent introduction to the area.
These efforts have established several fundamental results on the universality
of quantum computations based on graph states, physical implementations of
graph states, the entanglement embodied by graph states, and have proved links
to basic concepts within graph theory. In this paper, we study computational

� Work supported by Canada’s CIAR, MITACS, and NSERC, France’s FFCR, and
the US ARO.

�� Work conducted in parts while at the University at Calgary.
��� Work conducted in parts while visiting the University at Calgary.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 638–649, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Resources Required for Preparing Graph States 639

aspects of graph states. We study in particular the question of characterizing the
resources required for producing graph states and we establish stronger links to
graph theory.

We first and foremost prove that any graph state can be prepared in constant
time. That is, given a classical description of a graph G = (V,E), we can produce
the corresponding graph state |G〉 by a constant-depth quantum circuit that
has size linear in the input size |V | + |E| and that consists only of one-qubit
operations and control-not operations. This implies that all two-qubit operations
ever required by any quantum algorithm can be conducted at the outset of the
algorithm in parallel, after which all operations act only on one qubit. We also
show that our circuit is robust against various alterations. If we for instance
do not wish to conduct all two-qubit operations at the outset, they can be
postponed, and if for instance we want to limit the number of qubits used, i.e.,
the size of the Hilbert space acted upon, we can trade width for depth without
compromising the overall linear upper bound on the size of the circuit.

The ability to efficiently procedure arbitrary graph states has several advan-
tages: it reduces the number of qubits involved in the computation, sometimes
even quadratically, and hence decreases the possibilities of errors, it replaces two-
qubit quantum operations by simple and reliable classical computations, and it
allows tailoring the preparation to specific quantum algorithms such as Shor’s
factoring algorithm [1].

We then introduce a new graph-theoretical measure, the local minimum de-
gree, denoted δloc, and show that it is intimately linked to the complexity of
preparing graph states. For instance, we use it to prove that any measurement-
based quantum circuit for preparing graph states requires either ancilla qubits
or multi-qubit measurements that act on at least δloc + 1 qubits (or both). We
also establish that the local minimum degree is related to the entanglement in
graph states, and we give a family of graphs for which the local minimum degree
is large. Such families may be suitable for cryptographic purposes, though likely
difficult to create in practice [10]. Other graph-theoretical measures related to
graph states have recently and independently been considered in [12, 16, 18].

2 Graph States and Signed Graph States

A graph state on n qubits is a state that is a superposition over all basis states,

|G〉 =
1√
2n

∑

x∈{0,1}n

(−1)qΓ (x)|x〉, (1)

where Γ is the adjacency matrix of a graph G = (V,E) on n = |V | vertices
and qΓ (x) =

∑
i<j:(i,j)∈E xixj . The quadractic form qΓ satisfies that qΓ (x) =

xTΓ upperx where Γ upper is the upper-triangle of Γ obtained by setting entries
Γi,j with i ≥ j to zero, and where T denotes taking transpose.

For technical reasons, it is sometimes convenient to associate signs to graph
states. Given any graph state |G〉 and any subset S ⊆ V the signed graph state
|G;S〉 is the state

640 P. Høyer, M. Mhalla, and S. Perdrix

|G;S〉 = ZS|G〉, (2)

where ZS =
⊗

v∈S Zv where Zv denotes that the local operator Z = |0〉〈0| −
|1〉〈1| acts on qubit v. We sometimes omit the signs when they are not essential
for the discussion. We use similar abbreviated notation, XS =

⊗
v∈S Xv and

YS =
⊗

v∈S Yv, for the two other pauli-operators X = |1〉〈0| + |0〉〈1| and Y =√−1|1〉〈0| − √−1|0〉〈1|.
Proposition 1. For all graphs G = (V,E) and all non-empty subsets S ⊆ V ,

〈G;S|G〉 = 0,

and hence 〈G;S|G;S′〉 = 0 for all distinct subsets S, S′ ⊆ V , and the 2|V | states
{|G;S〉}S⊆V form an orthonormal basis.

3 Preparation of Graph States

There is a simple algorithm for preparing the graph state |G〉 corresponding to
any graph G = (V,E) on n = |V | vertices with m = |E| edges. We first prepare
n qubits in a superposition of all 2n basis states,

|Ψ0〉 =
1√
2n

∑

x∈{0,1}n

|x〉,

by applying for instance the Hadamard operator H = 1√
2

(|0〉〈0|+ |0〉〈1|+ |1〉〈0|−
|1〉〈1|) on each of the n qubits in the initial state |0〉. Each of the qubits cor-
responds to a vertex of G. We then modify the phases of the basis states by
applying a sequence of m two-qubit operations, producing the graph state |G〉,

|G〉 =
∏

(u,v)∈E
Δu(Zv)|Ψ0〉. (3)

For each edge (u, v) ∈ E, we apply the controlled phase change operator defined
by

Δu(Zv) = |00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11|
on the two qubits labelled by the endpoints u, v of the edge. These m two-qubit
operations are diagonal and thus commute, allowing us to apply them in any
order of our choosing. Summarizing, we can prepare any graph state |G〉 using
n single-qubit operations and m two-qubit Δ(Z) operations. Considering this
simple algorithm a quantum circuit, we can prepare a graph state by a circuit
on n qubits of size n+m and depth m+ 1 using only single-qubit and two-qubit
operations.

The depth of the circuit may be improved by parallelizing the two-qubit op-
erations by choosing an edge coloring of G [1]. An edge coloring using χ′ colors
is a mapping c : E → {1, 2, . . . , χ′} satisfying that if two distinct edges e and

Resources Required for Preparing Graph States 641

e′ share one endpoint, then they are assigned different colors. Any graph has an
edge coloring using at most Δ(G)+1 colors, where Δ(G) is the maximum degree
of the vertices in G, and we can find such an edge coloring in time polynomial
in n and m, for instance by Vizing’s (classical) algorithm [19]. This implies that
we can arrange the m two-qubit operations in our circuit such that it has depth
at most Δ(G) + 2.

Proposition 2 ([1]). Any graph state |G〉 can be prepared by a quantum circuit
consisting of single-qubit and two-qubit operations of size O(n + m) and depth
O(Δ(G)) acting on n qubits, where Δ(G) is the maximum degree of any vertex
in G.

The above proposition implies that graphs of bounded degree can be prepared by
constant depth quantum circuits. In particular, two-dimensional cluster states,
which is the common name for graph states arising from two-dimensional grid
graphs, can be prepared by constant depth quantum circuits. We now extend
this result and prove that arbitrary graphs can be prepared in constant depth.

Theorem 1 (Constant depth graph state preparation). For any graph G,
we can prepare some signed graph state |G;S〉 by a constant depth quantum
circuit consisting of single-qubit and two-qubit operations of size O(n+m) acting
on n+O(m) qubits.

A key idea in our proof is to embed G as an induced minor of a larger graph
of bounded degree, and then utilize that taking induced minors can be obtained
by Pauli measurements.

We consider four types of substructures of a graph G = (V,E). A deletion of a
vertex v ∈ V in G is the graph G\v obtained from G by deleting v and all edges
incident to v. A deletion of an edge e ∈ E in G is the graph G \ e obtained from
G by simply deleting the edge e. A contraction of an edge (u, v) ∈ E in G is the
graph G/(u, v) obtained from G by introducing edges between v and each vertex
in NG(u)\NG(v), and then deleting u and all its incident edges. A graph G is an
induced subgraph of G′ if G is isomorphic to a graph that can be obtained from
G′ by vertex deletions. It is a subgraph of G′ if we can obtain a graph isomorphic
to G by edge deletions. It is a minor of G′ if it is isomorphic to a graph that
can be obtained from G′ by edge deletions and edge contractions, and it is an
induced minor of G′ if it is isomorphic to a graph that can be obtained from
G′ by vertex deletions and edge contractions. Any induced subgraph is also a
subgraph, and any induced minor is also a minor.

The next two lemmas provide our main technical tools for generating the
graph state |G〉.
Lemma 1 (Vertex deletion). Let v ∈ V be any vertex. Conducting a Z mea-
surement of the qubit v maps |G〉 to |G \ v〉 and thus corresponds to deleting the
vertex v.

Proof. We first note that for any S ⊆ V ,

|G;S〉 =
1√
2

(|G \ v;S〉|0〉v + |G \ v;S ⊕NG(v)〉|1〉v
)

642 P. Høyer, M. Mhalla, and S. Perdrix

L

�

�

�

�

v��

�	
R

�

�

�

�

Expansion

Contraction

�

�
L

�

�

�

�

v v′ v′′
��

�	

��

�	

��

�	
R

�

�

�

�
��
�� ��

����
�� ��

��

Fig. 1. Embedding G as an induced minor of a bounded degree graph G̃ by repeated
applications of graph expansions. Conducting X measurements of qubits v′ and v′′

contracts the two edges (v, v′) and (v′, v′′).

which follows from Eqs. 2 and 3. If qubit v is Z-measured (that is, measured
in the basis of the eigenvectors of the Pauli operator Z), the resulting state
is thus either |G \ v;S〉 or |G \ v;S ⊕NG(v)〉 (where ⊕ denotes the symmetric
difference), and hence is equal to |G \ v〉 up to (known) signs.
�
Lemma 2 (Edge contraction). Let v, v′, v′′ ∈ V so that NG(v′) = {v, v′′} and
NG(v)∩NG(v′′) = {v′}. Conducting an X measurement of each of the two qubits
v′ and v′′ maps |G〉 to |G/(v, v′)/(v′, v′′)〉 and thus corresponds to contracting
the two edges (v, v′) and (v′, v′′).

Proof. Let v, v′, v′′ ∈ V be as in the lemma. For any subset S ⊆ V ,

|G;S〉= ZS
2

∑

k,l∈{0,1}

(
Zkv′′Z

l
NG(v)\{v′}|G/vv′/v′v′′〉

)(|0〉+Zlv′ |1〉
)
v′

(|0〉+Zkv′′ |1〉
)
v′′

and hence, if qubits v′ and v′′ are X-measured, the resulting state is given by
|G/(v, v′)/(v′, v′′)〉 up to (known) signs.
�

Proof of Theorem 1. We first embed G as an induced minor of a larger
graph G̃ of bounded degree by repeatedly expanding any vertex v of degree
d ≥ 4 into three vertices v, v′, v′′ of strictly smaller degrees, as illustrated in
Figure 1. Formally, we partition the neighborhood NG(v) of v in two sets L
and R of sizes d2� and �d2�, respectively. We then set V̂ = V ∪ {v′, v′′} and
Ê = E \ ({v} × R) ∪ {(v, v′), (v′, v′′)} ∪ ({v′′} × R). We set Ĝ = (V̂ , Ê), and
recursively expand any vertex v of Ĝ till all vertices have degree at most three.
The thus obtained graph G̃ will have O(m) vertices and maximum degree three.

We first prepare the graph state |G̃〉 by a constant-depth circuit on O(m)
qubits by applying Proposition 2, and then apply Lemma 2 to contract |G̃〉 to
|G〉 by applying X measurements on all vertices introduced during the expansion
of G to G̃. The X measurements commute and can thus all be conducted in
parallel by a circuit of depth one.
�
Proposition 2 and Theorem 1 give two linear-size circuits for preparing any graph
state, up to signs. The former has small width and large depth, the latter large

Resources Required for Preparing Graph States 643

width and small depth. We can trade width for depth in the above construction,
without compromising the overall size of the circuit, by stopping the expansion
once all vertices have degree at most T .

Theorem 2 (Small depth graph state preparation). For any graph G, we
can prepare some signed graph state |G;S〉 by a quantum circuit consisting of
single-qubit and two-qubit operations of size O(n + m) and depth O(T) acting
on n+O(m/T) qubits, for any integer T .

In the above theorems, we can replace the unitary operations by projective mea-
surements. Any single-qubit unitary operation can be simulated using two single-
qubit projective measurements, one two-qubit projective measurement, and one
ancilla qubit [14]. Similarly, a two-qubit control-not operation can be simulated
using two single-qubit projective measurements, two two-qubit projective mea-
surements, and one ancilla qubit [14]. In Theorem 2, we may thus replace the
unitary operations by projective measurements. We re-use the ancilla qubits in
each of the Θ(T) layers of the circuit so that the the total number of additional
ancilla qubits required by the simulation is only O(m/T).

Theorem 3 (Measurement-based preparation). For any graph G, we can
prepare some signed graph state |G;S〉 by a quantum circuit consisting of single-
qubit and two-qubit projective measurements of size O(n + m) and depth O(T)
acting on n+O(m/T) qubits, for any integer T .

In the standard circuit for graph preparation, in which each of the O(m) layers
of the circuit consists of exactly one gate, we may similarly replace the unitary
operations by projective measurements, yielding that any graph state can be
prepared using n + 1 qubits by single-qubit and two-qubit projective measure-
ments. We require only one ancilla qubit for iteratively simulating each of the
O(m) two-qubit operations.

Proposition 3 (Measurement-based preparation using one ancilla
qubit). For any graph G, we can prepare some signed graph state |G;S〉 by a
quantum circuit consisting of single-qubit and two-qubit projective measurements
of size O(n+m) and depth O(m) acting on n+ 1 qubits.

It would be interesting to extend Theorem 1 and its corollaries to incorporate
noise and errors, for instance as discussed for cluster states in [6].

4 Circuits and Local Complementation

The circuit constructions for preparation of graph states given above are based on
the concept of graph minors. To improve the constructions further, we require the
additional concept of local complementation in graphs. A local complementation
is a graph operation that maps one graph into another. Kotzig first showed that
the class of circle graphs are closed under local complementation (see [8, 4]) and
it was then used by Bouchet [5] to give a characterization of circle graphs.

644 P. Høyer, M. Mhalla, and S. Perdrix

A local complementation of a graph G at a vertex v ∈ V is the operation
which replaces the subgraph of G induced by the neighborhood NG(v) of v by
its complement. We denote the thus obtained graph by G � v. Local comple-
mentation defines an equivalence relation. We say two graphs G1 and G2 are
locally equivalent if one can be obtained from the other by a sequence of local
complementations, and write G1 ≈loc G2.

A pivoting on a edge (u, v) ∈ E is the operation that maps G to G� u � v � u.
This operation is well-defined as G � u � v � u = G � v � u � v, and we denote it
by G ∧ (u, v). Following Oum [13], we say a graph H is a vertex minor of G if
H can be obtained from G by vertex deletions and local complementations. A
graph H is a pivot minor of G if H can be obtained from G by vertex deletions
and pivotings.

The most important property of local complementation for this paper, is that
it can be implemented by local quantum operations. Let G and G′ be two locally
equivalent graphs, G ≈loc G

′. Then there exists a tensor product U =
⊗

v∈V U(v)

of n single-qubit unitary operations U(v) such that |G′〉 = U|G〉. This implies
that if C is a circuit that maps |Ψ0〉 to |G′〉, then UC is a circuit that maps |Ψ0〉
to |G〉. Thus, any two locally equivalent graphs can be implemented by circuits
of the same depths, up to an additive constant of one.

Let δ(G) = min{degG(v) : v ∈ V } denote the minimum degree of any vertex
in G, where degG(v) denotes the degree of v in G. Let δloc(G) = min{δ(G′) :
G′ ≈loc G} denote the minimum degree achievable by local complementations.
We refer to δloc as the local minimum degree of G. Similarly, let mloc(G) =
min{|E′| : (V,E′) ≈loc G} denote the minimum total number of edges achiev-
able by local complementations. Unfortunately, there is no known polynomial-
time algorithm for computing either of the two quantities δloc(G) and mloc(G),
given a graph G as input. The thus far best result in this direction is a result
of Bouchet [2] stating that the problem of deciding if two graphs are locally
equivalent is polynomial-time computable. Van den Nest [17] gives in his Ph.D.
thesis a short description of Bouchet’s algorithm.

The quantity mloc is related to the size of any quantum circuit preparing
a graph state. Suppose we could find a polynomial-time algorithm that given
any graph, outputs a locally equivalent graph of minimum total degree. Then in
Theorems 1, 2 and 3, we could replace m by mloc, and still have polynomial-time
constructable quantum circuits. However, currently no such result is in sight.

We now show that δloc is related to the usage of ancilla qubits in the circuits
for preparing graph states. To prove this, we first give three equivalent defini-
tions of δloc, the first graph theoretical, the second combinatorial, and the third
algebraic. We require the following notation and concepts.

For any subset X ⊆ V of vertices, let OddG(X) = {u ∈ V \X | NG(u)∩X = 1
mod 2} denote the set of vertices that is adjacent to an odd number of vertices
in X in G. Similarly, let EvenG(X) = {u ∈ V \ X | NG(u) ∩ X = 0 mod 2}.
We say that the vertices in OddG(X) are odd neighbors of X in G, and that the
vertices in EvenG(X) are even neighbors of X in G.

Resources Required for Preparing Graph States 645

The cut-matrix of a subset X ⊆ V of vertices is the submatrix ΓG(X,V \X)
indexed by X×(V \X) of the adjacency matrix ΓG of G. The cut-rank Cutrk(X)
of X is the rank of its cut-matrix, where we define the rank over GF(2). The
cut-rank of X is invariant under local complementation [3], though the null-
space of ΓG(X,V \ X) may change under local complementation. It was used
by Bouchet [2] and others under the name “connectivity function”, and coined
the cut-rank by Oum [13]. We say that a set of vertices L ⊆ V is local if
L = X ∪ OddG(X) for some subset X ⊆ L. Note that a local set L does not
have full cut-rank, and that {v} ∪NG(v) is local for any vertex v ∈ V .

Lemma 3. Any local set L is invariant under local complementation. Moreover,
for all y ∈ L, there exists a graph G′ locally equivalent to G such that {y} ∪
OddG′({y}) ⊆ L.

Proof. Suppose that L = X∪OddG(X). We consider how the three-way partition
V = X∪OddG(X)∪EvenG(X) changes under local complementation at a vertex
v ∈ V . Let G′ = G � v. Then the three-way partition changes as follows.

X ′ OddG′(X ′) EvenG′(X ′)
v ∈ EvenG(X) X OddG(X) EvenG(X)
v ∈ OddG(X) X ∪ {v} OddG(X) \ {v} EvenG(X)
v ∈ X and |NX(v)| is odd X \ {v} OddG(X) ∪ {v} EvenG(X)
v ∈ X and |NX(v)| is even X OddG(X) EvenG(X)

The forth and last column implies that any local set L is invariant under local
complementation, and thus only the internal structure of L changes. By the
second row, we can move vertex y into X , if y ∈ OddG(X). By the third row,
we can move vertices out of X as long as there exists a vertex in X having
an odd number of neighbors in X . If all vertices in X have an even number of
neighbors in X , and if any vertex in X has a neighbor z in EvenG(X), then
a local complementation at z creates at least two vertices in X having an odd
number of neighbors in X . One of these must be a vertex different from y. Thus,
by a sequence of local complementations, we can map G to some graph G′ in
which there are no edges between X and EvenG′(X), and in which y ∈ X . Hence
NG′(y) ⊆ L and thus {y} ∪OddG′({y}) ⊆ L.
�
Corollary 1. Let x ∈ V be any vertex of degree d = δloc(G). Then for all
neighbors y ∈ NG(x), there exists a graph G′ locally equivalent to G for which
NG′(y) = (NG(x) ∪ {x}) \ {y}. In particular, each neighbor of x can be locally
reduced to having degree d.

Theorem 4 (Characterization of local minimum degree). For any graph
G, the local minimum degree δloc(G) is equal to

1. min
{
δ(G′) | G′ ≈loc G

}
.

2. min
{|L| : L is nonempty and local} − 1.

3. min
{|X | | Cutrk(X) < |X |}− 1.

646 P. Høyer, M. Mhalla, and S. Perdrix

Proof. We first show that the quantity in (1) is an upper bound on the quantity
in (2). Let y ∈ V be a vertex of degree δloc(G) in G′ ≈loc G. Then {y} ∪NG′(y)
is local. Similarly, we show that the quantity in (2) is an upper bound on the
quantity in (3). Let L = X∪OddG(X) be local. Then χXΓG[L, V \L] = 0, where
χX is the indicator function of X in L, and thus L does not have full cutrank.
Finally, we show that the quantity in (3) is an upper bound on the quantity
in (1). Let X ⊂ V be a set that does not have full cutrank. Let Y ⊆ V \X be
such that χY Γ [X,V \X] = 0. Then OddG(Y) ⊂ X . By Lemma 3, for all y ∈ Y ,
there is a graph G′ locally equivalent to G such that degG′(y) ≤ |X | − 1.
�
By Theorem 4, for any fixed integer d, there exists a polynomial-time algo-
rithm for deciding if δloc > d. If d is part of the input, no polynomial-time
algorithm is known. Though plausible, it is not known whether the concept of
cut-rank is helpful in computing δloc in polynomial time. One result in this di-
rection is by Oum [13], who gives a polynomial-time algorithm that given any
two disjoint non-empty sets of vertices A,B ⊂ V as input, computes the value
min{Cutrk(Z) | X ⊆ Z ⊆ V \ B} by greedily searching for blocking sequences
as introduced by Geelen [9].

We now use the above characterization to show that if no ancilla qubits are
available for preparing a graph state, then joint projective measurements on at
least δloc(G) + 1 qubits are required. As a consequence, for all graphs for which
δloc > 1, there does not exist a measurement-based preparation using only single-
qubit and two-qubit projective measurements without the use of ancilla qubits.

Theorem 5 (Lower bound on measurement-based preparation). Let G
be any graph. Any preparation of |G〉 by a quantum circuit acting on n qubits and
consisting of projective measurements requires measurements acting on δloc(G)+
1 qubits.

Proof. By contradiction. Assume the last measurement of the preparation acts
on at most δloc(G) qubits X and that it produces the signed graph state |G;S〉.
Let W be the observable describing this measurement. Then W|G;S〉 = |G;S〉,
and thus 〈G;S|W|G;S〉 = 1.

Let U ⊆ X be any subset of the measured vertices X . Since |X | ≤ δloc(G),
subset X has full cutrank by Theorem 4, and thus there exists a subset Y ⊆ V \X
such that χU = Γ [X,V \X]χY . The operator XY acts only on qubits not in X ,
and thus commutes with W. In addition, ZOdd(Y)XY |G;S〉 = ±|G;S〉, and hence

1 = 〈G;S|W|G;S〉 = 〈G;S|XY WXY |G;S〉 = 〈G;S|ZOdd(Y)WZOdd(Y)|G;S〉
= 〈G;S|ZUWZU |G;S〉 = 〈G;S ⊕ U |W|G;S ⊕ U〉.

It follows that W acts trivially on |G;S ⊕ U〉 for all subsets U ⊆ X . Since these
2|X| states are pairwise orthogonal, W is the identity, which is a contradiction.

�
It is natural to consider recursive methods for preparing a graph state G, for
instance by partitioning the vertex set V into parts which then are considered
individually. The next lemma states that deleting any one vertex or edge may
decrease the local degree by at most one.

Resources Required for Preparing Graph States 647

Lemma 4. For any graph G = (V,E), any vertex u ∈ V , and any edge e =
(v, w) ∈ E, δloc(G \ v) ≥ δloc(G)− 1 and δloc(G \ e) ≥ δloc(G) − 1.

Proof. Let X ⊆ V \{u} be any set of vertices satisfying that CutrkG\u(X) < |X |.
Then CutrkG(X ∪ {u}) ≤ CutrkG\u(X) + 1 < |X ∪ {u}|. Now, let X ⊆ V be
any set of vertices satisfying that CutrkG\e(X) < |X |, and consider an edge e =
(v, w) ∈ E. Firstly, if v, w ∈ X or v, w �∈ X , then CutrkG(X) = CutrkG\e(X).
Secondly, if v ∈ X and w �∈ X , then CutrkG(X ∪ {w}) = CutrkG\e(X ∪ {w}) ≤
CutrkG\e(X) + 1 < |X |+ 1 = |X ∪ {w}|.
�
Suppose we are given an oracle Oδ that given any graph G returns δloc(G). Then
there exists a deterministic algorithm that given any graph G outputs a graph
G′ locally equivalent to G with δ(G′) = δloc(G). The algorithm runs in time
polynomial in n and uses at most a linear number of oracle queries. We omit the
proof.

Theorem 6. The following two computational problems are polynomially equiv-
alent: (1) computing δloc(G) and (2) finding a graph G′ with G′ ≡ G and
δ(G′) = δloc(G).

5 Bi-separability and δloc

An n-qubit state ρ is bi-separable if there exists a partition A,B of V such that
ρ can be written on the form ρ =

∑k
i=1 αiρ

A
i ⊗ ρBi for a finite set of density

operators ρAi , ρ
B
i and non-negative weights αi, where each ρAi acts on A only

and each ρBi acts on B only. In this section, we refer to bi-separability simply as
separability.

Theorem 7. For any graph state |G〉, there exists a subset U ⊆ V of vertices of
size δloc(G) such that the reduced density operator ρ = TrU (|G〉〈G|) is separable.

Proof. Let G′ be a graph that is locally equivalent to G and contains a vertex
v of degree d = δloc(G). We show that the state ρ obtained from |G′〉〈G′| by
tracing out the d qubits corresponding to the neighbors NG′(v) of v is separable.
We do this by giving a procedure for preparing ρ that preserves separability.

Let H = G′\NG′(v) be the subgraph ofG′ obtained by removing the neighbors
NG′(v) of v. The subgraph H consists of (at least) two components, {v} and the
rest. The graph state |H〉 is thus separable and can be written on the form
|v〉|H \ {v}〉.

Consider we first prepare the separable pure state |H〉. Now for each neighbor
w ∈ NG′(v) in turn, we randomly flip an unbiased coin. If the outcome of the
coinflip is head, we apply a (single-qubit) σz operation on each of the qubits
of |H〉 corresponding to the neighbors NG′(w) ∩H of w. If the outcome of the
coinflip is tail, we do not alter the state. This maps the state |v〉|H \ {v}〉 to
some other pure state |v〉|H ′〉 that is also separable with respect to the same
partitioning of vertices. We take sum of the density operators |v〉|H ′〉〈H ′|〈v|
over all 2d possible outcomes, yielding a density operator ρ′ that is separable

648 P. Høyer, M. Mhalla, and S. Perdrix

a

b
c

d

e
f
�� ��

�
��

	
		

�
�

�
�

�
�� 	

	
	

	
	

		

Fig. 2. The prism graph P on six vertices. Tracing out vertices b and e from |G〉 creates
a separable mixed state.

with respect to the same partitioning. The density operator ρ′ is the same as
the density operator ρ obtained by tracing out the neighbors NG′(v) of v in G′,
and thus ρ is separable.
�
The upper bound of δloc(G) on separability in Theorem 7 is tight for some graphs,
but not all. An example for which the bound is not tight is the prism graph P
on six vertices, illustrated in Figure 2. On the one hand, any local set in P has
size at least 4, and hence its local minimum degree is (at least) 3 by Theorem 4.
On the other hand, if we trace out qubits b and e in |P 〉, the remaining state is
separable across the cut ({a, d}, {c, f}). One way of seeing this, is to first delete
the edge (b, e), do a local complementation on b and then e, deleting b and e, and
noticing that the remaining graph consists of two components, {a, d} and {c, f}.
It would be interesting to explore the relationship between δloc and separability
further, and also to consider k-separability and full separability [7].

We can also show that there exists a natural family of graphs for which δloc
is polynomial in the input graph. It seems plausible that this family of graphs
contains entanglement that is very robust against quantum operations acting on
a sublinear number of qubits, and thus could be useful in for instance quantum
cryptography and quantum communication complexity.

Theorem 8. There exists a constant c > 0 and a family of graphs G for which
δloc(G) ∈ Ω(|G|c).

Acknowledgements

We thank Jop Briet, David Feder, Michael Garrett, and Mark Tame for stimu-
lating conversations.

References

1. P. Aliferis and D. W. Leung. Computation by measurements: A unifying picture.
Physical Review A, 70:062314, 2004.

2. A. Bouchet. Diagraph decompositions and eulerian systems. SIAM J. Algebraic
Discrete Methods, 8:323–337, 1987.

Resources Required for Preparing Graph States 649

3. A. Bouchet. Connectivity of isotropic systems. In Combinatorial Mathematics:
Proc. of the Third International Conference, volume 555 of Ann. New York Acad.
Sci., pages 81–93, 1989.

4. A. Bouchet. κ-transformations, local complementations and switching. In Cycles
and rays: Basic structures in finite and infinite graphs, volume C 301 of NATO
Adv. Sci. Inst. Ser., pages 41–50. Kluwer Acad. Publ., Dordrecht, 1990.

5. A. Bouchet. Circle graph obstructions. J. Comb. Theory Ser. B, 60(1):107–144,
1994.

6. L. M. Duan and R. Raussendorf. Efficient quantum computation with probabilistic
quantum gates. Phys. Rev. Lett., 95:080503, 2005.

7. J. Eisert and D. Gross. Lectures on Quantum Information, chapter Multi-particle
entanglement. Wiley-VCH, Berlin, 2006.

8. H. de Fraysseix. Local complementation and interlacement graphs. Discrete Math-
ematics, 33(1):29–35, 1981.

9. J. F. Geelen. Matchings, Matroids and Unimodular Matrices. PhD thesis, Univ.
Waterloo, 1995.

10. K. Goyal, A. McCauley, and R. Raussendorf. Purification of large bi-colorable
graph states, May 2006. quant-ph/0605228.

11. M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H. J. Briegel.
Entanglement in graph states and its applications. In Proc. of the Int. School of
Physics “Enrico Fermi” on “Quantum Computers, Algorithms and Chaos”, July
2005. quant-ph/0602096.

12. I. Markov and Y. Shi. Simulating quantum computation by contracting tensor
networks. In Ninth Workshop on Quantum Information Processing, Jan. 2006.
(No proceedings).

13. S.-i. Oum. Approximating rank-width and clique-width quickly. In D. Kratsch,
editor, Graph-Theoretic Concepts in Computer Science, WG 2005, volume 3787 of
Lecture Notes in Computer Science, pages 49–58. Springer, 2005.

14. S. Perdrix. State transfer instead of teleportation in measurement-based quantum
computation. International Journal of Quantum Information, 3(1):219–224, 2005.

15. R. Raussendorf and H. J. Briegel. A one-way quantum computer. Physical Review
Letters, 86:5188–5191, May 2001.

16. Y. Shi, L. M. Duan, and G. Vidal. Classical simulation of quantum many-body
systems with a tree tensor network. (In completion), Feb. 2006.

17. M. Van den Nest. Local equivalence of stabilizer states and codes. PhD thesis,
Faculty of Engineering, K.U. Leuven, Belgium, May 2005.

18. M. Van den Nest, A. Miyake, W. Dür, and H. J. Briegel. Universal resources for
measurement–based quantum computation, Apr. 2006. quant-ph/0604010.

19. V. G. Vizing. On an estimate of the chromatic class of a p-graph. Metody Diskret.
Analiz., 3:25–30, 1964. In Russian.

Online Multi-path Routing in a Maze�

Stefan Rührup1 and Christian Schindelhauer2

1 Heinz Nixdorf Institute, University of Paderborn, Germany
sr@uni-paderborn.de

2 Computer Networks and Telematics, University of Freiburg, Germany
schindel@informatik.uni-freiburg.de

Abstract. We consider the problem of route discovery in a mesh net-
work with faulty nodes. The number and the positions of the faulty nodes
are unknown. It is known that a flooding strategy like expanding ring
search can route a message linear in the minimum number of steps d while
it causes a traffic (i.e. the total number of messages) of O(d2). For opti-
mizing traffic a single-path strategy is optimal producing traffic O(d+p),
where p is the number of nodes that are adjacent to faulty nodes. We
present a deterministic multi-path online routing algorithm that delivers
a message within O(d) time steps causing traffic O(d + p log2 d). This
algorithm is asymptotically as fast as flooding and nearly traffic-optimal
up to a polylogarithmic factor.

1 Introduction and Overview

Sending a message is the most fundamental feature of communication networks.
We consider two-dimensional mesh networks, which can be found in parallel
computers, in integrated circuits, FPGAs (Field Programmable Gate Arrays)
and also some kinds of wireless sensor networks. In all these networks nodes
may fail or may be unavailable. A node’s failure can only be noticed by its
neighbors. A straight-forward approach is to regularly test the neighbors of each
node, to collect this data and to distribute a map of all failed and working nodes
throughout the network. We investigate scenarios where this knowledge is not
available when the message is on its way. Due to the lack of global information
this routing problem states an online problem.

The basic problem is that the faulty nodes are barriers to the routing algo-
rithm and that the algorithm does not know these barriers. There is no restriction
on the size and the shape of the barriers, so even labyrinths are possible. In such
situation a fast message delivery can only be guaranteed by flooding the com-
plete network, which results in a tremendous increase of traffic, i.e. the number
of node-to-node transmissions. If the algorithm uses a single-path strategy, then
the additional effort necessary for searching a path to the destination increases
the time.
� Partially supported by the DFG Sonderforschungsbereich 376 and by the EU within

6th Framework Programme under contract 001907 “Dynamically Evolving, Large
Scale Information Systems” (DELIS).

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 650–659, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Online Multi-path Routing in a Maze 651

We analyze algorithms with respect to the length of the shortest path d be-
tween source and target and with respect to the number of border nodes p, which
are the nodes adjacent to faulty nodes. Regarding the time, no single-path on-
line algorithm can beat the optimal offline algorithm and in worst case scenarios
it has to investigate all the barriers, i.e. a traffic proportional to the number
of border nodes p is inevitable. There are single-path algorithms that use only
O(d + p) messages in total, but they need O(d + p) time steps. Time-optimal
algorithms are parallel multi-path algorithms (e.g. expanding ring search) with
time O(d) and traffic O(d2) in the worst case.

We are interested in optimizing time and traffic at the same time. One might
expect a trade-off situation between these measures. However, our research shows
that there are algorithms that approximate the offline time bound and the opti-
mal online traffic bound by a factor of O(

√
d) [21] at the same time. The quotient

comparing to the offline time bound is called the competitive time ratio, while
the quotient comparing to the traffic bound of the optimal online algorithm is
called the comparative traffic ratio. Subsequent work showed that both bounds

could be improved below any polynomial bound to a term of Õ(d
�

log log d
log d) [22].

We call a bound on both ratios the combined comparative ratio Rc (Def. 5).

Strategy Time Traffic Rc

Exp. Ring Search [9,18] O(d) O(d2) O(d)
Lucas’ Algorithm [13] O(d + p) O(d + p) O(d)
Alternating Strategy [21] O(d3/2) O(min{d2, d3/2 + p}) O(

√
d)

Selective Flooding [22] d·2O
��

log d
log log d

�
O(d)+p d

O
��

log log d
log d

�
d
O
��

log log d
log d

�

JITE (this paper) O(d) O(d + p log2 d) O(log2 d)
Online Lower Bound (cf. [3]) Ω(d) Ω(d + p) Ω(1)

In this paper we achieve a break-through in this line of research showing a
ratio of O(log2 d). More specifically we present a deterministic algorithm that
delivers the message on a multi-path route within time O(d) and with traffic
O(d + p log2 d). This shows, that one can route a message asymptotically as fast
as flooding while increasing the traffic by a factor of only O(log2 d) compared to
the traffic-optimal online algorithm.

This paper is organized as follows. We continue this section by presenting
related research. In the following section we describe the basic definitions and
techniques more formally. In Section 3, we present an overview of the algorithm
and its components. In Section 4, we sketch the time and traffic analysis which
concludes the paper.

1.1 Related Work

The problem studied in this paper has a strong relation to online search and nav-
igation problems. These problems have been investigated in different research
communities, which Angluin et al. [1] called “the online competitive analysis
community” and the “theoretical robotics community”. The fundamental goal

652 S. Rührup and C. Schindelhauer

in online searching is to find a point in an unknown environment. In theoretical
robotics the scenarios contain obstacles of arbitrary shape and the performance
of algorithms is expressed by comparing the distance traveled by the robot to
the sum of the perimeters of the obstacles [15,1] (see also [2] for a survey and
[14,19] for an overview of path-planning and maze traversal algorithms). The
competitive analysis community has studied various kinds of scenarios with re-
strictions on the obstacles (e.g. quadratic or convex obstacles). The performance
is expressed by the competitive ratio, which is the ratio of the distance traveled
by the robot and the length of the shortest obstacle-free path [17,3].

Our model connects these two lines of research. Scenarios considered in online
navigation with a lower bound on distance between s and t and with finite obsta-
cle perimeters can be modeled by a faulty mesh network. We also investigate the
problem of finding a path to a given point in an unknown environment, but here,
the search can also be done in parallel. For robot navigation problems it is not
clear how unbounded parallelism can be modeled in a reasonable way. Usually,
navigation strategies are only considered for a constant number of robots. The
model of a mesh network with faulty parts enables us to study the impact of
parallelism on the time needed for finding the target. For the time analysis we
use the competitive ratio as used by the competitive analysis community. Traffic
is compared to the perimeters of the barriers which gives the comparative traffic
ratio. This ratio expresses the amount of parallelism used by the algorithm.

Routing in faulty networks has also been considered as an offline problem. In
the field of parallel computing the fault-tolerance of networks is studied, e.g. by
Cole et al. [8]. The problem is to construct a routing scheme that emulates the
original network. Zakrevski and Karpovski [26] investigate the routing problem
for two-dimensional meshes. The model is similar to ours as they consider two-
dimensional meshes under the store-and-forward model. Their algorithm needs
an offline pre-routing stage, in which fault-free rectangular clusters are identified.
Routing algorithms for two-dimensional meshes, that need no pre-routing stage
are presented by Wu [24]. These algorithms use only local information, but the
faulty regions in the mesh are assumed to be be rectangular blocks. In [25]
Wu and Jiang present a distributed algorithm that constructs convex polygons
from arbitrary fault regions by excluding nodes from the routing process. This
is advantageous in the wormhole routing model, because it helps to reduce the
number of virtual channels. We will not deal with virtual channels and deadlock-
freedom as we consider the store-and-forward model.

Bose and Morin [6,5] study the online routing problem for triangulations
and plane graphs with certain properties and present constant-competitive al-
gorithms for routing in these graphs. In triangulations, where no local minima
exist, routing can be done by a greedy strategy. Such strategies are also used for
position-based routing. Position-based routing is a reactive routing used in wire-
less networks, where the nodes are equipped with a positioning system, such that
a message can be forwarded in the direction of the target (see [16] for a survey).
Due to the limited range of the radio transceivers, there are local minima and
messages have to be routed around void regions (an analog to the fault regions

Online Multi-path Routing in a Maze 653

in the mesh network). There are various single-path strategies, e.g. [11,7,12].
Position-based routing strategies have been mainly analyzed in a worst case set-
ting, i.e. the void regions have been constructed such that the connections form a
labyrinth. In this case the traffic-efficient single-path strategies produce as much
traffic as flooding. In our analysis we take the perimeters of fault regions into
account, so that we can express performance beyond the worst case point of
view.

2 Basic Definitions and Techniques

A two-dimensional mesh network with faulty nodes is defined by a set of nodes
V ⊆ N×N and a set of edges E := {(v, w) : v, w ∈ V ∧|vx −wx|+ |vy −wy| = 1}.
There is no restriction on the size of the network, because time and traffic are
analyzed with respect to the position of the given start node s and target node
t. We assume a synchronized communication: Each message transmission to a
neighboring node takes one time step. Furthermore, we assume the messages
to be transported in a store-and-forward fashion and that the nodes do not
fail while a message is being transported. However, there is no global knowledge
about faulty nodes. Only adjacent nodes can determine whether a node is faulty.

barrier

perimeter

s

t

Fig. 1. Mesh network with faulty
nodes (black), routing path and
right-hand traversal path

Barriers, Borders and Traversals. The
network contains active (functioning) and
faulty nodes. Faulty nodes neither participate
in communication nor can they store infor-
mation. Faulty nodes which are orthogonally
or diagonally neighboring form a barrier. A
barrier consists only of faulty nodes and is not
connected to or overlapping with other bar-
riers. Active nodes adjacent to faulty nodes
are called border nodes. All the nodes in the
neighborhood (orthogonally or diagonally) of
a barrier B form the perimeter of B. A path
around a barrier in (counter-)clockwise or-
der is called a right-hand (left-hand) traversal
path, if every border node is visited and only nodes in the perimeter of B are
used. The perimeter size p(B) of a barrier B is the number of directed edges of
the traversal path. The total perimeter size is p :=

∑
i∈N

p(Bi). The perimeter
size is the number of steps required to send a message from a border node around
the barrier and back to the origin, whereby each border node of the barrier is
visited. It reflects the time consumption of finding a detour around the barrier.

The Competitive Time Ratio. Time is the number of steps needed by the
algorithm to deliver a message and equivalent to the length of a path a message
takes. Comparing the time of the algorithm with the optimal time leads to the
competitive ratio, which is well known in the field of online algorithms [4].

654 S. Rührup and C. Schindelhauer

Definition 1. An algorithm A has a competitive ratio of c, if ∀x ∈ I : CA(x) ≤
c · Copt(x), where I is the set of all instances of the problem, CA(x) the cost of
algorithm A on input x and Copt(x) the cost of an optimal offline algorithm.

We compare the time of the algorithm with the length d of the shortest path to
the target. Note, that the shortest path uses only non-faulty nodes.

Definition 2. Let d be the length of the shortest barrier-free path between source
and target. A routing algorithm has competitive time ratio Rt := T/d if the
message delivery is performed in T steps.

The Comparative Traffic Ratio. Traffic is the number of messages an algo-
rithm needs. A comparison with the traffic of the best offline algorithm would
be unfair, because no online algorithm can reach this bound. Therefore, we de-
fine a comparative ratio based on a class of instances of the problem, which is a
modification of the definition given by Koutsoupias and Papadimitriou [10]:

Definition 3. An algorithm A has a comparative ratio f(P), if
∀p1 . . . pn ∈ P : max

x∈IP

CA(x) ≤ f(P) · min
B∈B

max
x∈IP

CB(x),

where IP is the set of instances which can be described by the parameter set P ,
CA(x) the cost of algorithm A and CB(x) the cost of an algorithm B from the
class of online algorithms B.

With this definition we address the difficulty that is caused by a certain class
of scenarios that can be described in terms of the two parameters d and p.
For any such instance the online traffic bound is minB∈B maxx∈I{d,p} CB(x) =
Θ(d + p). Note, that for any scenario one can find an optimal offline algorithm:
maxx∈I{d,p} minB∈B CB(x) = d. This requires the modification of the compara-
tive ratio in [10] in order to obtain a fair measure. So, we use the online lower
bound for traffic to define the comparative traffic ratio.

Definition 4. Let d be the length of the shortest barrier-free path between source
and target and p the total perimeter size. A routing algorithm has comparative
traffic ratio RTr := M/(d + p) if the algorithm needs altogether M messages.

The combined comparative ratio addresses time efficiency and traffic efficiency:

Definition 5. The combined comparative ratio is the maximum of the compet-
itive time ratio and the comparative traffic ratio: Rc := max{Rt, RTr}

Basic Strategies. Lucas’ algorithm [13] is a simple single-path strategy that
works as follows: (1.) Follow the straight line connecting source and target node.
(2.) If a barrier is in the way, then traverse the barrier, remember all points
where the straight line is crossed, and resume step 1 at that crossing point that
is nearest to the target. This algorithm needs at most d + 3

2p steps, where d is
the length of the shortest barrier-free path and p the total perimeter size. This
is an optimal single-path strategy [14], which matches the asypmtotical lower
bound for traffic.

Online Multi-path Routing in a Maze 655

Expanding ring search is a straightforward multi-path strategy [9,18], which
is nothing else than to start flooding with a restricted search depth and repeat
flooding while doubling the search depth until the destination is reached. This
strategy is asymptotically time-optimal, but it causes a traffic of O(d2), regard-
less of the presence of faulty nodes.

We modify the previous strategy as follows: The source starts flooding without
a depth restriction, but with a delay of σ > 1 time steps for each hop. If the
target is reached, a notification message is sent back to the source. Then the
source starts flooding a second time, and this second wave, which is not slowed
down, is sent out to stop the first wave. This continuous ring search needs time
σ ·d and causes a traffic of O

(
(σ+1

σ−1 d)2
)

(see [20,23] for a proof). The asymptotic
performance is no improvement to expanding ring search, but an area is flooded
at most two times, whereas expanding ring search visits some areas O(log d)
times. We use this advantage for our algorithm.

3 The JITE Algorithm

The Just-In-Time Exploration (JITE) algorithm consists of two parts: Slow
Search and Fast Exploration. Slow Search is a modified breadth-first search
(BFS) algorithm which uses (in contrast to flooding) a path system that is
generated just-in-time by Fast Exploration. This path system is similar to a
quadtree-style grid subdivision and consists of the borders of quadratic subnet-
works, called frames, and perimeters of barriers. It is constructed while Slow
Search is running and provides a traffic-efficient search for the target. Due to
space limitations, we present the basic ideas in the following and refer to [20,23]
for a detailed description.

The algorithm starts with a search area consisting of four connected frames
with s lying on the common corner (see Fig. 2). These frames are examined
by Fast Exploration1: Messages are sent on a traversal path2 along the frame
and—if the frame is intersected by a barrier—along the perimeter of the barrier
(see Fig. 3). If the traversal needs too much time because of a detour caused
by barriers, then the frame is subdivided and the traversal starts again. The
recursive subdivision stops when a partition of a frame is simple, i.e. a traver-
sal path contains only a bounded number of border nodes. This way the path
system becomes denser in the proximity of barriers. Slow Search uses this path
system and propagates a slowly proceeding shoreline (i.e. the leaves of the BFS
tree) through the network. The path system is not constructed completely when
Slow Search starts. The shoreline triggers the exploration of new frames in its
proximity, so that the traffic-producing exploration is restricted to areas which
are visited by the Slow Search.

1 Here, exploration means that only frames are investigated not their interior.
2 A traversal uses the well-known right-hand rule: By keeping the right hand always

in touch of the wall, one will find the way out of the maze.

656 S. Rührup and C. Schindelhauer

t

s

Fig. 2. Initial frames (solid) and ex-
tended search area

Frame Barrier

Partition v

Fig. 3. Partition of a frame, defined by
a right-hand traversal path

The search area is successively enlarged until t is reached3. For the expansion
of the search area we use the idea of continuous ring search: When the target is
found, the source is notified, which sends out messages to stop the search.

As the exploration takes some time, we have to slow down the shoreline, so
that there is always enough time for the exploration. Furthermore, to achieve
a constant slow down, the size of the neighboring frames has to be restricted,
which is expressed by the Subdivision Rule: A simple partition of a 3g×3g frame
is subdivided, if there is an orthogonally neighboring frame of size g×g or if there
is diagonally neighboring frame of size g

3 × g
3 . We use 3 × 3 subdivisions instead

of 2 × 2 ones, because the Subdivision Rule would cause a domino effect in the
initial subdivision, where a small barrier can trigger a cascade of subdivisions of
neighboring frames.

The shoreline may enter a frame from different sides, so that a coordination
mechanism is necessary in order to avoid that the same frame is explored several
times. We solve this by a schedule of traversal messages that count border nodes
and coordinate the concurrent exploration. This Frame Exploration Algorithm
performs a constant number of traversals, where each traversal is done in O((1+

1
γ(t))g) time steps. A detailed description is given in [20,23].

4 Time and Traffic Analysis

Due to the space limitations we present only proof sketches for the time and
traffic analysis. Complete proofs can be found in [20,23].

Time. The constant competitive time ratio can be achieved because Fast Explo-
ration constructs a path system that contains a constant-factor approximation

3 We assume, that t also lies on a frame, i.e. ||s − t||∞ = 3k for some k ∈ N. If this
is not the case, then we search for any node s′ with ||s′ − t||∞ = 3k with the same
algorithm and restart the algorithm from s′. This increases time and traffic only by
a constant factor.

Online Multi-path Routing in a Maze 657

of the shortest path tree. Slow Search performs a breadth-first search on this
path system which is delayed only by a constant factor. The allowed detours
do not affect the linear time behavior because of the following reason. A simple
partition in a g×g-frame contains at most g/γ(t) border nodes. γ(t) is a function
of the time t when the exploration of a frame starts. We choose γ(t) := log(t), so
that the accepted detours decrease with the time. In the beginning, g/γ(t) can
only be bound by O(g). Thus, summing up the allowed detours in all the frames
of a recursive subdivision (with frame side lengths ranging from 1 to log(d))
would result in logarithmic time overhead. But this holds only for a fraction of
1/ log(d) of the frames. For most of the frames g/γ(t) is bound by O(g/ log d).
With these observations we can prove the following theorem:

Theorem 1. Let P be the shortest path connecting s and t with length d . The
algorithm finds a path P ′ connecting s and t of length O(d).

The shoreline is slowed down by a constant factor σ and uses frames that provide
a constant factor approximation of the shortest path. The exploration of new
frames can be always performed in time because the Subdivision Rule guarantees
that neighboring frames differ only by a constant factor in the side length.

Corollary 1. Let d be the length of the shortest path connecting s and t. The
algorithm finds a path connecting s and t in time O(d).

Traffic. The traffic depends on the size of the path system, i.e. the number and
size of the frames that are explored and subdivided by the algorithm and that
constitute the search area. In the analysis we first consider a single frame and
sum up the traffic of all possible subdivisions. We distinguish between barrier-
induced subdivisions and neighbor-induced subdivisions. A barrier-induced sub-
division occurs, if at least g/γ(t) barrier nodes are inside the frame (whether
they are found or not). The other subdivisions are neighbor-induced and due to
the Subdivision Rule. In the traffic analysis, a barrier that causes a subdivision
“pays” for the (barrier-induced) subdivision of the current frame as well as for
the (neighbor-induced) subdivision of the neighboring frames. This extra cost
adds a constant factor to the traffic for exploring a single frame.

In each level of the subdivision there are at most p
g/γ(t) frames that have to be

subdivided into smaller frames. For each of these frames the exploration causes
a traffic of O((1 + 1

γ(t))g). The sum of this over log g frame sizes gives a total
traffic of O(g + p log g · log t) for the recursive subdivision of a g × g frame. The
sum over all frames which are constructed in the search area yields the following
bound.

Theorem 2. The algorithm produces traffic O(d + p log2 d).

Corollary 2. The JITE Algorithm has a constant competitive time ratio and
a comparative traffic ratio of O(log2 d). It has a combined comparative ratio of
O(log2 d).

658 S. Rührup and C. Schindelhauer

5 Conclusions and Open Problems

Conclusions. In this paper we present an algorithm for the routing problem in
faulty meshes which can route a message asymptotically as fast as a the fastest
algorithm and (up to a term of O(log2 d)) with only as many messages as the
number of faulty nodes obstructing the messages plus the minimal path length.
This considerably improves the known factors of O(

√
d) [21] and more previously

of Õ(d
�

log log d
log d) [22].

This is achieved by the JITE Algorithm combining several techniques. First
we use a continuously expanding search area and establish an adaptive grid of
frames which becomes denser near barriers. On this grid a slowly proceeding
shoreline simulates a flooding mechanism. This shoreline triggers the Just-In-
Time Exploration (JITE) of new frames that are used by the shoreline. The
artful combination of these techniques lead to an algorithm which needs time
O(d) and traffic O(d + p log2 d) where d denotes the length of the shortest path
and p denotes the number of border nodes being adjacent to faulty nodes.

Open problems. This gives rise to the open question whether these bounds are
tight, whether there is a small trade-off between time and traffic. The routing
time is delayed by a large constant factor. It seems achievable to decrease this
factor without an asymptotic increase of the traffic. However, it is not clear
how. Another chance of improvement could be the use of randomized algorithms,
which for many other problems outperform deterministic online algorithms.

A straight-forward generalization of this problem are three-dimensional
meshes with faulty nodes. The JITE Algorithm, however, in its straight-forward
generalization causes a significant increase in traffic. So the question for efficient
online routing in higher dimensions is wide open.

References

1. D. Angluin, J. Westbrook, and W. Zhu. Robot navigation with distance queries.
SIAM Journal on Computing, 30(1):110–144, 2000.

2. P. Berman. On-line searching and navigation. In A. Fiat and G. J. Woeginger,
editors, Online Algorithms: The State of the Art, pages 232–241. Springer, 1998.

3. A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain.
SIAM Journal on Computing, 26:110–137, 1997.

4. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

5. P. Bose and P. Morin. Competitive online routing in geometric graphs. Theoretical
Computer Science, 324(2-3):273–288, September 2004.

6. P. Bose and P. Morin. Online routing in triangulations. SIAM Journal on Com-
puting, 33(4):937–951, May 2004.

7. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Networks, 7(6):609–616, 2001.

8. R. J. Cole, B. M. Maggs, and R. K. Sitaraman. Reconfiguring Arrays with Faults
Part I: Worst-case Faults. SIAM Journal on Computing, 26(16):1581–1611, 1997.

Online Multi-path Routing in a Maze 659

9. D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad Hoc Wireless
Networks. In Mobile Computing, pages 152–181. Kluwer, 1996.

10. E. Koutsoupias and Ch. H. Papadimitriou. Beyond competitive analysis. SIAM
Journal on Computing, 30(1):300–317, 2000.

11. E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In
Proc. 11th Canadian Conference on Computational Geometry, pages 51–54, 1999.

12. F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically optimal geometric
mobile ad-hoc routing. In Proc. of the 6th Int. Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, pages 24–33, 2002.

13. C. Lucas. Comments on “dynamic path planning for a mobile automation with lim-
ited information on the environment”. IEEE Transactions on Automatic Control,
33(5):511, May 1988.

14. V. J. Lumelsky. Algorithmic and complexity issues of robot motion in an uncertain
environment. J. Complex., 3(2):146–182, 1987.

15. V. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a point mobile
automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica,
2:403–430, 1987.

16. M. Mauve, J. Widmer, and H. Hartenstein. A survey on position-based routing in
mobile ad hoc networks. IEEE Network Magazine, 15(6):30–39, November 2001.

17. Ch. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. In Proc.
of the 16th Int. Colloq. on Automata, Languages, and Programming (ICALP’89),
pages 610–620, 1989.

18. C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc on-demand distance vector
(AODV) routing. IETF RFC 3561, July 2003.

19. N. Rao, S. Kareti, W. Shi, and S. Iyenagar. Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms, 1993.

20. S. Rührup. Position-based Routing Strategies. PhD thesis, University of Paderborn,
2006.

21. S. Rührup and Ch. Schindelhauer. Competitive time and traffic analysis of position-
based routing using a cell structure. In Proc. of the 5th IEEE Int. Workshop on
Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN’05), page
248, 2005.

22. S. Rührup and Ch. Schindelhauer. Online routing in faulty mesh networks with sub-
linear comparative time and traffic ratio. In Proc. of the 13th European Symposium
on Algorithms (ESA’05), LNCS 3669, pages 23–34. Springer, 2005.

23. S. Rührup and Ch. Schindelhauer. Improved bounds for online multi-path rout-
ing in faulty mesh networks. Technical Report TR-RSFB-06-078, University of
Paderborn, 2006.

24. J. Wu. Fault-tolerant adaptive and minimal routing in mesh-connected multicom-
puters using extended safety levels. IEEE Transactions on Parallel and Distributed
Systems, 11:149–159, February 2000.

25. J. Wu and Z. Jiang. Extended minimal routing in 2-d meshes with faulty blocks.
In Proc. of the 1st Intl. Workshop on Assurance in Distributed Systems and Ap-
plications, pages 49–55, 2002.

26. L. Zakrevski and M. Karpovsky. Fault-tolerant message routing for multiproces-
sors. In Parallel and Distributed Processing, pages 714–730. Springer, 1998.

On the On-Line k-Truck Problem with Benefit

Maximization

Weimin Ma1,2 and Ke Wang1

1 School of Economics and Management
Beijing University of Aeronautics and Astronautics, Beijing, 100083, P.R. China

mawm@buaa.edu.cn, wangke@sem.buaa.edu.cn
2 School of Economics and Management, Xi’an Technological University

Xi’an, Shaanxi Province, 710032, P.R. China

Abstract. Based on some results of the on-line k-truck problem with
cost minimization, a realistic model of the on-line k-truck problem with
benefit maximization is proposed. In the model, the object of optimiza-
tion is how to design on-line algorithms to maximize the benefit of all
trucks’ moving. In this paper, after the model’s establishment, several
on-line algorithms, e.g., Position Maintaining Strategy, Partial Greedy
Algorithm, are employed to address the problem. The analyses concern-
ing the competitive ratios of the algorithms are given in detail. Further-
more, the lower bound of competitive ratio is discussed.

1 Introduction

Over the past two decades, on-line problems and their competitive analysis have
received considerable interest. Since the approach of competitive analysis was
first applied to analyze on-line problem by Sleator and Tarjian [1], it has been
investigated in a wide variety of areas such as competitive auctions [2, 3], schedul-
ing problem for jobs [4] and foreign currency trading [5, 6].

The k-server problem [7], introduced by Manasse, McGeoch and Sleator [8],
is a famous on-line problem which had been studied extensively. In the k-server
problem we have k servers that reside and move in a metric space. When a re-
quest is made by a point, one of the servers must be moved to the point to satisfy
this request immediately. An algorithm A which decides a server to satisfy the
request at each step, is said to be on-line if its decisions are made without the
information about future requests. The cost of all servers equals to the distance
of their moving. Our goal is to minimize the total cost.

The k-truck problem is a generalization of the k-server problem. In the k-
truck problem, each request contains two points, one of which is the point made
the request and the other is the destination point. When a request occurs, an
empty truck must be moved to serve it immediately without the information
about future possible requests. Some results on the k-truck problem have been
proposed[9,10]. All the previous researches on this problem aim at minimizing
the distance or cost of all trucks’ moving. However, we usually use the ability

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 660–669, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the On-Line k -Truck Problem with Benefit Maximization 661

of getting benefit to appraise a company rather than the cost in real life. Thus,
we discuss the k-truck problem aiming at maximizing the benefit of all trucks in
this paper.

The realistic background of the on-line k-truck problem with benefit maxi-
mization is described as follows. There are k trucks on a traffic net to supply
service. When a service request that transporting goods from one point to anther
point occurs, an empty truck must be moved to serve it immediately without the
information about future requests. It is assumed that all the trucks are sched-
uled by a control center. When the truck is empty, the cost of running one unit
distance is M . And the cost of trucks with goods is different from that without
goods on the same distance. For simplicity, we assume that all trucks have same
load weight and the cost of the truck with goods is θ times of that without goods
on the same distance, and θ ≥ 1. The customer who releases the request pays N
for every one unit distance between the origin point and the destination point.
That is to say, the truck with goods gains N−θ ·M every one unit distance, and
the truck would lose M if it runs without goods. And then how to maximize the
benefit? If θ = 1, the problem is also called on-line k-taxi problem with benefit
maximization[11].

For simplicity, let η denote the ratio of the gains of truck with goods to the
losses of truck without goods on the same distance, i.e. η = N−θ·M

M > 0. In the
following discussion it is assumed that the losses of truck without goods equal
to the distance of its moving, therefore the gains of truck with goods are η times
of the distance of its moving.

The rest of paper is organized as follows: in section 2, we formulate the model
of on-line k-truck problem with benefit maximization and some preliminary
knowledge of on-line theory is also described in this part. Section 3 presents
some results concerning the on-line algorithms for the problem. In section 4,
the lower bound of competitive ratio for this problem is developed. Finally, in
section 5, we conclude the paper and discuss the future research directions.

2 The Model

There are k trucks that reside and move on a weighted graph G (with n points)to
supply service. For any points x and y in G, d(x, y) denotes their shortest dis-
tance, and the distance is symmetric, i.e., for all x, y, d(x, y) = d(y, x). A service
request r = (a, b)(a, b are different points in the given graph G), implies there
are some goods on point a that must be moved to point b by truck (for simplicity,
it is assumed that the weights of goods are same all the time). A service request
sequence R consists of some service request in turn, namely R = (r1, r2, · · · , rm)
where ri = (ai, bi). It is assumed that ai �= bi in the following discussion, because
if ai = bi, the request ri does not exist in fact and this case is of no significance
to discuss in this model. When the trucks move on the given graph G, the losses
of truck without goods equal to the distance of its moving, and the gains of truck
with goods are η times of the distance its moving. All discussions are based on
an essential assumption: when a new service request occurs, k trucks are all free.

662 W. Ma and K. Wang

The on-line k-truck problem with benefit maximization is to decide which truck
should be moved when a new service request occurs on the basis that we have
no information about future possible requests.

In this model, for a known request sequence R = (r1, r2, · · · , rm), let BOPT(R)
be the total benefit after finishing it with optimal off-line algorithm. An optimal
off-line algorithm knows the entire input sequence in advance and can process
it optimally. For every new service request ri, if algorithm ON can schedule
without information of the sequence after ri, we call ON an on-line algorithm.
For on-line algorithm ON , if there are constants α and β for any possible R
satisfying:

α · BON(R) ≥ BOPT(R)− β (1)

ON is called a competitive algorithm, where BON(R) is the total benefit with
algorithm ON to satisfy the sequence R. α is the competitive ratio.

3 Competitive Ratios

3.1 Position Maintaining Strategy (PMS for Short)

Position Maintaining Strategy [12]. For the present request ri = (ai, bi),
PMS schedules the trucks with the following three steps.

(1) Firstly, schedules a truck to ai using algorithm A which is for the k-server
problem.

(2) Then moves the truck reaching ai from ai to bi with goods to complete ri.
(3) Finally, moves the truck at bi back to ai before the next request arrives.

The famous on-line k-server problem is presented as a special case of the on-
line truck problem. Using PMS to address the k-truck problem, we could get the
following theorem.

Theorem 1. For a given graph G if there is a c-competitive algorithm for the
k-server problem on G and η > c+ 1 holds, then there is a (η

η−c−1)-competitive
algorithm for the k-truck problem with benefit maximization on G, where η has
the same meaning as defined above.

To prove the theorem 1, we should present two lemmas at first. On a given graph
G, for an request sequence R = (r1, r2, · · · , rm), let LOPT(R) be the total losses
of all trucks running without goods after finishing R with the optimal off-line
algorithm. It equals to the distance of all trucks’ moving without goods, i.e.,
we have BOPT(R) = η ·∑m

i=1 d(ai, bi) − LOPT(R). (LOPT(R) is different from
COPT(R) which denotes the total cost of all trucks after finishing R with the
optimal off-line algorithm in the traditional k-truck problem [9], and LOPT(R) =
COPT(R)− θ ·∑m

i=1 d(ai, bi) holds). Then we have the following lemma.

Lemma 1. On a given graph G, for an request sequence R = (r1, r2, · · · , rm), let
COPT(σ) denote the total cost after finishing σ with the optimal off-line algorithm
in the k-server problem, where σ = (a1, a2, · · · , am). Then we have

On the On-Line k -Truck Problem with Benefit Maximization 663

LOPT(R) ≥ COPT(σ) −
m∑

i=1

d(ai, bi) (2)

Proof. Using reduction to absurdity. We assumed that the losses of truck with-
out goods equal to the distance of its running, so LOPT(R) +

∑m
i=1 d(ai, bi)

denotes the total distance of all trucks’ moving after finishing R. If LOPT(R) +∑m
i=1 d(ai, bi) < COPT(σ), then we could use the optimal algorithm for k-truck

problem to schedule the servers in k-server problem, and the distance of servers’
moving is less. Thus, the original algorithm for k-server problem is not optimal.
Therefore the inequality LOPT(R) +

∑m
i=1 d(ai, bi) ≥ COPT(σ) holds. ��

Lemma 2. On a given graph G, for any request sequence R = (r1, r2, · · · , rm),

BOPT(R) ≤ η ·
m∑

i=1

d(ai, bi) (3)

Proof.
∑m

i=1 d(ai, bi) is the total distance that all trucks have to run with goods
for finishing R. If there is no loss of empty truck’s moving, the total benefit
would be η ·∑m

i=1 d(ai, bi), i.e. it is the upper bound of benefit. ��

Then we begin to prove theorem 1.

Proof. Because BOPT(R) = η ·∑m
i=1 d(ai, bi)−LOPT(R), from lemma 1 we have

COPT(σ) ≤ (η + 1) ·
m∑

i=1

d(ai, bi)−BOPT(R) (4)

As described above, for current service request ri = (ai, bi), the PMS first sched-
ules a truck to ai using the algorithm A which is a c-competitive algorithm for
the k-server problem. Then the truck reaching ai is moved from ai to bi with
the goods to complete ri and get back to ai before the next request arrives. Let
BPMS(R) denote the benefit of this algorithm, we have

BPMS(R) = η ·
m∑

i=1

d(ai, bi)− CA(σ)−
m∑

i=1

d(ai, bi) (5)

Since A is a c-competitive algorithm, and from (4), we also get

CA(σ) ≤ c · COPT(σ) ≤ c · (η + 1) ·
m∑

i=1

d(ai, bi)− c · BOPT(R) (6)

Taking (6) into (5), we have

BPMS(R) ≥ c ·BOPT(R) + (η − c · η − c− 1)
m∑

i=1

d(ai, bi) (7)

664 W. Ma and K. Wang

From (7) and lemma 2, we have

BPMS(R) ≥ η − c− 1
η

·BOPT(R) (8)

Because η > c+ 1 holds as defined above,

η

η − c− 1
·BPMS(R) ≥ BOPT(R) (9)

Therefore theorem 1 has been proved. By the way, we could see that the
benefit might be 0 when η = c + 1 holds. If 0 < η < c + 1, the benefit may
be negative (assuming that every request can not be rejected). When benefit is
negative, form (8) we have −BPMS(R) ≤ c+1−η

η · BOPT(R), which means the
total losses of all trucks must be less than c+1−η

η times of BOPT(R). ��

3.2 Partial Greedy Algorithm (PGA for Short)

For a given graph G with n points, let dmax = max d(x, y), dmin = min d(x, y),
where x and y are different points in G, and let λ = dmax

dmin
. When 2 ≤ k ≤ n−2, we

employ a Partial Greedy Algorithm [10] (which is so called because the Greedy
Algorithm is used for some of the cases in this problem) as follows. It is assumed
that there is at most one truck located at a point before the first request arrives.
Otherwise, we can precondition the truck locations such that each point has at
most one truck. Furthermore, the losses of this precondition is at most a con-
stant (k − 1)dmax, and it has no influence on the competitive radio. PGA will
keep that no point has more than one truck after finishing every request in the
whole game.

Partial Greedy Algorithm[10]. For the present request ri = (ai, bi),

(1) If there is a truck at ai and no truck at bi, then PGA moves the truck at ai
to bi to complete the request.

(2) If there is no truck at ai and there is a truck at bi, then PGA moves the
truck at bi to ai first, and then moves from ai to bi to complete the request.

(3) If there are trucks on both ai and bi, then PGA moves the truck at ai to bi
to complete the request and at the same time moves the truck at bi to ai.

(4) If there is no truck at ai and bi, then PGA moves the truck which is closest
to ai (supposing that the truck is locate at ci) to ai and then moves to bi to
complete the request.

Theorem 2. For a given graph G, if 2 ≤ k ≤ n− 2 and η > λ holds, PGA is a
(η
η−λ)-competitive algorithm for the k-truck problem with benefit maximization

on G.

Proof. For case (1), the benefit of PGA finishing ri is η ·d(ai, bi). For case (2) and
(3), the benefit is (η−1)·d(ai, bi). For case (4), the benefit is η·d(ai, bi)−d(ci, ai).
So for any case, the benefit of PGA for ri can not be less than η ·d(ai, bi)−dmax.

On the On-Line k -Truck Problem with Benefit Maximization 665

BPGA(R) =
m∑

i=1

BPGA(ri)− β ≥
m∑

i=1

[η · d(ai, bi)− dmax]− β

=
m∑

i=1

[
η − dmax

d(ai, bi)

]
· d(ai, bi)− β ≥

m∑

i=1

[
η − dmax

dmin

]
· d(ai, bi)− β

= (η − λ) ·
m∑

i=1

d(ai, bi)− β (10)

Where β is the losses of preconditioning the trucks such that each point has at
most one truck. From (10) and lemma 2,we have

BPGA(R) ≥
(

1− λ

η

)
·BOPT(R)− β (11)

When η > λ holds as defined above,
η

η − λ ·BPGA(R) ≥ BOPT(R)− η

η − λ · β (12)

The proof is completed. ��
For a given graph G with n points, when k = n − 1, we can employ Partial
Greedy Algorithm to design a similar algorithm B as follows. It is assumed that
there is at most one truck located at each point before the first request arrives
too. Otherwise, we can precondition the truck locations such that each point has
at most one truck. k = n−1 holds, so there is only one point with no truck. The
algorithm B will keep that there is only one point with no truck after finishing
every request in the whole game.

Algorithm B. For the present request ri = (ai, bi),

(1) If there is a truck at ai and there is no truck at bi, then B moves the truck
at ai to bi to complete the request.

(2) If there is no truck at ai, bi must have a truck, then B moves the truck at
bi to ai first, and then moves from ai to bi to complete the request.

(3) If there are trucks on both ai and bi, then B moves the truck at ai to bi to
complete the request and at the same time moves the truck at bi to ai.

Theorem 3. For a given graph G, if k = n − 1 and η > 1 holds, there is a
(η
η−1)-competitive algorithm for the k-truck problem with benefit maximization.

Proof. The discussion is similar to the proof of theorem 2. For case (1), the
benefit of B finishing ri is η ·d(ai, bi). For case (2) and (3), the benefit is (η−1) ·
d(ai, bi). So for any case, the benefit of B for ri is not less than (η− 1) ·d(ai, bi).

BB(R) =
m∑

i=1

BB(ri)− β ≥
m∑

i=1

(η − 1) · d(ai, bi)− β

= (η − 1) ·
m∑

i=1

d(ai, bi)− β (13)

666 W. Ma and K. Wang

Where β is the losses of preconditioning the trucks such that each point has at
most one truck. From (13) and lemma 2, we have

BB(R) ≥
(

1− 1
η

)
· BOPT(R)− β (14)

When η > 1 holds, we get η
η−1 ·BB(R) ≥ BOPT(R)− η

η−1 · β ��
For the case k = n, we can design a similar algorithm B′ as follows. It is also
assumed that there is at most one truck located at a point before the first
request arrives. That is to say every point just has one truck. Otherwise, we
can precondition the truck locations such that each point has one truck. For
the present request ri = (ai, bi), because there are trucks at both ai and bi, we
can schedule the truck at ai to bi to complete the request and at the same time
moves the truck at bi to ai. Then the benefit of B′ finishing ri is (η−1) ·d(ai, bi),
and at present each point still has one truck.

Similar to the case k = n− 1, we can prove that the algorithm B′ is a (η
η−1)-

competitive algorithm. So we have the following theorem.

Theorem 4. For a given graph G, if k = n and η > 1 holds, there is a (η
η−1)-

competitive algorithm for the k-truck problem with benefit maximization.

4 A Lower Bound

In this section we will give a lower bound of competitive ratio for the on-line
k-truck problem with benefit maximization. The approach we will take in was
proposed in [8], where the lower bound and matching upper bound were given
for the traditional k-server problem. In the paper [10], the approach was used to
get a lower bound as θ·k+k

θ·k+2 for the traditional k-truck problem. And then we will
use it to investigate the k-truck problem with benefit maximization as follows.

Suppose we wish to compare an on-line algorithm with k trucks to an off-line
one with h ≤ k trucks. Naturally, the competitive factor decreases when the
on-line algorithm gets more trucks than the off-line algorithm. We have actually
proven a slightly more general lower bound as (η−2)·k+2h−2

(η−1)·k for a given graph G
with η ≥ max(2, λ). The constraint η ≥ max(2, λ) is used to make the benefit
positive in the following discussion.

Theorem 5. On a constraint graph G with at least k + 2 points and η ≥
max(2, λ), let C be an on-line algorithm for the k-truck problem with benefit max-
imization. Then, for any 2 ≤ h ≤ k, there exists request sequences R1, R2, R3, · · ·
such that: (1) For all i, Ri is an initial subsequence of Ri+1; (2)There is an off-
line h-truck algorithm D (which may start with its trucks anywhere) such that
for all i, (η−2)·k+2h−2

(η−1)·k ·BC(Ri) < BD(Ri).

Proof. Without loss of generality, assume C is an on-line algorithm and that the
k trucks start out at different points. Let H (of size k + 2) be a subgraph of
G, induced by the k initial positions of C’s trucks and two other points. Define

On the On-Line k -Truck Problem with Benefit Maximization 667

R = (r1, r2, · · · , rm), C’s nemesis sequence on H , such that R(i) and R(i−1) are
the two unique points in H not covered by C and a request ri = (R(i), R(i− 1))
occurs at time i, where all i ≥ 1. Ri = (r1, r2, · · · , ri) is the subsequence of R by
the time i. At each step R requests the point just vacated by C, thus we have

BC(R) =
m∑

i=1

BC(ri) =
m∑

i=1

[η · d(R(i), R(i− 1))− d(R(i+ 1), R(i))]

= (η − 1) ·
m−1∑

i=1

d(R(i+ 1), R(i)) + η · d(R(1), R(0))

−d(R(m+ 1), R(m)) (15)

Let S be any h-element subset of H containing R(1) but not R(0). We can
define an off-line h-truck algorithm D(S) as follows: the trucks finally occupy
the points in set S. To process a request ri = (R(i), R(i− 1)), the following rule
is applied: if S contains R(i), move the truck at R(i) to R(i − 1) with goods
to complete the request, and update S to reflect this change. Otherwise move
the truck at R(i− 2) to R(i) without goods and then to R(i− 1) with goods to
complete the request, and update S to reflect this change.

It is easy to see that for all i > 1, the set S contains R(i − 2) and does not
contain R(i− 1) when step i begins. The following observation is the key to the
rest of the proof: if we run the above algorithm starting with distinct equal-sized
sets S and T , then S and T never become equal, for the reason described in the
following paragraph.

Suppose that S and T differ before ri is processed. We shall show that the
versions of S and T created by processing ri, as described above, also differ. If
both S and T contain R(i), they both move the truck at R(i) to R(i − 1), on
which there is exactly not any truck. The other points have no changes, so S and
T are still different and both S and T contain R(i− 1). If exactly one of S or T
contains R(i), then after the request exactly one of them contains R(i− 2), so
they still differ. If neither of them contains R(i), then both change by dropping
R(i − 2) and adding R(i − 1), so the symmetric difference of S and T remains
the same (non-empty).

Let us consider simultaneously running an ensemble of algorithmsD(S), start-
ing from each h-element subset S of H containing R(1) but not R(0). There are(
k
h−1

)
such sets. Since no two sets ever become equal, the number of sets remains

constant. After processing R(i), the collection of subsets consists of all the h el-
ement subsets of H which contain R(i− 1).

By our choice of starting configuration, step 1 benefits η · d(R(1), R(0)). At
step i (for i ≥ 2), each of these algorithms either moves the truck at R(i) to
R(i − 1) (if S contains R(i)), with benefit η · d(R(i), R(i − 1)), or moves the
truck at R(i − 2) to R(i) and then to R(i − 1) (if S does not contain R(i)),
with benefit η · d(R(i), R(i − 1)) − d(R(i − 2), R(i)). Of the

(
k

h−1

)
algorithms

being run,
(
k−1
h−1

)
of them (the ones which not contain R(i)) get the benefit of

η ·d(R(i), R(i−1))−d(R(i−2), R(i)). The remaining
(
k−1
h−2

)
of algorithms get the

668 W. Ma and K. Wang

benefit of η · d(R(i), R(i− 1)). Therefore, for step i, the total benefit of running
all of the algorithms is

(
k

h− 1

)
· η · d(R(i), R(i− 1))−

(
k − 1
h− 1

)
· d(R(i− 2), R(i)) (16)

The total benefit of running all of the algorithms to finish R (i.e., there is m
steps in all) is

m∑

i=1

(
k

h− 1

)
· η · d(R(i), R(i− 1))−

m∑

i=2

(
k − 1
h− 1

)
· d(R(i− 2), R(i)) (17)

Thus the expected benefit of one of these algorithms chosen at random is

BEXP(R) = η ·
m∑

i=1

d(R(i), R(i− 1))−
(
k−1
h−1

)

(
k
h−1

) ·
m∑

i=2

d(R(i− 2), R(i))

= η ·
m∑

i=1

d(R(i), R(i− 1))− k − h+ 1
k

·
m∑

i=2

d(R(i− 2), R(i)) (18)

Since the weights of edges on graph G satisfy the triangle inequality (i.e.,
d(R(i− 2), R(i)) ≤ d(R(i− 2), R(i− 1)) + d(R(i− 1), R(i)), for i ≥ 2), we have

m∑

i=2

d(R(i− 2), R(i)) ≤ 2
m−1∑

i=1

d(R(i), R(i+ 1))

+d(R(0), R(1))− d(R(m− 1), R(m)) (19)

Taking (19) into (18), we get

BEXP(R) ≥ (η − 2) · k + 2h− 2
k

·
m−1∑

i=1

d(R(i), R(i+ 1))

+
(η − 1) · k + h− 1

k
· d(R(0), R(1)) +

k − h+ 1
k

· d(R(m− 1), d(m)) (20)

Comparing (20) with (15),we can see that the two summations of the BEXP(R)
and BC(R) are identical, except that both of the benefits include some ex-
tra terms, which are bounded as a constant. When η ≥ max(2, λ) holds, both
BEXP(R) and BC(R) are positive. Therefore, after some mathematical manipu-
lation (e.g., let m→∞), we obtain

BEXP(R)
BC(R)

≥ (η − 2) · k + 2h− 2
(η − 1) · k (21)

Finally, there must be some initial sets whose performance is often no worse
than the average of the benefit. Let S be one of these sets, and D(S) be the
algorithm starting from set S. Let Ri be an initial subsequence of R, for which
D(S) does no worse than average. ��
Corollary 1. For any k-truck problem with benefit maximization on a con-
straint graph G with η ≥ max(2, λ), there is no c-competitive algorithm for
c < η·k−2

(η−1)·k .

On the On-Line k -Truck Problem with Benefit Maximization 669

5 Conclusion

In this paper, a realistic model of the on-line k-truck problem with benefit maxi-
mization is proposed. And then several on-line algorithms are designed to address
the problem, the analyses concerning the competitive ratios of the algorithms
are given in detail. The lower bound of competitive ratio is also discussed in this
paper. However, there are still many theoretical problems that need to be stud-
ied further. For example, we assumed that all trucks have same load weight in
the problem. If the load weight varies from one request to anther, how would the
results of competitive ratios be? Although we have get a lower bound of compet-
itive ratio for the k-truck problem with benefit maximization, the optimal lower
bound of the competitive ratio for it is still open. Furthermore, whether there
are some better on-line algorithms than PMS or PGA needs further investigation.

Acknowledgements. The work was partly supported by the National Natural
Science Foundation of China (70401006, 70501015, and 70521001).

References

1. D. D. Sleator, R. E. Tarjan, Amortized efficiency of list update and paging rules,
Communication of the ACM, 28: 202-208, 1985.

2. A. V. Goldberg, and J. D. Hartline, Competitiveness via Consensus, In 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’03), 2003.

3. J. D. Hartline, and A. V. Goldberg, Envy-Free Auctions for Digital Goods , In
Proc. 4th ACM Conf. on Electronic Commerce, 2003.

4. Y. Bartal, F.Y.L. Chin, M. Chrobak, S.P.Y. Fung, W. Jawor, R. Lavi, J. Sgall,
and T. Tichy, Online competitive algorithms for maximizing weighted throughput
of unit jobs, In Proc. 21st Annual Symposium on Theoretical Aspects of Computer
Science (STACS’04), LNCS 2996, Springer 2004, 187-198.

5. R. El-Yaniv, A. Fiat, R. M. Karp, et al. Competitive analysis of financial games.
Proc. 33rd Annual Symposium on Foundations of Computer Science, 1992. 327-333.

6. R. El-Yaniv, A. Fiat, R. M. Karp, et al. Optimal search and one-way trading online
algorithms. Algorithmica, 30: 101-139, 2001.

7. E. Koutsoupias and C. Papadimitriou. On the k-server conjecture Journal of ACM.
42(5):971-983, 1995.

8. M. S. Manasse, L. A. McGeoch, and D. D. Sleator, Competitive algorithms for
server problems, Journal of Algorithms,1990(11),208-230.

9. W. M. Ma, Y. F. Xu, and K. L. Wang, On-line k -truck problem and its competitive
algorithm, Journal of Global Optimization, 21 (1): 15-25, 2001.

10. W. M. Ma, Y. F. Xu, J. You, J. Liu and K. L. Wang, On the k -truck scheduling
problem, International Journal of Foundations of Computer Science, 15 (1): 127-
141, 2004.

11. W. M. Ma, K. Wang. On-line taxi problem on the benefit-cost graphs. Proceed-
ings of the Fifth International Conference on Machine Learning and Cybernetics
(ICMLC 2006), 2006, 900-905.

12. Y. F. Xu, K. L. Wang, and B. Zhu, On the k -taxi problem, Information, Vol.2,
No.4, 1999.

Energy-Efficient Broadcast Scheduling for

Speed-Controlled Transmission Channels

Patrick Briest1,� and Christian Gunia2,��

1 Dortmund University, Dept. of Computer Science, Dortmund, Germany
patrick.briest@cs.uni-dortmund.de

2 Freiburg University, Dept. of Computer Science, Freiburg, Germany
gunia@informatik.uni-freiburg.de

Abstract. We consider the problem of computing broadcast schedules
for a speed-controlled channel minimizing overall energy consumption.
Each request defines a strict deadline and we assume that sending at
some speed s for t time units consumes energy t · sα. For the case that
the server holds a single message and the speed of a broadcast needs to be
fixed when it is started, we present an O(2α)-competitive deterministic
online algorithm and prove that this is asymptotically best possible even
allowing randomization. For the multi-message case we prove that an ex-
tension of our algorithm is (4c−1)α-competitive if the lengths of requests
vary by at most a factor of c. Allowing the speed of running broadcasts
to be changed, we give lower bounds that are still exponential in α.

1 Introduction

Classical objectives in online broadcasting usually abstract away from the precise
hardware architecture of the underlying computing machinery. They mostly aim
at producing solutions that ensure a high degree of convenience for the serviced
clients, but do not take into account the cost of actually realizing the solution.
While this approach is quite reasonable in many traditional scenarios, recent
years have brought about an increasing number of applications in which these
issues become non-negligible.

The most important factor determining the cost of running a broadcasting al-
gorithm in practical applications is the algorithm’s energy consumption. In fact,
energy efficiency has become a premier objective in many different areas of com-
puter science and recent advances have already led to changes in the structure of
processors, graphic cards and other parts of computer hardware. Reduced energy
consumption offers new application areas for computer systems. Multi-agent sys-
tems consisting of dozens of small, self-sustaining units support engineers and
researchers in an increasing number of applications that range from production
process planning to geographical observations [6]. Multi-agent systems depend
on a reliable communication link between them that is typically provided by
� Supported by DFG grant Kr 2332/1-2 within Emmy Noether program.

�� Supported by DFG research training program No 1103 ’Embedded Microsystems’.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 670–679, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Energy-Efficient Broadcast Scheduling 671

means of a wireless connection. Due to characteristics of their operation areas
they are likely to be small and, consequently, carry a limited power supply. To
use this as efficiently as possible specialized hardware like, e.g., low-power CPUs
are utilized.

However, the energy consumed by the wireless connection is also far from
being negligible. As wireless communication is implicitly done via broadcasts we
propose to exploit this fact. We focus on a single agent that acts as a data server
and adapt the situation introduced by Yao et al. in their seminal work [13]:
we consider requests that have individual release times and deadlines and allow
that multiple requests for the same piece of data can be answered by a single
broadcast. While doing this results in a smaller number of broadcasts needed to
answer all requests, it also reduces the time slot left for the broadcast at hand
and, thus, requires higher transmission speed.

In previous works (e. g., [4] and [9]) the transmission power is merely used
to adjust the transmission range in order to construct a topology that supports
broadcasts but minimizes the energy consumption. We propose a completely dif-
ferent usage of the transmission power and use it to adjust the maximal trans-
mission speed of the broadcast channel. As observed, e.g., for the 802.11a-WLAN
technology, the signal-to-noise ratio needed to send a transmission increases with
the transmission speed [12] and, thus, higher speed results in increased energy
consumption. Looking at it from the optimistic point of view, the server can
reduce its energy consumption by simply keeping transmission speed low. We
follow the standard model and assume that at speed s the power consumption
is sα per time unit, where α ≥ 2 is constant.

1.1 Related Work

Extensive research on various versions of online broadcasting has been going on
for several years. The most popular problem variation aims at flowtime mini-
mization, i.e., minimizing the time span between the arrival of a request and
the time by which it is answered [1, 5]. Other objectives include minimization
of the number of unsatisfied requests [8] and different QoS-measures allowing
messages to be split up into an arbitrary number of smaller objects [11]. In [7]
flowtime minimization is combined with an additional constraint defining the
maximum energy consumption allowed for servicing the requests. Dynamic ad-
justment of the transmission energy has been used for interference reduction in
wireless networks by Burkhart et al. [3] and by Moscibroda et al. [10].

A related problem that has received a lot of attention also from the energy
perspective is job scheduling with deadlines [13]. Here, a sequence of jobs, each
with release time, deadline and a certain workload need to be scheduled on a
single speed-controlled processor, such that all jobs are finished in time and the
overall energy consumption is minimized. Yao et al. [13] present a polynomial
time offline algorithm and propose different online strategies. Bansal et al. [2]
present an O(eα)-competitive online algorithm and show that this is asymptot-
ically best possible.

672 P. Briest and C. Gunia

1.2 Preliminaries

As the base problem of this paper we consider a server that is confronted with
a sequence R = (r1, r2, . . .) of requests for the same piece of information. This
piece of information has a transfer volume of one, i.e., it can be broadcasted
completely in 1/s time units at speed s. Request rj = (tj , dj) is posed at its
release time tj and has to be answered until its deadline dj , i.e., the server’s
message has to be broadcasted completely between times tj and dj at least
once. A broadcast performed at speed s for t time units consumes t · sα energy
units for α ≥ 2. Therefore broadcasting the message completely in time t at fixed
speed 1/t consumes (1/t)α−1 energy units. Due to the convexity of the energy
function, it is not difficult to see that this is the minimal amount of energy needed
to deliver the whole information within t time units. For the first part of this
paper this will also be the only allowed type of broadcast, i.e., we will assume
that the transmission speed for each broadcast needs to be fixed the moment it is
started and cannot be changed while the broadcast is running. We consider the
problem of finding a feasible schedule of broadcasts (i.e., answering all requests
within their deadlines) that minimizes the overall energy consumption.

We will also consider two extensions of the problem defined above. First, we
will investigate the case in which the server holds a larger number k ∈ N of
messages. Every request rj = (tj , dj ,mj) then asks for a single message mj to
be delivered before its deadline. We then turn to the variation in which the speed
of a running broadcast can be adapted by the algorithm. As before, sending at
speed s for t time units causes an energy consumption of t · sα.

Finally, let us introduce some notation that will be used throughout the rest
of the paper. Given a sequence of requests R, we let B = (b1, b2, . . .) and B∗ =
(b∗1, b∗2, . . .) denote the corresponding sequences of broadcasts sent by an an online
strategy or the optimal offline strategy. We assume that B and B∗, as well as
R, are sorted chronologically by their starting and release times, respectively.
Sometimes it will be convenient to associate a broadcast bi = (si, fi) with the
interval [si, fi] defined by its starting and finishing times. For requests rj as well
as for broadcasts bi we let |rj | = dj − tj and |bi| = fi − si refer to their lengths.

1.3 Contributions

To the authors’ best knowledge, this is the first analysis directly addressed to
the minimization of energy consumption for broadcasting by speed scaling. We
start by considering the restricted version of the problem in which the server
holds only a single message and transmission speed cannot be changed while a
broadcast is being performed. We first point out that an optimal schedule can
be found in polynomial time in the offline setting. We then present an easy to
implement online algorithm and prove that it achieves competitive ratio O(2α)
in general and is O((3/2)α)-competitive for requests of identical length. These
results are found in Sections 2.1 and 2.2.

It turns out that our algorithm’s competitive ratio is best possible, as we
proceed by showing a matching lower bound of ω((2 − ε)α) for any ε > 0 that

Energy-Efficient Broadcast Scheduling 673

holds even for randomized online algorithms. The lower bound is based on what
could be called a growing gap argument. Assuming that a given online algorithm
achieves a better competitive ratio we construct a series of requests, such that
in each newly added request there is a time interval of monotonically increasing
relative length that the algorithm cannot use for the broadcast answering it.
Details are found in Section 2.3.

We continue by investigating the multiple-message scenario, in which the
server holds any larger number k ∈ N of different messages. We present an
extension of our online algorithm and show that it is (4c − 1)α-competitive if
request lengths vary by at most a factor of c. Finally, we take a look at the effect
of allowing the algorithm to adapt the speed of running broadcasts. We prove a
lower bound of ω((1.38−ε)α) for arbitrary ε > 0 on the competitive ratio of any
online algorithm in the general case and a lower bound of Ω(1.09α) for requests
of identical length. For results on these extensions see Section 3.

2 Single-Message Broadcasting

We consider the situation in which our server holds a single message and trans-
mission speed for each broadcast needs to be fixed the moment it is started.
Section 2.1 deals with the offline setting. We then present our main result by
deriving an O(2α)-competitive online algorithm in Section 2.2 and proving a
matching lower bound in Section 2.3.

2.1 The Offline Setting

Consider a given sequence of requests R and assume that we are given an opti-
mal broadcast schedule B∗. It is not difficult to argue that w.l.o.g. B∗ consists
of blocks of equally distributed consecutive broadcasts. Using this observation
one can apply a dynamic programming approach to compute optimal schedules
efficiently. The proof is left for the long version of this paper.

Theorem 1. In the offline setting the single-message broadcasting problem can
be solved in polynomial time.

2.2 An Online Algorithm

Algorithm Online-Sm below proceeds as follows. If a request r = (t, d) arrives
at time t while the channel is idle, we start a broadcast that uses the full length
d− t of the request. If the channel is busy and the currently running broadcast is
scheduled to finish at time τ , we abort and start a new broadcast if at least half
of the interval [t, d] defined by r lies before τ . In our implementation τ denotes
the end of the currently running broadcast, ρ refers to the earliest deadline of
any request that needs to be answered by a broadcast starting after τ .

674 P. Briest and C. Gunia

τ ← +∞, ρ ← +∞1

if a request r = (t, d) arrives then2
if channel is idle then3

τ ← d4
start broadcast at speed (τ − t)−15

if channel is busy then6
if τ − t ≥ d − τ then7

abort current broadcast8
τ ← min{τ, d}9
ρ ← +∞10
start broadcast at speed (τ − t)−111

else12
ρ ← min{ρ, d}13

if a broadcast finishes and ρ < +∞ then14
τ ← ρ15
ρ ← +∞16
start broadcast at speed (τ − t)−117

Algorithm 1: Online-Sm

Theorem 2. Let EON denote the energy consumption of algorithm Online-Sm
on any sequence of requests, EOPT the value of an optimal offline solution on
the same sequence. It holds that

EON ≤
(

α

α− 1

)2

2α · EOPT .

Before presenting the proof of Theorem 2 we point out that a better competitive
ratio is obtained if we require all requests to have identical length.

Theorem 3. Let EON denote the energy consumption of algorithm Online-Sm
on any sequence of requests of identical length, EOPT the value of an optimal
offline solution on the same sequence. It holds that

EON ≤ 2α
α− 1

(
3
2

)α
· EOPT .

We proceed by proving Theorem 2. It is straightforward to show that algorithm
Online-Sm outputs a feasible solution, i.e., every request is indeed answered
by one of the algorithm’s broadcasts. The formal proof is omitted due to space
limitations. In order to prove the competitive ratio claimed above we first need
to bound the cost incurred by our algorithm due to aborted broadcasts. The
following lemma states that this cost becomes negligible for larger values of α.
The proofs of Lemma 1 and Theorem 3 are omitted.

Lemma 1. Let Eab denote the energy consumed by algorithm Online-Sm due
to aborted broadcasts, Eco the energy used by completed broadcasts. Then Eab ≤
(1/(α− 1))Eco for any given sequence of requests.

Proof of Theorem 2: For the remainder of the proof it will be important to know
to which request to assign the cost of a single (completed) broadcast. Given
broadcast b sent by algorithm Online-Sm we say that b is linked to request r,

Energy-Efficient Broadcast Scheduling 675

if b is started due to r in lines 5, 11 or 17. It is straightforward to observe that
|b| ≥ |r|/2, whenever b is linked to r.

Consider the optimal broadcast schedule B∗ and let us fix a single broadcast
b∗ ∈ B∗ sent by the offline strategy. By R we refer to the set of requests answered
by b∗. Clearly, for each request r ∈ R it holds that |r| ≥ |b∗|.

We are going to bound the energy E consumed by algorithm Online-Sm
for sending (completed) broadcasts linked to requests in R. To this end, let
b∗ = (s, f) and E = E1 + E2, where E1 and E2 denote energy consumption
before and after time s, respectively.

Let us first consider E1. We know that every request in R has a deadline no
earlier than f , as otherwise it could not be answered by b∗. Now assume that
algorithm Online-Sm is sending a broadcast b linked to some request r ∈ R at
time u < s. It follows that |b| ≥ (1/2)|r| ≥ (1/2)(s − u + |b∗|) and, thus, the
algorithm is sending at speed |b|−1 ≤ 2(s− u + |b∗|)−1 at time u. We can then
write that

E1 ≤ 2α
∫ s

0
(s− u+ |b∗|)−αdu =

2α

α− 1
u−α+1

∣
∣∣
∣

|b∗|

s+|b∗|
≤ 2α

α− 1
|b∗|−α+1.

We next consider E2. As observed before, broadcasts linked to requests in R have
length at least |r|/2 ≥ |b∗|/2 and, thus, their energy consumption never exceeds
(|b∗|/2)−α+1. It is also straightforward to argue that algorithm Online-Sm starts
at most one such broadcast after time s, as this will clearly satisfy all previously
unanswered requests in R. It follows that energy consumption after time s can
only be due to the last broadcast started before s and one additional broadcast
started afterwards. Hence, we may write that E2 ≤ 2(|b∗|/2)−α+1 = 2α|b∗|−α+1.

On the other hand, the energy consumed by the offline strategy answering
requests from R is E∗ = |b∗|−α+1 and we finally obtain

E = E1 + E2 ≤
(

2α

α− 1
+ 2α

)
|b∗|−α+1 =

α

α− 1
2α · E∗.

Summing over all b∗ ∈ B∗ and taking into account energy consumption due to
aborted broadcasts yields the theorem. �

2.3 A Lower Bound

We proceed by showing that algorithm Online-Sm is asymptotically best pos-
sible. We start with a matching lower bound for deterministic algorithms in
Theorem 4. Theorem 5 states an extension to randomized algorithms.

Theorem 4. The competitive ratio of every deterministic online algorithm for
single-message broadcasting is ω((2 − ε)α) for any ε > 0.

Here is the high-level idea of the proof: Assume that some online algorithm with
competitive ratio O((2−ε)α), ε > 0, is given. We construct a sequence of requests
of exponentially decreasing lengths. In each step of the construction, there will

676 P. Briest and C. Gunia

be a time interval contained within the very last request, which the algorithm
cannot use for sending a broadcast answering it. We will refer to this time in-
terval as a gap. The key ingredient of the proof is Lemma 2, which states that
the relative length of the gap (i.e., compared to the length of the last request)
is strictly increasing, forcing the algorithm to violate its competitive ratio after
a number of requests.

Proof of Theorem 4: Towards a contradiction assume that deterministic online
algorithm A has competitive ratio O((2 − ε)α) for some constant ε > 0. We
denote our sequence of requests as r0, r1, . . . and let Rj = (r0, . . . , rj). Since A
is deterministic, we can construct the input sequence in a step by step manner,
i.e., we can define request rj+1 depending on the algorithm’s observed behavior
on the sequence Rj of previous requests.

Before we give a detailed description of our construction, we need to define the
notion of a gap more formally. We have to consider two different types of gaps.
We say that rj has a gap of relative length δ at its beginning, if a broadcast that
has been started before rj is posed is not aborted and finishes δ · |rj | time units
after rj ’s release time. Thus, the broadcast answering rj must be started at least
δ · |rj | time units after the request is actually posed. On the other hand, we say
that rj has a gap of relative length δ at its end, if there exists a request ri, i < j,
that has a deadline δ · |rj | time units before the deadline of rj and needs to be
answered by the same broadcast as rj . In this situation, the broadcast answering
rj clearly needs to finish δ · |rj | time units before its deadline, as otherwise ri
were left unanswered. Gap positions are depicted in Figure 2.3.

Let now EOPT (Rj) denote the cost of an optimal offline solution on Rj and
assume for the moment that EOPT = O(|rj |−α+1), i.e., assume that the overall
cost is dominated by the cost of answering the last request. Having this it is clear
that algorithmA’s broadcast answering rj must have length at least (1/2+ε′)|rj |
for some appropriately chosen ε′ > 0 in order to guarantee its competitive ratio.
Let now rj = (tj , dj) and mj = (tj + dj)/2 refer to the middle of the interval
defined by rj . We set r0 = (0, 1) and say that r0 has a gap of relative length 0
at its beginning. For the definition of rj+1 we distinguish two cases. If rj has a
gap of relative length δ at its beginning, we set rj+1 = (mj + (δ+ ε′)|rj |/2, dj +
(δ + ε′)|rj |/2). If a gap of the same length is at the end of rj , we set rj+1 =
(mj−(δ−ε′)|rj |/2, dj−(δ−ε′)|rj |/2). Intuitively, rj+1 has length 2−j−1 spanning
the second half of request rj and is shifted according to the gap’s position in rj .

Assuming that the gap in request rj has relative length at most 1/2 − ε′ it is
not difficult to check that in the above construction the release time of request
rj+1 always lies after the starting time of the broadcast answering rj . Thus, the
gap position in rj is known by the time we need to decide on rj+1 and we can
iterate our construction while the gap’s relative length is at most 1/2 − ε′.

By Lemma 2 the relative length increases by at least ε′ in each iteration.
Hence, it exceeds 1/2 − ε′ at some point and there must exist a request rn
that algorithm A answers by a broadcast of length (1/2 + ε′ − γ′)|rn| for some

Energy-Efficient Broadcast Scheduling 677

γ′ > 0. Thus, the energy consumption of algorithm A on Rn is EA(Rn) =
Ω((2 − ε+ γ)(α−1)|rn|−α+1) for some γ > 0.

It remains to bound EOPT (Rn) from above. The optimal schedule uses the
full length of rn for its last broadcast. For any other request rj we distinguish
two cases. If rj contains some rk, k > j, then it is answered by the broadcast
answering rk. Otherwise, all requests rk, k > j, are posed after mj and rj can
be answered by a broadcast of length mj − tj = |rj |/2. Now remember that
|rj | = 2−j and we obtain that

EOPT (Rn) ≤
n−1∑

j=0

(|rj |/2)−α+1 + |rn|−α+1 = O(|rn|−α+1),

which contradicts the assumption that A is O((2 − ε)α)-competitive. �

δ

2j
δ+ε′

2j
δ+ε′

2j+1

δ+ε′

2j+1

(a) front to front

δ

2j
δ+ε′

2j
δ+ε′

2j+1

(b) front to back

δ

2j

δ+ε′

2j+1
δ+ε′

2j+1

ε′

2j

(c) back to front

δ

2j

δ+ε′

2j+1

ε′

2j

(d) back to back

Fig. 1. Construction for a gap of relative length δ with respect to its position in the
j-th request. Intervals corresponding to requests and broadcasts are depicted as dashed
and solid lines, respectively. The flash symbol denotes abortion of a running broadcast.
Boxes mark gaps as described in Theorem 4.

Lemma 2. Given online algorithm A as in the proof of Theorem 4, the relative
length of the gap increases by at least ε′ with each newly added request.

Figure 2.3 gives some idea of the proof of Lemma 2, which is rather technical
and is omitted here due to space limitations.

The next theorem extends our lower bound to randomized online algorithms.
We briefly sketch the key idea. As the length of the broadcast answering the last
request dominates the cost of the solution, we know that the expected length
of the broadcast answering rj must not fall below (1/2 + ε′)|rj |. Assuming that
each request is added as before, we obtain that the expected length of the gap

678 P. Briest and C. Gunia

increases in every step. However, as an adversary we do not know the random
coin flips of the algorithm and, thus, do not know the position of the gap. We
solve this problem by shifting requests in either of the two possible directions
randomly. The key observation is that for constant ε′ > 0 we need only a constant
number of consecutive successful steps to reach a sufficient gap size and, thus,
the randomized online algorithm fails to achieve its expected competitive ratio
with sufficiently high probability.

Theorem 5. The expected competitive ratio of every (randomized) online algo-
rithm for single-message broadcasting is ω((2 − ε)α) for any ε > 0.

3 Extensions

Finally, we will briefly sketch a number of results for some natural extensions
of our problem. Section 3.1 presents a competitive online algorithm for the case
that more than a single message needs to be broadcasted. Section 3.2 discusses
the implications of allowing the speed of a running broadcast being changed.

3.1 An Online Algorithm for Multiple Messages

We sketch an online algorithm for the case that the server holds some number
k ∈ N of different messages. Request r = (t, d,m) now also specifies the message
m that needs to be received. We assume that requests have lengths that vary
between
 and c
 for some positive constants c and
. Algorithm Online-Mm is a
simple extension of our algorithm from Section 2.2. Instead of single broadcasts
Online-Mm sends sequences of broadcasts (of different messages) of overall
length
/2. Again we let τ refer to the earliest deadline of a request that needs
to be answered by the following broadcast sequence. This time we set τ to the
deadline of a newly arriving request if it overlaps by more than
/2. We collect
requests until time τ −
/2 and then answer collected requests by a broadcast
sequence. After that, we set τ to the earliest deadline of any request that has
not been answered.

It can be shown that algorithm Online-Mm has a constant competitive ratio
that depends only on c, i.e., the factor by which request lengths may vary. We
specifically note that this competitive ratio is independent from the number k
of messages held by the server.

Theorem 6. Let EMM denote the energy consumption of algorithm Online-
Mm on any sequence of requests with lengths varying between
 and c
 for some
fixed c ≥ 1, EOPT the value of an optimal offline solution on the same sequence.
It holds that EMM ≤ (4c− 1)α · EOPT .

3.2 More Flexible Speed-Adjustment

We briefly address another extension to our problem. It is conceivable to allow
the server to adapt the speed of a running broadcast without enforcing a restart.

Energy-Efficient Broadcast Scheduling 679

While our algorithmic results can obviously still be applied, the lower bound
given in Section 2.3 does not hold in this situation. However, the next theorem
states that the competitive ratio of any algorithm must be exponential in α,
even if we allow speed adaptation.

Theorem 7. The competitive ratio of any (randomized) online algorithm for
single-message broadcasting capable of speed adaptation is ω((γ − ε)α) for every
ε > 0, where γ = (5 + 5

√
5)/(5 + 3

√
5) > 1.38. If request lengths are identical

the competitive ratio is at least Ω(1.09α).

References

1. N. Bansal, D. Coppersmith, and M. Sviridenko. Improved Approximation Algo-
rithms for Broadcast Scheduling. In Proceedings of the Symposium on Discrete
Algorithms (SODA), 2006.

2. N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic Speed Scaling to Manage Energy
and Temperature. In Proceedings of the Symposium on Foundations of Computer
Science (FOCS), 2004.

3. M. Burkhart, P. von Rickenbach, R. Wattenhofer, and A. Zollinger. Does Topology
Control Reduce Interference? In Proceedings of the Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), 2004.

4. A. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca. On the Complexity of
Computing Minimum Energy Consumption Broadcast subgraphs. In Proceedings
of the Symposium on Theoretical Aspects of Computer Science (STACS), 2001.

5. J. Edmonds and K. Pruhs. Multicast Pull Scheduling: When Fairness is Fine.
Algorithmica, 36, 3:315–330, 2003.

6. G.-Y. Gao and S.-K. Wang. A Multi-Agent System Architecture for Geographic
Information Gathering. Journal of Zhejiang University SCIENCE, 5(11):1367–
1373, 2004.

7. C. Gunia. On Broadcast Scheduling with Limited Energy. In Proceedings of the
Conference on Algorithms and Complexity (CIAC), 2006.

8. B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai. Scheduling Broadcasts
in Wireless Networks. In Proceedings of the European Symposium on Algorithms
(ESA), 2000.

9. X-Y. Li, W-Z. Song, and W. Wang. A Unified Energy-Efficient Topology for Uni-
cast and Broadcast. In Proceedings of the International Conference on Mobile
Computing and Networking (MobiCom), 2005.

10. T. Moscibroda and R. Wattenhofer. Minimizing Interference in Ad Hoc and Sen-
sor Networks. In Proceedings of the Joint Workshop on Foundations of Mobile
Computing, 2005.

11. K. Pruhs and P. Uthaisombut. A Comparison of Multicast Pull Models. In Pro-
ceedings of the European Symposium on Algorithms (ESA), 2002.

12. D. Qiao, S. Choi, and K.-G. Shin. Goodput Analysis and Link Adaptation for
IEEE 802.11a Wireless LANs. Transactions on Mobile Computing, 1(4):278–292,
2002.

13. F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Reduced CPU Energy.
In Proceedings of the Symposium on Foundations of Computer Science (FOCS),
1995.

Online Packet Admission and Oblivious Routing

in Sensor Networks

Mohamed Aly1,� and John Augustine2,��

1 Dept. of Computer Science, University of Pittsburgh,
210 South Bouquet Street,

Pittsburgh, PA 15260
maly@cs.pitt.edu

2 Donald Bren School of Information and Computer Sciences,
University of California at Irvine,

444 Computer Science Bldg,
Irvine, CA 92697
jea@ics.uci.edu

Abstract. The concept of Oblivious Routing for general undirected net-
works was introduced by Räcke [12] when he showed that there exists
an oblivious routing algorithm with polylogarithmic competitive ratio
(w.r.t. edge congestion) for any undirected graph. In a following result,
Räcke and Rosén [13] presented admission control algorithms achieving a
polylogarithmic fraction (in the size of the network) of the optimal num-
ber of accepted messages. Both these results assume that the network
incurs a cost only after it is accepted and the message is routed. Ad-
mission control and routing algorithms for sensor networks under energy
constraints, however, need to account for the energy spent in checking
for feasible routes prior to the acceptance of a message and hence, it is
unclear if these algorithms achieve polylogarithmic bounds under this
condition. In this paper, we address this problem and prove that such
algorithms do not exist when messages are generated by an adversary.
Furthermore, we show that an oblivious routing algorithm cannot have a
polylogarithmic competitive ratio without a packet-admission protocol.
We present a deterministic O(ρ log n)-competitive algorithm for tree net-
works where the capacity of any node is in [k, ρk]. For grids, we present an
O(log n)-competitive algorithm when nodes have capacities in Θ(log n)
under the assumption that each message is drawn uniformly at random
from all pairs of nodes in the grid.

1 Introduction

In his seminal work, Räcke [12] proved the existence of oblivious routing algo-
rithms (with respect to edge congestion) for general undirected graphs, which

� Funded in part by NSF grants ANI-0325353, CCF-0448196, CCF-0514058, and IIS-
0534531.

�� Supported in part by NSF grant CCF-0514082.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 680–689, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Online Packet Admission and Oblivious Routing 681

was a breakthrough in routing with local information. The paper defined the
concept of oblivious routing where the routing path for a message between a
source s and a target t is independent of all other messages and only depends on
s, t and some random input. Räcke presented the idea of decomposing a general
graph into a tree and routing demands on the underlying tree decomposition.
Many researchers have employed Räcke’s technique in other network models such
as the work of Hajiaghayi, Kim, Leighton and Räcke [8] on directed graphs.

In addition, Räcke’s technique has also been used to provide algorithms for ob-
jective functions other than edge congestion. For instance, Räcke and Rosén [13],
present the first known distributed online admission control algorithms for gen-
eral network with polylogarithmic competitive ratios in the size of the network
with respect to the number of accepted messages. Based on the use of Räcke’s
tree decomposition, the algorithms consisted of path-establishment and message
admission procedures that can operate in a hop-by-hop manner through the net-
work. For a given request, a sequence of request-messages is sent along a path
(determined in a distributed hop-by-hop fashion) between the source and des-
tination. The message is accepted in case the loads of all the edges along such
path have enough capacity to route the message. In case a message is accepted,
it is routed on the same path.

Routing issues in sensor networks has gained considerable attention in the
recent years [3, 9, 15, 11, 10, 6]. Unlike general networks, a sensor network is
typically composed of a large number of sensors with limited energy, process-
ing, communication, and storage capabilities [1]. This node-centric constraint
motivates us to consider routing algorithms in node capacitated graph models.
Hajiaghayi et al. [7] study routing in node capacitated graphs where they min-
imize the node congestion. Admission control algorithms in the sensor network
context for node capacitated graphs have not been studied so far to the best
of our knowledge. Can the known algorithms for admission control provide us
a guarantee of polylogarithmic competitive ratio in this scenario? While this is
a promising direction, the answer is unclear because the messages sent to check
whether a path can be established consume energy just like the input messages.
Obviously, this is not an issue in the analysis of Räcke’s technique in general
networks. Additionally, a message that is dropped mid-way before reaching its
destination consumes energy at all the sensor nodes that it visited before being
dropped. Based on these observations, an oblivious routing algorithm for sen-
sor networks should not accept messages if it can somehow anticipate that an
intermediate node on the message path is likely to drop such message.

In this paper, we study the problem of Online Packet-Admission and Oblivious
Routing in the context of sensor networks. We define the problem as follows. A
sequence of messages (packets) is received in an online manner. Each message
arises in a sensor node, referred to as the source, and it should be sent to another
sensor node, namely the destination. The sender first determines whether to send
the message or drop it. Then, the sender decides which is the best neighbor to
forward the message to. The sender makes both decisions based on its local
energy status, the destination location and information that it has received via

682 M. Aly and J. Augustine

control messages whose energy consumption is duly accounted. The path of the
message to its destination is determined in a distributed manner. Any sensor
node can locally decide to drop the message according to its local information.
The packet-admission and oblivious routing algorithm aims at maximizing the
number of successfully sent messages.

2 Our Results

We analyze online distributed packet-admission and oblivious routing algorithms
for sensor networks. Our primary goal is to design algorithms that achieve a log-
arithmic competitive ratio in terms of throughput (number of successfully sent
messages) when compared to the optimal offline algorithm, OPT. Our results
are twofold. In the first part of the paper, we derive lower bounds on distributed
oblivious routing algorithms. A major result that we prove is that any distributed
packet-admission and oblivious routing algorithm cannot achieve polylogarith-
mic competitiveness when given a set of adversarial messages. This result forms
a strong constraint on the input of any routing protocol in sensor networks, and
in capacitated graphs in general. Furthermore, we consider a distributed obliv-
ious routing algorithm that always sends packets without applying any packet-
admission protocol. The messages however can be dropped when it reaches a
node that has used up all its energy, i.e., a dead node. For such algorithms, we
prove the following theorem.

Theorem 2.1. Given a balanced binary tree T (V,E) and a set of demands D,
an always-send distributed oblivious routing algorithm Aas cannot maintain poly-
logarithmic competitiveness in either of the following cases:

– D is a set of adversarial demands, or follows a general distribution that is
unknown to all sensor nodes.

– an adversary sets the tree node capacities (internal nodes or leaf nodes).

This theorem shows that any distributed oblivious routing algorithm needs a
concrete packet-admission protocol in order to achieve polylogarithmic compet-
itiveness with respect to throughput in the context of sensor networks. Since we
prove these lower bound results for balanced binary trees, they extend to general
trees, as well as general undirected graphs.

We complement the lower bounds in the second part by providing twoO(log n)-
competitive algorithms, in terms of throughput, for undirected tree and grid
networks, respectively. These topologies arise naturally in the study of sensor
networks lending credence to the our choice. For example, the work on data
aggregation uses trees in collecting data from sensor nodes, even when sensor
networks have general graph topologies (see [3, 9, 15, 11, 10, 6]). We also have
several examples in the sensor networks literature that study grid topologies
(see [4, 5, 14]). Our first algorithm achieves an O(ρ log n) competitive ratio for
any sequence of input messages, assuming the capacity of any node is in [k, ρk]
where k is in Ω(log n), for a sensor network that can be modeled as a tree. Our

Online Packet Admission and Oblivious Routing 683

second algorithm is O(log n)-competitive assuming the capacity of any node is
k ≥ 104 log2 n+ 6 logn and is a uniform value for all nodes.

Our work leads to many interesting open problems in terms of deriving tighter
lower and upper bounds for distributed oblivious routing algorithms for sensor
networks, as well as, considering the oblivious routing problem for more general
types of graphs with energy-capacitated nodes.

3 Preliminaries

We represent the sensor network as a graphG(V,E), where v ∈ V is a sensor node
with energy capacity cap(v) units, |V | = n, and |E| = m. An edge u = (i, j) ∈ E
iff there exists a wireless link between sensors i and j. The two particular types of
graphs that we consider in this paper are trees, which we represent by T (V,E)
in Section 5, and grid networks. A message is an ordered pair (s, t) that is
generated at s. We are presented with a sequence of calls D, also known as the
message demand or simply demand, in an online manner, i.e., each message (s, t)
is only known to s when it is generated and the sequence of calls is not known in
advance. Our distributed routing algorithm has to either accept or reject each
message (s, t) as it is presented and if accepted, the message should be routed
to its destination t. In addition to rejection, the message may also be dropped
enroute to its destination. A node spends 1 energy unit in sending a message
while receiving is free. We present distributed algorithms that execute without
any central decision maker. All decisions are made within a a sensor node. We
allow control messages to be passed along by the distributed algorithm as long
as the messages are of size at most O(log n). Each control message, like the calls
in the demand, that hops from node a to node b consumes 1 energy unit at node
a. Each node is oblivious of the energy levels of the other nodes and can only
use the information about itself and that which is explicitly passed on to it via
control messages. Let OPT (G,D) be the maximum number of messages that can
be successfully routed by an optimal algorithm that knows D in advance and has
full knowledge of the energy levels of every node in G at all times. Our algorithms
are O(log n), i.e., the number of messages they route successfully when presented
with the demand D is asymptotically within a logarithmic factor of OPT (G,D).

4 Lower Bounds

In this section, we present lower bounds on the competitive ratio of distributed
oblivious routing algorithms in tree networks. In other words, we are studying
the conditions preventing an oblivious routing algorithm from having a poly-
logarithmic competitive ratio. We consider a balanced binary tree T (V,E) such
that |V | = 4n− 1, i.e., it is a tree with n leaves in each half. A node is assumed
to consume 1 unit in receiving a message. We assume, without loss of generality,
that all messages are from leaf nodes of the left subtree to the leaf nodes of right
subtree through the root node. In some cases, we assume that the node capac-
ities follow the nesting property whereby, a non-leaf node has capacity exactly

684 M. Aly and J. Augustine

equal to the sum of the capacities of its children. Note that when a tree follows
the nesting property, we only need to set the capacities of the leaves in order to
define the capacities of all the nodes in the tree. Using such settings, we prove
theorem 2.1 using the next four lemmas.

4.1 Adversarial Demands

We first assume that the set of input demands D is formed by an adversary
that knows the capacities of all the tree nodes at any time during the network
operation. Further, T is assumed to follow the nesting property, and each leaf
node has a capacity of e energy units, assuming (e � n). For this setting, we
claim the following lemma.

Lemma 4.1. For the above tree setting, there exists at least one set of adver-
sarial demands D that makes any deterministic distributed routing algorithm A
at least Ω(n) competitive.

Proof. We denote leaf nodes of the left and right subtrees by li, rj 1 ≤ i, j ≤ n,
respectively. Each left subtree leaf node is assumed to have an n-bit vector
numbered from 1 to n such that each bit represents the status of one of the
n right subtree leaf nodes. Node li sends messages to node rj only if the jth

bit in li’s vector is set to 1. Assuming any arbitrary A, A does not change the
bit vector of any node li except when li either sends (or drops) a message, or
receives a control bit. Given any A, we assume the presence of an adversary
that knows the bit vectors of every node li, 1 ≤ i ≤ n, at any point in time.
The adversary is assumed to know the mechanism A uses to change the bit
vector of any node li. The adversary is supposed to form an input sequence of
D = (M(li, rj) : 1 ≤ i, j ≤ n) messages in a way that minimizes the throughput
of A when compared to that of OPT. Also, the adversary continuously inputs
messages till totally depleting the energy of all tree nodes.

The main idea of the adversarial strategy consists of making A send a message
that OPT would not have sent (as the message destination is dead). Before
starting its algorithm, the adversary checks the bit vectors of all li’s and stops
if any bit in any of these vectors is set to zero. In such case, A has an infinite
competitive ratio compared to OPT. If this is not the case, the adversary applies
the algorithm explained below.

The algorithm operates in n rounds. At each round, the adversary selects a
destination rj , which is a non-dead right subtree leaf node. Then, the adversary
iterates on the alive left subtree leaf nodes, one by one, and for every node li, it
keeps inserting M(li, rj) messages in D until node li switches its jth bit to zero.
The iteration ends when all left subtree leaf nodes are either dead or have their
jth bit set to zero. At any iteration 0 ≤ k < n, the destination rj , selected by
the adversary at the start of k, will be dead after it receives the first e successful
messages sent by A. The rest of the messages sent to rj until the end of iteration
k will be considered as falsely accepted messages by A.

Now, we analyze the above strategy. At every iteration, OPT achieves exactly
e successful messages. Similarly, at each iteration i where 0 ≤ i < e, A achieves

Online Packet Admission and Oblivious Routing 685

at most e successful messages. However, the adversary is able to force A to loose
at least n energy units (i.e., at least one energy unit per sensor) at each of the
first e iterations by making each alive node at least send one message (or receive
one control bit). After e iterations, the number of accepted messages by OPT
is e2 and it has n · e − e2 energy units left (n − e left subtree leaf nodes each
having e energy units). On the other hand, A has successfully sent at most e2

messages and has all left subtree leaf nodes dead. Thus, after n rounds, OPT’s
throughput is n ·e, while that of A is at most e2, i.e. A is (ne)-competitive, which
ends the proof. ��

4.2 Demands Drawn from an Unknown Distribution

Using the same tree setting as 5.1, we now drop the assumption of adversarial
demands and assume that the messages in D are drawn from a distribution, but
the sensors are oblivious to the nature of the distribution. We further assume
that n is a power of 2, and leaf nodes have equal capacity belonging to logn. We
now claim the following lower bound. (proof omitted)

Lemma 4.2. For the above tree setting, there exists a distribution unknown to
the nodes v ∈ V from which we draw messages in D that makes an always-send
oblivious routing algorithm Aas at least Ω(n)-competitive, assuming D is drawn
from a distribution that is unknown for all nodes v ∈ V .

4.3 Adversarial Leaf Node Capacities

We now consider the case where the adversary can set the energy capacities of
the nodes in the tree. We restrict ourselves to the trees that follow the nesting
property. Therefore, the adversary sets the capacities of the leaves and the rest
of the capacities are determined by the nesting property. We now present the
following lower bound (proof omitted)

Lemma 4.3. There exists at least one adversarial setting for leaf node capacities
that makes an always-send oblivious routing algorithm Aas Ω(n) competitive,
assuming messages in D are drawn from a uniform distribution.

Theorem 2.1 directly follows from the previous three lemmas. A direct impli-
cation from the theorem is that any distributed oblivious routing algorithm Ao
should have a packet-admission protocol in order to achieve a polylogarithmic
competitive ratio. In the following two sections, we complement these lower
bound results by presenting oblivious routing algorithms that are logarithmic
for undirected tree and grid networks (under uniform random demands assump-
tion).

5 Oblivious Routing in Tree Networks

In this section, we present a deterministic packet admission and oblivious rout-
ing algorithm for a balanced binary tree T (V,E) of height logn. We later show

686 M. Aly and J. Augustine

how this can be extended to any tree network. All sensors v ∈ V have energy
capacity in [k, ρk], where k, where k ∈ Ω(logn) and ρ > 1. Our algorithm is
O(ρ log n)-competitive against an omniscient adversary. Given a messageM(s, t),
the distributed algorithm is assumed to know the level of the lowest common
ancestor (LCA) of s and t.

Algorithm. We classify each message (s, t) according to the level of its lowest
common ancestor (LCA). Each node uses at most k units of energy. It divides
its quota of energy k into logn shares with each containing energy �k/ logn	.
We denote the shares si, where 1 ≤ i ≤ logn. Each message has a unique route
and LCA because our network is a balanced binary tree. When a message with
an LCA at level i reaches (or starts at) a node, it allows it to pass if and only if
share si > 0 and then the node decrements si. The message is dropped if si = 0.

We now analyze our algorithm.

Lemma 5.1. Consider any node v ∈ V . For any fixed sequence I of input
messages, if CSI(v) and OPTI(v) be the number of messages with LCA v that
are successfully routed by CS and OPT, respectively, then

OPTI(v)
CSI(v)

≤ ρ logn (1)

Proof. Let i be the level of node v. CS allows the first si messages whose LCA is
v and rejects subsequent messages with LCA v. Hence, the ratio between CS and
OPT is maintained trivially. OPT can pass at most ρk messages whose LCA is v
because the capacity of v is in [k, ρk]. Since, si = �k/ logn	, ρk ≤ ρsi(1 + logn),
thus, Equation 1 holds. ��
Lemma 5.2. CS is O(ρ log n)-competitive for balanced binary trees.

Proof. For a fixed input sequence I, let CSI and OPTI be the number of mes-
sages successfully routed by CS and OPT respectively throughout the tree T .
We know that

CSI =
∑

v∈V
CSI(v)

OPTI =
∑

v∈V
OPTI(v)

Therefore,

OPTI
CSI

=
∑

v∈V OPTI(v)
∑
v∈V CSI(v)

=
ρ logn

∑
v∈V

OPTI(v)
ρ logn∑

v∈V CSI(v)

≥ ρ logn
∑
v∈V CSI(v)

∑
v∈V CSI(v)

= ρ logn.

��

Online Packet Admission and Oblivious Routing 687

We can easily extend this algorithm to work in arbitrary tree networks using a
well-known tree partitioning technique [2]. We know that we can easily find a
node in a tree that divides the tree into two parts such that neither part has
more than 2n

3 nodes. We find such a node and call it the pivot node at level one.
This spawns two subtrees and we recursively perform this operation to spawn
subtrees at subsequent levels along with their corresponding pivot nodes. It is
easy to see that we generate � = O(log n) levels. Similar to the case of balanced
binary trees, we designate a fraction 1

� of the energy available at each node as a
quota for messages that are entirely within subtrees at each level, say level i, but
span multiple subtrees at higher numbered levels. Consider the jth tree at level
i. The set of messages at level i and pertaining to that tree is denoted by Ψ ji . Like
before, the pivot node at level i and tree j sends out a broadcast when the quota
is reached. Therefore, we successfully transmit max(|Ψ ji |, 1

�OPT (Ψ ji) messages,
where OPT (Ψ ji) is the number of messages (at the very best) that OPT can
transmit when provided with Ψ ji as its input . It is easy to see that at least
a fraction Ω(1

logn) messages in Ψ ji that OPT can transmit will be transmitted
if that quota is observed. Summed over all trees that are spawned, we get the
required competitive ratio for arbitrary trees.

Theorem 5.3. CS is O(ρ log n)-competitive for arbitrary tree networks.

6 Oblivious Routing in Grids

In this section, we consider the sensors to form a 3-dimensional n × n × n grid
of vertices represented by the set V . For now, we assume that n = 2� − 1.
We will show how this requirement can be eliminated. Each node v ∈ V in
the grid can be addressed by its co-ordinates (xv, yv, zv). Each node has k =
6c log2 n + 6 logn units of energy and an unit of energy is required to transmit
a message to a neighboring node. We assume that messages in our demand
sequence are generated independent of each other and the source and destination
are chosen uniformly at random. We present a call control algorithm and show
that it is O(log n)-competitive with high probability

Consider a messageM(s, t) where s and t are the source and destination nodes,
respectively. We denote the positions of s and t by (xs, ys, zs) and (xt, yt, zt).
Consider the sequence (1, 2, . . . , n) that can be used to represent a single line of
nodes along one of the three axes. We decompose it into pivot levels as follows:
node n+1

2 is at pivot level 1. Nodes n+1
4 and (n+1)3

4 are in pivot level 2. In general,
(n+1)i

2� is at pivot level �, where � ≤ log(n + 1), i < 2� and i and � are positive
integers, if and only if i and 2� are mutually prime. We define the x-pivot (resp.,
y-pivot and z-pivot) for a message M to be the node with the smallest pivot
level value inclusively between xs (resp., ys and zs) and xt (resp., yt and zt).
We have boolean variables Lx(�) and Rx(�) stored in each node s that are used
to decide whether a message should be accepted. Lx(�) (resp. Rx(�)) in node s
is set to true initially if there is a pivot level � to the left (resp. right) of xs and
false otherwise, thereby allowing messages originating at s with a destination t

688 M. Aly and J. Augustine

such that xs > xt, i.e., traveling left (resp. xs < xt, i.e., traveling right), and
pivoted at level � along the x-axis. We define the pivot plane Px(i, �) (resp.
Py(i, �) and Pz(i, �)) to be the set of nodes with x value (resp. y and z values)
equal to (n + 1) i

2� . The pivot plane Px(i, �) has a reach associated with it and
is defined as the set of nodes whose x values are in ((n + 1) i−1

2� , (n + 1) i+1
2�).

Each node p in Px(i, �) is allocated a quota 2c logn of messages that can pivot
at p. When the quota is reached, node p broadcasts a message to all nodes in
its reach stating that plane Px(i, �) has reached its quota. Each node v that
receives such a broadcast message in turn switches its Lx(�) (if xv > (n+ 1) i

2�)
or Rx(�) (if xv < (n+ 1) i

2�) to false. Since there are log(n+ 1) pivot levels and
each node has two variables that can be switched off, there are only 2 log(n+ 1)
such messages that pass through each node. When a node p ∈ Px(i, �) sends out
such a broadcast message, we say that Px(i, �) is saturated. I.e., the algorithm
no longer admits messages that pivot at Px(i, �).

The algorithm works as follows: when presented with a message M(s, t) such
that its pivot levels along the three axes are �x, �y and �z, we accept this message
if and only if the three boolean variable corresponding to this message along the
three axes stored at node s are set to true. Notice that we need to use either the
’L’ or the ’R’ according the direction M travels along each axis. For instance, if
xs < xt, then we need to use Rx. The message is routed from s to t along these
nodes: s→ (xt, ys, zs)→ (xt, yt, zs)→ t. It is easy to see that all messages that
are accepted can be routed. It remains to show that this algorithm successfully
transmits at least a fraction 1

O(logn) of the number of messages that an optimal
algorithm that knows all the messages in advance can transmit.

Consider an arbitrary pivot plane P . Let Ψ be the set of all messages that
pivot about P . The probability that |P | < cn2 logn is at most 2n4− c

4 and it
is obtained by viewing each node in the plane as a bin and the messages going
through that node are the balls in that bin. If every node allows less than 2c logn
messages to pivot on it, then no message is discarded on account of P . In other
words, P is a non-saturated plane. However, if a node reaches 2c logn, i.e., its
corresponding plane is saturated, then we know with probability at most 2n4− c

4

that |P | < cn2 logn. The maximum number of messages that can pivot at this
plane is 6cn2 log2 n + 6 logn. However, if we consider the saturated planes, we
also know that cn2 logn messages successfully pivoted at each of these planes
with probability at least 1 − 2n3(4− c

4). Therefore, we maintain a competitive
ratio of O(log n) with high probability when c ≥ 52

3 .
Notice that the key point of this result is that we partition each axis into

O(log n) levels thereby allowing us to classify messages based on its pivot level.
Since we trivially know that a similar partition with O(log n) levels can be ob-
tained for all positive values of n, our algorithm works for unrestricted values of
n.

Theorem 6.1. Our distributed and oblivious level based algorithm is O(log n)-
competitive for n × n × n grid when the messages in our demand sequence are
generated uniformly at random.

Online Packet Admission and Oblivious Routing 689

Acknowledgments. We thank Kirk Pruhs, Sandy Irani, Harald Räcke, and
MohammadTaghi Hajiaghayi for several insightful comments.

References

[1] I.F. Akyildiz, Su Weilian, Y. Sankarasubramaniam, and E. Cayirci. A survey on
sensor networks. IEEE Communications Magazine, 40:102– 114, 2002.

[2] Baruch Awerbuch, Yair Bartal, Amos Fiat, and Adi Rosén. Competitive non-
preemptive call control. In Proc. of the ACM Symp. on Discrete Algorithms
(SODA), 1994.

[3] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards sensor
database systems. In MDM ’01: Proceedings of the Second International Con-
ference on Mobile Data Management, pages 3–14, London, UK, 2001. Springer-
Verlag.

[4] Krishnendu Chakrabarty, S. Sitharama Iyengar, Hairong Qi, and Eungchun Cho.
Grid coverage for surveillance and target location in distributed sensor networks.
IEEE Transactions on Computers, 2002.

[5] Santpal S. Dhillon, Krishnendu Chakrabarty, and S. S. Iyengar. Sensor placement
for grid coverage under imprecise detections. In Proc. International Conference
on Information Fusion, 2002.

[6] Himanshu Gupta, Vishnu Navda, Samir R. Das, and Vishal Chowdhary. Efficient
gathering of correlated data in sensor networks. In Proc. of MobiHoc, 2005.

[7] Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, Tom Leighton, and Harald
Raecke. Oblivious routing on node-capacitated and directed graphs. In Proc. of
the ACM Symp. on Discrete Algorithms (SODA), 2005.

[8] MohammadTaghi Hajiaghayi, Jeong Han Kim, Tom Leighton, and Harald Räcke.
Oblivious routing in directed graphs with random demands. In Proc. of the ACM
Symp. on Theory of Computing (STOC), 2005.

[9] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Tag:
a tiny aggregation service for ad-hoc sensor networks. volume 36, pages 131–146,
New York, NY, USA, 2002. ACM Press.

[10] Seung-Jong Park, Ramanuja Vedantham, Raghupathy Sivakumar, and Ian F. Aky-
ildiz. A scalable approach for reliable downstream data delivery in wireless sensor
networks. In Proc. of MobiHoc, 2004.

[11] Tri Pham, Eun Jik Kim, and W. Melody Moh. On data aggregation quality and
energy efficiency of wireless sensor network protocols. In Proc. of BROADNETS,
2004.

[12] Harald Räcke. Minimizing congestion in general networks. In Proc. of the ACM
Symp. on Foundations of Computer Science (FOCS), 2002.

[13] Harald Räcke and Adi Rosén. Distributed online call control on general net-
works. In SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 791–800, Philadelphia, PA, USA, 2005. Society for
Industrial and Applied Mathematics.

[14] R. Stoleru and J. Stankovic. Probability grid: A location estimation scheme for
wireless sensor networks. In Proceedings of the IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks, 2004.

[15] Yong Yao and Johannes Gehrke. Query processing for sensor networks. In Pro-
ceedings of the First Biennial Conference on Innovative Data Systems Research
(CIDR 2003), 2003.

Field Splitting Problems in Intensity-Modulated

Radiation Therapy�

Danny Z. Chen and Chao Wang��

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
{chen, cwang1}@cse.nd.edu

Abstract. Intensity-modulated radiation therapy (IMRT) is a modern
cancer treatment technique that delivers prescribed radiation dose dis-
tributions, called intensity maps (IMs), to target tumors via the help of
a device called the multileaf collimator (MLC). Due to the maximum leaf
spread constraint of the MLCs, IMs whose widths exceed a given thresh-
old cannot be delivered as a whole, and thus must be split into multiple
subfields. Field splitting problems in IMRTnormally aim to minimize
the total beam-on time (i.e., the total time when a patient is exposed to
actual radiation during the delivery) of the resulting subfields. In this pa-
per, we present efficient polynomial time algorithms for two general field
splitting problems with guaranteed output optimality. Our algorithms
are based on interesting observations and analysis, as well as new tech-
niques and modelings. We formulate the first field splitting problem as
a special integer linear programming (ILP) problem that can be solved
optimally by linear programming due to its geometry; from an optimal
integer solution for the ILP, we compute an optimal field splitting by
solving a set of shortest path problems on graphs. We tackle the sec-
ond field splitting problem by using a novel path-sweeping technique on
IMs.

1 Introduction

In this paper, we study a few geometric partition problems, called field splitting,
which arise in intensity-modulated radiation therapy (IMRT). IMRT is a modern
cancer treatment technique that aims to deliver highly conformal prescribed
radiation dose distributions, called intensity maps (IMs), to target tumors while
sparing the surrounding normal tissues and critical structures. An IM is specified
by a set of nonnegative integers on a uniform 2-D grid (see Figure 1(b)). The

� This research was supported in part by the Faculty Research Program of the Uni-
versity of Notre Dame, the National Science Foundation under Grant CCF-0515203,
and NIH NIBIB Grant R01-EB004640-01A2.

�� Corresponding author. The research of this author was supported in part by two
Fellowships in 2004-2006 from the Center for Applied Mathematics of the University
of Notre Dame.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 690–700, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Field Splitting Problems in Intensity-Modulated Radiation Therapy 691

2
3

4

0
2

23
3

2

0
1
0
1
2

20

0

0
1
1

2

0
2
3
2
4

3
2
4
6 5

4
3

3

5

2
4 5

4
3
5
3 0

2

2
3

2

0
1
0
1
2

0

(e)(d)(c)

0

0

0
1
1

2

0
2
3
2
4

3
2
4
6 5

4
3

3

5 2
3 2

4

0
2

23
3

2

0
1
0
1
2

0
1
1

2

0
2
3
2
4

3
2
4
6 5

4
3

3

5 2
3 2

4

0
2

23
3

2
0

0
1
0
1
2

0

(b)(a)

0

1
1

2

0
2
3

1

M 1M 1 M 3

M 2

3+

1
2+

2+

1

0+

2M

1

1M M 3 M

M 2

3

0
0+

3
0+

+

1
3+

3
3+

2

0
2+

1

Fig. 1. (a) An MLC. (b) An IM. (c)-(e) Examples of splitting an IM into three sub-
fields, M1, M2, and M3, using vertical lines, y-monotone paths, and with overlapping,
respectively. The dark cells in (e) show the overlapping regions of the subfields; the
dose in each dark cell is divided into two parts and allocated to two adjacent subfields.

value in each grid cell indicates the intensity level of prescribed radiation at
the body region corresponding to that IM cell. The delivery is done by a set of
cylindrical radiation beams orthogonal to the IM grid.

One of the most advanced tools for IM delivery is the multileaf collimator
(MLC) [15,16]. An MLC consists of many pairs of tungsten alloy leaves of the
same rectangular shape and size (see Figure 1(a)). The opposite leaves of each
pair are aligned to each other, and can move left or right to form a y-monotone
rectilinear polygonal region. The cross-section of a cylindrical radiation beam is
shaped by such a region. All IM cells exposed under the radiation beam receive
a uniform radiation dose proportional to the exposure time. The mechanical
design of the MLCs restricts what kinds of beam-shaping regions are allowed
[15]. A common constraint is called the maximum leaf spread: No leaf can
move away from the vertical center line of the MLC by more than a threshold
distance.This means that an MLC cannot enclose an IM of a too large width.

One key criterion used to measure the quality of an IMRT treatment is the
beam-on time, which is the total time while a patient is exposed to actual
radiation irradiation. Minimizing the beam-on time without compromising the
prescribed dose distributions is an effective way to enhance the efficiency of the
radiation machine, referred to as the monitor-unit (MU) efficiency in medical
literature, and to reduce the patient’s risk under irradiation [2]. The beam-on
time also constitutes a significant portion of the total treatment time [1,15,16].
Thus, minimizing the beam-on time lowers the treatment cost of each patient
and increases the patient throughput of the hospitals.

For example, on one of the most popular MLC systems called Varian, the
maximum leaf spread constraint limits the maximum allowed field width to about
15 cm. Hence, this necessitates a large-width IM field to be split into two or more
adjacent subfields, each of which can be delivered separately by the MLC subject

692 D.Z. Chen and C. Wang

to the maximum leaf spread constraint [8,17]. But, such IM splitting may result
in a prolonged beam-on time and thus affect the treatment quality. The field
splitting problem, roughly speaking, is to split an IM of a large width into
several subfields whose widths are all no bigger than a threshold value, such that
the total beam-on time of these subfields is minimized.

Geometrically, we distinguish three versions of the field splitting problem
based on how an IM is split (see Figures 1(c)-1(e)): (1) splitting using verti-
cal lines; (2) splitting using y-monotone paths; (3) splitting with overlapping.
Note that in versions (1) and (2), an IM cell belongs to exactly one subfield; but
in version (3), a cell can belong to two adjacent subfields, with a nonnegative
value in both subfields, and in the resulting sequence of subfields, each subfield
is allowed to overlap only with the subfield immediately before or after it.

Algorithm research for IMRT problems has been active in areas such as medi-
cal physics [3,14,19], operations research [1,2,7], computational geometry [4,5,6],
and computer algorithms [9,10,11]. Engel [7] showed that for an IM M of size
m×n, when n is no larger than the maximum allowed field width, the minimum
beam-on time (MBT) of M is captured by the following formula

MBT (M) =
m

max
i=1

{Mi,1 +
∑n

j=2
max{0, Mi,j − Mi,j−1}} (1)

Engel also described a class of algorithms achieving this minimum value. Ge-
ometrically, if we view a row of an IM as representing a directed x-monotone
rectilinear curve f , called the dose profile (see Figure 2(a)), then the MBT of
that IM row is actually the total sum of lengths of all upward edges on f . For-
mula (1) may be explained as follows: Each IM row is handled by one pair of
MLC leaves; for an upward edge e, say, of length l, on the dose profile of an IM
row, the tip of the left MLC leaf for this row must stay at the x-coordinate of
e for at least l time units (assuming one unit of dose is delivered in one unit of
time) while the beam is on, so that the dose difference occured here is l.

A few known field splitting algorithms aim to minimize the total MBT, i.e.,
the sum of the MBTs of the resulting subfields. Kamath et al. [11] first gave
an O(mn2) time algorithm to split a size m × n IM using vertical lines into at
most 3 subfields (i.e., n ≤ 3w for their algorithm, where w is the maximum
allowed field width). Wu [18] formulated the problem of splitting an IM of an
arbitrary width into k ≥ 3 subfields using vertical lines as a k-link shortest path
problem, giving an O(mnw) time algorithm. Recently, Kamath et al. studied the
important problem of splitting an IM into at most three overlapping subfields,
minimizing the total MBT of the resulting subfields [9]1; a greedy algorithm is
proposed that produces optimal solutions in O(mn) time when the overlapping
regions of the subfields are fixed. (In fact, by considering all possible overlapping
regions, we can extend their algorithm to solving the field splitting with overlap-
ping problem in O(mnΔd−2) time, where d is the number of resulting subfields

1 The paper [9] was among the ten John R. Cameron Young Investigator Competition
finalists of the 47th Annual Meeting of the American Association of Physicists in
Medicine (AAPM’2005) over more than 1100 submissions.

Field Splitting Problems in Intensity-Modulated Radiation Therapy 693

a
aa 32

1

f f

f f f f
f

1
2 1 2

3
f

(a) (b)

a

(c)

n

Fig. 2. (a) The dose profile of an IM of one row. The MBT (minimum beam-on time)
of the IM is equal to the sum of the lengths of all upward edges on the curve. (b)
Splitting the IM in (a) into two subfields with overlapping. (c) Splitting the IM in (a)
into three subfields with overlapping.

and Δ = w�n/w� − n + 1.) To our best knowledge, no algorithms are known so
far for computing an optimal field splitting of IMs using y-monotone paths.

In this paper, we give efficient algorithms for the following problems.
(1) Field splitting with overlapping (FSO) problem: Given an IM M of
size m × n and a maximum field width w > 0, split M into d = � n

w � overlapping
subfields M1, M2, . . . , Md, each with a width ≤ w, such that the total MBT of
these d subfields is minimized (e.g., Figures 2(b)-2(c)). Here, d is the minimum
number of subfields required to deliver M subject to the maximum field width
w. We assume that d is a constant, i.e., w = O(n), which is clinically practical
(under the current clinical settings, d ≤ 3). Our FSO algorithm takes O(mn +
mΔd−2) time, where Δ = w�n/w� − n + 1. This improves the time bound of
Kamath et al.’s algorithm [9] by a factor of min{Δd−2, n}.
(2) Field splitting using y-monotone paths (FSMP) problem: Given
an IM M of size m × n and a maximum field width w > 0, split M using
y-monotone paths into d = � n

w � subfields M1, M2, . . . , Md, each with a width
≤ w, such that the total MBT is minimized. Again, we assume d = O(1). Our
FSMP algorithms take O(mn + mΔ log m) time for the case with d = 2, and
O(mn + md−2Δd−1 log(mΔ)) time with d ≥ 3.

The FSO problem seems quite non-trivial. Our key ideas are to reduce it to
simpler and simpler cases of the problem, as summarized below.

(1) At the lowest level, we consider a very basic case of the FSO problem,
called the basic row splitting (BRS) problem, which seeks to optimally split an
IM of size 1 × l into two overlapping subfields with fixed sizes and positions.
Geometrically, the BRS problem partitions the region enclosed between an x-
monotone rectilinear dose curve f and the x-axis into two regions, each enclosed
by an x-monotone rectilinear curve fi (i = 1, 2) and the x-axis, such that (i)
f1(x) + f2(x) = f(x) for all x ∈ R (we assume g(x) = 0 for any x outsides the
domain interval of a function g), and (ii) the sum of lengths of all upward edges
on f1 and f2 is minimized (see Figure 2(b)). Although this basic case can be
solved by Kamath et al.’s algorithm [9], we take a very different approach in
order to exploit some interesting geometric structures. Our approach formulates
this problem as a shortest path problem on a direct acyclic graph (DAG) G of
a pseudo-polynomial size. By utilizing the properties of this DAG, we obtain an
optimal O(l) time BRS algorithm without explicitly constructing and searching

694 D.Z. Chen and C. Wang

G. Further, we prove that all the MBT tuples (i.e., the i-th element of an MBT
tuple is the MBT of the i-th subfield) induced by the optimal solutions of the
BRS problem form a set of lattice points on a line segment in R

2. Moreover, for
any lattice point on this line segment, we can obtain a corresponding optimal
BRS solution in O(l) time, by finding a restricted shortest path in G.

(2) At the second level, we study the general row splitting (GRS) problem:
Given a d-tuple τ ∈ Z

d
+, split a size 1×n IM into d overlapping subfields of fixed

sizes and positions, such that the resulting MBT tuple t ≤ τ , i.e., tk ≤ τk for each
k = 1, 2, . . . , d. Observe that there are d−1 overlapping regions, each involving a
BRS problem instance (see Figure 2(c)). Using the geometric properties revealed
by our BRS algorithm, we prove that the GRS problem has a solution if and
only if τ ∈ P , where P is a convex polytope in R

d. Also, for any lattice point
τ ∈ P , the GRS problem is solvable in O(n) time.

(3) At the third level, we solve the field splitting with fixed overlapping (FSFO)
problem on a size m × n IM. Basically, this is the FSO problem subject to the
constraint that the sizes and positions of the d sought subfields are all fixed. This
problem is closely related to the GRS problem, and can be transformed to an
integer linear programming (ILP) problem for which we seek an optimal lattice
point in the common intersection of m convex polytopes in R

d. Interestingly, the
constraint matrix of this ILP problem is totally unimodular, and thus the ILP
can be solved optimally by linear programming (LP). Further, the dual of this
LP turns out to be a shortest path problem on a DAG of O(d) vertices, which
implies that the original ILP is solvable in O(1) time (assume d = O(1)). To
transform an optimal ILP solution (i.e., a d-D lattice point) back to an optimal
FSFO solution, we apply our GRS algorithm O(m) times. Hence, we solve the
FSFO problem in totally O(mn) time.

(4) At the top level, we reduce the original FSO problem to a set of O(Δd−2)
FSFO problem instances, where Δ = w�n/w� − n + 1. We show that under our
ILP formulation of the FSFO problem, with an O(mn) time preprocess, each
FSFO instance is solvable in only O(m) time. (Note that in Kamath et al.’s
algorithm [9], it takes O(mn) time to solve each FSFO instance due to their
greedy approach.) This gives an O(mn + mΔd−2) time FSO algorithm.

For the FSMP problem on a size m × n IM, the approaches for splitting
using vertical lines [11,18] do not seem to work, since there are O((Δ + 1)m)
candidate paths for each of the d − 1 sought y-monotone splitting paths. Our
key observation is that only mΔ + 1 candidates for the leftmost y-monotone
path used in the splitting need to be considered. We then show that all these
mΔ + 1 candidate paths can be enumerated efficiently by using a heap data
structure and an interesting new method called MBT-sweeping. Further, we show
how to exploit the geometric properties of the FSMP problem to speed up the
computation of the total MBT of the induced subfields.

Due to the space constraints, we omit the proofs of lemmas and theorems and
leave our detailed discussion on the FSMP problem to the full paper.

Field Splitting Problems in Intensity-Modulated Radiation Therapy 695

2 Field Splitting with Overlapping (FSO)

2.1 Notation and Definitions

We define the function C(x) =
∑l

j=2 max{0, xj − xj−1}, for x = (x1, x2,. . . , xl)∈
R

l. It is easy to show that x1 + C(x) is the MBT of an IM with only one row x,
when no splitting is applied.

We say that intervals [μ1, ν1], [μ2, ν2], . . . , [μd, νd] (d ≥ 2) form an interweaving
list if μ1 < μ2 ≤ ν1 < μ3 ≤ ν2 < μ4 ≤ · · · < μk+1 ≤ νk < · · · < μd ≤ νd−1 < νd.
For a subfield S restricted to start from column μ + 1 and end at column ν,
we call [μ, ν] the bounding interval of S. We say that subfields S1, S2, . . . , Sd

form a chain if their corresponding bounding intervals form an interweaving
list (i.e., subfields Sk and Sk+1 are allowed to overlap, k = 1, 2, . . . , d − 1).
Further, t = (t1, t2, . . . , td) ∈ Z

d
+ is called the MBT tuple of a chain of d subfields

S1, S2, . . . , Sd if tk is the MBT of Sk (k = 1, 2, . . . , d). For t = (t1, t2, . . . , td) and
τ = (τ1, τ2, . . . , τd), we say t ≤ τ if tk ≤ τk for every k = 1, 2, . . . , d.

2.2 The Basic Case: The Basic Row Splitting (BRS) Problems

Precisely, the basic row splitting (BRS) problem is: Given a vector (row)
a = (a1, a2, . . . , al) ∈ Z

l
+ (l ≥ 3), seek min

x,y
{C(x) + C(y)}, subject to: (1) x =

(x1, x2, . . . , xl), y = (y1, y2, . . . , yl) ∈ Z
l
+, (2) x + y = a, and (3) x1 = 0, xl =

al, y1 = a1, yl = 0. Observe that for any feasible solution (x, y), the total MBT of
x and y is C(x)+C(y)+a1 . Hence the BRS problem is to partition (a1, a2, . . . , al)
into (0, x2, x3, . . . , xl−1, al) and (a1, y2, y3, . . . , yl−1, 0) such that their total MBT
is minimized. Observe that the range of x (resp., y) is actually restricted to
interval [2, l] (resp., [1, l−1]). Note that the more general case, in which we seek
an optimal partition of (a1, a2, . . . , al) into x and y such that the range of x
(resp., y) is restricted to the interval [p, l] (resp., [1, q]), where p, q are fixed and
1 < p < q < l, can be easily reduced to the above version of the BRS problem.

Denote by BRS(a) the BRS problem on a vector a. The BRS problem can
be solved by the greedy algorithm in [9]. However, we are more interested in the
useful structures of all optimal solutions for the BRS problem. As it turns out,
the set of all optimal solutions can be mapped to a set of lattice points on a line
segment in a plane. To show this, we need to study the following restricted
BRS problem: Given a vector (row) a ∈ Z

l
+ and an integer t ≥ 0, find (x, y)

such that (x, y) is an optimal solution of BRS(a) and C(x) = t.
Our main idea is to model the BRS (or restricted BRS) problem on a ∈ Z

l
+

as a shortest path (SP) (or restricted SP) problem on a DAG of a pseudo-
polynomial size. By exploiting a set of interesting properties of this DAG, we
are able to solve both the SP and restricted SP problems in an optimal O(l) time
without explicitly constructing and searching the graph. In the meantime, we
will establish the geometric structures of the set of all optimal solutions for any
BRS problem. We summarize our results (proofs left to the full paper) below.

696 D.Z. Chen and C. Wang

Theorem 1. Given a vector a = (a1, a2, . . . , al) ∈ Z
l
+ (l ≥ 3), BRS(a) has an

the optimal objective function value ρ(a) = max{al,
∑l

j=2 max{0, aj − aj−1}}.
Moreover, we can compute in O(l) time an optimal solution (x∗, y∗) for BRS(a).

Theorem 2. Given a vector a = (a1, a2, . . . , al) ∈ Z
l
+ (l ≥ 3), and an integer t,

the restricted BRS problem on a and t has a solution if and only if t ∈ [al, ρ(a)],
where ρ(a) = max{al,

∑l
j=2 max{0, aj − aj−1}}. Moreover, for any integer t ∈

[al, ρ(a)], we can solve the restricted BRS problem in O(l) time.

Theorem 2 implies that the MBT tuples induced by all optimal solutions of
BRS(a) form a set of lattice points on a line segment {(t, ρ(a)−t) | al ≤ t ≤ ρ(a)}
in R

2. The corollary below thus follows.

Corollary 1. Given a vector a ∈ Z
l
+ (l ≥ 3), an integer t, and a feasible solution

(x, y) of BRS(a), we can compute in O(l) time an optimal solution (x̄, ȳ) of
BRS(a), such that (C(x̄), C(ȳ)) ≤ (C(x), C(y)).

2.3 The General Row Splitting (GRS) Problem

Precisely, the general row splitting (GRS) problem is: Given a vector (row)
α ∈ Z

n
+, a d-tuple τ ∈ Z

d
+ (d ≥ 2), and an interweaving interval list IL: Ik =

[μk, νk], k = 1, 2, . . . , d, with μ1 = 0 and νd = n, split α into a chain of d subfields
S1, S2, . . . , Sd such that the bounding interval of Sk is Ik (k = 1, 2, . . . , d) and
the MBT tuple t of the resulting subfield chain satisfies t ≤ τ .

We seek to answer two questions: (1) When does the GRS problem have a
solution? (2) If the GRS problem has a solution, how to find such a solution?

Note that the resulting d subfields have d − 1 overlapping regions, each of
which involves an instance of the basic row splitting problem. Define a(k) =
(αμk+1 , αμk+1+1, . . . , ανk+1) ∈ Z

lk
+ (lk � νk −μk+1+2) for k = 1, 2, . . . , d−1, and

ck =
∑μk+1

i=νk−1+2 max{0, αi − αi−1} for k = 1, 2, . . . , d (we assume ν0 = −1, α0 =
0, and μd+1 = n). It is easy to show that the GRS problem is equivalent to the
following problem (denoted by GRS′): Find x(k), y(k) ∈ Z

lk
+ , k = 1, 2, . . . , d − 1,

subject to: (1) x(k) + y(k) = a(k), for k = 1, 2, . . . , d− 1, (2) x
(k)
1 = 0, x

(k)
lk

= a
(k)
lk

,

y
(k)
1 = a

(k)
1 , and y

(k)
lk

= 0, for k = 1, 2, . . . , d − 1, and (3) C(y(1)) + c1 ≤ τ1,
C(x(d−1)) + cd ≤ τd, and C(x(k−1)) + C(y(k)) + ck ≤ τk, for 1 < k < d.

Constraints (1) and (2) mean that for each k = 1, 2, . . . , d − 1, (x(k), y(k)) is
a basic row splitting solution for a(k), occurring in the k-th overlapping region.
Since C(x(k−1)) + C(y(k)) + ck is the MBT of the k-th subfield, constraint (3)
means that the MBT tuple t of the resulting subfields satisfies t ≤ τ .

Denote by GRS(α, τ, IL) (or GRS′(α, τ, IL)) the GRS (or GRS′) problem on
the instance α, τ , and IL. We say that a solution (x(1), y(1), . . . , x(d−1), y(d−1))
of GRS′(α, τ, IL) is primal if for every k ∈ {1, 2, . . . , d − 1}, (x(k), y(k)) is an
optimal solution of BRS(a(k)). By Corollary 1, we can prove the next lemma.

Lemma 1. For any α, τ , and IL, GRS′(α, τ, IL) has a solution only if it has a
primal solution.

Field Splitting Problems in Intensity-Modulated Radiation Therapy 697

(a) (b)

Fig. 3. (a) Illustrating the convex polytope Q ⊂ R
2 when d = 2 (Q is the line segment

in (a)). The lattice points in Q are marked as circles, and form the set Q ∩ Z
2. (b)

Illustrating the Minkowski sum (Q∩Z
2)⊕Z

2
+, which consists of all the points marked as

circles. The darkened region is the convex polytope P ⊂ R
2 with P ∩Z

2 = (Q∩Z
2)⊕Z

2
+.

Define λk =
∑k−1

q=1 ρ(a(q)) +
∑k

q=1 cq (for k = 1, 2, . . . , d), and convex polytope

Q =

{

(t1, t2, . . . , td) ∈ R
d

∣
∣
∣
∣
∣

∑d
q=1 tq = λd,

λk ≤
∑k

q=1 tq ≤ λk+ ρ(a(k))− a
(k)
lk

, 1≤ k ≤ d − 1

}

.

Q is closely related to the GRS′ problem, as stated in the next lemma.

Lemma 2. GRS′(α, τ, IL) has a primal solution if and only if τ ∈ (Q∩Z
d)⊕Z

d
+,

where ⊕ is the Minkowski sum defined as A ⊕ B = {a + b | a ∈ A, b ∈ B} on
sets A and B (see Figure 3). Moreover, given any τ ∈ (Q ∩ Z

d) ⊕ Z
d
+, a primal

solution of GRS′(α, τ, IL) can be computed in O(n) time.

Geometrically, Lemma 2 states that GRS′(α, τ, IL) has a primal solution if and
only if the given point (vector) τ ∈ Z

d “dominates” some lattice point in the
polytope Q ⊂ R

d, or equivalently, τ ∈ (Q ∩ Z
d) ⊕ Z

d
+ (see Figure 3). The set

(Q ∩ Z
d) ⊕ Z

d
+, in fact, consists of all lattice points in another convex polytope

P ⊂ R
d according to the following lemma.

Lemma 3. Let η = (η1, η2, . . . , ηd) and ξ = (ξ1, ξ2, . . . , ξd) be two vectors in
Z

dwith η ≤ ξ, and let Z =
{
(t1, t2,. . ., td)∈ Z

d
∣
∣∣ηk ≤

∑k
q=1 tq ≤ξk, ∀k : 1≤ k≤ d

}
,

and W =
{

(t1, t2, . . . , td) ∈ Z
d
∣
∣
∣
∑k′

q=k tq ≥ ηk′ − ξk−1, ∀(k, k′) : 1 ≤ k ≤ k′ ≤ d
}

(for convenience, ξ0 � 0). Then Z ⊕ Z
d
+ = W . Moreover, given any w ∈ W , we

can find a z ∈ Z and δ ∈ Z
d
+ in O(d) time, such that w = z + δ.

Note that ρ(a(k)) = max{a
(k)
lk

,
∑lk

j=2 max{0, a
(k)
j − a

(k)
j−1}} = max{ανk+1,

∑νk+1
j=μk+1+1 max{0, αj − αj−1}}. After an O(n) time preprocess on α, given any

IL, we can compute all ck’s, ρ(a(k))’s, and λk’s in O(d) time. Hence the polytope
Q as well as the set (Q∩Z

d)⊕Z
d
+, by Lemma 3, can be computed in O(d) time.

Combining this with Lemmas 1 and 2, we have the result below.

Theorem 3. GRS(α, τ, IL) has a solution if and only if τ ∈ P ∩ Z
d, where

P = {(t1, t2, . . . , td) ∈ R
d |

∑k′

q=k tq ≥ bk,k′ , ∀(k, k′) : 1 ≤ k ≤ k′ ≤ d}, and
bk,k′ ’s are integers depending only on α and IL. Moreover, given any τ ∈ P ∩Z

d,
we can solve GRS(α, τ, IL) in O(n) time.

698 D.Z. Chen and C. Wang

2.4 The Field Splitting with Fixed Overlapping (FSFO) Problem

In this section, we study a special case of the field splitting with overlapping
problem, i.e., the sizes and positions of the subfields are all fixed. Precisely, the
field splitting with fixed overlapping (FSFO) problem is: Given an IM M
of size m×n and an interweaving list IL of d intervals I1, I2, . . . , Id, split M into
a chain of d subfields M1, M2, . . . , Md, such that Ik is the bounding interval of
Mk (k = 1, 2, . . . , d) and the total MBT of the d resulting subfields is minimized.

Recall that the MBT of a subfield Mk is the maximum MBT over each of
the m rows of Mk (see Formula (1)). For any feasible solution of the FSFO
problem, let τ be the corresponding MBT tuple. Then for any i ∈ {1, 2, . . . , m},
GRS(αi, τ, IL) must have a solution, where αi denotes the i-th row of M . By
Theorem 3, we have τ ∈ Pi ∩ Z

d, where Pi is a convex polytope of the form
of

{
(t1, t2, . . . , td) ∈ R

d
∣
∣
∣
∑k′

q=k tq ≥ b
(i)
k,k′ , ∀(k, k′) : 1 ≤ k ≤ k′ ≤ d

}
. Hence, the

FSFO problem can be transformed to the following integer linear programming
(ILP) problem: seek min

∑d
k=1 τk, subject to (τ1, τ2, . . . , τd) ∈ P ∩Z

d, where P =
⋂m

i=1 Pi =
{

(t1, t2,. . . , td)∈ R
d
∣
∣
∣
∑k′

q=k tq ≥ maxm
i=1b

(i)
k,k′ ,∀(k, k′) : 1≤ k≤ k′≤ d

}
.

Note that the constraint matrix is a (0,1) interval matrix, and is thus totally
unimodular [12]. Hence, this ILP can be solved as a linear programming (LP)
problem. We introduce a variable π0, and define πk = π0 +

∑k
q=1 τq, for k =

1, 2, . . . , d. Then the above LP is equivalent to seeking maxπ0 − πd, subject to
πk − πk′ ≤ wk,k′ , ∀0 ≤ k < k′ ≤ d, where wk,k′ = − maxm

i=1 b
(i)
k+1,k′ . As shown in

[13], the dual LP of this kind of LP is an s-t shortest path (SP) problem on a
graph G, where G has d+1 vertices v0 (= s), v1, . . . , vd (= t), and for every pair
(k, k′) with k < k′, there is an edge from vk to v′k with a weight wk,k′ . Clearly, G
is a DAG with O(d) vertices and O(d2) edges. Therefore, this SP problem, and
further, the original ILP can both be solved in O(d2) = O(1) time, assuming
d = O(1). Moreover, with an optimal MBT tuple τ ∈ Z

d
+, by Theorem 3 we

can obtain the corresponding optimal splitting of M in O(mn) time. Thus, the
FSFO problem can be solved optimally in O(mn) time.

2.5 Our Field Splitting with Overlapping (FSO) Algorithm

We now study the FSO problem on a size m × n IM M . Our observation is
that we can always assume that the size of each subfield is m × w, where w is
the maximum field width. This is because we can introduce columns filled with
0’s to the subfield without increasing its total MBT. Also, note that among the
d sought subfields, the leftmost and rightmost ones are fixed. Based on these
observations, it is sufficient to consider only O(Δd−2) possible subfield chains,
where Δ = n − w�n/w� + 1. Therefore, the FSO problem can be solved by
solving O(Δd−2) FSFO problems, to find an optimal MBT tuple τ . Further, we
can show that with an O(mn) time preprocess on M , an optimal MBT tuple for
each FSFO instance can be computed in O(m) time. Thus, the FSO problem is
solvable in O(mn + mΔd−2) time for d = O(1).

Field Splitting Problems in Intensity-Modulated Radiation Therapy 699

3 Implementation and Experiments

We implemented our new field splitting algorithms FSMP and FSO using C on
Linux, and experimented with them on 58 IMs of various sizes for 11 clinical
cases obtained from the Dept. of Radiation Oncology, Univ. of Maryland.Our
FSMP and FSO programs run in only a few seconds (mostly under one second).
We conducted comparisons with a most popular commercial treatment planning
software CORVUS 5.0, the field splitting algorithm in [11,18] (denoted by FSSL),
which splits along vertical lines, and the algorithm by Kamath et al. [9] (denoted
by FSOK), which splits with overlapping. Specifically, we examined the total
beam-on time of the output subfields of these splitting approaches. The widths
of the tested IMs range from 15 to 31, and the maximum allowed subfield width
is 14. The maximum intensity level of each IM is normalized to 100.

For each IM, algorithms FSOK and FSO produce exactly the same result in
terms of the beam-on time, due to the fact that both these two algorithms obtain
optimal splittings. (Theoretically, our FSO algorithm considerably outperforms
FSOK in terms of the running time.) For each IM, the total beam-on times of the
four methods, CORVUS 5.0, FSSL, FSMP, and FSO, are always in decreasing
order. For all 58 tested IMs, the sums of the total beam-on times of these four
methods are 21838, 19511, 18159, and 17221, respectively. In terms of the beam-
on time, our FSMP algorithm showed an improvement of 17% over CORVUS
5.0, and 7% over the FSSL algorithm [11,18]. Our FSO algorithm gave the best
splitting results, and on average reduced the total beam-on time by 21% over
CORVUS 5.0, and 12% over the FSSL algorithm.

References

1. R.K. Ahuja and H.W. Hamacher. A Network Flow Algorithm to Minimize Beam-
on Time for Unconstrained Multileaf Collimator Problems in Cancer Radiation
Therapy. Networks, 45:36–41, 2005.

2. N. Boland, H.W. Hamacher, and F. Lenzen. Minimizing Beam-on Time in Cancer
Radiation Treatment Using Multileaf Collimators. Networks, 43(4):226–240, 2004.

3. T.R. Bortfeld, A.L. Boyer, W. Schlegel, D.L. Kahler, and T.L. Waldron. Realization
and Verification of Three-Dimensional Conformal Radiotherapy with Modulated
Fields. Int. J. Radiat. Oncol. Biol. Phys., 30:899–908, 1994.

4. D.Z. Chen, X.S. Hu, S. Luan, S.A. Naqvi, C. Wang, and C. Yu. Generalized
Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy. Int.
Journal of Computational Geometry and Applications, 16(2-3):175–204, 2006.

5. D.Z. Chen, X.S. Hu, S. Luan, C. Wang, and X. Wu. Geometric Algorithms for
Static Leaf Sequencing Problems in Radiation Therapy. In Proc. of 19th ACM
Symposium on Computational Geometry, pages 88–97, 2003.

6. D.Z. Chen, X.S. Hu, S. Luan, C. Wang, and X. Wu. Mountain Reduction, Block
Matching, and Applications in Intensity-Modulated Radiation Therapy. In Proc.
of 21th ACM Symposium on Computational Geometry, pages 35–44, 2005.

7. K. Engel. A New Algorithm for Optimal Multileaf Collimator Field Segmentation.
Discrete Applied Mathematics, 152(1-3):35–51, 2005.

700 D.Z. Chen and C. Wang

8. L. Hong, A. Kaled, C. Chui, T. Losasso, M. Hunt, S. Spirou, J. Yang, H. Amols,
C. Ling, Z. Fuks, and S. Leibel. IMRT of Large Fields: Whole-Abdomen Irradiation.
Int. J. Radiat. Oncol. Biol. Phys., 54:278–289, 2002.

9. S. Kamath, S. Sahni, J. Li, J. Palta, and S. Ranka. A Generalized Field Split-
ting Algorithm for Optimal IMRT Delivery Efficiency. The 47th Annual Meeting
and Technical Exhibition of the American Association of Physicists in Medicine
(AAPM), 2005. Also, Med. Phys., 32(6):1890, 2005.

10. S. Kamath, S. Sahni, J. Palta, and S. Ranka. Algorithms for Optimal Sequencing
of Dynamic Multileaf Collimators. Phys. Med. Biol., 49(1):33–54, 2004.

11. S. Kamath, S. Sahni, S. Ranka, J. Li, and J. Palta. Optimal Field Splitting for
Large Intensity-Modulated Fields. Med. Phys., 31(12):3314–3323, 2004.

12. G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John
Wiley, 1988.

13. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, New Jersey, 1982.

14. R.A.C. Siochi. Minimizing Static Intensity Modulation Delivery Time Using an
Intensity Solid Paradigm. Int J. Radiation Oncology Biol. Phys., 43(3):671–680,
1999.

15. S. Webb. The Physics of Three-Dimensional Radiation Therapy. Bristol, Institute
of Physics Publishing, 1993.

16. S. Webb. The Physics of Conformal Radiotherapy — Advances in Technology.
Bristol, Institute of Physics Publishing, 1997.

17. Q. Wu, M. Arnfield, S. Tong, Y. Wu, and R. Mohan. Dynamic Splitting of Large
Intensity-Modulated Fields. Phys. Med. Biol., 45:1731–1740, 2000.

18. X. Wu. Efficient Algorithms for Intensity Map Splitting Problems in Radiation
Therapy. In Lecture Notes in Computer Science, Springer-Verlag, Proc. 11th An-
nual International Computing and Combinatorics Conference, volume 3595, pages
504–513, 2005.

19. P. Xia and L.J. Verhey. MLC Leaf Sequencing Algorithm for Intensity Modulated
Beams with Multiple Static Segments. Med. Phys., 25:1424–1434, 1998.

Shape Rectangularization Problems in

Intensity-Modulated Radiation Therapy�

Danny Z. Chen1, Xiaobo S. Hu1, Shuang Luan2,��,
Ewa Misio�lek3, and Chao Wang1,���

1 Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
{chen, shu, cwang1}@cse.nd.edu
2 Department of Computer Science

University of New Mexico
Albuquerque, NM 87131-0001, USA

sluan@cs.unm.edu
3 Mathematics Department

Saint Mary’s College
Notre Dame, IN 46556, USA
misiolek@saintmarys.edu

Abstract. Inthispaper,wepresentatheoreticalstudyofseveralgeometric
shapeapproximationproblems,called shaperectangularization(SR),which
arise in intensity-modulated radiation therapy (IMRT). Given a piecewise
linear function f such that f(x) ≥ 0 for anyx ∈ R, the SRproblems seek an
optimal set of constant window functions to approximate f under a certain
errorcriterion, such that thesumoftheresultingconstantwindowfunctions
equals(orwellapproximates)f .AconstantwindowfunctionW (·) isdefined
on an interval I such that W (x) is a fixed value h > 0 for any x ∈ I and
is 0 otherwise. Geometrically, a constant window function can be viewed
as a rectangle (or a block). The SR problems find applications in micro-
MLC scheduling and dose calculation of the IMRT treatment planning
process, and are closely related to some well studied geometric problems.
The SR problems are NP-hard, and thus we aim to develop theoretically
efficient and provably good quality approximation SR algorithms. Our
main results include a polynomial time (3

2
+ ε)-approximation algorithm

for a general key SR problem and an efficient dynamic programming
algorithm for an important SR case that has been studied in medical
literature. Our key ideas include the following. (1) We show that a crucial
subproblem of the key SR problem can be reduced to the multicommodity

� This research was supported in part by the Faculty Research Program of the Univer-
sity of Notre Dame, the National Science Foundation under Grants CCR-9988468
and CCF-0515203, and NIH NIBIB Grant R01-EB004640-01A2.

�� The research of this author was supported in part by a faculty start-up fund from
the Department of Computer Science, University of New Mexico.

��� Corresponding author. The research of this author was supported in part by two
Fellowships in 2004-2006 from the Center for Applied Mathematics of the University
of Notre Dame.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 701–711, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

702 D.Z. Chen et al.

demand flow (MDF) problem on a path graph (which has a known (2+ ε)-
approximation algorithm); further, by extending the result of the known
(2 + ε)-approximation MDF algorithm, we develop a polynomial time
(3
2

+ ε)-approximation algorithm for our first target SR problem. (2) We
show that the second target SR problem can be formulated as a k-MST
problem on a certain geometric graph G; based on a set of interesting
geometric observations and a non-trivial dynamic programming scheme,
we are able to compute an optimal k-MST in G efficiently.

1 Introduction

In this paper, we present a theoretical study of several geometric shape approxi-
mation problems, called shape rectangularization (SR), which arise in intensity-
modulated radiation therapy (IMRT). IMRT is a modern cancer treatment tech-
nique that aims to deliver highly conformal prescribed radiation dose distri-
butions, called intensity maps (IMs), to target tumors while sparing the sur-
rounding normal tissues and critical structures. An IM is specified by a set of
nonnegative integers on a uniform 2-D grid (see Figure 1(a)). The value in each
grid cell indicates the intensity level of the prescribed dose at the body region
corresponding to that IM cell. The delivery is done by a set of cylindrical radi-
ation beams orthogonal to the IM grid.

Currently, an IM is delivered using the multileaf collimator (MLC) [23, 24].
An MLC consists of many pairs of metal leaves of the same rectangular shape
and size (see Figure 1(b)). These metal leaves can move left or right to form
a y-monotone rectilinear polygonal beam-shaping region. The cross-section of a
cylindrical radiation beam is shaped by such a region. Note that each IM row is
handled by one MLC leaf pair. A special type of MLC, called micro-MLC, was
introduced in recent years. Compared with an ordinary MLC, the micro-MLC
has a much smaller leaf width (3-5 mm) and hence yields a higher accuracy
[5, 6]. Currently, micro-MLC is often used in dynamic conformal arc therapy
[15], during which its leaves are continuously moving and dynamically adjusting
the beam shape while the radiation beam source traverses along a path (an arc
in 3-D). Reducing the number of arcs used in each treatment is a key to reducing
the total treatment time of the dynamic conformal arc therapy [17]. During our
visits to and research at University of Maryland School of Medicine in 2004-2005,
we observed that the scheduling of micro-MLC treatments can be modeled by
the following shape rectangularization problem.

Let B be a set of blocks in which each block bi is defined by an interval Ii
and an integer height hi > 0 (bi can be viewed as a rectangle). Let CB denote
the rectilinear upper boundary curve of the area in R

2 resulted by “stacking up”
all blocks of B on the x-axis (some parts of the blocks may “fall” to the lower
levels; see Figure 1(c)), i.e., for any x ∈ R, CB(x) =

∑
x∈Ii,bi∈B hi (the sum

of heights of all blocks in B whose intervals contain x). Precisely, the shape
rectangularization (SR) problem is: Given an x-monotone rectilinear curve
f with integral vertices such that f is on or above the x-axis, find a block set B

Shape Rectangularization Problems in IMRT 703

such that CB = f and |B| is minimized. In micro-MLC scheduling applications,
f is a dose profile, and each block specifies an arc for the treatment on f .

We are also interested in the generalized shape rectangularization (GSR)
problem: Given an x-monotone polygonal curve f , find a block set B such that
the rectilinear curve CB well approximates f . There are two versions of the GSR
problem: (a) Given an integer k > 0, find a block set B such that |B| ≤ k and
the error between f and CB is minimized; (b) given an error bound E , find a block
set B such that the error between f and CB is ≤ E and |B| is minimized. These
two versions are dual problems to each other; further, it is not hard to see that
an efficient solution for (a) leads to an efficient solution for (b). We denote these
two versions as GSR(a) and GSR(b). Clearly, with an error bound E = 0, the
GSR(b) problem on a rectilinear curve f becomes the SR problem.

The GSR problem is important. On one hand, it is a theoretical extension of
the SR problem; on the other hand, it has applications to dose calculation in
IMRT treatment planning. During the IMRT treatment planning process, the
shapes, sizes, and relative positions of a tumor volume and other surrounding
tissues are determined by 3-D image data, and an “ideal” dose distribution is
computed. Without loss of generality (WLOG), let the z-axis be the beam orien-
tation. Then this “ideal” dose distribution is a function defined on the xy-plane
(geometrically, it is a 3-D functional surface above the xy-plane), which is usually
not deliverable by the MLC. Thus, the “ideal” distribution must be simplified
or converted to a discrete IM, i.e., an IM approximates the “ideal” distribution
under certain criteria. Since an IM is delivered using many MLC leaf pairs, with
one leaf pair for each IM row, it is sufficient (as shown in [7, 11]) to consider
using one IM row to approximate each “strip” of the “ideal” distribution’s 3-D
surface, which is exactly what the GSR problem models.

Due to the radiation treatment applications [7, 11, 24], we consider several
criteria for measuring the error E(CB , f) between the input curve f and CB :
(1) symmetric difference [7]: E(CB , f) =

∫
|CB(x) − f(x)|dx; (2) mean square

[11]: E(CB , f) =
∫

(CB(x) − f(x))2dx; (3) “no overdose”: E(CB , f) is defined as
in (1) but CB(x) ≤ f(x) is required for every x (for treating tumors that are
very close to some vital organs [7]); (4)“no underdose”: E(CB , f) is as in (1) but
CB(x) ≥ f(x) is required for every x (for maximizing the cure of a tumor that
is relatively far away from any vital organs [7]).

Both the SR and GSR problems are mathematically fundamental. Note that a
block b defined by an interval I and a height h corresponds to a constant window
function Wb(x) whose value is h for x ∈ I and 0 otherwise. Thus, the SR (or
GSR) problem finds the fewest number of constant window functions such that
their sum equals (or well approximates) a given functional curve f .

Therefore, although the SR and GSR problems are derived from medical ap-
plications, the problems themselves are of an important theoretical nature. In
fact, theoretical studies of IMRT problems have so far been lacking in both the
medical and computer science literature. In this paper, we focus on solving these
two problems from a theory point of view and present efficient algorithms.

704 D.Z. Chen et al.

(b) (c) (d)(a)

0 10
00

0 0

00
0 0

0 0
0

0

0
0

02

1
12

1 2

11
1 3 4 5 1

2
1 1

3

f

(e) (f)

Fig. 1. (a) An IM. (b) An MLC. (c) Illustrating the SR problem: “Stacking up” two
blocks to form a given (solid) rectilinear curve. (d) A horizontal trapezoidal decom-
position of f naturally yields a solution for the SR problem. (e) The FBT problem:
The dashed curve is for an “ideal” dose distribution “strip”, and the solid rectilinear
curve is CB defined by a set B of 5 blocks. (f) The OQ problem: It uses 9 blocks to
approximate the dashed curve in (e).

The SR problem is NP-hard; we can give a proof very similar to that in
[10], by reducing to it the knapsack problem [13]. Thus we seek to develop
efficient and good quality approximation SR algorithms. It is not hard to show
that a horizontal trapezoidal decomposition of the input curve f yields a 2-
approximation solution for the SR problem (e.g., see Figure 1(d)). To our best
knowledge, we are not aware of any efficient SR algorithms that can achieve an
approximation ratio less than 2.

The GSR problem, as a generalization of the SR problem, is clearly NP-hard.
The following special case of the GSR(a) problem is interesting: The blocks in
the output set B are required to satisfy the inclusion-exclusion constraint [7, 11],
meaning that for any two distinct blocks bi, bj ∈ B, either their intervals do not
intersect each other (except possibly at an endpoint), or one interval, say Ii for
bi, fully contains the other interval Ij . Note that blocks satisfying the inclusion-
exclusion constraint can be stacked up such that no parts of the blocks fall to
the lower levels (see Figures 1(d)-1(e)). Intuitively, such blocks can be viewed as
forming a forest of towers of blocks (see Figure 1(e)). Thus, we call this case the
forest of block towers (FBT) problem. The FBT problem has been studied
by medical researchers [7, 11] as a version for solving the GSR(a) problem. In fact,
we can show that an optimal solution for the FBT problem immediately yields a
2-approximation for the GSR(a) problem. This is because for any solution B of
the GSR(a) problem on f , a horizontal trapezoidal decomposition of the curve
CB immediately gives a solution B′ for the FBT problem on f , with |B′| ≤ 2|B|.

Some previous work has been done on the FBT problem in the medical field
[7, 11, 24]. An approach based on Newton’s method and calculus techniques was
used in [11]; but, it works well only when the input curve f has few “peaks”, and

Shape Rectangularization Problems in IMRT 705

must handle exponentially many cases as the number of “peaks” of f increases.
Such methods did not give any optimality guarantee. The FBT problem is also
closely related to some geometric problems. One such problem is called optimal
quantization (OQ) [8, 25], arising in coding and information theory: Given a 2-D
x-monotone curve f and an integer k > 0, find a set B of k blocks such that
no two distinct blocks overlap in their intervals (except possibly at an endpoint)
and the curve CB approximates f with the minimum error (e.g., see Figure
1(f)). Clearly, the OQ problem is a special case of the FBT problem. In fact,
in the worst case, an optimal block set B′ for the OQ problem can have a size
almost twice the size of an optimal block set B for the FBT problem (see Figures
1(e)-1(f)). Observe that the output of the OQ problem can be represented as
a k-node list. Thus, the OQ problem can be modeled as a k-link shortest path
problem on a DAG [25]; further, the paths in the DAG for this problem satisfy the
Monge property [1, 20], and hence can be computed very efficiently [1, 2, 22, 25].
In contrast, the FBT output can be represented as a k-node forest; thus, the
FBT problem can be modeled as a k-MST problem [3, 4, 12, 14, 18, 19, 21, 26]
on a geometric graph. Although the k-MST problem is NP-hard both on general
graphs and in general geometric settings [12, 21, 26], we are able to solve our
FBT problem optimally and efficiently.

In this paper, we present a polynomial time (3
2 + ε)-approximation algorithm

for the SR problem. We exploit a set of interesting geometric observations and
show that the SR problem is closely related to the multicommodity demand
flow (MDF) problem [9]: Given a capacitated tree network T = (V,E, c),
with an integer capacity ce > 0 on each edge e, and a set of demands, each of
which is defined as a flow from a vertex u to another vertex v in T and has
an associated integer demand value du,v > 0 and a real valued profit wu,v >
0, find a subset S of the demands that can be simultaneously routed without
violating any edge capacity of T such that the total profit w(S) is maximized.
We prove that for any constant μ ≥ 2, if a μ-approximate solution for the MDF
problem defined on a path is available, then we can find a (2 − 1

μ)-approximate
solution for the SR problem. Chekuri et al. [9] gave a polynomial time (2 + ε)-
approximation algorithm for the MDF problem on a path when the maximum
demand dmax is ≤ the minimum capacity cmin. We extend Chekuri et al.’s result
[9] and give a (2 + ε)-approximation algorithm for the MDF problem on a path
when dmax ≤ λ · cmin, where λ > 0 is any constant. This leads to a (3

2 + ε)-
approximation algorithm for the SR problem when Mf ≤ λ ·mf , where mf (or
Mf) is the global positive minimum (or maximum) of the input curve f . Note
that Mf ≤ λ ·mf is satisfied by all IMs used in current clinical treatments.

For the FBT problem, we present a unified algorithmic approach producing
optimal FBT solutions under each of the above four error criteria. Our main idea
is as follows. We first show a set of geometric observations, which imply that
only a finite set of rectangles needs to be considered as candidates for the sought
blocks, and a graph G on such rectangles can be built. We then use a dynamic
programming scheme to compute an optimal k-MST in G. Interestingly, in this
dynamic programming scheme, computing a k-link shortest path is a repeatedly

706 D.Z. Chen et al.

used key subroutine. Although it is not clear whether the Monge property [1, 20]
holds for our particular k-link shortest path problem, this problem is solvable in
a much faster manner than a straightforward k-link shortest path algorithm on
general graphs [16]. Our FBT algorithm thus obtained runs in O(k2M3P 3 + n)
time, where n (resp., P) is the number of vertices (resp., “peaks”) of f (clearly,
P < n), and M is the value of f ’s global maximum. In fact, our FBT algo-
rithm is quite practical since k, M , and P are very small for real medical data.
Our approach can also be extended to the generalized FBT problem in which
the heights of the blocks need not be integers, resulting in an ε-approximation
algorithm for the generalized FBT problem.

Due to the space constraints, we omit most of the proofs and leave our detailed
discussion of the FBT problem to the full paper.

2 Our Shape Rectangularization (SR) Algorithm

In this section, we present our polynomial time (3
2 + ε)-approximation SR al-

gorithm.We first show that for the SR problem, it is sufficient to consider only
a special type of block sets, called canonical block sets. Then we show that an
optimal block set, if canonical, is isomorphic to a weighted forest. This obser-
vation inspires us to study an interesting combinatorial optimization problem,
called the primary block set (PBS) problem, which is related to the SR problem
in that for any μ ≥ 2, a μ-approximation PBS algorithm immediately implies
a (2 − 1

μ)-approximation SR algorithm. We further show that the PBS prob-
lem can be reformulated, in polynomial time, as a multicommodity demand flow
(MDF) problem on a path. By extending Chekuri et al.’s algorithm [9], we get a
(2 + ε)-approximation algorithm for this MDF problem, which leads to our final
(3
2 + ε)-approximation SR algorithm.

2.1 Notation and Preliminaries

For a rectilinear x-monotone curve f that is on or above the x-axis and starts and
ends at the x-axis, denote by A(f) the area enclosed between f and the x-axis.
We classify the vertical edges of f into two sets: The left edges (the interior of
A(f) is to the right of each such edge) and right edges (defined symmetrically),
denoted by EL(f) and ER(f), respectively. For any vertical edge e, denote by
x(e) the x-coordinate of e. Define the L-end set of f , denoted by left(f), as
left(f) � {x(e) | e ∈ EL(f)}. The R-end set right(f) is defined symmetrically.

For a block b defined by an interval I = [α, β] and a height h, we encode it
as a 3-tuple (α, β, h); we say that α (or β) is the left (or right) end of block b.
For a block set S, define the L-end set of S, denoted by left(S), as left(S) �
{α | (α, β, h) ∈ S}. The R-end set right(S) is defined symmetrically.

Let f be a rectilinear x-monotone curve, and B be a block set that builds f ,
i.e., CB = f . Clearly, left(f) ⊆ left(B) and right(f) ⊆ right(B). Note that a
horizontal trapezoidal decomposition of A(f) naturally induces a block set of a
size ≤ |left(f)| + |right(f)|− 1 that builds f . Thus, the size of an optimal block
set (i.e., of the minimum size) that builds f is always ≤ |left(f)|+ |right(f)|−1.

Shape Rectangularization Problems in IMRT 707

2.2 Optimality of Canonical Block Sets

Let f be a rectilinear x-monotone curve, and B be a block set that builds f . We
say that B is L-canonical (or R-canonical) if left(B) = left(f) (or right(B) =
right(f)). Since left(f) ⊆ left(B) always holds, B is L-canonical if and only if
left(B) ⊆ left(f). Symmetrically, B is R-canonical if and only if right(B) ⊆
right(f). A block set is said to be canonical if it is both L-canonical and R-
canonical. Geometrically, for any block in an L-canonical (or R-canonical) block
set, the left (or right) endpoint of its corresponding interval is an L-end (or
R-end) of f . The next lemma shows that to solve the SR problem on f , it is
sufficient to consider only the canonical block sets that build f .

Lemma 1. Let f be a rectilinear x-monotone curve. For any block set B that
builds f , there exists a canonical block set B∗ that builds f with |B∗| ≤ |B|.

Lemma 1 implies the existence of an optimal block set for the SR problem that
is also canonical. We call such a block set a canonical optimal block set. In the
next subsection, we show that a canonical optimal block set has an interesting
geometric structure: It is isomorphic to a forest of weighted trees.

2.3 Geometric Structures of a Canonical Optimal Block Set

Let B be a canonical optimal block set that builds the curve f . Note that for any
block b = (α, β, h) ∈ B, α ∈ left(B) = left(f) and β ∈ right(B) = right(f).
Construct a weighted bipartite graph, called the LR-graph of B, as follows: G =
(left(f), right(f), E), where E = {(u, v) ∈ left(f) × right(f) | (u, v, h) ∈ B}.
For any (u, v) ∈ E, since B is optimal, clearly there exists a unique h such that
(u, v, h) ∈ B. Thus for an edge e = (u, v) ∈ E, we can define its weight w(e) = h.

It is clear that an edge in G has a one-to-one correspondence with a block in
B. For any subgraph H of G, the set of all edges in H naturally induces a block
set B(H) ⊆ B. Let C1, C2, . . . , CK (K ≥ 1) be the connected components of G.
Denote by Bi the induced block set of Ci, i = 1, 2, . . . ,K.

Clearly, B =
⋃K
i=1 Bi and f = CB =

∑K
i=1 CBi . For any i ∈ {1, 2, . . . ,K},

since B is an optimal block set that builds f , Bi must be an optimal block set
that builds CBi . Hence |Bi| = n(CBi) ≤ |left(CBi)| + |right(CBi)| − 1. Observe
that left(CBi) ⊆ left(Bi) and right(CBi) ⊆ right(Bi) (since Bi is a block set
that builds CBi). Thus we have |Bi| ≤ |left(Bi)| + |right(Bi)| − 1. Since Ci is a
connected component of G, we also have |E(Ci)| ≥ |V (Ci)|−1. Note that |E(Ci)| =
|Bi| and |V (Ci)| = |left(Bi)|+|right(Bi)|; thus |Bi| ≥ |left(Bi)|+|right(Bi)|−1.
Hence |Bi| = |left(Bi)| + |right(Bi)| − 1, or equivalently, |E(Ci)| = |V (Ci)| − 1.
Therefore, Ci is a tree, and we have the following lemma.

Lemma 2. For any canonical optimal block set B that builds the input curve
f , the LR-graph of B is a forest. In other words, B can be partitioned into
B1, B2, . . . , BK , such that (1) {left(Bi)}Ki=1 and {right(Bi)}Ki=1 form a partition
of left(B) and right(B), respectively, and (2) |Bi| = |left(Bi)|+ |right(Bi)|−1
holds for i = 1, 2, . . . ,K, where K is the number of connected components of G.

708 D.Z. Chen et al.

2.4 The Primary Block Set (PBS) Problem

Let len(e) denote the length of an edge (or line segment) e. Given an x-monotone
rectilinear curve f , we define a bipartite graph Gf = (EL(f), ER(f), Af), where
Af = {(eL, eR) ∈ EL(f) × ER(f) | x(eL) < x(eR) and len(eL) = len(eR)}. In
this subsection, we refer to edges in Gf as arcs to avoid possible confusion. For
each arc a = (eL, eR) in Gf , we associate with it a block (x(eL), x(eR), len(eL)),
denoted by blk(a). For a matching M in Gf , define its induced block set as
B(M) = {blk(a) | a ∈ M}. A block set B′ is said to be primary if (i) CB′ ≤ f ,
i.e., CB′(x) ≤ f(x) for any x ∈ R, and (ii) B′ is induced by some matching M in
Gf , i.e., B′ = B(M). The primary block set (PBS) problem seeks a largest
size primary block set for f . Its close relation to the SR problem is shown below.

Lemma 3. A polynomial time μ-approximation PBS algorithm implies a poly-
nomial time SR algorithm with an approximation ratio of (2 − 1

μ) if μ ≥ 2 and
of no more than 3

2 if μ < 2.

Proof. (Sketch) Given a μ-approximation PBS algorithm, our SR algorithm
works on a curve f as follows. We first apply the μ-approximation PBS al-
gorithm to f to obtain a primary block set B′ with |B′| ≥ |B|/μ, where B is an
optimal PBS solution for f . Since B′ is primary, CB′ ≤ f . Consider two possible
cases. Case I: CB′ = f . In this case, |B′| = |left(f)| = |right(f)|. We simply
output B′, which is clearly an optimal SR solution for f . Case II: CB′ �= f .
In this case, we perform a horizontal trapezoidal decomposition of f − CB′ to
obtain a block set B′′, and output B � B′ ∪B′′. To show the correctness of this
SR algorithm, it suffices to show that for Case II, the output block set B is the
sought approximate solution. In fact, we can prove that (details are left to the
full paper) |B| has an upper bound |left(f)|+|right(f)|−|B|/μ, and the size of a
canonical optimal block set, say B∗, for the SR problem on f , has a lower bound
2
3 (|left(f)| + |right(f)| − |B|/2). Since |left(f)| ≤ |B| and |right(f)| ≤ |B|, we
have |B|/|B∗| ≤ 2 − 1

μ when μ ≥ 2, and |B|/|B∗| ≤ 3
2 when μ < 2.

Henceforth, we focus on finding a polynomial time (2 + ε)-approximation PBS
algorithm, which leads to a (3

2 + ε)-approximation SR algorithm by Lemma 3.

2.5 Reformulation of the Primary Block Set (PBS) Problem

This section gives interesting geometric observations on the PBS problem, which
allow us to reformulate the PBS problem as a multicommodity demand flow
(MDF) problem on a special path graph.

Clearly, the PBS problem can be viewed as a constrained matching problem
on the bipartite graph Gf . Note that Gf may have O(|EL(f)| · |ER(f)|) arcs
in the worst case. Our first observation is that, for this constrained matching
problem, we can ignore a significant portion of the arcs of Gf without sacrificing
the optimality of the solution. As to be shown later, for each vertex v of Gf ,
we need to keep only at most one arc that is incident to v. These special arcs
are computed as follows. We partition all left and right edges of f into groups

Shape Rectangularization Problems in IMRT 709

E1, E2, . . . , Es (s ≥ 1) based on their lengths. For the left and right edges in the
same group, say Ei, we treat the left (resp., right) edges as the left (resp., right)
parentheses, and perform a left-to-right scan along f for Ei; when encountering
a right parenthesis, we pair it with the rightmost scanned yet unpaired left
parenthesis, if any. The resulting parenthesis pairs naturally induce a set of arcs
in Gf , called critical arcs. The critical arc set, denoted by M cr, contains all
critical arcs obtained from all the edge groups E1, E2, . . . , Es. Clearly, M cr is a
matching in Gf . The next lemma shows that M cr is crucial to the PBS problem.

Lemma 4. For any primary block set B for f , we can find a primary block set
B for f such that |B| = |B| and B is induced by a matching M ⊆ M cr.

Recall that the PBS problem seeks a primary block set of the maximum size for
f . By Lemma 4, it is sufficient to consider only those primary block sets that are
subsets of Bcr, where Bcr is the block set induced by the critical arc set M cr. In
other words, we seek a largest size subset B of Bcr subject to CB ≤ f . Hence,
the PBS problem can be modeled as a multicommodity demand flow (MDF)
problem [9] on a special path graph GP . The vertex set of the path graph GP
consists of all left and right ends of f , sorted by the x-coordinates. There is an
edge (x′, x′′) in GP between every two consecutive ends x′ and x′′ of f in the
sorted list, and the edge (x′, x′′) has an integer flow capacity equal to the height
value of f between x′ and x′′. Each block b = (α, β, h) in Bcr has a corresponding
source-sink pair (α, β) in GP with a demand flow of a value h. The objective
is to maximize the number of demand flows that can be simultaneously routed
entirely in GP without violating its edge capacity constraints.

2.6 Our Algorithm for the MDF Problem on a Path

The MDF problem on a path graph was studied by Chekuri et al. [9], who gave a
polynomial time (2+ε)-approximation algorithm for the case when the maximum
demand value dmax in the path graph is ≤ the minimum edge capacity cmin. We
extend their result and present a (2 + ε)-approximation MDF algorithm for the
case with dmax ≤ λ · cmin, where λ is any positive constant.

We borrow some definitions and notation from [9]. Let d(F) be the value of
a demand flow F . The bottleneck capacity b(F) of a demand F is the smallest
edge capacity on the path of F . For a given δ > 0, we say that a demand F is
δ-large if d(F) ≥ δ · b(F); else, F is δ-small. The next lemma is a generalization
of a similar lemma in [9], and is crucial to our extended algorithm.

Lemma 5. When dmax ≤ λ · cmin for a constant λ > 0, in any feasible solution
of the MDF problem on a path graph GP , the number of δ-large demands crossing
any edge in GP is at most 2�λ/δ2	.
Following the same outline developed in [9], we further have the next lemma.

Lemma 6. For the MDF problem on a path graph GP with dmax ≤ λ · cmin,
there is a (2 + ε)-approximation algorithm which runs in O(nmO(λ/ε4)) time,
where n is the number of edges in GP , m is the number of demands, and λ is
any positive constant.

710 D.Z. Chen et al.

We conclude our discussion on the SR problem with the following result.

Theorem 1. Let f be an x-monotone rectilinear curve of n vertices. If Mf ≤ λ·
mf holds for a constant λ > 0, where Mf (or mf) is the global positive maximum
(or minimum) of f , then we can compute a (3

2 + ε)-approximate solution for the
SR problem on f in O(nO(λ/ε4)) time.

References

1. A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric Applica-
tions of a Matrix-Searching Algorithm. Algorithmica, 2:195–208, 1987.

2. A. Aggarwal, B. Schieber, and T. Tokuyama. Finding a Minimum-weight k-link
Path in Graphs with the Concave Monge Property and Applications. In Proc. 9th
Annual ACM Symp. on Computational Geometry, pages 189–197, 1993.

3. E.M. Arkin, J.S.B. Mitchell, and G. Narasimhan. Resource-Constrained Geometric
Network Optimization. In Proc. 14th ACM Symp. on Computational Geometry,
pages 307–316, 1998.

4. S. Arora. Polynomial-Time Approximation Schemes for Euclidean TSP and Other
Geometric Problems. J. of the ACM, 45(5):753–782, 1998.

5. S.H. Benedict, R.M. Cardinale, Q. Wu, R.D. Zwicker, W.C. Broaddus, and
R. Mohan. Intensity-Modulated Stereotactic Radiosurgery Using Dynamic Micro-
Multileaf Collimation. Int. J. Radiation Oncology Biol. Phys., 50(3):751–758, 2001.

6. D.E. Boccuzzi, S. Kim, J. Pryor, A. Berenstein, J.A. Shih, S.T. Chiu-Tsao, and
L.B. Harrison. A Dosimetric Comparison of Stereotactic Radiosurgery Using Static
Beams with a Micro-Multileaf Collimator versus Arcs for Treatment of Arteriove-
nous Malformations. In Proc. of the 41st Annual American Society for Therapeutic
Radiology and Oncology (ASTRO) Meeting, page 413, 2000.

7. T.R. Bortfeld, D.L. Kahler, T.J. Waldron, and A.L. Boyer. X-ray Field Compen-
sation with Multileaf Collimators. Int. J. Radiat. Oncol. Biol. Phys., 28:723–730,
1994.

8. J.D. Bruce. Optimal Quantization. PhD thesis, MIT, May 1964.

9. C. Chekuri, M. Mydlarz, and F.B. Shepherd. Multicommodity Demand Flow in a
Tree and Packing Integer Problem. In Proc. of 30th International Colloquium on
Automata, Languages and Programming, pages 410–425, 2003.

10. D.Z. Chen, X.S. Hu, S. Luan, S.A. Naqvi, C. Wang, and C. Yu. Generalized
Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy. Int.
Journal of Computational Geometry and Applications, 16(2-3):175–204, 2006.

11. P.M. Evans, V.N. Hansen, and W. Swindell. The Optimum Intensities for Multiple
Static Collimator Field Compensation. Med. Phys., 24(7):1147–1156, 1997.

12. M. Fischetti, H.W. Hamacher, K. Jørnsten, and F. Maffioli. Weighted k-Cardinality
Trees: Complexity and Polyhedral Structure. Networks, 24:11–21, 1994.

13. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

14. N. Garg. A 3-Approximation for the Minimum Tree Spanning k Vertices. In Proc.
37th Annual IEEE Symp. on Foundations of Comp. Sci., pages 302–309, 1996.

15. G. Grebe, M. Pfaender, M. Roll, and L. Luedemann. Dynamic Arc Radiosurgery
and Radiotherapy: Commissioning and Verification of Dose Distributions. Int. J.
Radiation Oncology Biol. Phys., 49(5):1451–1460, 2001.

Shape Rectangularization Problems in IMRT 711

16. E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, 1976.

17. L. Ma. Personal communication. Department of Radiation Oncology, University
of Maryland School of Medicine, July 2004.

18. J.S.B. Mitchell. Guillotine Subdivisions Approximate Polygonal Subdivisions: A
Simple New Method for the Geometric k-MST Problem. In Proc. 7th Annual
ACM-SIAM Symp. on Discrete Algorithms, pages 402–408, 1996.

19. J.S.B. Mitchell. Guillotine Subdivisions Approximate Polygonal Subdivisions: Part
II – A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-
MST, and Related Problems. SIAM J. Comput., 28(4):1298–1309, 1999.

20. G. Monge. Déblai et Remblai. In Mémories de I’Académie des Sciences, Paris,
1781.

21. R. Ravi, R. Sundaram, M.V. Marathe, D.J. Rosenkrantz, and S.S. Ravi. Span-
ning Trees Short and Small. In Proc. 5th Annual ACM-SIAM Symp. on Discrete
Algorithms, pages 546–555, 1994.

22. B. Schieber. Computing a Minimum Weight k-link Path in Graphs with the Con-
cave Monge Property. Journal of Algorithms, 29(2):204–222, 1998.

23. S. Webb. The Physics of Three-Dimensional Radiation Therapy. Bristol, Institute
of Physics Publishing, 1993.

24. S. Webb. The Physics of Conformal Radiotherapy — Advances in Technology.
Bristol, Institute of Physics Publishing, 1997.

25. X. Wu. Optimal Quantization by Matrix Searching. Journal of Algorithms, 12:663–
673, 1991.

26. A. Zelikovsky and D. Lozevanu. Minimal and Bounded Trees. In Tezele Cong.
XVIII Acad. Romano-Americane, pages 25–26. Kishinev, 1993.

A New Approximation Algorithm for

Multidimensional Rectangle Tiling

Katarzyna Paluch�

Institute of Computer Science, University of Wroclaw, Poland
Max-Planck-Institute für Informatik, Saarbrücken, Germany

abraka@ii.uni.wroc.pl

Abstract. We consider the following tiling problem: Given a d-
dimensional array A of size n in each dimension, containing non-negative
numbers and a positive integer p, partition the array A into at most p
disjoint rectangular subarrays called rectangles so as to minimise the
maximum weight of any rectangle. The weight of a subarray is the sum
of its elements.

In the paper we give a d+2
2

-approximation algorithm that is tight with
regard to the only known and used lower bound so far.

1 Introduction

In some applications including databases, load balancing and video compression
we would like to partition data into sets of roughly the same weight. We consider
the following tiling problem: Given a d-dimensional array A of size n in each
dimension, containing non-negative numbers and a positive integer p, partition
the array A into at most p disjoint rectangular subarrays called rectangles so as
to minimise the maximum weight of any rectangle. The weight of a subarray is
the sum of its elements.

The problem, restricted to two dimensions, was introduced by Khanna et
al in [4], where it is shown that a 5/4-approximation for this problem is NP-
hard. Successive approximation algorithms were constructed for this problem,
beginning with the one having factor 5/2 by Khanna et al([4], through factors 7/3
([6],[11]), 9/4 ([7]), 11/5 ([1]) and ending with the one having factor 17/8([10]).

The multidimensional version was first considered by Smith and Suri in [12],
where they give an algorithm with approximation ratio d+3

2 , that runs in time
O(nd + p lognd) and the constant is of the order of d!. Next, Sharp in [11] gave
a (d2 + 2d − 1)/(2d − 1)-approximation algorithm that runs in time O(nd +
2dp lognd).

In this paper we give a d+2
2 -approximation algorithm that runs in time O(nd+

2dp lognd). Additionally, this algorithm is tight with regard to the only known
and used lower bound so far.

� Partially done while at University of Dortmund and supported by Emmy Noether
DFG grant KR 2332/1-2.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 712–721, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A New Approximation Algorithm for Multidimensional Rectangle Tiling 713

The general approach has a similar spirit as that in [10]. We also classify the
arrays and subarrays into types. In the multidimensional case, however, there
are many kinds of subarrays with a short type (having length 2) that are difficult
to partition (whereas in a twodimensional case there is only one kind of such
subarrays). As previously, we also have to consider arbitrarily large subarrays i.e.
having arbitrarily long type. Fortunately subarrays that are difficult to partition
display a regular structure that can be handled by appropriate linear programs.
Curiously, linear programs describing large difficult subarrays disintegrate into
small linear programs that can be treated independently and in this respect
they are much easier to analyze than linear programs describing large difficult
subarrays in a twodimensional version, where they cannot be decomposed into
small linear programs.

Organization of the paper. In Section 2 we give some basic notions and nota-
tion. In Section 3 we introduce the notion of a simple subarray and show the way
in which we use linear programs. In Section 4 we define the classification into
types of arrays and subarrays and show which subarrays having short type are
difficult to partition. In Section 5 we give the algorithm and prove its correctness.
Also in that section Lemma 7 explains why large linear programs disintegrate
into smaller ones.

2 Preliminaries

Let M denote the value of the element(s) of maximal weight in A and w(S) the
weight of a subarray S.

In any partition of A, clearly, at least one rectangle must have weight greater
or equal W = max{w(A)

p ,M}. Thus W is a simple lower bound for the maximum
rectangle weight in an optimal solution.

For convenience sake we can rescale the array A by dividing all its elements by
W and thus assume that we deal only with arrays of elements from the interval
[0, 1] and that the lower bound on the optimal solution is equal to 1.

To represent subarrays we will use the notation [a1, b1]× [a2, b2]× . . .× [ad, bd].
Individual elements will be represented by (a1, a2, . . . , ad).

Definition 1. We say that the array or subarray is α-partitioned if it is parti-
tioned into rectangles having weight not greater than α. If we additionally require
that the number of tiles used does not exceed �w(A)� (�w(A)�, resp.) then we say
that the array is well α-partitioned (nearly well α-partitioned, resp.).

From [7] we have

Fact 1. If we partition the input array A into a number of disjoint subarrays
A1, . . . , Al, Al+1 and well α-partition each Ai(1 ≤ i ≤ l) and nearly well α-
partition Al+1, then we will get the solution within α of the optimal one.

Definition 2. A slice in dimension f of an array or a subarray is its subarray
consisting of the elements having the same index in dimension f .

From now on, we will assume that α = d+2
2 .

714 K. Paluch

3 Simple Subarrays, Their Complexity and Difficulty

The key role in the analysis of the possible partitions is played by simple subar-
rays, into which we will appropriately decompose A.

Definition 3. Let β ≤ α.
A subarray S is called β-simple (or simple if we know which β we mean) if in
every dimension there exists one slice that separates two subarrays, each having
weight less than β (i.e. S is a disjoint sum of two subarrays having weight less
than β and the slice). The element that is the common part of all the separating
slices of a simple subarray is called its center.

Suppose we have a simple subarray S [a1, b1] × [a2, b2] × . . .× [ad, bd] that has a
center (c1, c2, . . . , cd). β is arbitrary.

In each of the dimensions S can have complexity 0, 1 or 2. In dimension i it has
complexity 0 iff ai = ci = bi, it has complexity 1 iff ai = ci < bi or ai < ci = bi
and it has complexity 2 iff ai < ci < bi. The overall complexity of S is the sum
of its complexities in all dimensions.

One of the interpretations of the complexity is reflected in the following fact.

Fact 2. If we have a simple subarray S that has complexity p and cut off one
rectangle that contains only its center, then the rest of S can be covered by p
rectangles and no fewer.

Proof. We can do it as follows. In the first step: if a1 < c1 we cut off a rectangle
[a1, c1 − 1] × [a2, b2] × . . . × [ad, bd] and also if b1 > c1 a rectangle [c1 + 1, b1] ×
[a2, b2] × . . .× [ad, bd].
In the ith step (i ≤ d): if ai < bi - a rectangle [c1, c1]× [c2, c2]× . . .× [ci−1, ci−1]×
[ai, ci−1]×. . . [ad, bd] and if ai > bi a rectangle [c1, c1]×[c2, c2]×. . .×[ci−1, ci−1]×
[ci + 1, bi] × . . . [ad, bd].

We will use vectors v = (v1, v2, . . . , vd) such that vi{−1, 1, 0, 2} to point cer-
tain subarrays of S. Namely, we will say that v cuts off a subarray [a′1, b

′
1] ×

[a′2, b
′
2] × . . .× [a′d, b

′
d], where [a′i, b

′
i] = [ci, ci] if vi = 0,

[a′i, b
′
i] = [ci, bi] if vi = 1,

[a′i, b
′
i] = [ai, ci] if vi = −1,

[a′i, b
′
i] = [ai, bi] if vi = 2.

Of course, it does not make much sense to put vi = −1 if ai = ci or vi = 1
when ci = bi. Therefore we will say that v is valid if in every dimension i it
holds: if vi = −1, then ai < ci, if vi = 1, then ci < bi and if vi = 2, then
ai < ci < bi.

Let |v| =
∑

|vi|.
A subarray is going to be described as m-difficult if it cannot be α-partitioned

into m rectangles.

Lemma 1. A simple subarray S that has complexity p is m-difficult iff every
vector v such that |v| = p−m+1 cuts off a subarray having weight greater than α.

A New Approximation Algorithm for Multidimensional Rectangle Tiling 715

Proof. If some vector v such that |v| = p − m + 1 cuts off a subarray having
weight at most α, then we can α-partition S by taking one rectangle cut off by
v and covering the rest of S by m − 1 rectangles of weight less than β in the
way similar as that in the proof of Fact 2. We are able to do so, because in each
dimension i a separating slice placed in ci separates two subarrays having weight
less than β.

In the other direction. Suppose we have some α-partition of S into m rectan-
gles. We can show that one of them must contain a rectangle that is cut off by
a valid vector v such that |v| ≥ p−m+ 1.

We can calculate the minimal weight of simple subarrays that are m-difficult
using linear programming.

Let us explain it by an example. Suppose we have a 3-difficult simple 5 × 5
array A, whose center is (3, 3). Then the distribution of weight on this array can
be described by the following array

x1 x2 x3
x4 s x5
x6 x7 x8

where s denotes the weight of the center, x2 = a1,3 + a2,3, x7 = a4,3 + a5,3 and
x1 = a1,1 + a1,2 + a2,1 + a2,2 and the remaining variables denote analogous sums
of elements.

The complexity of array A is 4 and by Lemma 1 we know that each vector
v, such that |v| = 2 cuts off a rectangle of weight greater than α. Hence, the
lower bound on the minimal weight of A is the solution to the following linear
program.

minimize s+
∑8

i=1 xi
subject to s ≤ 1

s+ x1 + x2 + x4 ≥ α
s+ x2 + x3 + x5 ≥ α
s+ x5 + x7 + x8 ≥ α
s+ x4 + x6 + x7 ≥ α
s+ x2 + x7 ≥ α
s+ x4 + x5 ≥ α

Let us notice that in estimating the lower bound of this subarray we can use
only five variables s, x2, x4, x5 and x7 and without loss of generality assume that
variables x1, x3, x6 and x8 are equal to 0. It is so because if the array, whose
weight is distributed as above is 3-difficult, then so is the array, whose weight
is distributed as follows, because all of the inequalities from the above linear
program are satisfied as well.

0 x2 + x1
2 + x3

2 0

x4 + x1
2 + x6

2 s x5 + x3
2 + x8

2

0 x7 + x6
2 + x8

2 0

716 K. Paluch

We can generalize this reasoning and state the following lemma.

Lemma 2. The minimal weight of a simple m-difficult subarray S of complexity
p is greater than the solution of the following linear program

minimize s +
∑p

i=1 xi

subject to s ≤ 1
s + xi1 + xi2 + . . . + xip−m+1 ≥ α

for all 1 ≤ i1 < i2 < . . . < ip−m+1 ≤ p

and thus it is greater than 1 + p α−1
p−m+1 .

Proof. Similarly as above we can assume that the weight of the whole subarray
is concentrated in p elements and the center (i.e. only those elements are non-
zero) and by Lemma 1 the weight of every rectangle cut off by a vector v such
that |v| = p−m+ 1 is greater than α. One can easily check that the sum of the
variables in the above linear program is minimal when all the inequalities are
satisfied with equality and thus when s = 1 and x1 = x2 = . . . = xp = α−1

p−m+1 .

We will say that an element (e1, e2, . . . , ed) is a satellite of the center if there
exists exactly one i such that ei �= ci. Using this terminology we can say that the
weight of a simplem-difficult subarray is minimal when its weight is concentrated
in its center and the p satellites of the center.

4 Blocks

We look at the array A as a sequence of its slices in dimension one, which will be
called sheets.We will distinguish two classes of them: those with weight at least 1
(>-sheets) and those with weight less than 1 (<-sheets). In [6] we have analogous
notions of <- and >-columns which actually are slices in a twodimensional array.
There we have:

Lemma 3 ([6]).

1. A >-column can be well 2-partitioned.
2. A subarray consisting solely of <-columns having weight at least 1 can be

well 2-partitioned.

This remains true in the case of <-sheets and α-partitioning. Therefore we can
notice that a group of adjacent <-sheets can be treated like a single >-column
if its overall weight is at least 1 (<-sheets are elements of a >-column) and
thus can be not only α-partitioned but even well 2-partitioned and otherwise
like a single <-sheet (its elements are the sums of the appropriate elements of
<-sheets). Without loss of generality we will assume that every array consists
of alternating <- and >-sheets and begins and ends with a <-sheet. It will
sometimes be achieved by inserting artificial sheets of weight 0.

Further we are going to identify more classes of sheets.

A New Approximation Algorithm for Multidimensional Rectangle Tiling 717

Definition 4. For every natural number m, a sheet of type m, also referred to
as an m-sheet, denotes a >-sheet having weight from the interval [m,m+ 1).

The type of an array or a subarray is going to be described by the types of
its sheets given in the order of their occurrence. A sheet of type m will be
represented by a natural number m and a <-sheet by a symbol 	. The type of
a subarray or an array will be given in the form ()m1 	m2 . . . 	mn(). In the
algorithm the array A will be processed from the leftmost sheet to the rightmost
one, however not completely in the sheet-wise manner but in the block-wise one.

A block is a subarray of type 	m. Among blocks of type 	m we will distinguish
two subclasses:

– m - simple subarrays that can be α-partitioned into m rectangles
–
m - simple subarrays that cannot be α-partitioned into m rectangles

Now we will show some applications of Lemma 2.

Lemma 4. Every simple >-sheet can be well α-partitioned.

Proof. The complexity of a simple >-sheet is at most 2d− 2. Suppose its weight
falls in the interval [m,m+ 1), which means that if we want to well α-partition
it we can use at most m rectangles. From Lemma 2 we know that a simple >-
sheet that cannot be α-partitioned into m rectangles has weight greater than
1+(2d−2)

d
2

2d−m−1 . One can easily check that 1+(2d−2)
d
2

2d−m−1 < m+1 holds
only for m ∈ (d− 1, d). Therefore a simple >-sheet that cannot be α-partitioned
into m rectangles has weight greater than m+ 1.

As every >-sheet S can be easily decomposed into simple >-sheets, we can well
α-partition S by well α-partitioning each simple >-sheet separately.

Corollary 1. Every >-sheet can be well α-partitioned.

This means that if the array consisted solely of >-sheets we would have a very
easy d+2

2 -approximation for d-dimensional arrays. Also, blocks of type m can
be from the definition well α-partitioned (because they contain an m-sheet that
has weight from the interval [m,m+ 1) and thus for well α-partitioning we are
allowed to use m rectangles). Let us now examine which blocks of type
m can
be well α-partitioned and which cannot.

The complexity of a block of type
m is at most 2d−1. Therefore by Lemma 2,
its weight is greater than 1+(2d−1)

d
2

2d−m . Next we solve the following inequality

1 + (2d− 1)
d
2

2d−m
≥ m+ 1

and get that it is true for m ∈ [d −
√
d/2, d +

√
d/2]. Thus, for the above m,

blocks of type
m can be well α-partitioned, because in this case we can usem+1
rectangles and from Lemma 4 an m-sheet can be well partitioned (we use at most
m rectangles for it) and we use 1 rectangle for a <-sheet. If m falls outside the
above interval, then blocks of type m indeed cannot be well α-partitioned. This
means that if we want to get an α-approximation we cannot restrict ourselves to
subarrays consisting of only 2 sheets but are forced to examine larger subarrays.

718 K. Paluch

5 Algorithm

We will process the array in the block-wise manner starting from the leftmost.
As we have seen in the previous section, some blocks of type
m cannot be well
α-partitioned. Therefore, if we encounter such a block, we will extend it to the
neighbouring one and see whether they together can be well α-partitioned. If it
still turns out impossible, we will extend it further until the subarray finally can
be well α-partitioned or we have reached the end of the array. In the other case
we will be allowed to nearly well α-partition the subarray.

If a subarray S consists only of simple blocks, then its type T has the form
	1m1 	2m2 . . . 	kmk, where each 	i denotes either or
. To types of this form
we will ascribe a natural number N(T):

N(T) =
k∑

i=1

mi +
k∑

i=1

[i =
] − 1.

Thus, if T =
4, then N(T) = 4 and if T =
4
 3, then N(T) = 8.
A subarray that is not simple is complex. In the algorithm we will check

whether a given block is 1-simple.
We say that two elements (e1, e2, . . . , ed) and (e′1, e

′
2, . . . , e

′
d) coincide if there

exists at least one i such that ei = e′i.

S := ∅
while extension of S to the next block possible

extend S to the next block
if S is a block of type m, well α-partition it, else
if S ends with a complex block, well α-partition S as shown in Lemma 14 else
if S of type T has weight at least N(T) + 1, well α-partition S as shown in Lemma 5, else
if S contains a subarray of type m that can be α-partitioned

into m− 1 rectangles or a subarray of type m� that can be
α-partitioned into m rectangles, then well α-partition S as shown in Lemma 12, else

if the centers of some two neighbouring blocks coincide, well
α-partition S as shown in Lemma 13

nearly-well-α-partition S together with the last <-sheet.

In the algorithm if S ends with a complex block, then it is relegated for well
α-partitioning to Lemma 14. Therefore, if S has to be extended, then we know
that it consists solely of simple blocks.

Lemma 5. If subarray S of type T consists only of simple blocks and its weight
is at least N(T) + 1, then we can well α-partition it.

Proof. We can do it by α-partitioning each block of type
m into m+1 rectangles
(m rectangles for an m-sheet and one for a sheet denoted by
) and by α-
partitioning each block of type m into m rectangles. This way we will use
N(T) + 1 rectangles.

5.1 Minimal Weight of S

This whole subsection is to prove

A New Approximation Algorithm for Multidimensional Rectangle Tiling 719

Lemma 6. In the algorithm the subarray S of type T that has to be extended
has weight greater than N(T) + 1

2

From Lemma 2 we have

Fact 3. The minimal weight of a block of type
m is greater than m+ 3
2 .

In the following facts and lemmas we will assume that S′ is a subarray of S that
has to be extended by the algorithm.

Fact 4. The weight of a subarray S′ of type
m
 is greater than 1 + 2d α−1
2d−m ≥

m+ 1.

Proof. The minimal weight of S′ is equal to the minimal weight of an (m + 1)-
difficult subarray having complexity 2d and thus by Lemma 2 it is greater than
1 + 2d α−1

2d−m and the inequality 1 + 2d d/2
2d−m ≥ m+ 1 implies d2 − 2dm+m2 ≥ 0.

Next we prove a technical lemma that will prove very useful and will mean that
often a large linear program describing the weight of a difficult subarray can be
decomposed into smaller linear programs.

Lemma 7. If we have a block of type
m and it contains one element e having
value b that does not coincide with the center and m ≥ 3, then the minimal
weight of such a block is greater than b+ 1 + (2d− 1) α−1

2d−m . In other words, it is
greater than the minimal weight of a block of type
m plus b.

Proof. The linear program from Lemma 2 has the same solution as the following
linear program

minimize s +
∑p

i=1 xi

subject to s ≤ 1
s + xi mod p + xi+1 mod p + xi+2 mod p + . . . + xi+p−m mod p ≥ α

for 1 ≤ i ≤ p

It means that if the vectors to which the above p inequalities correspond cut off
rectangles that do not contain element e, then the lemma is proved. Since e does
not coincide with the center, for each i, either ei < ci or ei > ci, which means
that a vector v cuts off a rectangle that contains e iff for each i it holds: vi = 2 or
(vi = 1 and ei > ci) or (vi = −1 and ei < ci). This in turn means that there exist
d satellites of the center denoted by some variables xi1 , . . . , xid such that vector
v cuts off a rectangle that contains an element e iff the rectangle cut off by this
v contains all these d satellites. Therefore if no inequality in the linear program
contains all the variables that represent those concrete d satellites, we are done.
If we have a block of type
m and m ≥ 3, then its complexity is p = 2d − 1
and p−m+ 1 = 2d−m ≤ 2d− 3, which means that no inequality in the above
linear program contains all the variables x1, x3, x5, . . . , x2d−1. Therefore we can
rename the variables xi so that a vector v cuts off a rectangle that contains e iff
it cuts off a rectangle that contains satellites denoted by x1, x3, x5, . . . , x2d−1.

720 K. Paluch

Lemma 8. The weight of a subarray S′ of type
m1
m2, such that m2 ≥ 3 is
greater than the minimal weight of
m1
 plus the minimal weight of
m2 and
thus it is greater than m1 +m2 + 3

2 .

Proof. We use 2 variables for the center and 2d+ 2d− 1 variables that represent
the satellites of the centers. One satellite of the center of
m1
 is contained
in the subarray
m2, however it does not coincide with the center of
m2 and
one satellite of the center of
m2 falls in the subarray
m1
 and also it does
not coincide with the center of
m1
. Thus by Lemma 7 the linear programs
connected with these two subarrays can be considered separately and thus the
minimal weight of S is greater than the sum of the solutions of these linear
programs.

Similarly we can prove

Lemma 9. For m1,m2 ≥ 3, the weight of a subarray S′ of type m1
 m2 is
greater than m1 +m2 + 1.

From Lemmas 8 and 9 we get

Lemma 10. If the subarray S′ has type T = 	1m1 	2 m2 . . . 	k mk and each
mi ≥ 3, then the weight of S′ is greater than N(T) + 1

2 .

To finish the proof of Lemma 7, we need to show it is also true if S contains m-
sheets such that m ≤ 2. It is done by enumerating the inequalities that the linear
program contains and proving dual programming that the sum of the variables
is minimized when all of them are satisfied with equality.

The immediate corollary of Lemma 6 is

Corollary 2. In the algorithm each S that we encounter that is not ended with
a complex subarray has weight at least N(T).

Proof. If S is a simple block, then its weight is at least N(T). If S consists of
more blocks, then it has the form S′B and S′ was relegated for an extension by
the algorithm. Thus by Lemma 6 the weight of S′ is greater than N(T ′) + 1

2 and
the weight of a block of type m is at least m and of a block of type
m greater
than m+ 1

2 .

This means that if we want to well α-partition S, we can use N(T) rectangles.

Lemma 11. A subarray of type m that is contained in S can be α-partitioned
into m rectangles.

Proof. If it cannot be α-partitioned into m rectangles, then it is m-difficult and
then the weight of S is at least N(T) + 1.

Lemma 12. If in S there exists a subarray of type m that can be α-partitioned
into m− 1 rectangles or a subarray of type m
 that can be α-partitioned into m
rectangles, then S can be partitioned into N(T) rectangles.

A New Approximation Algorithm for Multidimensional Rectangle Tiling 721

Lemma 13. If in S the centers of two neighbouring blocks coincide, then S can
be well α-partitioned.

Lemma 14. If S ends with a complex block, then it can be well α-partitioned.

The running time of the algorithm is mostly spent in searching for separating
slices in simple subarrays and it can be estimated similarly as the time spent by
procedure Heavy-Search, Heavy-Cut and Medium-Tile in [11].

6 The Algorithm Is Tight

Suppose that we have an array A that is 1-simple and has complexity 2d and it
has only 2d+ 1 non-zero elements and these are: the center, that has weight 1
and the 2d satellites that have weight 1

2 . Then the overall weight of A is equal
to 1 + d. Let p = 1 + d. Thus the lower bound W = 1. We can easily see that
one rectangle in the partition must contain the center and at least d satellites,
therefore its weight is at least 1 + d

2 .

References

1. Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S.: Efficient Approxi-
mation Algorithms for Tiling and Packing Problems with Rectangles. J. Algorithms
41(2) (2001) 443-470

2. Grigni, M., Manne, F.: On the complexity of generalized block distribution. Proc.
3rd intern. workshop on parallel algorithms for irregularly structured problems
(IRREGULAR’96), Springer, 1996, LNCS 1117, 319-326

3. Han, Y., Narahari, B., Choi, H.A.: Mapping a chain task to chained processors.
Information Processing Letters 44 (1992) 141-148

4. Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling
and packing. Proc. 19th SODA (1998) 384–393

5. Khanna, S., Muthukrishnan, S., Skiena, S.: Efficient array partitioning. Proc. 24th
ICALP (1997) 616-626

6. Loryś, K., Paluch, K.: Rectangle Tiling. Proc. 3rd APPROX, Springer, 2000, LNCS
1923, 206-213

7. Loryś, K., Paluch, K.: A new approximation algorithm for RTILE problem. Theor.
Comput. Sci. 2-3(303) (2003) 517-537

8. Martin, G., Muthukrishnan, S., Packwood, R., Rhee, I.: Fast algorithms for variable
size block matching motion estimation with minimal error. IEEE Trans. Circuits
Syst. Video Techn. 10(1) (2000) 42-50

9. Muthukrishnan, S., Poosala, V., Suel, T.: On rectangular partitioning in two di-
mensions: algorithms, complexity, and applications. Proc. 7th ICDT (1999) 236-256

10. Paluch, K.: A 2(1/8)-Approximation Algorithm for Rectangle Tiling. ICALP
(2004) 1054-1065

11. Sharp, J.: Tiling Multi-dimensional Arrays. Proc. 12th FCT, Springer, 1999, LNCS
1684, 500-511

12. Smith, A., Suri, S.: Rectangular Tiling in Multidimensional Arrays. J.Algorithms
37(2) (2000) 451-467

Tessellation of Quadratic Elements

Scott E. Dillard1,3, Vijay Natarajan1,3, Gunther H. Weber1,3,
Valerio Pascucci2,3, and Bernd Hamann1,3

1 Department of Computer Science, University of California, Davis
2 Lawrence Livermore National Laboratory

3 Institute for Data Analysis and Visualization

Abstract. Topology-based methods have been successfully used for the
analysis and visualization of piecewise-linear functions defined on triangle
meshes. This paper describes a mechanism for extending these methods
to piecewise-quadratic functions defined on triangulations of surfaces.
Each triangular patch is tessellated into monotone regions, so that ex-
isting algorithms for computing topological representations of piecewise-
linear functions may be applied directly to piecewise-quadratic functions.
In particular, the tessellation is used for computing the Reeb graph,
which provides a succinct representation of level sets of the function.

1 Introduction

Scalar functions often represent physical quantities like temperature, pressure,
etc. Scientists interested in understanding the local and global behavior of these
functions study their level sets. A level set of a function f consists of all points
f−1(c) where the function value is equal to a constant c. Various methods have
been developed for the purpose of analyzing the topology of level sets of a scalar
function. These methods primarily apply to piecewise linear functions. We dis-
cuss an extension of these methods to bivariate piecewise quadratic functions
defined over a triangulated surface.

A contour is a single connected component of a level set. Level sets of a
smooth bivariate function are simple curves. The Reeb graph of f is obtained by
contracting each contour to a single point [1], see Fig. 1. The connectivity of level
sets changes at critical points of a function. For smooth functions, the critical
points occur where the gradient becomes zero. Critical points of f are the nodes
of the Reeb graph, connected by arcs that represent a family of topologically
equivalent contours.

1.1 Related Work

Methods to extract contours from bivariate quadratic functions have been ex-
plored in the context of geometric modeling applications [2]. A priori deter-
mination of the topology of contours has been studied also in the computer
graphics and visualization [3,4]. Much research has focused on functions defined
by bilinear and trilinear interpolation of discrete data given on a rectilinear

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 722–731, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Tessellation of Quadratic Elements 723

Fig. 1. Reeb graph of a height function defined over a double torus. Critical points of
the surface become nodes of the Reeb graph.

grid. Work in this area has led to efficient algorithms for computing the contour
tree, a special Reeb graph that has no cycles [5,6]. More general algorithms have
been developed for computing Reeb graphs and contour trees for piecewise-linear
functions [7,8,9].

Topological methods were first used in computer graphics and scientific visu-
alization as a user interface element, to describe high-level topological properties
of a dataset [10]. They are also used to selectively explore large scientific datasets
by identifying important function values related to topological changes in a func-
tion [11,12], and for selective visualization [13]. Reeb graphs have also been used
as the basis for searching large databases of shapes [14], and for computing
surface parametrizations of three-dimensional models [15].

1.2 Results

Given a triangulated surface and a piecewise-quadratic function defined on it, we
tessellate the surface into monotone regions. A graph representing these mono-
tone regions is a valid input for existing algorithms that compute Reeb graphs
and contour trees for piecewise-linear functions. The essential property we cap-
ture in this tessellation is that the Reeb graph of the function restricted to a
single tile of the tessellation is a straight line. In other words, every contour
contained in that tile intersects the triangle boundary at least once and at most
twice. We tessellate each triangular patch by identifying critical points of the
function within the triangle and connecting them by arcs to guarantee the re-
quired property.

2 Background

We consider bivariate, piecewise-quadratic functions defined over triangular
meshes. Bivariate quadratics are functions f : R

2 → R of the form

f(x, y) = Ax2 + Bxy + Cy2 + Dx + Ey + F.

A critical point of f is a point x where ∇f(x) = 0. The partial derivatives are
given by the following linear expressions

∂f

∂x
= 2Ax + By + D and

∂f

∂y
= 2Cy + Bx + E.

724 S.E. Dillard et al.

The location of a critical point (x̂, ŷ) is given by

x̂ =
−2CD + BE

4AC − B2 and ŷ =
−2AE + BD

4AC − B2 .

Bivariate quadratics and their critical points can be classified based on their
contours. The contours are conic sections. Let H = 4AC−B2 be the determinant
of the Hessian matrix of f . We partition the set of bivariate quadratic functions
into three classes:

1. H > 0: Contours are ellipses; The critical point is maximum or minimum.
2. H < 0: Contours are hyperbolas; The critical point is a saddle.
3. H = 0: Contours are parabolas, pairs of parallel lines, or single lines; No

critical point exists.

We refer to members of these classes as elliptic, hyperbolic, and parabolic, re-
spectively. We further classify the critical points of elliptic functions using the
second-derivative test. The critical point is a minimum when A > 0, and a max-
imum when A < 0. When A = 0, the sign of C discriminates between maxima
and minima.

2.1 Line Restrictions

Let �(t) =
(

x0 + txd

y0 + tyd

)
be a parametrically defined line passing through (x0, y0)T

in direction (xd, yd)T . Now restrict the domain of the bivariate quadratic f(x, y)
to only those points on �(t). We then have a univariate quadratic r(t) = αt2 +
βt + γ, where

α = Ax2
d + Bxdyd + Cy2

d,

β = 2Ax0xd + B(y0xd + x0yd) + 2Cy0yd + Dxd + Eyd, and

γ = Ax2
0 + Bx0y0 + Cy2

0 + Dx0 + Ey0 + F.

We call r(t) a line restriction of f . If α �= 0, r is a parabola with one critical
point at t̂ = −β/2α; if α = 0, r is linear. We refer to a critical point of this
univariate quadratic function as a line-critical point, while we refer to critical
points of the bivariate function as face-critical points. The line restrictions have
several useful properties:

1. There is at most one line-critical point on a line restriction, since the function
along the line is either quadratic or linear.

2. If a line intersects any contour twice, it must contain a line-critical point
between these intersections: Assume that the function value on the contour is
zero. The sign of the line-restriction changes each time it crosses the contour.
Applying the mean value theorem to the derivative of the line-restriction,
there must be a critical point between two zero crossings.

3. A line-critical point is located at the point where the line is tangent to a
contour, following from the previous property.

Tessellation of Quadratic Elements 725

4. Any line restriction passing through a face-critical point has a line-critical
point which is coincident with the face-critical point: The gradient at the
face critical point is zero. Thus, all directional derivatives are zero, and, in
particular, the derivative of the line restriction is zero.

2.2 Contours and Critical Points

A critical point is a point where the number of contours or the connectivity
of existing contours changes. When the gradient is not defined, we may classify
critical points based on the behavior of the function in a local neighborhood [16].
Figure 2 shows this classification. Consider a plane of constant height passing
through the graph surface (x, y, f(x, y)) of f . The intersection of the surface and
the plane is a set of contours, each homeomorphic to either a closed loop or
a line segment. When this plane passes a minimum, a new contour is created.
When the surface passes a maximum, an existing contour is destroyed. When
the surface passes a saddle, two types of events occur: (a) Two segments may
merge into a new segment or a segment may split into two. (b) The endpoints of
a segment may connect with each other to form a loop or a loop may split into
a segment.

Fig. 2. Interior minimum, maximum, saddle and regular point, and boundary min-
imum, maximum, saddle and regular point. Shaded areas are regions with function
value less than the indicated point.

We consider critical points of a function restricted to a triangular patch. A face
criticality of an elliptic function creates or destroys a loop when the sweep plane
passes it. A face criticality of a hyperbolic function interchanges the connectivity
of two segments. A line criticality can create or destroy a segment, merge two
segments into a new segment or split a segment in two, transform a segment
into a loop or a loop into a segment. However, a line-critical point cannot create
or destroy loops. We determine whether a line criticality is an extremum or a
saddle by examining the directional derivative perpendicular to the edge, at the
critical point. Vertices, when not located exactly at a hyperbolic saddle point,
can only create or destroy segments within a triangular patch. (See Sect. 4 for a
proof.)

3 Tessellation

We are given a scalar-valued bivariate function defined by quadratic triangular
patches. We aim to tessellate the patches into monotone regions, for the pur-
pose of analyzing the topology of level sets of one patch, and, by extension, of a

726 S.E. Dillard et al.

piecewise-defined function composed of many patches. The tessellation will de-
compose each triangular patch into subpatches, so that each subpatch has a Reeb
graph which is a straight line. More specifically, every level set within each sub-
patch is a single connected component and is homeomorphic to a line segment.
We achieve this by ensuring that each subpatch contains exactly one maximum
and one minimum, and no saddles. Since we are interested in the topology of
the subpatches but not their geometry, we only compute a combinatorial graph
structure which captures the connectivity of contours. Some of the arcs of this
graph originate from the patch, such as boundary edges, and thus their geometry
can be inferred. The embeddings of remaining arcs are not computed since they
are not required to construct the Reeb graph.

The construction of the tessellation proceeds by using a case analysis. For
each patch, we count the number of line-critical points (L = 0, 1, 2, 3) and face-
critical points (F = 0, 1). Each pair 〈F, L〉 is handled as an individual case to
determine the appropriate tessellation. We first describe the composition of the
tessellation. The nodes of a tessellation graph include: (1) all three vertices of the
triangle, (2) all line-critical points that exist on the triangle boundary and are
not coincident with a triangle vertex, and (3) the face-critical point, assuming
that it lies within the triangle and is not coincident with the boundary. We are
given (1) as input, but (2) and (3) must be computed in a pre-processing step.
Numerical problems can arise. No root finding is needed to compute (2) and
(3), so exact arithmetic may be used. However, if speed and consistency are
to be favored over accuracy then we only need to ensure that the tessellation
graphs of every patch agree on their boundary edges. The existence and location
of (3) does not effect the tessellation boundary, so no consistency checks are
needed for computing these points. The computation of (2) must agree between
two triangles sharing an edge. To ensure this, we do not treat edges as line
restrictions of bivariate quadratics, but rather as univariate quadratics defined
by data prescribed for the edge. The arcs are included into the tessellation based
on the following rules:

– If a line-critical point exists on an edge, we connect that node to both triangle
vertices on that edge. Otherwise, if an edge has no line-critical point, then
we connect its vertices by an arc.

– If a face criticality does not exist then
• If there is only one line criticality, we connect it to the opposite vertex,

as in Fig. 3 〈0, 1〉.
• If there are two line-critical points, we connect each one to the other.

The tessellation is not yet a triangulation. There are two possible arcs
that can be added to triangulate the quadrilateral shown in Fig. 3 〈0, 2〉.
One, but not both, may be incident on a boundary saddle. We include
this arc into the tessellation.

• If there are three line criticalities, we connect each one to the other two,
as shown in Fig. 3 〈0, 3〉.

– Otherwise, if a face-critical point exists in the triangle, connect it by an arc
to every other node, as shown in Fig. 3 〈1, 1〉, 〈1, 2〉 and 〈1, 3〉.

Tessellation of Quadratic Elements 727

〈0, 0〉 〈0, 1〉 〈0, 2〉 〈0, 3〉 〈1, 1〉 〈1, 2〉 〈1, 3〉

Fig. 3. Tessellation cases 〈F, L〉, where F is the number of face-critical points and L
is the number of line-critical points

4 Case Analysis

The tessellation constructed using these rules satisfies the monotonicity property.
We first state and prove some useful results about configurations of triangle
vertices, line-critical points and face-critical points. We assume that all triangles
in the triangulation are non-degenerate, i.e., every angle is between 0 and π and
every triangle has non-zero, finite area. In the proofs below, we make significant
use of two properties of the Reeb graph of the function defined over a triangular
patch. The first property is that the Reeb graph does not contain any cycles
because the domain is a topological disk [8]. The second property is that the
number of extrema in the graph is twice the number of saddles.

Lemma 1. If a triangle vertex is a boundary saddle of the function restricted
to the triangle, then it lies at the intersection of the two hyperbolic asymptotes.

Proof. We prove this by contradiction. Assume that there exists a vertex v that
is a boundary saddle, but not the hyperbolic saddle point. As we sweep the level
sets “downward in function value” and pass v, two contours merge or a single
contour splits into two. Assume, without loss of generality, that a contour splits
into two, as shown in Fig. 4. Above the value of v, the contour is contained
entirely in the triangle. Below the value of v, the contour passes outside the
triangle and then back in; the triangle cuts the contour into two segments. (These
segments may be joined elsewhere, but locally they are distinct.) Consider the
segment of the contour approaching v from the right. If this segment is to remain
strictly inside the triangle until the sweep arrives at v, its tangent direction is
constrained by the triangle edge to the right of v. Similarly, the tangent direction
of the contour segment approaching from the left is constrained by the triangle
edge to the left of v. All contours except for hyperbolic asymptotes are smooth,
and so the tangent on the right of v must agree with the tangent on the left.
The edges must be parallel, and therefore the triangle must be degenerate, which
violates our assumption.

Lemma 2. If a vertex of the triangular patch is a boundary saddle, then the
triangle has zero face-critical points and one line-critical point.

Proof. Considering Lemma 1, if a vertex v is a boundary saddle then v is a face
criticality of a hyperbolic function. Therefore, the face criticality does not lie in

728 S.E. Dillard et al.

c > v c = v c < v

Fig. 4. A smooth contour c cannot
both touch the triangle boundary at v
and lie completely in the interior

Above v At v Below v

Fig. 5. A triangle containing a bound-
ary saddle at a vertex v must contain a
line-critical point on the opposite edge

the interior. The edges incident on v cannot have line criticalities because v is
necessarily the line-critical point of all lines that pass through it. The edge oppo-
site v intersects the asymptotes twice and therefore must have a line criticality,
see Fig. 5.

Lemma 3. If a triangular patch contains exactly one line criticality and no
face criticality, then that line criticality is reachable by a monotone path from
any other point in the triangle.

Proof. Assume that none of the vertices is a boundary saddle. The line criticality
may be an extremum or a saddle. If it is an extremum, the triangle does not con-
tain any boundary saddle. The Reeb graph of the triangular patch is a straight
line, and every contour in the patch is homeomorphic to a line segment. We can
reach any point from the extremum by walking along contours that monotoni-
cally sweep the patch. If the line criticality is a saddle, then it is the only point at
which the connectivity of contours in the patch change, because no other saddles
exist. The Reeb graph has one internal node and three leaves. Starting from the
saddle, we can walk to any other point in the patch by choosing the appropriate
contour component to follow as it is swept away from the saddle. Assume that
one vertex is a boundary saddle, as shown in Fig. 5. If the line-critical point is
also a boundary saddle, the Reeb graph has two saddles, which implies at least
four extrema. This is impossible because there are only two vertices left. There-
fore, the line criticality must be an extremum. Assume without loss of generality
that it is a maximum. The two vertices on that edge must be minima, so the
Reeb graph has one maximum, one saddle and two minima. A monotone path
exists from the maximum to all points in the triangle.

Lemma 4. If a triangular patch contains zero face-critical points and two line-
critical points, the two line-criticalities are connected by a monotone path.

Proof. Lemma 2 implies that there are no vertex saddles. Let e0 and e1 be the
line criticalities. If both e0 and e1 are saddles, then they are connected by a
monotone path because they are the only two interior nodes in the Reeb graph
of the triangular patch. If both are extrema, then one must be a maximum and
the other a minimum and the Reeb graph is a straight line. If e0 is a boundary
saddle and e1 is an extremum, then there is a monotone path from that boundary
saddle to every point in the patch.

Tessellation of Quadratic Elements 729

We now use the above lemmas to prove that in all cases our tessellations consist
of monotone subpatches.

Case 〈0,0〉: No line-critical point exists on any edge, and no face-critical
point exists in the triangle. The function is monotone along the edges. There is
exactly one maximum and one minimum, which occur at vertices. All contours
in the triangle are homeomorphic to a line segment.

Case 〈0,1〉: One line-critical point e exists on an edge, and no face-critical
point exists in the triangle. Let v0, v1 and v2 be the triangle vertices, where v0 is
the vertex opposite e. We split the triangle in two, creating patches e, v1, v0 and
e, v2, v0, each containing zero face- and line criticalities. Considering Lemma 3,
the arc e, v0 is guaranteed to have a monotone embedding.

Case 〈0,2〉: Two line-critical points exist, e0 and e1, and no face-critical point
exists. We first subdivide the triangle along the monotone arc between e0 and
e1. Considering Lemma 4, we know this arc exists. This arc splits the patch into
a triangular subpatch and a quadrilateral subpatch. The triangular subpatch
belongs to Case 〈0, 0〉. Both e0 and e1 may not be boundary saddles because
this implies the Reeb graph of the triangular patch has two saddles and two
extrema, an impossible configuration. Let e0 be a saddle and e1 an extremum.
If we triangulate the quadrilateral by adding an arc which does not terminate
at e0, then e0 will still be a saddle of its triangular subpatch, which violates
our desired monotonicity property. To prevent this, we always triangulate the
quadrilateral by adding an arc which has e0 as an endpoint. If e0 and e1 are
both extrema, the Reeb graph is a straight line because no other saddles exist.

Case 〈0,3〉: Monotone arcs exist between all three pairs of line criticalities.
Please refer to the extended version of this paper for proof [17].

Case 〈1,0〉: This case is impossible. Face-critical points occur in elliptic and
hyperbolic functions only. Consider a triangular patch containing an elliptic
minimum. Tracking the topology of level sets during a sweep in the increasing
function direction, we note that a loop, contained entirely inside the triangle,
is created at the minimum. This loop cannot be destroyed without first being
converted into a segment by a line criticality. Therefore, the triangle boundary
should contain at least one line criticality. A similar argument holds when the
triangular patch contains an elliptic maximum. Let us consider a triangular
patch containing a hyperbolic face-critical point. The level set at this critical
point consists of a pair of intersecting asymptotes. These asymptotes intersect
the triangle boundary at four unique points. Since there are only three edges,
at least one edge intersects the asymptotes twice. This triangle edge contains a
line-critical point between the two intersection points.

Cases 〈1,1〉, 〈1,2〉, 〈1,3〉: We tessellate the patch by connecting the face
criticality to all vertices and line criticalities on the boundary. These new arcs
are not only monotone, but they are straight lines as well, because any line-
restriction containing the face criticality as an end-point is necessarily monotone.
All possible critical points appear as nodes in the tessellation, all new subpatches
are triangular and contain zero face and line criticalities.

730 S.E. Dillard et al.

5 Application to Reeb Graphs

We show how these tessellations may be used to compute a Reeb graph. Reeb
graph algorithms, such as the algorithm of Cole-McClaughin et al. [8], operate
by tracking contours of a level set during a plane sweep of the range of function
values. Since all arcs of our tessellation are monotone, any contour intersects an
arc at most once. Contours of function values that are not equal to any node
intersect the boundary of every triangular patch twice, or not at all. We can
follow a contour by starting at one arc that it intersects, and moving to another
arc of the same triangle that intersects the contour.

When the domain of a function is planar, such as 2D grey-valued images or
terrains/height fields, the Reeb graph contains no cycles and is called a contour
tree. Efficient contour tree algorithms proceed in two distinct steps [5,7]. First,
two separate trees, called the join tree and split tree, are constructed using a va-
riety of methods. The join tree tracks topological changes in the subdomain lying
above a level set, and the split tree tracks topological changes in the subdomain
lying below a level set. In the second step, the join and split trees are merged
to yield the contour tree. Our tessellation graph is a valid input for the join
and split tree construction algorithms. Applying any of these algorithms to the
tessellation graph of a piecewise-quadratic function yields the correct contour
tree for that function. Carr et al. [7] and Chiang et al. [9] utilize the following
properties to ensure the correctness of their algorithms [6]:

1. All critical points of the piecewise function appear as nodes in the graph.
2. For any value h, a path above (below) h exists in the graph if and only if a

path above (below) h exists in the domain.

We explicitly include every potential critical point of f in the tessellation, so
that the first property is satisfied. We assert that the monotonicity property of
our tessellation ensures that properties 2 and 3 are also satisfied.

6 Conclusions and Future Work

We have described a tessellation scheme for piecewise-quadratic functions on sur-
faces. Our tessellation allows existing Reeb graph and contour tree construction
algorithms to be applied to a new class of inputs, thereby extending the appli-
cations of these topological structures. We intend to develop a similar tessella-
tion scheme for trivariate quadratic functions defined over tetrahedral meshes.
We hope that this work will contribute to the development of robust and con-
sistent topological methods for analysis of functions specified as higher-order
interpolants or approximation functions over 2D and 3D domains.

References

1. Reeb, G.: Sur les points singuliers d’une forme de pfaff completement integrable
ou d’une fonction numrique. Comptes Rendus Acad. Sciences 222 (1946) 847–849

2. Worsey, A., Farin, G.: Contouring a bivariate quadratic polynomial over a triangle.
Comput. Aided Geom. Des. 7(1-4) (1990) 337–351

Tessellation of Quadratic Elements 731

3. Nielson, G., Hamann, B.: The asymptotic decider: resolving the ambiguity in
marching cubes. In: Proc. Visualization ’91, IEEE Computer Society Press (1991)
83–91

4. Nielson, G.: On marching cubes. IEEE Trans. Visualization and Comp. Graph.
9(3) (2003) 283–297

5. Pascucci, V., Cole-McLaughlin, K.: Efficient computation of the topology of level
sets. In: Proc. Visualization ’02, IEEE Computer Society Press (2002) 187–194

6. Carr, H.: Topological Manipulation of Isosurfaces. PhD thesis, University of British
Columbia (2004)

7. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions.
Comput. Geom. Theory Appl. 24(2) (2003) 75–94

8. Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.:
Loops in reeb graphs of 2-manifolds. In: Proc. of the 19th annual symposium on
computational geometry, ACM Press (2003) 344–350

9. Chiang, Y.J., Lenz, T., Lu, X., Rote, G.: Simple and optimal output-sensitive
construction of contour trees using monotone paths. Comput. Geom. Theory Appl.
30(2) (2005) 165–195

10. Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proc. Visu-
alization ’97, IEEE Computer Society Press (1997) 167–174.

11. Takahashi, S., Nielson, G.M., Takeshima, Y., Fujishiro, I.: Topological volume
skeletonization using adaptive tetrahedralization. In: Proc. Geometric Modeling
and Processing 2004, IEEE Computer Society Press (2004) 227–236

12. Weber, G.H., Scheuermann, G., Hagen, H., Hamann, B.: Exploring scalar fields
using critical isovalues. In: Proc. Visualization ’02, IEEE Computer Society Press
(2002) 171–178

13. Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces using
local geometric measures. In: Proc. Visualization ’04, IEEE Computer Society
Press (2004) 497–504

14. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully
automatic similarity estimation of 3d shapes. In: Proce. 28th annual conference on
computer graphics and interactive techniques, ACM Press (2001) 203–212

15. Zhang, E., Mischaikow, K., Turk, G.: Feature-based surface parameterization and
texture mapping. ACM Trans. Graph. 24(1) (2005) 1–27

16. Milnor, J.W.: Morse Theory. Princeton University Press, Princeton, New Jersey
(1963)

17. Dillard, S.E.: Tessellation of quadratic elements. Technical report, University of
California, Davis, Department of Computer Science (2006)

Effective Elections for Anonymous Mobile

Agents

Shantanu Das1, Paola Flocchini1, Amiya Nayak1, and Nicola Santoro2

1 School of Information Technology and Engineering, University of Ottawa, Canada
{shantdas, flocchin, anayak}@site.uottawa.ca

2 School of Computer Science, Carleton University, Canada
santoro@scs.carleton.ca

Abstract. We present distributed protocols for electing a leader among
k mobile agents that are dispersed among the n nodes of a graph. While
previous solutions for the agent election problem were restricted to spe-
cific topologies or under specific conditions, the protocols presented in
this paper face the problem in the most general case, i.e. for an arbi-
trary topology where the nodes of the graph may not be distinctly la-
belled and the agents might be all identical (and thus indistinguishable
from each other). In such cases, the agent election problem is often dif-
ficult, and sometimes impossible to solve using deterministic means. We
have designed protocols for solving the problem that—unlike previous
solutions—are effective, meaning that they always succeed in electing
a leader under any given setting if at all it is possible, and otherwise
detect the fact that election is impossible in that setting. We present
several election protocols, all effective. Starting with the straightforward
solution, that requires an exponential amount of edge-traversals by the
agents, we describe significantly more efficient algorithms; in the latter
the total number of edge-traversals made by the agents is always poly-
nomial, their difference is in the amount of bits of storage they required
at the nodes.

1 Introduction

1.1 The Framework

We consider the problem of leader election in distributed networked environ-
ments that support autonomous mobile agents. More specifically, there are k
identical mobile agents dispersed among the n nodes of a network (or simply an
undirected graph) and the agents can autonomously move from node to neigh-
boring node throughout the network. Communication between agents is done
using public whiteboards available at the nodes. An agent can communicate
with another by leaving a written message at some node, which can be read by
any agent visiting that node. The objective is to elect one of the agents as the
leader.

We are interested in systems where both the networks and the agents are
anonymous. The reason for this interest is because these systems provide the

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 732–743, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Effective Elections for Anonymous Mobile Agents 733

(computationally) weakest environments; thus, they provide insights on the na-
ture and amount of computational power necessary for the solvability of tasks.
Furthermore, any solution protocol so designed would work without relaying
upon (and thus not requiring) the availability of name servers in the system.

First observe that, in these systems, the election problem is not always solv-
able using deterministic algorithms. Thus, an important line of research is the
investigation of under what conditions election is indeed possible, if at all, in
such systems. A connected line of research is to design efficient protocols for
electing a leader under specific conditions. A third related area of research is
the one of designing effective solution protocols; that is, protocols that in each
setting within finite time will elect a leader, if election is at all possible in that
setting, otherwise report that the problem is not solvable in that setting. The
focus of this paper is on the latter area.

The problem of leader election among mobile agents communicating by white-
boards, has been earlier studied by Barrière et al. [5] and Das et al. [9]. Both
these papers solve the problem under the constraint that n (the size of the graph)
and k (the number of agents) are co-prime to each-other. These solutions are
therefore, not effective according to our definition, since there are many settings
where election is possible even when n and k are not co-prime. In this paper, we
aim to improve upon these solutions by designing effective protocols for leader
election in the mobile agent model. We are also concerned about the efficiency
of the proposed solutions. The main cost measure of an algorithm in this model
is the number of moves performed by the agents during the execution; another
measure is the minimum size of the whiteboards required for the execution of
the algorithm.

1.2 Our Results

In this paper we first extend the characterization of the conditions for election in
anonymous message-passing systems as given by Yamashita and Kameda[17], to
the mobile agent model. Based on this characterization, we describe a straight-
forward technique for effective election (protocol Compare-View described in
Section 2.2), showing that effective protocols are indeed possible.

We then present a more efficient yet effective solution (algorithm Agent-Elect
described in Section 3), that achieves leader election using only O(m · k) agent
moves for k agents in a graph with m edges. In Section 4, we give two improve-
ments to this algorithm which bring down its memory usage at the cost of a
slight increase in the total agent moves. Table 1 below shows the comparison
between the various algorithms based on the two cost measures. (Here Δ indi-
cates the maximum degree of the graph.) In comparison with these algorithms,
the non-effective solutions presented in [5] and in [9] have cost of O(k · n) and
O(k · m) edge-traversals respectively and require O(log n) bits of node memory.

1.3 Related Work

In the message-passing distributed computing model, the characterization of
conditions for computability in general and election in particular has been object

734 S. Das et al.

Table 1. Comparison of the cost (moves vs storage) for the proposed election algo-
rithms

Algorithm Cost Assumption
Edge-traversals Node-Storage

Agent-Elect O(k m) O(m log n) one of n
Agent-Elect-2 O(k m2) O(log n) or k
Agent-Elect-3 O(k n m2) O(log Δ) is known

Compare-View O(k Δ2n) O(1) n is known

of extensive investigations, starting from the pioneering work of Dana Angluin
[2]. A complete characterization has been eventually provided by Yamashita
and Kameda [17], and later refined by [8,15]. The present work is based on
the concept of the view of a node, introduced in [17]. Norris [15] improved on
some of these results while Boldi et al. [8] gave a similar characterization for
directed graphs using the notion of fibration. Many other authors have focussed
their investigations on the issue of computability in anonymous networks having
specific topologies, noticeably rings [3], hypercubes [14], and tori [6]. For a recent
survey see [13].

The leader election problem is also related to the problem of spanning tree
construction in a graph. Many distributed algorithms have been proposed for
minimum spanning tree construction in labelled graphs (i.e. where nodes are
labelled with distinct identifiers), notably the one proposed by Gallager, Humblet
and Spira [11]. For anonymous networks, Sakamoto[16] gave an algorithm that
builds a spanning forest of the graph under a variety of initial conditions. Korach,
Kutten and Moran [12] showed that the complexity of solving leader election in
any arbitrary graph depends on how efficiently the graph can be traversed.

The traversal or exploration of anonymous graphs have also been studied
extensively, using different models for marking the nodes (e.g. [7,10]). Another
related problem in the mobile agent setting—that of gathering the agents (called
the Rendezvous problem)—has been studied mainly for agents having distinct
labels [1].

The agent election problem has been specifically studied by Barrière et al. [5]
and Das et al. [9] but, as mentioned earlier, these solutions are not effective.
Barrière et al. [4] have studied the agent election problem for networks where
nodes are anonymous and edge/agent labels are distinct but incomparable.

2 Solving the Agent Election Problem

The Model: The network is modelled as an undirected graph G(V, E), where
the ordering or numbering on the nodes in V is unknown to the agents, i.e. the
nodes are anonymous. At each node of the graph, the edges incident to it are
locally labelled, so that an agent arriving at a node can distinguish among them.

Effective Elections for Anonymous Mobile Agents 735

The edge labelling of the graph G is given by λ = {λv : v ∈ V }, where for each
vertex v of degree d, λv : {e(v, u) : u ∈ V and e ∈ E} → {1, 2, ...d} is a bijection
specifying the local labelling at v.

Each agent is initially located in a distinct node of the graph, called its home-
base. For simplicity, we assume that no two agents have the same homebase.
Those nodes which are homebases are initially marked. Thus, the initial place-
ment of agents in the graph G is denoted by the bi-coloring b : V → {0, 1}
on the set of vertices, where those vertices that are colored 1(or, black) are the
homebases of the agents. The agents communicate by reading and writing in-
formation on public whiteboards locally available at the nodes of the network.
Access to the whiteboard is restricted by fair mutual exclusion. The agents are
identical (i.e. they do not have distinct names or labels which can be used to
distinguish among them) and each agent executes the same protocol. They are
asynchronous, in the sense that every action an agent performs (computing,
moving, etc.) takes a finite but otherwise unpredictable amount of time.

We define the leader election problem in mobile agent systems as follows:

The Problem: The agent election problem for k agents located in the network
(G, λ, b) is said to have been solved when exactly one of the k agents reaches the
final state ‘LEADER’, and all other agents reach the final state ‘FOLLOWER’.

Solvable Instance: A given instance (G, λ, b) of the AEP problem is said to
be solvable, if there exists a deterministic (distributed) algorithm A such that
every execution of the algorithm A on that instance, solves the problem within
some finite time.

Effective Algorithm: A deterministic agent election algorithm A is said to be
effective if every execution of A on every instance of the problem detects whether
the instance is solvable, and terminates in finite time, succeeding in solving the
problem if and only if the given instance is solvable.

2.1 Characterization: Conditions for Solvability

In this paper we shall assume that the agents have prior knowledge of the value
of at least one of the parameters n or k (which is a necessary condition as shown
in [5]). Yamashita and Kameda [17] have determined the necessary and sufficient
conditions for solution to the leader election problem (assuming that n is known)
in the classical message passing network model. In that model, they introduced
the concept of the view of a node v in a graph G, which is simply the infinite
rooted tree with edge labels, that contains all (infinite) walks starting at v. In our
model, we extend the concept of view to bi-colored views, where the vertices1 in
the view are colored black or white depending on whether or not they represent
the homebase of some agent. The view of an agent is taken to be the bi-colored
view of its homebase.
1 A note on terminology: We use the word ‘vertex’ to refer to vertices in the view

T , whereas the vertices of the original graph G are referred to as ‘nodes’. Multiple
vertices in the view may correspond to a single node in the graph G.

736 S. Das et al.

Definition 1. The bi-colored view Tv(G, λ, b) of node v, in the network (G, λ, b),
is an infinite edge-labelled rooted tree T , whose root represents the node v and
for each neighboring node ui of v, there is a vertex xi in T (with same color as
ui) and an edge from the root to xi with the same labels as the edge from v to
ui in G. The subtree of T rooted at xi is again the bi-colored view Tui(G, λ, b) of
the node ui.

The view from node u, truncated to a depth of h is denoted by T h
u . An interesting

observation is that the view T h
u from node u, contains the view T h−d

v for all such
nodes v that are a distance of d < h from node u. Thus, the view up to depth
2n from any node contains as sub-views, the views up to depth n, of all other
nodes.

Property 1 ([15,17]). The views Tu(G, λ, b) and Tv(G, λ, b) of any two nodes u
and v in a graph G of size n, are equal if and only if the truncated view up to
depth n − 1, of these two nodes are equal, i.e. Tu(G, λ, b) = Tv(G, λ, b) if and
only if T n−1

u (G, λ, b) = T n−1
v (G, λ, b).

The following result is known about the solvability of leader election in the
message-passing network model.

Property 2 ([17]). The Leader Election Problem in a message-passing network
represented by graph G having edge labelling λ, is solvable if and only if the
view of a node is unique.

In [4], it was proved that there exists a simple transformation for converting a
mobile agent based algorithm to distributed message passing algorithm, provided
that the homebases are marked (i.e. the graph is bi-colored). This implies the
following result:

Theorem 1. The Agent Election Problem is solvable for a graph G with edge
labelling λ, and bi-coloring b, if and only if the bi-colored view of an agent is
unique.

2.2 An Effective Election Protocol

When the agents know the value of n, we can use the following protocol for
electing a leader (based on the approach of [17]). Each agent can traverse the
graph to compute its view up to a depth of 2n − 1 and thus obtain the views
(up to depth n-1) of all other agents. Since there exists a total order on views
(of the same depth), it is possible to order the agents based on their views and
thus solve the leader election problem. The following algorithm implements such
a strategy:
ALGORITHM Compare-View

Set h to 2n− 1;
Call Construct-View(h) to get the bi-colored view T h

u of the homebase u;
Set i to 1; A[i]← T n−1

u ;
For each vertex v in T h

u , which is at level less than n,

Effective Elections for Anonymous Mobile Agents 737

If T n−1
v �= A[j] for any 1 ≤ j ≤ i.

then i← i + 1; A[i]← T n−1
v ;

If i �= n, then terminate with failure;
Ab ← {T n−1

x ∈ A : x is a black node } ; Sort the array Ab based on a fixed total order;
If Ab[1] = T n−1

u , then become LEADER;
Else become FOLLOWER;

PROCEDURE Construct-View(h)

(To construct the view up to level h, for current node u)
Add the current node u to T h

u ,
If h = 0, return T h

u ;
Else,

For i=1 to degree(u),
traverse link i to reach node vi;
add the traversed edge and its labels to T h

u ;
compute T h−1

vi
= Construct-View(h− 1), and add it to T h

u ;
Return T h

u ;

Theorem 2. The algorithm Compare-View is an effective election algorithm.

Theorem 3. The total number of agent moves in an execution of algorithm
Compare-View is O(k · Δ2n) for a graph of size n with maximum degree Δ, and
k agents. The amount of node memory required by the algorithm is constant.

3 Polynomial Solutions to the Agent Election Problem

3.1 Partial-Views

In the algorithm Compare-View from the previous section, each agent computes
its view by traversing the complete graph which—in the absence of any topo-
logical information—takes an exponential number of moves. We want to reduce
the number of the moves made by an agent to solve the problem. The approach
we use for achieving that is to restrict the movements of each agent to a limited
region around its homebase. Each agent would traverse only a subgraph of the
original graph G and then exchange information with the other agents to obtain
knowledge about the other parts of the graph. In other words, we partition the
graph G into disjoint subgraphs, each owned by a single agent and called the
agent’s territory. Each agent executes the algorithm EXPLORE given below, to
obtain its territory.

Algorithm EXPLORE :
1. Set Path to empty ;

Mark the homebase as explored and include it in the Territory T .

2. While there is another unexplored edge e at the current node u,
mark link λu(e) as a ‘T’-edge and then traverse e to reach node v;
If v is already marked (or v is a homebase),

return back to u and re-mark the link λu(e) as a ‘NT’-edge;
Otherwise

mark v as explored and mark λv(e) as a ‘T’-edge;
Add link λv(e) to Path;
Add edge e and node v to the territory T ;

738 S. Das et al.

3. When there are no more unexplored edges at the current node,
If Path is not empty then,

remove the last link from Path, traverse that link and repeat Step 2;
Otherwise, Stop and return T ;

After the agents execute algorithm EXPLORE, each agent has its own terri-
tory T , which forms a tree consisting of the nodes marked by the agent and the
‘T’-edges joining them. It can be easily shown that the territories of the agents
are disjoint from each-other and together they form a spanning forest of the
graph, containing exactly k trees each rooted at the homebase of some agent.

Lemma 1. The total number of edge traversals made by the agents in executing
algorithm EXPLORE, is at most 4.m, irrespective of the number of agents.

During algorithm EXPLORE, each agent A can label the nodes in its territory
TA by marking them with numeric identifiers, i.e. numbering them (in the order
that they are visited). Thus, within the territory of an agent, each node could
be uniquely identified. However, the nodes on two different trees may have the
same label. So, once an agent traverses an ‘NT’-edge to reach another marked
node, it is generally not possible for the agent to determine if that node belongs
to its own territory or that of some other agent. This fact complicates the design
of our solution protocol.

Based on the territory of an agent, we define the Partial-View of an agent A
having territory TA, as the finite rooted tree, such that: (i) The root corresponds
to the homebase v0 of agent A. (ii) For every other node vi in TA, there is a
vertex xi in PVA. (iii) For each edge (vi, vj) in TA, there is a edge (xi, xj) in
PVA. (iv) For each outgoing edge e = (vi, ui) such that vi ∈ TA but e /∈ TA, PVA

contains an extra vertex yi (called an external vertex) and an edge ê = (xi, yi)
that joins xi to it. (v) Each edge in PVA is marked with two labels, which are
same as those of the corresponding edge in G. (vi) Each vertex in PVA is colored
black or white depending on whether the corresponding node in G is a homebase
or not. (vii) Each vertex is also labelled with the numeric identifier assigned to
the corresponding node of G.

During the execution of algorithm EXPLORE, each agent can build its
Partial-View. We have the following important result:

Lemma 2. If the agent election problem is solvable for an instance (G, λ, b)
then, after the execution of algorithm EXPLORE on (G, λ, b), there would be at
least two agents having distinct Partial-Views.

The above result implies that we can use the Partial-Views to distinguish be-
tween some of the agents. We fix a particular encoding for the partial-views so
that we can compare among the PV’s of the agents. We show below how such
comparisons can be used for an effective agent election algorithm.

3.2 Algorithm Agent-Elect

The following algorithm proceeds in phases, where in each phase, agents compete
with each other to become the leader. An agent can be in one of the following

Effective Elections for Anonymous Mobile Agents 739

states: Active, Passive, Leader, Follower or Fail. Each agent starts the algorithm
in active state and knows the value of k at start2. The (encoded) Partial View of
an agent A in phase i is denoted PViA and Agent-Count(A) denotes the number
of homebases in the current territory of agent A.

ALGORITHM Agent-Elect
Execute EXPLORE to construct the territory TA;
PV0A ← COMPUTE-PV(TA) ;
For phase i = 1 to k {

If (AgentCount(A) = k) {
State ← Leader ;
SEND-ALL(“Success”); Exit();

}
SEND-ALL(PViA, i);
S ← RECEIVE-PV (i);
State ← COMPARE-PV(PViA, S);
If (State = Passive) {

SEND-MERGE(i);
SEND-ALL(“Defeated”, i);
Return to homebase and execute WAIT();

}Else {
RECEIVE-MERGE(i);
execute UPDATE-PV() and continue;

}
}
SEND-ALL(“Failure”); Exit();

– Procedure SEND-ALL(M): During this procedure, agent A simply writes
the message M on the whiteboard of each node in its territory.

– Procedure RECEIVE-PV(i): During this procedure, agent A visits each
vertex u in its territory and traverses each NT-edge e = (u, v) incident at
u. On reaching the node v at the other end of the edge e, agent A waits
till it finds the pair (PViX , i) written at node v (where PViX is an encoded
Partial-View). Each Partial-View PViX that is read is added to the set S,
which is returned at the end.

– Procedure COMPARE-PV(PViA, S): During this procedure, agent A com-
pares its Partial-View PViA with those in the set S. If it finds any PViX >
PViA, agent A changes its State to Passive. Else, for every PViY that is less
than PViA, agent A stores the corresponding node v (where it was found)
to the Defeated-List. The procedure returns the current state of the agent
(Active or Passive).

– Procedure SEND-MERGE(i): During this procedure, the agent A returns
to the node v where it found some Partial-View PViX that is greater than
its own Partial-View PViA. On reaching node v, it writes (MERGE,i,λv(e))
on the whiteboard of node v, where e is the NT-edge joining v to TA.

– Procedure RECEIVE-MERGE(i): During this procedure, agent A visits
every node v in the Defeated-List and waits till it finds (“Defeated”,i) on
the whiteboard at node v. Finally agent A visits every node u in its territory
and if it finds (MERGE,i,l) written at u, then the edge e having λu(e) = l

2 With a simple modification the same algorithm can be executed if the value of n is
known instead of k.

740 S. Das et al.

is re-marked as a T-edge (from both sides). In this case, we say that the
territories at the two ends of edge e are merged.

– Procedure UPDATE-PV(): During this procedure an active agent updates
its Partial-View and its territory as follows. For every edge e that it re-
marked as T-edge during this phase, it finds the corresponding edge in its
Partial-View and replaces the external node v incident on this edge with the
Partial-View PViX that it read at node v. The new Partial-View obtained
at the end of this procedure is called PV(i+1)A and the internal nodes in this
partial view represents the new territory of agent A.

– Procedure WAIT(): This procedure is executed by a Passive agent A. The
agent A simply waits at its homebase until it finds either “Success” or “Fail-
ure” written on the whiteboard. If it finds “Success”, then State is changed
to Follower ; otherwise the State is changed to Fail, and the agent terminates
the algorithm.

We have the following results showing the correctness of the above algorithm.

Definition 2. (a) Γi denotes the set of agents that reach phase i of the algorithm
in active state. (b) We say that the algorithm reaches phase i if at least one agent
reaches phase i in active state.

Lemma 3. (a) During any phase i of the algorithm, the territories of the agents
∈ Γi form a spanning forest of the graph G where each territory is a connected
component of G. (b)For any phase i, if |Γi| ≥ 2, and none of the agents in
Gammai become passive during phase i, then the AEP problem is unsolvable for
the given instance (G, λ, b). (c)If at least one agent becomes passive in phase i
then at least one agent reaches phase (i+1) in active state.

Theorem 4. Given any instance (G, λ, b)of theAEP, algorithmAGENT-ELECT
succeeds in electing a unique leader agent whenever (G, λ, b) is a solvable instance,
and otherwise terminates with failure notification.

Theorem 5. The algorithm AGENT-ELECT requires O(m ·k) agent moves, in
total, for any given instance (G, λ, b) where m is the number of edges in G and
k is the number of agents.

Theorem 6. The algorithm AGENT-ELECT requires O(m log n) memory at
the nodes of the graph.

We have the following lower bound on the cost of an effective election algorithm
for mobile agents.

Lemma 4. Any deterministic algorithm for effective leader election among k
anonymous agents, dispersed in an arbitrary anonymous graph G(V, E) with
|V | = n nodes and |E| = m edges, would require Ω(k · n) edge traversals, irre-
spective of the amount of memory available at the nodes.

Thus from Theorem 5 and Lemma 4, we can say that the algorithm AGENT-
ELECT is almost optimal in terms of agent moves, at least for sparse graphs
(where m � n).

Effective Elections for Anonymous Mobile Agents 741

4 Reducing the Size of the Whiteboards

Even though the number of agent moves used by algorithm AGENT-ELECT is
quite efficient in terms of the number of agent moves; the memory requirements
for the algorithm is much larger than that of algorithm Compare-View which
uses constant memory. We would like to reduce the amount of memory required,
without making an exponential number of agent moves. In the following we
propose some modifications to our algorithm, in order to reduce the amount of
memory required at the whiteboards of the nodes. As a result the number of
agent moves made by the algorithm is slightly increased, even though it is still
polynomial in the size of the graph.

4.1 Algorithm Agent-Elect-2

We propose the algorithm Agent-Elect-2 which is a modified version of the pre-
vious algorithm (AGENT-ELECT) and works as follows:

Algorithm Agent-Elect-2
Execute EXPLORE-2 to construct the territory TA;
PV0A ← COMPUTE-PV(TA) ;
For phase i = 1 to k {

If (AgentCount(A) = k) {
State ← Leader ;
SEND-ALL(“Success”); Exit();

}
SEND-ALL(“Begin”, i);
S ← RECEIVE-PV-2 (i);
State ← COMPARE-PV(PViA, S);
If (State = Passive) {

SEND-MERGE(i);
SEND-ALL(“Defeated”, i);
Return to homebase and execute WAIT();

}Else {
RECEIVE-MERGE-2(i);
execute UPDATE-PV() and continue;

}
}
SEND-ALL(“Failure”); Exit();

– The procedure EXPLORE-2() is similar to procedure EXPLORE with the
only difference that instead of marking the edges as T-edge and NT-edge, at
each node v a parent-link would be stored which would point to the parent
of node v in the territory tree.

– The procedure RECEIVE-PV-2() is different from RECEIVE-PV() in the
following way. When an agent A executing RECEIVE-PV-2() reaches an
external node v to read the Partial-View, it traverses the territory TB that
contains v (using the Parent-links), and computes the Partial-View PViB .

– The procedure RECEIVE-MERGE-2() is again similar to RECEIVE-
MERGE() with the following changes. Whenever an agent A has to merge
its territory TA with the territory TB at other end of an external edge (u,v),
agent A sets the Parent-link at node v to point to node u and then updates
(i.e. reverses) the Parent-Link for each edge on the path from v to the root
of TB.

742 S. Das et al.

Lemma 5. The output of procedure RECEIVE-PV-2 is identical to the output
of procedure RECEIVE-PV.

The only difference between the two algorithms is that in the modified algorithm,
an agent computes the Partial-View of its neighboring agents, instead of reading
it from the whiteboard, as in the original algorithm AGENT-ELECT. Thus,
the correctness of the algorithm Agent-Elect-2 follows from the correctness of
AGENT-ELECT, due to the above lemma.

Theorem 7. The algorithm Agent-Elect-2 performs O(k · m2) agent moves in
total and requires O(log n) bits of node memory.

4.2 Algorithm Agent-Elect-3

In order to further reduce the memory requirement of our algorithm, we can
make the following modifications to algorithm Agent-Elect-2 :

1. The procedure EXPLORE-2 is replaced by procedure EXPLORE-3, with
the change that EXPLORE-3 would not explicitly write the labels of the
nodes on the whiteboard of the nodes.

2. The procedure RECEIVE-PV-2()would be replaced by procedure RECEIVE-
PV-3() where an agent A that is computing the Partial-View of a neighbor B
and needs to read the label of a node x external to TB, computes the label3

by traversing the tree containing x.
3. During the execution of the algorithm, whenever an agent A has to write

the phase number i on the whiteboard, it will write (i mod 3) instead.

This new algorithm is called Agent-Elect-3.

Theorem 8. The algorithm Agent-Elect-3 performs O(k · n · m2) agent moves
in total and requires O(log Δ) bits of node memory.

Acknowledgements

The authors would like to thank Masafumi Yamashita for the many helpful
discussions.

References

1. S. Alpern and S. Gal. The Theory of Search Games and Rendezvous. Kluwer, 2003.
2. D. Angluin. Local and global properties in networks of processors. In Proc. 12th

ACM Symp. on Theory of Computing (STOC ’80), 82–93, 1980.
3. H. Attiya, M. Snir, and M.K. Warmuth. Computing on an anonymous ring. Journal

of ACM, 35(4), 845–875, 1988.

3 The label assigned to a node v belonging to tree T , is uniquely determined as the rank
of the path to v from the root of T , when compared with the paths to other nodes
belonging to the same tree T .

Effective Elections for Anonymous Mobile Agents 743

4. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Can we elect if we can-
not compare? In Proc. 15th ACM Symp. on Parallel Algorithms and Architectures
(SPAA ’03), 200–209, 2003.

5. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Election and rendezvous in
fully anonymous networks with sense of direction. Theory of Computing Systems,
2006 (to appear). Preliminary version in Proc. 10th Coll. on Structural Information
and Communication Complexity (SIROCCO ’03), 17–32, 2003.

6. P.W. Beame and H.L. Bodlaender. Distributed computing on transitive grids: The
torus. In Proc. Symp. Theor. Aspects of Computer Science (STACS ’89), 294–303,
1989.

7. M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. In Proc. 30th ACM Symp. on Theory of
Computing (STOC ’98), 269–287, 1998.

8. P. Boldi, S. Shammah, S. Vigna, B. Codenotti, P. Gemmell and J. Simon. Symme-
try breaking in anonymous networks: Characterizations. In Proc. 4th Israel Symp.
on Theory of Computing and Systems, 16–26, 1996.

9. S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. Map construction of
unknown graphs by multiple agents. Theo. Comp. Sci. (Submitted). Preliminary
version in Proc. 12th Coll. on Structural Information and Communication Com-
plexity (SIROCCO ’05), 99–114, 2005.

10. P. Fraigniaud and D. Ilcinkas. Digraph exploration with little memory. In Proc.
21st Symp. on Theoretical Aspects of Computer Science (STACS ’04), 246–257,
2004.

11. R.G. Gallager, P.A. Humblet, and P.M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Transactions on Programming Languages
and Systems, 5(1), 66–77, 1983.

12. E. Korach, S. Kutten, S. Moran. A modular technique for the design of efficient dis-
tributed leader finding algorithms. ACM Transactions on Programming Languages
and Systems, 12(1), 84–101, 1990.

13. E. Kranakis. Symmetry and computability in anonymous networks: A brief survey.
In Proc. 3rd Int. Conf. on Structural Information and Communication Complexity
(SIROCCO’97), 1–16, 1997.

14. E. Kranakis and D. Krizanc. Distributed computing on anonymous hypercube
networks. Journal of Algorithms, 23(1), 32–50, 1997.

15. N. Norris. Universal covers of graphs: Isomorphism to depth n − 1 implies isomor-
phism to all depths. Discrete Applied Mathematics, 56(1), 61–74, 1995.

16. N. Sakamoto. Comparison of initial conditions for distributed algorithms on anony-
mous networks. In Proc. 18th ACM Symposium on Principles of Distributed Com-
puting (PODC ’99), 173–179, 1999.

17. M. Yamashita and T. Kameda. Computing on anonymous networks: Parts I and
II. IEEE Trans. on Parallel and Distributed Systems, 7(1), 69–96, 1996.

Gathering Asynchronous Oblivious

Mobile Robots in a Ring

Ralf Klasing1, Euripides Markou2,�, and Andrzej Pelc3,��

1 LaBRI - Université Bordeaux 1 - CNRS, 351 cours de la Libération,
33405 Talence cedex, France

klasing@labri.fr
2 School of Computational Engineering & Science, McMaster University, 1280 Main

Street West, Hamilton, Ontario L8S4K1, Canada
emarkou@di.uoa.gr

3 Département d’informatique, Université du Québec en Outaouais, Gatineau,
Québec J8X 3X7, Canada

pelc@uqo.ca

Abstract. We consider the problem of gathering identical, memoryless,
mobile robots in one node of an anonymous unoriented ring. Robots start
from different nodes of the ring. They operate in Look-Compute-Move
cycles and have to end up in the same node. In one cycle, a robot takes
a snapshot of the current configuration (Look), makes a decision to stay
idle or to move to one of its adjacent nodes (Compute), and in the latter
case makes an instantaneous move to this neighbor (Move). Cycles are
performed asynchronously for each robot. For an odd number of robots
we prove that gathering is feasible if and only if the initial configura-
tion is not periodic, and we provide a gathering algorithm for any such
configuration. For an even number of robots we decide feasibility of gath-
ering except for one type of symmetric initial configurations, and provide
gathering algorithms for initial configurations proved to be gatherable.

Keywords: asynchronous, mobile robot, gathering, ring.

1 Introduction

Mobile entities (robots), initially situated at different locations, have to gather
at the same location (not determined in advance) and remain in it. This problem
of distributed self-organization of mobile entities is known in the literature as
the gathering problem. The main difficulty of gathering is that robots have to
break symmetry by agreeing on a common meeting location. This difficulty is
aggravated when (as in our scenario) robots cannot communicate directly but
have to make decisions about their moves only by observing the environment.
� Research partly supported by the European Research Training Network COMB-

STRU HPRN-CT-2002-00278 and MITACS.
�� Research partly supported by NSERC discovery grant, by the Research Chair in

Distributed Computing at the Université du Québec en Outaouais, and by a visiting
fellowship from LaBRI.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 744–753, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Gathering Asynchronous Oblivious Mobile Robots in a Ring 745

We study the gathering problem in a scenario which, while very simple to de-
scribe, makes the symmetry breaking component particularly hard. Consider an
unoriented anonymous ring of stations (nodes). Neither nodes nor links of the
ring have any labels. Initially, some nodes of the ring are occupied by robots
and there is at most one robot in each node. The goal is to gather all robots in
one node of the ring and stop. Robots operate in Look-Compute-Move cycles.
In one cycle, a robot takes a snapshot of the current configuration (Look), then,
based on the perceived configuration, makes a decision to stay idle or to move
to one of its adjacent nodes (Compute), and in the latter case makes an instan-
taneous move to this neighbor (Move). Cycles are performed asynchronously for
each robot. This means that the time between Look, Compute, and Move opera-
tions is finite but unbounded, and is decided by the adversary for each robot. The
only constraint is that moves are instantaneous, and hence any robot perform-
ing a Look operation sees all other robots at nodes of the ring and not on edges,
while performing a move. However a robot R may perform a Look operation at
some time t, perceiving robots at some nodes, then Compute a target neighbor
at some time t′ > t, and Move to this neighbor at some later time t′′ > t′ in
which some robots are in different nodes from those previously perceived by R
because in the meantime they performed their Move operations. Hence robots
may move based on significantly outdated perceptions, which adds to the dif-
ficulty of achieving the goal of gathering. It should be stressed that robots are
memoryless (oblivious), i.e. they do not have any memory of past observations.
Thus the target node (which is either the current position of the robot or one
of its neighbors) is decided by the robot during a Compute operation solely on
the basis of the location of other robots perceived in the previous Look opera-
tion. Robots are anonymous and execute the same deterministic algorithm. They
cannot leave any marks at visited nodes, nor send any messages to other robots.

This very weak scenario, similar to that considered in [1, 3, 5, 6, 10, 13, 14], is
justified by the fact that robots may be very small, cheap and mass-produced
devices. Adding distinct labels, memory, or communication capabilities makes
production of such devices more difficult, and increases their size and price, which
is not desirable. Thus it is interesting to consider such a scenario from the point
of view of applications. On the theoretical side, this weak scenario increases the
difficulty of gathering by making the problem of symmetry breaking particularly
hard, and thus provides an interesting setting to study this latter issue in a
distributed environment.

It should be noted that the gathering problem under the scenario described
above is related to the well-known leader election problem (cf. e.g. [12]) but
is harder than it for the following reason. If robots in the initial configuration
cannot elect a leader among nodes (this happens for all periodic configurations
and for some symmetric configurations) then gathering is impossible (see Sec-
tion 3). However, even if leader election is possible in the initial configuration,
this does not necessarily guarantee feasibility of gathering. Indeed, while the node
elected as a leader is a natural candidate for the place to gather, it is not clear
how to preserve the same target node during the gathering process, due to its

746 R. Klasing, E. Markou, and A. Pelc

asynchrony. (Recall that nodes do not have labels, and configurations perceived
by robots during their Look operation change during the gathering process, thus
robots may not ”recognize” the previously elected node later on.)

An important and well studied capability in the literature on robot gathering
is the multiplicity detection [10,14]. This is the ability of the robots to perceive,
during the Look operation, if there is one or more robots in a given location. In
our case, we prove that without this capability, gathering of more than one robot
is always impossible. Thus we assume the capability of multiplicity detection in
our further considerations. It should be stressed that, during a Look operation,
a robot can only tell if at some node there are no robots, there is one robot, or
there are more than one robots: a robot does not see a difference between a node
occupied by a or b robots, for distinct a, b > 1.

Related work. The problem of gathering mobile robots in one location has
been extensively studied in the literature. Many variations of this task have been
considered. Robots move either in a graph, cf. e.g., [2,7,8,9,11], or in the plane
[1,3,4,5,6,10,13,14,15], they are labeled [7,8,11], or anonymous [1,3,4,5,6,10,
13,14,15], gathering algorithms are probabilistic (cf. [2] and the literature cited
there), or deterministic [1,3,4,5,6,7,9,10,11,13,14,15]. Deterministic algorithms
for gathering robots in a ring (which is a task closest to our current setting) have
been studied e.g., in [7, 8, 9, 11]. In [7, 8, 11] symmetry was broken by assuming
that robots have distinct labels, and in [9] it was broken by using tokens.

To the best of our knowledge, the very weak assumption of anonymous iden-
tical robots that cannot send any messages and communicate with the environ-
ment only by observing it, was used to study deterministic gathering only in the
case of robots moving freely in the plane [1, 3, 4, 5, 6, 10, 13, 14, 15]. The scenario
was further precised in various ways. In [4] it was assumed that robots have
memory, while in [1, 3, 5, 6, 10, 13, 14, 15] robots were oblivious, i.e., it was as-
sumed that they do not have any memory of past observations. Oblivious robots
operate in Look-Compute-Move cycles, similar to those described in our sce-
nario. The differences are in the amount of synchrony assumed in the execution
of the cycles. In [3,15] cycles were executed synchronously in rounds by all active
robots, and the adversary could only decide which robots are active in a given
cycle. In [4, 5, 6, 10, 13, 14, 15] they were executed asynchronously: the adversary
could interleave operations arbitrarily, stop robots during the move, and sched-
ule Look operations of some robots while others were moving. It was proved
in [10] that gathering is possible in the asynchronous model if robots have the
same orientation of the plane, even with limited visibility. Without orientation,
the gathering problem was positively solved in [5], assuming that robots have the
capability of multiplicity detection. A complementary negative result concern-
ing the asynchronous model was proved in [14]: without multiplicity detection,
gathering robots that do not have orientation is impossible.

Our scenario is the most similar to the asynchronous model used in [10, 14].
The only difference is in the execution of Move operations. This has been adapted
to the context of the ring of stations (nodes): moves of the robots are executed
instantaneously from a node to its neighbor, and hence robots always see other

Gathering Asynchronous Oblivious Mobile Robots in a Ring 747

robots at nodes. All possibilities of the adversary concerning interleaving oper-
ations performed by various robots are the same as in the model from [10, 14],
and the characteristics of the robots (anonymity, obliviousness, multiplicity de-
tection) are also the same.

Our results. For an odd number of robots we prove that gathering is feasible if
and only if the initial configuration is not periodic, and we provide a gathering
algorithm for any such configuration. For an even number of robots we decide
feasibility of gathering except for one type of symmetric configurations, and
provide gathering algorithms for initial configurations proved to be gatherable.

Due to space limitations, most of the proofs have been omitted and will appear
in the full version of the paper.

2 Terminology and Preliminaries

We consider an n-node anonymous unoriented ring. Initially, some nodes of the
ring are occupied by robots and there is at most one robot in each node. The
number of robots is denoted by k. During the gathering process robots move,
and at any time they occupy some nodes of the ring, forming a configuration.
A configuration is denoted by a pair of sequences ((a1, . . . , ar), (b1, . . . , bs)),
where the integers ai and bj have the following meaning. Choose an arbitrary
node occupied by at least one robot as node u1 and consider consecutive nodes
u1, u2, u3, . . . , ur, occupied by at least one robot, starting from u1 in the clock-
wise direction. (Clockwise direction is introduced only for the purpose of defini-
tion, robots do not have this notion, as the ring is not oriented.) Integer ai, for
i < r, denotes the distance in the ring between nodes ui and ui+1, and integer ar

denotes the distance between nodes ur and u1 (in the clockwise direction). Next,
consider those nodes among u1, u2, u3, . . . , ur which are occupied by more than
one robot. Such nodes are called multiplicities. Suppose that uv1 , . . . , uvs are
these consecutive nodes (ordered in clockwise direction). Integer bi is defined as
the distance in the clockwise direction between node u1 and node uvi . It should
be clear that different choices of node 1 give rise to different pairs of sequences.
Respective sequences in these pairs are cyclic shifts of each other and correspond
to the same positioning of robots. So formally a configuration should be defined
as an equivalence class of a pair of sequences with respect to those shifts. To
simplify notation we will use pairs of sequences instead of those classes, and for
configurations without multiplicities we will drop the second sequence, simply
using sequence (a1, . . . , ar).

Consider a configuration C = (a1, . . . , ar) without multiplicities. The range
of the configuration C is the set {a1, . . . , ar}. For any integer ai in the range of
C, the weight of ai is the number of times this integer appears in the sequence
(a1, . . . , ar). C is called periodic if the sequence (a1, . . . , ar) is a concatenation
of at least two copies of a subsequence p. The configuration C can be also
represented as the set Z of nodes occupied by the robots. C is called symmetric
if there exists an axis of symmetry of the ring, such that the set Z is symmetric
with respect to this axis. If the number of robots is odd and S is an axis of

748 R. Klasing, E. Markou, and A. Pelc

symmetry of the set Z then there is exactly one robot on the axis S. This robot
is called axial for this axis. Two robots are called neighboring, if at least one
of the two segments of the ring between them does not contain any robots. A
segment of the ring between two neighboring robots is called free if there is no
robot in this segment.

We now describe formally what a robot perceives during a Look operation.
Fix a robot R in a configuration represented by a pair of sequences ((a1, . . . , ar),
(b1, . . . , bs)), where this particular representation is taken with respect to the
node occupied by R (i.e., this node is considered as node u1). The view of robot R
is the set of two pairs of sequences {((a1, . . . , ar), (b1, . . . , bs)), ((ar, ar−1, . . . , a1),
(n − bs, . . . , n − b1))} (if the node occupied by R is a multiplicity then we de-
fine the view of R as {((a1, . . . , ar), (0, b2, . . . , bs)), ((ar, ar−1, . . . , a1), (0, n −
bs, . . . , n − b2))}). This formalization captures the fact that the ring is un-
oriented and hence the robot R cannot distinguish between a configuration
and its symmetric image, if R is itself on the axis of symmetry. This is con-
veyed by defining the view as the set of the two couple of sequences because
the sets {((a1, . . . , ar), (b1, . . . , bs)), ((ar, ar−1, . . . , a1), (n − bs, . . . , n − b1))} and
{((ar, ar−1, . . . , a1), (n−bs, . . . , n−b1)), ((a1, . . . , ar), (b1, . . . , bs))} are equal. As
before, if there are no multiplicities, we will drop the second sequence in each case
and write the view as the set of two sequences: {(a1, . . . , ar), (ar, ar−1, . . . , a1)}.
For example, in a 9-node ring with consecutive nodes 1, . . . , 9 and three robots
occupying nodes 1,2,4, the view of robot R at node 1 is the set {(1, 2, 6), (6, 2, 1)}.

A configuration without multiplicities is called rigid if the views of all robots
are distinct. We will use the following geometric facts.

Lemma 1. 1. A configuration without multiplicities is non-rigid, if and only
if it is either periodic or symmetric.

2. If a configuration without multiplicities is non-rigid and non-periodic then it
has exactly one axis of symmetry.

Consider a configuration without multiplicities that is non-rigid and non-periodic.
Then it is symmetric. Let S be its unique axis of symmetry. If the number of
robots is odd then exactly one robot is situated on S and S goes through the
antipodal node if the size n of the ring is even, and through the (middle of the)
antipodal edge if n is odd. If the number of robots is even then two cases are
possible:

– edge-edge symmetry : S goes through (the middles of) two antipodal edges;
– node-on-axis symmetry : at least one node is on the axis of symmetry.

Note that the first case can occur only for an even number of robots in a ring of
even size.

We now establish two basic impossibility results. Note that similar results
have been proven for gathering robots on the plane. However, these results do
not directly imply ours.

Proposition 1. 1. Gathering any 2 robots is impossible on any ring.
2. If multiplicity detection is not available then gathering any k > 1 robots is

impossible on any ring.

Gathering Asynchronous Oblivious Mobile Robots in a Ring 749

Proposition 1 justifies the two assumptions made throughout this paper: the
number k of robots is at least 3 and robots are capable of multiplicity detection.

All our algorithms describe the Compute part of the cycle of robots’ activities.
They are written from the point of view of a robot R that got a view in a Look
operation and computes its next move on the basis of this view.

The rest of the paper is organized as follows. In Section 3 we first establish two
impossibility results: gathering is not feasible for periodic and edge-edge sym-
metric configurations. We then describe a procedure to gather configurations
containing exactly one multiplicity and finally we propose a gathering procedure
for rigid configurations. In Section 4 we give the complete solution of the gath-
ering problem for any odd number of robots. Section 5 concludes the paper with
a discussion of gathering for an even number of robots and with open problems.

3 Gatherable Configurations

In this section we first show two impossibility results. The first one concerns
any number of robots, while the second one concerns only the case of an even
number of robots on a ring of even size.

Theorem 1. Gathering is impossible for any periodic configuration.

Theorem 2. Gathering is impossible for any edge-edge symmetric configura-
tion.

We now show a gathering procedure for any configuration containing exactly
one multiplicity, say at node v.

Procedure Single-Multiplicity-Gathering

if R is at the multiplicity then do not move
else

if none of the segments between R and the multiplicity is free
then do not move
else move towards the multiplicity along the shortest of the free

segments or along any of them in the case of equality.

The idea is to gather all robots at v, avoiding creating another multiplicity (which
could potentially create a symmetry, making the gathering process harder or even
impossible). Procedure Single-Multiplicity-Gathering achieves this goal by first
moving the robots closest to v towards v, then moving there the second closest
robots, and so on.

Lemma 2. Procedure Single-Multiplicity-Gathering performs gathering of robots
for any configuration with a single multiplicity.

Now we describe a gathering procedure for any rigid configuration, regardless of
the number of robots.

750 R. Klasing, E. Markou, and A. Pelc

The main idea of the procedure is to elect a single robot and move it until it
hits one of its neighboring robots, thus creating a single multiplicity, and then to
apply Procedure Single-Multiplicity-Gathering. The elected robot must be such
that during its walk the rigidity property is not lost. In order to achieve this goal,
we perform the election as follows. First the robots elect a pair of neighboring
robots at maximum distance (there may be several such pairs, whence the need
for election). Then they choose among them the robot which has the other
neighboring robot closer. Ties can be broken easily.

In order to elect a robot we need to linearly order all possible views. This
can be done in many ways. One of them is to order lexicographically all finite
sequences of integers and number them by consecutive natural numbers. Then
a view becomes a set of two natural numbers. Treat these sets as ordered pairs
of natural numbers in increasing order, order these pairs lexicographically, and
assign them consecutive natural numbers in increasing order. We fix the resulting
linear order of views and this numbering beforehand, adding it to the algorithm
for all robots. We call this procedure Rigid-Gathering.

Lemma 3. Procedure Rigid-Gathering performs gathering of robots for any rigid
configuration without multiplicities.

4 Gathering an Odd Number of Robots

In this section we present a gathering algorithm for any non-periodic configu-
ration of an odd number of robots. Together with Theorem 1 this solves the
gathering problem for an odd number of robots.

Algorithm Odd-Gathering

if the configuration is periodic then output: gathering impossible
else

if the configuration has a single multiplicity
then Single-Multiplicity-Gathering
else

if the configuration is rigid then Rigid-Gathering
else

if R is axial then move (to any of the adjacent nodes)

The idea of the algorithm is the following. Consider any non-periodic configu-
ration of an odd number of robots (recall that initially there are no multiplic-
ities). If it is rigid then apply Procedure Rigid-Gathering. Otherwise it must
be symmetric, by Lemma 1. There is a unique axial robot for its unique axis
of symmetry. Move this robot to any adjacent node. We prove that three cases
can occur. (1) The resulting situation has a multiplicity (the adjacent node was
occupied by a robot): then apply Procedure Single-Multiplicity-Gathering. (2)
The resulting configuration is rigid: then apply Procedure Rigid-Gathering. (3)
Another axis of symmetry has been created (the previous one has been obvi-
ously destroyed by the move). In this case there is a unique axial robot for the

Gathering Asynchronous Oblivious Mobile Robots in a Ring 751

unique axis of symmetry. Move this robot to any adjacent node. Again one of the
three above cases can occur. We prove that after a finite number of such moves,
only cases (1) or (2) can occur, and thus gathering is finally accomplished either
by applying Procedure Single-Multiplicity-Gathering or by applying Procedure
Rigid-Gathering. In the proof of the correctness of Algorithm Odd-Gathering we
will use the following lemmas.

Lemma 4. Let C be a symmetric configuration of an odd number of robots,
without multiplicities. Let C′ be the configuration resulting from C by moving
the axial node to any of the adjacent nodes. Assume that C′ does not have mul-
tiplicities. Then C′ is not periodic.

Let C be a symmetric non-periodic configuration of an odd number of robots,
without multiplicities. The unique value of odd weight in the configuration C is
called the chief of C. Let C′ be the configuration resulting from C by moving
the axial robot to any of the adjacent nodes. If C′ does not have multiplicities
and is symmetric then we will call it special. The subset of the range of a special
configuration C′ consisting of integers of the same parity as that of the chief is
called the white part of the range, and its complement is called the black part of
the range. We denote by b(C′) the total number of occurrences in C′ of integers
from the black part of its range.

Lemma 5. Consider a sequence (C1, C2, . . .) of special configurations, such that
Ci+1 results from Ci by moving the axial robot to any of the adjacent nodes. Then
for some i ≤ k, we have b(Ci) = 0.

Lemma 6. Consider a special configuration C, with b(C) = 0. Let C′ be the
configuration resulting from C by moving the axial robot to any of the adjacent
nodes. If C′ does not have multiplicities then it is not symmetric.

We are now ready to prove the correctness of Algorithm Odd-Gathering.

Theorem 3. Algorithm Odd-Gathering performs gathering of any non-periodic
configuration of an odd number of robots.

Proof. Consider an initial non-periodic configuration C of an odd number of
robots. By assumption it does not contain multiplicities. If it is rigid then we are
done by Lemma 3. Otherwise, it must be symmetric by Lemma 1. Let A be its
unique axial robot. Let C1 be the configuration resulting from C by moving robot
A to any of the adjacent nodes. If C1 contains a multiplicity then we are done by
Lemma 2. If C1 is rigid then we are done by Lemma 3. Otherwise, C1 is either
periodic or symmetric, in view of Lemma 1. By Lemma 4, it cannot be periodic,
hence it must be symmetric, and thus special. Consider the configuration C2
resulting by moving the axial robot of C1 to any of the adjacent nodes. Again
C2 either contains a multiplicity, or is rigid, or is special. In the first two cases
we are done, and in the third case the axial robot is moved again. In this way
we create a sequence C1, C2, . . . of special configurations. By Lemma 5, there is
a configuration Ci in this sequence, with b(Ci) = 0. Let C′ be the configuration

752 R. Klasing, E. Markou, and A. Pelc

resulting from Ci by moving the axial robot to any of the adjacent nodes. By
Lemma 6, the configuration C′ either has a multiplicity, or cannot be symmetric,
and thus must be rigid. In the first case we are done by Lemma 2 and in the
second case by Lemma 3. �

Theorem 3 and Theorem 1 imply the following corollary.

Corollary 1. For an odd number of robots, gathering is feasible if and only if
the initial configuration is not periodic.

5 Conclusion

We completely solved the gathering problem for any odd number of robots, by
characterizing configurations possible to gather (these are exactly non-periodic
configurations) and providing a gathering algorithm for all these configurations.
Corollary 1 is equivalent to the following statement: for an odd number of robots,
gathering is feasible if and only if in the initial configuration, robots can elect a
node occupied by a robot.

For an even number of robots, we proved that gathering is impossible if either
the number of robots is 2, or the configuration is periodic, or when it has an edge-
edge symmetry. On the other hand, we provided a gathering algorithm for all
rigid configurations. This leaves unsettled one type of configurations: symmetric
non-periodic configurations of an even number of robots with a node-on-axis type
of symmetry. These are symmetric non-periodic configurations in which at least
one node is situated on the unique axis of symmetry. This (these) node(s) may
or may not be occuppied by robots. In this case, the symmetry can be broken by
initially electing one of the axial nodes. This node is a natural candidate for the
place to gather. However, it is not clear how to preserve the same target node
during the gathering process, due to its asynchrony. Unlike in our gathering
algorithm for an odd number of robots, where only one robot moves until a
multiplicity is created, in the case of the above symmetric configuration of an
even number of robots, some robots would have to move together. This creates
many possible outcomes of Look operations for other robots, in view of various
possible behaviors of the adversary, which can interleave their actions. We note
here that for an even number of robots there are cases where gathering is feasible
even when robots cannot initially elect a node occupied by a robot (they will be
included in the full version of the paper).

The complete solution of the gathering problem for an even number of robots
remains a challenging open question left by our research. We conjecture that
in the unique case left open (non-periodic configurations of an even number of
robots with a node-on-axis symmetry), gathering is always feasible. In view of
our results, this is equivalent to the following statement.

Conjecture: For an even number of more than 2 robots, gathering is feasible
if and only if the initial configuration is not periodic and does not have an
edge-edge symmetry.

Gathering Asynchronous Oblivious Mobile Robots in a Ring 753

The validity of this conjecture would imply that, for any number of more than
2 robots, gathering is feasible if and only if, in the initial configuration robots
can elect a node (not necessarily occupied by a robot).

References

1. N. Agmon, D. Peleg: Fault-Tolerant Gathering Algorithms for Autonomous Mobile
Robots. SIAM J. Comput. 36(1): 56-82 (2006).

2. S. Alpern, S. Gal: The Theory of Search Games and Rendezvous, Kluwer Academic
Publishers, 2002.

3. H. Ando, Y. Oasa, I. Suzuki, M. Yamashita: Distributed Memoryless Point Con-
vergence Algorithm for Mobile Robots with Limited Visibility. IEEE Trans. on
Robotics and Automation 15(5): 818-828 (1999).

4. M. Cieliebak: Gathering Non-oblivious Mobile Robots. Proc. 6th Latin American
Symposium on Theoretical Informatics (LATIN 2004): 577-588.

5. M. Cieliebak, P. Flocchini, G. Prencipe, N. Santoro: Solving the Robots Gather-
ing Problem. Proc. 30th International Colloquium on Automata, Languages and
Programming (ICALP 2003), LNCS 2719: 1181-1196.

6. R. Cohen, D. Peleg: Robot Convergence via Center-of-Gravity Algorithms. Proc.
11th International Colloquium on Structural Information and Communication
Complexity (SIROCCO 2004), LNCS 3104: 79-88.

7. G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, U. Vaccaro: Asyn-
chronous deterministic rendezvous in graphs. Proc. 30th Inter. Symp. on Mathe-
matical Foundations of Computer Science, (MFCS 2005), LNCS 3618: 271-282.

8. A. Dessmark, P. Fraigniaud, D. Kowalski, A. Pelc: Deterministic rendezvous in
graphs. Algorithmica, to appear.

9. P. Flocchini, E. Kranakis, D. Krizanc, N. Santoro, C. Sawchuk: Multiple Mobile
Agent Rendezvous in a Ring. Proc. 6th Latin American Symposium on Theoretical
Informatics (LATIN 2004): 599-608.

10. P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer: Gathering of Asynchronous
Robots with Limited Visibility. Theoretical Computer Science 337(1-3): 147-168
(2005).

11. D. Kowalski, A. Pelc: Polynomial deterministic rendezvous in arbitrary graphs.
Proc. 15th Annual Symposium on Algorithms and Computation (ISAAC’2004),
LNCS 3341: 644-656.

12. N. Lynch: Distributed Algorithms, Morgan Kaufman 1996.
13. G. Prencipe: CORDA: Distributed Coordination of a Set of Autonomous Mobile

Robots. Proc. ERSADS 2001: 185-190.
14. G. Prencipe: On the Feasibility of Gathering by Autonomous Mobile Robots.

Proc. 12th International Colloquium on Structural Information and Communi-
cation Complexity (SIROCCO 2005), LNCS 3499: 246-261.

15. I. Suzuki, M. Yamashita: Distributed Anonymous Mobile Robots: Formation of
Geometric Patterns. SIAM J. Comput. 28(4): 1347-1363 (1999).

16. M. Yamashita, T. Kameda: Computing on Anonymous Networks: Parts I and II.
IEEE Trans. Parallel Distrib. Syst. 7(1): 69-96 (1996).

Provably Secure Steganography and the

Complexity of Sampling�

Christian Hundt1, Maciej Lískiewicz1, and Ulrich Wölfel2

1 Institut für Theoretische Informatik, Universität zu Lübeck, Germany
{chundt, liskiewi}@tcs.uni-luebeck.de

2 Bundesamt für Sicherheit in der Informationstechnik, Bonn, Germany
ulrich.woelfel@bsi.bund.de

Abstract. Recent work on theoretical aspects of steganography resulted
in the construction of oracle-based stegosystems. It has been shown that
these can be made secure against the steganography equivalents of com-
mon cryptographic attacks. In this paper we use methods from com-
plexity theory to investigate the efficiency of sampling from practically
relevant types of channels. We show that there are channels that cannot
be efficiently used in oracle-based stegosystems. By classifying channels
based on their usability for stegosystems, we provide a means to select
suitable channels for their practical implementation.

1 Introduction

Alice and Bob want to communicate via a public channel C which is carefully
monitored by Eve. The aim of steganography is for Alice to secretly send a
message to Bob via C, such that Eve cannot distinguish between “typical” com-
munication on the channel C and communication that contains hidden messages.

In this paper we investigate oracle-based stegosystems, i.e., systems that have
access to an oracle which samples according to a given channel C. Research in
this area started with works by Hopper et al. [1], who were the first to study
steganography from a complexity theoretic point of view. The stegosystem they
analyse uses rejection-sampling, which was first informally described in [2], and
the main result of [1] says that the stegosystem is secure under standard cryp-
tographic assumptions. Subsequent papers extend these analyses to public-key
steganography [3], higher embedding rates [4], different attack types [5] or dif-
ferent types of oracles [6]. The fundamental building block of all the systems is
the rejection-sampling according to a given channel C.

Motivated by these theoretical results, the question arises whether such
stegosystems could be practically implemented. We will therefore analyse oracle-
based stegosystems from a complexity theoretic point of view. For any commu-
nication channel C it is natural to assume the existence of an oracle MC sampling
according to the channel distribution. Examples of freely sampleable channels
are images from digital cameras or text written in natural languages. In the case
� Supported by DFG research grant RE 672/5-1.

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 754–763, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Provably Secure Steganography and the Complexity of Sampling 755

of oracle-based stegosystems, particularly rejection-sampling steganography, a
stronger construction is needed, namely an oracle MCh

that draws from the
channel Ch with a distribution conditioned on the history h of already drawn
samples. It is important to note the big difference between both types of oracles
and it is not trivial to construct MCh

from a given MC in “natural” situations.
In this paper we analyse the efficiency of such constructions.

Our main result states that there exist channels C that can be efficiently
sampled by an oracle MC , but for which no efficiently sampling oracle MCh

can
be constructed, unless some widely believed complexity theoretic assumptions,
like P �= NP, are false. For our analyses we describe a scenario in which Alice
and Bob communicate using a set of context free languages. We thus introduce a
connection between formal languages and channel distributions in order to apply
results from complexity theory to channels. Furthermore, we characterise those
properties of a channel which either lead to the existence of an oracle MCh

that
can be sampled efficiently or cause the sampling from Ch to be intractable. This
way we provide a novel approach for classifying a given channel according to the
practical applicability of the corresponding oracle-based stegosystem.

2 Preliminaries and Basic Concepts

Let Σ be a finite alphabet of the message space, let Σn denote the set of all
sequences over Σ of lengths n, Σ� denote the set of all finite sequences over
Σ, and finally let Σ∞ be the set of infinite sequences over Σ. A channel C is a
distribution on Σ∞. For x ∈ Σ� we denote by |x| the length of x. For a channel C
let Cn be the distribution of the initial blocks of length n, i.e. for every sequence
s of length n we have PCn [s] =

∑
y∈Σ∞ PC [sy], where PQ[x] denotes Pr[X = x]

for a random variable X of the probability distribution Q. We base our similarity
measure for probability distributions on the Kullback-Leibler distance.

Definition 1. Let P and Q be probability distributions on the same probability
space. The relative entropy or Kullback-Leibler distance between P and Q is
defined by DKL(P ; Q) =

∑
x PP [x] log PP [x]

PQ[x] , where by convention 0 · log 0/q = 0
and p · log p/0 = ∞. We define D(P , Q) = DKL(P ; Q) + DKL(Q; P) and say
that P and Q are ε close if D(P , Q) ≤ ε.

For a complexity point of view on oracle-based stegosystems it is helpful to relate
the notions of channel and formal language.

Definition 2. Let C be a channel and let L ⊆ Σ� be a language. We say that C
is L-consistent if for all x ∈ Σ� and n = 2|x| + 1 the following properties hold:
(1) if x ∈ L then PCn [1|x|0x] > 0 and (2) if x �∈ L then PCn [1|x|0x] = 0.

Similarly as in [1] we assume the existence of an oracle MC that perfectly samples
according to the distribution of the channel C, which seems to be a reasonable as-
sumption (for more detail see Section 3). For their realisation of secure steganog-
raphy, Hopper et al. further assume the existence of a stronger oracle MCh

for

756 C. Hundt, M. Lískiewicz, and U. Wölfel

the conditional channel distribution Cb
h. This oracle draws blocks of fixed length

b conditioned on the history h of previously drawn blocks, so for every sequence
s of length b we have PCb

h
[s] = Pr[hs is a prefix of z | h is a prefix of z] where

z is drawn from C. To allow for steganography in this channel, we will assume
(similarly as in [1]) the minimum entropy constraint:

∀h drawn from C : H∞(Cb
h) > 1 (1)

(we say, for short, that h is drawn from C if h is a prefix block of a string
drawn from C). A stegosystem is a pair of probabilistic algorithms (SE, SD).
SE takes a key K ∈ {0, 1}k, a hiddentext m ∈ {0, 1}�, a message history h,
and an oracle MCh

which samples blocks according to a channel distribution Cb
h.

SE(K, m, h) returns a sequence of blocks1 c1||c2||...||cl (the stegotext) from the
support of Cl·b

h . SD takes a key K, a sequence of blocks c1||c2||...||cl, a message
history h, and an oracle MCh

, and returns a hiddentext m. There must be a
polynomial q, with q(k) > k, such that SE and SD satisfy: ∀m, |m| < q(k) :
Pr[SD(K, SE(K, m, h), h) = m] ≥ 2/3, where the randomisation is over any
coin tosses of SE, SD, and MCh

.
Informally speaking, a stegosystem is secure against chosen-hiddentext attacks

if no polynomial time adversary can tell whether Alice’s message to Bob encodes
any hiddentext at all, even one of the adversary’s choice (for formal definition
see [1]). The provably secure stegosystems presented in [1] use the oracle MCh

in the following way:

Procedure RSF :
Input: target bit x, iteration count, history h
i := 0
repeat c := MCh

; i := i + 1
until F (c) = x or i = count
Output: c

where F : {0, 1}b → {0, 1} is chosen from a pseudorandom function family
FK(·, ·) indexed by k = |K| key bits which maps a d bit number and a b bit
string to {0, 1}. For the stegosystem HLA we assume that Alice and Bob initially
share a secret key K and a synchronised d bit counter N . Enc(m) and Dec(m)
denote encoding and decoding algorithms for error correcting codes.
Stegosystem HLA

Procedure SE:
Input: key K; message m, history h
Let m = Enc(m)
Parse m as m1||m2|| . . . ||ml

for i = 1, . . . , l do
ci := RSFK(N,·)(mi, 2, h)
h := h||ci; N := N + 1

Output: c1||c2|| . . . ||cl

Procedure SD:
Input: key K; stego-text c
Parse c as c1||c2|| . . . ||cl

for i = 1, . . . , l do
mi := FK(N, ci)
N := N + 1

m := m1||m2|| . . . ||ml

Output: Dec(m)

1 In this paper we use both notations u||v and uv for string concatenation.

Provably Secure Steganography and the Complexity of Sampling 757

Theorem 1 (Hopper, Langford, and von Ahn [1]). If FK(·, ·) is pseudo-
random then the stegosystem HLA is secure against chosen-hiddentext attacks.

Note that the stegosystem HLA is efficient if the rejection sampling procedure
works in polynomial time.

3 The Complexity of Sampling

In this section we give definitions for the efficient sampling of the unconditional
and conditional channel distributions C and Cb

h. We say that a randomised Turing
machine MC samples according to the channel distribution C if for every positive
integer n, MC starting with input 1n outputs sequences of length n according to
the distribution C conditioned on the length n, i.e., if for every s = s1s2 . . . sn ∈
Σn it is true Pr[MC(1n) = s] = PCn [s], where MC(z) denotes a random variable
defined as the output of the Turing machine M working on the input z.

Definition 3 (Efficient Sampling). We say that C can be sampled in time T
and space S if there exists a randomised Turing machine M sampling C simulta-
neously in time T and space S, i.e. if for all n every computation path of M on
1n is no longer than T (n) and it uses no more than S(n) space. Denote the class
of all such channels by TiSp(T, S) and, for short, let TiSp(pol, S) be the sum
of TiSp(p, S) over all polynomials p. We say that C can be sampled efficiently if
C ∈ TiSp(p, p) for some polynomial p.

Let C be a channel distribution and let MC be an oracle which samples histories
according to C, i.e., on input 1n, MC draws h from Cn. We say that a randomised
algorithm M with access to MC samples according to Ch if for every history
h ∈ Σ� drawn from C and for every positive integer b, M starting with input
(h, b) and perhaps querying MC generates a sequence of b symbols s = s1s2 . . . sb

such that for every s it is true Pr[M(h, b) = s] = PCb
h
[s].

Definition 4 (Efficient Sampling for Conditional Distributions). We say
that Cb

h can be efficiently sampled if there exists a randomised Turing machine
MCh

with access to MC, sampling Ch in worst case polynomial time, i.e., if there
exists a polynomial p such that every computation path of MCh

on (h, b) is no
longer than p(|h| + b). In this model we charge oracle queries with unit costs.

The existence of an oracle MCh
sampling efficiently according to the conditional

channel distribution Cb
h implies that there is also an efficient oracle MC which

samples according to C. One of the main results of our paper says that the
opposite implication does not hold in general.

Theorem 2. There exist channels C that can be efficiently sampled by an oracle
MC, but for which it is impossible to construct an oracle MCh

that efficiently
samples the channel Cb

h, unless P = NP.

Thus, any oracle-based stegosystem for such channels, and particularly the
stegosystem HLA, cannot be implemented efficiently, unless P = NP. In the
next section we prove the theorem using a natural channel C.

758 C. Hundt, M. Lískiewicz, and U. Wölfel

4 The Intractability of Oracle-Based Steganography

Imagine some natural communication channel C, e.g., an internet chat room
which is monitored by Eve. Alice and Bob want to chat using provably secure
stegosystems to embed hidden messages into an innocent looking conversation.
It is a realistic assumption that the messages exchanged during the cover con-
versation are structured in a certain way and belong to some specific language.
Let us assume that the chat room allows communication in a language L which
is the intersection of a small set of context free languages. Note that a real world
conversation would have to be more complex to convince Eve.

Let us assume further that Alice possesses an efficient conditional oracle MCh

which samples conditionally according to the distribution of the channel Ch de-
scribed by the chat room and L. To secretly transmit a message m to Bob,
Alice iteratively samples MCh

on input m as described in Section 2 to obtain an
unsuspicious cover message which Bob can easily decode to m.

We will show that even with slightly structured languages L the efficiency of
MCh

is not guaranteed. In fact we will give an example of L being the intersection
of only three simple context free languages such that MCh

can sample efficiently
only if the widely believed assumption of P �= NP fails. Consider the following
Intersected-CFL-Prefix problem (ICFLP, for short). Let the parameters of the
problem be context free grammars G1,. . . , Gg with Gi = (Σ, Σi, σ

0
i , Πi) over a

finite terminal alphabet Σ, variables Σi, start variable σ0
i , and productions Πi.

Then for a given string x = x1 . . . xm over the finite alphabet Σ, 1n with n > m
decide whether there is a string y which contains x as a prefix such that |y| = n
and y ∈ L = L(G1) ∩ . . . ∩ L(Gg).

Lemma 1. There are context free grammars G1, G2, G3 such that ICFLP is NP-
complete.

Due to space limit we omit this and also some other proofs in the paper.
Now let C be a channel which is consistent with the language L = L1 ∩ L2 ∩

L3, with Li = L(Gi) for Gi satisfying Lemma 1. One can additionally assume
that C fulfills the minimum entropy constraint (1) and that it can be sampled
efficiently by a probabilistic Turing machine MC . One can construct such MC in
a similar way as in the proof of Theorem 3 but because of space limit we skip
the description here.

To prove Theorem 2 assume there exists an efficient sampler N for the channel
Cb

h working in polynomial time p. We show that using N we can construct a deter-
ministic algorithm A solving the ICFLP problem in polynomial time. Let x ∈ Σm

and 1n with n > m be a given input. Initially A generates the string h0 = 1n0x
(w.l.o.g. we assume that x is encoded in the channel C just as x). Then simu-
lating the sampler N , algorithm A iteratively computes hj = hj−1||N(hj−1, b)
for j = 1, 2, . . . , �(n − m)/b� such that every random choice r ∈R {0, 1} of N is
replaced by an assignment r := 0 and for every j at most p(|hj−1| + b) steps of
N are simulated. If N does not stop after p(|hj−1| + b) steps for some j then A
rejects x and halts the computation. Otherwise, let h�(n−m)/b� = 1k0xyz with

Provably Secure Steganography and the Complexity of Sampling 759

|xy| = n. The input will be accepted if xy ∈ L and rejected otherwise. This
completes the proof of Theorem 2.

5 Channels with Hard Conditional Sampling

In the present section we will analyse how the gap between the complexity of
computing MC or MCh

is caused. Simply speaking, it results from the algorithmic
structure of the channel C. If L is a language, then in certain cases it may be
much easier to compute a random word from L than it is to complete a given one.
This phenomenon is well known in formal language theory [8]. As a consequence,
conditionally sampling a channel C, which is consistent with L, may be harder
than sampling it without a given history.

To show the following theorem we apply the theory of NP-completeness, in
particular the NP-complete problem 3SAT, to state the existence of hard condi-
tional channels Ch for a large number of tractable channels C. We refer to Garey
and Johnson [7] for a detailed introduction.

Theorem 3. Let S : �+ → � be an increasing function such that log x ≤
S(x) ≤ x for every x ≥ 1 that is space constructible in polynomial time. More-
over, let Ŝ be the inverse function of S, i.e. Ŝ(S(x)) = x for all x ∈ �+. Then
there exist channels C ∈ TiSp(pol, S) fulfilling the minimum entropy constraint
(1) such that every conditional distribution C̃b

h, which is δ close to Cb
h for some

constant δ ≥ 0, cannot be sampled efficiently, unless the 3SAT problem can be
solved by a deterministic algorithm in time T (m) = (Ŝ(m))O(1), where m is the
number of variables of the input 3CNF formula.

From the theorem follows immediately:

Corollary 1.
1. There exists C ∈ TiSp(pol, log2 n) such that any C̃b

h which is δ close to Cb
h

for some δ ≥ 0 cannot be sampled efficiently unless the 3SAT problem can
be solved by a deterministic algorithm in time T (m) = 2O(

√
m), where m is

the number of variables of input 3CNF formulas.
2. There exists C ∈ TiSp(pol, 2

√
log n) such that any C̃b

h which is δ close to Cb
h

for some δ ≥ 0 cannot be sampled efficiently unless NP ⊆ DTime(nO(log n)).
3. For every c > 0, there exists C ∈ TiSp(pol, nc) such that any C̃b

h which is δ
close to Cb

h for some δ ≥ 0 cannot be sampled efficiently unless P = NP.

It is clear that the three implications are decreasingly likely and that even im-
plication 1 is far away from what is possible today. The best exact algorithm for
3SAT, by Iwama and Tamaki [9], runs in time O(1.324m) with respect to the
number m of variables.

Proof (of Theorem 3). We construct a channel C over Σ which encodes instances
of the 3SAT problem. Moreover, we assume that there are some fixed efficiently
computable encodings Fm and Em over Σ for 3CNF formulas of m variables
and respectively for assignments (b1, b2, . . . , bm) such that they guarantee the

760 C. Hundt, M. Lískiewicz, and U. Wölfel

minimum entropy constraint (1) for C. To fulfill this constraint we assume that
for every 3CNF formula ϕ over {x1, x1, . . . , xm, xm}, Fm(ϕ) is a set of code words
over Σ such that for every word vw in Fm(ϕ) with |w| ≥ b, the cardinality of
the set {v : |v| = b and uv is the prefix of some code word in Fm(ϕ)} is at least
four. Similarly, Em(b1, . . . , bm) is a set of code words of equal length, say dEm ,
such that for every prefix u of some word in Em(b1, . . . , bm) with |u| ≤ dEm −b, the
cardinality of {v : |v| = b and uv is a prefix of some code word in Em(b1, . . . , bm)}
is at least four. Additionally, let ξ be a string over Σ such that ξ does not occur
as a substring in any code word of Fm(ϕ) and Em(b1, . . . , bm) for all m. Thus,
we get that for any u ∈ Fm(ϕ) and v ∈ Em(b1, . . . , bm) one detects uniquely in
the concatenation uξv the boundary between these two code words. Using these
encodings we will construct the channel C having the following properties:

(i) For every w ∈ Σ∞ with PrC [w] > 0 and w = 1k0z, k ≥ 0, m = �S(k)�, there
exists a partition z = z1z2z3z4 such that z1 ∈ Fm(ϕ) for some satisfiable
3CNF formula ϕ, z2 = ξ, z3 ∈ Em(b1, . . . , bm) for some satisfying assignment
b1, . . . , bm for ϕ, and z4 is an arbitrary infinite string over Σ.

(ii) For every satisfiable 3CNF formula ϕ over m variables and for every satis-
fying assignment b1, . . . , bm of ϕ, for all k with m = �S(k)�, and for every
z = z1z2z3 with z1 ∈ Fm(ϕ), z2 = ξ and z3 ∈ Em(b1, . . . , bm), we have
PrC� [1k0z] > 0, where 	 = |1k0z|.

We define the channel C by giving a description of the sampler M of C. For any
integer n ≥ 1 and the input 1n the machine M works as follows.

1. Choose a positive integer k with 1 ≤ k ≤ n and with the probability distri-
bution Pr[k] = 1/2k for k < n and Pr[n] = 1/2n−1, return the string 1k0
and set the current length of the output 	 := k + 1.

2. Compute m = �S(k)�.
3. Choose independently uniformly at random an assignment bi ∈R {0, 1} for

i = 1, 2, . . . , m and store the vector.
4. Choose independently uniformly at random three literals L1, L2, L3 ∈R

{x1, x1, x2, x2, . . . , xm, xm}. Let ψ := L1 ∨L2 ∨L3. If ψ(b1, . . . , bm) = 0 then
assign to ψ a tautology (e.g. let ψ := x1 ∨ x1 ∨ x1).

5. Choose randomly an encoding word u ∈ Em(ψ). If 	 + |u| ≥ n then return
the prefix of u of length n − 	 and exit. Otherwise, return u, set 	 := 	 + |u|,
and choose randomly r ∈R {0, 1}. If r = 0 then go to 4 else go to the next
step.

6. Choose randomly an encoding word for the assignment v ∈ Fm(b1, . . . , bm).
If 	 + |ξv| ≥ n then return the prefix of ξv of the length n − 	 and exit.
Otherwise, return ξv and set 	 := 	 + |ξv|.

7. For i = 	 + 1 to n do: choose randomly a symbol σ ∈R Σ and return σ.

If S is an efficiently constructible function, then M works in space S(n) and in
polynomial time. Hence for C sampled by M we have C ∈ TiSp(pol, S). Moreover,
C fulfills the minimum entropy constraint (1).

Now, assume that the conditional distribution C̃b
h which is δ close to Cb

h

can be sampled efficiently and let N be a randomised Turing machine which

Provably Secure Steganography and the Complexity of Sampling 761

samples according to C̃b
h in polynomial time p. We show that using N we can

construct a deterministic algorithm A which for a given 3CNF formula ϕ over
{x1, x1, . . . , xm, xm} decides in time T (m) = (Ŝ(m))O(1) whether ϕ is satisfiable
or not.

The algorithm A initially computes an integer k, with �S(k)� = m. This can
be done in polynomial time with respect to k, since S is efficiently constructible.
Then A encodes ϕ over Σ choosing an arbitrary code word u ∈ Fm(ϕ) and
generates the string h0 = 1k0uξ. Recall that dEm denotes the length of code words
in Em. Simulating the conditional sampler N , algorithm A computes iteratively
hj = hj−1||N(hj−1, b) for j = 1, 2, . . . , �dEm/b� in such a way that every random
choice r ∈R {0, 1} of N is replaced by an assignment r := 0 and for every j at
most p(|hj−1|+b) steps of N are performed. If N does not stop after p(|hj−1|+b)
steps for some j then A rejects ϕ and halts the computation. Otherwise, let
h�dEm/b� = 1k0z1z2z3z4 with z1 = u, z2 = ξ, z3 a string of the length dEm , and
z4 an arbitrary suffix over Σ. The formula ϕ will be rejected if z3 does not encode
any assignment in Em. If z3 ∈ Em(b1, . . . , bm) for some assignment (b1, . . . , bm)
then accept ϕ if ϕ(b1, . . . , bm) = 1 and reject otherwise. The correctness of A
follows directly from the properties (i) and (ii) of the channel C. It is also easy
to check that A works in time (Ŝ(m))O(1). ��

As we applied 3SAT in the above proof it is also possible to define encodings
FA and EA for any NP-complete problem A such that FA encodes instances of
A and EA witnesses. Furthermore one can easily assure that a channel which
is consistent to the set of strings encoded by FA and EA fulfills the minimum
entropy constraint (1). Consequently for any NP-complete problem there are
corresponding channels C with intractable oracles MCh

.

Corollary 2. Let A be an NP-complete problem. Then there are redundant en-
codings FA and EA over Σ for the instances of A and the witnesses and a channel
C over Σ which is consistent to {1m0z1z2z3z4 ∈ Σ∞|z1 ∈ FA

m(x) for some x ∈ A
and |x| = m, z2 = ξ, z3 ∈ EA

m(x), z4 ∈ Σ∞} and which fulfills the minimum en-
tropy constraint (1) such that the distribution C can be sampled efficiently and
the conditional distribution Cb

h cannot be sampled efficiently unless P = NP.

The proof of Corollary 2 is analogous to Theorem 3. By the above results, the
existence of an efficiently sampleable channel Ch becomes unlikely whenever the
channel C has a certain structural complexity. It is remarkable that even channels
with log2-space oracles MC may already have intractable oracles MCh

.

6 Feasible Conditional Sampling

Having characterised channels C with feasible oracles MC but hard MCh
, we will

now establish constraints on C to assure an efficient oracle MCh
. We follow two

approaches, namely sampling in logarithmic space and context free languages.
Whereas it is likely that it is not possible to sample Ch efficiently in case

C ∈ TiSp(pol, ω(log)) by Theorem 3, it becomes possible if C ∈ TiSp(pol, log).

762 C. Hundt, M. Lískiewicz, and U. Wölfel

In this case there is a probabilistic Turing machine N sampling according to a
conditional distribution C̃b

h which can be arbitrarily close to Cb
h. The slight dif-

ference between the distribution C̃b
h generated by N and Cb

h does not result from
the computational complexity of C, as in the case when C ∈ TiSp(pol, ω(log)),
but from the insufficient power of N to generate randomness. Equipped with a
more powerful random generator than coin flipping, N would meet Cb

h exactly.

Theorem 4. For every channel C ∈ TiSp(pol, log) and for all 0 < ε < 1 there
is a probabilistic polynomial time Turing machine N which samples according to
the conditional distribution C̃b

h which is ε close to Cb
h.

In the previous section we assumed that channels C encode words of certain lan-
guages, like for example 3SAT. We classified channels according to the complex-
ity of the encoded languages and observed that especially if C ∈ TiSp(pol, log)
then Cb

h becomes tractable. Now we restrict ourselves to channels which encode
context free languages. This family of languages is decidable in polynomial time
by the CYK algorithm.

Let L be a CFL and G = (Σ, ΣN , σ0, Π) a context free grammar for L. We will
define the channel C by giving an efficient sampler ML. W.l.o.g. we assume that
G is in Greibach Normal Form (GNF) and every variable in ΣN is generating. On
input 1n the probabilistic machine ML works as follows. Machine ML chooses a
positive integer k with the probability distribution: Pr[k] = 1

2k if 1 ≤ k < n and
Pr[k] = 1

2n−1 for k = n. Then ML computes the k × |ΣN | matrix A with A[i, j]
containing the set of productions π of the form σj � s with

1. s = a, a ∈ Σ, if i = 1,
2. s = aσu, a ∈ Σ, σu ∈ ΣN , if A[i − 1, u] �= ∅ or
3. s = aσuσv, a ∈ Σ, σu, σv ∈ ΣN , if there is 1 ≤ i′ ≤ i − 2 with A[i′, u] �= ∅

and A[i − i′ − 1, v] �= ∅.

Notice that A can be computed in polynomial time with respect to k. If the
entry A[k, 0] = ∅ then L contains no string of length k and in that case ML

writes 0z to its output tape, where z denotes a random string in Σn−1 and then
ML halts. If L contains strings of length k, ML generates such a string randomly
by the help of A. For that ML holds a stack containing in each cell a pair of
integers (i, j), 1 ≤ i ≤ k, 0 ≤ j < |ΣN | where each stack element indicates that a
substring of length i has to be deduced from σj . ML initially sets h = λ, pushes
(k, 0) on the stack and starts working iteratively on the stack until it is empty.
In each iteration ML takes the top element (i, j) from the stack and generates
a list B of all tuples (a, x, y, u, v), a ∈ Σ, 1 ≤ x, y < i − 1, 1 ≤ u, v < |ΣN | such
that

1. there is a production π in A[i, j] of the form σj � aσuσv. Thereby v = −1
indicates that π is actually of the form σj � aσu and if additionally u = −1
then π = σj � a and

2. if v �= −1 then A[u, x] �= ∅, A[v, y] �= ∅, and x + y = i − 1, if only u �= −1
then A[u, x] �= ∅ and x = i − 1 and if u = v = −1 then i must be one.

Provably Secure Steganography and the Complexity of Sampling 763

Then ML randomly chooses one tuple (a, x, y, u, v) in B by tossing a polyno-
mial number of coins, adds a to h, pushes (y, v) on top of the stack if v �= −1,
and subsequently pushes (x, u) if u �= −1. When the stack is empty, machine
ML returns the n-symbol prefix of 1k0hz, where z denotes a random string in
Σ∞.

Machine ML works in polynomial time since A can be constructed efficiently,
the iteration stops after k steps and each iteration step takes at most a polyno-
mial number of coin tosses.

Theorem 5. For every context free language L and the channel C which is
described by ML there is a probabilistic polynomial time Turing machine N which
samples according to the conditional distribution C̃b

h that is ε close to Cb
h for

arbitrary ε > 0.

7 Conclusions and Future Work

In this paper we analysed the complexity of conditional channels Ch as used in
rejection-sampling based steganography. Our main question was how efficiently
a sampling oracle MCh

for Ch can be constructed from an oracle MC that effi-
ciently samples the unconditional channel C. We showed that there are channels
for which such an efficient construction is impossible and the ability to perform
such a construction is dependent on the type of channel. However, there remain
some more problems to be solved in future work. We do not yet have precise char-
acterisations of the channels in which conditional sampling is hard and those in
which it is feasible. Such a characterisation will be needed to further investigate
the feasibility of practical oracle-based stegosystems.

References

1. Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography. In: Ad-
vances in Cryptology - CRYPTO 2002. LNCS(2002) Vol. 2442, 77–92.

2. Anderson, R.J., Petitcolas, F.A.P.: On the limits of steganography. IEEE Journal
of Selected Areas of Communications 16(4) (1998) 474–481.

3. von Ahn, L., Hopper, N.J.: Public-key steganography. In: Advances in Cryptology -
EUROCRYPT 2004. LNCS(2004) Vol. 3027, 323–341.

4. Le, T.V., Kurosawa, K.: Efficient public key steganography secure against adaptively
chosen stegotext attacks. Technical Report 2003/244, IACR Archive (2003).

5. Backes, M., Cachin, C.: Public-key steganography with active attacks. In: Theory
of Cryptography Conference. LNCS(2005) Vol. 3378, 210–226.

6. Lysyanskaya, A., Meyerovich, M.: Provably secure steganography with imperfect
sampling. In: Public Key Cryptography. LNCS(2006) Vol. 3958, 123–139.

7. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979).

8. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading MA (2000).

9. Iwama, K., Tamaki, S.: Improved upper bounds for 3-sat. In: Proc. ACM-SIAM
Symposium on Discrete algorithms - ACM 2004, SIAM(2004), 328–328.

Author Index

Aggarwal, Divesh 141
Akutsu, Tatsuya 90
Aly, Mohamed 680
Ambainis, Andris 628
Aoki-Kinoshita, Kiyoko F. 100
Arvind, VIkraman 233, 449
Augustine, John 680

Bae, Sang Won 183
Bhattacharya, Binay 379
Bose, Prosenjit 173
Briest, Patrick 670

Chan, Joseph Wun-Tat 61
Chao, Kun-Mao 300
Chen, Danny Z. 547, 690, 701
Cheng, Ho-Lun 203
Chin, Francis Y.L. 61
Chwa, Kyung-Yong 183
Cicalese, Ferdinando 339
Cordasco, Gennaro 328

Das, Bireswar 449
Das, Shantanu 732
Demaine, Erik D. 3, 121
Dey, Tamal K. 2
Diaz, Josep 527
Dillard, Scott E. 722
Dinitz, Yefim 36
Doerr, Benjamin 318, 474
Dubey, Chandan K. 141

Elbassioni, Khaled 213
Elmasry, Amr 308
Elomaa, Tapio 277
Elsässer, Robert 349

Fishkin, Aleksei V. 213
Fleischer, Rudolf 547
Flocchini, Paola 732
Fomin, Fedor V. 16
Friedrich, Tobias 474
Fukagawa, Daiji 90

Ganguly, Sumit 163
Gargano, Luisa 328

Gasarch, William 628
Gaspers, Serge 16
Grandoni, Fabrizio 111, 527
Guillemot, Sylvain 253
Gunia, Christian 670
Guruswami, Venkatesan 267

Hajiaghayi, MohammadTaghi 3
Hamann, Bernd 722
Heggernes, Pinar 419
Hempel, Harald 243
Hoefer, Martin 369
Horiyama, Takashi 71
Høyer, Peter 638
Hu, Xiaobo S. 701
Hu, Yuzhuang 379
Hundt, Christian 754

Iliopoulos, Costas S. 399
Italiano, Giuseppe F. 111
Ito, Takehiro 121
Iwama, Kazuo 1, 71, 223

Jensen, Claus 308

Kamada, Akira 131
Kanehisa, Minoru 100
Kao, Ming-Yang 48, 100
Katajainen, Jyrki 308
Kavitha, Telikepalli 153
Kawahara, Jun 71
Kawarabayashi, Ken-ichi 3
Khandekar, Rohit 81
Kim, Jae-Hoon 183
Klasing, Ralf 744
Kneis, Joachim 598
Korman, Amos 409
Kowalik, �Lukasz 557
Krüger, Michael 243
Kujala, Jussi 277

Lee, Der-Tsai 460
Lengler, Johannes 318
Lenz, Tobias 26
Li, Jian 547
Li, Xiang-Yang 100

766 Author Index

Lin, Mingen 567
Lin, Tien-Ching 460
Lin, Tzu-Chin 537
Lískiewicz, Maciej 754
Liu, Chunmei 439
Liu, Hsiao-Fei 300
Luan, Shuang 701

Ma, Weimin 660
Mancini, Federico 419
Manne, Fredrik 339
Marchetti Spaccamela, Alberto 527
Markou, Euripides 744
Maruyama, Shirou 484
Mehta, Shashank K. 141
Meyerhenke, Henning 429
Mhalla, Mehdi 638
Misio�lek, Ewa 701
Miura, Kazuyuki 131
Miyagawa, Hiromitsu 484
Mölle, Daniel 598
Morizumi, Hiroki 223
Mukhopadhyay, Partha 449

Natarajan, Vijay 722
Nayak, Amiya 732
Neumann, Frank 618
Nishizeki, Takao 121, 131

Onsjö, Mikael 507

Pal, Sudebkumar Prasant 588
Paluch, Katarzyna 712
Pandit, Vinayaka 81
Papadopoulos, Charis 419
Pascucci, Valerio 722
Pelc, Andrzej 744
Peleg, David 409
Perdrix, Simon 638
Proietti, Guido 578

Rahman, M. Sohel 399
Richter, Stefan 598
Rodeh, Yoav 409
Rossmanith, Peter 598
Rührup, Stefan 650

Saha, Barna 163
Sakamoto, Hiroshi 484
Sanghi, Manan 48
Santoro, Nicola 732
Sauerwald, Thomas 349, 429
Saurabh, Saket 16

Schindelhauer, Christian 650
Schweller, Robert 48
Scott, Allan E. 608
Shah, Chintan D. 153
Shannigrahi, Saswata 588
Shi, Qiaosheng 379
Shi, Xinwei 203
Sitters, René 213
Smid, Michiel 173
Solomon, Shay 36
Song, Yinglei 439
Srinivasan, Aravind 628
Stege, Ulrike 608
Steurer, David 318
Suchan, Karol 517
Sudholt, Dirk 359

Takasu, Atsuhiro 90
Tamir, Arie 379
Tarui, Jun 223
Todinca, Ioan 517
Torán, Jacobo 233
Tsaggouris, George 389

Utis, Andrey 628

Wang, Biing-Feng 537
Wang, Chao 690, 701
Wang, Ke 660
Wang, Weizhao 100
Wang, Yusu 193
Watanabe, Osamu 507
Weber, Gunther H. 722
Widmayer, Peter 578
Witt, Carsten 618
Wölfel, Ulrich 754
Wu, Xiaodong 289

Xie, Zhiyi 547
Xin, Qin 339
Xu, Daming 173
Xu, Jinhui 567

Yang, Yang 567
Ye, Deshi 61
Yu, Hung-I 537

Zaroliagis, Christos 389
Zeh, Norbert 608
Zhang, Yong 61
Zhou, Xiao 121
Zhou, Yunhong 494
Zhu, Hong 61, 547

	000
	001
	002
	003
	Introduction
	Our Results and Techniques

	Treewidth-Grid Relation for Map Graphs
	Treewidth-Grid Relation for Power Graphs
	Treewidth-Grid Relations: Algorithmic and Combinatorial Applications
	Improved Grid Minor Bounds for \K_3,k
	Contraction Version of Wagner’s Conjecture
	Open Problems and Conjectures
	References

	016
	Introduction
	Preliminaries
	Minimum Maximal Matching
	Counting Maximum Weighted Independent Sets
	Application to Parameterized Algorithms
	Conclusion

	026
	Introduction
	Counting Passes and the Streaming Model
	Previous Work
	The Model
	Obtaining Upper Bounds by Playing Games
	Dealing with Unknown Data Size
	Improvements for Known Data Size
	Multiple Passes
	Conclusion

	036
	Introduction
	Definitions and Notation
	The Shortest ``Somehow" Packet-Move
	Optimal Solution to \BTH_n
	Case 1: Disk n Never Moves to the Auxiliary Peg
	Case 2: Disk n Moves to the Auxiliary Peg

	Diameter of the Configuration Graph of \BTHn
	``Subset'' Setting
	Preliminaries
	The Set of Potentially Optimal Algorithms
	Tightness and Other Related Issues

	Setting with the Ultimate Placement Rule

	048
	Introduction
	Preliminaries
	Exact Labelings for Special Graphs
	Matchings
	Star-Graphs

	Labeling General Graphs
	Matching Decomposition
	Hybrid Decomposition (Star Destroyer)

	Trees and Forests
	Combining Trees
	Node Based Recursion
	Leaf Based Recursion

	Future Directions
	References

	061
	Introduction
	The Greedy Algorithm
	FAL Without Deletion
	Asymptotic Competitive Ratio
	Absolute Competitive Ratio

	FAL with Deletion
	Online Algorithm with Borrowing
	Lower Bound

	References

	071
	Introduction
	Problem Definitions and Lower Bounds
	Revocable Online Knapsack Problem
	Lower Bounds of Competitive Ratio

	Base Algorithm
	Finite State Algorithm
	State Diagrams
	Feasibility of State Diagrams
	Execution Sequences
	Calculation of Competitive Ratio

	Construction and Verification AFS
	Possibilities and Limits of the Approach

	081
	Introduction
	Previous Work
	Our Results

	Algorithm
	Outline of Our Approach
	Partitioning Scheme
	The Dynamic Program

	Conclusions
	References

	090
	Introduction
	String Edit Distance and Tree Edit Distance
	Euler String
	Modified Euler String
	Analysis
	Construction of Tree Mapping from String Alignment
	Analysis of Lower Bound of EDS

	100
	Introduction
	Preliminaries and Problem Definition
	Find the Maximum Overlap AoN-Subtree
	Approximate Smallest Common AoN-Supertree
	Understanding the Structure of LCST
	Compute Good MCCST

	Conclusion

	111
	Introduction
	The Algorithm
	An Improved Cable-Selection Rule
	Adapting the Scaling Factors

	121
	Introduction
	MAXSNP-Hardness
	Pseudo-polynomial-time Algorithm
	Terminology and Definitions
	Algorithm

	FPTAS

	131
	Introduction
	Preliminaries
	Pentagonal Drawing
	Convex Grid Drawing Algorithm

	141
	Introduction
	Problem Definitions
	Exact Algorithms on Dominating Pair Graphs
	Minimum Connected Dominating Set
	Steiner Set
	Steiner Connected Dominating Set

	Approximation Algorithms
	Computation of a Minimum Dominating Target
	Minimum Connected Dominating Set
	Steiner Connected Dominating Set
	Steiner Set

	153
	Introduction
	Popular Matchings
	Our Improvement

	Rank-Maximal Matchings
	The Rank-Maximal Matching Algorithm from IKMMP04
	Our Improvement

	Weighted Rank-Maximal Matchings

	163
	Introduction
	Estimating \P_2
	Random Subgraph RS of Graph Streams
	Analysis: Graph Based Properties of \P_2
	Analysis: Space Usage of the Estimator

	Lower Bounds

	173
	Introduction
	Computing a Bounded-Degree Spanning Subgraph of a Triangulation
	Bounded-Degree Spanners of the Delaunay Triangulation
	Bounded-Degree Spanners of the Unit-Disk Graph
	Bounded-Degree Spanners of a Diamond Triangulation

	183
	Introduction
	Preliminaries
	The Algorithm for the SPM
	Computing the SPT
	Building the SPM from the SPT

	Correctness and Complexity of the Algorithm

	193
	Introduction
	Preliminaries and Problem Definition
	Related Work
	Our Results

	Can \pqpq-Partitioning Approximate Arbitrary Partitioning?
	Error Metric \mmax
	Error Metric \msum~and \mlift

	Double-Sided Approximations Under Sum-SVar
	Upper Bound $\error(\newpart)$
	Upper Bound $\optsize(\simpmap | \amap, 2\threshold)$

	Conclusion and Discussion

	203
	Introduction
	Background
	Algorithm
	Prioritized Delaunay Refinement
	Sliver Removal by Pumping Vertex

	Experimental Results
	Discussion

	213
	Introduction
	Intersecting Convex Fat Objects - The Discrete Case
	The Algorithm
	Two Packing Lemmas
	Analysis of the Approximation Ratio

	General Objects - The Continuous Case

	223
	Introduction and Summary
	Lower Bounds for Parity and Inverters
	Preliminaries
	Crossing Wires
	Proofs of Theorems 1 and 2

	Sorted Input Case: The Minimum Size Determined
	Lower Bounds
	Upper Bounds

	Open Problems

	233
	Introduction
	Quasigroup Isomorphism
	Limited Nondeterminism

	The Minimum Generating Set Problem
	Quasigroup Isomorphism and Parallel Queries to NP

	243
	Introduction
	Preliminaries
	Inverse Problems
	HAMILTONIAN CYCLE
	3-DIMENSIONAL MATCHING
	3-SATISFIABILITY
	Some Helpful Graph Modules for Hamiltonian Cycles

	Main Results

	253
	Introduction
	Definitions
	Graphs
	Parameterized Complexity

	 Complexity of Maximum Independent Set
	 Solving MISF
	 Hardness Results

	 Complexity of Minimum Dominating Set
	 Solving MDSF
	 Hardness Results

	 Complexity of Maximum Clique
	 Optimality Results

	267
	Introduction
	Preliminaries and Definitions
	2-Query Codeword Testing with Near-Perfect Completeness
	Statement of Result
	Proof

	277
	Introduction
	Cost Model and the Interleave Bound
	Poketree---A Dynamic Data Structure
	Insertions and Deletions: Poketree(RB)
	Reducing Memory Consumption: Poketree(Skip)
	Conclusions
	Proof of Theorem 3
	Proof of Theorem 1

	289
	Introduction
	Our Algorithms for the ORDI Problems
	Convex Hull for the ORDI-CSB Problem
	Implementation of the Probing Oracle
	The Algorithm for Maximizing the Parametric Net-Cost
	Computing an Optimal-Ratio Smooth Lower-Half Region

	Our Algorithms for the ORDV Problems

	300
	Introduction
	Preliminaries
	Preprocessing
	The Main Algorithm
	Concluding Remarks

	308
	Introduction
	Run-Relaxed Heaps
	Number Systems and Data Structures
	Two-Tier Relaxed Heaps

	318
	Introduction and Results
	Communication Model with Errors
	Liar Games
	Previous Results
	Our Contribution

	Notation and Preliminaries
	Upper Bounds and Strategies for Paul
	Lower Bound
	References

	328
	Introduction
	Small--World (SW) Networks
	Low Randomness Small--World Networks
	Our Results
	Related Work

	Preliminary Notation and Definitions
	Routings Strategies

	Restricted--Small--World Networks
	Small--World Networks with Communities
	Routing in Small--World Networks with Communities

	Conclusions

	339
	Introduction
	Gossiping in General Graphs with Known Topology
	Final Remarks: Broadcasting in Graphs with Known Topology
	References

	349
	Introduction
	Bounds on the Broadcasting Time
	Notations and Definitions
	Lower Bounds
	Upper Bounds
	Price of Randomness

	Robustness of Randomized Broadcasting and Applications
	A Robustness Result
	Applications

	Conclusion
	Bibliography

	359
	Introduction
	Definitions
	Race Functions: Where Local Search and Global Search Compete
	Analyzing the Impact of the Local Search Frequency
	Conclusions

	369
	Introduction
	Facility Location Games
	Metric UFL Games
	Extensions

	Covering Games

	379
	Introduction
	Notations and Problem Formulation
	Main Idea of Our Algorithms
	Locating Non-dominating Vertices in an Optimal Solution

	Weighted Path-Shaped Center Problems
	Weighted Tree-Shaped Center Problems
	Conclusion and Future Work

	389
	Introduction
	Preliminaries
	Single-Source Multiobjective Shortest Paths
	The SSMOSP Algorithm

	Non-linear Objectives
	Applications

	399
	Introduction
	An Algorithm for FIG
	An Improved Algorithm for FIG
	A K-Independent Algorithm for FIG
	Algorithm for Elastic Gapped LCS
	Algorithms for Rigid Gapped LCS
	Conclusion

	409
	Introduction
	Preliminaries
	Transforming f-Labeling Schemes for Connected Graphs to Non-connected Graphs
	The General Transformation
	Labeling Schemes for Path Collections
	An Adjacency Labeling Scheme for $\cC(\cF^{Circles},n)$

	A Distance Labeling Scheme for $\cF^{Circles}(n)$
	A Size Lower Bound

	419
	Introduction
	Notation and Background
	Comparability Graphs
	A Vertex Incremental Approach for Minimal Completions

	An Algorithm for Minimal Comparability Completion of \G_x
	Correctness of Algorithm MCC
	Time Complexity and Concluding Remarks

	429
	Introduction
	Disturbed Diffusion, Graph Partitioning, and Diffusion Distances
	Disturbed Diffusion: FOS/C
	FOS/C for Graph Partitioning
	Diffusion Distances in Graphs

	Relating FOS/C to Random Walks
	FOS/C on the Torus
	FOS/C on Distance-Transitive Graphs
	Conclusions

	439
	Introduction
	Preliminaries
	Algorithms
	On General Graphs
	On Graphs of Degree Bounded by 3
	On Graphs of Degree Bounded by 4

	Conclusions

	449
	Introduction
	Gadget Construction for Tournaments
	Canonical Labeling of Tournaments
	Hypertournament Isomorphism and Canonization

	460
	Introduction
	Algorithm for the Sum Selection Problem
	Algorithm for k Maximum Sums Problem
	Conclusion

	474
	Introduction
	Preliminaries
	Parity-Forcing Theorem
	The Basic Method
	The Modes of INF(x, A,t)
	Worst-Case Behavior

	484
	Introduction
	Notions and Definitions
	Strings
	Grammar-Based Compression
	Compressed Pattern Matching

	Compression Algorithm
	Key Idea
	Compression Algorithm
	Performance Analysis

	Conclusion

	494
	Introduction
	Problem Statement
	Our Contributions
	Related Work

	Definitions and Preliminaries
	A Linear Time Merging Subroutine

	The Interval Knapsack Problem
	FPTAS for I-KP

	The Interval Multiple-Choice Knapsack Problem
	FPTAS for I-MCKP

	Applications to Multi-unit Auction Clearing
	Improved Algorithms for VCG Computations
	Conclusion

	507
	Introduction
	Planted Solution Models: Our Average-Case Scenario
	Main Results
	Related Work

	Algorithm and Its Analysis
	Robustness of the Algorithm

	Some Remarks

	517
	Introduction
	Definitions and Basic Results
	Nice Orderings and Nice Prefixes
	Choosing a First Vertex
	A Family of Nice Orderings
	Nice Orderings: A Sufficient Condition

	Conclusion

	527
	Introduction
	A Lower Bound
	A Simple Cutting Algorithm

	537
	Introduction
	Notation and Preliminaries
	Minmax-Regret 1-Center on a General Graph
	Averbakh and Berman's Algorithm
	The Improved Algorithm

	Minmax-Regret 1-Center on a Tree
	Preprocess
	An Improved Algorithm

	Concluding Remarks

	547
	Introduction
	MSS and Restricted NDCE
	The Cyclic Maximum Simple Sharing Problem (CMSS)
	Obtaining a $5\over 3$-Approximate MSS Solution

	557
	Introduction
	Preliminaries
	Reduction to a Flow Problem
	Approximation Algorithm
	Approximating Graph Density Measures
	Approximation with Additive Error

	Further Research

	567
	Introduction
	MFFI for the Offline MRBP
	MFFD for the Offline LBC

	578
	Introduction
	Related Work
	Our Results

	The p-Radius Problem is \np-Hard
	An Efficient Solution of the 2-Radius Problem
	A Solution of the p-Radius Problem

	588
	Introduction
	Efficient Coding of r-Uniform Hypertrees
	Counting r-Uniform Hypertrees
	Conclusion

	598
	Introduction
	Previous and New Results
	A Randomized Algorithm for t-Vertex Cover
	A Problem Kernel for t-Vertex Cover
	Concluding Remarks

	608
	Introduction
	Trees
	The Basic Algorithm
	A Faster Algorithm

	NP-Hardness on Planar Graphs
	Fixed-Parameter Tractability on General Graphs

	618
	Introduction
	The Algorithm
	1-ANT and (1+1) EA
	1-ANT on OneMax
	Exponential Lower Bounds
	Polynomial Upper Bounds

	Conclusions

	628
	Introduction
	Definitions, Notations, and Useful Lemmas
	The Complexity \HAMa for $a\le O(\sqrt n)$
	The Complexity of \HAMea for $a\le O(\sqrt{n})$
	The Complexity of \HAMa and \HAMea for General a
	Auxiliary Notation and Results
	The Main Results

	638
	Introduction
	Graph States and Signed Graph States
	Preparation of Graph States
	Circuits and Local Complementation
	\boldmath Bi-separability and δloc
	References

	650
	Introduction and Overview
	Related Work

	Basic Definitions and Techniques
	The JITE Algorithm
	Time and Traffic Analysis
	Conclusions and Open Problems

	660
	Introduction
	The Model
	Competitive Ratios
	Position Maintaining Strategy (PMS for Short)
	Partial Greedy Algorithm (PGA for Short)

	A Lower Bound
	Conclusion

	670
	Introduction
	Related Work
	Preliminaries
	Contributions

	Single-Message Broadcasting
	The Offline Setting
	An Online Algorithm
	A Lower Bound

	Extensions
	An Online Algorithm for Multiple Messages
	More Flexible Speed-Adjustment

	680
	Introduction
	Our Results
	Preliminaries
	Lower Bounds
	Adversarial Demands
	Demands Drawn From an Unknown Distribution
	Adversarial Leaf Node Capacities

	Oblivious Routing in Tree Networks
	Oblivious Routing in Grids

	690
	Introduction
	Field Splitting with Overlapping (FSO)
	Notation and Definitions
	The Basic Case: The Basic Row Splitting (BRS) Problems
	The General Row Splitting (GRS) Problem
	The Field Splitting with Fixed Overlapping (FSFO) Problem
	Our Field Splitting with Overlapping (FSO) Algorithm

	Implementation and Experiments

	701
	Introduction
	Our Shape Rectangularization (SR) Algorithm
	Notation and Preliminaries
	Optimality of Canonical Block Sets
	Geometric Structures of a Canonical Optimal Block Set
	The Primary Block Set (PBS) Problem
	Reformulation of the Primary Block Set (PBS) Problem
	Our Algorithm for the MDF Problem on a Path

	712
	Introduction
	Preliminaries
	Simple Subarrays, Their Complexity and Difficulty
	Blocks
	Algorithm
	Minimal Weight of S

	The Algorithm is Tight

	722
	Introduction
	Related Work
	Results

	Background
	Line Restrictions
	Contours and Critical Points

	Tessellation
	Case Analysis
	Application to Reeb Graphs
	Conclusions and Future Work

	732
	Introduction
	The Framework
	Our Results
	Related Work

	Solving the Agent Election Problem
	Characterization: Conditions for Solvability
	An Effective Election Protocol

	Polynomial Solutions to the Agent Election Problem
	Partial-Views
	Algorithm Agent-Elect

	Reducing the Size of the Whiteboards
	Algorithm Agent-Elect-2
	Algorithm Agent-Elect-3

	744
	Introduction
	Terminology and Preliminaries
	Gatherable Configurations
	Gathering an Odd Number of Robots
	Conclusion

	754
	Introduction
	Preliminaries and Basic Concepts
	The Complexity of Sampling
	The Intractability of Oracle-Based Steganography
	Channels with Hard Conditional Sampling
	Feasible Conditional Sampling
	Conclusions and Future Work

	999

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

